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Abstract

With the increased �exibility and mobility which they provi de, mobile terminals are ar-
guably the most popular and widespread telecommunicationsdevices of the present day.
Mobile terminals are used in widely di�erent and adverse conditions such as in handsfree
mode or in noisy environments. Particularly in hands-free mode, part of the far-end voice
signal from the loudspeaker is coupled to the microphone. Furthermore, in noisy environ-
ments the microphone also captures the ambient noise in addition to the useful near-end
speech signal. In consequence, mobile terminals are generally equipped with speech signal
processing algorithms in order to maintain acceptable speech quality. This thesis mainly
focuses on echo cancellation.

Acoustic echo cancellation is generally achieved through adaptive �ltering followed by
echo post�ltering. Adaptive echo cancellation aims to estimate the echo signal recorded
by the microphone. The echo post�lter is used to attenuate the residual echo. Echo post-
�ltering often operates in the subband or frequency domain. Filtering in the frequency or
subband domain is appealing on a computational complexity point of view. However, sub-
band �ltering su�ers from signi�cant signal delay whilst fr equency domain �ltering su�ers
from time domain aliasing due to circular convolution. Alternative �ltering methods can
be use to avoid these problems. The �rst contribution in this thesis aims to assess dif-
ferent �ltering methods for combined noise reduction and echo post�ltering. Assessments
show that all �ltering methods approximately achieve the same amount of echo suppres-
sion. However, they are not equivalent in terms of perceivedspeech quality: time domain
�ltering methods introduce some crackling while other methods introduce musical noise.

Although adaptive echo cancellation and echo post�lter both target the same prob-
lem, they are generally implemented separately. We proposea synchronized approach to
adaptive echo cancellation and echo post�ltering. We also introduce a new stepsize com-
putation methods. The synchronization approach and stepsize proposed method achieves
a signi�cant increase of the convergence rate and robustness of the adaptive �lter.

Recent approaches to improve the speech quality are based onmulti-microphone de-
vices. In line with this trend, dual-microphone mobile devices can be found on the market.
The last part of this thesis deals with dual-microphone echocontrol. Recordings with
dual-microphone devices show us that a signi�cant level di�erence is observed between
the microphone signals. Based on this observation, we propose a frequency domain based
double-talk detector. The proposed DTD is assessed with a single microphone echo post-
�lter. Assessment show that the use of the double-talk detector leads to increased echo
suppression and slightly reduced distortion.

Our echo processing scheme is still composed of adaptive �ltering followed by post�l-
tering. The novelty lies withtin the post�lter which uses tw o microphone signals instead of
one. We introduced two novel approaches to echo post�ltering. The �rst is based on the
level di�erence between the microphone and is suitable for aspeci�c arrangement of the
transducer on the device. The second post�lter is not restricted to a speci�c arrangements
of the transducer. This solution is also advantageous as it can be used to tackle non-linear
echo problem. It turns out that the proposed dual-microphone post�lter achieve good
echo suppression whist keeping the distortion of the usefulspeech low.
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Chapter 1

Introduction

The �rst telephone was invented in 1876 making long-distance communication possi-
ble [Balle, 2005]. The patent for this invention was �led by Graham Bell for the account
of Bell Telephone Company. At the time the telephone was still a privilege and it is
mostly installed very calm environments (i.e. salon, o�ce) . The user was required to use
both hands to do a conversation: one to hold the loudspeaker and another to hold the
microphone. Although this con�guration was constraining for the user, it remains optimal
on acoustical point of view: it o�ers a good isolation of the between the loudspeaker and
microphone. In addition, communications take place in high signal-to-noise conditions
resulting in good speech quality conditions.

Thanks to its patent on the telephone, Bell Telephone Companyhad the monopole on
this market until 1894 [Leclerc and Carré, 1995]. As theBell Telephone Companytech-
nologies became public, new actors arrived on the market of telecommunications creating
a rude competition. Each competitor creating a network that functioned within a city.
Reaching a phone located in a di�erent city often meant inter-connecting di�erent network
and was not always possible. When the interconnection was possible, it was very costly
for the consumers. First regulations o�ces such as the international telecommunications
union (ITU) were created in the 1930's with the aim of structuring the telecommunications
network in order to facilitate inter-connectivity between di�erent networks and to defend
the interest of the consumers towards rising prices [Curienand Gensollen, 1992].

Handsfree devices were only invented in the 1957. With handsfree devices, the user
freed his hands thereby o�ering increased comfort and �exibility [Flichy, 2004]. In return,
part of the signal from the loudspeaker is recorded by the microphone: the far-end user
experiences the unpleasant e�ect of hearing a delayed version of their voice. The �rst
attempts at echo control were based on analog voice controlled switches [Hänsler and
Schmidt, 2004]. When the near-end speaker is talking, the signal on the loudspeaker path
is completely suppressed. Therefore, when both speakers were active, both sending and
receiving path signals are suppressed and no communicationis possible. This is the half-
duplex e�ect - only one person can speak at a time. Full-duplex solutions to the echo
problem came in the 1970's with the development of digital circuits and the invention of
adaptive �lters. Adaptive �lters are used to obtain a real-t ime estimate of the loudspeaker-
enclosure-microphone (LEM) system.

Mobile devices were developed in the 1980's allowing for phone conversations to take
place everywhere. The use of mobile devices in noisy environments (i.e. cafe, airport,
street ...) introduces the problem of additive noise in telecommunications. The �rst noise
reduction methods aimed to suppress noise by subtracting itfrom the recorded microphone
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signal [Boll, 1979].
The earliest mobile devices weighted about 3kg whereas nowadays weights of 100g

are typical. The miniaturization of mobile phones is also a source of some other speech
quality degradation. One of the most important impairments comes from the loudspeaker
miniaturization which can introduce a lot of non-lineariti es in the LEM system. As a
result, echo control solutions need to account for the presence of non-linearities.

Speech quality in mobile phones is degraded by a diversity ofartifacts. Among which
we can cite the problem of ambient noise and that of acoustic echo. In consequence,
mobile terminals are generally equipped with speech signalprocessing algorithms in order
to maintain acceptable speech quality [Degry and Beaugeant,2008, Hänsler and Schmidt,
2004]. This thesis focuses on echo cancellation.

1.1 State-of-the-art approaches to speech enhancement

Most approaches to acoustic echo cancellation consist of anadaptive �lter followed by
an echo post�lter [Benesty et al., 2007, Hänsler and Schmidt,2004, Martin, 1995]. The
adaptive �lter produces an estimate of the acoustic path [Haykin, 2002]. It is then used to
estimate the echo signal at the microphone in order that it besubtracted from the up-link
signal. In practice, the performance of adaptive echo cancellation (AEC) is disturbed by
the presence of ambient noise and/or the near-end speech signal [Hänsler and Schmidt,
2004, Haykin, 2002]. To limit the impact of such disturbanceon the AEC module, double-
talk detectors (DTDs) and/or noise only detectors are often used [Huang et al., 2006].
Nevertheless, some residual echo remains at the output of the adaptive �lter. Conse-
quently, post�lters are often used to further suppress residual echo. Most echo post�lters
consist of an attenuation gain applied to the error signal resulting from adaptive �ltering.
For better performance during double-talk periods, this attenuation can be computed in
the sub-band or frequency domain [Benesty et al., 2007, Hänsler and Schmidt, 2004].

Noise reduction algorithms usually operate in the frequency or sub-band domain and
are generally based on the assumption that noise is an additive and relatively stationary
perturbation. Commonly used noise reduction algorithms are based on an estimate of the
noise power spectral density which is used to calculate a noise reduction �lter [Gustafsson
et al., 2001, Hänsler and Schmidt, 2004, Martin, 2001].

As illustrated in Figure 1.1, e�cient speech enhancement in telecommunications ter-
minals is guarantied by various modules. The non-linear pre-processor aims to estimate
the non-linear component of the loudspeaker signal. Adaptive echo canceling furnishes an
estimate of the non-linear echo signal at the microphone while echo post�ltering aims to
render residual echo inaudible. The noise reduction modules are used to process the noise
for the far-end and near-end speakers. In a practise, the downlink speech signal i.e. that
which has to be played by the loudspeaker contains both the far-end speech signal and
the ambient noise from his environment. Even in case noise reduction has already been
applied to the signal prior to its transmission, the use of the downlink noise reduction can
still permits to improve the speech intelligibility for the near-end speaker. The downlink
noise reduction will mostly be useful for cases where the signal to echo ratio is very low.

All these modules aim to improve speech quality but most of them shave been designed
and optimized individually. Moreover, this optimization d oes not always exploit the full
hardware capacity of the device. For example, most dual-microphone mobile devices are
still equipped with single microphone echo cancellation.The objective of this thesis
is to improve echo cancellation. First, we consider single microphone ec ho
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Figure 1.1: Example of speech enhancement scheme

cancellation and propose a novel architecture which accounts for the interac-
tions between AEC and echo post�ltering. Second, we propose approaches to
improve echo cancellation based on dual-microphone devices.

1.2 Contributions

In Chapter 2, we present state-of-the-art approaches to speech enhancement. Our contri-
butions are divided in two parts addressing single and dual microphone solutions respec-
tively.

1.2.1 Single-microphone echo cancellation

In most approaches to echo post�ltering, residual echo suppression and noise reduction (i.e.
�ltering of the degraded speech signal) is performed in the frequency or sub-band domain
through multiplication. Frequency and sub-band domain �lt ering are advantageous in
terms of computational simplicity [Oppenheim and Schafer, 1999] but also have some
drawbacks.

Sub-band domain �ltering introduces a signi�cant delay in t he output signal [Löll-
mann and Vary, 2007]. Delay reduction can be achieved by �ltering the residual echo in
the time domain. In this case, the sub-band attenuation gains are used to determine a
broadband �nite impulse response �lter. Popular approaches to its calculation include the
�lter bank equalizer, the low delay �lter or the inverse disc rete Fourier approach [Löllmann
and Vary, 2007, Steinert et al., 2008,Yemdji et al., 2010a]. Contributions in this thesis
include a comparative assessment of alternative �ltering methods to sub-band echo post-
�ltering [ Yemdji et al., 2010a,b]. We showed that distortions introduced by time domain
�ltering methods are perceived di�erently from those intro duced by subband �ltering.
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Frequency domain �ltering through bin-by-bin multiplicat ion is equivalent to circular
convolution and su�ers from time domain aliasing [Oppenheim and Schafer, 1999]. Dis-
tortions can be reduced using linear convolution [Oppenheim and Schafer, 1999] which is
known to be computationally prohibitive for mobile termina ls. In [Yemdji et al., 2011] we
propose a low computational complexity implementation of linear convolution. A distinct
advantage of the proposed implementation relates to its scalability which we exploit to
manage computational complexity with only moderate degradation in speech quality. Our
�ndings regarding subband domain and frequency domain related �ltering methods are
presented in Chapter 3.

The work then turns to the joint-control of AEC and echo post� ltering algorithms. The
AEC and the post�lter both aim to suppress acoustic echo. Historically, each module was
designed as an independent module [Hänsler and Schmidt, 2004]. Recently, however, echo
control systems with synchronized adaptive echo cancellation and echo post�ltering have
been investigated and have shown improved performance [Enzner and Vary, 2003, 2006,
Steinert et al., 2007]. Synchronized echo control systems use the system distance (i.e. the
error between the acoustic path and its estimate) to link thetwo modules which are in this
case designed to operate in the same frequency or sub-band domain. We propose a cross
domain approach to synchronized AEC and echo post�ltering and show that the proposed
approach outperforms existing state-of-the-art approaches [Yemdji et al., 2012b]. Based
on the work in [Mossi et al., 2010], our synchronization approach is advantageous for
its robustness against loudspeaker non-linearities in comparison to existing synchronized
systems. Our approach to synchronization is presented and assessed in Chapter 4.

1.2.2 Dual-microphone echo cancellation

The performance of single microphone echo cancellation algorithms is still limited, es-
pecially if we consider adverse situations such as handsfree con�gurations for which the
signal-to-echo-ratio at the microphone can be low. Although recent approaches to improve
speech enhancement consist in the use of multi-microphone terminals [Gannot et al., 2001,
Jeub et al., 2011, Kellermann, 1997, Reuven et al., 2007a], dual microphone echo process-
ing has not received much attention in the literature [Guo et al., 2011, Jeannes et al.,
2001].

We report a study of the echo problem for dual microphone devices based on mea-
surements with mock-up and real mobile phones. Our study is based on both handset
and handsfree scenarios. Unlike existing multi-microphone echo control approaches based
on beamforming [Gannot et al., 2001, Guo et al., 2011, Kellermann, 1997, Reuven et al.,
2007a], we show how dual microphone echo control can be achieved through an adaptive
�lter followed by a post�lter [ Yemdji et al., 2012a,c]. Our contributions regarding dual
microphone echo control are two-fold.

The �rst part of our contribution uses the level di�erence be tween microphone signals.
The reported level di�erence is observed for certain transducers con�gurations namely
their arrangement on the device. The level di�erence is exploited to introduce a new
approach to double-talk detection and a new echo suppression gain rule. The proposed
double-talk detector (DTD) is appealing for its simplicity and �exibility. It can operate
either in the frequency or sub-band domain as well as in the fullband domain. The level
di�erence gain rule does not require an explicit estimate ofthe residual echo power spectral
density. Experiments show that both the DTD and the new gain rule lead to improved
echo cancellation performance compared to single microphone approaches. The proposed
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level di�erence DTD and gain rule are presented in Chapter 5.
The second part of our contribution regarding dual-microphone echo processing in-

volves a general approach to echo post�ltering. In contrast to the level di�erence ap-
proaches, the proposed post�lter is not constrained to speci�c transducers con�gurations.
This approach simply exploits the correlation between the two microphone signals to
estimate the residual echo power spectral density [Yemdji et al., 2012a,c]. The pro-
posed power spectral density estimate is readily extended to deal with loudspeaker non-
linearities. Experiments show that this method leads to more accurate power spectral
density estimation and achieves better echo suppression compared to single microphone
approaches as we showed in [Yemdji et al., 2012c]. This approach to dual-microphone
echo post�ltering is presented in Chapter 6.

Publications

Part of the contributions presented in this thesis have beenpublished by the author at
international conferences: [Yemdji et al., 2010a,b, 2011, 2012b,c]. Most of the contri-
butions regarding dual-microphone devices have been patented [Yemdji et al., 2012a].
Throughout this thesis, publications of the author are indicated in bold.
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Figure 2.1: Illustration of the echo problem

The development of telecommunications is particularly marked by the advent of ser-
vices such as mobile telephony or video conferencing. All these mutations aim to improve
the quality of communications: comfort (hands free devices), friendliness (video calls,
conversations in groups) and security (handsfree devices in cars).

Besides the comfort provided to the user, the use of phone is some environments
might degrade the speech quality. Public places such as stations, airports, etc.. are
particularly noisy places. The ambient noise is picked up bythe microphone just as the
useful speech. With handsfree devices, part of the signal played by the loudspeaker is
recorded by microphone. Because of this feedback, the speaker hears his voice with a
delay (delay introduced by the transmission chain). As a result, the microphone signal
contains the speech signal but also useful acoustic echo andnoise: these e�ects can be
annoying for the far-end speaker.

Speech quality is a very important aspect in telecommunications as regulation insti-
tutions such as the ITU-T or 3GPP have set some speci�cationsregarding the echo and
noise problem and quality requirements for the transmitted speech signals. Actors of
the telecommunications market must develop speech enhancement algorithms to meet the
speci�cations recommendations. Acoustic echo cancellation and noise reduction are used
to tackle these problems. Speech enhancement is a topic of interest for a variety of actors
such as phone designers, automotive constructor or laptop manufacturer.

This chapter deals about state-of-the-art speech enhancement algorithms and is or-
ganized as follows. In Section 2.1, we introduce the problemof acoustic echo and noise.
Section 2.2 reports some state-of-the-art approaches to echo cancellation and noise reduc-
tion. Section 2.3 deals about assement that can be used to assess the performance of
speech enhancement algorithms. Our conclusions are presented in 2.4.

2.1 Sound recording in telecommunications termninals

In this section, we present the problem due to acoustic echo and noise.
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Figure 2.2: Example of measured acoustic echo path

2.1.1 Acoustic echo

In a phone conversation, the voice signal is transmitted through a communication network
to a device equipped with at least one loudspeaker and one microphone. The loudspeaker
plays the sound from the far-end speaker to the near-end speaker while the microphone
records the voice of the near-end speaker. The voice of the near-end speaker is then trans-
mitted to far-end speaker. But in some cases, part of sound emitted by the loudspeaker
propagates in the near-end environment and is coupled the microphone of the device. As
a result, the far-end speaker does not only receive the voiceof the near-end speaker but
also receives a delayed version of his voice: this e�ect is referred to as acoustic echo. As
illustrated in Figure 2.1, this coupling is composed of the direct path and of the re�ected
paths between the loudspeaker and the microphone.
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2.1.1.1 Linear echo

The coupling between the transducers of the device, also referred to as the echo path can
be modeled by a �nite impulse response �lter. The echo signalcan then be written as

d(n) = h(n) ? x(n) (2.1)

where h(n) represents the impulse of the echo path andx(n) represents the loudspeaker
signal. Figure 2.2 shows an example of echo paths measured with a mock-up handsfree
mobile phone in an o�ce environment. The mock-up phone used consists simply of a
plastic box equipped with a loudspeaker and two microphones. One can refer to Annex 5.A
for details about the description of the design of the mock-up phone. The use of a mock-up
phone instead of a real one permits to focus only on the acoustic interactions that occur
in a device. The microphones are placed such that one of them is slightly closer to the
loudspeaker than the other. We denoteh1(n) and h2(n) the impulse response between the
loudspeaker and the �rst and second microphones respectively.

We see from Figure 2.2 (a) the main delay (�rst peak) is not the same for each mi-
crophone. The echo path is composed of the direct path and indirect paths (re�ections)
between the loudspeaker and the microphone of interest. Themain delay for each impulse
response is related to the direct path (i.e. distance) between the loudspeaker and the mi-
crophone considered [Kuttru�, 2000]. The closer the microphone is from the loudspeaker,
the shorter the direct path. In our case, the main delays are of 0.2ms and 0.4ms for the
�rst and second microphone respectively. It is also of interest to note that the amplitude of
this �rst peak is di�erent for each microphone. This is due to the fact that the amplitude
of a propagating acoustic wave is inversely proportional tothe distance between its source
and the point at which it is measured. In our case, the closer the microphone is from the
microphone, the higher the amplitude of the main delay will be.

The peaks that follow the main one are due to the re�ections ofthe sound from the
loudspeaker in the surrounding environment. We can see fromFigure 2.2 (a) that the
re�ections are di�erent for each microphone. The microphones are placed at di�erent
position on the devices and do not pick up the same re�ectionsat the same time. The
sound from the loudspeaker propagates in all directions, creating an in�nite number of
waves. Re�ections occur when the wave encounters an obstacle: part of the incident wave
then continues to propagate in a di�erent direction (that of the re�ective wave) before being
picked up by the microphone. The frequency responses of the measured impulse responses
are showed in Figure 2.2 (b). We can see that the acoustic path impacts on the spectral
components of the loudspeaker signal: all the frequency arenot equally attenuated.

2.1.1.2 Mechanical coupling

The sound wave played by the loudspeaker actually results from the vibrations of the
membrane of the loudspeaker, the vibrations themselves being generated by the electric
wave received from the network. The microphone records sound by transforming acoustic
waves into electric waves. In the case of mobile terminals, the loudspeaker and microphone
are in the same enclosure. Part of the coupling between the transducer of the phone is
due to the proximity between the terminal transducers.

The coupling due to the proximity of the transducers is called mechanical coupling.
Figure 2.3 illustrates the mechanical coupling for a mock-upphone. The mock-up is the
same used to measure the acoustic echo paths in Figure 2.3. Themechanical coupling
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Figure 2.4: E�ect of the ampli�er used on the receiving path

is measured similarly as the acoustic echo path (of Figure 2.2) except this time, the
microphones are sealed meaning the microphones should not record any signal if a sound
is played on the loudspeaker. The fact that the impulse responsesh1(n) and h2(n) are
di�erent from zero shows that part of the acoustic echo is dueto the mechanical interaction
between the transducer. The di�erence of amplitude betweenthe mechanical coupling in
Figure 2.3 and the acoustic coupling in Figure 2.2 shows that the e�ect of mechanical
coupling remains marginal in comparison to the e�ect of the acoustic coupling.

2.1.1.3 Non-linear echo

The e�ects reported here only account the linear part of the acoustic echo. In reality part
of acoustic echo is generated by non-linear phenomena. Non-linear acoustic echo comes
from transducer saturation, digital converters and non-linearity of the loudspeaker transfer
function [Guerin, 2002].

The signals transmitted via the network are digital whereasthe transducers are only
able to play or record analog signal. As illustrated in Figure 2.4 (a), the received digital
far-end speech signalx(n) is processed through an ampli�er before being input to the loud-
speaker itself. The ampli�cation step permits to increase the power of the received signal
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Figure 2.5: Example of total harmonic distortion for a loudspeaker. A sine with di�erent
amplitudes and frequencies is used as input signal to the loudspeaker.

such that the signal played by the loudspeaker is audible. Unfortunately, as illustrated in
Figure 2.4 (b) saturations might occur during ampli�cation. As a result, the signal at the
input of the loudspeaker does not correspond to a linear transformation of the received
signal x(n).

In addition to non-linearities due to the loudspeaker saturations, we can mention the
harmonic distortions that are due to the non-linearity of th e loudspeaker transfer function.
Loudspeakers are in theory designed such that their frequency response is �at for a given
frequency band and input signal power. In practice, this is not the case. Figure 2.5 shows
the total harmonic distortion (THD) of a loudspeaker as a function of the power and
frequency of the input signal. The loudspeaker used in this distortion measurement is
that of the mock-up phone used above. The THD is a measure of the amount of harmonic
distortion introduced by a device. Ideally, it should be equal to zero. The signal at the
input of the loudspeaker is a sine: the amplitude and frequency of the sine are used as test
parameters. For a given input sine signal (i.e. with a given frequency and amplitude), we
measure the power of the signal played by the loudspeaker. Wesee from Figure 2.5 that
the loudspeaker is not linear in the low frequencies. The amount of distortions is even
more important for high amplitude signals. This �gure shows that high amplitude signals
played by the loudspeaker will be distorted. The fact that the THD measure is not equal
to zero for frequencies and amplitudes show that in practicethe frequency response of a
loudspeaker is not �at. The harmonics distortions of the loudspeaker can for example be
modeled through a Volterra model [Birkett and Goubran, 1995a, Gao and Snelgrove, 1991].
Figure 2.5 also shows that low amplitude signal might be distorted by the loudspeaker.
The distortions of the low amplitude signal are speci�c to the loudspeaker used and are
related to its quanti�cation limitations.

The consequence of the coupling between the loudspeaker andmicrophone of the phone
is that the far-end hears a delayed version of his own voice. The delay due to the acoustic
path is very small compared to that due to the transmission network. The level of echo
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depends on the acoustic path. Acoustic echo is a factor of annoyance and fatigue for the
users.

In summary, in mobile phones acoustic echo is due to the coupling between the loud-
speaker and the microphone. An acoustic path is characteristic of the device used and
of the acoustic environment. The way the loudspeaker and microphone are placed on
the device mainly de�nes the direct path of the acoustic echopath whereas the acoustic
environment de�nes way the re�ections occur. In the speci�c case of mobile phones, part
of the acoustic echo is due to mechanical coupling between the transducers.

2.1.2 Ambient noise

At its early stages, telephony devices were only installed in o�ces and living rooms. Nowa-
days, phones are part of our daily lifes. Handsfree devices are used in car environments as
well as in o�ce environments. Mobile phones are used in cafes, airports. In addition to
the voice of the near-end speaker and acoustic echo, part of the ambient noise is recorded
by the microphone and transmitted to the far-end speaker. This is annoying for both the
near-end and the far-end speakers:

� The intelligibility of the message transmitted to the far-end is degraded by the
presence of noise. The presence of noise is even more annoying for the far-end speaker
because he perceives the background noise from far-end speaker environment which
is most likely to be di�erent from background noise of his environment.

� The ambient noise will also overlap the signal played by the loudspeaker and therefore
reducing the intelligibility for the near-end speaker.

The more the noise level increases, the more the useful signal is masked by the ambient
noise resulting in less intelligibility. In other terms, the annoyance due to noise increase
as the noise level increases.

2.2 Speech enhancement algorithms

We have explained how ambient noise and acoustic echo degrade speech quality in mo-
bile terminals. Solutions to tackle these disturbances have been widely investigated in
the literature. In this section, we present some state-of-the-art echo control and noise
reduction algorithms. In Section 2.2.1, we present existing echo cancellation algorithms
while in Section 2.2.2 we present noise reduction algorithms. Lastly, an example of speech
enhancement is presented Section 2.2.3.

2.2.1 Echo processing

The �rst attempts to suppress acoustic echo consisted in theuse of analog voice-controlled
switches. With the progress of digital circuits, more e�cie nt echo control systems have
emerged. One popular tool is the adaptive �lter which was back then not used because
of its computational complexity. Nowadays, most echo control systems are composed of
adaptive �ltering followed by residual echo suppression asillustrated in Figure 2.6.

Section 2.2.1.1 deals about adaptive echo cancellation. InSection 2.2.1.2, we present
existing echo post�ltering methods while Section 2.2.1.3 reports synchronized approaches
to adaptive echo cancellation and echo post�ltering.
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Figure 2.6: Echo control scheme

2.2.1.1 Adaptive echo cancellation

Acoustic echo results from the coupling between the loudspeaker and the microphone which
can be modeled by an FIR (�nite impulse response) �lter. Adapt ive echo cancellation
aims at estimating this coupling. As shown in Figure 2.6, an adaptive �lter can be used to
estimate the acoustic echo path. The acoustic path estimatêh(n) is then convolved with
the loudspeaker signalx(n) to obtain an estimate of the echo signal:

d̂(n) = ( ĥ ? x)(n) = ĥ
T

(n) � x(n): (2.2)

where ĥ(n) =
h
ĥ0(n) ĥ1(n) � � � ĥL  1(n)

i T
represents the adaptive �lter coe�cients,

x(n) =
h
x(n) x(n  1) � � � x(n  L + 1)

i T
is the vector of the loudspeaker samples

and L is the adaptive �lter length. The update of ĥ(n) is performed by a feedback loop
on the estimation error e(n) proportionally to a gain denoted C(n):

ĥ(n + 1) = ĥ(n)  Ĉ (n) � e(n) with e(n) = y(n)  d̂(n): (2.3)

Equation 2.3 is the general update equation of an adaptive �lter. The expression of the gain
Ĉ(n) depends on the minimization criteria of the adaptive algorithm (i.e. cost function)
and on the assumption made on the input signals and on the acoustic path.

Steepest-descent algorithm: We denote J (h(n)) the cost function to minimize. The
steepest-descent consists in updating the adaptive �lter in the direction opposite to the
gradient and leads to:

ĥ(n + 1) = ĥ(n)  �
@J(h(n))

@h(n)
: (2.4)

where � is the stepsize. By de�ning the cost function as the the mean square error (MSE)

J (ĥ(n)) = E [e2(n)]; (2.5)

where E[�] represent the mathematical expectation, the steepest descent algorithm be-
comes:

ĥ(n + 1) = ĥ(n)  �E [e(n) � x(n)]: (2.6)

The steepest-descent converges to the Wiener solution [Haykin, 2002]. Equation 2.6 is not
use in practice because of the expectation term which cannotbe computed easily.



15

Least mean square (LMS) algorithm: The LMS algorithm is an approximation of
the steepest-descent algorithm which estimate the expectation term in Equation 2.6 by its
instantaneous value. The LMS update equation is expressed as follows:

ĥ(n + 1) = ĥ(n)  �e (n) � x(n): (2.7)

The stepsize� controls the convergence and stability of the LMS algorithm. To ensure
convergence of the LMS, the stepsize should be such that:

0 < � <
2

� max
(2.8)

where � max is the largest eigenvalue of the correlation matrix ofx(n) [Haykin, 2002].

Normalized LMS (NLMS) algorithm: The stability of the LMS algorithm depends
on the variance of the loudspeaker signal. To render the adaptive stability independent
from the loudspeaker signal, the stepize is normalized by the loudspeaker signal energy.
The adaptive �lter then becomes

ĥ(n + 1) = ĥ(n)  
�

xT (n) � x(n)
� x(n) � e(n): (2.9)

Convergence is ensured if� is between 0 and 2. The normalization permits to improve the
convergence speed and stability of the adaptive �lter. The NLMS algorithm nevertheless
su�ers from slow convergence especially with speech signals.

A�ne projection algorithm (APA): The APA adaptive �lter is also obtained by
minimizing the MSE subject to a constraint on the errors over an observation window

min
 
E[e2(n)]

�
subject to d(n  l ) = ĥ(n) ? x(n  l ) (2.10)

where l is an index ranging from 0 to N  1 and N is the length of the observation
window. The APA is obtained by solving Equation 2.10 through the Lagrange method
and expresses as follows:

ĥ(n + 1) = ĥ(n)  � X (n)
 
X (n)X (n)

�  1e(n) (2.11)

where X (n) =
h
x(n) x(n  1) � � � x(n  N + 1)

i
is a matrix of loudspeaker samples

and e(n) =
h
e(n) e(n  1) � � � e(n  N + 1)

i T
is the vector containing the N last

error samples. Note the NLMS algorithm is a special case of the APA with N = 1. The
APA is advantageous for its fast convergence but requires ansigni�cant computational
load compared to the LMS or NLMS algorithms. For mobile devices, the computational
complexity can be prohibitive factor for the choice of an algorithm.

Only the most popular approaches to adaptive echo cancellation have been presented
here. Other algorithms such as LS (Least Square) or RLS (Recursive Least Square) can
be used for adaptive echo canceling. One can refer to [Haykin, 2002] and [Hänsler and
Schmidt, 2004] for more information.

In most systems, adaptive �lters use hundreds of taps in order to produce an appro-
priate estimate of the acoustic path. The more taps the adaptive �lter has, the better
it can model the acoustic path. The longer an adaptive �lter is, the more its update is
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computationally demanding and can be prohibitive for a real-time system. Computational
complexity of adaptive �ltering can be reduced through block-by-block or subband pro-
cessing [Huo et al., 2001, Paleologu and Benesty, 2012, Sommen and Jayasinghe, 1988].
Block processing algorithms update the adaptive �lter for a block of input samples (in-
stead of every sample). In case of subband AEC, microphone and loudspeaker signals are
split up into M subbands. Adaptive �ltering in the subband domain permits t o process
the echo at a lower sampling rate. Subbands adaptive �lters are shorter than fullband
�lters. In addition, the length of the subband adaptive �lte rs can be chosen indepen-
dently. Therefore instead of adapting and �ltering in full- band, we haveM adaptations
and convolutions (in parallel) but at a lower sampling rate [Morgan and Thi, 1995].

Adaptive �lter control: The convergence speed of an adaptive �lter can be de�ned
as the time this algorithm takes to reach to its optimum response or steady state. For
all the algorithms mentioned above (LMS, NLMS and APA), the stepsize controls the
algorithm convergence speed. Large stepsize values lead tofast convergence whereas small
stepsize values lead to slow convergence [Benesty et al., 2007, chap 45]. Additionally large
values of � result in less accurate estimates of the acoustic path than small values of � .
In other terms, considering that the AEC reaches its optimum, AECs with large � output
more residual echo than AEC with small values of� . In practice, the AEC should achieve
both fast convergence and low residual echo. For this reason, time-variant stepsizes� are
often used. An optimum stepsize will be de�ned such that it should have a larger value
during the convergence period of the AEC and smaller values after convergence periods.
In practice, variable stepsizes are used to control the AEC [Benesty et al., 2006, Iqbal and
Grant, 2008, Lee et al., 2009].

If we take the example of the NLMS algorithm, its optimum vari able stepsize is ex-
pressed as follows:

� (n) =
E

� ~d2(n)
�

E
�
e2(n)

� with ~d(n) = d(n)  d̂(n): (2.12)

The computation of Equation 2.12 requires the knowledge of the residual echo signal~d(n)
which is unknow in a real-time system.

Behavior of adaptive �lters: In practice, the performance of an adaptive echo canceler
is limited: the presence of ambient noise or near-end speechsignal might impact the AEC.
As a result, the estimation error e(n) is not echo-free. The presence of residual echo in
the error signal is due to the following reasons:

� The adaptive �lter needs a certain time in order to converge toward its optimal
response. During its converging period, the estimation error is not minimal. As a
result, echo is attenuated but is still audible in the output signal e(n). Further echo
attenuation can be achieved by using a post�lter.

� ĥ(n) is a FIR (Finite Impulse Response) �lter of length L . To reduce computational
complexity, L is smaller than the length of the real acoustic channel [Haykin, 2002].
So when the adaptive �lter reaches its optimal response, theecho estimate is optimal
but not equal to the echo signald(n). Again, a post�lter can be used to achieved
further echo attenuation.
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� Moreover, in noisy conditions (changes of the acoustic path, presence of near-end
speech and noise in the near-end speaker environment) the convergence of the adap-
tive algorithm is disturbed. Methods to limit the impact of t he noise on the AEC
include the use of noise detectors and double-talk detectors (DTD) [Benesty et al.,
2007, Buchner et al., 2006]. Typical use of noise detector and/or DTD consists
in freezing the adaptation of the AEC during noise-only and/or double-talk (DT)
periods.

� When using a mobile device, a user can hardly be static duringthe conversation: in
some cases, the user can be walking around. Even the smallestmovements of the
user (i.e. nod of the head) or of the device (i.e. rotations ofthe mobile device) are
actually seen by the AEC as changes of the acoustic path between the loudspeaker
and the microphone. This means that the AEC will need some time to re-converge.
Echo path change detectors are used to limit the impact of echo path on the AEC.
Most approaches to such detectors are coupled with DTDs [Iqbal and Grant, 2008].

� Finally, the non-linear part of echo cannot be modeled by a FIR �lter. So the
AEC �lter as described above cannot resolve the problem due to transducer non-
linearities [Birkett and Goubran, 1995b]. Non-linear echo cancelers are used to tackle
this problem.

Double-talk detection: Most DTDs are based on a detection variable which is de�ned
as a function of the input signalsx(n), y(n) and e(n). The detection variable is compared
to a threshold and DT is eventually declared. The choice of the value of the detection
threshold depends on the variable de�nition. A large variety of detection criteria can
be found in the literature. Most features used to de�ne the detection variable are the
signals level [Duttweiler, 1978], the signals coherence [Gänsler et al., 1996] or signals
correlation [Gänsler and Benesty, 2001].

Non-linear echo processing: Non-linear echo cancellation can be separated into two
di�erent categories: non-linear AEC and non-linear residual echo suppression. Non-linear
AEC algorithms can be classi�ed in two families:

� Algorithms based on loudspeaker linearization which aim atpreventing the loud-
speaker non-linear behavior. A pre-processor is placed on the loudspeaker path such
that the signal played by the loudspeaker is a linear transformation of the received
signal x(n) [Furuhashi et al., 2006, Mossi et al., 2011]. The resultingacoustic path
formed by the loudspeaker-enclosure-microphone system islinear. Any adaptive
�lter can be used to estimate the acoustic path.

� We also distinguish approaches based on the estimation of the loudspeaker non-
linearity. In this case, a pre-processor is placed before the adaptive �lter and is used
to estimate the non-linear loudspeaker signalxnl (n) [Guerin et al., 2003, Stenger and
Rabenstein, 1998]. The AEC then uses this estimate of non-linear loudspeaker signal
as reference signal. As a consequence the AEC is able to estimate the non-linear
echo signal recorded by the microphone.

Non-linear AEC can be highly computationally demanding and su�ers from slow con-
vergence [Azpicueta-Ruiz et al., 2011, Stenger and Kellermann, 2000]. Approaches to
non-linear residual echo suppression are more computationally e�cient than non-linear
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Figure 2.7: Scheme of a sub-band echo post�lter

AEC and are generally based on frequency domain post�ltering. Most approaches to non-
linear AEC are based on the assumption that adaptive �lter cancels all the linear echo
whereas this is not the case with practical system [Hoshuyama, 2012, Shi et al., 2008].

2.2.1.2 Echo post�ltering

The objective of a residual echo suppression module is to render echo inaudible. A simple
and popular approach to residual echo suppression is that ofgain loss control (GLC) [Degry
and Beaugeant, 2008, Hänsler and Schmidt, 2004]. GLC algorithms simply consist in
applying an attenuation to the error signal. Although this g ain is generally calculated as a
function of the loudspeaker power [Degry and Beaugeant, 2008, Heitkamper and Walker,
1993] it impacts on near-end speech during double talk periods because it is applied
independently to the presence, or not, of near-end speech.

To overcome poor double talk performance of GLC, frequency or subband echo post-
�lters [Beaugeant et al., 1998] are often used. Sub-band post�lters are preferred to GLC
because they consist of sub-band gains and can therefore speci�cally target frequencies
where residual echo is audible. Sub-band echo post�lters are inspired from the spectral
subtraction algorithm [Boll, 1979] for noise reduction. Although sub-band echo post�lters
can e�ciently be used as a stand alone solution for echo canceling, it has been shown to
be an e�cient algorithm for residual echo suppression, i.e. in conjunction with the AEC.

Figure 2.7 illustrates the scheme of a sub-band echo post�lter. The input signals e(n)
and x(n) are �rst split into frequency (or subband) domain signals e(k; i ) and x(k; i )
respectively, wherei denotes the frequency and ranges from 0 toM  1 and k denotes
the frame index. The analysis stage can be implemented through a Fourier transform or
through an analysis �lter bank [Allen and Rabiner, 1977, Crochiere and Rabiner, 1983].
The post�lter gains W (k; i ) are computed and applied to the sub-band error signale(k; i )
as a multiplicative factor. The full-band near-end speech signal ŝ(n) is recovered from the
sub-band signalŝ(k; i ) in concordance with the analysis stage.

Various gain rules for echo post�ltering can be found in the literature [Beaugeant et al.,
1998, Ephraim and Malah, 1985]. The Wiener �lter for echo post�ltering is derived from

the minimization of the MSE in the spectral domain E
h�
�s(k; i )  ŝ(k; i )

�
�2

i
and is expressed
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as follows:

W (k; i ) =
� ss(k; i )

� ss(k; i ) + � � � ~d ~d(k; i )
=

 (k; i )
1 + � �  (k; i )

; (2.13)

where � is an overestimation factor, � ss is the near-end speech signal power spectral
density, � ss is the residual echo power spectral density and is the signal to (residual)
echo ratio. The overestimation factor controls the aggressiveness of the �lter [Turbin et al.,
1997]:

� High values of � lead to high attenuation values. During echo-only periods,the
residual echo will be deleted whereas during DT periods, thenear-end speech signal
components will also be deleted. As a consequence, processed speech signals can
exhibit musical noise during DT periods.

� In contrast, low values of � might cause insu�cient echo suppression during echo-only
as well as during DT periods.

There is a tradeo� to make between the amount of echo suppressed and the distortions
introduced during DT periods.

Another gain rule can be derived from the minimization of the logarithm of amplitudes
E

�
j log(js(k; i )j log(jŝ(k; i )j)j2

�
[Ephraim and Malah, 1985]. This gain rule is often referred

to as the log spectral amplitude gain rule and is expressed as:

W (k; i ) =
 (k; i )

1 +  (k; i )
exp

� 1
2

Z 1

� (k;i )

e t

t
dt

�
with � (k; i ) =

 (k; i ) �  post(k; i )
1 +  (k; i )

: (2.14)

In [Ephraim and Malah, 1985] an approach to estimate the signal-to-echo ratio (SER) is
presented as:

 ̂ (k; i ) = �
jŝ(k  1; i )j2

� ~d ~d(k  1; i )
+ (1  � ) � max

 je(k; i )j2

� ~d ~d(k; i )
 1; 0

�
: (2.15)

It is of interest to note the SER estimate according to Equation 2.15 only reduces to the
estimation of the residual echo PSD. All the other quantities involved in the computation
of Equation 2.15 can be computed from the input signalse(k; i ) and x(k; i ). Examples
of residual echo PSD estimate can be found in [Enzner et al., 2002, Habets et al., 2008,
Steinert et al., 2007].

2.2.1.3 Synchronized approaches to echo cancellation

AEC and echo post�ltering both aim at suppressing the echo. At the beginning of the echo
or when an echo path occurs, the AEC need some time to reach itsoptimum response.
The level of residual echo is higher during this convergenceperiod than in periods where
the AEC has converged. The post�lter on his side is design so as to achieve more or less
aggressive echo suppression. An aggressive post�lter willresult in good echo suppression
and strong distortions of the useful signal during double-talk periods. If the post�lter
is designed so as to avoid distorting the useful signal, the residual echo might not be
completely deleted. The synchronization of the AEC and echopost�lter appears as a
solution to achieve a better compromise between good suppression and good DT behavior.

We can distinguish two di�erent methods regarding synchronized echo control: systems
based a static modeling of the echo path as it has been done until now and systems based
on a statistical model of the echo path.
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Static echo path: These approaches exploit the link between the stepsize of the AEC
and the echo post�lter [Enzner and Vary, 2003, Steinert et al., 2007]. The constraint
about these approaches is that the AEC and the post�lter must be in the same subband
or frequency domain.

Time varying echo path: Approaches to AEC presented until now are based on the
assumption that the echo path is stationary and deterministic. However, in a practical
scenario, the acoustic path is time variant meaning it cannot be assumed to be stationary.
These variations can sometimes be signi�cant (e.g. : door opening or closing) or small.
Small acoustic path changes can be modeled by a �rst-order Markov model [Enzner and
Vary, 2006, Haykin, 2002].

h(n + 1) = A � h(n) + � h(n) (2.16)

whereA is the transition factor which is supposed constant and comprised in between 0.99
and 0.999 [Enzner and Vary, 2006]. �h(n) accounts for the unpredictable changes in the
acoustic path.

With this modeling of the echo path, the MMSE leads to a synchronized echo control
system which is composed of a Kalman �lter followed by a post�lter: both are in the
frequency domain [Enzner and Vary, 2006].

Ĥ (k + 1 ; i ) = A � Ĥ (k; i ) + K (k; i ) � e(k; i ) (2.17)

where Ĥ (k; i ) is the Fourier transform of the acoustic path estimate, e(k; i ) is the Fourier
transform of the error signal e(n) and K (k; i ) is the Kalman gain. The Kalman gain can
be written in the form of K (k; i ) = � (k; i ) � X (k; i ) where � (k; i ) stands for a variable
stepsize andX (k; i ) is a diagonal matrix whose diagonal contains the Fourier transform
of x(n). The computation of the Kalman gain and echo post�lter is as follows:

K (k; i ) = � (k; i ) � X H (k; i ) =
j ~H (k; i )j2

j ~H (k; i )j2 � jX (k; i )j2 + � ss(k; i )
� X H (k; i ) (2.18)

W (k; i ) =
� ss(k; i )

� ss(k; i ) + j ~H (k; i )j2 � jX (k; i )j2
(2.19)

where ~H (k; i ) = H (k; i )  Ĥ (k; i ). The synchronization comes from the fact the Kalman
gain and the post�lter both used the quantity j ~H (k; i )j2. This Kalman echo control system
is shown to be more robust to varying echo paths. Comparativeassessments show that the
Kalman AEC converges faster than standard frequency domainadaptive �ltering [Malik
and Enzner, 2008]. Detailed information about the validity of the acoustic path modeling
and the derivation of the Kalman �lter can be found in [Enzner and Vary, 2006].

2.2.2 Noise reduction

Noise reduction algorithms aim to estimate the clean speechsignal. Most noise reduction
algorithms operate in the frequency or subband domain and are generally based on the
assumption that noise is an additive and relatively stationary perturbation. An example
of noise reduction (NR) scheme is shown in Figure 2.8. The useful speech and noise
signals are denoteds(n) and b(n). The noisy input y(n) is converted from the time to the
frequency (or subband) domain to obtain y(k; i ). The frequency domain signaly(k; i ) is
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Figure 2.8: Noise reduction detailed scheme

used to estimate the noise level which is later on used to compute the attenuation gain
W (k; i ). An estimate of the clean speech signal is obtained throughmultiplication of
y(k; i ) and W (k; i ). Lastly, the fullband estimate of the clean speech signal is recovered
from ŝ(k; i ). The e�ciency of the NR module mainly depends on the choice of NR gain
and noise estimate used.

2.2.2.1 Noise reduction algorithms

Spectral subtraction: Spectral subtraction is one of the �rst NR method [Boll, 1979].
Spectral subtraction is based on the intuitive observationthat noise is an additive pertur-
bation. Therefore, an estimate of the clean speech can be obtained through subtraction
of short-term spectrum:

jŝ(k; i )j = jy(k; i )j  
q

� bb(k; i ) (2.20)

where � bb(k; i ) denotes the PSD of the noise signal. Equation 2.20 can alternatively be
rewritten as

jŝ(k; i )j =
�
1  

q
� bb(k; i )

jy(k; i )j

�
� jy(k; i )j = W (k; i ) � jy(k; i )j: (2.21)

To avoid negative attenuation gain values, the minimum value of W (k; i ) is set to 0.
The spectral subtraction as de�ned here su�ers from strong distortions of the useful

speech signal. More general methods for spectral subtraction can be found in [Lim and
Oppenheim, 1979, Plapous, 2005, Sim et al., 1998]. These generalized spectral subtraction
approaches mainly use an overestimation factor to arti�cially increase or decrease the
noise level. High value of the overestimation lead to good NRbut strong musical noise.
In contrast low values of overestimation permit to reduce the musical noise at the cost
of noise suppression. A compromise has to be made on the amount of noise suppression
versus the amount of noise suppression [Plapous, 2005].

Wiener gain rule: The Wiener gain rule is derived from the minimization of MSE in
the spectral domain E

�
js(k; i )  ŝ(k; i )j2

�
and expresses as follows

W (k; i ) =
� (k; i )

1 + � (k; i )
with � (k; i ) =

� ss(k; i )
� bb(k; i )

(2.22)

where � (k; i ) is the signal to noise ratio (SNR) [Lim and Oppenheim, 1979,Scalart and
Filho, 1996]. The computation of the SNR requires the knowledge of the PSD of clean and
noisy signals. To overcome the fact that the PSD of the clean speech signal is unknown,
most systems are based on SNR estimates.
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The SNR can be approximated as:

�̂ (k; i ) =
� yy (k; i )
� bb(k; i )

(2.23)

such that the computation of the SNR only requires an estimation of the PSD of the
noise [Cappe, 1994]. In case of high SNR (i.e. low level of noise), the SNR estimate in
Equation 2.23 will be quite close to its real value. But as the noise level increases, the
gap between this SNR estimate and its real value will increase. With this estimate, the
phase di�erence between the clean speech and noise signal might also impact accuracy.
The SNR estimate in Equation 2.23 is nevertheless interesting for its low computational
complexity.

The SNR can alternatively be estimated as [Cappe, 1994]

�̂ (k; i ) =
� yy (k; i )  � bb(k; i )

� bb(k; i )
: (2.24)

Equation 2.24 estimates the PSD of clean speechs(n) as the di�erence between the PSD
of the noisy signal and that of the noise signal assuming the noise and clean signals always
add constructively, neglecting the e�ects of the phase of the noise signal [Vary, 1985]. The
human ear is not very sensitive to phase di�erence, so the phase of the noise signal can be
neglected without to much distortions [Wang and Lim, 1982].

Another approach to estimation of the SNR is the decision directed approach which
was introduced in [Ephraim and Malah, 1985]:

�̂ (k; i ) = �
jŝ(k  1; i )j2

� bb(k  1; i )
+ (1  � ) � max

 jy(k; i )j2

� bb(k; i )
 1; 0

�
(2.25)

where � is a smoothing constant often chosen close to 1. The decisiondirected approach
gives a good estimate of the SNR whether high or low. Its use permits to signi�cantly
reduce the musical noise introduced by the NR module [Cappe,1994].

2.2.2.2 Noise PSD estimation

The noise level estimate is inherent to the computation of the NR gain or SNR estimate
and therefore needs to be estimated accurately. Techniquesto estimate the noise include:

� The speech activity detection method: With this method, the noise estimate is
updated during silence periods and frozen during speech activity periods [Gustafsson
et al., 2001, Hänsler and Schmidt, 2004]. One of the main problems of this technique
is the di�culty to design an e�cient and robust speech activi ty detector.

� Some others noise PSD estimates are based on continuous tracking of the noise level.
One popular estimator is the minimum statistics method. This technique exploits
the fact that speech does not occupy the entire frequency band even during speech
periods. The spectral and temporal holes of the speech are used to estimate the noise
power by tracking the minimum noisy signal power within an observation window
for a given sub-bandi [Martin, 2001]. Alternative noise PSD estimates can be found
in the literature [Cohen, 2003, Gerkmann and Hendriks, 2011, Goulding and Bird,
1990, Krawczyk and Gerkmann, 2012].
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Figure 2.9: Example of speech enhancement scheme for microphone device

2.2.3 Summary of speech enhancement algorithms

In sections 2.2.1.1 and 2.2.2 we presented some state-of-the-art algorithms for echo control
and noise reduction. In practice, a combination of the speech enhancement algorithms
presented need to be implemented within the device. Figure 2.9 illustrates an example of
speech enhancement scheme that could be used in telecommunications terminals [Degry
and Beaugeant, 2008]. The non-linear preprocessor aims to estimate the non-linearities
generated by the loudspeaker and is placed prior to AEC so that the AEC uses as reference
signal one which is as close as possible to the one that generated the echo signal. The AEC
gives an estimate of the non-linear echo. The error signal from the AEC still contains
some residual echo which will be suppressed by the echo post�ltering placed after the
NR module. The adaptive echo canceling aims at suppressing the non-linear echo signal
whereas the post�lter processes the residual echo. The NR modules aim at reducing the
noise for both speakers. NR is applied to the loudspeaker signal or downlink path in order
to reduce noise that could be introduced by the network and tofurther attenuate noise
from the far-end speaker. NR is also applied to the microphone signal or uplink path to
reduce the ambient noise picked up by the near-end microphone.

The position or order of the di�erent modules has to be chosencarefully. In [Beaugeant,
1996], it is shown that placing the NR before the AEC result inpoor AEC. Indeed, applying
NR to the recorded microphone does not only improve the noisebut attenuation the speech
signals (echo and near-end speech signals) recorded by the microphone. In that case, it
then turns out that the echo signal at the input of the AEC is no t necessary a linearly
transformed version of the original echo signal (that recorded by the microphone). For
this reason, it is preferable to place the NR after the AEC.

Figure 2.9 shows that good speech quality is achieved by numerous algorithms which
each tackles a speci�c problem. The resulting speech enhancement scheme has a sig-
ni�cant computational complexity and might lead to signi�c ant signal delay. Most of
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these algorithms have historically been designed and optimized solely. Nevertheless, as
we introduced in Section 2.2.1.3, some recent approaches toimprove echo suppression are
based on synchronized AEC and echo post�ltering. Part of recent studies aim at reducing
the computational complexity of the overall speech enhancement scheme. We can cite
for example cite [Enzner, 2006, Gustafsson et al., 2002, Habets et al., 2008, Martin and
Altenhoner, 1995] where a unique post�lter is used to tacklenoise and echo together.
Combined approaches to AEC and echo post�lter present the advantage of reducing both
the computational complexity and the signal delay. The objective of the work reported
in this thesis is to improve this architecture and the interactions between the di�erent
modules so as to propose an more e�cient speech enhancement scheme.

2.3 Assessment tools

Good speech quality in phone conversation is possible thanks to the numerous speech
enhancement algorithms implemented in devices. Prior to their implementation within
phones, we need to evaluate and compare the di�erents algorithms. This assessement is
usually done in two steps: �rst through objective metrics and later on through subjective
tests. Objective metrics report the mathematical performance of the algorithm under test.
Subjective tests report the perceived speech quality.

A variety of assessment tools for speech enhancement can be found in the litterature.
Only a selection of tools used in this thesis are presented here.

2.3.1 Objective metrics

Echo cancellation algorithms aim to suppress the echo signal recorded by the microphone
while NR aims to suppress the noise. It therefore makes senseto assess these algorithms
in terms of the amount of perturbation (noise or echo) suppressed. Echo suppression is
assessed in terms of echo return loss enhancement (ERLE) whereas NR is assessed in terms
of noise attenuation (NA). Perturbation attenuation is mea sured over adjacent windows
of N samples:

D (m) = 10 :log10

� P N
l=1 s2

in (mN + l)
P N

l=1 s2
out (mN + l)

�
(2.26)

whereD(m) stands for ERLE or NA in dB, N is the block size,sin and sout are the unpro-
cessed and processed signals respectively. ERLE and NA are both computed according
to Equation 2.26. However, ERLE is measured during echo onlyperiods while NA is
measured during noise only periods. Both should be positive and as high as possible.

The echo post�ltering and NR are both achieved in the frequency or subband domain
and can sometimes distort the useful signal. Speech distortion can be assessed in terms
of cepstral distance (CD) and speech attenuation (SA). The CD can be measured as
in [Fingscheidt and Suhahi, 2007] i.e. between the clean speech s(n) and the weighted
speech signal �s(n) as follows:

Cs(n) = IDFT f log jDFT (s(n)) jg

CD(m) =
q P N

l=1 [Cs(m)  C�s(m)]2: (2.27)

The weighted speech signals �s(n) is obtained with a method similar to [Fingscheidt and
Suhahi, 2007]. When processing degraded speech signals, the updated spectral gains
W (k; i ) are stored. These gains are applied to the clean near-end speechs(n) to obtain the
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weighted speech signal �s(n). Similarly the SA can be measured as the attenuation between
the clean speechs(n) and the weighted speech signal �s(n) [Fingscheidt and Suhahi, 2007]
as follows:

SA(m) = 10 log10

P N
l=1 s2(mM + l)

P N
l=1 �s2(mN + l)

in dB: (2.28)

Using the weighted speech signal �s instead of ŝ in the computation of CD and SA permits
to focus on the distortion of the useful signal by discardingthe distortion that might be
to residual perturbation. The CD gives an information about the distortions (i.e. musical
noise) of the processed signal whereas the SA re�ects the attenuation of the useful signal.
Ideally, the CD and SA should be equal to 0 and 0dB respectively.

The echo post�ltering and NR gains both require the estimation of the perturbation
PSD. Good echo or noise suppression also depends on the accuracy of the estimated
PSD. We assess the accuracy of a PSD estimator by the mean of symmetric segmental
logarithmic error [Jeub et al., 2012] which can be expressedas follows:

logErr =
1

KM

K  1X

k=0

M  1X

i =0

�
�
�
�10 log10

�
� zz(k; i )

�̂ zz(k; i )

� �
�
�
� (2.29)

whereK is the number of frames andM is the number of subbands or frequency bins and
z is either the noise or the residual echo. ThelogErr should be as close as possible to 0.

2.3.2 Subjective tests

Subjective tests come as �nal validation step for speech enhancement algorithms. They
aim at evaluating the perceived speech quality. Most popular subjective test methodologies
are de�ned in the ITU-T Recommendations [ITU-T, 1996b]. We distinguish two families
of tests: comparative tests and absolute tests. In comparative tests, the tester is presented
two occurrences of the same speech signals that have been processed di�erently. The tester
has to rate both samples. For absolute tests, the tester is presented one sample that he has
to evaluate. Subjective tests are very costly as they required a large number of participants
and time.

In this thesis, we refer to informal listening tests which are performed by one or two
audio experts. Although they are less signi�cant than subjective tests, they still report
the subjective quality of the signals.

2.4 Conclusions

In this chapter, we presented the problem due the acoustic echo and noise in a phone
conversation. We also explain that the annoyance related toecho and noise increases as the
the level of the disturbance increases which justi�es the necessity of speech enhancement
algorithms.

The main focus of this thesis being the echo problem, a broad presentation of state-of-
the-art echo control algorithms has been presented. Most echo control systems are based
on adaptive �ltering followed by residual echo suppression. Echo suppression performance
can be improved by using control such as DTD or synchronization modules. Part of this
chapter is dedicated to NR algorithms. NR mostly consists ofan attenuation gain applied
to the noisy signal, the key elements of the NR being the gain rule and the noise estimate.
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The last part of this chapter deals will assessment tools that are commonly used to evaluate
speech enhancement algorithms.

The noise reduction and echo post�ltering both operate in the subband or frequency
domain. Computational complexity reduction can be obtained by combining both mod-
ules. In the next chapter, we study the interest of di�erent f requency and subband domain
�ltering methods for combined noise reduction and echo post�ltering.
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Part I

Single microphone echo processing
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Chapter 3

Frequency and subband domains
related �ltering methods
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In the previous chapter we presented problems that arise in sound recording with
mobile devices and the necessity to process the recorded signals before their transmis-
sion through the communications network. We also presentedstate-of-the-art speech en-
hancement algorithms that can be implemented in mobiles devices in order to guarantee
satisfactory speech quality.

Noise reduction and echo post�ltering both consist of time-varying attenuation gains
that are updated in the frequency or subband domain with the perturbation (noise or
residual echo) suppression being applied in the same frequency or subband domain. Fil-
tering in the frequency or subband domain is advantageous because of its computational
complexity. Nevertheless, subband �ltering su�ers from important processing delay [Löll-
mann and Vary, 2007]. Delay reduction methods consist in �ltering the perturbations in
the time domain instead of the subband domain. In this case, subband attenuation gains
are used to de�ne a time domain �lter [Löllmann and Vary, 2007, Steinert et al., 2008].

Frequency domain �ltering su�ers from time domain aliasing due to circular convolu-
tion [Oppenheim and Schafer, 1999]. Time domain aliasing due to circular convolution can
be avoided through overlapping frames and/or zero-paddingwith the aim of approaching
linear convolution [Vaidyanathan, 1993]. Linear convolution nevertheless has an important
computational complexity. We show how computational complexity of linear convolution
can be reduced by introducing a scalable approach to its implementation.

In this chapter, we present �ltering methods that can be used in replacement of sub-
band and frequency domain �ltering and assess their performance for noise reduction and
echo post�ltering. This chapter is organized as follows. Inthe next section, we describe
how conversion from time to subband or frequency domain is achieved. Section 3.2 ad-
dresses problems due to �ltering in the subband domain and alternative time domain
�ltering methods that can be used. In Section 3.3, we presentthe problems of frequency
domain �ltering and propose some methods to overcome these problems. Section 3.4
presents a comparative assessment of the di�erent �lteringmethods for noise reduction
and echo post�ltering.

The hereby contributions have been published in conferences proceedings [Yemdji
et al., 2010a,b, 2011].

3.1 Short time Fourier transform

The short-time Fourier transform (STFT) of a discrete signal e(n) is de�ned as fol-
lows [Allen and Rabiner, 1977]:

e(k; i ) =
+ 1X

r =  1

e(kR  r ) � p(r ) � exp
�

 
2�
M

ji (kR  r )
�

(3.1)

where k is the frame index, i is the frequency index, j is the imaginary unit, M is the
number of frequency bins,R is the blocksize (i.e.e(n) is processed by block ofR samples)
and p is the analysis window. Assuming the analysis window is of �nite length L , e(k; i )
becomes:

e(k; i ) =
L  1X

r =0

e(kR  r ) � p(r ) � exp
�

 
2�
M

ji (kR  r )
�
: (3.2)

Equation 3.2 can be interpreted in two di�erent ways. These interpretations have a direct
e�ect on the STFT implementations and on the window constraints.
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Figure 3.1: DFT-modulated �lter bank structure

3.1.1 From STFT to �lter bank structure

By rewriting Equation 3.2 in the form of a convolution as follows,

e(k; i ) =
L  1X

r =0

~e(kR  r ) � p(r ) (3.3)

e(k; i ) = (~e ? p)(kR) where ~e(n; i ) = e(n) � f  in
M and f  in

M = exp
�

 
2�
M

jin
�

(3.4)

the STFT can be interpreted as an analysis �lter-bank. Equation 3.3 shows thate(k; i )
is obtained through a convolution as illustrated in Figure 3.1. The input signal e(n)
is modulated by a complex exponential. The modulation by the complex exponential
corresponds to a frequency shift of the input signal spectrum towards the central frequency
i = 0. The modulated signal ~e(n; i ) is then lowpass �ltered by p(n) to obtain the subband
signal e(k; i ). The structure illustrated in Figure 3.1 is referred to as the discrete Fourier
transform (DFT)-modulated analysis �lter-bank [Vaidyanat han, 1993]. In the �lter-bank
interpretation, R plays the role of the downsampling parameter. The structureillustrated
in Figure 3.1 is referred to as the discrete Fourier transform(DFT)-modulated analysis
�lter-bank and the window p(n) is called prototype �lter [Crochiere and Rabiner, 1983,
Vaidyanathan, 1993].

In a similar manner, the inverse STFT can be seen as a synthesis�lter bank. To
synthesize the full band signal, the �rst step consists in convolving each subband signal
with the synthesis �lter (or window). The M convoluted signals are then modulated by
the appropriate complex exponential before being summed toform the fullband signal.

According to Figure 3.1, the M sub bands signals are obtained byM convolutions.
The structure in Figure 3.1 could be more e�ciently implement ed through PolyPhase
Network (PPN) implementation. The derivation of the PPN imp lementation can be found
in [Vaidyanathan, 1993]. With the PPN implementation, subbands signals are obtained
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Figure 3.2: Filter bank structure

through one convolution and one Fourier transform. Later on in our implementation, we
will the PPN structure.

The resulting subband signale(k; i ) has a lower frequency bandwidth of2� =M . To avoid
frequency domain aliasing due to downsampling, the subsampling factor R is constrained
to be lower or equal to the number of subbandsM [Crochiere and Rabiner, 1983]. The
only constraint on the downsampling factor value is not a su� cient condition to avoid
aliasing: the subband �lters has to be designed such that there is no overlap between two
adjacent subband signals. In the case of the DFT-modulated �lter bank, adjacent subband
signalse(k; i ) and e(k; i + 1) are obtained by respectively low-pass �ltering the modulated
signal ~e(n; i ) and ~e(n; i + 1) with the prototype �lter p(n). The adjacent subband signals
e(k; i ) and e(k; i + 1) do not overlap if the frequency response of the prototype�ler is an
ideal lowpass �lter (i.e. rectangular window in the frequency domain) which we illustrate
in Figure 3.2. In practice it is impossible to design such a lowpass �lter. In consequence,
when reconstructing the fullband signal through with the synthesis �lter, some aliasing
will be introduced in the output signal.

3.1.2 From STFT to overlap add

The STFT as de�ned in Equation 3.2 can also be interpreted as a DFT comprising overlap-
add (OLA). In this case, e(k; i ) is seen as the DFT of a windowed version of the signal
e(n):

e(k; i ) =
L  1X

r =0

h
e(kR  r ) � p(r )

i
� exp

�
 

2�
M

ji (kR  r )
�

(3.5)

=
L  1X

r =0

ep(kR  r ) � exp
�

 
2�
M

ji (kR  r )
�

(3.6)

where ep(n) denotes the windowed version ofe(n). The input signal is processed by block
of R new samples to which (L  R) samples from the previous frame(s) are appended to
obtain a frame of L samples. The frame ofL is then windowed by multiplication with p to
obtain ep(n). Finally, e(k; i ) is obtained as the DFT of the signal ep(n). So for the OLA
method, the STFT is seen as the DFT of successive windowed frames.

In contrast to the �lter-bank view, the perfect reconstruct ion in the OLA view leads to
a constraint on the window p(n) in the time domain [Crochiere and Rabiner, 1983]. The
sum of time shifted version ofp(n) should be equal to 1 as illustrated in Figure 3.3.
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Figure 3.3: Illustration of the overlap add constraint

In the remaining of this chapter, we di�erenciate the subband and frequency analysis
by denoting pfb the prototype �lter of subband processing andpola the overlapping window
for the frequency domain processing.

3.2 Filter bank related �ltering methods

Speech enhancement generally use the subband signal to compute an attenuation gain
which aims are suppressing perturbations (i.e. noise). Thefocus of this chapter is the
perturbation suppression itself (i.e. �ltering). In the fo llowing we present �ltering methods
that can be used to suppress the perturbation from the input signal.

Conversion of input signals from time to subband domain takes place as described in
Section 3.1.1. The prototype �lter considered expresses asfollows:

pfb (n) =
1

M
� sinc

h2�
M

�
n  

L
2

�i
� pL (n); (3.7)

wherepL is a Hamming window also of lengthL . We denoteW (k; i ) the attenuation which
can be applied to the disturbed signale(k; i ) in the subband domain through multiplication
as well as in the time domain through convolution. For time domain �ltering, the subband
gains W (k; i ) are converted into a �nite impulse response (FIR) �lter. The resulting FIR
�lter w(n) has the same frequency response asW (k; i ).

Subband �ltering is presented in Section 3.2.1. In Section 3.2.2, we present time domain
�ltering and approaches that can be used to compute the FIR �lt er.

3.2.1 Subband domain weighting

Subband �ltering consists in applying the i th subband gain W (k; i ) to the i th subband
signal e(k; i ) as a multiplicative factor (see Figure 3.4(a)):

ŝ(k; i ) = W (k; i ) � e(k; i ): (3.8)

The M subband signalsŝ(k; i ) are processed through a synthesis �lter bank to recover the
fullband estimate of the useful signalŝ(n). In the following, we refer to this method as
the ASFB method which stands for analysis synthesis �lter-bank method.
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Figure 3.4: Filtering methods. Bold lines represents subband domains

The ASFB method is interesting for its simplicity: �ltering s imply consists of a multi-
plication. Nevertheless, this method su�ers from frequency domain aliasing and signi�cant
signal delay. The overall ASFB system introduces a signal delay of L  1 samples, where
L is the length of the prototype �lter. As explained in Section 3.1.1, subband domain
aliasing can be reduced with the use of an appropriate prototype �lter. Typically, long
prototype �lters permit to achieve good attenuation of the al iasing components and but
lead to signi�cant signal delay [Löllmann, 2011]. Moreover, the longer the prototype �lter
is, the more the computational complexity of the �lter-bank is high.

As explained in Section 2.2.3, signal delay and computational complexity are impor-
tant constraints in speech enhancement for mobile devices. Computational complexity
and delay reduction can be reduced achieve using short prototype �lters. Further delay
reduction can be achieved by using time domain �lters instead of the whole ASFB struc-
ture. In the following section, we discuss approaches to �lter the disturbed signal in the
time domain.

3.2.2 Time domain �ltering

Figure 3.4(b) shows an equivalent �ltering scheme when a time-domain �lter is used for
perturbation suppression. The time varying attenuation gains W (k; i ) are used to deter-
mine an FIR �lter. Besides the signal delay reduction, time domain �ltering also permits
to avoid problems due to frequency domain aliasing. In contrast to the ASFB method,
no synthesis �lter-bank is required. The �ltering is applie d through convolution with the
aliasing-free input signal e(n).

The FIR �lter can be calculated according to 3 di�erent conver sion methods. To avoid
phase distortions and to ensure a constant signal delay, we ensure that these �lters are
linear phase �lters [Crochiere and Rabiner, 1983]. We now present the 3 conversion meth-
ods considered.

3.2.2.1 Filter bank equalizer (FBE)

The FBE was introduced in [Löllmann and Vary, 2007] and is the mathematical time
domain equivalent of the analysis �lter-bank with synthesis through summation. The
FBE is expressed as follows:

w(n) = pfb (n) � ~w(n) with ~w(n) =
1

M

M  1X

i =0

W (k; i ) � exp
� 2�

M
jik

�
(3.9)
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Truncation

FBE

Figure 3.5: Illustration of the determination of the LDF

where pfb (n) is the prototype �lter of the sub-band analysis stage and ~w(n) is the IDFT
of the spectral gainsW (k; i ). The FBE process introduces a signal delay of (L  1)=2
samples (with L being the length of the p(n)), that is half the delay introduced by the
ASFB method.

3.2.2.2 Low delay �lter (LDF)

Although the FBE has lower signal delay than the correspondingASFB, smaller signal
delays can be achieved by approximating the FBE by a lower degree �lter [Löllmann and
Vary, 2007, 2009]. The LDF is obtained by truncating the FBE wit h a window of length
L 1 with L 1 < L as illustrated in Figure 3.5. The window used can be an arbitrary window
of L 1-taps. The window and the truncation should be chosen to maintain linear phase
properties. For this, as the FBE has linear phase, the window used for the LDF should
be symmetric about L=2.

3.2.2.3 Inverse Discrete Fourier transform (IDFT)

A more intuitive approach consists in de�ning the FIR �lter si mply as the IDFT of the
updated subband gain factors [Hänsler and Schmidt, 2000]. The IDFT of a positive
sequence corresponds to an even symmetric sequence in the time domain. The IDFT
of the subband gainsW (k; i ) corresponds to a non-causal zero phase �lter. A causal �lter
is obtained by applying a temporal shift of (M  1)=2

w(n) = ~w(n  
M  1

2
) (3.10)

The temporal shift corresponds to a linear modi�cation of the phase in the frequency
domain. The causal �lter has linear phase and will thus introduce a group delay of (M-
1)/2. The linear phase property is important in speech processing properties in order to
avoid phase distortions.

3.3 Discrete Fourier transform related �ltering methods

In some cases, signals are processed in the frequency domain. Conversion of input sig-
nals from time to frequency domain takes place as described in Section 3.1.2. W (k; i )
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Figure 3.6: Block processing in the frequency domain. Bold lines represent the frequency
domain.

still denotes the time varying attenuation gains and is usedto processe(k; i ) through
multiplication.

Filtering in the frequency is advantageous for its computational simplicity but is subject
to aliasing resulting from circular convolution. Linear convolution can be used to avoid this
aliasing problem but is nevertheless very computationallydemanding. In the following,
we present present the problem due to circular convolution and approaches to implement
the linear convolution. A novel implementation approach for linear convolution in the
frequency domain is also introduced.

3.3.1 Circular convolution

Figure 3.6(a) illustrates circular convolution which is the method used for �ltering signals
in the frequency domain. The �ltered signal is obtained through a bin-by-bin multiplica-
tion of the M frequency domain componentse(k; i ) with the gains W (k; i ). As shown in
Figure 3.6(a), �ltering an M -point signal with an M -tap �lter produces an M -point signal
instead of an (2M  1)-point signal as would normally result from convolution in the time
domain. This observation implies that the �ltering of signa ls in the frequency domain as
shown in Figure 3.6(a) introduces distortion in processed signals [Oppenheim and Schafer,
1999]. Distortions introduced by circular convolution result from time domain aliasing.
Details regarding the cause of this aliasing can be found in 3.A.

3.3.2 Linear convolution

Figure 3.6(b) depicts the scheme of linear convolution in thefrequency domain. Here,
the frequency domain signalse(k; i ) and gains W (k; i ) are processed through a frequency
resolution extension (FEXT) block prior to the �ltering oper ation. Zero-padding takes
place withtin the FEXT block and is used to increase the numberof frequency bins. As
illustrated in Figure 3.7(a), the FEXT block operates in two st eps:

� The M frequency bin input signalsW (k; i ) are converted into the time domain with
an IFFT of length M (M -IFFT) to obtain ~wm (k) where m is the tap index of the
impulse response and ranges from 0 toM  1.
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Figure 3.7: FEXT implementations

� The time domain signal ~wm (k) is zero-padded with at least M zeros to obtain a
signal of length 2M and reconverted into the frequency domain through a 2M -FFT
to obtain ~W (k; l ) with l being the �new� frequency bin index ranging from 0 to
2M  1.

Returning to Figure 3.6(b), we now have 2M frequency bins instead ofM . As a results,
the �ltered signal has 2M samples.

The merit of linear convolution over circular convolution i s that it does not introduce
distortion since it is equivalent to �ltering in the time dom ain. Linear convolution, as
described here, requires additional DFTs of size 2M . Its major disadvantage is its increased
computational load and memory requirement which is due to the use of the FEXT module.
In most real time systems, the computation of FFTs is based on exponential function that
are de�ned for a given FFT size and stored in the memory. In addition, the �ltered
signal is longer: it has 2M points instead of M points for the linear convolution. Proper
reconstruction of the fullband signal implies that this vector be stored in the memory of
the system. The additional FFTs required by the linear convolution mean an increase of
the required memory. In the following, we focus on e�cient methods to implement the
FEXT module.

3.3.3 Link between circular and linear convolution

The approach presented in this section was introduced in [Marin-Hurtado and Anderson,
2010]. According to Figure 3.7(a), the frequency domain gains ~W used in the linear
convolution are de�ned as follows:

~W (k; l ) =
2M  1X

m=0

~wm (k) � exp
�

 2�j
ml
2M

�
=

M  1X

m=0

~wm (k) � exp
�

 2�j
ml
2M

�
: (3.11)

The summation terms betweenm = M and m = 2M  1 are omitted since ~wm (k) = 0 for
this interval. By splitting Equation 3.11 into two, for even a nd odd values ofl , we obtain:

~W (k; l = 2 i ) =
M  1X

m=0

~wm (k) � exp
�

 2�j
mi
M

�
= W (k; l=2) (3.12)

~W (k; l = 2 i + 1) =
M  1X

m=0

~wm (k) � exp
�

 2�j
m(i + 1=2)

M

�
; (3.13)

where i is an integer ranging from 0 toM  1. Equation 3.12 shows that for even values of
l , ~W (k; l ) is equal to W (k; l=2). For odd values of l (Equation 3.13), ~W (k; l ) is a discrete
Fourier transform except for the unusual exponential term. Equation 3.13 can be rewritten
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as

~W (k; l = 2 i + 1) =
M  1X

m=0

�wm (k) � exp
�

 2�j
mi
M

�
(3.14)

where �wm (k) = ~wm � exp
�

 �j
m
M

�
:

From Equation 3.14, it is apparent that ~W (k; l = 2 i + 1) can be computed through an
FFT algorithm as shown in Figure 3.7(b). The FEXT implementation then requires two
M -point FFTs and M complex multiplications. By considering Figure 3.7(b), we see
that the 2M -points FFT is discarded from the FEXT implementation. The comp uta-
tional complexity of the FFT increases with its size. This implementation approach to
linear convolution has a reduced computational complexitycompared to original linear
convolution.

3.3.4 Alternative interpretation of the linear convolutio n

In this section we introduce a new implementation of the linear convolution. Our approach
to implement the FEXT exploits the fact that zero-padding in t he time domain is equiva-
lent to interpolation in the frequency domain and vice-versa. In the following we introduce
the relationship between ~W (k; l ) and W (k; i ) using the FFT and IFFT de�nitions. As the
impulse response ~wm (k) is the IFFT of W (k; i ) Equation 3.11 can be rewritten as;

~W (k; l ) =
M  1X

m=0

h
"

1
M

M  1X

i =0

W (k; i ) exp
�

2�j
mi
M

� #

exp
�

 2�j
ml
2M

� i
(3.15)

=
1

M

M  1X

i =0

W (k; i )
M  1X

m=0

�
exp

�
2�
2M

j (2i  l )
�� m

: (3.16)

The sum of exponential in Equation 3.16 is equal to:

M  1X

m=0

�
exp

�
2�
2M

j (2i  l )
�� m

=

8
>>><

>>>:

M if l is even andl = 2 i

0 if l is even andl 6= 2 i
1 exp( 2�

2M jM (2i  l ))
1 exp( 2�

2M j (2i  l )) = 2
1 exp( 2�

2M j (2i  l )) if l is odd:

(3.17)

Inserting Equation 3.17 into Equation 3.16 leads to:

~W (k; l = 2 i ) = W (k; i ) (3.18)

~W (k; l = 2 i + 1) =
1

M

M  1X

i =0

2

1  exp
�

2�
2M j (2i  l )

� W (k; i ): (3.19)

Equation 3.18 con�rms Equation 3.12. We denotezl;i the weighting factor of W (k; i ) in
Equation 3.19:

zl;i =
1

M
2

1  exp
�

2�
2M j (2i  l )

� : (3.20)
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One can easily verify that zl;i is such that zl+2 ;i = zl;i  1

zl+2 ;i =
1

M
2

1  exp
�

2�
2M j (2i  (l + 2))

� (3.21)

=
1

M
2

1  exp
�

2�
2M j (2(i  1)  l )

� (3.22)

= zl;i  1: (3.23)

This property of zl;i is of particular interest if we write Equation 3.19 in matrix form:
2

6
6
6
6
4

~W1
~W3
...

~W2M  1

3

7
7
7
7
5

=

2

6
6
6
6
4

z1;0 z1;1 � � � z1;M  1

z3;0 z3;1 � � � z3;M  1
...

z2M  1;0 z2M  1;1 � � � z2M  1;M  1

3

7
7
7
7
5

2

6
6
6
6
4

W0

W1
...

WM  1

3

7
7
7
7
5

: (3.24)

Using the properties ofzl;i mentioned above, Equation 3.24 then becomes:
2

6
6
6
6
4

~W1
~W3
...

~W2M  1

3

7
7
7
7
5

=

2

6
6
6
6
4

z1;0 z1;1 � � � z1;M  1

z1;M  1 z1;0 � � � z1;M  2
...

z1;1 z1;2 � � � z1;0

3

7
7
7
7
5

2

6
6
6
6
4

W0

W1
...

WM  1

3

7
7
7
7
5

: (3.25)

Equation 3.25 shows that the matrix Z formed from the weighting factors zl;i , is circulant.
A well known property of circulant matrices is that they are d iagonalizable by Fourier
matrices [Petersen and Pedersen, 2012]:

Z = FDF  1; (3.26)

where D is a diagonal matrix such that D = diag ( F z), z is the vector formed by the
elements of the �rst column of Z and F is a Fourier matrix (i.e. composed of exponential
terms f ik

M = e 2�jik=M ). Equation 3.25 can then be rewritten as:

~W = ZW = FDF  1W : (3.27)

This approach to linear convolution can also be computed through the scheme illustrated
in Figure 3.7(b). In Equation 3.27, the product F  1W corresponds to the IFFT of the
spectral gainsW (k; i ) and is equal to ~wm (k). Experiments veri�ed that the diagonal matrix
D is indeed composed of the same terms as the exponent term illustrated in Figure 3.7(b).
Meaning that the product DF  1W leads to �wm (k) since F  1W = ~wm (k). Lastly, the
product by the Fourier matrix achieves the Fourier transform of �wm (k) = DF  1W .

3.3.4.1 Frequency resolution extension with reduced computational complex-
ity

Our approach (Section 3.3.4) to linear convolution corroborates the work in [Marin-
Hurtado and Anderson, 2010] but has the distinct advantage of scalability for manag-
ing computational complexity which we describe here. In this section we consider the
case where~W (k; i ) is computed according to Equation 3.19, i.e. through multiplication of
W (k; i ) by the weighting function zl;i .
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Figure 3.8: Imaginary part of the weighting function zl;i for l = 33 (i.e. normalized
frequency l=2M ) and M = 128

The imaginary part of the weighting function zl;i for l = 33 is depicted in Figure 3.8.
The real part of zl;i is not shown because it is constant for all values ofi : Re(zl;i ) = 1 =M .
The plot in Figure 3.8 shows that zl;i does not equally weight the spectral gainsW (k; i ) in
the computation of ~W (k; l ). More speci�cally, the closer the normalized frequency i

M is to
the normalized frequency l

2M , the more W (k; i ) in�uences the value of ~W (k; l ) (and vice-
versa). Although, zl;i is complex and does not uniformly weightW (k; i ), it is of interest
to note that a given value of l , zl;i constitutes a normalized weigthing function:

M  1X

i =0

zl;i = 1 : (3.28)

To reduce the computational complexity related to the computation of ~W (k; l ), one
can use a truncated version ofz(k; i ) as a weighting function. We denote ~zl;i the truncated
version of zl;i . The weighting function ~zl;i is truncated so as to include onlyN points

(with N < M ) centered on the peak ofzl;i . We denote ~~W (k; l ) the attenuation gain

obtained with the truncated interpolation function ~zl;i .
~~W (k; l ) is computed similarly as

in Equation 3.19:

~~W (k; l = 2 i + 1) =
M  1X

i =0

~zl;i � W (k; i ) =
NX

i

~zl;i � W (k; i ): (3.29)

where only N terms are considered in the summation since ~zl;i has M  N terms equal to

0. The computation of ~~W (k; l ), as in Equation 3.29 requires less operations. For all the
spectral gains ~~W (k; l ), this computation requires N � M multiplications and ( N  1) � M
summations.

The scalability comes from the fact that one can choose the value of N according to
the computational load of the system. The biggerN , the closer the resulting ~~W (k; l ) will
be to ~W (k; l ). Compared to the optimum computation of Equation 3.27, the use of ~zl;i is
computationally advantageous whenN � 2 � log2(M ) if we assume that anM -point FFT
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Figure 3.9: Impulse response for FEXT di�erent weighting function con�gurations

has a computational complexity of Mlog2(M ) (e.g. for M = 256, N should be be lower of
equal to 16).

The truncation of the weighting function zl;i to reduce the computational complexity
of the system may introduce some distortion since the resulting approximation ~zl;i con-
tains less information than the original function. In order to evaluate the impact of such
approximation, in the following we analyze the impact of the truncation on spectral gains
and analysis-synthesis of speech signals. Thorough experiments in a real perturbation
suppression scheme are presented later on in Section 3.4.

3.3.4.2 Impact of FEXT optimization on �lters

We evaluate the impact of the truncation by comparing the impulse response and the
frequency response of a �lter obtained with the full weighting function to that obtained
with a truncated weighting function. In the test reported he re, spectral gainsW (k; i ) are
all set to 0dB and M is set to 128. These spectral gains are processed by the FEXT to
obtain new spectral gains. Figure 3.9(a) shows the impulse responses obtained when FEXT
uses the full weighting function zl;i or two truncated weighting functions ~zl;i (of length
N = 8 and N = 4 respectively). Values of N are chosen such that the resulting system
has lower computational complexity than the linear convolution (i.e. N � 2 � log2(M )).

We observe that impulse responses obtained with the truncated weighting functions
do not exactly match the reference impulse response which, in this case, is composed of
a unique peak of unit amplitude. In the case of the approximated impulse responses,
the peak amplitude is slightly lower than 1 (0.9802 for N = 8 and 0.9244 for N = 4
respectively). Moreover, as we can see on Figures 3.9(a) and 3.9(b), both approximations
have a second peak which is small compared to the main peak butwhose amplitude
increases with decreasingN (0.04 for N = 8 and 0.08 for N = 4 respectively). When
comparing the spectrum of the approximated impulse responses ~~W (k; l ) with that of the
original spectral gains W (k; i ), we observe that ~~W (k; l ) contains a small ripple. The
spectral gains are no longer equal to 0dB (as it is the case forthe input spectral gains
W (k; i ) or ~W (k; l )). The spectral gains of the odd frequency bins are constant(i.e. -0.35dB
for N = 8 and -0.7dB for N = 4). The spectral gains of the even frequency bins are, as
expected, equal to 0dB as they do not require any computation. The e�ects observed on
the �lter can be judged as annoying or negligible depending on the application. With
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Figure 3.10: Signal-to-noise-ratio (SNR) between input signal and reconstruction error
between the input signal and the output of the FEXT module

mobile communications for example, such artifacts may be irrelevant whereas in high
quality speech enhancement systems, they may be very annoying.

3.3.4.3 Impact of FEXT optimization on speech signals

Here we report the impact of the optimized FEXT on speech signals. We undertook a
similar experiment to that reported in Section 3.3.4.2 but this time using a speech signal
as input to the FEXT module. An input speech signal is transformed into the frequency
domain through an M -point FFT with overlapping frames of 128 samples (64 new samples
and 64 samples from the previous frame) and with Hanning windowing. The number of
frequency bins M is set to 128. The obtained spectrum is processed by the FEXT and
transformed back into the time domain through a 2M -point FFT. Except for the FEXT,
no processing is performed in the frequency domain. Figure 3.10 shows the signal-to-
noise-ratio (SNR) between the input speech and the reconstruction error. We de�ne the
reconstruction error as the di�erence between the input signal and the output signal of
the FEXT module. For better analysis, the SNR was forced to zero during speech pauses
so that it re�ects the impact of the FEXT on the speech signal only. We observed that,
without any approximation in the FEXT, the SNR is approximate ly 40dB during speech
periods. The use of a truncated weighting function results in a slight degradation in
SNR (about 20dB with N = 4). Moreover informal listening tests indicate that these
degradations in SNR are not audible. This shows that truncating the weighting function
zl;i does not adversely a�ect speech quality in this case.

3.4 Comparative assessment of the di�erent �ltering meth-
ods

The subband and frequency domains �ltering methods presented in sections 3.2 and 3.3
are assessed for use within a joint noise reduction and echo post�ltering algorithm. Our
experimental setup is presented in Section 3.4.1. Results are presented in Section 3.4.2.
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Figure 3.11: Speech enhancement scheme composed of AEC followed by a post�lter. The
post�lter aims at reducing both the noise and the residual echo.

3.4.1 Experimental setup

This section is organized as follows. In Section 3.4.1.1, wepresent the combined noise
reduction and echo post�lter used in our investigation. A summary of the �ltering methods
assessed in presented in Section 3.4.1.2. Lastly Section 3.4.1.3 presents our dataset of test
signals.

3.4.1.1 Noise reduction and residual echo suppression

Figure 3.11 shows the echo processing scheme considered in our experiments. The micro-
phone signal y(n) is composed of the near-end speech signals(n), the echo signal d(n)
and the noise signalb(n). The AEC consists of a subband NLMS algorithm with variable
stepsize [Degry and Beaugeant, 2008]. The error signale(n) from the AEC is composed
of residual echodr (n), the near-end speechs(n) and the noise signalb(n). The post�lter
is used to tackle both residual echo and ambient noise. Assuming noise and echo are
two additive uncorrelated distance we aimed to suppress, the post�lter spectral gains are
de�ned as the product of the noise reductionWnoise and echo suppression gainsWecho:

W (k; i ) = Wnoise (k; i ) � Wecho(k; i ): (3.30)

The noise reduction and echo post�ltering spectral gains are calculated independently.
The echo post�lter is updated using a Wiener rule for echo suppression

Wecho(k; i ) =
� (k; i )

1 + � (k; i )

with � (k; i ) = �
ŝ2(k  1; i )

�̂ ~d ~d(k  1; i )
+ (1  � ) � max

 e2(k; i )

�̂ ~d ~d(k; i )
 1; 0

�
(3.31)

where � is the smoothing constant which is set to 0.98 and� (k; i ) is the (near-end speech)
signal-to-(residual) echo ratio (SER) which we estimate through the decision directed
approach [Ephraim and Malah, 1983]. The residual echo PSD̂� ~d ~d is computed through
the cross-correlation method [Beaugeant et al., 1998]:

�̂
~d ~d(k; i ) =

(� xe(k; i ))2

� xx (k; i )
: (3.32)
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The noise reduction �lter is a low complexity noise reduction algorithm [Degry and
Beaugeant, 2008] which is based on the assumption that the amount of noise that should
be attenuated is proportional to the signal-to-noise ratio (SNR). The noise reduction gain
is expressed as follows:

Wnoise (k; i ) = min( � � � � (k; i ); 1) (3.33)

where � and � are empirically optimized constants and � (k; i ) is the SNR which we
estimate as:

� (k; i ) =
� ee(k; i )

�̂ bb(k; i )
: (3.34)

where �̂ bb is the estimate of the noise PSD. The noise PSD is computed through minimum
statistics [Martin, 2001].

3.4.1.2 Filtering methods

The updated gainsW (k; i ) are used to process the degraded speech signale(n) through the
�ltering methods described in Sections 3.2 and 3.3. For all �ltering methods, the number
of subbands or frequency binsM is set to 64.

The four subband related �ltering methods of Section 3.2 areconsidered: ASFB, FBE,
LDF and IDFT. For subband related �ltering methods, the proto type �lter pfb is that
speci�ed in Equation 3.7 and its length is set to L = 128. The dowsampling factor R is
set to 64.

For the �ltering methods presented in Section 3.3, conversion from time to frequency
domain uses overlapping frames of 128 samples (64 new samples and 64 samples from
previous frame). A Hamming window of sizeL = 128 is used as the analysis window.
Three �ltering methods are considered:

� circular convolution denoted STFT-cir

� linear convolution denoted STFT-lin

� proposed method with truncated weighting function ~zl;i and N set to 8 which we
denote STFT-Appr. lin .

3.4.1.3 Test signals

The microphone signals used in our simulations contain near-end speech only, echo-only
and double-talk periods with either car, cafe or babble noise. The echo signal is obtained
by convolving the loudspeaker signals with an acoustic pathmeasured from real mobile
terminals in an o�ce environment. The loudspeaker and near-end speech levels are both
set to -26dB using the ITU-T implementation of the speech voltmeter [ITU-T, 1993] and
the di�erent echo and noise levels are also set using the sametool. The SNR ranges from
0 to 15dB while the SER ranges from -5 to 10dB. Our database of degraded speech signals
contains 192 sets of microphone and loudspeaker signals of 32s each.

Performance of the di�erent �ltering approaches is assessed through objective measure-
ments and informal listening tests. Echo suppression is assessed in terms of echo return
loss enhancement (ERLE) and cepstral distance(CD). Noise reduction is assessed in terms
of noise attenuation (NA). ERLE, CD and NA are computed as described in Section 2.3.
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Figure 3.12: Perturbation attenuation

3.4.2 Results

Figure 3.12(a) shows NA against SNR. The NA curves show that the STFT Appr. lin
approach achieves the best performance in terms of noise reduction. The STFT lin and
STFT cir methods achieve the worst performance but the gap between the di�erent �lter-
ing approaches is small. In general, all the di�erent �lteri ng approaches are equivalent in
terms of noise reduction: the di�erences between NA curves is less than 2dB. Lastly, it is
of interest to note that the ranking of the FBE, LDF and ASFB perfo rmance is consistent
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with that reported in [Löllmann and Vary, 2007].

Figure 3.12(b) shows ERLE against SER. Here there is a clear gap between the amount
of echo suppression achieved when gains are computed in the frequency domain compared
to when it is computed in the subband domain. The STFT lin , STFT cir and STFT Appr.
lin achieve the same amount of ERLE. The truncation of the interpolation function does
not signi�cantly impact the amount of echo suppressed.

The ASFB, FBE, LDF and IDFT approaches are equivalent in terms of echo suppres-
sion. We nevertheless observe that ERLE curves measured on clean speech signals (no
additive noise) showed that the IDFT method achieves slightly less echo suppression com-
pared to the ASFB, FBE and LDF method. In absence of noise, due to spectral structure
of speech signals the attenuation di�erence between consecutive subbands can be very
large. The more this attenuation di�erence increases, the more the e�ective frequency
response of the IDFT �lter has large variations (Gibbs phenomenon) between consecutive
subbands. The results reported here address the problem of echo in the presence of noise,
and this leads to a reduction in the attenuation di�erence between consecutive subbands
and thus to better results for the IDFT approach.

Figure 3.13(a) shows cepstral distance against SNR during near-end speech only pe-
riods, i.e. distortions resulting from noise reduction. We see that the ASFB approach
introduces the most distortions. The results regarding theASFB, FBE and LDF are dif-
ferent from those presented in [Löllmann and Vary, 2007] in which the ASFB and FBE
approaches were reported to produce speech of equivalent quality. Our explanation is that
this di�erence is due to the analysis and synthesis �lter banks which are de�ned di�er-
ently. In [Löllmann and Vary, 2007], the analysis and synthesis �lter banks used for the
ASFB and FBE approaches are not the same whereas in our experiments they are. The
frequency domain �ltering methods clearly introduce the least distortions. Figure 3.13(b)
shows CD against SNR during double talk periods. The rankingof the di�erent �ltering
methods remains the same as in Figure 3.13(a). We note an increase of the CD values
during double talk periods. This is justi�ed by the fact that in double-talk periods both
echo and noise reduction are active.

Informal listening tests reveal that near-end speech during double talk periods is dis-
torted whereas no distortion is noticed during near-end only periods. Listening tests with
weighted speech signals �s(n) reveal the presence of small distortions of near-end speech
during near-end speech only periods. These observations imply that echo processing brings
more distortion than noise reduction no matter the �ltering approach used. Distortion in-
troduced by the noise reduction are not audible in processedspeech signals due to the
masking e�ect of residual noise present in processed speechsignals. The distortion ob-
served is mainly crackling noises for signals processed by time domain �ltering methods,
STFT cir and STFT Appr. lin . As explained in [Yemdji et al., 2010a], the crackling
observed with time domain �lters comes from the fact that their frequency responses are
smoother than that of the original spectral gains which are de�ned per sub-band. The
crackling observed in the STFT cir and STFT Appr. lin methods are respectively due to
time-domain aliasing and the truncated weighting function ~zl;i . We also note the presence
of musical noise (random spectral peaks of short duration) for signals processed by the
STFT lin and ASFB methods. The di�erences between signals processed by the IDFT,
LDF and FBE approaches were hardly audible. This con�rms what might be expected on
account of results illustrated in Figure 3.13.
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Figure 3.13: Cepstral distance

3.4.3 Synthesis

The comparison of the frequency domain and subband domain related �ltering methods
shows that all �ltering methods are equivalent in terms of NA. ERLE curves reported
show that frequency domain �ltering methods are slightly better than subband domain
�ltering methods in terms of ERLE. Lastly, plots of the CD sho ws that the frequency
domain approach introduces less distortions than the subband domain related �ltering
methods. While the frequency domain �ltering methods and subband �ltering introduce
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some musical noise, the time domain �ltering methods introduce some crackling noise in
the output signal.

In the remainder of this thesis, we focus on the problem of echo and consider that
there is no noise in the system. Experiments show that frequency domain �ltering meth-
ods achieve good performance in terms perturbation of attenuation and useful speech
distortion. Linear convolution is preferred for its mathematical exactness and will be the
only �ltering methods used in the remainder of this thesis.

3.5 Conclusion

In this chapter we present two di�erent interpretations of t he STFT: the �lter bank and
the DFT. Each interpretation leads to di�erent �ltering meth ods.

This chapter reports a side-by-side comparison of these �ltering methods based on
a combined NR and echo post�ltering algorithm. Results show that frequency domain
�ltering methods achieve more echo suppression than subband methods. It is mainly of
interest to note that the proposed �ltering method (that usi ng the truncated weighting
function) is a good alternative to linear and circular convolution.
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3.A Time domain aliasing in circular convolution

3.A.1 Proof of aliasing in circular convolution

Let us consider two vectorsa(n) and b(n) of length M . A(i ) and B (i ) are the Fourier
transform of a(n) and b(n) respectively. The convolution of a(n) and b(n) in the time
domain outputs 2M  1 samples while the bin-by-bin multiplication of A(i ) and B (i )
outputs M samples.

Let us denoteC1(n; i ) the result of the bin-by-bin multiplication of A(i ) and B (i )

C1(i ) = A(i ) � B (i ); (3.35)

Its inverse Fourier transform corresponds to

c1(n) =
1

M

M  1X

i =0

C1(i ) exp
�

2�j
ni
M

�
(3.36)

c1(n) =
1

M

M  1X

i =0

A(i ) � B (i ) exp
�

2�j
ni
M

�
(3.37)

By introducing the de�nition of A(i ) in Equation 3.37, we obtain the following

c1(n) =
1

M

M  1X

i =0

� M  1X

m=0

a(m)exp
�

 2�j
mi
M

� �
� B (i ) exp

�
2�j

ni
M

�
(3.38)

c1(n) =
M  1X

m=0

a(m)
�

1
M

M  1X

i =0

B (i )exp
�

2�j
(n  m)i

M

� �
(3.39)

c1(n) =
M  1X

m=0

a(m)b((n  m)M ) = a(n) ? b((n)M ) (3.40)

where b((n)M ) denotes the circularly shifted version ofb(n). Equation 3.40 shows that
the bin-by-bin multiplication of A(i ) and B (i ) is equal to the convolution of a(n) with a
circular shifted version of b(n). In consequencec1(n) does not corresponds to the time
domain convolution of a(n) and b(n). The circular shift that appears in Equation 3.40 is
the source of time domain aliasing and can be source of distortion in speech processing.

3.A.2 Illustration of time domain aliasing in circular conv olution

Time domain aliasing due to circular convolution is illustrated in Figure 3.14(a). The
example in Figure 3.14 illustrates the convolution of two vectors a(n) = [1 2 3] and b(n) =
[1 2 1]. Ideally, the convolution of a and b should output c2 (see Figure 3.14(b)). Instead,
we see that the output of the circular convolution c1 is a summed version of that of the
standard time domain convolution Figure 3.14(b). The mismatch betweenc1 and c2 is
due to time-domain aliasing.

Figure 3.14 (c) shows how zero-padding can be used to avoid time domain aliasing
which occurs in circular convolution. We see that with appropriate zero-padding linear
convolution can be achieved.
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Figure 3.14: Circular and linear convolution in the domain

3.B Properties of the proposed interpolation function

In this section, we demonstrate that the interpolation function zl;i presented in Sec-
tion 3.3.4 is normalized (sum for all i is equal to one) and that its real part is constant.
We recall that in Equation 3.20 we de�ned zl;i as follows:

zl;i =
1

M
2

1  exp
�

2�
2M j (2i  l )

� : (3.41)

The interpolation function zl;i is de�ned as a fractional complex number. In the fol-
lowing, we extract the expressions of the real and imaginaryparts of zl;i :

zl;i =
1

M
2

1  exp
�

2�
2M j (2i  l )

� (3.42)

=
1

M

2
�
1  exp

�
 2�

2M j (2i  l )
� �

�
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�
2�
2M j (2i  l )

� ��
1  exp

�
 2�

2M j (2i  l )
� � (3.43)

=
1

M
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�
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 2�

2M j (2i  l )
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�
 2�

2M j (2i  l )
�

 exp
�

2�
2M j (2i  l )
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+ 1

(3.44)

=
1

M

2
�
1  exp

�
 2�

2M j (2i  l )
� �

2  2 cos
�

2�
2M (2i  l )

� (3.45)
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=
1

M

1  cos
�

2�
2M (2i  l )

�
+ j sin

�
2�
2M (2i  l )

�

1  cos
�

2�
2M (2i  l )

� (3.46)

=
1

M
+ j

1
M

sin
�

2�
2M (2i  l )

�

1  cos
�

2�
2M (2i  l )

� = < (zl;i ) + j = (zl;i ) (3.47)

We see from Equation 3.47 that the real part the interpolation function zl;i is constant
for all values of i . This means that for a given frame k, the spectral gains used for the
linear convolution (i.e. ~W (k; l = 2 i + 1)) all have the same real part and simply di�er
by their imaginary part. In our assessement of this interpolation function, we study the
impact of the truncation of zl;i . But one can also imagine to apply the truncation only to
the imaginary part of zl;i since its real part is constant.

Equation 3.47 shows that a given frame index, the interpolation function zl;i (used in
the computation of ~W (k; l = 2 i + 1)) does not equally weight the spectral gainsW (k; i ).
It is of interest to know whether for a given frame k, the sum of zl;i for all i (since
interpolation is done along i ) is normalized (i.e. equal to one.):

M  1X

i =0

zl;i =
M  1X

i =0

< (zl;i ) + j = (zl;i ) (3.48)

=
M  1X

i =0

1
M

+ j
1

M

M  1X

i =0

sin
�

2�
2M (2i  l )

�

1  cos
�

2�
2M (2i  l )

� (3.49)

= 1 + j
1

M

M  1X

i =0

sin
�

2�
2M (2i  l )

�

1  cos
�

2�
2M (2i  l )

� : (3.50)

For simplicity let us de�ne � as follows

� =
2�
2M

(2i  l ) (3.51)

and denote the term under the summation as follows

f (� ) =
sin�

1  cos�
: (3.52)

For a given value of l , � spans from  �l
M to 2�  �l

M which is an interval of length 2� . By
symmetry of the cos and sin functions, the summation of f (� ) over an interval of length
2� is constant whether the summation interval spans from  �l

M to 2�  �l
M or from 0 to 2� .

If we consider f (� ) for alpha ranging from 0 to 2� , we observe that it has the following
symmetry f (�  � ) =  f (� + � ). Therefore the summation of f (� ) over this interval is
null. Combining this result with Equation 3.50, we see that the sum ofzl;i for all i is equal
to 1.
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Figure 4.1: System overview

The previous chapter presented e�cient �ltering approache s to perturbations sup-
pression for subband or frequency domain post�ltering. The post�lter used aimed at
suppressing both residual echo and noise. In this chapter, we focus on the echo problem.

We explained in Chapter 2 that echo control systems are composed of adaptive �lter-
ing followed by residual echo suppression. Recent studies to improve single microphone
echo processing performance focus on synchronizing both modules - synchronization which
bounds the AEC and residual echo suppression to operate in the same frequency or sub-
band domain. In this chapter, we introduce a cross-domain approach to synchronized echo
control. Based on the similarities between our synchronization approach and the system
in [Enzner and Vary, 2006], a new variable stepsize for the AEC is also introduced.

This Chapter is organized as follows. Section 4.1 presents the echo processing scheme
of interest in this chapter. Our approach to synchronize theAEC and echo post�ltering
is introduced in Section 4.2.

The cross-domain synchronization method presented in thischapter has been published
in [Yemdji et al., 2012b].

4.1 System overview

Figure 4.1 shows an overview of the synchronized echo cancellation system of interest in
this chapter. The microphone signaly(n) is the sum of the near-end signals(n) and the
echo signald(n) which is obtained by the convolution of the loudspeaker signal x(n) with
the acoustic path h(n). An adaptive �lter is used to generate an estimate of the echo signal
d̂(n) which is subtracted from the microphone signal to obtain the error signale(n). The
error signal is composed of residual echo~d(n) and, possibly, of near-end speechs(n). The
post�lter aims to suppress the residual echo. In addition to conventional feedback used by
the adaptive �lter, an additional level of statistical cont rol is applied to synchronize the
adaptive �lter and echo post�lter. The following details th e investigated adaptive �lter
and echo post�lter.
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4.1.1 Adaptive echo cancellation

The adaptive �lter is based upon a normalized least mean square (NLMS) algorithm
where the acoustic path estimateĥ (n) and its optimum stepsize � (n) are expressed as
follows [Haykin, 2002]:

ĥ (n + 1) = ĥ (n) +
� (n)

x(n)T � x (n)
� x(n) � e(n) and (4.1)

� (n) =
E f ~d2(n)g
E f e2(n)g

; (4.2)

where x(n) =
h
x(n) x(n  1) � � � x(n  L + 1)

i T
is the loudspeaker signal,L is the

length of the adaptive �lter and Ef :g represents statistical expectation. The computation
of the variable stepsize requires knowledge of the residualecho powerE f ~d2(n)g which
is not directly measurable. Instead, it is approximated through the system distance as
follows [Hänsler and Schmidt, 2004, Haykin, 2002]:

E f ~d2(n)g = Ef x2(n)g � k� L (n)k2 (4.3)

where � L (n) is the system mismatch i.e. the error between the real acoustic path h(n)
and its estimate ĥ (n). The value k� L (n)k2 is referred to as the system distance [Haykin,
2002] and its computation is described in Section 4.2.

4.1.2 Echo post�ltering

The post�lter consists of frequency domain processing with�ltering through linear convo-
lution in the frequency domain [Oppenheim and Schafer, 1999, Yemdji et al., 2011]. Prior
to frequency gain computation, the post�lter input signals x(n) and e(n) are converted
into frequency domain signalsx(k; i ) and e(k; i ), respectively through DFT comprising
overlap (see Section 3.1.2). Thei th frequency signalŝ(k; i ) is obtained through the mul-
tiplication of the gain W (k; i ) with e(k; i ). Conversion from time to frequency domain is
performed on blocks ofR samples through a fast Fourier transform with an overlap-add
method [Oppenheim and Schafer, 1999].

For each frequency indexi , the post�lter gains W (k; i ) are computed according to the
Wiener rule as in Section 3.4.1.1:

W (k; i ) =
� (k; i )

1 + � (k; i )
; (4.4)

where � (k; i ) is the signal (near-end speech) to (residual) echo ratio (SER). As described
in Section 3.4.1.1, the SER is estimated through the Ephraimand Malah approach. Its
computation requires an estimate of the residual echo powerwhich we implement as:

�̂
~d ~d(k; i ) = j ~H (k; i )j2 � � xx (k; i ); (4.5)

where �̂ ~d ~d(k; i ) is the residual echo power spectral density,�̂ xx (k; i ) is the loudspeaker
power spectral density and j ~H (k; i )j2 is the system mismatch power spectrum [Steinert
et al., 2007]. The computation of j ~H (k; i )j2 is described in Section 4.2.
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4.2 System control

In this section, we present our approach to synchronize the AEC and the echo post�lter.
The synchronization approach presented here operates with fullband AEC but can be
adapted readily to operate with a subband AEC. Thus AEC and echo post�ltering are
not constrained to operate in the same domain.

4.2.1 Synchronization approach

The architecture used here is inspired from existing synchronized approaches to echo con-
trol such as those in [Enzner and Vary, 2003, 2006, Steinert et al., 2007]. In such systems,
the acoustic echo canceler is constrained to function in thefrequency or subband domains.
However, a comparative study shows that subband or frequency domain AECs are less
robust to non-linearities than fullband AECs [Mossi et al., 2010]. The comparative assess-
ment in [Mossi et al., 2010] of the behavior of AECs showed that frame based adaptive
�lters such as the frequency block LMS algorithm are less robust to non-linearities than
sample-by-sample based AECs. Indeed, for regions where theloudspeaker signal is low,
non-linear e�ects are negligible. Sample-by-sample basedAEC will be able to estimate
the echo path. Whereas for block-based AEC required a whole frame of low amplitude
loudspeaker signal to bene�t from the same e�ect.

Our approach to synchronization is based upon the correspondence between the system
mismatch � L (n) and its spectrum ~H (k; i ) which are de�ned as follows

� L (n) = h(n)  ĥ (n) and ~H (k; i ) = H (k; i )  Ĥ (k; i ); (4.6)

where H (k; i ) and Ĥ (k; i ) are the discrete Fourier transforms (DFT) of h(n) and ĥ (n)
respectively. From Equation 4.6, we note that ~H (k; i ) is the DFT of � L (n). According to
Parseval's equality [Proakis and Manolakis, 1996], we can write the following:

k� L (n)k2 =
1

M

M  1X

i =0

j ~H (k; i )j2; (4.7)

with the assumption that n is a multiple of the blocksize R. Equation 4.7 highlights the
relationship between the NLMS algorithm and the echo post�lter. This relationship can
be used in two di�erent ways:

� The estimate of the system mismatch � L (n) can be used to compute its norm
k� L (n)k2 and its power spectrum j ~H (k; i )j2. This solution is impractical because
the misalignment vector � (n) cannot be estimated reliably. The estimation of � L (n)
requires correlation computation [Haykin, 2002] which is highly computationally de-
manding. Most real time systems estimate the system distance directly [Hänsler and
Schmidt, 2004].

� Alternatively, j ~H (k; i )j2 can be estimated and used to derivek� L (n)k2 according to
Equation 4.7. As most echo post�lters already require the computation of j ~H (k; i )j2,
we opted for this solution. In this case there is no additional computational require-
ment.

The system mismatch power spectrumj ~H (k; i )j2 can be computed through the cross-
correlation method [Steinert et al., 2007] according to:

j ~H (k; i )j2 =
�
�
�
� xe(k; i )
� xx (k; i )

�
�
�
2
; (4.8)
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where � xe(k; i ) is the cross spectral density betweene(n) and x(n). However, the post�lter
is updated on a frame-by-frame basis whereas the AEC requires a sample-by-sample up-
date. In between two measurements of the system mismatch power spectrum, the system
distance is updated according to the following recursion [Claasen and Mecklenbrauker,
1981, Steinert et al., 2007]:

k� L (n + 1) k2 =
�
1  

� (n)
L

�
� k� L (n)k2: (4.9)

A similar recursion can be found in the echo control system in[Enzner and Vary, 2006]. In
the next section, we propose a novel recursion for the computation of the system distance
based on the similarities between Equation 4.9 and the work in [Enzner and Vary, 2006].

4.2.2 Enhanced variable stepsize

The system in [Enzner and Vary, 2006] can be seen as a variablestepsize NLMS with an
adaptive �lter that has one tap per frequency bin. Therefore, j ~H (k; i )j2 de�nes the system
distance for each NLMS �lter or frequency bin. In [Enzner and Vary, 2006], j ~H (k; i )j2 is
computed as:

j ~H (k + 1 ; i )j2 = A2 �
�
1  

R
M

� (k; i ) � jx(k; i )j2
�

� j ~H (k; i )j2 + (1  A2) � jĤ (k; i )j2 (4.10)

j ~H (k + 1 ; i )j2 = A2 �
�
1  

R
M

� (k; i ) � jx(k; i )j2
�

� j ~H (k; i )j2 + j� H (k; i )j2 (4.11)

where A is a constant which models variations of the acoustic path and A should be
comprised between 0.9 and 0.999. Values ofA closed to 1 model small acoustic path
change and vice-versa. The static echo path modeling corresponds to A = 1. The 2nd

term of the summation j� H (k; i )j2 is equal to 0 for static echo path modeling. This means
that the term j� H (k; i )j2 permits to account for accounts the variability of the echo path.
To improve the performance of our system, we propose a new measure of the system
distance.

According to Equation 4.7, a measure of the system distance over all frequency bins
can be derived from Equation 4.11:

k� L (n + 1) k2 =
1

M

M  1X

i =0

j ~H (n + 1 ; i )j2 (4.12)

� A2 �
 
1  

R
M

� (n; i ) � jx(n; i )j2
�
k� M (n)k2 + (1  A2) �

1
M

M  1X

i =0

jĤ (n; i )j2

(4.13)

� A2 �
 
1  

R
M

� (n; i ) � jx(n; i )j2
�
k� M (n)k2 + (1  A2) � kĥ(n)k2 (4.14)

� A2 �
 
1  

R
M

� (n; i ) � jx(n; i )j2
�
k� M (n)k2 + k� h(n)k2: (4.15)

Equations 4.9 and 4.15 both de�ned the system distance in theform of a recursion ex-
cept for the additional term k� h(n)k2 which is not present in Equation 4.9. Based on
Equation 4.15, we rede�ne the system distance in Equation 4.9 by adding a second term
k� h(n)k2 as follows:

k� L (n + 1) k2 =
�
1  

� (n)
L

�
� k� L (n)k2 + k� h(n)k2; (4.16)
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if ( n mod R = 0)
Yes No

Update k� L (n)k2

(Equation 4.9 or 4.16)
Compute
j ~H (k; i )j2

Update k� L (n)k2

(Equation 4.7)

To post�lter To adaptive �lter

At each time n

j ~H (k; i )j2
k� L (n)k2

Figure 4.2: Statistical control diagram

where k� h(n)k2 accounts for changes in the acoustic path. Equivalently,k� h(n)k2 is
computed according to:

k� h(n)k2 = (1  A2) � kĥ (n)k2: (4.17)

The k� h(n)k2 is de�ned in Equation 4.17 as a positive quantity. Its use according
to Equation 4.16 will impact on the behavior of the AEC. By comparing equations 4.9
and 4.15, we can state that the newly de�ned system distance will lead to values of � (n)
that are higher than those obtained with Equation 4.9.

4.2.3 Summary

The echo control scheme considered in this chapter is composed of an adaptive �lter
followed by an echo post�lter as illustrated in Figure 4.1. The novelty in the system
presented here resides in the use of the statistical controlmodule which we use to link the
AEC and echo post�lter. The synchronization approach is summarized in Figure 4.2. It
computes the system mismatch power spectrum according to Equation 4.8 on a frame-by-
frame basis (i.e. whenn mod R = 0). j ~H (k; i )j2 is used within the post�lter to update
the spectral gains W (k; i ) according to Equations 4.4 and 4.5 and within the adaptive
�lter for the computation of the system distance according to Equation 4.7. During
intervals in which the post�lter is not updated, the system d istance is updated according
to Equations 4.9 or 4.16. We note that Equation 4.9 is equal toEquation 4.16 for A = 1.

4.3 Experiments

In this section we assess the synchronized echo control system proposed above and compare
its performance to approaches. Although this chapter reports synchronized echo control,
AEC performance and echo post�lter performance are nonetheless assessed separately.

In Section 4.3.1 we present our experimental setup. Section4.3.2 reports an analysis
of the impact of the synchronization on the convergence of the AEC while in Section 4.3.3
we report the performance of the whole echo control system.
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4.3.1 System setup

The proposed synchronized echo control systems are compared to 2 state-of-the-art sys-
tems. State-of-the-art systems considered are:

� The unsynchronized system composed of a NLMS with �xed stepsize (� = 0 :1)
followed by a post�lter. The post�lter is that describe in Se ction 4.1.2 meaning it
is the same as that uses in our synchronized system except that it is not linked to
AEC.

� The synchronized Kalman echo control system which we denoteKalman AEC [En-
zner and Vary, 2006].

The �rst set of experiments presented in Section 4.3.2 assesses the impact of our
synchronization approach on the AEC. The AEC part is assessed in terms of robustness
to echo path changes and convergence time. We assess the interest of the proposed system
distance measure (Equation 4.16) by comparing its performance to that of the system
distance as de�ned in Equation 4.9. Both systems di�er in terms of the value ofA which we
set to 0.99 as in [Enzner and Vary, 2006] within Equation 4.16.We also show the interest
of the synchronization between the AEC and the post�lter by assessing the performance
of the AEC when linked with the post�lter to the performance o f the AEC when used
independently. The second set of experiments reports performances of the whole echo
control scheme (i.e. AEC followed by post�ltering.) Table 4.1 summarizes the di�erent
echo control systems considered.

For the systems considered, the number of frequency binsM is set to 256 while the
framesize R is set to 128. Filtering of the residual echo in the post�lter takes place
through linear convolution in frequency domain (see Section 3.3.2). Lastly, the length of
the adaptive �lter is set to 256.

All simulations reported here were performed with speech signals. Microphone speech
signals contain an echo-only interval followed by a double-talk interval. The echo-only
interval is long enough (8s) so that each AEC algorithm converges. The double-talk
interval is used to assess the impact of near-end speech on both the AEC and post�lter.
The echo signals are generated by convolving the loudspeaker signal with an acoustic path
response. Four di�erent acoustic path responses are used; they were all measured with real
mobile terminals in an o�ce environment. The resulting data base of speech signals has
SERs ranging from -5 dB to 10 dB with the near-end speech levelset to -26 dB. Speech
signal levels are set through the ITU-T speech voltmeter [ITU-T, 1993].

Performance is assessed in terms of echo return loss enhancement (ERLE), cepstral
distance and informal listening tests. While the ERLE is used to assess the amount of
echo suppression during echo-only intervals, the cepstraldistance is used to assess the
amount of distortion introduced by post�ltering during dou ble-talk intervals.

4.3.2 Convergence of the AEC

This section reports the performance of the AEC part alone. We demonstrate the interest
of our synchronization method and analyze its performance in case of echo path change.

4.3.2.1 Interest of the synchronization

In this section, we analyze the impact of the proposed synchronization module on the
convergence of AEC. Experiments reported in this section are based on microphone signals
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System distance
Synchro-
nization

Unsync. A = 1 NLMS algorithm with SD according to Equation 4.9 No
Unsync. A = 0.99 NLMS algorithm with SD according to Equation 4.16 No

Sync. A = 1 NLMS algorithm with SD according to Equation 4.9 Yes
Sync. A = 0.99 NLMS algorithm with SD according to Equation 4.16 Yes
Fixed stepsize NLMS algorithm with �xed stepsize No
Kalman AEC Kalman AEC from [Enzner and Vary, 2006] Yes

Table 4.1: Summary of algorithms tested
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Figure 4.3: Impact of the synchronization on the AEC

containing echo-only. To do so, we compare the performance of the AEC with and without
the synchronization with the post�lter (synchronization r efers to Equation 4.7).

Figure 4.3 reports the ERLE curve for the synchronized and unsynchronized version
of the system proposed in this chapter. We see that when the AEC does not receive
any feedback from the post�lter and that we compute the system distance according to
Equation 4.9, the AEC is not e�ective in canceling the echo. Whereas when the system
distance is computed as we propose (Equation 4.16), the AEC achieves up to 40 dB echo
attenuation. For both estimations of the system distance, the synchronization improves
the performance of the AEC. When using Equation 4.16, the synchronization permits
to signi�cantly reduce the convergence time of the AEC. When the system distance is
computed according to 4.16, the synchronization permits toincrease the amount of echo
suppressed by the AEC. In fact, the synchronization with the post�lter leads to high
stepsize values and forces the AEC to adapt.

This experiment shows that the synchronization permits to improve the performance
of AEC. We also see that the proposed system distance estimate also leads to better echo
cancellation. In the remaining of this Chapter, only the synchronized versionSync. A =1
and Sync. A =0.99 of the proposed system is used. In other terms, system distance is
computed according to Equation 4.9 or 4.16 and is always synchronized with the post�lter
(Equation 4.7).
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Figure 4.4: ERLE against time for AEC. An abrupt echo path change occurs at time
t = 20s.

4.3.2.2 Robustness to echo path changes

In this section, we assess the robustness of the di�erent AECs considered to echo path
changes. Both abrupt and slowly varying echo path changes areconsidered.

Figure 4.4 illustrates the convergence of the AEC in case of anabrupt echo path
change. At time t = 20s, there is an abrupt echo path change. The curves show that
the Sync. A = 0.99 system converges faster than theSync. A = 1 system. Its rapidity
is due to the term k� h(n)k2 which is used in theSync. A = 0.99 system and not in the
Sync. A = 1 system. k� h(n)k2 leads to higher stepsize values and therefore to faster
convergence. TheSync. A = 0.99 system also achieves more echo suppression than the
Sync. A = 1 system.

Performance of the NLMS based AECs is severely a�ected by theabrupt echo path
change. We note an important decrease in their ERLE values. Although, the Kalman
system achieves the least ERLE, it is the most robust to the abrupt echo path change at
time t = 20s. The poor performance of the Kalman system might be due to themodel
mismatch (except for the echo path change att = 20s, the echo path is static) and to
the fact the Kalman system operates in the frequency domain.The Kalman system is
updated in the frequency domain on a frame-by-frame basis whereas the new approach is
updated sample-by-sample.

Figure 4.5 shows the ERLE along time for a slowing varying echopath. The echo
path variations are generated according the Markov model asin [Enzner and Vary, 2006,
Malik and Enzner, 2008]. We see in Figure 4.5 that the NLMS with�xed stepsize and the
Sync. A = 0.99 achieves the most ERLE. We also see that the Kalman system converges
even faster than in Figure 4.4 where the echo paths were static. This is because the
Kalman system is design for time varying echo paths as it is the case here. Last, we note
that the Sync. A = 1 requires a long time to converge: this once more shows the bene�t
of including the term k� h(n)k2.

4.3.3 Assessment of the global echo control scheme

Figure 4.6 shows the mean ERLE against SER for the four di�erent AEC implementations
considered. The (Sync. A = 0.99 ) system achieves the best performance in terms of
ERLE. The proposed system (Sync. A = 0.99 ) gives better performance than the system
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Figure 4.5: ERLE against time for AEC. Echo path is time varying.
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Figure 4.6: Average ERLE against SER for AEC only during echo-only intervals

distance (Sync. A = 1 ): more than 10 dB di�erence in ERLE across the full range of
SERs. Nevertheless, the new system distance approachSync. A = 1 gives marginally
better echo suppression than the Kalman AEC algorithm. This might be because the
Kalman system is updated in the frequency domain on a frame-by-frame basis whereas
the new approach is updated sample-by-sample.

Figure 4.7 illustrates the total amount of echo suppression achieved through com-
bined AEC and post�ltering. The unsynchronized system and the Kalman system achieve
the most echo suppression. The system withSync. A = 0.99 achieves slightly less echo
suppression than the Kalman echo control system. This loss of performance can be at-
tributed to the system mismatch power spectrum function estimate which is not the same
in each post�lter. Sync. A = 1 achieves the worst performance in terms of ERLE: this is
attributed to poor AEC performance.

Figure 4.8 shows the mean cepstral distance against SER for the four di�erent sys-
tems. The cepstral distance is measured at the output of the post�lter during double-talk
periods. We observe that the system with �xed stepsize brings the most distortion. The
Kalman echo control system brings the least distortion. Although the new synchronized
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Figure 4.7: Average ERLE achieved through the AEC and the echopost�lter
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Figure 4.8: Average cepstral distance against SER for the global echo control system
during double-talk periods

approaches introduce more distortion than the Kalman system, their levels of distortion re-
main low compared to that of the unsynchronized system. Nevertheless, the post�lter with
Sync. A =1 introduces slightly more distortion than the post�lter wit h Sync. A = 0.99 .
This comes from the fact that the AEC from Sync. A = 1 achieves less echo suppression
and thus places an increased demand on the post�lter than with AEC Sync. A = 0.99 .
Moreover, the complete echo control systemSync. A = 1 achieves less echo suppression
than the Sync. A = 0.99 system (see Figure 4.6). The post�lter Sync. A = 1 can be
tuned in order to achieve as much echo suppression asSync. A = 0.99 but this results in
increased distortion during double-talk intervals.

Informal listening tests reveal the presence of musical noise in signals at the output
of the post�lter for both the proposed and the Kalman echo control systems. In addition
to musical noise, signals processed by Kalman echo control sometimes contain crackling
noise which was sometimes perceived as annoying. In signalsprocessed bySync. A = 1 ,
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echo is sometimes still audible whereas in signals processed by Sync. A = 0.99 echo is
inaudible.

4.4 Conclusion

This chapter presents the �rst cross-domain approach to synchronized acoustic echo can-
cellation and echo post�ltering. The proposed approach is based on the link between
the system distance and the system mismatch power spectrum.A new system distance
estimate is also introduced and assessed. The performance of the new synchronized echo
control system is compared to synchronized Kalman echo control system and to an un-
synchronized approach.

Our approach yields a reduction in distortion compared to the unsynchronized echo
control system. The proposed system is robust to echo path changes and is stable during
intervals of double-talk. The new system distance estimatedelivers signi�cantly improved
echo suppression and rapid AEC convergence while preserving a reduced level of distortion
during double-talk intervals compared to the standard system distance.
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Part II

Dual microphone echo processing
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Introduction

Until now, we have considered the echo problem for single microphone (SM) terminals.
Typical SM echo processing schemes are composed of adaptive�ltering followed by residual
echo suppression. AEC can be achieved through various existing approaches such as LMS,
NLMS, RLS or subband adaptive �lter. As presented in Chapter 2, these adaptive �lters
each have relative merits and disadvantages but all lead to residual echo. Post�lters are
required to suppress residual echo but they sometimes result in strong distortion of near-
end speech.

Alternative approaches to improved echo cancellation are based on multi-microphone
systems [Kellermann, 1997, Reuven et al., 2007a]. Multi-microphone echo cancellation
approaches are based on beamforming techniques and have been shown to outperform
SM approaches. Existing beamforming techniques typicallyrequire 4 to 10 microphones
[Myllyla and Hamalainen, 2008, Reuven et al., 2007b] spacedby a distance of about 10cm
up to 1 meter.

Mobile devices have traditionally been equipped with one microphone. Given the
reduced size of mobile device, it would be very di�cult to e�c iently place 4 microphones
on a device. Moreover, increasing the number of microphone on mobile device might result
in a signi�cant increase of the price of the device. In consequence, the device might not
be competitive because of its price.

Nevertheless, to gain advantage of the potential of multi-microphone architecture, more
and more dual microphone mobile phones can be found on the market. There is therefore
a necessity to design dual microphone (DM) speech enhancement algorithms for mobile
devices.

In contrast to DM noise reduction [Dörbecker and Ernst, 1996, Jeub et al., 2012],
DM echo control has not received much attention [Guo et al., 2011, Jeannes et al., 2001].
The echo control systems in [Guo et al., 2011, Jeannes et al.,2001] both use adaptive
�ltering: one per microphone. The use of 2 AECs is a computationally prohibitive point
for mobile devices. In [Jeannes et al., 2001] a combination of several post�lters is used
to process residual echo. In [Guo et al., 2011], a beamformeris placed after the AECs
to steer the error signals towards the direction of the desired speech signals(n). This
means that in [Guo et al., 2011] residual echo is considered as an interfering signal and its
suppression is achieved by the beamformer. In both cases (combination of post�lters or use
of beamforming), the resulting DM echo cancellation systemis still very computationally
demanding for a mobile device.

In this 2nd part of the thesis, we report our contributions regarding DM echo cancel-
lation. First, we study the echo problem based on some recordings with mock-up and
real DM mobile devices. These recordings are later on used topropose methods to im-
prove echo cancellation in DM terminals. Proposed methods uses a conventional AEC
followed by a DM post�lter. Experiments show that proposed methods outperforms SM
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echo control systems.
This part is organized as follows. In Chapter 5, an analysis of the echo problem for

DM is presented. A DM echo post�lter and double-talk detector (DTD) are also presented
and showed to be e�cient for a certain arrangement of the transducers on the phone. In
Chapter 6 another approach to DM echo post�lter is presented. This method is showed to
be e�cient for all transducer arrangement and is extendableto non-linear echo suppression.
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Chapter 5

Echo cancellation for dual channel
terminals
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In this chapter we focus on the echo problem for dual-microphone terminals. Such
an architecture is typical of some mobile terminals or tablets in today's market. For
instance, the iPhone 4, Google Nexus Oneand Samsung S seriesare dual-microphone
mobile terminals.

We propose a study of the echo problem for dual-microphone terminals. The proposed
analysis is based on both handset and handsfree scenarios. Its follows from this analysis
that two main features can be used for the purpose of echo cancellation: the level di�erence
and the correlation between the microphone signals.

Both features require to de�ne a novel dual-microphone echo processing scheme. The
proposed scheme is very similar to that used in single microphone (SM) terminals and is
composed of AEC followed by echo post�ltering. The similarity of the proposed scheme
with the SM scheme is deliberate and is discussed further in this chapter. This chap-
ter solely focuses on the use of level di�erence while correlation based methods will be
presented in Chapter 6.

The level di�erence between the microphone signals is exploited in two di�erent ways.
As a �rst step, we simply use the level di�erence to introduce a novel frequency do-
main based double-talk detector (DTD). The proposed DTD is used as post-processing
to enhance the SM echo post�lter used in previous chapters. As a second step, the level
di�erence is used to introduce a new implementation of the well-known Wiener echo post-
�lter. Unlike most Wiener echo post�lters, that proposed he re does not require an explicit
estimate of the residual echo power spectral density.

This chapter is organized as follows. Section 5.1 presents our model of the echo problem
and the recordings performed with DM devices. Section 5.2 presents the proposed DM
echo processing scheme. Our level di�erence based DTD and echo post�lter are presented
in sections 5.3 and 5.4 respectively. Section 5.5 deals about experimental assessment of our
DM approaches including a comparison with a baseline DM system. Lastly our conclusions
are reported in Section 5.6.

The signal analysis and the proposed echo processing schemepresented in this chapter
have been partly published in [Yemdji et al., 2012c]. The DTD and proposed gain rule
have been patented [Yemdji et al., 2013].

5.1 Echo problem in dual channel terminals

As illustrated in Figure 5.1 (a), we assume a terminal equipped with one loudspeaker
and two microphones. Later, we consider one of the microphone signals to be the primary
microphone signal and the other to be secondary. The primaryand secondary microphones
are denotedy1(n) and y2(n) respectively. Note that the positions of the microphones on
Figure 5.1 (a) are not representative of their actual position on the terminal. These
positions are simply used as illustration of the general set-up.

Figure 5.2 shows two examples of transducer con�guration formobile terminals. In
the bottom-bottom con�guration (Figure 5.2 (a)), the microp hones are both placed at
the bottom of the phone and are approximately equidistant from the loudspeaker. In
the bottom-top con�guration (Figure 5.2 (b)), the microphon es are placed such that one
is close to the loudspeaker whereas the other is relatively further away. We can cite as
example theiPhone 4 and Samsung Galaxy S2that use two microphones which are placed
in bottom-top con�guration. This con�guration is the most w idespread among terminals of
today's market since it leads to features like the level di�erence and coherence between the
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Figure 5.1: Illustration of the echo problem in a dual-microphone terminal
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Figure 5.2: Example of mobile device with di�erent microphone positions

microphone signals which are highly exploited to improve performance of noise reduction
algorithms [Jeub et al., 2012].

The examples of transducer positions in Figure 5.2 show the necessity to accounts for
the di�erent acoustic paths de�ned by the acoustic sources present in our system (near-
end speaker and loudspeaker). Our study of DM echo processing methods aims to propose
solutions that can be easily implemented on real devices. Since most terminal that are in
the market today are bottom-top, our study will focus on this con�guration.
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5.1.1 Signal model

As depicted in Figure 5.1 (a), the far-end speaker voice is played by the loudspeaker to the
near-end speaker. Part of this loudspeaker signal is re�ected in the near-end environment
and is recorded by both microphones [Hänsler and Schmidt, 2004, chap. 3]. The sig-
nals d1(n) and d2(n) represent the echo signal at the primary and secondary microphone
respectively:

dj (n) = hj (n) � x(n) (5.1)

where j 2 f 1; 2g, x(n) stands for the loudspeaker signal andhj (n) denotes the acoustic
echo path between the loudspeaker and the microphonej .

The microphones also record the speech signal from the near-end speaker and even-
tually the background noise. Similarly as for the echo, the speech from the near-end
speaker is re�ected in the surrounding environment before being recorded by the micro-
phones [Jeub et al., 2011, Reuven et al., 2007a]. The signalss1(n) and s2(n) represent the
near-end speech signal picked by the primary and secondary microphone respectively:

sj (n) = gj (n) � s(n) (5.2)

where j 2 f 1; 2g, s(n) denotes the near-end speech signal andgj (n) denotes the acoustic
path between the near-end speaker's mouth and the microphone.

Given these explanations, the signal model of the dual microphone (DM) echo problem
can be schematized as shown in Figure 5.1 (b). The resulting primary and secondary mi-
crophone signals are denotedy1(n) and y2(n) respectively. In respect with the explanations
above and Figure 5.1 (b), we can write the following:

yj (n) = sj (n) + dj (n) (5.3)

with j 2 f 1; 2g. In the following, the primary microphone refers the microphone which is
placed further away from the loudspeaker i.e. with less power during echo-only periods.

The signal model presented here is quite general since it simply accounts for the phys-
ical interaction between the acoustic sources and transducers. The next step in our un-
derstanding of this model is to perform and analyze some recording. The recording setup
includes both handset and handsfree scenarios.

5.1.2 Handsfree scenario analysis with mock-up phone

A mock-up phone has been built to get handsfree recordings. Adetailed description of the
mock-up phone used is furnished in Section 5.A. The mock-up phone consists of a solid
plastic body equipped with a loudspeaker and two microphones. Microphones are placed
in the bottom-top con�guration (as in Figure 5.2 (b)). The moc k-up phone is equipped
with almost perfect transducers. This allows us to focus permits to focus the study
on the acoustic interactions. Real mobile devices are mostly equipped with low-quality
transducers. Since such transducers do not have �at frequency responses, it results that :

� the far-end signal emitted by the loudspeaker will be a modi�ed version of the
received signal

� the recorded microphone signals are modi�ed versions of thesignals picked by the
microphones.
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(a) Frequency responses between loudspeaker and microphones
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(b) Frequency responses between arti�cial mouth and micro-
phones

Figure 5.3: Frequency responses with the phone placed in front of the arti�cial mouth in
a cabin environment

In addition, real mobile devices su�er from high non-linearities when used in handsfree.
As result, the echo signal will be non-linear. Lastly, the electronic components somehow
in�uence the acoustic interactions between the loudspeaker and the microphones. The use
of the mock-up phone permits to reduce and eliminate all these undesirable e�ects and
achieve a full assessment of the problem of linear echo.

The mock-up is used to measure impulse responses in di�erentacoustic environments:
cabin, o�ce, meeting room (see Section 5.A for details aboutthe recording setups). In all
these experiments, the phone is placed such that the two microphones are approximately
at equal distance from the arti�cial mouth. The recording setup in the cabin environment
simulates scenarios in which the user holds the phone in his/her hands. For the o�ce
and meeting room environment, the device is placed on a tableaccording to ITU-T Rec-
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ommendation P.340 [ITU-T, 1996a], simulating a scenario inwhich the user places the
device on a table to free his/her hand. For each of the acoustic environments considered,
impulse responsesh1j2(n) and g1j2(n) are measured through the exponential sine sweep
technique [Farina, 2000]. An arti�cial head ( [HEAD Acousti cs HMS II.3]) with mouth
simulator is used to simulate the near-end speaker and to accordingly to get g1j2(n).

Figure 5.3 (a) shows an example of frequency responses of the acoustic path between
the loudspeaker and the microphones. This �gure shows that the loudspeaker signal
received by the microphones is not equally attenuated by theacoustic environment for each
microphone. This implies that, during echo-only periods, the power of the signal on the
secondary microphone is higher than that on the primary microphone. In [Habets, 2007],
it is mentioned that the level of a sound wave at a given point is inversely proportional
to the distance that separates this point from its source. The level di�erence observed in
Figure 5.3 (a) is therefore in conformity with this property o f sound wave propagation.

Figure 5.3 (b) shows an example of frequency responses between the arti�cial mouth
and the microphones. We see that both impulse responses are very similar. These sim-
ilarities can be explained by the position of the microphones compared to the arti�cial
mouth.

5.1.3 Handset devices analysis with handset scenario

Mobile devices can also be used in handset. To complete our analysis of the DM echo
problem, a real mobile device, the [Xolo X900], is used to record signals. The device
used is equipped with one loudspeaker and two microphones which are still in bottom-top
con�guration. The far-end speech signal is played by the loudspeaker of the terminal and
the near-end speaker is simulated by the same arti�cial head (HEAD Acoustics HMS II.3)
as for the handsfree recording. The device is placed at the ear of the arti�cial head as
described in the ITU-T Recommendation P.64 [ITU-T, 2007]. All recorded microphone
signals contain echo-only, near-end only and double-talk (DT) periods.

In the analysis of the handset case, spectrograms and PSDs are used. An example of
microphone signals is illustrated in Figure 5.4 and is composed of a near-end only period
(from 0 to 9s) followed by an echo-only period (9s to the end).Based on these �gures, we
can state the following:

� During near-end only periods, the power of the signal on the primary microphone is
higher than that on the secondary microphone:

� y2y2 (k; i ) << � y1y1 (k; i ) (5.4)

where � yj yj (k; i ) is the PSD of the microphone signalyj (n) with j 2 f 1; 2g.

� Following our formalism, the power of the signal on the primary microphone is lower
than that on secondary microphone during echo-only periods:

� y1y1 (k; i ) << � y2y2 (k; i ): (5.5)

Once more the level di�erence observed is in agreement with sound wave propaga-
tion theory. Later on, we will exploit this power di�erence f or the purpose of echo
suppression

Data from the handset and handsfree cases are both used to assess proposed echo
processing algorithms. Proposed algorithms are assessed in two steps: �rst with the




































































































































































