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Abstract

With the increased exibility and mobility which they provi de, mobile terminals are ar-
guably the most popular and widespread telecommunicationglevices of the present day.
Mobile terminals are used in widely di erent and adverse coritions such as in handsfree
mode or in noisy environments. Particularly in hands-free node, part of the far-end voice
signal from the loudspeaker is coupled to the microphone. Fahermore, in noisy environ-
ments the microphone also captures the ambient noise in adtion to the useful near-end
speech signal. In consequence, mobile terminals are genkyaequipped with speech signal
processing algorithms in order to maintain acceptable spesh quality. This thesis mainly
focuses on echo cancellation.

Acoustic echo cancellation is generally achieved throughdaptive Itering followed by
echo post ltering. Adaptive echo cancellation aims to estmate the echo signal recorded
by the microphone. The echo post Iter is used to attenuate the residual echo. Echo post-
Itering often operates in the subband or frequency domain. Filtering in the frequency or
subband domain is appealing on a computational complexity pint of view. However, sub-
band Itering su ers from signi cant signal delay whilst fr equency domain lItering su ers
from time domain aliasing due to circular convolution. Alternative ltering methods can
be use to avoid these problems. The rst contribution in this thesis aims to assess dif-
ferent Itering methods for combined noise reduction and eto post Itering. Assessments
show that all Itering methods approximately achieve the same amount of echo suppres-
sion. However, they are not equivalent in terms of perceivedgpeech quality: time domain
Itering methods introduce some crackling while other methods introduce musical noise.

Although adaptive echo cancellation and echo post Iter both target the same prob-
lem, they are generally implemented separately. We proposa synchronized approach to
adaptive echo cancellation and echo post Itering. We also mtroduce a new stepsize com-
putation methods. The synchronization approach and stepsie proposed method achieves
a signi cant increase of the convergence rate and robustnesof the adaptive lter.

Recent approaches to improve the speech quality are based anulti-microphone de-
vices. In line with this trend, dual-microphone mobile devices can be found on the market.
The last part of this thesis deals with dual-microphone echocontrol. Recordings with
dual-microphone devices show us that a signi cant level dierence is observed between
the microphone signals. Based on this observation, we propesa frequency domain based
double-talk detector. The proposed DTD is assessed with a sgle microphone echo post-
Iter. Assessment show that the use of the double-talk detetor leads to increased echo
suppression and slightly reduced distortion.

Our echo processing scheme is still composed of adaptive dting followed by post I-
tering. The novelty lies withtin the post Iter which uses tw o microphone signals instead of
one. We introduced two novel approaches to echo post lterig. The rst is based on the
level di erence between the microphone and is suitable for especi ¢ arrangement of the
transducer on the device. The second post Iter is not restrcted to a speci ¢ arrangements
of the transducer. This solution is also advantageous as itan be used to tackle non-linear
echo problem. It turns out that the proposed dual-microphone post Iter achieve good
echo suppression whist keeping the distortion of the usefuspeech low.
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Chapter 1

Introduction

The rst telephone was invented in 1876 making long-distane@ communication possi-
ble [Balle, 2005]. The patent for this invention was led by Graham Bell for the account
of Bell Telephone Company At the time the telephone was still a privilege and it is
mostly installed very calm environments (i.e. salon, o ce). The user was required to use
both hands to do a conversation: one to hold the loudspeakerral another to hold the
microphone. Although this con guration was constraining for the user, it remains optimal
on acoustical point of view: it o ers a good isolation of the between the loudspeaker and
microphone. In addition, communications take place in high signal-to-noise conditions
resulting in good speech quality conditions.

Thanks to its patent on the telephone, Bell Telephone Companyhad the monopole on
this market until 1894 [Leclerc and Carré, 1995]. As theBell Telephone Companytech-
nologies became public, new actors arrived on the market ofsilecommunications creating
a rude competition. Each competitor creating a network that functioned within a city.
Reaching a phone located in a di erent city often meant inter-connecting di erent network
and was not always possible. When the interconnection was ssible, it was very costly
for the consumers. First regulations o ces such as the interrational telecommunications
union (ITU) were created in the 1930's with the aim of structuring the telecommunications
network in order to facilitate inter-connectivity between di erent networks and to defend
the interest of the consumers towards rising prices [Curierand Gensollen, 1992].

Handsfree devices were only invented in the 1957. With handeee devices, the user
freed his hands thereby o ering increased comfort and exiklity [Flichy, 2004]. In return,
part of the signal from the loudspeaker is recorded by the mimphone: the far-end user
experiences the unpleasant e ect of hearing a delayed veisn of their voice. The rst
attempts at echo control were based on analog voice contrad switches [Hansler and
Schmidt, 2004]. When the near-end speaker is talking, the ghal on the loudspeaker path
is completely suppressed. Therefore, when both speakers mgeactive, both sending and
receiving path signals are suppressed and no communicatids possible. This is the half-
duplex e ect - only one person can speak at a time. Full-duple solutions to the echo
problem came in the 1970's with the development of digital dicuits and the invention of
adaptive lters. Adaptive lIters are used to obtain a real-t ime estimate of the loudspeaker-
enclosure-microphone (LEM) system.

Mobile devices were developed in the 1980's allowing for pm@ conversations to take
place everywhere. The use of mobile devices in noisy envirorents (i.e. cafe, airport,
street ...) introduces the problem of additive noise in teleommunications. The rst noise
reduction methods aimed to suppress noise by subtracting ifrom the recorded microphone
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signal [Boll, 1979].

The earliest mobile devices weighted about 3kg whereas noways weights of 100g
are typical. The miniaturization of mobile phones is also a surce of some other speech
quality degradation. One of the most important impairments comes from the loudspeaker
miniaturization which can introduce a lot of non-lineariti es in the LEM system. As a
result, echo control solutions need to account for the presee of non-linearities.

Speech quality in mobile phones is degraded by a diversity ddrtifacts. Among which
we can cite the problem of ambient noise and that of acoustic &o. In consequence,
mobile terminals are generally equipped with speech signgirocessing algorithms in order
to maintain acceptable speech quality [Degry and Beaugeant2008, Hansler and Schmidt,
2004]. This thesis focuses on echo cancellation.

1.1 State-of-the-art approaches to speech enhancement

Most approaches to acoustic echo cancellation consist of aadaptive Iter followed by
an echo post lter [Benesty et al., 2007, Hansler and Schmidt,2004, Martin, 1995]. The
adaptive Iter produces an estimate of the acoustic path [Haykin, 2002]. It is then used to
estimate the echo signal at the microphone in order that it besubtracted from the up-link
signal. In practice, the performance of adaptive echo candiation (AEC) is disturbed by
the presence of ambient noise and/or the near-end speech sig [Hansler and Schmidt,
2004, Haykin, 2002]. To limit the impact of such disturbanceon the AEC module, double-
talk detectors (DTDs) and/or noise only detectors are often used [Huang et al., 2006].
Nevertheless, some residual echo remains at the output of ¢hadaptive lter. Conse-
qguently, post lters are often used to further suppress resilual echo. Most echo post lters
consist of an attenuation gain applied to the error signal resulting from adaptive ltering.
For better performance during double-talk periods, this atenuation can be computed in
the sub-band or frequency domain [Benesty et al., 2007, Hanglend Schmidt, 2004].

Noise reduction algorithms usually operate in the frequeng or sub-band domain and
are generally based on the assumption that noise is an addite and relatively stationary
perturbation. Commonly used noise reduction algorithms ae based on an estimate of the
noise power spectral density which is used to calculate a ne¢ reduction lter [Gustafsson
et al., 2001, Hansler and Schmidt, 2004, Martin, 2001].

As illustrated in Figure 1.1, e cient speech enhancement in telecommunications ter-
minals is guarantied by various modules. The non-linear pregprocessor aims to estimate
the non-linear component of the loudspeaker signal. Adaptie echo canceling furnishes an
estimate of the non-linear echo signal at the microphone wié echo post ltering aims to
render residual echo inaudible. The noise reduction modukeare used to process the noise
for the far-end and near-end speakers. In a practise, the daulink speech signal i.e. that
which has to be played by the loudspeaker contains both the flaend speech signal and
the ambient noise from his environment. Even in case noise tkiction has already been
applied to the signal prior to its transmission, the use of the downlink noise reduction can
still permits to improve the speech intelligibility for the near-end speaker. The downlink
noise reduction will mostly be useful for cases where the sigl to echo ratio is very low.

All these modules aim to improve speech quality but most of tem shave been designed
and optimized individually. Moreover, this optimization d oes not always exploit the full
hardware capacity of the device. For example, most dual-mimphone mobile devices are
still equipped with single microphone echo cancellation.The objective of this thesis
is to improve echo cancellation. First, we consider single microphone ec ho




Figure 1.1: Example of speech enhancement scheme

cancellation and propose a novel architecture which accounts for the interac-
tions between AEC and echo post ltering. Second, we propose approaches to
improve echo cancellation based on dual-microphone devices.

1.2 Contributions

In Chapter 2, we present state-of-the-art approaches to spech enhancement. Our contri-
butions are divided in two parts addressing single and dual ricrophone solutions respec-
tively.

1.2.1 Single-microphone echo cancellation

In most approaches to echo post ltering, residual echo suppession and noise reduction (i.e.
Itering of the degraded speech signal) is performed in the fequency or sub-band domain
through multiplication. Frequency and sub-band domain It ering are advantageous in
terms of computational simplicity [Oppenheim and Schafer, 99] but also have some
drawbacks.

Sub-band domain Itering introduces a signi cant delay in t he output signal [Loll-
mann and Vary, 2007]. Delay reduction can be achieved by Itging the residual echo in
the time domain. In this case, the sub-band attenuation gairs are used to determine a
broadband nite impulse response Iter. Popular approaches to its calculation include the
Iter bank equalizer, the low delay Iter or the inverse disc rete Fourier approach [Lolimann
and Vary, 2007, Steinert et al., 2008,Yemdji et al., 2010a]. Contributions in this thesis
include a comparative assessment of alternative ltering nethods to sub-band echo post-
Itering [ Yemdji et al., 2010a,b]. We showed that distortions introduced by tme domain
Itering methods are perceived di erently from those intro duced by subband Itering.
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Frequency domain ltering through bin-by-bin multiplicat ion is equivalent to circular
convolution and su ers from time domain aliasing [Oppenheim and Schafer, 1999]. Dis-
tortions can be reduced using linear convolution [Oppenhen and Schafer, 1999] which is
known to be computationally prohibitive for mobile termina ls. In [Yemdji et al., 2011] we
propose a low computational complexity implementation of inear convolution. A distinct
advantage of the proposed implementation relates to its sdability which we exploit to
manage computational complexity with only moderate degradation in speech quality. Our
ndings regarding subband domain and frequency domain relged ltering methods are
presented in Chapter 3.

The work then turns to the joint-control of AEC and echo post ltering algorithms. The
AEC and the post Iter both aim to suppress acoustic echo. Hidorically, each module was
designed as an independent module [Hansler and Schmidt, 28D Recently, however, echo
control systems with synchronized adaptive echo cancellan and echo post ltering have
been investigated and have shown improved performance [Ener and Vary, 2003, 2006,
Steinert et al., 2007]. Synchronized echo control systemsse the system distance (i.e. the
error between the acoustic path and its estimate) to link thetwo modules which are in this
case designed to operate in the same frequency or sub-bandrdain. We propose a cross
domain approach to synchronized AEC and echo post Itering and show that the proposed
approach outperforms existing state-of-the-art approacles [yemdji et al., 2012b]. Based
on the work in [Mossi et al., 2010], our synchronization appoach is advantageous for
its robustness against loudspeaker non-linearities in coparison to existing synchronized
systems. Our approach to synchronization is presented andssessed in Chapter 4.

1.2.2 Dual-microphone echo cancellation

The performance of single microphone echo cancellation abgithms is still limited, es-
pecially if we consider adverse situations such as handsfeecon gurations for which the
signal-to-echo-ratio at the microphone can be low. Althoudp recent approaches to improve
speech enhancement consist in the use of multi-microphoneetminals [Gannot et al., 2001,
Jeub et al., 2011, Kellermann, 1997, Reuven et al., 2007a]udl microphone echo process-
ing has not received much attention in the literature [Guo et al., 2011, Jeannes et al.,
2001].

We report a study of the echo problem for dual microphone dewies based on mea-
surements with mock-up and real mobile phones. Our study is hsed on both handset
and handsfree scenarios. Unlike existing multi-microphoe echo control approaches based
on beamforming [Gannot et al., 2001, Guo et al., 2011, Kellenann, 1997, Reuven et al.,
2007a], we show how dual microphone echo control can be achés through an adaptive
Iter followed by a postlter [ Yemdji et al., 2012a,c]. Our contributions regarding dual
microphone echo control are two-fold.

The rst part of our contribution uses the level di erence be tween microphone signals.
The reported level dierence is observed for certain transdicers con gurations namely
their arrangement on the device. The level dierence is expbited to introduce a new
approach to double-talk detection and a new echo suppressiogain rule. The proposed
double-talk detector (DTD) is appealing for its simplicity and exibility. It can operate
either in the frequency or sub-band domain as well as in the filband domain. The level
di erence gain rule does not require an explicit estimate ofthe residual echo power spectral
density. Experiments show that both the DTD and the new gain rule lead to improved
echo cancellation performance compared to single microplme approaches. The proposed




level di erence DTD and gain rule are presented in Chapter 5.

The second part of our contribution regarding dual-microphone echo processing in-
volves a general approach to echo post ltering. In contrastto the level dierence ap-
proaches, the proposed post Iter is not constrained to speicc transducers con gurations.
This approach simply exploits the correlation between the tvo microphone signals to
estimate the residual echo power spectral densityMemdji et al., 2012a,c]. The pro-
posed power spectral density estimate is readily extendedot deal with loudspeaker non-
linearities. Experiments show that this method leads to moe accurate power spectral
density estimation and achieves better echo suppression omared to single microphone
approaches as we showed inyemdji et al., 2012c]. This approach to dual-microphone
echo post Itering is presented in Chapter 6.

Publications

Part of the contributions presented in this thesis have beenpublished by the author at

international conferences: Yemdji et al., 2010a,b, 2011, 2012b,c]. Most of the contri-
butions regarding dual-microphone devices have been patéed [Yemdji et al., 2012a].
Throughout this thesis, publications of the author are indicated in bold.
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Figure 2.1: lllustration of the echo problem

The development of telecommunications is particularly maked by the advent of ser-
vices such as mobile telephony or video conferencing. All #sse mutations aim to improve
the quality of communications: comfort (hands free devicey friendliness (video calls,
conversations in groups) and security (handsfree devicesicars).

Besides the comfort provided to the user, the use of phone is ste environments
might degrade the speech quality. Public places such as stans, airports, etc.. are
particularly noisy places. The ambient noise is picked up bythe microphone just as the
useful speech. With handsfree devices, part of the signal ayed by the loudspeaker is
recorded by microphone. Because of this feedback, the speakhears his voice with a
delay (delay introduced by the transmission chain). As a reslt, the microphone signal
contains the speech signal but also useful acoustic echo ambise: these e ects can be
annoying for the far-end speaker.

Speech quality is a very important aspect in telecommunicaions as regulation insti-
tutions such as the ITU-T or 3GPP have set some speci cationsregarding the echo and
noise problem and quality requirements for the transmitted speech signals. Actors of
the telecommunications market must develop speech enhangent algorithms to meet the
speci cations recommendations. Acoustic echo cancellatin and noise reduction are used
to tackle these problems. Speech enhancement is a topic oftérest for a variety of actors
such as phone designers, automotive constructor or laptop emufacturer.

This chapter deals about state-of-the-art speech enhanceemt algorithms and is or-
ganized as follows. In Section 2.1, we introduce the problerof acoustic echo and noise.
Section 2.2 reports some state-of-the-art approaches to bo cancellation and noise reduc-
tion. Section 2.3 deals about assement that can be used to asss the performance of
speech enhancement algorithms. Our conclusions are presed in 2.4.

2.1 Sound recording in telecommunications termninals

In this section, we present the problem due to acoustic echoral noise.




(a) Impulse response of acoustic echo path

(b) Frequency response of acoustic echo path

Figure 2.2: Example of measured acoustic echo path

2.1.1 Acoustic echo

In a phone conversation, the voice signal is transmitted though a communication network
to a device equipped with at least one loudspeaker and one nmephone. The loudspeaker
plays the sound from the far-end speaker to the near-end sp&ar while the microphone
records the voice of the near-end speaker. The voice of the aeend speaker is then trans-
mitted to far-end speaker. But in some cases, part of sound eried by the loudspeaker
propagates in the near-end environment and is coupled the nsrophone of the device. As
a result, the far-end speaker does not only receive the voicef the near-end speaker but
also receives a delayed version of his voice: this e ect is ferred to as acoustic echo. As
illustrated in Figure 2.1, this coupling is composed of the diect path and of the re ected
paths between the loudspeaker and the microphone.
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2.1.1.1 Linear echo

The coupling between the transducers of the device, also refred to as the echo path can
be modeled by a nite impulse response Iter. The echo signalcan then be written as

d(n) = h(n) ? x(n) (2.2)

where h(n) represents the impulse of the echo path and(n) represents the loudspeaker
signal. Figure 2.2 shows an example of echo paths measured Wwia mock-up handsfree
mobile phone in an o ce environment. The mock-up phone used onsists simply of a
plastic box equipped with a loudspeaker and two microphonesOne can refer to Annex 5.A
for details about the description of the design of the mock-p phone. The use of a mock-up
phone instead of a real one permits to focus only on the acouistinteractions that occur
in a device. The microphones are placed such that one of thensislightly closer to the
loudspeaker than the other. We denoteh;(n) and hx(n) the impulse response between the
loudspeaker and the rst and second microphones respectiyg

We see from Figure 2.2 (a) the main delay (rst peak) is not the same for each mi-
crophone. The echo path is composed of the direct path and indect paths (re ections)
between the loudspeaker and the microphone of interest. Thenain delay for each impulse
response is related to the direct path (i.e. distance) betwen the loudspeaker and the mi-
crophone considered [Kuttru , 2000]. The closer the microghone is from the loudspeaker,
the shorter the direct path. In our case, the main delays are ©0.2ms and 0.4ms for the
rst and second microphone respectively. It is also of inteest to note that the amplitude of
this rst peak is di erent for each microphone. This is due to the fact that the amplitude
of a propagating acoustic wave is inversely proportional tathe distance between its source
and the point at which it is measured. In our case, the closer tle microphone is from the
microphone, the higher the amplitude of the main delay will be.

The peaks that follow the main one are due to the re ections ofthe sound from the
loudspeaker in the surrounding environment. We can see fronkigure 2.2 (a) that the
re ections are di erent for each microphone. The microphones are placed at di erent
position on the devices and do not pick up the same re ectionsat the same time. The
sound from the loudspeaker propagates in all directions, @ating an in nite number of
waves. Re ections occur when the wave encounters an obstaxl part of the incident wave
then continues to propagate in a di erent direction (that of the re ective wave) before being
picked up by the microphone. The frequency responses of the @asured impulse responses
are showed in Figure 2.2 (b). We can see that the acoustic pathmpacts on the spectral
components of the loudspeaker signal: all the frequency arsot equally attenuated.

2.1.1.2 Mechanical coupling

The sound wave played by the loudspeaker actually results &m the vibrations of the
membrane of the loudspeaker, the vibrations themselves beg generated by the electric
wave received from the network. The microphone records souhby transforming acoustic
waves into electric waves. In the case of mobile terminals,he loudspeaker and microphone
are in the same enclosure. Part of the coupling between the &msducer of the phone is
due to the proximity between the terminal transducers.

The coupling due to the proximity of the transducers is called mechanical coupling.
Figure 2.3 illustrates the mechanical coupling for a mock-upphone. The mock-up is the
same used to measure the acoustic echo paths in Figure 2.3. Thmechanical coupling




Figure 2.3: lllustration of the mechanical coupling: impulse response of mechanical cou-

pling
x(n)
Xp (N) D]" < <anlink path

Uplink path

d(n) (O

y(n)
(a) Scheme of a device including converter and  (b) lllustration of clipping for the loudspeaker sig-
ampli er on the sending and receiving paths nal

Figure 2.4: E ect of the ampli er used on the receiving path

is measured similarly as the acoustic echo path (of Figure 2)2except this time, the
microphones are sealed meaning the microphones should natgord any signal if a sound
is played on the loudspeaker. The fact that the impulse resposeshi(n) and hy(n) are
di erent from zero shows that part of the acoustic echo is dueto the mechanical interaction
between the transducer. The di erence of amplitude betweenthe mechanical coupling in
Figure 2.3 and the acoustic coupling in Figure 2.2 shows that tke e ect of mechanical
coupling remains marginal in comparison to the e ect of the acoustic coupling.

2.1.1.3 Non-linear echo

The e ects reported here only account the linear part of the aoustic echo. In reality part
of acoustic echo is generated by non-linear phenomena. Ndimear acoustic echo comes
from transducer saturation, digital converters and non-linearity of the loudspeaker transfer
function [Guerin, 2002].

The signals transmitted via the network are digital whereasthe transducers are only
able to play or record analog signal. As illustrated in Figure 2.4 (a), the received digital
far-end speech signak(n) is processed through an ampli er before being input to the bud-
speaker itself. The ampli cation step permits to increase te power of the received signal
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Figure 2.5: Example of total harmonic distortion for a loudspeaker. A sine with di erent
amplitudes and frequencies is used as input signal to the lalspeaker.

such that the signal played by the loudspeaker is audible. Ufortunately, as illustrated in

Figure 2.4 (b) saturations might occur during ampli cation. As a result, the signal at the
input of the loudspeaker does not correspond to a linear trasformation of the received
signal x(n).

In addition to non-linearities due to the loudspeaker saturations, we can mention the
harmonic distortions that are due to the non-linearity of th e loudspeaker transfer function.
Loudspeakers are in theory designed such that their frequesy response is at for a given
frequency band and input signal power. In practice, this is ot the case. Figure 2.5 shows
the total harmonic distortion (THD) of a loudspeaker as a function of the power and
frequency of the input signal. The loudspeaker used in this Btortion measurement is
that of the mock-up phone used above. The THD is a measure of th amount of harmonic
distortion introduced by a device. ldeally, it should be equd to zero. The signal at the
input of the loudspeaker is a sine: the amplitude and frequeay of the sine are used as test
parameters. For a given input sine signal (i.e. with a given fequency and amplitude), we
measure the power of the signal played by the loudspeaker. Wgee from Figure 2.5 that
the loudspeaker is not linear in the low frequencies. The amnt of distortions is even
more important for high amplitude signals. This gure shows that high amplitude signals
played by the loudspeaker will be distorted. The fact that the THD measure is not equal
to zero for frequencies and amplitudes show that in practiceghe frequency response of a
loudspeaker is not at. The harmonics distortions of the loudspeaker can for example be
modeled through a Volterra model [Birkett and Goubran, 19953 Gao and Snelgrove, 1991].
Figure 2.5 also shows that low amplitude signal might be distoted by the loudspeaker.
The distortions of the low amplitude signal are specic to the loudspeaker used and are
related to its quanti cation limitations.

The consequence of the coupling between the loudspeaker andcrophone of the phone
is that the far-end hears a delayed version of his own voice. Ae delay due to the acoustic
path is very small compared to that due to the transmission néwork. The level of echo
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depends on the acoustic path. Acoustic echo is a factor of ammyance and fatigue for the
users.

In summary, in mobile phones acoustic echo is due to the couplg between the loud-
speaker and the microphone. An acoustic path is charactert& of the device used and
of the acoustic environment. The way the loudspeaker and mimphone are placed on
the device mainly de nes the direct path of the acoustic echopath whereas the acoustic
environment de nes way the re ections occur. In the speci c case of mobile phones, part
of the acoustic echo is due to mechanical coupling between ¢htransducers.

2.1.2 Ambient noise

At its early stages, telephony devices were only installedr o ces and living rooms. Nowa-
days, phones are part of our daily lifes. Handsfree devices@used in car environments as
well as in o ce environments. Mobile phones are used in cafesairports. In addition to
the voice of the near-end speaker and acoustic echo, part ohé ambient noise is recorded
by the microphone and transmitted to the far-end speaker. Ths is annoying for both the
near-end and the far-end speakers:

The intelligibility of the message transmitted to the far-end is degraded by the
presence of noise. The presence of noise is even more anngyfior the far-end speaker
because he perceives the background noise from far-end sgernenvironment which
is most likely to be di erent from background noise of his environment.

The ambient noise will also overlap the signal played by thedudspeaker and therefore
reducing the intelligibility for the near-end speaker.

The more the noise level increases, the more the useful signia masked by the ambient
noise resulting in less intelligibility. In other terms, the annoyance due to noise increase
as the noise level increases.

2.2 Speech enhancement algorithms

We have explained how ambient noise and acoustic echo degradgspeech quality in mo-
bile terminals. Solutions to tackle these disturbances hag been widely investigated in
the literature. In this section, we present some state-of-he-art echo control and noise
reduction algorithms. In Section 2.2.1, we present existig echo cancellation algorithms
while in Section 2.2.2 we present noise reduction algoriths Lastly, an example of speech
enhancement is presented Section 2.2.3.

2.2.1 Echo processing

The rst attempts to suppress acoustic echo consisted in theuse of analog voice-controlled
switches. With the progress of digital circuits, more e cie nt echo control systems have
emerged. One popular tool is the adaptive Iter which was ba& then not used because
of its computational complexity. Nowadays, most echo contol systems are composed of
adaptive ltering followed by residual echo suppression asllustrated in Figure 2.6.

Section 2.2.1.1 deals about adaptive echo cancellation. I8ection 2.2.1.2, we present
existing echo post Itering methods while Section 2.2.1.3 eports synchronized approaches
to adaptive echo cancellation and echo post ltering.
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Figure 2.6: Echo control scheme

2.2.1.1 Adaptive echo cancellation

Acoustic echo results from the coupling between the loudspaker and the microphone which
can be modeled by an FIR (nite impulse response) lIter. Adaptive echo cancellation
aims at estimating this coupling. As shown in Figure 2.6, an aéptive Iter can be used to
estimate the acoustic echo path. The acoustic path estimatdi(n) is then convolved with
the loudspeaker signalx(n) to obtain an estimate of the echo signal:

dny=(A2x)(n)= A" (n) x(n): 2.2)
N :
where ﬁ(hn) = fo(n) hAs(n) fi. 1(n)?T represents the adaptive lter coe cients,
|
x(n) = x(n) x(n 1) x(n L+1) ' is the vector of the loudspeaker samples

and L is the adaptive lIter length. The update of A(n) is performed by a feedback loop
on the estimation error e(n) proportionally to a gain denoted C (n):

Atn+1)= A(n) E(n) en) with en)=yn) d&n): (2.3)

Equation 2.3 is the general update equation of an adaptive ter. The expression of the gain
€ (n) depends on the minimization criteria of the adaptive algoiithm (i.e. cost function)
and on the assumption made on the input signals and on the acaiic path.

Steepest-descent algorithm: We denote J (h(n)) the cost function to minimize. The
steepest-descent consists in updating the adaptive lIter h the direction opposite to the
gradient and leads to:

_ @h(n)) .
A(n+1)= A(n) ~am (2.4)
where s the stepsize. By de ning the cost function as the the mean sqgare error (MSE)
J((n) = E[E(n)]; (2.5)

where E[] represent the mathematical expectation, the steepest deent algorithm be-
comes:

Atn+1)= A(n) E [e(n) x(n)]: (2.6)
The steepest-descent converges to the Wiener solution [H&n, 2002]. Equation 2.6 is not
use in practice because of the expectation term which canndbe computed easily.
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Least mean square (LMS) algorithm: The LMS algorithm is an approximation of
the steepest-descent algorithm which estimate the expectin term in Equation 2.6 by its
instantaneous value. The LMS update equation is expressedsafollows:

A(n+1)= A(n) e(n) x(n): (2.7)

The stepsize controls the convergence and stability of the LMS algorithm. To ensure
convergence of the LMS, the stepsize should be such that:

2

max

0< <

(2.8)
where nax is the largest eigenvalue of the correlation matrix ofx(n) [Haykin, 2002].

Normalized LMS (NLMS) algorithm: The stability of the LMS algorithm depends
on the variance of the loudspeaker signal. To render the addjve stability independent
from the loudspeaker signal, the stepize is normalized by tb loudspeaker signal energy.
The adaptive Iter then becomes

A(n+1)= A(n) x(n) e(n): (2.9)

xT(n) x(n)
Convergence is ensured if is between 0 and 2. The normalization permits to improve the
convergence speed and stability of the adaptive lter. The NLMS algorithm nevertheless
su ers from slow convergence especially with speech sigral

A ne projection algorithm (APA): The APA adaptive lter is also obtained by
minimizing the MSE subject to a constraint on the errors over an observation window

min E[€?(n)] subjectto d(n 1)= A(n)2x(n 1) (2.10)

where | is an index ranging from O to N 1 and N is the length of the observation
window. The APA is obtained by solving Equation 2.10 through the Lagrange method
and expresses as follows:

fitn+1)= A(n)  X(n) X(N)X(n) ‘en) (2.11)
h [
where X (n) =h x(n) x(n 1) x(n N +1) is a matrix of loudspeaker samples
|
and e(n) = e(n) en 1) e(n N +1) T is the vector containing the N last

error samples. Note the NLMS algorithm is a special case of #hn APA with N = 1. The
APA is advantageous for its fast convergence but requires arsigni cant computational
load compared to the LMS or NLMS algorithms. For mobile devies, the computational
complexity can be prohibitive factor for the choice of an algrithm.

Only the most popular approaches to adaptive echo cancellan have been presented
here. Other algorithms such as LS (Least Square) or RLS (Reasive Least Square) can
be used for adaptive echo canceling. One can refer to [Haykir2002] and [Hansler and
Schmidt, 2004] for more information.

In most systems, adaptive Iters use hundreds of taps in orde to produce an appro-
priate estimate of the acoustic path. The more taps the adapive lter has, the better
it can model the acoustic path. The longer an adaptive lter is, the more its update is
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computationally demanding and can be prohibitive for a reattime system. Computational
complexity of adaptive ltering can be reduced through block-by-block or subband pro-
cessing [Huo et al., 2001, Paleologu and Benesty, 2012, Sommand Jayasinghe, 1988].
Block processing algorithms update the adaptive Iter for a block of input samples (in-
stead of every sample). In case of subband AEC, microphone drnloudspeaker signals are
split up into M subbands. Adaptive ltering in the subband domain permits to process
the echo at a lower sampling rate. Subbands adaptive Iters ae shorter than fullband
Iters. In addition, the length of the subband adaptive Ite rs can be chosen indepen-
dently. Therefore instead of adapting and ltering in full- band, we haveM adaptations
and convolutions (in parallel) but at a lower sampling rate [Morgan and Thi, 1995].

Adaptive Iter control: The convergence speed of an adaptive lter can be de ned
as the time this algorithm takes to reach to its optimum response or steady state. For
all the algorithms mentioned above (LMS, NLMS and APA), the stepsize controls the
algorithm convergence speed. Large stepsize values leadfast convergence whereas small
stepsize values lead to slow convergence [Benesty et al., ZQ@hap 45]. Additionally large
values of result in less accurate estimates of the acoustic path thanmall values of
In other terms, considering that the AEC reaches its optimum, AECs with large  output
more residual echo than AEC with small values of . In practice, the AEC should achieve
both fast convergence and low residual echo. For this reaseiime-variant stepsizes are
often used. An optimum stepsize will be de ned such that it should have a larger value
during the convergence period of the AEC and smaller valuesfter convergence periods.
In practice, variable stepsizes are used to control the AECBenesty et al., 2006, Igbal and
Grant, 2008, Lee et al., 2009].

If we take the example of the NLMS algorithm, its optimum vari able stepsize is ex-
pressed as follows:

E &?(n)

£ @ Wih dm = dn) dn): (2.12)

(n)=

The computation of Equation 2.12 requires the knowledge ofhe residual echo signati{n)
which is unknow in a real-time system.

Behavior of adaptive lters: In practice, the performance of an adaptive echo canceler
is limited: the presence of ambient noise or near-end speedignal might impact the AEC.
As a result, the estimation error e(n) is not echo-free. The presence of residual echo in
the error signal is due to the following reasons:

The adaptive Iter needs a certain time in order to converge toward its optimal
response. During its converging period, the estimation emr is not minimal. As a
result, echo is attenuated but is still audible in the output signal e(n). Further echo
attenuation can be achieved by using a post Iter.

ﬁ(n) is a FIR (Finite Impulse Response) lter of length L. To reduce computational
complexity, L is smaller than the length of the real acoustic channel [Hayln, 2002].
So when the adaptive Iter reaches its optimal response, theecho estimate is optimal
but not equal to the echo signald(n). Again, a postlter can be used to achieved
further echo attenuation.
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Moreover, in noisy conditions (changes of the acoustic pathpresence of near-end
speech and noise in the near-end speaker environment) the meergence of the adap-
tive algorithm is disturbed. Methods to limit the impact of t he noise on the AEC
include the use of noise detectors and double-talk detectsr(DTD) [Benesty et al.,
2007, Buchner et al., 2006]. Typical use of noise detector arlor DTD consists
in freezing the adaptation of the AEC during noise-only and/or double-talk (DT)
periods.

When using a mobile device, a user can hardly be static duringhe conversation: in
some cases, the user can be walking around. Even the smallestovements of the
user (i.e. nod of the head) or of the device (i.e. rotations othe mobile device) are
actually seen by the AEC as changes of the acoustic path betves the loudspeaker
and the microphone. This means that the AEC will need some tine to re-converge.
Echo path change detectors are used to limit the impact of ech path on the AEC.

Most approaches to such detectors are coupled with DTDs [Igal and Grant, 2008].

Finally, the non-linear part of echo cannot be modeled by a FIR lter. So the

AEC lter as described above cannot resolve the problem due @ transducer non-

linearities [Birkett and Goubran, 1995b]. Non-linear echo @ncelers are used to tackle
this problem.

Double-talk detection: Most DTDs are based on a detection variable which is de ned
as a function of the input signalsx(n), y(n) and e(n). The detection variable is compared
to a threshold and DT is eventually declared. The choice of tle value of the detection

threshold depends on the variable de nition. A large variety of detection criteria can

be found in the literature. Most features used to de ne the deection variable are the

signals level [Duttweiler, 1978], the signals coherence fsler et al.,, 1996] or signals
correlation [Gé&nsler and Benesty, 2001].

Non-linear echo processing: Non-linear echo cancellation can be separated into two
di erent categories: non-linear AEC and non-linear residual echo suppression. Non-linear
AEC algorithms can be classi ed in two families:

Algorithms based on loudspeaker linearization which aim atpreventing the loud-

speaker non-linear behavior. A pre-processor is placed omé loudspeaker path such
that the signal played by the loudspeaker is a linear transfomation of the received
signal x(n) [Furuhashi et al., 2006, Mossi et al., 2011]. The resultingacoustic path

formed by the loudspeaker-enclosure-microphone system iinear. Any adaptive

Iter can be used to estimate the acoustic path.

We also distinguish approaches based on the estimation of # loudspeaker non-
linearity. In this case, a pre-processor is placed before #hadaptive lIter and is used

to estimate the non-linear loudspeaker signak,, (n) [Guerin et al., 2003, Stenger and
Rabenstein, 1998]. The AEC then uses this estimate of non+tiear loudspeaker signal
as reference signal. As a consequence the AEC is able to estite the non-linear

echo signal recorded by the microphone.

Non-linear AEC can be highly computationally demanding and su ers from slow con-
vergence [Azpicueta-Ruiz et al., 2011, Stenger and Kelleramn, 2000]. Approaches to
non-linear residual echo suppression are more computati@ily e cient than non-linear
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Figure 2.7: Scheme of a sub-band echo post Iter

AEC and are generally based on frequency domain post Iterig. Most approaches to non-
linear AEC are based on the assumption that adaptive Iter cancels all the linear echo
whereas this is not the case with practical system [Hoshuyama, 2012, Shi et al., 2008].

2.2.1.2 Echo post ltering

The objective of a residual echo suppression module is to reler echo inaudible. A simple
and popular approach to residual echo suppression is that afain loss control (GLC) [Degry
and Beaugeant, 2008, Hansler and Schmidt, 2004]. GLC algofims simply consist in
applying an attenuation to the error signal. Although this g ain is generally calculated as a
function of the loudspeaker power [Degry and Beaugeant, 2008eitkamper and Walker,
1993] it impacts on near-end speech during double talk perids because it is applied
independently to the presence, or not, of near-end speech.

To overcome poor double talk performance of GLC, frequency rosubband echo post-
Iters [Beaugeant et al., 1998] are often used. Sub-band podters are preferred to GLC
because they consist of sub-band gains and can therefore speally target frequencies
where residual echo is audible. Sub-band echo post Iters a&r inspired from the spectral
subtraction algorithm [Boll, 1979] for noise reduction. Although sub-band echo post lters
can e ciently be used as a stand alone solution for echo canding, it has been shown to
be an e cient algorithm for residual echo suppression, i.e.in conjunction with the AEC.

Figure 2.7 illustrates the scheme of a sub-band echo post Ite The input signals e(n)
and x(n) are rst split into frequency (or subband) domain signals e(k;i) and x(k;i)
respectively, wherei denotes the frequency and ranges from 0 tdd 1 and k denotes
the frame index. The analysis stage can be implemented throgh a Fourier transform or
through an analysis Iter bank [Allen and Rabiner, 1977, Crochiere and Rabiner, 1983].
The post lter gains W (k; i) are computed and applied to the sub-band error signak(k; i)
as a multiplicative factor. The full-band near-end speech ggnal §(n) is recovered from the
sub-band signalstk;i) in concordance with the analysis stage.

Various gain rules for echo post Itering can be found in the iterature [Beaugeant et al.,
1998, Ephraim and Malah, 1985]. The Wiener Iter ch echo pos Iterinq is derived from

the minimization of the MSE in the spectral domain E s(k;i) 8(k;i) 2 andis expressed
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as follows: ) )

=(k; 1) _ (ki) .
ss(k;iy+  d(k;i) 1+ (ki)
where is an overestimation factor, % is the near-end speech signal power spectral
density, S5 is the residual echo power spectral density and is the signal to (residual)
echo ratio. The overestimation factor controls the aggresseness of the lter [Turbin et al.,
1997]:

W(k;i) = (2.13)

High values of lead to high attenuation values. During echo-only periods,the
residual echo will be deleted whereas during DT periods, thaear-end speech signal
components will also be deleted. As a consequence, procedsgeech signals can
exhibit musical noise during DT periods.

In contrast, low values of might cause insu cient echo suppression during echo-only
as well as during DT periods.

There is a tradeo to make between the amount of echo suppresx and the distortions
introduced during DT periods.
Another gain rule can be derived from the minimization of the logarithm of amplitudes
E jlog(js(k;i)j log(js(k;i)j)j?> [Ephraim and Malah, 1985]. This gain rule is often referred
to as the log spectral amplitude gain rule and is expressed as
L Z t . P
D) I S it (k)= 1) oK),

WED= T3 & P 2 gt 1+ (ki)

(2.14)

In [Ephraim and Malah, 1985] an approach to estimate the sigal-to-echo ratio (SER) is
presented as:

C G ) GNP C (7))

ED= Tag 1) ET)

1,0: (2.15)
It is of interest to note the SER estimate according to Equation 2.15 only reduces to the
estimation of the residual echo PSD. All the other quantities involved in the computation
of Equation 2.15 can be computed from the input signalse(k;i) and x(k;i). Examples
of residual echo PSD estimate can be found in [Enzner et al.,aD2, Habets et al., 2008,
Steinert et al., 2007].

2.2.1.3 Synchronized approaches to echo cancellation

AEC and echo post Itering both aim at suppressing the echo. A the beginning of the echo
or when an echo path occurs, the AEC need some time to reach itsptimum response.
The level of residual echo is higher during this convergencperiod than in periods where
the AEC has converged. The post Iter on his side is design sosito achieve more or less
aggressive echo suppression. An aggressive post Iter witesult in good echo suppression
and strong distortions of the useful signal during double-tilk periods. If the post Iter
is designed so as to avoid distorting the useful signal, theesidual echo might not be
completely deleted. The synchronization of the AEC and echopost Iter appears as a
solution to achieve a better compromise between good suppssion and good DT behavior.

We can distinguish two di erent methods regarding synchronized echo control: systems
based a static modeling of the echo path as it has been done uhhow and systems based
on a statistical model of the echo path.
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Static echo path: These approaches exploit the link between the stepsize of thAEC

and the echo postlter [Enzner and Vary, 2003, Steinert et al, 2007]. The constraint
about these approaches is that the AEC and the post Iter must be in the same subband
or frequency domain.

Time varying echo path: Approaches to AEC presented until now are based on the
assumption that the echo path is stationary and determinisic. However, in a practical

scenario, the acoustic path is time variant meaning it canno be assumed to be stationary.
These variations can sometimes be signi cant (e.g. : door opning or closing) or small.

Small acoustic path changes can be modeled by a rst-order M&ov model [Enzner and

Vary, 2006, Haykin, 2002].

h(n+1)= A h(n)+ h(n) (2.16)

whereA is the transition factor which is supposed constant and compised in between 0.99
and 0.999 [Enzner and Vary, 2006]. h(n) accounts for the unpredictable changes in the
acoustic path.

With this modeling of the echo path, the MMSE leads to a synchonized echo control
system which is composed of a Kalman lIter followed by a postlter: both are in the
frequency domain [Enzner and Vary, 2006].

Hkk+1;i))= A Bk i)+ K(ki) ek:i) (2.17)

where F (k; i) is the Fourier transform of the acoustic path estimate, e(k;i) is the Fourier
transform of the error signal e(n) and K (k;i) is the Kalman gain. The Kalman gain can
be written in the form of K(k;i) = (k;i) X(k;i) where (k;i) stands for a variable
stepsize andX (k;i) is a diagonal matrix whose diagonal contains the Fourier tansform
of x(n). The computation of the Kalman gain and echo post Iter is as follows:

jH (k;1)j?
(K 1)j? X (kD)2 + ss(k;i)

Kki)= (ki) X"(k;i)= X1 (k;i) (2.18)
SS(k1|)
ss(k;i) + jH(k;D)j2 jX (k;i)j?

W (k;i) = (2.19)

where H(k;i) = H(k;i) H(k;i). The synchronization comes from the fact the Kalman
gain and the post Iter both used the quantity jH (k;i)j2. This Kalman echo control system
is shown to be more robust to varying echo paths. Comparativeassessments show that the
Kalman AEC converges faster than standard frequency domairadaptive Itering [Malik
and Enzner, 2008]. Detailed information about the validity of the acoustic path modeling
and the derivation of the Kalman Iter can be found in [Enzner and Vary, 2006].

2.2.2 Noise reduction

Noise reduction algorithms aim to estimate the clean speecBignal. Most noise reduction
algorithms operate in the frequency or subband domain and a generally based on the
assumption that noise is an additive and relatively stationary perturbation. An example
of noise reduction (NR) scheme is shown in Figure 2.8. The useff speech and noise
signals are denoteds(n) and b(n). The noisy input y(n) is converted from the time to the
frequency (or subband) domain to obtainy(k;i). The frequency domain signaly(k;i) is
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Figure 2.8: Noise reduction detailed scheme

used to estimate the noise level which is later on used to comyte the attenuation gain

W (k;i). An estimate of the clean speech signal is obtained throughmultiplication of

y(k;i) and W (k;i). Lastly, the fullband estimate of the clean speech signals recovered
from &(k;i). The e ciency of the NR module mainly depends on the choice d NR gain
and noise estimate used.

2.2.2.1 Noise reduction algorithms

Spectral subtraction: Spectral subtraction is one of the rst NR method [Boll, 1979].
Spectral subtraction is based on the intuitive observationthat noise is an additive pertur-
bation. Therefore, an estimate of the clean speech can be ohihed through subtraction
of short-term spectrum:

q
js(k;1)j = jy(k;i)i ob(k; i) (2.20)

where P%k;i) denotes the PSD of the noise signal. Equation 2.20 can alteatively be
rewritten as

Al iz 1 qbb(k:i) il = Wk D) ivike i) 221
js(k; )] kD Jy(k;i)j (k1) jy(k;i)j: (2.21)
To avoid negative attenuation gain values, the minimum value of W (k; i) is set to O.

The spectral subtraction as de ned here su ers from strong dstortions of the useful
speech signal. More general methods for spectral subtracth can be found in [Lim and
Oppenheim, 1979, Plapous, 2005, Sim et al., 1998]. These gealized spectral subtraction
approaches mainly use an overestimation factor to arti cidly increase or decrease the
noise level. High value of the overestimation lead to good NRbut strong musical noise.
In contrast low values of overestimation permit to reduce the musical noise at the cost
of noise suppression. A compromise has to be made on the amdusf noise suppression
versus the amount of noise suppression [Plapous, 2005].

Wiener gain rule: The Wiener gain rule is derived from the minimization of MSE in
the spectral domainE js(k;i) $8(k;i)j> and expresses as follows

SS(k; |)
bB(k; 1)
where (k;i) is the signal to noise ratio (SNR) [Lim and Oppenheim, 1979,Scalart and
Filho, 1996]. The computation of the SNR requires the knowlege of the PSD of clean and

noisy signals. To overcome the fact that the PSD of the clean spech signal is unknown,
most systems are based on SNR estimates.

wikiy= — D i (ki) =

1+ (ki) (2.22)
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The SNR can be approximated as:

(ki)
ob(k; i)

such that the computation of the SNR only requires an estimaton of the PSD of the
noise [Cappe, 1994]. In case of high SNR (i.e. low level of red), the SNR estimate in
Equation 2.23 will be quite close to its real value. But as the mise level increases, the
gap between this SNR estimate and its real value will increas. With this estimate, the
phase di erence between the clean speech and noise signalght also impact accuracy.
The SNR estimate in Equation 2.23 is nevertheless interestig for its low computational
complexity.
The SNR can alternatively be estimated as [Cappe, 1994]

(ki) ki),
ob(k; i) '

Equation 2.24 estimates the PSD of clean speecs(n) as the di erence between the PSD
of the noisy signal and that of the noise signal assuming the sise and clean signals always
add constructively, neglecting the e ects of the phase of tte noise signal [Vary, 1985]. The
human ear is not very sensitive to phase di erence, so the phse of the noise signal can be
neglected without to much distortions [Wang and Lim, 1982].

Another approach to estimation of the SNR is the decision diected approach which
was introduced in [Ephraim and Malah, 1985]:

Ak; i) = (2.24)

. o
Mkii) = W+(l ) max

jy(k; )i?
= ()
where is a smoothing constant often chosen close to 1. The decisiatirected approach

gives a good estimate of the SNR whether high or low. Its use pmits to signi cantly
reduce the musical noise introduced by the NR module [Cappel994].

10 (2.25)

2.2.2.2 Noise PSD estimation

The noise level estimate is inherent to the computation of tle NR gain or SNR estimate
and therefore needs to be estimated accurately. Technique® estimate the noise include:

The speech activity detection method: With this method, the noise estimate is
updated during silence periods and frozen during speech agtty periods [Gustafsson
et al., 2001, Hansler and Schmidt, 2004]. One of the main prdbms of this technique
is the di culty to design an e cient and robust speech activi ty detector.

Some others noise PSD estimates are based on continuous tkiieg of the noise level.
One popular estimator is the minimum statistics method. This technique exploits
the fact that speech does not occupy the entire frequency baheven during speech
periods. The spectral and temporal holes of the speech are &d to estimate the noise
power by tracking the minimum noisy signal power within an observation window
for a given sub-bandi [Martin, 2001]. Alternative noise PSD estimates can be foud

in the literature [Cohen, 2003, Gerkmann and Hendriks, 2011 Goulding and Bird,

1990, Krawczyk and Gerkmann, 2012].
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Figure 2.9: Example of speech enhancement scheme for micropie device

2.2.3 Summary of speech enhancement algorithms

In sections 2.2.1.1 and 2.2.2 we presented some state-ofetfart algorithms for echo control
and noise reduction. In practice, a combination of the spedt enhancement algorithms
presented need to be implemented within the device. Figure 3.illustrates an example of
speech enhancement scheme that could be used in telecommaaiions terminals [Degry
and Beaugeant, 2008]. The non-linear preprocessor aims to temate the non-linearities
generated by the loudspeaker and is placed prior to AEC so thiathe AEC uses as reference
signal one which is as close as possible to the one that gentzd the echo signal. The AEC
gives an estimate of the non-linear echo. The error signal &m the AEC still contains
some residual echo which will be suppressed by the echo po#ering placed after the
NR module. The adaptive echo canceling aims at suppressincghe non-linear echo signal
whereas the post Iter processes the residual echo. The NR nuules aim at reducing the
noise for both speakers. NR is applied to the loudspeaker sigl or downlink path in order
to reduce noise that could be introduced by the network and tofurther attenuate noise
from the far-end speaker. NR is also applied to the microphoa signal or uplink path to
reduce the ambient noise picked up by the near-end microphan

The position or order of the di erent modules has to be chosercarefully. In [Beaugeant,
1996], it is shown that placing the NR before the AEC result inpoor AEC. Indeed, applying
NR to the recorded microphone does not only improve the noiséut attenuation the speech
signals (echo and near-end speech signals) recorded by theiarophone. In that case, it
then turns out that the echo signal at the input of the AEC is not necessary a linearly
transformed version of the original echo signal (that recoded by the microphone). For
this reason, it is preferable to place the NR after the AEC.

Figure 2.9 shows that good speech quality is achieved by numeus algorithms which
each tackles a specic problem. The resulting speech enhaement scheme has a sig-
ni cant computational complexity and might lead to signic ant signal delay. Most of
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these algorithms have historically been designed and optiized solely. Nevertheless, as
we introduced in Section 2.2.1.3, some recent approaches tmprove echo suppression are
based on synchronized AEC and echo post Itering. Part of reent studies aim at reducing
the computational complexity of the overall speech enhancment scheme. We can cite
for example cite [Enzner, 2006, Gustafsson et al., 2002, Hals et al., 2008, Martin and
Altenhoner, 1995] where a unique postlter is used to tacklenoise and echo together.
Combined approaches to AEC and echo post lter present the adantage of reducing both
the computational complexity and the signal delay. The objective of the work reported
in this thesis is to improve this architecture and the interactions between the di erent
modules so as to propose an more e cient speech enhancementteme.

2.3 Assessment tools

Good speech quality in phone conversation is possible tharskto the numerous speech
enhancement algorithms implemented in devices. Prior to tleir implementation within
phones, we need to evaluate and compare the di erents algahms. This assessement is
usually done in two steps: rst through objective metrics and later on through subjective
tests. Objective metrics report the mathematical performance of the algorithm under test.
Subjective tests report the perceived speech quality.

A variety of assessment tools for speech enhancement can bauhd in the litterature.
Only a selection of tools used in this thesis are presented he.

2.3.1 Objective metrics

Echo cancellation algorithms aim to suppress the echo sighaecorded by the microphone

while NR aims to suppress the noise. It therefore makes senge assess these algorithms
in terms of the amount of perturbation (noise or echo) suppressed. Echo suppression is
assessed in terms of echo return loss enhancement (ERLE) wieas NR is assessed in terms
of noise attenuation (NA). Perturbation attenuation is measured over adjacent windows

of N samples: o
D(m) = 10:logy Pzt (MN * 1

"N
=1 Sgut(mN + I)

(2.26)

where D (m) stands for ERLE or NA in dB, N is the block size,si, and sqy; are the unpro-
cessed and processed signals respectively. ERLE and NA areth computed according
to Equation 2.26. However, ERLE is measured during echo onlyperiods while NA is
measured during noise only periods. Both should be positiverad as high as possible.

The echo post Itering and NR are both achieved in the frequercy or subband domain
and can sometimes distort the useful signal. Speech distadn can be assessed in terms
of cepstral distance (CD) and speech attenuation (SA). The M can be measured as
in [Fingscheidt and Suhahi, 2007] i.e. between the clean spele s(n) and the weighted
speech signak(n) as follows:

Cs(n)
CD(m)

!qDFT flogjDFT (s(n))jg
TN [Cs(m)  Co(m)]: (2.27)

The weighted speech signals(n) is obtained with a method similar to [Fingscheidt and
Suhahi, 2007]. When processing degraded speech signalsethipdated spectral gains
W (k;i) are stored. These gains are applied to the clean near-end epchs(n) to obtain the
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weighted speech signas(n). Similarly the SA can be measured as the attenuation betwee
the clean speects(n) and the weighted speech signas(n) [Fingscheidt and Suhahi, 2007]
as follows:

I:)N 2

Z1 S°(mM + 1)
SA(m) = 10log ;o P22

( ) glO |N:1 SZ(mN + I)

Using the weighted speech signas instead of £ in the computation of CD and SA permits
to focus on the distortion of the useful signal by discardingthe distortion that might be
to residual perturbation. The CD gives an information about the distortions (i.e. musical
noise) of the processed signal whereas the SA re ects the ahuation of the useful signal.
Ideally, the CD and SA should be equal to 0 and 0dB respectivat

The echo post Itering and NR gains both require the estimation of the perturbation
PSD. Good echo or noise suppression also depends on the aamy of the estimated
PSD. We assess the accuracy of a PSD estimator by the mean of mynetric segmental
logarithmic error [Jeub et al., 2012] which can be expresseds follows:

n dB: (2.28)

(2.29)

whereK is the number of frames andM is the number of subbands or frequency bins and
Z is either the noise or the residual echo. ThdogErr should be as close as possible to 0.

2.3.2 Subjective tests

Subjective tests come as nal validation step for speech erdmcement algorithms. They
aim at evaluating the perceived speech quality. Most populasubjective test methodologies
are de ned in the ITU-T Recommendations [ITU-T, 1996b]. We distinguish two families
of tests: comparative tests and absolute tests. In comparate tests, the tester is presented
two occurrences of the same speech signals that have been pessed di erently. The tester
has to rate both samples. For absolute tests, the tester is msented one sample that he has
to evaluate. Subjective tests are very costly as they requid a large number of participants
and time.

In this thesis, we refer to informal listening tests which are performed by one or two
audio experts. Although they are less signi cant than subjective tests, they still report
the subjective quality of the signals.

2.4 Conclusions

In this chapter, we presented the problem due the acoustic ém and noise in a phone
conversation. We also explain that the annoyance related te@cho and noise increases as the
the level of the disturbance increases which justi es the neessity of speech enhancement
algorithms.

The main focus of this thesis being the echo problem, a broadrpsentation of state-of-
the-art echo control algorithms has been presented. Most ém control systems are based
on adaptive Itering followed by residual echo suppression Echo suppression performance
can be improved by using control such as DTD or synchronizatbon modules. Part of this
chapter is dedicated to NR algorithms. NR mostly consists ofan attenuation gain applied
to the noisy signal, the key elements of the NR being the gainule and the noise estimate.
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The last part of this chapter deals will assessment tools thaare commonly used to evaluate
speech enhancement algorithms.

The noise reduction and echo post Itering both operate in the subband or frequency
domain. Computational complexity reduction can be obtained by combining both mod-
ules. In the next chapter, we study the interest of di erent frequency and subband domain
Itering methods for combined noise reduction and echo posttering.
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In the previous chapter we presented problems that arise in sund recording with
mobile devices and the necessity to process the recorded sajs before their transmis-
sion through the communications network. We also presentedtate-of-the-art speech en-
hancement algorithms that can be implemented in mobiles deices in order to guarantee
satisfactory speech quality.

Noise reduction and echo post ltering both consist of time-varying attenuation gains
that are updated in the frequency or subband domain with the perturbation (noise or
residual echo) suppression being applied in the same frequey or subband domain. Fil-
tering in the frequency or subband domain is advantageous lmuse of its computational
complexity. Nevertheless, subband ltering su ers from important processing delay [L6ll-
mann and Vary, 2007]. Delay reduction methods consist in ltering the perturbations in
the time domain instead of the subband domain. In this case, gbband attenuation gains
are used to de ne a time domain lter [Lollmann and Vary, 2007, Steinert et al., 2008].

Frequency domain lItering su ers from time domain aliasing due to circular convolu-
tion [Oppenheim and Schafer, 1999]. Time domain aliasing deito circular convolution can
be avoided through overlapping frames and/or zero-paddingwith the aim of approaching
linear convolution [Vaidyanathan, 1993]. Linear convoluton nevertheless has an important
computational complexity. We show how computational complexity of linear convolution
can be reduced by introducing a scalable approach to its img@mentation.

In this chapter, we present Itering methods that can be usedin replacement of sub-
band and frequency domain lItering and assess their perforrance for noise reduction and
echo post Itering. This chapter is organized as follows. Inthe next section, we describe
how conversion from time to subband or frequency domain is ddeved. Section 3.2 ad-
dresses problems due to ltering in the subband domain and dkrnative time domain
Itering methods that can be used. In Section 3.3, we presenthe problems of frequency
domain Itering and propose some methods to overcome theserpblems. Section 3.4
presents a comparative assessment of the di erent Iteringmethods for noise reduction
and echo post Itering.

The hereby contributions have been published in conference proceedings Yemdii
et al., 2010a,b, 2011].

3.1 Short time Fourier transform

The short-time Fourier transform (STFT) of a discrete signal e(n) is de ned as fol-
lows [Allen and Rabiner, 1977]:

*)1

e(k;i) = ekR r) p(r) exp iji (kR 1) (3.1
r=1

where k is the frame index, i is the frequency index,j is the imaginary unit, M is the
number of frequency bins,R is the blocksize (i.e.e(n) is processed by block oR samples)
and p is the analysis window. Assuming the analysis window is of rite length L, e(k;i)

becomes:
b 1

. 2 .
e(k;i) = e(kR r) p(r) exp m]l (kR r): (3.2)
r=0
Equation 3.2 can be interpreted in two di erent ways. These interpretations have a direct
e ect on the STFT implementations and on the window constraints.
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Figure 3.1: DFT-modulated Iter bank structure

3.1.1 Fom STFT to Iter bank structure
By rewriting Equation 3.2 in the form of a convolution as follows,

b 1
ek;i)= &kR 1) p(r) (3-3)

r=0

ek;i) = (e?p(kR) where efn;i)= e(n) f,,” and f,," = exp (3.4)

Mjm
the STFT can be interpreted as an analysis lter-bank. Equation 3.3 shows thate(k;i)
is obtained through a convolution as illustrated in Figure 3.1. The input signal e(n)
is modulated by a complex exponential. The modulation by the complex exponential
corresponds to a frequency shift of the input signal spectrm towards the central frequency
i =0. The modulated signal e(n;i) is then lowpass ltered by p(n) to obtain the subband
signal e(k; ). The structure illustrated in Figure 3.1 is referred to as the discrete Fourier
transform (DFT)-modulated analysis Iter-bank [Vaidyanat han, 1993]. In the Iter-bank
interpretation, R plays the role of the downsampling parameter. The structureillustrated
in Figure 3.1 is referred to as the discrete Fourier transform(DFT)-modulated analysis
Iter-bank and the window p(n) is called prototype Iter [Crochiere and Rabiner, 1983,
Vaidyanathan, 1993].

In a similar manner, the inverse STFT can be seen as a synthesister bank. To
synthesize the full band signal, the rst step consists in cawvolving each subband signal
with the synthesis lter (or window). The M convoluted signals are then modulated by
the appropriate complex exponential before being summed tdorm the fullband signal.

According to Figure 3.1, the M sub bands signals are obtained byM convolutions.
The structure in Figure 3.1 could be more e ciently implement ed through PolyPhase
Network (PPN) implementation. The derivation of the PPN imp lementation can be found
in [Vaidyanathan, 1993]. With the PPN implementation, subbands signals are obtained
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Figure 3.2: Filter bank structure

through one convolution and one Fourier transform. Later onin our implementation, we
will the PPN structure.

The resulting subband signale(k; i) has a lower frequency bandwidth o =y, . To avoid
frequency domain aliasing due to downsampling, the subsanimg factor R is constrained
to be lower or equal to the number of subbanddv [Crochiere and Rabiner, 1983]. The
only constraint on the downsampling factor value is not a su cient condition to avoid
aliasing: the subband lters has to be designed such that thee is no overlap between two
adjacent subband signals. In the case of the DFT-modulated ter bank, adjacent subband
signalse(k;i) and e(k;i +1) are obtained by respectively low-pass Itering the modulated
signal &{n;i) and e(n;i + 1) with the prototype Iter p(n). The adjacent subband signals
e(k;i) and e(k;i + 1) do not overlap if the frequency response of the prototype ler is an
ideal lowpass lter (i.e. rectangular window in the frequency domain) which we illustrate
in Figure 3.2. In practice it is impossible to design such a lowass Iter. In consequence,
when reconstructing the fullband signal through with the synthesis lIter, some aliasing
will be introduced in the output signal.

3.1.2 From STFT to overlap add

The STFT as de ned in Equation 3.2 can also be interpreted as a [FT comprising overlap-
add (OLA). In this case, e(k;i) is seen as the DFT of a windowed version of the signal
e(n):

X h

e(k;i) = e(kR ) p(r)I exp iji (kR 1) (3.5)
r=0
X 1 2
= ep(kR 1) exp m]l(kR r) (3.6)
r=0

where gy(n) denotes the windowed version o&(n). The input signal is processed by block
of R new samples to which L R) samples from the previous frame(s) are appended to
obtain a frame of L samples. The frame ofL is then windowed by multiplication with p to
obtain ey(n). Finally, e(k;i) is obtained as the DFT of the signal e;(n). So for the OLA
method, the STFT is seen as the DFT of successive windowed framnse

In contrast to the Iter-bank view, the perfect reconstruct ion in the OLA view leads to
a constraint on the window p(n) in the time domain [Crochiere and Rabiner, 1983]. The
sum of time shifted version ofp(n) should be equal to 1 as illustrated in Figure 3.3.
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In the remaining of this chapter, we di erenciate the subband and frequency analysis
by denoting ps, the prototype lter of subband processing and pga the overlapping window
for the frequency domain processing.

3.2 Filter bank related Itering methods

Speech enhancement generally use the subband signal to cooip an attenuation gain
which aims are suppressing perturbations (i.e. noise). Thdocus of this chapter is the
perturbation suppression itself (i.e. Itering). In the fo llowing we present Itering methods
that can be used to suppress the perturbation from the input $gnal.
Conversion of input signals from time to subband domain take place as described in
Section 3.1.1. The prototype Iter considered expresses a®llows:
h i
po(n)= o sinc oo n = p(n); @3.7)
wherep. is a Hamming window also of lengthL. We denoteW (k; i) the attenuation which
can be applied to the disturbed signale(k; i) in the subband domain through multiplication
as well as in the time domain through convolution. For time damain ltering, the subband
gains W (k; i) are converted into a nite impulse response (FIR) Iter. The resulting FIR
Iter w(n) has the same frequency response a¥ (k;i).
Subband Itering is presented in Section 3.2.1. In Section 2.2, we present time domain
Itering and approaches that can be used to compute the FIR lter.

3.2.1 Subband domain weighting

Subband Itering consists in applying the i subband gain W (k;i) to the i subband
signal e(k; i) as a multiplicative factor (see Figure 3.4(a)):

ak:i)= W(k;i) e(k:i): (3.8)

The M subband signalsstk;i) are processed through a synthesis Iter bank to recover the
fullband estimate of the useful signalstn). In the following, we refer to this method as
the ASFB method which stands for analysis synthesis Iter-bank method.
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Figure 3.4: Filtering methods. Bold lines represents subband dmains

The ASFB method is interesting for its simplicity: Itering s imply consists of a multi-
plication. Nevertheless, this method su ers from frequeng domain aliasing and signi cant
signal delay. The overall ASFB system introduces a signal dely of L 1 samples, where
L is the length of the prototype Iter. As explained in Section 3.1.1, subband domain
aliasing can be reduced with the use of an appropriate prototpe Iter. Typically, long
prototype lIters permit to achieve good attenuation of the al iasing components and but
lead to signi cant signal delay [Lollmann, 2011]. Moreover, the longer the prototype Iter
is, the more the computational complexity of the Iter-bank is high.

As explained in Section 2.2.3, signal delay and computatioal complexity are impor-
tant constraints in speech enhancement for mobile devices. @nputational complexity
and delay reduction can be reduced achieve using short protgpe Iters. Further delay
reduction can be achieved by using time domain lters insteal of the whole ASFB struc-
ture. In the following section, we discuss approaches to ler the disturbed signal in the
time domain.

3.2.2 Time domain ltering

Figure 3.4(b) shows an equivalent ltering scheme when a timedomain Iter is used for
perturbation suppression. The time varying attenuation gains W (k;i) are used to deter-
mine an FIR lter. Besides the signal delay reduction, time domain Itering also permits
to avoid problems due to frequency domain aliasing. In contast to the ASFB method,
no synthesis lter-bank is required. The ltering is applie d through convolution with the
aliasing-free input signal e(n).

The FIR Iter can be calculated according to 3 di erent conver sion methods. To avoid
phase distortions and to ensure a constant signal delay, wensure that these lters are
linear phase Iters [Crochiere and Rabiner, 1983]. We now pesent the 3 conversion meth-
ods considered.

3.2.2.1 Filter bank equalizer (FBE)

The FBE was introduced in [L6llmann and Vary, 2007] and is the mahematical time
domain equivalent of the analysis Iter-bank with synthesis through summation. The
FBE is expressed as follows:

. 1 %! . 2
w(n) = prp(n) w(n) with w(n)= M W(k;i) exp mjlk (3.9)
i=0
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Figure 3.5: lllustration of the determination of the LDF

where psp (n) is the prototype lter of the sub-band analysis stage and w(n) is the IDFT
of the spectral gainsW (k;i). The FBE process introduces a signal delay of I{ 1)=2
samples (with L being the length of the p(n)), that is half the delay introduced by the
ASFB method.

3.2.2.2 Low delay lter (LDF)

Although the FBE has lower signal delay than the correspondingASFB, smaller signal
delays can be achieved by approximating the FBE by a lower dege Iter [L6llmann and

Vary, 2007, 2009]. The LDF is obtained by truncating the FBE with a window of length
L, with L1 <L as illustrated in Figure 3.5. The window used can be an arbitray window
of Li-taps. The window and the truncation should be chosen to maitain linear phase
properties. For this, as the FBE has linear phase, the window usd for the LDF should
be symmetric about L=2.

3.2.2.3 Inverse Discrete Fourier transform (IDFT)

A more intuitive approach consists in de ning the FIR Iter si mply as the IDFT of the
updated subband gain factors [Hansler and Schmidt, 2000]. fie IDFT of a positive
sequence corresponds to an even symmetric sequence in thend domain. The IDFT
of the subband gainsW (k; i) corresponds to a non-causal zero phase lter. A causal Ite
is obtained by applying a temporal shift of (M 1)=2
1
2
The temporal shift corresponds to a linear modi cation of the phase in the frequency
domain. The causal Iter has linear phase and will thus introduce a group delay of (M-

1)/2. The linear phase property is important in speech procesing properties in order to
avoid phase distortions.

w(n) = w(n

) (3.10)

3.3 Discrete Fourier transform related Itering methods

In some cases, signals are processed in the frequency domai@onversion of input sig-
nals from time to frequency domain takes place as describechiSection 3.1.2. W (k;i)
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Figure 3.6: Block processing in the frequency domain. Bold ling represent the frequency
domain.

still denotes the time varying attenuation gains and is usedto processe(k;i) through
multiplication.

Filtering in the frequency is advantageous for its computational simplicity but is subject
to aliasing resulting from circular convolution. Linear convolution can be used to avoid this
aliasing problem but is nevertheless very computationallydemanding. In the following,
we present present the problem due to circular convolution ad approaches to implement
the linear convolution. A novel implementation approach for linear convolution in the
frequency domain is also introduced.

3.3.1 Circular convolution

Figure 3.6(a) illustrates circular convolution which is the method used for ltering signals
in the frequency domain. The ltered signal is obtained through a bin-by-bin multiplica-
tion of the M frequency domain componentse(k;i) with the gains W (k;i). As shown in
Figure 3.6(a), Itering an M -point signal with an M -tap Iter produces an M -point signal
instead of an (2M  1)-point signal as would normally result from convolution in the time
domain. This observation implies that the lItering of signals in the frequency domain as
shown in Figure 3.6(a) introduces distortion in processed gjinals [Oppenheim and Schafer,
1999]. Distortions introduced by circular convolution result from time domain aliasing.
Details regarding the cause of this aliasing can be found in.3.

3.3.2 Linear convolution

Figure 3.6(b) depicts the scheme of linear convolution in thefrequency domain. Here,

the frequency domain signalse(k;i) and gains W (k;i) are processed through a frequency
resolution extension (FEXT) block prior to the Itering oper ation. Zero-padding takes

place withtin the FEXT block and is used to increase the numberof frequency bins. As

illustrated in Figure 3.7(a), the FEXT block operates in two st eps:

The M frequency bin input signalsW (k; i) are converted into the time domain with
an IFFT of length M (M -IFFT) to obtain wp, (k) where m is the tap index of the
impulse response and ranges from 0 tM 1.
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Figure 3.7: FEXT implementations

The time domain signal wy, (k) is zero-padded with at leastM zeros to obtain a
signal of length 2V and reconverted into the frequency domain through a 21 -FFT
to obtain W (k;I) with | being the new frequency bin index ranging from 0O to
2M 1.

Returning to Figure 3.6(b), we now have 2\ frequency bins instead ofM . As a results,
the Itered signal has 2M samples.

The merit of linear convolution over circular convolution is that it does not introduce
distortion since it is equivalent to Itering in the time dom ain. Linear convolution, as
described here, requires additional DFTs of sizeld . Its major disadvantage is its increased
computational load and memory requirement which is due to tre use of the FEXT module.
In most real time systems, the computation of FFTs is based on eponential function that
are de ned for a given FFT size and stored in the memory. In addiion, the lItered
signal is longer: it has 24 points instead of M points for the linear convolution. Proper
reconstruction of the fullband signal implies that this vector be stored in the memory of
the system. The additional FFTs required by the linear convolution mean an increase of
the required memory. In the following, we focus on e cient methods to implement the
FEXT module.

3.3.3 Link between circular and linear convolution

The approach presented in this section was introduced in [Man-Hurtado and Anderson,
2010]. According to Figure 3.7(a), the frequency domain gais W used in the linear
convolution are de ned as follows:

= e o m R pp Mg
W (k;l) = Wm (k) exp JW = Wm(K) exp JN : (3.11)

m=0 m=0

The summation terms betweenm = M andm =2M 1 are omitted sincew, (k) = 0 for
this interval. By splitting Equation 3.11 into two, for even a nd odd values ofl, we obtain:

1 mi

W (k;l =2i) = wm(k) exp 2] o = W(k;I1=2) (3.12)
m=0
1 R —
Wkl =2i+1)=  wn(k) exp 2] W : (3.13)
m=0

wherei is an integer ranging from 0 toM 1. Equation 3.12 shows that for even values of
I, W(k;1) is equal to W (k; 1=2). For odd values ofl (Equation 3.13), W (k;I) is a discrete
Fourier transform except for the unusual exponential term. Equation 3.13 can be rewritten
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as

1 .
W(k1=2i+1)=  wm(k) exp 2] % (3.14)
m=0

where wpy(K) = wm exp  j

Z|3

From Equation 3.14, it is apparent that W (k;| = 2i + 1) can be computed through an
FFT algorithm as shown in Figure 3.7(b). The FEXT implementation then requires two
M -point FFTs and M complex multiplications. By considering Figure 3.7(b), we se
that the 2M -points FFT is discarded from the FEXT implementation. The comp uta-
tional complexity of the FFT increases with its size. This implementation approach to
linear convolution has a reduced computational complexitycompared to original linear
convolution.

3.3.4 Alternative interpretation of the linear convolutio n

In this section we introduce a new implementation of the linear convolution. Our approach
to implement the FEXT exploits the fact that zero-padding in t he time domain is equiva-
lent to interpolation in the frequency domain and vice-versa. In the following we introduce
the relationship betweenW (k; 1) and W (k; i) using the FFT and IFFT de nitions. As the
impulse responsewg (k) is the IFFT of W (k;i) Equation 3.11 can be rewritten as;

Wk | '\klhl'\lek. .mi# Coml
(k;) = ) M (k;1) exp ZJW exp ZJN (3.15)
m=0 i=0
1% 1w i %1 2 oy "
M (k; ) ) exp Wj @i : (3.16)
i=0 m=0
The sum of exponential in Equation 3.16 is equal to:
8
5 M if I 'is even andl = 2i
M1 2 m o :
exp —ij (2i 1) = 0 if | is even andl 6 2i
_ 2M 31 exp(2-jM 2i | I
m=0 _ P(ayriM @i D) _ 2 if | is odd:
1 exp(Fri@i 1) 1 exp(Fri@i 1) )
(3.17)
Inserting Equation 3.17 into Equation 3.16 leads to:
W (k;l =2i)= W(k;i) (3.18)
_ 1 %! 2 .
Wkl =2i+1)= M W (k;i): (3.19)

o 1 exp 2 (2i 1)

Equation 3.18 con rms Equation 3.12. We denotez; the weighting factor of W (k;i) in
Equation 3.19:
1 2

M1 exp 2@ 1)

Zi = (3.20)
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One can easily verify that z;; is such that zj+2 = z; 1

1 2
Zi+2i = M > o (3.21)
1 exp 57) 2 (1+2)
1 2
=W SR (3.22)
1 exp gz 20 1) 1)
=2z 1 (3.23)
This property of z; is of particular interest if we write Equation 3.19 in matrix form:
2 3 2 32 3
1 Z1,0 211 Zim 1 Wo
W3 Z30 Z31 Z3m 1 Wy
. = . s (3.24)
Wom 1 Zom 1,0 Zam 1 Zm v 1 Ww g

Using the properties ofz;; mentioned above, Equation 3.24 then becomes:

2 3 2 32 3
W, Zi0 211 Zim 1 Wo
W3 Zim 1 Z10 Zim 2 W,
) = . . : (3.25)
Wom 1 Z11 212 Z1:0 Wwn 1

Equation 3.25 shows that the matrix Z formed from the weighting factors z;;, is circulant.
A well known property of circulant matrices is that they are diagonalizable by Fourier
matrices [Petersen and Pedersen, 2012]:

Z = FDF 1 (3.26)

where D is a diagonal matrix such that D = diag(Fz), z is the vector formed by the
elements of the rst column of Z and F is a Fourier matrix (i.e. composed of exponential
terms f X = e 2/k*M ) Equation 3.25 can then be rewritten as:

W = ZW = FDF w: (3.27)

This approach to linear convolution can also be computed though the scheme illustrated
in Figure 3.7(b). In Equation 3.27, the product F W corresponds to the IFFT of the
spectral gainsW (k; i) and is equal tow, (k). Experiments veri ed that the diagonal matrix
D is indeed composed of the same terms as the exponent term ifitrated in Figure 3.7(b).
Meaning that the product DF W leads to wy, (k) since F W = wp, (k). Lastly, the
product by the Fourier matrix achieves the Fourier transform of wp (k) = DF W,

3.3.4.1 Frequency resolution extension with reduced computational complex-
ity

Our approach (Section 3.3.4) to linear convolution corrob@ates the work in [Marin-
Hurtado and Anderson, 2010] but has the distinct advantage © scalability for manag-
ing computational complexity which we describe here. In ths section we consider the
case whereW (k;i) is computed according to Equation 3.19, i.e. through multiplication of
W (k; i) by the weighting function z;.
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Figure 3.8: Imaginary part of the weighting function z; for | = 33 (i.e. normalized
frequencyl=2M ) and M =128

The imaginary part of the weighting function z. for | = 33 is depicted in Figure 3.8.
The real part of z; is not shown because it is constant for all values off: Re(z;j) =1=M.
The plot in Figure 3.8 shows that z;; does not equally weight the spectral gaindV (k;i) in
the computation of W (k;I). More speci cally, the closer the normalized frequency,&l— is to
the normalized frequencyﬁ, the more W (k; i) in uences the value of W (k;1) (and vice-
versa). Although, z; is complex and does not uniformly weightW (k;i), it is of interest
to note that a given value of I, z;; constitutes a normalized weigthing function:

M 1
Zli = 1: (3.28)
i=0

To reduce the computational complexity related to the compuation of W (k;l), one
can use a truncated version o(k; i) as a weighting function. We denotezy the truncated
version of z;. The weighting function 2z is truncated so as to include onlyN points
(with N < M ) centered on the peak ofz;. We denote W (k;|) the attenuation gain

obtained with the truncated interpolation function ~z;. W (k; 1) is computed similarly as
in Equation 3.19:

_ M1 X
W(k;l=2i+1)= zi W(k;i)= 7z W(k;i): (3.29)
i=0 [
where only N terms are considered in the summation since;-hasM N terms equal to
0. The computation of W (k; ), as in Equation 3.29 requires less operations. For all the
spectral gainsW (k; 1), this computation requires N M multiplications and (N 1) M
summations.

The scalability comes from the fact that one can choose the Mae of N according to
the computational load of the system. The biggerN, the closer the resulting W (k; 1) will
be to W (k;1). Compared to the optimum computation of Equation 3.27, the use ofzy is
computationally advantageous whenN 2 logx(M) if we assume that anM -point FFT
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(a) Impulse response (b) Zoom on the impulse response

Figure 3.9: Impulse response for FEXT di erent weighting function con gurations

has a computational complexity of Mlog2(M ) (e.g. for M =256, N should be be lower of
equal to 16).

The truncation of the weighting function z;; to reduce the computational complexity
of the system may introduce some distortion since the resuihg approximation z.; con-
tains less information than the original function. In order to evaluate the impact of such
approximation, in the following we analyze the impact of the truncation on spectral gains
and analysis-synthesis of speech signals. Thorough experents in a real perturbation
suppression scheme are presented later on in Section 3.4.

3.3.4.2 Impact of FEXT optimization on lters

We evaluate the impact of the truncation by comparing the impulse response and the
frequency response of a Iter obtained with the full weighting function to that obtained
with a truncated weighting function. In the test reported here, spectral gainsW (k;i) are
all set to 0dB and M is set to 128. These spectral gains are processed by the FEXT to
obtain new spectral gains. Figure 3.9(a) shows the impulse sponses obtained when FEXT
uses the full weighting function z;; or two truncated weighting functions z.; (of length

N =8 and N = 4 respectively). Values of N are chosen such that the resulting system
has lower computational complexity than the linear convolution (i.e. N 2 logx(M)).

We observe that impulse responses obtained with the truncatd weighting functions
do not exactly match the reference impulse response whichnithis case, is composed of
a unique peak of unit amplitude. In the case of the approximaed impulse responses,
the peak amplitude is slightly lower than 1 (0.9802 forN = 8 and 0.9244 forN = 4
respectively). Moreover, as we can see on Figures 3.9(a) and.98b), both approximations
have a second peak which is small compared to the main peak buivhose amplitude
increases with decreasingN (0.04 for N = 8 and 0.08 for N = 4 respectively). When
comparing the spectrum of the approximated impulse responss W (k; 1) with that of the
original spectral gains W (k;i), we observe that W (k;|) contains a small ripple. The
spectral gains are no longer equal to 0dB (as it is the case fdahe input spectral gains
W (k;i) or W (k;1)). The spectral gains of the odd frequency bins are constanti.e. -0.35dB
for N =8 and -0.7dB for N = 4). The spectral gains of the even frequency bins are, as
expected, equal to 0dB as they do not require any computation The e ects observed on
the Iter can be judged as annoying or negligible depending a the application. With
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Figure 3.10: Signal-to-noise-ratio (SNR) between input sigal and reconstruction error
between the input signal and the output of the FEXT module

mobile communications for example, such artifacts may be irlevant whereas in high
quality speech enhancement systems, they may be very annay.

3.3.4.3 Impact of FEXT optimization on speech signals

Here we report the impact of the optimized FEXT on speech signé. We undertook a
similar experiment to that reported in Section 3.3.4.2 but this time using a speech signal
as input to the FEXT module. An input speech signal is transformed into the frequency
domain through an M -point FFT with overlapping frames of 128 samples (64 new sam@s
and 64 samples from the previous frame) and with Hanning windwing. The number of
frequency binsM is set to 128. The obtained spectrum is processed by the FEXT adh
transformed back into the time domain through a 2M -point FFT. Except for the FEXT,
no processing is performed in the frequency domain. Figure BO shows the signal-to-
noise-ratio (SNR) between the input speech and the reconstrction error. We de ne the
reconstruction error as the di erence between the input sighal and the output signal of
the FEXT module. For better analysis, the SNR was forced to zeo during speech pauses
so that it re ects the impact of the FEXT on the speech signal only. We observed that,
without any approximation in the FEXT, the SNR is approximate ly 40dB during speech
periods. The use of a truncated weighting function results m a slight degradation in
SNR (about 20dB with N = 4). Moreover informal listening tests indicate that these
degradations in SNR are not audible. This shows that truncatng the weighting function
z); does not adversely a ect speech quality in this case.

3.4 Comparative assessment of the di erent ltering meth-
ods

The subband and frequency domains Itering methods presergd in sections 3.2 and 3.3
are assessed for use within a joint noise reduction and echoopt ltering algorithm. Our
experimental setup is presented in Section 3.4.1. Resultsra presented in Section 3.4.2.
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Figure 3.11: Speech enhancement scheme composed of AEC fokal by a post Iter. The
post Iter aims at reducing both the noise and the residual eto.

3.4.1 Experimental setup

This section is organized as follows. In Section 3.4.1.1, wpresent the combined noise
reduction and echo post Iter used in our investigation. A summary of the Itering methods
assessed in presented in Section 3.4.1.2. Lastly Sectiort3L.3 presents our dataset of test
signals.

3.4.1.1 Noise reduction and residual echo suppression

Figure 3.11 shows the echo processing scheme considered im eyperiments. The micro-
phone signaly(n) is composed of the near-end speech signa(n), the echo signald(n)
and the noise signalb(n). The AEC consists of a subband NLMS algorithm with variable
stepsize [Degry and Beaugeant, 2008]. The error signa&(n) from the AEC is composed
of residual echod; (n), the near-end speects(n) and the noise signalb(n). The post Iter
is used to tackle both residual echo and ambient noise. Assuimg noise and echo are
two additive uncorrelated distance we aimed to suppress, th post Iter spectral gains are
de ned as the product of the noise reductionWygise @and echo suppression gain®Vecho:

W (K;i) = Whoise (K; 1) Wecho(K; 1): (3.30)

The noise reduction and echo post Itering spectral gains ae calculated independently.
The echo post Iter is updated using a Wiener rule for echo supression

(k;i)

Wecho(K; 1) = 1+ (ki)
. . 2k 1;i e’(k;i
with  (k;i) = ’M+(l ) max Md(_(kll)) 1,0 (3.31)

where is the smoothing constant which is set to 0.98 and (k; i) is the (near-end speech)
signal-to-(residual) echo ratio (SER) which we estimate through the decision directed
approach [Ephraim and Malah, 1983]. The residual echo PSO'® is computed through
the cross-correlation method [Beaugeant et al., 1998]:

nao. o ( 0(K))2
()= e (3.32)
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The noise reduction Iter is a low complexity noise reduction algorithm [Degry and
Beaugeant, 2008] which is based on the assumption that the anumt of noise that should
be attenuated is proportional to the signal-to-noise ratio (SNR). The noise reduction gain
is expressed as follows:

Whoise (K; i) = min( (k;1); 1) (3.33)

where and are empirically optimized constants and (k;i) is the SNR which we
estimate as:

ki)
"obk; i)
where "9 s the estimate of the noise PSD. The noise PSD is computed tlmugh minimum
statistics [Martin, 2001].

(k:i) = (3.34)

3.4.1.2 Filtering methods

The updated gainsW (k; i) are used to process the degraded speech sigraéh) through the

Itering methods described in Sections 3.2 and 3.3. For all Itering methods, the number
of subbands or frequency bingV is set to 64.

The four subband related ltering methods of Section 3.2 areconsidered: ASFB, FBE,
LDF and IDFT. For subband related Itering methods, the proto type Iter psp, is that
speci ed in Equation 3.7 and its length is set toL = 128. The dowsampling factor R is
set to 64.

For the Itering methods presented in Section 3.3, conversin from time to frequency
domain uses overlapping frames of 128 samples (64 new sangpland 64 samples from
previous frame). A Hamming window of sizeL = 128 is used as the analysis window.
Three ltering methods are considered:

circular convolution denoted STFT-cir
linear convolution denoted STFT-lin

proposed method with truncated weighting function z; and N set to 8 which we
denote STFT-Appr. lin.

3.4.1.3 Test signals

The microphone signals used in our simulations contain neaend speech only, echo-only
and double-talk periods with either car, cafe or babble nois. The echo signal is obtained
by convolving the loudspeaker signals with an acoustic pathmeasured from real mobile
terminals in an o ce environment. The loudspeaker and near-end speech levels are both
set to -26dB using the ITU-T implementation of the speech votmeter [ITU-T, 1993] and
the di erent echo and noise levels are also set using the santeol. The SNR ranges from
0 to 15dB while the SER ranges from -5 to 10dB. Our database of dgaded speech signals
contains 192 sets of microphone and loudspeaker signals a28each.

Performance of the di erent Itering approaches is assesse through objective measure-
ments and informal listening tests. Echo suppression is asssed in terms of echo return
loss enhancement (ERLE) and cepstral distance(CD). Noiseaduction is assessed in terms
of noise attenuation (NA). ERLE, CD and NA are computed as desribed in Section 2.3.
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Figure 3.12: Perturbation attenuation

3.4.2 Results

Figure 3.12(a) shows NA against SNR. The NA curves show that tle STFT Appr. lin
approach achieves the best performance in terms of noise rection. The STFT lin and
STFT cir methods achieve the worst performance but the gap between thdi erent lter-
ing approaches is small. In general, all the di erent Iteri ng approaches are equivalent in
terms of noise reduction: the di erences between NA curvess less than 2dB. Lastly, it is
of interest to note that the ranking of the FBE, LDF and ASFB perfo rmance is consistent
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with that reported in [L6llmann and Vary, 2007].

Figure 3.12(b) shows ERLE against SER. Here there is a clear gabetween the amount
of echo suppression achieved when gains are computed in thequency domain compared
to when it is computed in the subband domain. The STFT lin, STFT cir and STFT Appr.
lin achieve the same amount of ERLE. The truncation of the interpolation function does
not signi cantly impact the amount of echo suppressed.

The ASFB, FBE, LDF and IDFT approaches are equivalent in terms of edio suppres-
sion. We nevertheless observe that ERLE curves measured orlean speech signals (no
additive noise) showed that the IDFT method achieves slightly less echo suppression com-
pared to the ASFB, FBE and LDF method. In absence of noise, due to sectral structure
of speech signals the attenuation di erence between consetive subbands can be very
large. The more this attenuation di erence increases, the nore the e ective frequency
response of the IDFT lIter has large variations (Gibbs phenomenon) between consecutive
subbands. The results reported here address the problem otko in the presence of noise,
and this leads to a reduction in the attenuation di erence between consecutive subbands
and thus to better results for the IDFT approach.

Figure 3.13(a) shows cepstral distance against SNR during ra&-end speech only pe-
riods, i.e. distortions resulting from noise reduction. We see that the ASFB approach
introduces the most distortions. The results regarding theASFB, FBE and LDF are dif-
ferent from those presented in [LOllmann and Vary, 2007] in viich the ASFB and FBE
approaches were reported to produce speech of equivalent gjity. Our explanation is that
this di erence is due to the analysis and synthesis Iter banks which are de ned di er-
ently. In [Lollmann and Vary, 2007], the analysis and synthesis Iter banks used for the
ASFB and FBE approaches are not the same whereas in our experimenthey are. The
frequency domain Itering methods clearly introduce the least distortions. Figure 3.13(b)
shows CD against SNR during double talk periods. The rankingof the di erent ltering
methods remains the same as in Figure 3.13(a). We note an incase of the CD values
during double talk periods. This is justi ed by the fact that in double-talk periods both
echo and noise reduction are active.

Informal listening tests reveal that near-end speech durig double talk periods is dis-
torted whereas no distortion is noticed during near-end ony periods. Listening tests with
weighted speech signals(n) reveal the presence of small distortions of near-end speec
during near-end speech only periods. These observations pty that echo processing brings
more distortion than noise reduction no matter the ltering approach used. Distortion in-
troduced by the noise reduction are not audible in processedpeech signals due to the
masking e ect of residual noise present in processed speedignals. The distortion ob-
served is mainly crackling noises for signals processed binte domain lItering methods,
STFT cir and STFT Appr. lin. As explained in [Yemdji et al., 2010a], the crackling
observed with time domain lters comes from the fact that their frequency responses are
smoother than that of the original spectral gains which are & ned per sub-band. The
crackling observed in the STFT cir and STFT Appr. lin methods are respectively due to
time-domain aliasing and the truncated weighting function z.;. We also note the presence
of musical noise (random spectral peaks of short duration) dr signals processed by the
STFT lin and ASFB methods. The di erences between signals processedylihe IDFT,
LDF and FBE approaches were hardly audible. This con rms what might be expected on
account of results illustrated in Figure 3.13.
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Figure 3.13: Cepstral distance

3.4.3 Synthesis

The comparison of the frequency domain and subband domain tated Itering methods
shows that all Itering methods are equivalent in terms of NA. ERLE curves reported
show that frequency domain Itering methods are slightly better than subband domain
Itering methods in terms of ERLE. Lastly, plots of the CD sho ws that the frequency
domain approach introduces less distortions than the subbad domain related Itering
methods. While the frequency domain Itering methods and sitbband Itering introduce
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some musical noise, the time domain Itering methods introduce some crackling noise in
the output signal.

In the remainder of this thesis, we focus on the problem of eah and consider that
there is no noise in the system. Experiments show that frequecy domain ltering meth-
ods achieve good performance in terms perturbation of attemation and useful speech
distortion. Linear convolution is preferred for its mathematical exactness and will be the
only ltering methods used in the remainder of this thesis.

3.5 Conclusion

In this chapter we present two di erent interpretations of t he STFT: the lIter bank and
the DFT. Each interpretation leads to di erent Itering meth ods.

This chapter reports a side-by-side comparison of these lkring methods based on
a combined NR and echo post ltering algorithm. Results showthat frequency domain
Itering methods achieve more echo suppression than subbah methods. It is mainly of
interest to note that the proposed Itering method (that usi ng the truncated weighting
function) is a good alternative to linear and circular convdution.
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3.A Time domain aliasing in circular convolution

3.A.1 Proof of aliasing in circular convolution

Let us consider two vectorsa(n) and b(n) of length M. A(i) and B(i) are the Fourier
transform of a(n) and b(n) respectively. The convolution of a(n) and b(n) in the time
domain outputs 2M 1 samples while the bin-by-bin multiplication of A(i) and B (i)
outputs M samples.

Let us denote Cy(n; i) the result of the bin-by-bin multiplication of A(i) and B (i)

Ca(i) = A(i) B(i); (3.35)

Its inverse Fourier transform corresponds to

am= 2% iy e 2 M (3.36)
1 Lo . . ni

i=0

By introducing the de nition of A(i) in Equation 3.37, we obtain the following

1 WK .omi . . Ni
ci(n) = i o a(m)exp 2] Vi B(i)exp 2] M (3.38)
M1 M1 i
ci(n) = y a(m) Mi - B(i)exp 2] (”Mim)' (3.39)
1
ci(n) = a(m)b((n m)m) = a(n) ?b((n)m) (3.40)
m=0

where b((n)y ) denotes the circularly shifted version ofb(n). Equation 3.40 shows that
the bin-by-bin multiplication of A(i) and B (i) is equal to the convolution of a(n) with a
circular shifted version of b(n). In consequencec;(n) does not corresponds to the time
domain convolution of a(n) and b(n). The circular shift that appears in Equation 3.40 is
the source of time domain aliasing and can be source of distbon in speech processing.

3.A.2 lllustration of time domain aliasing in circular conv olution

Time domain aliasing due to circular convolution is illustrated in Figure 3.14(a). The
example in Figure 3.14 illustrates the convolution of two vedors a(n) = [1 2 3] and b(n) =
[1 2 1]. Ideally, the convolution of a and b should output ¢, (see Figure 3.14(b)). Instead,
we see that the output of the circular convolution ¢; is a summed version of that of the
standard time domain convolution Figure 3.14(b). The mismatch betweenc; and c; is
due to time-domain aliasing.

Figure 3.14 (c) shows how zero-padding can be used to avoid tiendomain aliasing
which occurs in circular convolution. We see that with appropriate zero-padding linear
convolution can be achieved.
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a(m) 1 2 3 a(m) 1 2 3 0 0 0
bn m) 1 2 1 bn m) 1 0 0 0 1 2
c(n) VP =1 o(n) 0 01 0 0 o0 =1
a(m) 1 2 3 a(m) 1 2 3 0 0 0
b(n m) 1 2 1 b(n m) 2 1 0 0 0 1
c(n) s 2 2 =4 () 2 2 0 0 0 0 =4
a(m) 1 2 3 a(m) 1 2 3 0 0 O
a(m) 12 3 bn m) 12 1 bn m) 1 2 1 0 0 O
b(n m) 1 1 2
o(n) , . 1 4 3 =8 c(n) 1 4 3 0 0 0 =8
c(n) s+, 1 2 6 =9
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a(m) 1.2 3 Kn  m) 12 1 Bbn m) 0 1 2 1 0
b(n m) 2 1 1
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|c1(n)= a(n)?Hn)) 9 7 8|
(a) Circular convolution (b) Standard time domain convolu- (c) Linear convolution with circular

tion shift

Figure 3.14: Circular and linear convolution in the domain

3.B Properties of the proposed interpolation function

In this section, we demonstrate that the interpolation function z; presented in Sec-
tion 3.3.4 is normalized (sum for alli is equal to one) and that its real part is constant.
We recall that in Equation 3.20 we de ned z; as follows:

1 2

= (3.41)
M1 exp 27 (2 1)

Z =

The interpolation function z;; is de ned as a fractional complex number. In the fol-
lowing, we extract the expressions of the real and imaginaryarts of z;:

1 2
z = M P (3.42)
1 exp 55) (@ 1)
21 exp 24 1)
-1 2m (3.43)
M1 exp 205 1) 1 exp 2@ )
21 exp 242 )
=1 al (3.44)
M1 exp 205 1) exp 2@ 1) +1
21 exp 242 1)
_— M (3.45)

M2 2cos 2:(2i 1)
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11 cos Fp(@ D) +jsin Fr(2 )

= (3.46)
M 1 cos 2-(2i 1)

1 1 Ssin ZZW(Zi D)

Ji
M "M1 cos 2-(2i )

=<(z;)*+=(2;) (3.47)

We see from Equation 3.47 that the real part the interpolation function z; is constant
for all values of i. This means that for a given framek, the spectral gains used for the
linear convolution (i.e. W (k;l = 2i + 1)) all have the same real part and simply di er
by their imaginary part. In our assessement of this interpohtion function, we study the
impact of the truncation of z;. But one can also imagine to apply the truncation only to
the imaginary part of z.; since its real part is constant.

Equation 3.47 shows that a given frame index, the interpolaion function z; (used in
the computation of W(k;| = 2i + 1)) does not equally weight the spectral gainsW (k; i).
It is of interest to know whether for a given frame k, the sum of z; for all i (since
interpolation is done alongi) is normalized (i.e. equal to one.):

M1 M1
zi = <(z;)+ j=(2z;) (3.48)
i=0 i=0
1 M1 osin 220 1)
-l t 2“"2 . (3.49)
o M "M 1 cos 2-(2i )
1% 1 sin 2_(2i 1)
=1+ ) M . : (3.50)
Mo 1 cos 2- (2 1)
For simplicity let us dene  as follows
= 2—(Zi )] (3.51)
= o .
and denote the term under the summation as follows
sin
f = .52
() 1 cos (3.52)

For a given value ofl, spans fromv' to 2 ,\'A— which is an interval of length 2 . By
symmetry of the cosand sin functions, the summation of f ( ) over an interval of length
2 is constant whether the summation interval spans fromv| to 2 ,\',l— orfromOto2 .
If we considerf () for alpha ranging from 0 to 2 , we observe that it has the following
symmetry f ( )= f( + ). Therefore the summation of f ( ) over this interval is
null. Combining this result with Equation 3.50, we see that the sum ofz; for all i is equal

to 1.
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Figure 4.1: System overview

The previous chapter presented e cient Itering approaches to perturbations sup-
pression for subband or frequency domain post ltering. The post lter used aimed at
suppressing both residual echo and noise. In this chapter, a/focus on the echo problem.

We explained in Chapter 2 that echo control systems are compsed of adaptive lter-
ing followed by residual echo suppression. Recent studieotimprove single microphone
echo processing performance focus on synchronizing both moles - synchronization which
bounds the AEC and residual echo suppression to operate in #same frequency or sub-
band domain. In this chapter, we introduce a cross-domain aproach to synchronized echo
control. Based on the similarities between our synchronizabn approach and the system
in [Enzner and Vary, 2006], a new variable stepsize for the AE is also introduced.

This Chapter is organized as follows. Section 4.1 present$e echo processing scheme
of interest in this chapter. Our approach to synchronize the AEC and echo post Itering
is introduced in Section 4.2.

The cross-domain synchronization method presented in thighapter has been published
in [Yemdji et al., 2012b].

4.1 System overview

Figure 4.1 shows an overview of the synchronized echo canatlibn system of interest in
this chapter. The microphone signaly(n) is the sum of the near-end signals(n) and the
echo signald(n) which is obtained by the convolution of the loudspeaker sigal x(n) with
the acoustic pathh(n). An adaptive lter is used to generate an estimate of the eclo signal
d(n) which is subtracted from the microphone signal to obtain the error signale(n). The
error signal is composed of residual echd(n) and, possibly, of near-end speecls(n). The
post Iter aims to suppress the residual echo. In addition to conventional feedback used by
the adaptive Iter, an additional level of statistical cont rol is applied to synchronize the
adaptive lIter and echo postlter. The following details th e investigated adaptive Iter
and echo post lter.
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4.1.1 Adaptive echo cancellation

The adaptive lter is based upon a normalized least mean squee (NLMS) algorithm
where the acoustic path estimateﬁ(n) and its optimum stepsize (n) are expressed as
follows [Haykin, 2002]:

A(n+1)= A(n)+ x(n)T(n)x(n) x(n) e(n) and (4.1)
_ Efd®(n)g.
(n) = EfeZ(n)g’ (4.2)
h
where x(n) = x(n) x(n 1) x(n L +1)IT is the loudspeaker signal,L is the

length of the adaptive Iter and Ef:g represents statistical expectation. The computation
of the variable stepsize requires knowledge of the residuacho powerEf d?(n)g which

is not directly measurable. Instead, it is approximated through the system distance as
follows [Hansler and Schmidt, 2004, Haykin, 2002]:

Efd?(n)g= Efx3(n)g k L (n)k? (4.3)

where | (n) is the system mismatch i.e. the error between the real acodg path h(n)
and its estimate Ai(n). The value k  (n)k? is referred to as the system distance [Haykin,
2002] and its computation is described in Section 4.2.

4.1.2 Echo post ltering

The post Iter consists of frequency domain processing with Itering through linear convo-
lution in the frequency domain [Oppenheim and Schafer, 1999¥emdji et al., 2011]. Prior
to frequency gain computation, the post Iter input signals x(n) and e(n) are converted
into frequency domain signalsx(k;i) and e(k;i), respectively through DFT comprising
overlap (see Section 3.1.2). The" frequency signalsfk;i) is obtained through the mul-
tiplication of the gain W (k;i) with e(k;i). Conversion from time to frequency domain is
performed on blocks ofR samples through a fast Fourier transform with an overlap-adi
method [Oppenheim and Schafer, 1999].

For each frequency indexi, the post lter gains W (k;i) are computed according to the
Wiener rule as in Section 3.4.1.1:

(k;1)

WK = ey

(4.4)
where (k;i) is the signal (near-end speech) to (residual) echo ratio (ER). As described

in Section 3.4.1.1, the SER is estimated through the Ephraimand Malah approach. Its
computation requires an estimate of the residual echo powewhich we implement as:

MG = JEGDIP (k) (4.5)
where " (k: i) is the residual echo power spectral density,"** (k;i) is the loudspeaker

power spectral density andjH (k;i)j? is the system mismatch power spectrum [Steinert
et al., 2007]. The computation ofjH (k;i)j? is described in Section 4.2.
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4.2 System control

In this section, we present our approach to synchronize the EC and the echo post lter.
The synchronization approach presented here operates withuflband AEC but can be
adapted readily to operate with a subband AEC. Thus AEC and eto post Itering are
not constrained to operate in the same domain.

4.2.1 Synchronization approach

The architecture used here is inspired from existing synclonized approaches to echo con-
trol such as those in [Enzner and Vary, 2003, 2006, Steinerttal., 2007]. In such systems,
the acoustic echo canceler is constrained to function in thérequency or subband domains.
However, a comparative study shows that subband or frequencdomain AECs are less
robust to non-linearities than fullband AECs [Mossi et al., 2010]. The comparative assess-
ment in [Mossi et al., 2010] of the behavior of AECs showed thiaframe based adaptive
Iters such as the frequency block LMS algorithm are less rolist to non-linearities than
sample-by-sample based AECs. Indeed, for regions where tHeudspeaker signal is low,
non-linear e ects are negligible. Sample-by-sample basedEC will be able to estimate
the echo path. Whereas for block-based AEC required a wholerdme of low amplitude
loudspeaker signal to bene t from the same e ect.

Our approach to synchronization is based upon the correspatence between the system
mismatch | (n) and its spectrum H(k;i) which are de ned as follows

L(n)=h(n) A(n) and H(k;i)= H(k;i) H(K;i); (4.6)

where H (k;i) and H(k;i) are the discrete Fourier transforms (DFT) of h(n) and ﬁ(n)
respectively. From Equation 4.6, we note thatH (k;i) is the DFT of | (n). According to
Parseval's equality [Proakis and Manolakis, 1996], we can rite the following:
M1
CLmIR= Rk @4.7)
M 5
with the assumption that n is a multiple of the blocksize R. Equation 4.7 highlights the
relationship between the NLMS algorithm and the echo post lter. This relationship can
be used in two di erent ways:

The estimate of the system mismatch | (n) can be used to compute its norm
k | (n)k? and its power spectrum jH (k;i)j?. This solution is impractical because
the misalignment vector (n) cannot be estimated reliably. The estimation of | (n)

requires correlation computation [Haykin, 2002] which is lighly computationally de-

manding. Most real time systems estimate the system distane directly [Hansler and
Schmidt, 2004].

Alternatively, jH (k;i)j? can be estimated and used to derivk  (n)k? according to
Equation 4.7. As most echo post Iters already require the canputation of jH (k;i)j?,
we opted for this solution. In this case there is no additiond computational require-
ment.

The system mismatch power spectrumjH (k;i)j2 can be computed through the cross-
correlation method [Steinert et al., 2007] according to:
(ki) 2,

RO = e

(4.8)
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where *€(k;i) is the cross spectral density betweem(n) and x(n). However, the post lter
is updated on a frame-by-frame basis whereas the AEC requiea sample-by-sample up-
date. In between two measurements of the system mismatch pav spectrum, the system
distance is updated according to the following recursion [@asen and Mecklenbrauker,
1981, Steinert et al., 2007]:

k ((n+1)k?®= 1 % k L (n)k?: (4.9)

A similar recursion can be found in the echo control system ifEnzner and Vary, 2006]. In
the next section, we propose a novel recursion for the compation of the system distance
based on the similarities between Equation 4.9 and the workri [Enzner and Vary, 2006].

4.2.2 Enhanced variable stepsize

The system in [Enzner and Vary, 2006] can be seen as a variabftepsize NLMS with an
adaptive Iter that has one tap per frequency bin. Therefore, jH (k;i)j? de nes the system
distance for each NLMS lIter or frequency bin. In [Enzner and Vary, 2006], jH (k;i)j? is
computed as:

F(k+1;0)j%= A% 1 3 (ki) jx(kDi? F(kGDPZ+@ A% A (kDI (4.10)
F(k+ 1502 = A% 1 3 (ki) jx(kiD)i® JF (kD2 +§ H (ki) (4.11)

where A is a constant which models variations of the acoustic path ad A should be
comprised between 0.9 and 0.999. Values A closed to 1 model small acoustic path
change and vice-versa. The static echo path modeling corrpsnds to A = 1. The 2"
term of the summationj H (k;i)j? is equal to O for static echo path modeling. This means
that the term j H(k;i)j? permits to account for accounts the variability of the echo path.
To improve the performance of our system, we propose a new meare of the system
distance.

According to Equation 4.7, a measure of the system distancewver all frequency bins
can be derived from Equation 4.11:

M1
= jH(n+1;0))? (4.12)
M o

k L(n+1)k?=

l\k 1

A2 1D () i ko (R AY) AP
i=0

(4.13)

A2 1 5 (n;i) jx(n;)jZ k m(Mk2+@ A?) kh(n)k? (4.14)
A2 1 3 (n;i) jx(n;i)j2 k m(Nk®+ k h(n)k?: (4.15)

Equations 4.9 and 4.15 both de ned the system distance in theform of a recursion ex-
cept for the additional term k h(n)k? which is not present in Equation 4.9. Based on
Equation 4.15, we rede ne the system distance in Equation & by adding a second term
k h(n)k? as follows:

k .(n+1)k?= 1 % k L(nk?+ k h(n)k?; (4.16)
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At each time n

Yes No

if (n mod R =0)

Compute Update k | (n)k?
jH(k;i)j2 (Equation 4.9 or 4.16)

Update k | (n)k?
(Equation 4.7)

k (n)k?
Vi (k;i)j? ykrm
To post lter To adaptive Iter

Figure 4.2: Statistical control diagram

where k h(n)k? accounts for changes in the acoustic path. Equivalently,k h(n)k? is
computed according to:

k h(nk?=1 A? KkA(n)k*: (4.17)

The k h(n)k? is de ned in Equation 4.17 as a positive quantity. Its use acording
to Equation 4.16 will impact on the behavior of the AEC. By comparing equations 4.9
and 4.15, we can state that the newly de ned system distance Wl lead to values of (n)
that are higher than those obtained with Equation 4.9.

4.2.3 Summary

The echo control scheme considered in this chapter is comped of an adaptive lter

followed by an echo postlter as illustrated in Figure 4.1. The novelty in the system
presented here resides in the use of the statistical contrahodule which we use to link the
AEC and echo post Iter. The synchronization approach is sunmarized in Figure 4.2. It
computes the system mismatch power spectrum according to Heation 4.8 on a frame-by-
frame basis (i.e. whenn mod R = 0). jH(k;i)j? is used within the post Iter to update

the spectral gainsW (k;i) according to Equations 4.4 and 4.5 and within the adaptive
Iter for the computation of the system distance according to Equation 4.7. During
intervals in which the post Iter is not updated, the system distance is updated according
to Equations 4.9 or 4.16. We note that Equation 4.9 is equal toEquation 4.16 for A = 1.

4.3 Experiments

In this section we assess the synchronized echo control sgsh proposed above and compare
its performance to approaches. Although this chapter repots synchronized echo control,
AEC performance and echo post Iter performance are nonethless assessed separately.

In Section 4.3.1 we present our experimental setup. Sectiod.3.2 reports an analysis
of the impact of the synchronization on the convergence of te AEC while in Section 4.3.3
we report the performance of the whole echo control system.
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4.3.1 System setup

The proposed synchronized echo control systems are compardo 2 state-of-the-art sys-
tems. State-of-the-art systems considered are:

The unsynchronized system composed of a NLMS with xed stepge ( = 0:1)
followed by a post lter. The post lter is that describe in Se ction 4.1.2 meaning it
is the same as that uses in our synchronized system except th# is not linked to

AEC.

The synchronized Kalman echo control system which we denot&alman AEC [En-
zner and Vary, 2006].

The rst set of experiments presented in Section 4.3.2 assess the impact of our
synchronization approach on the AEC. The AEC part is assess# in terms of robustness
to echo path changes and convergence time. We assess the natst of the proposed system
distance measure (Equation 4.16) by comparing its performace to that of the system
distance as de ned in Equation 4.9. Both systems di er in terms of the value of A which we
set to 0.99 as in [Enzner and Vary, 2006] within Equation 4.16.We also show the interest
of the synchronization between the AEC and the post Iter by assessing the performance
of the AEC when linked with the post lter to the performance o f the AEC when used
independently. The second set of experiments reports perfmances of the whole echo
control scheme (i.e. AEC followed by post Itering.) Table 4.1 summarizes the di erent
echo control systems considered.

For the systems considered, the number of frequency binM is set to 256 while the
framesize R is set to 128. Filtering of the residual echo in the postlter takes place
through linear convolution in frequency domain (see Sectio 3.3.2). Lastly, the length of
the adaptive lter is set to 256.

All simulations reported here were performed with speech ginals. Microphone speech
signals contain an echo-only interval followed by a doubldalk interval. The echo-only
interval is long enough (8s) so that each AEC algorithm conveges. The double-talk
interval is used to assess the impact of near-end speech onthahe AEC and post lter.
The echo signals are generated by convolving the loudspeaksignal with an acoustic path
response. Four di erent acoustic path responses are usedhey were all measured with real
mobile terminals in an o ce environment. The resulting data base of speech signals has
SERs ranging from -5 dB to 10 dB with the near-end speech levedet to -26 dB. Speech
signal levels are set through the ITU-T speech voltmeter [ITU-T, 1993].

Performance is assessed in terms of echo return loss enhamant (ERLE), cepstral
distance and informal listening tests. While the ERLE is usel to assess the amount of
echo suppression during echo-only intervals, the cepstraflistance is used to assess the
amount of distortion introduced by post Itering during dou ble-talk intervals.

4.3.2 Convergence of the AEC
This section reports the performance of the AEC part alone. V& demonstrate the interest
of our synchronization method and analyze its performanceri case of echo path change.

4.3.2.1 Interest of the synchronization

In this section, we analyze the impact of the proposed synctumization module on the
convergence of AEC. Experiments reported in this section a& based on microphone signals
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System distance Synchro-

nization
Unsync. A =1 NLMS algorithm with SD according to Equation 4.9 No
Unsync. A = 0.99 | NLMS algorithm with SD according to Equation 4.16 No
Sync. A =1 NLMS algorithm with SD according to Equation 4.9 Yes
Sync. A = 0.99 NLMS algorithm with SD according to Equation 4.16 Yes
Fixed stepsize NLMS algorithm with xed stepsize No
Kalman AEC Kalman AEC from [Enzner and Vary, 2006] Yes

Table 4.1: Summary of algorithms tested

Figure 4.3: Impact of the synchronization on the AEC

containing echo-only. To do so, we compare the performancef the AEC with and without
the synchronization with the post Iter (synchronization r efers to Equation 4.7).

Figure 4.3 reports the ERLE curve for the synchronized and ungnchronized version
of the system proposed in this chapter. We see that when the AE does not receive
any feedback from the post Iter and that we compute the system distance according to
Equation 4.9, the AEC is not e ective in canceling the echo. Whereas when the system
distance is computed as we propose (Equation 4.16), the AECchieves up to 40 dB echo
attenuation. For both estimations of the system distance, the synchronization improves
the performance of the AEC. When using Equation 4.16, the syohronization permits
to signi cantly reduce the convergence time of the AEC. When the system distance is
computed according to 4.16, the synchronization permits toincrease the amount of echo
suppressed by the AEC. In fact, the synchronization with the post Iter leads to high
stepsize values and forces the AEC to adapt.

This experiment shows that the synchronization permits to improve the performance
of AEC. We also see that the proposed system distance estimatalso leads to better echo
cancellation. In the remaining of this Chapter, only the synchronized versionSync. A =1
and Sync. A =0.99 of the proposed system is used. In other terms, system distae is
computed according to Equation 4.9 or 4.16 and is always sytonized with the post Iter
(Equation 4.7).
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Figure 4.4: ERLE against time for AEC. An abrupt echo path change occurs at time
t = 20s.

4.3.2.2 Robustness to echo path changes

In this section, we assess the robustness of the di erent AEE considered to echo path
changes. Both abrupt and slowly varying echo path changes areonsidered.

Figure 4.4 illustrates the convergence of the AEC in case of arabrupt echo path
change. At timet = 20s, there is an abrupt echo path change. The curves show that
the Sync. A = 0.99 system converges faster than theSync. A = 1 system. lts rapidity
is due to the term k h(n)k? which is used in theSync. A = 0.99 system and not in the
Sync. A =1 system. k h(n)k? leads to higher stepsize values and therefore to faster
convergence. TheSync. A = 0.99 system also achieves more echo suppression than the
Sync. A =1 system.

Performance of the NLMS based AECs is severely a ected by theabrupt echo path
change. We note an important decrease in their ERLE values. Rhough, the Kalman
system achieves the least ERLE, it is the most robust to the abupt echo path change at
time t = 20s. The poor performance of the Kalman system might be due to themodel
mismatch (except for the echo path change att = 20s, the echo path is static) and to
the fact the Kalman system operates in the frequency domain. The Kalman system is
updated in the frequency domain on a frame-by-frame basis wéreas the new approach is
updated sample-by-sample.

Figure 4.5 shows the ERLE along time for a slowing varying echgath. The echo
path variations are generated according the Markov model asn [Enzner and Vary, 2006,
Malik and Enzner, 2008]. We see in Figure 4.5 that the NLMS with xed stepsize and the
Sync. A = 0.99 achieves the most ERLE. We also see that the Kalman system coerges
even faster than in Figure 4.4 where the echo paths were static This is because the
Kalman system is design for time varying echo paths as it is tle case here. Last, we note
that the Sync. A =1 requires a long time to converge: this once more shows the bern
of including the term k h(n)k?.

4.3.3 Assessment of the global echo control scheme

Figure 4.6 shows the mean ERLE against SER for the four di ereh AEC implementations
considered. The Gync. A = 0.99) system achieves the best performance in terms of
ERLE. The proposed system Sync. A = 0.99) gives better performance than the system
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Figure 4.5: ERLE against time for AEC. Echo path is time varying.

Figure 4.6: Average ERLE against SER for AEC only during echoenly intervals

distance (Sync. A =1): more than 10 dB dierence in ERLE across the full range of
SERs. Nevertheless, the new system distance approacBync. A = 1 gives marginally
better echo suppression than the Kalman AEC algorithm. This might be because the
Kalman system is updated in the frequency domain on a frame-p-frame basis whereas
the new approach is updated sample-by-sample.

Figure 4.7 illustrates the total amount of echo suppression ehieved through com-
bined AEC and post ltering. The unsynchronized system and the Kalman system achieve
the most echo suppression. The system witlSync. A = 0.99 achieves slightly less echo
suppression than the Kalman echo control system. This lossfgperformance can be at-
tributed to the system mismatch power spectrum function esimate which is not the same
in each postlter. Sync. A = 1 achieves the worst performance in terms of ERLE: this is
attributed to poor AEC performance.

Figure 4.8 shows the mean cepstral distance against SER for éhfour di erent sys-
tems. The cepstral distance is measured at the output of the pst Iter during double-talk
periods. We observe that the system with xed stepsize bring the most distortion. The
Kalman echo control system brings the least distortion. Although the new synchronized
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Figure 4.7: Average ERLE achieved through the AEC and the ech@ost Iter

Figure 4.8: Average cepstral distance against SER for the glmal echo control system
during double-talk periods

approaches introduce more distortion than the Kalman systen, their levels of distortion re-
main low compared to that of the unsynchronized system. Newegheless, the post Iter with
Sync. A =1 introduces slightly more distortion than the post Iter wit h Sync. A = 0.99.
This comes from the fact that the AEC from Sync. A = 1 achieves less echo suppression
and thus places an increased demand on the post Iter than wih AEC Sync. A = 0.99.
Moreover, the complete echo control systenSync. A = 1 achieves less echo suppression
than the Sync. A = 0.99 system (see Figure 4.6). The postlter Sync. A =1 can be
tuned in order to achieve as much echo suppression &ync. A = 0.99 but this results in
increased distortion during double-talk intervals.

Informal listening tests reveal the presence of musical nge in signals at the output
of the post lter for both the proposed and the Kalman echo cortrol systems. In addition
to musical noise, signals processed by Kalman echo controbsetimes contain crackling
noise which was sometimes perceived as annoying. In signglsocessed bySync. A = 1,
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echo is sometimes still audible whereas in signals processby Sync. A = 0.99 echo is
inaudible.

4.4 Conclusion

This chapter presents the rst cross-domain approach to symrhronized acoustic echo can-
cellation and echo postltering. The proposed approach is lased on the link between
the system distance and the system mismatch power spectrumA new system distance
estimate is also introduced and assessed. The performancé the new synchronized echo
control system is compared to synchronized Kalman echo combl system and to an un-

synchronized approach.

Our approach yields a reduction in distortion compared to the unsynchronized echo
control system. The proposed system is robust to echo path @nges and is stable during
intervals of double-talk. The new system distance estimatedelivers signi cantly improved
echo suppression and rapid AEC convergence while presengra reduced level of distortion
during double-talk intervals compared to the standard sysem distance.
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Part Il

Dual microphone echo processing
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Introduction

Until now, we have considered the echo problem for single miophone (SM) terminals.
Typical SM echo processing schemes are composed of adaptiltering followed by residual
echo suppression. AEC can be achieved through various exiay approaches such as LMS,
NLMS, RLS or subband adaptive Iter. As presented in Chapter 2, these adaptive Iters
each have relative merits and disadvantages but all lead to esidual echo. Post Iters are
required to suppress residual echo but they sometimes reduh strong distortion of near-
end speech.

Alternative approaches to improved echo cancellation are hsed on multi-microphone
systems [Kellermann, 1997, Reuven et al., 2007a]. Multi-ntrophone echo cancellation
approaches are based on beamforming techniques and have bheshown to outperform
SM approaches. Existing beamforming techniques typicallyrequire 4 to 10 microphones
[Myllyla and Hamalainen, 2008, Reuven et al., 2007b] spaceby a distance of about 10cm
up to 1 meter.

Mobile devices have traditionally been equipped with one nmgrophone. Given the
reduced size of mobile device, it would be very di cult to e ¢ iently place 4 microphones
on a device. Moreover, increasing the number of microphoneromobile device might result
in a signi cant increase of the price of the device. In consegence, the device might not
be competitive because of its price.

Nevertheless, to gain advantage of the potential of multi-microphone architecture, more
and more dual microphone mobile phones can be found on the mieet. There is therefore
a necessity to design dual microphone (DM) speech enhancemtealgorithms for mobile
devices.

In contrast to DM noise reduction [Dérbecker and Ernst, 1996 Jeub et al., 2012],
DM echo control has not received much attention [Guo et al., 11, Jeannes et al., 2001].
The echo control systems in [Guo et al.,, 2011, Jeannes et al2001] both use adaptive
Itering: one per microphone. The use of 2 AECs is a computatonally prohibitive point
for mobile devices. In [Jeannes et al., 2001] a combinationfseveral post Iters is used
to process residual echo. In [Guo et al., 2011], a beamformés placed after the AECs
to steer the error signals towards the direction of the desied speech signak(n). This
means that in [Guo et al., 2011] residual echo is consideredsan interfering signal and its
suppression is achieved by the beamformer. In both cases (cdamation of post Iters or use
of beamforming), the resulting DM echo cancellation systenis still very computationally
demanding for a mobile device.

In this 2" part of the thesis, we report our contributions regarding DM echo cancel-
lation. First, we study the echo problem based on some recordgs with mock-up and
real DM mobile devices. These recordings are later on used tpropose methods to im-
prove echo cancellation in DM terminals. Proposed methods ses a conventional AEC
followed by a DM post lter. Experiments show that proposed methods outperforms SM
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echo control systems.

This part is organized as follows. In Chapter 5, an analysis bthe echo problem for
DM is presented. A DM echo post Iter and double-talk detector (DTD) are also presented
and showed to be e cient for a certain arrangement of the transducers on the phone. In
Chapter 6 another approach to DM echo post Iter is presented This method is showed to
be e cient for all transducer arrangement and is extendableto non-linear echo suppression.
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Chapter 5

Echo

cancellation for dual channel

terminals
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In this chapter we focus on the echo problem for dual-micropbne terminals. Such
an architecture is typical of some mobile terminals or tablgs in today's market. For
instance, the iPhone 4, Google Nexus Oneand Samsung S seriesare dual-microphone
mobile terminals.

We propose a study of the echo problem for dual-microphone teninals. The proposed
analysis is based on both handset and handsfree scenariogs Follows from this analysis
that two main features can be used for the purpose of echo caetiation: the level di erence
and the correlation between the microphone signals.

Both features require to de ne a novel dual-microphone echo pcessing scheme. The
proposed scheme is very similar to that used in single micrdmone (SM) terminals and is
composed of AEC followed by echo post ltering. The similarity of the proposed scheme
with the SM scheme is deliberate and is discussed further inhis chapter. This chap-
ter solely focuses on the use of level di erence while corration based methods will be
presented in Chapter 6.

The level di erence between the microphone signals is explted in two di erent ways.
As a rst step, we simply use the level dierence to introduce a novel frequency do-
main based double-talk detector (DTD). The proposed DTD is used as post-processing
to enhance the SM echo post Iter used in previous chapters. A a second step, the level
di erence is used to introduce a new implementation of the wd-known Wiener echo post-
Iter. Unlike most Wiener echo post lters, that proposed he re does not require an explicit
estimate of the residual echo power spectral density.

This chapter is organized as follows. Section 5.1 presentsiomodel of the echo problem
and the recordings performed with DM devices. Section 5.2 msents the proposed DM
echo processing scheme. Our level di erence based DTD andlex post Iter are presented
in sections 5.3 and 5.4 respectively. Section 5.5 deals abioexperimental assessment of our
DM approaches including a comparison with a baseline DM sysm. Lastly our conclusions
are reported in Section 5.6.

The signal analysis and the proposed echo processing schepresented in this chapter
have been partly published in [Yemdji et al., 2012c]. The DTD and proposed gain rule
have been patented Yemdji et al., 2013].

5.1 Echo problem in dual channel terminals

As illustrated in Figure 5.1 (a), we assume a terminal equippé with one loudspeaker
and two microphones. Later, we consider one of the microphansignals to be the primary
microphone signal and the other to be secondary. The primarnand secondary microphones
are denotedys(n) and y,(n) respectively. Note that the positions of the microphones o
Figure 5.1 (a) are not representative of their actual positim on the terminal. These
positions are simply used as illustration of the general setip.

Figure 5.2 shows two examples of transducer con guration formobile terminals. In
the bottom-bottom con guration (Figure 5.2 (a)), the microp hones are both placed at
the bottom of the phone and are approximately equidistant from the loudspeaker. In
the bottom-top con guration (Figure 5.2 (b)), the microphon es are placed such that one
is close to the loudspeaker whereas the other is relativelyufther away. We can cite as
example theiPhone 4 and Samsung Galaxy Szhat use two microphones which are placed
in bottom-top con guration. This con guration is the mostw idespread among terminals of
today's market since it leads to features like the level di erence and coherence between the




71

Near-end acoustic q ( )
environment 1(n
hi(n)
x(n)
j] s(n) s1(n) ¥ ya(n)
Near-end g1(n) =kj >
terminal
Echo
So(Nn n
ya(n) g (n) ( )f\ )/2(:)
O : %
/
Speech C y2(n) x(n) dz(n)
h2(n)
(a) Dual-microphone terminal (b) Dual-microphone terminal signal model

Figure 5.1: lllustration of the echo problem in a dual-microphone terminal
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- i N
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Microphone Microphone
(a) Microphones in bottom- (b) Microphones in bottom-top
bottom con guration con guration

Figure 5.2: Example of mobile device with di erent microphone positions

microphone signals which are highly exploited to improve pgormance of noise reduction
algorithms [Jeub et al., 2012].

The examples of transducer positions in Figure 5.2 show the ressity to accounts for
the di erent acoustic paths de ned by the acoustic sources pesent in our system (near-
end speaker and loudspeaker). Our study of DM echo procesgimmethods aims to propose
solutions that can be easily implemented on real devices. 8te most terminal that are in
the market today are bottom-top, our study will focus on this con guration.




72 5. Echo cancellation for dual channel terminals

5.1.1 Signal model

As depicted in Figure 5.1 (a), the far-end speaker voice is pkged by the loudspeaker to the
near-end speaker. Part of this loudspeaker signal is re e&d in the near-end environment
and is recorded by both microphones [Hansler and Schmidt, 2™, chap. 3]. The sig-
nals d1(n) and dx(n) represent the echo signal at the primary and secondary miaphone
respectively:

di(n) = hj(n) x(n) (5.1)

wherej 2 f 1,29, x(n) stands for the loudspeaker signal andh; (n) denotes the acoustic
echo path between the loudspeaker and the microphong.

The microphones also record the speech signal from the neand speaker and even-
tually the background noise. Similarly as for the echo, the peech from the near-end
speaker is re ected in the surrounding environment before leing recorded by the micro-
phones [Jeub et al., 2011, Reuven et al., 2007a]. The signas(n) and s;(n) represent the
near-end speech signal picked by the primary and secondary iarophone respectively:

sj(n)= g (n) s(n) (5.2)

wherej 2 f 1;2g, s(n) denotes the near-end speech signal ang (n) denotes the acoustic
path between the near-end speaker's mouth and the micropham

Given these explanations, the signal model of the dual micrphone (DM) echo problem
can be schematized as shown in Figure 5.1 (b). The resulting pmary and secondary mi-
crophone signals are denoteg1(n) and y»(n) respectively. In respect with the explanations
above and Figure 5.1 (b), we can write the following:

yj(n) = sj(n) + dj(n) (5.3)

with j 2 f 1;2g. In the following, the primary microphone refers the microphone which is
placed further away from the loudspeaker i.e. with less poweduring echo-only periods.

The signal model presented here is quite general since it siply accounts for the phys-
ical interaction between the acoustic sources and transdwers. The next step in our un-
derstanding of this model is to perform and analyze some recding. The recording setup
includes both handset and handsfree scenarios.

5.1.2 Handsfree scenario analysis with mock-up phone

A mock-up phone has been built to get handsfree recordings. Aetailed description of the
mock-up phone used is furnished in Section 5.A. The mock-up lpone consists of a solid
plastic body equipped with a loudspeaker and two microphons. Microphones are placed
in the bottom-top con guration (as in Figure 5.2 (b)). The moc k-up phone is equipped
with almost perfect transducers. This allows us to focus pemits to focus the study

on the acoustic interactions. Real mobile devices are mostlequipped with low-quality

transducers. Since such transducers do not have at frequety responses, it results that :

the far-end signal emitted by the loudspeaker will be a modied version of the
received signal

the recorded microphone signals are modi ed versions of thaignals picked by the
microphones.
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(a) Frequency responses between loudspeaker and microphoas

(b) Frequency responses between arti cial mouth and micro-
phones

Figure 5.3: Frequency responses with the phone placed in frorof the arti cial mouth in
a cabin environment

In addition, real mobile devices su er from high non-linearities when used in handsfree.
As result, the echo signal will be non-linear. Lastly, the eéctronic components somehow
in uence the acoustic interactions between the loudspeakeand the microphones. The use
of the mock-up phone permits to reduce and eliminate all thes undesirable e ects and
achieve a full assessment of the problem of linear echo.

The mock-up is used to measure impulse responses in di erergcoustic environments:
cabin, o ce, meeting room (see Section 5.A for details aboutthe recording setups). In all
these experiments, the phone is placed such that the two mi@phones are approximately
at equal distance from the arti cial mouth. The recording setup in the cabin environment
simulates scenarios in which the user holds the phone in hisler hands. For the o ce
and meeting room environment, the device is placed on a tablaccording to ITU-T Rec-
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ommendation P.340 [ITU-T, 1996a], simulating a scenario inwhich the user places the
device on a table to free his/her hand. For each of the acousti environments considered,
impulse responsedh;j>(n) and gyj»(n) are measured through the exponential sine sweep
technique [Farina, 2000]. An arti cial head ( [HEAD Acousti cs HMS 11.3]) with mouth
simulator is used to simulate the near-end speaker and to acedingly to get gyj»(n).

Figure 5.3 (a) shows an example of frequency responses of theaaistic path between
the loudspeaker and the microphones. This gure shows that he loudspeaker signal
received by the microphones is not equally attenuated by theacoustic environment for each
microphone. This implies that, during echo-only periods, he power of the signal on the
secondary microphone is higher than that on the primary miciophone. In [Habets, 2007],
it is mentioned that the level of a sound wave at a given point & inversely proportional
to the distance that separates this point from its source. The level di erence observed in
Figure 5.3 (a) is therefore in conformity with this property of sound wave propagation.

Figure 5.3 (b) shows an example of frequency responses betwethe arti cial mouth
and the microphones. We see that both impulse responses areny similar. These sim-
ilarities can be explained by the position of the microphones compared to the arti cial
mouth.

5.1.3 Handset devices analysis with handset scenario

Mobile devices can also be used in handset. To complete our alysis of the DM echo
problem, a real mobile device, the [Xolo X900], is used to rewd signals. The device
used is equipped with one loudspeaker and two microphones wdh are still in bottom-top
con guration. The far-end speech signal is played by the lodspeaker of the terminal and
the near-end speaker is simulated by the same arti cial head IEAD Acoustics HMS 11.3)
as for the handsfree recording. The device is placed at the eaf the arti cial head as
described in the ITU-T Recommendation P.64 [ITU-T, 2007]. All recorded microphone
signals contain echo-only, near-end only and double-talk[PT) periods.

In the analysis of the handset case, spectrograms and PSDsewused. An example of
microphone signals is illustrated in Figure 5.4 and is compaad of a near-end only period
(from 0 to 9s) followed by an echo-only period (9s to the end).Based on these gures, we
can state the following:

During near-end only periods, the power of the signal on the pmary microphone is
higher than that on the secondary microphone:

Ya¥a (k;i) << YWY1(k;i) (5.4)
where YiYi(k;i) is the PSD of the microphone signaly; (n) with j 2 f 1; 2g.

Following our formalism, the power of the signal on the primay microphone is lower
than that on secondary microphone during echo-only periods

YW (ki) << Y2Y2(k;i): (5.5)

Once more the level di erence observed is in agreement withaind wave propaga-
tion theory. Later on, we will exploit this power di erence f or the purpose of echo
suppression

Data from the handset and handsfree cases are both used to &ss proposed echo
processing algorithms. Proposed algorithms are assessed two steps: rst with the























































































































































































































































