
HAL Id: tel-01234955
https://pastel.hal.science/tel-01234955

Submitted on 27 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EEG signal analysis for brain-computer interfaces for
large public applications

Yuan Yang

To cite this version:
Yuan Yang. EEG signal analysis for brain-computer interfaces for large public applications. Signal
and Image processing. Télécom ParisTech, 2013. English. �NNT : 2013ENST0043�. �tel-01234955�

https://pastel.hal.science/tel-01234955
https://hal.archives-ouvertes.fr


 

!

"

#

$

2013-ENST-0043

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « SIGNAL et IMAGES »

présentée et soutenue publiquement par

Yuan YANG
le 08 juillet 2013

Analyse de signaux EEG pour des applications grand-public
des interfaces cerveau-machine

Directeurs de thèse : Isabelle BLOCH et Joe WIART

Jury
M. Olivier BERTRAND, Directeur de recherche, INSERM, CNRL Président

M. Christian JUTTEN, Professeur, GIPSA Lab, Université Joseph Fourier Rapporteur

Mme. Michèle SEBAG, Professeur, LRI, Université Paris-Sud Rapporteur

M. Jamal ATIF, Maître de Conférences, LRI, Université Paris-Sud Examinateur

M. Anatole LECUYER, Directeur de recherche, INRIA Rennes Examinateur

Mme. Isabelle BLOCH, Professeur, CNRS LTCI, Télécom ParisTech Directrice de thèse

M. Joe WIART, Ingénieur en chef, R&D unit WAVE, France Télécom Directeur de thèse

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr



 

 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

 

!

 

Analyse de signaux EEG pour des applications grand-public
des interfaces cerveau-machine

Yuan YANG

RESUME : Les interfaces cerveau-machine (ICM) utilisent les signaux émis par le cerveau pour contrôler

des machines ainsi que des appareils (claviers, voitures, neuro-prothèses). Après plusieurs décennies de

développement, les techniques de ICM modernes montrent une maturité relative par rapport aux dernières

décennies et reçoivent de plus en plus d’attention dans les applications grand public du monde réel, en

particulier dans le domaine des interactions homme-machine pour personnes en bonne santé, par exemple

les neuro-jeux. L’objectif de cette thèse est de développer un modèle d’ICM et des algorithmes de traitement

de signaux EEG pour relever ces défis, donc conduire à une ICM non-invasive, portable et facile à utiliser,

exploitant des rythmes EEG pour les applications grand public (non médicales). Pour atteindre cet objectif,

un examen de l’état de l’art (prototypes existants et produits commerciaux, configurations expérimentales,

algorithmes) a d’abord été effectué pour acquérir une bonne compréhension de ce domaine. Les contributions

de cette thèse comprennent : 1) un paradigme ICM hybride avec peu d’électrodes, 2) la réduction de la

dimensionnalité pour l’ICM multi-canal (avec un nombre élevé d’électrodes), 3) la réduction et la sélection

de canal, 4) l’amélioration de la classification pour l’ICM avec des électrodes prédéterminées. Les résultats

expérimentaux montrent que les méthodes proposées dans cette thèse peuvent améliorer les performances

de classification et/ou augmenter l’efficacité du système (par exemple, réduire le temps d’apprentissage,

réduire le coût du matériel), de manière à contribuer à des ICM pour des l’applications générales.

MOTS-CLEFS : Traitement du signal, Automatique, STIC, Robotique, Signal biomédical,Ingénierie.

ABSTRACT : Brain-computer interfaces (BCIs) use signals from the brain to control machines and de-

vices (keyboards , cars, neuro- prostheses) . After several decades of development, modern BCI techniques

show a relative maturity compared to the past decades and receive more and more attention in real-world

general public applications, in particular in the domain of BCI-based human-computer interactions for healthy

people, such as neuro-games The aim of this thesis is to develop an experimental setup and signal processing

algorithms for non-invasive, portable and easy-to-use BCI systems for large public (non-medical) applications.

To achieve this goal, a review of the state of the art (existing prototypes and commercial products, experimen-

tal setup, algorithms) is first performed to get a full scope and a good understanding in this field. The main

contributions of this thesis include : 1) a hybrid BCI paradigm with a few electrodes , 2) dimensionality re-

duction for multi-channel BCI (with a high number of electrodes ), 3) reduction and selection channel , 4)

improved classification for BCI with a few predetermined electrodes. The experimental results show that the

methods proposed in this thesis can improve classification performance and / or increase the efficiency of the

system ( for example, reduce the learning time, reduce the cost of equipment ) , so as to contribute to BCI for

the general applications.

KEY-WORDS : Signal Processing,STIC Automatics, Robotics, Biomedical Signal, Engineering.



ABSTRACT

Brain-computer interfaces (BCIs) bring us the possibility of using our mind to control
machines or devices (e.g. keyboards, cars, neuro-prosthetics). The traditional application
of this technique mainly focuses on personal assistance for improving the life of disabled
people. After several decades of development, modern BCI techniques show a relative
maturity compared to the past decades and receive more and more attention in real-world
general public applications, in particular in the domain of BCI-based human-computer
interactions for healthy people, such as neuro-games. However, several obstacles still
impede the widespread adoption of BCI. On the one hand, the traditional definition
of BCI, which excludes non-brain-based controls in the system, hinders the freedom of
healthy people to realize the control through all possible physiological functions in BCI
experiences. On the other hand, the difficulties of signal acquisition and processing, such
as electrode redundancy, reduce the portability and practicability of BCI.

The research contribution of this thesis includes two aspects according to the challenges
in BCI definition, and in signal acquisition and processing:

A hybrid BCI (hBCI) is first proposed based on one scalp electroencephalography (EEG)
electrode placed close to the visual cortex and a few electrooculographic (EOG) electrodes
around the orbit. It provides the users with a possibility to communicate through ocular
activities and to intentionally decide the timing of communication through brain signals
(EEG). As both EOG and EEG data can be detected by an EEG recording system, this
design allows using only one recording system with few electrodes, and exploiting this
multi-function hBCI, in real-world applications, providing users with more freedom and
less cost.

Secondly, the main work of this thesis is to develop machine learning methodologies for ad-
dressing the challenges in signal acquisition and processing for easy-to-use motor imagery
BCI systems.

The essential task of a motor imagery BCI is to extract the spatial relevant event-related
desynchronization (ERD) and/or synchronization (ERS) patterns from EEG signals for
identifying subject’s motor intentions. However, raw scalp EEG signals have a poor
spatial resolution due to the volume conduction effect in EEG measuring. Common spatial
patterns (CSP) algorithm is believed to be the most effective spatial filtering method for
solving this problem. However, the performance of CSP usually depends on preprocessing
(EEG time segment and frequency band selection), channel selection and number of paired
filters. Until now, most studies focused on channel selection and improving a preprocessing
procedure for CSP, in particular for selecting the optimal frequency band, but not on
selecting the number of paired filters in CSP. We propose an automatic method relying on
Rayleigh quotient to estimate the optimal number of filters for each subject. Based on an
existing dataset (BCI competition IV dataset IIa), we study the effect of this parameter on
the classification performances. The evaluation on testing data shows that the estimated
subject-specific optimal values yield better performances than the recommended value in
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the literature.

Note that the CSP algorithm typically needs a multi-channel setting, which may be a
drawback for daily-use BCIs in signal acquisition. Thus, we further develop some non-CSP
based methods to select the channels and reduce their number for motor imagery BCIs.
Unlike existing methods choosing channels without optimization of the time segment, we
propose a novel subject-specific channel selection method based on a criterion derived
from Fisher’s discriminant analysis, called F score, to realize the parametrization of both
time segment and channel positions. The experimental results show that the method can
efficiently reduce the number of channels (from 118 channels to no more than 11), and
shorten the training time, without a significant decrease of classification accuracy on a 118-
channel dataset (BCI competition III dataset IVa). Compared to existing commercial BCI
products (e.g. Emotiv), the number of electrodes we used is reasonable and acceptable
for general applications (e.g. in a game environment).

However, algorithm-based channel selection methods usually need a full EEG cap and
additional computational time for finding the optimal subset of channels. To solve this
problem, some researchers may simply use three bipolar or Laplacian channels located
around C3, Cz and C4 (according to the standard 10-20 EEG recording system) to record
motor imagery data. This simple placement can easily reduce the number of electrodes
but may not always yield good classification performances. To improve classification per-
formances, we propose a novel method to identify subject-specific time-frequency charac-
teristics, so as to extract effective band power features. We adapt the proposed F score
to time-frequency selection problems. We also propose a novel alternative criterion based
on domain specific knowledge (such as location of brain activity during a motor imagery)
to address the specific problem of the time-frequency selection. Both criteria lead to
good performances on two standard datasets (BCI competition IV dataset IIa and IIb)
for the discrimination between imagination of right and left hand movements, using less
electrodes (only two bipolar channels C3 and C4) than other methods.

The time-frequency selection method based on F score is further extended to multi-class
problems through one-versus-rest (OVR) strategy. The method is applied with three
Laplacian channels C3, Cz and C4 for a four-class BCI problem (left hand, right hand,
foot and tongue) and tested on two standard multi-class datasets (BCI competition IV
dataset IIa and BCI competition III dataset IIIa). The experimental results show that
our method is robust to unpredictable signal changes in session-to-session transfer and
artifacts. It can also be used to help reducing the number of electrodes in multi-class
problems.

In conclusion, the methods proposed in this thesis can improve the classification perfor-
mances and/or increase the efficiency of system (e.g. shorten the training time, reduce
the hardware cost), so as to contribute to BCIs for general application purposes.
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in Télécom ParisTech. Like my advisors, they also gave a lot of support and help during
my PhD study, not only in research but also in some personal affairs.

I very appreciate the useful discussions with Professor Michèle Sebag, Dr. Jamal Atif,
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Resumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 BCI systems for general public applications: state of the art . . . . . 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 What is BCI? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Traditional definition of BCI . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Hybrid BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Self-paced BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Discussion on BCI definitions . . . . . . . . . . . . . . . . . . . . . 26

2.3 Scalp EEG-based BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Popular scalp EEG patterns for present-day BCIs . . . . . . . . . . 26

2.3.2 BCI products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Motor imagery BCI for general public applications and its challenges . . . 32

2.5 Standard datasets and classification evaluation . . . . . . . . . . . . . . . . 34

2.5.1 Standard datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Classification evaluation . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Signal acquisition and spatial filters . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Bipolar recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Common average reference . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 Laplacian derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.4 Common spatial pattern . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.5 Discussion on spatial filters . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Feature extraction and classification in motor imagery BCI . . . . . . . . . 42

iv



2.7.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.2 Popular features in motor imagery BCI . . . . . . . . . . . . . . . . 43

2.7.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.4 Time-frequency optimization . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Electrode reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8.1 CSP-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8.2 Support vector channel selection . . . . . . . . . . . . . . . . . . . . 55

2.8.3 Discussion on electrode reduction . . . . . . . . . . . . . . . . . . . 56

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Turn “Artifacts” into Control Signals: A Hybrid BCI based on Alpha
Rhythm and Ocular Activities for Human-computer Interaction . . . 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Alpha rhythm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Ocular activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Signal acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 The learning session . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 The testing section . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Signal analysis and processing . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.1 Alpha rhythm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.2 EOG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.1 Alpha rhythm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.2 EOG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Selection of CSP channels and filters for motor imagery BCIs . . . . 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Automatic selection of the number of spatial filters for motor-imagery BCI 77

4.2.1 Pre-selection of paired spatial filters . . . . . . . . . . . . . . . . . . 77

4.2.2 Refined estimation of the optimal number of paired filters . . . . . 78

v



4.2.3 Extension to multi-class problems . . . . . . . . . . . . . . . . . . . 79

4.3 Data description and channel selection . . . . . . . . . . . . . . . . . . . . 80

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Experimental validation of the estimation of the optimal number of
paired filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Channel selection for CSP . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Subject-specific channel selection using time information for motor im-
agery BCIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Method for channel and time segment selection using TDP . . . . . . . . . 93

5.2.1 Time domain parameters . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 A criterion based on Fisher’s discriminant . . . . . . . . . . . . . . 93

5.2.3 F score based channel selection . . . . . . . . . . . . . . . . . . . . 95

5.2.4 Channel selection using time information (CSTI) . . . . . . . . . . 96

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Effect of time segment on electrode selection . . . . . . . . . . . . . 98

5.3.2 Comparisons with full-cap CSP and 3C setup . . . . . . . . . . . . 99

5.3.3 Effect of electrode misplacement . . . . . . . . . . . . . . . . . . . . 100

5.3.4 Effect of data evolution . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Time-frequency optimization for discrimination between imagination of
right and left hand movements based on two bipolar EEG channels . 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 ERD/ERS in motor imagery . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Time-frequency optimization for classification . . . . . . . . . . . . . . . . 112

6.3.1 Time-frequency Discrimination Factor . . . . . . . . . . . . . . . . 113

6.3.2 The F score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Data description and preprocessing . . . . . . . . . . . . . . . . . . . . . . 117

6.4.1 Dataset IIa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Dataset IIb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.3 Experimental goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.4 Visualization of ERD/ERS maps . . . . . . . . . . . . . . . . . . . 119

vi



6.4.5 Data preprocessing for time-frequency optimization . . . . . . . . . 120

6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.1 Improving classification performance for dataset IIb . . . . . . . . . 121

6.5.2 Electrode reduction for dataset IIa . . . . . . . . . . . . . . . . . . 126

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Time-frequency optimization for multi-class motor imagery data classi-
fication based on F score and Laplacian EEG derivation . . . . . . . . 130

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Multi-class F score based time-frequency selection (MFTFS) . . . . . . . . 132

7.3 Data description and preprocessing . . . . . . . . . . . . . . . . . . . . . . 135

7.3.1 BCI competition IV dataset IIa . . . . . . . . . . . . . . . . . . . . 136

7.3.2 BCI competition III dataset IIIa . . . . . . . . . . . . . . . . . . . . 136

7.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4.1 BCI competition IV dataset IIa . . . . . . . . . . . . . . . . . . . . 138

7.4.2 BCI competition III dataset IIIa . . . . . . . . . . . . . . . . . . . . 141

7.5 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 148

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2.1 Signal processing and cloud computing . . . . . . . . . . . . . . . . 151

8.2.2 Brain sensors and wireless system . . . . . . . . . . . . . . . . . . . 152

8.2.3 Integrated Information theory for BCI . . . . . . . . . . . . . . . . 153

A EEG experiment information sheet for participants . . . . . . . . . . . 155

B Paired t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

vii



Resumé en français

Les interfaces cerveau-machine (ICM, en anglais brain-computer Interface ou BCI) utilisent
les signaux émis par le cerveau pour contrôler des machines ainsi que des appareils
(claviers, voitures, neuro-prothèses) [203]. Une ICM est un système composé de quatre
étapes principales : (1) la mesure de l’activité cérébrale, (2) l’extraction de caractéris-
tiques des signaux, (3) la classifiation des signaux, (4) la traduction en une commande
envoyée à l’ordinateur. Certains systèmes comprennent également un retour perceptif afin
que l’utilisateur puisse voir le résultat du contrôle mental, permettant une rétroaction.

L’application traditionnelle de cette technique se concentre principalement sur l’assistance
personnelle pour améliorer la vie des personnes handicapées. Après plusieurs décennies de
développement, les techniques ICM modernes montrent une maturité relative par rapport
aux dernières décennies et reçoivent de plus en plus d’attention dans les applications
grand-public du monde réel [36], en particulier dans le domaine des interactions homme-
machine pour des personnes en bonne santé, par exemple les neuro-jeux.

Les systèmes ICM existants utilisent différents types de signaux du cerveau, comme
l’électroencéphalographie (EEG) [52, 226], l’électrocorticographie (ECoG) [104], la mag-
nétoencéphalographie (MEG) [123], la spectroscopie proche infrarouge (NIRS) [188] et
l’imagerie par résonance magnétique fonctionnelle (IRMf) [221]. Comme elle est peu
coûteuse, non-invasive et portable, l’EEG de surface est la plus prometteuse [104]. Au-
jourd’hui, certaines entreprises, comme Emotiv, Neurosky, OCZ, ont développé des pro-
duits commerciaux fondés sur l’EEG pour certaines applications grand public (par exem-
ple, de divertissement, de navigation).

Cependant, plusieurs obstacles entravent encore l’adoption généralisée des ICM. De manière
générale, les difficultés proviennent de deux aspects. D’une part, la définition tradition-
nelle des ICM, qui exclut les contrôles non basés sur le cerveau dans le système, les pos-
sibilités de contrôle à travers toutes les fonctions physiologiques possibles. D’autre part,
de nombreuses en recherches ICM utilisent un grand nombre d’électrodes (par exemple
64) pour les mesures EEG afin de recueillir suffisamment d’informations pour le décodage
précis. Ce paramètre réduit la portabilité et la praticabilité de l’ICM. Pour diminuer le
nombre d’électrodes, au moins trois défis doivent être abordés : (1) le choix du nombre
d’électrodes, (2) le placement du nombre réduit d’électrodes, et (3) le développement d’une
méthode efficace d’apprentissage pour les ICM utilisant seulement quelques électrodes.

L’objectif de cette thèse est de développer un modèle d’ICM et des algorithmes de traite-
ment de signaux EEG pour relever ces défis, donc conduire à une ICM non-invasive,
portable et facile à utiliser, exploitant des rythmes EEG pour les applications grand pub-
lic (non médicales). Pour atteindre cet objectif, un examen de l’état de l’art (prototypes
existants et produits commerciaux, configurations expérimentales, algorithmes) a d’abord
été effectué pour acquérir une bonne compréhension de ce domaine. Les contributions de
cette thèse comprennent : 1) un paradigme ICM hybride avec peu d’électrodes, 2) la ré-
duction de la dimensionnalité pour l’ICM multi-canal (avec un nombre élevé d’électrodes),
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3) la réduction et la sélection de canal, 4) l’amélioration de la classification pour l’ICM
avec des électrodes prédéterminées.

ICM hybride

Dans la première partie, l’ICM hybride (ICMh) est proposée sur la base d’une élec-
trode EEG placée sur le cuir chevelu à proximité du cortex visuel et d’un petit nombre
d’électrodes électrooculographiques (EOG) autour de l’orbite. Elle fournit aux utilisateurs
la possibilité de communiquer à travers des activités oculaires et de décider volontairement
du moment de la communication par signaux du cerveau (EEG).

Dans le projet d’ICMh, l’EEG a été enregistrée dans la région occipitale (Oz), et les
données EOG ont été enregistrées au-dessus (E1, E2) et en-dessous (E3, E4) des yeux
gauche et droit, respectivement, et sur le bord extérieur des yeux gauche (E5) et droit
(E6) (voir figure 1). Les données sont enregistrées par le système g.tecTM utilisant le lobe
de l’oreille droite comme référence (avec un taux d’échantillonnage de 512Hz). Ainsi, une
seule électrode EEG et six électrodes EOG sont nécessaires dans l’ensemble du système.
Les signaux EEG sont traités pour identifier l’état de l’utilisateur. Si un α-rythme actif
(8-13Hz EEG) est détecté, ce qui signifie que l’utilisateur est éveillé, au reps avec les yeux
fermés, le système entier est en état d’attente. Quand il détecte que l’α-rythme actif
disparâıt, le système sera activé et le traitement EOG est déclenché. L’utilisateur peut
contrôler la direction du mouvement de l’objet dans un environnement réel ou virtuel
par saccades (mouvements simultanés des deux yeux). Quand une saccade est détectée,
le système reconnâıt sa direction. Ensuite, un message demandera à l’utilisateur si la
détection est correcte et intentionnelle. L’utilisateur peut confirmer en clignant des yeux
ou infirmer en gardant les yeux ouverts dans le temps imparti.

L’activité de α-rythme est estimée par l’écart-type Σ du signal dans des fenêtres glissantes
de 4 secondes. Ainsi, un seuil Tα pour détecter l’α-rythme actif est fixé :

Tα =
1

2
[min

i
(Σferm) + max

i
(Σouvert)], (1)

où Σferm et Σouvert représentent le Σ des données d’apprentissage dans l’état d’éveil avec
les yeux fermés et les yeux ouverts, respectivement. Lorsque la valeur Σ est inférieure à
Tα, le système considère que l’α-rythme actif a disparu et déclenche le traitement EOG.

Des expériences ont été effectuées sur quatre personnes en bonne santé, avec: 1) une
session d’apprentissage, où les sujets étaient dans des états d’éveil avec les yeux fermés
et ouverts, 2min, respectivement, et répétaient 20 fois des clignements et les différents
saccades à 10◦, 15◦, 26◦, 30◦, 45◦ à gauche, à droite, vers le haut et le bas pour apprendre
les seuils spécifiques des sujets; 2) une session de test, où les données ont été enregistrées
pour les mêmes sujets qui ont exécuté 2 min l’état d’éveil avec les yeux fermés, 1min
avec les yeux ouverts, puis 6 différentes saccades guidées par des signaux sonores pendant
1,5 min. Un dignement d’œil a été réalisé après chaque saccade pour servir de signal de
confirmation. Le seuil spécifique de chaque sujet Tα est estimé par l’équation 1 (voir le
tableau 1) et permet avec succès au système de passer d’un mode à un autre en fonction
de l’état mental du sujet avec quelques secondes de retard (D). Une relation linéaire a
été observée entre les amplitudes EOG et les angles de saccades pour toutes les données
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Fig. 1: Système ICM hybride proposé.

d’apprentissage, et permet de définir des plages d’amplitude pour détecter différentes
saccades. Les plages (unité : µV) varient en fonction des sujets (par exemple, saccade 15◦

gauche : [328, 445] pour le sujet 01, mais [144, 195] pour le sujet 03). Le système a détecté
à tort deux saccades verticales comme des clignements d’yeux pour le sujet 02 en raison
de ses mouvements de paupières pendant les saccades. Ce problème peut être résolu en
entrâınant les sujets à éviter les mouvements des paupières pendant les saccades.

Table 1: Résultats de l’“interrupteur” du cerveau et de saccade, la détection de dignement
d’oeil pour tous les sujets pendant le test. VP/FP indiquent les nombres de vrais/faux
positifs.

Sujet L’interrupteur du cerveau Saccades clignements des yeux
Tα D(s) VP/FP VP/FP

1 31,1 2,11 1,00/0,00 1,00/0,00
2 27,0 2,07 0,67/0,00 1,00/0,33
3 58,8 1,81 1,00/0,00 1,00/0,00
4 16,0 2,58 0,67/0,00 1,00/0,33
5 9,9 3,13 1,00/0,00 1,00/0,00

Ainsi, cette ICMh exploite les activités oculaires comme source de contrôle dans le sys-
tème, donnant une solution possible aux trois défis mentionnés dans l’introduction. Par
ailleurs, elle nous apporte aussi un concept d’utilisation d’un seul système d’enregistrement
avec peu d’électrodes, permettant une ICMh multifonctions, pour des applications du
monde réel, offrant aux utilisateurs plus de liberté et moins de coût.

Nous devons mentionner que les saccades verticales sont difficiles à détecter lors-que des
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mouvements de paupières se produisent au cours de la saccade. Atténuer les effets de
l’activité oculaire non volontaire est un défi pour cette ICM hybride. Ainsi, il peut
être intéressant d’utiliser un eye-tracker pour améliorer le contrôle oculaire dans l’avenir.
D’autre part, combiner cette technique avec plus de communication exploitant les sig-
naux du cerveau est également un axe de recherche important qui rendra le système plus
puissant pour répondre aux divers besoins d’un utilisateur.

Estimation du nombre optimal de filtres CSP pour

l’imagination motrice

Le mouvement réel ou l’imagination d’un mouvement suscitent généralement un ERD
(en anglais event-related desynchronization), une baisse de puissance dans les bandes de
fréquences µ et β dans le cortex sensori-moteur concerné. La tâche essentielle de l’imagerie
motrice ICM est d’extraire les modèles ERD de signaux EEG pour identifier les inten-
tions motrices du sujet. Cependant, les signaux EEG acquis sur le cuir chevelu ont une
résolution spatiale médiocre en raison de l’effet de conduction de volume lors de la mesure
EEG. L’algorithme de configurations spatiales communes (en anglais Common Spatial
Patterns ou CSP) est une des méthodes de filtrage spatial les plus efficaces pour résoudre
ce problème. Cependant, la performance du CSP dépend généralement du prétraitement
(les sélections du segment de temps et de la bande de fréquence), des canaux et du nombre
de filtres. Jusqu’à présent, la plupart des études ont porté sur la sélection de canaux ou
l’amélioration d’une procédure de pré-traitement pour les CSP, en particulier pour sélec-
tionner la bande de fréquence optimale, mais pas sur le choix du nombre de filtres. Nous
proposons une méthode automatique s’appuyant sur le quotient de Rayleigh pour estimer
le nombre optimal de filtres pour chaque sujet. A partir des données de quatre classes
de l’imagination motrice (issues du concours BCI IV, données IIa), nous allons vérifier
l’efficacité de la méthode proposée en comparant les résultats de la classification en util-
isant les valeurs optimales estimées à ceux obtenus avec la valeur fixe recommandée dans la
littérature, d’abord dans un problème à deux-classes (discrimination entre l’imagination
des mouvements des mains gauche et droite), puis dans un problème à quatre-classes
(main gauche, main droite, le pied et la langue).

La méthode proposée pour estimer le nombre de filtres comporte deux étapes :

1. un critère basé sur le quotient de Rayleigh est appliqué pour la pré-sélection de la
gamme de ce paramètre,

2. un algorithme basé sur la validation croisée est ensuite utilisé pour l’estimation plus
précise de la valeur optimale de ce paramètre dans la plage présélectionnée.

L’algorithm CSP est une approche guidée par les données pour construire des filtres spa-
tiaux, W = [w1, ..., wN ], qui décomposent le signal EEG à N canaux X = [x1, x2, ..., xN ]

T

en signaux non corrélées Z = [z1, z2, ..., zN ]
T par la transformation zj = wT

j X, (j =
1, 2, ..., N), de manière à calculer les caractéristiques, fCSP

j = log(var(zj)) = log(var(wT
j X)),

utilisés ensuite pour la classification.
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Dans la transformation, wj est un vecteur propre généralisé qui satisfait les relations :

wT
j C

Lwj = λL
j

wT
j C

Rwj = λR
j (2)

λL
j + λR

j = 1

où CL, CR ∈ R
N×N sont les matrices de covariance estimées de deux classes, L and R,

des signaux EEG. Techniquement, cette procédure de diagonalisation simultanée peut être
simplement réalisée en résolvant le problème aux valeurs propres généralisé suivant :

CLwj = λjC
Rwj (3)

où λj = λL
j /λ

R
j . Comme λL

j + λR
j = 1, une grande valeur de λL

j (λR
j ) indique que le filtre

spatial correspondant wj tend à donner une grande variance de signal pour la classe L
(R) et une petite variance de signal pour la classe R (L). Ces effets contraires de wj sur
deux classes décorrèle les signaux, de manière à contribuer à la discrimination.

Nous trions les valeurs de λL
j dans l’ordre décroissant. Ainsi, w1 correspond à la plus

grande valeur propre λL
j , et wN correspond à la plus grande valeur propre λR

j (la plus petite
λL
j ). Ils composent la première paire de filtres CSP. De même, wi et wN−i+1 correspondant

au i-ème λL et λR, respectivement, et composent la i-ème paire de filtres CSP.

L’activité discriminatoire Sd et une activité commune Sc entre deux classes sont définies
comme :

Sd = CL − CR (4)

Sc = CL + CR (5)

Ainsi, le rapport entre l’activité discriminatoire et l’activité commune projetée sur le filtre
spatial wj est le quotient de Rayleigh R(wj) [37] et est obtenu par:

R(wj) = wT
j Sdwj/w

T
j Scwj =

∣

∣λL
j − λR

j

∣

∣ /(λL
j + λR

j ) =
∣

∣2λL
j − 1

∣

∣ (6)

Pour le i-ème paire de filtres, la quantité FD(i) = R(wi) + R(wNi) témoigne de son
efficacité à extraire les composants discriminants du signal original [110]. Habituellement,
les m premières paires de filtres spatiaux ayant les m plus grandes valeurs de FD(i)
sont utilisées. De trop petites ou trop grandes valeurs de m mèneront à de mauvaises
performances de classification, de sorte que la valeur optimale de m doit être estimée
pour chaque sujet. Une trop petite valeur de FD(i) (typiquement FD(i) < 0, 1, dans
la pratique) indique que la i-ème paire de filtres a une très faible capacité d’extraction
de composants discriminatoires, et ne peut pas améliorer les résultats de classification.
Comme tous les filtres appariés sont classés par ordre de FD(i) décroissant, les valeurs
FD(i) sont utilisées comme un critère de présélection pour réduire la gamme de recherche
de la valeur optimale de m.

En supposant que le nombre de paires de filtres spatiaux avec FD(i) ≥ 0, 1 est M , le
nombre optimal de filtres spatiaux appariés est évalué en vérifiant chaque valeur possible
de m afin de voir si la valeur du coefficient kappa κ correspondant est sensiblement plus
grande que d’autres obtenues pour des valeurs plus petites de m. Un test T est utilisé
pour l’analyse de la significativité [231]. Dans ce cas, si plusieurs valeurs de m donnent
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Algorithme A: Sélection du nombre optimal de paires de filtres spatiaux
Soit M le nombre de paires de filtres spatiaux avec FD(i) ≥ 0, 1, et m ≤ M ;
κ(m) est un ensemble de κ pour un m donné évalué avec 100 répétitions de 10
fois la validation croisée (κ(m) ∈ R

1×100), κ̄(m) est la valeur moyenne (sur les 100
composantes), t(a, b) représente les valeurs du test T apparié entre les vecteurs
a et b

1: mi ← 1; mj ← 2
2: while mj ≤M do
3: if κ̄(mj) > κ̄(mi) + δ and t(κ(mi),κ(mj)) < 0, 05 then
4: mi ← mj

5: endif
6: mj ← mj + 1
7: endwhile
8: mopt ← mi

9: return le paramètre optimal, mopt

des résultats de classification égalux ou comparables, la plus petite valuer sera choisie
comme la valeur optimale mopt. Cette procédure est décrite dans l’Algorithme A.

Le paramètre optimal mopt est estimé hors ligne à partir des données d’apprentissage pour
chaque sujet, puis appliqué aux données de tests ou d’applications en ligne pour le même
sujet. Cette stratégie peut être étendue à des problèmes multi-classes [60, 233].

La méthode proposée a été testée sur les données IIa du concours BCI IV [39]. Une large
bande de fréquences de 8-30Hz (bandes µ et β) et le segment de 0,5 à 2,5 s de données
de l’EEG après le début ont été utilisées dans ce travail pour le calcul de la matrice
de transformation W par CSP, les valeurs des FD(i), et l’apprentissage du classifieur.
Analyse linéaire discriminante de Fisher (LDA), qui est classiquement utilisé avec le CSP,
a été employée ici pour la classification [37]. L’effet du nombre de filtres spatiaux a été
étudié sur les données d’apprentissage à l’aide de 100 répétitions de 10 validations. Les
performances de classification ont été mesurées par la valeur κ. Les algorithmes de CSP,
l’apprentissage et l’évaluation (y compris le calcul de la valeur κ) sont effectués avec la
bôıte à outils Biosig1.

Les effets du paramètre de m sur les résultats de la classification et la valeur de FD(i)
de chaque paire de filtres spatiaux pour tous les sujets sont illustrés dans la figure 2. De
la figure 2, nous pouvons voir que les performances de classification par CSP ne sont pas
proportionnelles à m mais présentent des variations importantes selon m pour tous les
sujets. Ainsi, il est essentiel de choisir une valeur de m adaptée à chaque individu.

Pour examiner l’efficacité du seuil FD = 0, 1 à rétrécir l’éventail des m, nous énumérons
les valeurs de M pour les différents sujets dans le tableau 2. Dans la figure 2 et le
tableau 2, nous pouvons voir que l’ajout de filtres spatiaux avec FD(i) < 0, 1 n’améliore
pas les résultats de la classification (par exemple, pour le sujet 1, M = 6, et la valeur de κ
diminue si m > 6 est utilisé). Ainsi, il est raisonnable d’estimer mopt dans la plage [1,M ]
en utilisant le seuil FD = 0, 1.

Le tableau 3 répertorie les valeurs de mopt estimées, obtenues par 100 répétitions de 10
validations croisées dans les données d’apprentissage de deux classes (main gauche et main

1http://biosig.sourceforge.net/
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Fig. 2: Effet du paramètre m sur la classification gauche droite, et FD(i) de chaque paire
de filtres spatiaux pour tous les sujets dans les données IIa du concours BCI IV. La ligne
horizontale sur le second tracé indique FD = 0, 1.

Table 2: Valeurs de M pour différents sujets.
Sujets

1 2 3 4 5 6 7 8 9
M 6 4 7 6 5 6 5 7 8

droite) et fournit une comparaison des résultats de l’évaluation sur les données de test en
utilisant la valeur optimale mopt et la valeur classique m = 3 [37, 135]. Dans ce tableau,
nous pouvons voir que les performances de classification obtenues avec la valeur estimée
sont meilleures que celles obtenues en utilisant la valeur classique (P < 0, 01).
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Table 3: Valeurs estimées, mopt, et comparaison des résultats de l’évaluation indépendante
entre l’utilisation de la valeur estimée, mopt, et la valeur classique, m = 3. Les meilleures
performances sont en gris.

Sujets
1 2 3 4 5 6 7 8 9 Moyenne

mopt 5 4 3 3 5 5 4 1 1
κ (mopt) 0,75 0,22 0,96 0,40 0,11 0,35 0,70 0,94 0,86 0,59
κ (m = 3) 0,67 0,13 0,96 0,40 0,09 0,25 0,69 0,93 0,82 0,55

Le CSP un contre les autres (en anglais one-versus-rest, ou OVR) est une approche CSP
multi-classes qui calcule W pour chaque classes contre toutes les autres, puis projette les
signaux EEG sur tous les 2m× P filtres spatiaux choisis (P est le nombre de classes, ici
P = 4), extrait les caractéristiques, puis effectue une classification LDA multi-classes [60].
Sur la base de la procédure de pré-sélection décrite précédemment, chaque W génère une
valeur de M , donc P valeurs de M sont obtenues. La plus grande valeur M (Mmax) est
choisie comme limite supérieure de la valeur possible de mopt. Alors mopt est estimée sur la
base des résultats de classification dans la plage [1, Mmax] en utilisant l’Algorithme A,
puis appliquée aux données de test. Sans perte de généralité, le cadre de notre méthode
pour un problème à quatre classes est illustré dans la figure 3.

La comparaison des résultats obtenus avec mopt et m = 3 est présentée dans le tableau 4
pour le problème des quatre classes du concours BCI IV, données IIa. Utiliser mopt

conduit à de meilleures performances que d’utiliser m = 3. Comme nous avons utilisé une
large bande de fréquences (8-30Hz) du signal EEG dans ce travail, il est difficile de faire
une comparaison avec le gagnant du concours BCI IV, qui extrait les caractéristiques de
plusieurs bandes étroites et a rapporté des résultats basés sur la recherche du plus grand κ
sur toute la plage de temps des données de test à l’aide d’une fenêtre glissante de 2s [45].
Cependant, il est plus logique de comparer avec le participant placé deuxième, qui utilise
la même bande de fréquence, afin de valider l’intérêt de l’utilisation de mopt adapté au
sujet avec OVR CSP. La comparaison a montré que notre méthode nécessite moins de
classifieurs (un seul LDA multi-classes) et génère une meilleure performance moyenne.

Table 4: Estimation demopt et évaluation indépendante dans un problème à quatre classes
en utilisant mopt et m = 3, et comparaison avec le deuxième gagnant dans le concours
BCI IV. Les meilleures performances sont en gris.

Sujets
1 2 3 4 5 6 7 8 9 Moyenne

mopt 4 3 1 2 3 3 2 4 2
κ (mopt) 0,72 0,30 0,74 0,48 0,20 0,25 0,75 0,71 0,68 0,53
κ (m = 3) 0,69 0,30 0,71 0,47 0,20 0,25 0,74 0,71 0,50 0,51
κ (2e, m=4) 0.69 0,34 0,71 0,44 0,16 0.21 0,66 0,73 0,69 0,52

La méthode proposée fournit une solution pour estimer le nombre optimal de filtres spa-
tiaux, et par conséquent réduit également le nombre de dimensions des données de la
classification. Cependant, les méthodes par CSP nécessitent généralement une configu-
ration multi-canaux, ce qui présente un inconvénient majeur pour les applications grand
public.
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Fig. 3: Méthode proposée pour un problème à quatre classes.

Réduction du nombre d’électrodes

Deux stratégies peuvent être utilisées pour réduire le nombre d’électrodes :
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1. Chercher les électrodes principales grâce à des méthodes d’apprentissage automa-
tique.

2. Placer directement quelques électrodes sur certains endroits clés en exploitant des
connaissances neurophysiologiques.

Sur la base de la première stratégie, plusieurs algorithmes ont été proposés pour réduire le
nombre de canaux dans les ICM [17, 97, 220]. Cependant, ils n’ont abordé la question de la
sélection des canaux que par l’information spatiale, sans tenir compte de l’impact potentiel
du temps et des fréquences. En conséquence, la combinaison optimale de positions de
temps, de fréquences et de canaux ne peut pas être atteinte dans un design ICM. Bien
qu’une étude récente a montré qu’une large bande de fréquences (8-30Hz) qui couvre à la
fois les bandes µ (8-12Hz) et β (18-25Hz) peut généralement être utilisée pour calculer les
paramètres dans le domaine temporel (en anglais time domain parameter, ou TDP), les
méthodes de sélection de canaux existantes travaillent principalement avec la puissance
de la bande (BP), qui est sensible à la bande de fréquences et au segment de temps.

Ici, nous proposons une méthode de sélection des canaux en utilisant les TDP. Contraire-
ment aux méthodes existantes, notre méthode considère l’effet de l’intervalle de temps
utilisé sur la sélection des canaux, afin de trouver la combinaison optimale de segment
de temps et de sous-ensemble de canaux. Le principle général de la méthode (CSTI) est
illustré à la figure 4.

Tout d’abord, nous calculons les TDP caractéristiques (voir l’équation 7) pour chaque
canal dans une série d’intervalles de temps de largeur se chevauchant T [tn, tn + T − 1]
(n = 1, ..., N), tn+1 = tn + Ts (Ts est le pas), pendant la durée de l’imagerie motrice
[T0, Te], où T0 est l’heure de début de l’imagerie motrice et Te est l’heure de fin.

TDP (p) = log

(

var
t∈[t0,t0+T−1]

(
dpx(t)

dtp
)

)

, p = 0, 1, 2, ... (7)

Les TDP sont un groupe de fonctions, dont le pouvoir discriminant n’est pas apte à être
évalué par un critère de Fisher classique :

FC =
(µh − µf )2

(σh)2 + (σf )2
(8)

où µh et µf sont les valeurs moyennes de la fonction sur l’ensemble des essais pour les
classes h et f , respectivement, et (σh)2 et (σf )2 sont les variances de la fonction.

Pour évaluer le pouvoir discriminant des TDP, nous avons proposé le F -score:

F̂ =

∥

∥%µh − %µf
∥

∥

2

2

tr(Σh) + tr(Σf )
(9)

où Σ désigne la matrice de covariance du vecteur de caractéristiques, %µ la moyenne du
vecteur de caractéristiques, ‖·‖2 la norme L2 (norme euclidienne), et tr(·) la trace d’une

matrice. Dans le F -score,
∥

∥%µh − %µf
∥

∥

2

2
reflète la différence entre deux classes. La trace de

la matrice de covariance pour chaque classe est la distance euclidienne moyenne entre les
échantillons et le centre de la classe, qui reflète la dispersion intra-classe.
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Fig. 4: Schéma général du CSTI.

Ensuite, nous proposons une approche automatique pour déterminer le sous-ensemble de
canaux sélectionnés. Soit F̂m la plus grande valeur du F -score parmi tous les canaux :

F̂max = max
{

F̂e | e ∈ {1, ..., 118}
}

(10)
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Le pouvoir discriminant relatif de chaque canal e est défini comme:

ρF (e) =
F̂e

F̂max

(11)

La valeur de ρf (e) est comprise entre 0 et 1. Une plus grande valeur de ρf (e) indique
une puissance de discrimination relative plus importante. Ainsi, un seuil ρ̂ peut être
défini pour extraire les canaux avec ρf (e) > ρ̂ qui seront utilisés pour la classification.
Une valeur inférieure de ρ̂ à tendance à choisir d’autres canaux. En pratique, les données
d’apprentissage devraient avoir plusieurs fois la dimension des caractéristiques pour garan-
tir une bonne performance du classifieur. Sur la base de cette connaissance, la gamme de
ρ̂ peut être réduite à [P, 1] pour nourrir le classificateur, où P est obtenue par :

min
P

Num(P ) tel que (12)

P ∈ [0, 1],Num(P ) ≥ K/3R

où Num(P ) est le nombre de canaux sélectionnés avec ρf (e) > P , K est le nombre de
données d’apprentissage, et R est le rapport entre le nombre de données et le nombre de
caractéristiques pour un classificateur spécifique. Notez que nous avons ici Num(P ) ≥
K/3R car chaque canal donne trois traits. Comme un classifieur linéaire, tel que le
Fisher’s LDA, a généralement besoin de 5-10 fois plus de données d’apprentissage que
la dimension des caractéristiques, nous prenons R = 5 pour avoir une gamme lâche de
ρ̂ pour une optimisation plus poussée. Différents sous-ensembles de canaux en fonction
de différents ρ̂ ∈ [P, 1] sont utilisés pour entrâıner le classifieur. La valeur optimale
de ρ̂ est obtenue en cherchant le sous-ensemble avec l’erreur (ERR) la plus faible lors
de l’apprentissage du classifieur. L’erreur d’apprentissage est définie comme le désaccord
global observé entre les sorties de classification et les véritables classes. La valeur optimale
ρ̂∗ de ρ̂ est donc obtenue par :

ERR(ρ̂∗) = min {ERR(ρ̂) | ρ̂ ∈ [P, 1]} (13)

S’il y plus d’un ρ̂∗ obtenu par l’équation 13, nous utilisons le plus grand ρ̂∗ comme la
solution optimale, afin de trouver les sous-ensembles optimaux des châınes. L’erreur
correspondante est ERR(ρ̂∗(tn)). Le segment de temps optimal [t∗, t∗ + T − 1] est alors
trouvé en cherchant l’erreur la plus faible ERR(ρ̂∗(tn)) entre tous les segments :

ERR(ρ̂∗(t∗)) = min
tn
{ERR(ρ̂∗(tn))} (14)

de manière à obtenir le sous-ensemble optimal de canaux S(t∗) dans le segment de temps
optimal [t∗, t∗ + T − 1].

Cette méthode a été testée sur les données IVa du concours BCI III (pour les informations
sur les données, voir [33]). La répartition spatiale de la partition de F -score et les élec-
trodes sélectionnées dans différents segments de temps sont présentées à la figure 5, où les
segments de temps sélectionnés sont repérés par des carrés. Les résultats obtenus lors de
l’utilisation des électrodes sélectionnées dans différents segments temporels de longueur 2s
sont fournis dans le tableau 5, et les résultats des segments de temps sélectionnés sont en
gris. Dans la figure 5, nous pouvons voir que les sous-ensembles d’électrodes sélectionnées
varient en fonction des segments de temps pour chaque sujet, indiquant que le segment
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de temps est un facteur important qui doit être pris en compte dans la sélection des élec-
trodes. Parmi toutes les combinaisons possibles de segment de temps et sous-ensemble
d’électrodes, la combinaison estimée donne la précision de classification la plus élevée
(ACC) sur les données de tests. Ce résultat montre que le méthode CSTI est efficace
pour trouver la combinaison optimale de segment de temps et sous-ensemble d’électrodes.
Toutefois, elle a un coût de calcul qui est au moins N fois (N est le nombre des différents
segments de temps, ici n = 5) celui des méthodes qui effectuent la sélection de canal
sur un segment de temps unique. Dans nos expériences, le temps de calcul pour CSTI
était de 11 secondes, tandis que pour les méthodes utilisant un segment de temps unique,
il était de 2 secondes (Matlab 7.10.0, Windows 7 64bits professionnels, CPU 2.66GHz,
RAM 2.0Go). Néanmoins, ce temps supplémentaire reste acceptable pour de nombreuses
applications, telles que les neuro-jeux.

Fig. 5: Cartes topographiques du F -score (échelle de couleurs) et des électrodes sélection-
nées (marquées par des points noirs) dans les différents segments de temps. Le nombre
d’électrodes sélectionnées est donné en-dessous de chaque carte. Les segments de temps
sélectionnés sont repérés par des carrés. Les résultats obtenus par CSL dans un segment
de temps long sont fournis dans la dernière colonne.

Des comparaisons entre la sélection des canaux en utilisant les informations de temps
(CSTI), la sélection de canaux basée sur le segment de longue durée (CSL), la configuration
3C (C3, Cz, C4), et le CSP classique en utilisant tous les canaux sont effectuées afin
d’évaluer la contribution de notre méthode (CSTI). Les résultats sont montrés dans le
tableau 6. D’après ce tableau, nous pouvons voir que les résultats obtenus à l’aide de TDP
sont meilleurs que ceux utilisant les fonctions de BP pour la plupart des sujets (même
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Table 5: Résultats mesurés par ACC pour l’utilisation du sous-ensemble sélectionné
d’électrodes dans différents segments de temps (le segment de temps sélectionné est grisé).

Sujet 0-2,0s 0,5-2,5s 1,0-3,0s 1,5-3,5s 2,0-4,0s
aa 0,53 0,67 0,67 0,67 0,64
al 0,78 0,89 0,87 0,87 0,88
av 0,49 0,61 0,61 0,61 0,58
aw 0,66 0,51 0,71 0,75 0,81
ay 0,73 0,90 0,92 0,84 0,80

Table 6: Résultats des tests (ACC) pour les différentes méthodes. La meilleure perfor-
mance pour chaque sujet est grisée.

CSP (118) 3C setup (3) CSTI (< 11)
Subject BP TDPs BP TDPs TDPs

aa 0,46 0,47 0,64 0,59 0,67
al 0,94 0,94 0,79 0,81 0,88
av 0.68 0.69 0.58 0.59 0.61
aw 0,94 0,94 0,73 0,79 0,81
ay 0,75 0,84 0,81 0,82 0,92

mean 0,76 0,78 0,71 0,72 0,78

si la différence n’est pas significative p > 0, 05), ce qui indique l’intérêt d’utiliser TDP
dans l’imagerie motrice ICM. Les résultats obtenus avec notre méthode (ACC = 0, 78)
sont meilleurs que ceux obtenus avec les trois canaux couramment utilisés C3, Cz, C4
(ACC = 0, 72 lors de l’utilisation de TDP, ACC = 0, 71 lors de l’utilisation de BP, tous
p <0,05). Par rapport aux résultats obtenus en utilisant tous les canaux avec CSP, la
précision moyenne de la classification par notre méthode est meilleure que celle utilisant
tous les canaux avec CSP et les caractéristique BP (ACC = 0, 76, non significatif avec
p > 0, 05) et en utilisant tous les canaux avec CSP et les caractéristiques TDP (ACC =
0, 78 lors de l’utilisation TDP). Pour certains sujets (“aa” et “ay”), notre méthode donne
une valeur d’ACC encore plus élevée qu’en utilisant tous les canaux avec CSP. Ainsi, elle
répond à l’objectif de réduire largement le nombre d’électrodes (de 118 à pas plus de 11),
sans perte majeure de qualité de la classification. De plus, nous utilisons un intervalle de
temps relativement plus court (de longueur 2s) que les autres méthodes (longueur 3,5s).
Pour la plupart des sujets (sauf “aw” ), les sorties de classification ont été obtenues avant
la fin de l’acquisition, ce qui indique que moins de temps (ici moins de 3,5s) est nécessaire
pour l’enregistrement de données d’apprentissage.

Selection temps-fréquence

Cependant, les méthodes ont généralement besoin d’un casque EEG complet et de temps
de calcul supplémentaire pour trouver le sous-ensemble optimal de canaux. Pour résoudre
ce problème, certains chercheurs peuvent simplement utiliser trois canaux bipolaires ou
laplaciens situés autour de C3, C4 et Cz (selon le système d’enregistrement EEG stan-
dard 10-20) pour enregistrer les données d’imagerie motrice. Ce simple placement peut
facilement réduire le nombre d’électrodes, mais ne peut pas toujours donner de bonnes
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performances de classification. Pour améliorer les performances, nous proposons une nou-
velle méthode pour identifier des caractéristiques temps-fréquence spécifiques à chaque
sujet, de manière à extraire les caractéristiques de puissance de bande efficaces. Nous
adaptons le F -score proposé à des problèmes de sélection temps-fréquence. Nous pro-
posons également un critère basé sur des connaissances spécifiques du domaine (comme
l’emplacement de l’activité cérébrale au cours d’une imagerie motrice) pour résoudre le
problème de la sélection temps-fréquence.

Le critère proposé pour trouver les régions temps-fréquence est basé sur deux principes
neurophysiologiques :

1. L’imagination d’un côté du mouvement de la main génère généralement un ERD
dans le côté opposé du cerveau, de sorte qu’il est possible de discriminer entre
l’imagination des mouvements de la main droite et de la main gauche en utilisant
des électrodes bipolaires placées sur des zones de représentation de la main corre-
spondante, C3 et C4 [156]. Pour obtenir de bonnes performances de classification, 1)
la différence de configuration entre imagination des mouvements de la main gauche
et de la main droite doit exister dans la région temps-fréquence sélectionnée (en
anglais region of interest, ou ROI) sur chaque canal; 2) et la différence entre C3 et
C4 devrait également exister dans la ROI pour les deux imageries motrices.

2. Les études électrophysiologiques ont souligné le rôle de la conduction de volume,
de sorte que les activités neuronales dans un domaine sont réparties sur plusieurs
positions d’électrodes [150]. En raison de cet effet, les signaux de certains rythmes
de l’EEG indésirables (par exemple des composantes communes) sont également
enregistrés, et mélangés avec les signaux spécifiques des différents mouvements de
la main, ce qui pourrait affecter les résultats de la classification [37]. Bien que
l’enregistrement bipolaire puisse éliminer cet effet dans une certaine mesure, il ne
peut pas supprimer complètement l’ensemble de ces éléments communs. Ainsi, nous
devrions considérer l’influence de ces composantes communes dans la sélection de la
ROI.

Les signaux EEG en C3 et C4 sont décomposés, dans une série de régions temps-fréquence
se chevauchant (ωm × τn), m ∈ {1, ...,M}, n ∈ {1, ..., N} avec les différentes bandes de
fréquence ωm = [fm, fm + F − 1], fm+1 = fm + Fs (F est la bande passante, Fs est le pas
de fréquence) et les différents segments de temps τn = [tn, tn + T − 1], tm+1 = tm + Ts (T
est la largeur de l’intervalle, Ts est le pas de temps).

Comme les caractéristiques ERD sont souvent mesurées par le logarithme de la variance
normalisée du signal EEG filtré par un filtre passe-bande dans un intervalle de temps
spécifique, que l’on appelle estimateur de puissance de bande logarithmique (BP) [156,
213], le BP global du segment de l’EEG (pour K essais) dans une région temps-fréquence
(ωm, τn) pour chaque chasse (χ = L, R) et chaque canal (e = C3, C4) est estimé comme
suit :

B̃P
χ

e = log (ṽχe ) (15)

où ṽχe représente la médiane des écarts types des données ve(i) sur toutes les données de
la classe χ.

15



Ainsi, la différence de configuration (PDe) entre deux conditions (gauche vs droite) dans
une région temps-fréquence (ωm × τn) dans chaque canal est exprimée comme suit :

PDC3(ωm, τn) = B̃P
L

C3(ωm, τn)− B̃P
R

C3(ωm, τn) (16)

PDC4(ωm, τn) = B̃P
L

C4(ωm, τn)− B̃P
R

C4(ωm, τn) (17)

Le signe de PDe reflète la tendance (augmentation ou diminution) de la modulation
BP de la condition L (imagination de mouvement de la main gauche) à la condition R
(imagination de mouvement de la main droite) dans le canal e.

L’imagination des mouvements de gauche et de droite produisent habituellement une dom-
inance controlatérale contraire de l’ERD dans les canaux C3 et C4 [156, 152]. Ces modula-
tions spatiales discriminantes liées aux tâches peuvent être mesurées par la force discrim-
inative Fd(ωm, τn) = |PDC3(ωm, τn)− PDC4(ωm, τn)|, pour estimer cette contribution
positive dans une région temps-fréquence (ωm × τn). Une grande valeur de Fd(ωm, τn)
indique que de grandes modulations discriminantes se produisent dans la région temps-
fréquence (ωm × τn).

D’autre part, il a été prouvé que d’autres sources (sources de l’imagerie motrice non
ciblées) vont générer des signaux (par exemple α-rythme du cortex visuel) à la même
fréquence que l’ERD au cours de l’imagerie motrice (pour plus de détails, voir [37, 108]).
Par exemple, les sujets sont devant un écran pendant deux tâches d’imagerie motrice, ce
qui peut générer des modulations communes visuelles liées à C3 et C4. Bien que ces sources
ne soient pas près de C3 et C4, leurs signaux se propagent à travers le cuir chevelu et seront
mélangés avec des composantes discriminantes en raison de la conduction de volume [144].
Pendant ce temps, les activités neuronales en C3 et C4 affecteront également les canaux
contralatéralux à cause de la conduction de volume. Ce sont ce que nous appelons des
composantes communes. Elles se chevauchent avec les modulations discriminantes, ce qui
présente un effet négatif sur la classification.

Ainsi, nous définissons le blurring force, Fb(ωm, τn) = |PDC3(ωm, τn) + PDC4(ωm, τn)|,
pour estimer ces modulations communes dans la région temps-fréquence (ωm × τn). Une
petite valeur de Fb(ωm, τn) indique que les petites modulations communes se produisent
dans la région temps-fréquence (ωm × τn).

Enfin, le critère Time-frequency Discrimination Factor, TFDF (ωm, τn), est défini comme
la différence entre Fd(ωm, τn) et Fb(ωm, τn) pour évaleur la contribution globale des don-
nées dans la région temps-fréquence (ωm, τn) à partir des électrodes C3 et C4 pour dis-
criminer deux classes :

TFDF (ωm, τn) = Fd(ωm, τn)− Fb(ωm, τn) (18)

Une région temps-fréquence idéale pour la classification devrait avoir de grandes mod-
ulations discriminantes (grande valeur de Fd(ωm, τn)) et petites modulations communes
(petite valeur de Fb(ωm, τn)), de sorte que la ROI (ω∗ × τ ∗) est estimée par la recherche
de la valeur maximale de TFDF (ωm, τn) entre toutes les régions temps-fréquence :

TFDF (ω∗, τ ∗) = max {TFDF (ωm, τn) | m ∈ {1, 2, ...,M} , n ∈ {1, 2, ..., N}} (19)

La méthode d’optimisation temps-fréquence a été évaluée sur les données IIa [39] et
IIb [100] des concours BCI IV. Les résultats sur les données IIb sont présentés dans le
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tableau 7. Le TFDF génère la meilleure valeur moyenne de κ (κ̄ = 0, 62) parmi toutes les
méthodes de l’évaluation indépendante. La valeur moyenne de κ obtenue par le F -score
(κ̄ = 0, 60) est relativement plus faible que celle obtenue par TFDF (non significative-
ment, p = 0, 29), mais comparable à celle du gagnant, et supérieure à celle du 2e (non
significativement, p = 0, 52). Il doit être mentionné que le F -score donne les meilleures
valeurs de κ pour la plupart des sujets (4 sujets) parmi toutes les méthodes. Ainsi, les
deux critères sont prometteurs pour la recherche des motifs temps-fréquence optimaux
pour améliorer les performances de classification à partir de quelques canaux bipolaires
seulement.

Table 7: Résultats sur les données IIb [100] des concours BCI IV (évaluées par la valeur
κ). La meilleure performance pour chaque sujet est grisée. La dernière colonne donne la
performance moyenne sur tous les sujets.

Sujets
1 2 3 4 5 6 7 8 9 Moyenne

TFDF 0,44 0,24 0,25 0,93 0,86 0,70 0,55 0,85 0,75 0,62
F score 0,39 0,25 0,13 0,93 0.88 0,63 0,55 0,88 0.78 0,60

sans CSP 0,40 0,24 0,18 0,94 0,39 0,66 0,52 0,81 0,68 0,53
avec CSP 0,28 0,13 0,11 0,47 0,56 0,13 0,58 0,76 0,67 0,42

FBCSP(1er) [5] 0,40 0,21 0,22 0,95 0,86 0,61 0,56 0,85 0,74 0,60
CSSD(2e) [194] 0,43 0,21 0,14 0,94 0,71 0,62 0,61 0,84 0,78 0,58
NTSPP(3e) [194] 0,19 0,12 0,12 0,77 0,57 0,49 0,38 0,85 0,61 0,46

Les résultats sur les données IIa sont présentés dans le tableau 8. Le jeu de données
IIa dispose de 22 canaux. Nous avons comparé les résultats obtenus par notre méthode
avec ceux obtenus par FBCSP [5], CSP parcimonieux (SCSP) [10] et CSP classique, pour
évaluer la contribution de notre méthode de réduction du nombre d’électrodes. Notez
que FBCSP est considérée comme une méthode efficace qui résout l’optimisation de la
fréquence et/ou du temps [8], qui a réalisé la meilleure performance de classification
sur au moins deux ensembles de données, y compris les données IIa du concours BCI
IV [194]. SCSP est un DSP optimisé qui sélectionne le plus petit nombre de canaux dans la
classification par CSP sous une contrainte de précision de la classification. SCSP a généré
de meilleures performances que les autres méthodes de réduction des canaux (en fonction
du ratio de Fisher, information mutuelle, SVM, coefficients CSP) et le CSP régularisé
sur les données IIa du concours BCI IV pour le problème de la main droite vs gauche
(pour plus de détails, voir [10]). Ici, les comparaisons des résultats de la classification et
le nombre d’électrodes (#E) utilisées dans la classification pour les différentes méthodes
sont données. Pour notre méthode reposant sur le F -score (ACC = 79, 67), on obtient des
résultats légèrement meilleurs que FBCSP (ACC = 79, 17) et SCSP (ACC = 79, 07), mais
en utilisant beaucoup moins d’électrodes sur cet ensemble de données : notre méthode
utilise seulement deux canaux bipolaires C3 et C4 (équivalents à 4 canaux mono-polaires),
FBCSP utilise tous les 22 canaux mono-polaires, et SCSP utilise 8,55 canaux mono-
polaires en moyenne [10]. Un examen plus approfondi des résultats individuels montre
que notre méthode par F Score génère le meilleur ACC pour la plupart des sujets (4
sujets), ce qui indique qu’elle est la plus efficace sur cette base de données. Bien que
le résultat moyen de classification de notre méthode par TFDF (ACC = 78, 00) soit
légèrement inférieur à celui des FBCSP et SCSP, les différences ne sont pas statistiquement
significative (p > 0, 05). En comparant les performances individuelles, notre méthode par
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TFDF surpasse FBCSP et SCSP pour 5 des 9 sujets. En outre, notre méthode par
TFDF emploie également moins d’électrodes que FBCSP et SCSP. Ainsi, la méthode
par TFDF répond toujours à l’objectif de réduction du nombre d’électrodes sans baisse
significative de la précision de la classification.

Table 8: Comparaison des résultats de la classification (ACC) et des nombres d’électrodes
(#E) utilisé dans la classification entre notre méthode, FBCSP [5], SCSP [10] et CSP
classique sur les données IIa du concours BCI IV. La meilleure performance pour chaque
sujet est grisée.

Sujets
Methode #E 1 2 3 4 5 6 7 8 9 Moyenne

TFDF 4 87,23 66,20 97,81 68,97 64,44 69,44 68,57 96,27 83,08 78,00
F score 4 89,36 69,01 97,81 66,38 66,67 72,22 68,57 97,01 90,00 79,67

FBCSP1 22 94,44 52,77 93,05 65,97 88,19 60,41 70,13 94,44 93,05 79,17
SCSP [10] 8,55 91,66 60,41 97,14 70,83 63,19 61,11 78,47 95,13 93,75 79,07
CSP [235] 22 83,51 56,53 97,50 70,00 54,50 62,49 84,50 95,57 90,77 77,26

La méthode de sélection temps-fréquence basée sur le F - score peut également être étendue
à des problèmes multi-classes à travers une stratégie une contre tous (en anglais one-
versus-rest, ou OVR). Elle a été appliquée avec trois canaux de Laplace C3, Cz et C4
pour un problème BCI à quatre classes (main gauche, main droite, pied et langue), et
peut donc être utilisée pour réduire le nombre d’électrodes dans des problèmes multi-
classes.

En conclusion, les méthodes proposées dans cette thèse peuvent améliorer les performances
de classification et/ou augmenter l’efficacité du système (par exemple, réduire le temps
d’apprentissage, réduire le coût du matériel), de manière à contribuer à des ICM pour des
l’applications générales.
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Chapter 1

Introduction

Brain-computer interfaces are systems that measure specific brain activities (e.g. at-
tention level, motor imagery) and then translate them into commands to build a direct
communication between brains and computers (see Figure 1.1) [203]. They bring us the
possibility of using our mind to control machines or devices (e.g. keyboards, cars, neuro-
prosthetics). The first brain-computer interface (BCI) research began in the 1970’s at
University of California Los Angeles [211]. The traditional application of this technique
mainly focuses on personal assistance for improving the life of disabled people. After sev-
eral decades of development, modern BCI techniques show a relative maturity compared
to the past decades and receive more and more attention in real-world general public
applications [36], in particular in the domain of BCI-based human-computer interactions
for healthy people, such as neuro-games.

Fig. 1.1: Schematic illustration of the main basic BCI components: signal acquisition, fea-
ture extraction, feature-to-command translation, command output pathway, and optional
– feedback.

Existing BCI systems can be driven based on various types of brain signals, such as
electroencephalography (EEG) [52, 226], electrocorticography (ECoG) [104], magnetoen-
cephalography (MEG) [123], near-infrared spectroscopy (NIRS) [188], and functional mag-
netic resonance imaging (fMRI) [221]. As it is inexpensive, non-invasive and portable,
scalp EEG-based BCI seems to be the most promising type among them [104].

Recently, both large general IT companies, such as IBM, Microsoft, and specialized com-
mercial BCI companies, such as Emotiv, Neurosky, OCZ, have been developing scalp
EEG-based commercial BCI products for some general public applications (e.g. enter-
tainment, navigation) [140]. Although many EEG patterns, such as EEG rhythms (α, β,
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µ rhythms) and evoked potentials (P300), can be used in BCI systems, most commercial
BCI products (e.g. Neurosky, Emotiv and NIA) are based on EEG rhythms. Due to the
commercial secret, those companies are unwilling to reveal which rhythms are used in
their BCI products. However, the functions for measuring attention levels indicate that
at least the α rhythm (8-13Hz) is employed in Neurosky’s products and Emotiv systems,
since this rhythm is known to be linked to subject’s attention levels in EEG study. The
other two EEG rhythms often used in BCI are µ (8-12Hz)1 and β rhythms (13-30Hz).
They are known as sensorimotor rhythms and associated with body movements or motor
imagery [119]. Motor imagery BCI is one typical scalp EEG-based BCI, which predicts
subject’s motor intensions through sensorimotor rhythms. Several factors indicate that
motor imagery BCI is quite promising. On the one hand, this type of BCI employs the
signals from the sensorimotor cortex regions, which are most directly linked to the motor
output pathway in the brain. Thus, motor imagery BCI can realize motor tasks without
involving muscle activities. On the other hand, motor imagery BCI can be driven by vol-
untary brain activities without any cues from conditioning protocols, so that the control
can be independent and self-paced [174, 225].

One typical two-class motor imagery BCI is to interpret human brain activities corre-
sponding to the imagination (motor imagery) of hand movement. The user is asked to
imagine the movement of either the right or the left hand, so as to elicit specific patterns
of brain activity in the EEG signals. Artificial intelligent methods are employed to in-
terpret the signals for identifying which hand the user intended to move. This technique
has been widely used for helping disabled people, from controlling prosthesis to stoke
rehabilitation [54, 155]. As usual games require left and right hand movements, this BCI
is now also applied to neuro-games to realize a hand-free game control (see Figure 1.2)
[94, 237]. Although two-class motor imagery BCI is helpful for hand-free control, only
hand movement discrimination is monotonous for the user. Thus, decoding more than
two-class motor imagery data is also required [116]. Several brain signal datasets for
classifying motor imagery (for two-class and multi-class problems) are available in BCI
competitions2, so as to encourage researchers to develop algorithms for this purpose [116].

Although the main task of a BCI system is to classify brain signals, developing BCI
systems are more complex than a simple classification problem. Even for BCI systems
based on scalp EEG, the experimental protocols, and methods for preprocessing (signal
enhancement and filtering) and feature extraction can be quite different due to different
EEG patterns used. For example, the “peak picking” algorithm [22] is often used in
P300-based BCI, since P300 typical has a detectable waveform with a positive peak [160].
However, this algorithm cannot be used in motor imagery BCI, since sensorimotor rhythms
do not have a detectable waveform and are often measured by the variance of the signal
in a specific time segment and frequency band [88].

In this thesis, we only focus on solving the challenges of developing BCI systems based
on EEG rhythms, in particular for motor imagery BCI, for general public (non-medical)
applications.

Generally speaking, the challenges come from two aspects. On the one hand, the tradi-

1The µ rhythm is different from the α rhythm, though they share the similar frequency band [161].
The µ rhythm occurs in the sensorimotor cortex, and shows activities of motor neurons, while the α

rhythm mainly happens in the visual cortex, and is associated with inhibition control. Although the α

rhythm is not a new EEG rhythm, its functions and sources are still under exploration until now.
2http://www.bbci.de/competition/
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Fig. 1.2: An example of the application of hand motor imagery BCI to games. The figure
is modified from [94].

tional definition of BCI, which excludes non-brain-based controls in the system, hinders
the freedom of healthy people to realize the control through all possible physiological
functions in BCI experiences. On the other hand, many BCI researches use a large num-
ber of electrodes (e.g. 64) for EEG measurements in order to gather enough information
for precise decoding. This setting reduces the portability and practicability of BCI. To
decrease the number of electrodes, at least three challenges have to be addressed: (1)
the choice of the number of electrodes, (2) the optimal placement of the reduced number
of electrodes and (3) the development of effective machine learning algorithms for BCI
systems based on only few electrodes.

The aim of this thesis is to develop a BCI paradigm and EEG processing algorithms
for addressing these challenges and therefore lead to non-invasive, portable and easy-
to-use BCI systems based on EEG rhythms for large public (non-medical) applications.
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To achieve this goal, a review of the state of the art (existing prototypes and commercial
products, experimental setup, algorithms) is first performed to get a full scope and a good
understanding in this field. The research contribution of this thesis includes two aspects
according to the challenges in BCI definition, and in signal acquisition and processing:

A hybrid BCI (hBCI) is proposed based on one scalp EEG electrode (sensor) placed close
to the visual cortex and a few electrooculographic (EOG) electrodes around the orbit.
It provides the users with a possibility to communicate through ocular activities and to
intentionally decide the timing of communication through brain signals (EEG). As both
EOG and EEG data can be detected by an EEG recording system, this design brings us a
concept of using only one recording system with few electrodes allowing a multi-function
hBCI, which can be applied to real-world applications, providing users with more freedom
and less cost in BCI experience. It is a contribution to the concept of daily-use BCI.

The main work of this thesis is to develop machine learning methodologies for addressing
the challenges in signal acquisition and processing for easy-to-use BCI systems. The main
contributions include an automatic selection of spatial filters for improving signal-to-noise
ratio (SNR), a novel method for selecting the most useful electrodes for portable BCI, and
a new subject-specific optimization for extracting essential time-frequency information for
classification. All methods have been evaluated on standard datasets to make comparisons
with existing methods. The experimental results show that our methods can improve the
classification performances and/or increase the efficiency of system (e.g. shorten the
training time, reduce the hardware cost).

The whole thesis is organized as follows: Chapter 2 reviews the state of the art in de-
velopment of BCI systems for general public applications. Chapter 3 proposes a hybrid
BCI (hBCI) system based on a self-paced brain switch and ocular activities. Chapter 4
presents an automatic selection of spatial filters for improving signal-to-noise ratio (SNR)
of EEG rhythms in the motor imagery BCI, and also a few preliminary work on electrode
(channel) selection. Chapter 5 provides solutions and discussions in selecting the most
useful electrodes for portable BCI. Chapter 6 proposes new subject-specific optimization
methods for extracting essential time-frequency information from a few interesting elec-
trodes for improving the BCI performances. The time-frequency optimization method is
further extended to multi-class problems in Chapter 7. Finally, a conclusion concerning
BCI definitions and intrinsic relationship between the number and positions of sensors,
preprocessing strategy (spatial filtering), and feature selection, is given, so as to propose
the future research directions.

This thesis was performed within the Whist Lab (Institut Mines-Telecom and France Tele-
com joint Laboratory3), and started on 1st October 2010. The work was also performed
in collaboration with Dr. Sylvain Chevallier, while he was a post-doctoral researcher
at Telecom ParisTech (he is now an Associate Professor at Université de Versailles St-
Quentin), and Dr. Olexiy Kyrgyzov, who was a post-doctoral researcher at Whist Lab,
and benefitted from useful discussions with Dr. Slim Essid (Associate Professor in Tele-
com ParisTech) and TAO group at LRI, INRIA (Prof. Michèle Sebag and Dr. Jamal
Atif, Associate Professor). Some parts of work also benefitted from suggestions and helps
from Brain-Computer Interface (BCI) Laboratory (Dr. Kai Keng Ang and Ms Mah-
naz Arvaneh) at Institute for Infocomm Research, Agency for Science, Technology and
Research, Singapore, Dr. Gan Huang, University of Hong Kong, China, and EEGLAB

3http://whist.institut-telecom.fr/
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group, Swartz Center for Computational Neuroscience, USA.
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Chapter 2

BCI systems for general public
applications: state of the art

2.1 Introduction

In this chapter, we first provide a general review of EEG-based BCI techniques and
existing BCI products, and then give detail surveys and discussions on several specific
topics about how to bring motor imagery BCI into daily life.

The chapter is organized as follows: Section 2.2 presents the definition of BCI. A brief
review of existing scalp EEG-based BCI (e.g. types, products and softwares) is provided
in Section 2.3. Section 2.4 introduces the general applications and challenges of motor
imagery BCI. Section 2.5 lists the standard datasets and classification evaluation criteria
often used in motor imagery BCI research. The signal acquisition and spatial filtering
techniques are surveyed in Section 2.6. In Section 2.7, we describe the typical features used
in classification and time-frequency optimization methods for improving the performance
of BCI systems. The algorithms and methods for addressing the problems of electrode
reduction are given in Section 2.8. The conclusion in Section 2.9 leads to the motivation
and research direction of this thesis.

2.2 What is BCI?

2.2.1 Traditional definition of BCI

The traditional definition describes BCI as a system that supports a direct communi-
cation between brain and computer without any use of peripheral nerves and muscle
movements [4, 225]. The basic structure of a BCI typically includes four essential parts:
brain signal acquisition, feature extraction, feature-to-command translation, command
output pathway. Some systems may contain a feedback. The brain signal can be recorded
by various techniques, some are invasive [121, 171], some are non-invasive [193, 228, 229].

BCIs that measure brain activity without surgery are termed non-invasive BCIs, such as
scalp EEG-based BCIs, which record EEG signal with electrodes placed on the surface of
the scalp [4]. The advantage of scalp EEG-based BCI is that it is inexpensive, of low-risk
and portable. However, due to volume conduction through the scalp, skull and other
layers of the brain, the EEG recorded by a scalp sensor is a “blurred” copy of multi-source
activities [68, 138], which increases the difficulty of signal decoding.
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Invasive BCIs acquire signals from sensors implanted in or on the cortex or other brain
tissues through neurosurgery, such as ECoG-based BCI [104]. This type of BCI may
produce a more detailed view of the brain activity than non-invasive systems [225]. How-
ever, expensive surgery, risk of infection, and unclear long-term stability limit its range of
applications.

Besides electrical signals (e.g. EEG and ECoG), some nonelectrical signals are also
able to drive a BCI system. Techniques that acquire nonelectrical BCI signals include
but are not limited to magnetoencephalography (MEG) [123], near-infrared spectroscopy
(NIRS) [188], and functional magnetic resonance imaging (fMRI) [221]. Most of them
are non-invasive. However, fMRI and fNIR have poor temporal resolution compared to
EEG/ECoG [4]. Moreover, fMRI and MEG are very expensive and require highly con-
trolled environment.

Although BCIs measure brain activity, not all devices that record brain signals are BCIs.
Systems that acquire brain signals to study cognitive neural activity, mental disorder, sleep
stage, etc. are not BCIs, because there is no interface in these systems. Systems that
employ non-brain signals (e.g. muscle signals, ocular activities) to realize the interface
between human and computer are not BCIs either. Systems that include at least one
channel brain-based control but involve other non-brain based channels are not BCIs in
the traditional definition; however, some researchers define them as hybrid BCIs [151].

A system that requires some peripheral nerve and/or muscle activity to generate the
brain activities which carry the control signal is a dependent BCI. For example, steady-
state visual evoked potential (SSVEP) based BCI is a typical dependent BCI, which uses
SSVEP as control signal, but the generation of SSVEP depends on the gaze direction.
A BCI that does not need activities from peripheral nerves and/or muscles to generate
control signals is an independent BCI, such as P300 BCI (see Section 2.3.1) or motor
imagery BCI (see Sections 2.3.1 and 2.4).

2.2.2 Hybrid BCI

Unlike traditional BCIs, a hybrid BCI (hBCI) allows users to communicate with computers
based on multi brain-based control approaches (e.g. using both event-related desynchro-
nization (ERD) and steady state visually evoked potential (SSVEP) signals) or a com-
bination of brain-based controls and other bio-signals based controls (e.g. electromyo-
graphy (EMG), heart rate) or assistive techniques (e.g. eye tracking system) [1, 151].
The EU Project “Tools for Brain-computer Interaction” (TOBI)1 improved the concept
of hBCI with the explanation that a BCI channel should be used only if the user needs
it [151]. In other words, a TOBI hybrid BCI should choose the most reliable signal (maybe
muscle-based signal) from multiple input channels and/or switch between input channels
to achieve the best performance of interaction [101]. This control model has been vali-
dated in several hBCI models, such as a BCI combining ocular activities (i.e. gazes) and
motor imagery control [192], and a SSVEP BCI with an on/off switch based on heart
rate [173].

1http://www.tobi-project.org/
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2.2.3 Self-paced BCI

Most BCIs were designed in the past with an externally-paced (cue-based) mode of oper-
ation, where the timing and speed of communication are predetermined by the paradigm
instead of the user [172]. On the contrary, a self-paced BCI is able to separate the inten-
tional control activities from the ongoing spontaneous brain activities without external
cues [174], so users can intentionally decide the timing and speed of communication by
keeping or changing their mental states. This control paradigm has been validated in
both mono-modal BCIs (e.g. motor-imagery based BCI, SSVEP BCI) [149, 174] and hy-
brid BCIs [157, 173]. The key points for realizing a self-paced BCI are (1) to train the
user to induce distinctive brain activity patterns, and (2) to train the system to identify
those patterns from the on-going EEG [173]. The most successful example is self-paced
BCI based on motor imagery, since unlike P300 that needs external stimulus to evoke,
a motor imagery task can be performed in a self-paced way without external cue [24].
The typical way toward self-paced operation proposed by the Graz BCI group is to use
two classifiers in the system: one for separating motor imagery modulated mental state
from non-control state, and the other for further classification of different motor imagery
controls (for details, see [157, 173] and Section 2.3.1).

2.2.4 Discussion on BCI definitions

The traditional definition of BCI excludes non-brain based control in the communication.
To some extent, this impacts the users’ freedom of using all possible physiological func-
tions to realize the communication. The definition of hybrid BCI breaks this restriction.
Moreover, assistive interfaces based on non-brain control may complement the current
BCI techniques in the communication.

A self-paced BCI provides users the freedom to determine the timing and speed of com-
munication. This control paradigm enables users to control the BCI system in a more
natural way than before. Therefore, both hybrid BCI and self-paced BCI should benefit
to the users in their BCI experiments and make BCI interesting to a wider audience than
before. Thus, the study on hybrid BCI and self-paced BCI will be a part of this thesis
(See Chapter 3).

2.3 Scalp EEG-based BCI

Although many brain signals can be used in BCI systems, the most popular BCI systems
are based on scalp EEG signals due to their low cost, and to the fact that they are non-
invasive and easy to use. In this section, we describe several popular EEG patterns used
in present-day BCIs and commercial products based on scalp EEG.

2.3.1 Popular scalp EEG patterns for present-day BCIs

As mentioned in Chapter 1, many scalp EEG patterns can be used in present-day BCI
systems to realize different types of controls. They can be categorized into four types
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depending on the signal patterns they employ: BCIs based on slow cortical potentials
(SCPs), P300, steady-state visual evoked potentials (SSVEPs) and sensorimotor rhythms.

Slow cortical potentials

Slow cortical potentials (SCPs) are potential shifts of the cerebral cortex, which occur
over the frequency range below 1-2Hz and can last for a few seconds [26]. This electro-
physiological response can be measured by the scalp EEG or MEG. The amplitudes of
SCP usually vary from 10 to 100µV. SCPs are generated by the synchronous discharge
of afferent excitation of the apical dendrites of cortical neurons [73]. These dendrites are
located in the cortex layer. SCPs can be negative potential shift (i.e. signal amplitude
decrease), or positive potential shift (i.e. signal amplitude decrease). Negative SCPs are
usually related to the mobilization or readiness, while positive SCPs are associated with
inhibition of neuronal activity [27]. For example, a negative SCP can be measured when
a driver is expecting the green light and is about to start the car; and a positive SCP
can be recorded when the brain is quite busy with information processing. Figure 2.1 (A)
shows both positive and negative SCPs in a BCI experiment [29].

Although people are not aware of these potential shifts in daily life, they are able to
control the SCP amplitude after a training of few months [26]. Thus, SCP has been used
as a signal source for EEG-based BCI. A typical example is “Thought Translation Device
(TTD)”, which already enabled several completely paralyzed patients to communicate
through self-regulation of SCPs [28, 29]. Although both healthy and disabled people are
able to use SCP-based BCIs, several months training may lower enthusiasm of healthy
people for using these BCIs for general purposes (e.g. playing video games). Moveover,
SCP-based control is relatively slow, because detectable changes in SCPs need at least
several seconds to occur [4].

P300 evoked potentials

P300 is an event-related potential (ERP) component, which is typically evoked by the
perceived and discriminating stimuli [160]. It usually occurs over the parietal cortex with
a positive peak at approximately 300 ms after the given stimulus [111]. A typical example
of P300 is shown in Figure 2.1 (B). The first P300-based BCI system was developed by
Farwell and Donchin in 1988 [63]. P300-based BCIs usually present to the subject a
matrix of letters or symbols. Each row and each column of the matrix are flashed rapidly
(typically 100ms) in a random sequence. The subject is required to focus his/her attention
on the letter or symbol that he/she wants to choose. To help the subject to participate
with the best performance, researchers often instruct the subject to silently count the
flashes that include the desired target while ignoring the others [2]. The flashes of rows and
columns containing the desired targets will elicit a P300 in the subject’s parietal cortex,
since they constitute a rare but perceived event in the context of all other flashes [162].
The typical model for collecting the training data is copy spelling. In this process, the
target letters are presented on the top of the screen. The subject is required to gaze on
the pre-spelling letter in the matrix during flashes. The flashes are repeated in multiple
sequences, so as to elicit a detectable P300 [53, 58]. The performance of P300-based BCI
can be affected by several factors, such as the matrix size [2, 182], the inter stimulus
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interval (ISI) [63, 122, 182], the flash patterns [3] and the amount of training data [69].
The optimal combination of those parameters is still under analysis. A current research
indicates that the online classification accuracy is the highest for a 3 × 3 matrix and 175ms
inter stimulus interval, while the communication speed is the fastest for a 6 × 6 matrix and
175-ms inter stimulus interval [182]. P300 could also be elicited under auditory stimuli
[181], and now auditory P300-based BCIs have also been developed for blind users [65, 95].
Recent studies showed that P300-based BCI systems yield better performance (i.e. faster
communication speed and higher classification accuracy) than other EEG signal patterns
in many subjects [4, 69, 183]. Moreover, a remarkable advantage of P300-based BCI is
that it does not require initial user training. However, it is difficult to develop a self-paced
BCI based on P300, since most P300-based BCIs require the user to observe flashes that
are presented at a predetermined rhythm. Another problem is that the amplitude of P300
is likely to change over time [165, 190], so that the BCI performance deteriorates after a
long time use. It is a big challenge for a long-term-use system [225].

Steady-state visual evoked potentials

When the retina is exposed to a visual stimulus that flickers at rates ranging from 3.5 Hz
to 75 Hz, the brain generates neural responses at the same frequency as the one of the
visual stimulus, or at a multiple of this frequency [129]. Those responses are known as
steady-state visually evoked potentials (SSVEPs) [167] (see Figure 2.1 (C)). The SSVEPs
are generated in the visual cortex and could be detected at each stimulus frequency
through Fourier analysis of corresponding EEG signals [57]. Thus, it is possible for the
system to identify which stimulus the subject is gazing at, in case of stimuli with different
flickering frequencies [129, 133]. A typical SSVEP-based BCI system presents to the
subject several symbols that flicker at different frequencies on the computer screen. The
subject is instructed to focus his/her attention on the target flickering symbol to generate
the SSVEP signals for BCI communication. The feedback is often needed, especially in
the training procedure, to help the subject to control/keep the amplitude of the brain
wave corresponding to the frequency of the stimulus at which the subject is gazing [25].
SSVEP-based BCI could be used in many general public applications, such as robot
control [202] and BCI speller [42]. Recently, researchers from Neurosky Inc. introduced
a user-friendly SSVEP-based BCI, which uses single-channel EEG recorded by a low-
noise dry electrode and a novel stimulus-locked inter-trace correlation (SLIC) method
for SSVEP classification [109]. In SSVEP studies, traditional methods often use the
information from the frequency domain for classification. SLIC analyzes EEG data in the
time domain by computing the correlation between single-trial event-related potentials,
which are time-locked to a visual stimulus. Compared to traditional methods, this method
does not require any prior knowledge about the frequency of the flashing stimulus or the
response waveform of a subject.

Some researchers believe that this system might have a brilliant future in general public
applications due to its high robustness and user-friendly features [109, 210]. However, the
performances of most SSVEP-based BCI largely depend on the user’s ability to control
the gaze direction, because SSVEP amplitudes are associated with this direction. Most
SSVEP-based BCIs are dependent BCIs, which require some efforts from muscle (in par-
ticular ocular muscle) to produce brain signals (i.e. SSVEP) for communication [225].
Some researchers think that dependent BCIs are not “pure BCI”, since they cannot be
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used without motor control [4]. A SSVEP can also reflect the subject’s attention, and
some independent SSVEP BCIs were recently proposed based on attention driven control,
so as to exclude any motor control [90].

Sensorimotor rhythms

Sensorimotor rhythms are EEG rhythms typically at µ (8-12Hz) and β (12-30Hz) bands
recorded over the sensorimotor cortex [119]. Existing studies show that imaginary move-
ments of different body parts can cause an attenuation of sensorimotor rhythms, termed
as event-related desynchronization (ERD), at corresponding “active” cortex areas; mean-
while, an enhancement of sensorimotor rhythms called event-related synchronization (ERS)
may be observed at other “idling” areas (see Figure 2.1 (D)) [152, 154].

Several factors suggest that sensorimotor rhythms should be good signal patterns for EEG-
based BCI. First of all, they contain information from the cortical areas most directly
linked to the normal motor output channels. Thus, some precise control may be possible
for subjects to control movement of a robot arm or a computer cursor [121, 228]. Further-
more, subjects can voluntarily evoke ERD/ERS by imagining a movement corresponding
to any muscle activity, so that the control mode can be self-paced and independent of
muscle involvement [99, 172]. Several training sessions are necessary for most users to
master the use of BCI based on motor imagery [118]. Typically, they may need five to ten
times training for one dimensionality of movement (e.g. moving the cursor from left to
right), and each training session lasts less than 30 minutes [4]. Several studies showed that
two dimensional movement control is also possible with some additional training [93, 227].
Thus, BCIs based on sensorimotor rhythms, also called motor imagery BCIs, are quite
promising to help users to control the movement of output devices through their minds.

2.3.2 BCI products

After several decades of research improvement, BCI research has shown a relative matu-
rity through the demonstration of different prototypes. Several companies adapted BCI
systems and the related technologies for real-world applications, to bring them to a broad
audience. Here, we briefly describe four most popular BCI products: Neurosky’s Mindset,
Emotiv EPOC, G.tec’s IntendiX and OCZ Technology’s Neural impulse actuator.

Neurosky’s products

NeuroSky2 is a manufacturer of inexpensive, portable EEG-based BCI systems for general
public applications. It adapted hybrid BCIs based on EEG and EMG to answer a market
demand, only for healthy people, within a number of fields, such as entertainment (toys
and games), education, sport, research and wellness [240]. NeuroSky has several inde-
pendent products, such as MindWave Mobile, Necomimi, MindWave and MindSet. Most
Neurosky products look like wireless earphones; but all of them include a dry sensor that
touches at the forehead. The typical one is Mindset (see Figure 2.2 (A)). MindSet contains
ThinkGear technology [130, 131], which measures the EEG signals at a location around

2http://www.neurosky.com/
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Fig. 2.1: Different EEG patterns for actual BCIs: (A) Typical slow cortical potentials
measured in an BCI experiment [29]. (B) P300 obtained in [63]. (C) A SSVEP elicited in
an BCI experiment (source from [187]). (D) Time-frequency maps of ERD (areas with red
color) and ERS (areas with blue color) for four different classes of motor imagery (right
hand, left hand, both feet and tongue) [152]. All illustrations are reproduced from the
cited papers.

the pre-frontal cortex through one dry sensor (with reference points at the left ear pad)
to access the attention and meditation level measurements for BCI applications [166]. It
can record, separate and display various frequencies of EEG simultaneously, detect EOG
automatically and also measure attention and meditation levels separately [76]. Here, the
meditation level indicates the level of a user’s mental calmness [79]. It has two leading
techniques: one is the small, low power ThinkGear chip, the other is the low-noise dry
sensor. Traditional EEG electrodes are typically made of metal (e.g. Ag/AgCl). A good
contact between electrodes and skin needs an electrically-conductive gel. This gel often
takes a lot of time to apply when the electrodes are many in the EEG cap (more than
1 hour for 64 channels system). It may diffuse through the hair creating a short circuit
between electrodes, or may dry out during the experiment resulting in considerable noise
in the recording signals. NeuroSky’s low-noise dry sensor technology tries to get rid of
those problems [86]. Only one dry sensor is used. This dry sensor touches the skin directly
without any gel. However, our experiment showed that the Mindset system is not robust
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when there are hairs between the dry sensor and the skin. This drawback may be the
reason why all Neurosky’s products measure EEG signals from forehead.

Neurosky provides two Mindset toolboxes: Mindset Development Tools (MDT) and Mind-
set Research Tools (MRT), for development and research purposes, respectively. MDT is
a communication socket, which provides the possibility for some self-developed applica-
tions/softwares to connect to and communicate with the ThinkGear Chip inside MindSet
headsets. It can work with both Windows and Mac OS systems. MRT enables BCI re-
searchers to use the MindSet headsets as a raw EEG data collection device. It includes
two softwares: NeuroView and NeuroSkyLab. NeuroView provides the users with an easy
way to receive, present, view and store Mindset data in real time, while NeuroSkyLab
allows researchers to analyze the data through the free software EEGLAB in the Matlab
environment. But MRT only works with Windows System.

The main advantage of Neurosky is its inexpensive, portable and one dry sensor based
communication, which makes BCI experiences easier for healthy users. However, the
functions of Neurosky products are quite limited. Only a measurement of attention and
meditation levels and some simple additional functions, such as eye-blink detection, may
not be enough to meet the needs of the users.

Emotiv EPOC

Emotiv Systems3 is an Australian company developing EEG-based BCI for entertainment
and research purposes. Emotiv EPOC is its only current product, which only works
with Windows System. It contains 14 wet electrodes, AF3, AF4, F3, F4, F7, F8, FC5,
FC6, P7, P8, T7, T8, O1, O2, with 2 reference electrodes located at P3 (CMS) and P4
(DRL), for EEG measurement (see Figure 2.2 (B)). The montage of electrodes obeys a
standard EEG recording montage – the 10-20 system (see Figure 2.3) [84]. It also has
a two-axis gyroscope to measure the direction of head movement. The sampling rate
for EEG recording is around 128Hz using a sequential sampling. Emotiv Systems claim
that users can play some games using their mind and facial expressions after a training
process. Thus, Emotiv is also a hybrid BCI based on both EEG (from mind controls) and
EMG (from facial expressions). It can measure the subject’s mental levels (e.g. levels of
excitement) through analyzing EEG data and reconstruct a facial expression in the screen
by EMG data. However, in our tests we found that this system is sensitive to environment
noise and artifacts from body movement, which deteriorates its performance. Raw EEG
data from Emotiv EPOC headset are accessible for research purposes but a licence fee
has to be paid.

The advantage of this system is that it can fulfill more functions than Neurosky’s Mindset
with its 14 electrodes. But its wet electrodes and its sensitiveness to noise might be main
drawbacks for the end users.

G.tec’s IntendiX

G.tec4 is a biomedical engineering company which produces biosignal amplifiers and elec-
trodes. It shows intensive interest for BCI research, and has supported several years the

3http://www.emotiv.com/
4http://www.gtec.at/
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annual BCI research award. IntendiX is its current BCI product for patients’ everyday
use (see Figure 2.2 (C)) [206]. IntendiX contains two applications now: IntendiX Speller
and IntendiX Screen-Overlay Control Interface (SOCI).

IntendiX Speller is a personal EEG-based typing system. The system works based on
visual evoked EEG potentials (VEP/P300) and enables the user to sequentially typing
characters using a keyboard-like matrix on the screen just by paying attention on the
target character for several seconds [70]. It requires only a few minutes of training. Most
subjects can use it after only 10 minutes with a reasonable performance, spelling 5 to 10
characters per minute [43].

SOCI is based on Steady-State Visual Evoked Potential (SSVEP). It presents to the users
several icons on the screen. Each icon flickers at a certain frequency. The users can select
a icon on the computer screen by paying attention to one of the icons [56]. G.tec claims
that SOCI can achieve an accuracy of up to 98% for some subjects5.

G.tec’s Intendix is more like a mature prototype of BCI rather than a real commercial
product. For the end-user, it may present several drawbacks, such as wired electrodes,
relatively expensive price, requirement of professional aids. It is aimed to help patients,
so that it is unavoidable to lose the market of healthy users. However, this system is
quite suitable for research purpose or second development. For example, the positions of
the electrodes in this system can be changed, so that researchers can record the data at
different positions to seek the optimal recording positions for different subjects.

Neural Impulse Actuator

The Neural Impulse Actuator (NIA)6 is a hybrid brain-computer interface (BCI) devel-
oped by OCZ Technology [72] (see Figure 2.2 (D)). It has three dry electrodes on forehead,
and mainly serves for entertainment purposes, such as BCI games [40]. NIA is not purely
driven by electrical activity from the brain. What NIA captures is a mixture of several
bio-signals from muscles, skin and neural activities. NIA can interpret two EEG rhythms
(i.e. α and β rhythms), signals from facial muscles and eye movements. It allows users
to choose using brain, muscle or ocular signals to control a paddle moving in a game.
This design agrees with the new concept of hybrid BCI proposed by Graz BCI (see Sec-
tion 2.2.2). A test showed that it is easy to use muscle signals to realize the control in
this system but quite hard to use brain and ocular signals (for details, see [240]).

The advantages of this system are its dry sensors and its low price. However, it is not
always easy to use even though it still has limited functions.

2.4 Motor imagery BCI for general public applica-

tions and its challenges

The original and still prevalent application of BCI is to provide an assistive technology
for disabled people [128]. However, despite the evolution of the technology, several types

5http://www.intendix.com/
6http://www.ocztechnology.com
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Fig. 2.2: Illustration of different BCI products. (A) Neurosky’s Mindset. (B) Emotiv
devices and its montage of electrodes. (C) G.tec’s IntendiX. (D) Neural Impulse Actuator.

of BCI systems are still designed and tested for healthy people only. Motor imagery BCI
is one typical Scalp EEG-based BCI. The general public applications of motor imagery
BCI like other types of BCI are mainly focused on developing next generation entertain-
ments and intelligent systems [141], such as neuro-games [48] and navigation in virtual
environment [102]. A research group in Berlin has developed motor imagery BCIs to play
games [94], such as Pacman, Pong and Tetris, and also a BCI-controlled web browser [36].
A recent user-satisfaction survey revealed that the motor imagery BCI-based version of a
game was more engaging and interesting for users than its physical keyboard version [204],
which indicates that motor imagery BCI is promising for neuro-games. An application in
virtual reality is proposed in [153]. The subject“walks” in the virtual world by imagination
of foot movements, and “touches” objects by imagination of hand movements.

The advantage of motor imagery BCI is that it can identify users’ motor motivations, so
that it may further have some potential applications in the modern industry and military
domain. For example, people might use it to control robotic arms to realize some tasks
in dangerous environments in the future, such as grabbing a very hot bottle.

The underlying physiological phenomenon is that motor imagery of a specific body part
(e.g. left hand, right hand) induces an event-related desynchronization (ERD) in the
µ and β bands over the corresponding functional area in the sensorimotor cortex [154].
Thus, the essential task of a motor-imagery based BCI is to extract the spatial relevant
ERD patterns from EEG signal for identifying the subject’s motor intensions. However,
ERD/ERS patterns are typically short-lasting (half to few seconds) and their frequency
range may vary with subjects [234]. How to find the right frequency band and the optimal
time segment of EEG is one of the major problems in motor imagery BCIs.

Moveover, due to volume conduction through the scalp, skull and other layers of the brain,
the EEG signal recorded by a sensor is a“blurred”copy of multi-source activities [68, 138].
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As a result, other undesirable signal patterns (e.g. strong α-rhythm and other on-going
background EEG components) may submerge ERDs, which leads to a poor signal-to-noise
ratio (SNR) and increases the difficulty of extracting ERDs. To overcome this problem,
multi-channel EEG recording has been used in many BCI systems to acquire more than
enough information for further feature extraction and selection [163]. Spatial filters such
as common average reference (CAR) [170], orthogonal source derivation (i.e. Laplacian
derivation) [14] and common spatial pattern (CSP) [135] are often used in multi-channel
EEG data classification for increasing the SNR and enhancing the patterns of interest.
However, the multi-channel setting reduces the portability and practicability of BCI, which
presents a major drawback for end-users.

We will review the existing methods for solving those challenges in Sections 2.6, 2.7 and
2.8, so as to seek for the possible way to bring motor imagery BCIs out of labs into general
public applications (e.g. entertainments, industry applications). Before reviewing those
methods, we introduce in the next section some standard datasets, which are often used
to test the methods, and several criteria for evaluating their performances.

2.5 Standard datasets and classification evaluation

2.5.1 Standard datasets

BCI competitions provide many standard datasets of motor imagery BCI. From Table 2.1,
we can see that more than 80% datasets are motor imagery BCI datasets in available
databases, indicating that people pay more attention to the challenges of motor imagery
BCIs than other types of BCI. This section only describes some popular datasets. Infor-
mation on other datasets can be found on the websites of BCI competition II7, III8 and
IV9.

Table 2.1: Number of different types of BCI datasets in BCI competitions.
Competitions Motor imagery P300 SCP SSVEP

I unavailable now
II 3 1 1 0
III 7 1 0 0
IV 5 0 0 0
total 15 2 1 0

• Datasets for channel reduction:

BCI competition III dataset IVa: As the most frequently used database, BCI com-
petition III dataset IVa [33] has been used as the experimental data in [16, 17, 97,
124, 143, 220, 239]. This dataset includes 118-channel cue-driven motor imagery
EEG data with two classes (right hand v.s. right foot) from five subjects, which
is suitable to test the ability of algorithms to reduce and select channels from a

7BCI competition II: http://bbci.de/competition/ii/
8BCI competition III: http://bbci.de/competition/iii/
9BCI competition IV: http://bbci.de/competition/iv/
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large number of EEG recording channels in binary-class problems. In the competi-
tion, this dataset is aimed to pose the challenge of reducing the time needed for the
initial training. For some subjects, only a few training data are available to teach
the classifier (see Table 2.2), so as to encourage players to develop algorithms that
can work on small training sets. However, the classification accuracies in Table 2.2
show that for some subjects, like subject “aw”, only a few initial training data are
enough to teach the classifier, so whether a short time training is possible depends
not only on the machine learning method but also on the subject. Thus, after this
competition, this dataset is often used for the research on channel reduction instead
of its original purpose.

Table 2.2: Number of training (labeled) trials “tr” and test (unlabeled) trials “te” for each
subject, and classification accuracies (see Section 2.5.2) of three top players (listed by
rank) in the BCI competition III [35].

Subject tr te 1 2 3
al 224 56 1.00 0.98 0.95
aa 168 112 0.96 0.89 0.82
av 84 196 0.81 0.77 0.70
aw 56 224 1.00 .92 0.88
ay 28 252 0.98 0.81 0.88

BCI competition II dataset IV [32]: It contains data from a single subject with two
finger movements (fingers from left and right hands), recorded using 28 EEG chan-
nels, which have been used in [110] as experimental data for reducing the number of
electrodes. This dataset was recorded from a normal subject during a no-feedback
session. The real finger movements are performed in a self-chosen order and a self-
paced timing, thus it poses the challenge of algorithm design for self-paced BCI
systems. Meanwhile, as finger movements unavoidably cause artifacts to EEG sig-
nals, this dataset can also be used to test the robustness of a method to noise.

BCI competition III dataset I [96]: This dataset contains two-class cue-driven motor
imagery (left small finger v.s. tongue) data from a single subject (epileptic patient)
but with 64 ECoG channels, which is an invasive BCI system. ECoG data usually
have higher SNR than scalp EEG data. As the training and testing data are recorded
in different days, this dataset poses the challenge of using a classifier that was trained
on the first day to classify the data recorded during the following days (without
retraining). It is a common but tough challenge due to at least two reasons: 1) the
patient might be in a different state concerning motivation, fatigue, etc., so that his
brain will show a different electrical activity, 2) the recording system might have
undergone slight changes concerning electrode positions and impedances. Thus, this
dataset can be used to test the robustness of a method to data evolution for a long-
term-use invasive BCI system. This dataset has also served as experimental data
with BCI competition II dataset IV in [110] for electrode reduction.

• Datasets for multi-class problems:

BCI competition III dataset IIIa10: This dataset contains four-class cue-driven motor
imagery (left hand, right hand, foot and tongue) data recorded from three subjects

10http://www.bbci.de/competition/iii/desc IIIa.pdf

35



(ranging from quite good to fair performance) using 60 EEG channels. In this
dataset, the trials contaminated by artifacts are marked. As there are no EOG or
EMG channels used for artifact correction, a small Laplacian derivation (see Section
2.6.3) is performed to remove muscle and ocular artifacts. Thus, the signal in this
dataset is relatively clean. The challenge is to develop an effective method to improve
the multi-class BCI performance (evaluated by kappa coefficient, see Section 2.5.2).

BCI competition III dataset V [127]: It is a three-classes (left hand, right hand,
and mental imagery of word) recorded from three normal subjects using 32 EEG
channels. The raw EEG potentials were spatially filtered by a small Laplacian
derivation (see Section 2.6.3) to enhance SNR. This dataset can be used to evaluate
machine learning algorithms for the multi-class self-pace BCI.

BCI competition IV dataset IIa [137]: These four-class (left hand, right hand, foot
and tongue) data are recorded from nine health subjects with 22 EEG channels
and 3 EOG channels. As many trials contain eye movement artifacts (detected by
EOG channels), the main challenge for this dataset is to classify of EEG signals
affected by ocular artifacts. The problem can be solved by applying an on-line EOG
correction algorithm (see Section 2.7.1) before extracting the features.

• Bipolar recording datasets:

Bipolar recording (see Section 2.6.1) is a popular recording technique in BCI re-
search, since it can improve the SNR and reduce the number of electrodes. BCI
competition III dataset IIIb [214] and BCI competition IV dataset IIb [100] contain
three bipolar channels data with two different classes (left vs. right hand), which can
serve for developing methods based on bipolar recording (see Section 2.6.1). BCI
competition III dataset IIIb are recorded from three subjects. The main challenge
of this dataset is the non-stationarity problem. BCI competition IV dataset IIb are
recorded from nine subjects. The main challenge is to classify the data contaminated
by ocular artifacts.

To sum up, most of datasets listed above are recorded from healthy people, which are suit-
able for testing new methods for BCI systems for large public (non-medical) applications.
They pose different challenges, such as channel (electrode) reduction, artifact removal, etc.
Many of them can be used to evaluate the robustness of methods to artifacts and data
evolution. Moreover, a lot of researchers tested their methods on BCI competition data
and presented their results on the competition websites or in the literature, thus allowing
an easy comparison of methods. Although testing methods on self-recorded data might
be also interesting, evaluation and comparison would be more difficult. However, most
BCI competition data are recorded on a few subjects only (usually no more than nine
subjects in a dataset), so testing methods on several different BCI competition datasets
should be interesting for achieving a good evaluation.

2.5.2 Classification evaluation

Several criteria can be used for classification evaluation. This subsection presents three
most popular criteria used in BCI research: confusion matrix, classification accuracy
(ACC)/error rate (ERR) and kappa coefficient (κ).
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• Confusion matrix [178]: For a M -class problem, the confusion matrix shows the
relationship between the classification output and the true classes. An element cij in
the confusion matrix indicates how many samples of class i have been found in class
j by the classification algorithm. The diagonal elements cii represent the number
of correctly classified samples for class i. The off-diagonal elements cij (i "= j)
represent how many samples of class i have been incorrectly classified in class j.

The total number of samples is
M∑
i=1

M∑
j=1

cij. The confusion matrix is seldom used in

BCI evaluation, because it is difficult to compare two confusion matrices when the
number of classes is larger than 2 [178].

• Classification accuracy and error rate [178]: The classification accuracy (ACC)
and the error rate (ERR = 1−ACC) are the most popular evaluation criteria in BCI
research. The classification accuracy is defined as the observed overall agreement
between classification outputs and true classes. It can be derived from the confusion
matrix:

ACC =

M∑
i=1

cii

M∑
i=1

M∑
j=1

cij

(2.1)

As it is a statistical summary of agreement, the classification accuracy has some lim-
itations: 1) it does not consider the chance level for agreement in the classification;
2) it cannot reflect the performance of a classifier for classes with few samples, since
they have a small contribution to ACC. Thus, this criterion is often used when all
classes have comparable numbers of samples.

• Kappa coefficient [47]: To overcome the limitations of the classification accuracy,
researchers proposed to use kappa coefficient κ for BCI evaluation. The chance level
for agreement Pe is defined as:

Pe =

M∑
i=1

(
M∑
j=1

cji ·
M∑
j=1

cij)

(
M∑
i=1

M∑
j=1

cij)2
(2.2)

By denoting Po the observed agreement between classification output and true
classes (Po = ACC). The kappa coefficient is defined as:

κ = (Po − Pe)/(1− Pe) = (ACC − Pe)/(1− Pe) (2.3)

A larger κ value indicates a better classification performance. The kappa coefficient
has several advantages: 1) it considers the effect of chance agreement, 2) classes
with few samples get the same weight as classes with many samples. Thus, in BCI
competition IV, the kappa coefficient was chosen instead of classification accuracy
as evaluation criterion.
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2.6 Signal acquisition and spatial filters

EEG signals are usually recorded against a common reference, so called monopolar record-
ing [191]. The electrodes for recording each channel of EEG are called “active” elec-
trodes [196]. They are placed according to the 10-20 recording system11 (see Figure 2.3).
The reference can be located at an ear lobe, mastoid or nose. The data are therefore
reference-dependent for monopolar recording [154].

Fig. 2.3: International 10-20 system seen from (A) left and (B) above the head. A = Ear
lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal polar,
O = occipital [113].

In the multi-channel setting, the EEG signals recorded at each time point can be con-
sidered as a spatial matrix corresponding to the spatial distribution of the electrodes.
However, the spatial resolution of EEG is quite poor. Due to the volume conduction
through the scalp, skull and other layers of the brain, the EEG signal recorded by a sen-
sor is a “blurred” copy of multi-source activities (see Figure 2.4) [68, 138]. Spatial filters
are used to improve the spatial resolution by enhancing the control signal and/or reducing
the noise by using the neighborhood or global information [117]. This section reviews four
popular spatial filtering methods: bipolar recording, common average reference, Laplacian
derivation and common spatial pattern.

2.6.1 Bipolar recording

Bipolar recording is an EEG acquisition technique that measures the potential differences
between two “active” electrodes. Bipolar recording can increase the SNR by reducing the
common noise of both electrodes [108]. Let D1 and D2 be the discriminative patterns (e.g.
motor-imagery related ERD/ERS patterns, event-related potential) of EEG signals at the

11 The 10-20 system is an internationally recognized method to apply the location of scalp electrodes
in an EEG experiment. This method was proposed to ensure standardized reproducibility so that com-
parisons can be made between subjects or over time for the same subject (for details, see [84]).
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Fig. 2.4: Volume conduction effects in EEG recording (this figure is modified from [197]).

two “active” electrodes. Let C represent the mixture of common additive background
noise of the two electrodes. The signals X1 and X2 recorded at the two electrodes can be
expressed by the following additive model [216]:

X1 = D1 + C, X2 = D2 + C (2.4)

This additive model is based on a basic assumption that a scalp EEG is a linear combina-
tion of source components. Although this assumption may not exactly reflect the complex
composition of neural responses (which is still under exploration) in scalp EEG [11], it
is typically used as an approximate model in practice for artifact reduction and source
analysis [205, 212, 215]. Based on this model, the EEG signal in the bipolar recording
channel derived from these two electrodes is:

XBI = X1 −X2 = D1−D2 (2.5)

Thus, the bipolar recording can remove the shared additive background noise between
two “active” electrodes.

2.6.2 Common average reference

In the common average reference method (CAR), the EEG signal is centered according
to the following formula:

XCAR
i = Xi −

1

N

N∑

j=1

Xj (2.6)

where Xi is the potential difference between the i-th “active” electrode and the common
reference (i.e. EEG in the i-th monopolar channel), N is the number of“active”electrodes,
and XCAR

i is the corresponding EEG signal after the CAR transform. The CAR tends to
result in a spatial voltage distribution with a zero mean, and therefore the CAR provides
approximately reference-free EEG [154]. This setting reduces the components that exist
in a large proportion of the electrode population, so as to serve as a high-pass spatial filter
in EEG-based communication [117].
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2.6.3 Laplacian derivation

Laplacian derivation is also a widely used spatial filtering algorithm in BCI [13, 78, 136].
The Laplacian value of each channel is obtained by subtracting the mean activity at
surrounding electrodes from the channel of interest (see Figure 2.5) [75, 189]. Denote by
XLAP

i the Laplacian EEG signal in channel i, and Si an index set of the four electrodes
surrounding the i-th electrode. The Laplacian derivation is computed according to the
following formula:

XLAP
i = Xi −

1

4

∑

j∈Si

Xj (2.7)

Two different sets of surrounding 4 electrodes are often used: nearest-neighbor elec-

Fig. 2.5: Laplacian derivation: • represents electrode i, and four ◦ around electrode i
represent four surrounding electrodes (they have the same distances from electrode i).

trodes (the distance from each surrounding electrode j to the center i is dij = 3cm) and
next-nearest-neighbor electrodes (dij = 6cm) [117]. The Laplacian derivation employing
nearest-neighbor electrodes is called a small Laplacian, while the one using next-nearest-
neighbor electrodes is named a large Laplacian. The characteristics of the Laplacian
highly depend on dij. Experiments show that the Laplacian becomes more sensitive to
the components with high spatial frequencies when dij increases [117]. Thus, the small
Laplacian is often used to improve the SNR when the control signal is highly localized
and stable over time, while the large Laplacian is more suitable when the signal is not
highly localized and non-stationary. Compared to CAR, the Laplacian derivation uses
local instead of global information to obtain a reference-free EEG. This method can be
used in any BCI system which has limited electrodes to record EEG data.

2.6.4 Common spatial pattern

Unlike spatial filters reviewed above, common spatial pattern (CSP) is a data-driven ap-
proach for constructing subject-specific spatial filters. It aims at maximizing the difference
between the classes (denoted L and R in the following) through finding directions (i.e.
spatial filters) that maximize the variance of signals for one class and at the same time
minimize the variance of signals for the other class [37]. The basic strategy of the CSP
algorithm is to simultaneously diagonalize the covariance matrices of the two classes. Let
XL and XR be the (time× channel) data matrices of the frequency filtered EEG signals
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(concatenated trials) under the two conditions (e.g., right-hand or left-hand imagination,
respectively). The corresponding covariance matrices CL and CR are estimated by:

CL = XT
LXL, CR = XT

RXR. (2.8)

The spatial filters W = [w1, ..., wN ] are constructed as follows:

W TCLW = ΛL, W TCRW = ΛR, ΛL + ΛR = I (2.9)

Those filters W decompose the N -channel EEG X = [x1, x2, ..., xN ]
T into N uncorrelated

filtered signals Z = [z1, z2, ..., zN ]
T through the transformation zj = wT

j X, (j = 1, 2, ..., N).
A toy example that shows how it works in 2D is given in Figure 2.6. In classification, the
features of single-trials are obtained by the log-variance of CSP filtered signals zj [135].
For more details, please refer to Chapter 4.

Fig. 2.6: A toy example of CSP filtering in 2D space [37]. Two sets of points marked by red
ellipses and blue ellipses are from two Gaussian distributions (two classes). A. Distribution
of samples before filtering. Ellipses show the estimated covariances of distributions and
the dashed lines show the directions of the pair of CSP projections. B. Distribution of
points after the filtering. Both classes are uncorrelated at the same time in this process.
The horizontal axis gives the largest variance in the red class and the smallest in the blue
class, while the vertical axis in the opposite.

2.6.5 Discussion on spatial filters

As recording EEG activities during a special BCI control may vary with different subjects,
subject-specific data-driven spatial filters, such as CSP, are often recommended in BCI
researches, in particular for motor imagery BCI [37, 68]. Figure 2.7 shows the spectra of
left vs. right hand motor imagery after using different spatial filters on the same data [37].
In this example, the raw channel shows a spectral peak around 9Hz that provides no visible
discrimination between two classes. The bipolar recording and CAR can only improve it
slightly compared to the raw channel. Both the Laplacian derivation and CSP generate
a second discriminative spectral peak around 12Hz. Compared to Laplacian derivation,
CSP filters yield more remarkable discriminative peaks around both 9Hz and 12Hz.
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However, the CSP algorithm usually requires a multi-channel setting (around 20 “active”
electrodes) for a good performance [62]. Such a multi-channel setting inevitably reduces
the portability and practicability of BCIs, which represents a main drawback for end-
users. Recent researches showed that some feature extraction or classification methods
using few electrodes with bipolar recording or Laplacian derivation may also achieve fairly
good performances [12, 46, 108, 152]. Meanwhile, some improved CSP algorithms, such
as Sparse CSP, are also proposed for reducing the number of electrodes in CSP-based
classification [239]. Thus, a balance between better performances and less electrodes has
to be achieved in the spatial filter selection. This aspect is discussed in Section 2.8.

Fig. 2.7: Spectra of left vs. right hand motor imagery [37]. All plots are calculated from
the same data but using different spatial filters. The discrimination between the two
conditions is evaluated by the r2-value (Equation 2.25).

2.7 Feature extraction and classification in motor im-

agery BCI

2.7.1 Pre-processing

In the EEG recording, the electrooculogram (EOG) signals from ocular activities are the
main artifacts, which need to be removed before feature extraction. Various methods can
be used for EOG reduction (for details, see [64]), but they are rarely fully automatic and
online processing methods. Here, we describe a fully automated online method recom-
mended by BCI competition IV [177]. The basic assumption of this method is that the
recorded EEG data E are a superposition of the “pure” EEG data X and three spatial
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EOG components O (horizontal, vertical and radial). So the “pure” EEG data X can be
obtained by:

X = E −O · b (2.10)

where b is the correction coefficient. Denote by COO the autocorrelation matrix of the
EOG components O, and by CEO the cross-correlation between the recorded EEG data
E and the EOG components O. The correction coefficient b is estimated by:

b = C−1
OOCEO = (OTO)−1OTS (2.11)

Figure 2.8 shows that most visible EOG artifacts in a EEG recording can be removed
by using this online processing method. The independent evaluation of expert scorers
demonstrated that this method can successfully reduce 80% EOG artifacts in raw EEG
signals [177]. Although this method cannot completely eliminate EOG artifacts, it is the
most popular method for online EOG correction, because it is fully automatic and available
in a popular open source software library of biomedical signal processing – BioSig [176].
Recently, it has been discussed whether some artifacts, such as eye movement, can be used
as useful control signals in BCI systems [21, 120]. This idea will be explored in Chapter
3.

Imaginary movements of a body part typically cause an EEG power modulation (ERD/ERS)
at µ (8-12Hz) and/or β (12-30Hz) bands. Thus, a band-pass filter is usually applied to
the “pure” EEG signals in the preprocessing after artifact reduction to extract the desir-
able frequency bands for feature extraction. For general use, a 8-30Hz band-pass filter
(typically using a 5-order Butterworth filter) is recommended, since this frequency band
covers both µ (8-12Hz) and β (12-30Hz) bands [135].

2.7.2 Popular features in motor imagery BCI

A great variety of features have been used for classification of signal in a motor imagery
BCI [107]. Their properties may greatly affect the performances of the classifiers.

Band power

ERD/ERS patterns are the power decrease (ERD) and power increase (ERS) in rela-
tion to a reference interval (typically 1s) before the trial begins [154]. As the bandpass
filtered EEG data in a short segment approximately follow a zero-mean Gaussian distri-
bution [186], the power of signal is usually estimated by the variance of the signal values
for each trial. In a multi-channel recording, denote by xjk the j-th sample in the time
interval [t, t+ T − 1] of the k-th trial of the bandpass filtered EEG data in channel i, and
x̄k the mean value over all samples of filtered EEG in the time interval [t, t + T − 1] of
the k-th trial. So we have:

σ2
i (k) =

1

T − 1

t+T−1∑

j=t

(xjk − x̄k)
2 (2.12)

However, σ2
i (k) is not normally distributed (it approximately follows a χ2-distribution) [34].

Thus, the logarithm is applied here to make the distribution of BP features approximately
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Fig. 2.8: Result of the online EOG correction methods (the figure is reproduced
from [177]).

normal, which makes the linear classification more successful [213]:

BPi(k) = log(σ2
i (k)) (2.13)

BPi(k) is the k-th trial log-BP in channel i, which is called log band power (log-BP)
estimator [213, 232].
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Adaptive autoregressive parameters

Adaptive autoregressive (AAR) models are often used to describe non-stationary signals.
In AAR models, AAR parameters are allowed to vary in time, so the model is defined
as [81, 175]:

xj = a1,jxj−1 + a2,jxj−2 + ...+ ap,jxj−p + wp (2.14)

where xj is the output sequence (i.e. j-th sample of EEG signal) and p is the model
order. The coefficients a1,j, a2,j, ..., ap,j are time changing AAR parameters, which serve
as data features in classification, and wp is a white noise process with zero mean. AAR
parameters are very useful for time-varying spectral analysis of EEG, so it is suitable for
on-line BCI classification problems [175].

Time domain parameters

Time domain parameters (TDPs) are a set of broad band (i.e. 8-30Hz) EEG features
defined in the time domain [213]:

TDP (p) = var
t
(
dpx(t)

dtp
), p = 0, 1, 2, ... (2.15)

The range of t depends on the time segment used in feature extraction (for details, see
Chapter 5). Note that the TDPs of order p = 0 is the log-BP feature we mentioned
above. The TDPs of order p = 0 to 2 are related to Hjorth parameters [74], which are
also often used as time domain features in the classification of EEG data [9, 145, 217].
Hjorth parameters contains three parameters: Activity, Mobility and Complexity. The
relationships between Hjorth’s parameters and TDPs of order p = 0 to 2 are:

Activity = exp(TDP (0)); (2.16)

Mobility = exp(TDP (1) − TDP (0))/2; (2.17)

Complexity = exp(TDP (2) − TDP ((1))/2; (2.18)

Our experiment shows that Hjorth Parameters carry less information than the TDPs of
order p = 0 to 2 in the discrimination between different motor imagery data except its
first parameter, which is the band power (BP) feature (for details, see Chapter 5).

Feature properties and their impacts

Some critical properties of features have to be considered in a BCI system, since they may
greatly affect the performances of the classifiers.

1. Sensitivity to noise and outliers: All features reviewed above are sensitive to
noise and outliers [107]. As raw EEG data typically have very poor SNR, this
property will unavoidably deteriorate the performance of the classifier, presenting a
challenge to BCI data classification. As a result, artifact removal, spatial filtering
and time-frequency selection are often needed before feature extraction.
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2. High dimensionality: High dimensionality is a common property of all features,
in particular for high-order AAR or TDP features, in multi-channel BCI systems.
In practice, training datasets should have five to ten times as many trials as the
dimensionality of features to guarantee a good performance of a classifier [83, 164].
Thanks to CSP, electrode reduction algorithms (see Section 2.8) and support vector
machine (see Section 2.7.3), this challenge can be addressed in most cases now.

3. Non-stationarity in long-term use: BP and TDP features are non-stationary
in long term use, because both of them are based on the variance of the signal.
The variance of EEG signal tends to have large modulations in a long-term use
period [230].

4. Sensitivity to time-frequency region: For BP and AAR features, only the ones
extracted from time-frequency regions that contain signal patterns linked to specific
motor imagery tasks are suitable to feed the classifier. Thus, the time-frequency
optimization is required for achieving good performances of the classifier. This part
will be detailed in the next subsection.

2.7.3 Classifiers

Many classification algorithms can be used in BCIs. They are grouped into five categories
in [107]: linear classifiers, neural networks, nonlinear Bayesian classifiers, nearest neighbor
classifiers and combination of multiple classifiers. The most popular ones are linear classi-
fiers, since they use simple models but usually achieve fairly good results in practice [132].
As they have less free parameters to tune and are thus less prone to overfitting, linear
classifiers are generally more robust than their non-linear counterparts when there is some
noise in the data [132]. However, linear classifiers can fail in the presence of strong noise
and outliers. Thus, artifact reduction is often required for BCI data. Note that some
complex problems, such as separating the data of the relax state (“think of nothing”)
from active mental state (e.g. counting numbers, reading letters), may not be effectively
solved by just using linear classifiers even after artifact reduction. In this case, nonlinear
classifiers, such as support vector machine with a kernel, are recommended [66].

Here, we describe two important kinds of classifiers that have been used for BCI design:
Fisher’s Linear Discrimininant Analysis (LDA) and Support Vector Machine (SVM). De-
tails about other, not very often used, methods can be found in [107].

Fisher’s Linear Discriminant Analysis (LDA)

Let us assume that two classes of observations have means &µL and &µR, and covariances
Σ

L and ΣR, then the separation between two classes in a linear projection on a direction
&v is defined as the ratio of the variance between classes to the variance within the class,
and is typically calculated as:

FC(&v) =
(&v · (&µL − &µR))2

&vT (ΣL + ΣR)&v
(2.19)

The maximum separation occurs when

&v = (ΣL − ΣR)−1(&µL − &µR) (2.20)
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Fisher’s LDA separates the different classes of data by a hyperplane perpendicular to &v.
This classifier usually works with BP and TDP features [37, 213]. Due to the assumption
of normal distribution of data in this Fisher’s LDA, it is necessary to make the features
at least approximately follow a Gaussian distribution before classification. For motor
imagery data, the logarithmic transformation can make the distribution of BP or TDP
features approximately normal [213], so it is often applied on those features to feed a
Fisher’s LDA.

Support Vector Machine (SVM)

The SVM is often used in BCIs, and has shown very good performances in high-dimensional
feature spaces, such as high-order AAR or TDPs [32]. The main idea of SVM is to find a
discriminant hyperplane u · X̂ + b = 0 (u is a weight vector and b is a bias term) with the
largest possible margin (i.e. the distance of the hyperplane to the nearest training data
points) to separate D-dimensional data X̂ ∈ R

K×D into two classes. It can be realized by
solving the following optimization problem:

min
u∈Rd

‖u‖2 + C

K∑

k=1

ξ2k (2.21)

s.t. yk(u · X̂k + b) ≥ 1− ξk (k = 1, ..., K)

where yk ∈ Y = {L,R}K is the classification label, K is the number of training vectors (i.e.
total number of training trials) in the data sets, ξk is a slack variable used to ensure that the
problem has a solution in case the data are not linear separable. The margin is defined as
γ(X̂, Y, C) = 1/ ‖u‖2, C is the regularization parameter that controls the trade-off between
a low training error and a high margin. SVM is known to be insensitive to overfitting
and high dimensionality problem. It can achieve good generalization performances with
a small computational time. The original algorithm proposed by Vapnik in 1963 was a
linear classifier [208]. However, nonlinear SVM can be created by applying the kernel
trick to large margin hyperplane. Common kernels k(X̂i, X̂j) include:

• polynomial:
k(X̂i, X̂j) = γ · X̂i · X̂j + c

• radial basis function (RBF):

k(X̂i, X̂j) = exp(−γ
∥∥∥X̂i − X̂j

∥∥∥
2

)

• sigmoid:
k(X̂i, X̂j) = tanh(γ · X̂i · X̂j + c)

The sigmoid kernel is not positive semi-definite, which may lead to a problem in the
training step (i.e. non convergence of the minimization) at least in theory (for details, see
[105]). As a result, kernels generally used in BCI research are the polynomial and RBF
kernels [66].

Generally speaking, linear SVM is more often used than SVM with a kernel in motor im-
agery BCIs, in particular for two-class problems. However, some complicated multi-class
problem may need a SVM with a kernel to classify data that are not linearly separa-
ble [107].
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2.7.4 Time-frequency optimization

As we mentioned above, one of the major problems in feature extraction is to find
time-frequency regions that carry discriminative information. Here, we categorize time-
frequency optimization methods into two classes: CSP-related and non-CSP-related meth-
ods. The reasons for that are: 1) CSP is a popular algorithm in feature extraction, which
has many variants and extensions, so that CSP processing is a big family in machine
learning approaches for BCI; 2) CSP has some important properties, so as to generate
some distinct strategies in the time-frequency optimization, which we will discuss in the
following subsection.

CSP-related methods

The CSP algorithm is widely used in decoding the spatial patterns of motor-imagery-
related neural responses from EEG signals in motor imagery BCI [5]. It has several
critical properties:

• It typically works with BP features, so that it is sensitive to outliers, time-frequency
region and non-stationary problem. Its effectiveness depends on the frequency band
and time segment of EEG signal used.

• The frequency band for best CSP performance may be different from the frequency
band that contains visible discriminative information in raw EEG (see Figure 2.7).
Thus, the time-frequency band directly selected by using the information in raw
EEG may not work in a CSP-based classification.

Several approaches were proposed to select the optimal frequency band for the CSP algo-
rithm [6, 61, 103, 106, 143, 232]. The typical CSP-related approaches include:

1. Common spatio-spectral pattern (CSSP): The method embeds a time delay
in CSP for individually adapted frequency filtering, so as to achieve a more robust
machine learning procedure than CSP (for details, see [103]). An improved version
of CSSP was also proposed and called Common Sparse Spectral-Spatial Pattern
(CSSSP) [61]. This improved version employs simultaneous optimization of an ar-
bitrary Finite Impulse Response (FIR) filter within the CSP. The main problem of
those methods is that the obtained filter coefficients greatly depend on the initial
points [143].

2. Sub-band common spatial pattern (SBCSP): In this method, the EEG signals
are first decomposed into sub-bands using a filter bank. The CSP is performed in
each sub-band to obtain CSP features. The SBCSP features are then put into Lin-
ear Discriminant Analyzers (LDAs) to obtain scores which reflect the classification
capability of each frequency band. Finally, the scores are alternatively fused by
Recursive Band Elimination (RBE) or Meta-Classifier (MC) for decision making.
Figure 2.9 shows the general scheme of this method (for details, see [143]).

• The RBE is an iterative algorithm based on SVM. Let us consider the input vec-
tor X̂ as a concatenation of scores of all sub-bands. SVM will separate X̂ into
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two classes by finding an optimal hyperplane u · X̂ + b = 0 (see Section 2.7.3).
At each iteration, the algorithm trains the SVM to get weight vector u and
then removes one band with the smallest weight in u. This procedure is re-
peated I times, so as to get the desired number of remaining (selected) bands.
The number of selected bands is determined empirically in this method.

• The MC is based on a Bayesian classifier. It transforms band scores into
likelihood ratio values by the Bayesian classifier (for details, see [143]) and then
puts the values into a SVM to get the classification result (see Figure 2.9).

The SBCSP algorithm yielded superior classification accuracy (mean classification
error = 10.0% for RBE-based SBCSP, and mean classification error = 10.3% for
MC-based SBCSP) compared to CSSP (mean classification error = 11.8%) and
CSSSP (mean classification error = 12.5%) on a standard dataset (BCI competition
III dataset IVa) [59].

Fig. 2.9: General scheme of SBCSP [143].

3. Filter band common spatial pattern: Similar to SBCSP, EEG signals are de-
composed into multiple frequency bands through a series of band-pass filters. Then,
CSP features are extracted from each of these bands. A feature selection algorithm
based on mutual information is employed to select discriminative CSP features for
classification. The general scheme of FBCSP is shown in Figure 2.10 (for details,
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see [6]). This method can be extended to address multi-class problems in BCI
classification [5, 45], and yielded the best mean performance, compared to other
submissions on BCI competition IV dataset IIa [39] and IIb [100], respectively.
However, the FBCSP algorithm is sensitive to outliers, since it involves a classical
estimation of multi-variate covariance matrices in calculating CSP features [7, 238].
A robust FBCSP algorithm was proposed to address this problem [7], which replaces
the classical estimator with the robust Minimum Covariance Determinant (MCD)
estimator [169].

Fig. 2.10: General scheme of FBCSP [6].

Although these methods well address the issue of selecting an optimal frequency band
for CSP-based classification, most of them select the time segment manually or heuris-
tically [8]. Recently, an extended version of FBCSP including an optimal time segment
selection process based on mutual information was proposed [8]. However, this extended
version of FBSCP selects the time segment from only four different options (0.5-2.5s, 1.0-
3.0s, 1.5-3.5s and 0.5-3.5s), which did not generate significant improvement on the BCI
competition IV dataset IIb [100] compared to previous versions [8].

Non-CSP-related methods

Non-CSP-related time-frequency feature extraction approaches usually employ a simple
spatial filter, such as Laplacian derivation, instead of CSP, to improve the SNR of the EEG
signals [80, 218, 219, 234]. There are two main strategies in the literature for extracting
the time-frequency features after spatial filtering:

1. Weighting synthesis strategy [218, 219, 234]: In this strategy, the EEG sig-
nals are first decomposed into a series of frequency bands. Then, the envelopes
of EEG activities in a series of overlapping time segments are calculated for each
frequency band. Those piecewise integrated envelopes form the spatial patterns in
a time-frequency grid. Finally, weighted synthesizing of spatial patterns over time
and frequency bins is used for decision making. The time-frequency weights are
determined by a training process (for details, see [218]). This strategy was tested
on 9 subjects for the discrimination between right and left hand motor imagery (the
dataset is provided by Dr. Allen Osman from the University of Pennsylvania, for
details, see [146]), its performance (ACC=90%) is better than CSP algorithm (ACC
= 81%) with the same type of classifier [218].
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2. Divide-and-merge adaption [80, 81]: The EEG signals are decomposed into a
series of basic time-frequency cells which cover different frequency bands and time
segments. The merge procedure can be summarized as follows:

(a) Select a cell and construct a children-mother structure with other nearby cells
(see Figure 2.11).

(b) Define and calculate the discriminant power for each children and mother sub-
space.

(c) Merge two neighboring children subspaces if their discriminant power is less
than that of the corresponding mother subspace, so as to construct new time-
frequency segmentations.

Features (e.g. AAR parameters) are extracted from the constructed time-frequency
segmentations, and then are ordered using a class separability criterion, e.g. Fisher’s
criterion. The top m features are selected for classification. The parameter m
is determined by the user. This strategy was evaluated on BCI competition III
dataset IVa [33]. Its mean classification accuracy (96.0%) was better than the one
obtained by using the same types of feature and classifier but without time-frequency
optimization (87.7%) [81].

Fig. 2.11: Children-mother structure for the selected cell (marked in gray) [80].

2.8 Electrode reduction

As mentioned before, electrode reduction is an interesting topic in BCI research, partic-
ularly for bringing BCIs out of labs and hospitals into general public applications (e.g.
entertainments, navigation). The problem of electrode reduction is usually solved in three
ways: 1) reducing channels through CSP-based methods [124]; 2) selecting channels based
on a specific classifier, such as support vector machine (SVM) [97]; 3) directly applying
EEG acquisitions in a few specific areas which are in charge of the target motor intensions
to achieve an acceptable accuracy rate of classification [108]. Here, we mainly review the
methods of type (1) and (2), so as to provide a general view of how to algorithmically
reduce the number of electrodes.
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2.8.1 CSP-based methods

The CSP algorithm is widely used for constructing spatial filters for multi-channel EEG
as described in Section 2.6.4. However, the performance of CSP-based classification is not
proportional to the number of channels, since redundant electrodes may lead to overfitting
(i.e. to learn the noise rather than useful discriminative information from the training
data) and increase the computational time. Electrode reduction and selection based on
CSP can be performed according to three different strategies: 1) constructing sparser spa-
tial filters to reduce the number of channels required in CSP-based classification, such as
in [62, 239], 2) selecting optional channels through CSP-based source localization meth-
ods, such as in [220], 3) combining CSP and other methods to choose an effective subset of
channels in CSP-based classification, such as in [16, 17, 110, 124]. The typical approaches
of these three strategies are briefly reviewed below.

Sparse spatial filter optimization

Let us denote by w = [ω1,ω2, ...,ωN ]
T a CSP spatial filter derived from N -channel data

X = [X1, X2, ...XN ]
T . A filtered signal z is calculated as:

z = wTX = ω1X1 + ω1X2 + ...+ ωNXN (2.22)

The basic idea of this approach is to construct a sparser common spatial filter w in CSP
so that fewer channels are required for the classification.

The classical CSP algorithm can be expressed as the following minimization problem:

min
w

wTCLw (2.23)

subject to wT (CL + CR)w = 1

where CL and CR are the covariance matrices of two classes [239]. Sparse CSP adds a
L1 norm regularization term into Equation 2.23, which favors the sparsity of the solu-
tion [201]. The minimization problem is re-defined as follows:

min
w

wTCLw + ρ‖w‖1 (2.24)

subject to wT (CL + CR)w = 1

This re-defined problem can be solved by sequential quadratic programming, augmented
Lagrangian or conjugate gradient methods [30, 201].

In this method, the spatial filter w is obtained using all channels during the training
phase. Only a few channels are needed in the testing phase or in real applications, since a
lot of elements in w are 0. An essential parameter in sparse spatial filter optimization is
the regularization parameter ρ. The vector w becomes sparser with the increase of the ρ
value. However, there is a trade-off to be found between the regularization parameter and
the classification accuracy. Thus, it is very important to choose an appropriate ρ value to
keep a balance between the number of channels and the classification results. Experiments
performed on the BCI competition III dataset IVa [33] show that the optimal ρ value varies
between subjects [239]. For example, the optimal ρ is 0.02 for a subject, which reduces the
number of channels from 118 to 17, with a slight dropping of classification accuracy from
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58.6% to 57.5%, while the optimal ρ is 0.44 for another subject, which reduces the number
of channels from 118 to 5, with an increase of classification accuracy from 52.5% to 54.4%.
The optimal ρ value is manually selected in [239]. A possible solution to automatically
determine the ρ value may be to test each possible ρ through a cross-validation procedure
during the training phase for each subject.

CSP mapping-based channel selection

CSP algorithm decomposes the original signal X = [X1, X2, ...XN ]
T onto a series of com-

mon bases W = [w1, w2, ..., wN ] through the transformation Z = W TX. The CSP
filtered signal Z = [z1, z2, ..., zN ] can be considered as uncorrelated EEG source com-
ponents that include the common and task-specific components. Thus, the original
EEG signal can be reconstructed through the inverse transformation X = ΥZ, where
Υ = [υ1, υ2, ..., υN ] = (W T )−1. As the first and last columns of Υ correspond to the
largest variance of one class and the smallest of the other one, these two vectors υ1, υN
reflect the spatial distribution of the most important task-specific components. The strat-
egy proposed in [134, 220] selects the optimal channels by searching the maximum of the
absolute value of the elements in the vectors υ1, υN , respectively. Experiments on the BCI
competition III dataset IVa [33] showed that this method can automatically select the op-
timal channels (i.e. 2 or 4 channels) from the 118 channel for linear classification. The
mean performance is 87.42% when using 2 channels and 88.44% when using 4 channels.

Combination of CSP and other methods

• Criteria of scoring channel [124]

(1) r2-value based criterion: Denote X = [X1, X2, ..., XN ] the N -channel training
data, where Xi is a training data in channel i. The r2-value of each channel is
defined as:

r2(i) = (

√
NLNR

NL +NR

〈‖Xi‖2〉L − 〈‖Xi‖2〉R
std(‖Xi‖2)

)2 (2.25)

where ‖·‖2 is the L2 norm of vectors, 〈·〉L and 〈·〉R denote the mean of training data
in class L and class R; std(·) is the standard deviation of all training data (regardless
of the class), NL, NR denote the number of samples for class L and class R. Then,
the CSP algorithm is applied to M (M < N) channels with the top r2-values for
CSP-based classification.

(2) L1-norm based criterion: As for the r2-value, the L1-norm can be used to give
a score to each channel, which is different from the one used in sparse CSP. Let W̃
contain 2 ×m spatial filters w̃i derived from the entire N -channel EEG data. The
L1-norm based score for each channel is calculated by:

SCL1(i) =
‖w̃i‖1∥∥∥W̃
∥∥∥
1

(2.26)

where ‖·‖1 is the L1-norm. The M channels with the top score values are used in
the CSP feature extraction step for classification.
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M is pre-determined by the user in the method based on criteria of scoring channels.
This contrasts with other methods where M is automatically determined, such as
Sparse Spatial Filter Optimization. The authors in [124] set M = 20 in the experi-
ment (using BCI competition III dataset IVa [33]) for comparing the performances of
the two criteria. The experimental results showed that the L1-norm based criterion
generated better mean performances (mean classification accuracy 89.68%) than the
r2-value based criterion (mean classification accuracy 87.24%), since the spatial pat-
terns obtained by CSP with the L1-norm based channel selection coincide better
with the neurophysiological plausibility (e.g. right foot imagery is characterized by
enhanced amplitudes over the left hemisphere of the brain) [124].

• Riemannian distance based channel selection [17]

The Riemannian distance between two covariance matrices CL and CR of two classes
of EEG data is defined as:

Dist(CL, CR) =
∥

∥Log(C−1
L CR)
∥

∥

F
(2.27)

where Log(·) is the log-matrix operator and ‖·‖F is the Frobenius norm of the matrix.
The channels in the reduced subset are chosen by maximizing the Riemannnian
distance between two classes. In this method, the number of channels in the reduced
subset should be pre-determined. In other words, this method only finds the optimal
electrodes in the reduced subset for the following CSP-based classification, which is
similar to the channel selection method based on criteria of scoring channels. Thus,
the main drawback is that the optimal number of electrodes cannot be automatically
determined by the channel selection method itself. Experiments on BCI competition
III dataset IVa [33] showed that reducing the number of electrodes to 10 with the
Riemannian distance based channel selection can still achieve 78% mean accuracy
in classification.

• CSP-BPSO algorithm [110]

BPSO is a discrete binary version of Particle Swarm Optimization (for details,
see [91]). The CSP-BPSO algorithm first calculates the Rayleigh coefficient :

Rc(i) =
wT

i (CL − CR)wi

wT
i (CL + CR)wi

(2.28)

and relies on this coefficient for the paired spatial filters (i.e. w1, wN), which are
constructed by CSP algorithm from the entire N -channel data. The value FD =
|Rc(1)|+ |Rc(N)| reflects the feature discrimination in the CSP-based classification.
Assuming that M is the number of channels in the selected subset, the optimization
of channel reduction is realized according to the following objective function, which
should be maximized:

J = FD + β(1−M/N) (2.29)

where β is the trade-off coefficient between FD and the number of selected channels.
If FD is large and M is small, then J will be large. However, FD may decrease
when M is too small, so setting a right β value is very important in this method.

The optimization is performed via a fitting process based on BPSO [91] for choosing
M channels. In this process, channels are considered as a group of moving points.
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Each moving point is named particle, and the entire group is called a swarm in
BPSO. Each particle has two possible positions “0” or “1”, “1” means the corre-
sponding channel is selected, “0” means the corresponding channel is omitted.

Thus, the selection of channels is realized by the optimization of the position of each
particle in BPSO, which can be written as:

vn+1
k = ω · vnk + λ1 · r1 · (p

n
k − p̂nk) + λ2 · r1 · (p

n
g − p̂nk) (2.30)

s(v) = (1 + e−v)−1 (2.31)

if s(vn+1
k ) > ζ then p̂n+1

k = 1, otherwise p̂n+1
k = 0 (2.32)

where p̂nk denotes the k-th particle’s position at the n-th iteration, vnk , p
n
k denote the

velocity and the local best known position of the k-th particle in the n-th iteration,
png is the best known position of the swarm at the n-th iteration, ω is a weight,
λ1 and λ2 are the acceleration constants, and r1, r2 and ζ are random numbers
uniformly distributed between 0 and 1. From Equation (2.30), we can see that the
movements of the particles are guided by their own best known position pnk in the
search-space as well as the entire swarm’s best known position png . This is expected
to move the whole swarm toward the best solutions (for details, see [110]).

The selected channels are used for feature extraction through CSP algorithm and
then for the classification with a linear classifier. The selection of the β value is still
a challenge in this method, which greatly affects the reduction and classification
accuracy. Experiments on BCI competition III dataset I, which is a 64-channel
electrocorticographic (ECoG) data [96], showed that when β takes a value between
0.4 and 0.8, using only 12 channels can lead to an accuracy above 90%.

2.8.2 Support vector channel selection

Based on SVM (see Section 2.7.3), two channel selection methods, Zero-Norm Optimiza-
tion [97] and Recursive Channel Elimination (RCE) [180], were applied for motor imagery
BCI.

• Zero-Norm Optimization The basic idea of this method is to try to obtain a
sparser weight vector u in the optimization problem, which is similar to the Sparse
CSP method. Based on the suggestion given in [223], L0-norm ‖u‖0 is used in
Equation (2.21) instead of using L2-norm:

min
u∈Rd

‖u‖0 + C

n
∑

i=1

ξ2k (2.33)

s.t. yi(u · x
(k) + b) ≥ 1− ξk (k = 1, ..., n)

Its solution is usually much sparser than that of Equation (2.21), because of the use
of the zero-mean. Here, the parameter C can be estimated from the training data
(for details, see [97]), so that prior knowledge is not necessary in this method.

• Recursive Channel Elimination This method is based on the concept of margin
maximization and derived from the recursive feature elimination method [71, 97,
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180]. The process is similar to RBF (see Section 2.7.4), and performed through
iteration steps.

At each iteration, it used data from the channel set to train a SVM. Let Ω be the
inverse of the margin value:

Ω(X, Y, C) =
1

γ(X, Y, C)
= ‖u‖2 (2.34)

The importance of a channel (i.e. whether it can be removed or not) is determined
by its contribution in maximizing the margin. Let Fi denote the features extracted
from channel i. The score of channel i can be defined as:

SCRCE(i) =
1

|Fk|

∑

l∈Fk

|ul| (2.35)

The channel with the lowest score is removed at each iteration. The parameter C
can be estimated from the training data by finding the smallest classification error
in the cross-validation (for details, see [97]). The iteration runs I times so as to get
the desired number of channels, which is determined empirically in the literature.

Like most CSP-based methods, the main advantage of SVM-based methods is that elec-
trode reduction and selection can be done robustly without any prior knowledge of neuro-
physiology (e.g. the spatial distribution of brain activities of a mental task). On the other
hand, SVM-based methods provide us an idea to select task-relevant electrodes based on
the performance of a classifier instead of only the intrinsic discriminative features of the
signal. Experiments and comparisons provided in [97] showed that the optimal number of
channels in the reduced subset is 17 with 23% mean error by using the RCE method. The
mean error slightly increases when the number reduces to 12 but dramatically increases
when the number is less than 12. Meanwhile, more than 17 channels in the subset also
increase the mean error for some subjects. The reason is that only the channels that carry
discriminative information are helpful for the classification. Adding channels without dis-
criminative information amounts to put noise into useful data, so that it may deteriorate
the performance of the classifier. Subsets of small size (less than 20 channels) selected
by RCE generate better performance than those selected by Zero-Norm Optimization,
showing that RCE is more effective (see Figure 2.12).

2.8.3 Discussion on electrode reduction

Generally speaking, the goal of electrode reduction is to decrease the number of electrodes
participating in the classification. This challenge can be solved by 1) using similarity
measures to find the electrodes that carry significant information; or 2) employing sparse
representations to reduce necessary electrodes in the projections from the signal space to
the feature space. Multiple factors, such as spatial filter, classifier, algorithmic parameters,
might affect the performance of electrode reduction. But the most important thing is to
keep a balance between classification results and the number of electrodes. This rule
may finally determine the choice of the method and the corresponding parameters in real
applications.
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Fig. 2.12: Comparison between RCE and Zero-Norm Optimization (this figure is repro-
duced from [97] )).

Methods based on similarity measures usually cannot directly tell users how many elec-
trodes are required. They need users to decide the optimal number of electrodes based
on their experience or on the results of classification. For a user who wants to achieve
the best classification through a pre-determined number of electrodes (e.g. 4 electrodes),
methods based on similarity measures should be a better solution than those based on
sparse representations. Meanwhile, a trade-off between the number of electrodes and the
classification results is possible for the methods based on similarity measures, because the
user can try different numbers of electrodes to find acceptable classification results.

In contrary, methods based on sparse representations can automatically calculate how
many electrodes are required. Thus, they might be a good solution when users do not
know how many electrodes are necessary. These methods typically involve a parameter
to find a trade-off between the number of electrodes and the classification results.

2.9 Discussion

The traditional BCI systems exclusively employ brain signals to realize the communication
and control, aiming to provide assitive technology for disabled people. With several
decades of evolution, BCI techniques have shown a relative maturity, which leads to
some new understanding on BCI definition and applications. Hybrid and self-paced BCIs
provide users more freedom in BCI experiences, which brings BCI to a broad range of
BCI applications for the healthy users as well. Several types of EEG-based hybrid BCIs,
such as Neurosky’s Mindset, Emotiv, etc., have gone out of labs to be daily use products
for entertainment.

However, the number of electrodes presents a key challenge for daily use BCIs. A large
number of electrodes 1) increases the time cost in skin preparation and helmet installation,
2) reduces the portability of BCIs, 3) increases the price of system, 4) may deteriorate
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the classification by a high dimensional feature space. Although dry sensors can address
the problem of skin preparation and helmet installation, they are very sensitive to noise
and can only be used in a well-controlled environment. CSP algorithms can reduce the
dimensionality of features and improve the classification performance, but they cannot
address other problems caused by the large number of electrodes.

Recently many algorithms and methods have been proposed to realize the electrode re-
duction. However, fine characterizations of subject-specific parameters are still needed to
find a trade-off between the number of electrodes and the performance of the classifiers.
The time-frequency optimization is a key step in the subject-specific parameterization for
improving the classification performance under a given number of electrodes. However,
most of time-frequency selection methods are based on multi-channel setting. Thus, new
methods based on few electrodes are needed to identify subject-specific time-frequency
patterns. On the other hand, the existing electrode reduction methods still have some
drawbacks. Methods based on similarity measures cannot automatically find the optimal
trade-off between the number of electrodes and BCI performance, while the ones based
on sparse representations may not reduce the number of electrodes to the exact number
demanded by users. Thus, advanced methods need to be proposed to meet automatical
reduction and user needs. Moreover, the existing methods usually ignore the intrinsic
relationship between subject-specific time-frequency parameters, and the number and po-
sitions of electrodes, simply expressing BCI features in one (or two) domain(s) while
disregarding the other(s). As a result, the optimal combination of those factors may not
be achieved in previous researches.

In this thesis, we will focus on developing an experimental setup and algorithms for BCI
systems based on few electrodes for general public applications. A hybrid BCI based
on one EEG electrode and a few EOG electrodes is proposed for healthy users. As the
motor-imagery BCI is a popular one, which has not only applications in the entertainment
but also in the industry usage, several novel algorithms are proposed to address the
challenges of this type of BCI. Subject-specific parameterization is performed both in the
CSP algorithm for reducing the dimensionality of features and number of channels, and
in the time-frequency optimization for systems based on few electrodes, so as to find the
optimal combination of subject-specific parameters for easy-to-use BCI systems.
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Chapter 3

Turn “Artifacts” into Control
Signals: A Hybrid BCI based on
Alpha Rhythm and Ocular Activities
for Human-computer Interaction

3.1 Introduction

As we have mentioned in Chapter 2 Section 2.2, conventional BCIs are mono-modal
and externally-paced, only using one kind of brain signal to realize a computer-driven
communication. This control mode raises several challenges for moving BCI systems from
the laboratory to home, for example, (1) how to overcome the deficits (e.g. artifacts,
mental fatigue) of only one type of brain activity (e.g. motor imagery, cue-driven neural
response) and no physiological activities (e.g. eye movements, heart rate) engaged in
the communication [64, 225]; (2) could BCI techniques be combined with other existing
assistive techniques to utilize the advantages of different approaches and provide users
with a more flexible way in the human-computer interaction [126]; (3) how to give users
more freedom in choosing the time and speed of communication [173].

A possible solution to the challenge (2) and partly to challenge (1) is the concept of hybrid
BCI (hBCI), which we have mentioned in Chapter 2 Section 2.2.2. For challenge (3), the
control mode of a self-paced BCI, which we have introduced in Chapter 2 Section 2.2.3,
could be a nice answer. Based on these two modern BCI concepts, we propose in this
chapter a self-paced hybrid BCI utilizing the multi-modal fusion of user’s mental states
and ocular activities, and present a control mode, which might provide a potential solution
to all the three challenges listed above.

Physiological activities (e.g. ocular activities, heart rate) are the main sources of artifacts
in the conventional BCI, since they could trigger communication, which is not based on
brain activities [64]. Although the hBCI concept allows muscle activities to be engaged
in the human-computer interaction as an on/off switch or a complement to traditional
BCI channel [101, 151], there is still no clear answer to how to deal with those traditional
“artifacts” (part of challenge (1)). Based on the TOBI improved concept of hBCI, the
proposed hBCI no longer considers ocular activities as “artifacts”; on the contrary, it uses
them as main control signals instead as an on/off switch in the communication. In this
case, it turns the “artifacts” into control signals.

This chapter is organized as follows. The background of utilizing alpha rhythm and
ocular activities in BCI is given in Section 3.2. Section 3.3 gives an overview of the
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proposed hBCI system. The signal acquisition and experimental setup are described
in Section 3.4 and Section 3.5, respectively. Section 3.6 details the signal analysis and
processing methodology, whose results are presented in Section 3.7. Finally, we discuss
the potential applications of this hBCI and also our future work in Section 3.8.

3.2 Background

3.2.1 Alpha rhythm

Recognition of user’s mental states, e.g. tiredness or attention level, could provide useful
information to identify the intentional control or non-control states in a self-paced BCI
system [125]. Alpha rhythm, also known as alpha wave or Berger’s wave, is a kind of neu-
ral oscillation in the frequency range of 8-13 Hz arising from synchronous and coherent
electrical activity of thalamic pacemaker cells in humans, which can be recorded either by
EEG or magnetoencephalography (MEG) [19, 20]. As alpha rhythm is considered to be as-
sociated with the subject’s mental states and cognitive operations, several BCIs have used
alpha rhythm as a control signal in their system [89, 207]. A typically successful example
is Neurosky’s mindset1, which analyzes alpha rhythm to estimate the user’s “attention”
and “mediation” levels for BCI control. Although many types of mental/cognitive-related
information can be extracted from the alpha rhythm, the most typical and obvious be-
havior of alpha rhythm is the strongest oscillations generated in the occipital area during
periods where eyes are closed, and attenuated signal by eye opening or increased atten-
tiveness [148]. Thus, we propose to exploit this remarkable behavior of alpha rhythm to
realize a self-paced on/off brain switch for the communication in the system.

3.2.2 Ocular activities

Voluntary ocular activities, which can be detected by an eye tracking system or elec-
trooculographic (EOG) approach, have been used as a source of control signal for modern
human-computer interactions [77, 82]. However, most BCI studies still consider ocular
activities as a main source of physiological artifacts [64, 177, 225]. In this case, EOG elec-
trodes placed around the user’s eye are aimed at removing the EOG signals from the raw
EEG signals instead of recording EOG for the communication purpose [177]. Although
some hBCI studies point out that ocular activities could be used as a source of control
signal, the approach is only limited to using eye tracking system but does not exploit
EOG techniques [4, 151]. So at least two different recording systems, eye tracking system
and brain signal recording system (e.g. EEG recording system), are needed in such hBCI,
which, to some extent, increases the hardware cost and complexity of the hBCI system.

In this study, ocular activities are measured with EOG electrodes and transferred into con-
trol signal to fulfill a four-direction object movement function. Thus, only one recording
system, EEG recording system, is needed in the proposed hBCI-based human-computer
interaction. Moreover, as the EOG signal is much stronger than the EEG signal [215],
the communication based on EOG signal should be more reliable and less vulnerable to
physiological artifacts.

1www.neurosky.com/
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3.3 System overview

The framework of the whole system is shown in Figure 3.1. In this system, both EEG
and EOG data are recorded with one EEG recording system and then input to a PC for
processing. Compared to traditional BCI systems, the basic steps of EEG data processing
are the same, however, the modules of EOG data processing are added to transfer the
intentional ocular activities into commands.

Firstly, the EEG data are processed to identify the mental state of the user. If active
alpha rhythm is detected, which means that the state of the user is wakeful relaxation
with closed eyes, the EOG data processing will not be triggered, and the whole system is
in the sleep state. When the system detects that the active alpha rhythm disappears (i.e.
becomes lower than a threshold), the system will be waked up and EOG data processing
is triggered. The user can control the direction of the object (e.g. a ball or a wheelchair)
movement in the real or virtual environment by saccades (simultaneous movements of
both eyes). When the signal of a saccade is detected, the system will classify the direction
of the saccade. Then, an audio message will be given to ask the user whether the detected
direction is correct and intentional. The user confirms the message by blinking his eyes
if it is right and intentional or just ignores it by keeping the eyes open until the message
box disappears (3s after a saccade is identified) if it is wrong or undesired. All these steps
of the procedure are detailed in the following sections.

Fig. 3.1: Framework of the proposed hybrid BCI system.
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3.4 Signal acquisition

To detect ocular activities, EOG data are recorded above (E1, E2) and below (E3, E4)
the left and right eyes, respectively, and from the outer canthi of the left (E5) and right
(E6) eyes (see Figure 3.2). This electrode placement scheme is the same as the one used
in [49, 159], and the EOG recording is conducted according to the 2006 Clinical EOG
standard from the International Society for Clinical Electrophysiology of Vision (ISCEV
standard for EOG 2006) [38].

Fig. 3.2: Electrode placement scheme of EOG (left) and EEG (right).

As alpha rhythm predominantly originates in occipital cortex during wakeful relaxation
with closed eyes [148], the EEG was recorded in Oz, the center of the occipital area. Both
EOG and EEG data are acquired by g.tec EEG recording system2 (sampling rate: 512Hz)
using FCz as the ground and the right ear lobe as a reference.

Examples of original data recorded at each electrode are shown in Figure 3.3. In the first
line of Figure 3.3, a left-going saccade evokes remarkable rectangle-like waveforms in E5
and E6, however, the polarity of the waves in these two horizontal electrodes are opposite.
In the second line, the example of eye blink signal is presented. From this example, we
can see that ocular activities are reflected on some EOG electrodes but have less affect
on the EEG electrode Oz, which will be further examined in the next sections.

2produced by g.tec medical engineering, Schiedelberg, Austria, http://www.gtec.at/
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Fig. 3.3: Examples of ocular activity signals at EOG (E1-E6) and EEG (Oz) electrodes. First line: acquisition during an eye saccade.
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3.5 Experimental setup

Considering the individual variability in ocular and brain activities, the experiments in
this study included two sessions: learning session and testing session, for learning the
subject-specific features (e.g. the activities of alpha rhythm, saccade amplitudes) and
testing the detection methodologies, respectively. Experiments have been carried out on
five individuals. None of them had a history of oculomotor pathology. All subjects in the
study were entirely voluntary and signed a written informed consent (see Appendix A)
before the experiments.

3.5.1 The learning session

Fig. 3.4: Angle map of intentional saccades used in the experiments.

The data obtained in this section were used to learn for each subject the activities of alpha
rhythm under different mental states (wakeful relaxations with closed eyes and open eyes)
and the relationship between EOG data and different degree and direction saccades, and
then to setup the subject-specific parameters in the methods (described in Section 3.6)
for identifying different mental states and saccade controls.

Firstly, the subjects were required to be in a state of wakeful relaxation with closed eyes
for 2 minutes and with open eyes for 1 minute. The EEG data recorded here were used
to study the difference of alpha rhythm oscillations between closed eyes and open eyes.

Then, EOG data were acquired for learning the relationship between the features (polar-
ity, amplitude) of EOG signal and the characteristics (direction, angle) of an intentional
saccade, which was inspired by the work in [41, 142]. In the EOG data recording, four
directions of eye movement were considered: left, right, up, down. For each direction,
the subject was asked to make a saccade to focus on a target point displayed on a wall
at 0.5m from the subject. The target points were marked corresponding to 10◦, 15◦,
arctan1

2
(≈ 26◦), 30◦, 45◦ from the central position in each direction. Each saccade was

performed by quickly moving the eyes to the target points then going back to the center
point. The saccade degrees chosen were similar to those in [142]. The difference was that
the EOG data of 5◦ saccade was not recorded due to its small amplitude, which made
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precise measurements difficult. The EOG data of arctan1
2
degree saccade was recorded as

a supplement to guarantee at least five samples of different degree saccades for estimating
the relationship between EOG signal and saccades in each direction [142].

3.5.2 The testing section

In this section, the data were recorded for the same individuals to simulate a human-
computer interaction procedure and to test the proposed detection methods and the pa-
rameters tuning based on the learning data.

As the half view angle (from the center to right/left edge) for a normal computer screen
(17 inch) is close to 15◦, the subject was required to perform 15◦ saccades in the testing
section to make the result close to real applications. Different direction saccades were
performed according to a sequence that was designed as a simulated object movement
path shown in Figure 3.5 (direction sequence: right, down, left, down, right, up), which is
inspired by the research about saccades during active visual search (for details, see [55]).
The 15◦ saccades in this section are performed in the same way as in the learning section
by quickly moving the eyes to the target points then going back to the center point. A
voluntary eye blink was performed after each saccade to serve as the confirmation of the
intentional saccade direction. The whole procedure is guided by audio instructions.

Fig. 3.5: Simulated movement path used in the experiment. The arrows only show the
directions of saccades performed.

3.6 Signal analysis and processing

3.6.1 Alpha rhythm

Let x be the acquired EEG signal, which is sampled at frequency fs. We denote by x[i]
its value at i = t×fs, where t is the time (in seconds). Let α[i] be alpha rhythm, which is
extracted from EEG data through the 5-order butterworth band-pass (8-13Hz) filter [44].
The standard deviation σ of signal square p = α2 inside a sliding window (width ω = 4
seconds), which reflects the dynamic changes of signal power, is calculated as a feature of
interest to estimate the activity of alpha oscillation:
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σ[i] =
√

〈

p2[j]
〉

Nj
−
〈

p[j]
〉2

Nj
, (3.1)

where 〈·〉Nj
is the average operator on Nj = {j ∈ N | (t− ω)× fs ≤ j ≤ t× fs}.

In this study, we analyzed the activities of alpha rhythm in two mental states using EEG
data acquired in the learning section: wakeful relaxation with closed eyes and open eyes.
Meanwhile, the EEG data acquired in the testing section were also processed using the
same method to examine the potential effects of ocular activities on the activities of alpha
rhythm.

As the alpha rhythm is more active during wakeful relaxation with closed eyes compared to
that with open eyes (see Figure 3.10), a subject-specific threshold was applied to identify
the mental state of subject in the proposed system. The user-specific threshold, Tα, was
set to:

Tα =
1

2

(

min
i∈CE

(σ[i]close) + max
i∈OE

(σ[i]open)

)

(3.2)

where σ[i]close and σ[i]open represent the activity of alpha oscillation σ[i] (defined in Equa-
tion 3.1) of learning data under the relaxation state with closed eyes (CE) and open eyes
(OE), respectively.

In the real application, when the σ[i] value is lower than Tα, the system considers that the
active alpha rhythm disappeared, so the EOG data processing is triggered for detecting
EOG-based control signals.

3.6.2 EOG data

From Figure 3.3, we can see that a specific ocular activity (such as a left-going saccade and
an eye blink) can be directly reflected in the original signals of some EOG electrodes. In
fact, an eye can be modeled as a dipole with its positive pole at the cornea and its negative
pole at the retina, so an electric potential field is built using the eye as its source [23].
When the eyes or eyelids move, the potential field changes according to the modification
of the poles. Let us take a left-going saccade as an example. When the eye moves from
the center point toward the left periphery, the cornea approaches the left electrode (E5)
and the retina approaches the right one (E6). This modification in dipole orientation
causes a change in the electric potential field and is reflected in the corresponding EOG
signal: positive-going wave in E5 and negative-going wave in E6 (see Figure 3.3). Thus,
ocular activities can be monitored by vertical (i.e. E1/E3, E2/E4) and horizontal (i.e.
E5/E6) pairs of EOG electrodes. By calculating the signal difference between the opposite
electrodes in a pair, the vertical or horizontal eyes or eyelids movement components are
easier to detect [41, 49, 51, 158].

Thus, two signal components: the vertical EOG (VEOG), defined in Equation 3.3, and
horizontal EOG (HEOG), defined in Equation 3.4, are computed from original signals to
monitor the vertical and horizontal movement components, respectively, for the saccade
and eye-blink detections:

V EOG[i] = xE1[i]− xE3[i] + xE2[i]− xE4[i] (3.3)

HEOG[i] = xE5[i]− xE6[i] (3.4)
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where xEk, k = 1, 2, · · · , 6 is the original signal recorded in the EOG electrode placed at
location Ek (see Figure 3.2).

The HEOG and VEOG signals of two typical ocular activities (the original signal in each
EOG electrode, see Figure 3.3) are shown in Figure 3.6. A left-going saccade can easily
be detected in the HEOG signal due to the horizontal movement of eyeballs, while an eye
blink is more visible in the VEOG signal due to the vertical movement of eyelids.

Fig. 3.6: HEOG and VEOG signals of two typical ocular activities: left-going sac-
cade(mostly reflected in the HEOG singal) and eye blink (mostly reflected in the VEOG
singal).

Saccades

To analyze the EOG signal of saccades in the learning section, the saccade amplitudes
were measured according to ISCEV standard for EOG 2006 [38]. Paired t-tests were
performed to check whether a statistically significant difference exists between the two
same degree saccades in each direction for each subject.

As the directions and angles of saccades can be reflected in the amplitude and polarity of
HEOG and VEOG signals (see Section 3.7), subject-direction-specific confidence intervals
(CId, d = left, right, up, down) of amplitudes were defined as 1 ± 15% of the saccade
amplitude learned for detecting different direction saccades in our study. An algorithm is
applied to process the HEOG and VEOG data sample by sample. When the value of a
sample, x[i], is within a confidence interval CId, one records the time point of the sample
(marked as the beginning point, bp), the next samples are read until a sample out of the
confidential interval is detected, and its time point is recorded (marked as the ending
point, ep). We then check whether the duration between the beginning and end points,
dur = ep − bp, is in the range of saccade duration, T , which is predetermined according
to the user experience (150-600ms in this study). If yes, a d -direction saccade is detected.
The flowchart of the algorithm is shown in Figure 3.7.
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Fig. 3.7: Proposed algorithm for saccade detection.

Eye blink

As a voluntary eye blink serves as the confirmation response of an intentional saccade,
it should be detected. A voluntary eye blink can generate a distinguishable triangular
waveform in the VEOG signal (see Figure 3.9 A). Thus, the algorithm processes the VEOG
data using a 600ms sliding window to detect a triangular wave in the given time range (3s
after a saccade is identified) and checks whether its peak value exceeds a predetermined
threshold (550µV in this study). The main steps of the algorithm are shown in Figure 3.8.
The data scanned in the window are firstly smoothed by a Gaussian low-pass filter (σ =
3) (see Figure 3.9 B). The smoothing process eliminates the glitches in the triangular
waveform. Figure 3.9 shows that the time derivative of the smoothed signal has three key
points (the positive extremum, the negative extremum and zero crossing point between
them). As a result, a triangular-like wave can be detected by detecting these three points:
1) the positive extremum and the negative extremum symmetrically exist in the scanned
window (the difference between their absolute values less than 10% of the average of
their absolute values), 2) only one zero crossing point should exist between the positive
extremum and the negative extremum. Then, the algorithm also checks whether the
maximum of the smoothed signal exceeds the predetermined threshold (see Figure 3.9 B).
Thus, a voluntary eye blink is detected by the algorithm through both waveform detection
and peak checking of the VEOG signal.

Fig. 3.8: Basic steps of eye blink detection.

68



Fig. 3.9: Eye blink detection: A. Original VEOG signal, B. Smoothed signal and prede-
termined threshold, C. Derivative of the smoothed signal, with three key points marked
in red.

3.7 Results

3.7.1 Alpha rhythm

Considering that the ocular activities may affect the alpha rhythm when performing EOG-
based communication [209], the activities of alpha rhythm were examined among relax-
ation with closed eyes and open eyes in the learning section and the period of performing
active EOG-based human-computer interaction in the testing section. Figure 3.10 shows
alpha rhythms of relaxation with closed eyes (A) and open eyes (B), and alpha rhythm in
the state of performing active EOG-based human-computer interaction (C). Relaxation
with closed eyes generates stronger alpha oscillations than in other situations with open
eyes, which resulted in higher value of σ[i] (see Figure 3.10 D). Thus, the mental states
with open eyes and closed eyes can be identified by applying a user-specific threshold to
the real-time change value of σ[i], which serves as a switch in the proposed system. In the
experiments, the subject-specific threshold Tα estimated by Equation 3.2 (see Table 3.1)
can successfully switch the system according to the subject’s mental states with a few
seconds delay (D).
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Fig. 3.10: Alpha rhythms at Oz: A. wakeful relaxation with closed eyes, B. wakeful
relaxation with open eyes, C. EOG-based control in the testing section, D. corresponding
σ[i] values.

Table 3.1: User-specific threshold value Tα and delay D of each subject for separating the
mental states with open eyes and closed eyes.

Subject Tα D(s)
1 31.1 2.11
2 27.0 2.07
3 58.8 1.81
4 16 2.58
5 9.9 3.13

3.7.2 EOG data

The examples of VEOG and HEOG data of the four direction saccades are shown in
Figure 3.11. No significant difference of saccade amplitude was detected between the two
same degree saccades in each direction for each subject (Paired t-tests: all P ≥ 0.2).
As the saccade amplitude is almost linearly increasing with the saccade angles and has
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a considerable variability between different individuals/directions (see Figure 3.12), their
relationship is modeled as a linear regression and described as:

ŷ = aθ + b (3.5)

where ŷ is the estimated saccade amplitude, θ is saccade angle, a, b are subject-direction-
specific parameters.

Fig. 3.11: Examples of HEOG and VEOG of saccades in the four directions (left, right,
up and down).

The variability of the real data is measured through squared residuals with respect to the
linear regression, SSerr and squared residuals with respect to the average value, SStot [139],
which are defined as:

SSerr =
5
∑

k=1

(yk − ŷk)
2 (3.6)

SStot =
5
∑

k=1

(yk − ȳ)2 (3.7)

where the sum is taken over the set of subjects k ∈ {1, 2, 3, 4, 5}, yk are the observed data
in the study, ŷk are the data estimated by Equation 3.5, and ȳ is the mean value of the
observed data.
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Fig. 3.12: The relationship between saccade amplitudes and angles in the four directions:
left (A), right (B), up (C) and down (D). A linear relation is observed.

The coefficient of determination [139], R2 is defined as:

R2 = 1−
SSerr

SStot

(3.8)

It evaluates how well the regression line approximates the real data points. The value
of R2 ranges from 0 to 1.0. The closer to 1.0, the better the regression function fits the
real data.The subject-direction-specific parameters and the coefficient of determination
for each subject in each direction are listed in Table 3.2.

As all R2 values in the study are close to 1.0, the relationship between saccade amplitudes
and saccade degrees can be described by a linear model for each subject in each direction.
This relationship can be used for setting the confidence interval of amplitude for detecting
a specific degree saccade in the proposed system. On the other hand, it can also be used to
deduce the saccade degrees from measured saccade amplitudes in EOG signals for human
activity recognition [41] according to the following equation:

θ̂ = my + n (3.9)

where θ̂ is the estimated saccade degree, y is the saccade amplitude, m,n are subject-
direction-specific parameters (m = 1

a
, n = − b

a
).

In this study, the boundaries of the confidence interval for detecting a saccade were set to
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Table 3.2: Subject-direction-specific parameters, a and b, and coefficient of determination,
R2, for each subject in each direction.

Direction Subject a b R2

Left 1 17.32 137.9 0.9292
2 18.84 73.11 0.9596
3 11.37 17.19 0.9869
4 15.22 268.3 0.9397
5 16.65 98.42 0.9729

Right 1 18.13 117.2 0.9316
2 13.53 235.7 0.9388
3 9.708 39.94 0.9949
4 25.31 83.39 0.9573
5 22.12 32.41 0.9827

Up 1 37.16 -225.9 0.9844
2 55.00 -304.5 0.9421
3 37.13 -213.57 0.9782
4 55.14 -602.7 0.9668
5 51.06 -304.48 0.9982

Down 1 17.44 169.88 0.9920
2 15.6 110.9 0.9858
3 8.463 72.34 0.9946
4 20.37 32.01 0.9602
5 34.40 47.83 0.9861

(1± 15%) of the saccade amplitude estimated by a linear function, which can successfully
identify the intentional saccade-based controls in the testing data. The detection results
are illustrated in Table 3.3. The failures of saccade detection are focused on the vertical
directions due to the fact that HEOG signals are also sensitive to the movements of
eyelids. Figure 3.13 shows HEOG and VEOG signal of an example of a non-detected
saccade in this study. It is a down-going saccade. The subject performed non-voluntary
eyelid movement during the saccade resulting in considerable noise in the HEOG signal,
which finally leads to a failure of saccade detection.

Table 3.3: Saccade direction results for all subjects during the whole testing path. “+”
means correct detection, “-”means wrong detection. TP represents true positive rate, FP
represents false positive rate.

Subject right down left down right up TP FP
1 + + + + + + 1.00 0.00
2 + + + - + - 0.67 0.00
3 + + + + + + 1.00 0.00
4 + - + + + - 0.67 0.00
5 + + + + + + 1.00 0.00
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Fig. 3.13: HEOG and VEOG signals of an example of a non-detected saccade.

3.8 Discussion and conclusion

In the proposed hBCI, the user can use brain activity and eyes movements/blinks to
realize human-computer interactions, where EOG serves as a control signal instead of
being considered as artifacts; and the user can control the system whenever he wants
just by opening his eyes. Thanks to the strong signal recorded by EOG electrodes, the
features of different ocular activities are easy to detect. So the communication based on
EOG is more reliable and less vulnerable to physiological artifacts than the traditional
BCI channel. All of these provide possible solutions to the three challenges existing in
traditional mono-modal and externally paced BCIs.

All the parameters in the study only need to be estimated once for each subject. All
the algorithms applied in the system are on-line methods so that this hBCI technique
can be applied to real-world applications. Only one EEG recording system with several
electrodes was required in the system, so it is a single-system multi-function BCI, which
saves the cost of hardware and also reduces the complexity of the whole system. Moreover,
EEG/EOG electrodes are light weight and can be installed with a portable system, which
provides a possibility of long-term use in a mobile real-world environment.

The linear relationship between saccade amplitudes and angles modeled in this chapter
provides not only a useful reference for setting the parameters (e.g. confidential interval
for detecting a saccade) in the proposed hBCI but also a possibility of using this hBCI
for more advanced applications, such as a saccade-based speller (see Figure 3.14). In
the possible saccade-based speller, the user can type different letters through performing
saccades with different angles and directions, which may realize a similar function as P300
speller [183].

Moreover, this hBCI technique could be combined with traditional motor-imagery or
P300 BCI technique to build a more powerful hBCI system. In this case, the user can
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Fig. 3.14: A possible word matrix of a saccade-based speller.

choose to use the ocular activities to control the system when she or he is tired with
using traditional BCI channel, where signals recorded by the EOG electrodes are served
as control signals. Or the user can choose to use the motor-imagery or P300 as the sources
of control when she or he feels tired with the communication based on ocular activities,
where EOG electrodes are placed for automatic detection and reduction of EOG artifacts
in the BCI channel [50].

In conclusion, this hBCI turns the main source of“artifacts”, ocular activities, into a source
of control in a hBCI system, giving a possible solution to the three challenges mentioned
at the beginning of this chapter. Moreover, it also brings us a concept of single-system
multi-function hBCIs, which can be applied to real-world applications, providing users
with more freedom and less cost in BCI experiences.

Let us mention that vertical saccades are difficult to detect when the eyelids movement
happen during the saccade. How to attenuate the effects from non-voluntary ocular activ-
ity is a challenge for this ocular-related hybrid BCI. Thus, one of the potential improve-
ments is to develop a more reliable saccade detection algorithm to increase the robustness
of the system in real applications. In the future, it may be interesting to use an eye-
tracker in monitoring the ocular activity, so as to improve the quality and efficiency of
ocular-based control.

On the other hand, combining this technique with more advanced mind-driven commu-
nication (e.g. motor imagery control) is also an important research direction, which will
make the system more powerful and meet the diverse needs of a user. Thus, the part of
EEG-rhythm based BCI technique, in particular of the popular motor imagery BCI and
its challenges, will be further studied in the next chapters.
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Chapter 4

Selection of CSP channels and filters
for motor imagery BCIs

4.1 Introduction

Neuro-electrophysiologic studies reveal that both real movement and motor imagery of
a specific body part typically induce an electro-encephalogram (EEG) rhythmic attenu-
ation termed event-related desynchronization (ERD) in the µ (8-13Hz) and β (13-30Hz)
bands over corresponding functional regions in the sensorimotor cortex (“active” brain
areas), and may cause an EEG rhythmic enhancement termed event-related synchroniza-
tion (ERS) over other regions in the sensorimotor cortex (“idling” brain areas) [154]. This
phenomenon provides us the possibility to classify motor imagery EEG data, so as to give
birth to motor imagery BCI systems. However, raw scalp EEG signals are known to have
a poor spatial resolution due to the well-known volume conduction effect in EEG measur-
ing (see Chapter 2 Section 2.6 and [37, 150]). In Chapter 2, we have briefly reviewed and
compared several popular spatial filtering methods. They utilize either the neighborhood
(like Laplacian derivation, bipolar recording) or global information (like common average
reference, common spatial patterns). Among all those spatial filtering methods, common
spatial patterns (CSP) algorithm [135] is believed to be the most effective one for extract-
ing discriminative activity (i.e. ERD/ERS), because it is a data-driven approach, which
can construct subject-specific optimal spatial filters to overcome the individual differences
in EEG data. This algorithm was firstly proposed for a binary discrimination and then
extended to multi-class problems through various approaches (for details, see [60]).

However, the performance of CSP usually depends on preprocessing (EEG time segment
and frequency band selection), channel selection and number of paired filters. Until now,
most studies focused on channel selection (see Chapter 2 Section 2.8.1) and improving a
preprocessing procedure for CSP, in particular for selecting the optimal frequency band
(see Chapter 2 Section 2.7.4), but not on selecting the number of paired filters in CSP.
Most researchers choose the value of this number based on their experience and often
use a constant value for all subjects, which ignores the potential individual differences.
Although it was mentioned in [37] that this parameter can be alternatively determined
via cross validation, this work neither provided any detail nor experimental validation.
Moreover, using exhaustive searching strategy to find the optimal value of this parameter
in the whole range of values increases the computational time, particularly when the
dimension of data is very large. Thus, the method proposed in this chapter includes two
steps: 1) a criterion based on Rayleigh quotient is applied for pre-selecting the range of
the number of filters, 2) an algorithm based on cross validation is then employed for more
precise estimation of the optimal value of this parameter in the pre-selected range. Based
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on an existing four classes motor imagery dataset (BCI competition IV dataset IIa),
we will verify the effectiveness of the proposed method by comparing the classification
results using the estimated optimal values with those obtained using the recommended
fixed value in existing work first in a popular two-class problem (left/right hand motor
imagery discrimination) and then in the multi-class problem for classifying four different
motor imagery tasks (left hand, right hand, foot and tongue).

Note that the CSP algorithm typically needs a multi-channel setting, which may present
a key challenge for daily-use BCIs (see Chapter 2 Section 2.9). As we have reviewed in
Chapter 2 Section 2.8, several machine learning algorithms are available to select several
key channels, so as to reduce the number of electrodes in CSP-based classification. How-
ever, in practice, some researchers may simply reduce the number of electrodes based on
prior knowledge of functional areas in brain, e.g. placing a few electrodes around the
sensorimotor cortex, and then apply CSP algorithm with these reduced electrodes [138].
Compared to using machine learning algorithms for electrode reduction (see Chapter 2
Section 2.8.1), prior knowledge based electrode reduction usually does not require a full
EEG cap or any additional computational time to find the optimal subset of channels. To
explore whether it is an effective way to reduce electrodes in CSP-based classification, we
also apply CSP with the estimated optimal number of paired spatial filters on three sub-
sets of reduced channels, which are found based on the prior knowledge of functional areas
in brain and recommended by the Graz BCI Lab [138]. The results are compared with
those obtained by using a full EEG cap and a popular machine learning based channel
selection algorithm, called recursive channel elimination [97].

4.2 Automatic selection of the number of spatial fil-

ters for motor-imagery BCI

4.2.1 Pre-selection of paired spatial filters

CSP is a data-driven approach to construct spatial filters, W = [w1, ..., wN ], which de-
composes the N -channel EEG X = [x1, x2, ..., xN ]

T into N uncorrelated filtered signals
Z = [z1, z2, ..., zN ]

T through the transformation zj = wT
j X, (j = 1, 2, ..., N), so as to

calculate CSP features:

fCSP
j = log(var(zj)) = log(var(wT

j X)) (4.1)

to feed a classifier (typically Fisher’s LDA, see Chapter 2 Section 2.7.3).

In the transformation, wj is a generalized eigenvector that satisfies:

wT
j C

Lwj = λL
j

wT
j C

Rwj = λR
j (4.2)

λL
j + λR

j = 1

where CL, CR ∈ R
N×N are the estimated covariance matrices of two classes (i.e. ’L’ and

’R’) of N -channel EEG signals, respectively. Technically, this simultaneous diagonaliza-
tion procedure can simply be achieved by solving the generalized eigenvalue problem:

CLwj = λjC
Rwj (4.3)
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where λj = λL
j /λ

R
j . Note that this decomposition transforms two classes of measurements

into a common surrogate space. This method is therefore called Common Spatial Pattern
(CSP) algorithm (for more details, see [92]). In this surrogate space, λL

j ≥ 0 (λR
j ≥ 0) is

the variance of signal for class L (R). As λL
j + λR

j = 1, a large λL
j (λ

R
j ) indicates that the

corresponding spatial filter wj tends to yield a large variance of signal for class L (R) and
a small variance of signal for the class R (L). These contrary effects of wj on two classes
decorrelate the signals, so as to contribute to the discrimination.

We sort the λL
j values in descending order. Thus, w1 corresponds to the largest λ

L
j , and wN

to the largest λR
j (the smallest λL

j ). They compose the first pair of CSP filters. Similarly,
wi and wN−i+1 corresponding to i-th largest λL and λR, respectively, compose the i-th
pair of CSP filters.

We define the discriminative activity between two classes as Sd = CL − CR, and the
common activity as Sc = CL + CR. Thus, the ratio between discriminative activity and
common activity projected on the wj spatial filter is the Rayleigh quotient R(wj) [37] and
is obtained by:

R(wj) = wT
j Sdwj/w

T
j Scwj =

∣

∣λL
j − λR

j

∣

∣ /(λL
j + λR

j ) =
∣

∣2λL
j − 1
∣

∣ (4.4)

For the i-th pair of filters, FD(i) = R(wi) + R(wN−i) reflects its effectiveness in extracting
the discriminative components from the original signal [110]. Usually the first m pairs of
spatial filters according to the m largest FD(i) are used, since they tend to extract the
discriminative components. The other pairs of spatial filters are not employed, since they
tend to pick out the common components, which will deteriorate the classification results.
A too small value of m cannot extract all discriminative components for classification. On
the contrary, a too large value of m will introduce some common components. Both may
deteriorate classification performances (see Section 4.4.1), so that the optimal value of m
should be estimated for each subject. A too small FD(i) (typically FD(i) < 0.1) indicates
that the i-th pair of filters has a very weak ability of extracting discriminative components,
and cannot improve classification results (see Section 4.4.1). As all paired filters are sorted
in descending order of FD(i), the FD(i) values are used as a pre-selection criterion to
shrink the range for seeking the optimal m value. Here, an empirical threshold fd = 0.1
is set to shrink the range of m in [1,M ], where M is the number of the paired spatial
filters with FD(i) ≥ fd. The effectiveness of this threshold is validated in Section 4.4.1

4.2.2 Refined estimation of the optimal number of paired filters

The optimality criterion for selecting paired spatial filters must satisfy two properties: (1)
the number of paired spatial filters must be minimal; (2) it must yield the classification
result that is equal or comparable to the best performance, i.e. such that there is no
statistical difference between them or their difference is less than a tolerance δ. The
tolerance δ is set by experience to avoid the overfitting problem1 (δ = 0.015 in this work).
Here, the classification performances are evaluated via the kappa coefficient, κ (for details
about kappa coefficient, see Chapter 2 Section 2.5.2).

The optimal number of paired spatial filters is evaluated by checking each possible m
value (m ≤ M) to see whether its corresponding κ value is significantly larger than

1Sometimes, using a large m may slightly improve the classification results in cross-validation but
may deteriorate the classification results in an independent evaluation due to the overfitting [107].
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others obtained for smaller values of m. The paired difference test (paired t-test, see
Appendix B) is employed for the significance analysis [231]. If several m values yield
equal or comparable classification results, the smallest one will be chosen. This procedure
is summarized in Algorithm A.

Algorithm A: Selection of the optimal number of paired spatial filters
Let m ≤ M ; κ(m) is a set of κ for a given m evaluated with a 100 repetitions
of 10-fold cross-validation (κ(m) ∈ R

100), κ̄(m) is the mean value (over the 100
components), t(a, b) represents the p-value of the paired t-test between vectors
a and b

1: mi ← 1; mj ← 2
2: while mj ≤M do
3: if κ̄(mj) > κ̄(mi) + δ and t(κ(mi),κ(mj)) < 0.05 then
4: mi ← mj

5: endif
6: mj ← mj + 1
7: endwhile
8: mopt ← mi

9: return the optimal parameter, mopt

The optimal parameter mopt is estimated off-line from the training data for each subject,
and then applied to the testing data or on-line applications for the same subject. This
strategy can be extended to multi-class problems using One Versus the Rest CSP [60, 233].

4.2.3 Extension to multi-class problems

One Versus the Rest (OVR) CSP is a multi-class CSP approach that computes W for
each class against all the others, projects the EEG signals on all the chosen spatial filters
to extract the features, and then performs a multi-class LDA classification [60]. For a
P -class problem, the OVR CSP algorithm can be described as follows:

1. Estimate the covariance matrices C(p) for all classes (p = 1, 2, ...P ).

2. Let us denote by C the set of all classes, and by C � {p} the set of all classes
except class p. The spatial filters, W = [w1, ..., wN ], for class p are obtained by the
simultaneous diagonalization of C(p) and C(C�{p}) = C(1) + ... + C(p−1) + C(p+1) +
...+ C(P ):

wT
j C

(p)wj = λ
(p)
j

wT
j C

(C�{p})wj = λ
(C�{p})
j (4.5)

λ
(p)
j + λ

(C�{p})
j = 1

3. Repeat the second step, so as to calculate W for each class.

4. Typically select m paired spatial filters from each W , so as to get 2m × P spatial
filters.
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5. Project the EEG signals on all the chosen spatial filters to extract 2m × P CSP
features (defined in Equation 4.1) for classification.

Based on the pre-selection procedure in Section 4.2.1, each W generates a M value, thus
P ×M values are obtained. The largest M value (Mmax) is chosen as the upper limit of
possible mopt. Then mopt is estimated based on the classification results in the range of [1,
Mmax] using Algorithm A, so as to choose first mopt paired filters from eachW . Without
loss of generality, the framework of our method for a four-class problem is illustrated in
Figure 4.1.

Note that OVR is a popular strategy in extending two-class discrimination methods to
multi-class problems. More discussion about OVR strategy is available in Chapter 7.

4.3 Data description and channel selection

The data used in this work are from BCI competition IV dataset IIa [39], which contains
one training session and one testing session of 22-channel EEG data from 9 subjects who
performed four classes cue-driven motor imagery (left hand, right hand, both feet and
tongue). Each trial began with a fixation cross and an additional short acoustic warning
tone. After two seconds, a cue in the form of an arrow pointing either to the left, right,
down or up (corresponding to left hand, right hand, foot or tongue) appeared and stayed
on the screen for 1.25s. The subjects were asked to carry out the motor imagery task until
4s after cue on-set. No feedback was provided. The experimental paradigm is illustrated
in Figure 4.2.

The EEG signals were recorded by 22 Ag/AgCl electrodes (with inter-electrode distances
of 3.5cm) using the left mastoid as reference and the right mastoid as ground (sampling
rate 250Hz). The electrode montage is shown in Figure 4.3.

We used three subsets for finding the optimal subset of channels for this dataset based on
prior knowledge of brain functional areas and their corresponding standard EEG recording
positions (see Figure 4.4), and suggestions from the experts in Graz BCI Lab [138]. The
first subset consists of channels No. 2 to 21, which use the entire scalp except frontal
and occipital regions, since frontal and occipital regions are not involved in any motor
imagery task. The second subset includes channels No. 2 to 18, covering mid-central and
centro-parietal regions, which are known as sensorimotor areas. The third subset contains
electrodes C3, Cz, C4, and electrodes surrounding them (marked in red, see Figure 4.3),
13 electrodes in total, covering the hand (C3, C4) and foot (Cz) representative areas.
Although the third subset does not include the tongue representative area, it has been
proved that it is possible to identify tongue motor imagery from this subset [138], because
tongue motor imagery typically elicits an enhancement of EEG rhythms (ERS) in hand
representation areas [152].

4.4 Experimental results

First of all, we use the full channel data to verify the effectiveness of our proposed method
in selecting the number of paired filters for both two-class (left vs. right hands) and
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Fig. 4.1: Framework of our method for a four-class problem.

multi-class (left hand, right hand, foot, tongue) problems. Then, we apply CSP with
the estimated optimal number of paired spatial filters on three subsets, and compare the
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Fig. 4.2: Timing of the experimental paradigm for BCI competition IV dataset IIa.

Fig. 4.3: Montage of 22 electrodes in BCI competition IV dataset IIa [39].

classification results with those of using the full channel data and those of using a subset
of channels selected by a machine learning method.

4.4.1 Experimental validation of the estimation of the optimal
number of paired filters

A broad frequency band of 8-30Hz (µ and β bands) and the segment of 0.5-2.5s of EEG
data after the cue on-set were used in this study for calculating the transformation matrix
W in CSP and the FD(i) value for each pair of spatial filters, and for training the
classifier [135]. The Fisher’s linear discriminant analysis (LDA), which is classically used
with CSP, was employed here for the classification [37]. The effect of the number of spatial
filters was studied on the training data using 100 repetitions of 10-fold cross-validations.
The classification performances were measured by κ value. Algorithms of CSP, classifier
training and evaluation (including calculating κ value) are performed with the BioSig
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Fig. 4.4: Brain functional areas and their corresponding standard EEG recording posi-
tions.

toolbox [176].

The effects of the parameter m on the classification results and FD(i) value of each
pair of spatial filters for all subjects are illustrated in Figure 4.5. From Figure 4.5, we
can see that the performance of CSP-based classification is not proportional to m but
has significant variations depending on m for all subjects. Table 4.1 lists the standard
variance of κ values over different m (m ∈ [1, 11]), σm(κ), for each subject, which can
be used to evaluate the sensitivities of classification results to m values. From Table 4.1,
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Fig. 4.5: Effect of parameter m on the left vs right hand classification and FD(i) of each
pair of spatial filters for all subjects in the BCI competition IV dataset IIa. The horizontal
line on the second plot indicates FD = 0.1.

we can see that the sensitivity of classification results to m varies among subjects. For
Subjects 8 and 9, σm(κ) is relatively low (σm(κ) = 0.01), indicating a low sensitivity to m
values, while for Subject 2, 5, and 6, σm(κ) is relatively high (σm(κ) > 0.05), indicating
a high sensitivity to m values. These results prove that it is critical to choose a right m
value for each individual in CSP-based classification.

To examine the effectiveness of setting the threshold fd = 0.1 to shrink the range of m
in [1, M ], we list the values of M for different subjects in Table 4.2. From Figure 4.5 and
Table 4.2, we can see that adding the paired spatial filters with FD(i) < 0.1 does not
improve the classification results: e.g. for Subject 1, M = 6 and the κ value decreases if
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m > 6 is used; for Subject 8, M = 7 and the κ value remains stable when m > 7. Thus,
it is reasonable to estimate the optimal m in the range of [1, M ] using the threshold
fd = 0.1.

Table 4.1: Standard deviation of κ values over different m (m ∈ [1, 11]), σm(κ), for each
subject.

Subjects
1 2 3 4 5 6 7 8 9

σm(κ) 0.03 0.07 0.02 0.03 0.07 0.10 0.04 0.01 0.01

Table 4.2: The M values for different subjects.
Subjects

1 2 3 4 5 6 7 8 9
M 6 4 7 6 5 6 5 7 8

Table 4.3 lists the estimated mopt values learned from 100 repetitions of 10-fold cross-
validations in the training data of two classes (i.e. left hand, right hand) and provides
a comparison of the evaluation results on the independent testing data using mopt and
the classical value (m = 3) recommended in [37, 135]. The mopt value varies for different
subjects, further indicating the necessity of a subject-specific estimation. Note that for
Subjects 2 and 5, themopt value is equal to theM value, indicating that setting a threshold
higher than 0.1 may not lead to the optimal m to achieve the best classification result.
From Table 4.3, we can see that classification performances obtained with the estimated
mopt value are signification better than those obtained by using the recommended value
(paired t-test: P = 0.01). For Subjects 8 and 9, whose sensitivities to m are relatively
low, one pair of filters can already yield fine performance, while others may need more
pairs of filters.

Table 4.3: Estimated mopt values and comparison of independent evaluation results be-
tween using mopt and the recommended value (m = 3). Estimated mopt values were ob-
tained by 100 repetitions of 10-fold cross-validations on the training data. The evaluation
results were computed on the independent testing data using mopt and the recommended
value (m = 3). The best performances are shaded in gray.

Subjects
1 2 3 4 5 6 7 8 9 Mean

mopt 5 4 3 3 5 5 4 1 1
κ (mopt) 0.75 0.22 0.96 0.40 0.11 0.35 0.70 0.94 0.86 0.59
κ (m = 3) 0.67 0.13 0.96 0.40 0.09 0.25 0.69 0.93 0.82 0.55

The comparison of the results obtained withmopt and with fixed recommendedm is shown
in Table 4.4 for the four-class problem of BCI competition IV dataset IIa. Using mopt

leads to better mean performance (mean κ = 0.53 over all subjects) than using the fixed
recommended m (mean κ = 0.51 over all subjects). Although this result is not statically
significant (P > 0.05), using mopt generates either better or equal performances (when
mopt = 3) compared to fixed recommended m = 3 for all individuals, indicating the
effectiveness of the proposed estimation in multi-class problems.
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Table 4.4: Estimated mopt and independent evaluation in a four-class problem using mopt

and fixed m, and comparison with the 2nd placed winner in BCI competition IV who also
used 8-30Hz data but pair-wise approach (PW CSP) with fixed m (m = 4). The best
performances are shaded in gray.

Subjects
1 2 3 4 5 6 7 8 9 Mean

mopt 4 3 1 2 3 3 2 4 2
κ (mopt) 0.72 0.30 0.74 0.48 0.20 0.25 0.75 0.71 0.68 0.53
κ (m = 3) 0.69 0.30 0.71 0.47 0.20 0.25 0.74 0.71 0.50 0.51

κ (2nd, m=4) 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52

Table 4.5 lists the classification results of five BCI competition winners on the same
dataset. Among them, only the 1st, the 2nd and the 4th place winners used full channels
with CSP; and both the 1st and the 4th place winners used extended CSP algorithms
based on multiple narrow bands [194]. More detailed information and discussion about
these winners and their results are available in [194] and Chapter 7, which focuses on
multi-class problems. For this chapter, it makes more sense to only compare with the 2nd

place winner [194] (the results of the 2nd place winner are reminded in Table 4.4), since
it used the same frequency band and the same number of electrodes as we did. In this
case, the effect of frequency band and the number of channels can be eliminated, so as to
validate the interest of using subject-specific mopt with OVR CSP. The framework of the
method used by 2nd place winner is illustrated in Figure 4.6.

Table 4.5: The classification results (evaluated with κ) of the BCI competition winners
on BCI competition IV dataset IIa

Subjects
1 2 3 4 5 6 7 8 9 Mean

1st 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57
2nd 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52
3nd 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 0.31
4th 0.46 0.25 0.65 0.31 0.12 0.07 0.00 0.46 0.42 0.30
5th 0.41 0.17 0.39 0.25 0.06 0.16 0.34 0.45 0.37 0.29

The comparison showed that using mopt with OVR approach in CSP-classification gener-
ates better mean performance (mean κ = 0.53 over all subjects) than the 2nd place winner
(mean κ = 0.52 over all subjects) on this dataset. Although this result is not statically
significant (P > 0.05), our results outperform those of the 2nd place winner for most sub-
jects (except Subjects 2, 8, and 9), indicating the effectiveness of using subject-specific
mopt with OVR CSP)

Note that for Subjects 2, 8 and 9, our method does not yield better results than the
2nd place winner but does generate results either equal to or better than using the fixed
value of m. Let us take Subject 9 as an example for further discussion. As we reviewed in
Chapter 2 Section 2.8.1, the CSP filtered signals Z = W TX = [z1, ...zN ] can be considered
as uncorrelated EEG source components. In this case, the original EEG signals can be re-
constructed by the inverse transformation X = UZ, where U = [u1, u2, ..., uN ] = (W T )−1.
We call uj (j = 1, ..., N) a spatial pattern, since it reflects the spatial distribution of

86



Fig. 4.6: Framework of the method used by the 2nd place winner [194]

uncorrelated source component extracted by spatial filter wj (w
T
j uj = 1) [220]. Figure 4.7

shows the normalized spatial patterns according to first three pairs of spatial filters ob-
tained by OVR CSP for Subject 9. For all classes, the third pair of spatial filter can
only bring in an undesirable source component whose spatial distribution is not consis-
tent with brain functional area (see Figure 4.7). For example, the third pair of spatial
filters for left hand movement generates a component mainly distributed around C3 (dark
area), which is the representation area of right hand rather than left hand. Thus, using
mopt = 2 (κ = 0.68) yields far better results than using fixed m = 3 (κ = 0.50) for this

1The details of this method are not available.
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subject. However, for foot movement, the second pair of spatial filter extract a component
that mainly distributed around P1 (dark area), which is not the foot representation area
(around Cz or CPz). It might be a reason why the result of our method on this subject
is slightly lower than the 2nd place winner.

The proposed estimation method is not very time consuming. The computational time is
31s on average for two-class problems, in our experimental environment (Matlab 7.10.0,
Window 7 Professional 64bits, CPU 2.66GHz, RAM 2.0G). For the four-class problem,
the computational time is 88s on average . The optimal number of paired spatial filters
can be learned in an off-line analysis with our algorithm and then applied to the on-line
applications for the same subject to meet the requirement of rapid processing in real BCI
applications.

4.4.2 Channel selection for CSP

The proposed algorithm was applied on the three subsets chosen in Section 4.3 to find the
optimal number of paired spatial filters for the four-class CSP-based classification. The
classification results are provided in Table 4.6. For comparison purpose, we also provide
the classification results obtained when using the full cap (22 channels), and using a
subset of channels selected by a machine learning method, recursive channel elimination
(RCE) [97, 194]. Recursive channel elimination (RCE) proposed in [97] is a channel
selection method based on SVM (margin maximization) and derived from the popular
recursive feature elimination method [71, 97, 180]. We have reviewed this method in
Chapter 2 Section 2.8.1. In the BCI competition IV, the third place winner applied this
method to select channels and then extract CSP features from those channels to perform
a multi-class classification using three SVM classifiers with two hierarchies and a voting
strategy [194].

Table 4.6: Comparison of the results obtained using subsets of channels with mopt, using
the full cap with mopt, and using the subset of channels selected by recursive channel
elimination [97] for the multi-class problem of BCI competition IV dataset IIa. The best
performances are shaded in gray.

Subjects
1 2 3 4 5 6 7 8 9 Mean

Full cap (22 channels) 0.72 0.30 0.74 0.48 0.20 0.25 0.75 0.71 0.68 0.53
Subset 1 (20 channels) 0.49 0.20 0.47 0.34 0.17 0.20 0.45 0.61 0.33 0.36
Subset 2 (17 channels) 0.50 0.07 0.51 0.33 0.12 0.18 0.34 0.46 0.29 0.31
Subset 3 (13 channels) 0.47 0.14 0.51 0.28 0.22 0.22 0.41 0.53 0.42 0.36
RCE [194] (3rd winner) 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 0.31

From Table 4.6, we can see that the classification performances significantly drop when
using subsets of channels (P < 0.01), no matter using the three subsets selected by prior
information on the functional areas of the brain or using the subset selected by RCE.
This result indicates that a full cap is helpful for improving the classification results when
using CSP algorithm. Among three subsets selected by prior information, the third subset
that contains electrodes C3, Cz, C4 and their surrounding electrodes is the best choice,
since it employs the least number of channels (13 electrodes) and yields the best mean
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Fig. 4.7: Brain functional areas in sensorimotor cortex and normalized spatial patterns
according to first three pairs of spatial filters obtained by OVR CSP for Subject 9 on BCI
competition IV dataset IIa.

classification result (mean κ = 0.36). For Subject 5, using the third subset even generates
a slightly better result (κ = 0.22) than using the full cap (κ = 0.20). Both the first subset
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and the third subset of channels selected based on prior information outperform RCE in
the classification results for most subjects (except Subjects 3 and 9 for the first subset,
except Subjects 2, 4 and 9 for the third subset), demonstrating the interest of using prior
information in BCI problems.

As we have shown the CSP patterns obtained by using full cap for Subject 9 before, we
further present the CSP patterns obtained by using different subsets for the same subject
in Figure 4.8 to illustrate the influence of reducing the number of electrodes on CSP-based
classification. The CSP patterns according to foot motor imagery are given, because the
difference between subsets is obvious in these patterns. From Figure 4.8, we can see that
reducing the number of electrodes makes the distribution of source component distorted,
which results in a deterioration of classification results. However, compared to the first
subset and the second subset, the distortion is relatively smaller when using the third
subset. The source component still mainly distributes around the foot representation
areas (Cz) when using the third subset, while when using the first subset and the second
subset, the component mainly distributes around the visual cortex. As a result, using the
third subset yields a better result (κ = 0.42) than using the other two subsets (κ = 0.33
for the first subset, κ = 0.29 for the second subset) for this subject.

Fig. 4.8: Normalized CSP patterns according to foot motor imagery obtained by using
different subsets for Subject 9.

4.5 Conclusion

The number of spatial filters used in feature extraction affects the CSP-based classification
results. This chapter proposes an automatic strategy based on Rayleigh quotient and cross
validation to estimate the subject-specific optimal value of this parameter. Experimental
results show that the estimated optimal values of the parameter vary for different subjects
and yield better results than those obtained with the fixed recommended value for both
binary-class and multi-class problems. The proposed strategy is not very time consuming,
and therefore can be applied on the training data to estimate the optimal value of the
parameter for each subject and then used for the long term on-line classification of the
given classes for the same subject to achieve good performances.

Three subsets of channels selected by prior neurophysiological knowledge were also tested
in this chapter to study the channel selection and reduction challenges. The classification
results obtained by two subsets selected based on prior information of functional areas
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of the brain are generally better than those obtained with a subset of channels selected
by a SVM-based machine learning method, called recursive channel elimination (RCE),
showing the potential interest of using some prior knowledge in BCI challenges. However,
the classification results obtained using reduced channels are not as good as those obtained
when using a full cap. Thus, in the next chapters, we will develop some non-CSP based
methods to solve the channel selection and reduction challenges for BCIs.
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Chapter 5

Subject-specific channel selection
using time information for motor
imagery BCIs

5.1 Introduction

Although multi-channel recording with a large number of electrodes (e.g. 118) and spatial
filtering algorithms (e.g. common spatial patterns (CSP) [37]) can improve the SNR and
extract discriminative features from overlapping signals, this setting reduces the portabil-
ity and practicability of BCI so that it represents a main drawback for final users [236].
Moreover, its effectiveness depends on the choice of the frequency band and the time
segment of the EEG data [37].

To develop an easy to use system, several algorithms were proposed to reduce the number
of channels in BCI [17, 97, 220]. However, they simply addressed the issue of channel
selection by spatial information, disregarding the potential impact of time and frequency
information. As a result, the optimal combination of time, frequency and channel position
may not be achieved in a BCI design. Although a recent study showed that a broad
frequency band (8-30Hz) that covers both µ (8-12Hz) and β (18-25Hz) bands can generally
be used when employing features, called time domain parameters (TDPs), the existing
channel selection methods mainly work with the popular band power (BP) feature, which
is sensitive to frequency band and time segment.

As motor imagery BCIs typically rely on decoding sensorimotor rhythms (see Section
2.3 in Chapter 2), in practice, many researchers simply placed electrodes at three key
positions (C3, Cz and C4 of 10-20 recording system [84], see Figure 2.3 in Chapter 2) in
the sensorimotor areas to reduce the number of electrodes, which we call 3C setup. The
advantages of the 3C setup is that it does not need a full EEG cap, training data and
machine learning methods to find the optimal positions for recording. It can be used when
only a few electrodes are available. However, due to the limited information and low SNR
of signal, it cannot achieve good classification results in most cases. Preprocessing steps
(e.g. time-frequency optimization, see next chapters) or advanced classification algorithms
(see [12, 46]) are often needed to improve its performance. Moreover, general users may
not be skillful enough to place the electrodes at the precise locations of C3, Cz and C4
each time, if a standard EEG cap is not used.

Here, we propose a channel selection method using TDP features. Unlike existing meth-
ods, our method considers the effect of the used time segment on channel selection, so as
to find the optimal combination of time segment and subset of channels for BCI design.
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In this method, a criterion based on Fisher’s dicriminant analysis is proposed to measure
the discrimination power of TDP features extracted from different channels and different
time segments. Comparisons between channel selection using time information (CSTI),
channel selection based on the long time segment from the cue on-set to the ending of the
cue (CSL), 3C setup and full EEG cap CSP are performed to evaluate the contribution
of our method (CSTI). The effect of electrode misplacing on 3C setup is also examined to
study its potential influence on classification.

5.2 Method for channel and time segment selection

using TDP

5.2.1 Time domain parameters

The EEG signals are bandpass filtered between 8 and 30 Hz using a 5th order Butterworth
filter. For one channel (electrode) and one trial, we denote by x(t) the filtered EEG signal
in a time segment [t0, t0 + T − 1]. Time domain parameters (TDPs) are a set of broad
band (i.e. 8-30Hz) EEG features defined in the time domain [213]:

TDP (p) = log

(

var
t∈[t0,t0+T−1]

(
dpx(t)

dtp
)

)

, p = 0, 1, 2, ... (5.1)

The logarithm is applied here to make the distribution of TDPs approximately normal (for
details, see [213]), since the linear classifier we use here typically assumes that the input
features follow Gaussian distributions [132]. Note that the TDP of order 0, A = TDP (0),
is the logarithmic band power (BP) of the filtered signal. It characterizes the EEG pattern
in terms of amplitude. The EEG signal can be considered as a mixture of sinusoidal waves:

x(t) =
∑

m

Am · sin(wmt+ Φm) (5.2)

where wm = 2πfm is the frequency of each sinusoidal wave. So the derivative provides
information on frequency:

dx(t)

dt
=
∑

m

Amwm · cos(wmt+ Φm) (5.3)

Thus, the TDP of order 1, M = TDP (1), is a feature that reflects the EEG pattern in
terms of frequency, and the TDP of order 2, C = TDP (2), reflects the change in frequency.
We use these three TDPs, [A,M,C], in this work, since they carry more information than
the only BP feature, and have clearer physical meanings than TDPs of higher orders in
BCI research.

5.2.2 A criterion based on Fisher’s discriminant

Fisher’s linear discriminant analysis (Fisher’s LDA) is a very popular classification algo-
rithm in BCI research [132], because it has a very low computational cost and usually
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yields good results for motor imagery BCIs [107]. It projects high-dimensional data onto a
direction and performs a linear classification in this one-dimensional space. The optimal
projection is found by maximizing the separation between two classes. Let us assume
that we have two classes of observations, h and f . In a one-dimensional feature space,
the separation between two classes is defined using the Fisher criterion [132]:

FC =
(µh − µf )2

(σh)2 + (σf )2
(5.4)

where µh and µf are the mean values of the feature over all trials for classes h and f ,
respectively, and (σh)2 and (σf )2 are the variances of the feature.

In feature selection, FC can be used to evaluate the discrimination power of each single
feature [132]. However, it is not suitable to evaluate the discrimination power of a group of
features. Thus, we propose a novel and simplified criterion based on Fisher’s discriminant,
called F score, F̂ , and we use it to estimate the discrimination power of a group of features
(here TDP feature vector [A,M,C]):

F̂ =

∥

∥+µh − +µf
∥

∥

2

2

tr(Σh) + tr(Σf )
(5.5)

where Σ denotes the covariance matrix of the feature vector, +µ denotes the mean of the
feature vector, ‖·‖2 denotes the L2-norm (Euclidean norm), and tr(·) the trace of a matrix.

Without loss of generality, let us assume that the feature vector is three-dimensional,
+v(i) = [v1(i), v2(i), v3(i)], i = 1, ..., K, where K is the number of samples (trials) for one
class. Thus, the mean of the feature vector for the class is +µ = [µ1, µ2, µ3], where µ1, µ2,
µ3 are the mean values of v1(i), v2(i), v3(i), respectively. We denote by σ2

1, σ
2
2, σ

2
3 the

variances of v1(i), v2(i), v3(i) for the class, respectively. The trace of the covariance matrix
for each class can be computed as:

tr(Σ) = σ2
1 + σ2

2 + σ2
3 =

1

K − 1

K
∑

i=1

(v1(i)− µ1)
2

+
1

K − 1

K
∑

i=1

(v2(i)− µ2)
2 +

1

K − 1

K
∑

i=1

(v3(i)− µ3)
2

=
1

K − 1

K
∑

i=1

[

(v1(i)− µ1)
2 + (v2(i)− µ2)

2 + (v3(i)− µ3)
2
]

=
1

K − 1

K
∑

i=1

‖+v(i)− +µ‖22 (5.6)

Thus, the trace of the covariance matrix for each class is the mean Euclidean distance
between samples to the class center, which reflects intra-class spread.

Compared to FC, F̂ is a derived version relying on the Euclidean distance between class
centers,

∥

∥+µh − +µf
∥

∥

2
, to estimate the difference between classes, and employing the trace of

the covariance matrix to evaluate the variance within a class. Note that this simple expres-
sion avoids estimating a projection direction as required by the general multi-dimensional
expression of Fisher’s LDA.

94



5.2.3 F score based channel selection

The TDPs, [Aχ

e (i),M
χ

e (i), C
χ

e (i)], are computed for a time segment [tn, tn+T −1] for each
single trial i at channel e for class χ (χ ∈ {h, f}). Then, the discrimination power of
channel e is estimated by the F score:

F̂e =
(Āh

e − Āf
e )

2 + (M̄h
e − M̄ f

e )
2 + (C̄h

e − C̄f
e )

2

Ãh
e + Ãf

e + M̃h
e + M̃ f

e + C̃h
e + C̃f

e

(5.7)

with

TDP
χ

e =
1

Kχ

Kχ

∑

i=1

TDP χ

e (i) (5.8)

T̃DP
χ

e =
1

Kχ − 1

Kχ

∑

i=1

(TDP χ

e (i)− TDP
χ

e )
2 (5.9)

where Kχ is the number of training trials for class χ.

Existing methods typically determine the number of selected channels based on user’s
experience [220] or exhaustive searching strategy [17, 97], which is either arbitrary or
time-consuming. Here, we propose an automatic approach, by considering the properties
of both features and classifier to determine the size of the subset of selected channels.

Let F̂m be the largest F score among all channels:

F̂max = max
{

F̂e | e ∈ {1, ..., 118}
}

(5.10)

The relative discrimination power of each channel e is defined as:

ρF (e) =
F̂e

F̂max

(5.11)

The value of ρF (e) is between 0 and 1. A larger ρF (e) indicates a larger relative discrim-
ination power. Thus, a threshold ρ̂ can be set to extract the channels with ρF (e) > ρ̂ to
be used for classification. A lower value of ρ̂ tends to pick out more channels. In practice,
the training trials should have several times as many as the dimensionality of features to
guarantee a good performance of the classifier [83]. Based on this knowledge, the range
of ρ̂ can be shrunk to [P, 1.0] to feed the classifier, where P is obtained by:

min
P

Num(P ) s.t. (5.12)

P ∈ [0, 1.0], Num(P ) ≥ K/3R

where Num(P ) is the number of selected channels with ρF (e) > P , K is the number of
trials for training, and R is the ratio of the number of trials to the number of features
for a specific classifier. Note that each channel yields three TDPs, so here we have
Num(P ) ≥ K/3R. As a linear classifier, such as Fisher’s LDA, typically needs 5 − 10
times training trials as many as the dimensionality of features [107], we set R = 5 to have
a loose range of ρ̂ for further optimization. Different subsets of channels according to
different ρ̂ ∈ [P, 1.0] are used to train the classifier. The optimal ρ̂ is obtained by seeking
the subset with the lowest training error (ERR) in the classifier training. The training
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error is defined as the observed overall disagreement between classification outputs and
true classes. Let ρ̂∗ be the optimal ρ̂, so it is obtained by:

ERR(ρ̂∗) = min {ERR(ρ̂) | ρ̂ ∈ [P, 1.0]} (5.13)

If there are more than one ρ̂∗ obtained by Equation 5.13, we use the largest ρ̂∗ as the
optimal one.

5.2.4 Channel selection using time information (CSTI)

This method aims to find the optimal combination of time segment and subset of channels
for classification. The general scheme of the method is shown in Figure 5.1. First, we
compute the TDP features and the F score for each channel in a series of overlapping
T -width time segments [tn, tn+T −1] (n = 1, ..., N), tn+1 = tn+Ts (Ts is the step), during
the motor imagery duration [T0, Te], where T0 is the beginning time of motor imagery and
Te is the ending time. Then, the optimal subsets of channels S(tn) and their corresponding
training error ERR(ρ̂∗(tn)) are obtained by the F score based channel selection proposed
above for different time segments [tn, tn+T −1] (n = 1, ..., N), where ρ̂∗(tn) is the optimal
ρ̂ in the time segment [tn, tn + T − 1]. The optimal time segment [t∗, t∗ + T − 1] is found
by seeking the lowest training error ERR(ρ̂∗(tn)) among all time segments:

ERR(ρ̂∗(t∗)) = min
tn
{ERR(ρ̂∗(tn))} (5.14)

so as to obtain the optimal subset of channels S(t∗) in the optimal time segment [t∗, t∗ +
T − 1].

5.3 Results

The dataset IVa [33] from BCI competition III is used in this study. As it consists of EEG
signals recorded using 118 electrodes, this dataset is very suitable for a fine selection of
EEG channels. Five subjects, denoted “aa”, “al”, “av”, “aw” and “ay”, have performed 280
trials of cue-driven motor imagery (right hand: 140 trials, right foot: 140 trial) during
the recording. The acquisition process was driven by visual cues, presented during 3.5s,
and separated by randomly chosen intervals, ranging from 1.75 to 2.25s. Subjects were
required to perform the corresponding motor imagery task during the presentation of a
cue and to relax in the intermission. Thus, T0 = 0 is the time point of the cue-onset,
Te = 3.5s is the ending of the cue. Ground truth is available for all subjects in this
dataset.

The aim of the experiment is to perform classification of the signal, for each subject, into
two classes (right hand, right foot), with as few electrodes as possible. The F score based
channel selection was performed in five (N = 5) overlapping time segments of 0-2.0s,
0.5-2.5s, 1.0-3.0s, 1.5-3.5s and 2.0-4.0s after the cue on-set (tn = 0, 0.5, 1.0, 1.5, 2.0s, T =
2s, Ts = 0.5) to find the optimal combination of time segment and subset of channels by
CSTI [?]. For comparison purpose, we also performed F score based channel selection,
full EEG cap based CSP and 3C setup in a long time segment from the cue on-set to
the ending of the cue. Fisher’s LDA was used as the classifier in this study, since F
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Fig. 5.1: General scheme of CSTI.

score is proposed based on Fisher’s discriminant, and it works well with TDP and BP
features. The paired-sample t-test was employed to reveal the statistical significance of
the difference between the results of different methods.

First, we used the first 70 trials for each class for training, and the remaining ones for
the independent testing, to evaluate the contributions of our methods. The results are
provided in Sections 5.3.1 to 5.3.3. This choice of training/testing data corresponds to
a usual situation in real applications, where the training data are recorded before the
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testing data. Using 50% trials for training makes the information for training comparable
to that for testing. Secondly, considering the data evolution, we also tested our method
with randomly selected training and testing data (training : testing = 70 : 70 for each
class) to evaluate the robustness of our method. The results are provided in Section 5.3.4.

5.3.1 Effect of time segment on electrode selection

The spatial distribution of the F score and the selected electrodes in different time seg-
ments are shown in Figure 5.2, where the selected time segments are marked out by
squares. The testing results obtained when using the selected electrodes in different 2s
length time segments are provided in Table 5.1, and the results from the selected time
segments are shaded in gray. The results are evaluated by classification accuracy (ACC),
which is defined as the observed overall agreement between classification outputs and
true classes. From Figure 5.2, we can see that the subsets of selected electrodes vary with
time segments for each subject, indicating that time segment is an important factor that
should be considered in electrode selection. Among all possible combinations of time seg-
ment and subset of electrodes, the selected combination yields the highest classification
accuracy (ACC) on the testing data. This result shows that CSTI is effective in finding
the optimal combination of time segment and subset of electrodes. However, CSTI has a
computational cost which is at least N times (N is the number of different time segments,
here N = 5) the one of methods only performing channel selection in only one single time
segment. In our experiments, the computation time for CSTI was 11 seconds, while for
channel selection in a single time segment it was 2 seconds (Matlab 7.10.0, Window 7 Pro-
fessional 64bits, CPU 2.66GHz, RAM 2.0Go). Nevertheless, this additional calibration
time remains acceptable for several applications, such as neuro-games.

In this study, we also performed F score based channel selection in a long time segment
(CSL) from the cue on-set to the cue ending (that covers the whole period of motor im-
agery) to see: 1) whether a long time segment will improve the results of channel selection
(i.e. selecting less electrodes and/or improving classification accuracy), 2) whether the
effect of time segment can be forgotten by just using a long time segment that covers the
period of motor imagery, so as to save computation time. Comparisons between CSTI
and CSL are provided in Table 5.2. From Figure 5.2 and Table 5.2, we can see that, com-
pared to CSTI, CSL selects less electrodes (except for “ay”). However, CSL only improves
ACC for one subject (“av”). For other subjects, CSL yields significantly worse ACC than
CSTI does (p < 0.05). Considering the deteriorated ACC, using a long time segment in
channel selection cannot fully improve the results for most subjects. Thus, the effect of
time segment cannot simply be ignored by using the long time segment.

Although CSTI tends to select more electrodes than CSL does, the number of CSTI
selected electrodes, which is no more than 11 (see Figure 5.2 and Table 5.2), is less
than that of commercial BCI system Emotiv EPOC1, which has 14 electrodes. Thus,
the number of electrodes selected by CSTI is still reasonable and acceptable for general
applications (e.g. in a game environment).

1https://www.emotiv.com/
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Fig. 5.2: Topographic maps of the F score (color scale) and selected electrodes (marked
by bold points) in different time segments. The number of selected electrodes is given
below each map. The selected time segments are marked out by rectangles. Results in
the long time segment obtained by CSL are provided in the last column.

Table 5.1: ACC results when using the selected subset of electrodes in different time
segments (the selected time segment is shaded in gray).

Subject 0-2.0s 0.5-2.5s 1.0-3.0s 1.5-3.5s 2.0-4.0s
aa 0.53 0.67 0.67 0.67 0.64
al 0.78 0.89 0.87 0.87 0.88
av 0.49 0.61 0.61 0.61 0.58
aw 0.66 0.51 0.71 0.75 0.81
ay 0.73 0.90 0.92 0.84 0.80

5.3.2 Comparisons with full-cap CSP and 3C setup

Table 5.3 lists the testing results (evaluated by ACC) of the full-cap CSP and the 3C
setup using BP and TDP features. To make the comparison easy, the testing results of
CSL and CSTI are also reminded in Table 5.3. For the full-cap CSP as well as for the 3C
setup, using TDPs yields better mean ACC (ACC = 0.78 for full-cap CSP, ACC = 0.72
for 3C setup) than using BP (ACC = 0.76 for full-cap CSP, ACC = 0.71 for 3C setup).
The difference is not significant (p > 0.05) due to the limited number of subjects in this
dataset. For most subjects, using TDPs did improve ACC, which is in line with the results
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Table 5.2: Comparisons between CSL and CSTI: number of selected electrodes and ACC.
Number of selected electrodes ACC

Subject CSL CSTI CSL CSTI
aa 4 8 0.61 0.67
al 5 6 0.82 0.88
av 8 11 0.63 0.61
aw 1 10 0.74 0.81
ay 11 11 0.84 0.92

Mean 6 9 0.73 0.78

in [213]. With the BioSig toolbox [176], TDPs are easy and fast to calculate [213], which
only need 2ms to compute (Matlab 7.10.0, Window 7 Professional 64bits, CPU 2.66GHz,
RAM 2.0Go). Unlike BP which often requires the selection of frequency bands, TDPs save
computation time during the frequency band selection. All of these indicate the interest
of using TDPs in motor imagery BCI.

The results obtained using CSTI (ACC = 0.78) are significantly better (p < 0.05) than
simply using 3C setup (ACC = 0.71 when using BPs, ACC = 0.72 when using TDPs).
The mean classification accuracy when using CSTI is better than using full-cap CSP with
BP features (ACC = 0.76, not significant with p > 0.05) and equal to using full-cap CSP
with TDP features (ACC = 0.78 when using TDPs). For some subjects (“aa” and “ay”),
CSTI even yields higher ACC than full-cap CSP. Thus, CSTI meets the goal of largely
reducing the number of electrodes (from 118 channels to no more than 11), without a
major loss of classification performance. Moreover, CSTI uses a relatively shorter time
segment (2s length) than other methods (3.5s length). For most subjects (except “aw”),
the classification outputs were obtained before the ending of cue, which indicates that less
time (here, less than 3.5s) is required for recording the training data from those subjects.

Although CSL generates slightly better mean ACC (ACC = 0.73) than simply using 3C
setup, this improvement is not significant (p > 0.05) and does not occur for all subjects.
Moreover, CSL tends to select more than three channels and needs a full EEG cap to
acquire training data for seeking the optimal subset of electrodes. Thus, CSL is not
cost-efficient in real applications.

Among all methods, the mean ACC of 3C setup is the worst, but it uses the least number
of electrodes (only three channels) and can yield better ACC than the full-cap CSP for
one subject in the dataset (“aa”). Moreover, 3C setup has no additional computational
cost and does not need full-cap training data for calculating CSP filters or seeking the
optimal subset of electrodes. Thus, for electrode reduction, the choice between CSTI and
3C setup may depend on a preference between the number of electrodes, the computation
cost, the amount of training data and the classification performance. This choice can be
left to the user.

5.3.3 Effect of electrode misplacement

The electrode positions might have undergone slight changes compared to the standard
10-20 recording system [84] in real applications, in particular for general users who may
not be proficient in EEG recording. For example, an inexperienced user may put the EEG
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Table 5.3: Testing results (ACC) for different methods. The best performance for each
subject is shaded in gray.

CSP (118) 3C setup (3) CSL (< 11) CSTI (< 11)
Subject BP TDPs BP TDPs TDPs TDPs

aa 0.46 0.47 0.64 0.59 0.61 0.67
al 0.94 0.94 0.79 0.81 0.82 0.88
av 0.68 0.69 0.58 0.59 0.63 0.61
aw 0.94 0.94 0.73 0.79 0.74 0.81
ay 0.75 0.84 0.81 0.82 0.84 0.92

mean 0.76 0.78 0.71 0.72 0.73 0.78

cap a little bit left; as a result, all electrodes are placed at the left side of the standard
positions during the recording.

In practice, the training and testing data may be recorded in two different ways. In the
first way, they are recorded in one session without re-placing the electrodes. In this case, if
misplacement happens, both the training and testing data are recorded at the same non-
standard positions. For machine learning based methods, e.g. CSTI, the effect of electrode
misplacement can be neglected, because the optimal subset of electrodes is estimated based
on the actual positions, where the data are recorded, instead of standard positions; while
for 3C setup, this effect should be examined, because the selected channels (C3-Cz-C4)
are defined according to the standard positions. When the cap is put incorrectly, nominal
channels (C3, Cz and C4) of 3C setup will not be in their standard positions.

In the second way, the training and testing data are recorded in two sessions (maybe in
two different days) with re-placing the electrodes. As a result, the training and testing
data may be recorded at different non-standard positions. Usually, not only the shift of
electrodes should be consider in this case, but also the change of the mental state of the
user [35]. It is a very complicated problem, so called the challenge of “session-to-session
transfer” [35]. In fact, all methods face this challenge. As both the change of mental state
and the shift of electrodes may exist but are unpredictable, even if a method has achieved
a good performance in one “session-to-session transfer” test, it may fail in the next one
if the changes are too large. In real applications, commercial BCI systems (Emotiv and
Neurosky) require the user to wait a few seconds (or minutes) for calibration after putting
the cap (to check the electrode impedance) and to perform a training session with feedback
before the real play, to overcome this challenge. As a result, the problem of the shift of
electrodes turns to be the same as the one discussed in the previous paragraph, at the
price of additional training.

To examine the effect of electrode misplacement on 3C setup, we compared the classifica-
tion results obtained using the standard 3C setup (C3-Cz-C4) and using the non-standard
3C setup with the electrodes placed a little left (C5-C1-C2), right (C1-C2-C6), forward
(FC3-FCz-FC4), backward (CP3-CPz-CP4) with respect to the standard positions (see
Figure 5.3). Table 5.4 shows that using the electrodes placed a little backward, the classi-
fication results are improved for Subjects “aa”, “al” and“av”, but deteriorated for Subjects
“aw” and “ay”. However, for all subjects, the results using the electrodes placed a little
forward are significantly worse than using the electrodes placed at the standard positions
(p < 0.01) and a little backwards (p < 0.01). Using electrodes placed a little left or right,
the results are deteriorated compared to those obtained with the electrodes placed at the
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standard positions. Compared to those obtained with the electrodes placed a little right,
the results obtained with using the electrodes placed a little left are better for Subjects
“aa”, “av” and “ay”, but worse for Subjects “al” and “aw”.

Figure 5.4 shows that the large values of F score are mainly distributed in the post-central
areas of the brain for all subjects, which explains why using the electrodes placed a little
backward always generates better results than using the electrodes placed a little forward.
Meanwhile, for Subjects “aa”, “av” and “ay”, the distributions of large values of F score
show a left-brain dominance. Thus, the results obtained with using the electrodes placed
a little left are better than those obtained with using the electrodes placed a little right
for those subjects.

To sum up, the effect of changes of electrode position on classification results depends on
the subject and the direction of error placement. As an inexperienced user may uncon-
sciously misplace the electrodes, the effect will be unpredictable when simply using 3C
setup and may lead to a deteriorated result. Concerning this effect, CSTI can be recom-
mended to users who are not very professional in EEG recording. However, training data
and computation time are needed for finding the optimal subset of electrodes.

Fig. 5.3: Standard 3C setup (C3-Cz-C4) and the non-standard 3C setups with the elec-
trodes placed a little left (C5-C1-C2), right (C1-C2-C6), forward (FC3-FCz-FC4), back-
ward (CP3-CPz-CP4).

5.3.4 Effect of data evolution

The non-stationarity of EEG is a common problem in BCI. It may result from several
causes. For example, changes in electrode impedance may occur when the electrically-
conductive gel between skin and electrode dries out or an electrode gets loose. The
task involvement and attention level of a subject may change over the course of a BCI
experiment. All these factors will lead to some unpredictable modulations in EEG signals,
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Table 5.4: ACC results for standard 3C setup (C3-Cz-C4) and the non-standard 3C setups
with the electrodes placed a little left (C5-C1-C2), right (C1-C2-C6), forward (FC3-FCz-
FC4), backward (CP3-CPz-CP4). The best performance for each subject is shaded in
gray.

Subject Standard Left Right Forward Backward
aa BP 0.64 0.57 0.48 0.52 0.69

TDP 0.59 0.56 0.51 0.49 0.63
al BP 0.79 0.65 0.74 0.61 0.80

TDP 0.81 0.70 0.77 0.68 0.86
av BP 0.58 0.54 0.53 0.59 0.61

TDP 0.59 0.64 0.59 0.62 0.62
aw BP 0.73 0.58 0.66 0.65 0.66

TDP 0.79 0.54 0.66 0.64 0.70
ay BP 0.81 0.77 0.50 0.69 0.79

TDP 0.82 0.74 0.59 0.66 0.77

Fig. 5.4: Distribution of F -score for different subjects in the long time segment from the
cue on-set to the ending of the cue. Electrodes selected by CSL are marked by bold points.

making the signal in a time segment or at a channel full of artifacts, so as to affect the
selection of time segment and channel.

To examine this effect, we randomly selected 140 trials (H/F = 70/70) as the training
dataset to find the optimal combination of time segment and subset of electrodes by
CSTI for each subject, the remaining data forming the testing dataset. We repeated this
procedure 100 times. For comparison, we also calculated the subset of electrodes based
on the long time segment by CSL. The experimental results generated by CSTI show that
the optimal time segments are not always the same for different training datasets even
for the same subject. The possible reason for this result is that the subject may not have
the same response time to the cue in different trials due to different mental states and
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possible fatigue during the BCI experiment. The distribution of optimal time segments
for each subject is given in Figure 5.5. It shows that the optimal time segments mainly
appear in the range of 0.5-3.0s (i.e. the second and third time segments) for Subjects
“aa”, “av” and “ay”, while a little bit later (i.e. the fourth time segment 1.0-3.5s) for
Subjects “al” and “aw”, indicating that some subjects may need relatively longer time
for recording the useful data in each trial compared to other subjects. The subsets of
selected electrodes also vary with different training datasets for the same subject. Thus,
re-selecting the optimal combination of time segment and subset of electrodes might be
needed when using a different training dataset due to the effect of data evolution.

Fig. 5.5: Distribution of optimal time segment for each subject. The horizontal axis n
indicates the time segments [tn, tn + T − 1] (n = 1, ..., 5). The vertical axis shows the
number of times each time segment is selected.
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The union and intersection of the subsets of selected electrodes obtained by the 100
repetitions for each subject are shown in Figure 5.6. The union of the subsets contains all
selected electrodes in the 100 repetitions, which reflects the range of all possible positions
of selected electrodes for each subject. The intersection shows the key electrodes, which
were always selected in the 100 repetitions.

From Figure 5.6, we can see that the selected electrodes are in a range instead of covering
the whole cap, but the range varies with subjects. This result implies that it is possible
to use a part of instead of all electrodes in an EEG cap to find the optimal subset of
electrodes.

Fig. 5.6: Union (bold points) and intersection (marked by ×) of selected electrodes for
each subject.

Table 5.5 lists the cardinalities of the unions UCSL and UCSTI of CSL and CSTI selected
subsets of electrodes, respectively. CSL generated a smaller range of selected electrodes
than CSTI did. Most electrodes selected by CSL have also been selected by CSTI. We use
the inclusion ratio, IR(CSL : CSTI) to measure the percentage of electrodes selected by
CSL and selected by CSTI:

IR(CSL : CSTI) = |UCSL ∩ UCSTI |/|UCSL|× 100% (5.15)

where |U | denotes the cardinality of set U . The results show that more than 88% electrodes
selected by CSL have also been selected by CSTI (see Table 5.5). Thus, we can conclude
that UCSL approximately lies in UCSIT . For all subjects, both UCSL and UCSIT cover
the hand representative area of the sensorimotor cortex of the left brain, because motor
imagery of the right hand typically elicits strong ERD in this area (see Figure 5.7). For
most subjects, the possibly selected electrodes also exist in the hand representation area
of the right brain, because motor imagery of the right foot may elicit ERS in this area (see
Figure 5.7), which can also contribute to classification. Electrodes in central, frontal and
occipital cortices were seldom selected neither by CSL nor by CSIT, indicating that those
areas may be less important in motor imagery of foot and hand movements. Thus, we
may not have to place electrodes in those areas for finding the optimal subset of electrodes
for classifying motor imagery data of foot and hand movements.
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Fig. 5.7: Time-frequency visualization of ERD/ERS for Subject “aw”. It was generated
by the BioSig Toolbox [176], using overlapping 2Hz bands (step = 1Hz) in the frequency
range between 6 and 32Hz, from 1s before cue on-set to 4s after cue on-set (for details,
see [152]).

Table 5.5: Cardinalities of the unions of CSL and CSTI selected subset of electrodes and
inclusion ratio between CSL and CSTI, IR(CSL : CSTI).

Subject CSL CSTI IR(CSL : CSTI)
aa 35 27 92%
al 17 15 100 %
av 52 33 88 %
aw 34 25 88 %
ay 16 14 100 %

Mean 31 21 94 %

Table 5.6 lists the standard positions of the key electrodes (electrodes in the intersection of
the optimal subsets) for each subject. Most subjects only have one or two key electrodes,
which are located at the right or left hand representation areas. For Subjects “al” and
“aw”, the key electrode is one electrode (C3 or C4) in 3C setup. For Subject “ay”, the key
electrodes also contain one electrode (C3) in 3C setup when using CSTI. These results
indicate the importance of some positions in 3C setup.

Among all subjects, Subject “ay” has the largest number (6) of key electrodes and the
smallest number (16) of electrodes in the union when selecting electrodes by CSTI (see
Tables 5.5 and 5.6). These results indicate that this subject needs only a few number
of electrodes for seeking the optimal subset. Moreover, for this “good” subject, the six
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key electrodes can be always placed for each recording, so that the computation time
can be largely reduced by only examining the contributions of the other ten electrodes
in the union. On the contrary, Subject “av” is a “bad” subject, who does not has any
key electrodes, and has the largest number (52) of electrodes in the union (see Tables 5.5
and 5.6).

Table 5.6: Standard positions of key electrodes (electrodes in the intersection of the
optimal subsets). Positions of electrodes contained in 3C setup are marked in red.

Subject aa al av aw ay
CSTI CCP5 CP5 C3 - C4 C3

CFC5
C5
CCP5
CP5
CP3

CSL CCP5 C3 - C4 CCP5

To further compare CSTI with other methods, we also calculated ACC of each method in
each repetition. The mean value and standard deviation, σ, of ACC over 100 repetitions
for each subject are listed in Table 5.7. CSTI provides significant higher ACC values
than those obtained by CSL for most subjects (p < 0.01), except Subject “av”. Both
CSTI and CSL significantly outperform C3, Cz, C4 for most subjects (p < 0.05), except
Subject “av”. The ACC of full-cap CSP are significantly higher than those of CSTI for
Subjects “aa” (p < 0.01), “av” (p < 0.01) and “aw” (p < 0.01) but not for Subjects “al”
and “ay”. These results further prove that CSTI can find an optimal combination of time
segment and subset of electrodes to generate fairly good classification results (mean ACC
over all subjects: 0.79), which are close to those obtained by using full-cap CSP (mean
ACC over all subjects: 0.84) and better than those obtained by using other methods.
Moreover, the standard deviations of ACC obtained by using CSTI are relatively small (all
σ ≤ 0.05), indicating that CSTI can keep stable classification performances for different
training/testing data by finding the optimal combination of time segment and subset of
electrodes.

Table 5.7: Mean values and standard deviations σ (given in brackets, 0.01) of ACC for
different methods over 100 repetitions for each subject. The best mean ACC values are
marked in gray.

CSP 3C setup CSL CSTI
Subject BP TDPs BP TDPs TDPs TDPs

aa 0.76 (12) 0.76 (10) 0.62 (3) 0.62 (4) 0.68 (4) 0.71 (4)
al 0.92 (13) 0.92 (14) 0.85 (2) 0.88 (2) 0.90 (3) 0.92 (2)
av 0.69 (4) 0.68 (3) 0.60 (3) 0.61 (3) 0.62 (3) 0.61 (4)
aw 0.94 (2) 0.96 (2) 0.75 (2) 0.80 (3) 0.81 (5) 0.82 (5)
ay 0.87 (6) 0.88 (5) 0.83 (2) 0.83 (2) 0.84 (4) 0.89 (2)

Mean 0.83 0.84 0.73 0.75 0.77 0.79
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5.4 Discussion

Although earlier studies have presented the need for selecting and reducing the electrodes
required in a BCI system [17, 97, 220], they addressed this issue based only on spatial
information, disregarding the potential impact of temporal information. The contribution
in this paper, with the proposition of a novel method, CSTI, emphasizes the potential
effects of the chosen time segment on channel selection. A criterion derived from Fisher’s
criterion is proposed to evaluate the discrimination power of a group of features, and
applied on time domain parameters (TDP), which overcomes the disadvantage of Fisher’s
criterion [132] on TDP feature selection.

Comparisons between CSTI, CSL, 3C setup and full-cap CSP were performed. The com-
parisons of their average performances on classification accuracy and reducing the number
of channels, their computational costs and training data required for finding the optimal
subset of electrodes can be summarized as follows:

• Mean classification accuracy: 3C setup < CSL < CSTI < full-cap CSP;

• Mean number of channels used: 3C setup < CSL < CSTI < full-cap CSP;

• Computational cost for finding the optimal subset of electrodes: 3C setup = full-cap
CSP (no computational cost) < CSL (2 seconds in the experiment) < CSTI (11
seconds);

• Training data required for finding the optimal subset of electrodes: 3C setup =
full-cap CSP (not needed) < CSL = CSTI (needed).

Although full-cap CSP generates the best average classification performance among all
methods, it employs the largest number of electrodes. The tedious placement of EEG
electrodes unavoidably reduces its application in non-clinical areas, such as for a home
use BCI system. Moreover, the classification performance obtained by full-cap CSP is
not always the best and may be even worse than 3C setup in some cases. Thus, the
classification performance is not proportional to the number of electrodes, and it is possible
to reduce the number of electrodes without deteriorating the classification results.

The 3C setup uses only three channels (C3, Cz, C4) that cover the sensorimotor areas of
brain. This setting has the lowest number of electrodes, and does not need a standard
EEG cap, training data and computation time to find the optimal subset of electrodes.
It is an ideal choice when only a very few electrodes (i.e. less than 10) are available.
However, in most cases, its classification accuracies are not as good as for other methods
due to the limited information it exploits. Moreover, the 3C setup relies on a precise
placement of electrodes, so it may not be easy to use for users who are not professional
in EEG data recording.

CSL often chooses more than 3 channels for classification, however, it can only slightly
improve classification accuracy compared to 3C setup. Thus, it may not be a good choice
in most cases.

CSTI can largely reduce the number of channels (from 118 channels to no more than 11)
compared to full-cap CSP, and shorten the training time, without a remarkable decrease
of classification performance on a standard dataset (BCI competition III dataset IVa).

108



The number of electrodes selected by CSTI is less than the commercial BCI system Emo-
tiv EPOC has, so the number (no more than 11) is still reasonable and acceptable for
general public applications, such as BCI games. This method can be used in designing
BCI systems using few channels (electrodes) for subject-specific applications. This work
can also help the user decide on the best compromise between accuracy, easy use and
portability, according to his needs.
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Chapter 6

Time-frequency optimization for
discrimination between imagination
of right and left hand movements
based on two bipolar EEG channels

6.1 Introduction

In the previous chapter, we have proposed a non-CSP based algorithm to reduce the
number of electrodes in a BCI system by selecting a few key channels. However, the
algorithm-based channel selection method needs a full EEG cap and additional computa-
tional time for finding the optimal subset of channels. Furthermore, the optimal subset of
channel should be found for each subject due to individual differences. As a result, this so-
lution will definitely increase the hardware cost of a BCI device, because a subject-specific
montage of electrodes should be produced based on the result of channel optimization for
each subject.

To overcome these problems, bipolar recordings are recommended in portable BCI systems
to reduce the number of electrodes [100, 108]. A bipolar channel of EEG is obtained by
subtracting two monopolar EEG signals (for details see Chapter 2 Section 2.6.1) [147].
This acquisition improves the SNR by eliminating shared artifacts between two monopolar
channels (for details, see [108]). Therefore they may achieve as good performances as
usual multi-channel monopolar settings, using only a few electrodes (i.e. two or three
pairs of electrodes) placed around task-relevant sensorimotor areas. Typically, the bipolar
electrodes are placed on locations C3 and C4 of the international 10-20 system [185] (see
Figure 6.1) for hand-related motor imagery tasks, since these locations correspond to the
hand representation areas in the cerebral cortex [156].

However, ERD/ERS patterns are typically short-lasting (half to few seconds) and their
frequency range may vary with subjects [234]. Thus, only placing pairs of electrodes
around the task-relevant areas may not be sufficient to achieve a good classification. A
precise user-specific time-frequency parameterization is required in the feature extraction
step for improving classification performances. In the past, a number of approaches were
proposed to estimate time-frequency characteristics of motor imagery EEG [234, 8, 80,
232], but only a few were successfully applied to bipolar recording data. Among those
methods, the filter bank CSP (FBCSP) method seems to be the most effective one, because
it yields the best BCI performances on BCI competition datasets [5]. FBCSP was initially
proposed only for frequency band optimization, and then extended to include an optimal
temporal selection process [8]. However, FBCSP-based methods involve feature selection
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Fig. 6.1: The international 10-20 system standardized by the American Electroencephalo-
graphic Society [185]. The positions of C3 and C4 are indicated by ellipses.

procedures based on mutual information, which require tedious iterative steps that greatly
increase their complexity.Moreover, the latest version of FBSCP selects the optimal time
segment from only four different options (0.5-2.5s, 1.0-3.0s, 1.5-3.5s and 0.5-3.5s), which
did not yield better results on bipolar recording data (BCI competition IV dataset IIb)
compared to previous versions [8].

In this chapter, we address the issue of time-frequency optimization with only two bipolar
channels (C3 and C4) for the discrimination between right and left hand motor imagery
tasks. On the contrary to the coarse selection of the time segment in FBSCP, we propose to
take into account fine subject-specific time-frequency characteristics for feature extraction.
Moreover, our approach is neither based on CSP algorithm nor combined with complex
algorithms, such as mutual information based algorithms, and employs less electrodes
than CSP-based methods. The strategy of subject-specific time-frequency optimization
builds on our preliminary work in [236], and includes three steps: 1) the time-frequency
domain of the input bipolar channels is divided into a set of overlapping regions with
different time segments and frequency bands, 2) the discrimination power of each time-
frequency region is measured, 3) the optimal time-frequency region is selected by finding
the region with the largest discrimination power. Once the optimal time-frequency region
for each subject is found, the classification is performed using a simple linear classifier, i.e.
Fisher’s linear discriminant analysis (LDA). This classifier has a very low computational
cost and usually yields good results for motor imagery BCIs [107].

We adapt the proposed F score (see Chapter 5 section ??) for estimating the discrimina-
tion power of each time-frequency region. Meanwhile, we also propose a novel alternative
criterion based on domain specific knowledge (such as location of brain activity during a
motor imagery) for the same purpose. The comparison between these two criteria, as well
as with state-of-the-art methods, is performed on a standard bipolar dataset (the BCI
competition IV IIb) and their contribution to electrode reduction is evaluated on BCI
Competition IV IIa dataset.

The chapter is organized as follows: The time-frequency optimization methods are pre-
sented in Section 6.3. Section 6.2 introduces the ERD/ERS in motor imagery. Section 6.4
briefly describes the two datasets (BCI competition IV dataset IIa and IIb) used in our
experiments. Results are given in Section 6.5.
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6.2 ERD/ERS in motor imagery

The ERD/ERS patterns are often expressed as percentage power decrease (ERD) or power
increase (ERS) in relation to a reference interval and can be calculated as follows [154, 152].
Let us assume that EEG signals are recorded using K repetitions of the process (K trials)
for a motor imagery task. These signals are filtered using a series of bandpass filters in
order to obtained ERD/ERS patterns in different frequency bands. We denote by xi the
filtered data from the i-th trial, i ∈ {1, ..., K}, xij the j-th sample in xi, and x̄j the mean

of the j-th sample averaged over all trials (x̄j = 1
K

K
∑

i=1

xij). Thus, the power value Aj at

j-th time point over all trials is defined as:

Aj =
1

K − 1

K
∑

i=1

(xij − x̄j)
2 (6.1)

The percentage power modulation ∆j at j-th time point is then calculated by:

∆j =
Aj − Aref

Aref

× 100% (6.2)

where Aref is the mean value of Aj in a reference interval [tr, tr + Tr − 1]:

Aref =
1

Tr

tr+Tr−1
∑

j=tr

Aj (6.3)

A negative value (∆j < 0) indicates a power decrease, denoted as ERDj; and a positive
value (∆j > 0) indicates a power increase, denoted as ERSj.

In this chapter, ERD/ERS values of different frequency bands for one EEG channel
were subsequently calculated to construct time-frequency maps of ERD/ERS (for details,
see [67]). These maps are useful to show the time-frequency distribution of significant
band power increase or decrease during the hand imagery tasks, so as to get a better
understanding and a visual validation of the time-frequency selection methods. As the
standard quantification of ERD/ERS described above employs an averaging procedure
over all trials, it is not used to generate features for single-trial classification [152].

6.3 Time-frequency optimization for classification

The EEG signals at C3 and C4 are decomposed into signal components first, in a series
of overlapping time-frequency regions (ωm × τn), m ∈ {1, , ...,M}, n ∈ {1, , ..., N} with
different frequency bands ωm = [fm, fm + F − 1], fm+1 = fm + Fs (F is the bandwidth,
Fs is the frequency step) and time intervals τn = [tn, tn + T − 1], tm+1 = tm + Ts (T is the
interval width, Ts is the time step). The aim of time-frequency optimization is to find a
time-frequency region that contains the most discriminative information, so called region
of interest (ROI), for a given subject. The selected ROI is then used to extract the band
power features [213] that feeds the classifiers.
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A measure evaluating the discrimination power of a region should be defined as an increas-
ing function of the discrimination power. This criterion is denoted S. The ROI (ω∗× τ ∗)
is estimated by exhaustively searching the largest value of S(ωm, τn) among all regions:

S(ω∗, τ ∗) = max {S(ωm, τn) | m ∈ {1, 2, ...,M} , n ∈ {1, 2, ..., N}} (6.4)

The exhaustive search is reasonable with the chosen values of M and N (1224 regions in
our experiments, as detailed in Section 6.4.5).

Two time-frequency selection criteria are presented here. One is proposed based on neu-
rophysiological background, called Time-frequency Discrimination Factor; the other is the
F score (see Chapter 5 section ??), which is purely based on machine learning.

6.3.1 Time-frequency Discrimination Factor

The proposed criterion for finding the ROI is based on two neurophysiological principles:

1. Imagination of one side of hand movement typically generates ERD in the opposite
side of the brain, so that it is possible to discriminate between the imaginations of
right and left hand movements by using bipolar electrodes placed over corresponding
hand representation areas, i.e. C3 and C4 [156]. To achieve good classification
performances, 1) the pattern difference between imaginations of left and right hand
movements should exist in the selected time-frequency region (ROI) at each channel;
2) and the difference between C3 and C4 should also exist in the ROI for both motor
imageries.

2. Electrophysiological studies have emphasized the role of volume conduction, so that
neural activities in one area are distributed on multiple electrode positions [150].
Due to this effect, the signals of some undesirable EEG rhythms (i.e. common
components) are also recorded, and mixed with the specific signals of different hand
movements, which may deteriorate the classification results [37]. Although bipolar
recording can eliminate this effect to some extent, it cannot completely remove all of
those common components. Thus, we should consider the influence of those common
components in selecting the ROI.

In BCI signal classification, ERD patterns are often estimated by the logarithm of the
variance of band-pass filtered EEG in a specific time interval, so called logarithmic band
power (BP) estimator [213]. The variance of EEG segment in the time domain for each
trial i and each channel e is computed as:

ve(i) =
1

T − 1

tn+T−1∑

j=tn

(xij − x̄i)
2 (6.5)

where xij the j-th sample in the time interval τn = [tn, tn + T − 1] of the i-th trial of the
ωm-bandpass filtered EEG data, and x̄i is the mean value over all samples of filtered EEG
in the time interval τn of the i-th trial. Then, the band power feature in each channel is
defined as:

BPe(i) = log(ve(i)) (6.6)
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The logarithm is applied to make the distribution of BP features approximately normal,
so as to feed the linear classifier, Fisher’s LDA.

According to this definition, the overall BP , B̃P
χ

e , for each class (χ = L, R) and each
channel (e = C3, C4) is defined by taking the logarithm of the median or the mean of
data variances over trials [236]. Here, we use the median value, because it is more robust
to outliers. The overall BP then writes:

B̃P
χ

e = log (ṽχe ) (6.7)

where ṽχe denotes the median of data variances ve(i) over all trials for class χ.

Thus, the pattern difference (PDe) between two conditions (left vs. right hand) in a
time-frequency region (ωm × τn) in each channel is expressed as:

PDC3(ωm, τn) = B̃P
L

C3(ωm, τn)− B̃P
R

C3(ωm, τn) (6.8)

PDC4(ωm, τn) = B̃P
L

C4(ωm, τn)− B̃P
R

C4(ωm, τn) (6.9)

The sign of PDe reflects the tendency (increase or decrease) of the BP modulation from
condition L (imagination of left hand movement) to condition R (imagination of right
hand movement) in channel e.

Imagination of left and right hand movements usually elicit contrary contralateral dom-
inance of ERD at channels C3 and C4 [156, 152]. These task-related spatial discrimina-
tive modulations can be measured by |PDC3(ωm, τn)− PDC4(ωm, τn)|, called discrimina-
tive force Fd(ωm, τn), to estimate this positive contribution in a time-frequency region
(ωm × τn). A large Fd(ωm, τn) indicates that large discriminative modulations occur in
the time-frequency region (ωm × τn).

On the other hand, it has been proved that other sources (non-target motor imagery
sources) will generate signals (e.g. α-rhythm from the visual cortex) in the same fre-
quency as ERD during the motor imagery (for details, see [37, 108]). For example,
subjects are looking at the screen during both motor imagery tasks, which can gener-
ate visually related common modulations at C3 and C4. Although these sources are
not near C3 and C4, they will conduct through scalp and be mixed with discriminative
components because of the volume conduction [144]. Meanwhile, neural activities at C3
and C4 will also affect the contralateral channels due to volume conduction. These are
what we call common components. They overlap with the discriminative modulations,
which present a negative effect on the classification. Thus, we define the blurring force
Fb(ωm, τn) = |PDC3(ωm, τn) + PDC4(ωm, τn)|, to estimate those common modulations in
the time-frequency region (ωm × τn). A small Fb(ωm, τn) indicates that small common
modulations happen in the time-frequency region (ωm × τn).

Finally, a Time-frequency Discrimination Factor, TFDF (ωm, τn), is defined as the differ-
ence between Fd(ωm, τn) and Fb(ωm, τn) to evaluate the overall contribution of the data in
the time-frequency area (ωm, τn) from electrodes C3 and C4 for two-class discrimination:

TFDF (ωm, τn) = Fd(ωm, τn)− Fb(ωm, τn)

= |PDC3(ωm, τn)− PDC4(ωm, τn)|− |PDC3(ωm, τn) + PDC4(ωm, τn)|
(6.10)

An ideal time-frequency region for classification should have large discriminative modula-
tions (large Fd(ωm, τn)) and small common modulations (small Fb(ωm, τn)), so the ROI
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(ω∗× τ ∗) is estimated by seeking the maximum value of TFDF (ωm, τn) among the given
M ×N time-frequency regions:

TFDF (ω∗, τ ∗) = max {TFDF (ωm, τn) | m ∈ {1, 2, ...,M} , n ∈ {1, 2, ..., N}} (6.11)

To examine the behavior of TFDF , we provide its possible values in Table 6.1 for different
cases, and present in Figure 6.2 the ERD/ERS maps and the corresponding TFDF values
of 4Hz, 2s-wide time-frequency regions for an example from a standard dataset. From
Table 6.1, we can see that 1) the values of TFDF are larger for PDC3 · PDC4 < 0 than
for PDC3 · PDC4 ≥ 0, 2) the values of TFDF are determined by min {|PDC3| , |PDC4|}.
Thus, this method tends to seek the time-frequency region where PDC3 and PDC4 have
different signs and large absolute values.

Table 6.1: Values of TFDF for different pairs of PDC3 and PDC4.
|PDC3| > |PDC4| |PDC3| ≤ |PDC4|

PDC3 · PDC4 ≥ 0 TFDF = −2 |PDC4| TFDF = −2 |PDC3|
PDC3 · PDC4 < 0 TFDF = 2 |PDC4| TFDF = 2 |PDC3|

Fig. 6.2: Maps of ERD/ERS and TFDF values for a subject. (A) ERD/ERS maps of
one example: time-frequency selection was performed within the large rectangle (solid
line). The small rectangle (dashed line) shows the time-frequency region with the largest
TFDF value. (B) TFDF values of the time-frequency regions with 4Hz-wide frequency
bands and 2s-wide time segments. The largest value is marked out by a small rectangle.

In the ROI, the right hand motor imagery elicits more significant ERD at C3 compared
to the left hand motor imagery, which leads to P̃L

C3(ω
∗, τ ∗) > P̃R

C3(ω
∗, τ ∗), while left hand

motor imagery generates more significant ERD at C4 compared to the right hand motor
imagery, so we have P̃L

C4(ω
∗, τ ∗) < P̃R

C4(ω
∗, τ ∗). Thus,

PDC3(ω
∗, τ ∗) = P̃L

C3(ω
∗, τ ∗)− P̃R

C3(ω
∗, τ ∗) > 0 (6.12)

PDC4(ω
∗, τ ∗) = P̃L

C4(ω
∗, τ ∗)− P̃R

C4(ω
∗, τ ∗) < 0 (6.13)
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These different signs of PDC3 and PDC4 reflect the spatial difference of significant ERD
between right and left hand motor imageries. On the other hand, large absolute values of
PDe represent the large magnitudes of task-related (i.e. right vs. left hand) difference at
channel e (i.e. C3, C4), which also contributes to the discrimination between two tasks.

In the literature, a broad frequency band (i.e. 8-30Hz) EEG segments (0.5-2.5s after
cue on-set) was typically chosen for feature extraction, because it covers the µ and β

bands and usually generates good classification results [135]. For this data example, the
frequency band (23-27Hz) of the ROI selected by TFDF is in the range of β band (18-
25Hz) but does not completely cover it, and the time segment (1.5-3.5s) is different from
the typically used one.

Figure 6.4(A) and (B) show the distributions of the BP features extracted from the time-
frequency region with the largest TFDF and of the ones extracted from the recommended
broad frequency band EEG segment in a real data example. The linear separation bound-
ary is obtained by Fisher’s LDA in the figure. From the figure, we can see that the BP
features extracted from the time-frequency region with the largest TFDF seem more
linearly separable than the ones extracted from the recommended broad frequency band
EEG segment. The comparison on classification results will be made in the result section
to assess the contribution of TFDF to the discrimination between left and right hand
motor imageries.

6.3.2 The F score

The F score proposed in the previous chapter is for estimating the discrimination power
of a group of features:

F̂ =

∥∥$µL − $µR
∥∥2
2

tr(ΣL) + tr(ΣR)
(6.14)

where Σ denotes the covariance matrix of the feature vector, $µ denotes the mean of the
feature vector, ‖·‖2 denotes the L2-norm (Euclidean norm), and tr(·) the trace of a matrix.

In this chapter, the BP features [BPC3(i), BPC4(i)] (defined in Equation 2.13) extracted
from the time-frequency ROI are used for classification, so it is a two-dimensional feature
space. We adapt the F score, F̂ , to estimate the separation between left hand vs. right
hand motor imagery in this feature space:

F̂ =
(BP

L

C3 − BP
R

C3)
2 + (BP

L

C4 − BP
R

C4)
2

S̄L
C3 + S̄L

C4 + S̄R
C3 + S̄R

C4

(6.15)

with:

BP
χ

e =
1

Kχ

Kχ∑

i=1

BP χ

e (i) (6.16)

S̄χ

e =
1

Kχ − 1

Kχ∑

i=1

(BP χ

e (i)− BP
χ

e )
2 (6.17)

where Kχ the number of trials for class χ (χ ∈ {L,R}).

We calculate the value of this criterion, F̂ (ωm, τn), for each time-frequency region (ωm×τn),
so as to measure whether (ωm × τn) contains the most discriminative information. The
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time-frequency ROI (ω∗, τ ∗) is estimated by seeking the maximum value of F̂ (ωm, τn)
among all M ×N time-frequency regions:

F̂ (ω∗, τ ∗) = max
{
F̂ (ωm, τn) | m ∈ {1, 2, ...,M} , n ∈ {1, 2, ..., N}

}
(6.18)

Note that outliers are taken into account in the TFDF calculation but not in the F score.
The reason is that some outliers (which may be caused by muscle movement of one side
of face/body during the experiments) may increase the difference between the two sides
of brain [37]. In this case, the TFDF value will abnormally increase when using the
mean value. As a result, the time-frequency area contaminated by noise may be selected
by error, which may deteriorate classification results when using Fisher’s LDA. On the
contrary, for the F score, outliers will increase the intra-class variance, so they will lower
the F score. Thus, the time-frequency area contaminated by noise will not be selected
(due to a low F score value), though we do not account for the outliers in the calculation
of the F score.

As opposed to the TFDF , the F score is purely based on statistical characteristics of the
features, regardless of neurophysiological phenomena linked to a specific task. So it can
be applied in the absence of prior knowledge about task-related neural response.

Figure 6.3(A) and (B) show the F score and the Euclidean distance between two classes∥∥$µL − $µR
∥∥
2
(which reflects only inter-class difference between two classes) in the time-

frequency regions with 4Hz-wide frequency bands and 2s-wide time segments for the data
example. The large values of F score mainly appear in the frequency band over 20Hz for
this example, which is quite similar to the distribution of Euclidean distance. However, the
maximum value appears in different regions. Figure 6.4(C) and (D) show the distributions
of the BP features extracted from the time-frequency regions with the largest F score,
and with the largest Euclidean distance, respectively. The linear separation boundary
is also obtained by Fisher’s LDA in the figure. From Figure 6.4, we can see that the
features extracted from the time-frequency region with the largest F score and the largest
Euclidean distance are more linearly separable than the ones extracted from the broad
frequency band EEG segment when using Fisher’s LDA as the classifier. Compared to
the features from the time-frequency region with the largest Euclidean distance, the intra-
class difference is smaller for the features from the time-frequency region with the largest
F score. As it considers the intra-class difference, the F score is more reasonable than
the Euclidean distance as a two-class separation measurement. The overlap area between
two classes is smaller for the F score than for the TFDF , indicating that the F score
might be more effective than the TFDF in seeking the optimal time-frequency regions for
feature extraction. In the result section, the analysis of classification performance with
respect to the two criteria is provided.

6.4 Data description and preprocessing

In this chapter, we used data of the BCI competition IV dataset IIa [39] and IIb [100].
Dataset IIa was recorded in a multi-channel monopolar setting (22 monopolar channels).
The parameters of bipolar channels can be adapted to the experiments. Dataset IIb was
recorded over three bipolar channels C3, Cz and C4. Details of these two datasets are
provided below.
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Fig. 6.3: Maps of the F score and Euclidean distance for the same subject in Figure 6.2.
(A) F score of the time-frequency regions with 4Hz-wide frequency bands and 2s-wide
time segments. The largest value is marked out by a small rectangle. (B) Euclidean
distance of the time-frequency regions with 4Hz-wide frequency band and 2s-wide time
segments. The largest value is marked out by a small rectangle.

6.4.1 Dataset IIa

As we have introduced this dataset in Chapter 4, we only repeat some key information
here. This dataset contains one training session and one evaluation session of EEG data
from 9 subjects who performed four classes of cue-driven motor imagery tasks (left hand,
right hand, both feet and tongue). The EEG signals were recorded by 22 Ag/AgCl
electrodes (with inter-electrode distances of 3.5cm). The electrode montage is shown in
Figure 6.5(A). For extracting a bipolar channel at the position of C3 or C4, three different
pairs of electrodes can be used, marked as a, p and l in Figure 6.5(A). Thus, nine possible
channel combinations for C3 and C4 are generated for time-frequency optimization.

6.4.2 Dataset IIb

This dataset consists of two classes (left vs. right hand) cue-driven motor imagery BCI
data from 9 subjects. The EEG data are recorded in 3 bipolar channels, i.e. at positions
C3, Cz and C4 (see Figure 6.5(B)). The distances between the two bipolar electrodes
forming a channel are pre-determined in this dataset (for details, see [100]). For each
subject, 5 sessions are provided, including 3 training sessions and 2 evaluation sessions.
The first two training sessions consist of 240 single trials (120 single trials per session)
totally without visual feedback. Each trial started with a fixation cross and an additional
short acoustic warning tone. Later a visual cue was given to guide the subject to execute
the corresponding imagination of hand movement over a period of 4 seconds. The last
training session (160 single trials) and both evaluation sessions (160 trials per session) were
recorded with visual feedback from 0.5 to 4.5s after the cue on-set (for details, see [100]).
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Fig. 6.4: Distributions of BP features extracted from different time-frequency regions for
two classes (o represents left hand, * represents right hand). (A) Distribution of BP
features extracted from the time-frequency region with the largest TFDF . (B) Distri-
bution of BP features extracted from a time-frequency region (8-30Hz, 0.5-2.5s after cue
on-set) in the µ band. (C) Distribution of BP features extracted from the time-frequency
region with the largest F score. (D) Distribution of BP features extracted from the
time-frequency region with the largest Euclidean distance. The line shows the best linear
separation boundary in each case

6.4.3 Experimental goals

The proposed time-frequency optimization methods based on different criteria will first
be applied on dataset IIb using only two bipolar channels (C3, C4). The goal of this
experiment is to evaluate the effectiveness of the methods in improving the performances
of BCI based on few channels only. We first train the methods for each subject on the
training data, and then evaluate them on the testing data for this subject. This is so called
session-to-session transfer. The results of our methods in session-to-session transfers from
training sessions to testing sessions will be compared with the winners on this dataset
in BCI competition IV. Then, we will apply our methods on two bipolar channels (C3,
C4) selected from the 22 monopolar channels of dataset IIa. The classification results
obtained on dataset IIa will be compared with those obtained by CSP algorithms using
22 monopolar channels, to evaluate the interest of the method for electrode reduction.

6.4.4 Visualization of ERD/ERS maps

The time-frequency maps of ERD/ERS for both left (L) and right (R) hands in the bipolar
channels C3 and C4 were generated by the Biosig Toolbox using overlapping 2Hz bands
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Fig. 6.5: The montage of electrodes in the BCI competition IV dataset IIa [39] (A) and
dataset IIb [100] (B). (A): The arrows between the EEG electrodes show the three possible
bipolar derivation pairs for bipolar recording of C3 and C4: a, p and l. (B): The arrows
between the EEG electrodes show the bipolar derivation, where ⊕ is the signal electrode
and ⊖ is the reference. The distance between two bipolar electrodes forming a channel
for each subject is pre-determined (for details, see [100]). Only C3 and C4 (marked by
ellipses) are used in this study for discrimination between imaginations of left and right
hand movements.

(step = 1Hz) in the frequency range between 6 and 32Hz [176]. The statistical significance
of the power increases (ERD) and decreases (ERS) was verified by a t-percentile bootstrap
test with the confidence interval of α = 0.05 [67]. Only the significant ERD/ERS are shown
in the maps.

6.4.5 Data preprocessing for time-frequency optimization

For each bipolar channel, 5th order Butterworth filters are applied to compute 19 suc-
cessive 4Hz-wide frequency bands of signals (F = 4Hz, Fs = 1Hz): 8-12Hz, 9-13Hz,
10-14Hz, ..., 26-30Hz, and 15 successive 8Hz-wide frequency bands of signals (F = 8Hz,
Fs = 1Hz): 8-16Hz, 9-17Hz, 10-18Hz, ..., 22-30Hz. Then 36 overlapping time segments
in each frequency band were obtained through 2s, 2.5s and 3s-wide (i.e. T = 2, 2.5 and
3s, respectively) sliding windows (12 segments for each sliding window) with 0.2s-step
(i.e. Ts = 0.2) moving from 0.5s after the cue on-set. Those parameters are set based
on the experience from competitors reported in BCI competition IV [31] and led to good
performances in our previous work [236]. Therefore, there are (19 + 15) × 36 = 1224
time-frequency areas for subject-specific selection. The numbers of different size time-
frequency regions are listed in Table 6.2. It has to be mentioned the selection procedure is
not very time-consuming (2 mins 21 seconds in average, using Matlab 7.10.0 on Window 7
Professional 64bits, CPU 2.66GHz, RAM 2.0G), and is done offline, so the computational
cost is acceptable.
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Table 6.2: Numbers of different size time-frequency regions (Fs = 1Hz, Ts = 0.2s). Total
= 1224 regions.

F(Hz)
4 8

2 228 180
T(s) 2.5 228 180

3 228 180

6.5 Experimental results

In the experiments, the paired-sample t-test (see Appendix B) was employed to reveal the
statistical significance of the difference between the performances of different methods.
The test rejects the null hypothesis at the 0.05 significance level.

6.5.1 Improving classification performance for dataset IIb

The time-frequency ROI (ωROI×τROI) of each training dataset is obtained by maximizing
the TFDF and the F score criteria, respectively. Results are reported in Table 6.3. These
results show that 1) the estimated time-frequency ROIs vary among different subjects; 2)
even for the same subject, the estimated ROIs vary among different training sessions; 3)
the two criteria picked out different ROIs for the same training session. The fact that the
estimation results depend on the subjects is also reflected in the individual differences of
timing and frequency of ERD/ERS patterns. Even for the same subject, the timing and
frequency of ERD/ERS may shift across sessions [156], which leads to the intra-subject
difference in the estimation of ROIs between sessions. A typical example of time-frequency
maps displaying significant ERD (red) and ERS (blue) in a training session (Session 3) for
a subject (Subject 6) in the dataset is shown in Figure 6.6. The ROIs estimated by the
TFDF are marked out by solid rectangles (10-14Hz, 0.7-2.7s), while the ROIs selected
by the F score are displayed as dashed rectangles (11-15Hz, 1.1-4.1s). Although the ROIs
estimated by the two criteria are different, both ROIs contain discriminative ERD patterns
between the two classes, indicating that these two criteria could successfully capture the
discriminative part of the signal.

To evaluate the contribution of the proposed time-frequency optimization to classification,
10 repetitions of cross-validation are performed on each training session for each subject,
using the BP features extracted from the estimated time-frequency ROIs by TFDF and
F score respectively. In each run, we randomly separated the data into calibration (90%)
and test (10%) sets, and classified the test data using the Fisher’s LDA obtained from
the calibration set. The classification accuracy (Acc) is defined as the observed agree-
ment between classification outputs and true labels [178]. The cross-validation results are
obtained by averaging Acc over 10 runs.

The results are compared to those obtained by using the BP features from the broad band
(8-30Hz) EEG segments (0.5-2.5s) with or without CSP filtering. The number of spatial
filters used in CSP-based classification for this dataset is 2 (1 pair), because only three
bipolar channels (C3, Cz and C4) are provided in this dataset. The comparisons between
different methods are shown in Figure 6.7 using scatter plots. We can see that using the
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Table 6.3: Time-frequency ROIs selected by the TFDF and F score criteria, respectively,
for each training session of each subject on dataset IIb.

Subject Session ω
∗(Hz) τ

∗(s)
TFDF F score TFDF F score

1 1 10-14 11-15 2.9-4.9 0.9-3.4
2 10-14 10-14 2.3-4.3 0.9-3.9
3 10-14 17-25 1.5-3.5 0.9-3.9

2 1 18-22 11-19 1.5-3.5 2.1-4.1
2 11-15 18-22 2.7-5.2 1.3-4.3
3 11-15 9-13 2.7-5.2 2.9-5.4

3 1 8-12 12-16 0.5-3.0 2.3-4.3
2 9-13 21-25 0.5-2.5 2.9-5.4
3 8-12 11-15 3.5-6.5 2.1-5.1

4 1 8-12 18-26 0.5-2.5 0.7-2.7
2 9-13 10-18 0.9-2.9 0.7-2.7
3 8-12 8-12 0.9-2.9 0.9-2.9

5 1 26-30 22-30 0.9-2.9 0.7-2.7
2 26-30 22-30 0.7-3.2 0.5-3.0
3 23-27 22-30 1.5-3.5 0.5-3.5

6 1 11-15 11-15 1.3-3.8 1.9-4.4
2 10-14 11-15 1.7-3.7 0.7-3.7
3 10-14 11-15 0.7-2.7 1.1-4.1

7 1 12-16 12-16 2.7-4.7 2.1-5.1
2 12-16 11-15 3.1-5.1 2.9-5.4
3 11-15 12-16 1.1-3.1 0.9-2.9

8 1 11-15 9-13 1.3-3.3 1.5-4.5
2 9-13 13-17 1.1-3.1 1.1-3.6
3 10-14 8-16 0.9-2.9 1.3-3.3

9 1 22-26 21-25 1.9-4.4 1.1-3.1
2 9-13 8-12 3.1-5.1 3.1-6.1
3 22-26 23-27 0.9-2.9 0.9-3.4

time-frequency ROI estimated by each criterion can greatly improve the accuracy in most
sessions compared to using a broad band EEG segment with or without CSP filtering.
Using the F score generates higher accuracy than using the TFDF for most sessions
(63.0%), indicating that the F score may be more effective than the TFDF in selecting
optimal time-frequency regions for discrimination. In addition, we also observe that using
classic CSP filtering generates the worst results in the cross-validations, indicating that
classic CSP filtering is not very useful for the data recorded by a very few number of
electrodes.

To further examine the contributions of these two criteria, session-to-session transfers are
performed using the training session which has the best classification result in the cross-
validation for each subject. As the independent evaluation data are recorded on a different
day than the training sessions, EEG signals of the subjects may change significantly from
the training data to the evaluation data. This test aims at evaluating the robustness of
the methods to non-stationary signals.

In this test, the classifier is parameterized from the selected training session using the BP
features from the corresponding (ω∗ × τ ∗). The ω∗-bandpass filtered EEG segments with
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Fig. 6.6: Time−frequency maps displaying significant ERD (red) and ERS (blue) for
Subject 6 (a typical example) in BCI competition IV IIb. The areas in the rectangles are
the time-frequency ROI selected by the proposed methods based on TFDF (solid line)
and F score (dashed line), respectively.

the same time length as τ ∗ (i.e. T ) are obtained from each entire single-trial of testing
data via a 0.2s step sliding window to generate continuous classification outputs (see Fig-
ure 6.8). According to the BCI competition requirement, the classification performances
in the session-to-session transfers are measured by kappa coefficient [178]:

κ = (Acc− Pe)/(1− Pe) (6.19)

where Pe is the chance level for agreement (i.e. Pe = 0.5 for two-class problems, so here
κ = 2Acc− 1). Thus, a larger κ value indicates a better classification performance. The
mean kappa value over all subjects of the dataset is denoted by κ̄.

For this dataset, six BCI groups have reported their results of session-to-session transfers
in the BCI competition [194]. We provide information on the methods of the first three
winners in Table 6.4, since their classification results are better than the other three. The
1st place winner used Filter Bank CSP (FBCSP) [5], which we have briefly introduced in
the introduction section. Except our method based on TFDF [236], no one has generated
better results than FBCSP on this dataset until now [194]. The 2nd place winner employed
Common Spatial Subspace Decomposition (CSSD) with frequency band and time segment
selections [194]. The 3rd place winner applied CSP on spectrally filtered neural time
series prediction preprocessing (NTSPP) signals [194]. Note that these methods involved
frequency and/or time optimization process(es). The results of session-to-session transfers
for all methods are shown in Table 6.5. TFDF generates the best mean κ value (κ̄ = 0.62)

123



Fig. 6.7: Comparison of method performances in the cross-validation on dataset IIb. (A),
(B) Scatter plots of classification accuracies (Acc) obtained by using TFDF in time-
frequency selection, vs. those obtained by broad band (8-30Hz) EEG in a fixed time
segment (0.5-2.5s) without and with CSP, respectively. (C), (D) Scatter plots of Acc
obtained by using F score in time-frequency selection, vs. those obtained by broad band
(8-30Hz) EEG in a fixed time segment (0.5-2.5s) without and with CSP, respectively. (E)
Scatter plots of Acc obtained by using TFDF vs. those obtained by using F score in
time-frequency selection. (F) Scatter plot of Acc obtained by broad band (8-30Hz) EEG
in the fixed time segment (0.5-2.5s) with CSP filtering vs. those obtained by the same
EEG but without CSP filtering. For the points above the diagonal in each scatter plot,
the method in y-axis outperforms the method in x-axis in the cross-validation on the
corresponding training session.

among all methods in the independent evaluation. Although the improvements of κ values
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Fig. 6.8: Strategy of session-to-session transfers for BCI competition IV dataset IIa and
IIb.

yielded by TFDF compared to the 1st place winner (κ̄ = 0.60, p = 0.12) and the 2nd place
winner (κ̄ = 0.58, p = 0.18) are not statistically significant due to the limited number of
subjects, TFDF outperforms the 1st place winner for 6 out of 9 subjects (except Subjects
4, 5 and 8), and the 2nd place winner for 6 out of 9 subjects (except Subjects 4, 7 and
9) too. The mean kappa value obtained by the F score (κ̄ = 0.60) is relatively lower
than the one obtained by TFDF (not significantly, p = 0.29), but comparable to the 1st

place winner, and higher than the 2nd place winner (not significantly, p = 0.52). It has
to be mentioned that the F score yields the best κ values for most subjects (4 subjects)
among all methods. Further examination of the results show that the poor performance
for Subject 3 led to a remarkable decrease in mean performance of the F score. In
fact, the performances for Subject 3 are much poorer than those for other subjects for
all methods, so that results averaged over all subjects might not be representative. Both
time-frequency criteria (TFDF and F score) yield better performances than the 3rd place
winner (κ̄ = 0.46, both p < 0.01), and those obtained by broad band (8-30Hz) EEG
segments (0.5-2.5s) with CSP (κ̄ = 0.41, both p = 0.01) and without CSP (κ̄ = 0.53, both
not significant by p > 0.05, even if TFDF and F score outperform it for 7 and 5 out
of 9 subjects, respectively). Thus, both criteria are promising for seeking optimal time-
frequency patterns to improve classification performance of BCIs based on a few bipolar
channels.

As all of the first three BCI competition winners have used all three bipolar channels (C3,
Cz and C4) provided by the dataset, our methods not only generate good performances
but also use less channels, which indicates that they may also be helpful for channel
reduction. This potential contribution is validated in the next subsection.
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Table 6.4: Comparison between our method and the first three winners on BCI competi-
tion IV dataset IIb.

Time-frequency selection Electrodes
used

Features Classifier

Our
method

Selected by TFDF or F
score

C3, C4 BP LDA

1st [5] Mutual information based
selection

C3, Cz,
C4

FBCSP Näıve Bayes
Parzen Window
classifier

2nd [194] Selected by classification
performance in cross-
validation

C3, Cz,
C4

CSSD LDA

3rd [194] Selected by a heuristic
search and a selection
criterion based on overall
classification accuracy in
cross-validation.

C3, Cz,
C4

CSP Using the best
classifier among
3 variants of
LDA and 2
variants of SVM

Table 6.5: Performances of session-to-session transfers on BCI competition IV dataset IIb
using the proposed time-frequency optimization methods with TFDF and F score, broad
band (8-30Hz) EEG in fixed time segments (0.5-2.5s) without CSP and with CSP, and
1st to 3rd winners in BCI competition. The best performance for each subject is shaded
in grey. The last column provides the mean performance over all subjects.

Subjects
1 2 3 4 5 6 7 8 9 Mean

TFDF 0.44 0.24 0.25 0.93 0.86 0.70 0.55 0.85 0.75 0.62
F score 0.39 0.25 0.13 0.93 0.88 0.63 0.55 0.88 0.78 0.60

without CSP 0.40 0.24 0.18 0.94 0.39 0.66 0.52 0.81 0.68 0.53
with CSP 0.28 0.13 0.11 0.47 0.56 0.13 0.58 0.76 0.67 0.42

FBCSP(1st) [5] 0.40 0.21 0.22 0.95 0.86 0.61 0.56 0.85 0.74 0.60
CSSD(2nd) [194] 0.43 0.21 0.14 0.94 0.71 0.62 0.61 0.84 0.78 0.58
NTSPP(3rd) [194] 0.19 0.12 0.12 0.77 0.57 0.49 0.38 0.85 0.61 0.46

6.5.2 Electrode reduction for dataset IIa

In this dataset, the time-frequency ROIs are estimated by the two criteria, respectively,
for nine possible channel combinations of C3 and C4 (see Figure 6.5, C3-C4: a-a, a-p, a-l,
p-a, p-p, p-l, l-a, l-p, l-l). The scatter plot of classification accuracies (Acc) obtained by
using the TFDF vs. those obtained by using the F score in time-frequency optimization
for all channel combinations and all subjects is shown in Figure 6.9. Using the F score
generates higher accuracy than using the TFDF for most cases (74.1%).

The optimal channel combinations are selected by comparing the classification accuracies
(choosing the best one) among different combinations in the 10× 10-fold cross-validation.
Optimal channel combinations of C3-C4 and the corresponding estimated time-frequency
ROI for different criteria and different subjects are listed in Table 6.6.

In session-to-session transfers, the optimal channel combinations are used. The classifier
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Fig. 6.9: Comparison between performances of TFDF and F score in the cross-validation
on dataset IIa.

Table 6.6: Optimal channel combinations of C3-C4 and the corresponding estimated time-
frequency ROI for different criteria and different subjects on BCI competition IV dataset
IIa.

Subject C3-C4 ω
∗(Hz) τ

∗(s)
TFDF F TFDF F score TFDF F score

1 a-a a-l 12-16 11-15 1.3-3.8 0.5-3.0
2 l-l a-l 10-14 22-26 1.1-3.1 0.5-3.5
3 a-a a-a 10-14 11-15 0.7-2.7 0.7-3.2
4 p-p a-a 21-25 11-19 0.5-2.5 1.1-3.1
5 p-l p-a 25-29 26-30 1.5-3.5 1.3-4.3
6 l-l l-p 22-26 23-27 0.5-2.5 0.7-2.7
7 a-a a-l 19-23 18-22 0.7-2.7 1.1-4.1
8 l-l l-p 8-12 8-12 0.7-2.7 0.7-3.2
9 a-l p-a 11-15 10-18 0.5-2.5 0.7-2.7

is obtained from the whole training session using the BP features from the corresponding
(ω∗ × τ ∗). The ω∗-bandpass filtered EEG segments with the same time length as τ ∗ (i.e.
T ) are obtained from each entire single-trial of testing data via a 0.2s step sliding window
to generate continuous classification outputs (see Figure 6.8).

As this study focuses on the two-class (right vs. left hand) problem, it is difficult to
compare with BCI competition winners’ results (reported based on a four-class problem
including tongue and feet motor imagery data) on this dataset. Here, we compared the re-
sults obtained by our method with those obtained by FBCSP1 [5], sparse CSP (SCSP) [10]
and classic CSP, respectively. Note that FBCSP is believed to be an effective method that
well solves the frequency and/or time optimization [8], which has achieved the best clas-

1The results of FBCSP on this dataset for right vs. left hand problem are provided by the BCI lab
at Institute for Infocomm Research, Singapore, using all 22 mono-polar channels and the Näıve Bayes
Parzen Window classifier.
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sification performance on at least two datasets including dataset IIa in BCI competition
IV [194]. SCSP is an optimized CSP that selects the least number of channels in CSP-
based classification under a constraint of classification accuracy. SCSP has generated
better performances than other channel reduction methods (based on the usual Fisher
ratio, mutual information, SVM, CSP coefficients) and the regularized CSP (RCSP) on
BCI competition IV dataset IIa for the right vs. left hand problem (for details, see [10]).
The comparisons of classification results and the number of electrodes (#E) used in clas-
sification between different methods are given in Table 6.7. As other researchers provided
their classification results as classification accuracy values (Acc, defined in Section 6.5.1)
for the right vs. left hand problem on this dataset, we also provide Acc values for the
sake of comparison. Table 6.7 shows that all methods generate better mean performances
than the classical CSP algorithm with all 22 mono-polar channels (mean classification
accuracy, Acc = 77.26), indicating the interest of time-frequency selection and electrode
reduction. Our method based on F score (Acc = 79.67) yields slightly better results
than FBCSP (Acc = 79.17) and SCSP (Acc = 79.07) but using far less electrodes on
this dataset: our method used only the two bipolar channels C3 and C4 (equivalent to
4 mono-polar channels), FBCSP used all 22 mono-polar channels, and SCSP used 8.55
mono-polar channels in average [10]. Further examination of individual results show that
our method based on F score generates the best Acc for most subjects (4 subjects), indi-
cating that it is the most effective on this dataset. Although the mean classification result
of our method based on TFDF (Acc = 78.00) is slightly lower than those of FBCSP and
SCSP, the differences are not statistically significant (p > 0.05). Comparing individual
performances, our method based on TFDF outperforms FBCSP and SCSP for 5 out
of 9 subjects. Moreover, our method based on TFDF also employs less electrodes than
FBCSP and SCSP in the classification. Thus, the method based on TFDF still meets the
goal of electrode reduction without a significant drop of classification accuracy. Generally
speaking, our method based on both criteria can effectively select time-frequency ROI
for BCI classification based on only a few channels and therefore contributes to electrode
reduction.

Table 6.7: Comparisons of classification results (Acc) and the number of electrodes (#E)
used in classification between our method, FBCSP [5], SCSP [10] and classical CSP on
BCI competition IV dataset IIa. The best performance for each subject is shaded in gray.

Subjects
Method #E 1 2 3 4 5 6 7 8 9 Mean

TFDF 4 87.23 66.20 97.81 68.97 64.44 69.44 68.57 96.27 83.08 78.00
F score 4 89.36 69.01 97.81 66.38 66.67 72.22 68.57 97.01 90.00 79.67

FBCSP1 22 94.44 52.77 93.05 65.97 88.19 60.41 70.13 94.44 93.05 79.17
SCSP [10] 8.55 91.66 60.41 97.14 70.83 63.19 61.11 78.47 95.13 93.75 79.07
CSP [235] 22 83.51 56.53 97.50 70.00 54.50 62.49 84.50 95.57 90.77 77.26

6.6 Conclusion

Bipolar recording is a typical technique in BCI systems based on very few channels. This
work addresses the time-frequency optimization for motor imagery BCIs, and emphasizes
the possibility of using only a few bipolar channels to achieve comparable or even better

128



classification results than using multi-channel settings in motor imagery BCIs. The ex-
perimental results indicate the interest of our method for classification improvement and
electrode reduction for motor imagery BCI. Thanks to its simplicity and few electrodes
requirement, the proposed method is promising for portable BCI systems.

In this method, two alternative criteria, TFDF and F score, are presented for measuring
the discrimination power of each possible time-frequency region. Both criteria have their
novelties and contributions.

Unlike other criteria, TFDF measures the discrimination power of features based on
foundational neurophysiologic phenomena, on which motor imagery BCI relies, consid-
ering both discriminative and common modulations instead of only the distribution of
features. The classification results obtained by using TFDF are better than those of
state-of-the-art methods on BCI competition IV dataset IIb. The TFDF can be adopted
in other motor imagery BCI problems by placing the electrodes on the task-relevant areas
(e.g. using C3 and Cz for discrimination between foot and right hand motor imagery).

The F score is a simple criterion that is easy to compute, and yields the best individual
performances among all compared methods for most cases. As the F score does not require
any prior knowledge of neurophysiology and yields the best individual performances among
all compared methods for most cases, it may be more interesting for researches who purely
focus on machine learning for BCI. Furthermore, it might be possible to apply this criterion
on other problems outside BCI field.

In this chapter, the applications of our method focused on the most popular motor imagery
BCI task: the discrimination between right and left hand motor imagery data. In the
next chapter, this study should be extended to address time-frequency optimization for
multi-class motor imagery BCIs.
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Chapter 7

Time-frequency optimization for
multi-class motor imagery data
classification based on F score and
Laplacian EEG derivation

7.1 Introduction

It is well known that motor imagery of hand movement desynchronizes EEG rhythms
(ERD) in hand representation areas of the sensorimotor cortex (around C3 and C4). In
the previous chapter, we have proposed a time-frequency optimization method based on
either time-frequency discrimination factor (TFDF ) or F score for discriminating between
imagination of right and left band movements based on two bipolar EEG channels (C3 and
C4). However, TFDF relies on specific knowledge of neurophysiology, which mainly works
for the popular “hand movement discrimination” problem. It is not very easy to adapt to
some other motor imagery BCI problems, like motor imagery of tongue, since they do not
typically elicit a task-relevant ERD at the recording location. Unlike TFDF, F score is
based on a machine learning method, i.e. Fisher’s discriminant analysis, so that it can be
used for seeking the optimal time-frequency areas for classifying other movements than
hand movement. In this chapter, we extend the F score based time-frequency optimization
to the multi-class case based on one-versus-rest (OVR) strategy [195].

Several studies, such as [152], showed that it is possible to classify four classes of motor
imagery (left hand, right hand, foot and tongue) by using three Laplacian EEG channels
C3, Cz and C4. The channel Cz is located at the center of the sensorimotor cortex, which is
associated with foot movement (see Figure 7.1). Later, another study further proved that
channel Cz with Laplacian derivation plays an important role in identifying motor imagery
data of foot movement [189]. Although the tongue representation areas are located neither
around Cz (foot representation area) nor around C3/C4 (hand representation areas), it
typically elicits an enhancement of EEG rhythms (ERS) in hand representation areas,
since these areas are completely relaxed when performing the tongue movement [152].
Thus, the three channels are enough for classifying these four classes of motor imagery in
real applications.

Laplacian derivation typically needs five active EEG electrodes (one center electrode e
and its four nearest-neighbor electrodes j ∈ Se, where Se is the set of the four nearest-
neighbor electrodes) to derive measures in one “channel” (called Laplacian channel) (see
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Fig. 7.1: Location of C3, Cz and C4 and the corresponding brain functional areas.

Figure 7.2 and Chapter 2 Section 2.6.3):

XLAP
e = Xe −

1

4

∑

j∈Se

Xj (7.1)

where Xe is the EEG signal recorded at electrode e and XLAP
e is the derived signal in

Laplacian channel e. Theoretically, for a single channel, Laplacian derivation uses more
electrodes than bipolar recording, which only needs two active electrodes e1 and e2 to
build a bipolar derivation pair (see Figure 7.2):

XBI
e = Xe1 −Xe2 (7.2)

where Xe1 and Xe2 are the EEG signals at the two active electrodes in a bipolar derivation
pair, and XBI

e is the derived signal in the bipolar channel e. However, in practice, bipolar
recording usually needs some additional electrodes and computational time for finding the
optimal bipolar derivation pair (for details, see the previous chapter and [100, 108]). The
electrodes and computational cost typically increase with the number of classes, so that
bipolar recording is seldom used in multi-class problems.

Thus, we performed the F score based multi-class time-frequency optimization using three
Laplacian EEG channels C3, Cz and C4. The method is applied on two standard BCI
competition datasets for classifying four classes of motor imagery data (left hand, right
hand, foot and tongue).
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Fig. 7.2: Comparison between Laplacian derivation and bipolar recording. The arrows
between the EEG electrodes show a bipolar derivation.

7.2 Multi-class F score based time-frequency selec-

tion (MFTFS)

The EEG signals XLAP
e at C3, Cz and C4 are decomposed into EEG segments, in a series

of overlapping time-frequency areas (ωm × τn), m ∈ {1, , ...,M}, n ∈ {1, , ..., N} with
different frequency bands ωm = [fm, fm + F − 1], fm+1 = fm + Fs (F is the bandwidth,
Fs is the frequency step) and time intervals τn = [tn, tn + T − 1], tm+1 = tm + Ts (T is the
interval width, Ts is the time step).

In two-class problems, the F score is computed to estimate the separation between two
classes, so as to find the optimal time-frequency area that yields the largest F score. In the
optimal time-frequency area, the populations of features from two different classes have
the largest F score distance. This concept can be extended to multi-class problems by the
one-versus-rest (OVR) strategy, which is often used in multi-class classification [195, 224].
Let us denote by C the set of all classes, and then C � {O} for all classes except class O.
If we can consider C � {O} as a big class (which we discuss in the following in the case
of real BCI problems), the multi-class problem can be transferred to a two-class problem,
so as to compute the OVR-based F score:

F̂ =

∥∥$µO − $µC�{O}
∥∥2
2

tr(ΣO) + tr(ΣC�{O})
(7.3)

where Σ denotes the covariance matrix of the feature vector, $µ denotes the mean of the
feature vector, ‖·‖2 denotes the L2-norm (Euclidean norm), and tr(·) the trace of a matrix.

In this chapter, the feature vector, [BPC3, BPCz, BPC4], contains the BP features (BP ,
see Equation 2.13 in Chapter 2) from three Laplacian channels C3, Cz and C4, so the
OVR-based F score is calculated by:

F̂ =
(BP

O

C3 − BP
C�{O}

C3 )2 + (BP
O

Cz − BP
C�{O}

Cz )2 + (BP
O

C4 − BP
C�{O}

C4 )2

(S̄O
C3 + S̄O

Cz + S̄O
C4) + (S̄

C�{O}
C3 + S̄

C�{O}
Cz + S̄

C�{O}
C4 )

(7.4)

with:

BP =
1

K

K∑

k=1

BP (k) (7.5)
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S̄ =
1

K − 1

K∑

k=1

(BP (k)− BP )2 (7.6)

where K is the number of trials.

As we have mentioned in the previous chapter, the logarithm has been applied on BP
features (see Equation 2.13) to make the distribution of BP features approximately normal.
In probability theory, a random vector is said to be multivariate normally distributed if
every linear combination of its components obeys a univariate (one-dimensional) normal
distribution [85]. Thus, the feature vector, [BPC3, BPCz, BPC4], should be multivariate
normally distributed. In practice, Mardia’s test is used to check whether a given set of
data obeys the multivariate normal distribution with a given significance level of 0.05 [115].
The assumption of multivariate normality is valid when the significance level P is larger
than 0.05.

A real example from BCI competition IV dataset IIa [39] is shown in Figure 7.3, which is
used to discuss whether it is reasonable to use OVR-based F score in BCI problems. The
feature vector, [BPC3, BPCz, BPC4], was extracted from the data in the time-frequency
area with the largest F score for one class (left hand) against all the others (right hand,
feet, tongue). Mardia’s test shows that the feature vector is multivariate normally dis-
tributed for each class (P = 1.000). Figure 7.3 (B) shows the distribution of feature
vectors from all classes except left hand, which is also multivariate normally distributed
(P = 1.000). In this case, the set of all the other classes can be consider as a big class,
which is normally distributed. Thus, $µC�{O} well represents the center of C � {O}. As
a result,

∥∥$µO − $µC�{O}
∥∥
2
is the Euclidean distance between the center of one class (blue

color) and the center of big class (cyan color) (see Figure 7.3 C), which reflects the inter-
class difference between O and C � {O}. As we have discussed in Chapter 5 Section ??,
the trace of the covariance matrix of the feature vector reflects intra-class spread for a
normal distribution. Thus, using tr(ΣC�{O}) to estimate the variance of C �{O} becomes
reasonable.

For each class, we calculate F̂ (ωm, τn) using Equation 7.4, for each time-frequency area
(ωm × τn), so as to measure its discriminative power for separating the class from all the
others. The optimal time-frequency area (ω∗, τ ∗) for separating each class is estimated by
seeking the maximum value of F̂ (ωm, τn) among all M ×N time-frequency areas:

F̂ (ω∗, τ ∗) = max
{
F̂ (ωm, τn) | m ∈ {1, 2, ...,M} , n ∈ {1, 2, ..., N}

}
(7.7)

Without loss of generality, Figure 7.4 presents the scheme of multi-class F score based
time-frequency selection (MFTFS) for a four class problem. The optimal time-frequency
area for separating one class from all the others can be considered as the characteristic
time-frequency area for the class, since it contains information that makes the class dif-
ferent from all the others. Let us assume that the characteristic time-frequency areas
for I different classes are (ω∗, τ ∗)i, (i = 1, ..., I). BP features, BPC3, BPCz, BPC4, are
extracted from the characteristic time-frequency area (ω∗, τ ∗)i of each class i in Laplacian
channels C3, Cz and C4, so called the class-relevant feature vector. Considering the se-
lected characteristic time-frequency areas for some classes may be the same in practice,
we only use the set of feature vector from all different (ω∗, τ ∗) for classification. This step
can be achieved by:

A = UNIQUE({(ω∗, τ ∗)i | i ∈ 1, ..., I}) (7.8)
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Fig. 7.3: Distribution of BCI features: a real example from BCI competition IV database
IIa [39]. A. Distribution of the feature vector for different classes (Mardia’s test, P = 1.000
for each class): left hand (▽), right hand (◦), feet (+) and tongue (∗). B. Set of feature
vectors from all classes except left hand (Mardia’s test [115], P = 1.000): the arrow shows
the center of the set. C. Distance between the center of one class (blue color) and the
center of the set of all the other classes (cyan color).

where A is the set of all different (ω∗, τ ∗), the operator UNIQUE eliminates possible
time-frequency area repetitions in the set of {(ω∗, τ ∗)i | i ∈ 1, ..., I}. Then, the feature vec-
tor [BPC3, BPCz, BPC4] is extracted from the time-frequency areas in A for classification.
The classifier we used in this chapter is multi-class LDA from BioSig toolbox [176].

Table 7.1 shows an example of characteristic time-frequency areas for different classes for
a subject from BCI competition IV dataset IIa [39]. In this example, the classes of right
hand and feet share the same characteristic time-frequency area (21-29Hz, 0.5-3.5s after
the cue on-set). In this case, the repetitions should be eliminated. Thus, the features
will be only extracted from three different characteristic time-frequency areas: 1) 8-16Hz,
0.9-3.9s after the cue on-set, 2) 21-29Hz, 0.5-3.5s after the cue on-set and 3) 21-29Hz,
0.9-3.9s after the cue on-set. Thus, totally 3× 3 = 9 features are used for classification.
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Table 7.1: An example of characteristic time-frequency areas for different classes for a
subject from BCI competition IV dataset IIa [39]. The time-frequency areas shared by
different classes are shaded in gray.

Left hand Right hand Feet Tongue
Freq.(Hz) 8-16 21-29 21-29 21-29
Time(s) 0.9-3.9 0.5-3.5 0.5-3.5 0.9-3.9

Fig. 7.4: Scheme of Multi-class F score based time-frequency selection (MFTFS).

7.3 Data description and preprocessing

In this chapter, two multi-class datasets from the BCI competition were used. Both
datasets contain four classes of motor imagery data: left hand, right hand, foot and
tongue.
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7.3.1 BCI competition IV dataset IIa

BCI competition IV dataset IIa [39] was recorded from nine subjects using 22 EEG elec-
trodes. EOG data were recorded using three EOG electrodes for removing the EOG
artifacts. The placement of EEG electrodes is shown in Figure 7.5. This dataset contains
one training session (288 trials) and one independent evaluation session (288 trials, 72
trials for each class). In each trial, the subjects were required to perform motor imagery
during four seconds after the cue on-set.

As the training and testing sessions are recorded in two different days, this dataset presents
the challenge of “session-to-session transfer”. Thus, this dataset can be used to evaluate
the robustness of a method to unpredictable changes of signal. For details about this
dataset, please refer to Chapter 4.

Fig. 7.5: Placement of 22 electrodes for the BCI competition IV dataset IIa [39]. The
Laplacian derivation is performed at C3, Cz and C4 based on the center and four nearest
neighboring electrodes (marked in red).

7.3.2 BCI competition III dataset IIIa

BCI competition III dataset IIIa [179] was recorded from three subjects (denoted “k3”,
“k6”, “l1”) using 60 EEG electrodes. The placement of EEG electrodes is shown in Fig-
ure 7.7. No EOG electrodes were placed for removing the EOG artifacts. Trials with arti-
facts, which were visually identified, are marked out by the property HDR.ArtifactSelection
(HDR.ArtifactSelection = 1 indicates that the trial was contaminated by artifacts,
HDR.ArtifactSelection = 0 indicates that the trial was relatively “clean” without visi-
ble artifacts). Both training and testing data are recorded in the same session with the
same number of trials, and randomly mixed by data providers. The number of train-
ing/testing data for each subject is listed in Table 7.2, and also the percentage of artifact
contaminated (AC) trials in the training data.
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The timing of the experimental paradigm is shown in Figure 7.6. In each trial, the subjects
were required to sat quietly for the first two seconds. Then, an acoustic stimulus was given,
with a cross presented in the center of the screen, to indicate the beginning of the trial.
A visual cue in form of an arrow pointing either to left, right, up or down (corresponding
to left hand, right hand, both feet and tongue) was given at 3s and stayed on the screen
for one second. The subjects were asked to imagine the corresponding movement during
four seconds after the cue on-set. The cues indicating different motor imagery tasks were
displayed in a randomized order.

Fig. 7.6: Timing of the experimental paradigm for dataset IIIa [179].

As the AC trials are marked out in this dataset, we tested our method using only “clean”
trials, and using all training trials (containing both “clean” and AC trials), to evaluate
the robustness of our method to artifacts.

Table 7.2: Number of training (clean trials and artifact contaminated (AC) trials) and
testing trials, and percentage of artifact contaminated (AC) trials in the training data
from BCI competition III dataset IIIa.

Subject Training trials Testing trials
Total Clean trials AC trials Percentage of AC trials

k3 180 149 41 17% 180
k6 120 92 28 23% 120
l1 120 84 36 30% 120

7.3.3 Preprocessing

For both datasets, the Laplacian derivation (Chapter 2, Section 2.6.3) was performed at
C3, Cz and C4 based on the center and four nearest neighboring electrodes (see Figures 7.5
and 7.7) [75].

The parameters for time-frequency selection are the same for these two datasets, since
the classes (i.e. left hand, right hand, both feet and tongue) and timing (i.e. four seconds
after cue on-set) of motor imagery in these two datasets are the same. For each Laplacian
channel, 5th order Butterworth filters are applied to compute 19 successive 4Hz-wide
frequency bands of signals (F = 4Hz, Fs = 1Hz): 8-12Hz, 9-13Hz, 10-14Hz, ..., 26-30Hz,
and 15 successive 8Hz-wide frequency bands of signals (F = 8Hz, Fs = 1Hz): 8-16Hz,
9-17Hz, 10-18Hz, ..., 22-30Hz. Then 36 overlapping time segments in each frequency band
were obtained through 2s, 2.5s and 3s-wide (i.e. T = 2, 2.5 and 3s, respectively) sliding
windows (12 segments for each sliding window) with 0.2s-step (i.e. Ts = 0.2) moving from
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Fig. 7.7: Placement of 60 electrodes on BCI competition III dataset IIIa [179]. Laplacian
derivation is performed at C3, Cz and C4 based on the center and four nearest neighboring
electrodes (marked in red).

0.5s after the cue on-set. Therefore, there are (19+ 15)× 36 = 1224 time-frequency areas
for estimating the characteristic time-frequency area for each class. These parameters are
the same as in the previous chapter. They have yielded good performances in our previous
work [236]. Although multi-class problems are not the same as two-class problems, this
setting of parameters generally covers different frequency bands (4Hz and 8Hz-wide) in
the range of 8-30Hz where ERD/ERS typically occurs, and different time segments (2s,
2.5s and 3s-wide) in the whole period of motor imagery.

7.4 Results

7.4.1 BCI competition IV dataset IIa

The OVR-based F score selected characteristic time-frequency areas for different classes
are listed in Table 7.3 for each subject. For each class of motor imagery, its character-
istic time-frequency area varies with subjects, indicating the necessity of subject-specific
estimation in multi-class time-frequency selection. Table 7.4 lists the percentage of times
that a time-frequency area of a given size in time and frequency is selected. The char-
acteristic frequency bands are mainly in the range of β band (12-30Hz) with a relatively
broad frequency width (8Hz width), in particular for motor imagery of feet and tongue.
The characteristic time segment has typically a long length (3s length). Thus, discrimi-
nating one class from all the others usually needs a relatively large time-frequency area
for extracting useful information.

In this competition, five winners have reported their results on the website. Key infor-
mation on the methods used by these winners is given in Table 7.5 (for more detailed
information, see [194]), to compare with our method MFTFS. Only the results of the 3rd

and 5th place winners are obtained by using reduced channels, others are yielded by using
all 22 channels [194].
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Table 7.3: Characteristic time-frequency areas for different classes on BCI competition
IV dataset IIa. The time-frequency areas shared by different classes are shaded in gray.

Subject Left hand Right hand Feet Tongue
1 Freq.(Hz) 12-20 12-20 12-20 12-20

Time(s) 0.7-3.7 0.9-3.9 1.1-4.1 0.9-3.9
2 Freq.(Hz) 15-23 11-19 21-29 22-30

Time(s) 1.5-4.5 0.9-3.9 2.3-5.3 2.7-5.7
3 Freq.(Hz) 20-28 21-29 18-26 19-27

Time(s) 0.7-3.7 0.7-3.7 1.1-4.1 0.7-3.7
4 Freq.(Hz) 22-30 14-18 22-30 14-22

Time(s) 0.5-3.5 1.3-4.3 1.7-4.7 0.5-3.5
5 Freq.(Hz) 10-18 22-30 26-30 10-18

Time(s) 0.5-3.5 0.5-3.0 2.7-5.7 0.9-3.4
6 Freq.(Hz) 13-21 13-21 14-22 13-21

Time(s) 1.1-4.1 0.5-3.0 0.5-3.5 0.9-3.9
7 Freq.(Hz) 8-16 21-29 21-29 21-29

Time(s) 0.9-3.9 0.5-3.5 0.5-3.5 0.9-3.9
8 Freq.(Hz) 8-16 11-19 12-20 9-17

Time(s) 0.7-3.7 0.5-3.0 1.3-4.3 0.5-3.5
9 Freq.(Hz) 14-22 23-27 22-30 12-20

Time(s) 0.5-2.5 0.5-2.5 0.9-3.4 0.5-3.5

Table 7.4: Percentage of times that a time-frequency area of a given size in time and
frequency is selected (BCI competition IV dataset IIa).

2s 2.5s 3s Total
4Hz 2.8% 0 2.8% 5.6%
8Hz 2.8% 11.1% 80.6% 94.4%
Total 5.6% 11.1% 83.4% 100%

Table 7.6 compares the classification performances in session-to-session transfers of the
MFTFS and of other methods in the BCI competition. The classification performance is
evaluated by kappa coefficient, κ (see [178] or Chapter 2 Section 2.5.2 for details). The
1st place winner yields the best performance among all players and our method for all
subjects except Subjects 1, 2 and 9, because it used the selected frequency band and all
22 channels. For Subjects 1 and 9, the best performance is achieved by the 2nd place
winner using a board frequency band (8-30Hz) with CSP, which is a little better than
the 1st place winner. The reason is that at least one motor imagery task has elicited
a broad band ERD/ERS for those subjects. For example, the motor imagery of right
hand elicited a right brain (C3) dominant broad band ERD for Subject 1 (see Figure 7.8),
which makes the best performance come from using a broad frequency band (8-30Hz)
for this subject. For Subject 2, although the 1st place winner’s result is not better than
our method, it generates the best result among all winners. Generally speaking, the 1st

place winner generates very good results (the best performance for 6 subjects, the second
place performance for 3 subjects). For Subject 5, the result yielded by the 1st place
winner (κ = 0.40) is far better than all others. These results indicate that using selected
frequency band and all channels are useful for generating a good performance. Thus, if
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Table 7.5: Comparison between our method (MFTFS) and the methods used by BCI
competition winners (BCI competition IV dataset IIa).

Method Frequency band Channels Features Classifier
MFTFS Selected by F

score
3 Laplacian
Channels (C3,
Cz and C4)

BP Multi-class
LDA

1st [45, 194] Selected by Fil-
ter Bank CSP
(FBCSP)

All channels (22
channels)

CSP Naive Bayes
Parzen Win-
dow classifier

2nd [194] 8-30Hz All channels (22
channels)

CSP Bayesian clas-
sifier

3rd [194] 8-25Hz Channels se-
lected by the re-
cursive channel
elimination [97]

CSP SVMs

4th [194] Selected based
on classification
accuracy

All channels (22
channels)

NTSPP+CSP LDAs +
SVMs

5th [194] 8-25Hz Channels man-
ually selected
around C3 and
C4

CSP SVMs

we have to reduce some channels, selecting optimal time-frequency areas may become an
important solution for improving the classification results.

Table 7.6: Comparison of the classification performances (evaluated with kappa coeffi-
cient) in session-to-session transfers of the MFTFS and of other methods based on reduced
channels (3nd and 5th place winners) and all channels (1st, 2nd and 4th place winners), re-
spectively, on BCI competition IV dataset IIa. The best performances among methods
based on reduced channels are shaded in gray. The best performances among all methods
are in bold.

Subjects
1 2 3 4 5 6 7 8 9 Mean

MFTFS 0.47 0.46 0.31 0.22 0.13 0.25 0.52 0.38 0.48 0.36
3nd 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 0.31
5th 0.41 0.17 0.39 0.25 0.06 0.16 0.34 0.45 0.37 0.29
1st 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57
2nd 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52
4th 0.46 0.25 0.65 0.31 0.12 0.07 0.00 0.46 0.42 0.30

As our method is based on reduced channels (only 3 Laplacian channels), it is fair to fur-
ther compare our results with those also obtained by reduced channels in the competition
(3rd and 5th place winners), in order to valid the contribution of time-frequency optimiza-
tion. Among all methods based on reduced channels, MFTFS generated the best mean
classification performance (mean kappa coefficient, κ̄ = 0.36). Although the difference
between our results and these two winners are not statistically significant due to the lim-
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ited number of subjects, MFTFS outperforms both winners (3rd place winner: κ̄ = 0.31,
5rd place winner: κ̄ = 0.29) and yields the best individual results for 6 out of 9 subjects
(except Subjects 3, 4 and 8). This result indicates that using MFTFS can improve the
classification results of BCI based on reduced channels in session-to-session transfers for
most subjects. Compared to the methods using all channels, MFTFS generates better
performances than the 4th place winner, who used a selected frequency band and all 22
channels for most subjects (except Subjects 3, 4 and 8). For Subject 2, MFTFS even
generates better performance than the 1st place winner. These results indicate that it is
possible to reduce channels but improve the classification performance by using MFTFS in
some cases. Our method generates relatively worse performances than CSP-based meth-
ods on Subject 3, 4 and 8 because of the poor quality of signals recorded from these three
subjects. As a result, they need either more channels (1st, 2nd and 4th place winners) or
a broad band (3rd and 5th place winners) to provide more information for signal enhance-
ment. Time-frequency visualization of ERD/ERS for Subject 3 is shown in Figure 7.9,
which is generated by the BioSig Toolbox [176] (for details, see [152] or Chapter 6). For
this subject, both hand movements elicit discriminative ERD: left hand movement gener-
ates right brain (C4) dominant ERD, while right hand movement generates left brain (C3)
dominant ERD. As a result, F score based time-frequency selection yields very good per-
formance in the discrimination between left hand and right hand movements (κ = 0.96),
which is presented in the previous chapter. However, the tongue movement does not elicit
the typical discriminative ERS in hand representative areas, so that the multi-class perfor-
mance deteriorates (κ = 0.31). All winners in this competition have used CSP algorithms
to enhance the signals. As we has discussed in Chapter 2 Section 2.6.5, CSP algorithm
is powerful to improve the signal quality. Thus, CSP-based methods generate better re-
sults than us for these three subjects. However, CSP is typically based on multi-channel
setting, so the results of using CSP with all channels are much better than those of using
CSP with reduced channels (see Table 7.6).

7.4.2 BCI competition III dataset IIIa

Table 7.7 lists the classification results (also evaluated by kappa coefficient, κ) when using
all training trials (All) and using only the “clean” trials. As there are only three subjects
in this dataset, we examine the results one subject by one subject. For Subject k3, using

Fig. 7.8: Time-frequency visualization of right hand motor imagery elicited ERD/ERS for
Subject 1, using the time interval between -2s (i.e. 2s before cue on-set) and -1s (1s before
cue on-set) as the baseline. This visualization was generated by the BioSig Toolbox [176],
using overlapping 2Hz bands (step = 1Hz) in the frequency range between 6 and 32Hz
(for details, see [152] or Chapter 6).
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Fig. 7.9: Time-frequency visualization of ERD/ERS for Subject 3, using the time interval
between -2s (i.e. 2s before cue on-set) and -1s (1s before cue on-set) as the baseline.
This visualization was generated by the BioSig Toolbox [176], using overlapping 2Hz
bands (step = 1Hz) in the frequency range between 6 and 32Hz (for details, see [152] or
Chapter 6).

only the“clean” trials (κ = 0.69) yields a better classification result than using all training
trials (κ = 0.63). However, for Subjects k6 and l1, the classification results obtained by
using only the “clean” trials (Subject k6: κ = 0.70, Subject l1: κ = 0.60) are worse than
those obtained by using all training trials (Subject k6: κ = 0.71, Subject l1: κ = 0.72).
Generally speaking, artifacts will deteriorate the classification results, while the number
of trials for training will also affect the results. Usually, a small training dataset may not
be able to generate a good classification result. However, removing artifact-contaminated
(AC) trials will definitely reduce the number of trials for training. As a result, a trade-
off should be made, which depends on the sensitivity of the method to noise and the
amount of training data. For a method which is sensitive to noise, adding AC trials
to the training dataset can only deteriorate the classification result. As a result, using
only the “clean” trials will always yield better results than using all training trials. On
the contrary, for a method which is robust to noise, adding AC trials may improve the
classification results. In Table 7.7, we can see that using all training trials (κ̄ = 0.69)
generates a better mean classification result than using only “clean” trials (κ̄ = 0.63),
indicating that MFTFS is robust to noise. In this dataset, subject l1 has the least clean
training trials (84 trials, see Table 7.2). If only using clean trials, the classification result
for l1 (κ = 0.60) is the worst among all the subjects. To study the effect of adding AC
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trials on the performance of MFTFS, we add different amounts of AC data to training data
on this subject, so as to get a curve of classification performance with respect to different
numbers of training data with different amounts of noise (see Figure 7.10). AC trials are
randomly selected to constitute the different amounts of noise. The curve provides the
average κ values over 20 runs (standard deviation ≤ 0.06). From Figure 7.10, we can
see that when the number of training trials is less than 114 (AC trials/training trials =
30/84), adding AC trials can improve the classification performance. When the number
of training trials is larger than 114, adding AC trials will deteriorate the classification
performance. The best performance (κ = 0.77) is achieved with 114 training trials (AC
trials/training trials = 30/84) for this subject. We also give a curve for Subject k3
(Figure 7.11), since the classification result deteriorates when using all training trials
for this subject (see Table 7.7). In Figure 7.11, we can see that adding AC trials cannot
improve the classification results. The best performance is achieved when using only clean
trials. The reason is that this subject has a large number of training trials (141 trials,
see Table 7.2). Usually, a training dataset should have five to ten times as many trials as
the dimensionality of features to guarantee a good performance of a classifier [83, 164].
For a four-class problem, the dimensionality of MFTFS selected BP features are more
than 3 × 4 = 12, so that 141 trials are enough to feed a classifier. In this case, adding
AC trials may deteriorate the classification performance with MFTFS, since it mainly
introduces artifacts. To sum up, using MFTFS, when the number of clean training trials
is not sufficient, it is possible to improve classification results by adding AC trials. On
the contrary, if the number of clean training trials is large enough, adding AC trials is not
helpful.

Table 7.7: Evaluation of the MFTFS sensitivity (evaluated with kappa coefficient) to noise
on BCI competition III dataset IIIa.

Subjects
k3 k6 l1 Mean

All 0.63 0.71 0.72 0.69
Clean 0.69 0.70 0.60 0.66

Table 7.8 lists the characteristic time-frequency areas for different classes, obtained by
using all training trials (All) and only the “clean” trials, respectively. From Table 7.8, we
can see that the characteristic time-frequency areas shift for some classes for each subject
between using all training trials and only the “clean” trials. Thus, MFTFS can adapt
to the amount of training data and noise to find the optimal time-frequency areas for
extracting discriminative features.

In the competition, only the classification results of the first three winners on this dataset
are reported. Key information on the methods used by the three winners are given in
Table 7.9, in order to compare with MFTFS. All these methods have employed all 60
channels provided in the dataset. The 1st place winner performed time-frequency se-
lection by Fisher ratios [114]; however, the detailed information on this time-frequency
selection is not available in the literature. The 2nd place winner applied a multi-class CSP
algorithm (see Chapter 4 and [60]) on the broad band (8-30Hz) without time-frequency
selection. The 3rd place winner performed “infomax” independent component analysis
(ICA) [112] for seeking the interesting independent component and then calculated am-
plitude spectra using Welch method [222] with 5 overlapping Hanning windows. The
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Fig. 7.10: Curve of classification performance (measured by κ values) with respect to
different numbers of training data with different amounts of noise for Subject l1. Results
are averaged over 20 runs. Error bars show standard deviations of κ values.

Fig. 7.11: Curve of classification performance (measured by κ values) with respect to
different number of training data with different amounts of noise for Subject k3. Results
are averaged over 20 runs. Error bars show standard deviations of κ values.

features were obtained by linear principal component analysis (PCA) [87]. For more de-
tailed information about these methods, please refer to [35]. As the AC trials are marked
out in this dataset, researchers can choose to use all training trials or only clean training
trials, though all winners did not report whether they have used all training trials or only
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Table 7.8: Characteristic time-frequency areas for different classes on BCI competition
III dataset IIIa, obtained by using all training trials (All) and only the “clean” trials,
respectively.

Subject Left hand Right hand Feet Tongue
k3 All Freq.(Hz) 12-20 13-21 13-21 12-20

Time(s) 0.9-3.9 1.9-4.9 2.1-5.1 0.7-3.7
Clean Freq.(Hz) 12-20 12-20 13-21 12-20

Time(s) 2.5-5.0 2.1-5.1 2.1-5.1 0.7-3.7
k6 All Freq.(Hz) 22-30 26-30 22-30 19-27

Time(s) 0.5-3.5 0.9-3.9 2.7-5.7 2.7-5.7
Clean Freq.(Hz) 22-30 26-30 22-30 18-26

Time(s) 0.5-3.5 0.9-3.9 2.3-5.3 2.7-5.7
l1 All Freq.(Hz) 20-28 12-20 22-30 12-20

Time(s) 2.7-5.7 1.1-4.1 2.5-5.5 1.1-4.1
Clean Freq.(Hz) 22-30 13-17 22-30 12-20

Time(s) 0.7-2.7 2.3-4.8 2.7-5.7 2.7-5.7

Table 7.9: Comparisons between different methods on BCI competition III dataset IIIa.
Method Time-

frequency
areas

Channels Features Classifier

MFTFS Selected by F
score

3 Laplacian
Channels
(C3, Cz and
C4)

BP Multi-class LDA

1st [35] Selected
by Fisher
ratios [114]

All channel
(60 channels)

CSP Multiple SVMs

2nd [35] 8-30Hz All channel
(60 channels)

CSP SVM+kNN+LDA

3rd [35] Selected
by infomax
ICA [112] and
PCA

All channel
(60 channels)

Amplitude
spectra [222]

Multiple SVMs

clean trials in the competition. In this case, we use only clean trials for Subject k3, and
all training trials for Subjects k6 and l1. The reason for this choice was discussed in
the previous paragraph. The comparisons of the classification performances between the
MFTFS and all other methods are provided in Table 7.10. Although the classification
performances obtained by using MFTFS are worse than the 1st place winner for all sub-
jects (see Table 7.10), MFTFS uses far less electrodes (15 electrodes) than all methods (60
electrodes) and yields a better mean classification performance (κ̄ = 0.71) than the 2nd

(κ̄ = 0.69) and 3rd (κ̄ = 0.63) place winners. For Subjects k6 and l1, the results obtained
by MFTFS (Subject k6: κ̄ = 0.71, Subject l1: κ̄ = 0.72 ) are better than the 2nd (Subject
k6: κ̄ = 0.43, Subject l1: κ̄ = 0.71 ) and 3rd place (Subject k6: κ̄ = 0.41, Subject l1:
κ̄ = 0.52) winners. Although for Subject k3, our result is not as good as other methods
using all 60 channels, this result (κ = 0.69) is close to the results of our method on the
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other subjects, indicating that the performance of our method is generally stable. As we
have discussed before, using a full EEG cap is helpful for improving the classification on
some subjects if a full cap is acceptable in practice. Here, the number of electrodes used in
MFTFS is close to the one in the commercial BCI system Emotiv EPOC (see Chapter 2
Section 2.3.2). Thus, the number of electrodes we used is reasonable and acceptable for
general applications (e.g. in a game environment).

Table 7.10: Comparisons of the classification performances (evaluated with kappa coeffi-
cient) between the MFTFS and Other Methods on BCI competition III dataset IIIa.

Subjects
k3 k6 l1 Mean

MFTFS 0.69 0.71 0.72 0.71
1st 0.82 0.76 0.80 0.79
2nd 0.90 0.43 0.71 0.69
3rd 0.95 0.41 0.52 0.63

7.5 Discussion and future work

This chapter extended the F score based time-frequency optimization to the multi-class
case through one-versus-rest strategy. The method was applied with three Laplacian chan-
nels C3, Cz and C4 for a four-class BCI problem and tested on two standard multi-class
datasets (BCI competition IV dataset IIa and BCI competition III dataset IIIa). The
experimental results on BCI competition IV dataset IIa showed that our method yielded
better results than other methods based on reduced channels in session-to-session trans-
fers. The experimental results on BCI competition III dataset IIIa showed that adding
the artifact-contaminated trials may not deteriorate the performance of our method, indi-
cating that our method is robust to noise. The classification performance of our method is
better than the 2nd place winner on this dataset but employed far less electrodes (only 15
electrodes) than all other methods (60 electrodes). Compared to existing commercial BCI
products, the number of electrodes we used is still reasonable and acceptable for general
applications (e.g. in a game environment).

In conclusion, our method is robust to unpredictable signal changes in session-to-session
transfer and artifacts. It can be used to help reducing the number of electrodes in motor
imagery BCI, without a large loss of classification performance. However, as this method
is based on 3C setup (C3, Cz and C4), its reliability is based on the precise placement of
electrodes, which we have discussed in Chapter 5.

To overcome this problem, we suggest a novel design of Laplacian derivation based 3C
setup EEG device for general BCI users (see Figure 7.12). The user can choose the right
size of the device based on the size of the head. The ear contacts and EOG sensors can
easily help the user to put the EEG device in the right position. The electrodes are fixed
in the device, so as to prevent a possible large shift of electrode location. This device can
be combined with a normal earphone, so as to play the audio cues in BCI experiences
through the ear contacts. The EOG sensors are used to detect the ocular activities, so as
to remove EOG artifacts or/and use EOG signals as a control signal like what we have
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discussed in Chapter 3. A prototype of this design could be made in cooperation with a
EEG device company and tested in real applications in the future.

Fig. 7.12: Novel design of Laplacian derivation based 3C setup.
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Chapter 8

Conclusion and Perspectives

8.1 Conclusion

Although modern BCI techniques show a relative maturity compared to the past decades,
several obstacles still impede their widespread adoption, in particular for large public
applications. In this thesis, we proposed a hybrid BCI (hBCI) and several efficient ap-
proaches to address some of the challenges in this context.

EEG technique is often used in BCIs for measuring brain activities, because of its inex-
pensive, non-invasive and good time resolution. However, EEG signals are much weaker
compared to other physiological signals, such as heart rates, EOG signals, and often con-
taminated by these physiological signals. Most researches have focused on how to remove
these physiological “artifacts” from EEG signals, in order to obtain the“clean”EEG signal
for BCI controls. This research direction is consistent with the traditional definition of
BCI that only brain signals can be used in BCI controls. However, this definition, to some
extents, ignores the core value of BCI techniques in the context of large public applications.
For non-medical application, BCI techniques aim to provide users a hand-free control, so
as to increase their freedom in human-computer interaction. But the traditional definition
excluding non-brain controls in a BCI system impairs users’ freedom of using all possible
signals for the control. In our proposed hBCI, users can use brain activity (EEG signals)
and eyes movements/blinks (EOG signals) to realize human-computer interactions, where
EOG serves as a control signal instead of being considered as artifacts; and users can
control the system whenever they want just by opening their eyes. This design provides
users more freedom to realize the control through all possible physiological functions and
to switch the control system independently. It turns “artifacts” from ocular activities into
useful control signals in BCI experiences, which provides an alternative solution to deal
with physiological “artifacts”. As both EOG and EEG data can be measured by an EEG
recording system, this design allows using only one recording system with few electrodes,
so as to reduce the hardware cost of a hBCI system. However, we only performed the
experiments on five healthy subjects in this thesis. Thus, the robustness of proposed hBCI
still needs to be tested on more subjects and further improved before putting this system
into real applications.

Most work of this thesis focused on developing machine learning methods in order to make
BCI systems efficient, economic and easy to use.

Motor imagery BCI is a popular type of EEG-based BCI, which identifies subject’s motor
intentions through classifying the spatial relevant EEG patterns (ERD/ERS). In practice,
raw scalp EEG signals have a poor signal quality due to the volume conduction effect,
which deteriorates the classification performance of motor imagery BCI. To solve this
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problem, spatial filtering techniques have been proposed in the literature. The most effec-
tive one is the common spatial patterns (CSP) algorithm. However, the performance of
CSP usually depends on preprocessing (EEG time segment and frequency band selection),
electrode selection and number of paired filters. Although many methods were proposed
to select the electrodes and improve the preprocessing procedure for CSP, how to find the
optimal number of paired filters in CSP is still an open question. To address this problem,
we proposed an automatic method relying on Rayleigh quotient to estimate the optimal
number of filters for each subject. Based on an existing dataset (BCI competition IV
dataset IIa), we studied the effect of this parameter on the classification performances.
The estimated subject-specific optimal values yielded better performances on testing data
than the recommended value in the literature. In the view of feature extraction, this
method also provides a simple solution for feature dimensionality reduction. It reduces
the number of CSP features to an optimal number by selecting a few key CSP filters.
However, it cannot reduce the number of electrodes in a BCI system.

The CSP algorithm typically needs a multi-channel setting, which may be a drawback for
daily-use BCIs in signal acquisition. Based on the same dataset, three subsets of channels
selected by prior knowledge of brain functional areas were tested with the CSP algorithm
to study the channel selection and reduction challenges, comparing with a SVM-based
channel selection method, called recursive channel elimination (RCE). The classification
results obtained by two subsets selected based on prior information of functional areas of
the brain are generally better than those obtained with a subset of channels selected by
RCE, indicating the potential interest of using some prior knowledge in BCI challenges.
However, the classification results obtained using reduced channels are not as good as
those obtained when using a full cap with the CSP algorithm. We further explored
some non-CSP based approaches, aiming to reduce the number of electrodes without a
significant drop of classification accuracy. This issue was addressed in two directions in
this thesis.

The first direction is to find the optimal subset of electrodes from a full EEG cap. Unlike
existing methods simply choosing electrodes based on spatial information, disregarding
the potential impact of temporal information, we proposed a novel subject-specific chan-
nel selection method to realize the parametrization of both time segment and channel
positions. This method is based on a novel criterion, F score, derived from Fisher’s dis-
criminant analysis. Different from the classical Fisher’s criterion, which is typically for
measuring the discrimination power of a single feature, the F score is proposed to esti-
mate the discrimination power of a group of features (a feature vector). The experimental
results showed that the optimal subset of channels varied with time segments, indicating
the necessity of considering time information in channel selection. Based on our proposed
method, the optimal combination of time segment and subset of channels can be learned
for each subject. This method efficiently reduced the number of channels (from 118 chan-
nels to no more than 11), and shortened the training time, without a significant decrease
of classification accuracy on a 118-channel dataset (BCI competition III dataset IVa).
Compared to existing commercial BCI products (e.g. Emotiv), the number of electrodes
we used is reasonable and acceptable for general applications (e.g. in a game environ-
ment). However, it needs to be mentioned that the optimal combination of time segment
and subset of channels varies with subjects. In this case, a subject-specific optimization
is necessary. Although subject-specific optimization can provide a precise estimation in
finding the interesting channels for classification, it will unavoidably increase the hardware
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cost of a device due to at least two reasons. On the one hand, a full cap is necessary for
recording the data to select the interesting channels at the first time use. On the other
hand, a BCI device with a subject-specific montage of electrodes has to be produced based
on the channel selection result for each subject. Although the user may benefit from this
personalized design, mass production becomes impossible for device producers, which fi-
nally increases the cost of a BCI device and therefore prevents the wide adoption of BCI.
So it is a big limitation of this direction.

The second direction is to improve the classification performances with a few electrodes
placed based on prior knowledge of brain function areas. Typically, some researchers may
simply use three bipolar or Laplacian channels located around C3, Cz and C4 (accord-
ing to the standard 10-20 EEG recording system) to record motor imagery data. This
simple placement can easily reduce the number of electrodes but may not always yield
good classification performances. To improve classification performances, we proposed a
novel method to identify subject-specific time-frequency characteristics, so as to extract
effective band power features. We adapted the proposed F score to time-frequency selec-
tion problems. We also proposed a novel alternative criterion based on domain specific
knowledge (such as location of brain activity during a motor imagery) to address the
specific problem of the time-frequency selection. Both criteria led to good performances
on two standard datasets (BCI competition IV dataset IIa and IIb) for the discrimination
between imagination of right and left hand movements, using less electrodes (only two
bipolar channels C3 and C4) than other methods. The time-frequency selection method
based on F score was further extended to multi-class problems through one-versus-rest
(OVR) strategy. The method was applied with three Laplacian channels C3, Cz and C4
for a four-class BCI problem (left hand, right hand, foot and tongue) and tested on two
standard multi-class datasets (BCI competition IV dataset IIa and BCI competition III
dataset IIIa). Our method is robust to unpredictable signal changes in session-to-session
transfer and to artifacts. Although this direction does not directly reduce the number of
electrodes by selecting the interesting channels, it does make BCI systems based on few
electrodes become more reliable and easy to use. In this case, an unified hardware, like
we suggested in Chapter 7 Figure 7.12, can be produced to record the data; and then
to improve BCI performance by using the proposed time-frequency optimization method.
Note that the number of electrodes in this approach is also reasonable and acceptable
compared to the commercial BCI products.

Existing commercial BCI products require users to wait a few minutes for the calibration,
so that the subject-specific parameters in the algorithm can be learned for on-line clas-
sification. Thus, the computational time for finding subject-specific parameters should
also be considered when designing algorithms for BCIs for large public application, since
general users may lose their interests if the calibration time is too long. All the algorithms
proposed in this thesis only need a few minutes for finding the subject-specific parameters,
which is also reasonable and acceptable compared to the existing commercial products.

Finally, all the algorithms have been tested on standard datasets, in order to be compared
with state-of-the-art methods. The experimental results show that the proposed methods
increase the efficiency of the system (e.g. reduce the hardware cost in multi-functional
system, decrease the number of electrodes, shorten the training time) and/or improve the
classification performances, so as to make the BCI systems efficient, economic and easy
to use.
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8.2 Perspectives

The applications of BCI are not only limited to providing personal assistance for disabled
people, but they are more and more promising in human-computer interaction field, for
servicing healthy people. The potential applications may include remotely controlling
a robot to work in a dangerous environment, helping drivers to take some emergency
actions to prevent a car accident, and realizing some hand-free controls in playing games.
Although this thesis has proposed several solutions for some key problems, improvements
and new innovations are still needed to further solve the existing challenges.

8.2.1 Signal processing and cloud computing

BCI systems are driven by brain signals. Among existing brain signals, EEG is the
most promising one for daily use BCIs, in particular for non-medical purposes. However,
challenges in EEG processing processing still hinder us to develop a reliable system.

On the one hand, EEG signals are sensitive to artifacts. Those artifacts can come from
different sources including physiological and environment noise. Although some artifacts
like signals from ocular activities can also be used as control signals in hybrid BCI, de-
noising techniques are still need to be further developed to improve the SNR of EEG
signals. To eliminate the artifacts by requiring the subject to sit quietly and to keep
claim during the control is not a good idea for general public applications, in particular
for neuro-games. Different types of artifact sources, such as yawning, speaking, chewing,
laughing, head movement and body movement, should be examined to learn the properties
of artifacts, in order to remove them or turn them into useful control signals.

On the other hand, automatic adaptive algorithms should be further developed to over-
come individual differences and data evolution. Note that the personalized design of
hardware is usually expensive, which may not be interesting for general healthy users and
BCI device producers. As a result, the subject-specific parameterization in signal pro-
cessing and data classification is very desirable for improving BCI performances based on
a few fixed electrodes. More reliable and fast algorithms should be developed to further
improve the subject-specific parameterization processes. It may be interesting to employ
some more machine learning methods based on SVM [66], Riemannian geometry [17] and
non-negative matrix factorization [98] in the future.

To address these problems, using only the standard datasets in BCI competitions and
some self-recording data are not enough. The datasets in BCI competitions only contain
limited amount of EEG signals (i.e. one to three sessions) from only a few subjects
(i.e. one to nine subjects). Although some datasets provide artifact-contaminated data,
the artifacts are mainly from ocular activities. Other artifacts, like the artifacts from
head movement and yawning, which are likely to occur in daily BCI experiences, are
not presented in these datasets. Although self-recording data may compensate some
limitations of standard datasets, such as providing various types of artifacts, they are
not publicly accessible. To develop reliable methods, a big database containing a large
amount of BCI data from a large number of subjects are required. Various types of
artifacts should be presented in this database. Moreover, the data should come from
different labs, and be recorded with various EEG devices. Such a database has not been
built in the past decades possibly because of lacking an effective network and challenges
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in big data storage. Now, cloud collaboration may help solve this challenge, so as to
build a publicly accessible big BCI database and a collaborating network. Figure 8.1
presents a cloud for sharing BCI data and developing reliable algorithms, BCI cloud.
In this cloud, researchers can share their data, storage and computational resources, in
order to develop and test the novel algorithms with big data. Based on this cloud, more
reliable algorithms will be developed to address the problems in BCI signal processing, in
particular for solving the problems of artifacts, individual differences and data evolution.
For example, when large data from different subjects are accessible, it may be possible to
use modern statistical techniques to address the data evolution problem, and to identify
the similarity and difference between subjects, which may accelerate the subject-specific
parameterization processes in real applications.

Fig. 8.1: BCI cloud: a cloud for sharing BCI data and developing reliable algorithms.

8.2.2 Brain sensors and wireless system

EEG data acquisition highly depends on the electrodes. Although the number of elec-
trodes can be reduced to the minimum, placing the electrodes is still a problem. Tra-
ditional “wet” electrodes need a conductive gel to reduce the skin-electrode impedance.
Although dry sensors are produced by several hardware producers, such as Neurosky and
g.tec, the quality of the signal is not as good as with traditional electrodes. All algorithms
proposed in this thesis were tested on data recorded with “wet” electrodes. In the future,
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they should be further tested on data recorded using dry sensors. Recently, researchers in
Freer Logic1 have claimed that they are able to record brain activities through a device
placed on the arm (see Figure 8.2). Although this technique still needs to be proved, it
does attract some big companies in industry and also provides us a new scope in monitor-
ing brain activities. Moreover, signal processing methods according to this new technique
are also worth to be developed, so as to accelerate the speed of innovation in BCI fields.

Several recently launched EEG devices, such as Neurosky, Freer Logic and Emotiv, are
wireless. Compared to traditional EEG devices, they are more portable. Directly trans-
ferring the brain signals through wireless network may suffer from interference and distor-
tion. Typically, brain signals are processed in a small chip inside the device before data
transmission. Most BCI algorithms including ours are mainly developed and tested on a
personal computer. In the future, they should be optimized and adapted to single-chip
microcomputers, so as to work with the low-power chips inside the EEG devices.

Fig. 8.2: Freer Logic device. Figure is from http://www.freerlogic.com/.

8.2.3 Integrated Information theory for BCI

BCI systems rely on the brain signal decoding. Human brain is a very complex system
that we are far from fully understand. Existing methods are based on black-box analysis,
so that we can only predict subject’s intentions through summarizing the relationship
between a mental task (input) and its corresponding changes in brain signals (output).
In practice, the training data with true labels are used for summarizing this relationship
(training the classifier). This decoding strategy is based on the assumption that there is a
bijection between input and output. Although each part of the body has its corresponding
functional area in the brain, this bijection may not always work due to the complexity of
brain. Until now, the functions of invasive motor imagery BCI mainly focus on identifying
hand, foot and tongue motor imagery. It is easy to separate the right hand from left hand
motor imagery. However, it is difficult to identify whether the subject wants to open or
close his hand, since both mental tasks can elicit an ERD in the hand representation area

1http://www.freerlogic.com/
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of brain. Furthermore, challenges also come from identifying conscious brain activity from
unconscious one. For example, the subject tends to move his right hand for realizing some
controls, but he unconsciously moved his feet during the control. For the existing BCI
techniques, it is difficult for the system to understand what the subject really wants.

Nowadays, a novel theory, integrated information [198, 199] may provide us potential solu-
tions for addressing these challenges. Integrated information theory considers conscious-
ness as the capacity of a system to integrate information, so as to define a parameter φ
based on the information theory to quantify the consciousness. Then, it identifies different
kinds of consciousness (vision, audition, body movement) by creating a multi-dimensional
space called qualia space (Q-space). Details about this theory are available in [200]. Some
refined versions of φ now can be applied to real neuronal data for measuring the level of
consciousness [15, 18]. It might be interesting to introduce this theory into BCI field
for brain signal decoding. By measuring the level of consciousness, it may be possible
to identify conscious brain control from unconscious one. In the future, the theory in
Q-space can be further developed to identify more detailed mental tasks, so as to solve
problems such as separating closing hand from opening hand.
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Appendix A

EEG experiment information sheet
for participants

The informed consent used in the experiments is made according to WMA Declaration of
Helsinki – Ethical Principles for Medical Research Involving Human Subjects1. A copy of
this consent is provided below.

1http://www.wma.net/en/30publications/10policies/b3/
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BCI Research: EEG Experiment 
INFORMATION SHEET FOR PARTICIPANTS 
 
I have been asked to participate in a Brain-computer 
interface (BCI) research study conducted by 
________________ as a subject. 
 
My participation in this study is entirely voluntary. 
 
It is recommended that I read the information below and 
ask questions about anything I do not understand before 
deciding whether or not to participate. 
 
PURPOSE OF THE STUDY 
 
I understand that this experiment is designed to do some 
BCI research. I understand that the entire process will 
involve a scalp EEG recording session of up 
________________minutes/hours, which will include 
_______________________________tasks. 
 
PROCEDURES 
 
If I volunteer to participate in this study, I will be 
asked to undergo _____channel topographic EEG acquisition 
for approximately _____ minutes/hours. During this time, 
I will try my best to anticipate according to 
instructions. 
 
POTENTLAL RISKS AND DISCOMFORTS 
 
I understand that EEG acquisition requires the placement 
of electrodes on the scalp for the purpose of recording 
an EEG data. There are few risks associated with this 
procedure. There is a remote possibility of skin 
irritation from the electrode cream used to attach 
electrodes. Techniques used to attach electrodes have 
been used at numerous research institutions for many 
years with no significantly negative side effects 
reported. 
 
I understand that I can remove the electrodes at any time 
if I so desire and there is no risk of electroshock from 
this procedure. Before conducting any EEG study, I 
understand that the research group have try their best to 
avoid any psychological, legal, or financial risks for 
this participating in the experiment, but as always, 
there may be possible unforeseeable risks that have not 
been identified. 
 
No personal information about me during the research 
project will be disclosed to anyone outside the project's 

156



team members (TII group, WHIST Lab and TAO group) without 
written permission. When the results of the research are 
published and discussed in conferences, no information 
will be included that reveals my identity. Any 
photographs, videos, or audiotape records will be used 
for educational purposes. My identity will be protected 
or disguised. All personal information collected during 
this study will be stored in the research database at the 
TII group, WHIST Lab and TAO group. Records will be coded 
and anonymized to prevent access by any unauthorized 
personnel. 
 
RIGHTS OF RESEARCH SUBJECTS 
 
I may withdraw my consent at any time and discontinue 
participation without penalty. I am not waiving any legal 
rights or remedies because of my participation in this 
research study. 
 
SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 
 
I have read and understand the information provided above. 
I have been given an opportunity to ask questions and all 
of my questions have been answered to my satisfaction. 
 
BY SIGNING THIS FORM, I WILLINGLY AGREE TO PARTICIPATE IN 
THE RESEARCH IT DESCRIBES. 
 
Name of Subject 
____________________________________________ 
 
 
Signature of Subject                        Date 
 
 
 
SIGNATURE OF INVESTIGATOR 
 
I have explained the research to the subject or his/her 
legal representative, and answered all of his/her 
questions. I believe that he/she understands the 
information described in this document and freely 
consents to participate. 
 
Name of Investigator 
_______________________________________________________ 
 
 
Names of Labs/research groups 
 
TII group, TSI, Télécom ParisTech/CNRS UMR 5141 LTCI 
TAO group, INRIA Saclay/CNRS/LRI, Université Paris-Sud 
WHIST Lab, France 
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Signature of Investigator                     Date!
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Appendix B

Paired t-test

In this thesis, experimental results were submitted to a statistical hypothesis test, to
check whether the outcomes of a study would lead to a rejection of a null hypothesis for
a pre-determined threshold probability, the significance level [168]. The null hypothesis
typically refers to a general or default position, for example, there is no difference between
two populations, as was the case in most of our experiments.

Paired t-test is a kind of statistical hypothesis test used to compare the mean values
of two paired populations, where each sample in one population can be paired with the
corresponding sample in the other population. The number of samples in two populations
should be same. For example, we want to compare the classification performances (i.e.
kappa coefficient, κ) of two methods, A and B, on a dataset containing nine subjects (see
Table B.1). For each subject, we have the classification results obtained by methods A
and B, and they are paired.

Table B.1: Classification performances (i.e. kappa coefficient, κ) of two methods, A and
B, on a dataset containing nine subjects

Subjects
1 2 3 4 5 6 7 8 9

A 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61
B 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69

In paired t-test, the null hypothesis is that the mean difference between paired populations
is zero. Let us denote by X = [x1, x2, ..., xN ] and Y = [y1, y2, ..., yN ] the two paired
populations. To test whether the null hypothesis is true, the procedure is as follows:

1. Calculate the signed difference between the two populations on each pair:

di = yi − xi, i = 1, 2, ...N (B.1)

2. Calculate the mean difference, µd and the standard deviation of the difference σd

3. Calculate the standard error of the mean difference:

SE(µd) =
σd
√

N
(B.2)

4. Dividing the mean µd by the standard error SE(µd) of the mean yields a test statis-
tic, ts:

ts =
µd

SE(µd)
(B.3)

which follows a t-distribution [168] with N − 1 degrees of freedom.

159



5. The probability that the null hypothesis is true, P value, is obtained by checking
the t-distribution with df and ts (see Figure B.2)

Fig. B.1: t-distribution for different degrees of freedom df . The horizontal line indicates
the significance level of 0.05, and the vertical lines show the values of ts at the significance
level of 0.05 for different degrees of freedom.

Typically, the significance level is set to 0.05. Thus, the null hypothesis is rejected when
the P value is less than 0.05.

Using the example in Table B.1, the signed difference for each pair is computed and given
in Table B.2.

Table B.2: Signed difference for each pair
Subjects

1 2 3 4 5 6 7 8 9
di 0.01 -0.08 -0.04 -0.04 -0.24 -0.06 -0.11 -0.02 0.08

Calculating the mean value and standard deviation of the differences gives:

µd = −0.0556, and σd = 0.088

Then,

SE(σd) =
σd
√

9
= 0.0293

So we have ts = −1.8929 with df = 8. Checking the t-distribution with df = 8 (see
Figure B.2), we can see P > 0.05. Therefore, the null hypothesis is true for this example,
and we can conclude that there is no significant difference between the classification results
obtained by methods A and B.

For more details about paired t-test, please refer to [184]; and for other statistical hypoth-
esis tests, see [168].
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Fig. B.2: t-distribution for degree of freedom df = 8. The black horizontal line indicates
the significance level of 0.05, and the black vertical lines show the values of ts at the
significance level of 0.05. The red line shows the P value for ts = −1.8929.
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Appendix C

Publications

1. Y Yang, S Chevallier, J Wiart and I Bloch, Time-frequency optimization for dis-
crimination between imagination of right and left hand movements based on two
bipolar electroencephalography channels, Submission to Pattern Recognition [J].

2. Y Yang, O Kyrgzov, S Chevallier, J Wiart and I Bloch, Subject-specific channel se-
lection using time information for motor imagery BCIs, Submission to IEEE trans-
actions on Biomedical Engineering [J].

3. Y Yang, O Kyrgzov, I Bloch and Joe Wiart, Subject-specific channel selection for
classification of motor imagery electroencephagraphic data. In 38th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013 ), Vancouver,
Canada, May 2013, pp. 1277-1280 [C]

4. Y Yang, J Wiart and I Bloch, Towards next generation human-computer interac-
tion – Brain-computer interfaces: applications and challenges, In 1st International
Symposium of Chinese Computer Human Interaction (Chinese CHI 2013 ), Paris,
France, April, 2013 [C].

5. O Kyrgyzov, I Bloch, Y Yang, Joe Wiart, A Souloumiac, Data ranking and clus-
tering via normalized graph cut based on asymmetric affinity, Submission to 17th
International Conference on Image Analysis and Processing (ICIAP 2013 ) [C]

6. Y Yang, S Chevallier, J Wiart and I Bloch, Time-frequency selection in two bipolar
channels for improving the classification of motor imagery EEG, In Proceedings of
34th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society(IEEE EMBC 2012 ), San Diego, CA, USA, August 2012, pp. 2744-
2747 [C].

7. Y Yang, S Chevallier, J Wiart, I Bloch, Automatic selection of the number of spatial
filters for motor-imagery BCI, In Proceedings of 20th European Symposium on Arti-
ficial Neural Networks, Computational Intelligence and Machine Learning (ESANN
2012 ), Bruges, Belgium, 25-27 April, 2012, pp. 109-114 [C].

8. Y Yang, S Chevallier, J Wiart and I Bloch, A self-paced hybrid BCI based on EEG
and EOG, In Proceedings of 3rd Tools for Brain-Computer Interaction Workshop
(TOBI 2012 ), Wurzburg, Germany, March 2012, pp. 33-34 [C].
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J. Perelmouter, E. Taub, and H. Flor. A spelling device for the paralysed. Nature,
398(6725):297–298, 1999. 27

[29] N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser,
I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor. The thought translation device
(TTD) for completely paralyzed patients. IEEE Transactions on Rehabilitation
Engineering, 8(2):190–193, 2000. 27, 30

[30] C.M. Bishop. Neural networks for pattern recognition. Clarendon press Oxford,
1995. 52

[31] B. Blankertz. BCI competition IV, 2008. http://www.bbci.de/competition/iv/.
120

[32] B. Blankertz, G. Curio, and K. R. Müller. Classifying single trial EEG: Towards
brain computer interfacing. Advances in Neural Information Processing Systems,
1:157–164, 2002. 35, 47

[33] B. Blankertz, G. Dornhege, M. Krauledat, K. R. Müller, V. Kunzmann, F. Losch,
and G. Curio. The Berlin brain-computer interface: EEG-based communication
without subject training. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 14(2):147–152, 2006. 12, 34, 51, 52, 53, 54, 96

[34] B. Blankertz, M. Kawanabe, R. Tomioka, F. Hohlefeld, V. Nikulin, and K. R. Müller.
Invariant common spatial patterns: Alleviating nonstationarities in brain-computer
interfacing. Advances in Neural Information Processing Systems, 20, 2008. 43

[35] B. Blankertz, K. R. Müller, D. J. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlögl,
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