P. 35-poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, ChemInform Abstract: Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries., ChemInform, vol.407, issue.3, pp.496-499, 2000.
DOI : 10.1002/chin.200103013

J. 36-cabana, L. Monconduit, D. Larcher, and M. R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Advanced Materials, vol.127, issue.8, pp.22-170, 2010.
DOI : 10.1002/adma.201000717

P. L. 37-taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nature Materials, vol.127, issue.8, pp.567-573, 2006.
DOI : 10.1126/science.1122152

A. N. Dey, Electrochemical Alloying of Lithium in Organic Electrolytes, Journal of The Electrochemical Society, vol.118, issue.10, pp.1547-1549, 1971.
DOI : 10.1149/1.2407783

B. M. Rao, R. W. Francis, and H. A. Christopher, Lithium-Aluminum Electrode, Journal of The Electrochemical Society, vol.124, issue.10, pp.1490-1492, 1977.
DOI : 10.1149/1.2133098

S. C. Lai, Solid Lithium-Silicon Electrode, Journal of The Electrochemical Society, vol.123, issue.8, pp.1196-1197, 1976.
DOI : 10.1149/1.2133033

H. Ryu, J. W. Kim, Y. Sung, and S. M. Oh, Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries, Electrochemical and Solid-State Letters, vol.7, issue.10, pp.306-309, 2004.
DOI : 10.1149/1.1792242

X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon, situ atomic-scale imaging of electrochemical lithiation in silicon, pp.749-56, 2012.
DOI : 10.1016/j.jpowsour.2010.11.155

B. Key, R. Bhattacharyya, M. Morcrette, V. Sezne, J. Tarascon et al., Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries, Journal of the American Chemical Society, vol.131, issue.26, pp.9239-9249, 2009.
DOI : 10.1021/ja8086278

J. Danet, T. Brousse, K. Rasim, D. Guyomard, and P. Moreau, Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries, Phys. Chem. Chem. Phys., vol.131, issue.121, pp.220-226, 2010.
DOI : 10.1039/B915245H

URL : https://hal.archives-ouvertes.fr/hal-00468429

E. Radvanyi, D. Vito, E. Porcher, W. Danet, J. Desbois et al., Study of lithiation mechanisms in silicon electrodes by Auger Electron Spectroscopy, Journal of Materials Chemistry A, vol.21, issue.16, pp.4956-4965, 2013.
DOI : 10.1039/c3ta10212b

N. Rhodes, E. Dudney, C. Lara-curzio, and . Daniel, Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission, Journal of The Electrochemical Society, vol.157, issue.12, pp.1354-1360, 2010.
DOI : 10.1149/1.3489374

X. H. Liu, L. Q. Zhang, L. Zhong, Y. Liu, H. Zheng et al., Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes, Nano Letters, vol.11, issue.6, pp.2251-2259, 2011.
DOI : 10.1021/nl200412p

T. Mcdowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix et al., Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy, Advanced Materials, vol.159, issue.45, pp.6034-6041, 2012.
DOI : 10.1002/adma.201202744

S. W. Lee, M. T. Mcdowell, L. Berla, W. D. Nix, and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proceedings of the National Academy of Sciences, vol.109, issue.11, pp.4080-4085, 2012.
DOI : 10.1073/pnas.1201088109

X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu et al., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS Nano, vol.6, issue.2, pp.1522-1531, 2012.
DOI : 10.1021/nn204476h

M. N. Obrovac and L. J. Krause, Reversible Cycling of Crystalline Silicon Powder, Journal of The Electrochemical Society, vol.154, issue.2, p.103, 2007.
DOI : 10.1149/1.2402112

B. Key, M. Morcrette, J. Tarascon, and C. P. Grey, Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms, Journal of the American Chemical Society, vol.133, issue.3
DOI : 10.1021/ja108085d

D. Mazouzi, B. Lestriez, L. Roué, and D. Guyomard, Silicon Composite Electrode with High Capacity and Long Cycle Life, Electrochemical and Solid-State Letters, vol.12, issue.11, p.215, 2009.
DOI : 10.1149/1.3212894

URL : https://hal.archives-ouvertes.fr/hal-00432831

A. Magasinski, B. Zdyrko, I. Kovalenko, B. Herzberg, R. Burtovyy et al., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid, ACS Applied Materials & Interfaces, vol.2, issue.11, pp.3004-3010, 2010.
DOI : 10.1021/am100871y

I. 87-kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science, vol.334, issue.6052, pp.75-79, 2011.
DOI : 10.1126/science.1209150

B. Liu, P. Soares, C. Checkles, Y. Zhao, and G. Yu, Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes, Nano Letters, vol.13, issue.7, pp.3414-3423, 2013.
DOI : 10.1021/nl401880v

G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-velasco et al., Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes, Advanced Materials, vol.11, issue.40, pp.4679-83, 2011.
DOI : 10.1002/adma.201102421

H. Wu, G. Yu, L. Pan, N. Liu, M. T. Mcdowell et al., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nature Communications, vol.7, 1943.
DOI : 10.1016/S0378-7753(02)00596-7

C. Wang, H. Wu, Z. Chen, M. T. Mcdowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nature Chemistry, vol.8, issue.12, pp.1042-1050, 2013.
DOI : 10.1038/nchem.1802

D. 93-reyter, S. Rousselot, D. Mazouzi, M. Gauthier, P. Moreau et al., An electrochemically roughened Cu current collector for Si-based electrode in Li-ion batteries, Journal of Power Sources, vol.239, pp.308-314, 2013.
DOI : 10.1016/j.jpowsour.2013.03.108

H. Li, X. Huang, L. Chen, Z. Wu, and Y. Liang, A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries, Electrochemical and Solid-State Letters, vol.2, issue.11, pp.547-549, 1999.
DOI : 10.1149/1.1390899

A. S. Aricò, P. Bruce, B. Scrosati, J. Tarascon, W. V. Schalkwijk et al., Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, vol.351, issue.9, pp.366-377, 2005.
DOI : 10.1063/1.1534415

T. 97-takamura, S. Ohara, M. Uehara, J. Suzuki, and K. Sekine, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, Journal of Power Sources, vol.129, issue.1, pp.96-100, 2004.
DOI : 10.1016/j.jpowsour.2003.11.014

T. 98-takamura, M. Uehara, J. Suzuki, K. Sekine, and K. Tamura, High capacity and long cycle life silicon anode for Li-ion battery, Journal of Power Sources, vol.158, issue.2, pp.1401-1404, 2006.
DOI : 10.1016/j.jpowsour.2005.10.081

M. Ulldemolins, L. Cras, F. Pecquenard, B. Phan, V. P. Martin et al., Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries, Journal of Power Sources, vol.206, pp.245-252, 2012.
DOI : 10.1016/j.jpowsour.2012.01.095

URL : https://hal.archives-ouvertes.fr/cea-00677078

Y. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun et al., Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications, Electrochimica Acta, vol.88, pp.766-771, 2013.
DOI : 10.1016/j.electacta.2012.10.129

J. Qu, H. Li, J. J. Henry, S. K. Martha, N. J. Dudney et al., Self-aligned Cu???Si core???shell nanowire array as a high-performance anode for Li-ion batteries, Journal of Power Sources, vol.198, pp.312-317, 2012.
DOI : 10.1016/j.jpowsour.2011.10.004

D. Wang, Z. Yang, F. Li, X. Wang, D. Liu et al., Performance of Si???Ni nanorod as anode for Li-ion batteries, Materials Letters, vol.65, issue.21-22, pp.3227-3229, 2011.
DOI : 10.1016/j.matlet.2011.07.022

F. 114-xia, S. B. Kim, H. Cheng, J. M. Lee, T. Song et al., Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries

L. Cui, Y. Yang, C. Hsu, and Y. Cui, Carbon???Silicon Core???Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries, Nano Letters, vol.9, issue.9, pp.3370-3374, 2009.
DOI : 10.1021/nl901670t

G. K. Simon, B. Maruyama, M. F. Durstock, D. J. Burton, and T. Goswami, Silicon-coated carbon nanofiber hierarchical nanostructures for improved lithium-ion battery anodes, Journal of Power Sources, vol.196, issue.23, pp.10254-10257, 2011.
DOI : 10.1016/j.jpowsour.2011.08.058

S. A. Klankowski, R. A. Rojeski, B. A. Cruden, J. Liu, J. Wu et al., A high-performance lithium-ion battery anode based on the core???shell heterostructure of silicon-coated vertically aligned carbon nanofibers, J. Mater. Chem. A, vol.39, issue.4
DOI : 10.1039/C2TA00057A

A. Gohier, B. Laik, K. H. Kim, J. L. Maurice, J. P. Pereira-ramos et al., High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries, Advanced Materials, vol.14, issue.2, pp.2592-2597, 2012.
DOI : 10.1002/adma.201104923

URL : https://hal.archives-ouvertes.fr/hal-00793888

W. Wang and P. N. Kumta, Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes, ACS Nano, vol.4, issue.4, pp.2233-2241, 2010.
DOI : 10.1021/nn901632g

K. 120-evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready et al., Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube - Enabled Architecture, Advanced Materials, vol.8, issue.4, pp.533-537, 2012.
DOI : 10.1002/adma.201103044

Y. 121-fan, Q. Zhang, Q. Xiao, X. Wang, and K. Huang, High performance lithium ion battery anodes based on carbon nanotube???silicon core???shell nanowires with controlled morphology, Carbon, vol.59, pp.264-269, 2013.
DOI : 10.1016/j.carbon.2013.03.017

D. J. Lee, H. Lee, M. Ryou, G. Han, J. Lee et al., Electrospun Three- Dimensional Mesoporous Silicon Nano fi bers as an Anode Material for High-Performance Lithium Secondary Batteries, 2013.

J. Yoo, J. Kim, H. Lee, J. Choi, M. Choi et al., Porous silicon nanowires for lithium rechargeable batteries, Nanotechnology, vol.24, issue.42, p.424008, 2013.
DOI : 10.1088/0957-4484/24/42/424008

B. Wang, X. Li, T. Qiu, B. Luo, J. Ning et al., High Volumetric Capacity Silicon-Based Lithium Battery Anodes by Nanoscale System Engineering, Nano Letters, vol.13, issue.11, pp.5578-84, 2013.
DOI : 10.1021/nl403231v

M. Park, M. G. Kim, J. Joo, K. Kim, J. Kim et al., Silicon Nanotube Battery Anodes, Nano Letters, vol.9, issue.11, pp.3844-3851, 2009.
DOI : 10.1021/nl902058c

T. Song, J. Xia, J. Lee, D. H. Lee, M. Kwon et al., Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries, Nano Letters, vol.10, issue.5, pp.1710-1716, 2010.
DOI : 10.1021/nl100086e

J. Ha and U. Paik, Hydrogen treated, cap-opened Si nanotubes array anode for high power lithium ion battery, Journal of Power Sources, vol.244
DOI : 10.1016/j.jpowsour.2012.11.059

G. Han, M. Ryou, K. Y. Cho, Y. M. Lee, and J. Park, Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode, Journal of Power Sources, vol.195, issue.11, pp.3709-3714, 2010.
DOI : 10.1016/j.jpowsour.2009.11.142

G. Han, J. Lee, J. W. Choi, and J. Park, Tris(pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries, Electrochimica Acta, vol.56, issue.24, pp.8997-9003, 2011.
DOI : 10.1016/j.electacta.2011.07.136

V. Etacheri, O. Haik, Y. Go, G. A. Roberts, I. C. Stefan et al., Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes, Langmuir, vol.28, issue.1, pp.965-976, 2012.
DOI : 10.1021/la203712s

D. 141-aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, vol.47, issue.9, pp.1423-1439, 2002.
DOI : 10.1016/S0013-4686(01)00858-1

L. Chen, K. Wang, X. Xie, and J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, Journal of Power Sources, vol.174, issue.2, pp.538-543, 2007.
DOI : 10.1016/j.jpowsour.2007.06.149

M. N. Obrovac and L. J. Krause, Reversible Cycling of Crystalline Silicon Powder, Journal of The Electrochemical Society, vol.154, issue.2, p.103, 2007.
DOI : 10.1149/1.2402112

V. Chakrapani, F. Rusli, M. A. Filler, and P. Kohl, Silicon nanowire anode: Improved battery life with capacity-limited cycling, Journal of Power Sources, vol.205, pp.433-438, 2012.
DOI : 10.1016/j.jpowsour.2012.01.061

Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupré, J. Gaubicher et al., The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries, Journal of Materials Chemistry, vol.151, issue.17, p.6201, 2011.
DOI : 10.1039/c1jm10213c

URL : https://hal.archives-ouvertes.fr/hal-00849719

G. A. Agubra and J. W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources, vol.268, pp.153-162, 2014.
DOI : 10.1016/j.jpowsour.2014.06.024

D. 15-aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, vol.47, issue.9, pp.1423-1439, 2002.
DOI : 10.1016/S0013-4686(01)00858-1

N. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim et al., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, Journal of Power Sources, vol.161, issue.2, pp.1254-1259, 2006.
DOI : 10.1016/j.jpowsour.2006.05.049

J. Cho and S. T. Picraux, Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation, Nano Letters, vol.14, issue.6, pp.3088-95, 2014.
DOI : 10.1021/nl500130e

Y. Xiao, D. Hao, H. Chen, Z. Gong, and Y. Yang, Economical Synthesis and Promotion of the Electrochemical Performance of Silicon Nanowires as Anode Material in Li-Ion Batteries, ACS Applied Materials & Interfaces, vol.5, issue.5, pp.1681-1688, 2012.
DOI : 10.1021/am302731y

C. Pereira-nabais, J. S?wiatowska, A. Chagnes, A. Gohier, S. Zanna et al., Insight into the Solid Electrolyte Interphase on Si Nanowires in Lithium-Ion Battery: Chemical and Morphological Modifications upon Cycling, Insight into the Solid Electrolyte Interphase on Si Nanowires in Lithium-Ion Battery: Chemical and Morphological Modifications upon Cycling, p.2919, 2014.
DOI : 10.1021/jp409762m

J. Cho and S. T. Picraux, Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands, Nano Letters, vol.13, issue.11, pp.5740-5747, 2013.
DOI : 10.1021/nl4036498

C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, vol.148, issue.82
DOI : 10.1039/b919877f

W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.1, pp.13-24, 2011.
DOI : 10.1016/j.jpowsour.2010.07.020

H. Wu, G. Yu, L. Pan, N. Liu, M. T. Mcdowell et al., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nature Communications, vol.7, 1943.
DOI : 10.1016/S0378-7753(02)00596-7

C. Wang, H. Wu, Z. Chen, M. T. Mcdowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nature Chemistry, vol.8, issue.12, pp.1042-1050, 2013.
DOI : 10.1038/nchem.1802

Y. Yao, N. Liu, M. T. Mcdowell, M. Pasta, and Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy & Environmental Science, vol.1, issue.82, p.7927, 2012.
DOI : 10.1039/c2ee21437g