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ABSTRACT

Nonlinear homogenization in porous creeping single crystals:

Modeling, numerical implementation and applications to

fracture and fatigue

Armel Mbiakop

Advisers: Professor Andrei Constantinescu / Professor Kostas Danas

This study is concerned with the development of a rate-dependent constitutive model for

porous single crystals with arbitrary crystal structure containing general ellipsoidal voids.

The proposed model, called modified variational model (MVAR), is based on the nonlinear

variational homogenization method, which makes use of a linear comparison porous single

crystal material to estimate the response of the nonlinear porous single crystal. Thus, the

main objective of this work is to propose a general constitutive model that accounts for the

evolution of the microstructure and hence the induced anisotropy resulting when the initially

anisotropic porous single crystal is subjected to finite deformations.

Furthermore, periodic finite element simulations are used in order to validate the MVAR

for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal

anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, Lode

angle, general void shapes and orientations and various porosity levels. The MVAR model is

found to be in good agreement with the finite element results for all cases considered in this

study. The model is then used in a predictive manner to investigate the complex response

of porous single crystals in several cases with strong coupling between the anisotropy of

the crystal and the (morphological) anisotropy induced by the shape and orientation of

the voids. In addition, an innovate way of calibrating the MVAR with just two adjustable

parameters is depicted in the rate-independent context so that an excellent agreement related

to simulation results is obtained. Moreover, a porous Tresca model is derived by an original

approach starting from the novel porous single crystal model and considering the limiting

case on infinite number of slip systems which leads to the Tresca criterion.

Finally, the above-mentioned results are then extended to account for the evolution of

microstructure when the material is subjected to finite deformations.
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RÉSUMÉ

Homogénéisation non linéaire des matériaux poreux

monocristallins:

Modélisation, implémentation numérique et applications au

fluage et à la fatigue

Armel Mbiakop

Directeurs de thèse: Professeur Andrei Constantinescu / Professeur Kostas Danas

Ce travail de thèse porte sur le développement d’un modèle constitutif viscoplastique

pour monocristaux poreux à structure cristalline arbitraire et microstructures ellipsoidales.

Le modèle proposé, appelé modèle variationel modifié (MVAR), est basé sur la méthode

d’homogénisation variationelle non linéaire, qui utilise un composite linéaire de comparai-

son pour estimer la réponse non linéaire du monocristal poreux. Par conséquent, l’objectif

principal de cette étude est de proposer un modèle constitutif général prenant en compte

l’évolution de la microstructure et l’anisotropie induite quand le monocristal poreux est

sollicité en déformations finies.

En outre, des simulations EF périodiques sont utilisées pour valider le MVAR pour

un grand nombre de paramètres incluant l’anisotropie cristalline cubique (FCC, BCC) et

hexagonale (HCP), plusieurs exposants de fluage (i.e. nonlinéarité), différentes triaxialités,

angles de Lode, formes et orientations de pores et plusieurs niveaux de porosité. Le MVAR

est en bon accord avec les résultats EF pour tous les cas considérés dans cette étude. Il

est ensuite utilisé pour investiguer la réponse mécanique complexe des monocristaux poreux

sous differentes conditions avec notammant le très fort couplage entre l’anisotropie cristalline

et l’anisotropie morphologique induite par la forme et l’orientation des pores. De plus, une

approche nouvelle de calibration avec seulement deux paramètres ajustables est proposée de

maniére à obtenir un excellent accord entre modèle et simulations. Par ailleurs, un modèle

de Tresca poreux est dérivé par le biais d’une approche originale se servant du modèle

pour monocristaux poreux et considérant le cas limite d’un nombre infini de systèmes de

glissements (qui conduit au critère de Tresca).

Enfin, les différents résultats sus-mentionnés sont étendus afin de prendre en compte

l’évolution de la microstructure quand le matériau est sollicité en déformations finies.
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Chapter 1

Introduction

This study deals with the estimation of the constitutive behavior of composite mate-

rials and precisely porous single crystals. A composite material can be defined as a

heterogeneous material consisting of multiple materials, denoted phases, with different

properties. In addition, a porous single crystal is a specific type of two-phase com-

posite material that consists of voids (pores/cavities) and a surrounding single crystal

matrix. Such random distribution of voids (i.e microstructure) are found in a large

range of materials, including metals or ceramics. For instance, Requena et al. [2014]

analyzed the formation of damage during deformation of a DP sample steel using a

tomograph (see Fig. 1.1). By looking onto a plane parallel to the load direction, they

have in particular observed that some cavities were already present before straining

the sample, i.e. εloc = 0. In principle, numerical computation techniques like “finite el-

ement” or Fourier transform algorithms can be used to determine the local behavior of

the material when the exact shape and location of the pores in the material are known.

Nonetheless, the only available information is in general the volume concentration and,

possibly, the two-point probability distribution function of the voids. Moreover, the

element size used in a finite element algorithm should be smaller than the size of the

microstructure, which in turn is several orders of magnitude smaller than the size of the

macroscopic material. Then, the computation would be extremely time-consuming.

Consequently, it is useful to develop theoretical approaches to estimate the effective

behavior of these materials in a more efficient way.

As already explained, the typical size of the inhomogeneities in the heterogeneous

material (microscopic length scale) is much smaller than the size of the of the spec-

imen and the scale of variation of the loading conditions (macroscopic length scale).

Thus, a heterogeneous material can be described as a homogeneous material on the
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Figure 1.1: Tomograph images showing development of damage in a DP steel, looking onto

a plane parallel to the load direction. Three tensile deformation conditions a-c are displayed,

where the darker regions correspond to cavities.

macroscale, with so-called “effective properties” that depend on the distribution and

the properties of the phases, i.e. the microstructure. In the large majority of practical

applications, the microstructure can be characterized only in terms of statistical par-

tial information, since it appears very complex to be fully described in details. The

“homogenization” methods provided suitable frameworks to estimate the constitutive

behavior of composite materials by making use of the available statistical information

about their microstructure. Indeed, a goal of these methods is to link the macro-

scopic with the microscopic scale in the most efficient manner by including as much

information as it is available about the microstructure of the material.

Furthermore, in many theoretical contributions, the microstructure of composite

materials is taken to be periodic. This hypothesis presents the advantage to reduce

the problem of estimating the effective behavior of the composite to a computation of

a single unit-cell provided that the phases are described by strictly convex potentials.

Then, the solution is valid in the entire material’s volume, except in some “boundary

layer” close to its exterior surface. On the other hand, even if most materials of interest

consist of random microstructures, it is well known that a random porous material

and a periodic material exhibit similar effective behavior either in the case where the

distribution of voids is complex enough (adequate for large porosity) or in the limiting

case where the porosity is small enough. In these cases, the effective properties of the

periodic composite are independent of the prescribed periodic boundary conditions

(Gilormini and Michel [1998]). Moreover, for statistically uniform media, it is usual to

make an “ergodic” hypothesis that local configurations occur over any one specimen
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with the frequency with which they occur over a single neighborhood in an ensemble

of specimens. Under this assumption ensemble averages may be replaced by volume

averages and therefore the effective behavior of the random composite may be defined

over a given volume.

In the context of linear elastic composites, numerous approaches exist to estimate

their effective behavior. To begin with, in the pioneering works of Voigt [1889], Reus

[1929], simpler rigorous bounds for the effective mechanical properties of random com-

posites were proposed by assuming uniform strain and stress fields over the composite,

respectively. In addition, Hershey [1954], Kroner [1958] introduce the self-consistent

(SC) approximation for elastic polycrystals. This estimate has been further extended

by Budiansky [1965], Hill [1965] to other elastic composites. On the other hand, in

his famous contribution, Eshelby [1957] provided the exact solution of the problem of

an ellipsoidal inclusion in an infinite, isotropic and elastic matrix. Moreover, Hashin

[1962] has provided the exact solution of the hydrostatic effective behavior of compos-

ite sphere (CSA) or composite cylinder (CCA) assemblages. Hashin and Shtrikman

[1962a,b, 1963] proposed a variational principle that improved significantly the Voigt

[1889], Reus [1929] bounds by assuming that the constituent phases are uniformly

distributed in the composite. Then, in several contributions, Willis [1977, 1978, 1991]

generalized these variational principles by involving two-point statistics information of

the composite and thus improved estimates for more general anisotropic microstruc-

ture and “particulate” composites. Furthermore, Ponte Castañeda and Willis [1995]

built variational approximations for “particulate” composites, accounting possible dif-

ference between the shape of the microstructure (voids or inclusions) and the shape of

the spatial distribution functions. It is useful to precise that some other approxima-

tions like Mori and Tanaka [1973] can generate tensors of effective moduli that don’t

exhibit necessary symmetry requirements. The estimates that would be used in the

present study (Ponte Castañeda and Willis [1995]) are free from such issues due to

their variational character.

Moreover, several studies have proposed methods in order to address as well the

question of the effective behavior of nonlinear composites. For instance, in an ear-

lier contribution, Taylor [1938] presented simple “Voigt type” bounds in the con-

text of polycrystals. Still in the context of elastoplastic polycrystals, Hutchinson

[1976], Berveiller and Zaoui [1979] proposed several schemes inspired by the incre-



4 Introduction

mental self-consistent approach developed by Hill [1965]. An extension of the Hashin

and Shtrikman [1962a,b, 1963] bounds to the case of nonlinear composites has been

introduced by Talbot and Willis [1985] who used a “linear homogeneous comparison

material”. In addition, Ponte Castañeda [1991b] proposed a more general class of non-

linear homogenization methods. These methods, so-called “variational approaches”,

make use of suitably designed variational principle of a chosen “linear comparison

composite” (LCC) with the same microstructure as the nonlinear composite. Further,

Suquet [1995] noticed that the optimal linearization in the variational bound of Ponte

Castañeda [1991b] is given by the “secant” moduli evaluated at the second moments

of the local fields in each phase in the LCC.

While the “variational” method is quite general and delivers a rigorous bound, it

tends to give overly stiff predictions at high triaxialities and small porosities. However,

this limitation has been removed, at least for isotropic matrix systems, in works by

Danas and Ponte Castañeda [2009a,b], making use of the more accurate “second-order”

linear comparison homogenization method of Ponte Castañeda [2002a,b]. This method

makes used of the generalized-secant moduli of the phases that depend on both the first

and the second moments of the local fields. More recently, Ponte Castañeda [2012] de-

veloped a novel strategy based on the use of incremental homogenization (Bensoussan

et al. [1978], Braides and Lukkassen [2000]). In particular, for porous isotropic matrix

subjected to purely hydrostatic loadings, the so-called “ITVAR” bound agrees precisely

with the exact results of Leblond et al. [1994] and Idiart [2007] for composite-sphere

and sequentially laminated microstructures, demonstrating that the new incremental

HS bounds are optimal for at least this particular type of loading. In addition, Danas

and Aravas [2012] the modified variational model (MVAR) through simple modifica-

tions of the earlier variational homogenization method. These modifications allow for

very accurate predictions of the macroscopic response and microstructure evolution of

porous materials subjected to general three-dimensional loading conditions at both low

and high stress triaxialities, as is the case in the SOM model. Moreover, the MVAR

model is more suitable for numerical implementation than the other variational type

models (SOM or ITVAR). Indeed, it is for instance more stable and faster numerically

than the SOM model since it involves only the evaluation of one-dimensional elliptic

integrals of the Eshelby-type, contrary to the SOM model that requires, in the more

general case, the numerical evaluation of two-dimensional (surface) integrals which
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become singular at large void elongations.

In addition to the nonlinear homogenization methods described previously, some

others micromechanical models for porous materials have been developed. More pre-

cisely, in the specific case of dilute concentration of voids, a lot of studies, for instance

Mc Clintock [1968], Rice and Tracey [1969], Fleck and Hutchinson [1986] may be men-

tioned. These studies use of a stream function technique, which is mainly applied

to problems in two-dimensions or three-dimensions provided that certain symmetries

are preserved in the problem (e.g., spheroidal voids and axisymmetric loading con-

ditions aligned with the void symmetry axis). So, such procedure introduces an im-

portant limitation since the extension to general three dimensional microstructures

and loadings is not straightforward. Moreover, following the contribution of Rice and

Tracey [1969], Gurson [1977] proposed a famous model for non-dilute porous solids

with ideally-plastic isotropic matrix phase by making use of the exact solution for a

shell (spherical or cylindrical cavity) subjected to hydrostatic loading, together with

a uniform, purely, deviatoric field. This model, so-called “limit analysis approach”

was further calibrated by Tvergaard and Needleman [1984] and used in the context

of isotropic matrix with spheroidal (see for instance Gologanu and Leblond [1993],

Leblond et al. [1994], Monchiet et al. [2007]) or ellipsoidal voids (Madou and Leblond

[2012a,b]).

Far fewer results have been obtained for rate-(in)dependent anisotropic matrix

systems, generally based on a phenomenological Hill-type matrix (see Benzerga et al.

[2004], Monchiet et al. [2008a], Keralavarma et al. [2011]). The case of porous sin-

gle crystals have only been studied through discrete dislocations dynamic by (Huang

et al. [2007], Hussein et al. [2008], Segurado and Llorca [2010], Huang et al. [2012])

and molecular dynamics at smaller scales (Traiviratana et al. [2008], Zhao et al. [2009],

Tang et al. [2010a,b]), or using finite element simulations (Yerra et al. [2010], Ha and

Kim [2010]). Such anisotropic matrix systems have known slip directions and contain

usually a small volume fraction of impurities. When these material systems are sub-

jected to external loads impurities fail or decohere leading to the creation of pores,

which in turn evolve in size, shape and orientation (Srivastava and Needleman [2012]).

This complex evolution of microstructure together with the evolution of the rate-

dependent matrix anisotropy is critical in the prediction of the eventual fracture of

the specimen under monotonic and cyclic loading conditions. As an illustration, the
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Fig. 1.2 in Srivastava et al. [2012] presents SEM (scanning electron microscopy) im-

ages showing evolution of damage in the gauge region of the specimens creep tested

at 982oC/248MPa. Then these authors, through experimental observations at high

enough temperatures on tensile specimens, showed that the growth of initially present

processing induced voids in a nickel based single crystal superalloy as well as in stan-

dard polycrystals played a significant role in limiting creep life.

Figure 1.2: images showing evolution of damage in the gauge region of the specimens creep

tested at at 982oC/248MPa. (c) A h = 3.18mm thick specimen after 75h. (d) A h = 3.18mm

thick specimen after creep rupture. The loading direction is ld.

Nevertheless, there have been only a handful of models for porous single crystals

which deal with special void geometries, loading conditions and slip system orienta-

tions. Such studies involve the study of cylindrical voids with circular cross-section

in a rigid-ideally plastic face-centered cubic (FCC) single crystals using slip line the-

ory (Kysar et al. [2005], Gan et al. [2006], Gan and Kysar [2007]), the study two-

dimensional “out of plane” cylindrical voids with circular cross-section subjected to

anti-plane loadings (Idiart and Ponte Castañeda [2007]) and that of spherical voids

(Han et al. [2013], Paux et al. [2015]). While each one of these studies has its own

significant contribution to the understanding of the effective response of porous sin-

gle crystals none of them is general enough in the sense of arbitrary void shapes and

orientations and general loading conditions.

Furthermore, viscoplastic porous single crystals, which is the main topic of this

work, can undergo finite deformations. Therefore, their microstructure is expected to

evolve in time during the deformation process. In this regard, the scope of the present

work is to develop a three-dimensional model based on the MVAR method that is

able to deal with arbitrary crystal anisotropy, arbitrary ellipsoidal void shapes at any
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given orientation and general loading conditions. The above-mentioned homogeniza-

tion methodologies will be completed with a framework allowing the characterization

of the evolution of microstructure on average terms. More precisely, the determi-

nation of “average shape” and “average orientation” of voids will be made by using

the macroscopic and the phase average strain-rates delivered by the “modified varia-

tional” homogenization method. Then, the question of the strong coupling between

the anisotropy of the crystal and the (morphological) anisotropy induced by the shape

and orientation of the voids will be investigated.

In the following, a brief description of the chapters of this study is proposed. Con-

sequently, the next chapter (Chapter 2) is concerned with the theoretical aspects of

this work. Then, we first define the concept of effective behavior of a porous single

crystal subjected to general loading conditions. In order to proceed to specific esti-

mates for the effective behavior of the porous single crystal, it is necessary to specify

first the microstructure and the local constitutive behavior of the phases. The phases

are described here by a power-law viscoplastic stress potential (or dissipation poten-

tial), whereas the microstructure is considered to be “particulate”. Next, we provide

homogenization estimates for “particulate” porous single crystals, whose phases are

described by linearly viscous constitutive laws. For this class of composites, use is

made of the Willis [1978] estimates (Ponte Castañeda and Willis [1995]) to obtain ex-

pressions for their effective behavior, as well as the corresponding phase average and

second moments of the fields. Moreover, we make use of the “modified variational”

approach (Danas and Aravas [2012]) to provide estimates of the effective behavior of

nonlinear (or viscoplastic) porous single crystals. This variational method is based on

the concept of linear comparison composite (LCC), which has the same microstruc-

ture than the nonlinear one. On the other hand, since the porous single crystals are

in general subjected to finite deformations, their microstructure evolves-on average-to

ellipsoidal voids in time with different shape and orientation. Thus, using the esti-

mation of the phase average fields, we have presented the relevant evolution laws for

the internal microstructural variables used to describe the volume fraction, shape and

orientation of the voids, based on the studies of Ponte Castañeda and Zaidman [1994],

Danas and Aravas [2012]. Finally, the aforementioned analysis is specialized for the

case of porous media with ideally-plastic matrix phase.

Chapter 3 proposes a brief description of numerous previous porous materials mod-
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els. Firstly, in order to make an historical overview, we start with a review of porous

isotropic materials, more precisely “Gurson type models”, which result from limit

analysis as well as “variational type estimates”. In this regard then, the famous

Gurson [1977] model, which makes use of the exact solution for a shell (spherical

or cylindrical cavity) under hydrostatic loadings to obtain estimates for the effec-

tive behavior of solids with ideally-plastic matrix phase with isotropic or transversely

isotropic distributions of porosity, is described. This model has been extended by

(Tvergaard and Needleman [1984], Tvergaard [1990]) to incorporate coalescence, in a

so-called GTN model. In addition, we describe some other model which use the limit

analysis framework. For instance, the Flandi and Leblond [2005a] model addressed

the more general case of viscoplastic porous materials. They consider a spheroidal

shell containing a confocal spheroidal void. Monchiet et al. [2014] also derive a new

expression of the macroscopic yield function for a rigid ideal-plastic von Mises ma-

trix containing spheroidal cavities, by considering Eshelby-like velocity fields (Eshelby

[1957]). Or Madou and Leblond [2012a] who proposed a limit-analysis based model

for general (non spheroidal) ellipsoidal cavities, through approximate homogeniza-

tion of some representative elementary porous cell. On the other hand, in addition

to the Gurson-like limit analysis kinematic approach, general constitutive models for

porous ductile solid using a nonlinear homogenization variational structure have also

been described. Thus, we start with pioneering studies of Ponte Castañeda [1991a],

Kailasam and Ponte Castañeda [1998] for viscoplastic composites, which are based on

the definition of linear comparison composites as proper linearization of the nonlinear

ones. However, it has been shown by Ponte Castañeda [1991b], Michel and Suquet

[1992] that this porous Von Mises estimates, so-called variational (“VAR”) models,

are overly stiff at high stress triaxiality loadings. Consequently we presented sev-

eral contributions made to remedy to this issue, more specifically the SOM estimate

(Ponte Castañeda [2002a,b], Danas and Ponte Castañeda [2009a]), the iterated varia-

tional estimate (Ponte Castañeda [2012], Agoras and Ponte Castañeda [2013]) or the

MVAR model (Danas and Aravas [2012]) that has inspired a part of the present study.

Next, we make a quick recall of some porous anisotropic matrix models with phe-

nomenological Hill-type matrix (Benzerga and Besson [2001], Monchiet et al. [2008a],

Keralavarma et al. [2011]). Finally we describe previous contributions in the context

of single crystals comprising voids. This description include the study of cylindrical
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voids with circular cross-section in a rigid-ideally plastic face-centered cubic (FCC)

single crystals using slip line theory (Kysar et al. [2005], Gan et al. [2006], Gan and

Kysar [2007]), the study two-dimensional “out of plane” cylindrical voids with circular

cross-section subjected to anti-plane loadings (Idiart and Ponte Castañeda [2007]), or

more recently yield functions for rate-independent single crystals containing spherical

voids (Han et al. [2013], Paux et al. [2015]).

Chapter 4 proposes the numerical evaluation of the effective behavior of rate-

dependent porous single crystals. Then, we have make use of numerical periodic

homogenization technique, more precisely the analyze of a periodic porous material

considering a unit-cell that contains a given distribution of voids.

In Chapter 5, one starts a series of chapters that are related with the application

of the above mentioned methods in the context of viscoplastic porous single crystals.

Specifically, this chapter deals with the estimation of the instantaneous behavior of

rate-dependent porous single crystals consisting of cylindrical pores aligned in the

3−direction and distributed randomly in the plane 1− 2, that are subjected to plane-

strain loading conditions. Moreover, the voids have general elliptical cross-sections.

The “MVAR” estimates proposed in this study are validated with full field FE calcu-

lations of single- and multi-void periodic unit-cells described in Chapter 4. Finally, a

wide range of parameters describing the number and orientation of the slip systems

(i.e., crystal anisotropy), the creep exponent (i.e., nonlinearity) of the matrix crystal,

the porosity and the void shapes and orientations.

Chapter 6 is the extension of Chapter 5 to the instantaneous effective behavior

of porous single crystals consisting of spherical or ellipsoidal voids that are subjected

to general loading conditions. The “MVAR” estimates are compared with FE com-

putations for a large range of parameters including non linearity (creep exponent),

crystal anisotropy (FCC, BCC, HCP), microstructure anisotropy and general loading

conditions. The complex coupling between crystal anisotropy and void shape and

orientation is in particular studied, as well as the specific features exhibited by the

hydrostatic response of the material. Finally, in the special case of spherical voids

embedded in an ideally plastic crystal (i.e. n −→ ∞), the MVAR is compared with

Han et al. [2013], Paux et al. [2015] models presented in Chapter 3.

Next, in Chapter 7, we consider the particular context of infinite number of slip

systems which exhibits the same critical resolved shear stress CRSS. Thus, in this
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limiting case, we develop a three-dimensional MVAR porous Tresca model that is

able to deal with arbitrary ellipsoidal void shapes and general loading conditions.

Such model is then validated through FE computations described in Chapter 4 and

compared with Cazacu et al. [2014b,a] models.

Chapter 8 is a natural continuation of Chapter 6 in the context of finite deforma-

tions. More specifically, in this chapter we make use of the results developed in the

preceding chapter 3 to estimate the evolution of the microstructure and the effective

behavior in the porous single crystal subjected to general loading conditions. The

“MVAR” estimates are then proposed for several crystal structures.

Finally Chapter 9 proposes a brief summary of the main findings of the present

study as well as some prospects for future works. Some of them are started in the

appendix (see Chapter A).
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Chapter 2

Theory

The subject of this chapter is to characterize the “effective behavior” of two-phase

viscoplastic composites, and particularly of rate-dependent porous single crystals with

“particulate” microstructures. The approach used accounts microstructure evolution,

that is induced by the finite changes in geometry which result from the applied loading

conditions. The main goal of the present work is to build constitutive models for

viscoplastic porous single crystals that are able to include:

• the effects of the anisotropy of matrix behavior on void growth through crystal

plasticity,

• the nonlinear response of the porous medium,

• microstructural information, such as the volume fraction, the average shape and

orientation of the voids,

• the evolution of microstructure,

• development of instabilities.

In addition, these models require to be simple enough to be easily implemented

into finite element codes.

In the context of this chapter, the nonlinear “variational” approach developed

by (Ponte Castañeda [1991a]), together with the “modified variational” approach of

(Danas and Aravas [2012]) will be used. The principal idea of this theory is the

construction of convenient variational principles that make use of a “linear comparison

composite” (LCC). Then, the theory discussed in the following will be applied to

estimate the effective behavior and microstructure evolution in viscoplastic porous

single crystals subjected to general loading conditions.

However, at this point, it is important to note that we make use of the hypothesis
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of separation of length scales which implies that size of the voids (microstructure)

is much smaller than the size of the single crystal and the variation of the loading

conditions at the level of the single crystal. Thus, three different length scales can be

introduce in the problem:

• the microscopic length scale ℓ, which characterizes the typical size of the inho-

mogeneities in the heterogeneous material defining the microstructure;

• the macroscopic length scale L, which characterizes the size of the specimen;

• the mesoscopic length scale l, which characterizes the size of regions within the

heterogeneous material where the microstructure is essentially (statistically) uniform.

The “separation of length scales” is commonly introduced when a heterogeneous

material can be seen as a homogeneous material in the macroscopic scale with some

effective properties. The three length scales defined above are such that

ℓ≪ l ≪ L (2.1)

Moreover the RVE, first introduced by Hill (Hill [1963]), is defined as the region in the

material where the microstructure is considered to be statistically uniform.

2.1 Effective behavior of porous single crystals

In the following, we consider an RVE Ω of a two-phase heterogeneous medium with

each phase occupying a sub-domain Ω(r) (r = 1, 2). The notation ⟨·⟩ and ⟨·⟩(r) would
define volume averages over the RVE (Ω) and the phase r (Ω(r)), respectively.

2.1.1 Effective response

In the present, the convex stress potentials U (r) characterize the local behavior of the

phases, such that the local behavior of the composite U (xσ) is written as:

U (x, σ) =
2∑

r=1

χ(r)(x)U (r)(σ) (2.2)

where the indicator (or distribution) functions χ(r) denote the distribution of the phases

(and thus the microstructure) in the current configuration, such that

χ(r)(x) =

1, if x ∈ Ω(r),

0, otherwise
(2.3)
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In the context of this study, more precisely for random materials, the distribution

functions χ(r) are generally unknown or known partially (volume fractions, two-point

correlation functions) and they can only be defined in terms of n−point statistics.

Consequently, the local constitutive behavior of the composite and the phases can be

expressed through the relation between the Cauchy stress σ and the Eulerian strain-

rate D,

D(x) =
∂U(x,σ)

∂σ
, ∀x ∈ Ω and D(r) =

∂U (r)(σ)

∂σ
, r = 1, 2 (2.4)

In these relations, the strain-rate D(x) is the symmetric part of the velocity gradient

L = ∇v written in classical notation as D =
[
∇v+ (∇v)T

]
/2, whereas, for later use,

we may also introduce the corresponding spin tensor Ω(x) as the skew-symmetric part

of this velocity gradient such that Ω =
[
∇v− (∇v)T

]
/2. Moreover, it is useful to

define the following local constitutive function

St(x) =
∂D(x)

∂σ(x)
=
∂2U(x,σ)

∂σ∂σ
, ∀x ∈ Ω, S

(r)
t =

∂D(r)

∂σ(r)
=
∂2U (r)(σ)

∂σ∂σ
, r = 1, 2

(2.5)

with St denoting a fourth-order tensor with both the minor and major symmetries

and is used to describe the incremental response of the heterogeneous medium and

the phases at a given instant. Under the hypotheses of statistical uniformity and

the aforementioned separation of length scales, the effective stress potential Ũ of the

two-phase heterogeneous medium is defined as (Hill [1963], Hutchinson [1976]):

Ũ(σ) = min
σ∈S(σ)

⟨U(x,σ)⟩ =
2∑

r=1

c(r) min
σ∈S(σ)

⟨U (r)(σ)⟩(r), (2.6)

where

S(σ) = {σ, divσ = 0 in Ω, ⟨σ⟩ = σ} (2.7)

is the set of statically admissible stresses, compatible with the applied average stress

σ. In addition, the quantities c(r) = ⟨χ(r)⟩ represent the volume fractions of the

given phases and thus they satisfy the identity
∑2

r=1 c
(r) = 1. In analogy to the local

constitutive behavior provided in relation (2.4), and by making use of Hill’s lemma

(Hill [1963]), the instantaneous relation between the average Cauchy stress, σ = ⟨σ⟩,
and the average Eulerian strain-rate, D = ⟨D⟩, is given by

D =
∂Ũ

∂σ
(σ). (2.8)
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This expression is a constitutive law for the two-phase material at each instant in time,

provided if the microstructure is known. Furthermore, as precise in the introduction,

the materials considered here can undergo finite deformations, and consequently their

microstructure is expected to evolve in time. Thus, their effective behavior will change

in time due to the changes in the microstructure. This evolution of the microstructure

needs to be described for a full treatment of the problem. Such expressions will be

given in a later section.

On the other hand, the above-described analysis can also be made in the context

of a dissipation potential W (r)(D), which is dual (by means of the Legendre-Fenchel

transform) to the stress potential U (r)(σ) and is given by

W (r)(D) = max
σ

{
σ ·D − U (r)(σ)

}
, r = 1, 2 (2.9)

with

σ(r) =
∂W (r)(D)

∂D
, r = 1, 2 (2.10)

The effective behavior can then be defined in terms of the effective dissipation potential

by

W̃ (D) = min
D∈K(D)

⟨W (x,D)⟩ =
2∑

r=1

c(r) min
D∈K(D)

⟨W (r)(D)⟩(r), (2.11)

where K(D) is the set of kinematically admissible strain-rate fields given by

K(D) =

{
D|there is v where D =

1

2

[
∇v+ (∇v)T

]
in Ω, v = Lx on ∂Ω

}
,

(2.12)

Here, L is the macroscopic velocity gradient, while the macroscopic strain-rate D and

spin Ω are given by

D =
1

2

[
L+L

T
]
, Ω =

1

2

[
L−L

T
]

(2.13)

Furthermore, the effective constitutive behavior of the material is given by

σ =
∂W̃

∂D
(D). (2.14)

This description for the effective behavior of a heterogeneous material in terms of W̃ is

equivalent to the one described in relation (2.6) in terms of the effective stress potential

Ũ . In the present work, where the focus is on porous materials, it is convenient to
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make use of the effective stress potential Ũ instead of the dissipation potential W̃ , and

consequently no explicit results will be given for W̃ in the rest of the text.

To summarize, the problem of estimating the effective behavior of two-phase non-

linear composites is equivalent to that of estimating the function Ũ in relation (2.6).

Nevertheless, computing these functions exactly is an extremely difficult task, which

would require, in general, an intensive full-field numerical simulation assuming that the

exact location of the phases in the RVE is known. However, in most of the cases, the

microstructure is not fully deterministic, and thus, the exact location of the phases in

the RVE is not known. For this reason, in this work, we will make use of a variational

homogenization technique to be discussed in the following sections.

Let us now use the general framework seen previously, that described the material

behavior to any two-phase heterogeneous medium, for the special case of a two-phase

porous medium, which is the main subject of this work. In order to achieve this goal,

we consider the RVE Ω to be a two-phase porous medium with each phase occupying

a sub-domain Ω(r)(r = 1, 2). The vacuous phase is identified with phase 2 and the

non-vacuous phase (i.e., matrix phase) is denoted as phase 1. In the following, the

brackets ⟨·⟩ and ⟨·⟩(r) would define volume averages over the RVE (Ω) and the phase

r (Ω(r)), respectively. According definitions (2.4), the local behavior of the matrix

phase is characterized by an anisotropic, convex stress potential U1 ≡ U , such that

the corresponding Cauchy stress σ and the Eulerian strain-rate D are related by

D =
∂U

∂σ
(σ), (2.15)

with the stress potential of the porous phase U2 is equal to zero. So, from the definition

(2.6), it comes that the effective stress potential Ũ for a porous medium can be reduced

to

Ũ(σ) = (1− f) min
σ∈S(σ)

⟨U(σ)⟩(1), (2.16)

where f = c(2) and 1−f = c(1) denote the volume fractions of the porous (i.e., porosity)

and the matrix phases, respectively and

S(σ) =
{
σ, divσ = 0 in Ω,σn = 0 on ∂Ω(2), ⟨σ⟩ = σ

}
, (2.17)

is the set of statically admissible stresses that are compatible with the average stress

σ and zero tractions on the surface of the voids. The effective constitutive relation
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between the average Cauchy stress, σ = ⟨σ⟩, and the average Eulerian strain-rate,

D = ⟨D⟩ is given by relation (2.8).

Practically, the estimation of the effective stress potential Ũ expressed as (2.16)

for a nonlinear porous material requires further information about the distribution

of the phases in the RVE. Thus, in the next part, we will define the appropriate

microstructures for the class of porous materials to be considered here.

2.1.2 Microstructures

Generally, the physical properties of a random composite material vary with position x

and from sample to sample. Thus, in order to determine completely the location of the

phases and hence the microstructure, it is important to specify the functions χ(r)(x)

for all x in Ω. Nevertheless, in most of the cases of random composites, this is not

possible and consequently the description of such materials can be carried out making

use of n−point correlation functions (n finite integer number). Moreover, these random

systems can be considered to be statistically uniform, which implies that the n−point

correlation functions are insensitive to translations. For these media, it is usual to make

an assumption of ergodic type, which yields that local configurations occur every any

one specimen with the frequency with which they occur over a single neighborhood

in an ensemble of specimens. Consequently, we can be replace ensemble averages by

volume averages, and hence the one-point statistics simply give information about the

volume fraction of the phases. As an example, the porosity was defined previously in

terms of the distribution functions by f = ⟨χ(2)⟩.

Moreover, the n−point (n ≥ 2) statistics give information about the relative posi-

tion of the phases in Ω. In this study, we will use homogenization methods (Hashin

and Shtrikman [1963], Willis [1977], Ponte Castañeda and Willis [1995]) that involve

information up to two-point statistics, even if there exist approach that make use of

three-point statistics (Beran [1965], Kroner [1977], Milton [1982]), which are more or

less complicated and will not be used here. In this regard, following previous work of

Willis [1977], we consider a “particulate” microstructure which is a generalization of

the Eshelby [1957] dilute microstructure in the nondilute regime. More specifically,

we consider a “particulate” porous material consisting of ellipsoidal voids aligned at

a certain direction, whereas the distribution function, which is also taken to be ellip-
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soidal in shape, provides information about the distribution of the centers of the pores.

For simplicity, one will also consider that the shape and orientation of the distribution

function is identical to the shape and orientation of the voids themselves (see Danas

and Ponte Castañeda [2009a]). Nevertheless, this analysis can be readily extended to

distribution of a different shape and orientation than the voids (Ponte Castañeda and

Willis [1995], Kailasam and Ponte Castañeda [1998]). Thus, as shown in fig. 2.1, the

internal variables characterizing the state of the microstructure are:

• The porosity or volume fraction of the voids f = V2/V , where V = V1 + V2 is

the total volume, with V1 and V2 being the volume occupied by the matrix and the

vacuous phase, respectively.

• The two aspect ratios w1 = a3/a1, w2 = a3/a2 (w3 = 1) with 2ai (i = 1, 2, 3)

denoting the lengths of the principal axes of the representative elliptical void.

• The orientation unit vectors n(i) (i = 1, 2, 3), defining an orthonormal basis set,

which coincides with the principal axes of the representative ellipsoidal void.

The above set of the microstructural variables can then be denoted by the set

sα =
{
f, w1, w2, n

(1), n(2), n(3)
}

(2.18)

Matrix Representative ellipsoidal voidRVE 

Figure 2.1: Representative ellipsoidal voids embedded in a crystal matrix.

In addition, the shape and orientation of the voids, as well as the shape and ori-

entation of the two-point correlation function can be completely characterized by a

symmetric second-order tensor Z which is given in terms of the two aspect ratios and

the three orientation vectors shown in Fig. 2.1, such that

Z = w1n
(1) × n(1) + w2n

(2) × n(2) + n(3) × n(3), det(Z) = w1w2. (2.19)

Furthermore, it is useful to explore other types of particulate microstructures,

which can be derived easily by appropriate specialization of the aforementioned vari-

ables sα (Budiansky et al. [1982]). In this regard, the following cases can be considered:
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– a1 → 0 or a2 → 0 or a3 → 0. Thus, if the porosity f remains finite, laminated

microstructure is recovered (or alternatively a “porous sandwich”), whereas if f → 0,

a porous material with penny-shaped cracks is formed and thus the notion of density

of cracks needs to be introduced.

– a1 → ∞ or a2 → ∞ or a3 → ∞. Thus, if the porosity f → 0, a porous material

with infinitely thin needles is generated, whereas if f remains finite, the cylindrical

microstructure is recovered.

The last particular situation (cylindrical microstructure) is a main case of interest

since it can describe two-dimensional (2D) porous single crystals containing polydis-

perse cylindrical voids aligned with the x3−axis. In this context, the voids are ran-

domly and uniformly distributed in for instance the transverse plane x1 — x2. This

material is subjected to plane-strain loading in the x3−direction. In this regard, as

shown in Fig. 2.2, the internal variables characterizing the state of the microstructure

becomes:

· The porosity or volume fraction of the voids f .

· The aspect ratio w = a2/a1, with 2ai (i = 1, 2) denoting the lengths of the

principal axes of the representative elliptical void, in the plane 1− 2. The cases w = 1

and w ̸= 1 correspond to voids with circular and elliptical cross-sections, respectively.

· The in-plane orientation unit vectors n(i) (i = 1, 2), defining an orthonormal basis

set, which coincides with the principal axes of the representative elliptical void. As a

consequence of the 2D representation of the microstructure the two orientation vectors

n(i) can be easily parameterized in terms of a single Euler angle, ψ,

n(1) = cosψ e1 + sinψ e2, n(2) = − sinψ e1 + cosψ e2 (2.20)

The above set of the microstructural variables sα can then be reduced by the set

sα = {f, w, ψ}.

Matrix Representative elliptical voidRVE 

Figure 2.2: Representative elliptical cross-section voids embedded in a crystal matrix.

Then, to conclude, the set of the above-mentioned microstructural variables sα
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provide a general three-dimensional description of a particulate porous material. It is

evident that in the more general case, where the aspect ratios and the orientation of

the ellipsoidal voids are such that w1 ̸= w2 ̸= 1 and n(i) ̸= e(i), the initially anisotropic

single crystal becomes highly anisotropic and estimating its overall response appears

as a huge challenge. However, linear and nonlinear homogenization methods have been

developed in the recent years that are capable of providing estimates and bounds for

the effective behavior of such particulate composites. In the following sections, use of

these techniques will be made to obtain estimates for crystalline viscoplastic porous

media.

2.1.3 Gauge surface

For later use, it is convenient to define here the notion of the gauge surface. Gauge

surfaces are equipotential surfaces which have a physical importance in the present

analysis as they characterize the domain of statically admissible stresses and are anal-

ogous to the yield surfaces in rate-independent plasticity.

Using the homogeneity of the stress potential (2.31) for single crystal matrix to-

gether with the general definition of the effective stress behavior (2.16), one can show

that the effective stress potential Ũ is also homogeneous of degree n+ 1 in σ.

Therefore, it is convenient to introduce the so-called gauge surface Pn (the subscript

being used to denote the dependence on the creep exponent n) as in Leblond et al.

[1994]. More precisely, it is sufficient to study only one of the equi-potential surfaces{
σ, Ũ(σ) = const

}
i.e., the so-called gauge surface Pn of the porous material. For

instance, in the case of slip systems with identical CRSS τ0 and reference slip-rate γ̇0,

one can define the equi-potential surfaces

Pn ≡
{
Σ, Ũ(Σ, sα) =

γ̇0τ
−n
0

n+ 1

}
. (2.21)

The associated gauge factor Γn are defined as

Ũ(σ; sα) =
γ0τ0
n+ 1

(∣∣Γn(σ;µ
(s); sα)

∣∣
τ0

)n+1

, (2.22)

Then, the gauge function Φ̃n provides the equation for the gauge surface via the

expression

Σ ∈ Pn ⇐⇒ Φ̃n(Σ, sα) = (n+ 1)Ũ(Σ, sα)− γ̇0τ
−n
0 = 0. (2.23)
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The subscript n has been used to indicate that the gauge function depends explicitly

on the creep exponent of the single crystal matrix. The above definitions of the gauge

surface and gauge function are analogous to the well known yield function and yield

surface in the context of rate-independant plasticity (n→ ∞).

The gauge factor Γn is homogeneous of degree one in σ, and therefore Σ is homo-

geneous of degree zero in σ.

The subscript n has been used to indicate that the gauge function depends explicitly

on the nonlinear exponent of the matrix phase. The above definitions of the gauge

surface and the gauge function are analogous to the corresponding well known notions

of the yield function and the yield surface in the context of ideal-plasticity. Such

discussion is made in the following subsection, where the case of ideal-plasticity is

particularly studied.

Using the previous definitions, we can redefine the stress triaxiality XΣ in terms of

Σ as

XΣ =
Σm

Σeq

, Σeq =

√
3Σ

d ·Σd
/2 ,Σm = Σii/3, i = 1, 2, 3, (2.24)

where Σm and Σeq denote the mean and equivalent part of Σ.

On the other hand, it comes from definition (2.8) and (2.22) that

D = γ0

(
Γn(σ;µ

(s); sα)

τ0

)n
∂Γn(σ;µ

(s); sα)

∂σ
(2.25)

2.2 Local constitutive behavior of single crystals

In order to proceed to specific results for nonlinear porous media, we need to define

the constitutive relation that describes the local behavior of the matrix phase.

2.2.1 Constitutive behavior of the constituents

Let us consider a reference single crystal which undergoes viscoplastic deformation on

a set of K preferred crystallographic slip systems. At this stage, for simplicity in the

homogenization procedure elasticity effects are neglected. Then, these systems are

characterized by the second-order Schmid tensors µ(s) (∀s = 1, ..., K) given by

µ(s) =
1

2

(
m(s) ⊗ s(s) + s(s) ⊗m(s)

)
, (2.26)
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with m(s) and s(s) denoting the unit vectors normal to the slip plane and along the

slip direction in the sth system, respectively.

When the crystal is subjected to a stress σ, the resolved shear stress acting on the

sth slip system is given by the Schmid law

τ (s) = σ · µ(s), (2.27)

while the strain-rate D in the crystal is assumed to be given by the superposition of

the slip-rates of each slip system, i.e. D =
∑K

s=1 γ̇
(s)µ(s). The slip-rate γ̇(s) is assumed

to depend on the resolved shear stress τ (s), via a slip potential Ψ(s) in such a way that

γ̇(s) =
∂Ψ(s)

∂τ (s)
(τ (s)). (2.28)

The slip potentials Ψ(s) are assumed to be convex, incompressible and expressed via

the power-law form

Ψ(s)(τ) =
γ̇
(s)
0 τ

(s)
0

n+ 1

(
|τ |
τ
(s)
0

)n+1

, (2.29)

where n ≥ 1, γ̇
(s)
0 and τ

(s)
0 denote the creep exponent, the reference slip-rate and the

reference flow stress (also denoted critical resolved shear stress CRSS) of the sth slip

system, respectively. In addition, let us notice that the limiting values of the exponent,

n = 1 and n → ∞ correspond to linear viscoelasticicty and rate-independent perfect

plasticity, respectively. In this connection, it is recalled that, even though the slip

potentials Ψ(s) are not differentiable in the perfect crystal plasticity case, it is still

possible to relate γ̇(s) and τ (s) via the subdifferential of convex analysis.

An alternative and equivalent way to write down τ (s) in equation (2.27) is by use of

the fourth-order “Schmid” projection tensors E(s) (see DeBotton and Ponte Castañeda

[1995]), such that

∣∣τ (s)∣∣ =
√

σ · E(s) · σ
2

, E(s) = 2µ(s) ⊗ µ(s) ∀s = 1, K. (2.30)

Adding up the potentials of all the slip systems we obtain the constitutive behavior

of the matrix phase, characterized by the viscoplastic stress potential U such that

U(σ) =
K∑
s=1

Ψ(s)(τ (s)) =
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1

(∣∣τ (s)∣∣
τ
(s)
0

)n+1

. (2.31)

Obviously, in this last expression, U is a homogeneous function of degree n+ 1 in the

stress σ.
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The corresponding Cauchy stress σ and the Eulerian strain-rate D in the matrix

are related through the constitutive relation

D =
∂U

∂σ
(σ) . (2.32)

2.2.2 The limit of infinite number of slip systems

The purpose of this section is to establish a connection between stress potentials

corresponding to the case of infinite number of slip systems (i.e., K → ∞) and purely

isotropic stress potentials. The results of this section will be used in section 2.4.4 to

obtain accurate estimates of the porous single crystal in the case of purely hydrostatic

loading conditions.

In view of this scope, we choose to study the special, albeit very useful case of K

equiangular slip systems (system equally partitioned in 3D space) with identical CRSS

and reference slip-rate such that

τ
(s)
0 = τ0, γ̇

(s)
0 = γ̇0, ∀s = 1, K. (2.33)

This analysis will be shown to be of critical importance in the following sections.

If one considers a triaxial loading state such that the three stresses are aligned with

the fixed laboratory axes, the stress tensor can be written as

σ = σm{1, 1, 1}+
2σeq
3

{
cos θ,− cos

(
θ +

π

3

)
,− cos

(
θ − π

3

)}
(2.34)

where σeq =
√

3 sij sij/2, σm = σkk/3 and cos(θ) = 27 det(sij)/2σ
3
eq denote the

equivalent Von Mises stress, the hydrostatic stress and the Lode angle, respectively,

while s is the stress deviator. By introducing this relation in equation (2.31) in the

limit K −→ ∞, the viscoplastic stress potential U becomes isotropic and its numerical

computation leads to the following isotropic potential (see details in appendix 2.7)

lim
K→∞

U(σ) =
βn
n+ 1

(σeq gθ)
n+1 lim

K→∞

(
γ̇0τ

−n
0 K

)
. (2.35)

Here, gθ is a periodic function of θ with period π/3 (i.e., g0 = gπ/3) while βn is a

monotonically decreasing function of the exponent n. These functions were obtained

numerically (see details in appendix 2.7) and fitted with simple analytical expressions,

such that

gθ ∼=
(
cos
(
θ − π

3

))n+1

, βn ∼=
4

25
6−

n
2 . (2.36)
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Next, by introducing σ0 and ϵ̇0 as the reference strain-rate and isotropic flow stress

of an isotropic material, respectively, one can set

βn lim
K→∞

(
γ̇0τ

−n
0 K

)
= ϵ̇0σ

−n
0 . (2.37)

This implies that the infinite-slip-system stress potential limK→∞ U(σ) in equation

(2.35) leads to a Lode-dependent isotropic stress potential of the form

Uθ(σ) =
ϵ̇0σ

−n
0

n+ 1
(σeq gθ)

n+1 . (2.38)

As already noted in the beginning of this section, this last result will be very useful

in obtaining accurate results for the purely hydrostatic response of porous single crys-

tals (see section 2.4.4) by appropriate use of exact results that exist in the context of

porous materials with purely isotropic matrix phase (such as the one in equation(2.38))

and hydrostatic stress loading states.

2.2.3 Porous media with ideally-plastic matrix phase: Gen-

eral expressions

In this subsection, a special case of the above mentioned viscoplastic behavior is the

one of ideal-plasticity obtained by letting n → ∞ or m → 0. From relation (2.31), it

follows directly that the stress potential of the matrix phase is defined in the ideally-

plastic limit as

U(σ) =

0, if
∣∣τ (s)∣∣ /τ (s)0 ≤ 1 ∀s = 1, ..., K,

∞, otherwise,
(2.39)

which implies that the yield function can be expressed as

Φ(σ) = max
s=1,K

{∣∣τ (s)∣∣− τ
(s)
0

}
(2.40)

such that the yield surface is given by Φ(σ) = 0.

Now, making use of definition (2.22) in the ideally-plastic limit, the effective stress

potential Ũ of the porous medium becomes

Ũ(σ; sα) =

0, if Γ∞(σ;µ(s); sα)/τ0 ≤ 1,

∞, otherwise,
(2.41)
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where we have assumed that that all slip systems have the same reference flow stress

τ
(s)
0 = τ0, ∀s = 1, .., K.

This relation implies that the equation describing the yield locus is

Γ∞(σ;µ(s); sα) = τ0 (2.42)

Furthermore, using the last criterion together with definition (2.21), it is readily de-

rived that

Σ =
σ

τ0
, (2.43)

in the limit as n → ∞. Then, it follows from (2.23), that, in the ideally-plastic limit,

the gauge function may be expressed as

Φ̃∞(Σ;µ(s); sα) = Γ∞(Σ;µ(s); sα)−1 = Γ∞(
σ

τ0
;µ(s); sα)−1 = Φ̃∞(

σ

τ0
;µ(s); sα), (2.44)

so that Φ̃∞(Σ) defines the corresponding gauge surface

P∞ ≡
{
Σ, Γ∞(Σ;µ(s); sα) = 1

}
(2.45)

In the following, it is convenient to define the yield criterion in terms of the macro-

scopic stress σ. This can be easily extracted from (2.44) by making use of the fact

that Γ∞ is a positively homogeneous function of degree one in its arguments, such that

Φ̃(σ;µ(k); sα) = τ0Φ̃∞(σ;µ(s); sα) = τ0Γ∞(σ/τ0;µ
(s); sα)− τ0 = Γ∞(σ;µ(s); sα)− τ0

(2.46)

Thus, Φ̃(σ) = 0 is the equation describing the yield surface

P ≡
{
σ, Γ∞(σ;µ(s); sα) = τ0

}
(2.47)

which is nothing else but an homothetic expansion by a factor of τ0 of the gauge

surface P∞. In other words, the locus of the points in P∞ can simply be constructed

by normalizing the locus of points in P by τ0.

Consequently, it follows from (2.46) that the corresponding macroscopic strain-rate

D is defined by

D = Λ̇
∂Φ̃

∂σ
= Λ̇

∂Γ∞(σ;µ(s); sα)

∂σ
(2.48)

where Λ̇ is a positive parameter, known as the plastic multiplier and determined by

the consistency condition
˙̃
Φ.
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In turn, the consistency condition provides information about the incremental re-

sponse of the porous material and, by making use of the fact that Φ̃ is an isotropic

function of its arguments, one finds that

˙̃
Φ =

∂Φ̃

∂σ

▽
σ +

∂Φ̃

∂µ(s)

▽
µ

(s)

+
∂Φ̃

∂sα

▽
sα = 0. (2.49)

In this expression, the symbol
▽
() denotes the Jaumann rate of a given quantity, while

▽
sα =

{
ḟ, ẇ1, ẇ2,

▽
n
(1)

,
▽
n
(2)

,
▽
n
(3)
}
. (2.50)

In all the previous relations, the “dot” symbols has been used to denote the time

derivatives.

2.3 Linear viscous behavior

As already discussed, we will make use of the “variational” nonlinear homogenization

method (Ponte Castañeda [1991a]) to estimate the effective behavior of the viscoplastic

porous single crystal. Due to the fact that these nonlinear methods use available

results for linearly viscous porous media, it is useful here to recall briefly certain

relations for linear composites. Thus, this section concerns the determination of the

effective behavior of linearly viscous, two-phase composites, which are specialized later

to linearly viscous porous media. It is worth noting here that the linearly viscous is

analogous to the linear elastic material.

More precisely, we consider a linearly viscous composite consisting of a matrix

phase identified with the label 1, and an inclusion phase identified with label 2. Then,

let these phases be described by quadratic stress potentials of the form

U (r)(σ) =
1

2
σ(x) · S(r)σ(x), r = 1, 2, ∀x ∈ Ω(r), (2.51)

where S(r) are fourth-order, positive-definite, tensors that possess both major and

minor symmetries. The corresponding stress-strain-rate relation of such materials is

linear and reads

D(r) =
∂U (r)(σ)

∂σ
= S(r)σ(r), r = 1, 2, (2.52)

which is similar to the relation

σ(r) = L(r)D(r), r = 1, 2, (2.53)
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where L(r) =
(
S(r)
)−1

denoting the viscous modulus tensor of the phases, which has

both major and minor symmetries. These last relations specify completely the local

behavior of the phases in the two-phase medium.

Due to the linearity of the problem, the corresponding instantaneous effective stress

potential Ũ of the two-phase linear composite is also of a quadratic form and can be

written as

Ũ(σ) =
1

2
σ · S̃σ, (2.54)

with S̃ being a fourth-order symmetric (both minor and major symmetries) tensor

denoting the effective viscous compliance tensor of the composite. Following definition

(2.8), the resulting relation between the average stress and strain-rate is given by

D =
∂Ũ(σ)

∂σ
= S̃σ, (2.55)

or equivalently

σ = L̃D, (2.56)

where L̃ =
(
S̃
)−1

denoting the effective viscous modulus tensor of the composite.

For the case of two-phase particulate composites, where the inclusions and their dis-

tribution function have the same ellipsoidal shape and orientation, as discussed in

subsection 2.1.2, the effective viscous compliance and modulus tensors, S̃ and L̃, are

given by (Ponte Castañeda and Willis [1995])

S̃ = S(1) + c(2)
[
c(1)Q+

(
S(2) − S(1)

)−1
]−1

(2.57)

and

L̃ = L(1) + c(2)
[
c(1)P+

(
L(2) − L(1)

)−1
]−1

. (2.58)

In these expressions, c(r) denote the volume fractions of the phases (r = 1 for the

matrix and r = 2 for the inclusions). In addition, the fourth-order microstructural

tensors Q and P are related to the Eshelby (Eshelby [1957]) and Hill (Hill [1963])

polarization tensor and contain information about the shape and orientation of the

inclusions and their distribution function, given by (Willis [1978])

Q =
1

4π det(Z)

∫
|ξ|=1

Ĥ(ξ)
∣∣Z−1ξ

∣∣−3
dS, with Ĥ = L(1) − L(1)HL(1), (2.59)

and

P =
1

4π det(Z)

∫
|ξ|=1

H(ξ)
∣∣Z−1ξ

∣∣−3
dS (2.60)
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In these relations, the tensor Z is given by relation (2.19) and is used to charac-

terize the instantaneous shape and orientation of the inclusions and their distribu-

tion function in this context of particulate microstructures. Moreover, H(ij)(kl) =(
L

(1)
iakbξaξb

)−1

ξjξl|(ij)(kl), where the brackets denote symmetrization with respect to

the corresponding indices, while ξ is a unit vector. Then, it follows from (2.59) and

(2.60) that the Q and the P tensor are related through

Q = L(1) − L(1)PL(1), with

∫
|ξ|=1

∣∣Z−1ξ
∣∣−3

dS = 4π det(Z). (2.61)

It is important to precise that both expressions (2.57) and (2.58) for S̃ and L̃,

respectively, are equivalent and either of them can be used for the estimation of the

instantaneous effective behavior of the linear two-phase medium. In addition, it should

be mentioned that the above Willis estimates for S̃ (or L̃)) lead to uniform fields

in the inclusion phase (Willis [1978]), which is consistent with the work of Eshelby

(Eshelby [1957]) in the dilute case. Moreover, the Willis estimates are exact for dilute

composites. On the other hand, for non-dilute media, the fields within the inclusions

are generally non-uniform, even if as shown by (Bornert et al. [1996]), this “non-

uniformity” is negligible provided that the inclusions are not in close proximity to each

other, precisely, their volume fraction is lower compared to the one of the matrix phase.

This observation should be take into account when the application of homogenization

techniques is done for composites consisting of high concentrations of particles or

voids. Nevertheless, because this work focuss on porous media with low to moderate

concentrations of voids, the Willis procedure is expected to be sufficiently.

Furthermore, the homogenization theory is is also capable of generating estimates

for other stress and strain-rate quantities such as the first and second moments of the

phase fields, in addition to give a description of the instantaneous effective behavior

of linearly viscous two-phase materials in terms of macroscopic measures as seen pre-

viously. In the present work, the interest is mainly on the first moments of the phase

fields, precisely the average stress σ(r) = ⟨σ⟩(r), the average strain-rate D
(r)

= ⟨D⟩(r)

and the spin Ω
(r)

= ⟨Ω⟩(r) in each phase. It should be noted that the phase average

strain-rate D
(r)

and spin Ω
(r)

tensors are the symmetric and skew-symmetric parts

of the phase average velocity gradient. However, in addition to the first moments,

expressions can also be derived for the second-moments of the stress and strain-rate

fields, which will be presented in the following.



28 Theory

Then, in the case of linear, two-phase materials, the estimation of the average stress

and strain-rate fields is given in terms of stress and strain-rate concentration tensors

by (Hill [1963]).

σ(r) = B(r)σ, D
(r)

= A(r)D, r = 1, 2, (2.62)

with B(r) and A(r) denoting the fourth-order tensors which exhibit minor symmetry

(but not necessarily major symmetry). However, the phase average stresses and strain-

rates are related to the macroscopic stress and strain-rate tensor by

σ =
2∑

r=1

c(r)σ(r), D =
2∑

r=1

c(r)D
(r)
, (2.63)

Consequently, the stress and strain-rate concentration tensors B(r) and A(r) may re-

spect the identities
2∑

r=1

c(r)B(r) = I,
2∑

r=1

c(r)A(r) = I. (2.64)

Moreover, by averaging the local constitutive equations (2.53) and (2.52), we obtain

as relations for the phase average stress σ(r) and strain-rates D
(r)
,

σ(r) = L(r)D
(r)
, D

(r)
= S(r)σ(r), r = 1, 2, (2.65)

By combining relations (2.62) and (2.65), we can deduce the following relations for the

macroscopic strain-rate and stress:

σ =

{
2∑

r=1

c(r)L(r)A(r)

}
D, D =

{
2∑

r=1

c(r)S(r)B(r)

}
σ. (2.66)

The last relation together with expressions (2.55) and (2.56) gives the relation be-

tween the effective viscous compliance and modulus tensors, S̃ and L̃, and strain-rate

concentration tensors B(r) and A(r), respectively, such as

L̃ =
2∑

r=1

c(r)L(r)A(r), S̃ =
2∑

r=1

c(r)S(r)B(r). (2.67)

Using the equation (2.64), the concentration tensors A(r) and B(r) can be written in

terms of L̃ and S̃, respectively, by

c(2)B(2) =
[
S(2) − S(1)

]−1 [
S̃− S(1)

]
, c(1)B(1) = I− c(2)B(2),

c(2)A(2) =
[
L(2) − L(1)

]−1 [
L̃− L(1)

]
, c(1)A(1) = I− c(2)A(2). (2.68)
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In the other hand, the evaluation of the average spin tensors Ω
(r)

in each phase can

be evaluated (Ponte Castañeda [1997], Kailasam and Ponte Castañeda [1998]) as

Ω
(r)

= Ω−C(r)D, for r = 1, 2, (2.69)

where C(r) denote fourth order tensors that are are skew-symmetric in the first two

indices and symmetric in the last two, and Ω is the macroscopic spin tensor which is

applied externally in the problem.

Moreover, this macroscopic spin tensor can be related to phase average spin tensors

Ω
(r)

via

Ω =
2∑

r=1

c(r)Ω
(r)
. (2.70)

Thus we should have for the spin concentration tensors

2∑
r=1

c(r)C(r) = 0. (2.71)

By combining the last equations with results of (Ponte Castañeda [1997]), it is possible

to write the spin concentration tensors as functions of strain-rate (or equivalently

stress) concentration tensors, such as

C(2) = c(1)Π
(
L(2) − L(1)

)
A(2), c(1)C(1) = −c(2)C(2), (2.72)

with Π a microstructural tensor related to the Q tensor (2.61) via

Π =
1

4π det(Z)

∫
|ξ|=1

Ȟ(ξ)
∣∣Z−1ξ

∣∣−3
dS, with Ȟijkl =

(
L

(1)
iakbξaξb

)−1

ξjξl|[ij](kl).

(2.73)

Here, the simple brackets indicate the symmetric part of the last two indices, while

the square brackets denote the skew-symmetric part of the first two indices. Further-

more, as given in the relation (2.19), the second order tensor Z is used to define the

instantaneous shape and orientation of the inclusions.

Moreover, after the phase average fields, it is also useful to see how to get the second

moments of the stress and the strain-rate fields. Thus, recalling equations (2.6) and

(2.54), and using the definition (2.51) for stress potentials, we can write

1

2
σ S̃σ =

2∑
r=1

c(r)⟨1
2
σ(x) · S(r)σ(x)⟩(r), ∀x ∈ Ω(r). (2.74)
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In addition, the second moments of the stress fields in the linear material can be

evaluated by considering the partial derivative with respect to the compliance tensors

S(r) (Idiart and Ponte Castañeda [2007]), such as

⟨σ(x)⊗ σ(x)⟩(r) = 1

c(r)
σ

∂S̃

∂S(r)
σ, ∀x ∈ Ω(r). (2.75)

Furthermore, if the fields in any of the phases are uniform, i.e. σ(x) = σ(r) for all x

in Ω(r), then ⟨σ ⊗ σ⟩(r) = σ(r) ⊗ σ(r).

As already seen previously, the (Willis [1978]) and (Ponte Castañeda and Willis

[1995]) estimates for particulate microstructures result in uniform fields in the inclusion

phase. Based on this observation, the fluctuations in the inclusion phases are zero,

i.e.,

⟨σ ⊗ σ⟩(2) − σ(2) ⊗ σ(2) = 0 or σ(x) = σ(2) ∀x ∈ Ω(2). (2.76)

By using the Legendre-Fenchel transform, equivalent expressions can also be deduced

for the strain-rate fluctuations, more precisely

1

2
D L̃D =

2∑
r=1

c(r)⟨1
2
D(x) · L(r)D(x)⟩(r), ∀x ∈ Ω(r). (2.77)

Moreover, the second moments of the strain fields in the linear material can be eval-

uated by considering the partial derivative with respect to the modulus tensors L(r),

such as

⟨D(x)⊗D(x)⟩(r) = 1

c(r)
D

∂L̃

∂L(r)
D, ∀x ∈ Ω(r). (2.78)

As previously, the corresponding strain-rate fluctuations in the inclusion phases are

zero, i.e.,

⟨D ⊗D⟩(2) −D
(2) ⊗D

(2)
= 0 or D(x) = D

(2) ∀x ∈ Ω(2). (2.79)

Due to the same reason, the average spin Ω(2) in the inclusion phase is also uniform,

and consequently

Ω(x) = Ω
(2) ∀x ∈ Ω(2). (2.80)

In the following subsection, we specialize the previous results for the particular case

of linearly viscous porous media.
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2.3.1 Linear viscous porous media

In this subsection, we will consider a linear composite consisting of a matrix phase

denoted with the label 1, and a vacuous phase denoted with label 2. The behavior of

the matrix phase is described by a quadratic stress potential U (1) ≡ U defined by

U(σ) =
1

2
σ · Sσ, ∀x ∈ Ω(1). (2.81)

Here, S and L are the viscous compliance and modulus tensors of the matrix phase,

respectively. Moreover, the modulus tensor L(2) of the porous phase has zero eigenval-

ues, and its viscoplastic stress potential is U (2) = 0. Thus, the instantaneous effective

stress potential of the porous material is given by relation (2.54), i.e.

Ũ(σ) =
1

2
σ · S̃σ, (2.82)

with S̃ and L̃ = S̃
−1

denoting the effective viscous compliance and modulus tensors

of the porous medium, respectively. These tensors exhibit both minor and major

symmetries. Furthermore, the constitutive macroscopic law for the linearly viscous

porous medium is given by (2.55) and (2.56),

D = S̃σ, σ = L̃D (2.83)

By setting L(2) = 0 in equations (2.57) and (2.58), we can determine the effective

tensors S̃ and L̃. In this connection, we get

L̃ = L+ f [(1− f)P−M]−1 , (2.84)

and

S̃ = S+
f

1− f
Q−1, (2.85)

where f ≡ c(2) is the porosity, i.e. the volume fraction of the voids. Consequently, the

volume fraction of the matrix phase c(1) = 1− f . The relations (2.59) and (2.60) give

the microstructural tensors Q and P, which characterize the instantaneous shape and

orientation of the voids and their distribution function.

The corresponding strain-rate and stress concentration tensors A(r) and B(r), re-

spectively, given by relation (2.68) simplify to

(1− f)B(1) = I, B(2) = 0, (1− f)A(1) = S S̃
−1
, fA(2) = I− S S̃

−1
. (2.86)
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By combining this result with relation (2.62), we get

(1− f)σ(1) = σ, σ(2) = 0. (2.87)

It is interesting to notice that this result is in agrement with the fact that for all x

in Ω(2), the stress in the voids is zero. Moreover, it comes from relations (2.62) and

(2.86) that the phase average strain-rate in the matrix and the vacuous phase can be

written as

D
(1)

= A(1)D =
1

1− f
S S̃

−1
D (2.88)

D
(2)

= A(2)D =
1

f

(
I− S S̃

−1
)
D. (2.89)

Another way to write these equations, by using also definitions (2.83) and (2.86) is

D
(1)

=
1

1− f
Sσ (2.90)

D
(2)

=
1

f

(
S̃− S

)
σ =

1

1− f
Q−1σ. (2.91)

In addition, the phase average spin in the inclusion phase is obtained by relation (2.69),

more precisely

Ω
(2)

= Ω−C(2)D, (2.92)

where C(2) is given by (2.72), with L(2) = 0, i.e

C(2) = (f − 1)ΠS−1A(2) =
1− f

f
Π
(
S̃
−1

− S−1
)
. (2.93)

Furthermore, as defined in (2.73), the fourth-order microstructural tensor Π is skew-

symmetric with respect to the first two indices, and symmetric with respect to the

last two ones. Finally, by substituting (2.93) in (2.92) and by made use of (2.83) and

(2.84), we obtain

Ω
(2)

= Ω+ (1− f)ΠS−1D
(2)

= Ω+ΠS−1 Q−1σ. (2.94)

2.3.2 Partial summary

In this section, we presented several constitutive relations for two-phase, linearly vis-

cous particulate media. We have defined the instantaneous effective behavior of the

material and it has been shown that both the macroscopic properties as well as the
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phase average fields can be completely defined in terms of the effective viscous compli-

ance tensor S̃ (or equivalently the effective viscous modulus tensor L̃) of the composite

material. These general results for two-phase materials have been specialized to porous

media, which is the main subject of this work. It is worth mentioning at this point that

in the sequel use will be made of nonlinear homogenization techniques to predict the

instantaneous effective behavior of nonlinear porous media. These nonlinear methods

make use of results for linear composites and thus the previous results will be very

important in the sections to follow.

2.4 Homogenization of porous single crystal

2.4.1 The variational method

As previously mentioned, we will make use of the general nonlinear homogenization

methods developed by Ponte Castañeda [1991a, 2002a], which are based on the con-

struction of a linear comparison composite (LCC) with the same microstructure as the

nonlinear composite. More precisely, the different phases of the LCC are determined

through well defined linearizations of the given nonlinear phases by making use of

a suitably designed variational principle. The corresponding phases of the LCC are

characterized in general by quadratic stress potentials of the form

U
(r)
L (σ,S(r)) =

1

2
σ(x) · S(r) · σ(x), r = 1, 2, ∀x ∈ Ω(r), (2.95)

where S(r) serves to denote the fourth-order symmetric compliance tensor. In addition,

as proposed by Ponte Castañeda [1991a, 2002a], “corrector” functions v(r) can be

defined as the optimal difference between the quadratic stress potentials and the actual

nonlinear ones U (r) defined in (2.31), via

v(r)(S(r)) = sup
σ̂(r)

(
U

(r)
L (σ̂,S(r))− U (r)(σ̂)

)
. (2.96)

Here, σ̂(r) are assumed to be constant second-order tensors. For simplicity in notation,

we precise that σ̂(r) is the field that attains the “sup” operator in (2.96).

In the following, using (2.95) and (2.96), one can show that the effective energy

function (2.16) can be approximated (Ponte Castañeda [1991a, 2002a]) via the expres-
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sion

Ũvar(σ) = sup
S(r)

(x)

(
ŨL(σ,S

(r))−
2∑

r=1

c(r)v(r)(S(r))

)
, (2.97)

where c(r) is the volume fraction of the phase r. It is interesting to note that equation

(2.97) is a lower bound of the effective energy Ũ(σ). Nonetheless, the goal of the

present work is to provide an estimate of Ũ(σ) and not a bound, thus, the optimization

conditions on S(r) will be further relaxed next.

2.4.2 Definition of a linear comparison composite (LCC)

In this section, we will choose approximate compliance tensors S(r) that will allow us

to get closed form (semi-analytical) estimates for Ũ(σ). The difficulty in the choice

S(r) lies in two first points. First, S(r) do not need to be constant per phase (see Herve

and Zaoui [1993]). While such a choice would lead to move accurate estimates, in

general, one would have to resolve the fully numerical optimization of the problem,

thus making it implicit and thus untractable in reals applications. The second point

is that one can choose piecewise constant S(r) but in general form (see deBotton and

Ponte Castañeda [1995], Idiart and Ponte Castañeda [2007]). This choice again leads

to a convex but sub-differentiable optimization problem for Ũ(σ) as a function of S(r)

and thus one has to again resolve the fully numerical optimization procedures (except

in special cases as in Idiart and Ponte Castañeda [2007]). For this reason, in the

present work, we choose not only piecewise constant S(r), but also of a special form

which is motivated by the viscoplastic stress potential U in the linear case n = 1.

Thus following (2.31), the viscoplastic potential related to a linear single crystal can

be written as

UL (σ) =
K∑
s=1

γ̇
(s)
0

2τ
(s)
0

(
τ (s)
)2

=
1

2
σ · S · σ. (2.98)

Using this relation, we can then rewrite the symmetric, fourth-order, compliance tensor

of the LCC as

S =
K∑
s=1

1

2λ(s)
E(s) +

K∑
s=1

1

2ρ(s)
F(s) +

1

3κ
J, (2.99)

with

E(s) = 2µ(s) ⊗ µ(s), F(s) = K− E(s), ∀s = 1, K. (2.100)

Here K denotes the fourth-order shear projection tensor whereas J denotes the fourth-

order hydrostatic projection tensor. Thus, ∀s = 1, K,
(
E(s),F(s),J

)
form a fourth
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order tensor basis 1. In addition, µ(s) is the Schmid tensor (2.26) associated to the sth

slip system and the bulk modulus κ→ ∞ (incompressible matrix), ρ(s) → ∞.

Using the generalized Hashin-Shtrikman estimates (Hashin and Shtrikman [1963])

of Willis (Willis [1977]) which are known to be quite accurate for porous random

systems, up to moderate concentrations of pores, we write

ŨL (σ) =
1

2 (1− f)
σ ·

(
K∑
s=1

1

2λ(s)
E(s) + fS∗

)
· σ, (2.101)

where

S∗ = lim
ρ(s),κ→∞

Q−1 −
K∑
s=1

1

2λ(s)
E(s). (2.102)

In this relation, Q is a microstructural tensor related to the Eshelby tensor (Eshelby

[1957]), and is defined as Q = S−1 − S−1PS−1, with P being the Eshelby tensor.

Indeed, for an ellipsoidal void embedded in a matrix, if we denote w1, w2 as the aspect

ratios and n(i) (i = 1, 2, 3) as the orientation unit vectors (see fig 2.1), the Eshelby

tensor P is expressed as

Pijkl =
1

4π detZ

∫
|ξ|=1

((
S−1
)
iakb

ξaξb
)−1

ξjξl|(ij)(kl)∣∣Z−1 · ξ
∣∣3 dS (2.103)

which brackets (ij)(kl) denote symmetrization with respect to the corresponding in-

dices, ξ = {sinϕ cos θ, sinϕ sin θ, cosϕ} is the position vector and Z the shape tensor

expressed as

Z = w1 n
(1) ⊗ n(1) + w2 n

(2) ⊗ n(2) + n(3) ⊗ n(3). (2.104)

It is recalled here that w1, w2 and n(i) have been defined in the context of Fig. 2.1.

At this point it is important to note that after the limit of ρ(s) → ∞ and κ → ∞
are considered in (2.102) the Q tensor is compressible due to the presence of the voids

in the matrix. These limits need to be taken during the evaluation of Q in (2.1022). If

instead the limit is taken before the evaluation of Q the term
(
S−1
)
iakb

ξaξb in (2.103)

becomes singular.

The computation of Q in the above expressions is critical for the optimization

problem (2.97). Due to the extremely complicated dependence of Q on λ(s), the

optimization problem for the estimation of the effective response in equation (2.97)

has to be carried out numerically, except in the special case where we let λ(s) → λ for

1∀s = 1,K F(s) · F(s) = F(s), E(s) ·E(s) = E(s), E(s) · F(s) = F(s) ·E(s) = 0
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all s = 1, K. This simplifies tremendously the evaluation of the Q tensor and allows

for approximations as is discussed in the following section.

More specifically, one can write

lim
λ(s)→λ

S∗ (λ(s)) = 1

λ
Ŝ
∗
, (2.105)

where Ŝ
∗
is given by (c.f. (2.102))

Ŝ
∗
= Q̂

−1
−

K∑
s=1

1

2
E(s), Q̂ = lim

ρ̂→∞
lim
κ̂→∞

[
S−1 − S−1P̂S−1

]
, (2.106)

with S being a reduced version of the S tensor defined in equation 2.99, and reads

S =
K∑
s=1

1

2
E(s) +

1

2ρ̂

K∑
s=1

F(s) +
1

3κ̂
J, ∀s = 1, K. (2.107)

In turn, P̂ is a microstructural tensor related to the Eshelby tensor (Eshelby [1957])

and is given by (Willis [1977])

P̂ijkl =
1

4π detZ

∫
|ξ|=1

(
S−1

iakbξaξb
)−1

ξjξl|(ij)(kl)∣∣Z−1 · ξ
∣∣3 dS. (2.108)

The brackets (ij)(kl) denote symmetrization with respect to the corresponding indices,

ξ is a unit three-dimensional vector and Z is a second-order tensor serving to describe

the shape and orientation of the voids, i.e.,

Z = w1 n
(1) ⊗ n(1) + w2 n

(2) ⊗ n(2) + n(3) ⊗ n(3). (2.109)

It is very important to stress at this point that the tensors Q̂ and consequently

Ŝ
∗
in the above expression are independent of λ (see relevant discussion in Danas

[2008] and Danas and Ponte Castañeda [2009a]). This property will allow to carry

out analytically the optimization problem (2.97) to be discussed in detail in the next

section.

2.4.3 Variational estimate for porous single crystal

Using the above definition (2.99) and the estimate (2.101), one can rewrite the non-

linear effective potential Ũ , defined in (2.97) as

Ũvar (σ) = max
λ(s)≥0

(
ŨL (σ)− (1− f)

K∑
s=1

v(s)
(
λ(s)
))

. (2.110)
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For n > 1, the corrector function for a single slip system can be expressed analytically

(deBotton and Ponte Castañeda [1995], Idiart and Ponte Castañeda [2007]) as

v(λ(s)) = sup
σ̂

K∑
s=1

[
Ψ

(s)
L

(
τ̂ (s), λ(s)

)
−Ψ(s)

(
τ̂ (s)
)]

≤
K∑
s=1

sup
τ̂ (s)

 1

2λ(s)
(
τ̂ (s)
)2 − γ̇

(s)
0 τ

(s)
0

n+ 1

(∣∣τ̂ (s)∣∣
τ
(s)
0

)n+1


=
n− 1

n+ 1

γ̇
(s)
0 τ

(s)
0

2

(
τ
(s)
0

λ(s)γ̇
(s)
0

)n+1
n−1

. (2.111)

The global optimization problem in (2.110) is a non-trivial one, mainly because of

the extremely complicated dependence of the Q tensor (see (2.102)) on λ(s), and in

general, it must be carried out numerically. However, we introduce at this point the

approximation

S∗ (λ(s)) ∼= 1

K

K∑
s=1

1

λ(s)
Ŝ
∗
, (2.112)

where Ŝ
∗
is given by (2.106). This last expression (2.112) is identically true for λ(s) =

λ, ∀s = 1, K while being a relatively good approximation in the neighborhood of

λ(i) ≃ λ(j), ∀i, j = 1, K. The choice (2.112) allows for a fully analytical resolution of

the optimization procedure (2.110) and thus to a fully analytical model.

Consequently, the relation (2.112) together with equations (2.101), (2.110) and

(2.111) lead to

Ũvar (σ) = max
λ(s)≥0

[
K∑
s=1

{
1

1− f

1

2λ(s)

((
τ (s)
)2

+
f

K
σ · Ŝ

∗
· σ
)}

− (1− f)
K∑
s=1

n− 1

n+ 1

γ̇
(s)
0 τ

(s)
0

2

(
τ
(s)
0

λ(s)γ̇
(s)
0

) (n+1)
(n−1)

 . (2.113)

Following Han et al. [2013], we interchange the maximization with the summation in

(2.113) to get

1

2λ(s)
=

γ̇
(s)
0

2τ
(s)
0


(
τ (s)
)2

+ f
K
σ · Ŝ

∗
· σ(

τ
(s)
0

)2
(1− f)2


(n−1)/2

(2.114)

This interchange will preserve the discrete character of the slip-system response in the

rate-independent limit and for f = 0.
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Finally, substitution of (2.114) to (2.110) gives the variational estimate of the

effective stress potential of the crystalline porous material

Ũvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1

( ∣∣τ̃ (s)∣∣
τ
(s)
0 (1− f)

)n+1

, τ̃ (s) =

√(
τ (s)
)2

+
f

K
σ · Ŝ

∗
· σ,

(2.115)

which can also be written as

Ũvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√

σ · Ŝ
var,(s)

· σ
τ
(s)
0 (1− f)


n+1

, (2.116)

with

Ŝ
var,(s)

=
1

2
E(s) +

f

K
Ŝ
∗
, ∀s = 1, K. (2.117)

It is recalled that Ŝ
∗
is given by equation (2.106).

2.4.4 Correction of the hydrostatic point

It is well known from Ponte Castañeda [1991b] and Michel and Suquet [1992]) that

in the case of isotropic matrix and hydrostatic loadings the variational estimates are

overly stiff. This is also the case in the present work, i.e. the estimate (2.116) for

Ũvar is very stiff when compared to numerical unit-cell calculations (performed in the

present study and described in the following section). A way to remedy this overly stiff

response is to use exact results that are available in the context of porous materials

with isotropic matrix phases such as those derived in equation (2.38).

In this regard, the goal of this section is to propose a correction to the Ũvar esti-

mate (2.116) in the limit of purely hydrostatic loadings. Unfortunately, in the present

case of anisotropic crystal plasticity no simple analytical solution is available in the

purely hydrostatic limit. Nevertheless, one can insist that the estimate (2.116) must

recover the result of an isotropic spherical porous shell (or equivalently a composite

sphere assemblage (CSA) microstructure) in the limit of infinite equiangular slip sys-

tems (K → ∞), spherical voids and hydrostatic loadings. The reason is that in that

theoretical limit, the response becomes fully isotropic, with a matrix phase described

by a stress potential of the form (2.38).

Specifically, it has recently been shown by Benallal [2015] that the purely hydro-

static response of a spherical porous shell whose matrix phase is described by a stress
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potential of the form (2.38) is identical to that of a porous spherical shell with a J2-

type matrix phase and is given by the closed form expression (Hashin [1962], Gurson

[1977], Leblond et al. [1994], Danas et al. [2008b])

Ũiso (σ) =
ϵ̇0 σ̃h
n+ 1

(
3σm

2 σ̃h

)n+1

,
σ̃h
σ0

= n
(
f−1/n − 1

)
, (2.118)

where σ0 and ϵ̇0 denote the reference strain-rate and the isotropic flow stress of the

isotropic matrix. This result is valid for isotropic potentials such as the one in equation

(2.38) corresponding to infinite number of slip systems.

Next, motivated by similar work on isotropic matrix systems (Danas and Aravas

[2012] but see also Danas et al. [2008a] and Danas et al. [2008b]), we replace Ŝ
var,(s)

with Ŝ
mvar,(s)

in (2.116), to get

Ũmvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√

σ · Ŝ
mvar,(s)

· σ
τ
(s)
0 (1− f)


n+1

, (2.119)

where

Ŝ
mvar,(s)

= Ŝ
var,(s)

+
(
q2J − 1

)
J · Ŝ

var,(s)
· J. (2.120)

The label “mvar” refers to “modified variational” (MVAR), whereas the factor “qJ”

remains to be identified so that the MVAR estimate recovers the exact result (2.118)

in the limit of infinite number of slip systems K −→ ∞.

In view of this, we consider a purely hydrostatic loading σij = σmδij and spherical

voids (i.e., w1 = w2 = 1) embedded in a single crystal comprising slip systems with

identical CRSS and reference slip rate, i.e. (τ0)
(s) = τ0, (γ̇0)

(s) = γ̇0, ∀s = 1, K. In

the case of infinite equiangular slip systems and purely hydrostatic loadings, equation

(2.119) becomes

Ũmvar (σ) ∼= (1− f)−n

(
3f

20
q2J

)n+1
2 σn+1

m

n+ 1
lim

K→∞

(
γ̇0 τ

−n
0 K

)
. (2.121)

Next, using equation (2.37), and setting equation (2.118) equal to (2.183), i.e., Ũmvar =

Ũiso, we readily obtain

qJ =

√
15

f

{
(1− f) (βn)

1
n

n(f−1/n − 1)

} n
n+1

, (2.122)

where βn is given in (2.157).
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While this correction establishes that the Ũmvar in (2.119) recovers the isotropic

limit (i.e., infinite number of slip systems and spherical voids), there is, to this day,

no specific guarantee that this estimate will be sufficiently accurate for any void shape

and orientation. Nonetheless, we will show in the results sections that the robust

character of the original variational method together with the proposed correction in

this section gives sufficiently good quantitative agreement when compared with full

field finite element simulations for a large range of void shapes and orientations.

2.4.5 Summary of the modified variational model (MVAR)

To facilitate the reader with the main results of the present work, we summarize

here the final equations of the proposed MVAR model. Therefore, the effective stress

potential of a porous single crystal is given by (see equation (2.119))

Ũmvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√
σ · Ŝ

mvar,(s)
· σ

τ
(s)
0 (1− f)


n+1

, (2.123)

where

Ŝ
mvar,(s)

= Ŝ
var,(s)

+
(
q2J − 1

)
J·Ŝ

var,(s)
·J, qJ =

√
15

f

{
(1− f) (βn)

1
n

n(f−1/n − 1)

} n
n+1

, βn =
4

25
6−

n
2

(2.124)

Here,

Ŝ
var,(s)

=
1

2
E(s) +

f

K
Ŝ
∗
, E(s) = 2µ(s) ⊗ µ(s), ∀s = 1, K, Jijkl =

1

3
δijδkl. (2.125)

where µ(s) is the Schmid tensor defined in (2.26), Ŝ
∗
is evaluated by equations (2.106)-

(2.107).

Furthermore, we can readily determine the corresponding macroscopic strain-rate

D through the relation

D =
∂Ũmvar

∂σ
=

K∑
s=1

γ̇
(s)
0


√

σ · Ŝ
mvar,(s)

· σ
τ
(s)
0 (1− f)


n

Ŝ
mvar,(s)

· σ√
σ · Ŝ

mvar,(s)
· σ

(2.126)

2.4.6 Rate-independent porous single crystals

In this section, we specialize the homogenization results developed in previous sections

for the case of rate-independent porous single crystals. For this, we need to consider



Theory 41

the limit as n → ∞ or, equivalently, m → 0 for the nonlinear exponent of the single

crystal matrix defined in relation (2.31).

Hence, making use of equation (7.2) for the MVAR estimate Ũmvar for a viscoplastic

porous single crystal, which is repeated here for convenience

Ũmvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√

σ · Ŝ
mvar,(s)

· σ
τ
(s)
0 (1− f)


n+1

, (2.127)

together with the limit n −→ ∞, we can define the corresponding equation describing

the effective yield surface of the “modified variational” method in the rate-independent

context in terms of the yield function Φ̃mvar via

Φ̃mvar(σ; sα) = max
s=1,K


√

σ · Ŝ
mvar,(s)

· σ
1− f

− τ
(s)
0

 = 0, (2.128)

where, sα =
{
f, w1, w2, n

(1), n(2), n(3) = n(1) × n(2)
}
is the set of the microstructural

variables defined in relation (2.18), while Ŝ
(s)

is given by (7.3). In addition,

qJ =

√
5

2

1− f√
f ln (1/f)

. (2.129)

Next, the corresponding macroscopic strain-rate D is given by differentiating the

effective yield function Φ̃mvar in (2.128) with respect to σ, so that

D = Λ̇
∂Φ̃mvar

∂σ
=

Λ̇

1− f

Ŝ
mvar,(s)

· σ√
σ · Ŝ

mvar,(s)
· σ

, (2.130)

where Λ̇ is a non-negative parameter known as the plastic multiplier computed by the

consistency condition
˙̃
Φmvar = 0.

2.4.7 Phase average fields

In this section, estimates for the phase average fields in the nonlinear composite will be

provide in order to complete the study. It is known that (Idiart and Ponte Castañeda

[2006]) in the variational method, the phase average fields in the nonlinear composite

coincide with the phase average fields in the LCC.

In addition, in the limit of λ(s) → λ, one can easily show that the tensors S, S̃
and Π̂ defined in the following as

S = λ lim
λ(s)→λ

S =
K∑
s=1

1

2
E(s), (2.131)
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S̃ = λ lim
λ(s)→λ

S̃ =
1

1− f

K∑
s=1

Ŝ
mvar,(s)

, (2.132)

Π̂ijkl = λ lim
λ(s)→λ

Πijkl =
1

4π detZ

∫
|ξ|=1

(
S−1

iakbξaξb
)−1

ξjξl|[ij](kl)∣∣Z−1 · ξ
∣∣3 dS. (2.133)

are independent of λ.

Here the simple brackets indicate the symmetric part of the last two indices while

the square brackets denote the skew-symmetric part of the first two indices.

Thus, using the relations developed in subsection 2.3.1, the following estimates are

deduced for the phase average fields in the nonlinear porous single crystal

σ(1) = σ
(1)
0 =

1

1− f
σ0 =

1

1− f
σ, σ(2) = σ

(2)
0 = 0, (2.134)

D
(1)

= A(1)D =
1

1− f
S S̃

−1
D, (2.135)

D
(2)

= A(2)D =
1

f

(
I− S S̃

−1
)
D, (2.136)

Ω
(2)

= Ω+ (1− f) Π̂S−1D, (2.137)

with

D =
K∑
s=1

γ̇
(s)
0


√
σ · Ŝ

mvar,(s)
· σ

τ
(s)
0 (1− f)


n

Ŝ
mvar,(s)

· σ√
σ · Ŝ

mvar,(s)
· σ

. (2.138)

Moreover, it is important to notice that in the work of (Idiart and Ponte Castañeda

[2006]), the estimating the phase average spin in the nonlinear composite is not studied.

However, based on the corresponding results for the average strain-rate D
(1)

or D
(2)
,

we can deduce that the same result could be applied to the average spin Ω
(2)
.

Finally, the second-order macroscopic spin tensor tensor Ω is applied externally to

the problem.

2.5 Evolution of microstructure

The determination of the instantaneous effective behavior of nonlinear porous media

with particulate microstructures has been carried out through a set of internal variables

denoted as sα =
{
f, w1, w2, n

(1), n(2), n(3)
}
(see fig. 2.1). For completeness, it is useful

to recall here that these microstructural variables correspond to the volume fraction
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of the voids or porosity f , the shape of the voids denoted with the two aspect ratios

w1 and w2, and the orientation of the principal axes of the representative ellipsoidal

void, i.e., the orientation vectors n(i), i = 1, 2, 3.

On the other hand, in the present study, there esists two sources of anisotropy

during the deformation process. The ”natural” anisotropy of the matrix (crystal plas-

ticity) which is coupled with the so called morphological anisotropy due to the non

spherical void shapes. Indeed, when porous single crystals undergo large plastic defor-

mations, the underlying microstructure (void volume, shape and orientation) evolves.

The microstructure evolution, in turn, affects the response of the material itself since

the yield condition and the plastic flow rule depend on the current state of the mi-

crostructure. Hence, one needs to prescribe relevant evolution laws for the microstruc-

tural state variables sα. In the context of the present study, we assume that evolution

of microstructure occurs only due to plastic deformation of the matrix. In addition, it

is important to note that in homogenization models as for instance the MVAR model,

the description of the effective behavior is described in average terms. Consequently,

ellipsoidal voids, whose shape and orientation is described by the two aspect ratios

w1 and w2 and the orientation vectors n(i), i = 1, 2, 3, respectively, evolve on average

to ellipsoidal voids with different shape and orientation. This, in turn, suggests that

the average change in shape and orientation of the voids depends only upon the av-

erage strain-rate D
(2)

and the average spin Ω
(2)

in the porous phase, discussed in the

previous section (subsection 2.4.7). Then, the evolution laws for the microstructural

variables are obtained simply by appropriate kinematic considerations.

At this stage of the work, we neglect elasticity. This is done for simplicity but

elasticity effects could be added in future studies. This implies that D = D
p
since

D
e
= 0, where the superscript “p” and “e” refer to plastic and elastic parts.

2.5.1 Evolution of the average slip rate in the matrix

The changes in the microstructure are assumed to be due to the plastic deformation,

i.e. elastic deformations are considered to have a negligible effect, but this could be

considered in a future study if necessary.

If one defines γ̇
(s)
(1) as the effective slip-rate of the slip system (s) in the matrix, its
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evolution equation can be determined using the relation

D
(1)

=
K∑
s=1

γ̇
(s)
(1)µ

(s). (2.139)

In addition, due to the LCC, we have

D
(1)

= Sσ(1) =
1

1− f

(
1

2λ(s)
E(s)

)
σ, (2.140)

where the λ(s) are determined in the variational optimization procedure through the

equation (2.114).

Thus, the relation (2.140) becomes

D
(1)

= Sσ(1) =
1

1− f

K∑
s=1

γ̇
(s)
0

σ · µ(s)

τ
(s)
0


√

σ · Ŝ
mvar,(s)

· σ
τ
(s)
0 (1− f)


n−1

µ(s), (2.141)

and furthermore, the combination of relations (2.139) and (2.141) leads to

D
(1)

=
1

1− f

K∑
s=1

γ̇
(s)
0

σ · µ(s)

τ
(s)
0


√
σ · Ŝ

mvar,(s)
· σ

τ
(s)
0 (1− f)


n−1

µ(s) =
K∑
s=1

γ̇
(s)
(1)µ

(s). (2.142)

Then, since the previous relation is true for any crystal anisotropy, the average shear

strain γ̇
(s)
(1) of any slip system (s) is given by

γ̇
(s)
(1) =

1

1− f
γ̇
(s)
0

σ · µ(s)

τ
(s)
0


√
σ · Ŝ

mvar,(s)
· σ

τ
(s)
0 (1− f)


n−1

. (2.143)

Then the accumulated average slip in the matrix is given by

γ
(s)
(1) =

∫
t

γ̇
(s)
(1)dt. (2.144)

For strain hardening materials, τ
(s)
0 is a function of the slip γ

(s)
(1), which, in general,

is to be extracted from experimental uniaxial stress strain curves. As discussed by

many authors (e.g. Asaro [1983], Wu et al. [1991], Huang [1991], Kysar [1997]), the

strain hardening is characterized by the evolution of the strengths τ
(s)
0 through the

incremental relation

τ
(s)
0 =

K∑
β=1

hsβγ
(β)
(1) , (2.145)
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where hsβ are the slip hardening moduli whereas the sum ranges over all the activated

slip systems. Here hss and hsβ (s ̸= β) are called self and latent hardening moduli,

respectively. It is important to precise at this stage that we have not considered the

hardening response during the homogenization procedure, which has only been added

at the end in an ad-hoc manner in relation (2.145). A full homogenization framework

has for instance been proposed in Lahellec and Suquet [2013] but at this point it is

not applied to this model in order to keep it simple.

2.5.2 Evolution of the porosity

Next by neglecting elastic contributions, the matrix material is plastically incompress-

ible (crystal plasticity), and thus the evolution equation for the porosity f can be

obtained from mass conservation and reads (Tvergaard and Needleman [1984])

ḟ = (1− f)Dii, i = 1, 2, 3. (2.146)

Furthermore, it is important to precise that void nucleation is not considered in the

above relation but can be included by a convenient modification of (2.146) (see for

instance Needleman and Rice [1978], Tvergaard [1990]).

2.5.3 Evolution of the aspect ratios

The evolution law for the aspect ratios is obtained by using standard kinematics and

the definition wi = a3/ai, i = 1, 2, such that (Ponte Castañeda and Zaidman [1994])

ẇi = αw wi

(
n(3) ·D(2)

n(3) − n(i) ·D(2)
n(i)
)
= αw wi

(
n(3) ⊗ n(3) − n(i) ⊗ n(i)

)
·D(2)

,

(2.147)

where there is no summation on i = 1, 2, and D
(2)

is given by (2.134). The scalar

factor αw has been introduced in the last expression in a heuristic manner in order to

enhance the accuracy of the evolution of the aspect ratios, since Danas and Aravas

[2012] have showed that the original variational method and consequently the present

MVAR tend to underestimate the evolution of the void shape at low stress triaxialities.

The factor αw is in general considered as a free parameter that can be calibrated from

experiments.
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2.5.4 Evolution of the orientation vectors

The evolution of the orientation vectors n(i), i = 1, 2, 3 is determined by the spin of

the Eulerian axes of the ellipsoidal voids, or microstructural spin ω, as

ṅ(i) = ωn(i), i = 1, 2, 3 (2.148)

The microstructural spin ω is related to the average spin and the average strain-rate

in the void, Ω
(2)

and D
(2)

(given by 2.134), by the classical kinematic relation written

in direct notation as (Hill [1978], Ogden [1984], Aravas and Ponte Castañeda [2004],

Danas and Aravas [2012])

ω = Ω
(2)

+
1

2

3∑
i,j=1
i ̸=j

wi ̸=wj

w2
i + w2

j

w2
i − w2

j

[(
n(i) ⊗ n(j) + n(j) ⊗ n(i)

)
·D(2)

]
n(i) ⊗ n(j), w3 = 1.

(2.149)

The special case in which at least two aspect ratios are equal is discussed later in this

section.

An equivalent equation to deal with both void aspect ratios and rotation has been

proposed by Madou and Leblond [2013].

In addition, it is useful to discuss the evaluation of the Jaumann rate of the orien-

tation vectors n(i), denoted by
▽
n
(i)

, (i = 1, 2, 3). The Jaumann rate is related to the

standard time derivative of relation (2.148) by

▽
n
(i)

= ṅ(i) −Ωn(i) =
(
ω −Ω

)
n(i), i = 1, 2, 3, (2.150)

with Ω being the macroscopic average spin applied externally in the problem. At this

point, it is convenient to introduce the notion of the plastic spin (Dafalias [1985]),

which is defined as the spin of the continuum relative to the microstructure, i.e.,

Ωp = Ω− ω. (2.151)

Consequently,
▽
n
(i)

= −Ωp n(i), i = 1, 2, 3. (2.152)

Furthermore, we point out that special care needs to be taken for the computation

of the spin of the Eulerian axes in the case of a spherical void, i.e., when w1 =

w2 = w3 = 1, as well as for a spheroidal void, i.e., when w1 = w2 ̸= w3 = 1 or
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w1 ̸= w2 = w3 = 1 or w1 = w3 ̸= w2 = 1. More specifically, when two of the

aspect ratios are equal, the component Ωp
12 becomes indeterminate. Since the spin

Ω
p

12 is inconsequential in this case, it can be set equal to zero (Aravas [1992]), which

implies that ω12 = Ω12. This notion can be applied whenever the shape of the void is

spheroidal, in any given orientation. In the same way, when the voids are spherical,

Ωp = 0 and hence ṅ(i) = Ωn(i), i = 1, 2, 3.

2.6 Concluding remarks

A homogenization-based framework to estimate the effective behavior of viscoplas-

tic porous single crystals subjected to general loading conditions is presented in this

chapter. More precisely, the “variational” (Ponte Castañeda [1991a]) homogenization

method has been used in order to derive models for porous crystals. These methods

are based on the construction of suitable variational principles utilizing the concept

of “linear comparison composite” (LCC). It is then possible to make use of available

linear homogenization results into estimates for the nonlinear porous media. In addi-

tion, motivated by applications of practical interest, one has specialized on the case of

porous crystals with particulate microstructures and a matrix phase which is described

by a power-law stress potential.

In this regard then, we have firstly recalled the notion of particulate microstruc-

tures. In order to achieve this, we have defined the internal variables describing the

volume fraction, shape and orientation of the voids. Hence, using the linear Willis es-

timates (Willis [1977]), one can determine the effective behavior of the LCC which is

required to provide estimates for linear porous materials with particulate microstruc-

tures. However, it is worth noting that more general micro-geometries could be easily

considered, including multiple families of aligned pores by exploiting for instance more

general versions of the Willis (Ponte Castañeda and Willis [1995]) estimates for the

LCC. Such studies are not performed in this study.

Furthermore, we have introduced the definitions associated with a commonly used

power-law form of incompressible viscoplastic stress potential. Based on these def-

initions, we have been able to extract estimates of the effective viscoplastic stress

potential for porous single crystals through the “variational” homogenization meth-

ods. Moreover, it is known (Ponte Castañeda [1991b], Michel and Suquet [1992]) that
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in the case of isotropic matrix and hydrostatic loadings the variational estimates are

overly stiff. In order to remedy this overly stiff response, we have used the fact that

in the isotropic case (number of slip systems K −→ ∞), the hydrostatic limit of the

effective behavior of composite spherical assemblages (CSA) is known exactly and in

closed form (Hashin [1962], Gurson [1977], Leblond et al. [1994]). Hence, following

(Danas et al. [2008a], Danas and Aravas [2012]), we have proposed “modified varia-

tional” estimates (MVAR) to make the estimates recovering the CSA result (2.118) in

the limit of infinite number of slip systems, spherical voids and hydrostatic loadings,

where the response becomes fully isotropic.

Finally, it should be precise that the porous single crystals are in general subjected

to finite deformations. Consequently, the microstructure evolves-on average-to ellip-

soidal voids in time with different shape and orientation. Thus, based on the work

of (Ponte Castañeda and Zaidman [1994], Aravas and Ponte Castañeda [2004], Danas

and Aravas [2012]), we have presented the relevant evolution laws for the internal mi-

crostructural variables used to describe the volume fraction, shape and orientation of

the voids.

2.7 Appendix I. Relation between the single crys-

tal and the isotropic matrix behaviors

As seen in subsection 2.2.1, in the special case of slip systems with identical critical

resolved shear stress CRSS and reference slip rate ((τ0)
(s) = τ0, (γ̇0)

(s) = γ̇0, ∀s =

1, K), the viscoplastic stress potential of the single crystal is written as

U(σ) =
γ̇0τ

−n
0

n+ 1

K∑
s=1

∣∣τ (s)∣∣n+1
. (2.153)

If we consider a triaxial loading state, with θ denoting the Lode angle, the stress tensor

can be expressed as

σ = σm{1, 1, 1}+
2σeq
3

{
cos θ,− cos

(
θ +

π

3

)
,− cos

(
θ − π

3

)}
. (2.154)
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Moreover, one can parameterized the slip normals and directions of all the slip systems

using three Euler angles α
(s)
1 , α

(s)
2 and α

(s)
3 , since m(s) ⊥ s(s), such as

m(s) =
(
sinα

(s)
3 cosα

(s)
1 , sinα

(s)
3 sinα

(s)
1 , cosα

(s)
3

)T
s(s) =cosα

(s)
2

(
− sinα

(s)
1 , cosα

(s)
1 , 0

)T
+ sinα

(s)
2

(
cosα

(s)
3 cosα

(s)
1 , cosα

(s)
3 sinα

(s)
1 ,− sinα

(s)
3

)T
(2.155)

where 0 ≤ α
(s)
1 , α

(s)
3 ≤ 2π, 0 ≤ α

(s)
2 ≤ π.

a) b)

θ (rad)

n = 1
β(n, θ)^

n

ln (β(n))

Figure 2.3: (a) β̂ (n, θ) represented as a function of the Lode angle θ for a creep exponent

n = 1, (b) Representation of the numerical values and the approximate function of β (n) for

a range of creep exponents.

Thus, in the limiting case of isotropic matrix, i.e. K −→ ∞, the relations (2.26),

(2.153), (2.154) and (2.155) lead to the following form of the potential

U(σ) ∼=
γ̇0τ

−n
0

n+ 1
σn+1
eq K lim

K→∞

1

K
h
(
α
(s)
1 , α

(s)
2 , α

(s)
3 , θ, n

)
∼=
γ̇0τ

−n
0

n+ 1
σn+1
eq K β̂ (n, θ) .

(2.156)

The numerical computation of β̂ (n, θ) for various values of the Lode angle and a large

range of creep exponents exhibits a behavior that can be approximated as periodic on

θ (see for instance fig 2.3a, in the case of n = 1). More precisely, one can write

U(σ) ∼=
γ̇0τ

−n
0

n+ 1
σn+1
eq K β̂ (n, θ) , β̂ (n, θ) ∼= β (n) g (θ) ∼=

4

25
6−

n
2

(
cos
(
θ − π

3

))n+1

.

(2.157)

A representation of βn is shown in fig 2.3b.

——————————————————————————————————-
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2.8 Appendix II. Computation of the microstruc-

tural tensors

This section deals with the computation of the microstructural tensor Ŝ
∗
0 (see equations

2.102 and 2.106) in the incompressibility limit. In order to achieve this goal, one needs

to determine the associated Eshelby tensor Q or equivalently P (see 2.103), recalled

here for completeness

Pijkl =
1

4π detZ

∫
|ξ|=1

((
S−1
)
iakb

ξaξb
)−1

ξjξl|(ij)(kl)∣∣Z−1 · ξ
∣∣3 dS, Q = S−1 − S−1PS−1.

(2.158)

However, in the present single crystal case, the compliance tensor S0 is anisotropic

and is given in equation 2.99. Thus, it becomes very hard to get either analytical

expressions in the general case, or to carry out numerical computations even by making

use of the commercial package Mathematica.

Once the incompressibility limit is considered, the corresponding integral (2.158)

can be determined numerically. For this, one needs to evaluate surface integrals of the

form

I =

∫
|ζ|=1

A (ζ) dS (ζ) =

∫ π

ϕ=0

∫ 2π

θ=0

A (ζ (ϕ, θ)) sin (θ) dθ dϕ, (2.159)

where ζ = {sinϕ cos θ, sinϕ sin θ, cosϕ}.

This integration scheme has been observed to become inaccurate when the as-

pect ratios become large or small, such as w1 = 5 and w2 = 0.2 (Aravas and Ponte

Castañeda [2004]). For this reason, it is useful to write the vector ζ in cylindrical

coordinates, such that

ζ1 =
√
1− z cos θ, ζ2 =

√
1− z sin θ, ζ3 = z (2.160)

Then, the aforementioned integral I can be rewritten as

I =

∫ 1

z=−1

∫ 2π

θ=0

A (ζ (θ, z)) dθ dz. (2.161)

By using the transformation θ (r) = (r + 1) π in the previous equation, we get the

following expression

I = π

∫ 1

z=−1

∫ 1

r=−1

A (ζ (θ (r) , z)) dr dz. (2.162)
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This integral can be evaluated numerically by using Gauss integration of the form

I ∼= π
NG∑
i=1

NG∑
j=1

WiWjA (ζ (ri, zi)) , (2.163)

where ri and zi are the integration stations, Wi and Wj the corresponding weights,

and NG the number of Gauss integration stations.

2.9 Appendix III. Microstructural tensor in the lim-

iting case of K → ∞ (isotropic matrix)

In the case of slip systems with identical CRSS τ0 and reference slip-rate γ̇0, the

compliance tensor S of the linear comparison composite is given by equation (2.99) by

setting λ(s) = λ and ρ(s) = ρ,

S =
1

2λ

K∑
s=1

E(s)+
1

2ρ

K∑
s=1

F(s)+
1

3κ
J, with E(s) = 2µ(s)⊗µ(s), F(s) = K−E(s), ∀s = 1, K.

(2.164)

On the other hand, the microstructural tensor can easily be computed in the case

of an isotropic compliance matrix (Von Mises matrix, SMises = 1
2µ0

K + 1
3κ0

J), an

expressed as

S∗
Mises =

1

3µ0

K+
1

4µ0

J, (2.165)

for isotropic microstructures and incompressible matrix material (i.e. κ0 → ∞).

Moreover, the numerical computation of the hydrostatic part of S
∗

K
in the infinite

number of slip systems case (i.e. Tresca matrix) for spherical voids leads to closer

result (up to 2%) than the hydrostatic part of the microstructural tensor associated to

the compliance tensor of a Von Mises matrix. Hence, one can, as a first approximation,

use the tensor SMises instead of S in the limit isotropic case K → ∞. Suitable values

for µ0 and κ0 must consequently be used. In order to achieve this goal, the deviatoric

and hydrostatic projections of both tensors lead to

µ0 =
5

K
λ
+ K

ρ

, κ0 = κ (2.166)

Thus, using the identity (2.166) into (2.165), one can readily show that in the limit

ρ → ∞, κ → ∞ and K → ∞, the microstructural tensor S∗ defined in equation
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(2.102) becomes

lim
K→∞

lim
ρ→∞

lim
κ→∞

S∗

K
∼=

1

5λ

(
1

3
K+

1

4
J

)
, (2.167)

or equivalently

lim
K→∞

lim
ρ→∞

lim
κ→∞

Ŝ∗

K
∼=

1

5

(
1

3
K+

1

4
J

)
, (2.168)

for spherical voids.

2.10 Appendix IV. MVAR fully analytical model

for cylindrical microstructures

In the case of cylindrical microstructures, one can provide analytical expressions for

the microstructural tensor Ŝ
∗
, which reads

Ŝ
∗
=

1

2w
√
2

√∑
j ̸=l

(1− cos 4 (θ(j) − θ(l)))G, (2.169)

where the components of tensor G are given by

G1111 = w2 cos2 ψ + sin2 ψ, G1122 = 0, G1112 =
1

4

(
w2 − 1

)
sin 2ψ,

G2222 = cos2 ψ + w2 sin2 ψ, G2212 = G1112, G1212 =
1

4

(
1 + w2

)
.

(2.170)

It should be mentioned here that G possesses both major and minor symmetry, and

has a similar form to that obtained for an isotropic matrix comprising elliptical voids

(see Danas [2008]).

In the following sections, we will provide a MVAR fully analytical model for porous

single crystals comprising cylindrical voids with elliptical cross-section at arbitrary

orientations and subjected to general plane-strain loadings (i.e. 2D porous single

crystals).

2.10.1 Relation between the single crystal and the isotropic

matrix behaviors

In the following, we consider K equiangular slip systems by orientation angles θ(s)

equally partitioned in the interval (−π/2, π/2), with K being the number of slip sys-

tems and s = 1, K (see for instance Table 1).
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Next, we consider the special, albeit very common, case of identical CRSS and

reference slip-rate such that

τ
(s)
0 = τ0, γ̇

(s)
0 = γ̇0, ∀s = 1, K. (2.171)

This analysis will be shown to be of critical importance in the following sections.

As a consequence of the plane-strain conditions, the resolved shear of each slip

system is then written as

τ (s) = σ · µ(s) =

(
σ11 − σ22

2

)
sin 2θ(s) + σ12 cos 2θ

(s)

=
σeq√
3
sin
(
2θ(s) + δ

)
, ∀s = 1, K,

(2.172)

with δ = arctan (2σ12/(σ11 − σ22)). By introducing this relation in equation (2.31),

the viscoplastic stress potential U becomes

U(σ) =
γ̇0τ0
n+ 1

(
σeq

τ0
√
3

)n+1 K∑
s=1

∣∣sin (2θ(s) + δ
)∣∣n+1

. (2.173)

Moreover, when we tend to the limiting case of isotropic matrix, i.e. K −→ ∞, or

when we consider “equiangular slip systems” for K ≥ 3,

K∑
s=1

∣∣sin (2θ(s) + δ
)∣∣n+1

= K.
1

K

∣∣sin (2θ(s) + δ
)∣∣n+1 ∼= K.

2

π

∫ π/2

0

(sin θ)n+1 dθ. (2.174)

One then recognize a “Wallis” integral (see Wallis [1656]),

∫ π/2

0

(sin θ)n+1 dθ =

√
π

(n+ 1)

Γ
(
n+2
2

)
Γ
(
n+1
2

) , (2.175)

Finally, one can recover the constitutive behavior of an isotropic matrix phase,

characterized by its viscoplastic stress potential

U(σ) =
ϵ̇0σ0
n+ 1

(
σeq
σ0

)n+1

, (2.176)

with ϵ̇0 denoting the reference strain-rate, and σ0 the isotropic flow stress by setting

γ̇0τ
−n
0

(
1√
3

)n+1

βnK = ϵ̇0σ
−n
0 , (2.177)
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2.10.2 Microstructural tensor in the limiting case infinite num-

ber of slip systems

In the case of slip systems with identical CRSS τ0 and reference slip-rate γ̇0, the

compliance tensor S of the linear comparison composite is given by equation (2.99) by

setting λ(s) = λ and ρ(s) = ρ.

Then using the fact that F(s) = K− E(s) for all s = 1, K leads to

S

K
=

1

2λ

(
1

K

K∑
s=1

E(s)

)
+

1

2ρ

(
K− 1

K

K∑
s=1

E(s)

)
+

1

3κK
J. (2.178)

Next, in the limit K → ∞, we have the following identity

lim
K→∞

1

K

K∑
s=1

E(s) =
1

2π

∫ 2π

0

E(θ)dθ =
1

2
K, (2.179)

where θ denotes any arbitrary slip orientation (see Fig. 2.2). Using the identity (2.179)

into (2.178), one can readily show that in the limit ρ→ ∞, κ→ ∞ and K → ∞, the

microstructural tensor S∗
0 defined in equation (2.102) becomes

lim
K→∞

lim
ρ→∞

lim
κ→∞

S∗

K
=

1

2

(
1

2w
G

)
, (2.180)

for general 2D elliptical cross-section voids (see Danas [2008]).

2.10.3 Correction of the hydrostatic point

In this subsection, we introduce a correction to the Ũvar estimate (2.116) in the limit

of purely hydrostatic loadings. It is well known from Ponte Castañeda [1991b] and

Michel and Suquet [1992]) that in the case of isotropic matrix and hydrostatic loadings

the variational estimates are overly stiff. This is also the case in the present work, i.e.

the estimate (2.116) for Ũvar is also very stiff when compared to numerical unit-cell

calculations.

The way to remedy this overly stiff response is to use the fact that in the isotropic

case, the hydrostatic limit of the effective behavior of composite cylinder assemblages

(CCA) is known exactly and in closed form (Hashin [1962], Gurson [1977], Leblond

et al. [1994]) and can be expressed as

σm

σ0
= n

(
f−1/n − 1

)
· 1

3
n+1
2n

·
(
2Dm

ϵ̇0

)1/n

. (2.181)
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In the present case of anisotropic crystal plasticity no simple analytic solution is avail-

able similar to the one in (2.181). Nevertheless, one can insist that the estimate (2.116)

should recover the result (2.181) in the limit of infinite equiangular slip systems, cir-

cular voids and hydrostatic loadings, where the response becomes fully isotropic.

To achieve this goal and motivated by similar work on isotropic matrix systems

(Danas and Aravas [2012] but see also Danas et al. [2008a]), we propose the following

modification in (2.116)

Ũmvar (σ) = (1−f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√
σ · Ŝ

mvar,(s)
· σ

τ
(s)
0 (1− f)


n+1

, Ŝ
mvar,(s)

= Ŝ
var,(s)

+
(
q2J − 1

)
J·Ŝ

var,(s)
·J.

(2.182)

The label “mvar” refers to “modified variational” (MVAR), whereas the factor “qJ”

remains to be defined so that we obtain the CCA result (2.181) in the limit K −→ ∞.

In this connection, we consider a purely hydrostatic loading σij = σmδij and cir-

cular voids (i.e., w = 1) embedded in a single crystal comprising slip systems with

identical CRSS and reference slip rate, i.e. τ
(s)
0 = τ0, γ̇

(s)
0 = γ̇0, ∀s = 1, K. In the case

of infinite and/or equiangular slip systems, we can write (see relations (2.190) and

(2.180) where w = 1)

Ŝ
var,(s)

=
1

2
E(s) +

f

4
I, ∀s = 1, K =⇒ Ũmvar (σ) = (1− f)−nK

γ̇0τ
−n
0

n+ 1
σn+1
m

(
f

2
q2J

)n+1
2

.

(2.183)

Thus, by using relations (2.8), (2.37), (2.119) and (2.183), one obtains the correc-

tion for qJ to be

qJ =

√
2

f

{
(1− f) (βn)

1
n

n(f−1/n − 1)

} n
n+1

, (2.184)

where βn is given by expression (2.157).

2.10.4 Summary of the modified variational model (MVAR)

Thus the main result of the present paper can be summarized as follows

Ũmvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√

σ · Ŝ
mvar,(s)

· σ
τ
(s)
0 (1− f)


n+1

, (2.185)

where

Ŝ
mvar,(s)

= Ŝ
var,(s)

+
(
q2J − 1

)
J · Ŝ

var,(s)
· J, (2.186)
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and

Ŝ
var,(s)

=
1

2
E(s) +

f

2K w
√
2

√∑
j ̸=l

(1− cos 4 (θ(j) − θ(l)))G, ∀s = 1, K. (2.187)

The components of tensor G are given by equation (2.170) and are repeated here for

completeness

G1111 = w2 cos2 ψ + sin2 ψ, G1122 = 0, G1112 =
1

4

(
w2 − 1

)
sin 2ψ,

G2222 = cos2 ψ + w2 sin2 ψ, G2212 = G1112, G1212 =
1

4

(
1 + w2

)
.

(2.188)

In addition, qJ and βn are

qJ =

√
2

f

{
(1− f) (βn)

1
n

n(f−1/n − 1)

} n
n+1

, βn =
2

(n+ 1)
√
π

Γ
(
n+2
2

)
Γ
(
n+1
2

) , (2.189)

with Γ being the Γ−function.

Two special cases of interest can be further spelled out here. First, the special case

of circular voids leads to G = I = K + J through the relation (2.170). This implies

that the purely hydrostatic part of Ŝ
var,(s)

in equation (7.4) depends strongly on both

the number of slip systems K as well as on their orientation angles θ(s). This effect is

discussed in detail later in the results sections.

Second, if we consider a single crystal with “equiangular slip systems”, as shown

in table 1, one gets

Table 2.1: Set of angles θ(s) in several cases of equiangular slip systems

K = 3 K = 4 K = 5

θ(s) = {0,±π/3} θ(s) = {0,±π/4, π/2} θ(s) = {0,±π/5,±2π/5}

√∑
j ̸=l

(1− cos 4 (θ(j) − θ(l))) =
K√
2
, =⇒ Ŝ

var,(s)
=

1

2
E(s) +

f

4w
G. (2.190)
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Chapter 3

Other models for porous materials

The aim of this chapter is to summarize the main results of several approaches for the

estimation of the effective behavior of porous materials, in order to get an historical

overview of the problem and a brief review of the previous studies. Then, it is useful to

precise that the pioneering works in ductile fracture were carried out by (Mc Clintock

[1968], Rice and Tracey [1969]), who studied the problem of estimating the behavior

of a porous material with an ideally-plastic matrix phase and dilute concentration of

voids. Based on a conveniently chosen stream function, they proposed a set of trial

velocity fields that they used to minimize a suitably constructed variational dissipation

principle. Following the idea of trial velocity fields, Gurson [1977] proposed a two-

velocity field model for non-dilute porous media. Precisely, the author made use of

the analytical solution for a spherical (or cylindrical) hollow shell subjected to purely

hydrostatic pressure to propose an approximate yield criterion for isotropic porous

media.

In the first section, we will focuss on the context of two-phase material systems

comprising an isotropic rate-(in)dependent matrix phase (metal usually described by

von Mises yield criterion or creep potential) and a voided phase (pores of spherical,

spheroidal or arbitrary ellipsoidal shapes). In this regard then, one will present models

based either on limit analysis (as for instance Tvergaard and Needleman [1984], Golo-

ganu and Leblond [1993], Leblond et al. [1994], Madou and Leblond [2012a], Monchiet

et al. [2014]) based on (Gurson [1977]) work, or a variational homogenization theory

using the concept of a linear comparison composite (see for instance Ponte Castañeda

[1991a], Danas and Ponte Castañeda [2009a], Danas and Aravas [2012], Agoras and

Ponte Castañeda [2013]).
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Next, we present results obtained for rate-(in)dependent anisotropic matrix sys-

tems. Generally, such models are based based on a phenomenological Hill-type matrix

(as for instance Benzerga and Besson [2001], Monchiet et al. [2008a], Keralavarma and

Benzerga [2010]). Indeed, the case of porous single crystals have only been studied

through discrete dislocations dynamic by (Huang et al. [2007], Hussein et al. [2008],

Segurado and Llorca [2010], Huang et al. [2012]) and molecular dynamics at smaller

scales (Traiviratana et al. [2008], Zhao et al. [2009], Tang et al. [2010a,b]), or using

finite element simulations (Yerra et al. [2010], Ha and Kim [2010]). Such anisotropic

matrix systems have known slip directions and contain usually a small volume fraction

of impurities. When these material systems are subjected to external loads impurities

fail or decohere leading to the creation of pores, which in turn evolve in size, shape and

orientation (Srivastava and Needleman [2012]). This complex evolution of microstruc-

ture together with the evolution of the rate-dependent matrix anisotropy is critical in

the prediction of the eventual fracture of the specimen under monotonic and cyclic

loading conditions.

Nevertheless, there have been only a handful of models for porous single crystals

which deal with special void geometries, loading conditions and slip system orienta-

tions. Such contributions involve the study of cylindrical voids with circular cross-

section in a rigid-ideally plastic face-centered cubic (FCC) single crystals using slip

line theory (Kysar et al. [2005], Gan et al. [2006], Gan and Kysar [2007]), the study

two-dimensional “out of plane” cylindrical voids with circular cross-section subjected

to anti-plane loadings (Idiart and Ponte Castañeda [2007]) and that of spherical voids

(Han et al. [2013], Paux et al. [2015]). While each one of these studies has its own

significant contribution to the understanding of the effective response of porous sin-

gle crystals none of them is general enough in the sense of arbitrary void shapes and

orientations, fully crystal anisotropy and general loading conditions.

3.1 A brief review of porous isotropic materials

A brief review of models for porous isotropic materials is made in this section. In

order to achieve this goal, we will present “Gurson type models”, which result from

limit analysis as well as “variational type estimates”.
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3.1.1 Gurson type models

The Gurson (Gurson [1977]) model was developed to estimate the overall behavior of

porous solids with an ideally-plastic matrix phase and cylindrical (2D) or spherical

(3D) microstructures. It makes use of the exact solution for a shell (spherical or

cylindrical cavity) under hydrostatic loadings, suitably modified, to obtain estimates

for the effective behavior of ideally-plastic solids with isotropic or transversely isotropic

distributions of porosity.

In the case of cylindrical cavities, Gurson’s yield criterion is written as

Φ2D
Gur (σ) =

σ2
eq

σ2
0

+ 2 f cosh

(√
3

2

σkk

σ0

)
− 1− f 2 = 0, k = 1, 2, (3.1)

while for spherical pores

Φ3D
Gur (σ) =

σ2
eq

σ2
0

+ 2 f cosh

(
1

2

σkk

σ0

)
− 1− f 2 = 0, k = 1, 3, (3.2)

where σ0 is the flow stress of the matrix material.

It is interesting to remark that for purely hydrostatic loadings, i.e., σeq = 0, both

criteria recover the exact solution for a cylindrical or a spherical shell. Moreover, for

purely deviatoric loadings, i.e., σm = 0, the Gurson criterion recovers the Voigt bound

(uniform strain-rate in the entire shell).

Furthermore, this classical model has been extended by (Tvergaard and Needleman

[1984], Tvergaard [1990]) to incorporate coalescence, expressed as

ΦGTN (σ) =
σ2
eq

σ2
0

+ 2 q1 f⋆ cosh

(
q2
2

σkk

σ0

)
− 1− q21f

2
⋆ = 0, k = 1, 3. (3.3)

In this model, so-called “GTN” model, q1 and q2 are constant parameters, when f⋆ is a

function of the porosity used to represent coalescence. Moreover, Leblond et al. [1994]

have proposed extended models in order to take into account more general viscoplastic

isotropic porous materials.

A recurrent critic about the Gurson or the GTN model is that it contains no

information about other microstructural variables such as the shape and orientation

of the voids which have critical importance, as we will see in the following chapters.

Indeed, the microstructural anisotropy can cause significant geometrical softening or

hardening, as opposed to the softening or hardening that the evolution of porosity

may induce in the porous material. However, the Gurson model can only predict the
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evolution of the porosity and consequently deliver inaccurate estimates when the shape

and the orientation of the voids is expected to change significantly, such as in the case

of low triaxiality loading. More precisely, the hardening rate predicted by the Gurson

model can be expressed as

HGUR = − (1− f)
∂ΦGTN

∂σkk

∂ΦGTN

∂f
(3.4)

Hence, when the loading is such that the porosity increases, the porous medium ex-

hibits an overall softening behavior, i.e a negative hardening rate HGUR < 0. In

contrast, when the loading causes a decrease in the porosity, the material hardens

(HGUR > 0). In the special case of pure stress or strain-rate deviatoric loadings, how-

ever, there is no change in the porosity and the hardening rate is null (HGUR = 0).

Consequently, the Gurson criterion contains information only for the volume fraction

of the voids f , which implies that these models are valid only for isotropic (spherical or

cylindrical) microstructures. Thus, Gurson’s model is expected to be sufficiently good

for high triaxial loadings, where the initially cylindrical or spherical voids preserve

their shape during the deformation process. Nevertheless, for low triaxial loadings the

shape and orientation of the voids evolve significantly resulting in a highly anisotropic

behavior for the porous material. In this last case, the Gurson model is expected to

be inaccurate.

For these reasons, several studies have include the microstructural anisotropy in

the limit analysis framework. For instance, Gologanu and Leblond [1993] provided

analytical expressions for the effective yield function of porous solids with ideally-

plastic matrix phase by considering a spheroidal hollow shell (the spheroidal void is

confocal with the external boundary of the shell) subjected to axisymmetric loadings,

such that the spheroidal symmetry is preserved during the deformation process.

Flandi and Leblond [2005a] later extended these models to the more general case of

viscoplastic porous materials. They consider a spheroidal shell containing a confocal

spheroidal void. In their analysis they made use of spheroidal coordinates, where they

proposed trial velocity fields in order to approximate the effective stress potential of

the porous material. Their trial velocity fields were based on an exact solution that

can be achieved under certain axisymmetric loading conditions. More specifically,

these axisymmetric loading conditions reduce to purely hydrostatic loading conditions

in the limiting case of a spherical void. In addition, by setting w1 = w2 = w, the
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spheroidal symmetry is preserved only if the non-zero components of the stress tensor

are σ11 = σ33 and σ33. The expressions for the effective stress potential are not be

repeated here in detail. However, for completeness, we include the effective yield

criterion for a porous solid with ideally-plastic matrix phase, expressed as

ΦFL (σ) =
C

σ2
0

(σ33 − σ11 + ησh)+2 q (g + 1) (g + f) cosh

(
κ
σh

σ0

)
−(g + 1)2−q2 (g + f)2 = 0,

(3.5)

with

σh = 2α2σ11 + (1− α2) σ33, (3.6)

where C = C (f, w), η = η (f, w), κ = κ (f, w), α2 = α2 (w) and g = g (w). The

above criterion reduces to the Gurson [1977] model in the case of purely hydrostatic

loading and the “variational” method (Ponte Castañeda [1991a]) for isochoric load-

ings. Furthermore, in expression (3.5), q plays the same role than the q1 parameter

introduced by Tvergaard and Needleman [1984].

In addition, Monchiet et al. [2014] also derive a new expression of the macroscopic

yield function for a rigid ideal-plastic von Mises matrix containing spheroidal cavities,

by considering Eshelby-like velocity fields (Eshelby [1957]). Such fields are built by

taking advantage of the solution of the equivalent inclusion problem in which the

eigenstrains rate are unknown for the plasticity problem. The corresponding criterion

takes the form

ΦMO (σ) =
σ2
Y

σ2
0

+ 2 (1 + g) (f + g) cosh

(
σX

σ0

)
− (1 + g)2 − (f + g)2 = 0, (3.7)

where

σ2
X =

3

2
σ · S (e2) ·P−1 · ST (e2) · σ, σ2

Y = σ̃2
eq − (1 + g) (f + g) σ2

X (3.8)

and

σ̃2
eq = σ2

eq +
3f

2
σ · [S (e1)− fS (e2)] · [L (e1)− fL (e2)]

−1 σ. (3.9)

The expressions of the tensors S, P and L are detailed in their article and will not be

repeated here.

Finally, Madou and Leblond [2012a] have recently proposed a limit-analysis based

model for general (non spheroidal) ellipsoidal cavities, through approximate homoge-

nization of some representative elementary porous cell. The associated yield criterion
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takes the following form

ΦMA (σ) =
Q (σ)

σ2
0

+2 (1 + g) (f + g) cosh

(
L (σ)

σ0

)
− (1 + g)2 − (f + g)2 = 0. (3.10)

Thus, through the complex form of Q and L, a large number of parameters is involved,

in which some are totally induced from micromechanical analysis.

3.1.2 Variational type models

In addition to the Gurson-like limit analysis kinematic approach, general constitu-

tive models for porous ductile solid subjected to general three-dimensional loading

conditions have also been developed based on the early works of Ponte Castañeda

[1991a], Kailasam and Ponte Castañeda [1998] for viscoplastic composites, which can

describe the change of void shape and orientation. Indeed, in pioneering contributions,

Ponte Castañeda [1991a], Ponte Castañeda and Zaidman [1994, 1996] first introduced

a nonlinear homogenization variational structure for composites comprising different

nonlinear phases. More specifically, defining linear comparison composites as proper

linearization of the nonlinear ones, this new structure allows for the estimation of

the effective energy densities of nonlinear composites through a suitable optimization

process.

One of the main advantages of this framework is the description of the microstruc-

ture evolution (i.e. porosity, void shape and orientation) following for instance the

study of Kailasam and Ponte Castañeda [1998], which proposed a general constitutive

theory for nonlinear composite materials with microstructure evolution as a conse-

quence of finite-strain boundary conditions. However, it has been shown by Ponte

Castañeda [1991b], Michel and Suquet [1992] that this porous Von Mises estimates,

so-called variational (“VAR”) models, are overly stiff at high stress triaxiality loadings.

In order to remedy to this problem, Danas and Ponte Castañeda [2009a] proposed

an improvement of the earlier VAR method for high triaxiality loading conditions,

while still being able to handle completely general loading conditions and ellipsoidal

microstructures. The corresponding estimates, so-called second-order (“SOM”) esti-

mated. Based on the works of Ponte Castañeda [2002a,b], the second method makes

use of the tangent moduli, evaluated at the phase averages (or first moments) of the

strain field, and yields estimates that are exact to second-order in the contrast, but

that can violate the bounds in some special cases. The SOM estimate for the effective
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stress potential of the nonlinear porous isotropic material can be expressed as

ŨSOM (σ) = (1− f)

[
ϵ̇0σ0
1 + n

(
σ̂eq
σ0

)n+1

− ϵ̇0

(
σ̌eq
σ0

)n(
σ̂|| −

σeq

1− f

)]
, (3.11)

where σ0, ϵ̇0 denote the flow stress and the reference strain-rate, respectively. In

addition, σ̂eq and σ̂|| depend on the matrix behavior while σ̌ is the reference tensor

specified in detail in Danas and Ponte Castañeda [2009a].

Nevertheless, the SOM model, although accurate, is computationally expensive.

Thus, another contribution, the “MVAR” model proposed by Danas and Aravas [2012],

is currently used since give fairly good estimates when compared with the SOM model

while being relatively simpler. This model is based on a modification of the initial

variational estimate. Indeed, in the original variational method, the effective yield

function is given by the explicit expression

Φ̃V AR (σ) =

√
σ · Ŝ · σ
1− f

− σ0 = 0, (3.12)

where the fourth-order tensor Ŝ is written in terms of the microstructural tensor Q,

as defined by

Ŝ = Ŝ
var

=
3

2
K+

3f

1− f
lim
κ→∞

µQ−1. (3.13)

The tensor Ŝ is independent of µ. In addition, limκ→∞ µQ−1 and consequently Ŝ

are functions of the microstructural variables sα. Thus, when the voids become

non-spherical, i.e., when the aspect ratios take values other than unity, Ŝ becomes

anisotropic. The explicit expressions for the evaluation of the microstructural tensor

limκ→∞ µQ−1 are detailed in the Appendix of Aravas and Ponte Castañeda [2004].

The idea behind the “MVAR” model is to modify only the hydrostatic part of Ŝ,

such that

Ŝ
mvar

= Ŝ
var

+
(
q2j − 1

)
J · Ŝ

var
· J, qj =

1− f√
f ln f

. (3.14)

The scalar factor qj brings the yield function into alignment with the spherical shell (or

equivalently the “composite sphere assemblage”) and the cylindrical shell (or equiva-

lently the “composite cylinder assemblage”) solutions when subjected to purely hydro-

static loadings, while preserving standard requirements, such as convexity and smooth-

ness of the yield surface for the entire range of microstructural configurations. In ad-

dition, it reproduces the Gurson model (Gurson [1977]) in the special case of spherical
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voids and purely hydrostatic loading, while satisfying exactly the variational bound

for all range of stress triaxialities and microstructures. Moreover, the correction fac-

tor qj brings into alignment the “MVAR” with “SOM” model for any choice of the

microstructural variables sα in the case of purely hydrostatic loadings.

On the other hand, a recent model (Cao et al. [2015]) has been constructed by

combining different ingredients from the Gurson-like and variational-derived models

to form a Gurson-like variational model, namely GVAR. This model accounts for both

void shape change and void rotation in three dimension.

Furthermore, it should be mentioned that a novel strategy for generating bounds

has been developed in (Ponte Castañeda [2012]) utilizing iterated homogenization.

Hence Agoras and Ponte Castañeda [2013] have for instance proposed some “iterated

variational estimates” (“ITVAR”) that were found to be quite accurate for general

ellipsoidal microstructures and a large range of stress triaxialities. Nonetheless, the

implementation of such approach seems at this point relatively difficult and numerical

costly.

3.2 A brief review of porous anisotropic materials

In this section, the role of the plastic anisotropy on ductile damage growth is discussed

through a little review of porous anisotropic models. More precisely, the case of

phenomenological Hill-type matrix as well as the case of single crystals matrix will

be studied in the following.

3.2.1 Hill matrix

To begin with, in the context of phenomenological Hill-type matrix, Benzerga and

Besson [2001] proposed an extension of the Gurson model for spherical and cylindrical

voids. More specifically, these authors derive an upper bound of the yield surface of

a hollow sphere, or a hollow cylinder, made of a perfectly plastic matrix obeying the

Hill criterion. The associated criterion takes the following form

Φ3D
BB (σ) =

3σd ·H · σd

σ2
0

+ 2 f cosh

(
1

h

σkk

σ0

)
− 1− f 2 = 0, k = 1, 3, (3.15)

where

h =

[
8

5

h1 + h2 + h3
h1h2 + h2h3 + h3h1

+
4

5

(
1

h4
+

1

h5
+

1

h6

)]1/2
. (3.16)
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The relation (3.15) represents the approximate analytic criterion for a porous or-

thotropic Hill type material containing spherical voids. This equation may be reduced

to the isotropic case by setting H = I. Consequently, the scalar factor h given by

equation (3.16) takes the value 2. Thus we obtain exactly the equation derived by

Gurson [1977] for a sphere made of an isotropic material.

Furthermore, in order to capture the microstructure anisotropy (void shape and

orientation) which has, as already observed in the case of isotropic matrix, a strong

influence on ductile damage growth, some studies has extended the previous model

for non spherical voids. For instance, Monchiet et al. [2008a], Keralavarma et al.

[2011] investigated the combined effects of void shape and matrix anisotropy on the

macroscopic response of ductile porous solids. The Keralavarma et al. [2011] model,

made in the context of spheroidal voids, is expressed as

ΦKE (σ) = C
3σ ·H · σ

σ2
0

+ 2 (1 + g) (f + g) cosh

(
κ
σ ·X
σ0

)
− (1 + g)2 − (f + g)2 = 0,

(3.17)

where C = C (f, w), κ = κ (f, w) and g = g (w). In addition, evolution laws were also

derived for the microstructure and the model extends previous analyses of uncoupled

effects of void shape and material anisotropy on the effective plastic behavior of solids

containing voids.

3.2.2 Other porous single crystal models

Although recent experimental observations (Srivastava et al. [2012]) at high enough

temperatures on tensile specimens indicated that the growth of initially present pro-

cessing induced voids in a nickel based single crystal superalloy as well as in standard

polycrystals played a significant role in limiting creep life, very little has been achieved

in the context of rate-dependent single crystals comprising voids of arbitrary ellipsoidal

shape subjected to finite deformation loading states.

Indeed, porous single crystals have mostly been studied through discrete disloca-

tions dynamic by (Huang et al. [2007], Hussein et al. [2008], Segurado and Llorca

[2010], Huang et al. [2012]) and molecular dynamics at smaller scales (Traiviratana

et al. [2008], Zhao et al. [2009], Tang et al. [2010a,b]), or using finite element simula-

tions (Yerra et al. [2010], Ha and Kim [2010], Srivastava and Needleman [2015]).

However, there have been some models which deal with special void geometries,
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particular loading conditions and slip system orientations. Theses studies involve for

instance the study of cylindrical voids with circular cross-section in a rigid-ideally

plastic face-centered cubic (FCC) single crystals using slip line theory (Kysar et al.

[2005], Gan et al. [2006], Gan and Kysar [2007]), the study two-dimensional “out of

plane” cylindrical voids with circular cross-section subjected to anti-plane loadings

(Idiart and Ponte Castañeda [2007]).

On the other hand, more recently, Han et al. [2013] have proposed a yield function

for rate-independent single crystals containing spherical voids. This model, based on a

variational approach and phenomenologically extended by modifying the dependence

on the mean stress, can be expressed as

max
s=1,K

(τ ∗s − τ0) = 0, (3.18)

with (
τs
τ ∗s

)2

+ α
2

45
f

(
σeq

τ ∗s

)2

+ 2 q1 f cosh

(
q2

√
3

20

σm

τ ∗s

)
− 1− (q1f)

2 = 0. (3.19)

In the relations (3.18) and (3.19), K denotes the number of slip systems, τs the resolved

shear stress of the sth slip system while τ0 represents the critical resolved shear stress

(CRSS) of the slip system. For the sake of simplicity, the authors have assumed that

each slip system the same CRSS. In addition, the parameters q1 and q2 play a similar

role as in the work by Tvergaard and Needleman [1984] whereas α is a new parameter

weighting the relative contribution of the resolved shear stress on each slip system and

the usual isotropic equivalent von Mises stress measure.

Moreover, we can observed that in the Han et al. [2013] model, which has been

built for isotropic microstructures (spherical voids) and assessed for FCC crystals,

the corresponding response under purely hydrostatic stressing is independent of the

orientation of the systems. However, as we will see in the present study in following

chapters, the purely hydrostatic response is extremely sensitive to the number of the

slip systems K as well as on the slip orientations in the context of highly anisotropic

porous single crystals.

Next, it should be mentioned that Paux et al. [2015] proposed an approximate

yield function for spherical voids embedded in cubic single crystals matrix. Indeed,

the authors deduced a Gurson-type yield criterion by making use of a regularized form

of the Schmid law and solving approximately the hydrostatic case with a limit-analysis
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calculation. It takes the form
(∑K

s=1 |τs|
nh

)1/nh

τ0


2

+ 2 q f cosh

(
κ

′ σm

τ0

)
− 1− (q f)2 = 0, (3.20)

where nh is the regularized parameter taken large enough to ensure coincidence be-

tween the regularized and the Schmid criteria, κ
′ ∼= 0.506 an anisotropic parameter

coming from the limit-analysis process and q an heuristic coefficient which plays a role

of adjustment of the porosity. It is interesting to notice that in the absence of porosity,

this criterion is arbitrarily close to the Schmid yield surface by considering nh −→ ∞.

The authors proposed nh = 100 to ensure a correct description in practise.

Furthermore, the corresponding effective response under purely hydrostatic stress-

ing is independent of the number and the orientation of the systems which has a critical

importance, as explained before. In addition, hexagonal single crystals and void shape

effects need to be take into account in future contributions.

Thus, while each one of these studies are significant contribution to the study of the

effective response of porous single crystals, none of them is general enough in the sense

of general void shapes and orientations, arbitrary crystal anisotropy, general loading

conditions and microstructure evolution.

3.3 Concluding remarks

In this chapter, we have made an attempt to summarize some of the many methods

proposed over the last twenty years for viscoplastic porous materials, and in particular

viscoplastic porous single crystals. These models will be compared with the “MVAR”

model proposed in the previous chapter.

In a first step, we discussed briefly the case of two-phase material systems compris-

ing an isotropic rate-(in)dependent matrix phase (metal usually described by von Mises

yield criterion or creep potential) and a voided phase (pores of spherical, spheroidal or

arbitrary ellipsoidal shapes). Thus, we recalled the well-known Gurson model (Gurson

[1977]), which is based on the exact solution for a shell (spherical or cylindrical cavity)

under hydrostatic loadings, suitably perturbed, to obtain estimates for the effective

behavior of ideally-plastic solids with isotropic or transversely isotropic distributions

of porosity. Following this model, several models (limit analysis models) were pre-
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sented, extending the initial contribution to viscoplasticity and void shape effects. On

the other hand, we present effective estimates based on the variational homogeniza-

tion theory using the concept of a linear comparison composite (see for instance Ponte

Castañeda [1991a], Danas and Ponte Castañeda [2009a], Danas and Aravas [2012],

Agoras and Ponte Castañeda [2013]), which are able to deal well with void shape and

orientation, fully loading conditions and microstructure evolutions.

Next, we presented some results for rate-(in)dependent anisotropic matrix systems.

In this regard then, we discussed either models based on phenomenological Hill-type

matrix (as for instance Benzerga and Besson [2001], Monchiet et al. [2008a], Ker-

alavarma and Benzerga [2010], or porous single crystals models. For the last class of

anisotropy, which has been observed numerically and experimentally (Srivastava et al.

[2012], Srivastava and Needleman [2012]) as critical in the modeling of anisotropic

ductile damage growth, nevertheless, there exist very few models in the literature. In-

deed, most contributions are restricted to special void geometries, loading conditions

and slip system orientations. For instance, Kysar et al. [2005], Gan et al. [2006], Gan

and Kysar [2007] have focussed on the study of cylindrical voids with circular cross-

section in a rigid-ideally plastic face-centered cubic (FCC) single crystals using slip

line theory, while Idiart and Ponte Castañeda [2007] has studied two-dimensional “out

of plane” cylindrical voids with circular cross-section subjected to anti-plane loadings.

In addition, more recently, Han et al. [2013], Paux et al. [2015] proposed models for

single crystals containing spherical voids without possible evolution of their shape.

Then, we have emphasizing that none of these methods, while being very important

steps, are complete enough to account for general crystal anisotropy, general ellipsoidal

microstructure, loading conditions as well as large deformations.

Finally, in order to address the “MVAR” model through numerical accurate sim-

ulations, one should discussed the numerical evaluation of the effective behavior of

porous single crystals. Such discussion will be carried out in the next chapter.
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Chapter 4

Numerical homogenization

Numerical techniques (e.g. finite element method) are able, in principle, to solve for

the local field in a porous material, provided that the exact location and distribution of

the pores is known. Nevertheless, in most cases of interest, the only available informa-

tion is the void volume fraction (or porosity) and, possibly, the two-point probability

distribution function of the voids (i.e., isotropic, orthotropic etc). Moreover, for suffi-

cient accuracy the element size that should be used in a finite element program must

be much smaller than the size of the voids, which in turn is smaller than the size of

the periodic unit-cell, especially when multiple pores are considered. This makes the

computation very intensive in time. Due to all these reasons, it is very difficult to use

the numerical results in a multi-scale analysis, especially when the unit-cell is rather

complex.

Nonetheless, one could use the numerical periodic homogenization technique as

rigorous test-bed to assess the simpler analytical models as the one proposed in the

previous section. More precisely, we can analyze the problem of a periodic porous ma-

terial considering a unit-cell that contains a given distribution of voids. On the other

hand, it is well known that a random porous material (e.g., the one in the analytical

model presented in this work) and the periodic material exhibit similar effective behav-

ior either in the case where the distribution of voids is complex enough (adequate for

large porosity) or in the limiting case where the porosity is small enough. Furthermore,

in these cases, the periodic unit-cell estimates, and consequently the effective proper-

ties of the periodic composite, are independent of the prescribed periodic boundary

conditions (Gilormini and Michel [1998]). In this regard then, the comparison between

the proposed model and the FE periodic unit-cell calculations are meaningful provided
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that complex periodic geometries are considered or porosity is small.

The following FE calculations have been carried out with the commercial code

Abaqus (Abaqus [2009]) by use of the crystal plasticity user-material subroutine of

(Huang [1991], Kysar [1997]) for 3D unit-cell computations. Furthermore, in the con-

text of 2D unit-cell computations, a specific user-material subroutine has been written

for specific 2D crystal plasticity based on the notes of (Huang [1991], Kysar [1997]).

4.1 2D unit-cell geometries and periodic boundary

conditions

As already seen before, FE periodic unit-cell calculations need to be carried out in

order to validate the model. Then, different 2D unit-cell geometries used in our com-

putations, for cylindrical microstructures subjected to periodic boundary conditions,

would be presented in this section. The present FE calculations are carried out using

a small strain formulation since the scope of the study is the estimation of the effective

response of the porous crystal with a given microstructural realization. Moreover, it

is important to notice that the entire unit-cell is considered here because there ex-

ist no planes of symmetry due to the coupling between the crystal anisotropy and

the microstructure anisotropy except in few special cases such as circular voids and

particular slip orientations.

4.1.1 2D unit-cell geometries

In the case of small porosities (f = 1% in the present study), geometries with one

void in the middle of the unit-cell can be used to estimate the effective behavior of the

porous material. In order to achieve this goal, a unit-cell made up of a long cylindrical

void with an initially circular (or even elliptical) cross-section in the plane 1− 2 (see

fig. 4.1a and fig. 4.1b) is considered. Moreover, plane-strain elements are used to

simulate the x3 direction.

On the other hand, for large porosities (f = 5% in the present study), one needs

more complex distribution of voids, i.e. multipore geometries to achieve isotropic dis-

tributions. In this regard, we make use of monodisperse distributions (e.g. Fig. 4.1c)

that are constructed by means of a random sequential adsorption algorithm (see Rin-
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toul and Torquato [1997], Torquato [2002]) which generates the coordinates of the pore

centers. For monodisperse distributions, the radius of each void is

Rm = L

(
f

πN

)1/2

, (4.1)

with N being the number of pores in the unit-cell and f the porosity.

In addition, the sequential addition of voids is constrained so that the distance

between a given void and the rest of the voids as well as the boundaries of the unit-

cell takes a minimum value that guaranties adequate spatial discretization. In order

to achive this we write down the following rules Segurado and Llorca [2002], Fritzen

et al. [2012], Jimenez and Pellegrino [2012], Lopez-Pamies et al. [2013], López Jiménez

[2014])

• The center-to-center distance between a new pore i in the sequential algorithm

and any previously generated pore j = 1, ..., i − 1 has to exceed the minimum value

fixed here as s1 = 2.04Rm. If the surface of particle i cuts any of the unit-cell surfaces,

this condition has to be checked with the pores near the opposite surface because the

microstructure of the composite is periodic. Mathematically, these conditions can be

expressed as

∥ Xi −Xj − h ∥≥ s1, (4.2)

where Xi
(
Xj
)
denotes the location of the center of particle i (j) and h is a vector

with entries 0, L, or − L where L is the dimension of the unit-cell.

• The void surface must be far enough from the unit-cell faces to prevent the occur-

rence of distorted finite element during meshing. This is expressed by the conditions

∣∣X i
k −Rm

∣∣ ≥ s2 and
∣∣X i

k +Rm − L
∣∣ ≥ s2 (k = 1, 2), (4.3)

where L is the length of the unit-cell s2 has been fixed as s2 = 0.05Rm.

Furthermore, periodic boundary conditions have to be applied to these geometries

since the validation of the model requires periodic FE unit-cell calculations.

4.1.2 2D periodic boundary conditions

The periodic boundary conditions are expressed in this case as (Michel et al. [1999],

Miehe et al. [1999])

v(x) = D · x+ v∗(x), v∗ periodic, (4.4)
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Figure 4.1: Undeformed unit-cell “square” geometry in the case of (a) a single circular void

(b) a distribution of several circular voids (c) a single elliptical void.

where the second-order tensor D denotes the symmetric part of the average velocity

gradient, x denotes the spatial coordinates and v∗ is a periodic field.

Next, one needs to fix one node to cancel the rigid body motion in the FE calcula-

tions. For convenience, we choose this node to be at the origin such that vi(0, 0) = 0

(i = 1, 2).

Subsequently, one can subtract the nodal velocities of opposite boundary sides

(where v∗ is equal) so that we get the following nodal constraints for the corner nodes,

i.e.,

vi(L1, 0)− vi(0, 0) = Di1L1 =vi(L1, 0)

vi(0, L2)− vi(0, 0) = Di2L2 =vi(0, L2), ∀i = 1, 2
(4.5)

The above simple relations show that the velocity components of the nodes (L1, 0) and

(0, L2) are one-to-one connected to the symmetric part of the average velocity gradient

D. Then, one can write the constraint equations for the rest of the nodes making use

of the result (4.5), i.e.,

vi(L1, L2)− vi(0, L2) = Di1L1 =vi(L1, 0)

vi(L1, x2)− vi(0, x2) = Di1L1 =vi(L1, 0)

vi(x1, L2)− vi(x1, 0) = Di2L2 =vi(0, L2), ∀i = 1, 2

(4.6)

The above algebraic analysis reveals that all periodic linear constraints between all

nodes can be written in terms of the velocities of two corner nodes, i.e., vi(L1, 0) and

vi(0, L2), which, in turn, are given in terms of D by equation (4.5). This, further,

implies that the only nodes that boundary conditions need to be applied are (L1, 0)

and (0, L2) (together with the axes origin (0, 0) which is fixed).
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In order, to validate the model proposed in this study, it is convenient to apply D

in such a way that the average stress triaxiality in the unit-cell remains constant.

4.1.3 Loading through stress triaxiality control

In this subsection, we will discuss the methodology for the application of a constant

average stress triaxiality in the unit-cell. This methodology has been originally pro-

posed by (Barsoum and Faleskog [2007b]) and further discussed in (Mbiakop et al.

[2015]).

Specifically, the applied load is such that the principal axes of the void do not rotate

around the 3rdaxis, and consequently the only non-zero components of the macroscopic

stress tensor are

σ = σ11 e1 ⊗ e1 + σ22 e2 ⊗ e2, (4.7)

As a consequence of above-defined load and the periodic boundary conditions, the

average deformation in the unit-cell is entirely described by the displacements of the

two corner nodes, e.g., u1(L1, 0) = U1(t) and u2(0, L2) = U2(t), denoted compactly as

U = {U1(t), U2(t)}, U̇ = {U̇1(t), U̇2(t)} ≡ {v1(t), v2(t)}. (4.8)

Recalling that the average strain-rate and stress tensors involve only two non-zero

components due to the applied triaxial loading, they can be expressed in vectorial

form (i.e., using the Voigt notation) as

D =

{
U̇1

L1 + U1

,
U̇2

L2 + U2

}
, σ = {σ11, σ22}. (4.9)

To proceed further, we rewrite the strain-rate tensor as

D = Q−1 · U̇, Q = diag (L1 + U1, L2 + U2) . (4.10)

We, next, define an external fictitious node1, whose generalized force, PG, and gen-

eralized displacement, pG, vectors, respectively, take the form PG =
{
PG
1 (t), 0

}
, pG ={

pG1 (t), p
G
2 (t)

}
.

1The fictitious node introduced in the present study has no specific physical interpretation, but

serves only as a mathematical tool to apply the required boundary conditions at the unit-cell.
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The stress state in the unit-cell is then controlled via a time-dependent kinematic

constraint (Michel et al. [1999]) obtained by equilibrating the rate of work in the unit-

cell with the rate of work done by the fictitious node on the unit-cell at time t, such

that

Ẇ = S σ ·D = PG · ṗG. (4.11)

Next, in order to control the loading path in the stress space, we couple the average

stress σ in the unit-cell with the generalized force vector associated with the fictitious

node PG via the constraint equation

S σ = C ·PG, C =

(
c1
|c1|

;
c2
|c2|

)T

, C−1 = CT , (4.12)

where C is a non-dimensional proper orthogonal matrix since ci (i=1,2) are two di-

mensional vectors that form an orthogonal basis set. The vectors ci (i=1,2) depend

on the three components of the average stress σ, such that

c1 = {σ11, σ22} , c2 = {−σ22, σ11} . (4.13)

On the other hand, the principal components of the stress field can be expressed as a

function of XΣ, via

1

σeq

{σ11, σ22} =
1√
3
{−1, 1}+XΣ{1, 1}, (4.14)

where σeq denotes the equivalent Von Mises part of σ, and we set σ22 − σ11 > 0 since

the gauge surface is symmetric with respect to the origin.

The above expressions for the vectors ci (i=1,2) together with the relation (4.14)

further imply that the matrix C in equation (4.27) is only a function of the stress

triaxiality XΣ but not of the equivalent stress σeq. By substitution of equations (4.24)

and (4.27) in (4.26), one gets

U̇ = Q ·C · ṗG. (4.15)

The above expression provides the kinematic constraints between the degrees of free-

dom corresponding to the sides of the unit-cell (i.e., U) and the degrees of freedom

of the fictitious node (i.e., pG). These nonlinear constraints are applied in the fi-

nite element software ABAQUS by use of the multi-point constraint user subroutine

(MPC).
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4.2 3D unit-cell geometries and periodic boundary

conditions

In order to validate the model for general ellipsoidal microstructure, 3D FE periodic

unit-cell calculations need to be carried out. Hence, several 3D unit-cell geometries

used in our computations, subjected to periodic boundary conditions, would be pre-

sented in this section.

4.2.1 3D unit-cell geometries

In the case of ellipsoidal voids, geometries with one void in the middle of the unit-

cell can be used to estimate the effective behavior of the porous material, since small

porosities (f = 1%) would be considered in the present study (see fig 4.3).

On the other hand, for spherical voids, one should considered more complex distri-

bution of voids in order to address possible distribution effects. Indeed, let us consider

for instance an infinite number of slip systems matrix (Tresca matrix) various porosi-

ties f = 0.01%, 0.1%, 1%, 2%, hydrostatic loading conditions applied on different

geometries. First of all, an axisymmetric spherical shell consisting of quadrilateral

4-node elements CAX4 (see 4.2c), secondly an axisymmetric cylindrical unit-cell “one

pore geometry” with elements CAX4 (see 4.2d) and finally multipore geometries to

achieve isotropic distributions (fig 4.2a,b)). In this context, i.e. rate-independent

Tresca matrix, the results obtained are compared in fig 4.4 with the theoretical hydro-

static limit of the effective behavior of composite spherical assemblages CSA (Hashin

[1962], Gurson [1977], Leblond et al. [1994]), expressed as σm = −2σ0 ln(f)/3. As it

is shown, the axisymmetric spherical shell geometry leads to the exact average hydro-

static behavior in all the cases, as expected. Moreover, the axisymmetric cylindrical

unit-cell tends to significantly underestimate the overall response, from ∼ 3% at lower

porosities (f = 0.01%) to ∼ 10% at moderate ones (f = 2%). These differences were

also observed in Cazacu et al. [2014b] where the same geometry was used to carry out

the calculations. Furthermore, the multipore geometries seems to deal well with the

average hydrostatic behavior, since more sophisticated distribution of voids is chosen

and thus tend to achieve isotropic distributions.

Consequently, in the case of spherical voids, we should make use of monodisperse
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Figure 4.2: Undeformed unit-cell geometry in the case of (a), (b) a distribution of several

spherical voids (the cut is made on the plane [1 1 1]) (c) an axisymmetric spherical shell (d)

an axisymmetric cylindrical unit-cell “one pore geometry” (only 1/2 of the unit-cell).

distributions (e.g. fig 4.2a) that are constructed by means of a random sequential

adsorption algorithm (see Rintoul and Torquato [1997], Torquato [2002]) which gen-

erates the coordinates of the pore centers. For monodisperse distributions, the radius

of each void is

Rm = L

(
3 f

4πN

)1/3

, (4.16)

with N being the number of pores in the unit-cell and f the porosity.

In addition, the sequential addition of voids is constrained so that the distance

between a given void and the rest of the voids as well as the boundaries of the unit-

cell takes a minimum value that guaranties adequate spatial discretization. In or-

der to achieve this goal, we use the following rules detailed in (Segurado and Llorca

[2002], Fritzen et al. [2012], Jimenez and Pellegrino [2012], Lopez-Pamies et al. [2013],
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a) b)

Figure 4.3: Undeformed unit-cell geometry with a single ellipsoidal void (the cut is made

on the plane [1 1 1]).

σ σ/m 0

Figure 4.4: Representation of the average hydrostatic stress as a function of the porosity in

a porous Tresca matrix, for several mesh geometries.

López Jiménez [2014])

• The center-to-center distance between a new pore i in the sequential algorithm

and any previously generated pore j = 1, ..., i − 1 has to exceed the minimum value

fixed here as s1 = 2.04Rm. If the surface of particle i cuts any of the unit-cell surfaces,

this condition has to be checked with the pores near the opposite surface because the

microstructure of the composite is periodic. Mathematically, these conditions can be

expressed as

∥ Xi −Xj − h ∥≥ s1, (4.17)

where Xi
(
Xj
)
denotes the location of the center of particle i (j) and h is a vector

with entries 0, L, or − L where L is the dimension of the unit-cell.
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• The void surface must be far enough from the unit-cell faces to prevent the occur-

rence of distorted finite element during meshing. This is expressed by the conditions

∣∣X i
k −Rm

∣∣ ≥ s2 and
∣∣X i

k +Rm − L
∣∣ ≥ s2 (k = 1, 3), (4.18)

where L is the length of the unit-cell s2 has been fixed as s2 = 0.05Rm.

Furthermore, periodic boundary conditions have to be applied to these geometries

since the validation of the model requires periodic FE unit-cell calculations.

4.2.2 3D periodic boundary conditions

The periodic boundary conditions are expressed in this case as (Michel et al. [1999],

Miehe et al. [1999])

v(x) = D · x+ v∗(x), v∗ periodic, (4.19)

where the second-order tensor D denotes the symmetric part of the average velocity

gradient, x denotes the spatial coordinates and v∗ is a periodic field.

Next, one needs to fix one node to cancel the rigid body motion in the FE calcula-

tions. For convenience, we choose this node to be at the origin such that vi(0, 0, 0) = 0

(i = 1, 3).

Subsequently, one can subtract the nodal velocities of opposite boundary sides

(where v∗ is equal) so that we get the following nodal constraints for the corner nodes,

i.e.,

vi(L1, 0, 0)− vi(0, 0, 0) = Di1L1 =vi(L1, 0, 0)

vi(0, L2, 0)− vi(0, 0, 0) = Di2L2 =vi(0, L2, 0)

vi(0, 0, L3)− vi(0, 0, 0) = Di3L3 =vi(0, 0, L3), ∀i = 1, 3

(4.20)

The above simple relations show that the velocity components of the nodes (L1, 0, 0),

(0, L2, 0) and (0, 0, L3) are one-to-one connected to the symmetric part of the average

velocity gradient D. Then, one can write the constraint equations for the rest of the

nodes making use of the result (4.20), i.e.,

vi(L1, x2, x3)− vi(0, x2, x3) = Di1L1 =vi(L1, 0, 0)

vi(x1, L2, x3)− vi(x1, 0, x3) = Di2L2 =vi(0, L2, 0)

vi(x1, x2, L3)− vi(x1, x2, 0) = Di3L3 =vi(0, 0, L3), ∀i = 1, 3.

(4.21)
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The above algebraic analysis reveals that all periodic linear constraints between all

nodes can be written in terms of the velocities of three corner nodes, i.e., vi(L1, 0, 0),

vi(0, L2, 0) and vi(0, 0, L3), which, in turn, are given in terms of D by equation (4.20).

This, further, implies that the only nodes that boundary conditions need to be applied

are (L1, 0, 0), (0, L2, 0) and (0, 0, L3) (together with the axes origin (0, 0, 0) which is

fixed).

In order, to validate the model proposed in this study, it is convenient to apply D

in such a way that the average stress triaxiality in the unit-cell remains constant.

4.2.3 Loading through stress triaxiality control

In this subsection, we will discuss the methodology for the application of a constant

average stress triaxiality in the unit-cell. This methodology has been originally pro-

posed by (Barsoum and Faleskog [2007b]) and further discussed in (Mbiakop et al.

[2015]).

As a consequence of above-defined load and the periodic boundary conditions, the

average deformation in the unit-cell is entirely described by the displacements of the

three corner nodes, e.g., u1(L1, 0, 0) = U1(t), u2(0, L2, 0) = U2(t) and u3(0, 0, L2) =

U3(t), denoted compactly as

U = {U1(t), U2(t), U3(t)}, U̇ = {U̇1(t), U̇2(t), U̇3(t)} ≡ {v1(t), v2(t), v3(t)}. (4.22)

Recalling that the average strain-rate and stress tensors involve only two non-zero

components due to the applied triaxial loading, they can be expressed in vectorial

form (i.e., using the Voigt notation) as

D =

{
U̇1

L1 + U1

,
U̇2

L2 + U2

,
U̇3

L3 + U3

}
, σ = {σ1, σ2, σ3}. (4.23)

To proceed further, we rewrite the average strain-rate tensor as

D = Q−1 · U̇, Q = diag (L1 + U1, L2 + U2, L3 + U3) , (4.24)

where Q is diagonal matrix of dimension three.

We, next, define an external fictitious node2, whose generalized force, PG, and

2The fictitious node introduced in the present study has no specific physical interpretation, but

serves only as a mathematical tool to apply the required boundary conditions at the unit-cell.
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generalized displacement, pG, vectors, respectively, take the form

PG =
{
PG
1 (t), 0, 0

}
, pG =

{
pG1 (t), p

G
2 (t), p

G
3 (t)

}
. (4.25)

The stress state in the unit-cell is then controlled via a time-dependent kinematic

constraint Michel et al. [1999] obtained by equilibrating the rate of work in the unit-

cell with the rate of work done by the fictitious node on the unit-cell at time t, such

that

Ẇ = V σ ·D = PG · ṗG. (4.26)

Next, in order to control the loading path in the stress space, we couple the average

stress σ in the unit-cell with the generalized force vector associated with the fictitious

node PG via the constraint equation

V σ = C ·PG, C =

(
c1
|c1|

;
c2
|c2|

;
c3
|c3|

)T

, C−1 = CT , (4.27)

where C is a non-dimensional proper orthogonal matrix since ci (i=1,2,3) are three

dimensional vectors that form an orthogonal basis set. The vectors ci (i=1,2,3) depend

on the three components of the average stress σ, such that

c1 = {σ1, σ2, σ3} , c2 =
{
σ1σ3, σ2σ3,−(σ2

1 + σ2
2)
}
, c3 = {−σ2, σ1, 0} . (4.28)

On the other hand, the principal components of the stress field can be expressed as a

function of the average stress triaxiality XΣ and the average Lode angle θ, via

3

2σeq

{σ1, σ2, σ3} =
{
cos θ,− cos

(
θ +

π

3

)
,− cos

(
θ − π

3

)}
+

3

2
XΣ{1, 1, 1}. (4.29)

where σeq denotes the equivalent Von Mises part of σ.

The above expressions for the vectors ci (i=1,2,3) further imply that the matrix

C in equation (4.27) is only a function of the average stress triaxiality XΣ and the

average Lode angle θ but not of the equivalent stress σeq. By substitution of equations

(4.24) and (4.27) in (4.26), one gets

U̇ = Q ·C · ṗG. (4.30)

The above expression provides the kinematic constraints between the degrees of free-

dom corresponding to the sides of the unit-cell (i.e., U) and the degrees of freedom

of the fictitious node (i.e., pG). These nonlinear constraints are applied in the finite

element software ABAQUS Abaqus [2009] by use of the multi-point constraint user

subroutine (MPC).
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4.3 Concluding remarks

The numerical evaluation of the effective behavior of porous single crystals has been

discussed in this chapter. In order to achieve this goal, we have first recalled that a

random porous material like the one presented in this study and a periodic material

exhibits similar effective behavior when the distribution of voids is complex enough

(appropriate for large porosity) or when the porosity is small enough. Thus, it is

possible to make use of numerical periodic homogenization technique, and precisely to

analyze the problem of a periodic porous material considering a unit-cell that contains

a given distribution of voids. Hence, the comparison between the proposed model and

the FE periodic unit-cell calculations seems relevant in this context. Furthermore, the

unit-cells are subjected to finite deformations, leading to an evolution of the underlying

microstructure.

Finally, the results obtained by the finite element method for the evolution of the

microstructural variables (i.e., porosity, shape and orientation of the voids) as well as of

the effective behavior of the porous medium will be used to assessed the corresponding

results obtained by the “MVAR” model.
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Chapter 5

Instantaneous behavior: cylindrical

voids

In the previous chapters, several theoretical and numerical homogenized models have

been described to estimate the effective behavior and the evolution of the underlying

microstructure in viscoplastic porous single crystals subjected to large deformations.

In the present and subsequent chapters, these models will be used to study the behavior

of porous media with specific microstructures.

In this chapter, the instantaneous response of porous materials consisting of aligned

cylindrical voids in the 3-direction distributed randomly in a viscoplastic single crystal

matrix phase subjected to plane-strain loading conditions (see Fig.2.2) is studied.

In addition, it is important to precise that in the present context, the equivalent

and in-plane hydrostatic macroscopic stresses are defined by

σeq =

√
3

2

[
(σ11 − σ22)

2 + 4 σ2
12

]1/2
, σm =

σ11 + σ22

2
, XΣ =

σm

σeq

, (5.1)

whereXΣ is the stress triaxiality defined in the context of two-dimensional plane-strain

problems.

5.1 General expressions

Before proceeding to the discussion of the results, it is useful to present first analytical

expressions for the evaluation of the effective viscoplastic stress potential delivered by

the “MVAR” method. As already discussed, the effective stress potential of the porous
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single crystal is given by (2.186), which is recalled here for completeness to

Ũmvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√
σ · Ŝ

(s)
· σ

τ
(s)
0 (1− f)


n+1

, (5.2)

where

Ŝ
(s)

≡ Ŝ
mvar,(s)

= Ŝ
var,(s)

+
(
q2J − 1

)
J · Ŝ

var,(s)
· J, (5.3)

and

Ŝ
var,(s)

=
1

2
E(s) +

f

2K w
√
2

√∑
j ̸=l

(1− cos 4 (θ(j) − θ(l)))G, ∀s = 1, K. (5.4)

The components of tensor G are given by equation (2.170) and are repeated here

G1111 = w2 cos2 ψ + sin2 ψ, G1122 = 0, G1112 =
1

4

(
w2 − 1

)
sin 2ψ,

G2222 = cos2 ψ + w2 sin2 ψ, G2212 = G1112, G1212 =
1

4

(
1 + w2

)
.

(5.5)

In addition, qJ and βn are

qJ =

√
2

f

{
(1− f) (βn)

1
n

n(f−1/n − 1)

} n
n+1

, βn =
2

(n+ 1)
√
π

Γ
(
n+2
2

)
Γ
(
n+1
2

) , (5.6)

with Γ being the Γ−function.

5.2 Results: Assessment of MVAR model via FE

simulations

This section presents results for the effective behavior of rate-dependent porous single

crystals as predicted by the modified variational model (MVAR) proposed in this work.

The predictions of the MVAR are compared with corresponding results obtained by

the FE simulations described in chapter 4. Before proceeding with the discussion of

the results, it is useful to introduce first the various material and loading parameters

used in the following figures. The present study investigates a range of creep exponents

n = (1, 2, 5, 10), porosities f = (1%, 5%), void shapes and orientations (e.g., circular

and elliptical) as well as a number of slip systems K = (1, 2, 3, 4, 5, 10) with various

orientations.
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Moreover, motivated by common practice in crystal plasticity studies, we consider

the case where all the slip systems of the matrix have the same critical resolved shear

stress (CRSS) and reference slip-rate, i.e

τ
(s)
0 = τ0, γ̇

(s)
0 = γ̇0. (5.7)

5.2.1 Computation of the gauge surface in the numerical ho-

mogenization

The evaluation of the gauge surfaces resulting from the numerical computations is non

trivial and is described in the following. The general idea follows from the earlier study

of Flandi and Leblond [2005b] but is rather different since it has to be appropriately

modified to apply for the general commercial code Abaqus used in the present study.

By making use of the homogeneity of degree n+1 in Σ of the function Ũ , one can

write

Ũ(Σ) =
(
Σeq

)n+1
ŨN(N , XΣ) =

γ̇0τ
−n
0

n+ 1
, (5.8)

while N = Σ
d
/Σeq describes the loading direction in the deviatoric space, with Σ

d

and Σeq denoting the deviatoric and equivalent Von Mises part of the average stress

Σ, respectively, corresponding to the equi-potential surface.

Next, given any average stress, σ, one can write

Ũ(σ) = (1− f) min
σ∈S(σ)

⟨U(σ)⟩(1) = (σeq)
n+1 ŨN(N , XΣ). (5.9)

Due to the homogeneity of Ũ , it is noted that ŨN(N , XΣ) is the same function in (5.8)

and (5.9), and hence combination of these two equations gives

Σeq =
[
(n+ 1)γ̇−1

0 τn0 Ũ(σ)
] −1

n+1
σeq. (5.10)

In the FE code, D11 and the average XΣ in the unit-cell are applied and remain con-

stant throughout the process, as discussed in chapter 4 (subsection 4.1.3), whereby D22

and σeq are calculated. In addition, postprocessing of the numerical results provides

Ũ(σ) (via definition (2.16)). Finally, Σeq is readily obtained from equation (5.10),

while Σm = XΣ Σeq given the known stress triaxiality XΣ.

At this point it is perhaps necessary to clarify that the present work focuses on

two-dimensions (i.e., plane-strain loadings) and the porous crystal exhibits two types
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of anisotropy. The first is that of the crystal matrix and the corresponding slip systems

and the second is that of the void shape which is elliptical in general. Therefore, the

effective response of the porous crystal is a function of all the three in-plane stress

components σ11, σ22 and σ12 (or equivalently Σ11, Σ22 and Σ12). Following traditional

notation in the context of porous materials, the following results are broken down

into two major groups. The first group shows the effective response of the porous

crystals in the space Σm − Σeq, which is equivalent to setting Σ12 = 0 and working in

the space σ11 − σ22. This stress space is very important since it involves directly the

hydrostatic component Σm. The second group shows results in the deviatoric plane as

this is defined by the in-plane shear stresses (Σ11−Σ22)/2-Σ12, and for given constant

hydrostatic stress Σm. This way, our results are complete in the sense that they cover

the entire stress space but using traditional and well-understood stress measures, as

discussed above.

5.2.2 Purely hydrostatic loadings for circular voids

In this section, we present results for the effective behavior of porous single crystals

submitted to purely hydrostatic loadings for a range of creep exponents n = (1, 2, 5, 10)

and porosities f = (1%, 5%).

First, we consider the case of K “equiangular” slip systems (i.e., systems forming

equal angles with each other in the interval [−π/2, π/2]). Fig. 5.1 shows MVAR and FE

comparisons for the average hydrostatic stress Σm as a function of the number of slip

systems K. The MVAR is found to be in very good agreement with the FE results for

the entire range of creep exponents (i.e., nonlinearities) n and porosities f considered

here. Rather interestingly, for large values of n = 5, 10 a slightly non-monotonic

response is observed in the FE calculations for K = 4 slip systems, as observed in

Fig. 5.1c,d, and in this specific case the MVAR model tends to underestimate slightly

the value of the hydrostatic point for K = 4. Moreover, as K increases we attain the

isotropic limit where the Composite Cylinder Assemblage (CCA) result has been used

to correct the original VAR model.

Interestingly, it is found that for highly anisotropic equianglular crystals, K = 1

and K = 2 (with 90o angle between the systems) the obtained hydrostatic point is

infinite, i.e., the porous single crystal is incompressible, and thus it is not shown in



Instantaneous behavior: cylindrical voids 87

a) b)

MVAR

FEM

n = 1

f=1%

f=5%

Number of slip systems, K

m

-
Σ

MVAR

FEM

Number of slip systems, K

n = 2

f=1%

f=5%
m

-
Σ

c) d)

Number of slip systems, K

MVAR

FEM

n = 5

f=1%

f=5%m

-
Σ

MVAR

FEM

n = 10

f=5%

f=1%

Figure 5.1: Comparison between the average hydrostatic stress obtained by the model

(MVAR) and the one resulting from FE results for a range of porosity f = (1%, 5%), in the

cases of K = (3, 4, 5, 10) “equiangular slip systems” for (a) n = 1, (b) n = 2, (c) n = 5, (d)

n = 10.

Fig. 5.1. In order to further analyze this very critical effect, we consider next crystals

with K = 2 slip systems that form arbitrary angles θ(1,2). The porosity is set equal to

f = 1% (the conclusions drawn in this case are independent of the porosity considered)

and the creep exponents are n = (1, 2, 5, 10). A parametric study of the relative angle

∆θ = θ(1) − θ(2) = (20o, 30o, 40o, 45o, 50o, 60o, 70o) between the two slip systems is

carried out next. It is mentioned however, that in the case of highly anisotropic

crystals (i.e., 0o < ∆θ < 20o and 70o < ∆θ < 90o) the numerical simulations exhibit

convergence issues and thus no FE results are shown in this range (see also (Willot

et al. [2008]). In this regard, Fig. 5.2 presents MVAR and FE normalized average

hydrostatic stresses, Σm(∆θ = 45o)/Σm as function of the difference between slip

orientations ∆θ, for several creep exponents. The major observation in the context of

this figure is that for ∆θ = 0o (i.e., K = 1 slip system) and ∆θ = 90o (i.e., equiangular
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slip systems) the normalized stresses Σm(∆θ = 45o)/Σm = 0 or equivalently Σm → ∞.

This implies that even if pores are present in this case the effective porous crystal

response is entirely incompressible for all creep exponents considered here. This result

suggests that for such low symmetry crystals certain directions appear as “rigid” to

plastic deformation thus constraining slip under highly symmetric loads such as purely

hydrostatic tension or compression.

In turn, the maximum value of Σm(∆θ = 45o)/Σm (i.e., the minimum value for

Σm) is found for ∆θ = 45o. More specifically, as observed in Fig. 5.2a (n = 1) and

Fig. 5.2b (n = 2), there is very good agreement between the MVAR and the FE for

all slip orientations considered, as expected for small nonlinearities. The agreement

becomes less good for higher creep exponents n = 5, 10 but still remains relatively

good.

a) b)

n = 1, f = 1%

Σ
  
(θ

 =
 4

5
°)

 /
 Σ

 
m

m

-
-

Δθ = θ     θ   (°)
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n = 2, f = 1%

Δθ = θ     θ   (°)
  _(1) (2)

c) d)

n = 5, f = 1%

Δθ = θ     θ   (°)
  _(1) (2)

n = 10, f = 1%
FEM

θ = θ     θ   (°)
  _(1) (2)

Figure 5.2: Comparison between the average normalized hydrostatic stress obtained by

the model (MVAR) and the one resulting from FE results for a single porous crys-

tal K = 2 slip systems, a porosity f = 1% and a range of slip orientations ∆θ =

(20o, 30o, 40o, 45o, 50o, 60o, 70o) in the cases (a) n = 1, (b) n = 2, (c) n = 5, (b) n = 10.
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5.2.3 Gauge surfaces for circular voids

Figure 5.3 shows cross-sections of the effective gauge surfaces in the Σm − Σeq plane

in the case of a single crystal comprising K = 3 slip systems with slip orientations

(a) θ(s) = (−60o, 0o, 60o) (equiangular slip systems) and (b) θ(s) = (−54.7o, 0o, 54.7o)

which correspond to a face cubic-centered (FCC) single crystal in the 2−dimensional

context Rice [1987]. Various creep exponents n = (1, 2, 5, 10) are considered while

the porosity is set to f = 1%. In the context of this figure, we observe a very good

agreement between the MVAR predictions and the FE results for the entire range

of creep exponents n. A rather interesting observation is that as the nonlinearity n

increases the porous crystal becomes more compliant at large values of Σm (i.e., high

triaxialities) but more stiff at small Σm (i.e. low stress triaxialities). As a consequence

this leads to the inter-crossing of the curves corresponding to different n as observed

in Fig. 5.3.

a) b)

     f = 1%, K = 3, 

θ   = (-60°, 0°, 60°)

MVAR

FEM n = 10
5 2

1

m

eq

-    f = 1%, K = 3, FCC, 

θ   = (-54.7°, 0°, 54.7°) 

MVAR

FEM n = 10
25

1

eq

-

m

-

Figure 5.3: Gauge surfaces in the Σm − Σeq plane for a porous single crystal with circular

voids ofK = 3 slip systems, a porosity f = 1% and a range of creep exponent n = (1, 2, 5, 10).

Comparison between the model (MVAR) and the FE results in the cases of (a) slip orien-

tations θ(s) = (−60o, 0o, 60o) (equiangular), (b) slip orientations θ(s) = (−54.7o, 0o, 54.7o)

(FCC).

In Fig. 5.4, we present cross-sections of the effective gauge surfaces in the Σm−Σeq

plane in the case of K = 2 slip systems crystal for a porosity f = 1% and the

same range of creep exponents. Specifically we consider slip orientations (a) θ(s) =

(−22.5o, 22.5o) and (b) θ(s) = (−15o, 15o). The main observation in the context of this

figure is that for several slip orientations as well as for several number of slip systems

(see previous cases with K = 3), there is a very good agreement between the MVAR
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predictions and the FE results for f = 1%, at the full range of creep exponents and

the entire range of the stress triaxialities considered here.

a) b)
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Figure 5.4: Gauge surfaces in the Σm − Σeq plane for a porous single crystal with circular

voids ofK = 2 slip systems, a porosity f = 1% and a range of creep exponent n = (1, 2, 5, 10).

Comparison between the model (MVAR) and the FE results in the cases of (a) slip orienta-

tions θ(s) = (−22.5o, 22.5o), (b) slip orientations θ(s) = (−15o, 15o).

In order to assess the accuracy of the MVAR model at higher porosities f = 5%

we carry out FE simulations using the more complex periodic “multipore” unit-cell

presented in chapter 4. As detailed further in the next section, at f = 5% the void

interactions become much more critical and thus a square unit-cell with one single

void in the middle can lead to inconsistent comparisons when compared with the

corresponding MVAR estimates for isotropic pore distributions (i.e., aspect ratio w =

1). In this regard, Fig. 5.5 shows cross-sections of the effective gauge surfaces in the

Σm −Σeq plane in the case of a higher porosity f = 5% and single crystals comprising

(a) K = 3 slip systems with slip orientations θ(s) = (−54.7o, 0o, 54.7o) (FCC) and

(b) K = 2 slip systems with slip orientations θ(s) = (−15o, 15o), respectively. Again,

the agreement between the MVAR predictions and the FE results is very good for

small nonlinearities n = 1, 2, whereas it tends to overestimate the effective response

at higher ones (i.e., n = 5, 10). In any case, the maximum error is found to be in

the order of ∼ 6%. It is also noted that the MVAR model deals extremely well with

increasing anisotropy, i.e., as we go from K = 3 to K = 2 slip systems.

As we will see next, these differences between the MVAR and FE results with

increasing nonlinearity (i.e., creep exponent) can be attributed to the increasing void

interaction at high n.
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Figure 5.5: Gauge surfaces in the Σm − Σeq plane for a porous single crystal with circular

voids of a porosity f = 5% and a range of creep exponent n = (1, 2, 5, 10). Comparison

between the model (MVAR) and the FE results in the cases of (a) K = 3 slip systems and

slip orientations θ(s) = (−54.7o, 0o, 54.7o) (FCC), (b)K = 2 slip systems and slip orientations

θ(s) = (−15o, 15o).

5.2.4 Full field contours for periodic unit-cells

Following the last remark of the previous section, we show, next, contours of the the

total slip, defined as the sum of the absolute value of the slip on each individual slip

system γtot normalized by the reference slip-rate γ̇0 (see Niordson and Kysar [2014] for

more details) for several periodic unit cells, porosities and creep exponents.

First, we consider the simplest periodic geometry which consists of a single pore

in the middle of a square unit-cell such that the porosity f = 1%. Figure 5.6 shows

countours of γtot/γ̇0 for n = 10,K = 3 equiangular slip systems and three applied stress

triaxialities (a) XΣ = 0, (b) XΣ = 3 and (c) XΣ → ∞ (i.e., pure hydrostatic tension).

A dramatic change of the deformation mechanism is observed as one goes from low

XΣ (see Fig. 5.6a) to high ones (see Fig. 5.6c). While for XΣ = 0 the deformation map

exhibits a 90o symmetry, as we increase hydrostatic tension the fields become highly

localized around the pore geometry exhibiting 12-fold symmetry as already observed

by Niordson and Kysar [2014] in this last case. At a value of XΣ = 3 in Fig. 5.6b, the

slip fields show a combination of both of the above observed symmetries.

In the following, we analyze the results obtained for a unit-cell comprising a large

number of uniformly distributed voids, as described in chapter 4. More specifically,

in Fig. 5.7, we consider purely hydrostatic loads (i.e., XΣ → ∞) with three different

creep exponents n = 1, 5, 10 and two porosities f = 1, 5%. First, we compare the effect
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Figure 5.6: Contour of the total slip for a K = 3 equiangular slip systems with a “one pore”

geometry and a porosity of f = 1%. Case of (a) XΣ = 0 (b) XΣ = 3 and (c) XΣ = ∞.

of the porosity and subsequently the effect of the nonlinearity n upon the obtained

fields. Comparison of Figs. 5.7a-c with the corresponding Figs. 5.7d-e shows that

when f = 1% the total slip γtot/γ̇0 is rather concentrated around each individual

pore even for larger exponents n. In contrast when f = 5%, the pore interactions

become more significant as expected. Moreover, in the case of f = 5%, we observe

a gradual deformation localization with increasing nonlinearity n as one goes from

Fig. 5.7d towards Fig. 5.7e. The pore interaction and deformation localization becomes

so pronounced that material around a significant number of pores is not at all loaded.

This effect is much less pronounced when f = 1% and n = 10 in Figs. 5.7c. These

last observations imply that for low porosities f = 1% the use of the simpler unit-cell

shown in Fig. 5.6 is accurate enough, while for larger porosities (even for 5%) the pore

interactions become non-negligible and unit-cells with large number of pores should

be used. Finally, this strong deformation localization observed in Fig. 5.6e explains

why the MVAR model is in less good agreement with the FE with increasing creep

exponent n and increasing porosity f .

5.2.5 Macroscopic strain-rates for circular voids

In this section, for the sake of conciseness, we present only representative results for

the macroscopic strain-rates. Those constitute a direct measure of the normal (i.e.,

slope) to the previously shown gauge surfaces and hence have important implications
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n = 1, f = 1% n = 5, f = 1% n = 10, f = 1%
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n = 1, f = 5% n = 5, f = 5% n = 10, f = 5%

Figure 5.7: Contour of the total slip for a FCC single crystal with two “multipore” geome-

tries of 60 pores (f = 1%) and 40 pores (f = 5%), in macroscopic hydrostatic loading state

(XΣ = ∞). Case of (a) f = 1%, n = 1 (b) f = 1%, n = 5 (c) f = 1%, n = 10 (d) f = 5%,

n = 1 (e) f = 5%, n = 5 (f) f = 5%, n = 10.

on the developed plastic anisotropy as well as void growth (see Danas et al. [2008a]).

More specifically, Fig. 5.8 shows the average strain-rates in the Dm − Deq plane in

the case of a single crystal comprising (a) K = 3 slip systems with slip orientations

θ(s) = (−54.7o, 0o, 54.7o) (FCC) and (b) K = 2 slip systems with slip orientations

θ(s) = (−22.5o, 22.5o). Results are obtained for several creep exponents n = (1, 2, 5, 10)

and a porosity f = 1%. As observed in the context of this figure, the MVAR predic-

tions are in good agreement with the FE results for the entire range of parameters

used. Conversely with the corresponding gauge surfaces, the hydrostatic strain-rate

Dm increases with increasing n at high triaxialities and vice verse for low triaxialities.

This has direct implications on the corresponding void growth at large triaxialities

and as already expected Danas and Ponte Castañeda [2009b] the voids will grow much

faster at higher creep exponents n and higher triaxialities.
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Figure 5.8: Macroscopic strain-rates in the Dm − Deq plane for a porous single crystal

with circular voids of a porosity f = 1% and a range of creep exponent n = (1, 2, 5, 10).

Comparison between the model (MVAR) and the FE results in the cases of (a) K = 3 slip

systems and slip orientations θ(s) = (−54.7o, 0o, 54.7o) (FCC) and (b) K = 2 slip systems

and slip orientations θ(s) = (−22.5o, 22.5o), .

5.2.6 Gauge surfaces for elliptical voids

In this subsection, we show results for porous single crystals comprising elliptical voids,

i.e., with aspect ratio w ̸= 1 and angles ψ ̸= 0. The first microstructure considered is

defined by porosity f = 1%, void aspect ratio w = 1/3 and void orientation ψ = 0.

Figure 5.9 presents various cross-sections of the effective gauge surfaces in the Σm−Σeq

plane in the case of K = 3 slip systems with slip orientations θ(s) = (−60o, 0o, 60o)

(equiangular slip systems) and creep exponents n = (1, 10). In the context of this

figure, the MVAR predictions are in relatively good agreement with the FE results for

both n = (1, 10). In particular, for n = 1, the MVAR is in excellent agreement with

the FE results except at purely hydrostatic loadings where an error in the order of

7% is observed. Nonetheless, in that case numerical convergence issues appeared and

the FE results should be interpreted with caution. In turn, when n = 10, the MVAR

exhibits very good qualitative agreement with the FE results where the corresponding

gauge surface exhibits a rather significant “asymmetry” with respect to the Σeq axis

but tends to underestimate this effect especially at small stress triaxialities (i.e., for

Σm ∼ 0). This asymmetry, which is present in the case of elliptical voids, is a direct

consequence of the coupling between Σm and Σeq) resulting from the complex form

of the tensor G (see equation 5.5). Such effects observed in shearing of ellipsoidal

voids have also been addressed either in numerical micromechanical calculations (see
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for instance Tvergaard and Nielsen [2010]), or in multiaxial experiments (see Combaz

et al. [2011]).

K = 3, θ   = (-60°,0°,60°) 

     f = 1%, w = 1/3

          ψ = 0°

MVAR

FEM

n = 10n = 1

eq

-

m

Figure 5.9: Gauge surfaces in the Σm − Σeq plane for a single porous crystal with el-

liptical voids (w = 1/3, ψ = 0o) of K = 3 slip systems, f = 1%, slip orientations

θ(s) = (−60o, 0o, 60o) (equiangular) and a range of creep exponent n = (1, 10). Compar-

ison between the MVAR model and the FE results.

To summarize, the MVAR model has been assessed in great detail and it was found

to be in good agreement with the corresponding FE results. Therefore, for simplicity

and conciseness, only MVAR estimates will be shown in the following section.

5.3 Results: MVAR predictions

Hereafter, we attempt to reveal the complex coupling between the crystal anisotropy

as characterized by the number of slip systems and their orientation, and the (mor-

phological) void anisotropy resulting from the elliptical void shape and orientation.

5.3.1 Effect of the void shape and orientation

More specifically, Fig. 5.10 shows MVAR gauge surfaces in the Σm − Σeq plane for

a porous single crystal comprising K = 3 slip systems with slip orientations θ(s) =

(−60o, 0o, 60o) (i.e., equiangular slip systems) and a creep exponent n = 5. The effect

of porosity is investigated by choosing f = (1%, 5%, 10%) for different void shapes (a)

w = 1, ψ = 0o and (b) w = 0.2, ψ = 0o. In Fig. 5.10, the gauge surfaces exhibit

a gradual decrease with increasing porosity for both circular (w = 1) and elliptic

(w = 0.2) voids, as already expected. Nonetheless, while for the case of a circular
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void (w = 1), in Fig. 5.10a, the curves are symmetric with respect to the Σeq axis,

the curves for the elliptical void (w = 0.2), in Fig. 5.10b, become asymmetric as

already discussed in the context of Fig. 5.9. As a consequence of this asymmetry, the

MVAR estimates are found to be stiffer in the negative pressure regime (Σm < 0).

The observed asymmetry becomes more pronounced with increasing porosity.

a) b)

K = 3, θ   = (-60°,0°,60°) 

        n = 5, w = 1, 

            ψ = 0°                

 f = 10% 

1%  

5%  

MVAReq

-

m

-

K = 3, θ   = (-60°,0°,60°) 

       n = 5, w = 0.2, 

            ψ = 0°                

 f = 10% 

1%  

5%  

MVAReq

-

m

Figure 5.10: Gauge surfaces in the Σm−Σeq plane for a single porous crystal with elliptical

voids, K = 3 slip systems with slip orientations θ(s) = (−60o, 0o, 60o) and a creep exponent

n = 5. The effect of porosity is investigated by choosing f = (1%, 5%, 10%) for different void

shapes (a) w = 1, ψ = 0o and (b) w = 0.2, ψ = 0o.

a) b)
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       n = 5, f = 1%, 

            ψ = 0°                

MVAR
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            w = 0.2           
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            ψ = 45°

            ψ = 90°
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Figure 5.11: Gauge surfaces in the Σm−Σeq plane for a single porous crystal with elliptical

voids, K = 3 slip systems, slip orientations θ(s) = (−60o, 0o, 60o) and a creep exponent n = 5.

The porosity of set to f = 1%. The effect of (a) the void aspect ratio is investigated by

choosing w = (0.2, 0.5, 1) for an angle ψ = 0 and (b) of the void orientation by choosing

ψ = (0o, 45o, 90o) for a given aspect ratio w = 0.2.

Figure 5.11 shows gauge surfaces in the Σm −Σeq plane for a single porous crystal
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comprising K = 3 slip systems with slip orientations θ(s) = (−60o, 0o, 60o) and a creep

exponent n = 5. The porosity of set to f = 1%. The effect of (a) the void aspect

ratio is investigated by choosing w = (0.2, 0.5, 1) for an angle ψ = 0 and (b) of the

void orientation by choosing ψ = (0o, 45o, 90o) for a given aspect ratio w = 0.2. In

Fig. 5.11a, we observe that with decreasing w, the gauge surface becomes gradually

asymmetric while diminishing in size. This last effect implies that for the same porosity

f = 1%, an elliptical void w < 1 leads to softer response than a circular one.

In Fig. 5.11b, we study the effect of the void orientation angle ψ = (0o, 45o, 90o).

Note that the case ψ = 90o is equivalent to setting w → 1/w and ψ = 0o. In

particular, the ψ = 90o curve is simply a reflection of that for ψ = 0o about the Σeq

axis, as naturally expected from purely geometrical arguments. In turn, the ψ = 45o

curve exhibits full symmetry with respect to the Σeq axis contrary to the other two

cases ψ = 0o, 90o. Finally, as already expected from earlier studies Danas and Ponte

Castañeda [2009b], the hydrostatic point for all these cases is independent of the

angle ψ. This is intuitively expected since the hydrostatic loading has no preferential

direction and can be easily attributed to the form of the G tensor defined in equation

(5.5), since the sum of its diagonal components G1111 + 2G1122 +G2222 = w2 + 1, is

independent of the angle ψ.

5.3.2 Effect of the crystal anisotropy

In this subsection, we discuss in more detail the effect of matrix crystal anisotropy

upon the effective response of the porous composite. As already discussed in the con-

text of Fig. 5.2, where circular voids are embedded in a two slip systems single crystal,

the average hydrostatic response is strongly influenced by the slip orientations. Specif-

ically, both the MVAR model and the FE results predict that the effective behavior of

a porous single crystal with K = 1 slip system (i.e., highly anisotropic case) or K = 2

slip systems with 90o relative angle lead to a completely incompressible response.

In order to analyze this further, Fig. 5.12 shows gauge surfaces in the Σm − Σeq

plane of porous single crystals with circular voids (w = 1), porosity f = 5% and a

creep exponent n = 10. In order to reveal the effect of the number of slip systems

as well as of their orientations upon the effective response of the porous crystal, we

consider the case of K = (1, 2, 3, 4, 5) with (a) equiangular slip system orientations
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and (b) with arbitrary non-equiangular slip system orientations. The specific choices

of the different orientations can be found in Table 2 for both cases considered here.

Table 5.1: Set of angles θ(s) for equiangular and non equiangular slip systems

type K = 1 K = 2 K = 3 K = 4 K = 5

equiangular θ(s) = π/8 θ(s) = {±π/4} θ(s) = {0,±π/3} θ(s) = {0,±π/4, π/2} θ(s) = {0,±π/5,±2π/5}

non equiangular θ(s) = π/8 θ(s) = {±π/8} θ(s) = {π/8, π/10, π/12} θ(s) = {π/8, π/9, π/10, π/11} θ(s) = {π/8, 2π/15, 4π/31, 4π/33, 2π/17}

Equiangular slip systems. More specifically, in Fig. 5.12a, we observe a strong

dependence of the effective response upon K. While for K = 1 and K = 2 the porous

crystal exhibits a fully incompressible response (in agreement with the observations

made in Fig. 5.2, the porous crystal becomes gradually softer with increasing K. On

the other hand, one could observe that the response for K = 3, 4, 5 is very similar

quantitatively, especially near the hydrostatic point (i.e., Σeq = 0).

Non equiangular slip systems. By contrast, in Fig. 5.12b, we observe an even

stronger dependence of the effective response upon the crystal anisotropy. In this

case, the porous crystal is still incompressible for K = 1 but not for the rest of the

cases K ≥ 2. In addition, in Fig. 5.12b, the dependence of the effective response for

K ≥ 2 at moderate and high triaxialities is completely reversed (for instance, the

material with K = 2 is softer than those for K = 3 or K = 4) when compared to that

in Fig. 5.12a.

a) b)
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m

-

MVAR

       n = 10, f = 5%         

K = 2

K = 1

K = 3

K = 4

K = 5

Equiangular

eq

-
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MVAR

       n = 10, f = 5%         

K = 2

K = 1

K = 3

K = 4
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Figure 5.12: Gauge surfaces in the Σm −Σeq plane for a single porous crystal with circular

voids, porosity f = 5%, creep exponent n = 10, for several number of slip systems K =

(1, 2, 3, 4, 5). Part (a) corresponds to equiangular and (b) to non-equiangular slip system

orientations. Their precise definition is detailed in Table 2.
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At this point, it is perhaps relevant to make contact with the corresponding

three-dimensional models proposed by Han et al. [2013] and Paux et al. [2015]. In

these models—which have been assessed for an FCC crystal (near equiangular case in

our notation)—even though the deviatoric response includes the effect of the crystal

anisotropy (i.e., number of slip systems and orientations), the corresponding response

under purely hydrostatic stressing is independent of the orientation of the systems in

Han et al. [2013] and independent of the number and orientation of slip systems in

Paux et al. [2015]. The present study, albeit in two-dimensions, shows that in the

context of highly anisotropic porous single crystals, the purely hydrostatic response

is extremely sensitive to the number of the slip systems K as well as on the slip ori-

entations, as clearly shown in Fig. 5.12. Of course, the present model needs to be

extended in the three-dimensional case in order to have a more complete picture of

the coupling between crystal anisotropy and (morphological) void anisotropy. Such

work is underway and therein comparisons will be given with available models in the

literature.

5.3.3 Fully anisotropic effective response on the deviatoric

plane

In this section, we investigate the effective response of the porous single crystal in the

deviatoric plane Σ12 —
(
Σ11 − Σ22

)
/2 for given hydrostatic stress Σm. This allows

to probe the complete response of the porous crystal and reveal in a more clear way

the combined coupling between the anisotropy of crystal and that induced by the void

shape and orientation. For the sake of conciseness, in the following, we consider only

crystals comprising K = 3 slip systems with slip orientations θ(s) = (−54.7o, 0o, 54.7o)

(FCC) and K = 2 slip systems with slip orientations θ(s) = (−22.5o, 22.5o), respec-

tively, porosity f = 5% and creep exponent n = 10.

First, for illustration purposes and in order to give the reader a more complete

viewpoint of the porous crystal effective response, we show in Fig. 5.13 two represen-

tative three-dimensional gauge surfaces defined by the axes Σ12 —
(
Σ11 − Σ22

)
/2−Σm

for (a) K = 3 and (b) K = 2. The void aspect ratio and orientation are set to w = 0.2

and ψ = 0, respectively. Further discussion of these (and even more) surfaces is done

in the following by considering projections in the deviatoric planes.
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a) b)

Figure 5.13: Three-dimensional gauge surfaces defined by the axes Σ12−
(
Σ11 − Σ22

)
/2−Σm

for (a) K = 3 (θ(s) = (−54.7o, 0o, 54.7o)) and (b) K = 2 (θ(s) = (−22.5o, 22.5o)). The void

aspect ratio and orientation are set to w = 0.2 and ψ = 0, porosity is f = 5% and creep

exponent n = 10.

In this connection, Fig. 5.14 shows MVAR gauge surfaces in the deviatoric plane

Σ12 —
(
Σ11 − Σ22

)
/2 for a single porous crystal with K = 3 slip systems, slip ori-

entations θ(s) = (−54.7o, 0o, 54.7o), void shapes w = (0.2, 1) and void orientations

ψ = (0o, 22.5o, 67.5o). The various cross-sections correspond to different hydrostatic

stresses Σm = 0, Σm = ±0.5Σ
H

m, Σm = ±0.9Σ
H

m, where Σ
H

m denotes the hydrostatic

point delivered by the model MVAR for hydrostatic loading for each of the given cases

in Fig. 5.14a-d, respectively.

More specifically, in Fig. 5.14a, which corresponds to a circular void, we observe

a gradual shrinking of the curves with increasing Σm as expected. At small values of

Σm = 0, the curve exhibits an almost discrete character which tends to become more

rounded (convexify) with increasing Σm. Note at this point that since the porous

crystal is considered to be rate-dependent (i.e., finite value of the creep exponent n),

the corresponding effective response is strictly convex and the curves exhibit large but

finite curvature areas (i.e., smooth-corners) leading to an almost hexagonal symmetry

of the curves. When the void is circular (w = 1), the porous crystal preserves the

original symmetries of the crystal matrix for all values of Σm considered. In particular,
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in this case the curve is fully symmetric with respect to the two axes Σ12 and (Σ11 −
Σ22)/2.
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Figure 5.14: Gauge surfaces in the deviatoric plane Σ12−−
(
Σ11 − Σ22

)
/2 for a single porous

crystal with elliptical voids, K = 3 slip systems, slip orientations θ(s) = (−54.7o, 0o, 54.7o)

(FCC), a porosity f = 5%, a creep exponent n = 10, at different level of pressure. The

dashed line curves correspond to the negative pressure regime while the continuous one

correspond to the positive pressure regime. Case of (a) ψ = 0o, w = 1, (b) ψ = 0o, w = 0.2,

(c) ψ = 22.5o, w = 0.2, (d) ψ = 67.5o, w = 0.2.

By contrast, as shown in Fig. 5.14b (see Fig. 5.13a for the three-dimensional sur-

face), if one considers an elliptical void with aspect ratio w = 0.2 (but still ψ = 0o), the

corresponding MVAR curves exhibit an asymmetry with respect to the Σ12-axis, but
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Figure 5.15: Gauge surfaces in the deviatoric plane Σ12−−
(
Σ11 − Σ22

)
/2 for a single porous

crystal with elliptical voids, K = 2 slip systems, slip orientations θ(s) = (−22.5o, 22.5o), a

porosity f = 5%, a creep exponent n = 10, at different level of pressure. The dashed line

curves correspond to the negative pressure regime while the continuous one correspond to

the positive pressure regime. Case of (a) ψ = 0o, w = 1, (b) ψ = 0o, w = 0.2, (c) ψ = 22.5o,

w = 0.2, (d) ψ = 67.5o, w = 0.2.

still preserve the symmetry with respect to the (Σ11−Σ22)/2 axis for Σm > 0. Rather

interestingly, the almost hexagonal symmetry still prevails for Σm = 0. This response

is a direct consequence of the geometric coupling of the crystal slip orientations and

the void shape at finite hydrostatic stresses. Note further that point symmetry of the

curves with respect to the global origin
(
Σ12,±(Σ11 − Σ22)/2

)
= (0, 0) and Σm = 0
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is still preserved. This is easily observed by noting the point symmetries between the

continuous lines corresponding to Σm > 0 and the dashed ones for Σm < 0.

Subsequently, in Fig. 5.14c,d, an elliptical void (w = 0.2) with angles ψ = 22.5o, 67.5o

are shown, respectively. In these two cases, the gauge surfaces exhibit full asymmetry

with respect to both axes for finite hydrostatic stresses Σm ̸= 0, but preserve the

hexagonal symmetry for Σm = 0. The observed asymmetry is much more pronounced

at higher values of Σm. Note that the curves for ψ = 67.5 in Fig. 5.14d can be repro-

duced from the ψ = 22.5o ones in Fig. 5.14c by counter-clockwise rotation of 90o about

the deviatoric origin
(
Σ12,±(Σ11 − Σ22)/2

)
= (0, 0). Again, it is stressed that point

symmetry of the curves with respect to the global origin
(
Σ12,±(Σ11 − Σ22)/2

)
= (0, 0)

and Σm = 0 is still preserved if one compares the continuous (Σm > 0) with the dashed

lines (Σm < 0).

Figure 5.15 shows MVAR gauge surfaces in the deviatoric plane Σ12 —
(
Σ11 − Σ22

)
/2

for a porous crystal with K = 2 slip systems, slip orientations θ(s) = (−22.5o, 22.5o),

void shapes w = (0.2, 1) and void orientations ψ = (0o, 22.5o, 67.5o). The various

cross-sections correspond to different hydrostatic stresses Σm = 0, Σm = ±0.5Σ
H

m and

Σm = ±0.9Σ
H

m, where Σ
H

m denotes the hydrostatic point delivered by the model MVAR

for hydrostatic loading for each of the given cases in Fig. 5.15a-d, respectively.

As observed in Fig. 5.15a, which deals with circular voids, a gradual shrinking of the

curves appears while increasing Σm, as expected. Moreover, as also seen in the previous

case, the curve exhibits an almost discrete character at small values of Σm = 0 with

tetragonal symmetry. These symmetries are preserved with the addition of hydrostatic

stress even though some additional rounding is observed at high Σm = ±0.9Σ
H

m.

However, as shown in Fig. 5.15b (see Fig. 5.13b for the three-dimensional surface),

for an elliptical void with aspect ratio w = 0.2 (but still ψ = 0o), the corresponding

MVAR curves exhibit an asymmetry with respect to the Σ12 axis, but still preserve the

symmetry with respect to the (Σ11 − Σ22)/2 axis for Σm > 0. In addition, the almost

tetragonal symmetry still prevails for Σm = 0. As already discussed, this response

is a direct consequence of the geometric coupling of the crystal slip orientations and

the void shape at finite hydrostatic stresses. Note further that point symmetry of the

curves with respect to the global origin
(
Σ12,±(Σ11 − Σ22)/2

)
= (0, 0) and Σm = 0

is still preserved. Finally, in Fig. 5.15c,d, an elliptical void (w = 0.2) with angles

ψ = 22.5o, 67.5o are shown, respectively. In these two cases, the gauge surfaces exhibit
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full asymmetry with respect to both axes for finite hydrostatic stresses Σm ̸= 0, but

preserve the tetragonal symmetry for Σm = 0. As in the case of K = 3 slip sys-

tems, the curves for ψ = 67.5 in Fig. 5.15d can be reproduced from the ψ = 22.5o

ones in Fig. 5.15c by counter-clockwise rotation of 90o about the deviatoric origin(
Σ12,±(Σ11 − Σ22)/2

)
= (0, 0). Again, it is stressed that point symmetry of the curves

with respect to the global origin
(
Σ12,±(Σ11 − Σ22)/2

)
= (0, 0) and Σm = 0 is still

preserved if one compares the continuous (Σm > 0) with the dashed lines (Σm < 0).

5.4 Concluding remarks

In this chapter, a fully analytical constitutive model has been developed for porous

rate-dependent single crystals comprising cylindrical voids with elliptical cross-section,

subjected to plane-strain loading conditions, accounting for full crystal anisotropy. In

order to achieve this goal, the variational nonlinear homogenization method of Ponte

Castañeda [1991a] has been used and modified Danas and Aravas [2012] to derive es-

timates but not bounds. The modified variational (MVAR) model presented in this

study has been validated by comparison with full field FE calculations of single- and

multi-void periodic unit-cells. The MVAR model has been found to be in good agree-

ment with the FE results for a very wide range of parameters describing the number

and orientation of the slip systems (i.e., crystal anisotropy), the creep exponent (i.e.,

nonlinearity) of the matrix crystal, the porosity and the void shapes and orientations.

The MVAR model has shown strong predictive capabilities while exhibiting critical

qualitative features.

Specifically, the MVAR model has been able to predict the strong dependence of

the effective response, and especially of the average hydrostatic stress upon the number

and orientation of the slip systems as well as the shape and orientation of the voids.

The major finding of this work, is that for highly anisotropic crystals (e.g., one or even

two active slip systems) the porous crystal can exhibit fully incompressible response,

even in the presence of voids. This of course affects the entire effective response of

the porous crystal for the entire range of stress states. That is the first time such a

result is presented in the literature and reveals the significance of plastic anisotropy of

the underlying phases upon the macroscopic response of the material. Furthermore, it

has been shown that the void shape and orientation affect strongly the response of the
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porous crystal. In particular, the effective response becomes much softer as one goes

from a circular void to an elliptical one (which is suggestive of a crack-type geometry).

In the general case of elliptical voids oriented at an arbitrary angle (with respect to

the laboratory axes) and arbitrary number of slip systems, we have shown that the

effective response exhibits no symmetries when plotted in the purely deviatoric plane

(and at finite hydrostatic stresses) thus indicating the non-trivial coupling between

the anisotropy of the underlying crystal and the (morphological) anisotropy induced

by the shape and orientation of the voids.

In addition, the present model, which includes at present no calibration parameters,

has been assessed to a large extent with robust periodic unit-cell calculations and for

a wide range of parameters (different number and orientation of slip systems, void

shapes and orientations, creep exponents and porosity values). This gives confidence

on the accuracy of the corresponding three-dimensional model, which will be presented

in the next chapter.
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Chapter 6

Instantaneous behavior: spherical

and ellipsoidal voids

This chapter deals with the instantaneous effective behavior of porous single crystals

consisting of ellipsoidal voids distributed randomly in the specimen.

6.1 General expressions

In this section, we present first analytical expressions for the evaluation of the effective

viscoplastic stress potential delivered by the MVAR method, before proceeding to the

discussion of the results. As already discussed, the effective stress potential of the

porous single crystal is given in chapter 2, and recalled here for completeness to

Ũmvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√
σ · Ŝ

(s)
· σ

τ
(s)
0 (1− f)


n+1

, (6.1)

where

Ŝ
(s)

= Ŝ
var,(s)

+
(
q2J − 1

)
J · Ŝ

var,(s)
· J, (6.2)

and

Ŝ
var,(s)

=
1

2
E(s) +

f

K
Ŝ
∗
0, E(s) = 2µ(s) ⊗ µ(s), ∀s = 1, K, Jijkl =

1

3
δijδkl. (6.3)

In addition,

Ŝ
∗
0 = λ lim

λ(s)→λ
lim

ρ(s)→∞
lim
κ→∞

Q−1 −
K∑
s=1

1

2
E(s),

qJ =

√
15

f

{
(1− f) (βn)

1
n

n(f−1/n − 1)

} n
n+1

, βn =
4

25
6−

n
2 .

(6.4)
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In the following, we present a numerical homogenization analysis which will serve

to assess the accuracy of the proposed homogenization model.

6.2 Results: Assessment of MVAR model via FE

simulations

This section presents results for the effective behavior of rate-dependent porous single

crystals as predicted by the modified variational model (MVAR) proposed in this work.

Before proceeding with the discussion of the results, it is useful to introduce first the

various material and loading parameters used in the following figures. The present

study investigates a range of creep exponents n = (1, 2, 5, 10), porosities f = (1%, 5%),

void shapes and orientations (e.g., spherical and ellipsoidal) as well as Face-Centered

Cubic (FCC), Body-Centered Cubic (BCC) and Hexagonal Closed Packed (HCP)

single crystals. These choices of single crystals correspond to the large majority of

metals.

In addition, motivated by common practice in crystal plasticity studies, we consider

the case where all the slip systems of the matrix have the same critical resolved shear

stress (CRSS) and reference slip-rate. The crystallographic orientation will be defined

independently in the following sections.

In turn, we will focus on two different types of loading conditions. In the first

one, the principal directions of the macroscopic stress tensor σ, or equivalently Σ are

aligned with the fixed Cartesian laboratory frame of reference defined by the three

unit vectors e(i), i = 1, 2, 3. In this case, one could rewrite the principal stresses in

terms of the average equivalent von Mises stress, Σeq, the average (macroscopic) Lode

angle, θ, and the average stress triaxiality XΣ. This reads, in diagonal matrix notation

Σ = Σm{1, 1, 1}+
2

3
Σeq

{
cos θ,− cos

(
θ +

π

3

)
,− cos

(
θ − π

3

)}
. (6.5)

The second set of loading conditions involves the two average shear components Σ13

and Σ23 with superimposed hydrostatic stressing Σm, such that (in tensorial notation)

Σ = Σm

3∑
i=1

e(i) ⊗ e(i) + Σ13

(
e(1) ⊗ e(3) + e(3) ⊗ e(1)

)
+ Σ23

(
e(2) ⊗ e(3) + e(3) ⊗ e(2)

)
.

(6.6)
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Since the response of the porous single crystal is anisotropic these are simply two out

of several possible sets of loading conditions. Nevertheless, as we will show in the

following, they are sufficient to reveal the most important features of the porous single

crystal response.

Furthermore, it is important to clarify that the porous crystal exhibits two types of

anisotropy. The first is that of the crystal matrix as a result of the corresponding slip

systems and the second is that of the void shape and orientation, which is ellipsoidal in

general. Therefore, the effective response of the porous crystal is a function of all the

six stress components. Of course showing cross-sections with all possible combination

of stress components is to cumbersome and of a little value to the understanding of

the porous single crystal response. Thus, following traditional notation in the context

of porous materials, as well as similar studies of Han et al. [2013], Paux et al. [2015],

the following results are broken down into three major groups following the above

mentioned loading conditions. The first group shows the effective response of the

porous crystals in the space Σm − Σeq. This stress space is very important since it

involves directly the dependence upon the hydrostatic component Σm. The second

group shows results in deviatoric planes such as for instance the one defined by the

out-of-plane shear stresses Σ13-Σ23, for Σ12 = 0 and for given constant hydrostatic

stress Σm. This cross-section reveals the non trivial coupling of crystal anisotropy and

void shape (morphological) anisotropy. The last group displays results in the Π-plane

(or octahedral plane), defined by polar coordinates (r, ϕ) = (Σeq, θ) at different levels

of superimposed pressure Σm. These choices lead to more complete results in the

sense that they cover a significant range of the stress space but at the same time using

traditional and well-understood stress measures.

6.2.1 Computation of the gauge surface in the numerical ho-

mogenization

The evaluation of the gauge surfaces resulting from the numerical computations can

be expressed using the same framework defined in chapter 5. For sake of completeness,

we recall here the main features of such approach.

By making use of the homogeneity of degree n+1 in Σ of the function Ũ , one can
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write

Ũ(Σ) =
(
Σeq

)n+1
ŨN(N , XΣ) =

γ̇0τ
−n
0

n+ 1
, (6.7)

while N = Σ
d
/Σeq describes the loading direction in the deviatoric space, with Σ

d

and Σeq denoting the deviatoric and equivalent Von Mises part of the average stress

Σ, respectively, corresponding to the equi-potential surface.

Next, given any average stress, σ, one can write

Ũ(σ) = (1− f) min
σ∈S(σ)

⟨U(σ)⟩(1) = (σeq)
n+1 ŨN(N , XΣ). (6.8)

Due to the homogeneity of Ũ , it is noted that ŨN(N , XΣ) is the same function in (6.7)

and (6.8), and hence combination of these two equations gives

Σeq =
[
(n+ 1)γ̇−1

0 τn0 Ũ(σ)
] −1

n+1
σeq. (6.9)

In the FE code, D11 and the average XΣ in the unit-cell are applied and remain

constant throughout the process, as discussed in chapter 4, whereby D22, D33 and σeq

are calculated. In addition, postprocessing of the numerical results provides Ũ(σ).

Finally, Σeq is readily obtained from equation (6.9), while Σm = XΣΣeq given the

prescribed average stress triaxiality XΣ in the unit-cell.

6.2.2 Porous crystals with spherical voids

Face-Centered Cubic single crystal

In this section Face-Centered Cubic (FCC) single crystals are considered. In the

FCC crystalline structure, plastic slip occurs on a group of 12 slip systems following

{111} ⟨110⟩ (see Table 6.1).

In this loading configuration, Fig. 6.1 shows cross-sections of the effective gauge

surfaces in the Σm − Σeq plane, for a creep exponent n = 10, a porosity f = 1% and

several Lode angles θ = 0o, 10o, 30o. As we can observe, the MVAR gauge surfaces

are symmetric with respect to the Σeq axis for all the Lode angles considered. On the

other hand, the FE computations predict symmetric gauge surfaces for θ = 0o, 30o

(see Fig. 6.1a,c) whereas a rather small “asymmetry” with respect to the Σeq axis

is observed for θ = 10o (see Fig. 6.1b). Following the observations of this figure for

spherical voids, which indicate only a minor asymmetry of the gauge surface and only
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slip system s 1 2 3 4 5 6

slip plane m (111) (11̄1)

slip direction s [1̄01] [01̄1] [1̄10] [1̄01] [011] [110]

slip system s 7 8 9 10 11 12

slip plane m (1̄11) (111̄)

slip direction s [01̄1] [110] [101] [1̄10] [101] [011]

Table 6.1: Slip systems in FCC crystalline structure.

in some cases, we will choose in most of the results presented in the sequel a Lode

angle θ = 0o. Therefore, for this case of spherical voids only one quarter of the surface

is shown.

a) b) c)

eq

-

MVAR

FEM

n = 10, f = 1%, FCC 

θ = 0

eq

-

MVAR

FEM

n = 10, f = 1%, FCC 

θ = 10

eq

-

MVAR

FEM

n = 10, f = 1%, FCC 

θ = 30

Figure 6.1: Gauge surfaces in the Σm−Σeq plane in the case of a porous FCC single crystal

comprising spherical voids, for a creep exponent n = 10 and a porosity f = 1%. Comparison

between the model (MVAR) and the FE results for Lode angles θ = 0o, 10o, 30o.

Specifically, Figure 6.2 shows cross-sections of the effective gauge surfaces in the

Σm − Σeq plane. Various creep exponents n = (1, 2, 5, 10) are considered while the

porosity is set to f = 1% (Fig. 6.2a) and f = 5% (Fig. 6.2b). In the context of this

figure, we observe a very good agreement between the MVAR predictions and the

FE results for the entire range of creep exponents n. More precisely, the agreement

between the MVAR predictions and the FE results is very good for small nonlinearities

n = 1, 2, whereas it slightly tends to underestimate the effective response at higher

ones (i.e., n = 5, 10) and for very large triaxialities. In any case, the maximum

error is found to be in the order of ∼ 5%. For f = 1%, in Fig. 6.2a, and relatively

high triaxialities, the n = 1 curve crosses the rest of the curves leading to a stiffer
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response at large stress triaxialities XΣ. This feature is validated qualitatively by the

FE computations, but quantitatively may involve errors from both the FE calculations

as well as inaccuracies of the MVAR model in this regime.

a) b)

f = 1%, FCC 
eq

-

n = 1

2

5

10

MVAR

FEM
MVAR

FEM

f = 5%, FCC 

n = 1

2

5

10

Figure 6.2: Gauge surfaces in the Σm − Σeq plane in the case of a porous FCC single

crystal comprising spherical voids, for a Lode angle θ = 0 and a range of creep exponent

n = (1, 2, 5, 10). Comparison between the model (MVAR) and the FE results for a porosity

(a) f = 1%, (b) f = 5%.

Body-Centered Cubic single crystal

In the BCC crystalline structure, plastic slip occurs on a group of 48 slip systems

following {123} ⟨111⟩, {112} ⟨111⟩ and {110} ⟨111⟩ (see for instance Table 6.2).

slip system s 1 2 3 4 5 6

slip plane m (110) (11̄1) (101)

slip direction s [11̄1] [11̄1̄] [111] [111̄] [111̄] [1̄11]

slip system s 7 8 9 10 11 12

slip plane m (101̄) (011) (011̄)

slip direction s [111] [11̄1] [111̄] [11̄1] [111] [1̄11]

Table 6.2: Slip systems {110} ⟨111⟩ in BCC crystalline structure.

In Fig. 6.3, we present cross-sections of the effective gauge surfaces in the Σm−Σeq

plane for the same range of creep exponents and the same porosities, as before. The

main observation in the context of this figure is that as in the previous case (FCC

single crystal), there is a very good agreement between the MVAR predictions and
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the FE results for f = 1%, at the full range of creep exponents and the entire range

of the stress triaxialities considered here. Again, the agreement between the MVAR

predictions and the FE results is excellent for small nonlinearities n = 1, 2, whereas it

tends to underestimate the effective response at higher ones (i.e., n = 5, 10) and for

very large triaxialities. As before, the maximum error is found to be in the order of

∼ 5%. As discussed in chapter 5 for two-dimensional microstructures, these differences

between the MVAR and FE results with increasing nonlinearity (i.e., creep exponent)

are attributed to the increasing void interaction at high nonlinearities n.

a) b)

f = 1%, BCC 
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FEM

eq

-
Σ

n = 1

2
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 10
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n = 1

2
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Figure 6.3: Gauge surfaces in the Σm − Σeq plane in the case of a porous BCC single

crystal comprising spherical voids, for a Lode angle θ = 0 and for a range of creep exponent

n = (1, 2, 5, 10). Comparison between the model (MVAR) and the FE results for a porosity

(a) f = 1%, (b) f = 5%.

Hexagonal Closed Packed single crystal

In the context of HCP porous crystals, we consider three distinct cases as described

in Table 3. Those three cases are chosen such that the crystal goes from an extremely

anisotropic response (case C1 in Table 6.3) to those that involve a larger number of

active slip systems, i.e., cases C2 and C3 in Table 6.3.

Let us consider first the case C1 in Table 6.3 where plastic slip occurs only in the

so called basal planes, such as for instance pure Titanium. The crystalline structure

is consequently {0001} ⟨12̄10⟩. In this case, rather surprisingly, the computation of

the microstructural tensor leads to Ŝ
∗
= 0 (see equation 6.4), and thus, the MVAR
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estimate becomes

Ũmvar (σ) = (1− f)−n

K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1

(∣∣σ · µ(s)
∣∣

τ
(s)
0

)n+1

. (6.10)

Cases slip plane m slip direction s number of slip systems

C1 Basal {0001} Type ⟨a⟩ ⟨12̄10⟩ 3

C2 Pyramidal Π2

{
1122

}
Type ⟨c+ a⟩ ⟨112̄3⟩ 6

C3

Basal {0001} & Type ⟨a⟩ ⟨12̄10⟩ &
Prismatic

{
1010

}
& Type ⟨a⟩ ⟨12̄10⟩ & 3 + 3 + 6 = 12

Pyramidal Π2

{
1122

}
Type ⟨c+ a⟩ ⟨112̄3⟩

Table 6.3: Slip systems in some hexagonal crystalline structures.

This implies that the MVAR estimate leads to a fully incompressible response in

this case C1, irrespective of the value of porosity, void shape or orientation used, as

shown in Fig. 6.4a. The deviatoric part on the other hand is affected by the voids. It is

important to mention at this point that even though the crystal matrix has only a few

active systems, the porous composite can, in general, accommodate all possible loads

since the vacuous phase is fully isotropic and compressible. Thus, the fact that an HCP

porous crystal with only three active systems still remains incompressible is a highly

non-trivial result. The explanation of such a response can be attributed to virtual

“rigid” directions in the composite thus leading to pressure-independent response. To

investigate this further, we consider the cases of HCP singles crystal with pyramidal

Π2 (C2 in Table 6.3) and combination of basal, prismatic and pyramidal Π2 active

slip systems (C3 in Table 6.3), as shown in Table 6.3. In these cases where more

slip systems are activated, the MVAR predictions lead gradually to more compressible

responses. In other words, in Fig. 6.4a, one observes that the HCP crystal C3, with

12 slip systems is more compressible than the HCP crystal C2, with 6 slip systems.

These predictions are fully confirmed via corresponding FE calculations, as shown in

Fig. 6.4a.

In turn, in Fig. 6.4b,c, we show the effect of the creep exponent n = 1, 2, 5, 10 for

an HCP crystal with K = 6, 12 slip systems that are described by cases C2, C3 in

Table 6.3, respectively. The agreement between the MVAR predictions and the FE
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results is relatively good for all exponents n shown here. More interestingly, perhaps,

there exists a crossing of the gauge curves as one goes from low to high triaxialities.

For instance, the while at low XΣ the n = 1 curve is more compliant than that of

n = 10, the inverse occurs at higher triaxialities. This feature is completely validated

qualitatively and quantitatively by the FE computations. Direct comparison between

the cases of HCP with K = 6, 12 (Fig. 6.4b,c) and those for FCC (Fig. 6.2a) and BCC

(Fig. 6.3a) reveal the nontrivial coupling between the creep exponent n, the presence

of the pores and the slip system orientation.
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Figure 6.4: Gauge surfaces in the Σm−Σeq plane in the cases of (a) three porous HCP single

crystal (with K = 3, K = 6 and K = 12 slip systems) comprising spherical voids, for a Lode

angle θ = 0, a porosity f = 1% and a creep exponent n = 10 , (b) for different exponents

n = 1, 2, 5, 10 and K = 6 slip systems and (c) for different exponents n = 1, 2, 5, 10 and

K = 12 slip systems.

To summarize, the previous cases of several HCP crystalline structures show that

the MVAR model deals extremely well with the strong sensitivity of the porous single

crystals behavior on the crystal anisotropy (i.e., number and orientation of slip sys-

tems), as already discussed in the context of two-dimensional microstructures. This

implies that by default the present model is able to distinguish with high accuracy

between different crystals (and effective loadings). Even though this choice of slip

systems is somewhat theoretical in nature, the fact that for HCP with 3 slip systems

the response is incompressible as well as that 6 slip systems lead to less pressure-

dependence than 12 slip systems has strong implications on void growth. Moreover,

it is important to mention here that in real HCP crystals the different sets of slip sys-

tems (i.e., basal, pyramidal, etc) could exhibit different critical resolved shear stresses,

τ
(s)
0 . This case is not studied here since the goal is to present more general qualitative
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features of the model. However, such effects could be readily considered in the present

framework, since the MVAR model is general.

6.2.3 Porous crystals with ellipsoidal voids

In this section, we show results for porous single crystals comprising ellipsoidal voids,

i.e., with aspect ratios w1 ̸= 1 and w2 ̸= 1. The microstructure considered here is

defined by porosity f = 1%, void aspect ratios w1 = w2 = 3 and void orientations

n(1) = e(1), n(2) = e(2), n(3) = e(3). Figure 6.5 presents various cross-sections of the

effective gauge surfaces in the Σm−Σeq plane in the case of creep exponents n = (1, 10),

for FCC and BCC single crystals, respectively. In the context of this figure, the MVAR

predictions are in relatively good agreement with the FE results for both n = (1, 10).

In particular, for n = 1, the MVAR is in excellent agreement with the FE results

except at purely hydrostatic loadings where an error in the order of 8% is observed.

Nonetheless, in that case numerical convergence issues appeared and the FE results

should be interpreted with caution. In turn, when n = 10, the MVAR exhibits very

good qualitative agreement with the FE results where the corresponding gauge surface

exhibits a rather significant “asymmetry” with respect to the Σeq axis but tends to

underestimate this effect especially at small stress triaxialities (i.e., for Σm ∼ 0). This

asymmetry, which is present in the case of ellipsoidal voids, is a direct consequence

of the coupling between Σm and Σeq resulting from the complex form of the tensor

Ŝ
∗
0 defined in equation 6.4. Such effects observed in shearing of ellipsoidal voids have

also been addressed either in numerical micromechanical calculations (see for instance

Tvergaard and Nielsen [2010]), or in multiaxial experiments (see Combaz et al. [2011]).

To summarize, the MVAR model has been assessed in great detail and it was

found to be in good agreement with the corresponding FE results. Therefore, for

simplicity and conciseness, MVAR estimates will be shown in a future section while

later the MVAR model will be compared with existing models in the literature in the

rate-independent limit.

6.2.4 Full field contours for periodic unit-cells

In order to have a better understanding on the differences between gauge surfaces

for several crystal anisotropies (FCC, BCC, HCP), we present, next, contours of the
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Figure 6.5: Gauge surfaces in the Σm − Σeq plane for a porous single crystal comprising

ellipsoidal voids of f = 1%, void aspect ratios w1 = w2 = 3, void orientations n(1) = e(1),

n(2) = e(2), n(3) = e(3) and a range of creep exponent n = (1, 10). Comparison between the

model (MVAR) and the FE results in the cases of (a) FCC, (b) BCC.

maximum principal logarithmic strain, for spherical voids, a creep exponent n = 5,

a porosity f = 1% and a triaxiality XΣ = 3. As displayed in Fig. A.16, the strain

amplitude is in most of the unit-cell regions lower in the case C1 (see Table 6.3) with

K = 3 HCP slip systems than in the FCC single crystal which is itself lower than in

the BCC single crystal. These observations can explain at one hand the incompressible

macroscopic response of the HCP porous single crystal, but on the other hand the fully

compressible response of the BCC and FCC single crystals.

Moreover, we observe that pore interaction and deformation localization can be-

comes rather significant leading to several completely unloaded regions around a signif-

icant number of pores. This effect of strong field fluctuations is much less pronounced

for higher number of slip systems K = 48 (BCC) as shown in Fig. A.16a. The observed

deformation localization also explains why the MVAR model tends to underestimate

effective response when compared with the FE results at increasing creep exponent n

and increasing porosity f . Such effects have already been observed in porous materi-

als with isotropic matrix and high nonlinearity (see for instance Idiart et al. [2006]).

In view of this, more advanced models incorporating better description of these field

fluctuations (see for instance Danas and Ponte Castañeda [2009a]) could possibly yield

a better agreement with a cost of more complexity in the obtained model. In turn,

one could calibrate the present MVAR model similar to the work of Cao et al. [2015]
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Figure 6.6: Contour of the maximum principal logarithmic strain for a porous single crystal

with a “multipore” geometry, a creep exponent n = 5, a porosity f = 1% a triaxiality XΣ = 3

and a Lode angle θ = 0. Case of (a) BCC (b) FCC and (c) HCP, K = 3.

retaining the simplicity. Such an attempt is done in Section 6.4.1, where it is shown

that such calibration can increase the accuracy of the MVAR model at very high

nonlinearities such as the rate-independent limit.

6.3 Results - II: Coupling between crystal anisotropy,

void shape and orientation

In the previous sections, the MVAR model has been assessed in great detail and it was

found to be in good agreement with the corresponding FE results. Hereafter, we will

focus on MVAR estimates only and explore the effect of a large number of parameters

including different loading states, nonlinearities and void orientations. The goal is

to reveal the complex coupling between the crystal anisotropy (FCC, BCC, HCP),

and the (morphological) void anisotropy resulting from the ellipsoidal void shape and

orientation, using the MVAR model without insisting on quantitative aspects.

6.3.1 Effect of the crystal anisotropy

Fig. 6.7 shows gauge surfaces in the Σm − Σeq plane of FCC and BCC porous single

crystals with spherical voids (w1 = w2 = 1), a range of porosities f = (1%, 5%, 10%),
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various creep exponents n = 10 and n → ∞ (rate independent case). We observe

a significant dependence of the average deviatoric response on the crystal anisotropy

(FCC, BCC) either in the rate dependent (n = 10) or in the rate independent (n→ ∞)

context. Rather interestingly, the hydrostatic point for BCC and FCC coincides in

the case of rate-independent context (n −→ ∞) but such a feature is not preserved in

the rate dependent regime (finite n values). This important result is of special interest

to limit analysis approaches which are derived in the rate-independent limit and are

extended to the rate-dependent limit in a heuristic manner.

a) b)
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Figure 6.7: Gauge surfaces in the Σm −Σeq plane for porous FCC and BCC single crystals

with spherical voids, a Lode angle θ = 0, various creep exponents n = 10 (continuous lines)

and n→ ∞ (dashed lines). Cases of (a) f = 1%, (b) f = 5%.

The effect of matrix crystal anisotropy upon the effective response of the porous

composite is discussed next. As already observed in the context of Fig. 6.4, where

spherical voids are embedded in several HCP crystal structures, the average hydro-

static response is strongly influenced by the number and orientation of the slip systems.

Specifically, both the MVAR model and the FE results predict that the effective be-

havior of a HCP porous single crystal with K = 3 three basal slip systems (i.e., highly

anisotropic case C1 in Table 6.3) leads to a completely incompressible response while

it exhibits a compressible one for HCP porous crystals with K = 6 pyramidal Π2 slip

systems (case C2 in Table 6.3) as well as with a combination of 3 basal, 3 prismatic

and 6 pyramidal Π2 slip systems (case C3 in Table 6.3).

On the other hand, let us considers now, as shown in Fig. 6.8, gauge surfaces

in a deviatoric Σ13 − Σ23 plane of HCP (with K = 3 slip systems), FCC and BCC

porous single crystals with spherical voids (w1 = w2 = 1), a porosity f = 5% and a
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Figure 6.8: Gauge surfaces in the Σ13 − Σ23 plane HCP (with K = 3 slip systems), FCC

and BCC porous single crystals with spherical voids (w1 = w2 = 1), a Lode angle θ = 0, a

porosity f = 1% and a creep exponent n = 10. Cases of (a) Σm = 0, (b) Σm = ±0.5Σ
H
m, (c)

Σm = ±0.9Σ
H
m, where Σ

H
m denotes the hydrostatic point.

creep exponent n = 10. The various cross-sections Fig. 6.8a, Fig. 6.8b and Fig. 6.8c

correspond to different hydrostatic stresses Σm = 0, Σm = ±0.5Σ
H

m and Σm = ±0.9Σ
H

m,

respectively, where Σ
H

m denotes the hydrostatic point delivered by the model MVAR

for hydrostatic loading. We precise that we have set Σ12 = 0. One of the main

observation in this figure is the strong dependence of the average deviatoric response

on the crystal anisotropy, in the context of cubic systems FCC and BCC. However,

even more interestingly, in the porous HCP incompressible (with K = 3 slip systems)

single crystals, the behavior does not evolve from Fig. 6.8a to Fig. 6.8c. Hence, while at

lower hydrostatic stresses (
∣∣Σm

∣∣ ≤ 0.5Σ
H

m) the HCP porous crystal is more compliant

than the FCC and BCC ones, as the pressure increases the FCC and BCC become

gradually softer than the HCP.

At this point, it is perhaps helpful to summarize that in the context of highly

anisotropic porous single crystals, the purely hydrostatic response is extremely sensi-

tive to the number of the slip systems K as well as on the slip orientations, as clearly

shown in Fig. 6.4, Fig. 6.7 and Fig. 6.8 but also confirmed with the FE results in the

previous section. These observations have strong implications on void growth and final

failure of such single porous crystals. Similar conclusions have also been made recently

by Yerra et al. [2010] and Srivastava and Needleman [2015], where the combined effect

of crystal orientation and loading directions can lead to the activation of a small or

large number of slip systems and subsequently to moderate or significant void growth.
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Such effects are physically included in the MVAR model as shown in this study.

Moreover, it is maybe relevant to make a first contact with the corresponding

three-dimensional models proposed by Han et al. [2013] and Paux et al. [2015]. In

these rate independent models, built for spherical voids,—which have been assessed

for an FCC crystal—even though the deviatoric response includes the effect of the

crystal anisotropy (i.e., number of slip systems and orientations), the corresponding

response under purely hydrostatic stressing is independent of the number and orien-

tation of the slip systems. Nonetheless, the present study shows that in the context of

highly anisotropic porous single crystals, the purely hydrostatic response is extremely

sensitive to the number of the slip systems K as well as on the slip orientations, as

clearly shown in Fig. 6.4, Fig. 6.7 and Fig. 6.8 but also confirmed with the FE results

in the previous section. Furthermore, detailed comparison with these models in the

rate independent context are discussed in section 6.4.

6.3.2 Effect of the void shape and orientation

In this section, we discuss in more detail the effect of microstructure anisotropy upon

the effective response of the porous composite. More precisely, Fig. 6.9 shows MVAR

gauge surfaces in the Σm − Σeq plane for a porous FCC single crystal and a creep

exponent n = 10. The effect of porosity is investigated by choosing f = (1%, 5%, 10%)

for different microstructures (a) w1 = w2 = 1 and (b) w1 = 5, w2 = 0.2, n(1) = e(1),

n(2) = e(2). In Fig. 6.9, the gauge surfaces exhibit a gradual decrease with increasing

porosity for both ellipsoidal (w1 = w2 = 1) and ellipsoidal (w1 = w−1
2 = 5) voids, as

already expected. Nevertheless, while for the case of spherical voids (w1 = w2 = 1),

in Fig. 6.9a, the curves are symmetric with respect to the Σeq axis, the curves for

the ellipsoidal voids (w1 = w−1
2 = 5), in Fig. 6.9b, become asymmetric as already

discussed in the context of Fig. 6.5. As a consequence of this asymmetry, the MVAR

estimates are found to be stiffer in the negative pressure regime (Σm < 0). The

observed asymmetry becomes more pronounced with increasing porosity.

Figure 6.10 shows gauge surfaces in the Σm − Σeq plane for a FCC porous single

crystal and a creep exponent n = 10. The porosity of set to f = 5% and the void

orientation is O11 (see Table 6.4). The effect of the void aspect ratios is investigated

by choosing spherical voids (w1 = w2 = 1), prolate voids (w1 = w2 = 5), oblate voids
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Figure 6.9: Gauge surfaces in the Σm − Σeq plane for a FCC porous single crystal with

ellipsoidal voids , a creep exponent n = 10 and a Lode angle θ = 0. The effect of porosity is

investigated by choosing f = (1%, 5%, 10%) for different void shapes (a) w1 = w2 = 1 and

(b) w1 = 5, w2 = 0.2, n(1) = e(1), n(2) = e(2).

(w1 = w2 = 0.2) and arbitrary ellipsoidal voids (w1 = w−1
2 = 5. The main observation

here is that non-spherical void shapes have an important influence on the effective

response of the porous single crystal. Indeed, the slopes of the gauge surfaces depend

for instance strongly on the void shape. More specifically, a porous single crystal with

ellipsoidal voids (w1 = w−1
2 = 5) is softer than that with oblate voids (w1 = w2 = 0.2)

in the full range of stress triaxialities whereas they exhibit closed maximum average

Von Mises stress. Moreover, for the same value of porosity, non-spherical void shapes

lead to a significantly more compliant response at high values of the mean stress,

especially in the case of oblate and arbitrary ellipsoidal voids. Σm almost double from

the considered ellipsoidal microstructures (w1 = w−1
2 = (0.2, 1, 5)) to the spherical

one (w1 = w2 = 1). Moreover, it is evident from this figure that arbitrary ellipsoidal

shapes (w1 = w−1
2 = 5) lead to very different responses when compared with spheroidal

shapes (w1 = w2 = 5 or w1 = w2 = 0.2).

Void Orientation n(1) n(2) n(3) = n(1) × n(2)

O11 [1, 0, 0] [0, 1, 0] [0, 0, 1]

O12 [1, 0, 1̄] [0, 1, 0] [1, 0, 1]

O13 [0, 1̄, 0] [1, 0, 0] [0, 0, 1]

Table 6.4: Coordinates of the orientations O11, O12, O13 (section 6.3.2) in the reference

laboratory frame axes e(i), i = 1, 2, 3.
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Figure 6.10: Gauge surfaces in the Σm − Σeq plane for a FCC porous single crystal with

ellipsoidal voids, a Lode angle θ = 0 and a creep exponent n = 10. The porosity of set to

f = 5% and the void orientation is O11 of table 6.4. The effect of the void aspect ratios is

investigated by choosing spherical voids w1 = w2 = 1, prolate voids w1 = w2 = 5, oblate

voids w1 = w2 = 0.2 and ellipsoidal voids w1 = w−1
2 = 5.
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Figure 6.11: Gauge surfaces in the Σm − Σeq plane for a FCC porous single crystal with

ellipsoidal voids, a Lode angle θ = 0 and a creep exponent n = 10. The porosity of set to

f = 5%. The effect of the void orientation by choosing O11, O12, O13 of Table 6.4 for given

aspect ratios w1 = w−1
2 = 5.

Figure 6.11 shows gauge surfaces in the Σm − Σeq plane for a FCC porous single

crystal and a creep exponent n = 10. The porosity of set to f = 5%. The effect

of the void orientation is addressed by choosing O11, O12, O13 (see table 4) for given

aspect ratios w1 = w−1
2 = w = 5. Note that, as already expected from earlier studies

(Danas and Ponte Castañeda [2009b]), the hydrostatic point for all these cases is

independent of the void orientation. This is intuitively expected since the hydrostatic

loading has no preferential direction (i.e., is isotropic). However, the entire behavior,
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and in particular the asymmetry with respect to the Σeq axis is strongly influenced by

the void orientation.

6.3.3 Coupling between crystal anisotropy and void shape

and orientation

In this section, we investigate the effective response of the porous single crystal in the

deviatoric plane Σ13−Σ23 for given hydrostatic stress Σm. This allows to probe a more

detailed response of the porous crystal and reveal in a more clear way the combined

coupling between the anisotropy of the crystal and that induced by the void shape and

orientation. For the sake of conciseness, in the following, we consider only porous FCC

single crystal with porosity f = 5%, void shape w1 = w−1
2 = 5 and creep exponent

n = 10. The several void orientations considered are summarized in Table 6.5. In

addition, for simplicity, we have set Σ12 = 0.

Orientation n(1) n(2) n(3) = n(1) × n(2)

O21 [1, 0, 0] [0, 1, 0] [0, 0, 1]

O22 [1, 0, 1] [0, 1, 0] [1, 0, 1̄]

Table 6.5: Coordinates of the orientations O21, O22 (subsection 6.3.3) in the reference

laboratory frame axes e(i), i = 1, 2, 3.

In this connection, Fig. 6.12 shows MVAR cross-sections corresponding to different

fixed overall hydrostatic stresses Σm = 0, Σm = ±0.5Σ
H

m, Σm = ±0.9Σ
H

m, where Σ
H

m

denotes the hydrostatic point of the MVAR model for each of the given cases in

Fig. 6.12a,b, respectively.

More specifically, in Fig. 6.12a, which corresponds to void orientation O21 (voids

aligned with the principal loading directions), we observe a gradual shrinking of the

curves with increasing Σm as expected. At small values of Σm = 0, the curve exhibits

an almost discrete character which tends to become more rounded (convexify) with

increasing Σm. Note at this point that since the FCC porous crystal is considered to be

rate-dependent (i.e., finite value of the creep exponent n), the corresponding effective

response is strictly convex and the curves exhibit large but finite curvature areas (i.e.,

smooth vertices) leading to an almost tetragonal symmetry of the curves. When the

voids are aligned with the principal loading directions (orientation O21), the porous
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crystal preserves the original deviatoric symmetries of the crystal matrix for all values

of Σm considered. In particular, in this case the curve is fully symmetric with respect

to the two axes Σ13 and Σ23.

By contrast, as shown in Fig. 6.12b, if one considers a non aligned ellipsoidal void

oriented as in the case O22 in table 5, the corresponding MVAR curves exhibit an

asymmetry with respect to the Σ13-axis, but still preserve the symmetry with respect

to the Σ23 axis for Σm > 0. Rather interestingly, the almost tetragonal symmetry

still prevails for Σm = 0. This response is a direct consequence of the geometric

coupling of the crystal slip orientations and the void shape at finite hydrostatic stresses.

Note further that point symmetry of the curves with respect to the global origin(
Σ13,±Σ23

)
= (0, 0) and Σm = 0 is still preserved. This is easily observed by noting

the point symmetries between the continuous lines corresponding to Σm > 0 and the

dashed ones for Σm < 0.
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Figure 6.12: Gauge surfaces in the deviatoric plane Σ13−Σ23 for a FCC porous single crystal

with porosity f = 5%, a Lode angle θ = 0, void shape w1 = 1/w2 = 5 and creep exponent

n = 10, at different level of pressure. The dashed line curves correspond to the negative

pressure regime while the continuous one correspond to the positive pressure regime. Case

of void orientation (a) O21, (b) O22 of table 5.

Moreover, Fig. 6.13 displays gauge surfaces for the FCC and BCC porous single

crystals in the Π-plane (or octahedral plane) corresponding to different fixed overall

hydrostatic stresses Σm = 0, Σm = ±0.5Σ
H

m, Σm = ±0.9Σ
H

m, where Σ
H

m denotes the
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hydrostatic point of the MVAR model for each of the given cases in Fig. 6.12a,b,c,d,

respectively. In these cases, a gradual shrinking of the curves appears while increasing

Σm, as expected. At small values of Σm = 0, the curve exhibits a quasi discrete

character which tends to become more rounded with increasing Σm. In addition,

the gauge surfaces exhibit full asymmetry for finite hydrostatic stresses Σm = 0, but

preserve the hexagonal symmetry for Σm ̸= 0. The observed asymmetry is much more

pronounced at higher values of Σm, which is consistent with similar studies in isotropic

systems (see for instance Danas et al. [2008b]). Furthermore, it should be stressed

that point symmetry of the curves with respect to the global origin and Σm = 0 is still

preserved if one compares the continuous (Σm ≥ 0) with the dashed lines (Σm ≤ 0).

6.4 Results: Calibration of the MVAR in rate-independent

context and comparison with other models

In this section, we investigate the MVAR predictions in the special, albeit very im-

portant case, of the rate-independent porous single crystals by considering the limit

of the rate sensitivity exponent n −→ ∞. Comparison with existing models in the

literature (Han et al. [2013], Paux et al. [2015]) and FE calculations in the context

of spherical voids is carried out. Supplementary results for ellipsoidal voids are also

shown where the MVAR is compared with FEM. As stated earlier the MVAR grad-

ually underestimates the gauge surface at large nonlinearities. This effect is mainly

attributed to the inherent quadratic character of the MVAR model due to the LCC

methodology used here, whereas studies in the context of isotropic porous materials

have shown that a “cosh” (i.e., exponential) (see for instance the recent study of Cao

et al. [2015]) dependence on pressure is more appropriate. However, even if the MVAR

model is qualitatively and in most of the cases quantitatively quite accurate (up to

∼ 5%, as seen previously in other cases), the numerical results obtained with FEM in

the rate-independent case exhibit a non elliptical shape of the yield surface (see for

instance Han et al. [2013]). In order to get better quantitative agreement with the

numerical results and still in the context of LCC methods, one needs either to use a

more sophisticated approach such as the second-order method (see Ponte Castañeda

[2002a,b], Danas et al. [2008a], Danas and Ponte Castañeda [2009a]), the fully numer-
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Figure 6.13: Gauge surfaces in the Π-plane (or octahedral plane) for FCC (a,b) and BCC

(c,d) porous single crystal with porosity f = 5%, a Lode angle θ = 0, void shape w1 = 1/w2 =

5 and creep exponent n = 10, at different level of pressure. The dashed line curves correspond

to the negative pressure regime while the continuous one correspond to the positive pressure

regime. Case of void orientation (a),(c) O21, (b),(d) O22 of Table 6.5.

ical variational method (Idiart and Ponte Castañeda [2007]) and iterated variational

methods (Agoras and Ponte Castañeda [2013]), or to calibrate the present model which

is numerically much easier to be implemented. As will be shown in this section, the

best calibration lies somewhere in between the quadratic and “cosh” terms.
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6.4.1 Calibration of the MVAR

The MVAR predicts, as expected due to the LCC used in the optimization procedure,

a quadratic response for the yield surface. In this regard and motivated by the works

of Han et al. [2013], Paux et al. [2015] and Cao et al. [2015], we propose the following

simple modification to the original quadratic estimate, which becomes

max
s=1,K


(
τ (s)

τ
(s)
0

)2

+
f α2

K
(
τ
(s)
0

)2σ ·
(
Ŝ
∗
− J · Ŝ

∗
J
)
· σ +

5α1 (1− f)2

2K (ln f)2
(
τ
(s)
0

)2σ · J · Ŝ
∗
J · σ+

f (1− α1)

cosh
√ 5

2K

cosh−1
(

1−f+f2

f

)
ln f

√
σ · J · Ŝ

∗
J · σ

τ
(s)
0

− 1

− (1− f)2

 = 0,

(6.11)

where α2 is a function of the porosity f weighting the relative contribution of the

resolved shear stress on each slip system, whereas α1 is a parameter introduced to in-

terpolate the shape of the yield surface between an elliptical shape (α1 = 1, quadratic)

and an exponential “cosh” shape (α1 = 0). Moreover, following the result of Ponte

Castañeda [2002b] for dilute isotropic porous materials, α2 ∼ f−1/3 so that

τ̃
(s)
0

τ
(s)
0

− 1 ∼ 1.5 (f/2)2/3 , (6.12)

in the dilute limit. The calibration procedure of the above defined coefficients α1 and

α2 leads to the following values

α1 = 0.65, α2
∼= 6 f−1/3 (6.13)

It is perhaps interesting to note that the calibration procedure has led to a larger

contribution of the original quadratic terms due to the LCC methodology (65%) than

the “cosh” terms (35%). Moreover, the form of the yield criterion (6.11) is very similar

to the well-known Gurson [1977] model, even though the analysis used here is rather

different than the standard limit analysis proposed by the later author. Even so this

last model can be thought as a generalization of the Gurson model in the context of

porous single crystals and general ellipsoidal void shapes and orientations.

Finally, it should be mentioned that similar modifications as the one in (6.11) can

also be done in the context of the rate-dependent porous single crystals. In those

cases, α1 becomes readily a function of the rate sensitivity exponent n since at n = 1
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no correction is needed and thus α = 1 in that case. Nonetheless, due to the fact that

the original quadratic MVAR model exhibits good accuracy (max error of ∼ 5%) for

exponents up to n = 10 such an attempt was not carried out for the rate-independent

case in the present work.

In the next section, the MVAR will be compared with others models in the liter-

ature, more precisely those of Han et al. [2013] and Paux et al. [2015], developed for

spherical voids in the rate independent context.

6.4.2 Comparison with other models

In this section, the above-described calibrated MVAR model is compared with the

models of Han et al. [2013] and Paux et al. [2015], developed for spherical voids in

the rate-independent context. In order to assess these models, numerical FE results

with complex distribution of voids is used. It is important to precise that for FCC

porous single crystals our FE results are quite similar to those obtained by Han et al.

[2013] for an FCC crystal with a single-void cubic unit-cell (difference less than 1%)

for relatively low porosity f ≤ 5%.

Figures 6.14, 6.15 and 6.16 show cross-sections of the effective yield surfaces in the

Σm − Σeq plane for all the different models. Various porosities f = (1%, 5%) are con-

sidered for both FCC (Fig. 6.14 and Fig. 6.15) and BCC crystal structure (Fig. 6.16).

In the context of these figures, we observe a very good agreement between the MVAR

predictions and the FE results for the entire range of stress triaxialities. Similarly,

Han et al. [2013] and Paux et al. [2015] models are also in very good agreement. In

Fig. 6.15, the principal directions of the stress tensor are oriented along (a) [111] and

(b) [210] contrary to most of the figures in the present study that are oriented along the

[100] direction. For a more detailed description of this notation the reader is referred

to the work of Han et al. [2013]. More specifically, for the loading [100] and [111],

the MVAR model is in slightly better agreement than the models of Han et al. [2013]

and Paux et al. [2015], whereas MVAR tends to slightly underestimate the effective

response for the loading [210].

Next, we consider HCP porous single crystals comprising spherical voids with

K = 3, 6, 12 slip systems. In the case where plastic slip occurs only in the so

called basal planes, the slip systems are described by the crystallographic orienta-
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Figure 6.14: Yield surfaces in the Σm−Σeq plane for a porous rate independent FCC single

crystal comprising spherical voids. Comparison between MVAR model, Han et al. [2013]

model, Paux et al. [2015] model and the FE results for a Lode angle θ = 0 and a porosity

(a) f = 1%, (b) f = 5%.
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Figure 6.15: Yield surfaces in the Σm−Σeq plane for a porous rate independent FCC single

crystal comprising spherical voids and porosity f = 1%. Comparison between MVAR model,

Han et al. [2013] model, Paux et al. [2015] model and the FE results for Lode angle θ = 0

where the stress principal directions are oriented along (a) [111] and (b) [210]. The FE

results are those in Han et al. [2013].

tions {0001} ⟨12̄10⟩ (K = 3 slip systems, see table 3). Then, the computation of

the microstructural tensor leads to Ŝ
∗
= 0, and the MVAR estimate (6.11) becomes

incompressible, i.e.

max
s=1,K

{∣∣τ (s)∣∣− τ
(s)
0 (1− f)

}
= 0. (6.14)

As already seen (see Fig. 6.4), this prediction is confirmed numerically by FE calcu-

lations. In turn, if one considers a crystalline structure with more slip systems such
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Figure 6.16: Yield surfaces in the Σm−Σeq plane for a porous rate independent BCC single

crystal comprising spherical voids. Comparison between MVAR model, Han et al. [2013]

model, Paux et al. [2015] model and the FE results for a Lode angle θ = 0 and a porosity

(a) f = 1%, (b) f = 5%.

as the case C2 with K = 6 or case C3 with K = 12 slip systems (see Table 6.3), the

porous single crystal becomes compressible. In this context, as shown in Fig. 6.17,

an excellent agreement between the MVAR predictions and the FE results for the

entire range of stress triaxialities is obtained for both porosities f = 1, 5% used. This

result shows clearly that the response at a highly anisotropic porous single crystal is

strongly dependent on both the number and the orientation of the slip systems, espe-

cially at large hydrostatic stressing. It further suggests that for such low symmetry

crystals certain directions appear as “rigid” to plastic deformation thus constrain slip

under highly symmetric loads such as purely hydrostatic tension or compression. As

a consequence very weak (or even no) void growth is expected in such a case.

At this point it should be mentioned that the models of Han et al. [2013] and Paux

et al. [2015] have only been calibrated for FCC crystals and therefore at their present

form exhibit no such qualitative feature. Indeed, as shown in Fig. 6.18, an excellent

agreement between the MVAR predictions and the FE results for the entire range of

stress triaxialities is obtained while such models (Han et al. [2013], Paux et al. [2015])

seems to predict compessibility in the context of strong anisotropy, i.e. low number of

slip systems (see for instance Fig. 6.18a,d).

Furthermore, Fig. 6.19 displays MVAR, Han et al. [2013] model, Paux et al. [2015]

model predictions of gauge surfaces in the Π-plane (or octahedral plane) for a FCC rate

independent porous single crystals with spherical voids corresponding to different fixed
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Figure 6.17: Yield surfaces in the Σm−Σeq plane for a porous rate independent HCP single

crystal comprising spherical voids with K = 3, 6, 12 slip systems. Comparison between

MVAR model and the FE results for a Lode angle θ = 0 and a porosity (a) f = 1%, (b)

f = 5%.
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Figure 6.18: Gauge surfaces in the Σm − Σeq plane for a porous rate independent HCP

single crystal comprising spherical voids. Comparison between MVAR model, Han et al.

[2013] model, Paux et al. [2015] model and the FE results for a Lode angle θ = 0 in the

context of (a) K = 3, f = 1%, (b) K = 6, f = 1%, (c) K = 12, f = 1%, (d) K = 3, f = 5%,

(e) K = 6, f = 5%, (f) K = 12, f = 5%,.
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overall hydrostatic stresses Σm = 0, Σm = 0.5Σ
H

m, Σm = 0.9Σ
H

m, where Σ
H

m denotes the

hydrostatic point of the MVAR model. In these cases, it is important to observe that

in the rate independent context, the gauge surfaces exhibit corners in all the considered

models, even with the presence of voids and at high pressure (see Fig. 6.19b,c) in the

single crystal. Such feature, which is not the case for general viscoplastic case (see for

instance Fig. 6.13), seems to appear as a limitation of the modeling approaches used.
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Figure 6.19: MVAR, Han et al. [2013] model, Paux et al. [2015] model predictions of gauge

surfaces in the Π-plane (or octahedral plane) for a FCC rate independent porous single

crystals with spherical voids (w1 = w2 = 1), a Lode angle θ = 0 and a porosity f = 5%.

Cases of (a) Σm = 0, (b) Σm = 0.5Σ
H
m, (c) Σm = 0.9Σ

H
m, where Σ

H
m denotes the hydrostatic

point.

Finally, in Fig.6.20, we show FE results and MVAR predictions for rate-independent

porous single crystals comprising ellipsoidal voids, i.e., with aspect ratios w1 ̸= 1

and w2 ̸= 1. The microstructures considered are defined by porosity f = 1%, void

orientations n(1) = e(1), n(2) = e(2), n(3) = e(3) and a range of void aspect ratios

w1 = w2 = (1, 2, 3, 4) (prolate voids). Figure 6.20a and Fig. 6.20b present various

effective yield surfaces in the Σm − Σeq plane for FCC and BCC single crystals, re-

spectively. In the context of these figures, the MVAR predictions are in very good

agreement with the FE results for several crystal anisotropy types (BCC and FCC)

and microstructure anisotropy. The yield surfaces exhibit as expected a rather signif-

icant “asymmetry” with respect to the Σeq axis. This asymmetry, which is strongly

sensitive upon the microstructure, is a direct consequence of the coupling between Σm



134 Instantaneous behavior: spherical and ellipsoidal voids

a) b)

m

-

eq

-

MVAR

FEM

FCC, f = 1%, w = w = w

       n   = e   , n   = e
1 2

(1) (2)(2)(1)

n = 

w = 2

w = 4

w = 1
w = 3

m

-

eq

-

MVAR

FEM

BCC, f = 1%, w = w = w

       n   = e   , n   = e
1 2

(1) (2)(2)(1)

w = 2

w = 4

w = 1
w = 3

Figure 6.20: Yield surfaces in the Σm−Σeq plane for a porous rate independent single crystal

comprising ellipsoidal voids of f = 1%, a Lode angle θ = 0, void orientations n(1) = e(1),

n(2) = e(2), n(3) = e(3), and a range of void aspect ratios w1 = w2 = (1, 2, 3, 4). Comparison

between the model (MVAR) and the FE results in the cases of (a) FCC, (b) BCC.

and Σeq resulting from the complex form of the tensor Ŝ∗
0 defined in equation (6.4).

Furthermore, it is interesting to notice that in the positive pressure regime (Σm ≥ 0)

the effective response is more softer when the void is more prolate, i.e. when w1 = w2

increases. In this case, the MVAR model is less accurate in qualitative terms even if

qualitatively it exhibits the correct trends.

6.5 Concluding remarks

In this chapter, an analytical constitutive model has been presented for porous rate-

dependent single crystals comprising ellipsoidal voids, subjected to general loading

conditions, accounting for full crystal anisotropy. The modified variational (MVAR)

model presented in this study has been validated by comparison with full field FE

calculations of single- and multi-void periodic unit-cells. It has been found to be in

good agreement with the FE results for a very wide range of parameters describing

the number and orientation of the slip systems (i.e., crystal anisotropy), the creep

exponent (i.e., nonlinearity) of the matrix crystal, the porosity and the void shapes

and orientations. The MVAR model has shown strong predictive capabilities while

exhibiting critical qualitative features.

More specifically, the MVAR model has been able to predict the strong depen-

dence of the effective response, and especially of the average hydrostatic stress upon
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the number and orientation of the slip systems as well as the shape and orientation

of the voids. One of the major finding of this work, is that for highly anisotropic

crystals (e.g., three basal active slip systems in certain HCP crystal structure) the

porous crystal can exhibit fully incompressible response, even in the presence of voids.

This of course affects the entire effective response of the porous crystal for the entire

range of stress states. That is the first time such a result is presented in the literature

and reveals the significance of plastic anisotropy of the underlying phases upon the

macroscopic response of the material. Furthermore, it has been shown that the void

shape and orientation affect strongly the response of the porous crystal. In particular,

the effective response becomes much softer as one goes from a spherical void to an

ellipsoidal one (which is suggestive of a crack-type geometry). In the general case of

ellipsoidal voids arbitrary oriented (with respect to the laboratory axes) and arbitrary

crystal structure, we have shown that the effective response exhibits no symmetries

when plotted in a purely deviatoric plane (and at finite hydrostatic stresses) thus in-

dicating the non-trivial coupling between the anisotropy of the underlying crystal and

the (morphological) anisotropy induced by the shape and orientation of the voids. In

addition, it has been found that the creep exponent has a very strong influence on

the effective response of the porous single crystal. Since a large number of technolog-

ical applications (e.g., single crystals in aerospace industry as well as polycrystalline

alloys in nuclear reactors) involve high-temperature and rate-dependent conditions,

the MVAR model exhibits promising features that could be important in dealing with

such problems.

Furthermore, the present model has been assessed to a large extent with robust

periodic unit-cell calculations and for a wide range of parameters (different crystal

structures i.e. FCC, BCC, HCP, void shapes and orientations, creep exponents and

porosity values), exhibiting good agrement without any calibration parameters. In

addition, a simple way of calibrating the MVAR with just two adjustable parameters

is depicted in the rate-independent context so that an excellent agreement with respect

to the numerical results is obtained. This calibration procedure can, in the future (if

needed), be extended to the rate-dependent case in a straightforward manner. But

such an attempt has not been pursued here since the difference between the MVAR

estimates and the FE results was found to no more than ∼ 5% in the worst case

studied (i.e., creep exponent n = 10). On the other hand. it should be mentioned that
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the results shown in the present study, albeit very extensive, do not cover the entire

space of loadings and slip orientations as this would make the study extremely long.

Hence, the present model should be considered with caution if used in a range of loads

or slip system configurations that are very different from those assessed in the present

study.

In view of this, it should be mentioned that several important features present

mainly at finite strains, such as lattice rotations, evolution of porosity (e.g., void

growth), void shape and orientation are not included in the present analysis (c.f.

Danas and Ponte Castañeda [2009b], Danas and Aravas [2012]). These additional

features would inevitably lead to well known phenomena in porous materials such as

material softening, void shape effects, deformation localization (c.f. Danas and Ponte

Castañeda [2012] and Danas and Aravas [2012]) and ultimately void coalescence (see

for instance (Benzerga [2002], Pardoen and Hutchinson [2000], Yerra et al. [2010],

Morin et al. [2015])). In this regard then, the microstructure evolution will be included

in the next chapter. We are confident that the present model can be readily extended

to deal with the aforementioned issues in a straightforward manner while still being

able to account for crystal anisotropy, anisotropic microstructures and general loading

conditions.
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Chapter 7

Particular case of infinte number of

slip systems: A porous Tresca

model

The large majority of available theories in ductile damage growth have been car-

ried out in the context of two-phase material systems comprising an isotropic rate-

(in)dependent von Mises matrix phase and a voided phase (pores of spherical, spheroidal

or arbitrary ellipsoidal shapes). In general, these studies use either limit analysis (see

for instance Tvergaard and Needleman [1984], Gologanu and Leblond [1993], Leblond

et al. [1994], Monchiet et al. [2007]) based on (Gurson [1977]) pioneering work, or a

variational homogenization theory using the idea of a linear comparison composite (see

for instance Ponte Castañeda [1991a], deBotton and Ponte Castañeda [1995], Danas

and Ponte Castañeda [2009a]).

Nevertheless, as discussed in Drucker [1949], for most isotropic metals the yield

surface is between the Von Mises and the Tresca one’s. In addition, the yield Tresca

criterion is supported by more physical basis since it is the limiting case on infinte num-

ber of slip systems of the Schmid law describing slip at single crystal level. Hence, an

important question is the understanding of the overall mechanical response of porous

solids with Tresca matrix, i.e. exhibiting a J2 and a third invariant dependence, and

a morphological anisotropy induced by the shape and orientation of the voids.

Nonetheless, there have been only very few models for porous plastic Tresca ma-

terials in the literature. These studies involve the study of rate-independent metals

containing spherical voids under axisymmetric (Cazacu et al. [2014b]) or general load-

ing conditions (Revil-Baudard and Cazacu [2014]). While each one of these studies
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has its own significant contribution to the understanding of the effective response of

porous plastic Tresca materials none of them is general enough in the sense of arbitrary

void shapes and orientations and general loading conditions.

Then, the scope of the present chapter is to develop a three-dimensional model

that is able to deal with Tresca matrix, arbitrary ellipsoidal void shapes and general

loading conditions. The model would be derived from the porous single crystal model

by considering the limiting case on infinte number of slip systems.

7.1 General expressions

Before proceeding to the discussion of the results, it is useful to present first analytical

expressions for the evaluation of the effective stress potential delivered by the “MVAR”

method.

Ellipsoidal voidRVE 

(a) (b) (c)

Figure 7.1: Representative volume element (b) constituted of representative ellipsoidal voids

(c) embedded in a Tresca plastic matrix (a).

In order to achieve this goal, let us first discuss about the constitutive behavior

of the constituents. The matrix phase is an isotropic plastic material obeying to

the Tresca yield criterion. Thus, the onset of plastic deformation occurs when the

maximum shear stress over all planes reaches a certain critical value, as described

with the following relation

max
i,j

|σi − σj| = σ0, (7.1)

where σi,∀i = 1, 2, 3 and σ0 denote respectively the Cauchy principal stresses and the

uniaxial yield in tension.

It is useful to recall at this point that the Tresca yield criterion is a particular case

of the Schmid yield criterion, when all the slip systems have the same critical resolved
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shear stress CRSS, and their number tends to infinite. This remark will be of major

importance in the further developments.

Furthermore, we will make use of the general, nonlinear homogenization methods

developed by Ponte Castañeda [1991a, 2002a], which are based on the construction of

a linear comparison composite (LCC) with the same microstructure as the nonlinear

composite. Using this suitably designed variational principle, it is shown in chapter 2

that a modified variational estimate of the effective viscoplastic stress potential of a

general crystalline porous material can be defined such that

Ũmvar (σ) = (1− f)
K∑
s=1

γ̇
(s)
0 τ

(s)
0

n+ 1


√
σ · Ŝ

(s)
· σ

τ
(s)
0 (1− f)


n+1

, (7.2)

with

Ŝ
(s)

≡ Ŝ
mvar,(s)

= Ŝ
var,(s)

+
(
q2J − 1

)
J · Ŝ

var,(s)
· J, (7.3)

Ŝ
var,(s)

= µ(s) ⊗ µ(s) +
f

K
Ŝ
∗
, ∀s = 1, K, (7.4)

where n ≥ 1, K, γ̇
(s)
0 , τ

(s)
0 and µ(s) denote the creep exponent, the number of slip

systems, the reference slip-rate, the reference flow stress (also denoted critical resolved

shear stress CRSS) and the second-order Schmid tensor of the sth slip system, respec-

tively. In addition, Ŝ
∗
is a microstructural tensor related to the Eshelby tensor P

(Eshelby [1957]) through the relations

Ŝ
∗
= λ lim

ρ(s),κ→∞
Q−1 −

K∑
s=1

µ(s) ⊗ µ(s), with Q = S−1 − S−1PS−1. (7.5)

In addition, as recalled in the previous subsection, the Tresca yield criterion can be

seen as a single crystal criterion consisting of infinte number of slip systems with equal

CRSS τ
(s)
0 = τ0. Hence, in the limit cases K −→ ∞ (Tresca matrix) and n −→ ∞

(rate-independent plasticity), the relation (7.2) reduces to

max
s=1,K

{(
τ (s)

τ0

)2

+
f

τ 20
σ ·
(
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∗
lim − J · Ŝ

∗
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)
· σ +

f q2J
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}
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(7.6)

where the fourth order tensor Ŝ
∗
lim is defined as

Ŝ
∗
lim = lim

K→∞
lim
ρ→∞

lim
κ→∞

Ŝ
∗

K
∼=

1

5
Ŝ
∗
Mises =

1

5
Ŝ
∗
, (7.7)
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where Ŝ
∗
Mises ≡ Ŝ

∗
denotes the microstructural tensor associated to the compliance

tensor of a Von Mises matrix, as shown in appendix 2.9 of chapter 2.

Moreover, by introducing in equation (7.6) the following relations

max
s=1,K

∣∣τ (s)∣∣ = maxi,j |σi − σj|
2

, τ0 =
σ0
2
, σ0 ≡ uniaxial yield in tension (7.8)

together with the following expression of qJ that leads to recover the closed form of

the hydrostatic limit of the effective behavior of composite spherical assemblages CSA

(Hashin [1962], Gurson [1977], Leblond et al. [1994]), i.e.

qJ =

√
15

4f

1− f

ln(1/f)
, (7.9)

one gets a homogenization based yield criterion for a plastic Tresca material with

ellipsoidal voids, so-called “MVAR” model,

(maxi,j |σi − σj|)2

σ2
0

+
4 f

5 σ2
0

σ ·
(
Ŝ
∗
− J · Ŝ

∗
J
)
· σ +

3 (1− f)2

(σ0 ln f)2
σ · J · Ŝ

∗
J · σ = (1− f)2

(7.10)

with σi, ∀i = 1, 2, 3, σ0 and Ŝ
∗
denoting respectively the average principal stresses, the

uniaxial yield in tension and the microstructural tensor associated to an isotropic Von

Mises matrix.

In the particular case of spherical voids,

Ŝ
∗
=

1

3
K+

1

4
J, (7.11)

and consequently the “MVAR” model is reduced to

(maxi,j |σi − σj|)2

σ2
0

+
8 f

45σ2
0

σ2
eq +

9 (1− f)2

(2σ0 ln f)2
σ2
m = (1− f)2 (7.12)

However, in the general context of ellipsoidal voids, a numerical computation is

necessary, which can be performed following similar framework than several authors

(Aravas and Ponte Castañeda [2004], Danas [2008]).

7.2 Results: Assessment of the MVAR via FE sim-

ulations

This section presents results for the instantaneous effective behavior of the rate-

independent porous Tresca material comprising voids with spherical and non-spherical
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shape, as predicted by the modified variational model (MVAR) proposed in this work.

Next, the predictions of the yield surface obtained using the MVAR are compared

with the FE simulations described in chapter 4. The effect of the void shape on the

resulting yield surface will ba particularly analyzed. Moreover, in the case of axisym-

metric loadings, results will also be compared with predictions proposed by Cazacu

et al. [2014b] model.

7.2.1 Isotropic microstructures

The Fig. 7.2 displays yield surfaces for spherical voids (i.e., w1 = w2 = 1) as predicted

by the FE simulations, the modified variational model (MVAR), the Cazacu et al.

[2014b] model, for four different porosities f = (0.1, 1, 2 4)% and both axisymmetric

(Lode angle θ = 0o, 60o) and non axisymmetric loadings conditions (θ = 30o). The

agreement between the MVAR and the FE calculations is satisfactory for a large range

of porosities and for full loading conditions (stress triaxiality, Lode angle). The largest

difference between the MVAR and the FE is found for larger porosities (f = 4%). In

the axisymmetric configuration, when the Cazacu et al. [2014b] model is also tested, we

remark that the predictions coincide at deviatoric loadings, i.e. σm = 0. In addition,

the MVAR gives a significantly softer prediction when σm increases. In the purely

hydrostatic limit, i.e. σeq = 0, the MVAR model attains the analytical spherical shell

solution and coincides with the Cazacu et al. [2014b] model.

At this point, it is worth noting for axisymmetric loadings, the Cazacu et al. [2014b]

yield surface is not symmetric with respect to the σm = 0 vertical axis. This implies

that the plastic Tresca strain-rate corresponding to the normal of the yield surface for

a purely deviatoric part exhibits an hydrostatic part, as already discussed in Danas

et al. [2008a], Cazacu et al. [2014b]. This is attributed to the fact that the isotropic

Cazacu et al. [2014b] yield surface exhibits a very specific coupling between first and

the third invariant, i.e., mean stress and Lode angle. Such dependence, also confirmed

by the FE simulations, is not addressed in the more accurate MVAR model, where the

“porous additional term” has a quadratic stress character and hence depend only on

the first two invariants, the mean stress σm and the Von Mises stress σeq. Nonetheless,

the dependence of the yield surface upon the third invariant of the stress is rather

negligible, especially for small porosities and, as will be discussed later in this section,
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Figure 7.2: Yield surfaces in the σm − σeq plane for isotropic microstructures, i.e. spherical

voids w1 = w2 = 1. Comparison between the FE simulations and the modified variational

MVAR for three Lode angles θ = 0o, 30o, 60o and various porosities (a) f = 0.1%, (b)

f = 1%, (c) f = 2%, (d) f = 4%.

it is of minor importance when compared to the corresponding void shape effects at a

given level of porosity.

In addition, the fig. 7.3 shows yield surfaces for spherical voids (w1 = w2 = 1) as

predicted by the FE simulations, the MVAR-Tresca porous model and the MVAR-Von

Mises porous model (Danas and Aravas [2012]) for the porosity f = 1,% and both

axisymmetric (θ = 0o) and non axisymmetric loadings conditions (θ = 30o).

Let us first consider the axisymmetric configuration, θ = 0o. The MVAR-Von

Mises yield surface is as expected closer to the MVAR-Tresca yield surface as the Von

Mises model is not dependent on the third invariant. Moreover, in the intermediate

stress triaxiality region, when 1 < |XΣ| < 3, a significant difference between FE

simulations and MVAR-Von Mises porous model is observed while there is a good

agrement between the MVAR-Tresca porous model and the FE in the full range of



Particular case of infinte number of slip systems: A porous Tresca model 143

stress triaxiality. Indeed, the porous Von Mises material has a non quadratic effective

behavior for relative small porosities, which thus cannot be well captured by the MVAR

method.

σ σ/eq 0

σ σ/m 0

f = 1% 

MVAR Tresca

FEM

θ = 0
θ = 30

θ = 0θ = 30
(Mises)

Figure 7.3: Yield surfaces in the σm − σeq plane for isotropic microstructures, i.e. spherical

voids w1 = w2 = 1, a porosity f = 1%, Lode angle θ = 0o, 30o. Comparison between the FE

simulations, the MVAR-Tresca porous model and the MVAR-Von Mises porous model.

In order to have a better understanding on the differences between porous Tresca

and porous Von Mises yield surfaces, we present, next, contours of the equivalent Von

Mises stress, for spherical voids, a porosity f = 1%, a triaxiality XΣ = 3 and a Lode

angle θ = 0o. Then, as observed in fig. 7.4, the stress amplitude is in most of the

unit-cell regions lower in the case of a Tresca matrix than in the Von Mises one. Thus,

as previously discussed, the porous Tresca material is expected to be softer than a

porous Von Mises material for the same microstructure considered.

7.2.2 Anisotropic microstructures

The fig. 7.5 shows FE simulations and MVAR yield surfaces for spherical voids (w1 =

w2 = 1), prolate voids (w1 = w2 = 3), oblate voids (w1 = w2 = 1/3) and arbitrary

ellipsoidal voids (w1 = 3, w2 = 1/3). The porosity is set equal to f = 1%, whereas

the loading is axisymmetric along the x1-axis (θ = 0o). A good agrement between the

numerical FE predictions and the MVAR is seen for the full range of stress triaxialities,

except in the case of average purely deviatoric, where a relative difference in the order

of 2 − 6% is noticed. Furthermore, the main observation in this figure is that non-

spherical void shapes have a dramatic influence on the yield surface of the porous
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Figure 7.4: Contours of the equivalent Von Mises stress in the case of spherical voids, a

porosity f = 1%, a triaxiality XΣ = 3 and a Lode angle θ = 0o for (a) a Tresca matrix and

(b) a Von Mises matrix.

material as predicted the MVAR and confirmed through FE simulations. First, the

slopes of the yield surfaces depend strongly on the void shape. For instance, a porous

material with ellipsoidal voids (w1 = 3, w2 = 1/3) is softer than that with oblate

voids (w1 = w2 = 1/3) in the full range of stress triaxialities whereas they exhibit the

same maximum average Von Mises stress. Moreover, for the same value of porosity,

non-spherical void shapes lead to a significantly more compliant response at high

values of the mean stress, especially in the case of oblate and arbitrary ellipsoidal

voids. Moreover, it is evident from this figure that arbitrary ellipsoidal shapes (w1 =

3, w2 = 1/3) lead to very different responses when compared with spheroidal shapes

(w1 = w2 = 3 or w1 = w2 = 1/3).

Finally, one should mentioned at this point that a series of additional triaxial

loading conditions and several void shapes have also been considered and the MVAR

has been found to be in good agreement (similar to the one observed in the previous

results) with the corresponding FE calculations. However, no such results are shown

here for brevity.
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Figure 7.5: Yield surfaces in the σm − σeq plane for isotropic (spherical voids w1 = w2 = 1)

and anisotropic microstructures: prolate voids w1 = w2 = 3, oblate voids w1 = w2 = 1/3

and ellipsoidal voids w1 = 3, w2 = 1/3. Comparison between the FE simulations and the

modified variational MVAR for f = 1% and Lode angle θ = 0o.

7.3 MVAR predictions

Hereafter, we attempt to reveal the complex coupling between the Tresca yield criterion

features and the (morphological) void anisotropy resulting from the ellipsoidal void

shape and orientation.

In this section, we discuss in more detail the effect of microstructure anisotropy

upon the effective response of the porous composite. The figure 7.6 displays several

MVAR yield surfaces for a porous plastic Tresca material. The effect of porosity is

investigated by setting f = (1%, 5%, 10%) for different microstructures (a) w1 = w2 =

1 and (b) w1 = 3, w2 = 1/3, n(1) = e(1), n(2) = e(2). In these figures, the yield surfaces

exhibit as expected a gradual decrease when increasing porosity for both ellipsoidal

(w1 = w2 = 1) and ellipsoidal (w1 = w−1
2 = 3) voids. However, while for the case

of spherical voids (w1 = w2 = 1), in fig. 7.6a, the curves are symmetric with respect

to the Σeq axis, the curves for the ellipsoidal voids (w1 = w−1
2 = 3), in Fig. 7.6b,

become asymmetric as already discussed in the context of Fig. 7.5. As a consequence

of this asymmetry, the MVAR estimates are found to be slightly stiffer in the negative

pressure regime (Σm < 0).

The figure 7.7 shows yield surfaces in the Σm − Σeq plane for a porous plastic

Tresca material. The porosity of set to f = 10%. The effects of the void aspect ratios

and orientation are investigated by choosing w1 = w−1
2 = (1/3, 1, 3) for an orientation
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Figure 7.6: Yield surfaces for a porous plastic Tresca material. The effect of porosity is

investigated by choosing f = (1%, 5%, 10%) for different void shapes (a) w1 = w2 = 1 and

(b) w1 = 3, w2 = 1/3, n(1) = e(1), n(2) = e(2).

n(1) = e(1), n(2) = e(2). For the two considered anisotropic microstructures , i.e.

w1 = w−1
2 = w = 3 and w1 = w−1

2 = w = 1/3, the porous solids exhibit the same

hydrostatic behavior. This can be explained by the fact that the second microstructure

is derived from the first one through a π/2 simple rotation around the x3 axis (see

fig. 7.7). Thus, since the hydrostatic loading possesses an isotropic character i.e.

doesn’t exhibit any preferential direction, the overall hydrostatic response is expected

to be the same in both cases. This feature was also discussed in earlier studies (Danas

and Ponte Castañeda [2009b]). In addition, the MVAR estimates are found to be stiffer

in the negative pressure regime (Σm < 0) for w1 = w−1
2 = w = 3 while the average

behavior is softer in the negative pressure regime (Σm < 0) for w1 = w−1
2 = w = 0.2.

Moreover, there is a strong sensitivity of the hydrostatic average behavior on the

void aspect ratios, since Σm gets an increase of 50% from the considered ellipsoidal

microstructures (w1 = w−1
2 = (1/3, 3)) to the spherical one (w1 = w2 = 1).

7.4 Calibration of the model

The MVAR yield surface is quadratic as a function of the stress, due to the LCC used

in the optimization procedure. The MVAR model predicts, as expected due to the

LCC used in the optimization procedure, a quadratic response for the yield surface.

However, even if qualitatively and in a several cases quantitatively quite accurate

the MVAR deals well with simulations, the numerical results obtained through FEM
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Figure 7.7: Yield surfaces for a porous plastic Tresca material with ellipsoidal voids. The

porosity of set to f = 10%. The effect of (a) the void aspect ratios is investigated by choosing

w1 = w−1
2 = (1/3, 1, 3) for an orientation n(1) = e(1), n(2) = e(2).

exhibit in general a non elliptical shape of the yield surface (see for instance fig 7.2 and

fig 7.5). This defect can be corrected using (i) a more sophisticated approach such as

the second-order method (see Ponte Castañeda [2002a,b], Danas et al. [2008a], Danas

and Ponte Castañeda [2009a]) , or (ii) by a direct analytical calibration of the present

model.

In the present study, we choose the direct analytical calibration of the model, since

the goal is to obtained analytical tractable estimates. Moreover, this technique is also

of interest as it illustrates an effective method to calibrate the model in order to match

accurately experimental results.

The calibrated MVAR, is characterized by the following expression of the yield

surface

(maxi,j |σi − σj|)2

σ2
0

+
4 f α2

5 σ2
0

σ ·
(
Ŝ
∗
− J · Ŝ

∗
J
)
· σ +

3α1 (1− f)2

(σ0 ln f)2
σ · J · Ŝ

∗
J · σ

+ f (1− α1)

cosh
√

3 cosh−1
(

1−f+f2

f

)
σ0 ln f

√
σ · J · Ŝ

∗
J · σ

− 1

 = (1− f)2 ,

(7.13)

where α2 is a parameter weighting the relative contribution of the Tresca stress and a

non hydrostatic stress measure, whereas α1 is a parameter introduced to interpolate

the shape of the yield surface between an elliptical shape (α1 = 1, MVAR) and an

exponential shape (α1 = 0).
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In addition, the parameters α1 and α2 depend on the porosity. For the porosity

f = 1%, the identification leads to α1 = 0.8 and α2 = 12 + 11 cos 6θ. Furthermore,

fig. 7.8 shows FE simulations and MVAR yield surfaces for spherical voids (w1 =

w2 = 1), prolate voids (w1 = w2 = 3), oblate voids (w1 = w2 = 1/3) for a porosity

f = 1%, and both axisymmetric (Lode angle θ = 0o, 60o) and non axisymmetric

loading (θ = 30o). The main observation in this context of this figures is that there is

a very good agreement between the MVAR and the FE calculations for the full range

of loading conditions (stress triaxiality, Lode angle), validating this simple calibration

procedure.

a) b)
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Figure 7.8: Yield surfaces in the σm−σeq plane for isotropic and anisotropic microstructures.

Comparison between the FE simulations and the calibrated modified variational CMVAR

for porosity f = 1%, (a) three Lode angles θ = 0o, 30o, 60o, spherical voids and (b) spherical

voids w1 = w2 = 1, prolate voids w1 = w2 = 3, oblate voids w1 = w2 = 1/3.

Moreover, fig. 7.9 shows yield surfaces for spherical voids (i.e., w1 = w2 = 1) as

predicted by the FE simulations, the MVAR-Tresca porous model and the correspond-

ing MVAR-Von Mises porous model for the porosity f = 1,% and both axisymmet-

ric (θ = 0o) and non axisymmetric loadings conditions (θ = 30o). There is a good

agrement between the MVAR porous models and the FE in the full range of stress

triaxiality, emphasizing the present calibration approach.

7.5 Concluding remarks

An analytical yield function in closed form for porous plastic Tresca materials has been

proposed in this chapter. It is theoretically motivated using an original approach that
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Figure 7.9: Yield surfaces in the σm − σeq plane for isotropic microstructures, i.e. spherical

voids w1 = w2 = 1, a porosity f = 1%, Lode angle θ = 0o, 30o. Comparison between the FE

simulations, the MVAR-Tresca porous model and the MVAR-Von Mises porous model.

consists to consider the limiting case of infinte number of slip systems in a variational

micromechanical based novel porous single crystal model. The modified variational

(MVAR) model presented in this study has been validated by comparison with full

field FE calculations of single- and multi-void periodic unit-cells. The MVAR model

has been found to be in good agreement with the FE results for a very wide range

of parameters describing the porosity, the void shapes and orientations. The MVAR

model has shown strong predictive capabilities while exhibiting critical qualitative

features.

More precisely, the MVAR model has been able to predict the strong dependence

of the effective response, and especially of the average hydrostatic stress upon the

shape and orientation of the voids. In addition, to better match a non quadratic de-

pendence on the stress (observed through FEM computations), this yield function was

phenomenologically extended following a procedure similar to the one introduced in

chapter 6. The extension introduces two adjustable parameters (α1 and α2), calibrated

with unit-cell computations.

Finally, it is important to mentioned that several important issues, such as rate-

dependent effects, strain-hardening and microstructure evolution that were neglected

for simplicity in this paper will be considered in further studies. Moreover, it would

be interesting to study the effects of cyclic loading conditions upon microstructure

evolution using similar ideas.
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Chapter 8

Evolution of microstructure:

spherical and ellipsoidal voids

This chapter is concerned with some preliminary predictions of the effective response

and evolution of microstructure of random porous single crystals subjected to general

loading conditions. More precisely, the evolutions laws of the microstructural variables

depicted in chapter 2 are applied to several crystalline structures for a large range of

material parameters. At present due to lack of time, the study of the microstructure

evolution is not exhaustive and more work is needed at this level.

8.1 Material parameters and initial conditions

The matrix phases considered (FCC and BCC single crystals) are taken to be initially

unloaded with no hardening, i.e. τ
(s)
0 = τ0, ∀s = 1, K, while the voids are initially

spherical with w1 = w2 = 1. The initial porosity is taken to be f0 = 1% and the

elasticity effects are neglected. It should be noted that the macroscopic response of

the porous material at large deformations is strongly affected by the hardening, the

viscoplastic creep exponent, the initial porosity f0 and the initial aspect ratios w1 and

w2, but we will not carry out an exhaustive parametric study with respect to those

parameters here. Moreover, in the following, the microstructural variables will be

plotted as functions of the equivalent strain εe defined as

εe =

∫
t

√
2

3
D

′
·D

′
dt, (8.1)

where D
′

refers to the deviatoric part of the average strain-rate D.
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8.2 Low stress triaxialities

Fig. 8.1 shows MVAR plots of (a) the equivalent stress σe, (b) the porosity f , and the

aspect ratios (c) w1 and (d) w2, as a function of the equivalent strain εe, for a BCC

single crystal, a creep exponent n = 10, four Lode angles θ = 0o, 20o, 30o, 60o and a

low value of the stress triaxiality (XΣ = 0.1). The main observation in Fig. 8.1a is

that there is a slight effect of the Lode angle on the overall mechanical response of the

porous single crystal.

In addition, let us analyze plots for the evolution of f , w1 and w2 in Fig. 8.1b-d,

respectively, as a function of the equivalent strain εe. In graph. 8.1b, one observes an

overall reduction in the porosity f as a function of εe, except in the case of the Lode

angle θ = 60o. Furthermore, as shown in part (c), w1 can become significantly low for

all values of θ. Moreover, as shown in part (d), w2 decreases very fast for all values

of θ except for θ = 60o, as expected. This suggests that a void collapse mechanism

(i.e., flattened cracks) is developed with increasing strain, which is also the mechanism

in the context of low stress triaxiality for porous materials with isotropic matrix (see

Danas and Aravas [2012]). This observation is not surprising since a BCC single crystal

possesses a high number of slip systems (K = 48) and thus, its response is intuitively

expected to be “closer” to an isotropic one.

Next, in order to investigate the influence of the crystal anisotropy on the evolution

of the microstructure, the Fig. 8.2 presents MVAR plots of (a) the equivalent stress

σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2, as a function of the

equivalent strain εe, for a FCC single crystal, a creep exponent n = 10, four Lode

angles θ = 0o, 20o, 30o, 60o and a low value of the stress triaxiality (XΣ = 0.1).

Then, in Fig. 8.2b, one can observe that in the context of FCC crystal (contrary

to the previous case of BCC crystal) an overall increasing of the porosity as a function

of εe for all the Lode angles is observed.

Moreover, as in the context of porous BCC single crystal, the aspect ratios w1 and

w2 become significantly low for all values of θ, except in the special case θ = 60o for

w2. Consequently, in low stress triaxiality, a void collapse mechanism (i.e., flattened

cracks) is developed with increasing strain for both BCC or FCC porous single crystals.

On the other hand, Fig. 8.3 presents MVAR plots of (a) the equivalent stress σe

and (b) the porosity f as a function of the equivalent strain εe, for a HCP single crystal



Evolution of microstructure: spherical and ellipsoidal voids 153

a) b)

2
w = w = 1

1

0 0
X   = 0.1

 = 0

 e

 = 20

 = 60 = 30

 f = 1% 
0

BCC, n = 10

_

2
w = w = 1

1

0 0
X   = 0.1 f = 1% 

0

 e

θ = 0

θ = 20

θ = 60

θ = 30

 f  

c) d)

ε e

2
w = w = 1

1

0 0
X   = 0.1 f = 1% 

0

θ = 0

θ = 20

θ = 60

θ = 30  w
1

ε e

2
w = w = 1

1

0 0
X   = 0.1 f = 1% 

0

θ = 0

θ = 20

θ = 60

θ = 30

  w
2

Figure 8.1: Plots of the MVAR estimates in the context of a porous BCC single crystal,

for (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2

as a function of the equivalent strain εe, for a low value of the stress triaxiality (XΣ = 0.1)

and four values of the Lode angle. The creep exponent is n = 10 and the voids are initially

spherical, with a porosity f0 = 1%.

with K = 3 and K = 12 slip systems, a creep exponent n = 10, a Lode angle θ = 60o

and a low value of the stress triaxiality (XΣ = 0.1). As we can seen in Fig. 8.3b, the

porosity slightly increases for the HCP porous crystal with K = 12 (basal, prismatic

and pyramidal Π2) active slip systems while it doesn’t evolve for the HCP crystal with

K = 3 basal active slip systems, since such single crystal exhibits an incompressible

overall response.

Furthermore, in order to address the influence of the nonlinearity (viscoplastic

creep exponent) on the evolution of the microstructure, Fig. 8.4 presents MVAR plots

of (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d)

w2, as a function of the equivalent strain εe, for a FCC single crystal, a Lode angle

θ = 60o, a low value of the stress triaxiality (XΣ = 0.1) and two creep exponents
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Figure 8.2: Plots of the MVAR estimates in the context of a porous FCC single crystal,

for (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2

as a function of the equivalent strain εe, for a low value of the stress triaxiality (XΣ = 0.1)

and four values of the Lode angle. The creep exponent is n = 10 and the voids are initially

spherical, with a porosity f0 = 1%.
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Figure 8.3: Plots of the MVAR estimates in the context of a porous HCP single crystal with

K = 3 and K = 12 slip systems, for (a) the equivalent stress σe and (b) the porosity f as a

function of the equivalent strain εe, for a low value of the stress triaxiality (XΣ = 1) and a

Lode angle θ = 60o. The creep exponent is n = 10 and the voids are initially spherical, with

a porosity f0 = 1%.

n = 10, ∞. The evolution of the void shape is not affected by the creep exponent,

whereas porosity evolution exhibits much more significant differences. More precisely,

the void volume fraction increases slightly in a case (n = 10) while decreasing slightly

in the other case (n = ∞).

However, the microstructural mechanisms are not expected to change with the

nonlinearity.

8.3 High stress triaxialities

Fig. 8.5 shows MVAR plots of (a) the equivalent stress σe, (b) the porosity f , and the

aspect ratios (c) w1 and (d) w2, as a function of the equivalent strain εe, for a BCC

single crystal, a creep exponent n = 10, four Lode angles θ = 0o, 20o, 30o, 60o and a

high value of the stress triaxiality (XΣ = 1). The main result in Fig. 8.5a is that the

effect of the Lode parameter on the overall mechanical response of the porous single

crystal is less important, since all the σe − εe curves almost coincide for the largest

range of the applied strain.

The fact that the stress strain curve seems independent of the Lode angle atXΣ = 1

can be explained by referring to Fig. 8.5b, where the increase of porosity is significant

for all values of the Lode angle (θ = 0o, 20o, 30o, 60o). In addition, by observation of
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Figure 8.4: Plots of the MVAR estimates in the context of a porous FCC single crystal, for

(a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2 as

a function of the equivalent strain εe, for a low value of the stress triaxiality (XΣ = 0.1), a

Lode angle θ = 60o and two creep exponents n = 10, ∞. The voids are initially spherical,

with a porosity f0 = 1%.

parts (c) and (d) of Fig. 8.5, we note that the void shape still evolves as a function

of εe. Thus, the main softening mechanism in this high triaxiality context (XΣ = 1)

is clearly the evolution of porosity which is found to lead to significant softening

of the effective response of the porous single crystal. Nonetheless, the void shape

evolution for the various Lode angles leads to weak differences on the evolution of σe

and f . Then, this void growth mechanism leads to the well-known “high-triaxiality

coalescence” of the voids (see for instance Thomason [1985], Pardoen and Hutchinson

[2000], Gologanu et al. [2001], Benzerga [2002], Morin et al. [2015]). The present model

doesn’t include coalescence effects which would increase the evolution of porosity in

much more pronounced way after a certain critical strain. In addition, it is clear that

the dominance of the evolution of porosity will prevail at larger stress triaxialities
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XΣ > 1 not shown in this preliminary study.
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Figure 8.5: Plots of the MVAR estimates in the context of a porous BCC single crystal,

for (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2

as a function of the equivalent strain εe, for a high value of the stress triaxiality (XΣ = 1)

and four values of the Lode angle. The creep exponent is n = 10 and the voids are initially

spherical, with a porosity f0 = 1%.

Moreover, in order to study the influence of the crystal anisotropy on the evolution

of the microstructure at high stress triaxiality, Fig. 8.6 presents MVAR plots of (a)

the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2,

as a function of the equivalent strain εe, for a FCC single crystal, a creep exponent

n = 10, four Lode angles θ = 0o, 20o, 30o, 60o and a high value of the stress triaxiality

(XΣ = 1).

As already observed for porous BCC single crystal, the stress strain curve seems

independent of the Lode parameter at XΣ = 1 (Fig. 8.6a), due to the significant

increase of porosity for all values of the Lode angle (see Fig. 8.5b). Consequently,

the principal softening mechanism in the high triaxiality regime is the evolution of
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porosity which is found to lead to significant softening of the effective response of the

porous single crystal.
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Figure 8.6: Plots of the MVAR estimates in the context of a porous FCC single crystal,

for (a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2

as a function of the equivalent strain εe, for a high value of the stress triaxiality (XΣ = 1)

and four values of the Lode angle. The creep exponent is n = 10 and the voids are initially

spherical, with a porosity f0 = 1%.

In addition, Fig. 8.7 presents MVAR plots of (a) the equivalent stress σe and (b)

the porosity f as a function of the equivalent strain εe, for a HCP single crystal with

K = 3 and K = 12 slip systems, a creep exponent n = 10, a Lode angle θ = 60o and a

high value of the stress triaxiality (XΣ = 1). The main observation in the context of

this graph (see Fig. 8.7b) is that the porosity doesn’t evolve for the HCP crystal with

K = 3 basal active slip systems since such single crystal exhibits an incompressible

overall response whereas it significantly increases for the HCP porous crystal with

K = 12 (basal, prismatic and pyramidal Π2) active slip systems. The evolution of the

porosity for K = 12 slip systems leads to the softening observed in Fig. 8.7a.
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Figure 8.7: Plots of the MVAR estimates in the context of a porous HCP single crystal with

K = 3 and K = 12 slip systems, for (a) the equivalent stress σe and (b) the porosity f as a

function of the equivalent strain εe, for a high value of the stress triaxiality (XΣ = 1) and a

Lode angle θ = 60o. The creep exponent is n = 10 and the voids are initially spherical, with

a porosity f0 = 1%.

Finally, the influence of the nonlinearity (creep exponent) on the evolution of the

microstructure is investigated. Then, Fig. 8.8 presents MVAR plots of (a) the equiva-

lent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2, as a function

of the equivalent strain εe, for a FCC single crystal, a Lode angle θ = 60o, a high value

of the stress triaxiality (XΣ = 1) and two creep exponents n = 10, ∞. The evolution

of the void aspect ratios w1 and w2 seems unaffected by the creep exponent. However,

the increase in porosity is twice more important for n = 10 (from f0 = 1% to f = 20%)

than for n = ∞ (from f0 = 1% to f = 10%) at the same level of final equivalent strain

εe = 100%. As a consequence, the matrix softening is less pronounced for n = ∞ than

for n = 10.

8.4 Concluding remarks

In this chapter, the evolution laws for the microstructural variables presented in 2 are

used in order to provide some preliminary predictions for a large range of material

parameters in the context of porous single crystals subjected to general loading con-

ditions. More precisely, an investigation of the several microstructural mechanisms

has been carried out at both high and low triaxiality regime for several crystal struc-

ture (BCC, HCP and FCC) and different creep exponents. Then, a void collapse
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Figure 8.8: Plots of the MVAR estimates in the context of a porous FCC single crystal, for

(a) the equivalent stress σe, (b) the porosity f , and the aspect ratios (c) w1 and (d) w2 as

a function of the equivalent strain εe, for a high value of the stress triaxiality (XΣ = 1), a

Lode angle θ = 60o and two creep exponents n = 10, ∞. The voids are initially spherical,

with a porosity f0 = 1%

mechanism (i.e., flattened cracks) developed with increasing strain was found as the

dominant mechanism at low stress triaxiality while the evolution of porosity was the

main softening mechanism in the high triaxiality context, leads to “high-triaxiality

coalescence” of the voids. Furthermore, we have observed that the creep exponent has

an important influence on the porosity evolution, whereas the void shape evolution is

less affected by the nonlinearity.



161

Chapter 9

Closure

In this thesis, an analytical homogenization-based constitutive model has been de-

veloped for porous rate-(in)dependent single crystals subjected to finite strains. This

model, so-called “MVAR”, is based on the variational nonlinear homogenization method

of Ponte Castañeda [1991a], modified by Danas and Aravas [2012] to derive estimates

but not bounds that are accurate at large triaxialities. The MVAR takes into ac-

count the nonlinear anisotropic response of the single crystal, i.e. arbitrary number of

slip systems and orientations, microstructural information, such as the volume frac-

tion, shape, orientation and distribution of the voids, as well as the evolution of these

microstructural and macroscopic variables along a given loading path. This model

attempts to bridge the gap at the modeling of porous solids in the micron (grain)

scale.

In this regard then, we have first recalled in Chapter 2 the notion of particulate

microstructures, introduced by Willis [1977] as a generalization of the Eshelby [1957]

dilute microstructures in the nondilute regime. Thus, one can provide the effective

behavior of the linear comparison composite (LCC) using the linear Willis estimates

(Willis [1977]) and subsequently, determine estimates for linear porous materials with

particulate microstructures. Moreover, by making use of the definitions associated

with a commonly used power-law form of incompressible viscoplastic stress potential,

it was then possible to derive estimates of the effective viscoplastic stress potential for

porous single crystals through the variational homogenization methods. In addition,

in order to remedy the stiff response of variational estimates in the case of hydrostatic

loadings (Ponte Castañeda [1991a], Michel and Suquet [1992]), we have used the fact

that in the isotropic case (number of slip systems K −→ ∞), the hydrostatic limit of

the effective behavior of composite spherical assemblages (CSA) is known exactly and
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in closed form (Hashin [1962], Gurson [1977], Leblond et al. [1994]). Hence, following

(Danas and Aravas [2012]), we have proposed a modified variational estimate (MVAR)

so that it recovers the CSA result (2.114) in the limit of infinite slip systems, spherical

voids and hydrostatic loadings, where the response becomes fully isotropic. Further-

more, since the porous single crystals are in general subjected to finite deformations,

its microstructure evolves-on average-to ellipsoidal voids in time with different shape

and orientation. Consequently, based on the work of (Ponte Castañeda and Zaidman

[1994], Aravas and Ponte Castañeda [2004], Danas and Aravas [2012]), we have pre-

sented the relevant evolution laws for the internal microstructural variables used to

describe the volume fraction, shape and orientation of the voids.

Next, in Chapter 3, we have carried out a brief reiew of existing models for vis-

coplastic porous materials that have been developed since the last twenty years. In

particular, a brief summary of recent rate-independent porous single crystals models

has been made. Then, the case of two-phase material systems comprising an isotropic

rate-(in)dependent matrix phase (metal usually described by von Mises yield criterion

or creep potential) and a voided phase (pores of spherical, spheroidal or arbitrary ellip-

soidal shapes) is briefly discussed. More specifically, we have recalled the well-known

Gurson model (Gurson [1977]) that is based on the exact solution for a shell (spherical

or cylindrical cavity) under hydrostatic loadings, suitably perturbed, to obtain esti-

mates for the effective behavior of ideally-plastic solids with isotropic or transversely

isotropic distributions of porosity. Following this idea, several other “limit analysis

models” were presented, extending the initial contribution to viscoplasticity and void

shape effects. Moreover, some effective estimates based on the variational homoge-

nization theory using the concept of a linear comparison composite (such as Ponte

Castañeda [1991a], Danas and Ponte Castañeda [2009a], Danas and Aravas [2012],

Agoras and Ponte Castañeda [2013]), which are able to deal well with void shape and

orientation, general loading conditions and microstructure evolution were also pre-

sented. On the other hand, we have presented some results for rate-(in)dependent

anisotropic matrix systems. More precisely, we have discussed either models based

on phenomenological Hill-type matrix (see for instance Benzerga and Besson [2001],

Monchiet et al. [2008a], Keralavarma and Benzerga [2010]), or porous single crystals

models. This last case of porous single crystals has been studied both numerically and

experimentally (Srivastava et al. [2012], Srivastava and Needleman [2012, 2015]) to ad-
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dress the modeling of anisotropic ductile damage growth. Nonetheless, there exist very

few models in the literature. Indeed, the large majority of the studies are restricted to

special void geometries, loading conditions and slip system orientations. Kysar et al.

[2005], Gan et al. [2006], Gan and Kysar [2007] have for instance used slip line theory to

study cylindrical voids with circular cross-section in a rigid-ideally plastic face-centered

cubic (FCC) single crystals, whereas Idiart and Ponte Castañeda [2007] have studied

two-dimensional “out of plane” cylindrical voids with circular cross-section subjected

to anti-plane loadings. Moreover, Han et al. [2013] and Paux et al. [2015] have recently

proposed models for rate-independent single crystals containing spherical voids. How-

ever, none of these models, while being very important steps, are complete enough to

account for general crystal anisotropy, general ellipsoidal microstructure and loading

conditions as well as large deformations, via evolution of microstructure.

Furthermore, in Chapter 4, we have discussed the numerical evaluation of the ef-

fective behavior of porous single crystals. In order to achieve this goal, we have first

recalled that a random porous material like the one presented in this study exhibits

similar effective response with that of a periodic material provided that the distribu-

tion of voids is complex enough (appropriate for large porosity) or when the porosity

is small enough. Consequently, it is possible to use numerical periodic homogenization

technique, and precisely to analyze the problem of a periodic porous material con-

sidering a unit-cell that contains a given distribution of voids. Thus, the comparison

between the “MVAR” and the FE periodic unit-cell calculations appears to be relevant

in such context.

In the sequel of this thesis, Chapters 5 through 8 have dealt with the application

of the above discussed methods in the context of viscoplastic porous single crystals.

To be precise, Chapter 5 deals with the estimation of the effective behavior in porous

single crystals consisting of cylindrical voids subjected to plane-strain loading con-

ditions. In turn, Chapters 6 and 7 are related to the determination of the effective

behavior and 8 with the evolution of microstructure in porous single crystals consist-

ing of spherical or ellipsoidal voids subjected to general loading conditions. In what

follows, we summarize the main results obtained in these chapters.

Chapter 5 deals with the estimation of the effective behavior of porous materi-

als consisting of aligned cylindrical voids with circular or elliptical voids distributed

randomly and uniformly in a single crystal matrix. The material is subjected to plane-
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strain loading conditions. The MVAR model has been found to be in good agrement

with the numerics for a large range of parameters including arbitrary crystal matrix,

general elliptical void shape, several porosities, creep exponent and the full space of

stress triaxialities. Moreover, the model has been able to predict the strong depen-

dence of the effective response, and especially of the average hydrostatic stress upon

the number and orientation of the slip systems as well as the shape and orientation of

the voids. One of the major finding of this study has been that for highly anisotropic

crystals (e.g., one or even two active slip systems) the porous crystal can exhibit fully

incompressible response, even in the presence of voids. This of course affects the en-

tire effective response of the porous crystal for the entire range of stress states. That

is the first time such a result is presented in the literature and reveals the signifi-

cance of plastic anisotropy of the underlying phases upon the macroscopic response

of the material. Moreover, it has been shown that the void shape and orientation

affect strongly the response of the porous crystal. In particular, the effective response

becomes much softer as one goes from a circular void to an elliptical one (which is

suggestive of a crack-type geometry). In the general case of elliptical voids oriented

at an arbitrary angle (with respect to the laboratory axes) and arbitrary number of

slip systems, we have shown that the effective response exhibits no symmetries when

plotted in the purely deviatoric plane (and at finite hydrostatic stresses) thus indicat-

ing the non-trivial coupling between the anisotropy of the underlying crystal and the

(morphological) anisotropy induced by the shape and orientation of the voids.

In contrast to Chapter 5, where two-dimensional model problems has been studied

in order to gain insight on the behavior of viscoplastic porous single crystals, Chapters

6 and 7 have dealt with more realistic three-dimensional microstructures and loadings.

More specifically, in Chapter 6, we have studied the effective behavior of viscoplastic

porous single crystals when subjected to more general loading conditions. The major

finding of this work, was that for highly anisotropic crystals (e.g., three basal active

slip systems in certain HCP crystal structure) the porous crystal can exhibit fully

incompressible response, even in the presence of voids. This of course affects the

entire effective response of the porous crystal for the entire range of stress states.

Moreover, the “MVAR” has been assessed to a large extent with robust periodic unit-

cell calculations and for a wide range of parameters (different crystal structures i.e.

FCC, BCC, HCP, void shapes and orientations, creep exponents and porosity values),
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exhibiting good agrement without any calibration parameters. In addition, in the rate-

independent context, a simple way of calibrating the MVAR with just two adjustable

parameters is proposed in order to obtain an excellent agreement with respect to

the numerical results. It is then compared with other rate-independent models (Han

et al. [2013], Paux et al. [2015]) for the case of spherical voids. This calibration

procedure can, in the future (if needed), be extended to the rate-dependent case in

a straightforward manner. But such an attempt has not been pursued here since the

difference between the MVAR estimates and the FE results did not exceed ∼ 5% in

the worst case studied, i.e. for creep exponent n = 10.

Furthermore, theoretically motivated by making use of an original approach that

consists to consider the limiting case of infinite slip systems, we provide in Chapter 7 a

porous Tresca model. The proposed model presented in this study has been validated

by comparison with full field FE calculations of single- and multi-void periodic unit-

cells. It has been found in good agreement with the FE results for a very wide range

of parameters describing the porosity, the void shapes and orientations or different

loading conditions. In addition, it shows strong predictive capabilities while exhibiting

critical qualitative features.

Finally, in Chapter 8, we have made use of the previous effective potentials together

with the equations describing the evolution of the microstructural variables to provide

some preliminary predictions of the evolution of microstructure in porous single crys-

tals consisting of spherical or ellipsoidal voids. At low stress triaxialities, the effect

of the Lode angle was critical in the evolution of the porosity and the void shapes

while it was of a less significant influence in the porosity evolution at high triaxiality

regime. In addition the effect of the creep exponent has been found to be significant

in the evolution of the porosity for both low and high stress triaxiality, whereas it has

been observed to be less important in the evolution of void aspect ratios. Moreover,

for highly anisotropic crystals such as the three basal active slip systems in certain

HCP crystal structure, the porous crystal was fully incompressible response, even if

the void aspect ratios evolve.

At this stage, it is important to address some of the future directions associated

with the results presented in this thesis. First of all, the present modeling requires the

evaluation of microstructural tensors which in the general case, is carried out numer-

ically. Since this operation involves the numerical computation of surface integrals,
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further optimization of this procedure is needed particularly if extreme values of the

aspect ratios (e.g., wi < 0.05 or wi > 20 with i = 1, 2) are used since the kernel of the

integral becomes highly oscillatory.

Moreover, it will be useful to assess the accuracy of the MVAR predictions of the

evolution of the shape and the orientation of the voids through numerical simulations.

Indeed, it is well known that crystallographic aspects of plastic deformation around

holes significantly affect their growth rate and in general the microstructural evolution

(Srivastava and Needleman [2012, 2015]). Such validation will give us ideas in order

to study coalescence of voids for arbitrary loading conditions, following for instance

the approach recently proposed in Morin et al. [2015].

As another remark, the “MVAR” model has been applied in the context of porous

single crystals with viscoplastic and ideally-plastic matrix phase. Nevertheless, in

real life applications, the mechanical behavior of the materials under consideration

exhibits also elastic effects. Consequently, it would be of great importance to be

able to incorporate elastic effects in the above described models, which would allow

the study of “elasto-viscoplastic” porous single crystals. The variational methodology

introduced by Lahellec and Suquet [2007a,b,c, 2013] to get estimates for the effective

response and evolution of microstructure in elasto-plastic or elasto-viscoplastic porous

media can be applied in order to achieve this goal.

In addition to the elasticity effects, one should also introduce hardening effects

through the framework depicted in Chapter 2, together which the possible develop-

ment of instabilities, i.e. localization to failure (see for instance Danas and Ponte

Castañeda [2012]). Thus, we would be able to treat more realistic problems such as

metal ductile fracture and fatigue at the level of the grains. In the case of fatigue,

a non-monotonic load is applied leading to unloading and unstable behaviors in the

porous single crystal. In the appendix, as a first step, an investigation of the effect of

cyclic loading conditions and finite deformations upon microstructure evolution and

material softening/hardening using finite element (FEM) periodic unit-cell calcula-

tions is carried out with 3D geometry at small and large number of cycles. Then, as

it has been the case for isotropic materials (see Danas and Aravas [2012]), the MVAR

could then be implemented to standard finite element packages for solving real life ap-

plications such as rolling or extrusion of metals, ductile fracture, necking of specimens

or mechanical behavior of Lotus-type metals for biological applications.
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Furthermore, it is important to precise that since the present model deals with

intragranular damage, the link has to be made with other studies related to damage

at grain boundaries (e.g. Pouillier et al. [2012], Bourcier et al. [2013]) in order to obtain

a full model for polycrystals. At this point, it appears important to mention recent

contributions that deal with either polycrystalline solids with intergranular cavities

(Lebensonh et al. [2011]) or polycrystals with two populations of (intergranular and

intragranular) voids (Vincent et al. [2014a,b]), typical for nuclear fuel commonly used

in nuclear reactors. In the last context, i.e. two populations of voids, the authors

have carried a two scale homogenization, but with an isotropic J2 matrix for the grain.

Thus, since our findings indicate strong dependence of the damage upon slip systems

number and orientation, it should be interesting to use the present anisotropic ductile

damage growth model in the two scale homogenization procedure. Moreover, it is well

known that when the voids lie inside the grain or the cracks are in the scale of grains,

the strain-gradient effects with (Niordson and Legarth [2010], Vernerey et al. [2007]) or

without (Monchiet and Kondo [2013]) crystal plasticity can have a significant impact

on material response (see Miehe et al. [1999], Watanabe et al. [2010]). However, in

the present study, we have not used a strain gradient plasticity model (as for instance

Forest et al. [2011], Danas et al. [2012], Nielsen and Niordson [2013, 2014]) and thus,

the deformation state in the present study doesn’t depend upon grain size.

Finally, recent industrial problems such as lost foam casting process or 3D printing

constitute very interesting challenges as applications for porous single crystals and

polycrystals modeling. Indeed, it is essential to be able to provide estimates for the

mechanical behavior of porous materials obtained from these manufacturing process,

since in most of the cases, they are subjected to complicated loading conditions leading

to failure.
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Appendix A

Appendix. Void shape effects of

periodic elasto-plastic materials

subjected to cyclic loading

Cyclic loading of metallic materials has always attracted a lot of attention in the

scientific and industrial community due to its impact in the numerous low and high

cycle fatigue applications. A priori, the response of a metal under cyclic loading

conditions is a multi-scale problem and several mechanisms at the microscale (e.g.,

dislocation structures at the scale of 1-10 µm) and meso-scale (e.g., hard precipitates

and pores or cracks) lead to damage at different scales and finally initiate fatigue

of the material at the macroscale. This makes the analysis and modeling of cyclic

loading a very tedious work in the sense that to-date it is very difficult to propose

a micromechanics-based model that spans the fatigue mechanisms in all the scales.

Nonetheless, a lot of studies have been made at several length scales and many of the

mechanisms in cyclic loadings have been identified.

In the high cycle regime that plasticity is strongly confined, Dang Van [1971]

(see also Papadopoulos [1987] and Constantinescu et al. [2003]) proposed pressure de-

pendent fatigue criteria based on a combined homogenization and phenomenological

approach. Numerical modelling of the two scale approach (Bertolino et al. [2007],

Hofmann et al. [2009], Guerchais et al. [2014]) shows that the pressure is the foot-

print of the residual stress created by the localized plasticity at the grains scale. In

turn, in the low cycle regime, where plasticity is more spread at numerous grains,

only phenomenological and statistically-based fatigue criteria have been proposed (see
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for example Amiable et al. [2006a,b] and Tabibian et al. [2013]). Mean stress effects

on high strength steels have been discussed already by Koh and Stephens [1991] and

Kondo et al. [2003]. Recently, Morel and Bastard [2003] and Maitournam et al. [2011]

for high-cycle fatigue and Tabibian et al. [2012] for low-cycle fatigue have experimen-

tally shown the effect of multi-axial loading effects, and particularly of pressure, upon

the cyclic response of steels and aluminium alloys and have introduced similar param-

eters for taking into account the mean stress effect. The fact that fatigue criteria,

which are based on strong experimental evidence, include pressure dependence, is in

striking contradiction with the common modeling of such materials using pressure-

independent plasticity laws, both crystal plasticity and isotropic plasticity with or

without kinematic hardening.

More specifically, advances in imaging techniques (SEM and tomography) have

revealed the presence of voids in metals. In a recent study, Limodin et al. [2014]and

Wang et al. have obtained 3D tomographic images (see Fig. A.1) for aluminum alloys

obtained by lost-foam-casting fabrication techniques. As shown in Fig. A.1c, voids of

several sizes and shapes (spherical, ellipsoidal but also non-canonical) are observed.

In the same figure, the different colors indicate families of voids of similar shapes (but

not size or orientation), while two representative voids are pointed out by arrows. One

is an almost spherical void (with aspect ratios w1 ≈ w2 ≈ 1 and the other is a prolate

void with average shape w1 ≈ w2 ≈ 2 (see Fig. A.5a for a detailed definition of void

aspect ratios). It is further noted that the size of the voids ranges between 50−500µm

with grain size in the order of 50− 100µm.

A.1 Introduction

Motivated by the tomographic image in Fig. A.1, a more physics-based way to include

such pressure dependence at the material level is the use of void microstructures1 em-

bedded in an otherwise plastically incompressible matrix phase. These voids or cracks,

which could be present in the material ab initio or be nucleated around precipitates

and particles in the course of deformation (Essmann et al. [1981]), could be smaller,

equal or larger than the size of the grains. The voids therefore can have sizes from

1To avoid any misunderstanding with the different communities in mechanics and material science,

we precise here that the word “microstructure” refers, henceforth, to the voids.
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(a) (b) (c)

Figure A.1: (a) The original uniaxial tension specimen with effective diameter D = 5.13mm.

(b) Cylindrical volume taken from the original specimen from the effective area for X-ray

tomographic observation. (c) Voids of sizes ranging between 50 − 500µm. The two arrows

show voids with average aspect ratios w1 ≈ w2 ≈ 2 (prolate ellipsoidal shape) and w1 ≈

w2 ≈ 1 (average spherical shape). Courtesy of N. Limodin and E. Charkaluk.

a few microns (e.g., 1-10 µm) to hundreds of microns (larger than 200 µm). The

presence of the pore, in turn, gives rise to a compressible response of the composite

material in the plastic region, and hence to pressure dependence. This is achieved

by transforming the mean stress applied at the macroscale to a local shearing of the

matrix material near the void surface.

As a consequence, the material is now viewed as a two-phase composite system

comprising the void phase and the matrix phase. The matrix phase, depending on

which scale we refer to, could be the grain or an ensemble of grains. In the first

case, that the voids lie inside the grain or the cracks are in the scale of grains, it was

shown that the strain-gradient effects with (Niordson and Legarth [2010], Vernerey

et al. [2007] or without (Monchiet and Kondo [2013]) crystal plasticity can have a

significant impact on material response Miehe et al. [1999], Watanabe et al. [2010].

In the second case, where the voids are larger than the size of the grains, standard

isotropic plasticity could be used to model the response of the material, which is the

case in the present study.

While the idea of using porous materials to study ductile fracture of metallic ma-

terials subjected to monotonic loading conditions has been used extensively in the

literature, very few studies have been carried out in the domain of cyclic response of

such materials.
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Specifically, in the context of monotonic loading conditions, nonlinear homogeniza-

tion models and micromechanical models (such as the well-known model of Gurson

[1977]) for elasto-plastic porous materials) have been used for the prediction of pressure

dependent material behavior. In the context of nonlinear homogenization techniques,

Ponte Castañeda [1991a] (see also Michel and Suquet [1992] for a parallel develop-

ment using a different approach) has proposed a linear comparison composite method

initially applied to isotropic porous materials. In a later stage, these techniques have

been extended to include in an accurate manner general ellipsoidal void shapes (see

for instance the recent works of Danas and Ponte Castañeda [2009a] and Danas and

Aravas [2012]). In a parallel development, extensions of the Gurson model either for

isotropic void shapes (see for instance Tvergaard and Needleman [1984] and Mear and

Hutchinson [1985]) or spheroidal (Gologanu and Leblond [1993], Benzerga and Besson

[2001], Monchiet et al. [2006]) and ellipsoidal (Madou and Leblond [2012b]) void shapes

have been proposed. Such material systems have also been analyzed very early using

numerical finite element methods (see for instance the seminal work of Koplik and

Needleman [1988]), and are still addressed by recent works (see for instance Tver-

gaard [2011], Nielsen and Tvergaard [2011], Tvergaard [2012], Tekog̃lu et al. [2012]).

In these works, the pressure dependence has been studied via the stress triaxiality,

denoted here by XΣ and defined as the ratio of the mean stress to the von Mises

equivalent or effective deviatoric stress. More recently, the Lode angle θ, which is di-

rectly related to the third invariant of the deviatoric stress tensor, has been identified

experimentally (Barsoum and Faleskog [2007a]) as an important loading parameter,

especially at low stress triaxialities. Numerical simulations (Zhang et al. [2001]) and

analytical micromechanical models have been proposed in this regard (Nahshon and

Hutchinson [2008], Danas and Ponte Castañeda [2012]).

Nevertheless, most of the above studies have been carried out in the context of

monotonic loading conditions. Even though the material is initially the same, the

evolution of the void size and shape in cyclic loading conditions is markedly different

than in the context of monotonic loadings. Yet, much less has been done in the

context of cyclic loading conditions. Specifically, Monchiet et al. [2008b] have used

a micromechanical model for porous materials to explain the mean stress effect in

high cycle fatigue. Furthermore, Devaux et al. [1997], Besson and Guillemer-Neel

[2003] and Rabold and Kuna [2005] have explored numerically the cyclic response of
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porous materials at small and moderate number of cycles with a main emphasis on

axisymmetric loading states at large strains. Their analysis has mainly focused on the

prediction of porosity ratcheting, whereby the underlying void shape changes have not

been studied in detail. In a similar study, Ristinmaa [1997] has carried out finite-strain

unit-cell computations, but for a small number of cycles, concluding that void shape

effects have very little effect on porosity ratcheting.

In a slightly different context, Pirondi et al. [2006] and Hommel and Meschke [2010]

have used the Gurson [1977] and the Leblond et al. [1995] models, respectively, to

investigate the low cycle fatigue response of metallic structures. Rather interestingly,

the later found that by including void shape effects (contrary to the first who used

Gurson model that includes no void shape effects) could dramatically improve their

predictions, even though a large number of additional fitting parameters had to be

used. Similar observations regarding the importance of void shape effects upon the

cyclic response of porous materials have also been made recently by Carpiuc [2012]

who used the model of Danas and Aravas [2012], which includes general ellipsoidal void

shapes and orientations. In that study, it was found that void shape changes tend to

accumulate in each cycle thus leading to ellipsoidal void shapes and consequently to

porosity ratcheting, contrary to the Gurson model that predicts no porosity ratcheting

(see Devaux et al. [1997] for more details). Nonetheless, all these homogenization and

micromechanical models contain only partial information about the void shape changes

(up to a perfect ellipsoidal shape) and as we will see in the following they need to be

re-assessed first via numerical calculations such as the present study and ultimately

be used to compare with experiments.

A.1.1 Scope of this study

The scope of the present study is to investigate the effect of cyclic loading con-

ditions and finite deformations upon microstructure evolution and material soften-

ing/hardening using finite element (FEM) periodic unit-cell calculations with 3D ge-

ometry at small and large number of cycles. The matrix material is described by

isotropic J2 plasticity considering the case, described previously, of the voids being

much larger than the grain size but smaller than the specimen size. Nonetheless, the

results obtained in the present study could still be valid, at least in a qualitative man-
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ner, in the case of materials with large, but not strongly anisotropic (e.g., FCC) grains

comprising intragranular voids that are not of a nanometer size (Monchiet and Kondo

[2013]).

Furthermore, it is worth to impress upon the fact that in the fatigue community, a

large majority of studies in the context of cyclic loadings is done using small strain cal-

culations, in order to increase numerical efficiency, and therefore neglect any changes

of the underlying microstructure (including void shape effects). As we will see in this

work, however, the local strains can be in excess of 50% due to strong localization of

the deformation around voids, even if the overall applied strains are small (in the order

of a few percent). For that reason and in agreement with the aforementioned microme-

chanical studies (Devaux et al. [1997], Besson and Guillemer-Neel [2003], Rabold and

Kuna [2005]), it is also critical that a finite deformation analysis is carried out in the

present work.

Specifically, in section A.2, we describe the unit-cell geometry and the applied

loading states at the scale of the microstructure, defined here by the presence of a void

in an homogeneous elasto-plastic matrix. Furthermore, we identify the variables used

to analyze the cyclic response of the periodic porous medium and the void geometry

changes. Next, in section A.3, we present the cyclic response of the unit-cell at

small and large number of cycles where we identify the principal micro-deformation

mechanisms that lead to an overall softening of the porous material. In the following,

in section A.4, we carry out a parametric study in order to investigate the effect of

the loading and the initial void shape, respectively, upon the cyclic response of the

unit-cell. It should be mentioned here that the above described sections are devoted to

a plastically incompressible matrix phase with purely isotropic hardening. However,

in Section A.5 preliminary calculations with coupled nonlinear isotropic-kinematic

hardening will also be considered showing similar qualitative characteristics with the

purely isotropic hardening case. Finally, we conclude with a brief discussion of the

main results and perspectives of this study.

A.2 Problem formulation

In this section, we define a periodic porous medium with cubic unit-cell geometry as

well as the loading conditions used in this study. The interest in this work is the
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analysis of a cubic periodic unit-cell comprising a spherical void positioned at the

center. The unit-cell is subjected to periodic average cyclic loading conditions with

a constant amplitude of average stress triaxiality and average Lode angle. A critical

aspect of the present study is the use of a finite strain analysis contrary to the more

common small strain analysis used when studying cyclic loading conditions. This will

allow for the evolution of the void geometry due to the local large strains at the current

configuration. In this regard, one needs to identify the relevant parameters that are

necessary to describe the evolution of the void geometry, in general.

A.2.1 Geometry of the unit-cell

In order to set the stage of the following analysis we first attempt to separate the

relevant length-scales of the problem at hand. In this regard, let us consider a three-

dimensional specimen as shown in Fig. A.2a. It is common practice to consider that

the material is homogeneous and is described by phenomenological constitutive laws

(e.g., J2 plasticity, anisotropic plasticity, etc). In reality, however, this specimen is

heterogenous and in several cases of practical interest comprises defects, e.g., impuri-

ties, cracks and/or pores at the micron scale (see Fig. A.1) at a scale which is bigger

than the scale of the size of the grains but much smaller than the size of the specimen

and the scale of variation of the externally applied loading conditions. Furthermore,

such a specimen is usually subjected to general loading conditions (such as traction,

torsion or a combination of both, etc), whereas at the local level, one finds a rather

complicated stress and strain loading state due to the nonlinear macroscopic geometry,

which involves both shears and hydrostatic stress states. As already stated in the pre-

vious section, it has long been acknowledged that the effect of pressure is primordial in

cyclic loading conditions, yet such materials are modeled very often as plastically in-

compressible. In this work, in order to include (physically) this pressure dependence,

we consider that the underlying material that makes up the notched specimen is a

periodic medium comprising initially spherical voids distributed with cubic symmetry

as shown in Fig. A.2b, whereas the two scales–specimen scale and material scale–are

well separated. Even though the choice of a cubic symmetry is an idealized choice, the

use of a small initial void volume fraction (i.e., 1%) together with overall low strains

(i.e., < 5%) allows for a sufficiently general qualitative analysis without any significant
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interactions between neighboring voids, as we will see in the following, at least until

very late where void shapes evolve significantly and mesh distortion is prohibitive for

further numerical analysis. In addition, the use of a periodic medium allows for a full-

field numerical analysis of the material response due to the fact that only one cubic

unit-cell (Fig. A.2c) with appropriately defined periodic boundary conditions is needed

(Michel et al. [1999]). This single unit-cell can then generate by periodic repetition

the entire microstructure of the composite (Fig. A.2b).

More specifically, the presence of voids will immediately give rise to an average

hydrostatic stress dependence of the periodic medium at the plastic range since the

voids are compressible and hence the average (plastic) strain in the unit-cell will have

a non-zero hydrostatic component (i.e., it exhibits compressible plasticity). In order

to keep the analysis tractable as well as to simplify our numerical calculations, we will

further restrict attention to only triaxial loading states aligned with the symmetries of

the unit-cell, thus analyzing only one-eighth of the cube, as shown in Fig. A.2d. This

implies that the underlying void will evolve in volume and in shape when finite strains

are applied at the level of the unit-cell, but not in orientation 2.

Finally, in this study, we attempt to make no direct coupling between the several

scales, i.e., the specimen scale (Fig. A.2a) and the material scale (Fig. A.2b) but mainly

to understand the effect of a triaxial stress state upon the cyclic response of a periodic

porous material. This, of course, implies further that we cannot carry out any direct

comparison with experiments since these require the use of a geometry, such as the

one in Fig. A.2a.

On the other hand, this analysis has as a focus to analyze and understand the

basic microstructural deformation mechanisms so that (less time-consuming) analyti-

cal homogenization models for porous materials (Monchiet et al. [2008a], Danas and

Aravas [2012], Madou and Leblond [2012b]) and phenomenological pressure-dependent

criteria (Dang Van [1971], Constantinescu et al. [2003], Monchiet et al. [2008b]) can

be re-assessed.

2Orientation effects can readily be included by considering the entire unit-cell but this is left

for a future study since this would introduce a large number of additional set of parameters to be

investigated and would make the present work too lengthy
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Figure A.2: (a) A three-dimensional specimen at the macroscopic scale made-up of a periodic

porous material. (b) A periodic porous material with cubic symmetry at the micron scale.

(c) Geometry of a single cubic unit-cell with a void at the center and (d) mesh of the 1/8

cut of the unit-cell geometry.

A.2.2 Periodic boundary conditions and cyclic loads

We consider a cubic unit-cell occupying a volume V with side length of 2L and bound-

ary ∂V that comprises a spherical void at the center, as shown in Fig. A.2c. The

matrix phase is described by an isotropic elasto-plastic constitutive law as described

later in this section.

The unit-cell is subjected to triaxial periodic boundary conditions, so that the

velocity field u̇ (the superposed dot denotes time derivative) can be split into an affine

part D · x and a correction u̇∗, i.e., (Michel et al. [1999], Miehe et al. [1999])

u̇(x) = D · x+ u̇∗(x), u̇∗ periodic. (A.1)

The second-order tensor D, characterising the affine part, corresponds to the average

strain-rate field in the periodic medium (i.e., the actual strain-rate field of the unit-cell

if it were homogeneous) and is defined via the local field D̃ which admits the following

decomposition

D̃(x) = D +D∗(x), D =
1

V

∫
V

D̃(x)dV,
1

V

∫
V

D∗(x)dV = 0. (A.2)

The average strain ε̇ at a given time t in the unit-cell is expressed by

ε̇(t) =

∫ t

0

D(τ) dτ. (A.3)
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In turn, the average stress σ (i.e., the actual stress field of the unit-cell if it were

homogeneous) is defined formally in terms of the local stress field σ̃ via

σ =
1

V

∫
V

σ̃(x)dV, (A.4)

where σ̃ satisfies the following equilibrium equations and periodic boundary conditions,

i.e.,

div σ̃ = 0 in V, σ̃ · n−# on ∂V. (A.5)

In this expression, n denotes the normal to the exterior faces of the unit cell and

−# is used to denote that the traction is opposite on opposite sides of the unit-cell.

Henceforth, the use of the quantities σ, D and ε̇ (and of any other quantity resulting

from those) refers unambiguously to the average (or macroscopic) stress, strain-rate

and strain fields in the unit-cell.
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Figure A.3: (a) Schematic representation of the principal stress (σ1, σ2, σ3) cartesian system

and the (σm,σeq,θ) cylindrical system. (b) Components of the normalized stress 3σi/2σeq, i =

1, 2, 3 as a function of the Lode angle θ in the case of XΣ = 3.

Table A.1: Ordering of the principal stresses for different Lode angles. The relevant direc-

tions are shown in Fig. A.2d while their relevant magnitude and graphical representation is

shown in

Fig. A.3b.

θ = 0o θ = 30o θ = 60o

|σ1| > |σ2| = |σ3| |σ1| > |σ2| > |σ3| |σ1| = |σ2| > |σ3|

As a consequence of the presence of the void, the average response of the unit-cell

depends upon the average hydrostatic pressure (or mean average stress) as well as the
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deviatoric part of the average stress tensor. Thus, it is useful to define at this point the

average stress triaxiality, XΣ, and average Lode angle, θ, in the unit-cell as measures

of the average stress state in the unit-cell, such that

XΣ =
σm
σeq

, cos (3θ) =
27

2
det

(
σ′

σeq

)
, σm =

1

3
σkk, σeq =

√
3

2
σ′ : σ′, (A.6)

with σ′ = σ−σmI denoting the stress deviator and I the second-order identity tensor.

Using the definitions in equation (A.6), one can write the principal components of the

stress field as a function of XΣ and θ, via

3

2σeq
{σ1, σ2, σ3} =

{
cos θ,− cos

(
θ +

π

3

)
,− cos

(
θ − π

3

)}
+

3

2
XΣ{1, 1, 1}. (A.7)

The graphical illustration of the above relations is shown in Figure A.3. The (σm,σeq,θ)

coordinates define a cylindrical coordinate system oriented along the hydrostatic axis

σm, as shown in Fig. A.3a. In Fig. A.3b the normalized stress components, 3σi/2σeq

are depicted as a function of the Lode angle θ for a stress triaxiality XΣ = 3. Note that

due to the π/3 periodicity of the functions used in relation (A.7), the three principal

stresses exhibit similar periodicity. For later use, we also show explicitly in Table 1 the

order of the stress components for three representative Lode angles that will be used

in the following sections. Note that in the case of an initially non-spherical shape a

larger range of Lode angles (i.e., θ > 60o) could be considered. However, for the sake

of brevity, we will restrict attention only to the aforementioned Lode angles.

In the following, we focus on purely triaxial loading conditions aligned with the

symmetry planes of the cubic unit-cell and the underlying void microstructure. This

allows for numerical simplicity while keeping essential features of the void geometry

changes. This leads to the following Dirichlet-type boundary conditions
u1(0, x2, x3) = 0, u1(L, x2, x3) = U1(t),

u2(x1, 0, x3) = 0, u2(x1, L, x3) = U2(t),

u3(x1, x2, 0) = 0, u3(x1, x2, L) = U3(t).

(A.8)

with u∗ = 0 on ∂V . This implies that the external faces of the unit-cell remain straight

(Michel and Suquet [1994], Garajeu et al. [2000]) and hence only 1/8 of the unit cell

may be considered, as shown in Fig. A.2d. In turn, the void surface is traction free.

Before we define the cyclic loading in terms of the displacements Ui(t) (i = 1, 2, 3),

we first have to apply of a constant stress triaxiality and Lode angle during a given

deformation process, following the methodology described in chapter 4.
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Figure A.4: Schematic explanation of the application of the cyclic loading and the corre-

sponding qualitative values of (a) the applied displacement u, (b) the applied stress triaxiality

XΣ and (c) the applied Lode angle θ as a function of time for one cycle.

Using the above definitions, we divide each cycle in four steps. In each step of each

cycle, as shown in Fig. A.4a, we control the average strain in the unit-cell, by setting

u(t)/L ≡ pG1 (t)
3. This quantity, u/L, initially increases from O to A (step 1), unloads

from A to B (step 2), reversely loads from B to C (step 3) and unloads from C to D

(step 4) defining thus an entire cycle. Then, the average strain-rate D is evaluated

such that the stress triaxiality XΣ and Lode angle θ remain constant in each step as

discussed previously and as shown in Fig. A.4b and Fig. A.4c. Note in these figures

that in order to obtain full stress reversibility during the cycle, XΣ has to change sign

and θ has to jump to θ + π between A-D. For convenience, hereafter, the notations

XΣ and θ are used to denote unambiguously the absolute value of the stress triaxiality

(i.e., XΣ ≡ |XΣ|) and the minimum value of the Lode angle (i.e., θ ≡ cos−1 | cos θ|) in
each cycle A-D.

In the following calculations, the matrix phase is described by an elasto-plastic

constitutive relation. The elastic part is defined via the Young’s modulus E and the

Poisson ratio ν. In turn, standard J2 plasticity theory is used to describe the plastic

behavior of the matrix together with an isotropic strain hardening law (except in

Section A.5 where a nonlinear kinematic hardening law is also added) given by a

power-law form, which reads

σy = σ0

(
1 +

εp

ε0

)1/N

, ε0 = σ0/E. (A.9)

Here, σ0 and ε0 denote the initial yield stress and yield strain of the matrix material,

3Note that the functional form of pG1 (t) is irrelevant since the problem is time-independent.
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N is the hardening exponent and εp is the accumulated plastic strain in the matrix

phase defined in the usual way. In this study, we focus on realistic values of the elastic

moduli, e.g., Young’s modulus, E ∼ 1000σ0 (for instance σ0 ∼ 200MPa corresponding

to steel), Poisson’s ratio, ν = 0.3 and hardening exponent, N = 10. Nonetheless, one

should point out that particularly in cyclic loading conditions, the effect of elasticity

and hardening could be important as already discussed in Devaux et al. [1997], and

such an analysis is detailed in Appendix A.7.

A.2.3 Evolution of void geometry

In this section, we introduce the variables used to characterize the evolution of the

change in volume and shape of the void. More specifically, the porosity (i.e., the

volume fraction of the void in the unit-cell) is defined as

f = Vv/V = 1− Vm/V, V = Vm + Vv, (A.10)

where Vv, Vm and V are the volume of the void, the matrix and the total volume of

the unit-cell, respectively. Here Vm is calculated as the sum of each volume element,

while the unit-cell volume V is evaluated using the coordinates of the corner nodes of

the cubic unit-cell since due to symmetry of the void and the purely triaxial loading

conditions the external faces of the cell remain straight. As a consequence of the
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Figure A.5: (a) Schematic representation of 1/8 of the surface of a perfect ellipsoidal void

defined by three semi-axes ai (i = 1, 2, 3). (b) Cross-section of the void surface in the x1−x2
plane where a representative difference between the actual void shape and an ideal ellipsoid

shape having the same aspect ratios.

finite deformations considered in this study, significant changes in the pore shape are
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also observed. Therefore, appropriate geometrical quantities need to be introduced in

order to evaluate such pore shape changes. As a first-order measure, the void shape

is characterized by two aspect ratios

w1 = a3/a1, w2 = a3/a2 (A.11)

where 2ai (with i = 1, 2, 3) denote the current lengths of the axes of the void that

intersect with the coordinate axes xi (with i = 1, 2, 3), respectively, as shown on

Fig. A.5a. However, such a measure will be shown in the following to be insufficient

since the void obtains markedly non-ellipsoidal shapes due to the cyclic loadings as

opposed to the purely monotonic loadings where almost ellipsoidal shapes are observed

(Srivastava and Needleman [2012]). In this regard then, as an additional measure of

the pore geometry change, we have also defined the ellipsoidicity ratio. This ratio has

been introduced as a measure of the divergence of the void geometry from an equivalent

perfect ellipsoid, as depicted in Fig. A.5b. While a large number of options can be

used to identify this difference, use is made here of a simple measure. First, we set the

axes of the ideal ellipsoid equal to the length of the actual void axes. Then, the volume

of the ideal ellipsoid, Ve, will in general be different from that of the actual void Vv

due to the nonlinearity of the matrix phase, the interactions of the neighboring voids

of the periodic composite and more importantly due to the cyclic loading conditions.

Therefore, the ellipsoidicity ratio, El defined via

El = Ve/Vv (A.12)

gives the difference of the actual void shape from that of a perfect ellipsoid. Conse-

quently, when the ellipsoidicity ratio takes values close to unity, the void shape remains

almost an ellipsoid.

The above microstructural variables will be used in the following to analyze the

micromechanisms that lead to an the material softening / hardening due to the applied

cyclic loading conditions. It should be noted here that due to the cubic symmetry of

the unit-cell and the purely triaxial loading conditions no void rotations are obtained.

A.3 Cyclic response and microstructure evolution

In this section, we discuss the results obtained by the previously described loading

conditions. The cyclic loading conditions are parametrized by the use of two different
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values of the stress triaxiality XΣ = 2/3, 3 and three different values of the Lode angle

θ = 0o, 30o, 60o are used 4. For the low triaxiality XΣ = 2/3, we set the average

strain amplitude u/L = 5% and for the high triaxiality XΣ = 3, we set the average

strain amplitude u/L = 1%. The difference in amplitudes has been introduced for

convenience with the calculation time needed to observe significant void geometry

changes and/or localization of the strain at certain region of the unit-cell. Two sets

of computations have been carried out: (i) for a small number of cycles, e.g., 5 cycles

and (ii) for a large number of cycles, e.g., ≈ 50 cycles.

Moreover, for convenience with the meshing, we use an initial porosity f = 1%,

which corresponds to a void radius a/L = 0.2673, and a maximum of 32× 104 degrees

of freedom, which leads to an average of 2.5 hours computational time per cycle on a

12-cpu parallel computation. A detailed discussion of dependency of the results upon

the mesh size is carried out in the Appendix A.8.

a) b)

Number of cycles, Nr Number of cycles, Nr

Average value

Maximum value

Minimum value

Figure A.6: Qualitative description of the cyclic response of a variable A (e.g., plastic

strain, porosity, void shape change) as a function of the number of cycles Nr. The minimum,

maximum and average values of A are extracted by the corresponding cyclic response.

In order to clarify further the results in the following sections, we include Fig. A.6,

where for a given variableA (e.g., porosity, aspect ratios, ellipsoidicity, etc), an average

quantity per cycle is defined as the arithmetic mean of the maximum and the minimum

value per cycle. In the same figure, the flat, horizontal part of the curves corresponds

4Recall that the notation XΣ = 2/3 and θ = 0o, for instance, corresponds to |XΣ| = 2/3 and

θ = cos−1 | cos θ| according to the discussion made in the context of Fig. A.4.
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to elastic unloading. On the other hand, the average von Mises stress per cycle is

evaluated at the end of the first step of each cycle, as those are defined in the context

of Fig. A.4.

A.3.1 Small number of cycles

In Fig. A.7, we consider stress-strain results for 5 cycles, a low stress triaxiality XΣ =

2/3 and Lode angle θ = 0o (with u/L = 5%). Specifically, we show two normalized

average principal stresses, (a) σ1/σ0 and (b) σ2/σ0, in the unit-cell as functions of

the average components of the strains, ε1 and ε2, respectively. We focus on these two

stress components since Lode angle θ = 0o corresponds to an axisymmetric stress state

case (see Table 1) and hence the third stress component is equal to the second one. In

Fig. A.7a, we observe a common stress-strain cyclic response where in the first cycle

a hardening is obtained in both tension and compression. This hardening tends to

saturate rather fast due to the low hardening exponent used in this case, as observed

by the use of the notation C1, C2, C3, C4, C5 which serve to identify each of the 5

cycles. In Fig. A.7b, the second average stress-strain response is similar to the first one

but with a different sign of the strain due to the plastic incompressibility of the matrix.

Note however that the average plastic response of the unit-cell is not incompressible

due to the presence of the void, however, due to the low stress triaxiality in this

example, this is only slightly visible by noting the small asymmetry of the curve in

Fig. A.7b with respect to the average strain ε2.

In Fig. A.8, we consider stress-strain results for 5 cycles, a low stress triaxiality

XΣ = 3 and Lode angle θ = 0o (with u/L = 1%). Similarly, we show two normalized

average principal stresses, (a) σ1/σ0 and (b) σ2/σ0, in the unit-cell as functions of the

average components of the strains, ε1 and ε2, respectively. As observed in Fig. A.8a,

the material significantly softens during the cycle when ε1 is (positive) tensile while

it hardens when ε1 is (negative) compressive. As will be seen next, this is due to

the evolution of the porosity (i.e., void volume fraction), which increases for ε1 > 0

and decreases for ε1 < 0. This leads, in turn, to a significant asymmetry of the

stress-strain response between positive and negative stress triaxialities (i.e., between

tension and compression) which is markedly different than the corresponding stress-

strain response at the lower stress triaxiality of XΣ = 2/3 of the previous figure. Note
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Figure A.7: (a) Normalized average stress σ1/σ0 as a function of the average strain ε1 and

(b) normalized average stress σ2/σ0 as a function of the average strain ε2 at 5 cycles in the

case of u/L = 5%, XΣ = 2/3, θ = 0o. The notation C1, C2, C3, C4, C5 represents the first,

second, third, fourth and fifth cycle, respectively.
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Figure A.8: (a) Normalized average stress σ1/σ0 as a function of the average strain ε1 and

(b) normalized average stress σ2/σ0 as a function of the average strain ε2 at 5 cycles in the

case of u/L = 1%, XΣ = 3, θ = 0o. The notation C1, C2, C3, C4, C5 represents the first,

second, third, fourth and fifth cycle, respectively.

that the observed asymmetry is not due to a Bauschinger effect but is strongly related

to the evolution of the void geometry as will be seen in the following. This asymmetry

has also been identified in the context of uniaxial yielding by Cazacu et al. [2014a] as

a possible cause of swift effect Swift [1947] i.e. the occurrence of inelastic axial effects.

On the other hand, in Fig. A.8b, we observe a strong asymmetry in the strain axis.
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This is due to the high triaxiality loading used in this case (XΣ = 3), resulting to a

highly compressible plastic response of the unit-cell.
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Figure A.9: Evolution of porosity f as a function of the average first principal strain at 5

cycles in the cases of (a) u/L = 5%, XΣ = 2/3, θ = 0o and (b) u/L = 1%, XΣ = 3, θ = 0o.

The notation C1, C2, C3, C4, C5 represents the first, second, third, fourth and fifth cycle,

respectively.

In Fig. A.9, we discuss the evolution of the porosity f for the two afore-mentioned

stress triaxialities, i.e., for (a) XΣ = 2/3 and (b) XΣ = 3 with θ = 0o as a function

of the average strain ε1. As shown in Fig. A.9a, only a minor porosity ratcheting is

observed if one observes the extremities of the cyclic curves at positive strains. In

addition, as already stated previously, f increases for ε1 > 0 and decreases for ε1 < 0,

as intuitively expected. On the contrary, porosity evolution is much more significant

for XΣ = 3, as observed in Fig. A.9b, where porosity grows by almost 50% (note the

crossing of the f curves at ε1 = 0) after only 5 cycles. This can explain the observed

asymmetry of the stress-strain curve with respect to the strain ε2 in Fig. A.8b.

At this point, it is worth noting that the observed effect of stress triaxiality upon

the above-discussed stress-strain responses and porosity ratcheting, for a matrix with

purely isotropic hardening, is in full qualitative agreement with the results presented by

Rabold and Kuna [2005] in the context of combined isotropic and kinematic hardening.

This, further, implies that the hardening characteristics of the matrix phase affect only

quantitatively, but not qualitatively, the evolution of the void volume and shape. This

observation is further confirmed in Section A.5.
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Figure A.10: Evolution of the aspect ratio w1 as a function of the average strain ε1 at 5

cycles in the cases of (a) XΣ = 2/3 (u/L = 5%) and (b) XΣ = 3 (u/L = 1%) with θ = 0o.

The notation C1, C2, C3, C4, C5 represents the first, second, third, fourth and fifth cycle,

respectively. Due to the axisymmetric loading (θ = 0o) w2 = 1 during the entire deformation

process.

Figure A.10 shows the evolution of the void shape via the evolution of the aspect

ratio w1 for the two stress triaxialities (a) XΣ = 2/3 and (b) XΣ = 3 with θ = 0o as

a function of the average strain ε1. Note that the second aspect ratio w2 = 1, since

for θ = 0o the loading is axisymmetric along x1 (i.e., |σ2| = |σ3|). More specifically,

in Fig. A.10a, we observe that for the lower stress triaxiality XΣ = 2/3, the void

aspect ratio exhibits only a small ratcheting. Interestingly, as the number of cycles

increases, the void shape tends to become oblate (i.e., w1 > 1, a1 < a3 = a2) even

though |σ1| > |σ2| = |σ3| and the aspect ratio decreases in the first step of C1, as

intuitively expected. However, the very small porosity and aspect ratio ratcheting in

this low triaxiality case leads to an almost symmetric stress-strain curve in Fig. A.7.

On the other hand, in Fig. A.10b, a significantly asymmetric void shape change with

respect to ε1 is observed. Moreover, as a result of the high stress triaxiality, the void

tends to become oblate (w1 > 1, a1 < a3 = a2) from the very first loading step

even though |σ1| > |σ2| = |σ3|. This counterintuitive effect has been attributed to

the strong nonlinearity of the matrix and the high triaxiality loading (see Budiansky

and Hutchinson [1980] and Fleck and Hutchinson [1986]). More importantly, the

oblate shape persists as the number of cycles increases. This is due to the asymmetric

response of the unit-cell between ε1 > 0 and ε1 < 0. More specifically, we find that
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the rate of the void shape change is more significant in the ε1 < 0 (i.e., in compressive

loads) rather than in the ε1 > 0 (i.e., in tensile loads). This asymmetry can be

qualitatively observed by the difference in the slopes of the w1-ε1 curves in the ε1 > 0

and ε1 < 0 regimes. In turn, this asymmetry in the void shape evolution leads to a

permanent irreversible void shape change from the very first cycle (i.e., after the first

cycle the void is not spherical), which in turns produces the porosity ratcheting and

the asymmetric average stress-strain response in Fig. A.8. At this point it is worth

mentioning that the void shape irreversibility and consequently porosity ratcheting are

present also for different hardening exponents (including N → ∞ which corresponds

to an ideally-plastic response) not shown here for the sake of a reasonable set of

parameters investigated.

A.3.2 Large number of cycles

In the previous section, it has been shown that the cyclic behavior of the material,

and especially the porosity ratcheting as well as the asymmetric void shape evolution

have a strong effect upon the average stress-strain response of the unit-cell. Thus, in

order to isolate the effect of porosity evolution and the influence of the void shape

change in the cyclic response of the material, a unit-cell geometry with a spherically

constrained void shape is further added in our study. It is further clarified here that

the spherically constraint void does allow the evolution of the void volume (i.e., void

growth) and porosity change but constraints the change of the void shape to remain

spherical. This is achieved by imposing a nonlinear kinematic constraint in spherical

coordinates allowing a uniform radial displacement of the nodes at the void surface,

ur = cst and arbitrary displacement in the orthoradial directions (i.e. uϕ1 and uϕ2 are

arbitrary where r, ϕ1 and ϕ2 denote the spherical coordinates).

The cases of a spherically “constrained” and a totally “unconstrained” void geom-

etry are compared in the following for a large number of cycles. In the results that

are shown subsequently, we stop the calculations at 50 cycles since after this point we

observe strong localization of the deformation and the numerical solution diverges sig-

nificantly. A more detailed discussion about this point is carried out in the Appendix

A.8.

In Fig. A.11, we show (a) the normalized average equivalent von Mises stress per
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cycle σeq/σ0 and (b) the porosity f per cycle as a function of the number of cycles

Nr for triaxiality XΣ = 3, amplitude u/L = 1% and Lode angle θ = 0o for the

unconstrained void shape and the spherically constrained void shape cases. As we can

observe in Fig. A.11a, σeq/σ0 exhibits a maximum value for the unconstrained void

shape (filled square on the curve indicated the position of this maximum) whereas the

spherically constrained void calculation exhibits a continuous hardening as a function

of Nr. In order to explain this rather interesting difference between the unconstrained

and the constrained void shape calculations, we look into the porosity evolution in

Fig. A.11b. In this figure, we observe that the increase of porosity, albeit significant,

cannot (by itself) explain the softening response observed in the unconstraint void

shape calculation in Fig. A.11a, since both the unconstrained void case as well as the

spherically constrained void case predict almost the same evolution of the porosity as

a function of the number of cycles Nr, but only the first exhibits a maximum in the

σeq/σ0. (The point where the maximum in σeq/σ0 curve is observed is denoted with

a filled square in Fig. A.11b.) The fact that the spherically constrained case exhibits

also porosity ratcheting can be partially explained by the presence of elasticity and

the loading-unloading response of the unit-cell, as discussed in detail in Devaux et al.

[1997]. In fact, in the spherically constrained void shape case porosity ratcheting is

even more pronounced than in the unconstrained void shape case.
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Figure A.11: (a) Normalized average von Mises stress σeq/σ0 and (b) porosity f as a function

of the number of cycles Nr for an unconstrained void (continuous line) and a spherically

constrained void (dashed line) in the case of XΣ = 3 and θ = 0o (u/L = 1%). The filled

square (�) on the graphs indicate the points where maximum equivalent stress is observed.
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Figure A.12: Evolution of (a) the aspect ratios w1 and w2 and (b) the ellipsoidicity ratio

El as a function of the number of cycles Nr for an unconstrained void and a spherically

constrained void in the case of XΣ = 3 and θ = 0o (u/L = 1%). The filled square (�) on

the graphs indicate the points where maximum equivalent stress is observed.

This obviously indicates that void shape effects are critical for the understanding

of the cyclic response of such unit-cells. In this regard, in Fig. A.12, we show the

evolution (a) of the void aspect ratios w1 and w2 and (b) of the ellipsoidicity ratio

El. While w2 ≃ 1 due to the axisymmetric loading along direction 1 (see Table 1

for θ = 0o), w1 evolves significantly as a function of the number of cycles Nr. The

constrained void shape curve is also shown for clarity (i.e., w1 = w2 = 1 during the

deformation process). Perhaps more importantly, the ellipsoidicity ratio El—which

serves to measure the deviation of the void shape from an ideal ellipsoidal shape—

increases significantly as a function of Nr, in Fig. A.12b. This indicates that not only

the void becomes non-spherical but also deviates significantly from an ellipsoidal shape.

Detailed contours of the underlying void geometry will be shown in the following.

Thus, void geometry appears to be of crucial importance in the cyclic response of such

unit-cells. This further suggests that small strains calculations may be insufficient for

the analysis of cyclic loadings, at least in the present context where we attempt to

analyze the effect of the underlying microstructure upon the average cyclic response

of the unit-cell.
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A.4 Effect of the loading and the initial void shape

In this section, we carry out a parametric study in order to investigate the influence

of the loading conditions, i.e. the stress triaxiality and the Lode angle, as well as the

effect of the initial void shape on the cyclic behavior of the periodic porous material.

In the following results, the hardening exponent is set to N = 10, the Young’s modulus

E = 1000σ0 and the Poisson ratio ν = 0.3.

A.4.1 Effect of the stress triaxiality and the Lode angle

Figure A.13 shows the normalized average equivalent von Mises stress per cycle σeq

as a function of the number of cycles Nr for triaxiality (a) XΣ = 2/3 (and amplitude

u/L = 5%) and (b) XΣ = 3 (and u/L = 1%) as well as for three Lode angles θ =

0, 30, 60o. The two cases of an unconstrained void and a spherically constrained void

are also considered here. The main observation in the context of Fig. A.13 is that the

effect of stress triaxiality XΣ upon the σeq/σ0 response is very significant, whereas the

effect of the Lode angle is less important (at least at the range of cycles considered

here) but still non-negligible. In particular, the average stress σeq/σ0 exhibits no

softening for the lower stress triaxiality XΣ = 2/3 (Fig. A.13a) contrary to the high

stress triaxiality XΣ = 3 (Fig. A.13b). In addition, in Fig. A.13b, for XΣ = 3 and

an unconstrained void shape (continuous line), we find that the σeq/σ0 response for

θ = 0o depicts a more pronounced decrease than the two other cases, i.e., θ = 30o and

θ = 60o. Again the spherically constrained void case shows no softening for any of the

Lode angles considered here. These results indicate that primarily the stress triaxiality

and secondary the Lode angle affect critically the average stress-strain response of the

unit-cell.

In order to address the role of the stress triaxiality and Lode angle upon the eval-

uation of σeq/σ0, we show in Fig. A.14 the porosity f as a function of the number of

cycles Nr for the same set of stress triaxialities and Lode angles for both the uncon-

strained void and the spherically constrained void shape. In Fig. A.14a, for XΣ = 2/3,

we observe that even though the porosity evolves weakly (quantitatively) as a function

of Nr for all Lode angles considered, it tends to increase for the unconstrained void

while decrease for the spherically constrained void, exhibiting a markedly different

qualitative response in these two cases. On the other hand, for XΣ = 3 in Fig. A.14b
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Figure A.13: Normalized maximum average equivalent von Mises stress evolution for un-

constrained void / spherically constrained void in the case of (a) u/L = 5%, XΣ = 2/3 and

(b) u/L = 1%, XΣ = 3 as a function of the number of cycles Nr. The filled square (�) on

the graphs indicate the point where maximum stress is observed.
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Figure A.14: Porosity evolution for unconstrained void / spherically constrained void in the

case of (a) u/L = 5%, XΣ = 2/3 and (b) u/L = 1%, XΣ = 3 as a function of the number

of cycles Nr. The filled square (�) on the graphs indicate the point where maximum stress

σeq/σ0 is observed.

we observe a very important increase of f (almost three times more that its initial

value) but a less pronounced dependence on the Lode angle θ. Moreover, due to the

fact that the porosity evolution for XΣ = 3 is quite similar for both unconstrained and

constrained void shapes, we deduce again that the increase of porosity is not the only

reason for the softening response observed in the unconstrained void shape calculation

in Fig. A.13b.
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XΣ = 3 as a function of the number of cycles Nr. The filled square (�) on the graphs

indicate the point where maximum stress σeq/σ0 is observed.

Next we examine the void geometry changes as a function of the stress triaxiality

XΣ and the Lode angle θ. More specifically, Fig. A.15 shows the evolution of the aspect

ratios w1 and w2, as a function of the number of cycles Nr for the same set of stress

triaxialities and Lode angles considered previously. Obviously, there is no evolution of

these quantities for spherically constrained void. The main observation in the context

of Fig. A.15 is that the evolution of the aspect ratios w1 and w2 becomes significant

with increasing number of cycles. It is, in fact, observed that due to the applied finite

deformations, the shape of the void changes from the very first cycle and it tends to

grow further as the number of cycles increases. Even more interestingly, the largest

change in the void shape occurs for higher stress triaxialities, i.e., XΣ = 3, as shown in

Fig. A.15b, contrary to the case of XΣ = 2/3 where both aspect ratios increase but in

weaker manner. This result is not intuitive if one extrapolates the knowledge obtained

in the context of monotonic loadings (see for instance Danas and Ponte Castañeda

[2009a],Danas and Aravas [2012] and Srivastava and Needleman [2012]), where the

largest void shape changes occur for lower stress triaxialities.

At this point, we note that the evolution of the void shape does not describe

adequately the deformation mechanisms near the void surface. In fact, for most of the

computations presented here (except for the case of θ = 60o) significant localization

of the deformation occurs at the surface of the void. To illustrate this, we show, in
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Fig. A.16 contours of the deformed unit-cell at 40 cycles for Lode angles θ = 0, 30, 60o

and stress triaxiality (a-c) XΣ = 2/3 and (d-f) XΣ = 3. To emphasize further the

relative magnitude of each of the stress components |σi| (i = 1, 2, 3), we explicitly

show them at the top corner of the displayed unit-cell. In particular, we observe a

strong localization of the deformation (strains exceeding 60%) in a small zone of the

void surface whose size depends upon the mesh size. While for θ = 0o, the localization

strains lie in the plane 2 − 3 since the applied stress is axisymmetric along the 1-

direction, for θ = 30o the localization zone is smaller (see for instance Fig. A.16e)

but still lying mainly in the plane 2 − 3. We should mention at this point that even

though we have observed no maximum equivalent stress for the lower stress triaxiality

XΣ = 2/3 (see A.13a), the deformation localization is more than present (Fig. A.16a,b)

and a critical event is expected to occur in these cases. Unfortunately, due to this

strong localization of deformation the numerical calculation had to be stopped due to

convergence issues as discussed further in the Appendix A.8, while a more appropriate

formulation perhaps using non-local constitutive models (e.g., strain gradient plasticity

models Forest et al. [2011], Danas et al. [2012], Nielsen and Niordson [2013, 2014] or

even more general non-local criteria Feld-Payet et al. [2011]) are needed in this case

(see for instance Feld-Payet et al. [2011]). Those models should then to be combined

with appropriate remeshing techniques but such a study is beyond the scope of the

present work.

This same type of localization has been observed in all computations, i.e. for

XΣ = 2/3 and XΣ = 3 except for θ = 60o. In this last case, Fig. A.16c and Fig. A.16f

show that the void elongates significantly along the x3 axis, i.e., along the direction

of the minimum absolute stress component (since for θ = 60o, |σ1| = |σ2| > |σ3|).
It should be noted here that the observed localization affects only a small region of

the void surface and inevitably leads to strong mesh dependence at the local level

after localization occurs. As is detailed in the Appendix A.8, however, this mesh

dependence affects local quantities (such as the aspect ratio and ellipsoidicity) and

not average quantities such as the average stress and strain in the unit-cell, as well as

the porosity evolution.

It is worth noting at this point that recent experiments by continuous X-ray to-

mography (Hosokawa et al. [2012, 2013]) have revealed the effect of stress triaxiality

upon void shape and growth, albeit in monotonic loading conditions. As suggested by
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Figure A.16: Contours of the maximum principal logarithmic strain at 40 cycles in the case

of XΣ = 2/3 (u/L = 5%) for (a) θ = 0o and (b) θ = 30o and (c) θ = 60o and in the case of

XΣ = 3 (u/L = 1%) for (d) θ = 0o and (e) θ = 30o and (f) θ = 60o.

the present numerical calculations, the void shape changes under cyclic loadings are

very different when compared to those obtained for monotonic loadings (Danas and

Ponte Castañeda [2009b], Srivastava and Needleman [2012]). Hence, a study similar

to that of Hosokawa et al. [2012], but in cyclic loading conditions, could in fact shed

light to the observed void shape effects.

To assess further the effects of the localization upon the void shape changes, we

show in Fig. A.17, the ellipsoidicity ratio El as a function of the number of cycles Nr.

We recall here that as El deviates from unity the void tends to diverge from an ideal

ellipsoidal shape. In these graphs, the ellipsoidicity ratio reaches high values (El & 1.5)

for the cases XΣ = 2/3, θ = 0 and XΣ = 3, θ = 0, respectively, as a result of the
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corresponding deformation localization around the pore surface. The same remark can

be made forXΣ = 2/3 and θ = 30o but with somewhat lower values of the ellipsoidicity,

in the order of El . 1.3. In contrast, the ellipsoidicity is the smallest (and less than

1.2) for the combination θ = 30o and XΣ = 2/3 as well as for θ = 30, 60 and XΣ = 3.

This is in agreement with the contours of Fig. A.16c,e,f, where the void shape does

not deviate significantly from an ellipsoidal shape.
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Figure A.17: Ellipsoidicity ratio El for an unconstrained void and a spherically constrained

void in the case of (a) XΣ = 2/3 (u/L = 5%) and (b) XΣ = 3 (u/L = 1%) as a function

of the number of cycles Nr. The filled square (�) on the graphs indicate the point where

maximum equivalent stress is observed.

A.4.2 Effect of initial void shape

In this section, we investigate the effect of the initial void shape on the material cyclic

response for initial porosity f0 = 0.01, triaxiality XΣ = 3, amplitude u/L = 1%, Lode

angle θ = 0o, 60o and N = 10. In the following, only calculations with unconstrained

void shapes will be shown.

Figure A.18 shows evolution curves of (a) the average equivalent stress σeq/σ0

and (b) the porosity f as a function of the number of cycles for three different void

geometries, i.e. w0
1 = w0

2 = 1, w0
1 = 1/3 < w0

2 = 1, w0
1 = 3 > w0

2 = 1 5. The initial

void shapes that are different than a sphere have been chosen such that they remain

axisymmetric during the deformation process, i.e., w0
1 = 1/3, w0

2 = 1 is a prolate void

5Hereafter, the superscript ”0” in w0
i is used to denote initial values
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Figure A.18: (a) Normalized average equivalent von Mises stress σeq/σ0 and (b) porosity f

for several initial values of void shapes (w0
1 = w0

2 = 1, w0
1 = 1/3 and w0

2 = 1, w0
1 = 3 and

w0
2 = 1) in the case of XΣ = 3 (u/L = 1%) and θ = 0o as a function of the number of cycles

Nr. The filled square (�) on the graphs indicate the point where maximum equivalent stress

is observed.
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Figure A.19: (a) Normalized maximum average equivalent von Mises stress evolution for

several initial void shapes (w0
1 = w0

2 = 1, w0
1 = w0

2 = 1/3, w0
1 = w0

2 = 3) in the case of

u/L = 1%, XΣ = 3, θ = 60o and (b) Porosity evolution for several initial void shape

(w0
1 = w0

2 = 1, w0
1 = w0

2 = 1/3, w0
1 = w0

2 = 3) in the case of u/L = 1%, XΣ = 3, θ = 60o as a

function of the number of cycles Nr. The filled square (�) on the graphs indicate the point

where maximum stress is observed.

and w0
1 = 3, w0

2 = 1 is an oblate void, whose symmetry axis remains aligned with the

maximum principal stress σ1 in this case. As observed in Fig. A.18a, the average σeq/σ0

of the unit-cell exhibits a maximum only for the initially spherical void (w0
1 = w0

2 = 1)
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but not for the two other cases. Moreover, the unit-cell with w0
1 = 1/3, w0

2 = 1 is the

stiffest of all three cases considered here. In Fig. A.18b, the effect of the initial void

shape upon the porosity evolution is also significant. It is worth emphasizing that the

initially spherical void case (w0
1 = w0

2 = 1) shows the weaker porosity growth as a

function of Nr even though it is the only case that exhibits a maximum in the σeq/σ0

curve.

Similarly, Fig. A.19 shows evolution curves of (a) the average equivalent stress

σeq/σ0 and (b) the porosity f as a function of the number of cycles for three different

values of the initial shape, i.e., w0
1 = w0

2 = 1, w0
1 = w0

2 = 1/3, w0
1 = w0

2 = 3 and for

XΣ = 3 and θ = 60o. The initial void shapes have also been chosen to remain axisym-

metric during the entire deformation process, such as their symmetry axis remains

aligned with the minimum principal stress σ3 in this case. For this configuration, in

Fig. A.19a, a maximum σeq/σ0 is observed for two out of three cases, i.e. for the

initially spherical case (w0
1 = w0

2 = 1) and the initially prolate case (w0
1 = w0

2 = 3).

In Fig. A.19b the evolution of porosity f is less sensitive upon the initial void shape

with that for w0
1 = w0

2 = 1 being the strongest among the three cases considered here

contrary to the previous case of θ = 0o in Fig. A.18.

In order to assess in a more visual and comprehensive way the evolution of the

void shape geometry, Fig. A.20 shows initial and final (at 50 cycles) void shapes for

the same set of initial void geometries used in the previous figures of this section. The

main observation in the context of this figure is that for stress triaxiality XΣ = 3,

the void tends to elongate in the direction of the minimum applied principal stress,

i.e. |σ2| = |σ3| for θ = 0o and |σ3| for θ = 60o, except in the case of θ = 60o and

w0
1 = w0

2 = 1/3 (initially prolate case) where the void elongates along the direction of

the maximum applied stress |σ1| = |σ2|. This effect should not be confused with the

the similar effect observed for monotonic loadings and high stress triaxialities, since it

is attributed to the fact that, in each cycle, the void shape evolves faster during the

compressive step (XΣ ≤ 0) than the tensile step (XΣ ≥ 0), as already discussed in the

context of Fig. A.10 and is present also in lower stress triaxialities. At this point, it is

worth noting that the direction of the void elongation is consistent (except for θ = 60o

and w0
1 = w0

2 = 1/3) with a mode I loading of a crack. In other words, the voids

tend to give a crack-type shape, as observed more clearly, in Fig. A.20a,c and e, where

a rather sharp crack tip starts to form in a direction perpendicular to the maximum
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Figure A.20: Cross-sections of undeformed (continuous line) and deformed (dashed lines)

void geometries at 50 cycles and stress triaxiality XΣ = 3 in the case of θ = 0o with initial

void shape (a) w0
1 = w0

2 = 1 and (b) w0
1 = 1/3, w0

2 = 1 and (c) w0
1 = 3, w0

2 = 1 in the case of

θ = 60o with initial void shape (d) w0
1 = w0

2 = 1 and (e) w0
1 = w0

2 = 3 and (f) w0
1 = w0

2 = 1/3.

applied average stress in the unit-cell, i.e., as if they voids were under a mode I loading

state. This observation simply indicates that the introduction of a pressure dependent

defect (such as a pore) even if this defect is initially smooth (spherical or ellipsoidal),

tends to diverge rapidly to a crack-type geometry and is expected to lead to the more

common fatigue crack growth at larger number of cycles. Unfortunately at this level,

severe mesh distortion did not allow us to continue further our calculation due to the

strong localization of deformation. Remeshing of the final geometry together with

non-local constitutive laws (Feld-Payet et al. [2011]) might be required to proceed to

higher number of cycles, however, such a calculation is beyond the scope of this work
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and is not pursued here.

At this point it is worth mentioning that while in monotonic loadings and under

large triaxialities, the voids tend to grow rather uniformly and finally coalesce (see

for instance Thomason [1985], Pardoen and Hutchinson [2000], Gologanu et al. [2001],

Benzerga [2002]), in the present case of cyclic loading conditions coalescence of neigh-

boring pores is not really due to void growth but rather due to crack initiation and

propagation, which is also present at lower stress triaxialities. As observed in Fig. A.16

and Fig. A.20, the voids do not grow uniformly but rather a crack is created in a very

thin localized zone for both stress triaxialities analyzed in this work. This crack is then

expected to propagate and coalesce with the neighboring pores but such an analysis

is highly mesh dependent and not pursued further here as discussed previously. As

a result in the context of cyclic loadings, the localization of plastic strain does not

take place within horizontal ligaments spanning the size of the pore and the spacing

of the neighboring pores as in the usual studies of coalescence in monotonic loadings

(Pardoen and Hutchinson [2000]) but rather in a confined thin region around a small

portion of the void surface.

A.5 Preliminary results on combined isotropic-kinematic

hardening

At this point, it would be constructive to for a matrix material following combined

isotropic and nonlinear kinematic hardening. The range of parameters needed to in-

vestigate in a full extent the effect of kinematic hardening upon the cyclic response of

the unit-cell is large and thus prohibitive for the present work and will be presented

elsewhere in a subsequent study. Nonetheless, as we will see below the introduction

of nonlinear kinematic hardening in the matrix phase does not alter the qualitative

character of the deformation zone and localization around the void but only the quan-

titative aspects.

More specifically, let us consider the same isotropic hardening presented in equation

(A.9) together with a nonlinear kinematic hardening with two-backstresses X(1) and
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X(2) (c.f. Nouailhas et al. [1985]), i.e.,

Ẋ(1) = qhC1D
p
M , Ẋ(2) = qhC2D

p
M − γ2∆ε

pX(2), X(1) = X(2) = 0 at t = 0.

(A.13)

In this expression, Dp
M is the second-order plastic strain-rate tensor in the matrix

phase (the subscript M has been used to explicitly distinguish between strain-rate in

the matrix phase and the average strain-rate in the unit-cell) and εp is the accumulated

plastic strain defined in the context of equation (A.9). Furthermore, motivated by the

choices made in Besson and Guillemer-Neel [2003], we set the values C1 = 2.5×10−2σ0,

C2 = 10C1 and γ2 = 10. These values correspond to a rather week kinematic hardening

at the level of the matrix phase but as will be shown next they already lead to a

strong quantitative (but not qualitative) effect upon the cyclic response of the unit-

cell. The qh serves to parameterize the relative effect of kinematic hardening with

respect to the isotropic hardening and takes here three values qh = 0, 0.5, 1 (with

qh = 0 corresponding to the case of no kinematic hardening).

Maximum Principal Strain

0 0.05 0.1 0.15 0.2 0.250.3 0.4 0.5 0.60.35 0.45 0.55
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|σ|
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3
|σ|

a) b) c)

Figure A.21: Contours of the maximum principal logarithmic strain in the case of XΣ = 3

(u/L = 1%) and θ = 0o for (a) qh = 0 at Nr = 40cycles (no kinematic hardening), (b)

qh = 0.5 at Nr = 60cycles and (c) qh = 1 at Nr = 100cycles.

As a representative result in the context of combined isotropic/kinematic harden-

ing, we have chosen the case of high stress triaxiality XΣ = 3 (u/L = 1%) and Lode

angle θ = 0o. In Fig. A.21, we show contours of the maximum principal strain for (a)
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qh = 0 at Nr = 40 cycles (no kinematic hardening), (b) qh = 0.5 at Nr = 60 cycles

and (c) qh = 1 at Nr = 100cycles. The main observation in the context of this figure

is that the deformation localization locus is the same with or without kinematic hard-

ening, i.e., the strain localizes in the same position at the void surface in an attempt

to create a mode-I crack-type geometry, as discussed in the previous sections. The

difference however is quantitative, i.e., with the addition of kinematic hardening this

deformation localization occurs at much larger number of cycles as shown in Fig. A.21.

In other words, the addition of a rather small value of kinematic hardening does not

alter the character of the deformation localization in the zone around the void, but

rather changes the number of cycles needed to reach this localized state. In a sense,

it “decelerates” the localization procedure, thus having a beneficiary effect upon the

cyclic response of the material.

It should be further pointed out that similar effects have been found for other

values of the stress triaxiality and the Lode parameter but are not shown here for

brevity. These preliminary results call for an in-depth quantitative analysis of the

effect of kinematic hardening upon the cyclic response of such unit-cells and will be

presented in a future work.

A.6 Concluding remarks

In this chapter we have investigated the effects of cyclic loading conditions upon mi-

crostructure evolution and material softening/hardening using a cubic periodic unit-

cell comprising a single spherical (or ellipsoidal) void at the center with volume fraction

1% that is subjected to triaxial finite deformations such that the stress triaxiality and

the Lode angle are kept constant during each step of the cycle. It has been found

that the void shape changes are asymmetric when subjected to positive and negative

stress triaxialities. This is exhibited by a permanent irreversible void shape change

from the very first cycle, which in turn leads to porosity ratcheting and an asymmetric

average stress-strain response. It should be noted that this asymmetry does not lead

to a Bauschinger effect but is strongly related to the evolution of the underlying void

volume and shape. Furthermore, we have observed that both the stress triaxiality and

the Lode angle can have strong effects upon the cyclic response of the unit cell. It has

been found that for initially spherical voids the average stress in the unit-cell exhibits
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a maximum as a result of the critical void shape changes at high stress triaxialities,

but not due to porosity ratcheting alone. To establish this conclusion, we have carried

out additional calculations on the same unit-cell but constraining the shape of the void

to remain spherical during the entire deformation process. In this case, we have also

obtained significant porosity ratcheting (very similar and even larger than that of the

unconstraint void), but no maximum was observed in the average stress response of

the unit-cell. This suggests that void shape changes are critical in the cyclic response

of the unit-cell.

In addition, the observed void shape changes have led to significant localization of

the deformation near the void surface. Strains larger than 50% have been observed

near the void surface even when the average strain amplitude in the unit-cell has been

of the order of 1%. This result further revealed the importance of carrying out the

cyclic analysis under a finite deformation framework. Moreover, we have investigated

the effect of initially non-spherical (i.e., ellipsoidal) voids on the cyclic response of the

unit-cell. The main outcome of this parametric analysis has been that the void tends

to elongate in the direction of the minimum absolute applied stress. This observation

has been different only in a few distinct cases where the void shape was positioned in

a significantly non-optimal direction with respect to a mode I loading direction. This

void elongation, in turn, leads to a crack-shape microstructure subjected to mode

I cyclic loading state and to eventual coalescence for both lower and higher stress

triaxialities. Nevertheless, the strain fields in that late stage of coalescence are very

different from those observed in the context of monotonic loading states and high

triaxialities. In the context of cyclic loads, the localization zone is confined in a very

thin region around a small portion of the void surface.

Finally, as discussed before, the cyclic behavior of materials exhibits different stages

where isotropic and/or kinematic hardening (Nouailhas et al. [1985], Chaboche [2008])

are the main cyclic mechanisms. The present study provides a partial perspective upon

the cyclic response of a periodic porous material by considering mainly isotropic hard-

ening and only a test case with combined nonlinear isotropic and kinematic hardening.

A complete study that analyzes the relative importance of isotropic and kinematic

hardening upon the cyclic response of the unit-cell should be considered further. One

should also mention that anisotropy of the matrix phase (e.g., crystal plasticity) is

also expected to have an effect upon the cyclic response of such porous unit-cells.
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Nonetheless, the above-presented preliminary calculations show that, for instance, the

presence of kinematic hardening exhibits similar qualitative behavior with the case

of no kinematic hardening but tends to decelerate the initiation of localization of de-

formation around the void surface. Such study is currently in progress and will be

reported elsewhere.

A.7 Appendix I. Effect of the matrix hardening ex-

ponent

In this section, we discuss the effect of the hardening exponent N on the cyclic response

of the material as defined in equation (A.9). For convenience and brevity, we restrict

attention to stress triaxiality XΣ = 3, amplitude u/L = 1%, Lode angle θ = 60o,

and a set of hardening exponents N = 5, 10,∞ (where the last one corresponds to

the perfect plasticity case). Initially, we discuss the effect of the hardening exponent

for a realistic value of the elastic moduli, e.g., Young’s modulus, E ∼ 1000σ0 (for

instance σ0 ∼ 200MPa corresponding to steel) and then we also present a brief result

of porosity ratcheting for E/σ0 = 50000 in order to address the observations made by

Devaux et al. [1997] in the limit of vanishing elasticity (i.e., E/σ0 → ∞).

As we can observe in Fig. A.22a, the average equivalent von Mises stress per cycle

σeq/σ0 decreases monotonically with respect to N . In particular, for the case of the

unconstrained void shape, it exhibits a maximum value for σeq/σ0 for N = 10 but not

for N = 5, at least up to 50 cycles where the calculations are terminated. On the

other hand, as expected, σeq/σ0 shows no maximum for the N = 5 and N = 10 for the

spherically constrained shape. For the case of perfect plasticity, i.e. N → ∞, both the

unconstrained and the constrained void shape exhibit a softening from the very first

cycle.

In Fig. A.22b, however, the evolution of the porosity exhibits non-monotonic de-

pendence upon N as a function of the number of cycles Nr. The evolution of f is higher

for N = 10 and lower for N = 5, with the one corresponding to N = ∞ intersecting

the other two curves at about 10 cycles. As we will see below this intersection could

be attributed to the localization of deformation which is more pronounced in the case

of N = ∞, but this point should further be studied in the future.
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In Fig. A.23, we show evolution curves for (a) the aspect ratios w1 = w2 (for

θ = 60o) and (b) for the ellipsoidicity as a function of the number of cycles Nr for the

same set of hardening exponents used before (N = 5, 10,∞). The evolution of the

aspect ratios in Fig. A.23a are shown to be almost independent of N as N ≥ 10, while

they tend to evolve slower for larger N = 5. In contrast the evolution of ellipsoidicity

in Fig. A.23b exhibits a non-monotonic dependence on N especially at large number

of cycles taking the largest values for N = 10.

Finally, in Fig. A.24, we consider the case of vanishing elasticity, i.e., E/σ0 = 50000

and record porosity ratcheting under the same loading state and the same set of

hardening exponents (N = 5, 10,∞). One observes that all results confirm (up to

a given numerical accuracy since the Young’s modulus is not infinity) the results

by Devaux et al. [1997], i.e., there is no porosity ratcheting effect in the absence of

elasticity. Rather interestingly, porosity ratcheting also becomes negligible for N =

5, 10. But this is related to the rather small macroscopic strain amplitude considered

here as well as to the specific cyclic loading conditions, i.e., cyclic loads around zero

average straining. Thus, if one compares these results with the previous ones (which

correspond to E = 1000σ0) then the effect of elasticity is critical for porosity ratcheting.
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Figure A.22: (a) Normalized maximum average equivalent von Mises stress evolution for

several values of hardening exponent (N = 5, 10,∞) in the case of u/L = 1%, XΣ = 3,

θ = 60o and (b) Porosity evolution for several values of hardening exponent (N = 5, 10,∞)

in the case of u/L = 1%, XΣ = 3, θ = 60o as a function of the number of cycles Nr.
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Figure A.23: (a) Evolution of the aspect ratios w1 (−), w2 (−•) for several values of

hardening exponent (N = 5, 10,∞) in the case of u/L = 1%, XΣ = 3, θ = 60o and (b)

Ellipsoidicity ratio for several values of hardening exponent (N = 5, 10,∞) in the case of

u/L = 1%, XΣ = 3, θ = 60o as a function of the number of cycles Nr.
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Figure A.24: Porosity evolution for several values of hardening exponent (N = 5, 10,∞) in

the case of E = 50000σ0, u/L = 1%, XΣ = 3, θ = 60o as a function of the number of cycles

Nr.

A.8 Appendix II. Mesh dependence

In this section, we discuss the dependence of mesh size upon the cyclic response of the

periodic unit-cell. As we have observed on several calculations with θ = 0, 30o (see

Fig. A.16), a localization of deformation appears in a small region of the void surface

and thus, leads to strong mesh dependence at this zone. This led to non-convergence of

the elasto-plastic computations beyond 50 cycles. In Fig. A.25, we show representative

results for a loading u/L = 1%, XΣ = 3, θ = 30o and for three different mesh sizes at

the pore surface, i.e., 0.052a, 0.037a and 0.026a (where a is the radius of the initially
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spherical pore), corresponding to 5×104, 15×104 and 32×104 degrees of freedom (dof),

respectively. Figure A.25a shows the evolution of the maximum average equivalent
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Figure A.25: (a) Normalized average equivalent von Mises stress σeq/σ0, (b) porosity f , (c)

aspect ratio w1 and (d) aspect ratio w2 for 5× 104, 105 and 3× 105 degrees of freedom (dof)

in the case of XΣ = 3 and θ = 30o as a function of the number of cycles Nr.

von Mises stress as a function of the number of cycles Nr for the same loading and

the aforementioned three different mesh sizes. It is evident from Figs. A.25a,b that

the evolution of the average stress σeq/σ0 (as well as the position where maximum

is attained) and the porosity f (which is a direct measure of the hydrostatic average

plastic strain) as a function of Nr is not sensitive to the mesh size. On the other hand,

in Fig. A.25c,d we observe that the aspect ratios w1 and w2 are much more sensitive to

the mesh size. In particular, even though the evolution of w1 and w2 tend to converge

for Nr < 20, the curves diverge after this point as a result of the strong deformation

localization observed in those cases. In addition, it is interesting to note that there is

a monotonic decrease of the aspect ratios with increasing mesh size. Consequently, we
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can conclude that the mesh dependence affects more the local quantities (such as the

aspect ratio) but not average quantities such as the average stress or strain, and the

porosity evolution, which depends on the hydrostatic part of the average strain in the

unit-cell.
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K. Danas and P. Ponte Castañeda. Influence of the lode parameter and the stress

triaxiality on the failure of elasto-plastic porous materials. Int. J. Solids Struct., 49:

1325–1342, 2012.

K. Danas, M. Idiart, and P. Ponte Castañeda. A homogenization-based constitutive
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coplasticity of polycrystalline solids with intergranular cavities. Philosophical Mag-

azine, 91:22:3038–3067, 2011.

J. Leblond, G. Perrin, and P. Suquet. Exact results and approximate models for porous

viscoplastic solids. Int. J. Plasticity, 10:213–235, 1994.

J.-B. Leblond, G. Perrin, and J. Devaux. An improved gurson-type model for harden-

able ductile metals. Eur. J. Mech. A/Solids, 14:499–527, 1995.

N. Limodin, A. El Bartali, L. Wang, J. Lachambre, and E. Charkaluk. Application of

x-ray microtomography to study the influence of the casting microstructure upon

the tensile behaviour of an al si alloy. Nucl. Instrum. Phys. Res. Sect. B Beam

Interact. Mater. Atoms, 324:57–62, 2014.
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thesis, ENPC, 1987.

T. Pardoen and J.W. Hutchinson. An extended model for void growth and coalescence.

J. Mech. Phys. Solids, 48:2467–2512, 2000.

J. Paux, L. Morin, R. Brenner, and D. Kondo. An approximate yield criterion for

porous single crystals. Eur. J. Mech. A/Solids, 51:1–10, 2015.

A. Pirondi, N. Bonora, D. Steglich, W. Brocks, and D. Hellmann. Simulation of failure

under cyclic plastic loading by damage models. Int. J. Plasticity, 22:2146–2170,

2006.
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ory for infinite-contrast two-dimensionally periodic linear composites with strongly

anisotropic matrix behavior: Dilute limit and crossover behavior. Physical Review

B., 78, 104111, 2008.

T.Y. Wu, J.L. Bassani, and C. Laird. Latent hardening in single crystals i. theory and

experiments. Proc. Phys. Soc. Lond. A, 435:1–19, 1991.

S.K. Yerra, C. Tekoglu, F. Scheyvaerts, L. Delannay, P. Van Houtte, and T. Pardoen.

Void growth and coalescence in single crystals. Int. J. Solids Struct., 47:1016–1029,

2010.

K.S. Zhang, J.B. Bai, and D. Francois. Numerical analysis of the influence of the lode

parameter on the void growth. Int. J. Solids Struct., 38:5847–5856, 2001.

K. Zhao, C. Chen, Y. Shen, and T. Lu. Molecular dynamics study on the nano-

void growth in face-centered cubic single crystal copper. Comput. Mater. Sci., 46:

749–754, 2009.


