R. Cicilloni, S. Deutschle, K. M. Oltersdorf, and D. Gavrila, Results Of Vulnerable Road User Protection System In Protector, ITS World Congress, 2003.

M. Meinecke, M. A. Obojski, M. Tons, R. Doerfler, P. Marchal et al., Approach For Protection Of Vulnerable Road Users Using Sensor Fusion Techniques, International Radar Symposium, 2003.

G. Gate, A. Breheret, and F. Nashashibi, Centralized fusion for fast people detection in dense environment, 2009 IEEE International Conference on Robotics and Automation, 2009.
DOI : 10.1109/ROBOT.2009.5152645

D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, Survey of Pedestrian Detection for Advanced Driver Assistance Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.7, p.32, 2010.
DOI : 10.1109/TPAMI.2009.122

P. Dollar, C. Wojek, and B. Schiele, Pedestrian Detection: An Evaluation of the State of the Art, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.4, pp.743-761, 2012.
DOI : 10.1109/TPAMI.2011.155

E. Ts, Intelligent Transport Systems (ITS) ; Vehicular Communications ; GeoNetworking ; Part 2 : Scenarios, pp.636-638, 2010.

S. Beauvais and J. Durand, Enjeux de sécurité en agglomération des usagers " vulnerables " en Ile-de-France. Rapport technique, Direction régionale et interdépartementale de l' ´ Equipement et de l'Aménagement Ile, 2012.

I. Bloch, Fusion d'informations en traitement du signal et des images, 2003.

M. Tons and R. Doerfler, Radar sensors and sensor platform used for pedestrian protection in the EC-funded project SAVE-U, IEEE Intelligent Vehicles Symposium, 2004, 2004.
DOI : 10.1109/IVS.2004.1336489

G. Gate and F. Nashashibi, Fast algorithm for pedestrian and group of pedestrians detection using a laser scanner, 2009 IEEE Intelligent Vehicles Symposium, 2009.
DOI : 10.1109/IVS.2009.5164476

S. Gidel, P. Checchin, C. Blanc, and T. Chateau, Pedestrian Detection and Tracking in an Urban Environment Using a Multilayer Laser Scanner, IEEE Transactions on Intelligent Transportation Systems, vol.11, issue.3, pp.579-588, 2010.
DOI : 10.1109/TITS.2010.2045122

L. Leyrit, T. Chateau, C. Tournayre, and J. , Lapreste : Visual pedestrian recognition inweak classifier space using nonlinear parametric models, 15th IEEE International Conference on Image Processing, 2008.

M. Gouiffès and A. Patri, Vasiliu : Robust obstacles detection and tracking using disparity for car driving assistance, Intelligent Robots and Computer Vision XXVII : Algorithms and Techniques, 2010.

F. Fayad and V. Cherfaoui, Object-level fusion and confidence management in a multisensor pedestrian tracking system, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.

L. N. Pangop, S. Cornou, F. Chausse, and R. Chapuis, Bonnet : A Bayesian classification of pedestrians in urban areas : The importance of the data preprocessing, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.

A. Kallel-et-sylvie-le-hégarat-mascle, Combination of partially non-distinct beliefs : The cautious-adaptive rule, International Journal of Approximate Reasoning, vol.50, issue.7, pp.1000-1021, 2009.

L. Andreone, F. Visintainer, and G. Wanielik, Vulnerable Road Users thoroughly addressed in accident prevention : the WATCH-OVER European project, 14th World Congress on Intelligent Transport Systems, 2007.

L. Andreone, F. Visintainer, D. Gavrila, M. Konjin, and M. Pieve, Prevention Of Road Accidents Involving Vulnerable Road Users : The Outcomes Of The WATCH-OVER European Project, 2009.

B. Fardi, U. Neubert, N. Giesecke, and H. Lietz, Wanielik : A fusion concept of video and communication data for VRU recognition, 11th International Conference on Information Fusion, 2008.

. Ko-fas, Kooperative Sensorik und kooperative Perzeption für die Präventive Sicherheit im Straßenverkehr

A. Sikora, Schappacher : A highly scalable IEEE802.11p communication and localization subsystem for autonomous urban driving, International Conference on Connected Vehicle and Expo (ICCVE), 2013.

D. Lill and M. Schappacher, Shahidul Islam et Axel Sikora : Wireless protocol design for a cooperative pedestrian protection system. Communication Technologies for Vehicles, pp.119-130, 2011.

T. Gandhi and M. M. Trivedi, Pedestrian Protection Systems: Issues, Survey, and Challenges, IEEE Transactions on Intelligent Transportation Systems, vol.8, issue.3, pp.413-430, 2007.
DOI : 10.1109/TITS.2007.903444

K. Manston, The Challenges Of Using Radar For Pedestrian Detection Towards mapping of dynamic environments with FMCW radar, The 16th JCT Traffic Signal Symposium IEEE Intelligent Vehicles Symposium (IV), 2011.

F. Bu and C. Chan, Pedestrian detection in transit bus application: sensing technologies and safety solutions, IEEE Proceedings. Intelligent Vehicles Symposium, 2005., 2005.
DOI : 10.1109/IVS.2005.1505085

A. Ewald and V. Willhoeft, Laser scanners for obstacle detection in automotive applications, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511), 2000.
DOI : 10.1109/IVS.2000.898427

K. C. Fuerstenberg and K. C. Dietmayer, Willhoeft : Pedestrian recognition in urban traffic using a vehicle based multilayer laserscanner, Intelligent Vehicle Symposium (IV), 2002.

B. Schwarz, LIDAR : Mapping the world in 3-D, Nature Photonics, vol.4, issue.7, 2010.

D. M. Gavrila and J. Giebel, Munder : Vision-based pedestrian detection : the PROTECTOR system, IEEE Intelligent Vehicles Symposium (IV), 2004.

M. Enzweiler and D. M. Gavrila, Monocular Pedestrian Detection: Survey and Experiments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.12, pp.2179-2195, 2009.
DOI : 10.1109/TPAMI.2008.260

M. Bertozzi, A. Broggi, and P. Grisleri, Pedestrian detection in infrared images, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), 2003.
DOI : 10.1109/IVS.2003.1212991

C. Bellotti, F. Bellotti, A. De-gloria, L. Andreone, and M. Mariani, Developing a near infrared based night vision system, IEEE Intelligent Vehicles Symposium, 2004, 2004.
DOI : 10.1109/IVS.2004.1336467

U. Franke, Real-time stereo vision for urban traffic scene understanding, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511), 2000.
DOI : 10.1109/IVS.2000.898354

R. Labayrade, D. Aubert, and J. Tarel, Real time obstacle detection in stereovision on non flat road geometry through "v-disparity" representation, Intelligent Vehicle Symposium, 2002. IEEE
DOI : 10.1109/IVS.2002.1188024

G. Grubb and A. Zelinsky, Lars Nilsson et Magnus Rilbe : 3D vision sensing for improved pedestrian safety, IEEE Intelligent Vehicles Symposium (IV), 2004.

A. Mendes, L. C. Bento, and U. Nunes, Multi-target detection and tracking with a laser scanner, IEEE Intelligent Vehicles Symposium (IV), 2004.

F. Nashashibi and A. Bargeton, Laser-based vehicles tracking and classification using occlusion reasoning and confidence estimation, 2008 IEEE Intelligent Vehicles Symposium, 2008.
DOI : 10.1109/IVS.2008.4621244

B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros et al., Frenkel : On the segmentation of 3D LIDAR point clouds, IEEE International Conference on Robotics and Automation (ICRA), 2011.

M. Heuer, A. Hamadi, and A. , Rain et M. Meinecke : Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety, IEEE Intelligent Vehicles Symposium (IV), 2014.

C. Papageorgiou and T. Poggio, A trainable system for object detection, International Journal of Computer Vision, vol.38, issue.1, pp.15-33, 2000.
DOI : 10.1023/A:1008162616689

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE 12th International Conference on Computer Vision, pp.971-987, 2002.
DOI : 10.1109/TPAMI.2002.1017623

A. Broggi, A. Fascioli, M. Carletti, T. Graf, and M. , Meinecke : A multi-resolution approach for infrared vision-based pedestrian detection, IEEE Intelligent Vehicles Symposium (IV), 2004.

K. Anil, R. P. Jain, J. Duin, and . Mao, Statistical pattern recognition : A review, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.1, pp.4-37, 2000.

N. Vladimir, Vapnik : Statistical learning theory, 1998.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, pp.273-297, 1995.
DOI : 10.1007/BF00994018

M. Kearns and L. Valiant, Cryptographic limitations on learning Boolean formulae and finite automata, Journal of the ACM, vol.41, issue.1, pp.67-95, 1994.
DOI : 10.1145/174644.174647

Y. Freund and E. Robert, Schapire : A decision-theoretic generalization of on-line learning and an application to boosting, Computational Learning Theory, pp.23-37

D. M. Gavrila, Philomin : Real-time object detection for " smart " vehicles, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001.
DOI : 10.1109/CVPR.2001.990517

Q. Zhu, M. Yeh, K. Cheng, and S. , Avidan : Fast Human Detection Using a Cascade of Histograms of Oriented Gradients, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

D. Schulz, W. Burgard, D. Fox, and B. Armin, Cremers : People Tracking with a Mobile Robot Using Sample-based Joint Probabilistic Data Association Filters

K. O. Arras, O. M. Mozos, and W. Burgard, Using Boosted Features for the Detection of People in 2D Range Data, Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007.
DOI : 10.1109/ROBOT.2007.363998

L. Spinello and R. Siegwart, Human detection using multimodal and multidimensional features, 2008 IEEE International Conference on Robotics and Automation, 2008.
DOI : 10.1109/ROBOT.2008.4543708

M. Himmelsbach and . Müller, LIDAR-based 3D object perception, 1st international workshop on cognition for technical systems, 2008.

A. Teichman, J. Levinson, and S. Thrun, Towards 3D object recognition via classification of arbitrary object tracks, 2011 IEEE International Conference on Robotics and Automation, 2011.
DOI : 10.1109/ICRA.2011.5979636

L. Spinello, R. Triebel, and R. Siegwart, Multiclass Multimodal Detection and Tracking in Urban Environments, The International Journal of Robotics Research, vol.2, issue.2, pp.1498-1515, 2010.
DOI : 10.1177/0278364910377533

A. Azim and O. Aycard, Layer-based supervised classification of moving objects in outdoor dynamic environment using 3D laser scanner, 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp.2014-215
DOI : 10.1109/IVS.2014.6856558

A. E. Johnson and M. Hebert, Using spin images for efficient object recognition in cluttered 3D scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.5, pp.433-449, 1999.
DOI : 10.1109/34.765655

E. Pollard, Evaluation de situations dynamiques multicibles par fusion de données spatio-temporelles, Thèse de doctorat, 2010.

Y. Bar-shalom and X. Li, Multitarget-multisensor tracking : principles and techniques, 1995.

D. B. Reid, An algorithm for tracking multiple targets, IEEE Transactions on Automatic Control, vol.24, issue.6, 1979.

B. V. Dasarathy, Industrial applications of multi-sensor multi-source information fusion, Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482), 2000.
DOI : 10.1109/ICIT.2000.854086

B. Fardi, U. Schuenert, and G. Wanielik, Shape and motion-based pedestrian detection in infrared images: a multi sensor approach, IEEE Proceedings. Intelligent Vehicles Symposium, 2005., 2005.
DOI : 10.1109/IVS.2005.1505071

R. , O. Chavez-garcia, T. Vu, and O. Aycard, Fusion at Detection Level for Frontal Object Perception, IEEE Intelligent Vehicles Symposium (IV), 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010374

G. Monteiro, C. Premebida, P. Peixoto, and U. Nunes, Tracking and Classification of Dynamic Obstacles Using Laser Range Finder and Vision, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006.

F. Garcia, A. De-la-escalera-et-josé, and M. Armingol, Joint Probabilistic Data Association fusion approach for pedestrian detection, 2013 IEEE Intelligent Vehicles Symposium (IV), 2013.
DOI : 10.1109/IVS.2013.6629653

J. K. Aggarwal and . Cai, Human motion analysis : A review, Computer Vision and Image Understanding, vol.73, issue.3, 1999.

D. Schulz, W. Burgard, D. Fox, and A. B. , Cremers : Tracking multiple moving targets with a mobile robot using particle filters and statistical data association, IEEE International Conference on Robotics and Automation (ICRA), 2001.

C. Premebida and U. Nunes, A Multi-Target Tracking and GMM-Classifier for Intelligent Vehicles, 2006 IEEE Intelligent Transportation Systems Conference, 2006.
DOI : 10.1109/ITSC.2006.1706760

M. Maehlisch, R. Schweiger, W. Ritter, and K. Dietmayer, Multisensor Vehicle Tracking with the Probability Hypothesis Density Filter, 2006 9th International Conference on Information Fusion, 2006.
DOI : 10.1109/ICIF.2006.301648

N. Ikoma, Multiple pedestrians tracking with composite sensor of laser range finder and omni-directional camera by SMC implementation of PHD filter, The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems, 2012.
DOI : 10.1109/SCIS-ISIS.2012.6505030

L. Lamard, R. Chapuis, and J. Boyer, CPHD filter addressing occlusions with pedestrians and vehicles tracking, 2013 IEEE Intelligent Vehicles Symposium (IV), 2013.
DOI : 10.1109/IVS.2013.6629617

D. Meissner, S. Reuter, B. Wilking, and K. Dietmayer, Road user tracking using a Dempster-Shafer based classifying multiple-model PHD filter, 16th International Conference on Information Fusion (FUSION), 2013.

G. Gwennaël, Reliable Perception of Highly Changing Environments Implementations for Car-to-Pedestrian Collision Avoidance Systems, Thèse de doctorat, Mines ParisTech, 2009.

S. Wasielewski and O. Strauss, Calibration of a multi-sensor system laser rangefinder/camera, Proceedings of the Intelligent Vehicles '95. Symposium, 1995.
DOI : 10.1109/IVS.1995.528327

A. Khammari, Système embarqué de détection multi-sensorielle de véhicules : applicationàplicationà la gestion intelligente des interdistances, Thèse de doctorat, Mines ParisTech, 2005.

S. Reuter, Multi-Object Tracking Using Random Finite Sets, Thèse de doctorat, 2014.

E. Pollard, A. Plyer, and B. Pannetier, Frédéric Champagnat et Guy Le Besnerais : GM-PHD filters for multi-object tracking in uncalibrated aerial videos, 12th International Conference on Information Fusion, 2009.

E. Ts, Intelligent Transport Systems (ITS) Vehicular Communications ; Basic Set of Applications ; Part 2 : Specification of Cooperative Awareness Basic Service, pp.637-639, 2010.

E. Ts, Intelligent Transport Systems (ITS) Vehicular Communications ; Part 3 : Specifications of Decentralized Environmental Notification Basic Service, pp.637-640, 2010.

E. Tr, Intelligent Transport Systems (ITS) Vehicular Communications ; Basic Set of applications ; Local Dynamic Map ( LDM ) ; Rationale for and guidance on standardization, 2011.

E. Ts, Vehicular Communications ; GeoNetworking ; Part 4 : Geographical Addressing and forwarding Point-to-Point and Point-to-Multipoint Communications, Sub-Part 1 : Media-Independant Functionality, Intelligent Transport Systems (ITS), vol.102, pp.636-640, 2011.

Z. Tonguz, N. Wisitpongphan, and F. Bai, Priyantha Mudalige et Varsha Sadekar : Broadcasting in VANET. In mobile networking for vehicular environments, 2007.

F. Li and Y. Wang, Routing in vehicular ad hoc networks: A survey, IEEE Vehicular Technology Magazine, vol.2, issue.2, pp.12-22, 2007.
DOI : 10.1109/MVT.2007.912927

P. Jacquet, P. Mühlethaler, and T. Clausen, Anis Laouiti, Amir Qayyum et Laurent Viennot : Optimized link state routing protocol for ad hoc networks, IEEE International Multi Topic Conference (INMIC), 2001.

C. Perkins, E. Belding-royer, and S. Das, Ad hoc on-demand distance vector (aodv) routing. Rapport technique, 2003.

Y. Tseng, S. Ni, Y. Chen, and J. Sheu, The Broadcast Storm Problem in a Mobile Ad Hoc Network, pp.153-167, 2002.

E. En, Intelligent Transport Systems (ITS) ; Vehicular Communications ; GeoNetworking ; Part 3 : Network Architecture, pp.636-639, 2014.

. Geonetworking, Part 5 : Transport Protocols ; Sub-part 1 : Basic Transport Protocol, 2011.

B. P. Crow, I. Widjaja, J. Kim, and P. T. Sakai, 11 wireless local area networks, IEEE Communications Magazine, vol.802, issue.359, pp.116-126, 1997.

K. David and A. Flach, CAR-2-X and Pedestrian Safety, IEEE Vehicular Technology Magazine, vol.5, issue.1, pp.70-76, 2010.
DOI : 10.1109/MVT.2009.935536

C. Sugimoto, Y. Nakamura, and T. Hashimoto, Prototype of pedestrianto-vehicle communication system for the prevention of pedestrian accidents using both 3G wireless and WLAN communication, 3rd International Symposium on Wireless Pervasive Computing, 2008.

R. Rasshofer, D. Schwarz, E. Biebl, and C. , Morhart : Pedestrian Protection Systems using Cooperative Sensor Technology, 11th International Forum on Advanced Microsystems for Automotive Applications (AMAA'07), 2007.

M. Bagheri, M. Siekkinen, K. Jukka, and . Nurminen, Cellular-based vehicle to pedestrian (V2P) adaptive communication for collision avoidance, 2014 International Conference on Connected Vehicles and Expo (ICCVE), 2014.
DOI : 10.1109/ICCVE.2014.7297588

T. Beissman, GM developping pedestrian safety technology that spots smartphonesgm-developing-pedestrian-safety- technology-that-spots-smartphones/, 2012. [En ligne

D. Ikeda, M. Horie, R. Yamaguchi, T. Wada, and H. Okada, An Effective Detection Algorithm of the Relative Movement between Vehicles and Pedestrians in VPEC, Second ACM international workshop on Wireless network testbeds, experimental evaluation and characterization, 2007.

Y. Sawa, T. Kitani, N. Shibata, K. Yasumoto, and M. Ito, A Method for Pedestrian Position Estimation using Inter-Vehicle Communication, 2008 IEEE Globecom Workshops, 2008.
DOI : 10.1109/GLOCOMW.2008.ECP.57

A. Sikora, Communication and Localization for a Cooperative eSafety-System, 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2007.
DOI : 10.1109/IDAACS.2007.4488509

S. Kuhlmorgen and I. Llatser, Andreas Festag et Gerhard Fettweis : Performance Evaluation of ETSI GeoNetworking for Vehicular Ad hoc Networks, 81st IEEE Vehicular Technology Conference (VTC Spring), 2015.

O. Shagdar, H. Yomo, T. Ohyama, R. Miura, and S. Obana, Broadcast Storm Problem : A Case Study for CSMA and CDMA Inter-Vehicle Networks, 10th International Conference on ITS Telecommunications, 2010.

G. Challita, S. Mousset, F. Nashashibi, and A. Bensrhair, An application of V2V communications : Cooperation of vehicles for a better car tracking using GPS and vision systems, 2009 IEEE Vehicular Networking Conference (VNC), 2009.
DOI : 10.1109/VNC.2009.5416382

H. Li, Cooperative Perception : Application in the Context of Outdoor Intelligent Vehicle Systems, Thèse de doctorat, Mines ParisTech, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00766986

N. El-zoghby, V. Cherfaoui, and T. Denoeux, Evidential distributed dynamic map for cooperative perception in VANets, 2014 IEEE Intelligent Vehicles Symposium Proceedings, 2014.
DOI : 10.1109/IVS.2014.6856550

URL : https://hal.archives-ouvertes.fr/hal-01023914

E. Pollard and D. Gingras, Improved low cost GPS localization by using communicative vehicles, 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), 2012.
DOI : 10.1109/ICARCV.2012.6485178

URL : https://hal.archives-ouvertes.fr/hal-00735332

M. Obst, L. Hobert, and P. Reisdorf, Multi-sensor data fusion for checking plausibility of V2V communications by vision-based multiple-object tracking, 2014 IEEE Vehicular Networking Conference (VNC)
DOI : 10.1109/VNC.2014.7013333

D. Lill, M. Schappacher, and A. Gutjahr, Sikora : Development of a wireless communication and localization system for VRU eSafety, 7th International Symposium on Communication Systems Networks and Digital Signal Processing, 2010.

. Campbell, WalkSafe : A Pedestrian Safety App for Mobile Phone Users Who Walk and Talk While Crossing Roads Categories and Subject Descriptors, HotMobile '12, 2012.

S. Jain, C. Borgiattino, and Y. Ren, LookUp, Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys '15, 2015.
DOI : 10.1145/2742647.2742669

K. Dhondge, S. Song, and . Baek-young-choi-hyungbae, WiFiHonk: Smartphone-Based Beacon Stuffed WiFi Car2X-Communication System for Vulnerable Road User Safety, 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 2014.
DOI : 10.1109/VTCSpring.2014.7023146

D. Elliot, . Kaplan, and J. Christopher, Hegarty : Understanding GPS : Principles and Applications, 2006.

M. Liebner, F. Klanner, and C. Stiller, Active safety for vulnerable road users based on smartphone position data, 2013 IEEE Intelligent Vehicles Symposium (IV), 2013.
DOI : 10.1109/IVS.2013.6629479

A. Amini, R. M. Vaghefi, J. M. Garza, and R. M. Buehrer, Improving GPS-based vehicle positioning for Intelligent Transportation Systems, 2014 IEEE Intelligent Vehicles Symposium Proceedings, 2014.
DOI : 10.1109/IVS.2014.6856592

H. Kloeden, D. Schwarz, E. M. Biebl, and H. Ralph, Rasshofer : Effectiveness study of cooperative sensor systems for VRU-safety, IEEE Intelligent Vehicles Symposium (IV), 2012.

S. Engel, C. Kratzsch, and K. David, Dominik Warkow et Marco Holzknecht : Car2Pedestrian Positioning : Methods for Improving GPS Positioning in Radio- Based VRU Protection Systems, 2013.

S. Ayub, B. M. Heravi, and A. Bahraminasab, Honary : Pedestrian Direction of Movement Determination Using Smartphone, 6th International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST), 2012.

X. Zhu, Q. Li, and G. Chen, APT: Accurate outdoor pedestrian tracking with smartphones, 2013 Proceedings IEEE INFOCOM, 2013.
DOI : 10.1109/INFCOM.2013.6567057

R. W. Wolcott and R. M. Eustice, Visual localization within LIDAR maps for automated urban driving, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.
DOI : 10.1109/IROS.2014.6942558

D. Schuhmacher, B. T. Vo, N. Ba, and . Vo, A Consistent Metric for Performance Evaluation of Multi-Object Filters, IEEE Transactions on Signal Processing, vol.56, issue.8, pp.3447-3457, 2008.
DOI : 10.1109/TSP.2008.920469

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248074

L. Spinello, K. O. Arras, and R. Triebel, Siegwart : A Layered Approach to People Detection in 3D Range Data, AAAI, 2010.

F. Martelli, M. E. Renda, G. Resta, and P. Santi, A Measurementbased Study of Beaconing Performance in IEEE 802, 11p Vehicular Networks IEEE INFOCOM, 2012.

J. J. Anaya, P. Merdrignac, O. Shagdar, F. Nashashibi, and J. E. Naranjo, Vehicle to pedestrian communications for protection of vulnerable road users, 2014 IEEE Intelligent Vehicles Symposium Proceedings, 2014.
DOI : 10.1109/IVS.2014.6856553

URL : https://hal.archives-ouvertes.fr/hal-00992759

Z. Alsayed, G. Bresson, P. Merdrignac, P. Morignot, F. Nashashibi et al., Intelligent vehicles : integration and issues. RFIA 2014 -Dixneuvì eme congrès national sur la reconaissance de formes et l'intelligence artificielle, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01067615

P. Merdrignac, E. Pollard, and F. Nashashibi, 2D laser based road obstacle classification for road safety improvement, 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), 2015.
DOI : 10.1109/ARSO.2015.7428199

URL : https://hal.archives-ouvertes.fr/hal-01158396

P. Merdrignac, O. Shagdar, I. B. Jemaa, and F. Nashashibi, Study on Perception and Communication Systems for Safety of Vulnerable Road Users, 2015 IEEE 18th International Conference on Intelligent Transportation Systems, p.2015, 2015.
DOI : 10.1109/ITSC.2015.304

URL : https://hal.archives-ouvertes.fr/hal-01171605