. La-première-Étape-de-la-démarche-expérimentale-consiste-À-faire-l, acquisition des signaux sur une plaque monolithique saine (sans dommage) dans un environnement de température ambiante La valeur de la température ambiante, supposée de référence, est de T B = 16 ? C. Ensuite, la plaque est placée dans un four et l'acquisition des signaux a été réalisée à nouveau pour quatre valeurs de température {38 ? C, 53 ? C, 69 ? C, 85 ? C}. Un thermocouple, placé sur un échantillon (coupon) ayant les même propriétés mécaniques que la plaque étudiée

. La-gure-6, 6b montre le signal mesuré aux PZTs 1 à 4 lorsque le PZT 5 agit comme actionneur à deux valeurs de température diérentes (16 ? C et 53 ? C) Comme on pouvait s'y attendre, on peut observer que l'amplitude et la phase instantanées des signaux sont modiées lorsque la température change. (a) Plaque monolithique époxy dans le four

H. Abdi, Signal detection theory (sdt)', Encyclopedia of measurement and statistics pp, p.886889, 2007.

D. Adams, Health monitoring of structural materials and components : methods with applications, 2007.
DOI : 10.1002/9780470511589

V. Agostini, J. Baboux, P. P. Delsanto, T. Monnier, and D. Olivero, Application of lamb waves for the characterization of composite plates, in`Thein`The ninth international symposium on nondestructive characterization of materials, p.455460, 1999.

V. Agostini, P. P. Delsanto, I. Genesio, and D. Olivero, Simulation of Lamb wave propagation for the characterization of complex structures, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.50, issue.4, p.441448, 2003.
DOI : 10.1109/TUFFC.2003.1197967

R. Ajay and C. Carlos, Review of guided-wave structural health monitoring, p.91114, 2007.

Z. Alterman and F. Karal, Propagation of elastic waves in layered media by nite dierence methods, Bulletin of the Seismological Society of America, vol.58, issue.1, p.367398, 1968.

J. Andrews, P. Palazotto, A. N. Desimio, M. P. Olson, and S. E. , Lamb Wave Propagation in Varying Isothermal Environments, Structural Health Monitoring, vol.7, issue.3, p.265270, 2008.
DOI : 10.1177/1475921708090564

E. Balaa, L. Du, A. Plantier, G. , E. Guerjouma et al., Interférométrie par onde de coda : eet de la température sur la propagation d'ondes acoustiques dans une plaque d'aluminium, in`XXIIein`XXIIe colloque GRETSI (traitement du signal et des images, pp.8-11, 2009.

E. Balmes, Structural Dynamics Toolbox (for use with MATLAB), 2014.

D. Banks, A Look Into the World of Structural Health Monitoring, 2000.

Y. Bar-cohen, Emerging nde technologies and challenges at the beginning of the 3 rd millenniumpart ii, part i, 2000.

B. Beral and H. Speckmann, Structural health monitoring (shm) for aircraft structures : a challenge for system developers and aircraft manufactures, Procin`Proc. of the 4th International Workshop on Structural Health Monitoring, p.1229, 2003.

J. M. Bernardo and R. Rueda, Bayesian Hypothesis Testing: A Reference Approach, International Statistical Review / Revue Internationale de Statistique, vol.70, issue.3, p.351372, 2002.
DOI : 10.2307/1403862

S. Boll, Suppression of acoustic noise in speech using spectral subtraction', Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.27, issue.2, p.113120, 1979.

Z. I. Botev, P. L-'ecuyer, and B. Tun, Markov chain importance sampling with applications to rare event probability estimation, Statistics and Computing, vol.91, issue.435, p.271285, 2013.
DOI : 10.1007/s11222-011-9308-2

URL : https://hal.archives-ouvertes.fr/hal-00758028

K. M. Brown, D. Jr, and J. E. , Derivative free analogues of the levenbergmarquardt and gauss algorithms for nonlinear least squares approximation, Numerische Mathematik, vol.18, issue.4, p.289297, 1971.

F. Chang, Smart layer : built-in diagnostics for composite structures, International in`International conference on micromechanics, p.777781, 1998.

K. K. Chawla, Composite materials science and engineering, Composites, vol.20, issue.3, 2012.
DOI : 10.1016/0010-4361(89)90346-7

F. Ciampa and M. Meo, A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures, Composites Part A: Applied Science and Manufacturing, vol.41, issue.12, pp.1777-1786, 2010.
DOI : 10.1016/j.compositesa.2010.08.013

T. Clarke, F. Simonetti, and P. Cawley, Guided wave health monitoring of complex structures by sparse array systems: Influence of temperature changes on performance, Journal of Sound and Vibration, vol.329, issue.12, pp.2306-2322, 2010.
DOI : 10.1016/j.jsv.2009.01.052

C. K. Coelho, S. B. Kim, and A. Chattopadhyay, Optimal sensor placement for active guided wave interrogation of complex metallic components, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, pp.79813-79813, 2011.
DOI : 10.1117/12.880288

R. R. Coifman and M. V. Wickerhauser, Entropy-based algorithms for best basis selection', Information Theory, IEEE Transactions on, vol.38, issue.2, p.713718, 1992.

P. Coverley and W. Staszewski, Impact damage location in composite structures using optimized sensor triangulation procedure, Smart Materials and Structures, vol.12, issue.5, p.795, 2003.
DOI : 10.1088/0964-1726/12/5/017

I. Daubechies, The wavelet transform, time-frequency localization and signal analysis', Information Theory, IEEE Transactions on, vol.36, issue.5, p.9611005, 1990.

R. B. Davies, Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, vol.64, issue.2, p.247254, 1977.

C. Dytham, Choosing and using statistics : a biologist's guide, 2011.

C. Farrar, T. Duey, S. Deobling, and D. Nix, A statistical pattern recognition paradigm for vibration-based structural health monitoring., in`:in`in`:2nd International Workshop on Structural Health Monitoring, Septembe, pp.8-10, 1999.

C. R. Farrar and K. Worden, An introduction to structural health monitoring, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.365, p.303315, 1851.

S. D. Fassois and J. S. Sakellariou, Time-series methods for fault detection and identication in vibrating structures, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.365, p.411448, 1851.

C. Fendzi, J. Morel, M. Rébillat, M. Guskov, N. Mechbal et al., Optimal sensors placement to enhance damage detection in composite plates, p.18, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01001844

E. Flynn and M. Todd, Optimal Placement of Piezoelectric Actuators and Sensors for Detecting Damage in Plate Structures, Journal of Intelligent Material Systems and Structures, 2009.
DOI : 10.1177/1045389X09338080

E. Flynn and M. Todd, A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing, Mechanical Systems and Signal Processing, p.903, 2010.
DOI : 10.1016/j.ymssp.2009.09.003

E. Flynn, M. Todd, P. Wilcox, B. Drinkwater, and A. Croxford, Maximumlikelihood estimation of damage location in guided-wave structural health monitoring ., in`:in`in`:Proceedings of, The Royal Society A', vol.467, p.257596, 2011.

H. Gavin, The levenberg-marquardt method for nonlinear least squares curve-tting problems, p.115, 2011.

C. Geyer, Introduction to markov chain monte carlo', Handbook of Markov Chain Monte Carlo pp, p.348, 2011.

V. Giurgiutiu, A. Zagrai, and J. J. Bao, Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring, Structural Health Monitoring, vol.1, issue.1, p.4161, 2002.
DOI : 10.1177/147592170200100104

R. Gorgin, Z. Wu, D. Gao, and Y. Wang, mode of Lamb waves, Smart Materials and Structures, vol.23, issue.3, p.35015, 2014.
DOI : 10.1088/0964-1726/23/3/035015

L. Gornet, Généralités sur les matériaux composites, 2008.

N. W. Hagood and A. Von-flotow, Damping of structural vibrations with piezoelectric materials and passive electrical networks, Journal of Sound and Vibration, vol.146, issue.2, p.243268, 1991.
DOI : 10.1016/0022-460X(91)90762-9

R. Hajrya and N. Mechbal, Principal component analysis and perturbation theorybased robust damage detection of multifunctional aircraft structure, Structural Health Monitoring, vol.12, issue.3, p.263277, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00997044

T. Hajzargerbashi, T. Kundu, and S. Bland, An improved algorithm for detecting point of impact in anisotropic inhomogeneous plates, Ultrasonics, vol.51, issue.3, pp.317-324, 2011.
DOI : 10.1016/j.ultras.2010.10.005

J. S. Hall and J. E. Michaels, Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array', Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol.57, issue.10, p.23112323, 2010.

S. E. Hamdi, A. L. Du, L. Simon, G. Plantier, A. Sourice et al., Acoustic emission pattern recognition approach based on Hilbert???Huang transform for structural health monitoring in polymer-composite materials, Applied Acoustics, vol.74, issue.5, pp.746-757, 2013.
DOI : 10.1016/j.apacoust.2012.11.018

URL : https://hal.archives-ouvertes.fr/hal-01167008

J. Harley and J. Moura, Scale transform signal processing for optimal ultrasonic temperature compensation, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.59, issue.10, p.59, 2012.
DOI : 10.1109/TUFFC.2012.2448

C. Haynes and M. Todd, Enhanced damage localization for complex structures through statistical modeling and sensor fusion, Mechanical Systems and Signal Processing 54, 2015.
DOI : 10.1016/j.ymssp.2014.08.015

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedingsin`Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, p.903995, 1998.
DOI : 10.1098/rspa.1998.0193

J. Ihn and F. Chang, Pitch-catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures, Structural Health Monitoring, vol.7, issue.1, p.5, 2008.
DOI : 10.1177/1475921707081979

K. Ip, P. Tse, and H. Tam, Extraction of patch-induced Lamb waves using a wavelet transform, Smart Materials and Structures, p.861, 2004.
DOI : 10.1088/0964-1726/13/4/024

H. Jeong and Y. Jang, Wavelet analysis of plate wave propagation in composite laminates, Composite Structures, vol.49, issue.4, p.450, 2000.
DOI : 10.1016/S0263-8223(00)00079-9

X. Jiang and S. Mahadevan, Bayesian wavelet methodology for structural damage detection, Structural Control and Health Monitoring, vol.90, issue.430, p.974991, 2008.
DOI : 10.1002/nme.1964

J. Karandikar, N. Kim, and T. Schmitz, Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference, Engineering Fracture Mechanics, vol.96, issue.0, p.588605, 2012.
DOI : 10.1016/j.engfracmech.2012.09.013

P. Kijanka, R. Radecki, P. Packo, W. Staszewski, and T. Uhl, Gpu-based local interaction simulation approach for simplied temperature eect modelling in lamb wave propagation used for damage detection, Smart Materials and Structures, p.35014, 2013.

G. Konstantinidis, B. Drinkwater, and P. Wilcox, The temperature stability of guided wave structural health monitoring systems, Smart Materials and Structures, vol.15, issue.4, p.967, 2006.
DOI : 10.1088/0964-1726/15/4/010

T. Kundu, S. Das, and K. Jata, Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data, The Journal of the Acoustical Society of America, vol.122, issue.4, 2007.
DOI : 10.1121/1.2775322

T. Kundu, H. Nakatani, and N. Takeda, Acoustic source localization in anisotropic plates, Ultrasonics, vol.52, issue.6, p.746, 2012.
DOI : 10.1016/j.ultras.2012.01.017

H. Lamb, On Waves in an Elastic Plate, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.93, issue.648, p.114128, 1917.
DOI : 10.1098/rspa.1917.0008

R. Latif, E. Aassif, G. Maze, A. Moudden, and B. Faiz, Determination of the group and phase velocities from timefrequency representation of wigner ville, NDT & E International, vol.32, issue.7, p.415422, 1999.

A. Ledu, S. E. Hamdi, P. Ostiguy, G. Plantier, and L. Simon, Comparison of scale factor estimators for ultrasonic temperature monitoring : Application to structural health monitoring', Applied Acoustics 76, 2014.

S. J. Lee, N. Gandhi, J. E. Michaels, T. E. Michaels, D. O. Thompson et al., Comparison of the eects of applied loads and temperature variations on guided wave propagation, p.175, 2011.

Y. Lei, J. Lin, Z. He, and M. J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, vol.35, issue.1-2, p.108126, 2013.
DOI : 10.1016/j.ymssp.2012.09.015

M. Levine, A cognitive theory of learning : Research on hypothesis testing, 1975.

F. Li, G. Meng, K. Kageyama, D. Su, and L. Ye, Optimal mother wavelet selection for lamb wave analyses, Journal of intelligent material systems and structures, 2009.

J. Lin and L. Qu, FEATURE EXTRACTION BASED ON MORLET WAVELET AND ITS APPLICATION FOR MECHANICAL FAULT DIAGNOSIS, Journal of Sound and Vibration, vol.234, issue.1, p.148, 2000.
DOI : 10.1006/jsvi.2000.2864

L. Liu and F. Yuan, A linear mapping technique for dispersion removal of lamb waves', Structural Health Monitoring, 2009.

M. I. Lourakis, A brief description of the levenberg-marquardt algorithm implemented by levmar, 2005.

M. J. Lowe, Matrix techniques for modeling ultrasonic waves in multilayered media', Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol.42, issue.4, p.525542, 1995.

Y. Lu and J. E. Michaels, A methodology for structural health monitoring with diuse ultrasonic waves in the presence of temperature variations, Ultrasonics, vol.43, issue.9, p.717731, 2005.

B. R. Mace and E. Manconi, Modelling wave propagation in twodimensional structures using nite element analysis, Journal of Sound and Vibration, vol.318, issue.4, p.884902, 2008.

N. A. Macmillan and C. D. Creelman, Detection theory : A user's guide, 2004.

P. Malinowski, T. Wandowski, and W. Ostachowicz, Damage detection potential of a triangular piezoelectric conguration, Mechanical Systems and Signal Processing, vol.25, issue.7, p.27222732, 2011.

S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries' , Signal Processing, IEEE Transactions on, issue.12, pp.41-33973415, 1993.

E. Manconi and B. Mace, Modelling wave propagation in two-dimensional structures using a wave/nite element technique, 2007.

E. Manconi and B. R. Mace, Estimation of the loss factor of viscoelastic laminated panels from nite element analysis, Journal of Sound and Vibration, vol.329, p.39283939, 2010.

G. Manson, Identifying damage sensitive, environment insensitive features for damage detection, Proceedingsin`Proceedings of the third international conference on identication in engineering systems, p.187197, 2002.

J. Michaels, array of spatially distributed ultrasonic sensors, Smart Materials and Structures, vol.17, issue.3, p.35035, 2008.
DOI : 10.1088/0964-1726/17/3/035035

J. Michaels and T. Michaels, Detection of structural damage from the local temporal coherence of diuse ultrasonic signals, Ultrasonics, Ferroelectrics and Frequency Control IEEE Transactions on, issue.10, pp.52-17691782, 2005.

C. A. Miller and M. K. Hinders, Classication of aw severity using pattern recognition for guided wave-based structural health monitoring, Ultrasonics, vol.54, issue.1, p.247258, 2014.

J. Moll, R. Schulte, B. Hartmann, C. Fritzen, and O. Nelles, Multisite damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system, Smart Materials and Structures, p.45022, 2010.

J. J. Moré, The levenberg-marquardt algorithm : implementation and theory, in`Numericalin`Numerical analysis, p.105116, 1978.

F. Moser, L. J. Jacobs, and J. Qu, Modeling elastic wave propagation in waveguides with the nite element method, Ndt & E International, vol.32, issue.225, p.234, 1999.

D. E. Newland, Wavelet analysis of vibration : Part 2wavelet maps, Journal of vibration and acoustics, vol.116, issue.4, p.417425, 1994.

J. Neyman and E. S. Pearson, On the problem of the most ecient tests of statistical hypotheses, 1992.

C. T. Ng and M. Veidt, A Lamb-wave-based technique for damage detection in composite laminates, Smart Materials and Structures 074006. URL: http ://stacks.iop.org, pp.964-1726, 2009.
DOI : 10.1088/0964-1726/18/7/074006

J. Nichols, W. Link, K. Murphy, and C. Olson, A Bayesian approach to identifying structural nonlinearity using free-decay response: Application to damage detection in composites, Journal of Sound and Vibration, vol.329, issue.15, pp.2995-3007, 2010.
DOI : 10.1016/j.jsv.2010.02.004

M. Niethammer, L. Jacobs, J. Qu, and J. Jarzynski, Time-frequency representations of Lamb waves, The Journal of the Acoustical Society of America, vol.109, issue.5, p.1841, 2001.
DOI : 10.1121/1.1357813

E. D. Niri, A. Farhidzadeh, and S. Salamone, Adaptive multisensor data fusion for acoustic emission source localization in noisy environment, Structural Health Monitoring, vol.12, issue.1, p.5977, 2013.

E. D. Niri, A. Farhidzadeh, and S. Salamone, Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels, Ultrasonics, vol.54, issue.2, pp.486-501, 2014.
DOI : 10.1016/j.ultras.2013.07.016

E. Niri, A. Farhidzadeh, and S. Salamone, Adaptive multisensor data fusion for acoustic emission source localization in noisy environment, Structural Health Monitoring, vol.12, issue.1, p.5977, 2013.

E. Niri and S. Salamone, A probabilistic framework for acoustic emission source localization in plate-like structures, Smart Materials and Structures, vol.21, issue.3, p.35009, 2012.
DOI : 10.1088/0964-1726/21/3/035009

R. A. Osegueda, V. Kreinovich, S. Nazarian, and E. Roldan, Detection of cracks at rivet holes in thin plates using lamb-wave scanning, in`NDEin`NDE for Health Monitoring and Diagnostics, International Society for Optics and Photonics, p.5566, 2003.

Y. Pak, Linear electro-elastic fracture mechanics of piezoelectric materials, International Journal of Fracture, vol.7, issue.1, p.79100, 1992.
DOI : 10.1007/BF00040857

L. Pasti, B. Walczak, D. Massart, and P. Reschiglian, Optimization of signal denoising in discrete wavelet transform', Chemometrics and intelligent laboratory systems, p.2134, 1999.

H. Peng, G. Meng, and F. Li, Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection, Journal of Sound and Vibration, vol.320, issue.4-5, p.942954, 2009.
DOI : 10.1016/j.jsv.2008.09.005

W. Pratt, Generalized wiener ltering computation techniques', Computers, IEEE Transactions on, vol.100, issue.7, p.636641, 1972.
DOI : 10.1109/t-c.1972.223567

N. Quaegebeur, P. Ostiguy, and P. Masson, Correlation-based imaging technique for fatigue monitoring of riveted lap-joint structure, Smart Materials and Structures, vol.23, issue.5, p.55007, 2014.
DOI : 10.1088/0964-1726/23/5/055007

A. Raghavan and C. Cesnik, Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring, Smart Materials and Structures, p.355, 2007.

A. Raghavan and C. E. Cesnik, Eects of elevated temperature on guidedwave structural health monitoring, p.13831398, 2008.

B. P. Rao, Nonparametric functional estimation, Academic press, 2014.

P. Rizzo and F. L. Di-scalea, Feature Extraction for Defect Detection in Strands by Guided Ultrasonic Waves, Structural Health Monitoring, vol.5, issue.3, p.297308, 2006.
DOI : 10.1177/1475921706067742

G. O. Roberts and A. F. Smith, Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms, Stochastic processes and their applications, p.207216, 1994.
DOI : 10.1016/0304-4149(94)90134-1

J. L. Rose, Boundary element modeling for defect characterization potential in a wave guide, International Journal of Solids and Structures, vol.40, issue.11, p.26452658, 2003.

S. Roweis, Levenberg-marquardt optimization, 1996.

S. Roy, K. Lonkar, V. Janapati, and F. Chang, A novel physics-based temperature compensation model for structural health monitoring using ultrasonic guided waves, Structural Health Monitoring, p.321342, 2014.
DOI : 10.1177/1475921714522846

A. Rytter, Vibrational Based Inspection of Civil Engineering Structures, PDF for print, p.206, 1993.

J. Shlens, A tutorial on principal component analysis : Derivation, discussion and singular value decomposition, 2003.

M. Siegel, P. Gunatilake, and G. Podnar, Robotic assistants for aircraft inspectors', Industrial Robot, An International Journal, vol.25, issue.6, p.389400, 1998.

L. I. Smith, A tutorial on principal components analysis, 2002.

H. Sohn, C. Farrar, F. Hemez, J. Czarnecki, D. Shunk et al., A Review of Structural Health Monitoring Literature, pp.1996-2001, 2003.

H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates et al., A review of structural health monitoring literature, 1996.

H. Sohn, H. W. Park, K. H. Law, and C. R. Farrar, Minimizing misclassication of damage using extreme values statistics, 2004.

A. V. Srinivasan and D. M. Mcfarland, Smart structures : analysis and design, 2001.

W. Staszewski, C. Boller, and G. R. Tomlinson, Health monitoring of aerospace structures : smart sensor technologies and signal processing, 2004.
DOI : 10.1002/0470092866

T. Stepinski, T. Uhl, and W. Staszewski, Advanced Structural Damage Detection : From Theory to Engineering Applications, 2013.
DOI : 10.1002/9781118536148

Z. Su and L. Ye, Identication of Damage Using Lamb Waves, 2009.

M. R. Taha, A. Noureldin, J. Lucero, and T. Baca, Wavelet Transform for Structural Health Monitoring: A Compendium of Uses and Features, Structural Health Monitoring, vol.5, issue.3, p.267295, 2006.
DOI : 10.1177/1475921706067741

M. A. Torres-arredondo, T. Burgos, D. A. , M. Delgado, L. E. et al., Damage assessment in a stiened composite panel using non-linear data-driven modelling and ultrasonic guided waves, 2013.

M. A. Torres-arredondo, D. A. Tibaduiza-burgos, L. E. Mujica, J. Rodellar, and C. Fritzen, Data-driven multivariate algorithms for damage detection and identication : Evaluation and comparison', Structural Health Monitoring p, p.1475921713498530, 2013.

A. T. Vu, Endommagement de stratiés aéronautiques à bres de carbone et matrice polymère soumis à des chargements monotones ou cycliques à plusieurs températures. Expériences et modélisation, 2010.

D. Wang, L. Ye, Z. Su, Y. Lu, F. Li et al., Probabilistic damage identication based on correlation analysis using guided wave signals in aluminum plates, Structural Health Monitoring, vol.9, issue.2, p.133144, 2010.

L. Wang and S. Rokhlin, Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrasonics, vol.39, issue.6, p.413424, 2001.
DOI : 10.1016/S0041-624X(01)00082-8

Y. Wang, L. Gao, S. Yuan, L. Qiu, and X. Qing, An adaptive lterbased temperature compensation technique for structural health monitoring, Journal of Intelligent Material Systems and Structures p. 1045389X13519001, 2014.

Y. Wang, L. Gao, S. Yuan, L. Qiuand, and X. Qing, A new temperature compensation method for guided wave-based structural health monitoring, Health Monitoring of Structural and Biological Systems 2013, p.86950, 2013.
DOI : 10.1117/12.2009526

P. D. Wilcox, A rapid signal processing technique to remove the eect of dispersion from guided wave signals', Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol.50, issue.4, p.419427, 2003.

D. Worlton, Experimental conrmation of lamb waves at megacycle frequencies, Journal of Applied Physics, vol.32, issue.6, p.967971, 1961.

B. Xu, V. Giurgiutiu, and L. Yu, Lamb waves decomposition and mode identication using matching pursuit method, in`SPIEin`SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp.72920-72920, 2009.

B. Xu, L. Yu, and V. Giurgiutiu, Advanced methods for time-of-ight estimation with application to lamb wave structural health monitoring., in`:in`in`: 7th International Workshop on Structural Health Monitoring, p.12021209, 2009.

B. Xu, L. Yu, and V. Giurgiutiu, Advanced methods for time-of-ight estimation with application to lamb wave structural health monitoring, in`Thein`The 7th International Workshop on Structural Health Monitoring, 2009.

K. Xu, D. Ta, P. Moilanen, and W. Wang, Mode separation of Lamb waves based on dispersion compensation method, The Journal of the Acoustical Society of America, vol.131, issue.4, p.27142722, 2012.
DOI : 10.1121/1.3685482

A. Yan, G. Kerschen, P. De-boe, and J. Golinval, Structural damage diagnosis under varying environmental conditionspart i : a linear analysis, Mechanical Systems and Signal Processing, vol.19, issue.4, p.847864, 2005.

A. Yan, G. Kerschen, P. De-boe, and J. Golinval, Structural damage diagnosis under varying environmental conditionspart ii : local pca for non-linear cases, Mechanical Systems and Signal Processing, vol.19, issue.4, p.865880, 2005.

G. Yan, A Bayesian approach for damage localization in plate-like structures using Lamb waves, Smart Materials and Structures, vol.22, issue.3, p.35012, 2013.
DOI : 10.1088/0964-1726/22/3/035012

H. Yu and B. M. Wilamowski, Levenberg-marquardt training', Industrial Electronics Handbook 5, 2011.

L. Yu and Z. Su, Application of Kernel Density Estimation in Lamb Wave-Based Damage Detection, Mathematical Problems in Engineering, vol.64, issue.325, 2012.
DOI : 10.1214/10-AOS799

M. Zadnik, F. Vincent, R. Vingerhoeds, and F. Galtier, Détection robuste de signaux en présence d'incertitudes sur leur fréquence, in`21ein`21e Colloque GRETSI, pp.11-14, 2007.

A. I. Zemmour, The Hilbert-Huang Transform for Damage Detection in Plate Structures, 2006.

L. Zeng, J. Lin, J. Hua, and W. Shi, Interference resisting design for guided wave tomography, Smart Materials and Structures, vol.22, issue.5, p.55017, 2013.
DOI : 10.1088/0964-1726/22/5/055017

X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan et al., Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring, Smart Materials and Structures, p.1208, 2007.
DOI : 10.1088/0964-1726/16/4/032

W. Zhou, D. Chakraborty, N. Kowali, A. Papandreou-suppappola, D. Cochran et al., Damage classication for structural health monitoring using time-frequency feature extraction and continuous hidden markov models, in`Signalsin`Signals, Systems and Computers, Conference Record of the Forty-First Asilomar Conference on, p.848852, 2007.