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Résumé

Dans cette thése, nous considérons deux types d’applications des effets de rétroaction en finance.
Ces effets entrent en jeu quand des participants de marché exécutent des séquences de transactions
ou prennent part & des réactions en chaine, ce qui engendre des pics d’activité.

La premiére partie présente un modéle d’exécution optimale dynamique en présence d’'un flux
stochastique et exogéne d’ordres de marché. Nous partons du modeéle de référence d’Obizheva et
Wang [93], qui définit un cadre d’exécution optimale avec un impact de prix mixte. Nous y ajoutons
un flux d’ordres modélisé a I'aide de processus de Hawkes, qui sont des processus a sauts présentant
une propriété d’auto-excitation. A I’aide de la théorie du controle stochastique, nous déterminons la
stratégie optimale de maniére analytique. Puis nous déterminons les conditions d’existence de Stra-
tégies de Manipulation de Prix, telles qu’introduites par Huberman et Stanzl [78]. Ces stratégies
peuvent étre exclues si l'auto-excitation du flux d’ordres se compense exactement avec la résilience
du prix. Dans un deuxiéme temps, nous proposons une méthode de calibration du modéle, que nous
appliquons sur des données financiéres & haute fréquence issues de cours d’actions du CAC40. Sur
ces données, nous trouvons que le modéle explique une partie non-négligeable de la variance des prix.
Une évaluation de la stratégie optimale en backtest montre que celle-ci est profitable en moyenne,
mais que des coiits de transaction réalistes suffisent & empécher les manipulations de prix.

Ensuite, dans la deuxiéme partie de la thése, nous nous intéressons & la modélisation de la volatilité
intra-journaliére. Dans la littérature, la plupart des modéles de volatilité rétroactive se concentrent
sur ’échelle de temps journaliére, ¢’est-a-dire aux variations de prix d’un jour sur ’autre. L’objectif
est ici d’étendre ce type d’approche & des échelles de temps plus courtes. Nous présentons d’abord un
modéle de type ARCH ayant la particularité de prendre en compte séparément les contributions des
rendements passés intra-journaliers et nocturnes. Une méthode de calibration de ce modéle est étu-
diée, ainsi qu’une interprétation qualitative des résultats sur des rendements d’actions américaines et
européennes. Dans le chapitre suivant, nous réduisons encore 1’échelle de temps considérée. Nous étu-
dions un modéle de volatilité & haute fréquence, dont I'idée est de généraliser le cadre des processus
Hawkes pour mieux reproduire certaines caractéristiques empiriques des marchés. Notamment, en
introduisant des effets de rétroaction quadratiques inspirés du modéle & temps discret QARCH [102],
nous obtenons une distribution en loi puissance pour la volatilité ainsi que de 'asymétrie temporelle.

Mots clés : Calibration, Backtest, Modéle d’Impact, Exécution Optimale, Processus de Hawkes,
Microstructure de Marché, Trading Haute-Fréquence, Manipulations de Prix, Modéles de Volatilité,
Volatilité Rétroactive, Modeles ARCH, Volatilité & Haute Fréquence, Symétrie par Renversement
du Temps.






Abstract

In this thesis we study feedback effects in finance and we focus on two of their applications. These
effects stem from the fact that traders split meta-orders sequentially, and also from feedback loops.
Therefore, one can observe clusters of activity and periods of relative calm.

The first part introduces an dynamic optimal execution framework with an exogenous stochastic
flow of market orders. Our starting point is the well-known model of Obizheva and Wang [93]
which defines an execution framework with both permanent and transient price impacts. We modify
the price model by adding an order flow based on Hawkes processes, which are self-exciting jump
processes. The theory of stochastic control allows us to derive the optimal strategy as a closed
formula. Also, we discuss the existence of Price Manipulations Strategies in the sense of Huberman
and Stanzl [78], which can be excluded from the model if the self-exciting property of the order flow
exactly compensates the resilience of the price. The next chapter studies a calibration protocol for
the model, which we apply to tick-by-tick data from CAC40 stocks. On this dataset, the model is
found to explain a significant part of the variance of prices. We then evaluate the optimal strategy
with a series of backtests, which show that it is profitable on average, although realistic transaction
costs can prevent manipulation strategies.

In the second part of the thesis, we turn to intra-day volatility modeling. Previous works from
the volatility feedback literature mainly focus on the daily time scale, i.e. on close-to-close returns.
Our goal is to use a similar approach on shorter time scales. We first present an ARCH-type model
which accounts for the contributions of past intra-day and overnight returns separately. A calibration
method for the model is considered, that we use on US and European stocks, and we provide some
qualitative insights on the results. The last chapter of the thesis is dedicated to a high-frequency
volatility model. We introduce a continuous-time analogue of the QARCH [102] framework, which
is also a generalization of Hawkes processes. This new model reproduces several important stylized
facts, in particular it generates a time-asymmetric and fat-tailed volatility process.

Keywords : Calibration, Backtest, Market Impact Model, Optimal Execution, Hawkes Processes,
Market Microstructure, High-frequency Trading, Price Manipulations, Volatility Modeling, Volatility
Feedback, ARCH Models, High-Frequency Volatility, Time Reversal Invariance.
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Introduction 16

Les travaux présentés dans cette thése se décomposent en deux parties. Bien que distinctes dans
la méthodologie et la finalité, elles se rejoignent sur l'utilisation des processus stochastiques dits
auto-excitants. Ces processus permettent de modéliser les séquences d’ordres ainsi que les réactions
en chaine, qui sont des effets observés en pratique sur les marchés financiers, par lesquels 'activité
semble former des « regroupements » (clustering en anglais). Autrement dit, des périodes d’agitation
intense se succédent avec des moments de calme plat, et lactivité (ou volatilité) n’est pas répartie
de maniére uniforme dans le temps. Ce phénomeéne influence de maniére considérable les mesures
de risques, les stratégies de liquidation d’actifs ainsi que le prix de nombreux produits dérivés.
En conséquence, les modéles mathématiques qui en tiennent compte présentent un grand intérét
pratique.

La premiére partie de la thése traite une problématique d’exécution optimale. Il s’agit d’une approche
mathématique pour liquider la position d’un portefeuille pour un actif donné. Nous partons d’un
modeéle de référence dans ce domaine et nous y ajoutons d’autres acteurs, dont les ordres présentent
une propriété d’auto-excitation. Quant & la deuxiéme partie, il s’agit d’une étude a la fois quantitative
et empirique de la volatilité intra-journaliére, c’est-a-dire sur des échelles de temps assez courtes,
entre 'ouverture et la fermeture des marchés pour une méme journée. Notamment, un modéle intra-
journalier peut permettre de comprendre au niveau « microscopique » les éléments qui forment la
volatilité a basse fréquence (au niveau journalier, hebdomadaire, mensuel ou annuel).

Sans s’attarder sur les détails techniques qui seront abordés dans le corps de la thése, cette intro-
duction présente les principaux résultats obtenus, ainsi que leur motivation.

Introduction a ’exécution optimale

En finance, un enjeu naturel est d’acheter ou vendre une certaine quantité d’actifs (c’est-a-dire
d’actions, de monnaie, de contrats optionnels...) au meilleur prix possible, en un temps donné. Par
exemple, un investisseur peut vouloir acheter un certain nombre d’actions d’une entreprise quotée
en bourse, car son analyse le méne & penser qu’il s’agit d’'un investissement rentable, ou que le
prix auquel elle est actuellement traitée est bas. Dans ce cas, il voudra se procurer ces actions
en un certain laps de temps (une heure, une journée, une semaine), avant que cette opportunité
ne disparaisse. Considérons un autre exemple : une banque d’affaire, aprés avoir vendu une option
d’achat & un client, se couvre du risque de marché en achetant I’action sous-jacente. Si elle ne posséde
pas suffisamment d’actions de ce type au moment de la vente du contrat, elle doit acheter la quantité
manquante pour un prix acceptable. Elle devra le faire rapidement pour former sa couverture dés
que possible. Enfin, une entreprise européenne peut étre en possession, du fait de ses exportations,
d’une quantité importante de dollars. Dans ce cas, si elle ne veut pas les conserver, il faudra les
convertir en euros & un taux satisfaisant. En général, elle devra le faire dans un temps limité pour
éviter de s’exposer & un mouvement adverse de ce taux.

Dans tous ces cas, la complication & prendre en compte est que lorsqu’on achéte massivement un actif
en un court laps de temps, on pousse progressivement le prix vers le haut. Ceci est une conséquence
logique de la loi de l'offre et de la demande, qui régit les marchés financiers. On agit donc contre son
propre intérét, puisque I'on rend le prix a ’achat de moins en moins intéressant. De méme, quand on
vend une grande quantité d’actifs, le prix est poussé vers le bas. Ce mécanisme est appelé « impact
de marché » (market impact ou price impact en anglais). Il s’agit donc de trouver un compromis
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entre la vitesse d’exécution de la transaction et la réduction de son impact sur le prix. C’est ce que
I'on appelle « exécution optimale ».

D’autre part, I’électronisation des marchés financiers a pris une ampleur considérable depuis une
vingtaine d’années. Les « échanges », plate-formes d’interaction entre négociants ou les actifs sont
achetés et vendus, ne sont plus un endroit de rencontre physique. Il s’agit de hangars abritant de
colossaux serveurs informatiques, qui permettent aux transactions d’étre faites de maniére automarti-
sée n'importe ot dans le monde. Parmi les conséquences de cette évolution, on compte 1’accélération
du rythme des interactions sur les marchés ainsi qu’une informatisation indispensable des méthodes
d’échange. Cette informatisation a popularisé les méthodes de trading « algorithmique », c’est-a-dire
ou les transactions ne sont pas décidées directement par des humains, mais par des ordinateurs qui
suivent des critéres logiques programmés au préalable. Cela permet d’agir de maniére plus rapide et
de gagner en réactivité. Toutefois, pour mettre au point les algorithmes qui régissent les décisions
automatisées, les différentes stratégies doivent étre formulées de facon mathématique. C’est pour-
quoi, en particulier, les problématiques d’exécution optimale gagnent plus que jamais & étre traitées
par une approche quantitative.

Nous introduisons maintenant les bases de ’exécution optimale mathématique. Ce domaine est en
expansion depuis le début des années 2000, et doit ses premiers pas aux travaux de Bertsimas et
Lo [21] et Almgren et Chriss [9]. On considére un trader particulier, qui veut liquider sa position,
c’est-a-dire vendre ou acheter des actifs, selon la situation initiale. Dans ces premiéres approches,
I'impact de marché des transactions est modélisé comme étant linéaire en fonction de leur volume
(c’est-a-dire la quantité d’actifs échangeés lors de chaque transaction). Le cotit de la stratégie du trader
a chaque instant est donc une fonction quadratique de sa vitesse d’exécution, plutét que linéaire dans
le cas o 'impact est ignoré. Cela permet de pénaliser une exécution trop rapide, tout en imposant
que celle-ci soit achevée avant une échéance fixée & 'avance. Les mouvements de prix dis aux autres
participants de marché traitant le méme actif sont modélisés par une martingale, c’est-a-dire par
un processus sans tendance, pour lequel la meilleure estimation de la valeur future est la valeur
actuelle. La formulation mathématique simplifiée du probléme d’exécution permet de recourir a la
théorie du contrdle stochastique pour déterminer la stratégie optimale sous forme d’une expression
analytique. Dans le cas du modeéle d’Almgren et Chriss |9], cette stratégie consiste simplement a
exécuter la transaction & vitesse constante, c’est-a-dire a diviser la quantité d’actifs & acheter (ou
a vendre §'il s’agit d’un programme de vente) de maniére uniforme sur tout le temps imparti. Bien
qu’elle puisse sembler naive & premier abord, cette méthode de liquidation prend mieux en compte
I'impact de marché qu'une stratégie ou 1’on liquiderait toute la position d’un coup, sans attendre.
Une telle stratégie pourrait siphonner la liquidité présente sur le marché, et avoir un impact et un
colit considérables.

Il faut noter que dans ces premiers travaux, la structure temporelle de I'impact de marché a une
forme particuliére. Elle comporte une partie « immédiate », qui augmente le colt instantané de la
transaction sans affecter les cours & venir, et une partie permanente, qui modifie définitivement
le prix mais n’affecte pas la stratégie de liquidation. Une extension naturelle est d’introduire un
impact « transient » ou « temporaire », c’est-a-dire de supposer que l'impact d’une transaction sur
le marché décroit avec le temps. Cela permet de modéliser une certaine élasticité des prix, qui
absorbent I'impact petit & petit et oscillent autour d’une moyenne mobile. Pour formaliser cette
décomposition de I'impact, on introduit la notion de « propagateur », qui est une fonction G(t) qui
décrit la maniére dont I'impact d’une transaction effectuée au temps 0 évolue avec le temps t.
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Considérons un participant de marché voulant liquider sa position sur 'intervalle de temps [0, T].
On note z(t) sa position au temps ¢ € [0, 7], c’est-a-dire la quantité d’actif qu’il posséde dans son
portefeuille. On suppose que z(0) = xp € R est connu, avec zp > 0 pour un programme de vente et
xo < 0 pour un programme d’achat (puisque liquider un certain nombre d’actifs en notre possession
revient & les vendre, et liquider une position a découvert revient a acheter les actifs). Puisque la
liquidation doit étre achevée au temps T, on impose x(7) = 0. Au temps t € [0,T], la transaction
effectuée par le participant de marché peut s’écrire comme la variation de sa position, c’est-a-dire
x(t)dt, ou & est la dérivée temporelle de x. Plus la vitesse de liquidation du participant est élevée,
plus il va impacter le prix : on suppose donc qu’a l'instant ¢, I'impact instantané est proportionnel
a f(&(t)) dt, ou f est une fonction croissante. Dans le modeéle de propagateur, 'impact global de la
stratégie sur le prix P; entre 0 et ¢ € [0, 7] est donné par I’équation

pt_Pt0+/ Gt — 5)f(i(s)) ds, (1)
0

ott P? est le prix non-impacté. Autrement dit, en modifiant sa position de la quantité @(¢)dt sur

lintervalle [t,t+dt], le trader transforme le prix P, en P,4+G(0) f(2(t)) dt, puis cet impact est propagé

dans le temps par la fonction G. De tels modéles & propagateur ont par exemple été étudiés par

Bouchaud et al. [31], Gatheral [63], Gatheral et al. [61], Alfonsi et al. [7] et Obizheava et Wang |93].

Avec cette formalisation, on peut distinguer

— L’impact immeédiat G(0) — G(0™) (ot on note G(07) = lim;_,g+ G(¢)), qui est non nul si et
seulement si le propagateur n’est pas continu en zéro. Il implique un surcotit d’exécution, sans
impact visible sur les prix.

— L’impact permanent G(400) (ot on note G(+00) = limy_, 4 G(t)), qui se traduit comme l'impact
des transactions sur les prix & basse fréquence.

— L’impact transient G(07) — G(+00), qui est la partie qui est progressivement absorbée par le
marché, et qui n’influence les prix qu’a des fréquences moyennes ou hautes.

Obizheava et Wang [93] ont été les premiers a résoudre explicitement le probléme d’exécution opti-

male en présence d'impact transient. Ils choisissent un propagateur G de forme exponentielle, une

fonction d’impact f linéaire, et autorisent la stratégie a faire des transactions en bloc, c¢’est-a-dire que

la position x(t) du trader est remplacée par un processus X; pouvant faire des sauts. L’équation (1)

devient

1 t
P =P+ q/ [v+ Xexp(—p(t — s))] dXs,
0

ou v € [0,1] est 'impact permanent, A = 1 — v est I'impact transient, p > 0 est la vitesse de
résilience de I'impact et f(xz) = z/q avec ¢ > 0 une mesure de liquidité. La limite p — 0% donne
un impact purement permanent, tandis que p — 400 correspond au modele & impact immeédiat
d’Almgren et Chriss [9], ce qui est démontré rigoureusement par Kallsen et Muhle-Karbe [34]. Bien
que relativement simple dans le choix de la forme du propagateur, le modeéle d’Obizheava et Wang [93]
généralise donc la plupart de ses prédécesseurs, tout en permettant une forme d’impact plus réaliste.
Dans un tel modeéle ou la fonction d’impact f est linéaire, le cotit d’exécution d’une stratégie X est
donné par

T
1
C(X)_/ PdXi+ — > (AX,)?,
0 2 0<r<T

ot le deuxiéme terme pénalise les sauts AX, = X_+ — X, qui apparaissant en quantité dénombrable
dans la stratégie. Le surcoiit quadratique des sauts découle directement de I'impact linéaire : si on
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exécute en bloc une quantité y au temps ¢, le coit m(y) est donné par 1’équation

Y T y2
Wt(y):/ (Pt+> de =P y+ =,
0 q 2q

car lorsqu’on a déja exécuté x € [0,y), on a déplacé le prix de la quantité x/q et on paye la quantité
dz & ce nouveau prix.

L’idée est ensuite de trouver la stratégie optimale X*, c’est-a-dire celle qui minimise le cotit moyen
E[C(X™*)]. Si certaines conditions techniques sont satisfaites, en particulier si le processus (X, P;)
peut étre représenté de maniére Markovienne (ou « sans mémoire » ), la théorie du controle optimal
stochastique peut permettre de déterminer X* de maniére explicite. C’est le cas du modeéle d’Obiz-
heava et Wang [93]. Rappelons que la position initiale du t¢rader est Xo = xo et que Xp+ = 0 est
imposé. La stratégie optimale X™* est donnée par deux sauts de méme taille au début et a la fin de
la période

T
AX;=AX7=——"— 2
et un taux de trading constant sur (0,7),
* PTo
dX; =— dt.
T S (3)

Cette stratégie est dite « en seau » (bucket-shaped en anglais). Une proportion 2/(2+ pT') du volume
est exécutée par des transactions en bloc en t = 0 et t = T, et la proportion restante pT'/(2+ pT) de
maniére continue sur 'intervalle ouvert (0,7). Il est facile de voir sur ces équations qu’en prenant
p = 0, la partie de trading continu disparait, et la stratégie exécute la moitié de la transaction au
début de la période et I'autre moitié a la fin. En revanche, pour p — +00, seule la partie continue
subsiste et le taux d’exécution devient z¢/T, ce qui revient a la stratégie uniforme d’Almgren et
Chriss [9]. Entre ces deux extrémes, plus la vitesse de résilience p de 'impact est grande, plus on peut
faire des transactions intermédiaires en sachant que leur impact va disparaitre au fur et & mesure. Si
la résilience est tres lente, il est plus rentable d’exécuter une grande partie de ’ordre immeédiatement,
puis de laisser autant de temps que possible au marché pour absorber I'impact, avant de compléter
la transaction.

Une notion importante dans les modeéles d’exécution est celle des stratégies de manipulation de prix
(Price Manipulation Strategies ou PMS en anglais). La formalisation mathématique de ce concept
est diile & Huberman et Stanzl [78] : une PMS est la donnée d’un horizon 7" > 0 et d’une stratégie

(Xt)tepo,m) tels que
Xo = Xps =0, E[C(X)] <0,

ou C(X) est le cotit d’exécution et E[C'(X)] est le cont moyen. 11 s’agit donc d’une stratégie a somme
nulle (un round trip en anglais), c’est-a-dire dont les positions initiale et finale sont identiques, et
dont I'exécution rapporte de I'argent au lieu d’en cotter (en moyenne). Aussi appelé « arbitrage
dynamique » dans la littérature, ce concept étend la notion d’arbitrage, classique en finance, au
cadre de I'exéctution optimale. Toutefois, contrairement aux arbitrages standards, une PMS est
une stratégie qui n’est pas nécessairement toujours gagnante, mais qui l’est juste en moyenne. On
considére qu’une maniére d’affirmer si un modéle d’exécution est « bon » est de vérifier que les PMS
y sont impossibles, car leur existence contredit le bon fonctionnement du marché. Dans D'article
d’Obizheava et Wang [93], les auteurs montrent que le cotit moyen de la stratégie optimale est
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positivement proportionnel au carré de la quantité xg a liquider. Il est donc toujours positif, pourtant
c’est le cotit minimal par définition de la stratégie optimale, ce qui implique que les PMS sont
impossibles dans le modéle.

L’article d’Obizheava et Wang [93] a inspiré de nombreux travaux dans le domaine de 'exécution
optimale. Notamment, la littérature comporte beaucoup d’extensions de leur modéle, dans différentes
directions. Citons-en quelques-unes :

— Gatheral [63] étudie les propriétés de la stratégie d’exécution optimale ainsi que les possibilités
d’arbitrage dynamique pour différentes formes de fonction d’'impact f et de propagateur G (cf
I’équation (1)). Notamment, cette étude permet de réconcilier le cadre des modeéles a propagateur
avec certaines observations empiriques.

— Alfonsi et al. |[5] reprennent ’étude mise en oeuvre par Obizheava et Wang [93| pour un impact f
non linéaire, et déterminent la stratégie d’exécution optimale sous forme d’une équation implicite.
Ces résultats ont un grand intérét pratique puisque la linéarité de f n’est pas considérée comme
réaliste.

— Fruth et al. [60] considérent le cas ot la vitesse de résilience p et la mesure de liquidité ¢ ne sont
plus des constantes, mais des fonctions déterministes (c’est-a-dire non-aléatoires) du temps, p(t) et
q(t). Cela permet de prendre en compte les saisonnalités intra-journaliéres prévisibles de Iactivité
financiére. Ils déterminent la stratégie optimale et les conditions d’absence de PMS dans ce cas.
Alfonsi and Infante [2] généralisent ces résultats a des fonctions d’impact f non linéaires.

Toutes les approches citées précédemment ont deux points communs : elles se limitent & une modéli-

sation par propagateur, et elles sont statiques, c’est-a-dire que la stratégie optimale est déterministe.

On peut déterminer la stratégie & 'avance et s’y tenir jusqu’a ce que la liquidation soit achevée, et

ce indépendamment de I’évolution des cours et du comportement des autres participants de marché.

Cela repose sur la modélisation du prix non affecté P? par une martingale, dont ’observation ne

donne aucune information utile pour I’exécution. Pour aller plus loin dans les modeéles mathématiques

d’exécution, deux possibilités apparaissent :

— Remplacer le propagateur par un objet plus riche, permettant une modélisation plus flexible
et plus réaliste. Cela peut s’avérer compliqué, car un des avantages du propagateur est qu’il
donne un cadre favorable aux calculs. Toutefois, Donier et al. [18] proposent un modéle de carnet
d’ordres latent inspiré d’arguments de réaction-diffusion, qui permet de reproduire de nombreuses
observations empiriques. Ils obtiennent une équation d’impact tres générale, dont le propagateur
n’est qu'un cas particulier. Dans ce modéle, il est démontré que les stratégies de manipulation
de prix sont impossibles, mais la stratégie optimale n’est pas calculable explicitement dans le cas
général. Malgré cela, cette étude constitue une nouvelle approche prometteuse.

— Tout en s’en tenant & un modéle & propagateur, dans lequel les calculs sont plus simples, il est
possible de s’intéresser a ’aspect dynamique de 1’exécution optimale. Pour cela, on ajoute d’autres
participants de marché, et on détermine comment réagir & leurs actions de maniére optimale, en
temps réel. Schied et Zhang [101] modélisent le cas ou deux traders veulent liquider le méme
actif simultanément. Par une approche d’équilibre de Nash, les auteurs montrent que la stratégie
optimale commune consiste & vendre dés que l'autre achéte et réciproquement, ce qui est un
scénario peu souhaitable pour le marché dans son ensemble. En ajoutant un certain niveau de
cotits de transaction quadratiques, ce comportement disparait, ce qui suggére que ces cotits de
transaction peuvent en fait diminuer le cott d’exécution global et rendre le marché plus efficient.

C’est dans le deuxiéme point que s’inscrit ’étude [3| présentée dans le chapitre 1 de cette theése.

Contrairement a Schied et Zhang [101], nous ne modélisons pas les différents participants de marché
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de maniére symmétrique. Au lieu de cela, nous considérons un trader de référence, comme le font
Obizheava et Wang [93], qui veut liquider sa position de maniére optimale. Nous modélisons les
autres acteurs comme un flux stochastique de transactions, auxquelles le trader de référence peut
réagir de maniére instantanée pour s’adapter aux sauts de prix. Nous présentons ce modeéle dans la
partie suivante de I'introduction.

Exécution optimale dynamique en présence d’un flux stochastique
d’ordres de marché

Dans les modéles « classiques » de finance, I’évolution du prix est modélisée comme un processus
stochastique, souvent une diffusion, de maniére exogéne. Cela signifie que le mouvement des cours est
di & d’autres participants de marché qui « n’observent pas » les actions de l'utilisateur du modéle.
Cette hypothése améliore grandement la tractabilité mathématique des problémes considérés, en se
centrant sur le point de vue de l'utilisateur. Les articles présentés dans la partie I de cette thése
transposent cette approche a un modéle d’exécution optimale dynamique.

Nous partons du modéle statique d’exécution optimale d’Obizheava et Wang [93], auquel nous ajou-
tons un flux d’ordres stochastique et exogéne, c’est-a-dire que ce flux est aléatoire mais ne dépend
pas des transactions effectuées par le trader de référence. Comme les ordres arrivent sur le marché
de maniére discréte en temps, modéliser ce flux & 'aide d’un processus & sauts est une approche
naturelle. Parmi ces processus, le plus utilisé en termes de modélisation est celui de Poisson. Nous
présentons donc le modéle de prix

P = Pto + ;/t[u + Aexp(—p(t — 5))] (dXs +dNS —dN;), (4)
0

ott PY est une martingale quelconque et N*, N~ sont deux processus de Poissons indépendants entre
eux et indépendants de P°, et de méme intensité kg > 0. Les processus Nt et N~ représentent
respectivement un flux d’ordres d’achat (qui impactent positivement le prix), et un flux d’ordres
de vente (qui impactent négativement le prix). Par souci de simplicité, les amplitudes des sauts de
N+ sont supposées étre des variables aléatoires indépendantes, imprévisibles et distribuées selon une
méme loi p sur RT. Un des intéréts de ce modeéle est que le profil d’impact des transactions est le
méme pour le trader de référence (modélisé par X) que pour les autres (modélisés par NT), ce qui
lui donne une certaine cohérence.

La problématique est identique a celle de ’étude d’Obizheava et Wang (93] : le trader de référence
veut liquider une position zg sur U'intervalle de temps [0,7], et ce en minimisant son cotit moyen.
La théorie du controle optimal stochastique permet ici de déterminer la stratégie optimale a ’aide
d’un argument de vérification. Cette méthode consiste & « deviner » la forme fonctionnelle du cotit
moyen minimal, aussi appelé fonction valeur, par rapport aux variables d’état du probléme, puis a
Iinjecter dans la dynamique du modéle pour obtenir un certain nombres d’équations. Quand, comme
ici, la résolution de ces équations se fait de maniére analytique, on obtient explicitement la stratégie
optimale et la fonction valeur. Nous trouvons que la stratégie optimale X* se décompose sous la

forme
X* = XOW +Xtrend _|_X*dyn7

ou
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XOW est la stratégie optimale du modeéle d’Obizhaeva et Wang [93], donnée par les équations (2)

et (3). Ce terme est proportionnel a la position initiale zg, et il correspond a ce qu’on obtient si

les processus N et N~ sont remplacés par zéro (ce qui est logique puisque I’on revient alors au

modele statique de départ).

Xtrend gt 13 stratégie de « tendance » (trend en anglais). Elle est nulle si le marché est & I’équilibre

a instant initial, et indique comment dégager un profit dans le cas contraire.

— X est la stratégie « dynamique », proportionnelle aux processus N* et N~. C'est ce terme qui
nous intéresse le plus, puisqu’il donne la réaction optimale aux transactions observées, et rend la
stratégie dynamique. Notamment, si un ordre de marché est posté au temps 7 € (0,7), alors Nt
ou N~ saute, et la stratégie réagit en sautant immédiatement aprés, selon 1’équation

14+ p(T—1)

AXID = - o
T 2+ p(T—1)

(AN: - AN‘F_)’ (5)
ou p est la vitesse de résilience. Autrement dit, en réponse a la transaction observée, la stratégie ef-
fectue une transaction dans le sens contraire (une vente si on observe un achat, et réciproquement),
pour une proportion (1 + p(T' —7))/(2 + p(T — 7)) € [1/2,1] du volume observé. La proportion
est d’autant plus grande que p(T — 7) est grand, cette quantité mesurant la capacité du prix a
revenir & la moyenne avant 1’échéance T'.

On peut interpréter la stratégie optimale comme suit : supposons que le marché est a ’équilibre a

linstant initial (ce qui n’est pas une hypothése trés réductrice) donc X' = (. La stratégie se

décompose alors de manieére additive comme la stratégie de liquidation de la position initiale zg, et
une stratégie qui réagit de maniére dynamique aux sauts observés. Comme les sauts de N* sont régis
par un processus de Poisson, leurs temps d’arrivée sont répartis de maniére totalement imprévisible
et sans mémoire sur U'intervalle [0, 7). Donc, juste aprés un saut de N par exemple, nous n’avons
aucune information sur les sauts suivants de N™ et N~. En revanche, & cause de la partie transiente

Aexp(—p(t — s)) de 'impact, on sait qu'une partie A € [0,1] du saut de prix positif qu’on vient

d’observer va revenir & zéro, donc que le prix va probablement baisser dans un futur proche. Il est

alors intéressant de vendre immédiatement une certaine quantité d’actif pour la racheter plus tard.

Ceci est en fait une stratégie de manipulation de prix (PMS), comme on le vérifie en calculant le cott
moyen. Ceci n’est pas surprenant car dans le modeéle, chaque saut de N* donne une information sur
la tendance de prix & venir. De plus, nous montrons dans le chapitre 1 que la connaissance de p n’est
pas requise pour dégager du profit, car on obtient encore une PMS en remplacant systématiquement
la proportion (1 + p(T' —7))/(2+ p(T — 7)) par 1/2. Ce modéle n’est donc pas compatible avec un
bon fonctionnement du marché, ce qui nous incite & ’enrichir.

En fait, il est clair que le probléme du modéle de Poisson est qu’en ’absence du trader de référence,
le prix non-affecté

Pt(XEO) = Pto + ! /t[V + Aexp(—p(t — 5))] (AN —dN;) (6)
q4.Jo

ne peut pas étre une martingale, donc son évolution est partiellement prévisible. Nous montrons en
effet dans le chapitre 1 que Pabsence de PMS dans ce modéle est équivalente au fait que P(X=0) soit
une martingale. Or, pour obtenir cette propriété de martingale avec des processus & sauts N1 et
N7 plus généraux, il faut nécessairement introduire une structure d’auto-corrélation dans les sauts.
Autrement dit, pour compenser la force de rappel du prix die a U'impact transient, il faut que juste
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aprés un saut de N1 faisant monter le prix, il soit plus probable d’observer un nouveau saut de N
que d’observer un saut de N~. Ce phénomeéne est observé en pratique dans les marchés financiers, et
est provoqué par le découpage des ordres (splitting en anglais), ainsi qu’aux spéculateurs qui utilisent
des stratégies de poursuite de tendances (trend-following en anglais). Nous renvoyons a article de
Toth et al. [105] pour plus de détails sur ce point. Le splitting est le fait qu’un trader qui arrive sur
le marché avec une grande quantité d’actif & acheter ou a vendre découpe cette quantité en plusieurs
ordres de petite taille pour réduire son impact. C’est ce que nous avons vu dans notre introduction a
I’exécution optimale. Par exemple, quand on observe un ordre d’achat sur le marché, la probabilité
qu’il fasse partie d’'une séquence d’ordres d’achat postés par un méme trader est non négligeable.
Cela crée une structure d’auto-corrélation positive dans le flux d’ordres.

Pour modéliser cette structure d’auto-corrélation, tout en conservant une bonne tractabilité mathé-
matique, une certaine classe de processus stochastiques a sauts est tout a fait adaptée : les processus
de Hawkes. Introduits par Alan G. Hawkes en 1971 |72], les processus de Hawkes sont des processus
a sauts a intensité stochastique, c’est-a-dire que 'intensité de saut est aléatoire et variable dans le
temps. De maniére générale, si J est un processus a sauts, le fait qu’il soit d’intensité stochastique
k¢ signifie que presque stirement,

vVt >0, E[Jirn — Ji| Fi] o (7)

SR

ou F; = o((Js, ks)s<t) est la filtration naturelle du processus. Autrement dit, & tout instant ¢, sachant
le passé du processus, le nombre moyen de sauts entre ¢ et t +dt est x; dt. Les processus de Hawkes
des processus & intensité stochastique ol x; est simplement donnée par une équation auto-régressive
linéaire :

t
>0, mt:nm/ o(t — ) dJ, (8)

avec koo > 0 une constante symbolisant I'intensité « de base », et ¢ : RT™ — R une fonction
mesurable et intégrable appelée le noyau de Hawkes (Hawkes kernel en anglais). L’équation (8)
signifie que l'intensité k; est toujours supérieure & l'intensité de base koo, et qu’elle s’en écarte
d’autant plus que le processus J a sauté dans le passé proche. En effet, & chaque fois qu'un saut
de J se produit, Uintensité k; saute de ¢(0) > 0, puis est progressivement rappelée vers ko, de
maniére continue et déterministe & travers le noyau ¢. C’est pourquoi on parle de dynamique auto-
excitante (self-ezciting en anglais), car le processus saute plus quand lintensité est élevée, et les
sauts du processus augmentent eux-méme l'intensité. Contrairement & un processus de Poisson ou
les sauts sont répartis de maniére uniforme sur l'intervalle de temps, un processus de Hawkes forme
des périodes de calme (ot k; est proche de ko et le processus J saute peu) et des périodes d’agitation
(des clusters en anglais, ou k; s’éloigne de ko et le processus J saute beaucoup). Notons toutefois
que les processus de Poisson sont un cas particulier des processus de Hawkes, puisque si ’on prend le
noyau ¢ identiquement nul, l'intensité s reste constante et égale & k. Si l'on injecte I'équation (7)
dans I’équation (8), on obtient 1’égalité en moyenne

Vi >0, Elkt] = koo + /_t ¢(t — s) Elrs]ds. (9)

Notons [[¢|| = [, ¢(u) du € [0,+00). En considérant équation (9), on voit que trois régimes sont
possibles :
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— Le régime sur-critique ||¢|| > 1, ou & M +00 avec probabilité non nulle si k9 > 0, presque
—+00

stirement si de plus Ko > 0. Dans ce régime, les sauts deviennent infiniment fréquents, ce qui a
peu de sens en termes de modélisation.

— Le régime critique ||¢|| = 1, qui est similaire au régime sur-critique si kg > 0 et Koo > 0, mais
peut avoir plus de sens si koo = 0 (voir Brémaud et Massoulié [31]). Dans ce deuxiéme cas, il
s’agit d’un processus ou ’auto-excitation est trés forte, mais qui peut tout de méme rester stable
car 'intensité de base est nulle.

— Le régime sous-critique ||¢|| < 1, qui est en général le plus intéressant pour modéliser des phé-
nomeénes réels. Dans ce cas, le processus converge vers un état stationnaire quand ¢ — 400 (voir
Hawkes et Oakes [71]), c’est-a-dire qu'’il tend vers un équilibre ou sa loi de probabilité ne varie
plus. Cela implique que la moyenne de 'intensité x; converge vers une constante, dont la valeur
découle de ’équation (9) : -

— (o0}
E[k4] S E= =1l (10)
Cette formule a une interprétation claire puisqu’on retrouve K = Ko, pour un processus de Poisson
(|lol| = 0), et ® diverge quand ||¢|| tend vers 1.

La valeur de ||¢|| est donc un parameétre trés important pour un processus de Hawkes. On I'appelle

le ratio de branchement (branching ratio en anglais). Il peut étre interprété comme le nombre moyen

de sauts « engendrés » par chaque saut. En faisant le paralléle avec une dynamique de population,
on comprend alors pourquoi ||¢|| = 1 est la valeur critique au-dela de laquelle les sauts deviennent
infiniment fréquents.

L’utilisation des processus de Hawkes a connu un grand essor en finance quantitative ces derniéres
années. Sans essayer d’étre exhaustif, énumérons certains de ces travaux. Bacry et al. [11], [12],
[10], [L6] présentent plusieurs versions d’'un modéle de prix & haute fréquence utilisant ces proces-
sus, et étudient leurs propriétés mathématiques et la facon d’estimer leurs parameétres en pratique.
Filimonov et Sornette [58], suivis de Hardiman et al. [08], [69] ménent des études empiriques de
I’activité des marchés financiers en modélisant les changements de prix par un processus de Hawkes,
et discutent de la valeur du branching ratio qui mesure la réflexivité de ’activité financiére.

La partie I de cette thése rend compte de nos résultats en exécution optimale dynamique. L’article [3]
présenté dans le chapitre 1 généralise le modeéle de prix (4) en remplagant les processus de Poisson
indépendants N et N~ par un processus de Hawkes (N, N7) de dimension 2, oit NT (resp. N7)
est d’intensité stochastique ;" (resp. ;). La stratégie optimale est encore calculée explicitement, et
comme nous 'espérions, elle différe de la stratégie (5) du modeéle de Poisson par ’ajout d'un terme
de signe opposé. Un certain jeu de paramétres permet & ces deux termes de se compenser, ce qui lisse
la stratégie optimale et la rend plus réaliste. En fait, ce méme jeu de paramétres permet également
de faire en sorte que le prix non affecté (6) soit une martingale, ce qui empéche les stratégies de
manipulation de prix. Cela fournit un cadre cohérent d’exécution optimale dynamique pour lequel
un équilibre de marché est possible, et ou la stratégie optimale est connue si cet équilibre n’est pas
tout & fait respecté.

Ensuite, le chapitre 2 étudie une généralisation du modéle précédent, ainsi que sa calibration sur
un jeu de données financiéres fourni par la banque d’investissement Natixis. En permettant au
propagateur et au noyau de Hawkes d’avoir des formes plus générales que I’exponentielle, de nouveaux
résultats théoriques sont obtenus, et permettent d’appliquer le modeéle de maniére plus réaliste. Une
méthode de calibration du modéle est ensuite présentée, puis appliquée sur données simulées et sur
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données réelles (extraites d’historiques de prix tick-by-tick d’actions du CAC40). Nous proposons
une interprétation qualitative de ces résultats empiriques, et menons une évaluation en back-test de
la stratégie optimale sur notre jeu de données.

Introduction aux modéles auto-régressifs de volatilité

Nous introduisons maintenant la deuxiéme partie de cette thése, concernant la modélisation de la
volatilité des marchés financiers. La volatilité est une mesure du niveau d’agitation du prix d’un
actif sur une période donnée. On qualifie un actif de volatil quand son prix a des mouvements
importants et/ou fréquents, quelle que soit leur direction. Il ne s’agit donc pas de détecter des
tendances de prix & la hausse ou & la baisse, mais de mesurer des variations en valeur absolue. La
notion de volatilité est étroitement liée & celle de risque, que ’on peut définir comme la probabilité
d’événements défavorables (en un sens & préciser selon le contexte). En finance, on considére souvent
le risque que le prix d’un actif monte beaucoup (si, pour une raison quelconque, on doit ’acheter),
ou baisse beaucoup (si on le posséde déja dans son portefeuille). Ces risques sont d’autant plus
importants que la volatilité de 'actif est élevée.

La modélisation de la volatilité est directement motivée par un trait psychologique humain appelé
I'aversion au risque : nous n’aimons pas en général prendre des risques non nécessaires. Dans une
certaine mesure, nous sommes plus soucieux de nous protéger contre les événements trés défavorables,
que de maximiser notre gain moyen (financier ou autre). Ceci est bien illustré par I'exemple suivant :
on considére un jeu ou l'on a une probabilité de 60% de doubler le montant de son compte en
banque, et 40% de tout perdre. A priori, une grande majorité des personnes a qui on proposerait
ce jeu refuseraient d’y participer, bien que le joueur soit gagnant en moyenne. Nous avons donc
naturellement tendance a « pénaliser » le risque dans notre processus de décision. La théorie de la
sélection de portefeuilles est une application typique de ce concept en finance. Lorsqu’un investisseur
construit son portefeuille, ’approche standard consiste & sélectionner des actifs dont le rendement
moyen est aussi bon que possible pour un niveau de volatilité maximal donné. Réciproquement, on
peut aussi minimiser la volatilité de son portefeuille pour un niveau de rendement minimal imposé.
C’est la théorie de Markowitz [39], développée dés 1952 par Harry Markowitz. Pour mener a bien
une telle démarche, il est essentiel de pouvoir évaluer la volatilité des actifs avec précision.

Considérons un modéle & temps discret, c¢’est-a-dire ol le temps évolue sur une grille d’entiers : dans
ce cas, l'instant suivant immédiatement le temps ¢ est le temps ¢ + 1. Soit un actif dont le prix au
temps t est noté P;. On appelle rendement de I'actif au temps ¢ la quantité
P — P
R, — t+1 t’
P

qui est I'incrément relatif du prix. Pour simplifier le cadre mathématique, on remplace les rendements
par les log-rendements

P,
e = log( gl> = log(1+ Ry),

ce qui est équivalent pour R; petit. Les rendements sont alors additifs, c’est-a-dire que le log-
rendement entre ¢ et ¢t + 2 est la somme des deux log-rendements : log(Pit2/P;) = log(Piy1/Py) +
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log(Piy2/Pi+1) = r¢ + ri41. On définit ensuite la volatilité o de Pactif comme écart-type « condi-
tionnel » de ses rendements (ou de ses log-rendements). Plus précisément, un modeéle de volatilité
prend la forme

re = ot &, (11)

ou oy est la volatilité au temps ¢, et & est une variable aléatoire indépendante de o; et de variance
unitaire, appelée résidu. En général, le résidu est pris de moyenne nulle, et la suite (&) est formée
de variables indépendantes et identiquement distribuées. Différents modeéles de volatilité spécifient
ensuite différentes dynamiques pour le processus oy.

Le plus classique d’entre eux est la marche aléatoire, qui est la version en temps discret du célébre
mouvement Brownien. Ce modéle suppose que la volatilité o est constante, ce qui implique que les
log-rendements ry = 0&; sont eux-mémes des variables indépendantes et identiquement distribuées.
Dans ce modéle trés simple, on peut estimer la volatilité constante par I’écart-type empirique des
rendements

T

. 1 _
o= 7T_1Z(T’t*7')2,

t=1

ou la moyenne empirique 7 = % Z;f:l r¢ est censée étre proche de zéro. La tractabilité mathématique
de ce modeéle le rend attractif, et il est souvent utilisé en pratique. Toutefois, il ne permet pas de
reproduire un certain nombre d’observations empiriques. Une des plus connues d’entre elles est le fait
que la volatilité forme des « regroupements » (ce qu’on appelle volatility clustering en anglais), c’est-
a-dire que 'on observe une succession de périodes de volatilité élevée et de périodes de volatilité
faible, au lieu d’avoir une répartition uniforme. En effet, Benoit Mandelbrot [38] écrit en 1963
au sujet des marchés financiers : ... large changes tend to be followed by large changes, of either
sign, and small changes tend to be followed by small changes. Cela se traduit mathématiquement
par une auto-corrélation positive des rendements absolus |r¢| et des rendements au carré rZ. C'est
ce phénomeéne que cherchent a capturer les modeéles de type ARCH (Auto-Regressive Conditional
Heteroskedasticity).

Le premier modéle ARCH a été introduit par Engle [52] en 1982. Dans le cadre de ’équation (11),
il propose la dynamique suivante pour le processus de volatilité :

of = +gri =8 +g0i &, (12)
ot 52 > 0 est une constante qui représente le niveau « de base » de la volatilité, et g > 0 est le
parameétre de rétroaction (feedback en anglais). Dans ce modeéle, la volatilité au carré est un processus
auto-régressif de portée 1, avec un bruit multiplicatif £&. Malgré sa simplicité, cette dynamique permet
de rendre compte du phénomeéne de volatility clustering, puisque une haute volatilité o,—1 au temps
t—1 va impacter & la hausse la volatilité suivante o;. Ce mécanisme de feedback est d’autant plus fort
que le parameétre g est grand. Notamment, si I’on passe a la valeur moyenne dans 1’équation (12),
on obtient
Elof] = s* + g Elo}_,],

puisque &1 est idépendant de oy_; par construction, centré et de variance unitaire. Il est clair
sur cette nouvelle équation que E[o?] ne peut converger vers une constante quand ¢ — +oo que si
g < 1 :sans cela, il est impossible d’atteindre un régime stationnaire. Si cette condition est vérifiée,



Introduction 27

on obtient alors

(13)

Ce raisonnement et cette formule ne sont pas sans rappeler leurs analogues pour les processus de
Hawkes, voir I’équation (10) dans la partie précédente de cette introduction. Cela est naturel puis-
qu’ils sont caractéristiques des processus auto-régressifs (ou auto-excitants), qu’ils soient exprimés
en temps continu comme les processus de Hawkes ou en temps discret comme la volatilité ARCH.
Pour un niveau de base s? > 0 fixé, plus le feedback est fort, plus la valeur moyenne du processus est
élevée, et la convergence vers un équilibre devient impossible au-dela d’un certain niveau critique de
rétroaction.

La principale limitation du modéle précédent est qu’il ne permet qu'un feedback de oi—1 sur oy.
Pourtant, on peut considérer que o;—, devrait aussi impacter directement o; pour 7 > 2. C’est ce
qui est observé empiriquement : la volatilité est positivement auto-corrélée, et cet effet est en fait &
mémoire longue. Cela appelle 'extension naturelle qu’est le modele ARCH(q) :

q
o =5+ Z k(t) 2, (14)

=1

ou k(1) est le noyau de feedback et ¢ > 1 est sa portée. C’est alors la forme du noyau k qui décrit
la mémoire de leffet de feedback et détermine la structure d’auto-corrélation de o;. On obtient
dans ce cadre une condition de stationnarité similaire au modéle ARCH(1), ou g est remplacé dans
I'équation (13) par la somme Y 7_, k(7) des coefficients du noyau.

De nombreuses extensions du modéle ARCH ont été considérées dans la littérature. Citons en par-
ticulier les modeles GARCH (Generalized ARCH) et FIGARCH (Fractionally Integrated GARCH),
introduits par Bollerslev et al. [28], [29], qui ajoutent les valeurs passées de la volatilité 0% aux
variables explicatives. Toutefois, la plupart de ces études ont un point de vue plus économétrique
qu’empirique, et les paramétres des modéles en question sont difficiles & interpréter. Nous considé-
rons donc une extension du modéle ARCH dans une autre direction, ou le feedback a une forme
quadratique générale

q q
03 =52+ Z L(7T) re—r + Z K(r,7') re—rry_pr.
T=1

1<7,7'<q

Ce modéle appelé QARCH (Quadratic ARCH) a été introduit par Sentana [102], puis étudié par
Zumbach [111] et Borland et Bouchaud [30]. Le noyau linéaire L, souvent appelé noyau de levier,
permet de modéliser le fait que la volatilité augmente davantage quand les cours chutent que quand
ils montent. C’est pourquoi l’estimation de L donne en général des coefficients négatifs. Mais c’est
le noyau quadratique K (qui peut étre écrit comme une matrice avec ¢ lignes et g colonnes) qui
décrit la structure fine des effets de rétroaction. Si la matrice K est diagonale, on retrouve le modele
ARCH (14). En revanche, une partie hors-diagonale non nulle indique que les corrélations réalisées
r+_,T1_o entre les différents rendements passés entrent en jeu dans le feedback. Cela fournit un cadre
assez général qui regroupe plusieurs modéles antérieurs.

Chicheportiche et Bouchaud [39] proposent une étude détaillée du modele QARCH, ainsi que sa
calibration sur des rendements d’actions ameéricaines. Ils trouvent que la partie diagonale du noyau K
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constitue 'effet dominant du feedback et décroit lentement, comme une loi puissance K (7,7) ~ g7~

avec g > 0 et « € (1,3/2). Les coefficients hors-diagonaux sont statistiquement différents de zéro mais
n’exhibent pas une structure facilement interprétable. Ces résultats montrent que la rétroaction de
la volatilité est un phénomeéne complexe oil interagissent de nombreuses échelles de temps. Toutefois,
la plupart des modéles que nous avons présentés jusqu’a présent se situent a des échelles de temps
supérieures ou égales & la journée. Pour aller plus loin dans la description du processus de volatilité,
il semble nécessaire de se pencher sur des échelles plus courtes. En effet, I’analyse microscopique
peut permettre, comme dans d’autres contextes, de mieux comprendre ce qui est observé au niveau
macroscopique. La derniére partie de cette introduction présente cette nouvelle problématique.

Modéles auto-régressifs de volatilité intra-journaliére

Sur la plupart des marchés financiers, une journée de trading est organisée comme suit : des enchéres
sont organisées le matin, puis le marché ouvre (ce moment est appelé I'open en anglais), puis des
transactions sont effectuées en continu jusqu’a la fermeture en fin d’aprés-midi (le close en anglais).
Un rendement journalier (daily return en anglais) est I'incrément relatif (ou logarithmique) entre le
prix C; d’un actif au close d'un jour j et le prix Cj11 au close du jour j + 1 : 743 =1n(Cj41/C;).
Entre ces deux instants, 24 heures s’écoulent. Pendant les 17 premiéres heures environ, les cours
n’évoluent pas puisque le marché est fermé. Pour autant, des événements ou des annonces peuvent
se produire pendant la nuit, et engendrent des intentions d’achat et de vente qui ne peuvent pas étre
exécutées avant le lendemain. Quand arrivent les enchéres au matin du jour j 4+ 1, ces intentions
« latentes » sont résolues, et le prix saute avant méme que le marché n’ouvre. Cela explique pourquoi
le prix d’ouverture O;11 du jour j + 1 est en général différent du prix de fermeture C; du jour j,
ce qui produit un rendement nocturne (overnight return en anglais) : r™ = In(Oj;41/Cj). Aprés
I'open, le marché reprend son fonctionnement normal et les transactions sont exécutées en temps
réel jusqu’au close du jour j+ 1, et on définit naturellement le rendement intra-journalier (intra-day
return en anglais) par r” = In(Cj1+1/0;41). Nous obtenons donc la décomposition additive

Tda]ly — 7,,N + TD,

qui met en évidence les deux composantes du rendement journalier. Nous identifions deux subtilités

dans cette décomposition :

— Les deux types de rendement rN et P sont de natures complétement différentes. Le rendement
nocturne transcrit de maniére instantanée les informations accumulées pendant la nuit, tandis
que le rendement intra-journalier correspond & une évolution progressive des cours & laquelle les
participants de marché peuvent réagir en temps réel. Il semble donc intéressant de comprendre
comment interagissent les deux volatilités correspondantes.

— Puisqu’il s’agit d’un saut de prix unique, le rendement nocturne ne peut pas étre décomposé a
son tour. En revanche, les prix sont cotés en continu quand le marché est ouvert, ce qui permet
d’écrire le rendement intra-journalier comme une somme de rendements a plus haute fréquence
(30 minutes, 5 minutes, 10 secondes...). On peut ainsi définir un processus de volatilité a I'intérieur
d’une méme journée de trading, et la description de ce processus peut expliquer les propriétés du
rendement intra-journalier dans son ensemble.

Le premier point a été considéré par exemple par Gallo [61] et Tsiakas [106]. C’est également 1'objet

du chapitre 3 de cette these, issu de larticle [27], ou nous construisons une structure ARCH de
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dimension 2 qui modélise les volatilités nocturne et intra-journaliére de maniére jointe. Nous calibrons
ce modéle sur des rendements d’actions europénnes et ameéricaines, et trouvons que les différentes
rétroactions (jour sur jour, nuit sur jour, etc.) ont des formes différentes. De plus, la volatilité
nocturne est sensiblement plus endogéne, c’est-a-dire que la partie expliquée par les effets de feedback
est plus grande.

En ce qui concerne le deuxiéme point, deux approches sont possibles. La premiére consiste & découper
la journée de trading en « paniers » (bins en anglais) de longueur At, et a appliquer un modeéle de
volatilité en temps discret aux temps 0, At, 2At, 3At,... Dans ce cas, la connaissance du prix
au début de chaque bin [EAt, (k + 1)At] est suffisante pour définir des rendements a lintérieur
de la journée. Engle et Sokalska [55] suivent une démarche de ce type. La deuxiéme approche est
de modéliser le prix a haute fréquence par un processus & sauts en temps continu : il s’agit de
I’approche « microstructurelle ». Cela correspond a la réalité du marché puisque pendant la journée,
les prix sont cotés a tout instant mais ne sont mis & jour que de facon discréte en temps. En
ayant recours a des arguments de convergence de processus, on peut alors déterminer la volatilité
a basse fréquence qui est engendrée par le modeéle microstructurel. La littérature récente comporte
plusieurs études de ce genre, telles que celles de Cont et De Larrard [10] et Abergel et Jedidi [!]
pour des processus de Poisson, ou encore Bacry et al. [18] et Jaisson et Rosenbaum [0], [$1] pour
les processus de Hawkes. Le dernier chapitre de cette thése regroupe les deux approches présentées
dans ce paragraphe. Nous calibrons un modéle QARCH sur des bins de 5 minutes, et nous montrons
que pour des fréquences plus élevées, nous pouvons considérer son analogue en temps continu. Ce
nouveau modéle est une généralisation des processus de Hawkes ot 'on ajoute au feedback des effets
quadratiques « hors-diagonaux ». De la sorte, nous parvenons & reproduire plusieurs caractéristiques
empiriques importantes du processus de volatilité, telle que sa distribution en loi puissance et son
asymétrie temporelle.
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Chapitre 1

Exécution optimale dynamique dans un
modeéle de prix basé sur les processus de
Hawkes

Ce chapitre est un article écrit avec Aurélien Alfonsi [3] et accepté pour publication dans la revue
Finance and Stochastics.

Abstract. We study a linear price impact model including other liquidity takers, whose flow of
orders follows a Hawkes process. The optimal execution problem is solved explicitly in this context,
and the closed-formula optimal strategy describes in particular how one should react to the orders of
other traders. This result enables us to discuss the viability of the market. It is shown that Poissonian
arrivals of orders lead to quite robust Price Manipulation Strategies in the sense of Huberman and
Stanzl [78]. Instead, a particular set of conditions on the Hawkes model balances the self-excitation
of the order flow with the resilience of the price, excludes Price Manipulation Strategies and gives
some market stability.

1.1 Introduction

When modeling the price of an asset, we typically distinguish at least three different time scales. At
the low-frequency level, the price can often be well approximated by a diffusive process. At the other
end, when dealing with very high frequencies, some key features of the Limit Order Book (LOB)
dynamics have to be modeled. In between, price impact models consider an intra-day mesoscopic
time scale, somewhere between seconds and hours. They usually ignore most of the LOB events
(limit orders, cancellations, market orders, etc.) and focus on describing the price impact of the
transactions. Their goal is to be more tractable than high-frequency models and to bring quantitative

33
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results on practical issues such as optimal execution strategies. The usual setup is well-described in
Gatheral [63], who defines the price process S as

t t
Sy = Sg+/ f(a':s)G(t—s)ds—F/ odZs,
0 0

where @ is the rate of trading of the liquidating agent at time s < ¢, f(v) represents the instantaneous
price impact of an agent trading at speed v, G is called a « decay kernel » and Z is a noise process. The
quantity f(v)G(+00) is usually called the « permanent impact », f(v)G(0) the « immediate impact »
and f(v)[G(0")—G(400)] the « transient impact ». The pioneering price impact models of Bertsimas
and Lo [24] and Almgren and Chriss [9] consider a linear impact, with an immediate and a permanent
part (which corresponds to f(v) = av, G(0) > 0, G(07) = G(+0oc) > 0 with the previous notations).
These models ignore the transient part of the impact which is due to the resilience of the market
and cannot be neglected when trading frequently. For that purpose, Obizhaeva and Wang [93] have
considered a model that includes in addition a linear transient impact that decays exponentially (i.e.
f(v) =av, Gu) = A+ (1—=X)exp(—pu), 0 < X <1, p>0). However, empirical evidence on market
data shows that the price impact is not linear but rather concave, see e.g. Potters and Bouchaud |95],
Eisler et al. [50], Mastromatteo, Téth and Bouchaud [90], Donier [17] and more recently, Farmer,
Gerig, Lillo and Waelbroeck |57]. Extensions or alternatives to the Obizhaeva and Wang model
that include non-linear price impact have been proposed by Alfonsi, Fruth and Schied [5], Predoiu,
Shaikhet and Shreve [97], Gatheral [63] and Guéant |66] to mention a few. Similarly, the exponential
decay of the transient impact is not truly observed on market data, and one should consider more
general decay kernels. Alfonsi, Schied and Slynko [6] and Gatheral, Schied and Slynko [(] consider
the extension of the Obizhaeva and Wang model when the transient impact has a general decay
kernel. Another simplification made by these models is that they generally assume that when the
liquidating trader is passive, the price moves according to a continuous martingale, that sums up
the impact of all the orders issued by other participants. However, if one wants to use these models
at a higher frequency, they would naturally wonder how these orders (at least the largest ones) can
be taken into account in the strategy, and if the martingale hypothesis for the price can be relaxed.
This is one of the contributions of the present paper.

On the other hand, high-frequency price models aim at reproducing some statistical observations
made on market data such as the autocorrelation in the signs of trades, the volatility clustering
effect, the high-frequency resilience of the price, etc., and to obtain low-frequency asymptotics that
are consistent with continuous diffusions. At very high frequencies, one then has to describe LOB
dynamics, or a part of it. Such models have been proposed by Abergel and Jedidi |[!], Huang,
Lehalle and Rosenbaum [77], Cont and de Larrard [10], Garéche et al. [(2], among others. However,
as stressed in [10], LOB events are much more frequent than price moves. Thus, it may be relevant
to model the price at the slightly lower frequency of midpoint price changes. For example, Robert
and Rosenbaum [99] have proposed a model based on a diffusion with uncertainty zones that trigger
the price changes. Recently, Bacry et al. [11] presented a tick-by-tick price model based on Hawkes
processes, that reproduces well some empirical facts of market data. This model has then been
enriched by Bacry and Muzy [10] to describe jointly the order flow and the price moves. In fact,
there is a very recent and active literature that focuses on the use of mutually exciting Hawkes
processes in high-frequency price models. Without being exhaustive, we mention here the works of
Da Fonseca and Zaatour [!1], Zheng, Roueff and Abergel [109], Filimonov and Sornette [58] and
Hardiman, Bercot and Bouchaud [68]. Asymptotic and low-frequency behaviour of such models has
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been investigated recently by Bacry et al. [12] and Jaisson and Rosenbaum [79].

The present paper is a contribution to this also mutually exciting literature. Its main goal is to make
a bridge between high-frequency price models and optimal execution frameworks. On the one hand,
Hawkes processes seem to be rich enough to describe satisfactorily the flow of market orders. On the
other hand, price impact models are tractable and well-designed to calculate trading costs. The aim
of our model is to grasp these two features. Thus, we consider an Obizhaeva and Wang framework
where market buy and sell orders issued by other traders are modeled through Hawkes processes. This
enables us to make quantitative calculations and to solve the optimal execution problem explicitly.
We obtain a necessary and sufficient condition on the parameters of the Hawkes model to rule out
Price Manipulation Strategies that can be seen as high-frequency arbitrages. Interestingly, we also
show that modeling the order flow with a Poisson process necessarily leads to those arbitrages.

The paper is organized as follows. In Section 1.2, we set up the model and present a general criterion
to exclude Price Manipulation Strategies. Section 1.3 summarizes our main results. Section 2.2.3
gives the solution of the optimal execution problem along with several comments and insights on
the optimal strategy. Eventually, we analyze the existence of Price Manipulation Strategies in our
model in Section 1.5 and give the conditions under which they are impossible. Cumbersome explicit
formulas and technical proofs are gathered in the Appendix.

1.2 Model setup and the optimal execution problem

1.2.1 General price model

We start by describing the price model itself, without considering the execution problem. We consider
a single asset and denote by P; its price at time ¢. We assume that we can write it as the sum of a
« fundamental price » component Sy and a « mesoscopic price deviation » Dy :

Pt == St + Dt . (11)
~—~— ~—
fundamental price mesoscopic price deviation

Typically, these quantities are respectively related to the permanent and the transient impact of the
market orders. We now specify the model and consider the framework of Obizhaeva and Wang [93]
where these impacts are linear. Let Ny be the sum of the signed volumes of past market orders on
the book between time 0 and time ¢. By convention, a buy order is counted positively in N while
a sell order makes N decrease, and we assume besides that N is a cadlag (right continuous with
left limits) process. We assume that an order modifies the price proportionally to its size, which
would correspond to a block-shaped limit order book. A proportion v € [0, 1] of the price impact is
permanent, while the remaining proportion 1 — v is transient with an exponential decay of speed
p > 0. This mean-reversion effect can be seen as the feedback of market makers, who affect the price
using limit orders and cancellations. Namely, we consider the following dynamics for S and D :

s, = 2 an,
q v
market orders

aD, = —pD;dt + —Y an,
——— q ~—~

market resilience market orders
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with ¢ > 0. One should note that in this model, the variations in the fundamental value of the asset
are revealed in its price through the process S. Indeed, we assume that the impact of each incoming
market order, modeled through the process N, contains of proportion v of « real » or « exogenous »
information, and that the remaining proportion 1 — v is of endogenous origin and will vanish over
time.

Remark 1.2.1. This model assumes a linear price impact with an exponential resilience. As men-
tioned in the introduction, these assumptions are challenged by empirical facts, and it would be for
sure interesting and relevant to enrich the model by considering a non linear price impact and a more
general decay of the impact. However, the new feature of the model with respect to the literature on
optimal execution is to add a flow of market orders issued by other traders. This is why we afford to
make these simplifying assumptions that give analytical tractability, which is important to calculate
the optimal execution strategy in real time. Thus, the model is meant to constitute a first step in
dynamic optimal execution with the price driven by point processes, and we plan to confront it to
market data in a future work.

As usual, we consider (€2, F,P) a probability space where P weights the probability of the market
events. We assume that the process (INV;);>o has bounded variation and is square integrable, i.e.
SUPgelo,4] E[N2] < oo for any t > 0, and we define (F);>0 the natural filtration of N, F; = o(Ns, s <
t) for t > 0. We will specify in Section 1.2.3 which dynamics we consider for N in this paper.

1.2.2 Optimal execution framework

We now consider a particular trader who wants to buy or sell a given quantity of assets on the
time interval [0, T]. Through the paper, we will call this trader the “strategic trader” to make the
distinction between his market orders and all the other market orders, that are described by N. We
will denote by X; the number of assets owned by the strategic trader at time t. We assume that the
process is (F;)-adapted, with bounded variation and caglad (left continuous with right limits) which
means that the strategic trader observes all the information available on the market, and that he
can react instantly to the market orders issued by other traders. Besides, a strategy that liquidates
xg assets on [0, 7] should satisfy Xo = z¢ and X7+ =0 : zo > 0 (resp. xg < 0) corresponds to to a
sell (resp. buy) program.

Definition 1.2.1. A liquidating strategy X for the position xog € R on [0,T] is admissible if it is
(Fi)-adapted, caglad, square integrable, with bounded variation and such that Xo = x¢ and X+ = 0,
a.s.

Remark 1.2.2. An admissible strateqgy X has a countable set Dx of times of discontinuity on [0,T],

and can have a non-zero continuous part X§ =Xy — Y,  (Xp+ —X;), t€[0,7T].
T€DxN0,t)

One then has to specify how the strategic trader modifies the price, as well as the cost induced by his
trading strategy. Again, we will consider the Obizhaeva and Wang model [93] with the same price
impact as above. However, we let the possibility that the proportion € € [0, 1] of permanent impact
of the strategic trader could be different from the one of the other traders, which we note v € [0, 1].
Of course, a reasonable choice would be to set € = v to consider all orders equally, but the model
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allows for more generality. We then assume the following dynamics
1
dSt = - (VdNt + EdXt) y (12)
q
1
th = —p Dt dt + a ((1 - l/)d]\ftL + (1 - E)dXt) . (13)

With the assumptions on N and X, the price processes P, S and D have left and right limits. More
precisely, in case of discontinuity at time ¢, (1.2) and (1.3) have to be read here as follows

12 €
St_St— :E(Nt_Nt—)a St—‘r_St: ;(Xt—‘r_Xt))
l—v 1—ce¢
(Nt = Ni—), Dty — Dy =

D, — D, = (X — Xy).

For the sake of tractability only, we make the assumption of a block-shaped Limit Order Book. Thus
(see [93]), when the strategic trader places at time ¢ an order of size v € R (v > 0 for a buy order
and v < 0 for a sell order), it has the following cost

(v) / ' [P ! } d P vt
m(v) = tt+-y| dy = t v + 5
0 q ~—~ 2q
cost at the current price ~~

impact cost

Since Py = P, + g, this cost amounts to trade all the assets at the average price (P, + Piy)/2. We
stress here that if an order has just occurred, i.e. Ny — Ny— # 0, the value of F; is different from P;_
and takes into account the price impact of this order. Therefore, the cost of an admissible strategy X
is given by

1 1
CX)= | PudXy + o= > (AX;)? = PrXr + - Xj (1.4)
0.7 qTGDXﬂ[O,T) q
1 1
— P,dXS + > P(AX)+ — Y (AX)? - PrXp + o— X7,
[0,7) 2q 2q
’ TEDXQ[()’T) TGDXH[OvT)

since at time 7" all the remaining assets have to be liquidated. Here, the sum brings on the countable
times of discontinuity Dx of X, and the jumps AX; = X, — X; # 0 for 7 € Dx. We note that
all the terms involved in the cost function are integrable, thanks to the assumption on the square
integrability of X and N.

Remark 1.2.3. With the initial market price Py taken as a reference, —Py X xg s the mark-to-
market liquidation cost. Thus, C(X) + Py X zg can be seen as an additional liquidity cost of it is
positive. If it is negative, its absolute value can be seen as the gain associated to the strategy X.

Remark 1.2.4. The cost defined by (1.4) in the price model (1.1), (1.2) and (1.3) is a deterministic
function of (Xt)iejo,r), (Nt)ieo,r), So, Do and the parameters q, v, and €. In this remark, we denote
by C(X, N, So, Do, q) this function when v and € are given. From (1.2), (1.3) and (1.4), we have the
straightforward property

C(X7N7807D07Q) :C(_X7 _Na —507—D07Q)- (15)



Chapitre 1 38

Observing that ¢qC(X) = f[o ) Pud Xy + 3 > (AX;)?—(¢Pr)Xr + 3(X7)?, and remarking that
' 0<r<T
qS and qD satisfy (1.2) and (1.3) with ¢ = 1, we also get

qC(XvNas(]vDan):O(XvNuqsoquOal)' (16)

Remark 1.2.5. Since X is a caglad process and N is a cadlag process, we will have to work with
ladlag (with finite right-hand and left-hand limits) processes. When Z is a ladlag process, we set
AN~ Zy = Zy—Zy— and AV Zy = Zy — Zy the left and right jumps of Z, and Zf = Zy—Y ger oy AT 2 —
Zo<r<t A~ Z; the continuous part of Z. We also set AZy = Zy —Z;_ and use the shorthand notation
dZy = dZf + AZ;. If dZy = dZ, for some other ladlag process Z, this means that dZ{ = de and
AZ; = AZt. In particular, when Z is cadlag and 7 is caglad, this means that Z; — Z;_ = Zt+ — Zt
at the jump times.

Then, the optimal execution problem consists in finding an admissible strategy X that minimizes
the expected cost E[C(X)] for a given initial position z¢g € R. This problem for xy = 0 is directly
related to the existence of Price Manipulation Strategies as defined below.

Definition 1.2.2. A Price Manipulation Strategy (PMS) in the sense of Huberman and Stanzl [78]
is an admissible strategy X such that Xo = X7+ =0 a.s. for some T > 0 and E[C(X)] < 0.

We have the following result that gives a necessary and sufficient condition to exclude PMS.

Theorem 1.2.1. The model does not admit PMS if, and only if the process P is a (F;)-martingale
when X = 0. In this case, the optimal strategy XOW is the same as in the Obizhaeva and Wang [07]
model. It 1s given by

AXOW — __ 0 AXOW — __*0 XOW =, 0 fort T 1.
0 2+pT7 T 2+pT7 d t p2—|—pTd fO’I" 6(07 )7 ( 7)

and has the expected cost E[C(XOW)] = —Pyzo + [% + 5| 23/q.

This theorem is proved in Appendix 1.8. Similar results are standard in financial mathematics, but
to the best of our knowledge, it has not yet been formulated as such in the literature in a context
with price impact and with respect to the notion of Price Manipulation Strategies. In usual optimal
execution frameworks, the unaffected price is assumed a priori to be a martingale, which is not the
case here. Note that if P is a martingale, the optimal strategy is very robust in the sense that it does
not depend on NV, and is therefore the same as the one in the Obizhaeva and Wang model [93] that
corresponds to N = 0 and Dg = 0. In fact, it does not depend either on € and v, and only depends
on p.

Theorem 1.2.1 indicates that suitable models for the order flow N should be such that P is, roughly
speaking, close to a martingale when the strategic trader is absent, so that arbitrage opportunities
are short-lived and not too visible. This raises at least three questions. Which “simple” processes
N can lead to a martingale price P?7 Can we characterize the optimal strategy when P is not a
martingale? In particular, in the latter case, how does the optimal strategy take the market orders
issued by other participants into account ? In this paper, we study these questions when N follows
a Hawkes process.



Chapitre 1 39

Remark 1.2.6. The model can be generalized by adding a cadlag (Fi)-martingale SO to the price
process P, i.e. if we replace (1.1) by P, = Sy + Dy + S, with S = 0. This does not change the
optimal execution problem since, using an integration by parts, S° adds the following term to the
cost

SYdX, — S¥Xy = SYXr — S9Xo — X, dsY — SYXrp
[0,T) [0,7)

= - X dSP,
0.7)

which has a zero expected value from the martingale property. Let us note that there is no covariation
between the processes X and Sy since they do not jump simultaneously and X has bounded variations.

Remark 1.2.7. Similarly, when N is a cadlag (Fi)-martingale and X is an admissible liquidating
strategy for Xo = xg, we have

1- 1-
E[C(X)] = E D, dX, + —— Y (AX;)? - DrXr + — - X} +2iqm3,

[0,7) 1T oer

since af = [io. 1 d[(Xe = X0)?] = 2 [jo 1) (X — Xo)d X, + O<Z<T(AXT)2 —2(Xr — Xo0) X1 + X2.
When € € [0,1), we set Xf = (1 — €)X and get -

1 1 1 €
E[C(X)] = B /[O D) 5 30 (AXY? —aDrXy 4 5 (X0 | 4 gt (19)

0<r<T 2C]

Therefore, X 1is optimal if, and only if X is optimal in the model with e = v =0, ¢ = 1 and an
incoming flow of market orders equal to (1 — v)N.

1.2.3 The MIH model
Definitions and notations

We introduce the MIH (Mixed-market-Impact Hawkes) price model, where
Ny =N, — N[,

the process (N1, N7) being a symmetric two-dimensional marked Hawkes process of intensity
(kT,k7). The process (NT, N, k%, k™) is cadlag and jumps when N jumps. We note n't(d¢t, dv)
and n~ (dt,dv) the Poisson measures on RT x RT associated to N and N~ respectively, where the
variable v stands for the amplitudes of the jumps, i.e. the volumes of incoming market orders. We
restrain to the case of i.i.d. unpredictable marks of common law p on R i.e. for any A € B(R")
and t > 0,

kit u(A) = lim %E[ni([t,t—i—h],Aﬂ}}],
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where F; = o (N, N, ,u <t) = o (Ny,u<t) as defined earlier. In other words, at time ¢, the
conditional instantaneous jump intensity of N7 is given by /@fc, and the amplitudes of the jumps are
i.i.d. variables of law p which are independent from the past, i.e. from F;—. We also define

mg :/ vFu(dv), k €N,
R+

assuming moreover that mo < oo. We choose the Hawkes kernel to be the exponential ¢ —
exp(—ft), B >0, so that (N, N~ k", k™) is Markovian. Thus, we set

K7\ (Koo K Koo k ws(vT/m1)  @e(v™ /ma) nt(du, dvt)
()= () LG5) = Gl e[ pemistomn (G700 i) (i)
where Ko > 0is the common baseline intensity of N* and N~ and s, ¢ : RT — R are measurable
positive functions that satisfy

L ::/ ws(v/my)p(dv) <oo i ::/ we(v/my)p(dv) < co.
R+ R

+

We assume besides that
[ epmntan) <o, [ eo/ma(an) < oc
Rt R+

to have sup,¢po g E[N2] < oo, and we note that this property is automatically satisfied when g and
e have a sublinear growth since we have assumed my < co. From the modeling point ov view, we
may expect that the functions ¢g and ¢, are nondecreasing : the larger an order is, the more other
orders it should trigger. However, we do not need this monotonicity assumption in the mathematical
analysis.

Equivalently, in this Markovian setting, the intensities H;_ and k; follow the dynamics

drf = =B (kf — koo) At + @s(AN;T/m1) + (AN, /mq),
dr; = =B (ki — Koo) dt + @c(AN;/m1) + @g(AN] /m1), (1.9)

where formally, f(f os(dN;F/mq) = fot Jr+ ©s(v/m1) nt(du,dv) for t > 0. As pointed out in Har-
diman, Bercot and Bouchaud [68] and Bacry and Muzy [10] for instance (in a slightly different
context since in our framework, N models market orders only), a power-law Hawkes kernel is more
in accordance with market data than an exponential one. It is possible in principle to approximate
a completely monotone decaying kernel with a multi-exponential one while preserving a Markovian
framework, at the cost of increasing the dimension of the state space, see for example Alfonsi and
Schied [1]. This investigation is left for future research.

Note that N* and N~ boil down to independent composed Poisson processes in the case 8 = 0, @3 =
¢. = 0. The meaning of the parameters is rather clear : K™ and k= are mean reverting processes,
and tg and ¢, respectively describe how a market buy order increases the instantaneous probability
of buy (resp. sell) orders. More precisely, tg encodes both the splitting of meta-orders, and the fact
that participants tend to follow market trends (which is called the herding effect). On the other
hand, ¢, describes opportunistic traders that sell (resp. buy) after a sudden rise (resp. fall) of the
price. The functions g and ¢, allow respectively the self and cross-excitations in the order flow to
depend on the volumes of the orders. For instance, for constant functions g = 15 and . = ¢, the
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model boils down to the standard Hawkes model where k¥ makes jumps of constant size when N+
jumps.

Hawkes processes have been recently used in the literature to model the price. In particular, Bacry
et al. [11] consider a similar model where N models all price moves, with v = 1, ¢y = 0 and
deterministic jumps (i.e. ¢ is a Dirac mass). More recently, Bacry and Muzy [10]| have proposed an
four-dimensional Hawkes process to model the market buy and sell orders together with the up and
down events on the price. In contrast, the model that we study here determines the price impact of
an order in function of its size. For the reader who is not accustomed to Hawkes processes, we point
the original paper [73], the paper by Embrechts et al. [51] for an overview of multivariate marked
Hawkes processes and the book of Daley and Vere-Jones [1(] for a more detailed account.

Remark 1.2.8. As one can see in Equation (1.9), the orders of the strategic trader do not impact
the jump rates k™ and k= (there is no dX; term), as opposed to the market orders issued by other
traders. The first reason for this modeling choice is tractability. However, it is found empirically
by Toth et al. [105] that the main contribution to the self-excitation of the order flow comes from
the splitting effect. Each individual trader tends to post several orders of the same nature (buy or
sell) in a row, which creates auto-correlation in the signs of trades, and this effect is significantly
stronger than the mutual excitation between different traders. Thus, it is an acceptable approzimation
to neglect the excitation coming from the orders of the strategic trader. Of course, it would be nice
to find in the future a tractable model that gives a unified framework for the mutual excitation that
considers equally all the market orders.

Stationarity and low-frequency asymptotics of the MIH model

Up to now, we have presented the MIH model without assuming stationarity. In most models featu-
ring Hawkes processes, stationarity is an a prior: assumption, but here, we do not need it to derive
the optimal strategy. However, if one wishes to use the MIH model with constant parameters on a
large time period, it may be reasonable to consider parameters that satisfy stationarity. This is why
we present here a few results that are standard in the literature of Hawkes processes.

We consider the MIH model when the strategic trader is absent, i.e. X = 0.
Proposition 1.2.1. The process (Iﬁ?;_, Ky ) converges to a stationary law if, and only if s + 1. < B.
Proof. We can apply the results of the existing literature on marked Hawkes processes with un-

predictable marks (for instance Hawkes and Oakes [75], Brémaud ans Massoulié [33] or Daley and
Vere-Jones [16]) to obtain that (x;", x; ) converges to a stationary law if the largest eigenvalue of

[ ety (Zm o) auan = 5 (1)

is strictly below unity. Conversely, if 15 + ¢, > 5, we have

d
&E[R;_ + Ky | = 2Bkoo + (ts + te — BE[R) + ;] > 2BKe0

and the process cannot be stationary.
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We now study the low-frequency asymptotics of the price process P in the MIH model. We consider
the sequence Pt(n) = Pyt/+/nfor n > 1. We have Pt(n) = St(n)—i—Dt(n), where we also set St(n) = Snt/V/n
and Dgn) = Dy:/v/n. To study the behaviour of D™ we need the following lemma.

Lemma 1.2.1. When s + tc < B3, the expectation E[D?] converges to a finite positive value as
t — +o0.

The proof of this lemma is rather straightforward. We just have to calculate E[67], E[0; D;] and E[D?]
and check that these expectations converge when ¢34, < 5. This result implies that (DIE?), e DE:))
converges to zero for the L? norm for any 0 < t; < --- < ;. This gives that the process D™ converges
to zero.
(n) _ u NI,—N7, . .

We thus focus on the convergence of S;7 = EW. If the jumps of N are bounded, i.e. u has
bounded support, and v — @s(v/m1) and v — @c(v/m) are bounded on the support of u (which
are reasonable assumptions in practice), a straightforward adaptation of Corollary 1 of Bacry et

al. [12] gives the convergence in law of S to a non-standard Brownian motion with zero drift.

1.3 Main results

Now that the whole framework is set up, we present the main results of the present paper.

— The optimal execution problem can be solved explicitly in the MIH model and the optimal strategy
has still a quite simple form, see Theorem 1.4.1. Of course, this result relies on the assumptions
of linear price impact and exponential decay kernel, which are not in accordance with empirical
facts, see for example Potters and Bouchaud [95] and Bouchaud et al. [31]. We mention here that
it would be possible to keep an affine structure of the optimal strategy by counsidering complete
monotone decay kernels as in Alfonsi and Schied [1]. However, we believe that the optimal strategy
is interesting at least from a qualitative point of view, since it gives clear insights on how to react
optimally to observed market orders and on the role of the different parameters of the model.

— Price Manipulation Strategies necessarily appear when the flow of market orders is Poissonian,
and they are rather robust in the sense that they can be implemented without knowing the
model parameters. Namely, the strategy which consists in trading instantly a small proportion of
the volume of each incoming market order in the opposite direction is profitable on average, see
Proposition 1.5.2. This justifies to consider more elaborate dynamics for the order arrivals.

— Even in a non-Poissonian MIH setup, Price Manipulation Strategies can arise. Depending on the
parameters of the model and on the size of each observed market order, one should either trade
instantly in the opposite direction to take market resilience into account, or in the same direction
to take advantage of the self-excitation property of Hawkes processes. However, our framework
allows for a specific equilibrium to take place, that we call the Mixed-market-Impact Hawkes
Martingale (MIHM) model, where PMS disappear.

— In the MIHM model, one has in particular ¢ > ¢, ¥ < 1 and 8 = p, and the self-excitation
property of the order flow exactly compensates the price resilience induced by market makers.
The resulting price process is a martingale even at high frequencies, and in this case we find that
the optimal strategy and cost function are those of Obizhaeva and Wang [93]. The conditions
of this model imply that if ¢, = 0, the norm ¢s/3 of the Hawkes kernel that symbolizes the
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endogeneity ratio of the market, see Filimonov and Sornette [58], should be equal to 1 — v, i.e.
the proportion of market impact which is transient.

— The fact of reacting to the market orders of other traders with instantaneous market orders can
trigger chain reactions and lead to market instability. We show that in the MIH framework, the
conditions under which it is profitable for the strategic trader to react instantaneously to other
trades are quite equivalent to the existence of PMS. Although the model is clearly a simplified
view of the market, it is remarkable to obtain in this case such a clear connection between mar-
ket stability and free profits. It would be interesting for further reasearch to investigate if this
conclusion still holds in a more general model.

1.4 The optimal strategy

We need to introduce some notations to present the main results on the optimal execution. Instead
of working with ;" and x;, we will rather use §; = k;” —k;” and X; = s +x; that satisfy from (1.9)
dé = - & dt + dIy , d¥; = —p (Et — 2/‘4,00) dt + th, (110)

where

I = /O (s — 9o AN /1) — (s — 0e) AN /mn)]
I, = /0 [(‘Ps + @c)(quj/ml) + (s + (Pc)(sz:/ml)] . (1.11)

The processes I and I are cadlag processes which describe intensity jumps, and their jump times
are those of N. In the standard Hawkes framework where @5 and (. are constant, one has g = g
and ¢¢ = tc, and when N jumps, I jumps of (5 — tc) sgn(ANy) and I of ¢ + .

We note (7;);>1 the ordered random jump times of N and set 79 = 0. For t € [0, 7], we also note x;
the total number of jumps of I that occurred between time 0 and time ¢t. From (2.43), we have

Xt

0 = dpexp(—pt) + Zexp(—ﬂ(t—n))AIﬂ = 0o exp(—/pt) + exp(—pFt) Oy,,
=1

where we define ©g = 0 and

7

0, = Zexp(ﬁTl)AITl = Z exp(pT) AL, i>1.

=1 o<r<7;

For ¢ > 0 and t € [, 7Ti+1), we obtain that §;exp(ft) = dp + ©; only depends on ¢ through the
integer ¢ = x¢. We introduce the useful quantities

a=tls—1le, N=pF—aq
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and the two continuously differentiable functions ¢,w : R — R defined by

<@=1mﬂw¢&<@=1_f*”, (1.12)
oy — n oy dtyexp(=y) -1 exp(—y) —((y)

¢(0) =-1/2 d Vy#0, ¢(y) " " ;

w(0)=1/2 and Vy#£0, w(y) = eXp(_y;; 1ty _ 1 _;(y), (1.13)

W)= —1/6 and Vy£0, w(y) = 2(1 - exp(y))ygy(l texp(=y) _ () - 1y2 exp(~y)

Both functions non-increasing, diverge to +0o at negative infinity and vanish at positive infinity.
Let us now enounce the main theorem for the optimal execution problem.

Theorem 1.4.1. Let € € [0,1). The optimal strategy X* that minimizes the expected cost E[C(X)]
among admissible strategies that liquidate xo assets is explicit. It is a linear combination of
(o, Do, 00, I, N) and can be written as

X* = XOW +Xtrend +Xdyn,

where

— XOW s the optimal strategy in the Obizhaeva and Wang [03] model, given by (1.7) in Theo-
rem 1.2.1,

— Xtrend ys the « trend strategy », given by (1.19).

— X1 s the « dynamic strategy », given by (1.20).

The strategy XV is a linear function of xg, X' is a linear function of (Dg,do) while XW™ is a

linear function of the processes I and N. The discontinuity times of XW" are those of N, and if N

Jumps at time 7 € (0,T"), we have

1+p(T—7) (M my o(T —7)% x wn(T — 7))
_ dyn _ - ' P\ /)17 (1= s _
(1-eAXE ST (T —7) { 5 AL — (1—-v) ANT} + % (vp—n) S (T — 1) AT
(1.14)
All explicit formulas are given in Appendiz 1.6. The value function of the problem is given by
_ l—e¢ [ p(T —t) 3 oy O
qgxC(t,x,d, 2,6,%) = —qlz+d)x + [2+p(T—t)+2]x + St T =) qd — G,(T —1) P x

B L T N )

+eT—-t)2 + g(T—1),
where for u € [0,T],

Gn(u) = C(nu) +vpu w(nu),
3

() = % (1= g L () ou).

The functions e and g are the unique solution of the differential equations (1.32) and (1.33) with
e(0) = 9(0) = 0.



Chapitre 1 45

The proof of this theorem is given in Appendix 1.7. Let us mention here that the functions e and
g admit explicit forms by the mean of the exponential integral function, that are very cumbersome.
They can be obtained by using a formal calculus software such as Mathematica. Since they do not
play any role to determine the optimal strategy and require several pages to be displayed, we do
not give these explicit formulas. Note that they are simpler in the case n = 0, for which the explicit
formulas are given by Equations (1.38) and (1.39).

The optimal strategy X* is illustrated on Figure 1.1 for two different sets of parameters. It is worth
to notice that the strategy is linear with respect to zg, Dy, dg, I and N. This property is due to
the affine structure of the model and the quadratic costs. In particular, the reaction of the optimal
strategy to the other trades does not depend on xg. The strategy X" is the part of the strategy
which is proportional to Dy and dp and thus takes advantage of temporary price trends that are
known at time 0. The strategy X" is proportional to the processes I and N and describes the
optimal reactions to observed price jumps. Last, let us stress that having an explicit formula for the
optimal strategy is an important feature to use it in practice. Since the strategy reacts to each market
order (or at least to those which trigger price moves), its computation time should be significantly
lower than the typical duration between two of these orders.
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F1GURE 1.1 — Optimal strategy in the Hawkes model, in black, for ¢ = 100, T'=1, g = 20, 15 =
16, tc = 2, koo =12, e =0.3, v = 0.3, Dy = 0.1, /ig = Ky = 60, m; =50, Xo = =500, p =
Exp(1/m1), ¢s(y) = 1.2 x %2 + 0.5 x y%7 + 144 x y, @c(y) = 1.2 x y*2 +0.5 x y*7T + 0.4 x y for
all y > 0. The strategy of the Obizhaeva and Wang model is given in blue as a benchmark, and
the jumps of (NN;) are plotted in green (with the same trajectory for the two graphs). On the left
graph, (g < [ < p and the strategy is based on mean-reversion : each time N jumps, X jumps in
the opposite direction. On the right graph, p = (s < 8 and the strategy is trend-following.

Let us make some comments on the optimal strategy, and more precisely on how the strategic trader
reacts to the orders issued by other traders. First, we observe from (1.20) that the block trades
that immediately follow jumps of N are then compensated by the continuous trading rate. When
s = ¢, we have I = 0 and these block trades, as given by (1.14), are always opposed in sign to the
market orders that they follow. For general functions (g and ., the signs of these trades depend
on the size of the last preceding jumps of N. For example, in the case where 1 = vp, the strategic
trader makes a trade in the opposite direction if |dNV;| > %(@S — @c)(|dN¢|/m1), but trades in
the same way otherwise. The same conclusion holds for any parameter value when T'— ¢ — 0 since
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p(T —1)? x w(n(T —t)) vanishes. We now consider the asymptotics when the trading horizon is large
in this case, it is reasonable to assume that 1 > 0 which is required to get stationary intensities x*
and k~, see Section 1.2.3. Then, when T — t — +o0, the jump part of X® given by (1.14) can be

well approximated by

m <1 + ”'0> dl, — (1 —v) dN,.

2p n
Therefore, the strategic trader makes a trade in the opposite direction if |dNy| > %(1 + %)(gos -
©c)(|dV¢|/m1) and trades in the same direction otherwise. In the case ¢, = 0 and g5 = 15 where there
is only volume-independent self-excitation, we can interpret this behavior as follows : if a market
buy order is relatively small, it may be a part of a big split order, and thus be followed by other
buy orders that will make the price go up, and the strategic trader has interest to follow this trend.
However, if a market buy order is relatively big, the price resilience effect is likely to dominate and
the strategic trader has interest to trade in the opposite way.

Last, it is interesting to notice that the optimal strategy only depends on (¢s, ¢¢) through ¢g — @c.
This key self-excitation function tunes the way that the strategic trader should react to other market
orders.

Remark 1.4.1. The MIH model with n = 0 includes the particular case of independent Poisson
processes when B = 0 and ¢s = ¢, = 0. In that case, if N jumps at time 7 € (0,T), we get
from (1.14)

1+ p(T —7)

24 p(T —71)
Since the self-excitation effect is removed, the price is a mean-reverting process when the strategic
trader is passive. Thus, each time a market order is observed, the optimal strategy consists in posting
immediately a market order in the opposite direction, to arbitrage the resilience of the price. Such an
obvious Price Manipulation Strategy is unrealistic, therefore modeling the order flow with Poisson
processes 1s not satisfactory. We refer to Section 1.5.2 for more details.

(1—e)AXIm — x (1 —v) AN;.

Remark 1.4.2. Following Remark 1.2.3, a natural question is to look at the quantity xqo that mini-
mizes B[C(X)] 4+ Py X g, i.e. the expected liquidation cost with respect to the mark-to-market value.
From Theorem 1.4.1 we obtain easily that, at time 0, this quantity is minimal for

pT(gDy — Gy (T) %0

2(1+ 5pT)
We can give a simple heuristic for the sign of x : when Dy > 0 and 69 < 0 the price trend is negative
and it is more favorable to sell (xg > 0) since G, is nonnegative.

xy =

1.5 Price Manipulation Strategies in the MIH model

In this section, we study Price Manipulation Strategies (PMS), as introduced by Definition 1.2.2,
in the context of the MIH model. As a matter of fact, the value function given in Theorem 1.4.1
can be negative even for (o = 0, which would constitute a PMS. We first determine necessary and
sufficient conditions on the parameters of the model to exclude such strategies. Then, we study the
particular case of Poisson processes, which may seem natural to model the order flow but allow for
robust arbitrages to arise in this framework.
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1.5.1 The Mixed-market-Impact Hawkes Martingale (MIHM) model

Theorem 1.2.1 gives a necessary and sufficient condition on N to exclude Price Manipulation Stra-
tegies. Here, we apply this result to identify which parameters in the Hawkes model exclude PMS.
We recall the notation

Q=lg = lc= / (s — we)(v/m1)pu(dv),
R+

and define the (normalized) support of
S(p)={y>0st.Ve>0, p((m xy—e,my xy+e)) >0}

Proposition 1.5.1. The MIH model does not admit PMS if, and only if the following conditions
hold

B=p, a=1-v)p, ps(x)—pc(x) =ax forx € S(u) (i.e. mI=aN), and gDy = %50, (1.15)
or u = Dirac(0) with Dy = 0. In both cases, the optimal execution strategy is given by (1.7).

Note that in the case y = Dirac(m;) where all the jumps have the same size, one has S(u) = {1}
thus s — ¢ is necessarily linear on S(u) and Al = a sgn(AN;). If moreover m; = 0, we have
N = 0 and the MIH model does not depend any longer on the parameters a and 3, that can then
be fixed arbitrarily. Proof. From Theorem 1.2.1, PMS are excluded if, and only if the price P is a
martingale when X = 0. In this case, we have from (1.1), (1.2), (1.3) and (2.43)

1 1
dP; = —pDdt + —dN; = *(dNt — (5tm1dt) + <Tnl(st — ,ODt) dt.
q q q
Therefore, P is a martingale if, and only if %5,5 = qD; P-a.s., dt a.e. This condition is equivalent to
qDo = "o and qdDy = “Ldb;. From (1.3) and (2.43), the latter condition is equivalent to

paDy = %/3@ and (1 — v)dN; = %d[t.

Using (1.11), the second condition is equivalent to (1 — v)p v = m1 (s — ¢c)(v/m1) for all v in the
support of p, which implies the linearity of ¢35 — ¢ on S(u) and leads to (1.15). Conversely, (1.15)
implies %(515 = gDy, and P is then a martingale.

Remark 1.5.1. When 8 = p, a = (1 — v)p, and @5 — ¢ is linear on S(u), we get from the
previous calculations that d(%ét —pDy) = —p(%&g — pDy)dt, and therefore %(% — pDy converges
exponentially to zero. The condition gDy = %50 simply means that the model starts from this steady
state.

One can also check directly that the optimal strategy and its cost given by Theorem 1.4.1 coincide
with those of Theorem 1.2.1 when (1.15) holds. For clear reasons, we call Mixed-Impact Hawkes
Martingale (MIHM) model the MIH model if these conditions are satisfied. Proposition 1.5.1 is very
interesting since it makes connections between the model parameters of the MIH model in a perfect
market without PMS. First, the condition § = p means that the mean-reverting action of liquidity
providers compensates the autocorrelation in the signs of the trades of liquidity takers; we thus reach
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a conclusion similar to Bouchaud et al. [31]. The condition & = (1 — v)3 gives a link between the
Hawkes kernel and the proportion 1 — v of transient price impact. When ¢, = 0, /3 represents the
average number of child orders coming from one market order, and is thus equal to the proportion
of endogenous orders (i.e. triggered by other orders) in the market. What we obtain here is that this
ratio should be equal to 1 — v, which is a a priori different measure of endogeneity, since it gives
the proportion of market impact that does not influence the low-frequency price (see Section 1.2.3).
The positivity of a reflects the fact that the parameter (. tuning opportunistic trading should be
small to avoid market instability. It is interesting to notice that if (1.15) holds, the stationarity
condition g + tc < [ derived in Section 1.2.3 is equivalent to 2¢, < vp, which can be seen as a
reasonable upper bound for ¢.. Last, we see that s — ¢ should be linear. Let us recall that ¢g and
¢ encode the dependence of the self-excitation (resp. the cross-excitation) effect on the volumes of
incoming market orders. Condition (1.15) implies that they should have roughly the same functional
form, except for a linear part which should be stronger for 3. However, we remind here that these
conclusions are obtained in the MIH model and should be confronted to market data. We leave this
empirical investigation for further research.

Of course, in practice, it would be miraculous if the calibration of the MIH model on real financial
data led to parameters satisfying exactly (1.15). One may rather expect these parameters to be
close but not exactly equal to those of the MIHM model, for the following reasons. First, there is no
guarantee that fitting a model to a market with no PMS leads to a model with no PMS. Second, the
MIH model ignores market frictions such as the bid-ask spread and gives some advantages to the
strategic trader such as the possibility to post orders immediately after the other ones (see Stoikov
and Waeber [104] for a study on the latency to execute an order). These facts make the existence of
PMS more likely in the model than in reality. Third, we know that in practice, temporary arbitrage
may exist at high frequencies. Therefore, there is no reason that fitted parameters follow exactly
the MIHM condition (1.15). This justifies the potential practical usefulness of the strategy given by
Theorem 1.4.1 to reduce execution costs when the estimated parameters deviate from the MIHM
model. Let us note that Figure 1.1 illustrates such a case : all the parameters satisfy (1.15) but p
(which should be equal to 8 = 20). The estimation of the MIH model on market data is left for
future research.

The framework of the MIH model also gives some interesting insights for the characterization of the
existence of short-time arbitrages. Let us introduce the following definition.

Definition 1.5.1. We say that a market admits weak Price Manipulation Strategies (wPMS) if the
cost of a liquidation strateqy can be reduced by posting a block trade as an immediate response to a
market order issued by another trader.

Corollary 1.5.1. In the MIH model, the market does not admit wPMS if, and only if,

B=p, a=(1-v)p and py(x) — ge(x) = ax for z € S(p) (1.16)

or i = Dirac(0).

Proof. The proof is quite straightforward from Theorem 1.4.1. The case p = Dirac(0) is trivial
and we consider m; > 0. The jump term of the strategy (1.14) should be equal to zero for any
7 € [0,T]. By taking 7 = T, we get that ¢g5(x) — ¢c(z) = (1 — v)px for z € S(u). Integrating
this indentity with respect to p leads to o = 15 — tc = (1 — v)p. Then, from (1.14), we should have
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(vp—mn) x pu? x w(nu) = 0 for u € [0,T] which implies vp = 7. Since n = B—a = B— (1 —v)p, we get
B = p. The converse implication is obvious. By Remark 1.5.1, the condition ¢Dy = %(50 means that
the model has reached its equilibrium, which is basically the case after some time. Therefore, the
conditions that exclude wPMS and PMS in the MIH model are quite the same. This is an interesting
link between two different point of views. The condition “no PMS” means that there is no free source
of income. The condition “no wPMS” rather brings on market stability, since it excludes trading
volume coming from the response to other trades. Corollary 1.5.1 is a mathematical formulation of
this link in our specific model.

1.5.2 The Poisson model

Poisson processes are often used to model the arrival of the customers in queuing theory. It is
therefore natural to use them to model the flow of market orders, as it has been made for example
by Bayraktar and Ludkovski [21] or Cont and de Larrard [40] in different frameworks.

Here, in the Poisson model, N™ and N~ are two i.i.d. independent compound Poisson processes of
respective constant jump rates HE]’_ and k , with the same jump law p. It is a particular case of the
MIH model when § =0, ¢s = 0 and ¢, = 0, which implies 7 = 0. Thus, the optimal strategy and
value function in this case can be deduced from Theorem 1.4.1 (see also Remark 1.4.1).

First, let us note that the Poisson model cannot satisfy the condition (1.15), except in the case
p = 0, where there is only permanent price impact, which is not relevant in this context. Thus, we
know a priori that PMS are possible. However, we specify in what follows that a Poisson order flow
creates very simple and robust arbitrages. First, we put aside the case mar # K, where the trend
on the price leads to obvious PMS, and consider now the more interesting case /@0+ = Ky, and we
simply denote by kg the common intensity.

A natural choice to get a PMS is of course to consider the optimal strategy given by Theorem 1.4.1
when liquidating z¢o = 0 assets. A remarkable feature of this optimal strategy in the Poisson case is
that it only depends on the process N, and does not depend directly on the law of the jumps and
their intensity. Then, when applying the optimal strategy, mainly two quantities have to be known :
gDy and p. We denote by Co(Dp) the cost of the optimal strategy and obtain from Theorem 1.4.1
in this case :

uffmxcdpwz—;fgnfpg—(1-@2%mm{g—;m<y+f)]. (1.17)
In fact, PMS are very robust in this framework. The following proposition shows that even if ¢Dy
and p are unknown, one can construct a such a strategy. This indicates that in our framework with
a linear price impact and an exponential resilience, compound Poisson processes are not suitable to
model the order flow.

Proposition 1.5.2. Let /{g =Ky = ko > 0 and A € (0,1). The following round-trip strategy
Xé‘ = X%+ = 0 defined by

1—v

A A
Xy - X} =

T X A(NT_NT—)
— €

at each jump of N is a PMS. Its average cost is given by
koma (1 —v)? [1 — exp(—pT)

E[C(XM)] = 2\(1 — \) -0 p

—-T| <0,
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and the best choice is to take A = 1/2.

Proof. From Remark 1.2.7, it is sufficient to focus on the case v = € =0 and ¢ = 1. In this case, we
have . .
C(X)= | DydXp + 5 > (AX})? = DrXp + 5 (X)?,
(0,7 0<7<T

with Dy = Dy + fé exp(—p(t — s))dNs + fot exp(—p(t — 5))dX2.
From [i ) DudXy ==X 3 [Dr-AN; + (AN;)?],
’ 0<7<T
we get E[ iy 7 Du dX3] = —AE[ 35 (AN:)?] = —2XkgmaT. Since X3 = ANt
’ 0<7<T

and Dy = Dy + (1 — fo exp(—p(T — 8))dN; a.s., we have E[(X2)?] = 2A2kgmoT and

T
1-— —pT
E[-DrX}] = M1 — \E [NT/ exp(—p(T — s))st] —9A(1 — A)rgmg = R=PT)
0
This eventually yields
1-— —pT
E[C(X™)] = —2XAkomaT + NromaoT + 2\ (1 — /\)momgM + NkomoT

p

= 2\(1 — \)koma (1_‘3)“’(_’@ - T) .

P

1.6 Appendix : Explicit formulas for the optimal strategy

We use the function

texp(As) A 2\
L(r,\t) = ————ds = —2) El—-2+rt) | -&| — 1.1
o) = v [ SR s~ aocavn [e(2eem)-(B)] aa
where E(y f oo™ qu is the exponential integral of y, in terms of Cauchy principal value if

y > 0. Slnce we only cons1der differences &(y) — £(y') with either y,3' > 0 or y,3’ < 0, we will only
consider proper integrals. The function £ is standard and is implemented in many packages such as
the Boost C++ library. Thus, L can be evaluated as a closed formula.

We refer to (1.12) and (1.13) for the definitions of ¢ and w.

Auxiliary functions : For 0 < s <t < T,

¢n (t) =

< [1+ exp(—n(T = 1)) + vp(T — H)(n(T — 1))

+ i [2+,0( — 1) x {1+C( ( —t))+vp(T —1t) W(W(T—t))}] )

202+ p(T — 1))
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Bo(s,t) = {f + Y (1 _ 5)] . xp(—fs) — exp(—pt)

2\2 op B
B\ _ exp(=p8T)
+(1-v) <1—p>>< ; X [L(p, 8, T —s) = L(p, 5, T — 1))
+ G UT = s)exp(=Bs) — (T — 1) exp(~p1)]
and for n # 0,
Byfont) = 5 (542  lexp(-65) = exp( )
exp(=8T) [, vlo=28) B( _vp o _
+ % [1+ ; +77<1 n)] x [L(p, B, T —s) — L(p, B, T — t)]

+exp( pT) [1_14)_5( vp
noon

1—— )| x[L(p,a, T —s) — L(p,c, T — t)].
. 2
We now give the explicit formulas for the whole optimal strategy. They are valid for all n € R.

Trend strategy :

S 94 pT x {1+ ((T) + vpT w(nT)}] — [1 + pT)gDs

(1—e)AXgrend

2+ pT ’
dom 24 pT x {1+C(T) + vpT w(nT)}
1—e)Axpend — 2071 —2 T) — 2exp(—AT
(1-e)AX7 3 >+ T p ©,(0,T) — 2exp(—AT)
qDo
T (1.19)
and, on (0,7,
dom 24 pT x {1+¢(nT) 4+ vpT w(nT)}

1— Xtrend — 0771 — 920 P ) _
(1—-e)dX; 2% X 2+ T p ©,(0,t) — 2¢,(t) exp(—pFt)| pdt

qDo

+ 2+ Tpdt
Dynamic strategy :
(1—eAXP™ = 0,
xr—1
N (1-v) AN,
(1—6)AX%Y = —m @XT ‘IJn(TXT,T) + Z;@i (I)n(Ti,Ti-i—l) + OZ m
= <r<T
CESS 24+ p(T —7) x {1+ COT = 7)) +vp(T —7) w((T = 7))} 4,
20 Sir 2+ p(T—7) ’

- % O, exp(—pT), (1.20)
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and, on (0,7,
— V)AN,
(1—e)dXP" = —my ¢y (t) Oy, exp(—ft) dt + { Z 2(14_[)2/1),_7_) pdt
0<r<t
2+ p(T —7) x {1+ (T = 7)) +vp(T —7) wn(T — 7))} mi
<r<t
xt—1
— @Xt (I)ﬂ (wat) + Z@Z (I)n(TiaTi+1)‘| pma dt
i=1
1+p(T—1) [m my o(T — )2 x w(n(T —1t))

1.7 Appendix : Proof for the optimal control problem (results of
Theorem 1.4.1 and Appendix 1.6)

1.7.1 Notations and methodology

The jump intensity of the process (IVy) is characterized by the cadlag Markovian process (d¢, X¢)
defined by (2.43), taking values in RxR™. The state variable of the problem is then (X;, Dy, S, 0, X¢),
and the control is X; — zo, i.e. the variation of the position of the strategic trader, (Xt)te[O,T} being
an admissible strategy as described in Definition 1.2.1. The control program is thus to minimize
E [C(0, X)] over all admissible strategies, where the cost C(t, X) of the strategy X between t and T'
is given by

1 1
C(t, X :/ P, dX, + — AX,)? — PrXr + — XA
(t, X) - 5 > (AX,) rXr + 5o Xr

qt§T<T

The final value at time ¢ = T is the cost of a market order of signed volume AXpr = —X7r (so
that X7+ = Xp + AXp = 0). At time ¢, the price P; depends on D; and S; which in turn depend
on (Xu)uepo,- Let us define A; the set of admissible strategies on [t,T], with ¢ € [0, T]. The value

function of the problem is

Y) = inf E X
C(t,z,d, z,0,%) uf [C(t, X)]

with Xy = x, Dy =d, Sy = 2, & = § and Xy = X. In order to determine analytically the value
function and the optimal control of the problem, we use the probabilistic formulation of the veri-
fication theorem. We determine a priori a continuously differentiable function C(¢,x,d, z,d, %) and
an admissible strategy X* and then we verify that

t
1
,(X) = /0 PudX + 5 30 (AX)? + C(, X0, Dy, 51,8 ) (1.21)
o<r<t

is a submartingale for any admissible strategy X, and that II;(X™) is a martingale. We proceed in
three steps :
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1. We define a suitable function C, and derive a set of ODEs on its coefficients which is a necessary
condition for C to be the value function of the problem.

2. We solve the set of ODEs.

3. Using the results of the previous steps, we derive the strategy X* such that II;(X™*) is a
martingale.

The verification argument then yields that C(¢,z,d, z,d,X) is the value function and that X* is
optimal. Without loss of generality, we can assume that ¢ = 1 by using Remark 1.2.4.

1.7.2 Necessary conditions on the value function

We search a cost function C as a generic quadratic form of the variables z,d, z, 6,3 with time-
dependent coefficient (the variable z symbolizes the current value of the fundamental price S). As
we see further, we need C to verify 0,C + (1 — €)04C + € 0,C +d+ z = 0 : it is thus necessary that C
is a quadratic form of (d — (1 — €)x), (2 —ex), & and X, plus a term —(d + 2)2/2. We define

Clt,2,d,2,6,%) = a(T —t)d—(1—ea)? + %(2—633)2 +(d—(1—-e1)(z—ex) — <d+22)

+0(T—t)6(d—(1—e)z) + c(T—1) 6% + e(T—1)% + g(T—t), (1.22)

with a,b,c,e,g : RT — R continuously differentiable functions. We choose the limit condition
C(T,2,d,2,6,5) = —(d+z)z+2?/2=3(d+ 2 —x)? — (d+ 2)?/2, which is the cost of a trade of
signed volume —z. We thus have

Let us note that other terms should be added in equation (2.44) for C to be a generic quadratic
form. The five terms

M(T—=t)(d—1—¢ez) + ho(T—1t)2(d—(1—¢€)x) + hs(T —t) 6%
+ (T —1t) 6 + hs(T —1t)(z — ex)
have to be equal to zero since C(t,x,d, z,0,%) = C(t, —x, —d, —z, —d, ) by using Remark 1.2.4 and

the fact that the buy and sell orders play a symmetric role. For the term in %2, we checked in prior
calculations that it is necessarily associated to a zero coefficient. For Az € R, we have

(Az)?

Clt,x + Azx,d+ (1 — €)Az,z + eAx,,%) — C(t,x,d,2,0,¥) = —(d+z) x Az — . (1.23)

In what follows, we drop the dependence of C(t, Xy, Dy, S¢, 0, %) on (t, Xy, Dy, S, 0, X¢) to obtain
less cumbersome expressions. The process C(t, Xy, Dy, Sy, 0¢, 2¢) is ladlag, and with the notations of
Remark 1.2.5, we have by using (1.23)
dC = 9,Cdt + 9.CdXS + adc(prth(ke)dxg) + 9.C edX?

— B8, 05C dt — B(S — 2kn0) IxC dt

+let, Xe, D + (1 — )AN,, Si- + VAN, 6,- + AL, S, + AT,) — C(t,Xt,th,Stf,étf,th)}

2
— (Dt-l-St) AX, — @
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where we refer to (1.11) for the definitions of I and I. The definition of II(X) given by (1.21) yields
dITy(X) = (D¢ + Sy)dX§ + (Dy + S) AX; + (AX4)?/2 + dC. We define the continuous finite variation
process (Aix)te(o,T) such that Aé‘;r = C(0, Xg+, Do+, So+, 00, X0) and for t € (0,7)

dAYX = (D;+S;) dX§ + Z(t, Xy, Dy, Sy, 6, X4 )dt
FOC AL + 8,0 AXE + 04C (— pDydt + (1 — e)dxg) + 0.C edX¢
— B8, 05C At — B (S — 2ks0) OxC dt,
where, for V ~ u, Z(t,2z,d,2,6,%) :=

X+46
2
DI
2
Then, TI(X) — A¥ is a martingale (let us note that almost surely, d¢ -a.e. on (0,7),
Z(t, X¢, Dy—, Sp—, 04—, 34— ) = Z(t, Xy, Dy, St, 6¢, 2¢)). This yields that II(X) is a submartingale (resp.
a martingale) iff AX is increasing (resp. constant). From (1.23), we obtain
0.,C(t,x,d, 2,0,%) + (1 —€)04C(t,x,d, 2,6,%) + € 0,C(t,x,d,2,6,%X) + d + z = 0, and then

xE[C(t,x,d+ (1 — )V, 24+ vV, 0 + (o5 — @c)(V/m1), S + (s + 9c) (V/m1)) — C(t, x,d, 2,6, 5)]

+ x E[C(t,x,d — (1 — )V, 2 = vV, 0 — (o5 — @c)(V/m1), S + (s + c)(V/m1)) — C(t, x,d, 2,6,5)].

dAX = {atc — p Dy 84C + Z(t, Xu, D1, 81,00, 50) — B 6, 05C — B (St — 26in0) OZC}dt. (1.24)
Given the quadratic nature of the problem, we search a process AX of the form
2
dAX = %dt $ [HT =)Dy — (1 — X)) — Dy + k(T —1) 54 , (1.25)
—€

with 7,k : RT™ — R continuously differentiable functions, in order to obtain an non-decreasing process
AX that can be constant for a specific strategy X™*. Let us note Yt Di—(1—e)Xy, Z¢:= S —eXy,
y:=d—(1—e€x, &:=2—er. Slnced—i—z—y—i-f—i—ac—f—k —<Y we have

—€

oC(t,x,d,2,0,%) = —ay? —bdy — ¢8> — é% — g,
—pd C(t,x,d, 2,0,8) = — <2pa—|—1p6> dy + 1# 4 — pbad,
— € — €
—B8 95C(t,x,d, 2,6,8) = —pBbdy — 2Pc 6,
—B(X — 2ke0) 0uC(t,x,d,2,6,%X) = —pe X + 20krse,

Let V ~ pu. One has
El(os = o) (V/mi)] = ts —te =, E[(@s + pc)(V/mi)] = s+ te = a + 2tc.
Thus,
E[C(t,z,d+ (1 =)V, 2+ 1V, 0 + (ps — o) (V/ma), £ + (s + o) (V/m)) — C(t, 2,d, 2,6,%)]
2

v
= a[(1-v)*my+2(1—v)my y] + 5 M2 + vmy &

1 2 2
+v(l—v)my + vmyy + (1 —v)mié —2<m2+2m1§+1rflﬁd_ ;Ti y)

+b0[1—=v)m d + ay + a(l—v)] + clag + 2 0] + (a+ 2)e,
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with
@ =E[V x (s — @) (V/mi1)] , a2 =E[(ps — c)*(V/m1)]. (1.26)

These quantities & and «y are finite by assumption. This gives

mi

T od

+[(1 = v)mib + 2ac] 62

+ <m2 X [(1 —v)2a+v(l-v/2) - ﬂ +a(l —v)b+ age + (a+ 2LC)€> 3,

Z(t,x,d,z,0,%) = <m1>< {2(1—u)a—|—1/—|—] + ozb> oy — .

where we consider C as a function of the variables ¢,z,d, z,d, ¥ as in equation (2.45), and substitute
d—(1—¢€)x by y and z—ex by £ in the results. We then make the change of variables (z,d, z,9, %) —
(y,d,&,0,%), and we identify each term of equations (2.45) and (2.46) :

(Eq. dy) : — (

(Bq. y*) = -4 = 1%5°

(Eq. dy) yields j = (1 —€)a+ 5. We input this relation in (Eq. y?) and we have j=(1—€)a=—pj?

thus j(u) = 2+1pu since j(0) = (1 — €)a(0) + £ = % This yields a(u) = i (2+1pu _ §> with (Eq.
dy).

(Eq. dy) : —b - Bb + ab + mq X [2(1_,,)a+y+1%6] _ f—_”ejk:.

(Eq. 6d) : —pb — ML = —%k,

T—e
which yields k(u) = 150
a)b— - 2p (1 Eb+m1)—|—m |:2(1—U)a+1/—|—i:|,andsincej/(l—e) = a+¢€/[2(1 —¢)], we have

6

(u) + G Plugging equation (1.28) in (Eq. dy), we have b= —(8—

] m 1+vpu

b(u) = |:_( 2+pu:| 1 X 2—:/);;'

(Eq. 6%) : —¢ — 2Bc + 20 + (1—v)mib = £ k2

(Eq. 8) : —¢é — Be + (a+2u)e + mox [(1—v)?a+v(1—v/2)— 3] + @a(1—v)b + ase = 0.

We have 2(1—€)x [(1 — v)2a + v(1 — v/2) — 1] = 2(1-v)?/(2+pu)—(1—v)2e+v(2—v)(1—€)—(1—¢),
thus

éu) = —(B—a—2e(u) + a1 —)b(u) + age(u) + L= [ ]

(Eq. constant) : — ¢ + 28kee = 0.

We obtain two conditions on the coefficients of the process A%

. 1
Ju) = 5T (1.27)
k(u) = 1;6 bu) + gipl, (1.28)
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and the following set of necessary conditions on the coefficients of C

a(u) = 1; (iju - ;) (1.29)
bu) = [—(5 ~a)- +pu} bu) + 7 121”1)2“, (1.30)
éw) = —28-a)c(w) + (1-v)mbl) - - ~ k(u)’, (1.31)
) = —(B—a—2u)e(u) + a1 — v)b(u) + age(u) + 1”_)26 m2 {2 jpu _ ;] (1.32)
g) = 2Bre e(u), (1.33)

b0) = <(0) = e(0) = g(0) = o.

The resolution of this set of equations determines entirely the function C(t,z,d, 2,9, %) defined in
(2.44). This is the purpose of the next step of this proof. Let us note that at this stage, we already
know that the system given by Equations (1.27) to (1.33) admits a unique solution, and that the
function C which solves the system is the value function of the problem by using the verification
argument.

1.7.3 Resolution of the system of ODEs

First of all, we use Equation (1.29) to simplify the function C. The constant term (w.r.t. the time
2

variable t) in equation (2.44) is 3(z —ex)? + (d— (1 —€)z)(z —ex) — % = —zx— d—; —edx +

[$+ 5(1—¢€)] 22, thus the sum of a(T — t)(d — (1 — €)z)? and this constant term can be rewritten

as

e e]mg_ 11 o PT=02 o P g3y

—(z+d)z + [HP(T_@J% —€e 24 p(T 1) 2+ p(T -1

We note = 8 — . To solve equation (2.48), we search a solution of the form b(u) = b(u) x

and (1.13) of the functions ¢ and w, it is easy to see that for all n € R,

exp(—nu)/(2+pu). This yields b(u) = T % (14-vpu) xexp(nu). Using the respective definitions (1.12)

exp(—1u) /0 "1+ vps) exp(ns) ds = uC(u) + vpulew(nu).

Since b(0) = 2b(0) = 0, we obtain

miu  ((nu) + vpu w(nu) 1 pu my
b = = — 1.
() T—e 2+ pu 1—6X2+pux p G ). (1:35)
where
Gn(u) == C(nu) + vpu w(nu).
Equation (1.28) then gives
1
b(u) = mi 2+ pu x {1+ ((nu) + vpu w(nu)}' (1.36)

2p 2+ pu
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The remaining functions ¢, e and g do not play any role to determine the optimal strategy, and their
expressions are harder to obtain. Let us first consider the case 1 # 0. After some tedious calculations,
we can show that the function ¢ that solves (1.31) with ¢(0) = 0 is given by :

1 2 m} i ?
—x ﬁ/pu x % Gy (u)? — 8(1”%)[) x (1 - ”i) scu¢ (nu) x [1 + exp(—nu) — 2¢(1u))] .
(1.37)

For the functions e and g, we recall here that they admit explicit but very cumbersome formulas
that can be obtained by using a formal calculus software. In the case n = 0, the resolution of the
ODEs is easier, and we get

odw= - (11_—1)2 XTZEX [;_2—1-1pu] B (Vlm—%e) Kl Z)'m“’sp B +48'°“}’

efw) = - S (mz - mul2ar = “2m1)> x [L}éu) - expf““) L(p,—mc,u)} (1.38)
+ m x (a 0‘2;”1> x p?T1(u) — m x {szl(u)Jr %p%(u) %,;413( )]

o) = 28000 x L= (g = 11200 200 ) B L o) Lo, —2000) — n (14 5°)]}
+ Dt (- 2200 ) oy () = 0 L7+ L) + Tl

(1.39)

where, for p € N and u > 0, Z,(u) := exp(2tcu) [y' s exp(—2ics)ds, and @&, ap are defined in (1.26).

1.7.4 Determination of the optimal strategy

The final step of the proof is to determine the strategy X™* such that II(X™*) is a martingale, or
equivalently such that AX" is constant. Equations (2.46) and (1.27) yield

2

Di—(1-9X 5 . k(T —t) 6

2+ p(T —1)

AX = Py
dA; 1_6d><[

2

[Qf:/p((lT_E)t)]zdtx [(1—6)Xt + [14+p(T—=t)] Dy — 2+ p(T —1t)] k(T —1t) &

Thus, AX” is constant on (0,7) if, and only if
a.s., dt-a.e.on (0,7), (1—e)X;=—-[14+p(T—1t)] D; + 2+ p(T —1t)] k(T —1t) 6, (1.40)

where D = D* when the strategy X* is used by the strategic trader. Then, we characterize the
strategy X* on [0, 7] with the three following steps :

— The initial jump AX{ of the strategy is such that (X*, D*) satisfies equation (2.51) at time ¢ = 0.
— The strategy X* on (0,7 is obtained by differentiating equation (2.51).

— The final jump AX7 = —X7 closes the position of the strategic trader at time 7.

We need the following lemma in the sequel.
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Lemma 1.7.1. Let ¢ : [0,7] — R be a measurable function, and for 0 < s <t < T, ®(s,t) :=
fst ¢(u) exp(—pu) du. We then have for all t € [0,T]

t xt—1
/ ¢(u) 6y du = 8 (0,t) + Oy, (1, t) + Y O; B(7i,7i11)
0 i=1

Proof. The proof is straightforward since for u € [x¢,t], 0, = 6o exp(—pu) + exp(—pu) ©,, and
fori e {0,--- ,x¢ — 1} and w € [13, Tiy1), Oy = do exp(—pu) + exp(—Lu) O;.

To determine the optimal strategy, only the function k given by (2.50) comes into play, thus the
cases 7 = 0 and 7 # 0 can be treated simultaneously. We also note that

L ()] = wCl) and ()] = exp(—u)

hold for for all v > 0 and n € R. We use Equations (2.50) and (2.51) to obtain the following
characterization of the strategy X* : a.s., dt-a.e. on (0,7),

(1=e) X = — [1+p(T—1)] D} + 7)><[2+P( ) x {1+ C(T = 1)) +vp(T —t) wn(T —1))}] b

(1.41)
The initial jump of X* at ¢ = 0 is such that (1.41) is verified for t = 0% :

(1=e)(zo+AXg) = —[1+pT] (Do + (1 - E)AXS)JF% X [24pT x {14+ CT) +vpT w(nT)}] o,

(1.42)
which gives the initial trade at time 0 as given in Appendix 1.6.
We differentiate Equation (1.41) to get
(1-9dX; = pDjdt — [L+p(T )] dD; — "L x [1+exp(—(T — 1)) +wp(T — (T ~ 1)) B, e

G X 24T = 1) {1+ COn(T = 0) 4 vp(T 1) (T~ 1)}] di

This yields, using dé; = —f d; dt + dI,

L p(T =) x (T — 1)) = L+ vp(T —t) w(n(T — 1))} .,
2p 24 p(T —t) b

where for t € [0, 7]

202 1 p(T — 1)] x by(t) = 1+ exp(—n(T — 1)) + vp(T — )C(n(T — 1))
+ﬁp+m ) % {14 Cn(T — 1)) + vp(T — t) wn(T — 1)))]

and 6y = dg exp(—pt) + >, exp(—p(t— 1)) AL-. For t € (0,T),
0<r<t
—pDidt + (1—e)dX] + (1—v)dN,
= — ma d)n(t) (St dt
(L-v)aNy |y 24 p(T 1) x (14 (T — 1) 4 vpl(T — ) wln(T ~ 1)},
24p(T—1t) = 2 24 p(T —1) b

dD;
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and we have
Dy — (1 —€)xg m 2+ pT x{1+¢(T) +vpT w(nT)} 5
2o T \2 T ©%0 o 0

D} = D 1—-e)AXF =
0+ 0+ (1 —€AXg 2+ pT 2 2+ pT
(1-v)
dD; = - mq st] 5 du +
/(o,t] “ (0,4] O;Q? +p(T )

S 2T ) ) (U G = )+ T =) Wl =)

2p 0<r<t 2+4p(T—7)

We define @, ( f ¢n(u) exp(—pPu) du for 0 <s <t <T.Lemma 1.7.1 yields for t € [0, 7]
t xt—1
/ ¢p(u) 0u du = 0o ©,(0,1) + Oy, Py (7y,,t) + Zgi Py (7i, Tit1)-
0 i=1

We obtain the expression of D} for t € (0,T")

. Dy — (1—¢€)xg domi 24 pT x {14+ ¢(nT) + vpT w(nT)}
Dy = + X 2+ T

24 pT 2p
(1-v) AN,
O,, ¢ t O; @, (7, T —
Xt T](TXtv ) + Zzl ( 77(7_177_2+1) + 0;t2+p(T_7_)

my 2+ p(T —7) x{1+{((T =7)) +vp(T —7) wn(T — 7))}
> 2+ p(T —7) Al

- 2P (I)fi(ov t)

xt—1

0<r<t

From (1.43), the strategy X* on (0,7) is as given in Appendix 1.6. By using again (1.41), we also
get the final trade at time 7.

We determine the function ®,, in the case n # 0 (similar and simpler calculations yield the result
for n = 0). We write

exp(—n(T — 1)) x exp(—Bt) = exp(~BT) x exp(a(T — 1)),
exp(—AT)

(T =T = 1)) x exp(=pt) = —— = x[exp(B(T = #)) — exp(a(T = 1))]

Thus, ¢,(t) x exp(B(T —t)) is equal to

B(l v L v(p-28) B vp\ | exp(B(T —t))
(5 5) e —on+ [+ 202 2 (- )| SR
1 v B vp\ | exp(a(T —1))
s m () Sy
which yields for 0 < s <t < T,
Bfot) = 5 (542  lexp(~65) ~ exp(—0)
# O [ M2 B (1) | (1467~ 9) - Lo 5T 1)
n eXp(QpBT) [1 - % - *2 <1 - ”i)] x [L(p,a,T — s) — L(p,c, T — t))].

with n =06 —a #0.
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1.8 Appendix : Proof of Theorem 1.2.1

Let X be an admissible strategy. We introduce the following processes : S{¥ = S + g(Nt — Np),
StX (Xt - XO):

_ €
q

1—¢

1—
dDY = —pDNdt + TudNt and dD¥ = —pDXdt + — “dX,,
with D) = Dy and D§ = 0. Thus, we have S = S + 5% D = DN + DX and thus P = PN + PX,
where PV = SN + DV and PX = SX 4+ DX. From (1.4), we have

C(X) :/ PN dXx, — PN X1 + COV(X),
[0,T)

where ) )
COV(X) = PXdX, + o > (AX,)? — PFXr + % X2

(0,7) Yoot
is a deterministic function of X that corresponds to the cost when N = 0, which is the Obizhaeva
and Wang model. We now make an integration by parts as in Remark 1.2.6 and get that

/ PN dX, - PN X7 = — X, dPY.
[0,T) [0,T)

When PV is a martingale, this term has a null expectation. Therefore, the optimal execution strategy
is the same as in the Obizhaeva and Wang model, see Gatheral, Schied and Slynko [64]|, Example
2.12, and there is no PMS. Otherwise, we can find 0 < s < t < T such that E[P}|F;] and P are
not almost surely equal. In this case, we consider the strategy X, = E[PN — P;V]fs]lue(syt] that is
a round-trip, i.e. Xg = X714 = 0. We then get

E |- Xy dP)Y | = ~E[(F - PME[RY - PY|F]] = ~E[E[P" — PY|F?] <.

[0,T)

Since COWV(cX) = 2COW(X), we can find ¢ small enough such that
E[C(cX)] = —cE[E[PN — PN|Fq)?] + 2COW(X) < 0, and therefore cX is a PMS.
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Extension et calibration d’un modéle
d’exécution optimale dynamique

Ce chapitre est un article écrit avec Aurélien Alfonsi.

Abstract. We provide some theoretical extensions and a calibration protocol for our former dynamic
optimal execution model. The Hawkes parameters and the propagator are estimated independently
on financial data from stocks of the CAC40. Interestingly, the propagator exhibits a smoothly de-
caying form with one or two dominant time scales, but only so after a few seconds that the market
needs to adjust after a large trade. Motivated by our estimation results, we derive the optimal exe-
cution strategy for a multi-exponential Hawkes kernel and backtest it on the data for round trips.
We find that the strategy is profitable on average when trading at the midprice, which is in accor-
dance with violated martingale conditions. However, in most cases, these profits vanish when we
take bid-ask costs into account.

2.1 Introduction

In the last fifteen years, the literature in quantitative finance has been enriched by many studies on
optimal execution problems. The principle is as follows : one considers a particular trader who wants
to liquidate a quantity z( of assets on the time interval [0,T]. Thus, if X; is the position at time ¢,
one has Xo = zp and X7+ =0 : 29 > 0 (resp. 9 < 0) corresponds to to a sell (resp. buy) program.
The trader uses an execution strategy of minimal expected cost, which should take into account the
fact that large trades have an impact on the market price. The works of Bertsimas and Lo [24] and
Almgren and Chriss [9] are pioneers in this area. They have been followed by several authors who
suggested extensions of their framework, such as Obizhaeva and Wang [93] who considered a model
that includes transient price impact. This feature allows to reproduce the mean-reversion that is
observed in intra-day prices. On average, when a large trade impacts the market price, a fraction of
this impact vanishes over time.

In Alfonsi and Blanc [3], we introduce a model where other liquidity takers trade the same asset
as the large trader, and share the same price impact profile as her. In this model, the volumes of

62
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incoming trades is described by a cadlag (right continuous left limits) pure jump process Ny, and
the market price P; at time ¢ is given by

P =Y AN, x {’; 41 ; Zemrlt=7)| | (2.1)

where the times 7 are the jump times of the process N and AN, = N, — N,_ is the signed volume
of the order at time 7. Thus, ¢ > 0 is a measure of market liquidity, v € [0, 1] the proportion of
permanent impact, and p > 0 the resilience speed of the transient part of the price. In [3], the
order flow is modeled by a two-dimensional Hawkes process, which allows self and mutual excitation
between buy and sell orders. An interesting feature of this model is that it accounts for herding
behavior and meta-orders splitting, see Bacry and Muzy [13]. Namely, let N* and N~ be two
nondecreasing cadlag pure jump processes that describe respectively the volumes of incoming buy
and sell orders. We have N = N*— N~ and we proposed in [3] the following model for the respective
jump intensities of N*

AN, AN, Bt
Ky = Koo + Z [H{ANT>0}SOS (m1> + L{an,<0}®c <— e )] e Bt=) (2.2)
Tt
_ AN, AN, _B(t—r
K = Koo T Z [H{ANT<0}SOS (ml) + H{ANT>0}QOC < "y )] € ALt )a (2-3)
T<t

where koo > 0 is the common baseline intensity of N* and N~, 3 is the resilience speed of the
intensity and ¢s, ¢ : RT — R* are measurable positive functions that encode intensity feedback.
We assume that the sizes of orders are independent variables distributed according to a square
integrable probability law p on Ry, and m; = fooo zp(dx) is the average amplitude of the jumps of
N. This price model is called MIH, as Mixed-Impact Hawkes. In this model, we provide a closed-form
solution for the optimal liquidation strategy, and determine a set of conditions on v, p, 3, s, @ that
exclude Price Manipulation Strategies (as defined in [78]) from the model. These are referred to as
the MIHM (Mixed Impact Hawkes Martingale) conditions.

One of the benefits of the framework introduced in [3] is that it is possible to calibrate the model on
financial data, without effectively trading (which can be costly). One only has to observe the order
flow and price process of the market, and to estimate the price impact of trades issued by other
participants, which is expected to be similar to the impact that the liquidating trader would have.
The aim of the present paper is to conduct such a calibration on real stock data. This enables us to
evaluate the realism of the theoretical price model of 3], as well as the performance of the optimal
strategy in a practical context. Since our main goal is to confront the model to market data, we test
the validity of our calibration protocol on simulations and we leave its mathematical justification
for further research.

Many studies have explored the estimation of Hawkes parameters in various contexts (see for instance
Bacry et al. [16], Bouchaud and Hardiman [68], Reynaud-Bouret [98], Lemonnier and Vayatis [30]).
The present paper focuses on marked Hawkes processes used to model price jumps triggered by
transactions in financial markets, where the marks of the jumps are either the traded volumes or the
price jumps. As opposed to most Hawkes models in finance, price moves which do not correspond to
trades are treated separately through the propagator function. Propagator price models have been
studied extensively in theoretical frameworks such as Gatheral [63], Alfonsi et al. [6] and Gatheral
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et al. [64], Bouchaud et al. [31] and Farmer et al. [56]. However, to the best of our knowledge, very
few empirical studies have described the form of the propagator curve, or only asymptotically. Here,
we suggest an estimation protocol for the propagator and discuss the quality of fit of exponential
and multi-exponential decays. We also describe the behavior of the curve on the first seconds, where
it is found to have an increasing part.

The paper is structured as follows. First, we present the model in Section 2.2. It extends the one
considered in [3] to general decay kernels, while preserving most of its properties. Then, in Section 2.3
we describe our dataset and our calibration method. In particular, we explain how we slightly
modify the original model to be in accordance with practical considerations. Section 2.4 validates
our calibration procedure with simulations and discusses the calibration results on real stock data.
Eventually, we test in Section 2.5 the relevance of the optimal execution strategy described in
Section 2.2 and discuss whether it may constitute Price Manipulation Strategies, i.e. round trips
that are profitable in average.

2.2 Model settings

In view of its estimation to market data, we make the model of [3] more general by adding further
parameters. First, even if it is appealing to see the price as the pure result of past trades, equa-
tion (2.1) is probably too restrictive and one should add some noise. Besides, we know that adding a
martingale to the price process does not change the main results on the model, see Remark 2.6 in [3].
Second, we chose the resilience on the price and on the intensity to be exponential, and one may
like to consider a priori more general decay functions. Thus, we consider the following propagator
model for the price :

p=2 > AN, G(t — 1) + oWy (2.4)

q T<t

The process W is a Brownian motion independent of NV that takes into account the non-deterministic
noise in limit orders and cancellations. The parameter ¢ > 0 tunes the volatility of this noise. The
function G : Ry — R is the propagator function of the market, that encodes the average evolution
of the price between two market orders, which takes form through limit orders and cancellations.
As before, ¢ > 0 describes the market liquidity and allows to normalize G such that G(0) = 1. The
propagator model is the same as the one considered by Alfonsi et al [6] and Gatheral et al. [64]
and generalizes (2.1). Similar models have been considered for instance by Bouchaud et al. [31] and
Gatheral [63]. In the same way, we consider a general decay function K : Ry — R for the intensities
of N* and N~. Namely, we assume that the jump intensities of N* and N~ are respectively given
by

AN, AN,
/‘G?— = Koo + Z [H{ANT>0}(PS (Wll) + H{ANT<O}SOC <_ m )] K(t—r1), (2.5)
Tt
B AN, AN,
Ky = Koo + Z |:]1{ANT<0}(PS <_ml> + Lian,>0}¢c ( p— >] K(t—r).
T<t

with K(0) = 1. We also introduce the average self-excitation s and the average cross-excitation .

lg = /OO ws(v/my)p(dv) and ¢ = /OO we(v/mq)p(dv).
0 0



Chapitre 2 65

Therefore, the model presented in [3] corresponds to the exponential decay functions G(t) = e™**
and K(t) = e P! By estimating more general functions G(t) and K (t) in the sequel, we are able to
assess the relevance of the exponential decay assumption.

2.2.1 Markovian specification of the model

Considering general decay kernels is very natural from a modeling point of view. Unfortunately,
it generally leads to drop the Markov property of the price process, which is important in the
context of optimal execution. Still, for completely monotone decay kernels, it is possible to get back
Markovian dynamics for the price. This has already been studied in Alfonsi and Schied [!] for the
price propagator model. Considering completely monotone kernels amounts to assume the existence
of probability measures A(dp) and @(dp) on R* such that

Glt) = v+ (1—v) /R et A(dp), K(t) = /R ePhis(dp). (2.6)

Here, for the sake of simplicity, we consider probability measures with finite support. We can then
assume without loss of generality ! that

Gu)=v+ Z Aiexp(—piu), K(u) = Zwi exp(—p;u), (2.7)
i=1 =1

with 0 < p1 < -+ < pp, ¥, Aj,w; > 0 such that v+ > 2 Ay =1and > P ,w; =1 Forie {1,...,p},
we introduce the following processes

drf D = —pi (57 — koo /p) dt + wilps AN} /m) + e (AN} ), (2.9)
Ay = —pi (57 = oo /p) At + wilipe (ANGF fma) + s (ANT fma)]. (2.10)

We also define the process dS; = % dN; that describes the permanent impact component of the
price. Then, it is easy to check from (2.7), (2.4) and (2.5) that

P p ,
Po=5+Y Di+oW, wf =3 wt®, (2.11)
i=1 =1

and the process (P, S, D, /@i(i)) satisfies the Markov property.

Remark 2.2.1. In the general setting (2.4) and (2.5), we implicitly assume that the stationarity
conditions (ts+tc) fooo K(s)ds < 1, G integrable are satisfied, so that the sums are well-defined. This

is no longer required in the Markovian case since the law of (Pi, Sy, Di, mti(i);t > 0) is determined

by the initial condition (Py, So, D}, moi(i)). In the particular case DY = 0 for all i, and only in this
case, we have P, = Py + 520<r<t AN,G(t — 7) + oWy. Thus, if |Di|[G(t) — G(0)] < Py for all
i€ {l,---,p} and all t > to, then the approzimation P, ~ Py + %ZO<T<t AN,G(t — 1) + oWy is
reasonable for t > tg.

1. Note that G and K may still include different decay speeds : one only has to include all the speeds in the p;’s
and to set some weights \;, w; to zero if necessary.
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Besides the Markov property, the particular form (2.7) enables us to calculate explicitly the auto-
covariance function of the number of jumps as explained by Hawkes in [72], Section 3. This auto-
covariance structure is of empirical interest, and serves as a starting point for our calibration proce-
dure, see Section 2.3.4. The total intensity ¥y = x;” + x; has the dynamics

t
Etzzlioo—}—b/ K(t—s) dJs,

where ¢ = g + (¢ is the average jump size of X, and

dJy = [(ps + ) (AN, /m1) + (g5 + gpc)(de/ml)]/L has jumps normalized to unity. We assume
that the stationarity condition ¢ fo s)ds < 1 holds, see Theorem 1 in [32], and that the intensity
process (ﬁj ,k; ) in its stationary state We consider the symmetric auto-covariance function % of
the infinitesimal increments of J. It is defined for 7 > 0 by

C(1) = Jim, ﬁE[(JHh—Jt)(Jt_T+h—Jt_T)]—4%2 = lim, hE[Et (Jorgn — Ji—r)] — 472, (2.12)

where E = koo /(1 —¢/3) is the common stationary mean of k* and k™. As derived in [72], one gets
the self-consistent equation on ¢ : for 7 > 0,

@(r) = WK (r) +1 /_ " K(r - u)%(u)du. (2.13)

Proposition 2. 2 1 Let us assume that K satisfies (2.7) with wy,...,w, > 0 and the stationarity

condition 1> F_, %t < 1. Then, the autocovariance function is given by

=1 p
P
T) = Zaj exp(—bj|r|). T € R". (2.14)
j=1
The coefficients a1,--- ,a, and by,--- ,b, are positive and determined as follows : by < --- < by, are
the distinct roots of the polynomial functions P(X) = TT0_1(pi — X) — ¢ >0 w; Hk#l(pk X) and
(arb1, -+ ,apby) " =& B~ (1,---,1)", where B is the Cauchy matriz B; j = W.

i
Proof. Equation (2.13) then yields for 7 > 0

P

% - — a;b;
;ajexp(—bjT)ZQL;wi [m—; (pi+bj;(;)i_bj)] exp(—piT) + LZa] [Z >

] exp(—b;7).

J

=1

Therefore, (2.13) holds if we have

vi Py 1w Soaby
Jy b Z —b =1, 1, p2—b2_,£'

j=1"1 J

The first equation gives precisely P(b;) = 0. Since P(0) > 0 from the stationarity condition and
P(pi) = —wwi [ [ (pk — p1) has the same sign as (—1)!, we have by the intermediate value theorem
that 0 < by < p1 < by < p2 <--- < pp—1 < by < pp. These coeflicients are distincts and therefore the
Cauchy matrix B is invertible. Let v = B~ (1,--- ,1) T : v; is the i'h row sum of B~!. By Theorem 2
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in [100], v; = —A(b?)/B'(b?), where A(z) = [[;(z — p?), B(z) = [[;(x — b?). This gives in particular
v; > 0 and thus a; > 0. Last, it is easy to check (2.14) is the unique function satisfying (2.13). In
the mono-exponential case p = 1, Proposition 2.2.1 gives t = p — b, ab = (p + b)(p — b)R, which
yields

() = "2 2 exp(— (o - ol

as found in [72].

2.2.2 Trading strategies and a generalized no-arbitrage condition

We now specify the trading rules in our model. We denote by (F;) the natural filtration generated
by the process (P, S, D, Iii(i)). As in [3], we consider a particular trader called “strategic trader”
and denote by X; the number of assets she holds at time ¢. We assume that the strategy X is (F%)-
adapted, caglad, square integrable and with bounded variations. The caglad (left continuous - right
limits) assumption means that the strategic trader is able to react instantly to the flow of trades.
For simplicity and tractability, we assume that the trades of the strategic trader affect the price in
the same fashion as other trades, but leave unchanged the flow of orders N. To be more precise, we
now assume that

S, = g(dNt + dX,), dDi=—p; DI dt + j(dNt +dXy),

but the intensities nf(i) and nt_(i) remain as defined by (2.9) and (2.10). The price as well as the
intensities #;” and x; of buy and sell orders are still defined by (2.11). Last, the cost of the trade
AX; = Xyt — Xy at time t is assumed to be given by

P+ P 1
DAY, — PAX, + —(AX)
2 2q
This yields the following cost for a liquidation strategy X on [0,7] (i.e. such that X7, = 0)

1 1
C(X) = Py dXy + o > (AX)? - PrXp + 5 Xt (2.15)
[0.T) 1 epynion q

where Dx is the (countable) set of discontinuities of X.

When considering high-frequency trading, a standard approach is to define arbitrages as strategies
that can make money on average, with no specific exogenous signal. Roughly speaking, one may
expect that by repeating such strategies one obtains a classical almost sure arbitrage. Thus, Huber-
man and Stanzl have proposed in [78] the following definition of a Price Manipulation Strategy : this
is a strategy X such that Xo = X7y =0 and E[C(X)] < 0.

Theorem 2.2.1. The model excludes Price Manipulation Strategies if, and only if Py is a (F)-
martingale when X; = 0 for any t. In this case, the optimal strategy is the one given by Theorem 2
(see also Section 1.3) in [/].

Besides, under the specification (2.9), (2.10) and (2.11) of the order flow N = Nt — N~ the model
does not admit PMS if, and only if,

Vie{l,...,p}, (s — tc)wi = Nips, %(Har(i) — Ha(i)> — ,oiDé =0, (2.16)
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and s (y/m1) — ¢ (y/m1) = (ts — ts)y/my for all y > 0 such that Ve >0, u((y — e,y +¢€)) > 0.

This theorem extends Theorem 2.1 and Proposition 5.1 of |3] to completely monotone kernels G and
K. Tts proof relies on the same arguments that we recall briefly in Appendix 2.9.1. An interesting
consequence of (2.16) is the connection made between the price propagator and the decay kernel of
the intensity. For general completely monotone functions (2.6), this yields in particular the following
condition :

Vp >0, (15—tc) B(dp) = (1—v) p A(dp). (2.17)

Thus, to exclude PMS, @(dp) has to be proportional to p A(dp) and therefore the decay speed of
K should be higher than that of G, whatever their functional form (as soon as they are completely
monotone). Besides, we can make the two following comments.

First, by dividing both sides of equation (2.17) by p, integrating on (0,+o00) and using Fubini’s
theorem, one gets the necessary (but not sufficient) martingale price condition

LﬂfzoywaAmwf”=uywaﬁw<lmmmﬁwdﬁwmm

1) [T ([ expl-on) e ) a

0
- (LS_LC)/OOOK(t) dt =: DBR. (2.18)

This equation means that the proportion of transient impact should be equal to the directional
branching ratio, which we define as
ls — Lc

DBR — (LS—LC)/ K(t) dt = « BR, (2.19)
0 ts + Lc

where BR is the usual branching ratio for Hawkes-based models that count positively price changes
of both signs (see for instance Hardiman and Bouchaud [69]). This result is intuitive since the DBR
represents the average number of « children trades of the same sign » for each trade, which, to obtain
a diffusive price process, should be equal to the proportion of price impact that vanishes over time.
Although it is only a necessary condition, equation (2.18) gives a quite general numerical criterion
to assess empirically whether an observed price process is compatible with the martingale property,
or rather persistent (DBR > 1 — v) or mean-reverting (DBR < 1 —v).

Second, the power-law kernels
Guy=v+Q—-v)(1+cegxt) ™ K(u)=(1+cg x t)—(1+e)

are particular cases of (2.6), with

a

~texp(—p/cc)

_ooy_ pexp(—p/ck)
o) % Hde) =

; p
Adp) =
(dp) I'(1+e) c}je

dp,

Equation (2.17) then yields
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Let us recall that if K is a power-law, one must have ¢ > 0 to obtain integrability, which is a
necessary condition for the Hawkes process to be stationary. Also, in that case, the process can
only have long-memory (i.e. non-integrable auto-covariance) if the Hawkes norm is equal to one?
and if € € (0,1/2), see Brémaud and Massoulié¢, Theorem 1 in [34]. In that case, the auto-covariance
decays asymptotically as t~(1-29) We thus reach exactly the same conclusion as Bouchaud et al. [31],
who give the diffusive price condition 5 = (1 — v)/2, where v is the decay exponent of the auto-
correlation of trade signs, and 5 = a is the decay exponent of the propagator. Note that we used a
totally different approach (absence of Price Manipulation Strategies), and that equation (2.17) is a

possible generalization of their result to a wider class of kernels, within the Hawkes framework.

The calibration results presented in Section 2.4 allow us to confront real stock data to the martingale
price condition obtained above. In particular, it is easy to check whether the proportion of transient
impact 1 —v = Y \; is smaller, equal or greater than the directional branching ratio DBR. Although
we do not expect the condition to be exactly satisfied in practice, we find it interesting to evaluate
how much (and which way) real data deviate from the theoretical equilibrium.

2.2.3 The optimal execution strategy

In [3], we obtained an explicit characterization of the optimal execution strategy that minimzes
E[C(X)] among strategies such that Xo € R and X7, = 0 when G(t) = e ? and K(t) = e P, It is
of interest to generalize this result to multi-exponential kernels (2.7). This is in principle possible. In
fact, the model is still Markovian and Affine with respect to the state variable (Xy, P;, St, D%, /@igz)),
and the cost is still quadratic. As in [3], one should first guess the quadratic form of the cost function,
then derive necessary conditions on its coefficients, and last run a verification argument. However, we
know from Alfonsi and Schied [1] that the optimal strategy without the flow of trades (i.e. N = 0)
is already quite involved and is characterized through a matrix Riccati equation. In our context,
the system of ordinary differential equations that characterize the cost function would be much
more intricated, and one would presumably have to solve it with numerical methods, which are less
efficient than closed formulas for high-frequency trading. However, in the particular case where the
propagator is kept exponential

G(u) =v+(1—v)exp(—pu), K(u)=> w;exp(—piu), (2.20)
=1

with 0 < B1 < --- < fBp and wy,...,wp > 0, it is still possible to derive explicitly the optimal
execution strategy. In fact, we can handle the same arguments as in [3] and obtain the following
result, proved in Appendix 2.9.2.

Theorem 2.2.2. Let a; = w;i(ts — tc) and H, the square matriz of order p defined by

1<i,j<p, Hij = ly—pBi — aj. (2.21)
We also define the two continuous matriz functions ¢,w by?
MF M*F
M)=> (- ——— and w(M) =) (-1)F————. 2.22
) = SO0 gy and w(M) = 31 (222)
k>0 k>0
2. We refer to Hardiman et al. [68] for a test of this property on market data, and to Jaisson and Rosenbaum [79]

for a study of Hawkes processes with a norm close to one.
3. When M is invertible, ((M) = M ~*[I, — exp(—M)] and w(M) = M~ 2[exp(—M) — I, + M].
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Then, the strategy X* that minimizes the expected cost E[C(X)] satisfies a.s. and dt-a.e on (0,T),

(1— )X} =—[1+ p(T — )] Dy + %[2 +p(T — 1)) (2.23)
T—1)
R At T-tH T—t) w(T—t)H)] b . (1, ,1)7
67 {1y 20 D X (T = 0H) v = 0 (@ =0} (1 )T,
where 5} = n:“(i) — Iit_(i) fori e {1,---  p} are intensity imbalances. Moreover, the optimal strategy

is fully characterized by equation (2.23).

Though restricted to (2.20), we believe that this extension of the result of [3] may be relevant for
applications. In fact, on our dataset, there is not much gain to use the multi-exponential price
propagator rather than the mono-exponential one, see Figure 2.1. Instead, for the decay kernel of
the intensity, considering an exponential mixture allows to produce a richer variety of autocovariance
functions, see Figure 2.3.

2.3 Calibration method

2.3.1 Description of the dataset

We consider tick-by-tick data provided by the French investment bank Natixis, to which we are
grateful. The data contains all the changes in prices and volumes of the best bid and best ask, for
two actively traded French stocks : BNP Paribas and Total.

The data is selected between 11a.m. and 1p.m., for every trading day between January and September
2012 and 2013. We exclude the three last months of the year, where activity decreases on average,
along with the months where the tick size deviates from 0.005 euros. The two-hour window around
noon is chosen to obtain a rather stable and uniform behavior of market activity, see e.g. Lehalle
and Laruelle [85], p. 112. This way, for each stock separately and with minimal data treatment, we
can reasonably assume that each two-hour window of trading is a realization of the same random
price process.

In the initial dataset, for each stock separately, each line corresponds either to an update in price
and/or quantity at one of the best queues (triggered by a market event such as a market order, a
limit order or a cancellation), or a new trade executed for a given volume at a given price. The time
stamps for these updates are precise to the millisecond. We reduce this data by aggregating the
events happening on the same millisecond : we only keep track of the best prices at the beginning
and at the end of each time stamp, which yields the aggregated price impact of the events that
happened « simultaneously », i.e. on the same millisecond. Similarly, we sum all the volumes that
were executed on the same time stamp. We obtain a simplified sequence of market events, among
which a minority is associated to a traded volume and/or to a price change.

A correspondence should be clarified between the theoretical items of the models of [3] and Sec-
tion 2.2, and actual financial data. Different possibilities may be relevant, but our choices are the
following :
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— We define the « market price » P; as the midpoint price, i.e. the average of the best bid price and
the best ask price at any time ¢.

— We only consider time stamps where the midpoint price jumps. In other words, we ignore the
trades and cancellations that do not empty either the best bid or the best ask, as well as the
passive limit orders that do not define a new best price. For the stocks that we consider, this
gives an average latency of one to four seconds between two consecutive time stamps. This is in
agreement with the time scale that is thought of in the theoretical model of [3], which is not of
ultra-high frequency.

— We express the time in hours, and note 7' = 2 the length of the window that we consider for
each trading day. Throughout the paper, we note 7 € (0,7) the time stamps which correspond to
midpoint jumps triggered by trades, i.e. by limit orders that cross the spread or by market orders.
These correspond to the jumps of the process N of the theoretical model : they are marked by both
a price jump AM; (of one or several half-ticks), and an executed volume AV, > 0 expressed in
number of shares. The time stamps of other price jumps are noted 6 € (0,7"). They are triggered
by cancellations and passive limit orders, with no executed volume, and they are assumed to
enforce on average the deterministic resilience effect as in [31]. Between two trades, the deviation
of the price from this deterministic average is considered as a noise process, modeled using an
arithmetic Brownian motion.

Some key statistics for these items are given in Table 2.1 for BNP Paribas and Total.

Stock BNP Paribas Total
Year 2012 | 2013 || 2012 | 2013
Average midprice 324 | 449 38.2 | 39.0
Tick size 0.005 | 0.005 || 0.005 | 0.005

Number of mid. changes per hour || 1909 | 1699 || 1209 | 929
Proportion due to transactions 10.0% | 7.9% || 7.6% | 6.9%
my 776 636 978 963

ma/m? 3.38 | 4.69 || 4.30 | 6.72

Average size of the first queue 1398 | 1136 || 1710 | 1779

TABLE 2.1 — Table of statistics for the stocks BNP Paribas and Total on the periods January-
September 2012-2013, between 11 a.m. and 1 p.m. January 2012 is excluded for BNP Paribas because
the tick size dropped below 0.005. We give the proportion of midpoint changes which are triggered
by trades, the remaining proportion being triggered by cancellations or passive limit orders. m; is
the average volume of transactions that trigger price moves, and my is the average squared volume
for these transactions. The greater the ratio ms/m?, the more variance in the distribution of traded
volumes.

2.3.2 Overview of the calibration process

One specificity of the price model given by equation (2.4) is that it is composed of two separate

components :

— The point process N for the trades that trigger the price moves, for the which time stamps 7
and the marks (the price jumps AM, and the executed volumes AV;) are modeled and estimated
jointly,
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— The propagator model, which conditionally to the midpoint jumps due to trades, is a continuous-
time linear regression model with a Gaussian noise process cW;.

Therefore, the trades are modeled using marked Hawkes processes, and conditionally to them, the
price is Gaussian. This segmentation has at least three advantages. First, the calibration process is
simpler since the two parts can be estimated independently, which significantly reduces the dimension
of the problem. Second, the estimation results on each side are robust to the choices made in the
other. For instance, if one wants to modify the Hawkes modeling for the trades, then our results for
the propagator are still valid, and vice versa. Eventually, the results of Section 2.2.2 include some
theoretical links between the Hawkes parameters and the propagator, and it seems more rigorous to
confront these links to our calibration results when the two parts are estimated independently.

Our calibration protocol as a whole being somewhat sophisticated, we test its validity and robustness
by running it on simulated data. In Sections 2.4 and 2.5, we give the results of our analysis for these
simulations as well as for real financial data.

2.3.3 Estimation of the propagator
Framework

In this section we explain how the propagator model introduced in Section 2.2 can be adapted for
practical applications, in particular for its calibration. This requires to consider the two following
points :

— In practice, the price impact of transactions is not proportional to their volumes. It is typically of
a few ticks, while the volumes span a wider range of values. Therefore, one must choose between
« price resilience » and « volume resilience » as in Alfonsi et al. [5]. The first choice corresponds
to modeling the mean-reversion property of market prices, the second describes how liquidity
« regenerates » after a trade, and the two are only equivalent for linear price impact.

— The evolution of the price between two transactions is very noisy, and the propagator model only
explains a part of its variance. Therefore, we need to control the variance of the estimation to
obtain satisfying calibration results.

For the first point, we choose to model price resilience, which is easier to measure in practice and has

been considered more often in the literature. This boils down to replacing AN;/q by the midprice

jumps AM, in equation (2.4). For the second point, an intuitive possibility consists in restraining
the propagator regression to a finite time window Agw > 0, and to assume that the model predicts
the price increment P, — P,_ap,, for t > Agy instead of P, — Fy. If the noise is an additive Brownian
term oW, this fixes the variance of the predicted variables to o?Agrw instead of o%t, t € [Arw, T7.
We obtain the modified price model

Pi= Pnpgy + >, AM Gt—7) + o(Wi— Wi_agy)- (2.24)

t—Arw <7<t

Of course, Agw must be such that G(Agrw)—G(00) is small compared to G(c0) for the model to be a
meaningful approximation of the original model (2.4), see Remark 2.2.1. This condition also allows to
avoid bias in the estimation of the propagator G. We fix Agw = 0.5 hours (30 minutes) throughout
the sequel of this paper, basing ourselves on preliminary observations that we do not detail here. Note
that within the range Agw € [0.1,1], the choice of this parameter has little impact on the results.
One can verify a posteriori that our estimations of G are compatible with G(0.5) — G(o0) < G(00).
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The predicted price increment between ¢ — Agw and t is given by

Pi=Prngy = >, AMG(t-7) (2.25)

t—Arw <7<l

where P,_A,, is the real midpoint price at time ¢t — Agrw, taken directly from the data. Equa-
tion (2.24) becomes R
Pt = .Pt + O'(Wt - Wt—ARW)' (226)

Conditionally to P;_ag, and to the process M, one has P; ~ N(Pt,azARW). In this setting, the
Maximum Likelihood Estimator of G is equivalent to the Least Squares Estimator. We thus minimize
numerically on the parameters of G the quadratic error

E@) = > [P(G) - P, (2.27)

Arw<0<T

where the 6’s are the occurrences of price jumps due to cancellations or passive limit orders. To get
a better understanding of the shape of the propagator, we first estimate G in an « unconstrained »
manner, i.e. as the linear interpolation of a discrete set of points. Thus, we model G as

-1
(tis1 = )gi + (¢ = ti)giss
G(t) = gl]]'[tl7ARw[(t) + Z - t - — ¢ e [ti,tz‘+1[(t)7
i—0 1+1 7
where t1,--- ,t; are fixed a priori and (g1,---,g;) is the parameter to estimate. We see that the

resulting curve, which is given is Section 2.4 for stock data, has an increasing short-range part, and
switches to a decreasing mode after a few seconds. One has G(0) = 1, but G reaches a point above
unity before it enters its decreasing regime. Let us recall that in an idealized model without bid-ask
spread, Alfonsi et al. [6] and Gatheral et al. [64| show that G has to be decreasing and convex around
zero to exclude PMS and some market instability. This is not the case on our dataset. We interpret
this as the fact that after a trade, the new bid-ask is generally formed around the impacted price.
Thus, during a few seconds, limit orders and cancellations tend to impact the midprice in the same
direction as the trade. This motivates us to distinguish the propagator G(t) and the functional form
of its long-range decay that we call the resilience, noted R(t). This way, we can allow R(0) > 1 and
impose that R is decreasing. One can then link G and R with a simple linear interpolation between
t =0 and t = Lagj, with Laq; > 0 the « adjustment lag » of the market

t
G(t) = |1+ (R(Lagj) — 1) T d,] Li<r,gy + B> 1,41
adj

This choice has the merit that once L,qj is fixed, only the resilience curve needs to be estimated
since G is characterized by R. Therefore, to estimate R with an imposed decreasing functional form,
we place ourselves in the following version of the price model

t—rT1

Lag;

P, =P _pn+ > AM, R(t-7)+ Y. AM, [1 + (R(Lagj) — 1) +o (Wi =Wy Ay )-

t*ARWgT<t7Ladj t*LadjSTSt

We consider two types of parameterization for the resilience R(t) :
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— The mono-exponential curve
R(t) =7 [1 = A1 — exp(—pt))], (2.28)

with three parameters v, p > 0, A € [0, 1]. v is an amplification factor, p is the resilience speed of
the market, A is the transient part of the price impact of trades, and ¥ =1 — A is the permanent
part. The mono-exponential curve is the type of resilience considered in the theoretical model
of [3].

— The multi-exponential curve

R(t) =~ [1 =) N - exp(—pit))] , (2.29)

i=1

is a generalization of the previous one, with 2p+1 parameters 7, p1,--- , pp > 0, A1, -+, Ay € [0,1],
> ;A < 1.For 1 <i <p, )\ is the proportion of transient impact that decays at speed p;, and
v =1-—7>",\; is the proportion of permanent impact.

For both parameterizations, we estimate a posteriori the volatility ¢ of the Brownian noise with

2
> |Pi-Fi— Y AMIG(T 1)
A i=1 o<r<T
= 2.
% T , (2.30)
where n is the number of days of the sample, and for i € {1,--- ,n}, P® and M? are respectively the

real price and the midprice jump process for day 4, and the 7’s are the jump times of M?. Also, since
the prediction model defined by (2.25) and (2.26) can be seen as a continuous-time linear regression,
where the explained variables are the price increments P; — P;_ag,, and the regressors are the past
price jumps AM, triggered by trades, we can evaluate its quality of fit using a usual analysis of
variance. We define the r? value as

n A .
> [Py — Pl
i=1 Agw<6<T
=1 — e : — (2.31)
> % |Pi-Piag, AP
=1 Agpw<0<T
where for i € {1,--- ,n}, Pl is the predicted price process for day ¢, and

1 - 7 7
P=sg Z > (P = Pi_any)

i=1 Agw<0<T

is the average price move between 6 — Agrw and 6, where the €’s are the times of price changes with
no executed volumes and and #6; is the number of such price changes on day i. Note that since
there is no constant in the regression model (2.26), the 72 could theoretically be negative, but this is
not the case in practice. The 72 constitutes a useful comparison criterion between different estimated
propagators, and we use it in Section 2.4.

Now that the global practical framework is set, the estimation protocol for G needs to be detailed.
This is the object of the following section.



Chapitre 2 75

Estimation protocol

We use a multi-step estimation protocol, that mainly resorts to the minimization of the quadratic
error £ defined in (2.27). When G(t) is linear with respect to its parameters, £ is quadratic and
one step of Newton-Raphson’s algorithm is enough to find the minimum (see Appendix 2.7). When
the dependency in the parameters is non-linear, we first use grid minimizations to find a suitable
starting point for the algorithm.

As a first step, we estimate the « unconstrained » propagator curve. Then, we estimate the resilience
curve using the two parameterizations presented in Section 2.3.3.

Estimation of the unconstrained propagator curve

We first estimate G by the linear interpolation G

: (te1 = )i+ (¢ = t)gien
G(t) = gl]l[tl:T[ + Z : tzil t; - l[ti:ti+l[(t)'
=0

For t1,---,# fixed a priori, G is linear with respect to (g1, ,91). Thus, one step of Newton-
Raphson’s method (see Appendix 2.7.1) determines the parameters that minimize the quadratic
error & (@) To approximate the long-range propagator, we choose a uniform grid t; = i/l with

= 20 on the interval [0,0.2]. On the other hand, for a zoom on the beginning of the curve, we
concentrate the t;’s near zero.

Estimation of the multi-exponential resilience curve

The simultaneous estimation of multiple p;’s being too unstable, we choose to fix four components
associated to four simple characteristic time scales (the p;’s are expressed in inverse hours) : p; = 6
(ten minutes), p2 = 60 (one minute), p3 = 120 (thirty seconds) and ps = 360 (ten seconds). We
then assume that the vector (p1,--- , p4) is rich enough to represent all the relevant time scales in
our framework, and we focus on the weights A1, --- , Ay associated to each scale to characterize the
decay of the curve. The multi-exponential resilience given by equation (2.29) becomes

4
:P Z exp

where we re-parameterize v = y(1 — Zf 1 Ai) >0 and \; = v\; > 0. Reciprocally, one has v =7 +
Z =1 A; and \; = \; /. Since the p;’s are fixed, the resilience curve R(t) is linear w.r.t. the parameter
(T, A1, -+, A1) that remains to be estimated, thus Newton-Raphson’s algorithm (see Appendix 2.7.2)
converges with a single iteration. We then select the significant p;’s as follows :

1. A first estimation yields a « full » parameter (7, A1, ---,\4). Some of the resulting \;’s may
be non-positive, which is incompatible with the model.

2. While there exists i such that \; < 0, we remove the p; corresponding to the minimal );, and
we launch the algorithm again with one less parameter.

3. Eventually, we have selected one to four « significant » p;’s, of associated weights );’s that are
positive, and the estimation process is complete.
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Since each of these steps only take one iteration of Newton-Raphson’s algorithm, the whole estima-
tion protocol for the multi-exponential curve is quite fast. Therefore, in order to estimate the market
adjustment lag L,qj, we can conduct the estimation several times for L,q; on some discrete grid, and
compare the regression r%’s as defined by (2.31). The result associated to the maximal r? gives the
parameters Ymulti, Amulti and pmuri for the multi-exponential resilience, along with the adjustment
lag Ladj-

Estimation of the mono-exponential resilience curve

The multi-exponential estimation presented above serves as a starting point for the following.
The market adjustment lag L,q; is already estimated, along with the associated set of parameters
Yenultis Amultis Pmulti for the multi-exponential resilience curve. We set

. AL
Y = Ymulti, A= Z Amultis P = Z %ltlpinulti (2.32)
i i

as a starting parameter for the mono-exponential estimation. As in the multi-exponential case, we
re-parameterize (2.28) as _
R(t) =7 + Xexp(—pt),

with 7 = (1 — A) > 0 and A = v\ > 0. We then proceed as follows

1. We use Newton-Raphson’s algorithm to minimize the quadratic error on the whole parameter
(7, A\, p) (see Appendix 2.7.2 for p = 1 exponential component). If the starting point is convex
and the algorithm converges to a satisfying level, we proceed directly to Step 6. Else, we go to
Step 2.

2. Keeping p fixed to its starting value (2.32), the dependency of R(t) on 7 and ) is linear. Thus,
with one step of Newton-Raphson’s algorithm, we get the optimal values of 7 and A for the
current value of p.

3. For v = U+ ) fixed by Step 2, A initialized to A/~ and p as in (2.32), we minimize the quadratic
error (A, p) — E(\, p) on a local two-dimensional grid in the vicinity of the starting point.

4. The pair that reaches the minimum of the error grid at Step 3 is again used as a starting point
to Newton-Raphson’s algorithm, to determine the optimal (A, p) for the current fixed value
of 7, using the « unit » mono-exponential parameterization of Appendix 2.7.2. We actualize
(A, p) to this optimum, along with 7 = (1 — A) and A\ = yA\.

5. The parameter (7, \, p) is now in a region where the quadratic error is more likely to be convex.

Therefore, we use this new starting point for an error minimization using Newton-Raphson’s
algorithm on the whole parameter.

6. We obtain the parameter Ymono, Amonos Pmono 0T the mono-exponential resilience curve.

The above estimation protocol for the mono-exponential resilience curve may seem complicated : in
particular, it is more subtle than the multi-exponential estimation. The reason for this is that we
want here to determine the most significant characteristic time scale of the resilience through the
parameter p. The dependency of the quadratic error £ on this parameter being non-linear, nothing
guarantees a priori that Newton-Raphson’s algorithm (or more simply a gradient algorithm) has a
convex starting point, which is a necessary condition to ensure its convergence. Hence we have to
proceed more carefully and introduce several intermediary steps.
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2.3.4 Estimation of the Hawkes parameters
Framework

Independently of the propagator, we also estimate the parameters of the Hawkes-based model pre-
sented in Section 2.2 for the price jumps due to transactions. We choose the self-excitation functions
s and . to be affine, i.e.

ps(z) =@ + ol | wo(z) = oY + gra. (2.33)

In the standard Hawkes framework, self-excitation in the order flow is not marked, i.e. only the
constant terms ¢7, ¢! appear in s and .. In spite of its simplicity, the affine structure allows us to
underline the deviation from the standard Hawkes benchmark, and to detect an increasing part in
the self-excitation function.

As pointed out in Section 2.3.3, there are two possible interpretations for the marks associated to
the jumps of N. Since each of these jumps corresponds to a price jump due to a transaction, they are
all associated to two positive variables : the price impact on the one hand, and the traded volume on
the other hand. Therefore, we estimate three sets of parameters for different versions of the Hawkes
model (unit marks, volume marks, and price marks), each with a different practical interpretation
of the intensity jump terms. Precisely, we replace ¢/, (AN) in (2.9) and (2.10) at the jump times t
by either of the three possibilities

¢(s)/c,unit7 ¢2/C,v01. + (b;/c,vol.‘AV;’/ml? ¢g/c,price + ¢;/c,price‘AMt’/m’ (2‘34)

where my is the average executed volume and m is the average price impact.

Estimation protocol

Our estimation protocol for the Hawkes part of the model is then as follows : we first estimate the
mono-exponential Hawkes model K (u) = exp(—pfu), which allows us to estimate the Hawkes norm
and its repartition in terms of self and cross-excitation, and to select the optimal mark type for the
jumps. Then we estimate the multi-exponential Hawkes model K (u) = Y_?_; w; exp(—f;u) with the
Bi’s fixed a priori.

Mono-exponential kernel

Let us consider the mono-exponential Hawkes model of equation (2.2), for which the Hawkes decay
kernel is K(u) = exp(—pu), S > 0. We first focus on the parameters of the total intensity ¥; =
ki + K, by aggregating all the price jumps due to trades, regardless of their signs. In the mono-
exponential case, one has

dEt = —B (Zt — 2%00) dt + ¢ th,

where ¢ is the average excitation, so that the jumps of J have an average of one. We use a Generalized
Method of Moments (GMM) to estimate [, koo and ¢. We divide the time window [0,T] of length
T = 2 hours in 720 bins of length h = 1/360 (i.e. ten seconds). Then, we compute the number AJ}
of price jumps due to trades in the time bin [(I —1)h,lh], [ € {1,---,|T/h|} onday i € {1,--- ,n},
for each time bin and each day. If [ is the row index and i is the column index, we obtain a |T/h| X n
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matrix of which the entries are the positive numbers Ajf. We normalize this dataset by dividing
each column by its mean value and multiplying the whole matrix by the original global mean value,
so that the global mean is unchanged and each column has the same mean. We first compute the

empirical mean AJ and variance V of the discrete process AJ

_ 1 n |T/h] n |T/h]
AJ = T/h;lz;ml, V—W;;[AJZ }

The average jump intensity 2% of the total jump process is obtained with the formula 2k = ?j/ h.
Besides, the empirical auto-correlation function of AJ is given by

[T/R]
~ 1 1 n - -2
vk 1,- Kmax k)= — g E AT AT | — A , (2.
=4 ks G v nx ([T/h] —k) i=1 I=k+1 S ! (2

where kpax = 36 is the maximum lag (so that the maximum range kpaxh = 0.1 equals six minutes).
Using the results of Da Fonseca and Zaatour [45] for mono-exponential Hawkes processes, we have
that € (k) decays as exp(—(8 —t)k). Therefore, the exponential fit of the empirical curve €' (k) yields
an estimate of d :=  — ¢. Then, we also get from [15]

(B2 B2\ 1— —dh
v {0 (1-5) o

This relation can be inverted to obtain an estimate for g : if we note 2z, = (1 —exp(—dh))/d, we get

V/(2R) — zp
h—z,

B =d

Then, ¢ = f —d and koo = (1 —¢/B) R can be deduced from the above equation. We also obtain the
mono-exponential branching ratio

BRmono = L/B

Keeping (3,t and ko fixed to these GMM estimates, we now turn to the bi-dimensional intensity
model (2.2). We use Maximum Likelihood Estimation (see Appendix 2.8) on one-dimensional grids
to determine the self and cross-excitation parameters :

1. We determine the proportion u € [0, 1] such that ts = u ¢, ¢, = (1—u) ¢ maximize the likelihood
of the two-dimensional intensity (x,x7), where 5 and i. are respectively the average self-
excitation and cross-excitation parameters.

2. For volume marks and price marks separately, we determine the proportion ug € [0, 1] such
that ¢0 = ug 15, ¢: = (1 —ug) 15 maximize the likelihood of (kT,x7), where ¢, ¢! are defined
in equation (2.33). Similarly, we determine the optimal proportion u. for ¢¥ = uc i, ¢! =
(1 — ue) te. For ts and ¢ fixed, we obtain the optimal constant and linear parts for self and
cross-excitation, for the two possible types of marks.

3. The likelihoods obtained for the three models are then compared to determine which of the
unit / volumes / price marks yield the best model.
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Eventually, we obtain estimates for all the parameters Bmono, Koomonos gbs?mno, gbsIlnonO, ¢2m0n0, qbcllnono
of the mono-exponential Hawkes model, along with the optimal type of marks.

Multi-exponential kernel

We turn to the multi-exponential Hawkes model K(u) = Y% | w;exp(—f;u). As in the case of the
estimation of the multi-exponential resilience in Section 2.3.3, we fix four f;’s associated to four
simple characteristic time scales. In fact, we choose the same time scales as for the resilience :
b1 =6, P82 = 60,83 = 120 and 54 = 360. We then calibrate the w;’s associated to each [5;, and these
weights tune the shape of the Hawkes kernel.

The results of the mono-exponential estimation are used to select the type of marks (unit, volume
or price) and to get a starting point for koo, @2, L, @2, #L and the branching ratio BR. The starting
point for the w;’s is chosen to be uniformly distributed

o — BRmono 1
P4 1/4 ’
ik 4

with a scaling that matches the initial branching ratio. Then, we maximize the likelihood of the
model on the parameter (Koo, w1, w2, ws, wy) using Newton-Raphson’s algorithm, as explained in
Appendix 2.8. We use the same selection method as for the multi-exponential resilience estima-
tion of Section 2.3.3 : if at least one of the w;’s is non-positive, we delete the (; associated to
the minimal w; and launch the algorithm again, with one less parameter. Finally, we multiply
(80, oL, 00, 6) by the sum of the remaining w;’s, and scale the latter to one. Without changing the
overall model, this imposes K(0) = 1 for the Hawkes decay kernel K. We obtain the parameters
Brmultis Winultis Foomultis Psonultis Psmulti> Pomultis Permurei for the multi-exponential Hawkes model.

2.4 Calibration results

2.4.1 Description of the results

This section is dedicated to the presentation of our calibration results. The calibration method of
Section 2.3 is first applied to simulated data to test its validity, and then to actual financial data
from French stocks. We also provide some qualitative comments. For each simulated dataset and
each stock, the results are summarized in tables, plus a few graphs for BNP Paribas. The content
of the tables is explained below.

Adjustment lag table : This table gives the regressions r%’s of the multi-exponential resilience
curve, for several values of the market adjustment lag Laq;. It is used to select the optimal value of
Lagj on a discrete grid.

Resilience table : The resilience table gives the estimation results for the propagator. We give the
selected adjustment lag L,qj and the estimated parameters for the two types of resilience curve

Rmono (t) = “Ymono [1 - )\mono(l - eXp(_pmonot))]7
Rmulti(t) = Ymulti |:1 - Z >‘1Jr'nulti(1 - exp(_pfnultit))} 5
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along with the estimated volatility o of the noise and the regression 72, defined respectively by
equations (2.30) and (2.31).

Marks table : In this table, we give the maximized log-likelihoods per point Lupit, Lvol. and Lprice
for each type of mark (unit, volumes and price jumps), in the mono-exponential Hawkes model. It
serves as a selection criterion for the optimal type of mark.

Intensity table : This table gives the estimated parameters for the Hawkes model described in Sec-
tion 2.2.1, for both the mono-exponentiel decay kernel K (u) = exp(—fu) and the multi-exponential
one K(u) = Y ¥, wjexp(—pF;u). We also give the maximized log-likelihoods per point Lmono and
L muiti, which can be compared to one another or between datasets to quantify the quality of fit of
the Hawkes model. Eventually, we give the branching ratio BR and the directional branching ratio
DBR defined by equation (2.19), that are obtained with the multi-exponential parameterization.

2.4.2 Simulated data

We first give in Tables 2.2 and 2.3 the results of our calibration protocol on two datasets simulated
with the price model (2.4). In each table, the first column gives the « real » simulation parameters
and the second gives the estimated ones. Both datasets are composed of 150 independent realizations
of the price process on two-hour windows, and we choose simulation parameters close to what is
found further for stock data in order to obtain relevant benchmarks. Note that Simulation 1 features
a non-zero Brownian volatility, whereas Simulation 2 is generated by the « pure » propagator model
without noise.

Year Simu. Calib.

Year Simu. Calib. Marks type Volume Volume
Lagj (sec) 4 4 Brnulti 60/360 60/360

Ymulti 2.70 2.35 Wmulti 0.100/0.900 | 0.102/0.898
Pmulti 60/360 6/60/360 Koomulti 15.0 15.2
Amulti 0.50/0.10 | 0.13/0.35/0.11 Dsmulti 110.5/19.5 109.8/20.9
Vmulti 0.40 0.41 qumulti 665/35 597/97
Omulti 0.1000 0.1917 Lnulti — 3.1659
T?nulti — 9.554% Bmono - 153.0
“Ymono - 2.38 Roomono - 16.6
Prnono - 68.2 Bomono = 68.7/13.1
)\mono - 0.55 ¢Cmono - 374/61
Omono - 0.1923 L mono — 3.1560
72 ono - 9.519% BR 0.833 0.839

DBR 0.250 0.257

TABLE 2.2 — Calibration of the resilience (left) and intensity (right) for Simulation 1. For the ¢’s,
the first entry is the constant term and the second one is the linear term.

Overall, the accuracy of the estimation is satisfying. The estimated Hawkes parameters are very close
to the real ones, although the dimensionality is high. Importantly, the branching ratios and directio-
nal branching ratios are all determined accurately, within a precision of +0.03 on our experiments.
Concerning the propagator, the results are more noisy for Simulation 1, which is not surprising since
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Year Simu. Calib.

Year Simu. Calib. Marks type Volume Volume
Lagj (sec) 2 2 Bnulti 120/360 6,/120/360

Ymulti - 3.05 Winulti 0.050/0.950 | 0.0007/0.0505/0.9488
Prmulti — 6,/120 Koomulti 40.0 39.1
Amulti — 0.0005/0.6850 Psmulti 84.0/36.0 72.8/40.9
Vinulti - 0.31 Pemulti 45.0/5.0 47.4)7.7
Ormulti - 0.0055 Lomulti - 2.7218
2 - 96.92% Bmono - 82.2
Ymono 3.20 3.06 Koomono — 19.3
Prmono 130 121.3 Bsmono - 27.3/15.4
)\mono 0.70 0.69 ¢cm0n0 - 17'8/2'9
Ormono 0.0000 0.0055 L mono - 2.6740
72 ono — 96.92% BR 0.519 0.535

DBR 0.214 0.186

TABLE 2.3 — Calibration of the resilience (left) and intensity (right) for Simulation 2. For the ¢’s,
the first entry is the constant term and the second one is the linear term.

it includes some Brownian noise. Still, the proportion of transient impact is nearly exact and the
dominant time scale is well determined. Simulation 2 is generated with a mono-exponential propaga-
tor, and the resilience speed pmono is slightly underestimated ; however this parameter is less stable
than the A’s and the accuracy that we obtain seems reasonable. In this second case, the values that
we find for the volatility and the regression 2 are satisfyingly close to 0 and 100% respectively.

2.4.3 BNP Paribas

Tables 2.4, 2.5 and 2.6 and Figures 2.1, 2.2 and 2.3 present our estimation results for the French
stock BNP Paribas on the periods February-September 2012 and January-September 2013.

Lq; (sec) 0 2 4 6
r2 (2012) || 24.572% | 24.675% | 24.677% | 24.672%
2 (2013) || 10.607% | 10.674% | 10.668% | 10.649%

" multi

TABLE 2.4 — Regression 72 for the multi-exponential resilience curve, evaluated for several market
adjustment lags L,q; = 0, 2,4, 6 seconds, for the stock BNP Paribas.

Marks type Unit | Volume | Price jump
Limono(2012) || 2.6804 | 2.6826 2.6791
Linono(2013) || 2.5772 | 2.5794 2.5750

TABLE 2.5 — Log-likelihood per point for the mono-exponential Hawkes model, evaluated for several
types of marks : unit, volumes and price jumps (see eq. (2.34)), for the stock BNP Paribas.

Let us first look at the estimation results for the propagator. Table 2.4 and Figure 2.2 show that the
adjustment lag L,q; defined in Section 2.3.3 is positive and thus that the propagator is increasing
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Year 2012 2013
Year 2012 2013 Marks type Volume Volume
Laqj (sec) 4 2 Braulti 6/360 6/360
Ymulti 2.69 2.99 Wulti 0.010/0.990 | 0.011/0.989
J— 60 60/360 Fooomulti 15.1 12.1
Amulti 0.61 | 0.30/0.53 Gsmulti 112.8/18.4 | 115.4/15.7
Vmnulti 0.39 0.17 Depulti 50.4/2.1 46.4/0.9
Omulti 0.2253 0.2153 Lonulti 2.7720 2.6708
2 24.677% | 10.674% Bmono 73.0 114.1
Ymono 2.70 2.56 Foomono 13.9 14.0
Prmono 60.8 116.5 Bsmono 38.3/6.2 58.5/8.0
Amono 0.62 0.80 Permono 17.1/0.7 23.5/0.5
Omono 0.2253 0.2153 Lmono 2.6826 2.5794
72 ono 24.678% | 10.688% BR 0.820 0.810
DBR 0.351 0.380

TABLE 2.6 — Calibration of the resilience (left) and intensity (right) for the stock BNP Paribas for
the periods February-September 2012 and January-September 2013, between 11 a.m. and 1 p.m. For
the ¢’s, the first entry is the constant term and the second one is the linear term.

near zero. The estimation yields Laq; = 4 sec. for 2012 and Laq; = 2 sec. for 2013, and the increasing
part lasts indeed longer on Figure 2.2(a) than on Figure 2.2(b). The parameter 7 given in Table 2.6
tunes the maximum value reached by the propagator at the end of the increasing phase. We find a
result between two and three. This means that on average, after a large trade, not only does the
bid-ask close around the impacted price (which would yield* v = 2), but cancellations at the new
best queue also push the price in the same direction as the trade.

After its short increasing part, the propagator switches to its resilience mode described by Table 2.6
and Figure 2.1. The unconstrained resilience curve is quite smooth, and one can observe on Figure 2.1
that it decays to a non-zero proportion of permanent impact (~ 40% for 2012 and =~ 20% for 2013).
Also, the results given in Table 2.6 indicate that the mono-exponential fit for the resilience is good on
this dataset. For 2012, only the speed p = 60 (i.e. a characteristic time scale of one minute) is selected
in the multi-exponential estimation. On the other hand, for 2013, there are two selected speeds
(corresponding to one minute and ten seconds), but the mono-exponential fit with pymono = 116.5
(approximately thirty seconds) yields a higher regression r2. These dominant characteristic time
scales motivate the use of the particular case considered for the optimal strategy in Section 2.2.3.

We now focus on the estimation results for the Hawkes parameters. Table 2.5 justifies the selection
of volume marks : indeed, they yield a higher likelihood per point than unit marks and price marks.
Unit marks are the benchmark model for Hawkes processes, but they fail to reproduce the fact that
large orders trigger more activity on the market. Indeed, we see on Table 2.6 that the self-excitation
parameter ¢g and the cross-excitation parameter ¢. have non-negligible linear parts (10 — 15% for
self-excitation and 2 — 5% for cross-excitation). As for price marks, we think that they give less

4. To be more precise, let us consider for example a buy order that increases the ask of one tick. Then, the midprice
jumps of one half tick. If the bid price follows shortly the ask and increases of one tick, this moves again the mid of
one half tick upward, which gives v = 2.
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FIGURE 2.1 — The estimated propagator for BNP Paribas. The plain line is the unconstrained
propagator, the (blue) dashed line is the mono-exponential resilience curve, and the (green) dot-
dashed line is the multi-exponential resilience curve.

information than volume marks since price jumps cluster on a few values (one or two ticks in most
cases), while the distribution of volumes is much wider.

Hawkes parameters seem to be quite stable, especially in the multi-exponential case where the
estimation results are very similar for 2012 and 2013. Two decay speeds are selected for the intensity,
and these are the two extreme ones : the long range = 6 (10 minutes) and the short range 8 = 360
(10 seconds). The importance of each time scale /3; can be measured by the proportion of the norm
that it accounts for, given by

w;/ Bi

Zj w;/B;
Here, the long-range component 5 = 6 accounts for &~ 40% of the norm, and the short-range one
B = 360 for the remaining 60%. Therefore, both decay speeds are important, which is also reflected
by the significant increase from the log-likelihood per point Lmono of the mono-exponential model to
Lmnuiti for the multi-exponential one. One can deduce that contrary to the propagator, the Hawkes
kernel includes at least two exponential components.

Figure 2.3 gives a visual comparison between the data, the mono-exponential Hawkes model and
the multi-exponential one through the auto-correlation of the number of events. The formula for
the empirical auto-correlation function ¢'(k) is given by equation (2.35). Using equations (2.12)
and (2.14), we have that if A > 0 is small and 7 > 0, ¥ (7/h) approximates the auto-correlation
function €' (7)/%(0) of the total intensity process ;. For a multi-exponential Hawkes kernel, one

has

%(0) Zk Qg

where the coeflicients a1, -+ ,ap,b1,--- ,b, > 0 are determined as in Proposition 2.2.1. One can see
on Figure 2.3 that the mono-exponential model fits the end of the curve rather well but that its initial

Garmy~ DT 25 8 (i),
7j=1



Chapitre 2 84
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FIGURE 2.2 — Zoom on the first twenty seconds of the propagator curve for BNP Paribas. The plain
line is the unconstrained curve, the (blue) dashed line is the mono-exponential curve, and the (green)
dot-dashed line is the multi-exponential curve. The propagator is increasing during a few seconds,
before the resilience effect kicks in.

decay is too slow. On the other hand, the multi-exponential model does show a transition between
two decay speeds, and captures the short-range behavior of the curve better. Still, the accuracy of
the fit is not very satisfactory and it seems that the functional form of the auto-correlation is more
subtle than a multi-exponential one.

Finally, we confront our calibration results to the conditions derived in Section 2.2.2 for the absence
of Price Manipulation Strategies in the model. It is complicated in practice to quantify the deviation
of our set of parameters to the equilibrium using equation (2.16). On the other hand, equation (2.18)
gives a simpler criterion : the directional branching ratio DBR and the proportion 1 — v of transient
impact should be equal for PMS to be ruled out. Here, the standard branching ratio BR ~ 80% is
high, but the directional branching ratio DBR ~ 40% is quite low, which is due to a non-negligible
part of cross-excitation in the order flow. It implies that the equilibrium condition is violated since
1— v~ 60% for 2012 and 1 — v =~ 80% for 2013. Since 1 — v > DBR holds in both cases, we find
that the price process is mean-reverting on average, rather than diffusive. This should lead to the
existence of PMS in practice, which is the object of Section 2.5.

2.4.4 Total

Tables 2.7, 2.8 and 2.9 present our estimation results for the French stock Total on the periods
January-September 2012 and January-September 2013.

The qualitative interpretation of the results is similar to that of Section 2.4.3. Yet, one should note
the following points that are observable on Table 2.9. First, we notice that there is no significant
difference between the mono and multi-exponential propagator. Here, contrary to the BNP Paribas
case, the fit is slightly better with two time scales. Second, the branching ratio BR ~ 60% and
the directional branching ratio DBR~ 30% are smaller for Total, whereas the proportion 1 — v of
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FIGURE 2.3 — Auto-correlation function of the number of midpoint moves triggered by trades (plain
line), in log-log scale, for BNP Paribas. The (blue) dashed line is the auto-correlation generated by the
mono-exponential Hawkes model, the (green) dot-dashed line is generated by the multi-exponential
Hawkes model.

Lagj (sec) 0 2 4 6
r2 1:(2012) || 23.093% | 23.166% | 23.137% | 23.108%
r2 1:(2013) || 11.604% | 11.613% | 11.608% | 11.606%

TABLE 2.7 — Regression 72 for the multi-exponential resilience curve, evaluated for several market
adjustment lags L,q; = 0, 2,4, 6 seconds, for the stock Total.

transient impact (84% for 2012 and 92% for 2013) is higher, which means that the price has an even
stronger mean-reversion tendency.
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Marks type Unit
Linono(2012) || 2.2981
Lmono(2013) || 2.2065

Volume | Price jump
2.3034 2.2965
2.2127 2.2063

TABLE 2.8 — Log-likelihood per point for the mono-exponential Hawkes model, evaluated for several
unit, volumes and price jumps (see eq. (2.34)), for the stock Total.

types of marks :

Year 2012 2013

Year 2012 2013 Marks type Volume Volume
L,q; (sec) 2 2 Brulti 120/360 6/60/360

Ymulti 3.72 2.21 Wmulti 0.052/0.948 | 0.010/0.035/0.955
Pmulti 60/360 6/120/360 Koomulti 21.0 9.7
Amulti 0.29/0.55 | 0.004/0.651/0.268 Psmulti 98.7/21.7 84.5/18.5
Vmulti 0.16 0.08 Demulti 44.3/3.9 36.5/0.7
Omulti 0.1400 0.1124 Lonulti 2.3801 2.2842
r2 23.166% 11.613% Brmono 93.0 109.1
Ymono 3.84 2.65 Koomono 9.2 9.0
Pmono 187.2 191.3 Psmono 43.5/9.6 47.4/10.4
Amono 0.84 0.93 Dcmono 19.5/1.7 20.4/0.4
Omono 0.1399 0.1123 Lmono 2.3034 2.2127
72 ono 23.132% 11.586% BR 0.517 0.688

DBR 0.222 0.323

TABLE 2.9 — Calibration of the resilience (left) and intensity (right) for the stock Total for the
periods January-September 2012 and January-September 2013, between 11 a.m. and 1 p.m. For the
¢’s, the first entry is the constant term and the second one is the linear term.
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2.5 Test of some Price Manipulation Strategies

In this section, we apply the optimal strategy derived in [3] and Theorem 2.2.2 to our dataset, with
the parameters obtained by our calibration protocol. Essentially, we run the strategy each day with
a zero initial and final position. If the model is relevant, this should give some profit on average.
This backtest serves as a practical evaluation of our calibration results, and of the model itself.

2.5.1 Scaling and discretization of the optimal strategy

The simplest and most natural way is to use the optimal strategy (2.23) is to consider a discrete
subset © of [0,T] (possibly made of stopping times) and to trade for each time ¢ € © the quantity
14 p(T —t)]gsD; + X,

2+ p(T—1)

m p(T 1)
+ 2—; X [(1,... 1) . {Ip—i—W x [C((T—t)H) +vp(T —t) w((T—t)H)]} . sdt] ,
(2.36)

§f,T - -

so that (2.23) holds in ¢+ if s = 1. Here, §; = (ij — Ky (i)>' is the vector of intensity imbalances
and we calculate D by using the following formula '

Dy =) AM, [G(t —7) - G(c0)].

<t

In order to tune the leveraging of the strategy and its discreteness on the market, we introduce a
scaling factor s € [0,1] that multiplies d; and D;. By doing so, we multiply by s the deviation of
the whole strategy from the standard Obizhaeva and Wang [93] liquidation scheme. The latter is
static since it assumes that the observed price process is always a martingale. The limit s = 0 thus
corresponds to the static strategy, whereas s = 1 is the optimal strategy given by Theorem 2.2.2,
which may be very aggressive in standard market conditions. In fact, using the optimal strategy
with s = 1 may lead to buy and sell repeatedly quantities that exceed the size of the first queues,
which is not realistic.

2.5.2 Methodology

To backtest the strategy in practice, we choose to update our position when we observe midprice
moves. Let us define

0= {0 € (ARW7T)5 0 — 7(0) > Ladj}v

where the 6’s correspond to the times of price jumps due to cancellations and passive limit orders,
7(0) is the time of the last price jump due to a trade before 6, Agy is the regression window defined
in Section 2.3.3 and L,gqj is the market adjustment lag. The position of the strategy at time ¢t € [0, T

is given by
Xi=) &r
fco



Chapitre 2 88

At time T', we close the position with the transaction
AXF =—-X7.

The time horizon is still 7' = 2 hours, where ¢ = 0 corresponds to 11 a.m. and ¢t = T to 1 p.m.
We choose to apply the strategy on [Arw, 7] instead of [0,7], so that the values of §; and D, for
t > Agrw can be accurately computed. Moreover, for each time 7 € (Agryw,T") where the price jumps
because of a transaction, we do not trade on the time interval [7,7 4 Lagj]. As a matter of fact, the
market adjustment lag L,q; corresponds approximately to the time needed for the bid-ask to close
after a trade that empties the best bid or the best ask. It would be meaningless to trade at the
midprice (or even at the midprice 1 half-tick) before the bid-ask is closed, and we would artificially
boost the performance of the strategy if we allowed it. However, this constraint is not needed for
simulated data, for which we set © = {0 € (Arw,T)}.

We assume that the scaling s is small enough for the effective impact of the strategy on the market
price to be negligible. Although approximative, this assumption allows us to backtest the strategy
assuming that we can trade at the observed price.

In the sequel of this section, we apply the optimal strategy for the mono and multi-exponential
Hawkes decay kernels and for several stocks. We summarize the results in one table and a few graphs
for each stock. We note Y; is the profit made by the strategy on day i € {1,--- ,n}, ¥, = % Yy
the empirical mean and S2 = ﬁ S ,[V; — Y,)? the empirical variance of daily profits. The values
given in the table are

— The annualized Sharpe ratio of the strategy

Y,

Sharpe = v/n x 5

3

— The empirical positivity probability, skew and kurtosis of daily gains

i Vi = Yal? i [Yi— Yol

3 ,  Kurto. = 1 .

Sh Sn

The choice of the scaling s has no impact on these results, since all the values above are invariant
to the multiplication of the strategy by a positive constant. Thus, only the units of the graphs are
changed by the scaling, and we fix s = 0.001. With this choice, the volumes of individual transactions
never exceed 5% of the average volume of the best bid/ask queue, which makes our toy backtest
with no impact reasonable.

1 n
Proba. = — E Liy;>0y, Skew =
n
=1

For each stock and each period, we also evaluate of the « Poisson strategy » that one obtains if trades
are modeled with two independent compound Poisson processes, which is equivalent to imposing
ki =R, k; =& and thus s — k; = 0. More precisely, we trade for t € © (the same time grid as

for the Hawkes model) the quantity

[1+p(T —1)]gsD¢ + X;
2+ p(T—1) '

Sr=—

This strategy is entirely based on mean-reversion, and the trend-following part disappears. For the
Hawkes and the Poisson strategies, we give in the tables the impact of a bid-ask cost of one half-
tick on the results. This corresponds to a more realistic implementation of the strategy (which
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should trade at the best and not at the midpoint) and we see that this is sufficient to prevent Price
Manipulation Strategies in most cases (the Sharpe ratio becomes close to zero or even negative).
As a benchmark, we also present in Table 2.10 and 2.11 the results of these strategies on simulated
data. These give an idea of the profits that the strategies could reach in theory.

Our findings are the following. On simulated data, the profits made by the strategies are evident
and still significant with a half-tick penalty. On real data, the Sharpe ratios remain positive for
all the tests, which indicates that the model is not out of scope and captures some characteristics
of the real market flow. However, these ratios are lower than for simulated data and may become
negative when we take the bid-ask spread into account. Said differently, market participants who
use mean-reverting and trend-following strategies already exploit most of the arbitrage opportunities
described by our model, and the backtest of our optimal strategy in realistic market conditions does
not yield significant gains. Somehow, this justifies the theoretical assumption to consider a market
without PMS when dealing with both market impact and the bid-ask spread. Now, let us compare the
different strategies used in Tables 2.12 and 2.13. The results are rather similar for the three strategies
and none of them seem to outperform the others. Intuitively, this means that the main component
of the strategy is the mean-reverting one (which is common to the Poisson and Hawkes strategies),
while the trend-following one has a minor contribution. This is confirmed by the statistical facts in
Table 2.6 and 2.9 where the directional branching ratio DBR is much lower than the proportion of
transient impact Amono = 1 — v.

2.5.3 Simulated data

Tables 2.10 and 2.11 present the results of the optimal strategy applied to simulated data. The
simulation parameters are the same as in Section 2.4.2 (see Tables 2.2 and 2.3), and both datasets
are composed of 150 independent two-hour windows. In Tables 2.10 and 2.11, the two first columns
contain the results of the strategy computed with the real simulation parameters for the Hawkes
model, and the third and fourth columns contain the results for estimated Hawkes parameters. In
both cases, the resilience is the estimated mono-exponential curve, since the optimal strategy is
known explicitly only in that case.
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Year Simu. | +bid-ask || Calib. | +bid-ask

Sharpe (Multi) 6.759 3.225 6.764 3.176
Proba. (Multi) 74.0% 63.3% 74.0% 63.3%

Skew (Multi) 0.55 0.23 0.57 0.24
Kurtosis (Multi) 4.19 4.03 4.22 4.05
Sharpe (Mono) - - 6.308 3.371
Proba. (Mono) — — 74.0% | 62.7%

Skew (Mono) - - 0.47 0.20
Kurto. (Mono) - - 4.11 3.97
Sharpe (Poisson) — - 6.630 3.735
Proba. (Poisson) - - 73.3% | 64.0%
Skew (Poisson) - - 0.43 0.18
Kurto. (Poisson) - - 3.88 3.80

TABLE 2.10 — Results statistics of the optimal strategy applied on the data of Simulation 1 (simu-

lation parameters of Table 2.2).

2.5.4 BNP Paribas
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(a) Trading at the midprice (b) One half-tick penalty

FiGURE 2.4 — Cumulated gains of the strategy applied on BNP Paribas on the period February-
September 2012, every day between 11.30a.m. and 1p.m. The (red) long-dashed line is the perfor-
mance of the Poisson model, the (blue) dashed line is the mono-exponential Hawkes model, and the
(green) dot-dashed line is the multi-exponential Hawkes model. Left : we allow the strategy to trade
at the midprice. Right : we apply a posteriori a linear cost penalty of one half-tick to account for
the bid-ask spread.
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Year Simu. | +bid-ask || Calib. | +bid-ask
Sharpe (Multi) 33.268 27.095 32.302 25.769
Proba. (Multi) 100.0% | 100.0% 100.0% 99.3%
Skew (Multi) 0.50 0.51 0.52 0.54
Kurtosis (Multi) 3.22 3.35 3.25 3.40
Sharpe (Mono) - - 34.940 | 28.605
Proba. (Mono) — — 100.0% | 100.0%
Skew (Mono) - - 0.45 0.46
Kurto. (Mono) — - 3.19 3.31
Sharpe (Poisson) — - 34.986 | 28.681
Proba. (Poisson) - - 100.0% | 100.0%
Skew (Poisson) — - 0.44 0.45
Kurto. (Poisson) — - 3.12 3.25

TABLE 2.11 — Results statistics of the optimal strategy applied on the data of Simulation 2 (simu-
lation parameters of Table 2.3).
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FIGURE 2.5 — Histogram of the daily gains of the strategy applied on BNP Paribas on the period
February-September 2012, between 11.30a.m. and 1p.m. Left : Mono-exponential Hawkes model.
Right : Multi-exponential Hawkes model.
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Year IS 2012 | +bid-ask || IS 2013 | +bid-ask || OS 2013 | +bid-ask

Sharpe (Multi) 1.382 —0.675 2.454 0.725 2.248 0.418
Proba. (Multi) 65.9% 56.5% 61.3% 47.1% 58.1% 48.2%

Skew (Multi) —2.02 —2.40 3.65 3.34 4.48 4.14
Kurtosis (Multi) 19.02 19.94 29.40 27.71 36.96 34.65
Sharpe (Mono) 1.263 —0.713 2.536 0.771 2.430 0.563
Proba. (Mono) 62.9% 57.1% 62.3% 48.2% 58.1% 49.7%

Skew (Mono) —1.89 —2.30 2.94 2.61 3.56 3.21
Kurto. (Mono) 16.64 17.68 23.27 21.90 26.74 24.87
Sharpe (Poisson) 1.056 —0.849 2.5888 0.8077 2.513 0.630
Proba. (Poisson) 65.3% 55.9% 61.3% 49.7% 60.2% 49.2%
Skew (Poisson) —2.72 -3.07 3.09 2.76 3.94 3.58
Kurto. (Poisson) 23.46 24.68 24.41 22.82 31.13 28.86

TABLE 2.12 — Results statistics of the optimal strategy applied on BNP Paribas on the periods
February-September 2012 and January-September 2013, every day between 11.30a.m. and 1p.m.
The first two columns are In-Sample results, i.e. the data used to calibrate the model is the same as
the evaluation data. The third column gives Out-of-Sample results, i.e. we calibrate the model on
the 2012 data to apply the strategy on the 2013 data.
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FiGURE 2.6 — Cumulated gains of the strategy applied on BNP Paribas on the period January-
September 2013, every day between 11.30a.m. and 1p.m. The (red) long-dashed line is the perfor-
mance of the Poisson model, the (blue) dashed line is the mono-exponential Hawkes model, and the
(green) dot-dashed line is the multi-exponential Hawkes model. Left : we allow the strategy to trade
at the midprice. Right : we apply a posteriori a linear cost penalty of one half-tick to account for
the bid-ask spread.
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FIGURE 2.7 — Histogram of the daily gains of the strategy applied on BNP Paribas on the period

January-September 2013, between 11.30a.m. and 1p.m. Left : Mono-exponential Hawkes model.
Right : Multi-exponential Hawkes model.

2.5.5 Total
Year IS 2012 | +bid-ask || IS 2013 | +bid-ask || OS 2013 | +bid-ask
Sharpe (Multi) 0.067 —0.763 2.697 1.016 2.794 1.224
Proba. (Multi) 57.8% 44.3% 66.0% 51.8% 65.4% 51.8%
Skew (Multi) —-9.34 —9.62 6.38 6.37 5.94 5.97
Kurtosis (Multi) || 114.76 117.75 62.86 65.85 53.84 57.93
Sharpe (Mono) 0.126 —0.770 2.795 1.191 2.760 1.099
Proba. (Mono) 59.4% 44.8% 66.0% 52.4% 65.4% 52.4%
Skew (Mono) —9.52 —-9.82 6.01 6.02 6.18 6.18
Kurto. (Mono) 118.29 121.77 55.54 59.30 59.20 62.65
Sharpe (Poisson) || 0.001 —0.810 2.807 1.259 2.790 1.224
Proba. (Poisson) 57.8% 43.8% 65.4% 50.8% 65.4% 50.8%
Skew (Poisson) —-9.33 —-9.59 5.96 6.00 6.04 6.08
Kurto. (Poisson) 114.39 116.97 53.37 57.35 54.90 58.87

TABLE 2.13 — Results statistics of the optimal strategy applied on Total on the period January-
September 2012-2013, every day between 11.30a.m. and 1p.m. The first two columns are In-Sample
results, i.e. the data used to calibrate the model is the same as the evaluation data. The third column

gives Out-of-Sample results, i.e. we calibrate the model on the 2012 data to apply the strategy on
the 2013 data.



Chapitre 2 94

2.6 Conclusion

In this paper we extend the theoretical model of |3] by allowing more general forms for the propa-
gator and the Hawkes kernel. Moreover, we derive the conditions that exclude Price Manipulation
Strategies in the sense of Huberman and Stanzl [78] in the case where both the propagator and the
Hawkes part have a multi-exponential decay. This allows us to deduce some interesting links between
the propagator and the Hawkes kernel for general completely monotone kernels. Besides, when the
price propagator is mono-exponential and the Hawkes kernel is multi-exponential, we can still obtain
the optimal strategy as a closed formula. This has some practical interest since the propagator seems
to be well approximated by an exponential, while the Hawkes decay kernel clearly includes several

characteristic time scales.

We also introduce a calibration protocol for the model, that we apply to tick-by-tick data from
French stocks. The results show that the model explains a significant part of the variance of prices.
The long-range propagator is a smoothly decaying curve, but the short-range part is increasing
during a few seconds (which we think corresponds to the time that the bid-ask needs to close after
a large trade). Concerning the estimation of the Hawkes process modeling the flow of trades, we
obtain excitation parameters that significantly differ from zero, which shows in particular that the
flow is not Poissonian. Also, we find that the main driver of the excitation between trades is volumes
rather than price moves. The martingale conditions that prevent PMS are violated in practice, in
particular the directional branching ratio is smaller than the proportion of transient price impact.
Therefore, in our dataset, the price has a notable mean-reverting tendency.

A series of backtests shows that the optimal strategy used for round trips is profitable on average,
therefore the model does offer a relevant prediction for midprice moves. However, a level of tran-
saction costs compatible with the width of the bid-ask spread makes the profits close to zero. This
confirms the natural idea that the absence of Price Manipulation Strategies at this frequency stems
from both market impact and bid-ask costs.

We eventually draw some applications and perspectives on our study. A first straightforward appli-
cation is to use the calibrated model for optimal execution, by using the block trades (2.36) on a
given (possibly random) time grid ©. Contrary to most existing models, this strategy takes the flow
of trades into account. Another possible use of this model is to detect the instants when it is interes-
ting to trade. In fact, equation (2.46) gives the (theoretical) instantaneous cost of non-trading. One
may decide to trade for example only if this cost is above some threshold, or optimize the trade-off
between this cost and transaction costs. Such strategies could be interesting in practice, but need
to be thoroughly investigated on market data. Let us now consider some possible extensions of our
work. First, it would be interesting to handle a calibration of the model on an entire day instead of
a two-hour window. This is certainly difficult due to intra-day variations of trading activity between
the open and the close. Second, it would be nice to incorporate in our model transaction costs such
as the bid-ask spread. A less ambitious goal would be at least to modify our optimal execution
strategy to reduce transaction costs in a clever way, maybe by using equation (2.46) as mentioned
above.
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2.7 Appendix : Estimation of the propagator using Newton-Raphson’s
algorithm

As explained in Section 2.3.3, we resort to Newton-Raphson’s algorithm to minimize the quadratic
error

EG) = > [B-P)

Apw<0<T

which quantifies the distance between the observed midpoint price P; and the predicted price

pt = Pt—ARW + Z AMT é(t—T)

t—Apw <7<t

Let us assume that 7 € R!, [ > 1, is a parameterization of G, i.e. G = G’(Tr) is determined by 7, and
so is the error £(G) = £(m). For a starting point 7, the principle of the algorithm is to approximate
G by the sequence G(m,) such that

YneN, mi1 = m — [VQE(Fn)]fl.VS(Wn)

where VE(r) € R is the gradient of the error £ and V2E(nr) € R/ is its Hessian matrix, w.r.t. the
parameter 7. The convergence of the method is only guaranteed if the starting point 7y is « good
enough », and if V2€(m,) is positive definite for all n € N.

To apply this method, one needs to compute the gradient VE(n) and the Hessian matrix V2&(7) of
the error £ for each parameterization 7 of G. One has

VE(m) =2 Y [By(m) — Py] x VPy(m),

Arw<0<T
viEm=2 Y {[Pg(w) — Py] x V2By(nr) + VBy(n). (vﬁg(w))T}.
Arw<0<T

The problem boils down to computing VPy(r) and V2P (r), which can themselves be expressed as

VP(m)= >  AM.VG(t-7),
t—Arw <7<t

Vh(m)= > AM, V’G(t-1),
t—Arw <7<t

where we drop the dependency of G in  for clarity. Therefore, only the gradient V@G and the Hessian
V2@ of the estimated propagator G need to be specifically derived for each parameterization, which
is the object of the sequel.

An important particular case is when G is linear w.r.t. 7. In that case, V2G = 0, thus V2P (7) = 0
and

Vem =2 Y V. (Vh)

Arw<0<T
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is positive definite for any 7. Also, in that case, VG does not depend on the current values of the
parameter m, and

T = o — [V2€(7T0)]_1.V5(7T0)

is the minimizer of the error £(w) for any my. Therefore, when the propagator is parameterized
linearly, the starting point of the algorithm has no importance and one step is enough to find the
optimum.

2.7.1 TUnconstrained propagator

We consider the unconstrained propagator

-1
A (tit1 —t)gi + (t —ti)giv1
G(t) = gl]]-[tl,ARw[(t) + Z : t : t. = [ti,ti+1[(t)?
i i+1 — U
with [ > 2,0 =1y < t; < --- < t; fixed discretization times, go = 1 and © = (g1,--- , g1) € [0, +00)!

the [-dimensional parameter to estimate. The dependence of G w.r.t. 7 is linear, and we only need
to compute the gradient :

t—1i—1
ti —ti—1

OG(t)  tiy1 —t
0gi  tiy1—t

oG (t) t—ti1
dgi - 11[tz,ARW[(t) + t— 1t ﬂ[tl—l,tz[(t)'

Lt () + Ly g(t)  for1<i<i—1,

2.7.2 Multi-exponential curve

In this section we consider the multi-exponential resilience curve

p
R(t) = v+ 3 N exp(—pib),
=1

and the propagator

. . t .
G0) = [+ (L) = 1) 1| ety + ROV 1000
ad]

determined by R for Lagj > 0 fixed a priori. The dependence of G is linear w.r.t. the parameters if
and only if the p;’s are fixed.

Unit Multi-exponential curve

The « unit » multi-exponential resilience curve is the case where v =1 — Zle A; is imposed. This

yields
P

R(t) =1-Y " Xi(1 — exp(—pit)),

i=1
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and the parameter m = (A1, , Ap, p1,- -+, pp) is 2p-dimensional. One has for ¢,j € {1,--- , p},

OO — 1~ expl(pit)} 280 — —t xexp(pit)
27 27
88R§t) =12 \; exp(—pjt), nga(;) = —t exp(—pit),
0; iOA;
%R(t) O?R(t) O?R(t) S
8>\Z~8)\j N 07 8p¢8pj N 0’ 6)\Z~8pj =0 it 7& J:

General Multi-exponential curve

If we relax the condition v =1 — P | A; so that R(0) can be greater than unity, we obtain

P
R(t) =7+ Z)‘i exp(—pit),

i=1
with 7 > 0, A; > 0. The parameter ™ = (¥, A1, , A\p, p1, - , pp) is then (2p + 1)-dimensional. The
gradient and Hessian are given by

OR(t) . PR(t) 0 R(t) 0 PR(t) 0
o ovr 7 owox, | O0wdp;
85/\(t) = exp(—pit), 85/)(15) = —t )\ exp(—pit),
O2R(t - O2R(t
8/}; ) g3, exp(—pit), % a(; = —t exp(—pit),
PR(t) 0 R(t) PR(t) 0 i)
noN; opidp;  Ondp, g

2.8 Appendix : Maximum Likelihood Estimation for the Hawkes
intensity

The estimation of the Hawkes parameters, as presented in Section 2.3.4, resorts to Maximum Likeli-
hood Estimation. The use of the MLE for Hawkes processes is well known, see for instance Ozaki |94],
and has been recently considered by Da Fonseca and Zaatour [15] in a similar financial framework.
In this section, we give the formula of the log-likelihood for Hawkes processes, and we derive its
gradient and Hessian matrix which are necessary to use Newton-Raphson’s algorithm.

We define the jump processes J;" = Y 0cret Lqan, >0y and J = > g Lean, <oy, i-e. JT (resp.
J7) makes a unit jump when NT (resp. N~) jumps. Say that we observe the realization of the
process on the time interval [0, 7], and that we want to maximize its log-likelihood on [to, 7], with
to € [0,T). Conditionally to (/ifc)te[oﬂ, the log-likelihood of a trajectory (Jt:t)te[tm’]‘] on the time
interval [to, T is (see [16], Section III Proposition 7.2)

T T
1n£(Ji\ni):/ In(xf) dJ;F — / kEdt + T. (2.37)

to to
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Moreover, conditionally to (x;", x; )telo,1], the global log-likelihood of the model is
InL(J|k) =InL(JT|kT)+InL(J |&7). (2.38)

We now compute In £(JF|xT). Since we do not know the history of the process before time ¢ = 0,
it is impossible to compute /ﬁj exactly using equation (2.5) since it requires to know all the jumps.
However, a reasonable approximation is to choose ty € (0,7) such that

Yu > tg, K(u) <1,
which yields

R koot Y K(t—7) [L{an,>01%s(ANt/m1) + Lian,<oye(— AN /my)] (2.39)

o<r<t

for t € [to, T]. Let us assume in the sequel of this section that ¢ is such that (2.39) can be considered
as an equality.

We define 79 = 0 and 7;, ¢ > 1 the ordered combined jump times of N* and N~ on [0,7], and
x(t) =max{i > 0,7; <t} for t € [0,T]. We also define for i > 1

0 = os(AN /mi)k;it + @ (ANL /ma)k;

where kz+ = 1if 7; is a jump time of N1, kj‘ = 0 otherwise, and k; is defined similarly with N™.
One has for t € [tg, T
x(t)
Ky = Koo + ZG;K(t — 7).
j=1

Distinguishing the jumps before and after tg, we get

T x(to) x(T)
/ Ry dt = Koo(T — o) + 07 [K(T —7j) —K(to—7)] + Y 07 [K(T—7)-E(0)],
fo i=1 J=x(to)+1

(2.40)
where K is the antiderivative of K. Let us turn to the other term of the log-likelihood. We set
Ai"anndforiEQ

i—1
Aj_ = ZQTK(% - Tj),
j=1
and we have
T x(T)
/ In(k2) AT = ) kfIn (ke + A]). (2.41)
fo i=x(to)+1

We have the explicit expression of the log-likelihood In £(J*|x™) from (2.38), (2.37), (2.40) and (2.41).
Thus, it can be evaluated on a discrete set of points, for instance to estimate one or several para-
meters with a grid search. Now, to maximize the likelihood using Newton-Raphson’s algorithm, one
must also determine the gradient and Hessian matrix of In £(J1|x™).
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For given parameterizations of g, ¢, and K, we note m an arbitrary parameter, and we have

et x(T) +
W = Z % — (T —ty),
o i=x(to)+1 0 T
oLty X ko Af
omEJTIRT) _ Ny Onfi
o i=x(to)+1"">® +4,
X(to) x(T)
— > 00 [K(T—7) = K(to—m)l} — Y 0:{6] [K(T —7;) — K(0)]},
=1 J=x(to)+1

which yields the gradient of the log-likelihood. For the Hessian matrix, let us note m, 7’ two para-
meters (distinct or not) of ¢g, . or K. We have

PL(THRt) ’%T:) ki PLHet) R kfo.Af
OK2, L (oo + AF]2’ OKooOT e [Koo + A2
Pl LI |wt) ’%T:’ " ( oA 0.Af a,r,Aj)
omom o "\ koo + AT [Reo + A2
x(to) x(T)
- Z AT KT —7) = K(to—m)]} — Y 92.46] [K(T —7;) — K(0)]}.
Jj=x(to)+1

As soon as K is known and g, ¢¢, K, K are twice differentiable w.r.t. the parameterization, it
is straightforward to deduce the analytical expressions of the gradient and Hessian matrix of the
log-likelihood from the preceding equations.

2.9 Appendix : Optimal execution with a multi-exponential Hawkes
kernel

2.9.1 Proof of Theorem 2.2.1

First, let us remark that E [ fOT Wid Xy — WrXp| =0, and we can assume without loss of generality

that o = 0. We decompose the price process as follows. We introduce dS} = ngt, dDiV’i =
—piD{dt + AN, dSY = YdX; and dD; = —p; D dt + 2dX,, with SY = So, D™ = Dj,
S = Dg(’i = 0. We have

P, =PX + PN, with PN = SN+ZpNz pPX = SX+ZDXz
=1 =1

Then, we can write the cost (2.15) as

C(X) = / PNdX, - PN X1 + C(X),
[0,T)
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where C(X) = [io ) Pt dXy + 5. > (AX;)? = PYXp + 5, X7. We note that C(X) is a
! repxnioT)

deterministic function of X and is precisely the cost function considered in [1|. Besides, it satisfies

C(cX) = 2C(X) for ¢ € R. By the same argument as in the proof of Theorem 2.1 in [3], we get

that there is no PMS if, and only if P; is a (F;)-martingale when X; = 0 for any ¢.

We now consider that X = 0 and write the martingale condition for P under the Hawkes model (2.9),
(2.10) and (2.11). We have

AP, = dS; +dD; + o dW; = det ZplDt dt+ o dW, = det—i—ath—i- dtZA
=1 =1

where

Al = %5@ — piD}, 0F = /ﬁf( ) /@t_(i),

and N; = N; — my fg dydu is a martingale. Then, (F;) is a martingale if and only if almost surely
and dt-almost everywhere, le A} = 0. We have

Aipi

dAi = —p AL dt + Ly dI, — 2P0 an,
q
with .
o= [ [ = 0 @NG fm) = (= ) @N /o) (2.4
In particular dA! = —p;Aldt between two consecutive jumps 7 and 7/ of N. Therefore, we have

AL =3P Alemrilt=T) = 0 for t € [r,7') and therefore AL = 0 for all i (the equality for
t =71+ k(- T)/p,k € {0,...,p — 1} gives a Vandermonde system). Thus, we necessarily have
Al =0 for t > 0 for any i. Then, dA! = 0 gives

my

o [(¢s — pe) (AN /ma) — (ps — @) (AN /m1)] = A;pi [AN;" —dN[]

for all ¢t > 0 and all i € {1,---,p}. Thus, ps — ¢ must be linear on the support of the law p of
the jumps of N*, and besides, we must have Vi, (15 — tc)w; = Aip;. This precisely gives (2.16).
Conversely, it is clear that (2.16) ensures that P is a martingale by the same calculations.

2.9.2 Proof of Theorem 2.2.2

As in Section (2.9.1), we assume without loss of generality that o = 0. We first introduce some
notations to present the main results on the optimal execution. We define 8 = x; " @) — Ky @ and

5= k7Y 4 ;@ From (2.9), (2.10) and (2.20), we have

dsi = =B 6idt + w; dl; , dXi = —B; (B¢ — 2ks/p) dt + w; dIy, (2.43)

for all i € {1,---,p}, where I; = fot [(¢s + @) (AN /m1) + (s + ¢c) (AN, /m1)] and I; is defined
by (2.42).
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We now proceed exactly as in [3], Appendix B, and only give here the main lines and use similar
notations. We assume without loss of generality ¢ = 1. For t € [0,T], z,d,z € R and 0, % € RP we
denote by C(t,x,d, z,d,%) the minimal cost to liquidate X; = x over the time interval [¢t,T] when
Dy=d, Sy =2, 0, =9 and ¥; = X. We look for a function that has the following form

Ct,r,d,2,8,%) = a(T—t)(d—(1-v)zx)* + %(z—uaz)2 + (d—(1-v)z)(z —va) — (d—;Z)
+ (d— (1 — Z/)J,‘) Zbi(T_t) 6; + ZZCi7j(T_t) 515]
+ iei(T—t) S+ g(T —1), (2.44)

i=1

with a,b;,¢; 5,ei,9 : Ry — R continuously differentiable functions. We have the limit condition
C(T,2,d,2,6,8) = —(d+z)z+22/2=3(d+ 2 —x)? — (d+ 2)?/2, which is the cost of a trade of
signed volume —x. We thus have

a(0) = 5, bi(0) = ¢;,;(0) = e(0) = g(0) = 0.

For an arbitrary strategy X, we define II;(X) = fot Puqu—i—% EO§T<t(AXT)2+C(t, Xt, Dy, Si6¢, 54).
This is the cost of the strategy which is equal to X up to time ¢t and is then optimal. Therefore,
(I,(X),t € [0,T]) has to be a submartingale and is a martingale if, and only if, X is optimal. We
define

dAX = | Z(t, Xy, Dy, Sy, 61, 50) + 8:C — pDyd4C — Zﬁlazag C— ZBZ — 2o /p)0s.C| dt,  (2.45)

i=1 i=1

where the derivatives of C are taken in (¢, Xy, Dy, Stdy, 3¢) and Z(t,x,d, 2,0, %) :=

P
( Z [Z; + 4] ) Clt,z,d+ (1 =)V, 2+ vV, 6 + ps—c(V/m1)w, X + pgpe(V/mi)w) — C(t,x,d,2,6,%)]

ge

with V' ~ p, @s—¢c = @5 — @ and @syre = @s + @c. The process AtX is continuous and such that
I1;(X) — A is a martingale. Given the quadratic nature of the problem, we search a process AX of
the form

l\DM—l

ZE — 4] ) Cltyz,d— (1=v)V,2 = vV,6 — ps—c(V/m1)w, X + pspe(V/mi)w) — C(t,z,d, 2,6,%)],

dAY = . P_dt x [j(T—t)(Dt—(l—V)Xt) - Dy + ikz’(T—t) 5@}2- (2.46)

o i=1

We now introduce the variables y = d — (1 — v)x and £ = z — vz and work with (y,d, £, d,X) instead



Chapitre 2 102

of (z,d,2,0,%). From (2.44) and the definition of Z, we have

8tC(t,x,d,z,5,Z):fay2 - yZbl (Sl — ZZC%J 515] — Zez 21 — g,

_ — v P2 5
pd 04C(t,x,d, 2,6,%) = (2,0a—|—ly> dy + —d pd Y " bid;,

— Bid; 05,C(t,x,d,2,6,%5) = —Bib; sy — PBid; {201',2'51' + Z%ﬂj] )
J#i
- ﬁl(zl - 2'%00/19) 62iC(t,SL’, d,Z, 57 2) = _ﬁiei 2 + 261‘%0067,'/197
P

P
v my
Z(t,x,d,z,&,E):(mlx |:2(1—V)Q+V+V:| E akbk> yiEZI(Si — 1_yd§ 0;

i=1

i=1 j=1 k=1
p 1 p p p p
+ Z <m2 X |:(1 — 1/)2(1 + l/(l — l//2) - 2:| + (1 - V) Z arbr + @Z Z Ck,|WEW] + Z(ak + kaLC)ek> >,
i=1 k=1 k=11=1 k=1
with & = E[V x (s —c)(V/m1)], & = E[(0s — e )?(V/m1)]. We now identify each term of equations
(2.45) a d (2.46).
(Eq. dy) : — (2pa—|— %) = —i—pyj, (Eq. ¥?) : —a = %jQ.
These two equations are the same as in [3] and give
1 1 1 v
i(u) = d = —— . 24
i) 2+ pu and a(u) 1—v <2—|—pu 2) (247)

(Eq. 6iy) : —bi — Bibi + S0_ awb + ma x [2(1—V)G+V+ﬁ} = 2 jki.
(Eq. 0;id) :  — pb; — {2 = —%ki,

which yields k;(u) = 5% b;(u) + 2—1 Plugging this in (Eq. 6;), we have b; = —Bibi +> % _1 oy —
12f (1 SEb; + m1> + my [2(1 —vat+v+ E}, and since j/(1 —v) = a+v/[2(1 —v)], we have

b( ) = ibi(u) + >0, @kbk(u)_ﬁbi(u) + 15 giyppu“ We rewrite it as
bu) = |—H——L 1 |pu) + T LEVP T (2.48)
N 24+ pu' P 1—v 2+ pu ’ ’ ’ )

where I, € RP*P is the identity matrix and H € RP*P is given by (2.21). To solve equation (2.48),
we search a solution of the form b(u) = X [exp(—uH) . b(u)] for w > 0. This yields

2+pu
1 : my 1+vpu T
—uH) . b = 1,---,1
2+pu><[exp( uH) - b(u)] 1 2—i—pux(7 A
thus . m
b(u) = —— x (1+vpu) x [exp(uH) . (1,---,1)7].

1—v
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From the definition (2.22), we have exp(—uH). [ ['(1 + vps) x exp(sH)ds| = u(uH)+vpuw(uH)
for u > 0. Since b(0) = 2b(0) = 0, we obtain
miu

bu) = "1 x 2—:pu % {C(uH) + vpu w(uH)} . (1, ,1)7]. (2.49)

Equation (Eq : ;d) then gives the vector function k(u)

k(u) = ™ {Ip + ﬁ X [C(uH) + vpu w(uH)]} (1, 71)T. (2.50)

Thus, the functions j and k involved in (2.46) are explicit, which guarantees that the optimal strategy
is obtained as a closed formula.

The remaining functions ¢; j, e; and g do not play any role to determine the optimal strategy. By
identifying the terms in 0;d;, 3; and the constant term, we check that they solve a system of linear
ODEs. They are thus uniquely determined and well-defined on R, and the cost function C is well-
defined. Thes ODEs are also important to run the verification argument, i.e. to check that C is
indeed the optimal cost function and that the strategy X™* described below is the optimal one.

We now determine the strategy X* such that II(X*) is a martingale, or equivalently such that AX"
is constant. Equations (2.46) and (2.47) yield

2
x _ P D —(1-v)X;, T
A4 = —dix T T Dt+;kz(T t) i
p/(1 = v) dtx[(l )X; + [1+p(T—t)] Dy — [2+ p(T —1)] Zp:k(T t)éir
—— -V - - - (47— .
2+ p(T — )2 f g t g £ t
Thus, AX” is constant on (0,7) if, and only if
p .
as., dt-ae on (0,7), (1-v)X;=—[1+p(T—t)] Dy + [2+p(T—1)] > k(T —1) 5. (2.51)
=1

This equation characterizes the optimal strategy. In particular, we obtain its initial jump AX( at
time t =0

1 T'\qD T
(1-naxg = —LFrTl 0+$0+m1x[(1,~-,1). {J,,+ P

2+ pT 20 5+ o7 ¢ [((TH) 4 vpT w(TH)]} .50} .

where &y = (63,---,d5) " € RP.
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Chapitre 3

Structure fine de la volatilité rétroactive :
effets intra-journaliers et nocturnes

Ce chapitre est un article écrit avec Rémy Chicheportiche et Jean-Philippe Bouchaud [27] et publié
dans la revue Physica A : Statistical Mechanics and its Applications.

Abstract. We decompose, within an ARCH framework, the daily volatility of stocks into overnight
and intra-day contributions. We find, as perhaps expected, that the overnight and intra-day returns
behave completely differently. For example, while past intra-day returns affect equally the future
intra-day and overnight volatilities, past overnight returns have a weak effect on future intra-day
volatilities (except for the very next one) but impact substantially future overnight volatilities. The
exogenous component of overnight volatilities is found to be close to zero, which means that the lion’s
share of overnight volatility comes from feedback effects. The residual kurtosis of returns is small
for intra-day returns but infinite for overnight returns. We provide a plausible interpretation for
these findings, and show that our Intra-day/Overnight model significantly outperforms the standard
ARCH framework based on daily returns for Out-of-Sample predictions.

3.1 Introduction

The ARCH (auto-regressive conditional heteroskedastic) framework was introduced in [53] to account
for volatility clustering in financial markets and other economic time series. It posits that the current
relative price change r; can be written as the product of a “volatility” component o; and a certain
random variable &, of zero mean and unit variance, and that the dynamics of the volatility is
self-referential in the sense that it depends on the past returns themselves as :

q q
of =5+ K, =5+ K(r)oi & ., (3.1)

=1 T=1

where s? is the “baseline” volatility level, that would obtain in the absence of any feedback from the
past, and K(7) is a kernel that encodes the strength of the influence of past returns. The model is
well defined and leads to a stationary time series whenever the feedback is not too strong, i.e. when

107
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?_, K(r) < 1. A very popular choice, still very much used both in the academic and professional

literature, is the so called “GARCH” (Generalized ARCH), that corresponds to an exponential kernel,
K(r) = ge~ ™/ with ¢ — co. However, the long-range memory nature of the volatility correlations
in financial markets suggests that a power-law kernel is more plausible — a model called “FIGARCH?”,
see [19, 29] and below.

Now, the ARCH framework implicitly singles out a ¢ime scale, namely the time interval over which
the returns r; are defined. For financial applications, this time scale is often chosen to be one day,
i.e. the ARCH model is a model for daily returns, defined for example as the relative variation of
price between two successive closing prices. However, this choice of a day as the unit of time is often
a default imposed by the data itself. A natural question is to know whether other time scales could
also play a role in the volatility feedback mechanism. In our companion paper [38], we have studied
this question in detail, focusing on time scales larger than (or equal to) the day. We have in fact
calibrated the most general model, called “QARCH” [102], that expresses the squared volatility as a
quadratic form of past returns, i.e. with a two-lags kernel K (7, 7')rs—_,r;_, instead of the “diagonal”
regression (3.1). This encompasses all models where returns defined over arbitrary time intervals
could play a role, as well as (realized) correlations between those — see [38] and references therein
for more precise statements, and [30, 92, 103, 111] for earlier contributions along these lines.

JL,

The main conclusion of our companion paper [38] is that while other time scales play a statistically
significant role in the feedback process (interplay between r,_, and r;_./ resulting in non-zero off-
diagonal elements K (7,7")), the dominant effect for daily returns is indeed associated with past daily
returns. In a first approximation, a FIGARCH model based on daily returns, with an exponentially
truncated power-law kernel K(7) = g%~/ provides a good model for stock returns, with
a ~ 1.1 and 7, ~ 50 days. This immediately begs the question : if returns on time scales larger
than a day appear to be of lesser importance,! what about returns on time scales smaller than
a day? For one thing, a trading day is naturally decomposed into trading hours, that define an
‘Open to Close’ (or ‘intra-day’) return, and hours where the market is closed but news accumulates
and impacts the price at the opening auction, contributing to the ‘Close to Open’ (or ‘overnight’)
return. One may expect that the price dynamics is very different in the two cases, for several reasons.
One is that many company announcements are made overnight, that can significantly impact the
price. The profile of market participants is also quite different in the two cases : while low-frequency
participants might choose to execute large volumes during the auction, higher-frequency participants
and market-makers are mostly active intra-day. In any case, it seems reasonable to distinguish two
volatility contributions, one coming from intra-day trading, the second one from overnight activity.
Similarly, the feedback of past returns should also be disentangled into an intra-day contribution
and an overnight contribution. The calibration of an ARCH-like model that distinguishes between
intra-day and overnight returns is the aim of the present paper, and is the content of Section 3.2.
We have in fact investigated the role of higher frequency returns as well. For the sake of clarity
we will not present this study here, but rather summarize briefly our findings on this point in the
conclusion.

The salient conclusions of the present paper are that the intra-day and overnight dynamics are indeed
completely different — for example, while the intra-day (Open-to-Close) returns impact both the

1. Note a possible source of confusion here since a FIGARCH model obviously involves many time scales. We need
to clearly distinguish time lags, as they appear in the kernel K (7), from time scales, that enter in the definition of the
returns themselves.
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future intra-day and overnight volatilities in a slowly decaying manner, overnight (Close-to-Open)
returns essentially impact the next intra-day but very little the following ones. However, overnight
returns have themselves a slowly decaying impact on future overnights. Another notable difference
is the statistics of the residual factor &, which is nearly Gaussian for intra-day returns, but has an
nfinite kurtosis for overnight returns. We discuss further the scope of our results in the conclusion
Section 3.4, and relegate several more technical details to appendices.

3.2 The dynamics of Close-to-Open and Open-to-Close stock re-
turns and volatilities

Although the decomposition of the daily (Close-to-Close) returns into their intra-day and overnight
components seems obvious and intuitive, very few attempts have actually been made to model them
jointly (see |61, 106]). In fact, some studies even discard overnight returns altogether. In the present
section, we define and calibrate an ARCH model that explicitly treats these two contributions
separately. We however first need to introduce some precise definitions of the objects that we want
to model.

3.2.1 Definitions, time-line and basic statistics

We consider equidistant time stamps ¢ with At = 1 day. Every day, the prices of traded stocks are
quoted from the opening to the closing hour, but we only keep track of the first and last traded
prices. For every stock name a, Of is the open price and C} the close price at date ¢. (In the following,
we drop the index a when it is not explicitly needed). We introduce the following definitions of the
geometric returns, volatilities, and residuals :

Intra-day return : 7 = In(C;/Oy) = 0,&) (3.2a)
Overnight return : ;' = In(Oy/Ci—1) =0, &) (3.2b)
Daily return : v, =1In(Cy/Ci—1) =P + 1) = 04&;. (3.2¢)

The following time-line illustrates the definition of the three types of return :

Night ¢ Day t Night t+1
. — Ci1 £ on Y Cy g Ot+1 — ... (33)
—— —_—— ———
o i

To facilitate the reading of our tables and figures, intra-day returns are associated with the green
color (or light gray) and overnight returns with blue (or dark gray).

Before introducing any model, we discuss the qualitative statistical differences in the series of Open-
Close returns rp and Close-Open returns r{'. First, one can look at Fig. 3.1 for a visual impression
of the difference : while the intra-day volatility is higher than the overnight volatility, the relative
importance of « surprises » (i.e. large positive or negative jumps) is larger for overnight returns. This
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FIGURE 3.1 — Example of a historical time series of stock day returns (top) and overnight returns
(bottom).
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3

W e =] [eteni] e
1.210°% 0.022 —0.12 12.9
-1.0 107 0.013 ~15 62.6

TABLE 3.1 — Distributional properties of intra-Day and overNight returns (first four empirical mo-
ments). (-) means average over all dates, and [-] average over all stocks.

is confirmed by the numerical values provided in Tab. 3.1 for the volatility, skewness and kurtosis of
the two time series 77 and 7).

It is also visible on Fig. 3.1 that periods of high volatilities are common to the two series : two minor
ones can be observed in the middle of year 2000 and at the beginning of year 2009, and an important
one in the middle of year 2002.

An important quantity is the correlation between intra-day and overnight returns, which can be
measured either as [(r¥rP)] /oNoP (overnight leading intra-day) or as [(rPry, ;)] /o~o® (intra-day
leading overnight). The statistical reversion revealed by the measured values of the above correlation
coefficients (—0.021 and —0.009, respectively) is slight enough (compared to the amplitude and reach
of the feedback effect) to justify the assumption of i.i.d. residuals. If there were no linear correlations
between intra-day and overnight returns, the squared volatilities would be exactly additive, i.e.

0? = oP? 4+ )2, Deviations from this simple addition of variance rule are below 2%.

3.2.2 The model

The standard ARCH model recalled in the introduction, Eq. (3.1), can be rewritten identically as :

q q q

7=+ Y KP4 Y K@+ 2 Y K b (3.4)

T=1 T=1 T=1

meaning that there is a unique kernel K (7) describing the feedback of past intra-day and overnight
returns on the current volatility level.

If however one believes that these returns are of fundamentally different nature, one should expand
the model in two directions : first, the two volatilities o®? and o™? should have separate dynamics.
Second, the kernels describing the feedback of past intra-day and overnight returns should a priori
be different. This suggests to write the following generalized model for the intra-day volatility :

o o o)
oP? = "% ¢ Z LP7P(r)yrp.  + Z KPP7P(p)pP 2 49 Z KNP7P () (3.5)
T=1 T=1

T=1

o0 o0 [e.e]
D LN D+ Y KT P 2y KNP e

T7=0 7=0 7=0

where we have added the possibility of a “leverage effect”, i.e. terms linear in past returns that can
describe an asymmetry in the impact of negative and positive returns on the volatility. The notation
used is, we hope, explicit : for example KPP~P describes the influence of squared intra-Day past
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returns on the current intra-Day volatility. Note that the mixed effect of intra-Day and overNight
returns requires two distinct kernels, K°Y 7P and KPP depending on which comes first in time.
Finally, the time-line shown above explains why the 7 index starts at 7 = 1 for past intra-day
returns, but at 7 = 0 for past overnight returns. We posit a similar expression for the overnight
volatility :

%) e o)
2 2 2
N = L3N, 4+ SO KN 24 2 Y KN R e (3.6)
=1

T=1 T=1

00 00 00
I S LR S L ALNE) S e
T=1

=1 =1

The model is therefore fully characterized by two base-line volatilities s”, s™, four leverage (linear)
kernels L' eight quadratic kernels K*”" 77 and the statistics of the two residual noises &P, &N
needed to define the returns, as ' = ¢7¢’. We derive in Appendix 3.5 conditions on the coefficients
of the model under which the two volatility processes remain positive at all times. The model
as it stands has a large number of parameters; in order to ease the calibration process and gain
in stability, we in fact choose to parameterize the 7 dependence of the different kernels with some
simple functions, namely an exponentially truncated power-law for K77 and a simple exponential
for L7777 :

K(1) = gp7 * exp(—wp 7); L(7) = go exp(—we T) . (3.7)

The choice of these functions is not arbitrary, but is suggested by a preliminary calibration of the
model using a generalized method of moments (GMM), as explained in the companion paper, see
Appendix C.2 in Ref. [38].

As far as the residuals £, & are concerned, we assume them to be i.i.d. centered Student variables of
unit variance with respectively v > 2 and v~ > 2 degrees of freedom. Contrarily to many previous
studies, we prefer to be agnostic about the kurtosis of the residuals rather than imposing a priori
Gaussian residuals. It has been shown that while the ARCH feedback effect accounts for volatility
clustering and for some positive kurtosis in the returns, this effect alone is not sufficient to explain
the observed heavy tails in the return distribution (see for example [38]). These tails come from true
‘surprises’ (often called jumps), that cannot be anticipated by the predictable part of the volatility,
and that can indeed be described by a Student (power-law) distribution of the residuals.

3.2.3 Dataset

The dataset used to calibrate the model is exactly the same as in our companion paper [38]. It is
composed of US stock prices (four points every day : Open, Close, High and Low) for N = 280
stocks present permanently in the S&P-500 index from Jan. 2000 to Dec. 2009 (7" = 2515 days). For
every stock a, the daily returns (rf), intra-day returns (rP®) and overnight returns (r}*) defined in
Eq. (3.2) are computed using only Open and Close prices at every date t. In order to improve the
statistical significance of our results, we consider the pool of stocks as a statistical ensemble over
which we can average. This means that we assume a universal dynamics for the stocks, a reasonable
assumption as we discuss in Appendix 3.6.

Bare stock returns are “polluted” by several obvious and predictable events associated with the life
of the company, such as quarterly announcements. They also reflect low-frequency human activity,
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FIGURE 3.2 — Normalized weekly seasonality of the volatility. The overnight volatility is that of the
previous night (i.e. the volatility of the weekend for Monday and that of Thursday night for Friday).

such as a weekly cyclical pattern of the volatility, which is interesting in itself (see Fig. 3.2). These
are of course real effects, but the ARCH family of models we investigate here rather focuses on the
endogenous self-dynamics on top of such seasonal patterns. For example, the quarterly announcement
dates are responsible for returns of typically much larger magnitude (approximately three times larger
on average for daily returns) that have a very limited feedback in future volatility.

We therefore want to remove all obvious seasonal effects from the dataset, and go through the

following additional steps of data treatment before estimating the model. For every stock a, the

average over time is denoted (r%) := %Zt r¢, and for each date ¢, the cross-sectional average over
stocks is [ry] := & >, r&. All the following normalizations apply both (and separately) for intra-day
returns and overnight returns.

— The returns series are first centered around their temporal average : ¢ <— rf — (r%). In fact, the
returns are already nearly empirically centered, since the temporal average is small, see Tab. 3.1
above.

— We then divide the returns by the cross-sectional dispersion :

22
re e/ [rfa}.

This normalization? removes the historical low-frequency patterns of the volatility, for example
the weekly pattern discussed above (Fig. 3.2). In order to predict the “real” volatility with the
model, one must however re-integrate these patterns back into the o7’s.

2. 1If the element a is not excluded in the average, the tails of the returns are artificially cut-off : when |rf| — oo,

[7¢1/+/Tr;2] is capped at VN < oo.
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— Finally, we normalize stock by stock all the returns by their historical standard deviation : for all
stock a, for all ¢,

i rt o),

imposing (r%%) = (r¥®%) = 1.
This data treatment allows to consider that the residual volatility of the returns series is independent
of the effects we do not aim at modeling, and that the series of all stocks can reasonably be assumed
to be homogeneous (i.e. identically distributed), both across stocks and across time. This is necessary
in order to calibrate a model that is translational-invariant in time (i.e. only the time lag T enters
Egs. (3.5,3.6)), and also to enlarge the calibration dataset by averaging the results over all the stocks

in the pool — see the discussion in Appendix 3.6.

3.2.4 Model estimation

Assuming that the distribution of the residuals is a Student law, the log-likelihood per point of the
model can be written as (s =p,~) :

v +1

J
L(©" V' [{r", ™)) = 5 n| (' - 2) 7(6)

ln‘(y‘]—2)at2(@‘]) v (38)
where 0}? = ¢2(©’|{rP,r~}) are defined in Eqs. (3.5,3.6), v’ are the degrees of freedom of the
Student residuals, and ©7 denote generically the sets of volatility feedback parameters.

Conditionally on the dataset, we maximize numerically the likelihood of the model, averaged over
all dates and all stocks.

Calibration methodology : As mentioned above, we in fact choose to parameterize the feedback
kernels as suggested by the results of the method of moments, i.e. exponentially truncated power-
laws for K’s and simple exponentials for L’s. Imposing these simple functional forms allows us to
gain stability and readability of the results. However, the functional dependence of the likelihood on
the kernel parameters is not guaranteed to be globally concave, as is the case when it is maximized
« freely », i.e. with respect to all individual kernel coefficients K (7) and L(7), with 1 < 7 < gfree.
This is why we use a three-step approach :

1. A first set of kernel estimates is obtained by the Generalized Method of Moments (GMM), see
[38], and serves as a starting point for the optimization algorithm.

2. We then run a Maximum Likelihood Estimation (MLE) of the unconstrained kernels based on
Eq. (3.8), over 6 X gfee parameters for both © and O, with a moderate value of maximum lag
Gfree = 03 =~ three months. Taking as a starting point the coefficients of step 1 and maximizing
with a gradient descent, we obtain a second set of (short-range) kernels.

3. Finally, we perform a MLE estimation of the parametrically constrained kernels with the
functional forms (3.7) for K’s and L’s, which only involves 4 x 3 + 2 X 2 parameters in every
set OF and OF, with now a large value of the maximum lag geonstr = 512 ~ two years. Taking
as a starting point the functional fits of the kernels obtained at step 2, and maximizing with
a gradient descent, we obtain our final set of model coefficients, shown in Tabs. 3.2,3.3.
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Thanks to step 2, the starting point of step 3 is close enough to the global maximum for the
likelihood to be locally concave, and the gradient descent algorithm converges in a few steps. The
Hessian matrix of the likelihood is evaluated at the maximum to check that the dependency on all
coefficients is indeed concave.

The numerical maximization of the likelihood is thus made on 2 or 3 parameters per kernel, inde-
pendently of the chosen maximum lag gconstr, that can thus be arbitrarily large with little additional
computation cost.

Finally, the degrees of freedom v of the Student residuals are determined using two separate one-
dimensional likelihood maximizations (one for ¢ = ggee and one for ¢ = geonstr) and then included
as an additional parameter in the MLE of the third step of the calibration. Note that v does not
vary significantly at the third step, which means that the estimation of the volatility parameters at
the second step can indeed be done independently from that of v.

This somewhat sophisticated calibration method was tested on simulated data, obtaining very good
results.

The special case s> = 0 : We ran the above calibration protocol on intra-day and overnight
volatilities separately.

For the overnight model, this led to a slightly negative value of the baseline volatility sN? (statistically
compatible with zero). But of course negative values of s? are excluded for a stable and positive
volatility process. For overnight volatility only, we thus add a step to the calibration protocol,
which includes the constraint s¥? = 0 in the estimation of KPP~ and K N7N (which are the
two main contributors to the value of the baseline volatility). For simplicity, we consider here that
(oN?) = (rP?) = (1N?) = 1. We take the results of the preceding calibration as a starting point and
freeze all the kernels but KPP7N and KN¥7N_ expressed (in this section only) as follows :

KPP7N(1) = g7~ exp(—w1iT), KN7N(1) =~ g7~ exp(—waT), (3.9)
where g = g(7, a1, w1, az,ws) is fixed by the constraint 8% =0 :
1—c 1

h(ai,wr) + h(ag,w2); h(e,w) = Z 7% exp(—wT), (3.10)

=1

g(v, 1, w1, a0, wa) =

with v > 0 the ratio of the two initial amplitudes, and ¢ the (low) contribution of the fixed ‘cross’
kernels KN?7N and KPN7N t0 s¥2. We then maximize the likelihood of the model with respect to the
five parameters v, a1, w1, @y and ws, for which a gradient vector and a Hessian matrix of dimension
5 can be deduced from equations (3.9) and (3.10). The coefficients and confidence intervals of the
kernels KPP7N and K™N7N are replaced in Sect. 3.3.1 by the results of this final step, along with
the corresponding value of the overnight baseline volatility, sN% = 0 in Sect. 3.3.3.

For intra-day volatility instead, the results are given just below, in Sect. 3.3.1.
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3.3 Intra-day vs. overnight : results and discussions

The calibration of our generalized ARCH framework should determine three families of parameters :
the feedback kernels K and L, the statistics of the residuals ¢ and finally the “baseline volatilities”
s2. We discuss these three families in turn in the following sections.

3.3.1 The feedback kernels

In this section, we give the results of the ML estimation of the regression kernels for a maximum
lag ¢ = 512 : estimates of the parameters are reported in Tabs. 3.2,3.3, and the resulting kernels are
shown in Fig. 3.3.

Kernels K(t)=gp7 e 7 L(T) = gee @™

gp x 10% | a wp % 107 ge X 10> | we x 10
KPP=D 11799 +0.06 | 0.71 +0.003 | 0.64 + 0.02 — ——
KN=D | 653+0.22 | 2.30+0.07 | 0.044+0.97 —— ——
KNo=D 1 1524017 | 1.03+£0.11 | 1.3+1.2 —— ——
KPN=D (11354+0.22 | 1.03+0.17 | 3.0+4.6 —— ——
LP—P —— —4.9740.25 | 183+ 1.3
—— —2.834+0.30 | 22.3+2.5

LN*)D

TABLE 3.2 — Day volatility : estimated kernel parameters for K’s and L’s, with their asymptotic
confidence intervals of level 95%, as computed using the Fisher Information matrix with the Gaussian
quantile (1.98).

Kernels K(r)=gpm “e “rT L(T) = gee @™ ‘
gp x 107 | o wp % 10 ge X 10> | we x 107
KPPy 6.59+0.33 | 0.80£0.02| 14+04 - ——
KNNTN 3.64+£0.17 | 0.58£0.01 | 0.58 £0.04 —— -
KNPTN 1.39£0.11 | 0.744+0.03 | 0.42£0.12 —— ——
KPN7N I —1.00+£0.29 | 4.22+2.44 | 0.02+23 —— ——
LP=X —— —2.094+0.05 | 5.5£0.2
LN7N —— —— —— —2.03£0.20 | 13.1+£2.2

TABLE 3.3 — Overnight volatility : estimated kernel parameters for K’s and L’s, with their asymptotic
confidence intervals of level 95%, as computed using the Fisher Information matrix with the Gaussian
quantile (1.98).

We define the exponential characteristic times 7, := 1/w, and 7 := 1/w,, for which qualitative
interpretation is easier than for w, and we. In the case of the quadratic kernels (of type K), 7,
represents the lag where the exponential cut-off appears, after which the kernel decays to zero
quickly. One should note that in three cases, we have w, — Aw, < 0. These correspond to kernels
with a > 1, which means that the power-law decays quickly by itself. In these cases the identifiability
of wp is more difficult and cut-off times are ill-determined, since the value of wj, only matters in a
region where the kernels are already small. The exponential term exp(—wy 7) could be removed from
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FI1GURE 3.3 — Estimated kernels, impacting intra-Days in (light) green, overNights in (dark) blue.
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the functional form of equation (3.7), for these kernels only (the calibration would then modify very
slightly the value of the power-law exponent «).

Intra-day volatility : From Tab. 3.2 and Fig. 3.3(a), we see that all intra-day quadratic kernels
are positive. However, a clear distinction is observed between intra-day feedback and overnight
feedback : while the former is strong and decays slowly (o = 0.71 and 7, = 157 days), the latter
decays extremely steeply (a = 2.30) and is quickly negligible, except for the intra-day immediately
following the overnight, where the effect is as strong as that of the previous intra-day. The cross
kernels (xo — p or v — p) are both statistically significant, but are clearly smaller, and decay
faster, than the oo — b effect.

As far as the leverage effect is concerned, both L’s are found to be negative, as expected, and of
similar decay time : 7, &~ 5 days (one week). However, the amplitude for their immediate impact is
two times smaller for past overnight returns : LN 7P = —0.0283 versus L°7P = —0.0497.

In summary, the most important part of the feedback effect on the intra-day component of the
volatility comes from the past intra-days themselves, except for the very last overnight, which also
has a strong impact — as intuitively expected, a large return overnight leads to a large immediate
reaction of the market as trading resumes. However, this influence is seen to decay very quickly with
time. Since a large fraction of company specific news release happen overnight, it is tempting to
think that large overnight returns are mostly due to news. Our present finding would then be in line
with the general result reported in [32] : volatility tends to relax much faster after a news-induced
jump than after endogenous jumps.

Overnight volatility : In the case of overnight volatility, Tab. 3.3 and Fig. 3.3(a) illustrate that
the influence of past intra-days and past overnights is similar : KPP~ N(7) ~ KN7N(7), in particular
when both are large. The cross kernels now behave quite differently : whereas the behavior of KNP7N
is not very different from that of KPP7N or KNN7N (although its initial amplitude is four times
smaller), K°Y7N(7) is negative and small, but is hardly significant for 7 > 2. Interestingly, as
pointed out above, the equality KNP7N = KPP7N = KNNZN means that it is the full Close-to-Close
return that is involved in the feedback mechanism on the next overnight. What we find here is that
this equality very roughly holds, suggesting that, as postulated in standard ARCH approaches, the
daily close to close return is the fundamental object that feedbacks on future volatilities. However,
this is only approximately true for the overnight volatility, while the intra-day volatility behaves
very differently (as already said, for intra-day returns, the largest part of the feedback mechanism
comes from past intra-days only, and the very last overnight).

Finally, the leverage kernels behave very much like for the intra-day volatility. In fact, the n — ~
leverage kernel is very similar to its x — p counterpart, whereas the decay of the o — ~ kernel is
slower (7, ~ 18 days, nearly one month).

Stability and positivity : We checked that these empirically-determined kernels are compatible
with a stable and positive volatility process. The first obvious condition is that the system is stable
with positive baseline volatilities s’ 2 The self-consistent equations for the average volatilities read :
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(neglecting small cross correlations) :

(0"%) = sP2 + (0P Y KPP (7) + (o) Y D KNP (r), (3.11)
=1 =1

(o) = 8% 4 (0P%) Y T KPPTN(7) 4 (oM7) D KN TN(r). (3.12)
=1 =1

This requires that the two eigenvalues of the 2 x 2 matrix of the corresponding linear system are
less than unity, i.e.

% [/(\'DD—>D + [?NNHN + \/(I/(\'DD—)D _ [?NNHN)Z + 4[?NN—>DI/(\'DD~>N < 1’ (3_13)

where the hats denote the integrated kernels, schematically K = Y22, K(7). This is indeed verified
empirically, the eigenvalues being A\; ~ 0.94 ; Ao ~ 0.48.

Moreover, for intra-day and overnight volatilities separately, we checked that our calibrated kernels
are compatible with the two positivity conditions derived in Appendices 3.5.2,3.5.3 : the first one
referring to the cross kernels K"~ and K®Y7, and the second one to the leverage kernels LP~
and LN For ¢ = 512, the criteria fail for two spurious reasons. Firstly, for lags greater than their
exponential cut-offs, the quadratic kernels vanish quicker than the ‘cross’ kernels, which makes the
« T by 7 » criterion fail. Secondly, the criterion LTK~'L < 4s% cannot be verified for overnight
volatility with N2 =0 (for lower values of ¢, using the same functional forms and coefficients for
the kernels, sN2 rises to a few percents). These two effects can be considered spurious because the
long-range contributions have a weak impact on the volatilities and cannot in deed generate negative
values, as we checked by simulating the volatility processes with ¢ = 512. We thus restricted the
range to ¢ = 126 (= six months) in order to test our results with the two positive volatility criteria
(again, see Appendix 3.5). For the ill-determined exponential decay rates wp, the upper bounds of
the confidence intervals are used. The two criteria are then indeed verified for both intra-day and
overnight volatilities.

3.3.2 Distribution of the residuals

As mentioned above, we assume that the residuals £ (i.e. the returns divided by the volatility predic-
ted by the model) are Student-distributed. This is now common in ARCH/GARCH literature and
was again found to be satisfactory in our companion paper [38]. The fact that the £ are not Gaussian
means that there is a residual surprise element in large stock returns, that must be interpreted as
true ‘jumps’ in the price series.

The tail cumulative distribution function (CDF) of the residuals is shown in Fig. 3.4 for both intra-
day and overnight returns, together with Student best fits, obtained with long feedback kernels
(¢ = 512). This reveals a clear difference in the statistical properties of £€P and &~. First, the Student
fit is better for overnight residuals than for intra-day residuals, in particular far in the tails. More
importantly, the number of degrees of freedom v is markedly different for the two types of residuals :
indeed, our MLE estimation yields v = 13.5 and v~ = 3.61 as reported in Tab. 3.4, resulting in
values of the residual kurtosis K° = 3+6/(v°® —4) = 3.6 and k¥ = co. This result must be compared
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FIGURE 3.4 — CDF P(|¢| > y) of the residuals £€° and &V, in log-log scale.

] q [ 21 [ 42 | 512 |
vP(£0.3) || 10.7 | 126 | 135
vN(£0.02) | 3.49 | 358 | 3.61
p° 18.1% | 12.8% | 8.5%
p~ 14.0% | 7.3% | 0.0%

TABLE 3.4 — Baseline volatility and tail index of the Student residuals for several maximum lags q.

with the empirical kurtosis of the returns that was measured directly in Sect. 3.2. The intuitive
conclusion is that the large (infinite?) kurtosis of the overnight returns cannot be attributed to
fluctuations in the volatility, but rather, as mentioned above, to large jumps related to overnight
news. This clear qualitative difference between intra-day and overnight returns is a strong argument
justifying the need to treat these effects separately, as proposed in this paper.

We have also studied the evolution of v® and vN as a function of the length ¢ of the memory of
the kernels, see Tab. 3.4. If longer memory kernels allow to account for more of the dynamics of
the volatility, less kurtic residuals should be found for larger ¢’s. This is indeed what we find, in
particular for intra-day returns, for which v increases from 10.7 for ¢ = 21 to 13.5 for ¢ = 512. The
increase is however much more modest for overnight returns. We propose below an interpretation of
this fact.
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3.3.3 Baseline volatility

Finally, we want to study the ratio p’ = s'2/(c??), which can be seen as a measure of the relative
importance of the baseline component of the volatility, with respect to the endogenous feedback
component.® The complement 1 — p’ gives the relative contribution of the feedback component,
given by KPP~7 + KN=J i the present context.

The results for p’ are given in Tab. 3.4 for ¢ = 21,42 and 512 : as mentioned above, a larger ¢
explains more of the volatility, therefore reducing the value of both p® and p~. While p® is small
(~ 0.1) and comparable to the value found for the daily ARCH model studied in the companion
paper [38], the baseline contribution is nearly zero for the overnight volatility. We find this result
truly remarkable, and counter-intuitive at first sight. Indeed, the baseline component of the volatility
is usually associated to exogenous factors, which, as we argued above, should be dominant for o™
since many unexpected pieces of news occur overnight !

Our interpretation of this apparent paradox relies on the highly kurtic nature of the overnight
residual, with a small value vN =~ 3.6 as reported above. The picture is thus as follows : most
overnights are news-less, in which case the overnight volatility is completely fixed by feedback effects,
set by the influence of past returns themselves. The overnights in which important news is released,
on the other hand, contribute to the tails of the residual &Y, because the large amplitude of these
returns could hardly be guessed from the previous amplitude of the returns. Furthermore, the fact
that K72 decays very quickly is in agreement with the idea, expressed in [32], that the impact of
news (chiefly concentrated overnight) on volatility is short-lived. ®

In conclusion, we find that most of the predictable part of the overnight volatility is of endogenous
origin, but that the contribution of unexpected jumps reveals itself in the highly non-Gaussian
statistics of the residuals. The intra-day volatility, on the other hand, has nearly Gaussian residuals
but still a very large component of endogenous volatility (1 — p® ~ 90%).

3.3.4 In-Sample and Out-of-Sample tests

In order to compare our bivariate Intra-day/Overnight volatility prediction model with the standard
ARCH model for daily (close-to-close) volatility, we ran In-Sample (IS) and Out-of-Sample (OS)
likelihood computations with both models. Of course, in order to compare models, the same quan-
tities must be predicted. A daily ARCH model that predicts the daily volatility o7 at date ¢ can
predict intra-day and overnight volatilities as follows :
2 2
oP, = oy, oY, = or , )
G G

where [(-)] is the average over all dates and all stocks, and as in Sect. 3.2, ry = rP + rf is the daily
(close-to-close) return of date t. Similarly, our bivariate intra-day/overnight model that provides

3. In fact, the stability criterion for our model reads p’ > 0, which is found to be satisfied by our calibration, albeit
marginally for the overnight volatility.

4. There is a contribution of the cross terms K’ 7 since intra-day /overnight and overnight /intra-day correlations
are not exactly zero, but this contribution is less than one order of magnitude lower than the K777,

5. This effect was confirmed recently in [43] using a direct method : the relaxation of volatility after large overnight
jumps of either sign is very fast, much faster than the relaxation following large intra-day jumps.
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predictions for intra-day and overnight volatilities separately can give the following estimation of
the daily volatility :

6}2 = Ufz + 052 + 2 [(r°r™)]. (3.15)

For each of the 6 predictions (of the intra-day, overnight and daily volatilities by the two models

separately, bivariate Intra-day/Overnight and standard ARCH), we use the following methodology :

— The pool of stock names is split in two halves, and the model parameters are estimated separately
on each half.

— The “per point” log-likelihood (3.8) is computed for both sets of parameters, once with the same
half dataset as used for the calibration (In-Sample), and once with the other half dataset (Out-
of-Sample, or “control”). We compute the log-likelihoods for intra-day and overnight volatilities
(s € {p,~}), and for daily volatility :

Bivariate models : £V (¢7,07,77) and LPVY (G, pd pdeiyy .

Standard ARCH models : £ (c;], v, 7“‘]) and L5 (g, pdeily pdeily)

where £PV is computed in the bivariate model (i.e. with six regressors : four quadratic and two
linear) and £5*¢ is computed in the standard ARCH model (i.e. with two regressors : one quadratic
and one linear), and o and & are as given by equations (3.14) and (3.15).

— The IS log-likelihood Lig of the model is computed as the average of the two In-Sample results,
and similarly for the OS log-likelihood Log. We call ;g = exp(Lis) and los = exp(Log) the
average likelihood per point (ALpp) of the model IS and OS, expressed as percentages, that are
two proxies of the « probability that the sample data were generated by the model ».

We then use the values of l;g and lpg to compare models. For a « good » model, these values must be

as high as possible, but they must also be close to each other. As a matter of fact, if lig is significantly

greater than lpg, the model may be over-fitting the data. On the contrary, if lpg is greater than
lts, which seems counter-intuitive, the model may be badly calibrated. The results of this model
comparison are given in Tab. 3.5 : the bivariate Intra-day/Overnight model has a higher likelihood
than the standard daily ARCH model, both In-Sample (this was to be expected even from pure
over-fitting due to additional parameters) and Out-of-Sample (thus outperforming in predicting the
“typical” random realization of the returns).

The likelihoods of the predictions obtained with equations (3.14) and (3.15) are marked with the
exponent t in Tab. 3.5. For these likelihoods, “In-Sample” simply means that the same half of the
stock pool was used for the calibration of the model and for the estimation of the likelihood, although
different types of returns are considered. Similarly, “Out-of-Sample” likelihoods are estimated on the
other half of the stock pool. These values serve as comparison benchmarks between the two models.

Prediction oP? oN? o2 (daily)
ALpp [%] lis los lis los hs | los
Biv. Intra-day/Overnight || 44.423 | 44.418 [[ 50.839 | 50.826 [| 45.5127 [ 45.5097
Standard ARCH 44.2271 | 44.225" || 50.598" | 50.595" || 44.931 | 44.928

TABLE 3.5 — In-Sample and Out-of-Sample average per point likelihoods. Figures with { pertain to
reconstructed volatilities Eqgs. (3.14) or (3.15).

We see that in all cases, the bivariate Intra-day/Overnight significantly outperforms the standard
daily ARCH framework, in particular concerning the prediction of the total (Close-Close) volatility.
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3.4 Conclusion and extension

The main message of this study is quite simple, and in fact to some extent expected : overnight and
intra-day returns are completely different statistical objects. The ARCH formalism, that allows one
to decompose the volatility into an exogenous component and a feedback component, emphasizes
this difference. The salient features are :

— While past intra-day returns affect equally both the future intra-day and overnight volatilities,
past overnight returns have a weak effect on future intra-day volatilities (except for the very next
one) but impact substantially future overnight volatilities.

— The exogenous component of overnight volatilities is found to be close to zero, which means that
the lion’s share of overnight volatility comes from feedback effects.

— The residual kurtosis of returns (once the ARCH effects have been factored out) is small for
intra-day returns but infinite for overnight returns.

— The bivariate intra-day/overnight model significantly outperforms the standard ARCH framework
based on daily returns for Out-of-Sample predictions.

Intuitively, a plausible picture for overnight returns is as follows : most overnights are news-less,
in which case the overnight volatility is completely fixed by feedback effects, set by the influence
of past returns themselves. Some (rare) overnights witness unexpected news releases, which lead to
huge jumps, the amplitude of which could hardly have be guessed from the previous amplitude of
the returns. This explains why these exogenous events contribute to residuals with such fat tails
that the kurtosis diverge, and not to the baseline volatility that concerns the majority of news-less
overnights.

These conclusions hold not only for US stocks : we have performed the same study on European stocks
obtaining very close model parameter estimates.® Notably, the baseline volatilities are found to be
pP ~ 0.1 and pN ~ 0 (for intra-day and overnight volatilities, respectively), in line with the figures
found on US stocks and the interpretation drawn. The only different qualitative behavior observed
on European stocks is the quality of the Student fit for the residuals of the overnight regression :
whereas US stocks exhibit a good fit with v~ = 3.61 < 4 degrees of freedom (hence infinite kurtosis),
European stocks have a fit of poorer quality in the tails and a parameter v~ = 5.34 larger than 4,
hence a positive but finite kurtosis.

Having decomposed the Close-Close return into an overnight and an intra-day component, the next
obvious step is to decompose the intra-day return into higher frequency bins — say five minutes.
We have investigated this problem as well, the results are reported in [26]. In a nutshell, we find
that once the ARCH prediction of the intra-day average volatility is factored out, we still identify a
causal feedback from past five minute returns onto the volatility of the current bin. This feedback
has again a leverage component and a quadratic (ARCH) component. The intra-day leverage kernel
is close to an exponential with a decay time of ~ 1 hour. The intra-day ARCH kernel, on the other
hand, is still a power law, with an exponent that we find to be close to unity, in agreement with
several studies in the literature concerning the intra-day temporal correlations of volatility /activity
— see e.g. [87, 96, 107], and, in the context of Hawkes processes, [15, 71]. It would be very interesting
to repeat the analysis of the companion paper [38| on five minute returns and check whether there
is also a dominance of the diagonal terms of the QARCH kernels over the off-diagonal ones, as

6. Equities belonging to the Bloomberg European 500 index over the same time span 2000-2009, see Appendix 3.7
for detailed results.
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we found for daily returns. This would suggest a microscopic interpretation of the ARCH feedback
mechanism in terms of a Hawkes process for the trading activity.

3.5 Appendix : Non-negative volatility conditions

In this appendix, we study the mathematical validity of our volatility regression model. The first
obvious condition is that the model is stable, which leads to the condition (3.13) in the text above.
This criterion is indeed obeyed by the kernels calibrated on empirical results. Secondly, the volatility
must remain positive, which is not a priori guaranteed with multiple kernels associated to signed
regressors. We now establish a set of sufficient conditions on the feedback kernels to obtain non-
negative volatility processes.

3.5.1 One correlation feedback kernel, no leverage coefficients

We consider first the simpler model for daily volatility, without linear regression coefficients :

q q q
ol =52+ Z KPP (r)rP 2 4 Z KN () 242 Z K7 (r)yrpri .
T=1 T=1 T=1
This modification of the standard ARCH model can lead to negative volatilities if (at least) one
term in the last sum takes large negative values. This issue can be studied more precisely with the

matrix form of the model :
o? = s + RIKRy,

with
KPP (1) KNP (1) Py
B KPP (q) KNP~ (q) B qu
K = KN (1) K™= (1) , Ri= ™|
K7 (q) K™ (q) i g

and where K'°P™ and K™ coeflicients are assumed to be all positive (which is the case empirically).
This formula highlights the fact that the volatility remains positive as soon as the symmetric matrix
K is positive semidefinite. We now determine a sufficient and necessary condition under which K
has negative eigenvalues. The characteristic polynomial of K is

e (X) = [T [(K227(7) = )7 (1) = x) = K (12,

and the eigenvalues of K are the zeros of xx(X), solutions xx(A) = 0, i.e. such that
)\2 _ (KDD—>(7_) + KNN—)(T)))\ + KDD—>(7_)KNN—>(7_) _ KND—>(7_)2 =0.
Hence, K has at least one negative eigenvalue iff 37 € {1,...,q} s.t.

KPP (1) + KN (1) — /(KPP (1) — K= (7))2 4+ 4K NP~ (7)2 < 0,
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and finally,
K is positive semidefinite < V7 € {1,...,q}, K °7(r)2 < KPP7(1)K"N7 (7). (3.16)

When the quadratic kernel K is positive-semidefinite, o7 remains positive for all £. For example, in the
standard ARCH model, the inequality is saturated for all 7 by construction, and the condition (3.16)
is satisfied.

The positive-semidefiniteness of K, equivalent to
Vo = (1)1D,...,qu,vll\],...,UqN)Jr eR¥ |, vKv>o0,

is ensured by the sufficient condition that every term in the development of the quadratic form is
positive :

K is positive-semidefinite

=Vo, Vre{l,...,q}, K 7 (r)oP? + K7 (7)u)? + 2KN°7 (7)uPuY > 0

1
=Y, Vre{l,....q}, K7 (r)oPod| < i(KDD*(T)UTD? + KN (1))

<vVre{l,...,q}, |K"°7(1)| < \/KDD—><T)KNN—>(T>

Although more stringent a priori, this « 7 by 7 » condition resumes, in this particular case, to the
necessary and sufficient criterion (3.16). In the next subsection, we use the same method to obtain a
sufficient condition for the semidefiniteness of K in the more complicated case with two correlation
feedback kernels.

3.5.2 Two correlation feedback kernels, no leverage coefficients

With an additional feedback function K®Y and a coefficient K¥¥7(0) corresponding to the 7 =0
term in the 7% sum, the model is

q q
o2 =5+ Z KPP (r)rP 2 4 Z KN (7)) 2
=1 7=0

q q
2 K (e 23 KO (R,
=1

=1

or o = 8% + RIKRt, with K € R2a+Dx(2e+1) R, e R(24+D) defined by

K™ (1) K2 (1) K1)
KPP (g) K™ (q) K¥7(q) ",

K — PN (1) NN (0)  Ri— 7“%\]
KND—)(l) KNN—)(l) rl{il

JPN— (q) .
KND—)(q> JNN— (q) Té\Lq
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The positive-semidefiniteness of K is harder to characterize directly, so we use the « 7 by 7 » method
to find a criterion for a sufficient condition. For any 5 €]0, 1] and any vector
v = (UlD, e UG UG VT ,qu)T e R2at1D) | the quadratic form vfKv is decomposed as follows :

q
ol Ko =K (0)u)? + Z [.KDD_>(7')UTD2 + KN (00N 4 2K (1)oPoX 4 2KPN7 (7)ol

T=1

= BEYTO)) + (1= BEN ()

q
30 BN () 4 (1 BN (7 = e,

=1

4 KPP (7)0P? 4 2K (7)o 4 2K PN (r)oPo_ ],

and clearly, a sufficient condition for the sum to be non-negative is that each term is non-negative :

Vi, 0't2 > 0 < K is positive-semidefinite
< 3B E,1], Vo= (,..., 0208, 0f, ..., o) € REHD vr e {1,... ¢},
0 < BE7 ()X + (1= B)K™ 7 (r — D)oY,
+ KPP (7)oP? 4 2K NP7 (7)oPo + 2KPN 7 (r)uPol
< 38, Vv, Vr e {l,...,q}, o, €]0,1],

1
o ()P < o (ar KPP ()2 4 BN (1))

1
o [KPT(eRv] < 5 (1= an) K27 (el + (1= 8K (r = 1, )
< 38, vre{l,...,q}, Fa,€][0,1],
° KND—>(7_)2 < 5 a, KDD—)(,}_)}(NN—)(T>
o KP"7(1)2 < (1-0)(1—ay) KPP7 (1)K~ (1 —1).
The last condition is equivalent to a simpler one, with a; saturating one of the two inequalities :

denoting 6™ (1) = K7 (7)/K™7 (1 —1) and 0®Y(r) = K" 7(7)/K"°7 (1), K is positive-
semidefinite if (but not only if), 38 €]0,1[, Vr € {1,...,q},

M(8,7) = ma {ﬂ T (B = )
1— B <BKDD—> (T)KNN—> (,7_) B 1 > }
Bomm) (7—) K DN— (7_)2 §(nd) (7_)2

is larger than one, yielding the following a.s. positive volatility criterion :

Vt, 02 >0« 1< sup min M(B,7).
Bejo[1=T=4
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3.5.3 With leverage coefficients

We now add leverage terms to the volatility equation :

02 =52+ RIKR, + RIL = RIMR,,

K LiL
_ 2
M= <;L* s2>’

and appropriate vectors Ry, Ly, Ry It is easy to show that, assuming a positive-definite K,

with

M is positive-semidefinite < LTK 'L < 4s2. (3.17)

3.6 Appendix : Universality assumption

To obtain a better convergence of the parameters of the model, the estimates are averaged over a pool
of 280 US stocks. The validity of this method lies on the assumption that the model is approximately
universal, i.e. that the values of its coefficients do not vary significantly among stocks.

We check that this assumption is relevant by splitting the stock pool in two halves and running the
estimation of the model on the two halves independently. We obtain a set ©; € R!7 of coefficients
calibrated on the first half and a set ©2 € R on the second half (each set contains 17 parameters,
three for each of the four K kernels, two for each of the two L kernels, plus v).

If the (normalized) returns series for each stock were realizations of the same process, the differences
between the coefficients of the two half stock pools would be explained by statistical noise only. To
quantify how close the observed differences are to statistical noise, we run a series of Wald tests
and study the obtained p-values. We test Hy = {f(©) = 0} against H; = {f(©) # 0}, where
0= (01,0,) cR¥* | f(O)=0; -0y, f:R¥* > R7 by comparing the statistic

T
=, =n f(©) 2(0)"! £(©), with E(@):gé(@)[(@)_l (%(@)) , (3.18)

to the quantiles of a x? variable, where n = % x 280 x 2515 is the sample size for each half stock
pool, I(0) is the Fisher Information matrix of the model and % is the Jacobian matrix of f(©).

For intra-day volatility, the p-value is close to zero if all the 17 coefficients are included, but becomes
very high (p-val = 12.3%) if we exclude o"~7P from the test. One can conclude that all the parame-
ters but a7 can be considered universal, with a high significance level of 10%. It is not surprising
that at least one coefficient varies slightly among stocks (it would indeed be a huge discovery to find
that 280 US stocks can be considered as identically distributed!).

KDD—}N

In the case of overnight volatility, we first test the universality of the parameters in and

KNN=Nfor which the constraint s¥? = 0 is included in the estimation. We then test the other
11 parameters for universality. Once again, a few of them (gy”™™, o™ 7" and wy™ ") must be

excluded from the tests to obtain acceptable p-values. We then obtain p-val = 1% for the first test
and p-val = 7.5% for the second.
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It is then natural to wonder whether the four coefficients that cannot be considered as statisti-
cally universal differ significantly in relative values. That is why we compute a second comparison
criterion : for a pair (c(V),¢®) of coefficients estimated on the first and second half stock pools
respectively, we compute the relative difference, defined as :

lcD) — )]

max ([, e[}

The values of this criterion are summarized in Tabs. 3.6,3.7. The first observation is that no relative
difference exceeds 50% (except for three of the ill-determined wp) which indicates that the signs and
orders of magnitude of the coefficients of the model are invariant among stocks. The coefficients for
which the relative difference is high but the statistical one is low do not contradict the universality
assumption : the ML estimation would need a larger dataset to determine them with precision, and
the difference between the two halves can be interpreted as statistical noise.

NN—D ND—N NN—N

Three of the four « non-universal » coefficients, « » Ip and wy also show a significant
relative difference between the two stock pools (above 10%). These are thus the only coefficients
of the model for which averaging over all stocks is in principle not well-justified, and for which the
confidence intervals given in Sect. 3.3.1 should be larger. However, these variations do not impact
the global shapes of the corresponding kernels in a major way, and our qualitative comments on the
feedback of past returns on future intra-day and overnight volatilities are still valid.

The results of this section indicate that most coefficients of the model are compatible with the as-
sumption of universality. Although some coefficients do show slight variations, our stock aggregation
method (with proper normalization, as presented in Sect. 3.2.3) is reasonable.

Kernels K(r)=gp7 e 7 Kernels || L(T) = gee™®e"
9p ‘ a ‘ Wp Ge ‘ We

KPp—P 9.4% 7.3% 13.1% Lh—P 10.4% 1.8%

KNN=7D 2.6% | 17.2% | 34.4 %

KNP 1 13.3% | 9.6% | 77.6 % LN—P 5.8% 2.3%

KPR 2.0% | 9.9% | 94.8 %

TABLE 3.6 — Intra-day volatility : relative differences between the two half stock pools (¢ = 512).
For v°, the value is 7.1%. Bold figures are above 20%.

Kernels K(r)=gpm e 7 Kernels || L(7) = gee @7
9p ‘ @ Wp Je ‘ We

KPP—N 3.1% 9.7% 17.0% LP7N 18.3% | 32.0 %

KNN7N 8.3% 7.6% 33.0 %

KNP N1 30.1 % 1.7% 80.0 % LYY 19.4% 6.5%

KPN=N 11355 % | 21.0 % 0.2%

TABLE 3.7 — Overnight volatility : relative differences between the two half stock pools (¢ = 512).
For vN the value is 0.03%. Bold figures are above 20%.
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3.7 Appendix : The case of European stocks : results and discussions

In order to verify that our conclusions are global and not specific to US stock markets, we also
calibrated our model on European stock returns. The dataset is composed of daily prices for 179
European stocks of the Bloomberg European 500 index, on the same period 2000-2009. The data
treatment is exactly the same as before. The following sections analyze and compare the results to
those obtained on US stocks.

3.7.1 The feedback kernels : parameters estimates

ML estimates of the parameters in the regression kernels (for a maximum lag ¢ = 512) are reported
in Tabs. 3.8,3.9, and the resulting kernels are shown in Figs. 3.5(a),3.5(b).

Kernels K(t)=gp 7 e “p*7 L(T) = ge €7 \
gp x 107 | a wp % 107 ge X 10> | we x 107
KPP=D 1110.83+0.11 | 0.87 & 0.005 | 0.50 + 0.03 —— ——
K™=D || 706+0.24 | 1.64+0.03 | 0.12+0.28 —— ——
K™o=D 1l 986 4+0.19 | 0.9840.06 | 1.51 4 0.84 —— ——
KPN=D 1l 1834030 | 1.084+0.26 | 9.02+8.11 —— ——
LP—P —— —3.2040.27 | 15.29 +1.39
—— —3.7340.51 | 35.35 +4.69

LN*)D

TABLE 3.8 — Intra-day volatility : estimated kernel parameters for K’s and L’s, with their asymptotic
confidence intervals of level 95%, as computed using the Fisher Information matrix with the Gaussian

quantile (1.98).

Kernels K(t) =gp7 e “p*7 L(7T) = ge e " ‘
gp x 107 | a wp x 102 ge X 102 | we x 107
KPb—N 7.53+0.39 | 0.89£0.03 | 1.4940.57 —— ——
KNNTN 4.694+0.25 | 0.58£0.01 | 0.86 £0.07 —— ——
KNPN 1.594+0.20 | 0.754+0.14 | 2.62+£2.07 —— ——
KPN=N 1 1574+0.33 | 3.95+1.32 | 0.02+13.67 —— ——
LP—N —— —— —— —3.78 £0.23 | 10.36 = 0.71
—— —3.094+0.29 | 13.93+£1.74

LN—)N

TABLE 3.9 — Overnight volatility : estimated kernel parameters for K’s and L’s, with their asymptotic
confidence intervals of level 95%, as computed using the Fisher Information matrix with the Gaussian
quantile (1.98).

Intra-day volatility : From Tab. 3.8 and Fig. 3.5(a), we see that all the conclusions drawn
previously for the case of US stocks hold for European stocks. The intra-day feedback is stronger
and of much longer memory than overnight feedback, which decays very quickly (although more
slowly for European stocks, with @ ~ 1.6 instead of a ~ 2.3). The cross kernels are still clearly
smaller than the two quadratic ones, with « close to unity.
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FIGURE 3.5 — Estimated kernels, impacting Intra-Days in (light) green, OverNights in (dark) blue.
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FIGURE 3.6 — CDF P(|¢| > y) of the residuals ¢° and &V, in log-log scale.

The leverage effect is similar to the case of US stocks too, although its initial amplitude is approxi-
mately equal for past intra-day and overnight returns, whereas past intra-days are stronger than
overnights for US stocks.

Overnight volatility : In the case of overnight volatility, we see from Tab. 3.9 and Fig. 3.5(a)
that not only do all our previous conclusions still hold in the European case (long memory for both
intra-day and overnight feedback, second cross kernel nearly equal to zero), but the coefficients of
the model are remarkably close to those of the US calibration.

3.7.2 Distribution of the residuals

For intra-day returns, the distribution of the residuals is very similar to the case of US stocks. Howe-
ver, for overnight returns, some differences must be pointed out. Firstly, as can be seen on Tab. 3.10,
VN is significantly higher for European stock (5.3) than for US stocks (3.6). As a consequence, the
kurtosis of overnight residuals is finite : 3 + ﬁ ~ 7.5. The distribution is still highly leptokurtic,
but the result is less extreme than for US stocks. Secondly, figure 3.6 shows that the quality of the
Student fit is of lesser quality here. For European stocks, both intra-day and overnight residuals seem
to be fitted by a lower value of v for far tail events, whereas this only held for intra-day residuals in
the US case.
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a | 512 |
VP(£0.4) || 12.3
N(£0.06) || 5.34
pP 10.0%
A 0.0%

TABLE 3.10 — Baseline volatility and tail index of the Student residuals for ¢ = 512.

3.7.3 Baseline volatility

Finally, we compare the ratios p* = s*2/(c'%) of the two stock pools. Here again, the results are very
close to our previous calibration : pP ~ 0.1 for intra-day volatility, p¥ ~ 0 for overnight volatility.
Like in the case of US stocks, the calibration procedure yields a slightly negative sNQ, so we add an
additional step that includes the constraint s = 0 (for overnight volatility only).

One of our main conclusions for US stocks is that overnight volatility is entirely endogenous, and that
the exogeity of overnight returns is contained in the leptokurtic distribution of overnight residuals.
This section proves that this is also true for European stocks and suggests that our findings hold
quite generally.
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Un modéle de rétroaction quadratique
pour la volatilité a haute fréquence

Ce chapitre est issu d’un travail en cours avec Jonathan Donier et Jean-Philippe Bouchaud.

Abstract. We introduce the QHawkes (Quadratic Hawkes) model which generalizes the Hawkes
price models introduced by Bacry et al., by allowing quadratic feedback effects in the jump inten-
sity. A non-parametric fit on NYSE stock data shows that the quadratic, off-diagonal component
has indeed a structure that linear Hawkes models would fail to reproduce. This model exhibits two
main properties, that we believe are crucial in the modelling and the understanding of the volati-
lity process : first, the model is time-reversal asymmetric, similar to financial markets whose time
evolution has a preferred direction. Second, it generates a fat-tailed volatility process, for which we
give the SDE in the simple case of exponentially decaying kernels, and which is linked to Pearson
diffusions in the continuous limit.

4.1 Introduction

It is very common in the financial literature to assume that the log-price P; of assets follow a diffusion

equation of the form
dP; = pdt + odWy (4.1)

where W is a Wiener process. When it comes to pricing derivatives, only the volatility process (o)
matters, since the drift term disappears under the risk-neutral measure. More generally, o accounts
for market risk : it is therefore crucial to understand its dynamics, for either derivatives pricing |25]
or optimal investment [39)].

In this context, a flurry of volatility models have emerged, most of them motivated by the need of
derivatives traders to price and hedge their portfolios [20, 22, 19, 67, 76]. A common feature that they
share, is that they describe the low-frequency dynamics of volatility, in a regime where the price can
indeed be considered as a continuous, real-valued stochastic process. However, at high frequencies —
i.e. at the scale of market events — there is no such thing as a continuous price process : at these scales,
one instead faces a minimal price increment (called the tick) so that the price evolves on a discrete

133
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price grid. A comprehensive understanding of the volatility process, from the scale of the event up
to macroscopic scales, would seem very valuable in several respects, in particular that of market
design, in order to understand how a change in market microstructural rules (e.g. the tick size) may
affect its macroscopic properties (e.g. volatility). That one could find solid, behavioural microscopic
foundations to the volatility process seems crucial : when fully understood, simple constraints on
the agents might then change the overall, macroscopic market behaviour.

A natural high-frequency counterpart of the class of models (4.1), is the family of point processes
(more precisely, the difference between two point processes) with jump intensity (A¢) that plays the
role of volatility. In order to reproduce the volatility clustering effect, Bacry et al. have recently
proposed the use of Hawkes processes [17], that lead to price models that mimic many empirical
properties of high-frequency prices in an intuitive and tractable mathematical framework, and allows
for a high-frequency interpretation of the volatility process. More precisely, they consist in self-
exciting jump processes (Ny),~, of intensity A; that depends on the history of the process via the
auto-regressive relation -

At = Aoo + /t é(t — s) N, (4.2)

where Ay is a baseline intensity and ¢ is a nonnegative, measurable function. They are called “self-
exciting”, because every jump d/Ng increases the probability of future events to happen by increasing
the future jump intensity A; for ¢ > s via the kernel ¢. Such process however needs to be confronted
with empirical findings, in order to assess its practical relevance. After many years of academic
research, people have found that the volatility process exhibits three important features that should
be included in a complete high-frequency volatility /price model :

— A positive and slowly-decaying auto-correlation in the time series of volatility or number of events
[12],

— Leptokurtic returns, which, to be in accordance with empirical findings, should be asymptotically
distributed as a power-law p(r) ~ r~¢ of exponent « that varies typicall between 3 and 5 depending
on the asset, the period and the sampling frequency [11, 12, 91],

— Significant time asymmetry (causality) due to the fact that a succession of price moves in the
same direction triggers more volatility than a succession of compensated price moves (see [39] for
some empirical evidence of this fact).

While very appealing from a mathematical and conceptual point of view, linear Hawkes processes
cannot as such reproduce the last two bullet points of the previous list (leptokurtic returns and
significant time asymmetry). This could explain the fact that the calibration of such processes on
real financial data systematically leads to a saturated version of the model (i.e. a norm equal to one,
see |71]).

The goal of the present paper is to introduce an extension of the Hawkes framework, the QHawkes
model, that palliates some of its weaknesses by replacing the linear feedback term in the intensity
process by a more general, quadratic one. The QHawkes process appears as a high frequency, conti-
nuous time analog of the QARCH model introduced by Sentana [102]. As we shall see, the QHawkes
model seems very promising as it succeeds at reproducing fat-tail returns as well as significant time
asymmetry. Moreover, we introduce a particular case in which the continuous-time limit boils down
to a simple, tractable Pearson diffusion, which can then be used as a low-frequency proxy for the
volatility process, and used e.g. for options pricing. We first introduce the model in Section 4.2,
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and highlight some of its general properties. Section 4.3 works out the parallel with QARCH mo-
dels, which we calibrate on intra-day US stock data using the methodology similar to [39], showing
a non-zero off-diagonal structure. Section 4.4 introduces a particular sub-family of QHawkes pro-
cesses, which we call ZHawkes, and for which the kernel can be factorized. We also show that in
the case of exponential kernels the process is Markovian, and we write the corresponding stochastic
differential equation as well as its continuous counterpart. Finally, we show that ZHawkes processes
achieve significant time asymmetry, with order of magnitude that matches data well, and produce a
fat-tailed volatility process. Section 4.5 then concludes.

4.2 The QHawkes model

4.2.1 General model

Similarly to Hawkes processes (4.2), the QHawkes process (), is a self-exciting point process,
whose intensity A; is dependent on the past realization of the process itself. More precisely, we model
the intensity of price changes as

1 t 1 t t
A= Ae + / L(t —s) dPs + 2/ / K(t —s,t —u) dP; dP,, (4.3)
w W J o S0

—0o0

where P is the high-frequency price, which is a pure jump process with signed increments, L : RT —
R is a leverage kernel and K : Rt x RT — R is a quadratic feedback kernel. Ao, and w are two
positive constants that represent respectively the baseline intensity of the process and the standard
deviation of price jumps. Although necessary on daily time scales to account for the leverage effect,
we will see later that at the intra-day scale the kernel L is not significant, so for many applications
one can focus on the quadratic kernel and write

1 t t
At = Ao + wz/ / K(t—s,t —u) dPs dP,. (4.4)

It is easy to see that the models (4.3) and (4.4) encompass the linear Hawkes price model of [17] :
by taking unit price jumps dFP; = tw where w can be seen as the tick and discarding the leverage
kernel (L = 0) as well as the off-diagonal quadratic effects (so that K(t,s) = ¢(t)d;—s), we recover
a Hawkes process of kernel ¢.

Let us give some intuition on the last quadratic term in Eq. (4.3). It is well known that the linear
Hawkes process (4.2) can be seen as a branching process, where each « immigrant » event from the
exogenous intensity Ay, gives birth to a number of « children » events distributed as a Poisson law of
parameter ||¢||1, where ||#||1 is the L' norm of the kernel ¢. Each of these children in turn gives birth
to a second generation of children with the same probability law and so on. The intuition behind
the QHawkes in terms of a branching process is very similar, except that now the rate of events also
depends on the interaction between the pairs of events. Usually, one will consider a positive feedback
such that two mother events with the same sign (i.e. two prices moves in the same direction) increase
the probability of a new event to be triggered in the future (i.e. increase future volatility), whereas
compensated events have inhibiting effects, in line with (and directly motivated by) the empirical
observations of [39] as emphasized in the introduction.
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4.2.2 Mathematical framework

Let us start by precising the mathematical definition of the objects present in Equation (4.3) :

~ (P})ter is a pure jump process of stochastic intensity (A)icr, with unpredictable i.i.d. jump sizes
of common law p on (R, B(R)). We assume that [ £ p(d¢) = 0 and [ £ p(d€) = w? < +o0, i.e.
that jumps are centred and have a finite variance.

— Fy = 0(Ps, s < t) is the natural filtration of P.

— m(dt, d§) is the Punctual Poisson Measure associated to P, such that for all ¢ € R and A € B(R),

lim B [m([t ¢ + hl, A)| 7] = A p(4).
The quadratic kernel K : RT™ x RT™ — R is assumed to satisfy

— Symmetry : Vs, t >0, K(t,s) = K(s,1),

~ Positivity : Vf € L2(R*), [7° [F° K(t,s)f(t)f(s) dt ds >0,

— Non-explosion : f0+oo |K(t,t)] dt < +oc.

K defines an integral operator Tk : L*(RT) — L?(R*) which maps f € L?(R%) to Txf : t
0 K (t,5)f(s) ds. If K is continuous, this operator is Hilbert-Schmidt and thus compact and one

0
has K(t,t) > 0 for all t > 0 (see [36]). We define the trace of K

+o0
Tr(K) = K(t,t) dt < +oc.
0

The leverage kernel L : RT™ — R is assumed to be a measurable function. By analogy with QARCH
models (see |39]) it should be dominated by K in some way to ensure the positivity of the intensity

A¢. Since the leverage kernel is found empirically negligible in the sequel, we leave this positivity
condition for future research.

4.2.3 Condition for time stationarity

In the case of linear Hawkes processes, it has been shown that stationarity is obtained as soon as
the norm of the kernel verifies ||¢||; < 1. Intuitively, this means that each event triggers on average
less than one child event, so that the clusters generated by each ancestor eventually die out. If
this condition is violated, the probability that an ancestor generates an infinite number of events is
non-zero, which can result in a stationary process only in the case ||¢||; = 1 and A = 0 studied
in [35]. Because of the quadratic feedback, the QHawkes process cannot be interpreted as a simple
branching process, making things somewhat trickier. The goal of this section is to find a necessary
condition for (first order) time stationarity.

We define the jump process (V) that has the same jump times as (P;), with AN, = (AP;)?/w?
(=1iff AP, = tw) for any jump time 7, and re-write Equation (4.3) as

At = Aoo + Lt + Ap + 2M, (4.5)
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with the notations

L= %fjoo L(t —u) dP, (leverage)
A = ffoo K(t —u,t—u) dN, (diagonal)
M, =L fioo Oy dP, (off-diagonal)

where Oy, = ff;o K(t —u,t —r) dP, is (Fu)u<t-adapted for ¢ fixed. Since P is a martingale, one
has E [M;] = 0 and E [£;] = 0. Therefore,

B =Awt 5B [ [ t-si-ge (s, a6

t
=)Ao + E [/ K(t—s,t—s) As ds}
—o0
by definition of the punctual Poisson measure m(ds,d§). We obtain
t
E[At]:)\oo+/ K(t—s,t—s) E[\s]ds.
—0o0
A necessary condition for the process (A\;)ier to be in a stationary state is that its expected value
A=

E [\ is constant, positive and finite. This yields A = Moo + ATr(K), thus if Ay > 0,

_ Aoo
YT TTE)

This leads to the necessary stationarity condition '

Ao > 0and Tr(K) < 1
or A\oo =0 and Tr(K) =1
4.2.4 Auto-correlation structure in the QHawkes model

It is quite common for such type of models to investigate the link between the input kernels and
the auto-correlation functions of the generated process. For linear Hawkes processes, one finds a
Wiener-Hopf equation that relates the two-points correlation function to the 1-d kernel [15]. In our
case, one also needs to consider the three-points correlation function, since the input kernel is of
dimension 2.

System of equations

We take the model with no leverage, L = 0. Equation (4.5) becomes

At = Ao + Ay + 2M,.

1. In the case of linear Hawkes processes, this condition is also sufficient to obtain stationarity in the case Tr(K) < 1
(whereas the case Tr(K) = 1 is more subtle, see [35]).
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We define for 7 # 0 and 7 > 0,72 > 0,71 # 79, the correlation functions

dNt dNt_T 2 dNt_T <2
C(r)= — —A =E|A - A
(7) [ dt  dt } [ Tt }
1 [dN,dP,_,, AP, 1 dP,_,, AP,
D =" E = —E 4.
(71,72) = 55 [ at At dt at  dt (48)

C is then extended continuously at zero, as in [72]. Let us note that C is even and that D is symmetric.
Then, one finds the following relationship between the autocorrelation functions (C, D) and the kernel
K (cf derivation in Appendix 4.6.1) :

C(T):m\K(T,T)—i—/T K(T—u,T—u)C(u)du+Q/O:O/OOK(T+u,T—i—r)D(u,T)drdu,

(4.9)
<2
D(Tl,Tz) :2K(7’1, TQ)[C(TQ - 7'1) + A ]
T2
+/ K(mo —u,m70 —u)D(u — 10 + 11, u)du
(r2—71)+
(r2—71)
+2/ K(Tl,TQ—u)D(TQ—Tl,TQ—Tl—u)du, (4..10)
—00
where k = fR ¢4 p(d¢) is the kurtosis of price jumps (k = 1 for constant price jumps). As C(7)

and D(71, 7'2) are directly measurable on the data, one can infer some properties of the kernel K
using the above equations.

Asymptotic behaviour

Whereas the above equations (4.9) and (4.10) are difficult to solve in general, one can investigate
the joint tail behaviours as 7 — oo when both the kernel and the auto-correlation functions have
power law decays. Let us assume that

K(7v1,Tv9) I K(v1,v9) 720 (off-diagonal)
T—00
K(r,7) ~ T diagonal)

4.11
D(T’Ul,T’Uz) ~ D(Ul,vg) TP ( )
T—$00

(7 T

3-points AC)

(

T (
2 (
(2-points AC)

Q

where cg, ¢ are constants and f((vl, v2), 15(7)1, vg) are bounded functions of (v1,v2). The exponents
0, 8 and p can be related by plugging these ansatzs into Eqgs. (4.9) and (4.10), to find two possible
phases for the auto-covariance structure when Tr(K) < 1 (cf derivation in Appendix 4.6.2) :

§>1=f=p=26, (4.12)

1
§<5<1:>B:45—2,p:25. (4.13)

The interpretation of these two phases is straightforward. In the first phase (4.12), the tail of the auto-
correlation functions directly comes from the tail of the diagonal part : direct effects then dominate
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quadratic feedback effects. In the second phase (4.13) however, a more sophisticated phenomenon
enters into play, as the off-diagonal effects feedback in such a way that they generate correlation
with fatter tails than that of the diagonal part of the kernel. In this phase, if % <0< % then
is below unity ,which corresponds to a long memory process. This result is important as it means
that the QHawkes process need not be critical (i.e. Tr(K) = 1) to generate long memory, unlike
standard, linear Hawkes processes.

Note that, with little incidence on the results, we could choose K(7,7) ~ ¢y 7=¢ for the diagonal
part, with o # 2§. Also, to complete the analysis, one should study separately the critical case
Tr(K) = 1 that yields different equations, but this is not our focus here since we mainly consider
non-critical QHawkes processes in the sequel.

4.3 The intra-day QARCH model

4.3.1 QHawkes as a limit of QARCH

In this section we investigate the link between the QHawkes model given by (4.3) and the discrete
QARCH model introduced by Sentana in [102]. For a fixed time step A > 0, we define for all t € R :
— the price (or log-price) increment between time ¢ and time t + A : 7 = Poya — P,

— the volatility at time t : > = |/E {TtAQ‘]'—t]

The QHawkes model appears as the limit (in some sense) when A — 07 of the QARCH model

A2 A2 Z A A Z A A A
Oy =0 + L (T) Tt—rA + K (T) T/) T ATt —7 A (414)
T>1 7,7 >1

where 027 = W2\ A, LA(7) = L(7A) A and K2(r,7') = K(rA, 7'A) A. Indeed, for ¢ € R,

E [rtﬂ?\ft} =W P (Pyn— P #0|F) + ofA)
— 2N A+ o(A),

which implies the scaling :

A2
Oy 2
— — W N
A Ao+

Thanks to this link between the two models, it is possible to calibrate a QARCH model on intra-
day bin returns, and obtain some qualitative insight on the structure of the underlying QHawkes
model. Indeed, the direct calibration of the latter would be significantly harder, more noisy and
computationally more demanding, and is therefore beyond the scope of this introductory paper.

4.3.2 Intra-day calibration of a QARCH model

QARCH models have mainly been calibrated on daily data so far ([102], [39]). To give a starting
point to our study of quadratic effects in high-frequency volatility, we calibrate a discrete QARCH
on intra-day five-minute returns.
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Dataset and notations

We consider the same dataset as in 8], which is composed of stock prices on intra-day five-minute
bins. It includes 133 stocks of the New York Stock Exchange, that have been traded without in-
terruption between 1 January 2000 and 31 December 2009. This yields 2499 trading days, with 78
five-minute bins per day. For each bin, the open, close, high and low prices (O,C, H,L > 0) are
available. We consider the log-price process and define on each bin :

— The return r = In(C/0).
— The Rogers-Satchell volatility o® = /In(H/O) x In(H/C) + In(L/O) x In(L/C).

Normalization procedure

To be able to consider that intra-day prices are (approximately) independent realizations of a sta-

tionary stochastic process, we need to normalize the data carefully. As a matter of fact, strong intra-

day seasonalities may falsify the calibration results. This can be avoided to some extent through

a cross-sectional and historical normalization. We take advantage of our large dataset to compute

a cross-sectional intra-day volatility pattern for each trading day and we simplify the returns by

this pattern, which dampens the effect of collective shocks. On the other hand, we use the intra-

day/overnight model volatility model of [27] to factor out daily feedback effects and focus on pure
intra-day dynamics. To explain our normalization protocol, we introduce the following notations :

— The 5-min bin index 1 < b < 78, the day index 1 <t < 2499 and the stock index 1 <wu < 133.

— The empirical averages : (z,;.) means conditional average of = over bins, for stock u and day
t fixed; (z,, p) and (z_;p) are defined similarly as the conditional averages over days/stocks;
(x) = (z. ) means average of x over stocks, days and bins.

We compute the cross-sectional volatility pattern of day ¢, that we use to normalize the data of stock

U, as :

be{l,--,78) = vu(b) = /(12 Ly 1)

For stock u, the value rit , is excluded from the average, so that the normalization protocol does

not cap the large returns of stock u artificially. We also consider the open-to-close volatility O'B , of
day t for stock u, as computed by the intra- day/overnight model of [27] with the data of stock u
over the days {1,--- ,t —1}. For t = 1, we fix 0} =

The normalization protocol is as follows Yu,t,b,

— Tutp Tu,t,b/UE,ta 1}}%1) — O'u 7 b/au £ (normalization by open-to-close volatility)

— Tutb < Tutp/Vut(b), ut p au ¥ b/vu +(b). (cross-sectional intra-day normalization)

Then, we exclude the tradmg days which include at least one bin where the absolute return is greater
than the average plus six standard deviations. This represents approximately 7% of trading days,
i.e. one day every three weeks. Combined with the cross-sectional pattern normalization, this data
treatment strongly dampens the impacts of exceptional news events, which we do not aim to model
here. Eventually, we set the mean of the squares to one and the average return to zero to make the

stock universe more homogeneous : Vu, t, b,

= Tugb Tu,t,b/\/T so that (
- leﬁb(_URS /\/UT so that ( RS2 ) =



Chapitre 4 141

L)
-0020 -0015 -0.010 -0.005 0000 0005  0.010

F1GURE 4.1 — QARCH kernels calibrated on five-minute intra-day returns for US stocks. The maxi-
mum lag is 18 bins, i.e. one hour and a half of trading time. Left : heatmap of the quadratic kernel.
White coefficients are close to zero, blue ones are negative and yellow/orange/red ones are positive,
with darker shades as they increase in absolute value. We see that all the significant coefficients are
positive, with a non-negligible off-diagonal component. Right : leverage kernel. It is hardly distinct
from zero and can be considered as pure noise (as opposed to daily models where it is significantly
negative).

— Tutb < Tutp — (Tu,,.) SO that (r) = 0.

Calibration results

The calibration process is similar to [39] and [27]. A first estimate of the kernels is obtained with
the Generalized Method of Moments, which uses a set of correlation functions that are empirically
observable. Then, using this estimate as a starting point, we use Maximum Likelihood Estimation,
assuming that the residuals are t-distributed (which allows to account for possible fat tails that would
remain in the residuals). This second step significantly improves the precision of the calibration
results, compared to a solo GMM estimation.

We find it worth to notice that as opposed to the daily calibration results of [39], a clear off-diagonal
structure appears in the feedback matrix in the intra-day case (see Figure 4.1). Also, the intra-
day leverage kernel is found to be close to zero, justifying the fact that we mainly consider L = 0
throughout the paper. The spectral decomposition of quadratic kernel (see Figure 4.2) suggests
that K is the superposition of a positive rank-one matrix and a diagonal one. Indeed, we obtain to
a good approximation (see Figure 4.3)

K(Tv 7_,) ~ ¢(T)5T—T/ + k(T)k(T/)
where
o(r) =97 , k(1) =yexp(—07),

with g = 0.09, a = 0.60, v = 0.14, § = 0.15. Note that 6 = 0.15 corresponds to a characteristic time
of about thirty minutes for the decay of the off-diagonal component. We then fix the off-diagonal
part of the kernel K as its fitted value k(7)k(7") = v? exp(—d(7+17')), and we calibrate the diagonal



Chapitre 4 142

0.12

and diagonal
010

0.08

0.06
Eigenvectors
o

Ranked eigenvalues

0.04

0.02

FiGURE 4.2 — Spectral decomposition of the quadratic QARCH kernel. Left : ranked eigenvalues
(plain dark line) and diagonal coefficients (dashed). One can see that the diagonal coefficients are
very close to the eigenvalues, except for the first eigenvalue which is significantly larger than the
maximum of the diagonal. Right : eigenvectors corresponding to the five largest eigenvalues. The
first eigenvector (plain dark line) is a positive decaying kernel, the others are close to the canonical
vectors €;(7) = 0;—r.

r :
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FiGURrE 4.3 — Fit of the kernel K by the sum of a power-law diagonal matrix and an exponential
rank-one matrix. Left : heatmap of the difference between the fitted matrix and the original one. The
coefficients are small (white or lightly-colored) except for the upper-left corner : the original matrix
features a stronger short-term feedback. Right : kernels ¢(7) and k(7) that minimize the matrix
distance S [K(7,7') — ¢(7)6;_ — k(7)k(7")]2. The rank-one kernel k is plotted in red (and is larger
for small 7’s), and the diagonal kernel ¢ is plotted in blue, both in log-log scale. The dashed lines
are the power-law fit for ¢(7) with exponent 0.6, and the exponential fit for k(7) with characteristic
time about 30 min.

of K with a higher maximum lag of 60 bins (five hours of trading). We obtain

¢lr (T) = gerialr

with the long-range coefficients g, = 0.09, aj, = 0.76. The residuals & of the QARCH model, defined
by
re = oiét,
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FiGURE 4.4 — Long-range kernel K. Left : heatmap of the long-range kernel, with the off-diagonal
fixed as its exponential rank-one fit, and with the diagonal calibrated with no constraints. Right :
long-range kernel ¢y.(7) = K(7,7) — k?(7). The kernel ¢(7) is plotted in log-log scale, with its
power-law fit with exponent 0.76 (dashed).

where r; is the five-minute return and o; is the QARCH volatility, are modeled with Student’s
t-distribution. The calibration of the model with K(7,7") = ¢(7)d,_ + k(7)k(7') yields v = 7.9
degrees of freedom for the residuals, which gives a kurtosis x &~ 4.5. Thus, the QARCH model with
this specific form of K explains to a good extent the fat tails of five-minute returns.

In the QARCH model, the endogeneity ratio of the volatility (i.e. the proportion of the volatility
that stems from feedback effects) is given by the trace Tr(K) of the quadratic kernel. With our
parameterization and a maximum lag of ¢ > 1, one has

We use the fits k(1) = yexp(—0d7) and ¢ (7) = g7~ to compute Tr(K) for ¢ = 78, which is the
total number of five-minute bins in a trading day. We obtain

q q
D ¢(r) =074, > E(r)~006 = Tr(K)~0.80.
T=1

T=1

This endogeneity ratio may seem high, since it implies that 80% of the intra-day volatility is due
to endogenous feedback effects. In fact, it is close to the value obtained for QARCH and ARCH
models at a daily time scale, see [39] and [27]. These results plead in favor of a model in which the
endogeneity ratio is constant across time scales, with values in the range 0.7 — 0.9 depending on
periods and asset classes. In particular, this range is significantly below the critical limit Tr(K) = 1.
We investigate in this direction in Section 4.4.2.
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4.4 The ZHawkes model

4.4.1 Definition

Motivated by the results of the previous section, we consider the particular case of the QHawkes
model where there is no leverage (L = 0) and the quadratic feedback kernel K is of the form

K(t,s) = ¢(t)6—s + k(t)k(s),

i.e. the sum of a diagonal Hawkes component and of a factorisable, rank one kernel. We assume that
¢,k : RT — RT are two measurable functions that satisfy

+oo “+o0
I9l] = (u) du < +o0 an/ (w)? du < +oo.
0 0

The endogeneity ratio of the process is then
Tr(K) = [|¢l] + ||k*|| = nar + nz,

where ny = ||¢|| is the « Hawkes norm » and nz = ||k?|| is the « Zumbach norm ». Moreover,
Equation (4.3) becomes in that case

A = Ao + Hy + Z2, (4.15)

where
— The « Hawkes term » is given by

H, :/t ot — s) AN,

where we recall the notation AN, = (AP;)?/w? for a jump time 7 of P.
— The « Zumbach term » is given by Z? where

1 t
Z, = / k(t — ) dP,.

W J -0

Its name is inspired by empirical observations made by Gilles Zumbach on the volatility process
([110], [L11]). In particular, the author finds that persistence in the signs of returns triggers more
future volatility than compensated returns, as we explain in more detail in Section 4.4.32
We call this particular case of the QHawkes model, the ZHawkes model. Besides its empirical mo-
tivations, its factorization property significantly reduces the risk of over-fitting, since we are left
with two one-dimensional kernels instead of the two-dimensional kernel in Eq. 4.3. As we see below,
this simplified setup still captures the main phenomenology of price volatility, with in particular
time-reversal asymmetry and fat tails, even for short-ranged kernels.

2. Although Zumbach describes this effect at the daily time scale.
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4.4.2 Distribution of the volatility in the ZHawkes model
SDE in the exponential case

If the kernels ¢ and k of the ZHawkes model have an exponential form, the process is Markovian and
one can write a stochastic differential equation to describe its evolution. For the sake of simplicity,
let us assume that the law of the jumps of P is p = (d_, + dw)/2, where w > 0 is the typical size of
a midprice jump (e.g. the tick size). Besides, we note k(t) = yexp(—4dt) and ¢(t) = aexp(—ft) with
v, >0, 6,3 > 0, which yields ng = a/f for the Hawkes norm, ny = 72/(26) for the Zumbach

norm and thus )

a
K)y=—-+4+—<1.
Tr(K) 3 + 95 <
Then one has \; = Ao + H; + Zf where
dHt :—ﬁ Ht dt + OédNt, (4 16)
dZt =0 Zt dt + ’ydPt/w. )

The processes N and P jump simultaneously with intensity A; and amplitudes AN, = 1 and
AP; = +w with equal probability. Although quite simple, this system of jump SDEs lacks tractability
compared to a continuous diffusion. Thus, we turn to the low-frequency asymptotics that one obtains
as the number of jumps in a given time window becomes large, while their amplitudes are scaled
down accordingly. This is the object of the following section.

Low-frequency asymptotics

The low-frequency asymptotics of nearly critical Hawkes processes with short-ranged kernels have
been investigated by Jaisson and Rosenbaum [30], who show that for suitable scaling and convergence
to the critical point ||¢[|; = 1, the Hawkes-based price process of Bacry et al. [14] converges towards
a Heston process (since the Hawkes intensity converges towards a CIR volatility process). The same
authors [¢1] show that when the kernel exhibits power-law behaviour ¢(t) ~ ¢~17% with 1/2 < a < 1,
the limiting process for the intensity is a fractional Brownian motion with Hurst exponent H = a— %
The roughness of the latter process is well in agreement with the empirical results of [65] who find
a Hurst exponent H ~ 0.1 on financial data for the log-volatility. However, it is unclear how the
Hawkes process intensity could be identified with the log-volatility, rather than the volatility itself,
and a fat-tailed behaviour can by no means be reproduced by a simple, linear Hawkes process.
Therefore, we consider in the present paper the low-frequency asymptotics of the ZHawkes model,
which opens new modeling possibilities through the use of quadratic feedback effects.

For a time scale T' > 0, we define the processes I:[tT = H,p, ZtT = Zyr, ]\_ftT = Ny and PtT = P,
where the parameters ar, S,y and o7 may depend on T'. Equation (4.16) gives

{ dAT = By B Tdt + ap ANT, )

AZT = —op ZT Tdt + v dPT /o,

where the common jump intensity of NT and PT is T x [Aoo + H} + (Z]')?]. Since the signs of the
jumps of P are assumed to be unpredictable and uniformly distributed on {—w, w}, the infinitesimal
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generator of the process is given by
AT f(h,2) = —Br h T Opf(h,2) — 67 2 T d.f(h,2) (4.18)
1 1
+ T [Aoo + b+ 2%] x {2f(h+04T7 z+r) + 5 f (h+ar, 2= 1) —f(h,Z)}

for all functions f twice continuously differentiable on (0,+00) x R. We now consider the spacial
scaling

ar =a/T, fr =BT, 0 =7/VT, o7 =3/T, (4.19)
with @, > 0 and 3,6 > 0. It is chosen so that the Hawkes norm ny = ar/fr = @/B and

the Zumbach norm ny = v2/(267) = 5%/(26) are independent of the time scale 7. This can be
considered as the « scaling of constant endogeneity » (as opposed to the scaling used by Jaisson and
Rosenbaum in [80] and [¢1], where the endogeneity ratio ||¢||; of the process needs to converge to
unity as 7' goes to infinity). Our choice is motivated by the calibration results of Section 4.3.2 for
intra-day returns, that yield an endogeneity ratio in the range 0.7 — 0.9 which is close to what is
obtained at the daily time scale in [39] and [27], and significantly smaller than one. Equations (4.18)
and (4.19) combine as

ATf(hv Z) = _B h 8hf(h7 Z) - g z azf(hv Z)
1 1
+ oo +h+2%] x T x {2f (h+a/T, z+7/\/if) +5/ (h+a/T, P —ﬁ/\/if) - f(h,z)}.
We turn to the low-frequency asymptotics. As T' goes to infinity, one has
1 _ _ 1 _ _ o« ¥ o 1
5/ (h+3/T, 2+ 3VT) + 5 f (h+ /T 2 =F/VT) = £ (h2) = Z0nf (h,2) + 302 f(h2) + o (T) ,

therefore AT f(h, z) converges to

=2

A>Xf(h,z) = [-(B=a)h+a( Ao + 2°)] Onf(h,2) — 620.f(h,z) + % Ao + h+ 2% 02, f(h, 2).
The operator A is the infinitesimal generator of the diffusion
[7 00 R _ =\ oo = 700\ 2
i = |[~(B-a) B +a (A + (7)) | at,
AZF = -3 Z° dt + 7 \/Aw + B + (2)%dW,,

(4.20)

where W is a standard Brownian motion. A standard argument of Kallenberg |¢3] (Theorem 19.25)
then gives the convergence of the process (H”, ZT) to (H>,Z>) as T goes to infinity. Hence, one
does not need that the norm of the process tends to 1 (i.e. that the process is nearly critical) for a
non-degenerate limit process to be obtained.

Let us note that there is no Brownian part in the SDE for H> and that it solves explicitly as a

deterministic function of (Z2°)s<; :

B = 2= o[ ep-@-ae-9) (Z) s

In the considered limit, H> can thus be written as the sum of a constant term and an exponential
moving average of the square of Z°°. We get the autonomous, but non-Markovian SDE for Z*° :

dZ° = -5 ZX dt +7 \/1—)\:/5 + (Z,?O)2 + @ [/t exp(— (B —a)(t — s)) (Z§°)2ds dW;. (4.21)

—0o0
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We first consider the case where the Hawkes term is zero, i.e. @ = 0. This corresponds to the case
where only the Zumbach term is present in the starting model, i.e. \y = Ao + ZZ in Equation (4.15).
As we see in the sequel, this simpler model is rich enough to reproduce some interesting empirical
properties of the volatility process. One gets

AZF = =86 Z2° At + 7 /Ao + (Z°)° dW, (4.22)

which is a particular case of Pearson diffusions. These are extensively described by Forman and
Sorensen [59]. The process Z*°/v/A fits in Case 3 of the classification of Section 2.1. in their paper,
with 4 = 0,0 = § and a = 52/(25) = ny. Therefore, Z* is ergodic and its stationary law is a
t-distribution with 1+1/n degrees of freedom and scale parameter \/nzAx/(1 + nz). This implies
that stationary law of the square of Z* is a F-distribution with 1 and 1+ 1/nz degrees of freedom,
and scale parameter nzAs/(1 + nz). We note

V, = o? [AOO+ (Z,so)?}

the low-frequency squared volatility of the price. A straightforward change of variables yields the
stationary density g(v) of the process V'

q(v) = Tiosveo) (4.23)

r(1+5) 1 < v >—(1+2iz>
P(b45h) vam Vo= v
where 15 = Aoow? is the baseline level of the squared volatility. For the tail exponent of the distri-
bution of V;, we get

_(§+L)
qlv) ~ Cwv \2 2z (4.24)

v——+00

with C an explicit constant.

We find this result quite remarkable for two reasons. First, one obtains a power-law behavior that
emerges naturally from the fact that in Equation (4.22), the volatility coefficient behaves as |Z°|
for large values of Z®, so that locally the process is a multiplicative Brownian motion with drift.
This is at variance with the « diagonal » counterpart [30] where the volatility coefficient scales as a
square root, which inevitably leads to a process that has a characteristic scale. Second, the stationary
distribution of V only depends on the parameters ¥ and § through the Zumbach norm nz = 52/(26),
that can be seen as the endogeneity of the process. This last result suggests that, similar to Hawkes
processes where the asymptotic properties only depend on the norm ||¢||1 as soon as the kernel is
short-ranged, the distribution (4.23) of the squared volatility may hold for any short-ranged kernel.

Another remark is that when nyz > 1/3, the variance of the squared volatility V' explodes while its
mean remains finite. Therefore, when fitting it by a simple Hawkes process for which the norm verifies
|@l[1 =~ 1=/ pw /0%, for a suitable choice of window size W (see [70]), the vanishing mean /variance
ratio necessarily imposes that the process is critical, i.e. ||¢||1 = 1. What we argue here is that this
vanishing ratio may only be due to quadratic feedback effects, and not to the criticality of the
process.
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In the diffusive limit where the price process satisfies the equation dP>® = +/V;dW;, the asymptotic
stationary distribution for the returns is

!
)~ —
|r|—o00 ‘ 7” tg
The fat-tail volatility that is generated by our model naturally produces a fat-tail distribution of
instantaneous returns, with exponent 2+ 1/nz > 3. This lower bound, reached for a critical process
nz = 1, seems indeed to be an empirical limit [91]. When the criticality decreases the tail exponent
of returns becomes larger, and the exponent 4 for instance (observed on a large universe of traded
products) is obtained for nz = 0.5. The more endogenous, the fatter the tails for the returns : this
interpretation seems consistent with empirical observations, that show that the returns exponent
tends to become more negative as the market gains in maturity, corresponding to a decrease in
endogeneity.

Now, if we go back to Equation (4.21) with @ > 0 to take the Hawkes term into account, the analytic
study of the process is more subtle. We solve the extreme cases f —@ < 20 —72 and f —a@ > 26 —7°
(where 20 — 7?2 is the characteristic time scale of the square of Z*°) to get some intuition. In the
first case, one has

! — n — 00 2 ~ 700 _ 12 >‘OO
| Bmen- G ) (Z) s ~ BIZZ) = Tox e

and adding the Hawkes term boils down to multiplying ve, by (1 —nz)/(1 — ng — nz) in Equa-
tion (4.23), which inflates the baseline volatility increasingly with ng but does not affect the tail
exponent 3/2 + 1/(2nz). On the other hand, the case B — @ > 26 — 72 yields

t
- - 00\ 2 =00\ 2
| B-a@exp(-(G-a)-9) (22)ds ~ (Z7).
—00
Here, the Hawkes contribution divides nz by 1 — ng € (0, 1] in Equations (4.23) and (4.24). This
impacts the tail exponent of V; which becomes 3/2+ (1 —ng)/(2nz). One finds the expected result
that the tails are fattened by the extra feedback term.

Between these two extreme cases, it is clear that the Hawkes contribution modifies the distribu-
tion (4.23) by making the small values less probable, and increases the tail exponent of (4.24) up to
the maximal value 3/2 + (1 —ng)/(2nz).

Empirical results and simulations

In this section, we compare numerically the volatility process generated by the ZHawkes model,
with a standard Hawkes-based price model on the one hand, and the financial dataset introduced in
Section 4.3.2 on the other hand. We simulate a ZHawkes model with an exponential Zumbach part
and a power-law Hawkes part, with parameters inspired by the QARCH calibration of Section 4.3.2 :
for ¢ expressed in minutes,

B(t) = 0.0016 x (1+0.01 x )52 k(t) = 0.003 x exp(—0.03 x t),
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so that ng = 0.8, nz = 0.1 and Tr(K) = 0.9. Note that to obtain integrability, we choose a decay
exponent above 1 for ¢, although the QARCH calibration suggests a slower decay for small ¢’s. As
a benchmark, we also simulate a standard Hawkes-based price process with decay (1 +0.01 x ¢)~1-3
and norm 0.99, which is close to the calibration results of [71].

It is important to note that to simulate the ZHawkes and the Hawkes model, we choose constant
price jumps AP, = +w. Therefore, our numerical results for the distribution of the volatility can by
no means be linked to the kurtosis of price jumps, which is fixed to one.

For both simulated and real data, we consider the Rogers-Satchell volatility times series for five-
minute bins. We use the Hill exponent of the empirical distribution of the volatility

1
% Z:’l:l log(gi/gmin)

where omin is a cutoff and o; > omin are the selected volatilities, to compare the far tails of the
distribution. One obtains h = 4.50 for real data, h = 5.07 for ZHawkes and h = 12.41 for the
standard Hawkes-based model. Even with a norm close to one and a slowly-decaying kernel, the
standard Hawkes model cannot reproduce the tails observed on US stock data. Instead, the ZHawkes
model, with a norm strictly below unity and a short-lived Zumbach effect, naturally produces fat

tails. These observations are illustrated by Figures 4.5 and 4.6.
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FIGURE 4.5 — Cumulative density function of the Rogers-Satchell volatility for US stock data (plain
line), simulated Hawkes data (red dashed line), and simulated ZHawkes data (blue dot-dashed line).

4.4.3 Time-reversal asymmetry of the ZHawkes process

Another noticeable feature of financial markets is the time-reversal asymmetry of the volatility
process. In [39], the authors study this feature for financial data on the one hand, and for a simu-
lated ARCH volatility process on the other hand. They compare the cross-correlation of present
Rogers-Satchell volatilities with past squared returns, to that of present squared returns with past
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FI1GURE 4.6 — Time series of Rogers-Satchell volatility. Above : real data ; below : simulated ZHawkes
data; left : period of calm ; right : cluster of intense activity.

volatilities. They find that the first is significantly larger than the second for both real data and
ARCH processes. This can be interpreted as follows. Whereas the Rogers-Satchell volatility only
measures the « agitation » of the price, the square of the return between time ¢; and time t2 can
only be large if price moves are persistent on the time interval [t1,t2]. As a matter of fact, if many
price moves occur on [t1,ts] but exactly compensate one another, the return is zero, while the vo-
latility is high. Therefore, the difference observed between the two cross-correlations indicates that
price persistence increases future volatilities, whereas high volatilities only generate high future vo-
latilities, not necessarily with some price persistence. In terms of trading psychology, this could be
explained by the fact that persistent price moves (in either direction) generate both opportunities
and panic, thus increasing the number of transactions and the volatility more than compensated
price moves. This observation is one of the main motivations for the model introduced in the present
paper.

The standard models that use Brownian SDEs cannot reproduce this asymmetry, since they are
time-reversal invariant by construction. In this section, we measure this feature for the simulated
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ZHawkes process and the Hawkes benchmark described in Section 4.4.2, and for the financial dataset
introduced in Section 4.3.2.

As in Sections 4.3.2 and 4.4.2, we consider the returns and Rogers-Satchell volatilities for intra-day
five-minute bins. Here, the maximum lag ¢ is fixed to 36 (36 bins of 5 minutes = 3 hours of trading)
and the lag index 7 varies between 1 and g. We introduce

— The cross-correlation function of the Rogers-Satchell volatility and absolute returns

(085 X Jr...—r]) = (") (Ir])

V(oS — (072 /T =l

C(r) =

— The time asymmetry ratio

[C(r") = C(=7')]
A(r) = —"= e [~1,1].
2 /2:31 max(|C ()], |C(=7")|)

Note that we choose to compute the cross-correlation function using the absolute returns instead of
the squared returns, since it yields results that are less noisy and more robust to tail events (and
thus less sensible to the normalization method).
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FIGURE 4.7 — Time asymmetry ratio A(7) for US stock data (plain line), simulated Hawkes data
(red dashed line), and simulated ZHawkes data (blue dot-dashed line).

We compare the time asymmetry ratios A(7) for real stock returns, returns simulated with the
ZHawkes model and returns simulated with a standard Hawkes-based price model. The results are
illustrated by Figure 4.7. For the standard Hawkes, one has |A(7)| < 1073 for all 7. It is clear that
the Hawkes model with no off-diagonal quadratic feedback cannot reproduce the time asymmetry
observed in intra-day volatility, for which A(7) is one hundred times larger. On the other hand, the
ZHawkes model with parameters in line with the QARCH calibration of Section 4.3 features some
time asymmetry, which is of the correct sign and order of magnitude. However, 7 — A(7) is concave
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for ZHawkes and convex for stock data. Even with a thorough normalization protocol, intra-day
returns are not rigorously stationary, and we believe that the convexity of 7 — A(7) observed on
real data is spurious, as it should become concave at some point and saturate below unity. Such
convexity would probably be hard to reproduce with a simple model, unless it is non-stationary by
construction.

4.5 Conclusion

In this paper we propose a quadratic feedback model for high-frequency volatility, the QHawkes mo-
del, which is an extension of Hawkes-based price models and reproduces several important empirical
facts known so far about volatility. The calibration results for an intra-day QARCH model (which
is shown to converge in some sense to QHawkes) on 133 NYSE stocks, shows that an off-diagonal
feedback component is indeed present, and that its structure corresponds to a particular case of the
model, called ZHawkes, for which the expression of the intensity is simpler and more tractable. This
model has some interesting properties that standard Hawkes processes lack, namely : (i) the quadra-
tic feedback naturally produces power-law tails for the volatility and the returns, that we are able
to characterize in a specific Markovian case, (ii) it reproduces the time-reversal asymmetry at levels
that are compatible with what is measured on actual financial data, in accordance with the idea that
financial markets are causal and (iii) it can generate long memory without necessarily be critical.
We finally derive the continuous limit SDE in the case of exponential kernels, that is found to be
closely linked to Pearson diffusions. These mathematically tractable diffusions are very reminiscent
of the volatility processes considered in [23] and [65]. Whereas we limited the present study to intro-
ducing the QHawkes model and establishing its empirical relevance, we believe that future research
deriving more analytical properties of the general QHawkes model would be highly valuable. Also,
a more precise calibration of the model itself, instead of its discrete QARCH counterpart, would be
of empirical interest.

4.6 Appendix : Relation between the kernel and the auto-correlation
functions

To alleviate the notations, we note (in this appendix only) ¢(t) = K (t,t).

4.6.1 Exact integral relation

For s < t, one has C(t — s) = )\OOX—X2 +E [Atdé\sfs] + 2E [Mtd(ﬁs].

d N t dN, dN;
E A = —u)E — .
[ “ds ] / plt—u) { du ds ]du

—0o0
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For u # s, E [dé\;“ dd%] du = [C(u—s) +X2]du, and for u = s, E [(

%)2} du = kE [dN“ }
where & is the kurtosis of the law p of the jumps of P (k =1 if AP, = +w). Thus,

(du)?
dNg 2 < !
E |A; | = Tr(K)N" + k@t — s) + ot —u)C(u — s)du.
S —00
On the other hand,
dN, 1 [t dP, dN,
E | M, =— E T
[ ! ds] w2/oo [Gt’ du ds ]du

ds du dr
= / / K(t—u,t—r)D(s —u,s — r)drdu,

since AP; and (AP;)? are centered, which implies that E [
t =71 >0 and s = 0, we obtain

C(1) = k(1) + /T o(1 — u)C(u)du + 2 /oio /f K(1 +u, 7+ r)D(u,r)drdu.

For t > t1 > tg, one has D(t — t1,t — to) = ﬁE [At

1 [t N, dP, dP,
—2/ K(t—u,t—T)E[d dfy d ]dd
w —00 J —00

dNs dP, dP,
ds du dr

] = 0 for u > s. Taking

dP, dP 2 P, dby
_ iy dtﬂ + ZE [Mt s dt;], The first term
gives

1 dP;, dP, 1 /t dN, dP;, dP,
— S t—u)E
w2 [ Yt dtg} el Bl e ol

¢
/ o(t —u)D(u — t1,u — to)du.
t1+

The second term is given by

1. [ 1y, 4P APy,

1t u= dP,, dP, dP, dP,

= K(t—u,t—nr)E L2t Tldrd
W2 Ay dtJ w4/_oo/_oo (t—ut=r) [dtl dty du dr |
Since r < u in the integral and t5 < t1, the expected value is zero if u # t1. For u = t1, we have
dP,\2 dP, 4P, _ 2m | AN, 4P, dP, _ om |[dNy dPy, dp,
E [(W) arr dr ] du = w'E |:(du)2 arr dr ] du = w'E [ an s dr ] Thus,

Py, dP, 1 [
o 2Bt

ANy, dP,, dP;
= — | K-t t-—nE |0t .
ah diy |~ w2 ) Bl-tutor) [dtl dts dr]

For r # to, one has %E dé\t[il ddlzt; ddPT’“ dr = D(t; — ta,t1 — r)dr. On the other hand r = ty yields
dN, dN, dN¢, dN 2 .
E [ s (dr)2:| dr=E [ > dtﬂ =C(t1 — t2) + A". We obtain

P, dP, _ t1—
E [Mt ddt“ ddttﬂ = K(t —t1,t — t2)[C(t1 — ta) + X] + K(t —t1,t —r)D(t; — to, t; — r)dr-.
1 2 —00
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We eventually obtain by taking 7o =t > 71 =1t —t1,t2 =0,
— 2
D(ri,12) = 2K (11, 72)[C(T2 — T1) + )\2] + / o(re —u)D(u — 175 + 11, u)du
(ro—T1)+

(ro—T71)—
+2/ K(Tl,TQ—u)D(TQ—T1,T2—T1—u)du.

—00

4.6.2 Power-law asymptotics

For 7 large, Equation (4.9) yields

. T —25 [ oo
c1 7P = kXepr ™% + 007_26/ (1 - E) C(u)du + 27_2‘5/ / K (1 + 37 1+ f) D(u,r)drdu.
oo T 0o Ju T T

In both integrals, we make the change of variables v’ = u/7, and then 7/ = r/7, to obtain

1 o [eS]
1 78 = kheor 0 + 007_25/ (1- u')725 C(ru')rdu + 277 / / K(1+4d,147")D(rd, ') dr’ du’
— o 0 u’

1 oo (e8]
= kicoT 2 + coer Tt T2F / (1- u')_% o Pdu + 272720 / / K1+4d,14+7") D@, r')dr'du’
—o00 0 u’

which can be written
1 7P = kgm0 4 T TW B 4 037'2*25*”,

with co, c3 two constants 3. This leaves only three possibilities :

=20, B>1 p>2, (4.25)
26W=1, B<1, p>pf+1, (4.26)
B=204+p—2, p<2, p<pB+1. (4.27)

Note that in the first case, one also has C(7)/p(7) — kA, which relates the kurtosis x of price
T o0

jumps and the auto-covariance function C.
Let us now consider Equation (4.10) for 71 = Tv1, T2 = Tve, and 7 large. One has

f?(vl, vo)T P = 2I~((v1, 02)7'_25[01 (vg — vl)_ﬁT_B + Xz}

T2 —25
+ 007'25’)/ (Uz — E) D (E — v2 + v, E) du
T T T

T(v2—v1)
T(v2—v1) _ B
+ 27_25_'”/ K <v1,v2 - E) D <v2 — V1,V — V] — E) du.
oo T T

Again, the change of variables v’ = u/7 in the two integrals yields
25(7)17 UQ)Tip = 2f{(7)1, 1}2)7'725 [cl (’U2 — 1}1)767'75 4 X2]

!
n 607_1—25—,0/ 2 (va — ) —205 (v — vy +vp,u') du
V2 —V1

v2—v1 B
+ 27125’)/ K (vl, vy — u') D(vy — v1,v9 — vy —u')du.

—00

3. Note that the finiteness of the integral terms (once 7 is factored out) does not matter since we are only interested
in the asymptotic dependence in 7. For instance, (1 — u’)~2° could be replaced by (2 — u')~2° to avoid integrability
issues for ' — 1, with no incidence on the final results.
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We thus have

D(vy,v2)77 7 = 2X2f((v1, 02)7'_25 + fi(v1, 02)7_(25+5) + fo(vr, 02)7.—(25+p—1)

with f1, fo two bounded functions of (v1,v2). Since [ is necessarily positive, this only leaves two
possibilities :

p=20, [B>1 p>1, (4.28)
26=1, p<l. (4.29)

Equations (4.26) and (4.29) are not compatible since 8 > 0 implies p > 1. Thus, the only remaining
possibility given by Equation (4.28) yields p = 2§ > 1. This implies

Yy, ve, D(Tv1,T02)/ K (TV1,TV2) = 2N

Moreover, the combination of Equations (4.25), (4.27) and (4.28) yields the two possible phases for
the auto-covariance structure :

§>1=f=p=25

1
5 <0<1=p=45-2 p=2.
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