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Préambule

Cette thése comprend trois sujets di érents, tous en rapport & des problemes de structures
électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.

Cette thése commence par une introduction générale présentant les problématiques et les
principaux résultats.

La premiere partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appli-
guée aux modeles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres.
Dans le premier de ces chapitres, nous introduisons la notion dd -représentabilité, et nous
caractérisons les ensembles de matrices de densité de spin représentables. Dans le second cha-
pitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparait
dans les modéles comprenant une polarisation de spin. Le résultat d'existence qui est démon-
tré dans [AC09] pour des systémes de Kohn-Sham sans polarisation de spin est étendu au cas
des systéemes avec polarisation de spin.

Dans la seconde partie, hous étudions l'approximatiotsW. Dans un premier temps, nous
donnons une dé nition mathématique de la fonction de Green a un corps, et nous expliquons
comment les énergies d'excitation des molécules peuvent étre obtenues a partir de cette fonc-
tion de Green. La fonction de Green peut étre numériqguement approchée par la résolution des
éguations GW. Nous discutons du caractere bien posé de ces équations, et nous démontrons
que les équationsGW° sont bien posées dans un régime perturbatif. Ce travail a été e ectué
en collaboration avec Eric Cances et Gabriel Stoltz.

Dans le troisieme et derniére partie, nous analysons des méthodes numériques pour cal-
culer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux
chapitres. Dans le premier, nous nous intéressons a l'approximation de Hartree-Fock réduite
(voir [CDLO08]). Nous prouvons que si le cristal est un isolant ou un semi-conducteur, alors
les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution
exacte lorsque la taille de la supercellule tend vers I'in ni. Ce travail a été réalisé en collabo-
ration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode
numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent étre aussi bien
isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélére
les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cances, Virginie
Ehrlacher et Damiano Lombardi.



Preamble

This thesis contains three di erent topics, all related to electronic structure problems. These
three topics are presented in three independent parts.

This thesis begins with a general introduction presenting the problematics and main re-
sults.

The rst part is concerned with Density Functional Theory (DFT), for spin-polarized
models. This part is divided in two chapters. In the rst of these chapters, the notion
of N -representability is introduced and the characterizations of theN -representable sets of
spin-density 2 2 matrices are given. In the second chapter, we show how to mathematically
treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was
proved in [ACO09] for spin-unpolarized Kohn-Sham models within the local density approxi-
mation is extended to spin-polarized models.

The second part of this thesis focuses on th&W approximation. We rst give a math-
ematical de nition of the one-body Green's function, and explain why methods based on
Green's functions can be used to calculate electronic-excited energies of molecules. One way
to compute an approximation of the Green's function is through the self-consistenGW equa-
tions. The well-posedness of these equations is discussed, and proved in B&/° case in a
perturbative regime. This is joint work with Eric Cances and Gabriel Stoltz.

In the third and nal part, numerical methods to compute band-diagrams of crystalline
structure are analyzed. This part is divided in two chapters. In the rst one, we consider a
perfect crystal in the reduced Hartree-Fock approximation (seefDL08]). We prove that, if the
crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact
solution with an exponential rate of convergence with respect to the size of the supercell. This
is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method
to calculate the band diagram of a crystal (which can be either an insulator or a conductor).
This method, based on reduced basis techniques, speeds up traditional calculations. This is
joint work with Eric Cances, Virginie Ehrlacher, and Damiano Lombardi.
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cHAPTER]L

INTRODUCTION

1.1 Hamiltonians describing systems of electrons

This thesis focuses on electronic structure problems. We describe a molecule by the non-
relativistic Schrodinger equation in the Born-Oppenheimer approximation. We are interested
in the quantum con gurations of the electrons for a given nuclear arrangement. The behavior
of the electrons, from which one can deduce useful physical and chemical properties, is well-
modeled by an electronic Hamiltonian.

1.1.1 The Hamiltonian for spinless systems

In atomic units, the Hamiltonian describing a spinless system o electrons is of the form

X X X 1
Hn (V) = — i 4+ V(ri)+ - r_.; 1.1)
i=1 i=1 1 i< n T il

where ; denotes the Laplacian operator with respect to thei-th spatial component. The
rst term of ( 1.1) corresponds to the kinetic energy. The second term ofl(1) represents the
external potential. For molecular systems, this potential is the classical Coulomb potential
generated by the nuclei

Zk .
jir Ry’

V(r)=
k=1
WhereFRk 2 R3 denotes the location of thek-th nucleus andz, 2 N its charge. We denote by
Z = |'¥|=1 Zx the total nuclear charge of the system. The last term of {.1) is the electron-
electron Coulomb repulsion. The HamiltonianHy (V) acts on the N -fermionic Hilbert space

(1.2)

A
LAR%C)= 2LAR™;C); 8p2 Sn; (rpwyiiiiifpny) = (P ( rasiisirn)
(1.3)

appearing in (1.3) is referred to as the Pauli principle, and comes from the fact that electrons
are fermions.

Theorem 1.1. Suppose thatV is of the form (1.2) with N  Z, and let
(o )
D(Hy) := 2 LAR®; 2 L3R
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where denotes the Laplacian operator with respect to alBN variables. Then the operator
Hn (V) with domain D(Hy) is self-adjoint, and its spectrum is as follows:

the spectrum is bounded from below;

there exists N 2 R such that the essential spectrum oHy (V) is  esdHN (V)) =
[ no+1);

there exist an in nity of eigenvalues below p, which accumulate only at . All these
eigenvalues are of nite multiplicities [Zhi60];

if N 2,then § = E,(\)l 1 (HVZ Theorem [Hun66, vW64, Zhi6Q]).

We denote byEQ (V) E&(V) EZ(V) (or simply E§ EY E3j when
no confusion is possible) the eigenvalues dfiy (V) below |y, ranked in increasing order,
counting multiplicities. With this notation, EJ (V) is the ground state energyof Hy (V) (and
a corresponding eigenvector is called ground state wave-functior), and E,'f, (V) is the k-th
excited state energyof Hy (V) (and a corresponding eigenvector is called aexcited state
wave-function). The spectrum of Hy is represented in Figurel.l

eigenvalues embedded in ggs

7N

Figure 1.1 The spectrum of Hy (V).

The set of admissible wave-functions, also called the set @ure-states is the set of nor-
malized wave-functions with nite kinetic energy, namely

(o )
Wy = 2 L% R%C); k kperany=1; ki Kiogany<1 (1.4)

The ground state energyE,c\’,(V) is also the solution of the minimization problem (we
adopt Dirac's bra-ket notation)

EJ(V):=inf h jHN (V)] i; 2Wy : (1.5)

1.1.2 The Hamiltonian for spin-polarized systems

In this thesis, systems of electrons subjected to magnetic elds will also be studied. A good
model to describe such systems is the Schrddinger-Pauli Hamiltonian, which reads, in atomic
units,

0 1

X 2 X 1 X
HUlSP (v;A) = @ éj ir i+ A(r)jc+ V(i) + — __A P B(ri) i
i=1 1ig NIT T i=1

(1.6)
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wherel; is the 2 2 identity matrix, A is the external magnetic vector potential, andB :=
curl A is the external magnetic eld. The constant is the Bohr magneton (whose value
is = 1=2 in atomic units). The B term in (1.6) is the Zeeman term, also called the
Stern-Gerlach term, where ; contains the Pauli matrices acting on thei-th spin variable:

1.0 i .10
0o, i 0, 0 1

i =( xis yiy zi)= 2

The Schrodinger-Pauli Hamiltonian H-SP (V;A) acts on the N -fermionic Hilbert space

N n

L2(R%C?) = (ry;sp;iiiirnssn); ri 2 R s 21 ;#g;
X
j(re;syii)j?dryciidry <1
R3N
s1; sy 2f" #gN
0
8p2 SN (rpwiSpy;ii) = (P)( ruysain)
endowed with the inner product
- - X - _ N
h aj 2i = w(rassy i) 2(raysy;ii)dry drye

(s1; sn)2f" ;#gN
Herer; 2 R® denotes the position of thei-th electron, and s; 2 f* ; #g denotes its spin.

In this thesis, we focus on a simpli ed version of the Schrédinger-Pauli Hamiltonian that we
describe now. Note that the external magnetic vector potentialA in (1.6) acts on the spatial
coordinates of the electrons, while the magnetic el acts on the spin of the electrons. These
two e ects are of di erent nature, so that it is convenient to relax the constraint B = curl A,
and consider that the elds A and B are independent. Then, by settingA = 0, which amounts
to neglecting orbital magnetism e ects, we nd the simpli ed Schrdodinger-Pauli Hamiltonian

P X 1 X X 1
HN (V;B) = = i+t V() Iz B(ri) i+ — —
a 2 a . Iri Tyl
i=1 i=1 1 i<j N

I2; 2.7)

V
which acts on N L2(R3; C?). If the external potential V is of the form (1.2) and the magnetic

eld B isin L32(R%+ L! (R ° and vanishes at in nity, results similar to the ones of
Theorem 1.1 hold true [Gon154. We denote byEQ (V;B) EX(V;B) :::the eigenvalues
below the essential spectrum, ranked in increasing order and counting multiplicities. With
this notation, E,C\’I (V;B) is the ground state energy of the system, andE,'f, (V;B) is the k-th

excited state energy. As in (.5), it holds that

n 0
EQ(V;B) :=inf HRT(V;B) 5 2w (1.8)
where WS is the set of admissible spin-polarized wave-functions, de ned by

( A :
W;pm = 2 LZ(R3,CZ), k k|_2((R3;C2)N) = 1, kr kLz((R3;C2)N) <1

1.1.3 Problematics
As Dirac wrote in 1929 PDir29],
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The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
di culty is only that the exact application of these laws leads to equations much
too complicated to be soluble.

This problem is now known as thecurse of dimensionality and refers to the fact that the
state space for problem 1.5 and (1.8) is of dimension3N, where N is the total number of
electrons in the system into consideration. The state-space cannot be represented numerically
whenever the number of electrons is too large . Computing the solution of1.5) for a small
system like the water molecule HO (N = 10 electrons) is already unfeasible in practice. This
makes the full problems (.5) and (1.8) impossible to tackle numerically for most systems of
interest.

The purpose of this thesis is to present some of the approximations that were proposed in
the last decades in the physics and chemistry communities to simplify these problems, and to
study the mathematical properties of the resulting models.

1.2 Density Functional Theory

1.2.1 Derivation of Density Functional Theory

We recall in this section how Density Functional Theory (DFT) is derived. Spin-unpolarized
DFT was introduced in 1964 by Hohenberg and KohniiK64] and is a very popular tool in
modern quantum chemistry. The goal of Density Functional Theory (DFT) is to calculate
the ground state energy and the ground state density of an electronic system. It transforms
the high-dimensional linear problems (.5) or (1.8) into a nonlinear low-dimensional problem.
While DFT has been extensively studied for spin-unpolarized or spinless Hamiltonians of the
form (1.1), its counterpart for spin-polarized Hamiltonian of the form (1.7) (with the Zee-
man term included) received much less attention. When spin is included, we use the name
Spin-DFT , or SDFT. We present SDFT by following the constraint-search approach by
Levy [Lev79, Valone [Val80] and Lieb [Lie83]. In this section we consider the Schrodinger-
Pauli Hamiltonian HﬁP(V;B) introduced in (1.7), and our goal is to solve (.8).

The energy of an admissible normalized wave-function 2 W P is HRP(V;B)
By introducing\yhe N -body density matrix = j ih j, which is the orthogonal projector
onto fC gin N L2(R3;C?), this quantity is also equal to Tr HSP(V;B) . The set of
pure-state N -body density matrices is
n 0
G&ure = ’ 2 Wﬁlpll"l ,
and (1.8) can be recast into
EQ(V;B)=inf Tr HRP(V;B) ; 2GR"™ :

This is a minimization problem of a linear functional on a (bounded) set. It is therefore
natural to introduce the set of mixed-state N -body density matrices GI/*¢4, de ned as the
convex hull of G}"™. Naturally, it holds that

n 0
ER(V:B)=inf Tr HRP(V;B) ; 2GR™ =inf Tr HJ"(V;B) ; 2 Gy

| (1.9)

For 2 G™¢d with Schwartz kernel ( rq;s1;:::;rn;sn;rsdoo;rd;sY), we introduce the

spin-density 2 2 matrix |
g
R(@):= 4 w ()
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where, for ; 2" ;#¢?, we set

X
(r):=N (r;; 287r;; 29 dz (2.10)
s gy p RD

The key-point of SDFT is to notice that, for 2 GIJ*¢d, it holds that

V B, Byx+iBy

By iBy V+B, -«

Tr HRP(V;B) =Tr HJP(0;0) + trce
R3
(1.11)

Note that the rst term of ( 1.11) no longer depends on the external potential and eld. In
the sequel, we denote by

V B, Bx+iBy

u(v;B) = B, iB, VB,

(1.12)

the matrix which contains all the external data. Let X represents either the word pure or
the word mixed . From (1.9) and (1.11), we get the so-calledconstrained-searchequality

EJ(V;B)= inf  Tr HNT(V;B) = inf trc2 [U(V;B)R]+ FX(R) ; (1.13)
26X R2J & R3

N

where J { is the set of (pure-state or mixed-state) spin-density2 2 matrices, de ned by
¥ = R; 2G{ ; (1.14)
and the function F* is de ned by the formula
FX(R):=inf Tr HJP©;0) ; 2GJ{;R =R

Let us compare (.8) with (1.13. Problem (1.8) is linear, but su ers from the curse of dimen-
sionality, while (1.13) is a minimization problem on a low-dimensional space, but is nonlinear.
The name SDFT comes from the fact that (.13 is the minimization of a functional which
depends only on the spin-density2 2 matrix R.

In order to solve (1.13), one needs a closed expression for bothy and F*. Character-
izing the setsJ ;" and 3™ s the N -representability problemy and will be discussed in
Section 1.2.2 As far as FX is concerned, there is no convenient formula for it. Actually, it
was proved that there exists potentialsV such that the calculation of EJ (V;0) at a polyno-
mial accuracy is QMA!-hard [SV09]. This implies that the calculation of FX at a polynomial
accuracy is also QMA-hard. Fortunately, there exist very good computable approximations
of FX that give results in good agreement with physical experiments for most interesting
physical systems. We will discuss one of these approximations in Sectidn2.3

1.2.2 The N-representability problem

The N -representability problem is concerned with the characterization of the sets] {"'
and J "™ed de ned in (1.14). The rst results on the N -representability problem were given
by Gilbert [ Gil75], Harriman [Har81] and Lieb [Lie83]. In these articles, the authors only
considered the spin-unpolarized case, which amounts to setting = 0. In this case, it holds
that

trc2 [U(V;0)R] = V R;

1QMA stands for Quantum Merlin-Arthur. QMA-hard is the quantum version of NP-hard.
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where r = ';;+ E# is the total electronic density. In the sequel, we denoteby = g = R
when no confusion is possible. The constrained-search methodl. {3 in this case can be recast
into
EJ (V;0) = inf V o+ F()
21 % R3

with
1=, 2G5 and F{()=inf Tr[HN(0;0)]; 2GX; =

The N -representability problem in the spin-unpolarized case is therefore concerned with the
characterization of | §*"® and of | J™*ed.

Theorem 1.2 (Gilbert, Harriman, Lieb) . For all N 2 N , it holds that

Ilr\nlure - |I2|nixed =y = 2 LYR3\ L3(R3); o: = N: p72 HYR® : (1.15)
R3

When the magnetic eld is not null, we need to characterize the sets] §*® and Jxed
de ned in (1.14). This problem was addressed, but left open, in the work by von Barth and
Hedin [vBH72]. In the sequel,M » »(E) denotes the set o2 2 matrices with coe cients in
the Banach spaceE. We introduce

n o o]
Gv:= R2M, o(LYR%C);R =R,;R 0 trz[R]= N:PR2M 2 2(HY(R3%C)) ;
3

R
(1.16)
and C‘,\Jl = fR2Cy; detR 0g. In Chapter 2, we following theorem is proved.

Theorem 1.3 (DG).
Case N =1: It holds that

leure — q and Jlmixed — 01:
Case N 2. Forall N 2, it holds that
J [\Ij)ure - J ,\rlnixed - (:N :

Since G is convex and the map 7! R is linear, we deduce that the setGy de ned
in (1.16 is convex (which is not obvious from its de nition). Comparing (1.15 and (1.16),
we see that Theoreml.3 is a natural extension of Theoreml.2

Representability with paramagnetic-current.
The version of DFT dealing with both charge and current densities is called Current-(Spin)-

DFT, or C(S)DFT [ VR88]. For 2 GU*ed e introduce the paramagnetic currenf = j +j”
where
0 1
X
8 2f ;#g; j =Im @N ro(r; 2SS 29 | dzA:
AN 1) re=r
sof* #gN 1 R

This current appears when performing the constrained-search method (sed.(3) on the
full Schrédinger-Pauli Hamiltonian H-SP (V;A) de ned in (1.6). More speci cally, let us
assume thatA is smooth enough so that the domain oH \"SP (V;A) is exactly the one of
H[W-SP (v;0). The constrained-search method in this case leads to
On/-AY = i . jAj? - T
En(V;A) = inf tre:[UR;B)R]+ —— + A | +F5(R;)) ;
(Ri)2KY RS 2
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whereU(V;B) was de ned in (1.12),
K§= (R3j) 26y
is the set we would like to characterize, and
FX(Rij)=inf Tr H{"SP(0;0) ; 2GR ;j)=(Ri) ;

is an unknown functional. In C(S)DFT, the N -representability problem is concerned with
the characterization of K} and KI*®d. Giving an exact expression is known to be very
di cult, but to give (mild) su cient conditions for a pair  (R;]) to be representable is possible.
In [LS13, Lieb and Schrader studied the spin-unpolarized case, and gave such conditions for
the representability of a pair (; j), where is the total electronic density. They proved the
following result, valid for N 4. Recall that | y was de ned in (1.15.

Theorem 1.4 (Lieb, Schrader). SupposeN 4. A sucient set of conditions for a pair
(; j) to be pure-stateN -representable is that, on the one hand,

21n; hiP2 LYRY); (1.17)
and that, on the other hand, there exists > 0 such that

sup f(r) =2 jw(r)j+jr w(r)j < 1; (1.18)
r2R3

wherew := curl (1j) is the vorticity, and f (r) := (1 + ( r1)?)@ + (r2)?)( +(r3)?).

The conditions in (1.17) are necessary conditions, and the conditionX.18) is very mild.
By adapting their proof to the spin-polarized case, we were able to prove a similar result,
under the condition N 12 (see Chapter2). Recall that Gy was de ned in (1.16).

Theorem 1.5 (DG). SupposeN 12 A su cient set of conditions for a pair (R;j) to be
pure-state N -representable is that, on the one hand,

R2Cy; gl 2 LY(R®);
and that, on the other hand, there exists > 0 such that

sup f(r)® )= jw(r)j+jr w(r)j <1:
r2R3

1.2.3 The Local Spin-Density Approximation

We now turn to the question of how to approximate the functional F X (R) appearing in (1.13.

In this thesis, we consider the approximation ofF ™*€d(R). In spin-unpolarized models, the
rst successful approximation, called theLocal Density Approximation (LDA) was introduced

by Kohn and Sham KS65], and is still broadly used nowadays. While in their article, the
authors gave some clues on how to adapt their method to spin-polarized systems, the corre-
sponding theory was pioneered by von Barth and HedinjBH72] and is known as the Local
Spin-Density Approximation (LSDA).

For a mixed-state 2 Gﬂixe", we introduce the corresponding one-body spin-density

matrix I
o

= # o H
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where X

(r;r%:= N (r;; zsr%; z9dz (1.19)
s2f" #gN 1 RN D
Comparing (1.10 and (1.19, we see thatR (r) = (r;r), so that R depends on only
through . We will write R instead of R when no confusion is possible. Likewise, the total
electronic density of a state 2 G*®d will be denoted by = g =

The set of mixed-state one-body spin-density2 2 matrices is
Py:=f ; 2Gp*edg:

Identifying the kernel (r;r9 with the corresponding operator of S(L2(R3; C?)), where S(H)
denotes the set of bounded self-adjoint operators acting on the Hilbert spadd, Coleman
[Col63] proved that

Pv= 2S(L%R%C2); 0 LT )=N; Ti( )<1
Physically speaking, this is the set of one-body density matrices of systems witN -electrons
(Tr( ) = N), satisfying the Pauli principle (0 1), and with nite kinetic energy
(Tr( ) < 1). In a similar way, we can de ne, for > 0,

P = 2S(L%R3C?); 0 LT )= T  )<1 : (1.20)

We also de ne
J mixed =fR; 2P g and | mixed .— ¢ , 2P g

The setsJ ™*ed and | Mxed have expressions similar ta] ™4 and | ™€ (see Theoreml.5
and (1.19 respectively). The idea of Kohn and Shami{S65], then adapted by von Barth and
Hedin [vBH72] to the spin-unpolarized setting, is to split F ™*€d(R) into three contributions

Fmixed(R) = Tks(R) + J( r) + Exc(R): (1.22)

The rst term Tks represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

8R2J ™ed:  T5(R):=inf %Tr( ); 2P :R =R
The second term of (.2]) is the Hartree term, de ned by

mixed . — } (I’) (er 0.
8 21 ; J().—2 y Rzijr g dr dr™

Finally, the last term of (1.21) is the exchange-correlation functional de ned by
Exe(R):= F™(R)  Tks(R) JI(R):

Since FMixed jg g non-explicit functional, Ey. is also a non-explicit functional. It is however
possible to construct explicit approximations of E4; giving rise to accurate predictions for
the ground state energies of most molecular system&D11]. In the Local Spin-Density
Approximation derived by von Barth and Hedin [vBH72], it reads

1
Ex(R) Ex (" )= 5 Ec"R M+ E"R ) (1.22)
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where *= are the two eigenvalues of the spin-density2 2 matrix R, and ELPA is the
standard LDA exchange-correlation functional in the spin-unpolarized caseKS65], of the
form

Exc’ ()= - g( (r))dr: (1.23)

For all — 2 R*, the real value g(7) is an approximation of the exchange-correlation energy
density of the uniform electron gas with density™. Several functionsg are available (VWS
[VWNB8O0], PZ81 [PZ81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic
conditions for low and high densities. The minimization problem (.13 with the approxima-
tion (1.22-(1.23 can be rewritten, using one-body density matrices, as a variational problem
of the form

E%:=inf fE( ); 2P g; (1.24)

where

1 1
E()= 5T + ST o+ d( )+ tre[URI+ESPACT: )
R3

We recall that the 2 2 matrix U contains all the external data, i.e. the electric potential V
and the magnetic eld B (see (L.12). The physical situation correspondsto = N 2 N, but
as usual in variational problems set on the whole space, it is useful to relax the constraint
Tr( ) 2 N to allow the particles to escape to in nity.

The spin-unpolarized model corresponds to the situation where we impose to satisfy
"= #and ¥ = # =0. The resulting model was studied mathematically by Anan-
tharaman and Cancés ACO09].

In Chapter 3, we prove the following theorem.
Theorem 1.6 (DG). Under the following assumptions

1/ the function g in (1.23) is of classC'(R*) and satis es:

8
g(0)=0
90< P L0 I (1.25)
% 3 2R+ +
- 91 < §; Iimsup£<0;

1o
2/ all entries of U are in L3* (R3)+ L! (R%) and vanish at in nity, and V :=tr c2(U) has
the form (1.2),
the problemEP® de ned in (1.24) has a minimizer whenever  Z.

This theorem is a generalization of the spin-unpolarized resultACO09]. In particular, the
conditions (1.25 are the ones found in AC09]. These conditions are satis ed for the usual
choices ofg mentioned above.

1.3 The GW approximation

The fourth chapter of this thesis is concerned with theGW approximation.? This method was
introduced by Hedin [Hed65 HL70] and is a very successful method to calculatelectronic-
excitation energiesfor nite systems, or band gaps for crystalline structures. Together with

2GW is not an acronym: G denotes the Green's function and W the screened Coulomb operator.
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Eric Cancés and Gabriel Stoltz, we gave a rigorous de nition of the operators involved in the
GW formalism, we reformulated the so-calledcW° equations, and proved the existence of a
solution in a perturbative regime.

While the density functional theory introduced in the previous section works well to cal-
culate ground state energies, it fails to predict excitation properties of molecules, such as the
electronic-excitation energies. In order to calculate such quantities, several approaches have
been considered in the last decadesDRR0Z]. Among them are the time-dependent DFT
(TDDFT) [ MMN * 12, MUN " 06], wave-function methods HJO14] such as Coupled-Cluster or
full-Cl, and Green's function methods. The GW method is part of the last category.

From now on, we work with spinless systems for simplicity: our startingN -body Hamil-
tonian is the one in (1.1).

1.3.1 Electronic-excitation energies and Green's functions

Let us consider anN -electron system modeled by a Hamiltonian of the form1.1). We perform
the following experiment (called angle-resolved photoelectron spectroscopgr ARPES):

we start from the N -electron system in its ground state, with energyE,‘\), ;
we give the system some energy (photons) in order to rip an electron o .

After this experiment, we expect the system to relax in either the ground state or an excited
state of the corresponding(N  1)-electron system (see Figurel.2).

R o X
- ——

(HVZ theorem)

System with N particles

Exin electronic excitation
; HH#—»
System with N 1 particles EQ 1 E{ 1 n~N 1

Figure 1.2 Schematic view of an electronic excitation (here, loss of an electron). The system
in the ground state of Hy (V) goes to an excited state oHy 1(V).

One can also consider the experiment where the system absorbs an electron, and releases
energy. With the notation introduced after Theorem 1.1, the quantities we would like to
evaluate are

E,?, E,'§,+1 (gain of an electron) and E,‘\)I E'If, 1 (loss of an electron) (1.26)
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called the electronic-excitation energiesof the system. The electronic-excitation energies di er
from the optical-excitation energies which are quantities of the form E,?, E,'fl (same number
of electrons). Note that we neglect the e ects due to the relaxation of the nuclei: we impose
the external potential V to be the same before and after the experiment.

We suppose in the sequel thatv is of the form (1.2) with N 2. We also make the
following additional assumptions (we denote byEQ,; :=inf (Hn+1)):

the ground state E,E’, is a simple eigenvalue ofHy ;

stability condition: ® it holds |[2EQ  EQ.; + EJ 1

The rst assumption is a very standard one. The second assumption states that th@nization
energy EQ ; EJ > 0Ois strictly greater than the anity energy E{ EQJ,; > 0. It will
be useful to link the problems with N +1, N and N 1 electrons. We denote by § the
(real-valued) ground state ofHy .

In order to compute the electronic-excitation energies, we introduce the following natural
sets

Sp = (Hn+1 EJ) (particle electronic-excitation set)
Sh .

(E,(\)I Hn 1)  (hole electronic-excitation set)

These sets are linked to the so-called particle and hole one-body Green's functions, that we
de ne now. Since we are working with a variable number of electrons, it is natural to work
in the Fock space

N A
F= Hn; where Ho=C; H;=L%R%C); Hy= Hui
N =0

The creation and annihilation operatorsa’ and a are bounded operators fromH 1 to B(F),

where B(E) denotes the space of bounded operators from the Banach spaEeinto itself.
They satisfy

8 2H,; 8N 2N; a@( ):HN!H n+1; a( ):Hn+1 'H N @()=(a()) ;

and the expression ofa is given by

o P
8 2Hy, 8 N 2Hn;  a( )] wni(rusiissrn 1)= N \ (r) n(r;ro;iisrn p)dre:
R

When the creation and annihilation operators are evaluated on E, , We obtain the operators

A,: Hi ! H yu andA:Hllel

£ a(f)j 9 f 7 oafj i’ (1.27)

They satisfy A, 2 B(H1;HNn+1) and A 2 B(H1;HN 1). The adjoint of A is denoted by
A and the one ofA. is denoted byA. := A, . The one-body particle Green's function
Gp and hole Green's functionGy, are functions from the time domainR to B(H 1), de ned by

8 2R; Gp( )= i( )Ase ! (v EDAL (particle), (1.28)

3The question Is the stability condition always true for Coulomb systems? is an open problem [ BDS14,
Part VII].
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and _
8 2R; Gp():=i( )A d Hv 1 EDA  (hole): (1.29)

Here, denotes the Heaviside function. Let us give a physical interpretation of the one-body
particle Green's function G,. From (1.27) and (1.28), we obtain

D _ E
8f,g 2H1 MjGp( )ifi= i( ) § a(@e ' Fva EDa(f) §

which can be read as follows. We rst start from the ground state withN electrons 9. We

then add an electron in the orbital f, and let the system evolves with itsN + 1 electrons
for some time > 0. Finally, we remove the electron in the orbital g, and measure how
close we are from the initial ground state ,9,. A similar interpretation can be given for the

one-body hole Green's function.

The Green's functions are fundamental quantities in many-body perturbation theory. The
hole Green's function contains a lot of useful information about the electronic system. For
instance, by introducing the one-body density matrix ,9, 2 B(H1) with kernel

Nri= N Rz o) R0%ra Sr)dre dr;
R

it can be checked that ,9, = iGhr(O )= A A . As a consequence, the electronic ground-
state density

2
Qry:=N - Q(riry;  ry) “dra dry = J(r;r)
R

is a quantity encoded in the hole Green's function. The ground state energl;E,?J can also be
recovered from the hole Green's function via the Galiskii-Migdal formula GM58]:

1 d . 1
E,?,zéTrHl T o3t VoG() (1.30)

Finally, it is possible to extract the particle and hole electronic-excitation sets from the Green's
functions. To see this, we time-Fourier transformG, and G,. We use the following normal-
ization for the time-Fourier transform:

+1 ]
8f 2 LY(R;E); E Banachspace [Frf](!)= f{!)= f()e' d:
1
From the following equality, which holds in the negative Sobolev spacél %(R) for instance,

‘?!): o+ip:v: 1 ; (1.31)
|

where p:v: is the Cauchy principal value and ¢ is the Dirac distribution at the origin, we
obtain

1

Gp= Apvi gy A T AP EVA,in H YR B(H);
+ N
(1.32)
and
Gh=A pv (Eol I A +i A PEV Hnvop in H YR ;B(Hy));
N

(1.33)
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where we denoted byP/! := 1,(H) the spectral projection on the Borelianb2 B (R) of the
operator H (here B (R) denotes the Borel -algebra ofR). In the sequel, if A is a bounded
operator on H;, we denote byReA := %(A + A ) its self-adjoint part (or real part), and by
ImA = %(A A ) its skew-adjoint part (or imaginary part).

From (1.32 and (1.33, we see that the electronic-excitation setsS, and S, are linked to
the imaginary part of the Green's functions (also calledspectral functions up to a multiplica-
tive factor). More speci cally, it holds that

So Supp ImG, and S, Supp ImG&

From this we deduce two facts. First, we can indeed recover the electronic-excitation
energies from the (time-Fourier transform of the) Green's functions. Then, we expect botl&,

and €, to be highly peaked (they are irregular distributions) which makes the mathematical
analysis cumbersome and the numerical approximation of these operators quite di cult.

1.3.2 Analytic continuation and chemical potential

In order to work with more regular objects, we consider the analytical continuations ofG,

and €y, in the complex plane. To give a avor of the tools used to perform such an analytical
continuation, we recall the Titchmarsh's theorem [Tit48] in its simplest form. In the sequel,
we denote byU := fz2 C; Im(z) > Og, and by L := fz2 C; Im(z) < Og the (strict) upper
and lower half complex planes respectively. The Laplace transform of a functioh 2 C} (R)
is*
8z2C; fz):= f(t)e?dt:
R

It can be extended in some distributional sense.

Theorem 1.7 (Titchmarsh's theorem in L2(R) [Tit48]). Let f 2 L2(R) and letf2 L2(R) be
its time-Fourier transform. The following assertions are equivalent:

(i) f is causal (i.e. f(t) =0 for almost all < 0);

(ii) there exists an analytic function F in the upper half-planeU satisfying

+1
sup iF( +i)j2d <1
>0 1

and such that,F( +i )! tbstrongly inL%(R),as ! 0" ;

If these assertions are satis ed, then the functiorF in (ii) is unique, and coincides with the
Laplace transform € of f .

This theorem states that the function 0 (which may be irregular) has a regular analytic
continuation f€in the strict upper half-plane U, and that we can indeed recovef© from € A
similar theorem holds true for anti-causal functions {.e. f(t) = 0 for almost all t < 0) by
changingU into L.

“The Laplace transform is usually de ned as
1
F(p) = f()ePd:
0

Our de nition, which is better adapted to our setting, amounts to setting z =1ip.
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In our case, the Laplace transforms of5, and Gy, are respectively given by

1
(Hn+1  ER)

1
EY FAn 0
(1.34)
They are analytic functions on U and L respectively. However, from (.34), we see that we
can extend the domain of analyticity of @p and &, to Cn Sp and C n Sy, respectively (see
Figures 1.3 and 1.4).

8z2 U; &p(2) = As . AY and 8z2L; &n(z):= AY .

1 |

T T T

0 0

/ EN+1 EN

Figure 1.3 The continuation of &y(z).

(EY Hn 1) ER ER ;4 ] ]
I |
LA |
l l l l l %alytic C(lntinuation

Figure 1.4 The continuation of &g (2).

From the stability condition, it holds EJ EQ ; <EQ,; EJ. We dene the total
Green's function €(z) by (see Figurel.5)

8z2U[ L[ (ER ERN 1ERua ER) 6@ = &y(2)+ En(2): (1.35)
We introduce the chemical potential , which is any real number satisfying
ES EQ ;< <E %, EQ: (1.36)

In the sequel, we will only work with the operator-valued regular function ! 7! &( +i!).
This function has very nice properties, both in term of regularity and integrability, and it
contains the same information asGy and G, altogether. The goal of the GW method is to
provide a computable approximation of this function.

Figure 1.5 The domain of analyticity of &(z).

Let us conclude this section by identifying the Green's function in the case of a non-
interacting system. Let
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be a one-body Hamiltonian, and consider the mean- eldN -body non-interacting Hamiltonian

X XN
Hon = hir, = 5 T + Va(ri)
i=1 i=1

We assume thath; has at IeastN negative eigenvalues'; 2 i "N, counting
multiplicities, and that "N <" n+1, Where "y 41 is either the (N + 1) St eigenvalue ofhy if it
exists, or the bottom of the essential spectrum oh; otherwise. This fact implies both that
the ground state EON of Ho.n is simple (with Eg;N = "1+ 1+ "N), and that the stability
condition is satis ed for the non-interacting system, since

0 0 — o w. . _ g0 0 .
Eon  Eon 17 "N <"nN+1 = Egner Eon:

We denote by ¢ the chemical potential of the non-interacting system,i.e. any real number
satisfying
N < o<"N+1! (1.37)

Finally, the Hi-orthogonal projection on the occupied states is denoted by

X
on = L1 g(h) = «ih «j; (1.38)
k=1
wheref g; ,  is an orthonormal family of (real-valued) eigenfunctions ofh; correspond-
ing to its lowest eigenvalues:h; ¢ = "k k. The one-body particle, hole and total Green's
functions Go,p, Go;n and Go of the non-interacting system have properties similar to the ones
of the interacting system.

Lemma 1.8. It holds
8 2R, Gop()= i( ) 9 e and Gon()=i( ) dne " (1.39)

The analytic continuations of their Laplace transforms,@g,, and Gq;, are respectively

. 9
; ) Sy, - _ON .
<~ and 8z2Cn(1 ;"n); Gon(2)= Z hy

The total Green's function of the non-interacting system is, in the complex frequency domain,

8z2Cn("n+1;1); GO;p(z) =

8z2U[ L[ ("n:"ns+1); Go(@=(z hp 1 (1.40)
The Green's function for the non-interacting system is simply the resolvent of the corre-
sponding one-body operatorh;.
1.3.3 The self-energy operator

By analogy to the non-interacting case (.40, we de ne the one-body dynamical Hamilto-
nian 14 (z) as

8z2U[ L[ (Ex ER 1ERa ER) B@=2z 62 4
1
sothat &(z)= z W(z) . The following lemma shows that this de nition indeed makes
sense.

Lemma 1.9. Foranyz2 U[ L[ (E§ EQ 1):EJ.; EQ), the operator 18 (z) is a well-

de ned closed operator onH 1, with domain B(z), where B(z) is dense inH; and B (z)
H?2(R3; C).
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For each complex frequency, 19(z) may have (complex) eigenvalues. Such an eigenvalue
is called aquasi-energy and a corresponding eigenvector is called quasi-particle.

We nally link the one-body non-interacting Hamiltonian with the one-body dynamical
Hamiltonian. To do so, we assume that the chemical potentials and ¢ de ned in (1.36
and (1.37) respectively can be chosen equal. In this case, we can de ne the self-energyon
the imaginary axis +iR by the Dyson equation

8l 2R; § +il)=18( +i!) hy=8&y( +it) ! & +i!) ! (Dyson equation).

(1.41)
The self-energy can be de ned on a larger domain, but its de nition on +i R will be enough
for our purpose. Note that the Dyson equation de nes the self-energy, and that the self-energy
depends on the choice ofi.

The road-map of the GW method is as follows:

Construct a good one-body mean- eld Hamiltonian h;. In the original article by
Hedin [Hed63, h; is the Hartree model, solution of the self-consistent equation

1.

I (1.42)
On  density of 9y = 11 . gy(hy):

8
3 hy=

Nl
+
<
+
o

O;N

We refer to [Sol9] for a mathematical analysis of this model.

Construct an approximation of the self-energy:16W ( +i) € +i). To construct
such an approximation is the topic on the next section.

De ne the approximation of the Green's function dBGW( +1i ) via the Dyson equa-
tion (1.41).

1.3.4 The Hedin's equations, the  GW equations and the GW? equations

The de nition ( 1.34)-(1.35 of the Green's function & is not usable in practice, for it neces-
sitates to compute quantities which su er from the curse of dimensionality (for instance the
resolvent of Hy +1 E,‘\),). Fortunately, it turns out that & satis es a set of self-consistent
equations, called the Hedin's equations. These equations were introduced by Hedin in its
pioneering article [Hed69. They were derived from physical considerations, using many-body
perturbation theory. The derivation of Hedin is beyond the scope of this thesis, and is not
well-understood mathematically speaking.

We denote by 1 :=(rq;t1), 2 := (rg;t2), etc. a space-time point. The space-time point
1* is (r1;t7), wheret] is a time strictly after ty, but in nitesimally close to t;. The notation
d1 stands fordr.dt;. A space-time operatorA has a kernelA(12) = A(ri;t1;r2;t2), and all
operators that we will consider satisfy the relationA(12) = A(ry;0;ro;to  t1) := A(ri;ro; )
where = t, t;. We denote by A( ) the operator with kernel A(r1;r»; ). The Hedin's



1.3. The GW approximation 31

equations read as followsHed63:

| The Hedin's equations |

G(12) = Go(12)+  d(34)Go(13) ( 34)G(42) (Dyson equation)
(12)=i d(34)G(13)W(41") ( 32;4) (Self-energy)
W(12) = ve(12) +  d(34)ve(13)P(34)W (42) (Screened interaction)
P(12)= i d(34)G(13)G(41")( 34;2) (Irreducible polarization)
(12;3)= (12) (13)+ d(4567) G( (136(46)6(75)( 67;3) (Vertex function).

Here, v represents the Coulomb operator, with kernel

1
jri ro

Ve(12) := ve(ra;r2) o )= o ): (1.43)

As we can see, the Hedin's equations involve a lot of operator-valued functions. Some
of them are well-de ned, and some of them are not well-understood mathematically. In
particular, it is unclear in what sense the partial derivative

g( (Ei'é; (1.44)

is taken. In practice, it turns out that this term may be neglected for most interesting systems.
To set it to O leads to the GW equations, also introduced by Hedin in the same article.

|The GW equations | Find G®" solution to the system

GOW(12) = Go(12)+  d(34)Go(13) SV (34)GW (42) (1.45a)

GW(12) =i G®W (12)WCW (21%) (1.45b)
WOW (12) = v(12) +  d(34)v(13)PCW (34)WCW (42) (1.45c)
PCW(12)= iGEWY(12)G®W (21*) (1.45d)

The name GW comes from (L.450). These equations are usually solved self-consistently.
In Chapter 4, we focus on theGW? equations, which adds an extra simpli cation. The GW°
equations are obtained by setting?? "V WO, where W is the screened interaction in the
random phase approximation(RPA).

The GW? equations | Find GEWV° solution to the system

GOV (12) = Go(12)+  d(34)Go(13) °W°(34)GEW°(42) (1.463)
GW°(12) =i GEW (12)WO(21+) (1.46b)

In Chapter 4, we transform the GW? equations (L.46) into formally equivalent equations
having better properties, and we study the resulting equations.
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The kernel-product of operators

The GW? equation (1.46b) is of the form C(12) = A(12)B(21). The Schwartz kernels of the
operators A and B are multiplied. It is unclear that such a de nition makes sense, as the
multiplication of two kernels is not, in general, the kernel of a well-de ned operator. We need
to clarify the meaning of such a multiplication.

We start with time-independent operators. Let A 2 B(H;) and B 2 B(H1) have ker-
nels A(r;r9 and B(r;r9 respectively. We would like to de ne the operator C with ker-
nel C(r;r% := A(r:r9B(r%r). Formally, it holds that, for f;g 2 H 1,

H jCjgi = f(r)C(r;r9g(r9drdrl= f(Ar;r99r3B8(r%r)drdr®
R3 RS R3 RS

=Tr u,(AgBf): (1.47)
This motivates the following de nition.

De nition 1.10  (kernel-product). The kernel-product of A 2 H1 and B 2 H ; is the opera-
tor C:= A B, ifit exists, de ned by the sesquilinear form

8f;g 2H4; HjCjgi = Tr y,(AgBf):

In practice, the well-posedness of the kernel-producA B is given by results similar
to the following lemma. In the sequel, we denote byS(H) the k-th Schatten class of the
Hilbert space H ; S1(H) is the set of trace-class operators omd, and S,(H) is the set of
Hilbert-Schmidt operators on H.

Lemma 1.11. If B 2 B(H1) is such that, for all f;g 2 H 1, the operator gBf is Hilbert-
Schmidt (i.e. in the Schatten classS»(H1)), with

9Kg 2 R"; 8f;g2Hi, ¢Bf K g kgky , Kf Ky, ;

S2(H1)
then, for all A 2 B(H,), the operator A B is a well-de ned bounded operator orH 1, and
Reformulation of the ~ GW? equations

After some manipulations, that we do not describe in this introduction, we were able to show
that the GW©° equations (1.46) are formally equivalent to the following equations.

The -new- GW?° equations

Find GOW°( ¢+i ) 2 L2(R, :B(H1)) solution to the system

8
1
2EOWO(g+il)=  o+il  hy+ TOWO( gwil)
0
2

GW (1.48)

N

+1
CWO(o+il) = Ky zi GOW" owi(t +19 Q1 Ya
1

whereh; is the one-body Hartree operator de ned in (L.42), and K is the operator with
kernel 0
O:N (r; I’() )

Ku(r;r9 = TS

(1.49)
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The rst equation of ( 1.48) is the Dyson equation (1.41). The right-hand side of the sec-
ond equation of (1.48 contains two terms. The rst one Ky is the Fock operator (the one
that we nd in Hartree-Fock models), and the second one involves the operato® 2, which is
the correlation part of the screened interaction (we do not de ne this operator in this intro-
duction, and refer to Chapter 4, Section4.4.2). Note that the convolution is performed on an
imaginary axis. The fact that this convolution is equivalent to the time-multiplication ( 1.46h)
comes from the so-calledontour deformation techniqueintroduced rst by Rojas, Godby and
Needs RGN95] (see also RSW* 99)).

Seeing the RPA screened operato®/® = v, + W20 as a dynamical screened Coulomb
operator, the GW approximation can be interpreted as a dynamical version of the Hartree-
Fock model.

1.3.5 Well-posedness of the GW?° equations in a perturbative regime

The main results of Chapter 4 is concerned with the study of the GW® equations (1.49).
Together with Eric Cancés and Gabriel Stoltz, we rst proved that the kernel-product of the
rst equation indeed makes sense.

Lemma 1.12. For all G#®P( o+i )2 L?(R;B(H1)) and all! 2 R, the operator

+

RPP( g+il)= zi Cbw i 419 Wi 9Yd! ©
1

is a well-de ned bounded operator orH ;.

Unfortunately, we were not able to fully analyze (1.48: we did not nd mathematical
evidence that the operator o +i! hi+ 1ap( g+il) should be invertible at each step

of a self-consistent algorithm. We therefore studied theGW® equations in a perturbative
regime. For > 0, we introduce

The GW?° equations

Find GOW° 2 L2(R;B(H1)) solution to the system

8
1
3 GOWO( g4il)=  o+il  hg+ OWO( o4il)
GwW?° 1 (1.50)
3 “owo 1y = 1 AGWO : o Q
; (o+il)= Ky > G o+i(! +19 WO Ydr @

1

The case =0 corresponds to the non-interacting system:G/éWO:o( ot+i )= Eo( o+i).
The parameter can be seen as a coupling constant for the two-body interaction between
electrons. We proved the following existence and unicity result.

Theorem 1.13 (Eric Cancés, DG, Gabriel Stoltz). There exists > 0 such that, for all

0 , there exists a unique solutionéGWo( 0+i) 2 L?R;B(H1)) to (1.48) which is
close toGo( g+i ) in L2(R;B(H1)).
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1.4 Numerical simulation of crystalline structures

The last part of this thesis concerns the numerical simulation of perfect crystals. A perfect
crystal is characterized by a latticeR of R® and an R -periodic function per representing the
nuclear charge density. The electronic system is described by a mean- eld one-body electronic
Hamiltonian of the form

1 _
Hper = 5+ Vper; acting on L?(R3; C); (1.51)

where Vper is an R-periodic potential. In practice, Vper is the solution of a nonlinear self-
consistent equation. Such type of equations are motivated by means ¢fiermodynamic limit
procedures CLL98b]. In the sequel, we denote by the unit cell of the lattice R, and
by _:=L ,sothat | containsL?3 times the unit cell

The thermodynamic limit

To perform a thermodynamic limit, one must rst choose a model to calculate the ground
state energy of a nite system. One can consider the fulN -body Schrddinger model (.5),
or an approximation of it, like a Kohn-Sham model (seee.g. (1.24), a GW model (1.30, and
so on. We then consider, fol. 2 N the nite system with external (nuclear) potential

L(r :

VhueiL (1) = Mdro; with nucil = per(N)1(r2 ):
re Jr 19

In other words, we only consider the nite system consisting of the nuclei contained in a

box of size L (see Figurel.6). For L 2 N , we calculate the corresponding ground state

energy E_ . The questions then are

Existence: Does the sequence of energies per unit volum¢ | j 1E_ Lon COnverge
to someEper asL goes to in nity?

Characterization : If it is the case, isEper the solution to an explicit problem?

L=1 L=2 L=3

Figure 1.6 The thermodynamic limit:  per. for L =1,L =2 andL =3.

These questions have a positive answer for the Thomas-Fermi (with or without the von
Weizsacker term) model CLL96, CLL98b], the Hartree and restricted Hartree models CLL98a,
CLLOZ2] and the Hartree-Fock and reduced Hartree-Fock modelsCLLO1]. In addition, some
existence results (but no characterization) were proved for the fullN-body Schrodinger
model [Fef85 BLL0O3, HLS09g HLS09h].

The supercell thermodynamic limit

Another natural thermodynamic limit one could think of is the supercell thermodynamic limit
This type of thermodynamic limit was considered in CDLO08] for the reduced Hartree-Fock
model, and is closely linked to numerical simulations. In a supercell model, the system is



1.4. Numerical simulation of crystalline structures 35

conned in abox | := L with periodic boundary conditions. We denote bnger( L) the
Hilbert space of locally square integrable functions that arel R -periodic, and we would like
to study one-body mean- eld Hamiltonians of the form
1 .

Ho= 5 L+ Vpert acting on Ler( L): (1.52)
Here, L denotes the Laplacian operator acting ori_ger( L), and Vper.L is the sum of the
periodic Coulomb potential generated by the nuclei (and a uniform background of negative
charge)

Vhue = per(rC)G‘l(r r(ﬁdroﬁ (1.53)

which is independent ofL, and of a mean- eld potential V.. generated by the electrons (and
a uniform background of positive charge), which may depend oh. The role of the uniform
backgrounds is to neutralize the charge in the supercell so that the Poisson equation with
periodic boundary conditions may be solved. In {.53, G1 denotes the R-periodic Green

kernel of the Poisson interaction [S77], solution of
!

8
% X
Gl =4 k 1
k2R (1.54)

2 G1 is R-periodic and  G1 =0:
Once a model is chosen for the de nition ofV., one may ask oneself the same questions
(existence and characterization of the energy per unit cell) as in the standard thermodynamic
limit (see Figure 1.7).

L=2 L=3

Figure 1.7 The supercell thermodynamic limit: | forL =2 andL =3.

The supercell method for the linear model (whereVper;. is an R-periodic function inde-
pendent of L) is equivalent to performing a regular sampling of the reciprocal Brillouin zone
(see Sectionl.4.3), and is the model usually considered in numerical code$/[P76]. The non-
linear reduced Hartree-Fock model was considered irfCPDLO03].

In this introduction, we will only present the results for the linear model, and briey
mention the results in the case of the reduced Hartree-Fock model.
1.4.1 The Bloch transformation

The Bloch transformation is a suitable tool to study periodic operators (see alsoHS78
Chapter XIlII] or [ Del0g)). Let (a;;az;a3) be a basis ofR® that generates the lattice R, so
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that
R := kjay + koap + kzaz; (Ki;ko;ks) 2 Z3

We de ne the dual lattice
R := kia; + koa, + kaag; (ki;ka;ks) 2 23 ;

where the vectorsa; are such thata; a =2 . The unit cell and the reciprocal unit cell
are respectively de ned by

= 1A+ gaxt say (1 20 3)2[ 1721=2)° ;
and
= qa+ o.a,+ sag (1, 2, 3)2[ 1=2,1=2)3 :
For w 2 C} (R®), we de ne the Bloch transform Zw of w by
X .
892 R% 8 2R3 (Zw)(q;r) = wq(r):= e 9+ R)w(r + R): (1.55)
R2R

Note that since w is compactly supported, the sum in the right-hand side of {.55 is nite
forall r 2 R3. For R 2 R, we de ne the translation operator g on L2(R3) by ( rf)(r) =
f(r R). From the de nition ( 1.59), the function wq is R -periodic for anyq 2 R3: RWg = Wq
for all R 2 R. On the other hand, by introducing, for m 2 R , the unitary operator Up,
(on L3e () ) de ned by

8m2R ; 8f 2L5e(): (Unf)(r)=e ™ TE(r); (1.56)
we see thatwg+m = UmWq. Altogether,

8R2R; 8q2R3% Rrwg= wq

1 3y.
8w 2 CC (R ), 8m 2R : 8q2R31 Wq+m:Uqu:

(1.57)

In particular, the function Zw is completely characterized by its values forg 2 and
r 2 . We consider the Hilbert spacel ?( ;Lger()) , endowed with the normalized inner

product (we denoteby =j j 1 )
(1) 000 itz g,y = f(a;r)g(q; 1) dr da:
A classical calculation shows that

w2 CH (R, jwDPdr= j@w)(aindrda = kZwile iz
R

We can therefore extend by continuity the Bloch transformZ to L?(R3). Its extension, still
denoted by Z, is an isometry fromL2(R3) to L?( ;L3¢ ()) . Its inverse is given by

Z 1L L) P LARY)
Wq (r) 70 (Z 'wy(r):= d9wy(x)dq:
Let A with domain D(A) be a possibly unbounded operator acting on_f,e,() . We say
that A commutes with R-translations if RA = A g forall R 2 R. If A commutes with
R-translations, then ZAZ ! is block diagonal, which means that there exists a family of

operators (Aq) ;s acting on L2er() , such that, if f 2 L%R® and g 2 D(A) are such
that f = Ag, then, for almost any q 2 R3, gq 2 L3¢,() is in the domain of Ay, and

fq= Aq0q:
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From (1.57), we obtain that
8mM2R ; 892 ; Agem = UnAqUnh (1.58)

so that the family (Aq)CI2R3 is entirely characterized by its values forqg 2 . We write
ZAZ 1= Aqdg (Bloch decomposition ofA). (1.59)

1.4.2 The linear model on the whole space

Let us apply the Bloch theory to the self-adjoint operator Hper (With domain H?(R%; C))
de ned in (1.5]1). SinceHper commutes with R-translations, it admits a Bloch decomposition
of the form (1.59:

ZHperZ 1= Hg dg;

with

1, . . . .
Hq := 51 o+ Qi% + Vper = 1 2ig 11+ joj® + Vper: (1.60)

2
Here, we denoted by r ; the gradient operator acting on L%er() and by 1 the Laplacian
operator acting on L3,() . For eachq 2 R3, the operator Hq with domain H3.() is self-
adjoint, bounded below and with compact resolvent. We denote by 1.4 2 its eigen-
values, ranked in increasing order, counting multiplicities, and by(un:q)n2n 2 (Lger()) N
an orthonormal basis of associated eigenvectors, so that

892 R3% 8n2N; HgUng= nqlng: (1.61)
From (5.22), we obtain that
892 R3% 812N; 8M2R ; ngem = ng and Upgem = Uplung:

The map q 7! Hq is an holomorphic family of type (A) (see Kat12, Chapter VII]). In par-
ticular, the maps q 7! g are Lipschitz (hence continuous). As a result, fromiRS78 Chapter
XI111], we deduce that the spectrum of Hper can be recovered from the spectra 0¢Hq)qz ,
with

[ 5 . R
(Hper): (Hq): n; n Wlth n; n :f n;q; q2 g:
q2 n=1

The spectrum of H is therefore composed of bands. The mag 7! f 1.4; 24; g is called
the band diagram (see Figure (L.8)). We de ne the integrated density of stateper unit cell by

3
| :R3"T71I("):= 1( ng ")dq: (1.62)
n=1

It is a continuous non-decreasing function satisfyingl(1 ) =0 andI(+1 )=+ 1. Let

N be the number of electrons per unit cell in the system under consideration. We write
I 1(fNg)=[" ;"+]. Any number " inside this interval is an admissible Fermi level, or Fermi
energy of the system. When' = ", this number "¢ is unique, and the system is a metal.
Otherwise, the system is an insulator or a semiconductor, depending on the magnitude of the

P .
SIf f 2 L3 () has a Fourier decomposition of the form f (r) = =, & (f)e’* ", then

a( 1f)= jkifa(f) and cc(q ( ir)f)=(a k) oa(f):
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n

gapg:= "+ > 0, and we set"g = (" + ",)=2. By introducing the integrated density
of energy per unit cell

R
E:R3"7 E("):= mal( ng  "da; (1.63)

n=1

the energy per unit cell of the system isE("g).

n;q (Hper)

Figure 1.8 Band diagrams of Hper. Here, Hper represents an insulator.

The L?(R®)-orthogonal projector on the occupied states is de ned with the spectral
theorem by := 1(Hper "fF). If the system is an insulator or a semiconductor, then we can
rewrite  using the Cauchy residual formula as

1 dz

Here, C is a positively oriented simple closed loop in the complex plane, schematized in
Figure 1.9.

(Hper)

Figure 1.9 The loop C.

Since commutes with R -translations, it admits a Bloch decomposition of the form (1.59
with
1 dz
9721 ¢z Hg
Forall g2 , the operator 4 is trace-class. Let _ be the R-periodic density of 4. The
density of the operator is the R-periodic function de ned by

ZzZ 1= qdg;  with (1.64)

= . dg: (1.65)
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Figure 1.10 (left) The lattice R and the reciprocal unit cell (in red). (right) The
discretization | (in blue) of  (in red). Here, L = 4.

Finally, the energy per unit cell of the system de ned in (1.63 is also

1.4.3 The linear model on supercells

In practice, the calculation of the Fermi energy and of the total energy would necessitate
the calculation of .4 for all q 2 (see (.62 and (1.63). This is of course not possible
numerically. The reciprocal unit cell needs to be discretized. Since the work of Monkhorst
and Pack [MP76€], it has been observed that very good results were obtained when consider-
ing uniform discretizations, at least for insulators and semiconductors. As will be make clear
below, this is equivalent to performing a supercell calculation.

We are interested in studying the operatorH, de ned in (1.52. The operator H_ is a
bounded-below self-adjoint operator with compact resolvent, so that we could directly study
the full operator H_. However, it is possible to further simplify the problem by considering a
Bloch-like transform, that we call the supercell Bloch transform

ForL 2 N , we introduce the regular sampling of the reciprocal unitcell, . ;== L R \
, I.e.
2k 2k 2k L L L o
_ K1 2K2 K3 o + . + .o Lt .
L -— L a1+ L a2+ L a.3, (kl,kz,k3)2 2 y 2 +1, y 2 1 y
(1.67)
with =1 if L isodd, and =0 if L is even, so that there are exactlyl® points in | (see

Figure 1.10. Likewise, we deneR := R\ .
For w 2 Ce,( L), we de ne the supercell Bloch transform ofw by

X .
8Q2 ; (ZLw)(Q;r):= wq(r):= e QU*Rw(r + R):
R2R |

The operator Z_ enjoys properties similar to the ones of the operatoZ de ned in (1.55.
For instance,
1 . o, 1 X - D2 e
8w 2 Cper( L); Jwpm = L3 J(ZLw) (Q;r)j” dr;
L Q2
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so that the operatorZ, can be extended to an unitary operator frorri_,%er( L)to 2 Lger() :
where™? ;L3 () is endowed with the normalized inner product

_ 1 X _
H(QN: QN2 Lz () = 3 f(Q:;r)a(Q;r)dr:
Q2
The inverse ofZ, is
Z)N 2 GLE() Y L3l 1) L X
Wo (X) 7 (Z W) = 3 &9 *wq (x):
Q2 |

An easy calculation shows thatZLHLZLl is block diagonal. We write, by analogy
with (1.59),
1 M

|_3
Q2 |

Z\H Z 1.z Ho (supercell Bloch decomposition oH ),

where the operatorsHq, acting on Lser() , are exactly the ones de ned in (L.60). This shows
the relationship between the uniform sampling and the supercell calculation. We deduce that,
if the crystal is an insulator or a semiconductor,

the Fermi level of the supercell model can be chosen equal to the one of the periodic
model "g ;

the Lge,() -orthogonal projection initially dened by | := 1(HL "g) is also

1 M
L= L3 Qs
Q2
where o were introduced in (1.64). It is a trace-class operator, and its density is
1 X
LT3 o (1.68)
Q2
the energy per unit cell of the supercell model is
X
ELm T (He o) (169
Q2

1.4.4 Exponential rate of convergence of supercell models

The error on the energy per unit volumeEper E_, where Eper and EL were respectively
de ned in (1.66) and (1.69), is of the form
1 X

L3
Q2

This is the dierence between an integral and a corresponding Riemann sum. From this
observation, we were able with Salma Lahbabi to prove the following result (see Chaptes).

Theorem 1.14 (DG, Salma Lahbabi). AssumeVyer 2 L1 . There exist constantsC 2 R*
and > O, that depend on the latticeR, kVperkL 1 , g and "¢ only, such that

jEper ELj= f(q)dq f(Q) ;. where f(q):=Tr 2 ) (Hq q): (1.70)

8L2N; JjEper EL] Ce L (convergence of the ground state energy per unit volume)
and

8L2N; k K1 Ce “ (convergence of the ground state density)
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The idea of the proof is to show that the integrandf in (1.70 is an R -periodic function
which admits an analytical continuation on a complex strip of the formR® +i[ A; A]® for some
A > 0, and use the theory of convergence for Riemann sums. The same type of arguments
were used to prove the exponential decay of Wannier functions for insulator®|C64a, DC64b,
Koh59, BPC* 07, Pan07.

The reduced Hartree-Fock model
The reduced Hartree-Fock (rHF) model for perfect crystals, or periodic rHF, has been rig-
orously derived from the rHF model for nite molecular systems by means of the classical
thermodynamic limit by Catto, Le Bris and Lions [ CLLO1]. In [CDLO08], Cancés, Deleurence
and Lewin proved that the same periodic rHF model is also the supercell thermodynamic
limit of the supercell rHF model.

The rHF model is a nonlinear model in which the external potential is solution of a self-
consistent equation (both for the supercell modeV,er.. and for the periodic modelVyer). We
refer to Chapter 5 or to [Del0g] for a complete description of these models.

Together with Salma Lahbabi, we proved a result similar to (.14 in the rHF case (see
Chapter 5). We proved that, if the system is an insulator or a semiconductor, then

the supercell rHF energy per unit cell converges exponentially fast towards the periodic
rHF energy per unit cell ;

the supercell rHF ground state density converges exponentially fast towards the periodic
rHF ground state density, in the Léer() norm.

The theoretical exponential convergence rates are con rmed by numerical simulations in
Chapter 5.

1.4.5 Reduced basis methods for Brillouin-zone integration

As mentioned before, a numerical calculation needs the discretization of the reciprocal unit
cell. The theory described in the previous section shows that, at least for insulators, the
values obtained on a regular coarse grid gives good results (this is due to the exponential rate
of convergence proved in Theorem.14). For metallic systems, a slower rate of convergence is
expected and a much ner sampling is needed to calculate for instance the integrated density
of states| de ned in (1.62 (from which we obtain the Fermi level). As a consequence, the
calculation of the eigenmodes of the operatoHq at all the points q of the grid is numeri-
cally much more expensive than in the insulating case. Together with Eric Cancés, Virginie
Ehrlacher and Damiano Lombardi, we proposed aeduced basismethod to speed up tradi-
tional calculations (see Chapter6). Our approach consists in creating reduced bases that are
g-point dependent (hence di ers from the method described inPau07)).

The basic idea of the proposed numerical scheme is to extract local small reduced bases
from calculations on a coarse uniform grid of sizé1 L3 Liof forsome valueL; 2 N .
These are used to compute the eigenmodes ¢ty for g on a ne uniform grid of size
L, L, Ly with Lo L1. The resulting method is very easy to implement, and al-
ready provides very satisfactory results. It is then possible to further improve the accuracy of
the approximate eigenmodes at a low extra computational time, using a perturbation-based
post-processing method similar to the one introduced inGDM* 14].

The full algorithms and the corresponding numerical results are analysed in Chaptes.
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CHAPTERZ

THE N-REPRESENTABILITY PROBLEMS

We expose in this chapter the arguments given ir5pn13 and in [Gon154.

Abstract. This chapter is concerned with the pure-stateN -representability problem for
systems under a magnetic eld. Necessary and su cient conditions are given for a spin-
density 2 2 matrix R to be representable by a Slater determinant. We also provide su cient
conditions on the paramagnetic currentj for the pair (R;j) to be Slater-representable in the
case where the number of electronBl is greater than 12. The caseéN < 12is left open.

2.1 The N-representability problem in SDFT

The density functional theory (DFT), rst developed by Hohenberg and Kohn [HK64], then
further developed and formalized mathematically by Levy [Lev79], Valone [Val80] and Lieb [Lie83],
states that the ground state energy and density of a non-magnetic electronic system can be
obtained by minimizing some functional of the density only, over the set of all admissible
densities. Characterizing this set is called theN-representability problem More precisely,
as the so-called constrained search method leading to DFT can be performed either with
N -electron wave functions [ev79, Lie83], or with N-body density matrices al80, Lie83],
the N -representability problems can be recast in the pure-state setting resp. in the mixed-
state setting as follows: What is the set of electronic densities that come from an admissible
N -electron wave function resp. an admissibleN -body density matrix? This question was
answered by Gilbert [Gil75], Harriman [Har81] and Lieb [Lie83] (see @.6) below).

In order to deal with spin magnetic e ects, it is necessary to resort to spin-polarized
density functional theory (SDFT) where the objects of interest are the spin-polarized densi-
ties with ; 2 f" ;#g. This theory was rst developed by von Barth and Hedin [VBH72]
in a very general setting, but most applications use a restricted version of it, where local
magnetization is constrained along a xed direction (collinear spin-polarized DFT). While
this simpli ed version is able to account for many magnetic e ects, it misses some important
physical behaviors (frustrated solids like -Fe or spin dynamics for instance). Actually, the
rst calculations for non-collinear spin-polarized DFT have been performed by Sandratskii
and Guletskii [SG86 and Kiibler et al. [KRHSW88b, KHSW883a] (see BSFS13 or [SDAD* 07]
for some recent works), but no rigorous mathematical background has yet been developed in
this case. We emphasize that SDFT deals with spin e ects, but not with orbital magnetic
e ects. If the latter are not negligible, we should use another variant of DFT, namely current
-spin- density functional theory (C-S-DFT). This will be the topic of Section 2.2
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In this section, we are interested in theN -representability problem for the so-called spin-
density 2 2 matrix (from which we recover the spin-polarized densities). The question was
addressed but left open in the pioneering work by von Barth and HedinyBH72]. We provide
in this section a complete characterization of the set of admissible spin-polarized densities
used to perform self-consistent minimizations.

2.1.1 Setting the stage: the spin-density 2 2 matrix

Recall that the set of admissible antisymmetric wave functions is
(4 )
WE'® = 2 L*R%C?; k Kezgany=1; kI Kizany <1

where L?(R?; C?) is the one-electron state-space

L2(R% C?) =( 5O kK= ] )<t
A special case of wave functions is given by Slater determinants: let1; 2;:::; N be a set
of orthonormal functions in L2(R3; C?), the Slater determinant generated by( 1;:::; n)is

The subset of W{""® consisting of all nite energy Slater determinants is denoted byw g/t
It holds that Wi = WP and wgler ( W™ for N 2.

For a wave-function 2 W{™®, we de ne the correspondingN -body density matrix
= j ih j, which corresponds to the projection onfC gin N L2(R3;C2). The set of
pure-state and Slater-stateN -body density matrices are respectively

n 0
GR™ = ; 2W{"™ and GR*":=  ;  2wgRe (2.1)

It holds that GPa" = GI™® and that GJ" ( GR™ for N 2. The set of mixed-state
N -body density matrices Gl}*¢¢ is de ned as the convex hull of G}"®:
o (y % )
GRxed = ng wih ;0 e L one=1; (2WET (2.2)
k=1 k=1

It is also the convex hull of GJatr,

In SDFT, we are interested in the spin-density2 2 matrix. For 2 GI*¢d, the associated

spin-density 2 2 matrix is the 2 2 hermitian function-valued matrix
|
n# "

R (r):= e o (1)

where, for ; 2" ; #c?,

X
(r):=N (r;; 287r;; 29 dz (2.3)
sof g n R
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Here, we denoted by ( rq;s1;:::;r9;8%;:::) the Schwartz kernel of the operator 2 Gxed.
In the case where comes from a Slater determinantS [ 1;:::; n], we get
I
A IV
R (r)= —, K '; (n): (2.4)

. #.
k=1  k k J K
The Slater-state, pure-state and mixed-state sets of spin-densit® 2 matrices are respectively

de ned by
n 0 n 0

J’\?Iater = R: 2 Gﬁlater : J’\;l)ure = R: 2 Gﬁlure and J’\rlnixed = R: 2 Ganixed

Since the map 7! R s linear, it holds that Jg'aer g [JW¢ 3 mxed that J hixed jg
convex, and thatJ 7™ is the convex hull of both J $3" and J {"'. With this notation, the
N -representability problem is

N -representability problem  : Characterize the setsJ g, J /' and 3™, | (2.5)

2.1.2 Pure-state and mixed-state representable spin-density 2 2 matrices

Before answering problem 2.5), let us address some remarks. In the physics community, the
spin density 2 2 matrix R is usually replaced by the pair( ;m ), where, = e M
denotes the total electronic density, andm =tr c2[ R ] the spin angular momentum density.
Here,

_ o _ Oo1.0 i . 1 0

=0y 2= 101 0 "0 1
contains the Pauli-matrices. The pair( ;m ) contains the same information askR , hence
the N -representability problem for the matrix R is the same as the one for the pai( ; m).
However, as will become clear, it is more natural mathematically speaking to work wittR .

In the spin-unpolarized case, which amounts to setting * = * =0 and =~ = *
(see Chapter3, Section 3.2), it is su cient to characterize 1§ = f ; 2 G{g, whereX
represents either the set of Slater, pure of mixed states. This problem was rst considered
by Gilbert [Gil75] and completely solved by Harriman Har81]. They proved that | 3a®" =
IR = 1 ed = 1y with

In=  2LYR%; o =N; P 2 HYRY) : (2.6)
R3

A rigorous mathematical construction of DFT was then developed by Lieb in [ie83].

In the spin-polarized setting, unlike the previous case, we have to distinguish pure-state
representability from mixed-state representability, as is illustrated by the following exam-
ple. LetN =1 and =( "; H 2wl For = j ih j, it holds, according to (2.4),

(r)= (r) (r), so that the determinant of R is null. Therefore, J ”"® only contains
elds of at most rank-1 matrices, whereas, as will be proved latterJ /"¢ contains full-rank
matrices.

We now state the main tBegrem of this section. We rst recall that for a Hermitian
matrix R satisfying R 0, R is a well-de ned Hermitian matrix. We also recall the
de nition of the Lebesgue spacesLP(RY) := ff; ra fP < 1g and of the Sobolev spaces
WIP(RY) := ff 2 LP(RY);r f 2 LP(RY)g. We introduce

n o]
p_
G = R2M, o(LYR%C);R =R;R 0, trez[RI=N; R2M  o(HY(R%C)) ;
3

R
2.7)
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and @ := fR2Cy; detR 0g. The characterization of Gy is given by the following lemma
(see Section2.1.3for the proof).

Lemma 2.1. A function-valued matrix R=_ 4 isin G i its coe cients satisfy

8
% A A S GO e TEN
q — " N
F2HIRY: ! del(R) 2 WERR(RY), (28
%Jr P2 ot2 Ll(R?’)

det(R) 12 LY(R?):

The complete answer forN -representability in SDFT is given by the following theorem
(see Section2.1.3for the proof).

Theorem 2.2.
Case N =1: It holds that

J]_Slater — leure — dl) and Jlmixed — Cl:
Case N 2 Forall N 2, it holds that

Slater _ ure _ mixed _— .
Jgaer = g pure = g mixed = G

The rst line of ( 2.8) states that R must be a positive Hermitian matrix and that the
number of electrons isN. The other three lines are regularity conditions that ensure the
niteness of the kinetic energy. Comparing @.6) and (2.7), we see that the above theorem is
a natural and nice extension of the classicaN -representability result (2.6).

An interesting consequence of our result is that it is possible to control the eigenvalues
of R. Most applications of SDFT use exchange-correlation functionals of the forrkx.( *; ),
where * and are the eigenvalues oR (see Chapter3, Equation (3.7) for examples and
discussion), so that the knowledge of the regularities of* and is desirable for the study
of these applications.

Corollary 2.3. p__
If R is mixed-state representable, then its two eigenvalue$ and  satisfy 2 HY(R3).

Let R2J ,\‘,’“re be represented by a wave-function g. One can ask oneself whether there
is a way to control the kinetic energy of r (which we know is nite by de nition of R) with
respect to, say, r R Lz? In the spin-unpolarized setting, there is such a control: it is pos-
sible to represent 21 \, wherel y where de ned in (2.6), by a wave-function such that
kr ki 2rsy Cnkr kLZ, whereCy 2 R* is a constant independent of . Unfortunately,
we were not able to prove such a control. This is due to the use of the Lazarev-Lieb orthonor-
malization process [L13] (see also Lemma2.5) in the proof. This process is a powerful tool
for representability, but looses control on the kinetic energy Rut13].

We now prove Lemmaz2.1, Theorem 2.2 and Corollary 2.3.
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2.1.3 Proofs of the SDFT results
Proof of Lemma 2.1

Proof. If R satis es (2.8), then R 2 Cy.
Let R be a matrix satisfying (2.8), so that R is a positive hermitian matrix. The only

non-trivial point to check is that pﬁ 2 M, »(HYR3:C)). Writing pﬁ = rg ; , the
equality R = P ﬁp R is equivalent to
< jrif+jsi? o=
jri2+ jsjiz2 = % (2.9)
s(r'+r%) =
Together with the relation det(IO R)=r'r*j g = P det, where we denoted bydet := det( R),
this leads to
- U S - SN |
r p__ 1=2" - p__ 1=’ and s= p__ 1=2"
+2 det +2 det +2 det
Let us show for instance thatr* 2 H1(R3), the other cases being similar. Using the inequalities
(a+ b)? 2@°+ 1P), " and det 0, we obtain
o P— 2
.2 + det 2 " Z4iodet P
r p—— p— 2 + det;
+2 det +2 det

and the right-hand side is integrable, thanks to @.8). On the other hand, the gradient of r’

is b b
¢ "+rPget 4 r +2r det "+ det
rr = - ;
__ 1=2 _ 3=2 !
+2 P det 2 +2 P det

so that, using the same type of inequalities,

2 erPden? | (+ " den?(r +2r  dety?
+2" det ( +2 det)3 |

i i i Dde? g 2, ir " det?

rr

4

Every term of the right-hand side is in L*(R®) according to (2.8). We deduce that r" 2
H1(R3;C), and consequently, R2M , »(H(R%;C)). In conclusion,R 2 Cy.

If R 2 Cy, then R satis es (2.9).
Reciprocally, using .9), it is not di cult to prove that R satis es all conditions in (2.8). Let

us prove for instance that r ~ det 1. From det=r'r¥ j sj?, we get

rodet= rr rf+r rr¥ 2Re(sr s):
Together with the inequality (a+ b+ ¢)? 3(a?+ b? + ¢?), we deduce

2
r - det rr 2?2 Frfl e 2 i sijsi? .2 2
=3 +3 sl g T T 52

and the right-hand side is inL%(R®) sinceR 2 Cy. The result follows. O
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Proof of Theorem 2.2

Proof. We break the proof in many parts.

Step 1: Jed C .
For a mixed state 2 GI*®d, we de ne the one-body spin-density matrix

" “#
(rir9= o w (r% (2.10)

where
X

(r:;r9:= N (r;: z;s;r% ; z;s) dz: (2.11)
s2f" #gN 1 R3N 1)

It holds that R (r) = (r;r9%. We denote byR := R in the sequel. The one-body spin-
density matrix is a very useful quantity in quantum chemistry, and is completely understood
mathematically. Coleman [Col63] proved that any such can be written as

b3 p3
(r;r9 = Nk () (9 0 ng 1 ne = N;
k=1 k=1

X
hwj 1= w; Tr( ) nekr (k< 1

k=1

LetR2J ,{,“ixe". To prove R 2 Cy, it is enough to prove that R satis es the conditions (2.8),
thanks to Lemma 2.1. By de nition, there exists  satisfying the above conditions such that
R =R , so that
o, 1
¥ #
R = n @ X k kp .
k #7.. # 2 "
k=1 k k k
Under this form, the rst line of ( 2.8) is obvious. Also, since all elements oR are of the form
Nk (r) (r) with  ngkr | k?< 1, we easily deduce from the Sobolev embedding that
R 2 W13%2(R3). Moreover, using the Cauchy-Schwarz inequality, it follows, for 2 ' ;#g,

X -2 X X
ir j2=4 nkRe 1 4 Nkj i e 2 ;
k=1 k=1 k=1
_ P _
so that jr P i2 4 ngr o j2 (we recall that for f 0, it holds jr fj2 = 4fjr psz).
Integrating this relation gives kr 7kﬁz Tr( ) < 1. Likewise,
b3 e 2R ) 1=2 ) 12
L | PO S L PRI R T R (O G (I
k=1 | k=l
" !

. "9 . #.2 A
Nk Jr W 700 4l ;
k=1

= .
so that jr j 1 n(ir J2+jr 1i%. Integrating this relation gives the inequality
kir j2 ki Tr( ) < 1. Finally, let us evaluate det(R). From det(R)= " # j j3,
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we get
hS 2 .2 —
_ " # "TH o "
k;l=1
_ X mn w2 #2+ w2 42 T oy H o4
- k k I I k k k|1 I 1 k k
1 k<< 1
X "oy g n2_ 1 x ' 4 v 2
= Nkt k1 =3 Nkt K 1o
1 k<< 1 kil=1

Using similar arguments as before, we obtain thaP det 2 WL32(R3) and that
)4 " #
jr det(R)j?> 8det(R) ne jr Q2+ ir i3
k=1
Integrating this inequality leads to jr P det(R)j2 1 L 27Tr( ) < 1 . Therefore, any
R 2 J "*ed satis es (2.8), hence is inGy .

Step 2: CaseN =1: Jj®&er = gpue =
The fact that J S = J PU® simply comes from the fact that G$'¥" = GE""®. To prove
JSaer ¢ 9 weletR 2J 5 pe represented by = ( "; )T 2 HY(R®; C?), so that

SinceR 2 J jlaer 3 mixed ¢ according to Step 1, and sincedet(R) 0, we deduce that
R2CY.

We now prove that { J S jetR= _ , 2CJ. From detR 0and Lemma2.l,
we get 8

% g o2 } " } o1

§ Ry LRY: 2 WI2(RY): (2.12)

ir 7 T2 LMRY):
There are two natural choices that we would like to make for a representing orbital, namely

p — — T p— T
L= . P—= and .= P=; o (2.13)

Unfortunately, it is not guaranteed that these orbitals are indeed inH 1(R3; C?). It is the case
only if jr j?= #isin LY(R®) for 1, andifjr j%= " isin LY(R®) for 5. Due to (2.1, we
only know that jr j?= 2 L(R®). The idea is therefore to interpolate between these two
orbitals, taking 1 in regions where # and »inregions where # . This is done
via the following process.

Let 2 C! (R) be a non-decreasing function such thad 1, xX)=0ifx 1=2
and (x)=1ifx 1. Wewrite = +i where is the real-part of , and s its
imaginary part. We introduce

Y
P—
1 = P(—# 0 ;o1 o= 1 ¥ :#)F’*—#;
1t 1, ) 1 1

2 F 2 F
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and we set
= 1+i 1 and Fi= L+i o
Let us prove that :=( "; #) representsR and that 2 W $!3®", First, an easy calculation
shows that
) 24 2241 22 2
2_ 2, 2_ _ _
J1rm= o1t 1= 7 =TT

"E _ _ ) _ .
Im = o+ 1= —P=—"=;

so that 2 L2(R%C?) with k k=1, and representsR. To prove that 2 WP we
need to check that 1; »; 1 and » are inH(R®). For 1, we choose another non-increasing
function 2 C?! (R) such that O 1, (x)=0 forx 1,and (x)=1 forx 2. Note
that (1 ) 0. It holds that

roa=@ 2= g+ A= oo (2.14)

The second term in the right-hand side of 2.14) is non-null only if * #. so that on this
part, it holds ("= #)=1. In particular, from the equality "~ #=j j?, we get

“ o oo
(=t 1= = Hgl= =) T

and similarly, p_
27=Hr 1= (=M
which is in L2(R®) according to (2.12. On the other hand, the rst term in the right-hand

side of .14 is non-null only if * 2 # so that (1=3) # on this part. In particular,
from the following pointwise estimate

Jr 9j jrfj irg _
Ff+g 2f+rg 2f+rg 27 2Pg

ir " Fi+ir Pgi 2.15)

which is valid almost everywhere whenevef;g 0, the inequality (a+ b2 2(a+ b?), and
the factthat 2+ 2 2 | j2 we get (we write for ( "=#))

_ P pf#rp 24 22 P 2 4 zzrth,f2
Jr 1J - #
jr P 24 2 2j2 ( 24 2 2)_ pf-z!
2 7 terme r
0 ¢ 1
jl’ j2 2r B S ”# ;r i 2 2 2j|’ j2 2j j2 p
(% ; w2l .
2% e 7 + o ( #)21r ] &
We nally use the inequality ( #) 1 (3=), and the inequality j j>=( 2= "=# 2and
get
a2 o2 #:2 2 p
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The right-hand side is in L1(R3) according to (2.12. Hence,(1  2( "= #)jr 1j2 L%(R3),
and nally 12 H(R3).
The other cases are treated similarly, observing that,

whenever # then =1,and = 1 where 1 was dened in (2.13. We then
control ( ") ! with the inequality ( ") * 2 1;

whenever #=2, then =0, = 5. We control ( #) ! with the inequality
( #) 1 % 1.

whenever #=2 " # thenboth ( ) Y*and( #) ®arecontrolledvia( ') * 3 1
and( %)t 2 1

The result follows.
Step 3: CaseN 2:JgSw@er = g fure = gmixed = g .

Since J gl g pUe g mixed = G according to Step 1, it is enough to prove that
Gy J g We start with a key lemma.

Lemma 2.4. For all M;N 2 N2, it holds that J $'3e" = J Jlaer + g Slaer,

Proof of Lemma 2.4. The caseJ J&e" J Slter + J Slaer js trivial: if R 2 J $3e is rep-
resented by the Slater determinantS [ 1;::: n+wm], then, by denoting by R; (resp. R>)
the spin-density 2 2 matrix associated to the Slater determinantS [ 1;:::; n] (resp.
S[ n+15::5; N+m]), it holds R = Ry + R, (see Equation @.4) for instance), with Ry 2
J ’\?Iater and R, 2 J ,\%Iater.

The converse is more involving, and requires an orthogonalization step. LdR1 2 J ,\?'ater

S i Ni€iiii8m], for (1;:::; N) is not orthogonal to (€4;:::;€w).

We use the following lemma, which is a smooth version of the Hobby-Rice theoreriR65]
(see alsopin76]), and that was proved by Lazarev and Lieb in [L13] (see alsoI[S13).

exists a functionu 2 C? (R3), with bounded derivatives, such that
81 k N; f eu=0:
R3

Moreover, u can be chosen to vary in the direction only.

such that,

) e TE# E o _ .
81 k N; Lok1t il gl =0;

and we set n+1 = T 168, Note that, by construction, n+1 is normalized, in H1(R3; C2),

and orthogonal to ( 1;:::; N). We then construct ti, as in Lemma2.5 such that
. i Tw# e, .
81 k N +1; ook2t e df2 = 0;

and. we set pN+2 = f gtz We continue this process for3 k M and construct N+ =
f & . We thus obtain an orthonormal family ( 1;:::; N+m). Since the spin-density2 2
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matrix of the Slater determinant S [f 1;:::;9v ]isthesame astheone d [ n+1::::; N+wm]
(the phases cancel out), we obtain thatR = R+ Ry, whereR is the spin-density2 2 matrix
represented byS [ 1;:::; N+m]- The result follows.

[

We now prove that Gy J ,\?'a‘er for N 2. We start with the case N = 2.

Case N =2 o .
letR= _ , 2C, Wewite R = rg rs# , with r";r# 2 HY(R3R) and s in
H(RS; C). Let
S #._ Isi® sr?
R'= Jgb 7 and RP= L R (2.16)

It is gasy to check that R = R" + R¥, that R"™ are hermitian, of null determinant, and
that R 2M , » HY(R%C) . However, it may hold that s trc2[R']2 N, sothatR" is
not in G, for someM 2 N .

The casesR™ = 0 or R* = 0 are trivial. Let us suppose thatm = _; r 60 for
2 ' ;#g. In this case, the matricesR = (m ) IR areinC}, hence are representable by a
T T
single orbital according to Step 2. Let€= fl;ff 2 HY(R3C? and €, = fz;f’; 2
H (R3; C?) be normalized orbitals that represent respectivelyR" and R#. It holds
e.e, =R =(m") 'R and €,€,= R*=(m" IR*

From the Lazarev-Lieb orthogonalization process (see Lemma.5), there exists a function
u2 C! (R) with bounded derivatives such that

o ius fofe  fafa
h€1j€,eli = o1zt e du=o: (2.17)

Once this function is chosen, there exists a functiorv 2 C! (R) with bounded derivatives
such that

he1j€1€Vi = he1j€,e(U* V)i = he,d!j€,e"vi = he,j€,eVi = 0: (2.18)
We nally set
P— P—_ . pP— p— .
1= pl—z m' €, + m#e,e! and 5= pl—z m'€; m#€,e" ¢v:

From (2.17), we deducek 1k? = k ,k? =1, so that both ; and > are normalized. Also,
from (2.18, we get h 3j »i = 0, hencef ;; »g is orthonormal. As €; and €, are in
H1(R®;C?), and u and v have bounded derivatives, 1 and » are in H(R3;C?). Finally, it

holds that

1. . P .
1 1+ 2 2: é m e]_el+ m e262+2 m m#Re e]_eze u

. P |

+m €8 +mPe,e, 2 m'm¥Re €,€,e M
o 4 - b
=m elel+m ezez_R_

We deduce that the Slater determinantS [ 1; »] representsR, so that R 2 J 23" Alto-
gether, G J > and therefore G = J j'ater,
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Case N > 2.

We proceed by induction. LetR 2 Cy; with N 2, and supposeGy = J $'%°". We use the
decomposition .16 and write R = R" + R#, whereR" ¥ are two null-determinant hermitian
matrices. For 2 f" ;#g, we denote bym = _; g . Sincem + m*= N +1 3, atleast
m" or m* is greater than 1. Let us suppose without loss of generality thatm” 1. We write
R = R; + Ry with

Ry:=(m) 'R" and Ry;:= 1 (m)?! R + m*R*

It holds that Ry 2 CY = J SR and R, 2 Cy = J$® (by induction). Together with
Lemma 2.4, we deduce thatR 2 J $'3€". The proof is complete. O

Proof of Corollary 2.3

Proof. Let R 2 J,™ed = Gy, and let pﬁ = r§ rs# : The eigenvalues ofR are denoted
p— . — .
by O *, so that are the eigenvalues oP R. In particular,
pP— 1 . p— _ " .
=5 r# with  =( r %2 +4jsj?

According to Theorem2.2, 1", r¥ and s are jn H*(R®). Hence, is the sumpof two quantities
whose square roots are itH 1(R?), so that 2 HY(R3) by convexity of k'~ kZ?,.The result
follows. O
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2.2 Representability in CSDFT

We now get interested in current-spin-density function theory (CSDFT). For a system sub-
jected to a magnetic eld, the energy of the ground state can be obtained by a minimization
over the set of admissible pairdR;j), whereR is the spin-density2 2 matrix introduced in
Section2.1.1, andj is the paramagnetic current VR88]. This has lead to several density-based
theories, that come from several di erent approximations. In spin-density functional theory
(SDFT), one is only interested in spin e ects, hence the paramagnetic term is neglected. In
parallel, in current-density functional theory (CDFT), one is only interested in magnetic or-
bital e ects, and spin e ects are neglected Vig87]. In this case, the CDFT energy functional
of the system only depends on and j, and we need a characterization of the set of pure-state
and mixed-state N -representable pairs(; j). Such a characterization was given recently by
Hellgren, Kvaal and Helgaker in the mixed-state setting TKH14], and by Lieb and Schrader
in the pure-state setting, when the number of electrons is greater than 4.513.

In this section, we give some answers to th&l -representability problems in the current-
spin-density functional theory (CSDFT): What is the set of pairs(R;j) that come from an
admissibleN -electron wave-function resp. an admissibleN -body density matrix? (pure-state
resp. mixed-state representability). We will answer the question in the mixed-state setting
for all N 2 N, and in the pure-state setting whenN 12 by combining the results of the
previous section and the results inl[S13. The proof relies on the Lazarev-Lieb orthogonaliza-
tion process. In particular, our method does not give an upper-bound for the kinetic energy
of the wave-function in terms of the previous quantities (we refer to [[L13, Rut13] for more
details). We leave open the cas® < 12 for pure-state CSDFT representability.

2.2.1 Representable spin-density 2 2 matrix with paramagnetic current

We will use the same notation as in the previous section. In addition to the spin-density
2 2 matrix, we need to de ne the paramagnetic currentj. For a N -body density matrix

2 Gﬁixed, the associated paramagnetic currentig = | + j# where
0 1
X
i =Im @N ro(r;; zsr%: 29  dzA:
3(N 1) ro=r
sof gh 1 R
In the case where comes from a Slater determinantS [ 1;:::; n], we get
X - .
o= Imoor o+ oo (2.19)
k=1

While only the total paramagnetic current j appears in C(S)DFT, the pair (j ;j*) is some-
times used to design accurate current-density functionals (seé/R88] for instance). In this
thesis, we only focus on the representability of, and not on the pair (j ;j*).

Let us recall some classical necessary conditions for a pdR;j) to be N -representable (we
refer to [TKH14, LS19 for the proofs). In the sequel, we will denote by " := ™, #:= #
and := '# the elements of a matrixR, sothatR= _ , ,andby = "+ *the
associated total electronic density. Recall that the selGy was de ned in (2.7).

Lemma 2.6. If a pair (R;]) is representable by a mixed-stat®l -body density matrix, then

R 2 Cy

2.20
JJJ2 12 Ll(R3): ( )
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From the second condition of @.20), it must hold that the support of j is contained in the
supportof . Thevectorv :=  1j is called thevelocity eld, andw := curl (v) is the vorticity .

Let us rst consider the pure-state setting. In the spin-unpolarized setting, for N =
1, a pair (; j) representable by a single orbital generally satis es the curl-free condition
curl (1) = 0O (this is the case for instance when is of the form = j je 'V, where the
phaseu is in C}(R®), see [S13 TKH14]). This is no longer the case when spin is considered,
as is shown is the following Lemma (see Sectioh 2.2 for the proof).

Lemma 2.7 (CSDFT, caseN =1). Let =( "; HT 2 W5R®" pe such that both * and
# have phases irC1(R). Then, the associated pair(R;j) satises R 2 C?, jjj? 2 LY(R®),
and the two curl-free conditions

curl ! w = 0; curl Ly m =0: (2.21)
Remark 2.8. If we write =j jé ,then,j j?= " # and
m(r )=j @ = " : (2.22)

In particular, it holds that

Im(~r )+Im(*r )

p =curl (r )= 0;

curl

so that one of the equalities in 2.21) implies the other one.
Remark 2.9. We recover the traditional result in the collinear spin setting, where 0.

In the caseN > 1, things are very dierent. In [ LS13, the authors proved the following
theorem forN 4.

Theorem 2.10 (Lieb, Schrader).
A su cient set of conditions for a pair (; j) to be pure-stateN -representable is

21y with N 4andj satises jjj°> 2 LYR3).

there exists > 0 such that

sup f(r)® )72 jw(r)j+jr w(r)j <1 (2.23)
r2R3

where
f(r):=@+(r)?)@+(r2?)@+(rs)?): (2.24)

By adapting their proof to our case, we are able to ensure representability of a paiR; j)
by a Slater determinant for N 12 under the same mild condition (see Sectior2.2.2 for the
proof).

Theorem 2.11 (CSDFT, caseN 12).
A su cient set of conditions for a pair (R;]) to be representable by a Slater determinant is

R2Cy with N 12andj satises jjj? 2 LYR3)
there exists > 0 such that,

sup () )72 jw(r)j+jr w(r)j <1; (2.25)
r2R3

wheref is the function de ned in (2.24).
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Remark 2.12. The condition (2.25) has of course the same origin as the condition2(23).
In [LS13, the authors conjectured that this condition can be considerably loosened .

Let us turn to the mixed-state case. If (R;j) is representable by a Slater determinant
ST 1;:::; NI, then, for all k 2 N, the pair (k=N)(R;]j) is mixed-state representable,
where N is the number of orbitals (simply take the uniform convex combination of the pairs
represented byS [ 1], S [ 2], etc.). In particular, from Theorem 2.11, we deduce the follow-
ing corollary.

Corollary 2.13 (CSDFT, case mixed-state)
A su cient set of conditions for a pair (R;j) to be mixed-state representable iR 2 Cy for
someN 2 N, j satises jjj° 2 LY(R®), and (2.25) holds for some > 0.

In [TKH14], the authors provide di erent su cient conditions than ( 2.25 for a pair (; j)
to be mixed-state representable. They proved that if

@+jid r( Y 22LYRY;

then the pair ('; j) is mixed-state representable. Their proof can be straightforwardly adapted
for the representability of the pair (R;j), so that similar results hold.

We now prove Lemma2.7 and Theorem2.11

2.2.2 Proofs of the CSDFT results

Proof of Lemma 2.7

Proof. Let =( "; #) 2 H(R®;C?) having phases inC1(R), and let (R; j) be the associated
spin-density 2 2 matrix and paramagnetic current. It holds that
!
w2 T
_ - 1]
R= _ = . o
# # j #12
For 2f";#g we let , be the phase of , sothat = P—e . Setting = = #
we obtain =j j& = " #¢ . On the other hand, the paramagnetic current is, according
to (2.19),
j= r + o s e Ty = #r
In particular, using (2.22),
i Im(; ) L I AL LU LD R
are curl-free. O

Proof of Theorem 2.11

Proof. We break the proof in several steps.

Step 1: Any R 2 Cy can be written asR = Ry + R, + R3 with Ry 2 C,E’,k, N, 4

letR= _ , 2Cy,with N 12 Then, "R = rg rs# ,with ;1% 2 HY(R; R)
and s in HY(R3C). We write R = R" + R¥ where R"¥ were de ned in (2.16). As in
e proof of Theorem 2.2 for the caseN = 2, R"™ are hermitian, of null determinant, and
R 2M , » H(R3 C) . However, it may hold that trc2[R']2 N, so that R" is not
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in G for someM 2 N . In order to handle this di culty, we will distribute the mass of R’
and R¥ into three spin-density 2 2 matrices.

More speci cally, let us suppose without loss of generality that tr2[R"] tr .2 [R*].
We set )
Ri=(1 1R + »R%
Rz= 1(1 3R; (2.26)
R3=(1 2)R*+ 3R;

where 1; ,; 3 are suitable non-decreasing functions irC! (R®), that depends only onry,
and such that, forl k 3,itholds0 ¢ 1. We will choose them of the form y(r)=0
forrp< gand g(r)=1 forry k> k., and such that

1 1)2=(1 23=(@1 1)3=0: (2.27)

These functions are tuned so that s trc2(Rg) 2 N and stree(Rg)  4forall 1 k

3 (see Figure2.1 for a canonical example of such a triplet( 1; »2; 3)). In Figure 2.1, we
clearly see how the non-overlapping conditionZ.27) guarantees the null-determinant condition
everywhere. Note that such a spatial decomposition could not have been performed with only
two spin-density 2 2 matrices. Although it is not di cult to convince oneself that such
functions  exist, we provide a full proof of this fact in Section2.2.3

@ @ 1) )

[ -

(0) /flu ) \\

© @ 2 \\ ya

Figure 2.1 Weights of the matrices R" (blue) and R* (red) in (a) Ry =(1  1)R" + ,R%,
) Rz= 11 3R and ()Rs=(1 )R + 3R"

From (2.27), it holds that, for all 1 k 3, Rk 2 C,Q,K, and that R; + R, + R3 =
R" + R* = R. In order to simplify the notation, we introduce the total densities of R" and

R¥:
f' = jri?+si® and f*:=jrfj?+ jsj
Recall that = f" + f# We decomposg in a similar fashion. We write j = j1 + j2 + j3 with
: £ ~ f# 7
ji=(@1 1) —j Im(srs) + » —j+Im(srs) ;
: £
j2:= 11 3 —j Im(srs) ; (2.28)

) "
s=@ 2 Sj+im(srs) + 3 = Im(srs)
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Step 2: The pair (R1;]j1) is representable by a Slater determinant.
Following [LS13, we introduce

X 1

1
=50 | @rypye =Y

where is the one in (2.25, and m is a constant chosen such that (1 ) = 1. We then
introduce

1a(r) = Nzl (r+ )
2

12(r) = N1 (x2+ )@ a(r));

12 (2.29)
1:3(r) = N, 2 (x2+ )A  1(r)  2(r));

1
1k(r) = X a(r)  2r) s(r)) for 4 k Ny

N 3
where ; ; are tuned so that, if ; :=tr -2R1 denotes the total density ofR,
81 Kk Ngy; 1k 1= 1: (2.30)
R3

P
It can be checked (seel[S13) that i 0 and that E:ll 1k = 1. We seek orbitals of the
form 0 § o
- — I — S .
1k = P 1k (1 1) 5 + 2 # gitk; 1k  Nyp;
where the phasesau;x are chosen carefully later. From 2.27), we recall that (1 1) 2 =0,
so that, by construction, 1 is normalized, and

1k 1k = kR

Let us suppose for now that the phasesi;x are chosen so that the orbitals are orthogo-
nal. This will indeed be achieved thanks to the Lazarev-Lieb orthogonalization process (see
Lemma2.5). Then, 1:=S[ 1.1;:::; 1.n]represents the spin-density2 2 matrix R1. Ac-
cording to (2.19), the paramagnetic current of is (we recall that r* and r# are real-valued,
and we write s = jsjé for simplicity)

X1 .
j = @ 1) iU+ st (0 +ugk) +oak 2 JSPr (+ ug) + P g
k=1 |
" 1 - -
= (1 f + off wl e +( 2 (@ 1)jsi®r
k=1
Sincejsj’r =Im(sr s), this current is equal to the target current j; de ned in (2.28) if and
only if
i x
1—= 1 kI Ugk: (2.31)
k=1
In [LS13, Lieb and Schrader provided an explicit solution(us.1;:::;uU1.n,) Of this system

whent N; 4. We do not repeat the proof, but emphasize on the fact that since condi-
tion (2.29 holds true, the phasesu;x can be chosen to have bounded derivatives, so that

! In the same article, the authors recall (see [TMEO09] for instance) that ( 2.31) may not have solutions when
N1 = 2. The caseN; = 3 is still open. Of course, would someone nd an explicit solution for N; = 3, the
condition N 12in Theorem 2.11 could be replaced by the weaker conditon N 9.
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the functions 1k are in H1(R3;C?). Also, as their proof relies on the Lazarev-Lieb orthog-
onalization process, it is possible to choose the phases.c so that the functions 1 are
orthogonal, and orthogonal to a nite-dimensional subspace ot ?(R3; C?).

Step 3: Representability of (R2;j2) and (R3;j3), and nally of (R;j).
In order to represent the pair (Rz;j2), we rst construct the functions , forl k Nj of
the form (2.29 so that (2.30) holds for ; :=tr c2R»2. We then seek orbitals of the form
g —AK— [+
2k = 2k a(l 3) o €Wk for 1k N

Reasoning as above, the Slater determinant of these orbitals represents the péR>;j2) if and
only if

. %2
2
ZL = 2 2kl U2:k:
k=1
Again, sinceN2 4, this equation admits a solution (uz:1;:::;u2n,). Moreover, it is pos-

sible to choose the phasesyx so that the functions 2y are orthogonal to the previously
constructed 1.

We repeat again this argument for the pair(R3;j3). Once the new set of functions s is
constructed, we seek orbitals of the form

I s p— -
3k =P 3k 1 ) R R g3k

and construct the phases so that the functions 3 are orthogonal to the functions 1
and 2.

Altogether, the pair (R;]) is represented by the ( nite energy) Slater determinant

S 11iih LN 25500 2Nas 3Liiis 3Nzl
which concludes the proof. O
2.2.3 Construction of the functions 1, 2and 3

We explain in this section how to construct three functions 1; »; 3 2 C! (R) like in Fig-
ure 2.1 In order to simplify the notation, we introduce

f(r):= trc2(R?(r;ro;r3) drodrs;  and g(r) := trc2(R)(r;y; z) drodrs;
R R R R

whereR"; R* were de ned in (2.16. We denote by
F():= f(x)dx and G( ):= g(x)dx;
1 1

and we setF == F(1 )= gf andG:= G(1 )= 9. Note that F and G are continuous
non-decreasing functions going fron® to F (respectively G), and that it holds F+ G= N. Let
us suppose without loss of generality thatr G , sothat0 F N=2 G N.If F =0,
then R* =0 and we can choos®R; = R, = (4=N)R" 2CJ and Rz =(N 8)=NR" 2CJ .
Since N 12, it holds N 8 4, so that this gives the desired decomposition. We now
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consider the caseé & 0.

In order to keep the notation simple, we will only study the caseF < 8 (the caseF > 8
is similar by replacing the integer4 by a greater integerM such that F < 2M <N 4in
the sequel). We seek for such that

8 1
§ f(x)dx< 4 and )+ g(x) > 4

1 1
§ 1 1
; f(x)dx< 4 and g(x)dx + f (xX)dx > 4;

1
or equivalently
F 4<F()<4 and F()+4 F <G()<F()+G 4 (2.32)

Let (F 4) be such that F( (F 4)) =F 4 (with (F 4 = 1 ifF 4), and @ be
such that F( (4) =4 (with (4 =+ 1 if F  4). As F is continuous non-decreasing, the
rst equation of (2.32) is satis ed whenever ( 4 < < (4.

The function [ (¢ 4; 4] 3 7' m( ) := F( )+4 F goes continuously and non-
decreasingly fromOto 8 F , and the function [ (¢ 4); 4]3 7' M( )= F( )+ G 4goes
continuously and non-decreasingly fromN 8 to G between (= 4 and (4. In particular,
sinceG( ) goes continuously and non-decreasingly frori to G, only three cases may happen:

Case 1: There exists 02 ( (r 4); ) suchthatm( o) <G( o) <M ( o).
In this case, .32 holds for = (. By continuity, there exists " > 0 such that

F( +")<4 F()+G G( +")>4, and G( )+F F( +")>4&

Let , 2 C! (R) be a non-decreasing function such that,(x) =0 for x < and »(x) =1
forx> + ". Then, asO > 1, it holds that:
1
@ 2f F( +"<4 and @a o)f + g F()+G G( +")> 4
R R +"

We deduce that there exists an non-decreasing functions 2 C! (R) such that 3(x) =0 for
X< + ", and such that

(1 2f + sg=4:

R

Note that (1  ») 3 =0. On the other hand, from

o F F()<4 and of + g F F( +"+ G()>4
R R 1

we deduce that there exists an non-decreasing function; 2 C! (R) such that 1(x) = 1 for
X >

(1 g+ of =4:
R

and (1 1) 2=(1 1) 3 =0. Finally, we set
Ri=(1 1R + 2R% Rz= 1(1 3)R’; and Rz=(1 )R+ 3R":

By construction, R = R" + R* = R; + Ry + Rz, Ry 2 C{ and Rz 2 CJ. We deduce that
R42CY 4 whereN 8 4. This leads to the desire decomposition.
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Case 2: Forall 2 ( (g 4 () itholds G( )<m( ).
This may only happen ifm( (4) > 0,0orF < 4,sothat G>N 4 8. Itholds G( (r 4)=
O, sothatg(r) isnull forr< (r 4. Let obesuchthat F 4 < o< (4. As

1
f=F>4 and f=F F(o0<4
R 0

there exists a non-decreasing function; 2 C! (R) satisfying 1(x) = 1 for x o and such
that

Now, sinceG( (4) <m( @4)=8 F ,itholds that

1
R(1 uf  F( @)=4 and R(1 )f + g F(@E 2+ G G( @g)>4
0

There exists a non-decreasing function, 2 C! (R) satisfying »(x) = 0 for x o and such
that

1 )f+ 2g=4:
R

Note that (1 1) 2 =0. Finally, we set
Ri= 1R% Ry=(1 2R’; and Rz= R +(1 1R"

By construction, it holds that R = Ry + R+ R3, and that R; 2 C§ and R3 2 CJ. We deduce
R22CY 4 and the result follows.

Case 3: Forall 2 ( (g 4; (), itholds G( )>M ().
This case is similar to the previous one.







CHAPTER3

LEXISTENCE OF MINIMIZERS FOR KOHN-SHAM WITHIN THE
LOCAL SPIN DENSITY APPROXIMATION

We expose in this chapter the results given indon154.

Abstract.  The purpose of this chapter is to extend the work by Anantharaman and
Cances PC09], and prove the existence of minimizers for the spin-polarized Kohn-Sham model
in the presence of a magnetic eld within the local spin density approximation. We show
that for any magnetic eld that vanishes at in nity, the existence of minimizers is ensured for
neutral or positively charged systems. The proof relies on classical concentration-compactness
techniques.

3.1 Introduction

The density functional theory (DFT) introduced in 1964 by Hohenberg and Kohn HK64] is a
very popular tool in modern quantum chemistry. This theory transforms the high-dimensional
Schrddinger problem into a low-dimensional one, hence computationally solvable. The price
to pay is the introduction of the so-called exchange-correlation (xc) energy term, which is
unknown. Throughout the literature, several di erent approximations of this energy can be
found. The rst successful one, and still broadly used nowadays, was proposed by Kohn and
Sham KS65], and is called the local density approximation (LDA). The mathematical prop-
erties resulting of the Kohn-Sham LDA are still not fully understood. Proving the existence
of minimizers is made di cult by the non-convexity of the problem due to the LDA term.
Using concentration-compactness techniques introduced by Lion&ip84], it has been possible
to prove the existence of minimizers in several cases. Le Brisg93] proved that for a neutral

or positively charged system, the Kohn-Sham problem with LDA exchange-correlation energy
admits a minimizer. A similar result was proved by Anantharaman and CancésAC09] for
the so-called extended-Kohn-Sham model with LDA exchange-correlation energy.

In this chapter, we extend the result by Anantharaman and Cancés to spin-polarized
systems, the electrons of the molecular system into consideration being subjected to the
electric potential V created by the nuclei, and to an arbitrary external magnetic eld B that
vanishes at in nity. In order to take into account spin e ects, we have to resort to spin
density functional theory (SDFT). In this theory, all magnetic contributions coming from
orbital magnetism (paramagnetic current, spin-orbit coupling,...) are neglected. Historically,
while Kohn and Sham brie y discussed the inclusion of spin e ects in their model, the general
theory was pioneered by von Barth and Hedin{BH72] and is known as the local spin density
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approximation (LSDA). These authors proposed the following ansatz to transform a spin-
unpolarized exchange-correlation energy to a spin-polarized version of it:

ELSOA( T )= g ERR@ )+ ERAQ@ )

where ELPA is the spinless exchange-correlation energy, and*= are the eigenvalues of
the spin-density 2 2 matrix (see Chapter 2, Section 2.1.1). There are two other major
di erences between spin-polarized and spin-unpolarized models. First, the ground state of
spin-unpolarized models is given by a minimization problem onto the set of electronic den-
sities, while in spin-polarized models, it is given by a minimization problem onto the set of
spin-density 2 2 matrices, which are hermitian matrices. Second, the magnetic eld adds a
Zeeman-type term B m to the energy functional, wherem is the spin angular momen-
tum density.

Due to all those additional diculties with respect to the spin-unpolarized case, the
fully polarized SDFT has not been very popular until recently. Chemists generally prefer
its collinear version (collinear-SDFT), where all the spins are constrained to be orientated
along a xed direction on the whole space. This allows one to work with two scalar elds
(one for spin-up, and one for spin-down), instead of elds of hermitian matrices. While this
simpli cation provides very good results, it misses some physical properties (spin dynamics
[SDAD™* 07, frustrated solids BSFS13, and so on). The implementation of the unconstrained
(fully polarizable) model appeared with the work of Sandratskii and Guletskii G864, and
Kubler et al. [KHSW88a, KHSW88b], and this model is becoming a standard tool nowadays.
To the best of our knowledge, no rigorous proof of the existence of solutions has yet been
provided for this case.

Our result is that, under the same hypotheses as inAJC09], plus some mild conditions
on B, the existence of minimizers is still ensured for neutral or positively charged systems.
Whereas the main tools of the proof are similar to those used irA[C09], namely concentration-
compactness techniques, some adaptations are necessary, in particular to handle the Zeeman
term. The structure of this chapter is as follows. We rst recall how to derive the LSDA
models, and formulate the main theorem. Then, we break the proof of the theorem into
several lemmas, that we prove at the end.

3.2 Derivation of the local spin density approximation models

We recall how extended Kohn-Sham models are derived in the spin setting. We start from
the Schrodinger-Pauli Hamiltonian for N -electrons in the Born-Oppenheimer approximation.
In atomic units, this operator reads

X 1 ) X X X 1
HE"SP (v;A) = SO+ Al 2+ V(ri)l2 B(ri) i+ —12;
i=1 i=1 i=1 1 i< N Ifi 1)
wherel, is the 2 2 identity matrix,
hd
V(r) = % (3.1)
k=g 7 kl

is the electric potential generated by the M nuclei,A is the external magnetic vector potential,
and B := r A is the external magnetic eld. We denote byr; (resp. Ri) the pfgsitions of
the electrons (resp. nuclei). The charge of th&-th nucleus iszx 2 N and Z = ',:"zl Z is
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the total nuclear charge. We can assume without loss of generality thaR ; = 0. The constant
is the Bohr magneton. Its value is1=2 in atomic units, but we prefer to keep the notation
in the rest of the chapter. The term ; appearing in the Hamiltonian contains the Pauli
matrices acting on thei-th spin variable:

D=0 a v )= o1 o0 i .1 0
' Xy 10,71 0,70 1,

Although the magnetic eld B and magnetic vector potential A are linked by the rela-
tion B =r A, itis often preferable to consider them as two independent elds. IndeedB
acts on the spin of the electrons, whileA acts on the spatial component of the orbitals.
For instance, would we be interested only in studying orbital e ects €.g. paramagnetic cur-
rents), we would neglect the spin e ects. We would then takeB = 0 and A 6 0. Such an
approximation leads to the so-called current-density functional theory Y/R88]. In this chap-
ter, we are interested in spin e ects. We therefore sefA = 0, which amounts to neglecting
the paramagnetic currents, while keepingB 6 0. This approximation is commonly used to
study phenomena such as spin dynamic$SPAD™ 07] or frustrated solids BSFS13. With this
approximation, our Hamiltonian for N electrons reads

0 1

XN XN X XN
HEPViB)= @ 2 i+ V(s L Ay, B(r) 1

jiri ri
i=1 i=1 1 i< n M il i=1

This Hamiltonian acts on the fermionic Hilbert space

N n
L2(R%C? = (rusy;  irnsse); ri 2 R%si 21 #g
X
j(rusy )jfdrp dry <1

s1; sy 2f" ;#gN
0

8p2Sn;: (rpw:Spwy: )= (M(rysy )

N

permutation p. The space " L2(R3;C?) is endowed with the inner product

X
h 1) 2 = 1(r1;s1; ) 2(rg;si; )drp dry:
(s1; sn)2f" ;#gN RN

The ground state energy of the system is obtained by solving the minimization problem
n ‘ 0
E(V;B):=inf Tr HY® ; 2GR™ =inf Tr HJP ; 2G>

where GR'"® resp. GJi*®? s the set of spin-polarized pure-state (resp. mixed-stateN -body
density matrices de ned in (2.1) resp. (2.2). We study the extended-Kohn-Sham model based
on mixed-state N -body density matrices, for this problem has better properties mathemat-
ically speaking, and allows one to handle more general physical situations as, for instance,
positive temperatures. For 2 Gﬁ‘xed, direct calculations lead to

" I#
V B By+iB o
SP . — SP/N.- z X y . .
Tr HN(V;B) Tr HRJ (0;0) + R3trc2 By iB, V+ B, # w
(3.2)
where, for ; 2" ;#d?, was de ned in (2.3). In the following, we write
|
. m "#.

BX |By V+BZ
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We recognize inR the spin-polarized density2 2 matrix introduced in Chapter 2, Sec-
tion 2.1. When B = 0, one recovers the usual potential energy densitY/ ~ appearing in
spin-unpolarized DFT. Introducing the spin angular momentum densitym =tr[ R ],
and the total electronic density = ~ + it holds

tre2[UR 1=V B m: (3.3)

We now apply the constrained search method introduced and studied by LevylLpv79,
Valone [Val80] and Lieb [Lie83], and write the minimization problem (3.2) in terms of R :

E(V;B)=inf F(R)+  tre[UR]; R2Jxed . (3.4)
R3

with n 0
F(R):=inf Tr[H(0;0)] ; 2GE*9; R =R

The set J™ed is the set of mixed stateN -representable spin-density2 2 matrices, that
we characterized in Theorem2.2. The functional F cannot be straightforwardly evaluated.
In order to make this problem practical, we approximateF . It is standard since the work of
Kohn and Sham KS65] to approximate this functional by studying a system of non-interacting
electrons. For this purpose, we recall that, for a mixed state 2 GJi*¢d, the spin-polarized
one-body density matrix  (r;r% was de ned in (2.10-(2.11). The set of mixed-state 1-body
density matrices is
Py:=f ; 2Gpxedg;

and, identifying the kernel (r;r9 with the corresponding operator of S(L2(R%;C?)), the
space of self-adjoint operators or.?(R3; C?), Coleman [Col63] proved that

Pv= 2S(L%R%C?); 0 1, Tr( )= N; Tr( y< 1
Physically speaking, this is the set of one-body density matrices of systems witN electrons
(Tr( ) = N), satisfying the Pauli principle (0 1), and with nite kinetic energy
(Tr( ) < 1). In a similar way, we can de ne, for > 0,

P = 2S(L%R3C?); 0 LT )= T(  )<1 : (3.5)

A more practical and equivalent formulation of the Coleman result is that, using the spectral
theory for compact self-adjoint operators, we can write the components ofany 2P in

the form
!

R W .
(r;ro) = Nk () k(l‘(); 0 ng 1, NK=: k= K 2 LZ(RS;CZ);
k=1 k=1 k
X m
hgii= a0 T )= ke kg = Ti( )+ ) <1: (3.6)
k=1

Notice that (r;r) = R (r), so that we will write R (r) ;= (r;r) for 2 PyN. We nally
introduce _
Jmxed .= R2M, o(LY(R%); 9 2P ; R=R

The extended version of the Kohn-Sham approach consists in splitting the unknown func-
tional F(R) into three parts:

F(R)= Tks(R)+ J( rR) *+ Exc(R):
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The rst term Tks represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

- . 1
8R 2J Mxed: T o(R) :=inf STr( ); 2P ;R =R

The second term is the Hartree term, de ned by

_ 1 (r) (r9 a
J():= > o RSWdr dr*

Finally, the last term is the exchange-correlation functional de ned by
8R 2 J [nxed. Exe(R):= F(R) Tks(R) J( R):

Notice that since F is a non-explicit functional, Ec is also a non-explicit functional. It is how-
ever possible to construct explicit approximations ofE . giving rise to accurate predictions of
the ground state energies of most molecular system&D11]. The caseEy. = 0 corresponds
to the reduced Hartree-Fock model $ol91].

The local-spin density approximation introduced by von Barth and Hedin vBH72] consists
in writing
1
Exc(R) ELSPA(*; )= > ELDAQ Y+ ELA 2 ) (3.7)

where *= are the two eigenvalues of the spin-density2 2 matrix R, and ELPA is the
standard exchange-correlation functional in the spin-unpolarized case, that we can write under
the form [KS65]

Exd™ ()= gt rydr: (3.8)

The fact that ELSPA only depends onR via its eigenvalues comes from the locality of the
functional. Indeed, this energy functional must be invariant with respect to local spin rota-

tions. SinceR is hermitian at each point, we can always diagonaliz&R locally, so that a local

energy functional can only depend on the two eigenvalues &.

In this chapter, we deal with exchange-correlation functionals of the form 8.7)-(3.8). For
all ~ 2 R*, the real valueg(™) is an approximation of the exchange-correlation energy density
of the uniform electron gas with density™. Several functionsg are available (VWS [VWN80],
Pz81 [Pz81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic conditions
for low and high densities. Their mathematical properties are similar to the ones of theX -
functional introduced by Slater [Sla5]]

Bt ()= G Fndr:

Altogether, by recasting problem (3.4) in terms of the one-body density matrices, we end
up with a variational problem of the form

I ==inffE(), 2P g, (3.9)
where

1 w1
B()= ST + ST o+ )+ tre[URIAr+ ESPA(TY; )
R3

and whereP has been de ned in 3.5). The physical situation corresponds to = N 2 N,
but as usual in variational problems set on the whole space, it is useful to relax the constraint
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Tr( ) = N to allow the particles to escape to in nity.

We can recover some other common models by further constraining the minimization set.
For instance, the collinear-SDFT consists in minimizing the functionalE onto the set

n 0
Pcollinear = 2P : o # 0
In this case, the matrices and R are both diagonal. In particular, the two eigenvalues ofR
aref *: g=1f "; #qg. In this model, it holds that
trez[UR]= V(" + #) B.(" "= v B
R3 R3 R3 R3 R3
where
#H

is the relative spin-polarization. This model is simpler than the noncollinear spin-polarized
model, as we are not dealing with elds of matrices, but with two scalar elds. Physically, it
corresponds to constraining the spin along a xed direction on the whole space. This method
provides results in good agreement with experiments whenever the energy accounting for the
noncollinearity of the spins is negligible.

Then, the spin-unpolarized case consists in minimizing the functionak onto the set
n o]
F,unpolarized = 2P - oo # Z 0: "o #H

Equivalently, it corresponds to the collinear case with 0. It then holds that

trc2 [UR] = V
3

R R3

so that the model is independent of the magnetic eldB, and can be used whenever spin
e ects are negligible. We refer to AC09] for a mathematical introduction of this model.

3.3 An existence result for the Kohn-Sham LSDA model

The main result of this section is the following
Theorem 3.1. Under the following assumptions

1/ the function g in (3.8) is of classCY(R*) and satis es:

% go)=0

90< <2, sup

2R*
9()

3 .
%91 < —; limsup=——=<0;
2 [0+

k@)
— <1 (3.10)

WIN

2/ all entries of U are in L2* (R3)+ L! (R3) and vanish at in nity, and V := tr c2(U) has
the form (3.1),

the probleml de ned in (3.9) has a minimizer whenever Z.
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Remark 3.2. The assumptions 8.10) are the same as in AC09], and are satis ed for all
common functionals. Theorem3.1 extends AC09, Theorem 1] to the case when the sys-
tem is spin-polarized by an external magnetic eldB. While the strategy of proof, based on
concentration-compactness arguments, is similar to that inAC09], an additional technical tool

is needed to handle the Zeeman term. This tool seems to be new to the best of our knowledge.
We called it the ip transformation (see Equation (3.11) below).

Remark 3.3. This result does not make any assumption on the strength of the magnetic eld
B other than that it vanishes at in nity. If B becomes in nite at in nity, it is easy to see that

the energy is not bounded below: we can orientate the spins of all electrons along the magnetic
eld and push them to in nity, so that the energy can be arbitrarily negative.

3.3.1 Strategy of the proof of Theorem 3.1

We use the concentration-compactness method introduced ir_jo84]. We introduce the prob-
lem at in nity
It =inffEY(); 2P g;

where 1 1
EL():= ST "o+ ST B )+ ESPACT )
We need several lemmas, the proofs of which are postponed until the following section
for the sake of clarity. We begin with some functional inequalities (see Sectios.4.1 for the
proof).

Lemma 3.4. There exists a constantC such that for all > Oand all 2P , it holds
kr R kjs= CTr( ) and kr 7 ks CTr( ):

In particular, for all 1 p 3, there existsC, such that, for all > Oandall 2P ,

3p_ 1)

KR koo Cp ZT( )

and similarly for
We easily deduce from the above lemma that the energids and I * are bounded below.

Lemma 3.5. Forall > 0, wehavel > 1 andl! > 1 . Moreover, all minimizing
sequenceg ) for | or 11 are bounded in the Banach spacB, where

B:=f 2S(L*R%C?); k ke :=Tr(j ))+Tr(jirj jrj )< 19 :

The proof of Lemma3.5is given in Section3.4.2 In the following, we consider sequences
( n)n2n 2 B, and we will write R, := R , and = . The proof of the following lemma
is given in Section3.4.3

Lemma 3.6. Let ( n)n2n be a bounded sequence Bf Then, there exists ¢ 2 B, such that,
up to a subsequencd, n),,y COnverges to o for the weak- topology ofB, all components of
Rn converge to their respective components iR strongly in Lf;C(R3) for 1 p < 3, weakly
in LP(R®) for 1 p 3, and almost everywhere. The eigenvalues &, converge to the
eigenvalues ofRg strongly in L (R®) for 1 p < 3, weakly inLP(R®) for 1 p 3 and
almost everywhere.

Moreover, if , 2P forall n,and 2P ,the convergences hold strongly ihP(R®) for

1 p<3 andE( o) Iliminf E( ).
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It follows from Lemma 3.5 and Lemma 3.6 that one can extract from any minimizing
sequence( n)n2n  Of (3.9 a minimizing sequence, still denoted by( n)n2n, COnverging to
some o for the weak- topology of B. In particular, O o 1 and Tr( 0 < 1.
To prove that ¢ is indeed a minimizer of @.9), it remains to prove that Tr( o) = . Let

= Tr( o). Itis easy to get . If < | then we have loss of compactness (some
electrons leak away). Therefore, to prove that = (at least when Z), we need to
control the behavior at in nity of the minimizers, which is not as simple as in [AC09] because
of the Zeeman term B m. In order to control this term, we introduce the following ip

transformation:
|

" #
For = 4+  we dene &= —
X X (ip transformation). (3.11)
For = Nkj kih «j; we denee = Nkj€kih€yj
Note that if e »
R R
= 4 4 and R = R¥ R#
then
i "# R R#
e(x;y) = # om (ix) and Re=  op e

from which we deduce the following lemma, whose proof is straightforward.

Lemma3.7. If 2P ,thene2P . Moreover, it holds thatTr(  en) = Tr( n), €= ,
andm = m, where and m have been de ned in 8.3). In particular, it holds that
h i
trCz [UR]+tI’ c2 UR =2 V (312)
R3

In other words, this transformation ips the spin-up and spin-down channels. Lemma3.7
allows to cancel the Zeeman term, and is an essential tool throughout the proof. The following
lemma is proved in Section3.4.4.

Lemma 3.8.
() Forall > O,itholds 1 <I <I1! <o.
(i) Forall 0< < ,itholdsl | +1I?
(i) The functions 7!'1 and 7! 1! are non increasing.
We then have the important result (see Section3.4.5 for the proof).

Lemma 3.9. Let > Oand( n)n2an 2 P be any minimizing sequence of that converges

to some ¢ for the weak- topology ofB. Let :=Tr( o). Then
(i)
(i) 60.
(i) If 0< < ,then gisa minimizer for the probleml , there exists > 0Owith +
such thatl! has also a minimizer, andl =1 + 1% + 1!
According to Lemma 3.9, if < ,then ¢ is a minimizer for | . In this case, it satis es

the Euler-Lagrange equation

0=1¢1 ypH(H )+ with O Ker(H , "f)



3.4. Proofs of the sub-lemmas of Theorem 3.1 73

for some"g < O called the Fermi energy, and withH , de ned in (3.24) below. Here,
11 ;) is the characteristic function of the interval (1 ;"g), and the spectral projection
11 »)(H ,) is dened by the functional calculus. We then use the very general result,
whose proof is given in Sectior8.4.6

Lemma 3.10. It holds es(H ,) = [0;+1 [. Moreover, if 0 < < Z , thenH , has in-
nitely many negative eigenvalues, and every eigenvector corresponding to such an eigenvalue
is exponentially decreasing.

From Lemma 3.10 we deduce the concentration-compactness result (see Sectidr.7 for
the proof).

Lemma 3.11. Let > Oand > 0 be suchthat + Z. Suppose thatl and ! admit
minimizers. Then
I+ <1 +1Y (<1):

The end of the proof of Theorem3.1 goes as follows. Let us assume that Z, and

< . Then, according to the third point of Lemma 3.9, ¢ is a minimizer for | , and

there exists > 0 such that + Z so that I1 has also a minimizer, and it holds
I =1 +11 +11 . Moreover, Lemma3.11holds, andl + <I| + I . Finally, we get

=1 +1t +! >, + 11

which contradicts the second point of Lemma3.8. Therefore, it holds = , and, according
to Lemma 3.6, ¢ is a minimizer for | , which concludes the proof.

3.4 Proofs of the sub-lemmas of Theorem 3.1

3.4.1 Proof of Lemma 3.4

Let > 0Oand 2P . We use the representation 8.6) of , and write

3 R
(r;r%= Nk () (% 0 ng 1 Ng = ;
k=1 | k=1
" )q_
k= K 2L%R3%5C?; h(j qi= w; TH( )= ngkr k3, < 1:
k k=1
In particular, (r)= ng (r)  (r). Dierentiating this expression and using the Cauchy-
Schwarz inequality lead to
[ N P Y (O TGO R (o LN (3
k=1
R 1=2 122 2
Nk Jr i+ ir iWiZt il
k=1 "
Nk Jr W7+ 00 4l Nk J k)™ * ) 4
k=1 k=1
P 13 _
We let = k=g Nk %, so that 2 LY(R%) and s = Tr( ). The

previous inequality leads to the pointwise estimate

1=2 1=2
jr ] + + : (3.13)
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In particular, if =, we recover the Ho man-Ostenhof inequality HOHO77]

krpi

k2,  Tr( ):
Together with the homogeneous Sobolev embedding 1(R®) | L®(R?®), we deduce
k ks CTr( ):

Then, using the factthat  + -~ 2 L2(R%) and + 2 5 L8(R3) and the Holder
inequality, it follows from ( 3.13 that

kr ka2 kK ( + )Yk k( + )Pk 4C Tr( ): (3.14)
For *= , we use the exact expression of the eigenvalues oRa 2 hermitian matrix:
_ P —— 9— s
R— % 2 4det(R) = % ( ##)2+4j #j2 (3.15)

If f and g are non negative, then, according to 2.15, we have the pointwise estimate

. P—  P_  p_
ir frg=ir fi+ir Pai
We di erentiate ( 3.15 to get
q
R A T N T
grﬁ+§r%+§h"ﬁﬂrﬁ+2ﬂ%1

All the terms on the right-hand side are in L372(R3) and of norms bounded byC Tr( )
hence the same holds for *~

Moreover, isinP ,sothatTr( )= s = . From the inequality 2jatj j aj*+ jb,
we get that

. . )4 )4 nk . .2 . .2 >4 . "9 . #.2
i o= Nk (r) (r) > LTI Nk j o+ J° =+ (3.16)
k=1 k=1 k=1

Integrating on R® leads tok Kk 1 . From the positiveness ofR , it also holds that
0 *= so that k *= ki1 . We conclude from @.14), the homogeneous Sobolev
embeddingW13%2(R3) | L3(R®), and the Hélder inequality with 1 p 3, that

3(p 1).

k ke GCp 327Pp'l'l’( )

+ =

and similarly for

3.4.2 Proof of Lemma 3.5

We prove that | > 1 . The proof is similar for I1. Let > 0,and 2 P . Under
conditions (3.10), a straightforward calculation shows that

ESM(T ) € (e () owC () ()
2C (S P
RS RS
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wherep*= =1+ *= < 5=3. We used the fact that R is a positive hermitian matrix, so
that O += . Therefore, sinceJ( ) 0, we have the estimate

1 +
E() ST ) CikUk g, kRkaya o Co kK + kK,

where ©= 4=(1+2) > 0 is chosen such thatL® °is the dual space ofL3* . With
Lemma 3.4, it follows

E() %Tr( ) kaUkL% L1 @+ ) 1) Ca(TK( ) 2 +TH( ) 9)

Ll

with 0 1, 20 3< 1 Thefunction Y 7! 3Y CX1+Y 1) CoY 2 CyY @ goesto
+1 whenY goes to+1 for O 1; 25 3 < 1. Hence, E( ) Cforall 2P . It
also follows from the above inequality that if ( 1)n2n IS @ minimizing sequence fol , then
(Tr( n))n2n IS uniformly bounded. In particular, ( n)n2n is @ bounded sequence d.

3.4.3 Proof of Lemma 3.6

Let ( n)n2n be abounded sequence iB. According to Lemma 3.4, the sequences

n2N
for ; 2f :#f and . Ly are bounded in W13%2(R3). In virtue of the Banach-
n
Alaoglu theorem, up to a subsequence, the sequenden)n2n CONverges to some o 2 B
for the weak- topology of B, and and - converge for the weak topol-

n
n2N n2N
ogy of WL3=2(R3). To identify the limits, we recall that, for any compact operator K on
L2(R3;C?),

Tr( nK) !nIl Tr( oK) and Tr(jrj njrj K) !n|l Tr(jri  ojrj K): (3.17)

ChooseW 2 C} (R3 R). The operator (1+jrj ) W (1+jrj ) !is compactand in the Schatten
cIassSp(Lz(R3; C)) forp > g according to the Kato-Seiler-Simon inequality Eim05. Taking
successively in 8.17)

K= WO . 00

0 0 0 W and K = ) X

W 0 W
0 W O

0
W
we obtain that, for the rst choice of K,

L WST(C QW) =T (@4 ) a4 ) @+f) "Wa+jj) *
] . (3.18)

LTI o) @) W)t oW

and similarly for 3%, Re( &) and Im( ;). We deduce that y, converges to

in DYR3;C) for all ; 2 f ;#¢?. Identifying the limits, the convergences hold also weakly

in W13=2(R3), strongly in L (R®) for 1 p < 3, and almost everywhere, in virtue of the

Sobolev embedding theorem. From .15 and the pointwise convergence of N to
n

o » We also deduce that( n~ )n2n  pointwise converges to 3: . Again, by identifying the
limits, the convergence also holds weakly it 132(R®) and strongly in L} (R%) for1 p< 3.
Then, let 2 C! (R) be a cut-o function such that (x) =1 if jxj < 1and (x) =0 if

X 2. We take Wp = (x=A) in (3.18), and let A go to in nity to obtain that

> 2LYR% and o liminf o (3.19)
R3 nll R3
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and similarly for ’g#. Now, if , 2P and 2P , we get

= 0 = I(;I =+ g# " =+ ##: .
R3 R3 R3
and the inequality (3.19 is an equality. Therefore,( n)n2n CONverges to o strongly in L1(R3).

+ =

We deduce from 8.1 and0  , nthat + and ;~ are bounded inL(R3). A clas-

sical application of the dominated convergence theorem then leads to the fact that , N
n

N converges strongly

convergesto , stronglyin LY(R3) for ; 2f" ;#¢ andthat

+

to 5~ in LY(R®). Finally, the strong convergence still holds inLP(R3) for 1 p < 3 accord-
ing to the Holder inequality.

The proof for the energy is similar to the one in AC09, Lemma 3]. We do not repeat it
here, but notice that the strong convergence of n - N to 5: in LP(R®) forl1 p<3

n
is needed for the convergence of the exchange-correlation functional.

3.4.4 Proof of Lemma 3.8

(i) Let us rst prove that for 0< < it holds that | | +11 . Let >0 2P
and °2P besuchthatl E () | + andl® E(9 11 + . Bydensity
of nite-rank one-body density matrices in B, and density of C} (R3; C?) in H1(R3;C?), we
can assume that and Care both of the form

pd
O =" 00 Oih O with O 2cl (R%CY):
i=1
We consider , = + e © pe and !1:= + ne€® newhere 4f(r)=f(r x),andeisa

non-null vector. We recall that e®is the ipped transformation of © as introduced in (3.11).
For ng large enough, and fom  ng, the supports of the 's and of the e Ck"s are disjoint,

sothat , and ) areinP foralln no. Also, forn large enough,J( n) J( )+ J( 9+
Altogether, we get, for n large enough,

E(n)+ E( )=2E()+2E' (9+2 V { ne)+2" 2E()+2E' (9+2

2l +211 +6:
Hence, eitherE( ») or E( 1) is smaller thanl + 11 +3 | so that | | +11 . Similar
arguments show thatlt 11 + |1
(i) We rst prove that there exists ¢ small enough such that for allO < o, it holds

Il < 0. We use a scaling argument. Let 2 C! (R3C) be such thatk k . =1, and let
= 32 ( )for > 0. Notethat k k. >=1. For 1, we introduce

(r;r9= (r)o (9 % ;

so that 2P forall 0< land > 0. Using (3.10, there exists 1 < 3=2 such
that ELSPA( ] j%,0) c 3 Dk k2, . Direct calculations lead to

E( )= i P 230D ESPNG170)

— gr P+ 231G ¢ 30 DkK:
2 R3
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It is easy to check that under the condition < 3=2, there exists o > 0 such that for all
0< o, there exists such that E( ) < 0. In particular, I* E 1 ( )< 0. Together
with (i) , we deduce that, forall > 0,11 < Oandl < O.

We now prove thatl <11t forall > 0. Let( n)n2n be a minimizing sequence fot? .
We rst suppose that

8A> 0O I|im sup n=0;:
Nl (oR3 r+B,

where B, is the ball of radius A centered at the origin. Since( n)n2n is bounded inW 132

according to Lemmag3.5 and 3.6, we deduce from [i0o84, Lemma I.1] that ( n)n2n CONverges
to 0 strongly in LP(R®) for 1< p < 3. Also, because of 3.16), the components ofR,, and its

eigenvalues converge t® strongly in LP(R3) for 1 < p < 3. Similarly to [AC09], we deduce
that

1 1

1 —fimi 1 —limi LSDA [ +. —limi

[ —Ilrrnllnf E* ( n)—I|rr1]1!1|nf éTr( Mt I+ ES(ns n) —|Imllnf éTr( n)
which contradicts the rst point. Therefore

9A; > 0; 8n2N; 9r, 2R N (3.20)

rm+Ba

Up to translations of the j's, we can assume without loss of generality that, = 0.
We now introduce ep, the ipped version of , introduced in (3.11). Using (3.12 and the

fact that V(r) % we get

E( n)+ E(en) = Tr( n) +2J( n)+2E>IZcSDA(;§ n)+2 V

R3
2B ()+2 V. 26 (a) 2 A 2E (. 22
R3 Bg JTJ R
Hence, eitherE( ) or E(en) is smallerthanE! ( ,) ziR 1 . Therefore,l It zR 1 <

| 1

(i) The factthat 7! 1 and 7! 11 are non increasing can be read from the other
statements.

3.4.5 Proof of Lemma 3.9

Let > O,andlet ( n)n2n 2P be a minimizing sequence fot . According to Lemma 3.5,
up to a subsequence, we can assume thét,)n2n converges to someg 2 B for the weak-
topology of B.

(i) The fact that can be directly deduced from 8.19.

(i) Supposethat =0, sothat =0. Then, we havel =liminf E( ,)= E( ¢) =0 (we
used the continuity of E, which can be proved similarly to JAC09]). This contradicts the rst
point of Lemma 3.8 Hence, 60.

(i) Suppose that0 < < . Following [AC09, FLSS07, we let ; 2 C} (R3%R*) be
radial functions such that 2+ 2=1,with (0)=1, < 1onR®nf0g, (r)=0 forjrj> 1,
kr ki1 2 and kr ki1 2. We introduce a(r) := (r=A) and a(r) := (r=A) and
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nally na := A n a. With those notations, A 7! Tr( n.a) is a continuous and increasing
function from O to . Therefore, there existsA,, such that pa, iSiNP .

The sequencgAn)n2n goes to in nity. Otherwise, we would have for A large enough and
according to (3.19),

A= lim A lim An == ;
R3 0 A n'l R3 n A n!l R3 N An R3 0
which is impossible, sinc§ 2j < 1 on RS2,
We introduce 1n = A, n A, &d 2n:= A, n A,- Notethat 14, 2P and 2, 2
B ,and that , = 15+ 2. From the decomposition 3.6) of ,, we can write , =

+21 Nknj knih knj, With 0 ny 1. We deduce that

TrCjrj wnjry )+HTeC g 2ajr ) Tr(Cjrp nrj )+8ﬁ:

n

Hence,( 1.n)n2n and ( 2.n)n2n are bounded inB. Also, direct calculations lead to

Tr( 1n) + Tr( 2n)  Tr( n)*8 45 (3.21)
n
According to Lemma 3.5, up to a subsequence( 1.n)n2n CoONnverges for the weak- topology
of B. In this case, for =( ; #) 2 C! (R3;C?), it holds that
LT L) KR B 4 B D WS N D W B
R3 R3 R3 R3

For n large enough, the support of is inside the support of 4, , and
Tr( 1) ih )=Tr(C nj A, th A, !n!1 Tr( j ih j):

We deduce that ( 1.n)n2n  CONverges to o for the weak- topology of B. Finally, since
1n 2P and 9 2P , ( 1n),,y cONverges strongly to o in LP(R3) for 1 p < 3, and
E( o) liminf E( 1.n) according to Lemma3.6.

Let us look more closely to 2n. Since( 1n)n2n CONverges to o strongly in LP(R3)

and ( n)nzn CONvergesto g stronglyin LP (R3) for1 p < 3, we obtainthat ,n, = ,

In
(and thus all the components ofR,., and its eigenvalues) converges strongly t@ in L} (R®)
+ =

for 1 p< 3. Also, it holds that 1, + 55 = 5 . Using (3.21) and the fact that
1n(r) 2n(r9%jr r9 1drdr® 0, we obtain

1
E(n)= 5T m*+3Ca)*+ e [URaI+ B (15 )

1 1
ETY( 1;n)+ éTr( 2;n) 4A7% + \]( 1;n)+ J( 2;n)+

t te[URi]+ e [URen]+ BS™ (10 + Zni 1nt 2n)
R R

E (zn)+ E' ( 2n) 4——+ trcz2 [URzn]+
A R3

n

LSDA  + + . LSDA / + . LSDA / + . .
+ EXc (1;n+ 2;n: 1;n+ 2;n) Exc (1;n' l;n) Exc (Z;n’ 2;n)'



3.4. Proofs of the sub-lemmas of Theorem 3.1 79

We rst consider the term  tre2 [UR2.n]. We have forA 0, (we use, for a matrix M, the
notation jM | for the sum of the absolute values of the entries o)

tr c2 [U Rz;n] = '[I’ c2 [U Rz;n] + '[I’ c2 [U Rz;n]
R3 Ba (Ba)®
k UkL%+ T (BA)kRz;nkLl\ L2 s, t r2‘.S(lépA)ch(l’)j (BA)Cij;nj
k UkLg+ oLl (RB)kRZ;nkLl\ L3 B,y t r2s(lé[iJ\)CjU(r)j RSij;nj;

where %= 4 =(1+2 ) > 0is chosen such that_3 ®is the dual space oL Al Using inequality
(3.16), and the fact that ., , We get an inequality of the form

3trcz [UR2n]  CikRonk 1y 3 0Byt C2 Sup jun)j

R r2(Ba)°

with C; and C, independent of A and n. Since all entries ofU are vanishing at in nity, we
can rst choose A large enough to control the second term, and then use the convergence
of (Rz2in),,y 10 O strongly in LP(Ba) for 1 p < 3, to establish the convergence of the
right-hand-side to O.

For the last term, using (3.10), it holds (we write gx( ) = g(2 ))

E)%(:SDA( I;n + 12L;n; 1n + 2;n) E)%(:SDA( I;n; 1;n) E>I<_CSDA( ;;n; 2;n) =
1
é R3 92( -]:n + ;;n) gZ( I;n) g2( ;;n) + R2 gZ( 1n + 2;n) gZ( 1;n) 92( 2;n) :
(3.22)
Then, we get (dropping the super-script+ = for the sake of clarity)
3912( nt 2n)  ®( 1n) 9 2n)
R
jo( 1+ 2n) G( 1n)j+ jo2( 2:n)j+
BA BA
+ j%( 1nt+ 2n) G 2n)it 192( 2:n)i
(Ba)® (Ba)®
C 2in ﬁ+ + B+ (2n)P +( Z;n)p+
Ba Ba |
+C Ln ﬁ+ + B+ (1) +( 1;n)IO+
(Ba)® (Ba)®
We recall that p*= =1+ *= < 5=3. Since( 1:n)n2n and ( n)n2n are bounded inLP(R3)

for 1 p < 3, and since( 2n)n2n converges toO in L}%C(R3) for 1 p < 3, we deduce
that (3.22 goes to0 whenn goes to in nity (rst take A large enough, thenn large enough,
as before).

Altogether, for > 0, for n large enough,

E(n) E(wn)+E (20) 3 1 +11 3:
Therefore, E( n) | + 11 | andl | + 11 . The second point of Lemma3.8 states
that | I +11 . Hencel =1 +1' ,and( 2n)n2n IS @ minimizing sequence foi *

As in the proof of Lemma3.8, it holds (3.20):

9A; > 0; 8n2N; 9r,2R3 2n

r+Ba
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We let Sm = ¢, 2n r,- Then, ( 2p) is bounded for the weak- topology of B, and con-
verges, up to a subsequence, to some satisfying Tr( J) . Let :=Tr( 9. We can
repeat the same arguments as before and truncateg;n to ensure that Tr( A, 2n A,) =
We deduce as before that § is a minimizer for 1! ,andthat | =1 +11 +1

3.4.6 Proof of Lemma 3.10

Let us rst derive the expression ofH ,. Suppose that o 2 P is a minimizer for | . Then
for 2P and0 t 1,itholds E(t +(1 t) o) E ( o). In particular, one must have

Gt +%t t) o) Lo (3.23)

To perform the calculations, we use the explicit formula 8.15 for *= , and get

a +@ ot _
@ t=0 3 1

1 10 1 2 #
5”02@4 01 ———m o 02 #° w °m SR RoA:
(o 0)2+4j g2 0 o 0

Similarly to [AC09, CDL08], we conclude that
@t +(1 t
Cr8 D9 “mHu o)

@t =0
with
1
Ho= S+ o ' l2+U
2 13
+ Hi# #
2 13
Loy 10 1 0o .0 20, 5.
20 NG PeeaigE Po 9 o
Using (3.23), we deduce that ¢ 2 arginffTr(H , ); 2P g. Finally,
0=1¢1 ;--F)(H o)t with Ker(H, "g);
where "¢ is the Fermi energy, determined by the conditionTr( o) =
, 1
Let us rst calculate the essential spectrum ofH ,. We recall that Hg = > > has

domain H2(R3;C?) and that if u 2 H2(R%;C), then u vanishes at in nity. We also recall
that for all V 2 L32(R3;C?)+ L! (R3 C?) (thatis V is of the formV = Vs, + V; with
V= 2 L32(R3:C?),V; 2 L1 (R® andkV; k.1 arbitrary small), V is a compact perturbation
of Ho. In our case, we can easily check that' j j 1= hj j 22 LY(R®), sothat ¢ j | 1
vanishes at in nity. Altogether,
o i T2LFER)+ LT (RY;
U2 L¥R3%C?)+ L (R%C? and all entries of U vanish at in nity :
jg¥ o7 )i Clgo + o) hence g% 4~ )2 L32(R3CH:
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Therefore, according to the Weyl's theorem, the domain of , is H2(R?3; C?), and its essential
spectrum is esdH ;) = esd{Ho)=[0;+1 [.

Let us now prove thatH , has in nitely many negative eigenvalues whenever< Z . First
notice that the matrix

#it “#
1 2,

fal
9

- HH#
(o §H2+4j iz 20 0 o

has two eigenvalues, respectively 1 and 1, so that the matrices appearing into the two pairs

of brackets in (3.24) have 0 and 2 as eigenvalues, and therefore are hermitian positive. Also,

recall that under the conditions (3.10) on g, it holds g° 0. Altogether, for 2 C} (R3;C),
=( ; )T 2cC!(R%C?),and € dened as in (3.11), it holds that

hH G i+ heJH e 2+ o0t ey
+ € Iy ojj ' ltuU €
2
1 o L
4 >+t ol "HV =hijHy iy

whereH;:= 1+ o jj '+VactsonL?{R®C), andV is de ned in (3.1). We used the
subscript 1 to emphasize thath j i1 is the scalar product onL?(R3; C), whereash j i is the one
on L2(R%; C?). In virtue of [Lio87, Lemma 2.1], the operatorH 1 has in nitely many negative
eigenvalues of nite multiplicity whenever < Z . So hasH , by the min-max principle.
Eventually, " < 0, and

X1 X2
o= ] ilh jj+ nij iih jj with hj ji= 3 and H, ;=" i
i=1 i=Ni+1
Itholds "j <" g ifi Ni,and"j="g if Nt+1 i Ny. In the following, we setn; ;=1
fori  Nj.

Finally, we prove that all eigenvectors associated with negative eigenvalues are exponen-
tially decreasing. Any function u satisfyingH ,u= u isinH 2(53; C?), and each component
of u vanishes at in nity. As a byproduct, we obtain that ¢ = ile nij ij? also vanishes at
in nity. Finally, all the components of

U.=o0 ] Mo+ U+
0 o)) 2 2

13
10 1 o o 24
¥ 90(20) 4 01 O he= #H "4 02 w0 O O
=+ = ( 0 0 )2 + 4] 0 12 0 0 0
vanish at in nity. Recall that H ;, = % i+ U =" j. Multiplying this equation by
i and adding all the terms with prefactors n;, it holds that
Xz Xz Re
niio 5 it oni U = timg ) (3.25)
i=1 i=1 i=1

i — P N2 i 52
From the relation o= ;23 njj ij<, we get
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and (3.25 becomes

Let A be large enough such that, for allr 2 R3 with jrj A, the eigenvalues of the ma-

trix U (r) are betweenz—F and Z—F (recall that " < 0). In particular, for jrj A,

i TOU ) i 5 i and, on(Ba)

F
— o+ " 0 or — (0%
20 5 0 F o 5 0 F O

We easily deduce that o decreases exponentially. Hence, the same holds true for all thg's
with 1 i Naz. A similar proof can be used for the remaining negative eigenvalues.

3.4.7 Proof of Lemma 3.11

Let o2 P be a minimizer forl , and 8 2 P be a minimizer for 11 . According to the
proof of Lemma3.10, since < ,then o is of form

X2
0= nij iih jj with H, ;=" ; and "; "p <O
i=1

We can derive a similar expression for §:
ps
6= nj dh J with HY% P=" P and P "2 0 (3.26)
i=1
whereH 1, has a similar expression a$! o in (3.24), without the U term. Note that in ( 3.26),

0
0 0
we do not know whether"? < 0 or "% =0.

First assume that "2 < 0, so that ; and ? are exponentially decreasing, and the sum
in (3.26) is nite. We introduce

n=minflk o+ ng nk g o+ n8 n
and

;]::minfl;k ot ne(()) nk g o+ neg n o
where €] is the ipped transformation of §, as de ned in (3.11). Note that Tr( ) +
and Tr( 91) + ,sothatl + E ( n)andl + E (e) according to the third assertion

of Lemma 3.8. A straightforward calculation leads to

B )+ E(J)=2E( o) +2E" (o) L)
@ )
n

+0(6 ")
=21 +211 +0(e "):

For n large enough, (Z )n 1+ O(e ") becomes negative. Hence, eitheg( ) or E( ;,)
is strictly less than | + |1 . Therefore,| . <I + 11,
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Let us now assume that'2 = 0. Then, there exists 2 H?2(R3;C?) such thatk k=1,
ng =0 and § = with > 0. ForO< < ,weintroduce = o+ | Np+1ih Ny+1]
and °= 0 j ih j,sothat 2P . and °2P . Moreover,

E( )=E(0)*+2"Np#r+0O()=1 +2"Np+1 +0()

and
EL ()= E (9+o()=1"+0():

Using the facts that o+ | N,+1ih N,+1j2P + and §  j ih j2P , it holds that
e e +1Y E(CD)+E (Y 1 +11 +2" 41 +0():

Since"n,+1 < 0, for small enough, the left hand side is strictly less thatl + 1, which
concludes the proof.
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cHAPTER4

THE GW METHOD FOR FINITE SYSTEMS

We expose in this chapter the theory and results given irfC{zS15. This work was done in
collaboration with Eric Cancés and Gabriel Stoltz.

Abstract. We analyze the GW method for nite electronic systems in this chapter. In
a rst step, we provide a mathematical framework for the usual one-body operators that
appear naturally in many-body perturbation theory. We then discuss the GW equations
which construct an approximation of the one-body Green's function, and give a rigorous
mathematical formulation of these equations. Finally, we study the well-posedness of tHeW°
equations, proving the existence of a unigue solution to these equations in a perturbative
regime.

4.1 Introduction

Computational quantum chemistry is nowadays a standard tool to numerically determine the
properties of molecules. The Density Functional Theory (DFT) rst developed by Hohenberg
and Kohn [HK64] and by Kohn and Sham KS65], is a very powerful method to obtain ground
state properties of molecular systems. However, it does not allow one to compute optical prop-
erties and electronic excited energies. In order to calculate such quantities, several approaches
have been considered in the last decadeS® RR02]. Among them are the time-dependent DFT
(TDDFT) [ MUN* 06, MMN * 12], wave-function methods HJO14] such as Coupled-Cluster,
full-Cl and Green's function methods. In this chapter, we study the GW method, which is
based on Hedin's equations for the one-body Green's functiotdpd65. The formal derivation

of the latter equations relies on many-body perturbation techniques. While the GW method
has been proven very successful in practice to predict electronic-excited energies, no rigorous
mathematical framework has yet been developed to understand its mathematical properties.
The aim of this work is to present such a framework.

In non-relativistic rst-principle molecular simulation, the electrons of a molecular system
are described by anN -body Ham\ytonian operator Hy , which is a bounded below self-adjoint
operator on the fermionic space N L2(R3) (see Equation @.30) below). WheneverN  Z,
where Z is the total nuclear charge of the molecular systemHy has an in nity of discrete
eigenvaluesE] E§ EJ below the bottom of the essential spectrum, wher& ) is
its ground state energy. The quantities we would like to evaluate are thelectronic-excitation
energies

EY EK,, (gainofanelectrony and EQ Ef ; (loss of an electron)
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These energy di erences are not to be confused with the optical-excitation energies, which
are energy di erences of the formEf, E{, between two states with the same number of
electrons. More generally, it is interesting to compute the particle electronic-excitation set
Sp:= Hns+  EQ and the hole electronic-excitation setS, == EJ  Hy 1 . As will
be made clear in Sectior.3.2 these sets are closely linked to the one-body Green's function:
the time-Fourier transform of the Green's function becomes singular on these sets. In order to
study the electronic-excitation sets, we therefore study the one-body Green's function. Also,
the one-body Green's function is a fundamental object which contains a lot of useful informa-
tion, and allows one to easily compute the ground state electronic density, the ground state
one-body density matrix, and even the ground state energy thanks to the Galitskii-Migdal
formula [GM58].

Calculating the one-body Green's function is however a di cult task. In his pioneering
work in 1965, Hedin proved that the Green's function satis es a set of (self-consistent) equa-
tions, now called the Hedin's equationstfied6q. These equations link many operator-valued
distributions, namely the reducible and irreducible polarizability operators, the dynamically
screened interaction operator, the self-energy operator, the vertex operator, and of course the
one-body Green's function. The state-of-the-art method to compute the one-body Green's
function consists in solving Hedin's equations.

Immediately, two di culties arise. The rst one is related to the lack of regularity of the
Green's function (we expect its time-Fourier transform 8 to be singular on the electronic-
excitation sets). One way to get around this problem is to consider the analytical extension
of 8 into the complex plane, which we denote by&. This is possible whenever the following
classical stability condition holds true':

Stability assumption: It holds that 2E <E J,; + EQ ¢

The physical relevance of this inequality is discussed for instance ir§r99, Section 4.2]. It
allows one to de ne the chemical potential , chosen such that

0 0 0 0.
EN EN 1< <E a1 EnN:

Instead of studying the Green's functionG( ) in the time domain, or its Fourier transform

@(! ) in the frequency domain, we rather study its analytical continuation & on the imagi-

nary axis +iR. The function! 7! &( +i!) enjoys very nice properties, both in terms of
regularity and integrability, which makes it a privileged tool for numerical calculations.

The second di culty comes from the fact that Hedin's equations cannot be exactly solved
and, even more importantly, that the mathematical de nition of some terms in these equa-
tions are unclear. It however opens the way to some approximate resolutions. The most
widely used approximation nowadays is the so-called GW-approximation, also introduced
by Hedin [Hed65. These equations are traditionally set on the time-axis, or on the energy-
axis [RJT10, KFSP10]. However, as previously mentioned, the various operators under consid-
eration are singular on these axes, which makes the traditional GW equations cumbersome to
implement numerically, and di cult to analyze mathematically. In order to manipulate better-
behaved equations, it is more convenient to replace every operator-valued distribution involved
in the GW equations by its analytic continuation on an appropriate imaginary axis, thanks
to the contour deformation technique introduced in [RGN95, RSW* 99]. The resulting GW
equations, which give an approximation of the mag 7! &( +i!), turn out to give simulation

1The question Is the stability condition always true for Coulomb systems is still an open problem [ BDS14,
Part VII].
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results in very good agreement with experimental data$DvL06, SDvL09, CRR* 12, CRR™ 13].

From the GW equations set on the imaginary axis, several further approximation may
be performed. The GW equations are solved self-consistently, and the Green's function is
updated at each iteration until convergence. When only one iteration is performed, we obtain
the one-shot GW approximation, also called the GW©° approximation of the Green's func-
tion. For molecules, self-consistent GW approaches give results of similar quality asq®/°,
sometimes almost identical §DvL09, KFSP10], sometimes slightly worse [RIT10], sometimes
slightly better [CRR* 12, CRR™ 13]. When several iterations are performed, while keeping the
screening operato’W xed, equal to a reference screening operatow °, we obtain the GW?°
approximation of the Green's function [SDvL09, vBH96]. Since the update of the screening
operator W in a self-consistent GW scheme seems di cult to analyze mathematically, we
prefer to study in this chapter the equations resulting from the GW° approximation.

The purpose of this work is threefold. First, we clarify the mathematical de nitions and
properties of the usual one-body operators involved in many-body perturbation theory. Then,
we embed theGW? equations in a mathematical framework. Finally, we prove that, in a per-
turbative regime, the GW? equations admit a unique solution close to a reference Green's
function.

From a physical viewpoint, the analysis we perform in this work is more relevant for atoms
and molecules. Indeed, as discussed iBG14, Section 4.1] for instance, fully self-consistent
GW approaches are questionable for solid-state systems, for which quasiparticle methods are
preferred [AG98, AJWOO].

This chapter is organized as follows. In Sectionrt.2, we provide the mathematical tools
that will be used throughout the chapter. We recall the Titchmarsh's theorem, and introduce
the kernel-product of two operators, which can be seen as an in nite dimensional version of
the Hadamard product for matrices. We also explain the underlying structure that makes the
contour deformation possible. In Section4.3, we recall the standard de nitions of the usual
one-body operators that appear in many-body perturbation theory. A consistent functional
setting is given for each of these operators, and their basic properties are recalled and proved.
Section 4.4 is concerned with the GW approximation. We explain why some of the GW
equations are not well-understood mathematically, and prove that theGW° equations are
well-posed in a perturbative regime. Most of the proofs are postponed until Section.6.

4.2 Setting the stage

4.2.1 Some notation

The GW method is based on time-dependent perturbation theory and therefore involves
space-time operators. Following the common notation in physics, we denote bl the time
coordinate, by r the space coordinates, and byx or rt the space-time coordinates. The
functional spaces considered in this work are by default composed of complex-valued functions,
unless we explicitly mention that the functions are real-valued.

Most of the space-time operators appearing in the GW formalism are time-translation
invariant. A time-translation invariant operator C can be characterized by the family of
operators (C( )) 2r such that, formally, the kernel of Cis of the form

Craty;rotp) = C(ro;roty to);

whereC(r;r% ) is the kernel of the operatorC( ). For clarity, we will systematically use the
letter to denote a time variable which is in fact a time di erence.
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Let H be a separable complex Hilbert space, whose associated scalar product is simply
denoted by h; i and the associated normk k. We denote by B(H) the space of bounded
linear operators onH, by S(H) the space of bounded self-adjoint operators ohl, by Sp(H)

(1 p<1)the Schatten class
n o]
Sp(H)= A2B(H) KAks ) =Tr(jAJP)*™P<1 ;

and by A the adjoint of a linear operator A on H with dense domain. The real and imaginary
parts of an operatorA 2 B(H) are de ned as

A+ A A A
ReA = ;o ImA = —
2 2i
Note that, when A is closed (which impliesA = A), the operators ReA and ImA are

self-adjoint. For f;g 2 H and given operatorsA; B on H, we will often use the notation
hjAjgin == H;AQin; HjABjgin == M ABg in;

even in cases when the operators are not self-adjoint. Operators are always understood to act
on the function on the right in this notation.

We will sometimes need to manipulate the adjoints of operators between two di erent
Hilbert spacesH, and Hy,. The adjoint of a bounded operatorA 2 B(H4; Hyp) is the bounded
operator A 2 B(Hp; H,) de ned by

8(x;y) 2Ha H (A y;X)Ha:(y;AX)Hb:

Let E be a Banach space. We denote by {R;E) the space ofE-valued tempered-
distributions on R, i.e. the set of continuous linear maps from the Schwartz's functional
spaceS (R) into E. Recall that, by de nition, a family (T )s ¢ of elements ofS {R;E)
converges inS {R;E) to someT 2 S {R;E) when goes to0 if

8 2S (R); T isos hT; isos ¢! o O

Let f 2 LYR;E) be a time-dependentE -valued integrable function. The time-Fourier
transform of f is de ned, using the standard convention in physics, as

8l 2R; f1):=(Ff)(1):== f()e" d: (4.1)
R

For the sake of clarity, we will sometimes denote byR; or R the time-domain, by R,
the frequency-domain, byS 4R ;E) (resp. S 4R, ;E)) the space of time-dependent (resp.
frequency-dependente -valued distributions, etc. We will also denote with a hat the functions
de ned on the frequency domain. Using this notation,Ft can be extended to a bicontinuous
isomorphism fromS 4R ;E) into S (R, ;E). When 02 L1(R, ;E), we have

8 2R; |=Tltb()=2i R1’0(!)e IR

The Dirac distribution at a2 RY is denoted by ,, and the Heaviside function onR by
( Y=1for > 0O ( )=0for < O 0)=1 =2 4.2)

Recall that the time-Fourier transform of is, in the tempered distributional sense,
. 1
Riy= o()+ip:v: T (4.3)

where p:v: is the Cauchy principal value. We will also make use of the notation * for a
number strictly above , but in nitesimally close to , and of the convention

( Dol )= 0o() ( )of "):=0:
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4.2.2 Hilbert transform of functions and distributions

The Hilbert transform, which amounts to a convolution by p:v:(1), plays a crucial role in
the GW formalism. We rst recall some well-known results on the standard Hilbert transform
on LP(R, ), and extend the results to the Sobolev spacdd 5(R, ) for s 2 R. Usually, the name
Hilbert transform is only used on functional spacesE Lﬁ)C(R! ) such that, for any function
2 E, the limit

1
O pv: = 1Y=p:v:
p-v (t)=pwv 10" Rnp ;!+]! 10

o I'b(!?odl 0.= Jim 9 dr ©

exists for almost all! 2 R,. However, in the sequel, we will also use the name Hilbert
transform in functional spaces where the above integral representation is not always valid
(for instance whenf is not a locally integrable function). Note that we de ne the Hilbert
transform on Fourier transforms of functions (.e. on functions on the frequency domain)
since this is the typical setting in the GW formalism.

Hilbert transform in LP spaces

We rst begin with the following classical de nition (see for instance [Gra04, Section 4.1]).

De nition 4.1  (Hilbert transform on S (R:)). The Hilbert transform of a function b 2
S (R ) is de ned by

Hb = 1p:v: 1 b (4.4)

or equivalently by
Hb:= Fr( isgn())F,* B (4.5)
wherep:v: 1 is the Cauchy principal value of the function 7! &, the convolution product,

F1 the Fourier transform de ned in (4.1) and isgn() the muItipIication operator by theL?®
function t 7! isgn(t) (wheresgn(t)= ( t) ( t) is the sign function).

The Hilbert transform can be extended by continuity to a large class of tempered distri-
butions. We refer to [Gra04, Rie2§ for a proof of the following theorem.

Theorem 4.2. For all 02 LP(Ry) with 1<p < 1, the Hilbert transform

HIY! ) = p:v: 11 !1b(! ?od! 0

is well-de ned for almost all! 2 R. It holds H2 B(LP(R:)) with

tan( = (2p)) if 1<p 2

kHKg(Lo (R, ) = cotan(=(2p)) f2 p<1:

Moreover, the Hilbert transform commutes with the translations and the positive dilations, and
anticommutes with the re exions. Finally, it is a unitary operator on L?(R) ).

Hilbert transform in Sobolev spaces
Recall that for any s 2 R, the Sobolev spacéd 5(R, ) is the Hilbert space de ned as
n o]
HRi):= P2SYR)) (1+] jH°FP2L%R) ;

and endowed with the scalar product

D E
ﬂ?gHszz

+

1 -
. 2)S(F+ 'O ) (F;0)( )d;
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andthat H S(R;) can be identi ed with the dual of H (R, ) when the spacd.?(R; ) = HO(R,)

is used as a pivoting space. One of the reasons to introduce these spaces is that the image
of L (R ) by the Fourier transform F1 is contained in the Sobolev spaces of indices strictly
lower than 1=2.

Lemma 4.3 (Fourier transform in L (R )). Let s> 1=2. Then F1 (L' (R)) H S(R:)

and
d 1=2

kFTkB(Ll H sy = Cs with Cs= 2 Rm : (4.6)

For completeness, we recall the proof of Lemma4.3 in Section 4.6.1

Since the Hilbert transform in S (R, ) amounts to a multiplication by the bounded func-
tion isgn() in the time domain (see @.5)), it can be directly extended to the Sobolev spaces
H3(R ).

Lemma 4.4. For any s 2 R, the Hilbert transform H is a unitary operator on the Sobolev
spacesH $(R; ) satisyng H = H (and therefore H2 = 1d).

Remark 4.5 (Hilbert transform of distributions) . Extending the Hilbert transform to Sobolev
spaces is straightforward using 4.5). Extensions of the Hilbert transform to other subspaces
of DYR,), such as theD?,(R:) spaces de ned in Bch66 Section VI.8], can be obtained
from (4.4).

Hilbert transforms of operator-valued distributions

We now need to properly de ne the Hilbert transform of operator-valued distributions on the
frequency domain, as such objects naturally appear in the GW formalism. We rst introduce,
for s 2 R, the Banach space

n (0]
HS(R;B(H)):= R2S %R/ ;B(H)) (L+] j55?F;R2 L3R ;B(H)) ;

endowed with the norm

p__ +1 2 1=2
= 2 1+ 25 F R () d
HS(Ri ;B(H)) 1 B(H)

The following de nition makes sense in view of Lemma4.4.

De nition 4.6  (Hilbert transforms of frequency-dependent operators) Let H be a Hilbert
space, and consides 2 R and R2 HS(R, ;B(H)). The Hilbert transform of R is the element
of HS(R, ; B(H)), denoted byH(A&), and de ned by
D E D E
8(f;g) 2H H ; f HR) g =H f Rg (4.7)

In particular, it is possible to de ne the Hilbert transform of the Fourier transform of a
uniformly bounded eld of time-dependent operators, using the following result, which is a
straightforward extension of Lemma4.3.

Lemma 4.7. Let H be a Hilbert space, and les > 1=2. Then for all A2 L! (R ;B(H)), we
haveR 2 H S(R, ;B(H)), with
S ) 1=2
— 2 .
Woeesey | R KA Kee © CokAkL: @ o0y

where Cg is de ned in (4.6).
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Let B (R) be the set of Borel subsets oR, b2 B (R) a Borelian set, andH a self-adjoint
operator on a Hilbert spaceH. We denote by PbH .= 1p(H) the spectral projection onb
of H (here, 1y is the characteristic function of the setb, and 1,(H) 2 B(H) is de ned by the
spectral theorem for self-adjoint operators; see for instanck[578 Theorem VII.2]).

De nition 4.8  (Principal value of the resolvent of a self-adjoint operator) Let H be a self-

adjoint operator on a Hilbert spaceH. We de ne the B(H)-valued distribution p:v: AH on

the frequency domainR; by

8(f;g)2H H ; f pv: LH g = H(H

where P;g is the nite complex Borel measure onR; de ned by

8b2B(R);  fy(b=HjPgi:
As any complex-valued bounded Borel measure oRR, is an element ofH S(R,) for

any s > 1=2 (this is a consequence of the continuous embeddings(R,) ! CO°%R;)\ L! (R)
for s > 1=2), it follows from De nitions 4.6 and 4.8 that

piv: LH = HP") inH SR ;B(H)):; s> 1=2;

which is the operator analog of the well-known formula
pivi = = H(g) inH 3R/); s> 1=2 (4.8)
which is itself a simple reformulation of the equality

Flopv: = = lzsgn() inL!(R):

4.2.3 Causal and anti-causal operators

The GW formalism makes use of families of time-dependent operatofd.( )) 2r and(Ta( )) 2r
of the form

Te( )= ( JAc() and To( )= (  )Aa();

where : R! R is the Heaviside function @.2), and A and A belong toL! (R; B(H)) for
a given Hilbert spaceH. The family of operators (T¢( )) 2r is called acausal operator as
Te( ) =0 forall < 0. Likewise, the family of operators(Ty( )) 2r is called ananti-causal
operator, asTo( ) =0 for all > 0. We recall in this section the basic properties of causal
and anti-causal operators.

Causal operators

Causal functions have very nice properties, because their Fourier transforms have analytic
extensions in the upper half-plane

U=fz2Cjlmz> 0g:
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This comes from the fact that, if f 2 LY(R )+ L' (R ) is such thatf( ) =0 for < 0, the
Laplace transform f€ of f , de ned on U by?

8z2U; fz):= f()?d = . f()e? d; (4.9)
R 0

is a natural analytic lifting onto U of the time-Fourier transform Poff denedonR = @.
Note that the Laplace transform can be extended to appropriate classes of tempered distri-
butions, see §ch66 Chapter VIII].

Let us rst recall the Titchmarsh's theorem [ Tit48] (see for instance [Nus72 Section 1.6]).

Theorem 4.9 (Titchmarsh's theorem in L2 [Tit48]). Let f 2 L%(R ) and P2 L2(R,) be its
time-Fourier transform. The following assertions are equivalent:

() f is causal (i.e. f( )=0 for almost all < 0);

(i) there exists an analytic function F in the upper half-planeU satisfying

+1
sup iFQ +i )j2d <1
>0 1

and such that,F( +i )! 1bstrongly inL%(R/),as ! 0F;

(i) Ref and Im 2 satisfy the rst Plemelj formula

Reff= H Im® inL3R); (4.10)

(iv) Ref® and Im satisfy the second Plemelj formula

Im=H Ref® in L3R ): (4.11)

If these four assertions are satis ed, then the functiorF in (ii) is unique, and coincides with
the Laplace transformf€ of f .

We refer to [Tit48] for a proof of this theorem. Formulae @.10-(4.11) are sometimes
referred to as the Kramers-Kronig formulae or the dispersion relations in the physics literature.
Titchmarsh's theorem implies in particular that square integrable causal functions, which can
be very easily characterized in the time domain (they vanish for negative times), can also be
easily characterized in the frequency domain (the imaginary parts of their Fourier transforms
are the Hilbert transforms of their real parts).

We emphasize that the above version of Titchmarsh's theorem is only valid ir.?, while
the GW setting mostly involves L! causal functions (see Sectiod.3.2 for instance). Weaker
versions of Titchmarsh's theorem are available for wider classes of tempered distributions (see
[Nus77 and references therein), but theL! setting turns out to be su cient for our purposes
and has the advantage of allowing short, self-contained proofs of all statements. Note that
the assertions are no longer equivalent.

2The Laplace transform is usually de ned as

1

F(p) = f(lePd:
0

Our de nition, which is better adapted to the GW framework, simply amounts to rotating the axis, or, in
other words, to setting z =ip.
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Theorem 4.10 (Titchmarsh's theoremin L! (R)). Let g2 L! (R ) be a causal function (i.e.
g( )=0for < O andletg2 H S(R/) for all s> 1=2 be its time-Fourier transform, and
g be its Laplace transform de ned onU. Then,

(i) gis analytic on U;

(i) the function 7! g( +i ) is continuous from (0;+1 ) to HS(R, ) for all s2 R, and is
uniformly continuous from [0;+1 ) to H S(R,) for all s > 1=2. Moreover,g( +i )! b
strongly in H S(R/) forall s> 1=2,as ! 0;

(iii) for all z2 U,
62)= 5 B 2 Ly e 412)

(iv) Reb and Im g satisfy the Plemelj formulae:

Reh= H(@mBb) and Imb=H(Reh) inH (R ): (4.13)

The proof of Theorem4.10, which is a simpli ed version of the proof of the more general
result given by [Tay58, Lemma 1] (see alsoNus72, Section 1.7]), is given in Sectiom.6.2 For
simplicity, we stated (4.12) and (4.13) in H * for the value s = 1, but similar results hold for
any values > 1=2.

Let us now extend these results to operator-valued functions. We recall that a map
&(z) from an open setU C to a Banach spaceE is said to be strongly analytic onU if
U 3 z7' &(z) 2 E is C-di erentiable on U, i.e. d&(z)=dz 2 E for all z2 U.

De nition 4.11  (bounded causal operator) Let H be a Hilbert space and: 2 L (R ;B(H)).
We say that T, is a bounded causal operator ol if T¢( ) =0 for almost all < O.

Lemma4.3 and Theorem4.10can be straightforwardly extended to operator-valued maps
(see Sectiord.6.3 for the proof).

Proposition 4.12. Let H be a Hilbert space andl. 2 L! (R ;B(H)) a bounded causal oper-
ator on H. Then its time-Fourier transform . belongs toH S(R,;B(H)) for any s > 1=2,
and its Laplace transform

F(z2)= Te()e? d = " Te( )€” d
R 0

is well de ned on the upper-half planeJ. Moreover,
() % is a strongly analytic function from U to B(H);

(i) the function 7! B( +i ) is continuous from (0;+1 ) to HS(R, ;B(H)) for all s 2 R,
and uniformly continuous from [0;+1 ) to H S(R, ;B(H)) for s > 1=2. Moreover, for
anys> 1=2, F( +i )! b, strongly in H S(R,;B(H)) as ! 0;

(i) for all z 2 U, it holds D E

B(2) = % P( 21!

H 1;H 1 ’
(iv) the operators Re P, and Im P, satisfy the Plemelj formulae:

ReP.= H Im®B and ImB=H ReR inH R ;B(H)): (4.14)
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Besides the general case covered by Propositighl12, the particular case of causal time-
propagators is often encountered. Explicit formulae can be provided for the Laplace and
Fourier transforms in this case, as made precise in the following result (see Sectidr6.4 for
the proof).

Proposition 4.13  (Analytic extension of causal time propagators) Let H be a self-adjoint
operator on a Hilbert spaceH and Ac( ):= i( )e 'H. The Laplace transform (&.(z))z2u
coincides with the resolvent oH in U:

R(z)=(z H)

Moreover, &( +i ) converge toR. in H (R, ;B(H)) as ! 0, and
ReR.=p:v: LH and ImAR.= PH" inH YR ;B(H)):

Let us conclude this section with a useful result (see Sectiof.6.5 for the proof).

Lemma 4.14. Let T 2 L (R ;B(H)) be a bounded causal operator such that it holds
Supp(im®.) ['o;1) for some! o2 R. ThenIm®. 0onR, if and only if Re®. 0
on(1 ;!o]

Anti-causal operators

De nition 4.15  (bounded anti-causal operator) Let H be a Hilbert space and, 2 L (R ;B(H)).
We say that T, is a bounded anti-causal operator ifT( ) =0 for almost all > 0.

All the results for causal operators stated in the previous section can be straightforwardly
transposed to anti-causal operators, by remarking that if(Ta( ) 2r is an anti-causal operator,
then (Ta(  ))t2r is a causal operator. We will use in particular the following results, which
are the counterparts of Proposition4.12 Proposition 4.13and Lemma4.14.

Proposition 4.16. Let H be a Hilbert space andl, 2 L! (R ;B(H)) a bounded anti-causal
operator onH. Then its time-Fourier transform ¢, belongs toH S(R, ; B(H)) for any s > 1=2,
and its Laplace transform fr, is well de ned on the lower half-plane

L=fz2CjIm(z) < 0g:
Moreover,
(i) B, is a strongly analytic function from L to B(H);

(i) the function 7! By( i ) is continuous from (0;+1 ) to HS(R, ;B(H)) for all s 2 R,
and uniformly continuous from [0;+1 ) to H S(R, ;B(H)) for s > 1=2. Moreover, for
anys>1=2, B( i)! P.stronglyinH SR, ;B(H)) as ! 0*;

(iii) for all z2 L, it holds

1 D E
faz)= =— %a( 201 ;

2i H LH?
(iv) the operators Re%, and Im ¥, satisfy the Plemelj formulae:

Refa=H Im%, and Im%;= H Re%; inH YR/ ;B(H): (4.15)
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Note that the signs in the Plemelj formulae are di erent for causal and anti-causal oper-
ators (compare @.14) and (4.15). Also, the Laplace transform is de ned in the lower-half
plane L for anti-causal operators, while it is de ned in the upper-half plane U for causal
operators. The counterpart of Proposition4.13is the following proposition.

Proposition 4.17  (Analytic extension of anti-causal time propagators) Let H be a self-
adjoint operator on a Hilbert spaceH and Aa( ) = i( Ye' H . The Laplace transform

(Ka(2)z21L is
Ra(z)=(z+H) .

Moreover, &;( i ) converge toR, in H YR, ;B(H)) as ! 0", and
ReAR, =p:v: %H and ImAR,= P " inH YR ;B(H)):

Finally, a result similar to Lemma 4.14 can also be stated.

Lemma 4.18. Let T, 2 L (R ;B(H)) be a bounded anti-causal operator such that it holds
Supp(iIm%,) (1 ;!¢]forsome!g2 R,. Then, Im%,; 0if and only if Re%5(! ) 0 on
[Mo;+1).

4.2.4 Operators de ned by kernel products

Two of the fundamental equations in the GW method (see Sectiond.4.2and 4.4.3) are of the
form
C(x1;%2) =1 A(X1;X2)B(X2;X1); (4.16)

where A(x;x9 and B(x;xY are the kernels of space-time operators invariant by time trans-
lations. As the product of the kernels of two operators is not, in general, the kernel of
a well-de ned operator, we have to clarify the meaning of 4.16. We rst treat the case of
time-independent operators in Sectiord.2.4, and consider time-dependent operators and their
Laplace transforms in a second step (see Sectigh2.4).

De nition of the kernel product

We rst consider the special case when the operators in4(.16) are time-independent. Our
aim is to give a meaning to equalities such as

C(riir2) == A(ry;r2)B(ra;ra); (4.17)

where A(r;r9 and B(r;r9 are the kernels of two integral operatorsA and B on L2(R?). For
this purpose, we replace 4.17) by the formally equivalent de nition

8(f;9) 2 L*(R%) L*R%;  HiCjgi = f(r))C(ru;ra)g(rz)drodr,
R3 R3

A(r1;r2)g(r2)B(ro;r)f (ry)drydro
R3 R3

Tr L2(rey AgBT ; (4.18)

where the last line involves the operatorsA and B themselves, and not their kernels { and
g are there seen as multiplication operators by the functions and g respectively).

The formal equalities leading to @.18 suggest to de ne the kernel product of two opera-
tors A and B (de ned on dense subspaces df?(R?)), as the operator onL2(R®) with domain
D L?(R®), denoted byA B and characterized by

8(f;g) 2 L%R® D; Hj(A  B)jgi :=Tr 2rey AgBT : (4.19)
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In particular, the product A B is a well-de ned bounded operator on_?(R3) as soon agBf

is trace-class for all(f;g) 2 L%(R®) L?%(R3) and (f;g) 7! Tr 2rs)(AgBf) is a continuous
sesquilinear form onL?(R%) L2(R3). It follows from the above considerations that if A and
B are operators with well-behaved (for instance smooth and compactly supported) kernels
A(rq;r2) andB(rg;r2), then A B is a bounded integral operator with kernel(A B)(rqi;r2) =
A(ry;r2)B(ro;rq).

Remark 4.19. It is also possible to rely on the formal equality
8(f;g) 2 LA(R®) L*R%; H|Cjgi =Tr L2(rs) FAGB ;
and de ne another kernel producte by
8(f:g) 2 L3(R® D:; f A€B g :=Tr zrey FAGB

It may hold that A B is a well-de ned bounded operator, whileA € B is an unbounded
operator.2 In the sequel, we will mostly state the results for the kernel product.

Remark 4.20. The product A B can be seen as an in nite-dimensional extension of the
Hadamard productA BT de ned for two matrices A 2 C™ "andB 2 C" ™ by

8l i m; 81 j n A BT, =Aj; BT, =ABj:

Let us specify possible su cient conditions for the operatorA B to be well-de ned. The
typical situation we will encounter in the GW setting (see Sections4.4.2and 4.4.3) is the case
when A 2 B(L?(R?)), while B is an operator onL?(R3) satisfying

8f;g 2 L?(R%®; Tr gBf  Cgkf k_ 2kgk, 2: (4.20)

In this case, the operatorA B dened in (4.19 is a well-de ned bounded linear operator
on L?(R3), and
kA B kB(LZ(R3)) CB kAkB(Lz(R3)) :

The operators B arising in the GW formalism are usually of the formB = B;B2B1, where
B1 is an operator from L%(R3) to some Hilbert spaceH, and B, 2 B(H). In fact, assume
that the operator B is such that Byf 2 S,(L%(R3);H) for any f 2 L?(R3), with

kBlf kSz(LZ(R3);H) K kf k|_2; (421)

for a constant K 2 R* independent of f. In the left-hand side of (4.21), f denotes the
multiplication operator by the function f. In this case, @.20 holds with

Cg = szBZKB(H):

Let us conclude by giving a simple example wher4(21) is satis ed, in the situation when
H = L%(R3).

® As an example of such a situation, take 2 L?(R*)\ L* (R®), 2 L?*(R®)nL' (R®),andsetA =] ih |
and B = j ih j. Then, for all f;g 2 L?(R®), the operator AgBf = j ih jgj ihf jis a well-de ned rank- 1
bounded operator since f 2 L2(R®), hence is trace class. Moreover,

Tr 2(rsy AGBT k K21 k k 2k ki 2 Kkfk_2kgk, 2;

sothat A B is a well-de ned bounded operator on L2(R®). On the other hand, it formally holds fAgB =
jf ih jgj ih j. If f is such that f =2 L?(R?®), then this operator is not bounded.
We are grateful to Yangi Qiu for pointing out this counter-example to our attention.
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Lemma 4.21. Let By be a linear operator with integral kernelB1(r;r9 2 L2 (R® R3®),

such thatr 7! kB1(r; )ke: 2 L?(R®). Then B; 2 B(L1(R®);L?(R®), so that B; de nes
an operator on L?(R3) with domain LY(R®)\ L?(R%). Moreover, for any f 2 L?(R®), the
operator B1f is Hilbert-Schmidt on L2(R3), with

1=2
kBaf Ks,(L2(r3) N kB1(r; )k 1 (reydr  Kf kiz(ray:

The proof of this result can be read in Sectiort.6.6. In the GW setting, a technical result
similar to Lemma 4.21is provided by Lemma4.77.
Properties of the kernel product

Lemma 4.22. Consider two bounded operatorsA;B 2 B(L?(R®)) such that A;B 0
and (4.20) holds. Then, A B is a bounded, positive operator orL.2(R3).

The proof of this result is very simple: it relies on the observation that, for anyf 2 L?(R?),
H jA ijl =Tr L2(R3) AfB fi =Tr L2(R3) A1=2fB ]TA 1=2 0

sincefB f is a positive, trace class operator andA™ 0 is a bounded operator.

Lemma 4.23. Consider two bounded operatordA;B 2 B(L?(R%)) such that @.20) holds.
Then, A B is a bounded operator with adjointtA B) = A B .

The proof of this result is also elementary: for anyf;g 2 L?(R?),

f (A B)g =Tr L2(R3) AgBT = TrLZ(R3) AgB'F = TrLZ(RS) (fB gA)

= Triome) (A 1B g)= hg;(A B )fi=HA B )figi:

In particular, A B is self-adjoint wheneverA and B are self-adjoint.

Laplace transforms of kernel products

We nally combine the results on causal operators with those on the kernel product de-
ned in Section 4.2.4in order to give a meaning to @.16). Note rst that the space-time
operator with kernel C(x;x9 is also time-translation invariant and that the family of opera-
tors (A( )) 2R, (B( )) 2R and (C( )) 2R such that, formally, A(Xl;Xz) = A(I’l;rz;tl tz),
B(x1;X2) = B(r1;ro;ty  t2), and C(x1;X2) = C(ry;rp;t;  ty), are related by

C()=iA() B( ) (4.22)

We assume here thatA and B are such that (4.22 is well-de ned. When all the operator-
valued functions have su cient regularity in time, their Fourier transforms decay su ciently
fast at in nity and it is possible to Fourier transform ( 4.22). This is however not the typical
case in the GW setting since we work with causal and anti-causal operators, whose Fourier
transforms are inH (R, ) for somes > 1=2.

We therefore rather consider Laplace transforms. More precisely, for two elds of uniformly
bounded operators(A( )) 2r and (B( )) 2r, and provided C( ) :=iA( ) B( ) is well
de ned, we can decomposé\, B and C as the sums of their causal and anti-causal parts as

A()=A"()+A () with AT()=( )A() and A ():=( HA();
and similarly for B and C. Then,

C*()=iA*() B ( ) and C ()=iA () B*( ) (4.23)
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We next consider! > O0and0< <! . From the equality

h i
C*()e' =i A*()e ) B ( )e ;

we deduce, by Fourier transform, that

. it . .
E+( +il)= o A+ 1Oj(r ) B (109 jHare (4.24)
1
The convolution on the right-hand side is well de ned in view of Propositions4.12 and 4.16.
It however becomes ill-dened as!; ! 0. In the case when the causal and anti-causal
operatorsA™ and B under consideration are time-propagators, it is possible to remove this
singularity by rewriting the convolution on appropriately shifted imaginary axes.

Theorem 4.24. Consider three Hilbert spacedd; H,; Hp, and assume that

AT()= i( )Ae "A2A; A ()=i( )AER2AY
B*()= i( )Bie'B®?By; B ()=i( )B.€B?By;

where A; 2 B(H;Hj3), B1 2 B(H;Hyp) and Ay; B, are possibly unbounded, self-adjoint op-
erators on Hy and Hy, respectively, for which there exist real numbers; b such that A,

a and B b. We assume in addition that, for anyf 2 H, Bif 2 Sy(H;Hyp) with
kB1f Ks,(H:H,) K kf ky, for a constant K 2 R* independent off. Then, the opera-
tors C, C* and C in (4.22)-(4.23) are well-de ned, the Laplace transforms ofC* and C
admit analytical continuationsonU[ L[ (1 ;a+ b andU[ L[ ( (a+ b);1 ) respectively,
and it holds for any <a + band %2 ( b;a ),

+1

gl 2R, &+ +i1)= Zi A+ + %1 +19 B8 (%i19d1% (4.25)
1

while, forany > (a+b and °2( a ;b),

+1
gl 2R, & ( +i)= zi A+ %1 +19  B+( %i19d1% (4.26)
1
Finally, the following equality holds providedb > O anda+ b > 0: forany 2 ( (a+ b);a+b)
and %2 ( b;b,
1+t
8! 2 R; €( +il)= > & + %+i(r +19 B %it9ar @ (4.27)
1
The proof of Theorem4.24 can be read in Sectiord.6.7. The choices of; 0 ensure that
the function ! °7! A+ + O+j(1 + 19 jsin LP(R, :B(H)) for any p > 1, while, for any
f;g 2H, the function ! °7! g8 ( %+i! 9f isin LP(R, ;S1(H)) for any p > 1. Therefore, in
view of (4.25), the function ! 7! (E*( +il)isin LP(R,;B(H)) for any p > 1. Similar results
hold for! 70 & ( +il)and! 7! €( +i!).
Let us conclude this section by deducing interesting properties from the analytic continu-
ation results given by Theorem4.24 (see Sectiord4.6.8 for the proof).

Corollary 4.25. Assume that the conditions of Theoren¥.24 hold. Then,

Supp Im €+ [a+ b;+1); Im€+ 0
(4.28)
Supp Im € (1 ; (a+ b, Imé€é 0O
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so that
Supp Im®  Rn( (a+b;a+b; Im® o

Moreover,
€+ =Re€* 0 on 1 :a+b;

(4.29)
€ =Re€ 0 on (a+ b);+1

In particular, ®=Re® o0on (a+b;a+b.

4.2.5 Second gquantization formalism

We recall here the de nitions of the main mathematical objects used in the second quantization
formalism, which are used to de ne at least formally the kernels of the operators arising
in the GW method. More details about the second quantization formalism can be foune.g.
in [DG97].

We consider a system oN electrons in Coulomb interaction subjected to a time-independent
real-valued external potential Vexs 2 L2(R3;R) + L (R3 R). In order to study the response
of the system when electrons are added or removed, we embed this-body problem in a
more general framework where the number of electrons is not prescribed. We denote by
Hy = L\Z/(R3; C) the one-electron state space (the spin variable is omitted for simplicity), by

Hn = N H1 the N-electron state space, and byF = ﬁlonN the Fock space, with the
convention that Hg = C. The Hamiltonian of the N -particle system reads
1 X X X 1
Hn = > it Vext(ri) + i r_-; (4.30)
i=1 i=1 1ig NI Tl

and the corresponding Hamiltonian acting on the Fock space is denoted bid, so that
HN = HjHN-

For f 2 H,, the creation and annihilation operators @¥(f) and a(f) are the bounded
operators on the Fock spacd- de ned by

8N 2 N; ay(f)jHN ZB(HN;HN+1); a(f)jHN+1 ZB(HN+1;HN);
and forall N 2Hy,
1 X?

s DI (ry) N Gren;iiiirne);
j=1

N f(r) n(rirgiisrn 1) dr:
R3

[@(f) nNI(ra;:iirn+t):

p

[a(f) nNIl(res:zorn 1)

(4.31)
The creation and annihilation operators satisfya’(f ) = a(f) and the anticommutation rela-
tions

8(f;,g) 2H1 H 1 [a(f);a(g)l+ =0; [@(f);@(g)]+ =0; [a(f);a’(g)l+ = M jgil;
(4.32)
where[A;B ]+ = AB + BA is the anti-commutator of the operators A and B, and wherel1g
is the identity operator on F. In particular,

a(f)a(f) + a(f)a¥(f) = kf kg, 1g:

The mappingsH1 3 f 7! &¥(f) 2 B(F) and H; 3 f 7! a(f) 2 B(F) are respectively linear
and antilinear.
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In most physics articles and textbooks, the GW formalism is presented in terms of the
guantum eld operators in the position representation ( r) and Y(r). We recall that, for-

mally,
s s
8r2 R% Y(r)= i(r)al( i), (r)s= i(ra( i);
i=1 i=1

wheref g, is any orthonormal basis ofH;. Note that for any f 2 H 4,

Y(r)f (r)dr = @¥(f) and ( n)f (rdr = a(f):
R3 R3

In the second-quantization formalism,H reads,

H= D) 2 o+ veal) (Ddr+ 3 YO YO0 1§ T(r9( rdrdr
R3 2 2 (RB)Z
Finally, we introduce the Heisenberg representation of the annihilation and creation eld
operators y(rt) and yH(rt), formally de ned by

Y =e'™ Yr)e ™ and  y(rt)=e"™ (r)e "
Note that, still formally, w(rt) = {,(rt), and

L), =efive (e v (rt) o, =e' (r)e M (4.33)

4.3 Operators arising in the GW method for nite systems

This section aims at providing rigorous mathematical de nitions of the operators arising in

the GW method. For each one of them, we rst recall the formal de nition given in the physics

literature, using the second quantization formalism. We then explain how to recast this formal
de nition into a (formally equivalent) satisfactory mathematical de nition involving only well-

de ned operators on thek-particle spacesHy, with k =1;N 1;N;N +1, the Coulomb space
C(de ned in Section 4.3.3), and its dual C°> We nally establish some mathematical properties

of the operator under consideration, using our de nition as a starting point. Unless otherwise
speci ed, scalar products and norms are by default considered oH1 = L?(R3;C).

We rst need to make some assumptions on the physical system under consideration (see
Section 4.3.1). We can then de ne the one-body Green's functions in Sectiomt.3.2 Linear
response operators are considered in Sectidn3.3 which culminates with the de nition of the
dynamically screened interaction operatorWW. We nally introduce the self-energy operator
in Section4.3.4

4.3.1 Assumptions on the reference N -electron system

Recall that the reference system withN electrons is described by the HamiltoniarHy on Hy
de ned by (4.30. Our rst assumption concerns the ground state energyE,E’, of the reference
system described byH y :

Hyp. 1. The ground state energyE,E’, is a simple discrete eigenvalue ofly .

In this case, the normalized ground state wave-function 9 of the reference system is unique

up to a global phase. We also de ne the energy of the rst excited state:

EL =min  (Hy)nfEQQ :
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Together with 9, we introduce the ground state one-body reduced density-matrix

or;r9:= N o Qriry srn) Q(%ry; sry)dry  dry; (4.34)

the ground state density
Q)= R =N j N(rira; rn)jfdrz  dry;
(RN 1
and the ground state two-body density
N(N 1 . .
Ra(rir9 = RN_1) > ) j R(rsr8ra rn)jfdrs dry (4.35)
(RN 2

of the referenceN -electron system.

We recall in the following proposition some important propertieson 3, g, & and §.,
(most of the assertions below are well known; we provide elements of proof in Sectidn6.9
for the less standard statements). Note that both 3 (r;r% and R.,(r;r9 can be seen as the

kernels of bounded operators o1 = L?(R®) that we also denote by { and {.,.

Proposition 4.26  (Properties of the ground state) Assume thatvey; is of the form
W e
e JT R

withzc 2 N andRx2 R3forall 1 k M, and that Hyp. 1 is satis ed. Then,

Vext(r) =

(1) the ground state wave-function { can be chosen real-valued and{ 2 H2(R3V);

q__
(2) the ground state density { is in LY(R%R)\ LY (R%;R) andr 2 L2R3%R) 3,

Moreover, { is continuous and everywhere positive oR®;
(3) the ground state one-body reduced density operatol) is in

n (0]
Kn= N2S(H) 0 N L Trwg((n)= N; Tri (i wni)<1

and satis es

8(f;g)2H1 H 13 Hj Jjgi = h Yja¥@af)i Ning; (4.36)

(4) the kernel { (r;r9 satis es the pointwise estimatej (r;r9%2  Q(r) §(r9;
N 1
2
Much ner regularity results on ,E’, are available FHOHO@S02, FHOHO@SO05, Yselq,

but are not needed for our purpose. Similar results hold true iVey; is replaced by a potential
generated by smeared nuclei or pseudo-potentials.

(5) the operator %;2 belongs toS(H;), and k %;2kB(H1) k %kLl :

Our second assumption is concerned with the (discrete) convexity i 7! EJ. We assume
that N 1, and that (with the convention EJ =0 in the caseN =1)

Hyp. 22 E] EQ ;<EQ., E:

In this case, any real number suchthatE EQ ;< <E J,; E{ is an admissible
chemical potential (Fermi level) of the electrons for the ground state of the reference system.
The physical relevance of this assumption is discussed for instance iRg[r99, Section 4.2].



104 Chapter 4. The GW method for finite systems

4.3.2 Green's functions

We begin our journey in the GW formalism with Green's functions. The GW method has
been designed from the equation of motion for the time-ordered one-body Green's function
G [Hed64, which is the concatenation of two meaningful physical objects: the particle Green's
function Gp and the hole Green's functionGy,.

The particle Green's function Gp

Rigorous de nition of the particle Green's function. The particle (or forward, or
retarded) Green's function is formally de ned by (see for instance fWO03, Section 7])

GUrtr9:= i(t t9h {j at)y L9 i (4.37)

where is the Heaviside function @.2), and (rt) and Lﬂ(rt) are the Heisenberg repre-
sentations of the annihilation and creation eld operators introduced in Section4.2.5 As
% 2Hy, we can replace( rt) and Y(rt) by their expressions ¢.33:
G(rt;rd9= it thh QjEHn (r)e (¢ OHna y(rOe tHNj O
= i(t t9h Rj(ne O ED Y9 Qi

As G, only depends on the time dierencet t® it is sucient to study the function
Gp(r;r% ):= Gy(r ; r). We then notice that, for all f 2 H 4,

Yr9j Qif (r%drl= av(f)j 3i:

Introducing
A+: Hl ' H N+1
f 70 () Qi

and Ay = (A,) , we observe thatGp(r; r® ) is formally the kernel of the following one-body
operator.

De nition 4.27  (Particle Green's function). The particle Green's function is de ned as

Gp( )= i( )Ase ! (na EDA . (4.38)

First properties of the particle Green's function. The study of G, can be decomposed
into the study of the operatorsA. ande ' (Hn+ ER). The latter is clearly bounded onH y +1 .
As for the operator A, , we deduce from §.32) and (4.36) that

re¥(f) Rja¥(g) Ri=h Rja(f)a’(g) Ri=rHijgi h Rja¥(ga(f)] Ri=Hjl gjgi;
or equivalently,
AcA, =14, D (4.39)

Hence, A, is a bounded operator fromH; to Hy+1, and A, is a bounded operator from
Hn+1 to Hy. In fact, since
, . 2
KALFKG ., = i, RIF = Ty RF 4
it holds KA, Kg(H,:Hy,, ) = 1. The following properties are obtained as a direct corollary of
Proposition 4.13
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Proposition 4.28 (Properties of the particle Green's function). The family (Gp( )) 2r de-
nes a bounded causal operator orH;. The real and imaginary parts of its time-Fourier
transform are in H S(R, ;B(H1)) for all s> 1=2, and are given by

1
(Hva  EQ)

ReGp = A piv: A, and ImG,= A .PHva EXA :  (4.40)

The analytic operator-valued function&, de ned in the upper half-plane by

1
(Hv+ EQ)

8z2 U; &u(z):= A, - A, (4.41)

is the Laplace transform of G, and satis es

G, = Iirrz)+ ép(:+i ) inH 5(R,;B(Hy) forall s> 1=2:

The imaginary part of &, is related to the so-called spectral functionA, (see Section
4.3.2.

Analytic continuation to the complex plane. Let us introduce the particle optical
excitation set

Sp:= (Hn+1 ERQ): (4.42)
We recall that the operator Hy+1  EJ with domain Hy.1 \ H2(R¥N*D) s self-adjoint
on Hy+1. Its essential spectrum is of the form ¢sd{Hn+1 E,?,) =[ N+1;1), and there
are possibly in nitely many eigenvalues below py+1 that can only accumulate at n+1 -
According to the HVZ theorem [Hun66, VW64, Zhi60], n+1 = EJ EQ =0. In particular,
Sp is the union of a discrete negative part, and the half-ling[0; + 1 ).

We next infer from (4.41) that @p(z) can be extended to an analytic function fromC n S,
to B(Hj). This is of particular interest for the following reason. The operator-valued distri-
bution Gy (! ) is highly peaked and irregular (for instance, its imaginary part is a sum of Dirac
measures on the discrete part 08,). Instead of studying G, (! ) on the real axis, we will study

its analytic continuation ép(z) (de ned a priori only in the upper-half plane, but actually

on CnSp) on the imaginary axis +iR, where <E J,; EJ 0is an admissible chemical

potential (see Hyp. 2 ). The set S, can be recovered from! 7! ép( +i!) by locating

the singularities of &, obtained from ép either by analytic continuation, or by tting some
parameters RGN95]. We will not address this interesting numerical reconstruction problem.

The following lemma makes precise the behavior of the Green's function on the vertical
axis +IiR. Itis a direct consequence of the representation4(41).

Lemma 4.29. Consider <E (,, E{. Then the function! 7! &p( +i!) is real analytic
from R, to B(H1) and is in LP(R, ;B(H1)) for all p> 1. Moreover, for all ! 2 R,

Hna  EQ A
124+ (Hny+1  EQ y2h T

ReG,( +il)= A4

is a negative, bounded, self-adjoint operator ol ; which enjoys the following symmetry prop-
erty:
8! 2R;; Re&,( +il)=Re&,( il):

For any f 2 H 4, the function! 7! hijer( +i1)jfi is non-positive, in L(R, ), and

+1 D E
f ReGp( +il)f d = Hj@au, Qifi: (4.43)
1
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(\ analytic continuation

171 6p(!)

L7 6o +it)

EQ,, EQ° esdHni1  E9)

Figure 4.1 lllustration of the analytic continuation: from ! 7! G,(! ) to! 7! (pr( +il).

The last assertion comes from the spectral theorem4(39, and the equality

+1 E
8E > 0O; . md! =

Remark 4.30. Unfortunately, although Reép( +i ) has a sign and 4.43) is satis ed for all
f 2 H 4, the function! 7! Re@p( +i) B(H) does not belong td_1(R; ). This is essentially

due to the fact that

1

E 1 1 .
U TziEz T EU(RYY
Note that the imaginary part of @p( +il),
!

Im&,( +il)= A A,:

D E

has no de nite sign onR, , and that, for a genericf 2 H 1, the function! 7! f Im @p( +il) f
does not belong toL (R, ). It will therefore be more convenient in general to work with the
real part of (fsp(i! ) only, especially since the imaginary part can be recovered from the real
part (see Lemma4.31below). Indeed, the operator-valued functionsg,, :! 7! ép( +il)
are in L2(R;B(H1)) for any > 0, and converge tog : ! 7! ép( +il)in L?(R;B(H1)) as

I 0*. We can therefore apply Titchmarsh's theorem (see Theorem.9), which gives the
following result.

Lemma 4.31. Let < E 3,, EQ. The function gp(!) := &,( +i!) is the Fourier
transform of the causal function

()= ( )Ace (na BV Da (4.44)
which belongs taL?(R ;S(H1)). In particular, the Plemelj formulae hold true:
Redp = H(Imdp) and Imdp = H(Redp) in L2(R, ;B(Hy)):
Moreover, the function 7!'kgp( )kgn,) is exponentially decreasing ag j! +1 .

Remark 4.32. The exponential decay ofg, is consistent with the analyticity of its Fourier
transform. This property is of interest when calculating numerically convolutions on the imag-
inary axis +i R, since convolutions can be replaced, up to a Fourier transform, with point-wise
multiplications of causal functions which are exponentially decreasing. This approach was ad-
vocated in [RSW* 99, and is now routinely used in GW computations.
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The hole (backward) Green's function Gh

De nition and rst properties of the hole Green's function. Together with the
particle Green's function, we introduce the hole (or backward, or advanced) Green's function,
formally de ned within the second quantization formalism by

G(rt;r®9:=i( t° O h Qi LYY wev)j Ji:
Observing that
(i Rif(rydr=a(f)j {i;

we introduce
A H]_ I H N 1

£ 7 af) Qi
Similarly as before, we note thatG,(rt; r&% only depends on the time di erencet t° Intro-

ducing Gp(r;r% ) := G(r ; r0), we see thatGp(r;r% ) is formally the kernel of the following
one-body operator.

De nition 4.33. The hole Green's function is de ned as

Gn( ):=i( A d v 1 EDA (4.45)

Similarly as in (4.39), it holds that
AA =

Hence,A is a bounded operator fromH; to Hy 1, A is a bounded operator fromHy 1

to Hy, and it holds KA Kg(h,:Hy) = KA Kgny ;1) 1 The properties of the hole Green's
function are quite similar to the properties of the particle Green's function (compare with
Proposition 4.28).

Proposition 4.34  (Properties of the hole Green's function) The family (Gh( )) 2r de nes
a bounded anti-causal operator orH1. The real and imaginary parts of its time-Fourier
transform are in H S(R, ;B(H1)) for all s> 1=2, and are given by

1
(EQ Hn 1)

ReGp= A puv: A and ImG,= A PER Fn:ip i (4.46)

The analytic operator-valued function®;, de ned in the lower half-plane by

1
(EQ Hn 1)

8z2L; &nz2):=A - A (4.47)

is the Laplace transform ofG;, and satis es

Gy = Iim0+ @h(: i) inH 3R/ ;B(H)) forall s> 1=2:

Analytic continuation into the complex plane. The hole optical excitation set is de-
ned as
Sh:= (ES Hn 1): (4.48)

It is clear from (4.47) that the operator-valued function &, can be analytically continued to
CnS,. Instead of studying the highly irregular distribution ! 7! &,(!), it is more convenient
to study its analytical continuation & on the imaginary axis +iR,with >E & E$ .
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0 0
esdEY  Hn 1) ‘EN EN
|

171 6n(1)

analytic continuation 17 éh( +il)

Figure 4.2 lllustration of the analytic continuation: from ! 7! €,(!)to! 7! (th( +il).

We can state a result similar to Lemma4.29.

Lemma 4.35. Consider >E  E{ ;. Then the function! 7! &p( +i!) is real analytic
from R, to B(H1) and is in L°(R, ;B(H1)), for all p> 1. Moreover, for all! 2 R,

Hn 1+ EX

A
'2+(EN Hn 1 )2

Rebn( +il)= A

is a positive, bounded, self-adjoint operator, which enjoys the following symmetry property:

8l 2R,; Rebn( +il)=Re&y( il):
D E
For any f 2 H, the function! 7! f jRe@h( +il) f is non-negative, inL(R, ), and

+1 D E
f ReGp( +it) f d = Hjjfi:
1

The Galitskii-Migdal formula. The hole Green's function is of particular interest, as
it contains useful information on the N -body ground state. For instance, from the identity
A A = {, we directly obtain Gn(0 ) =i 3, so that the expectation value in the ground
state of any one-body operator iNzl C, (for C 2 B(H1)) can be evaluated via

* +

% =Tru, €% = iTry,(CGh(0 )):

This calculation is valid only for one-body operators. It is not possible to obtain the expecta-
tion value in the ground state of a generic two-body operator from the one-body Green's func-
tion. This is however the case for the ground state energy (the expectation value of the two-
body Hamiltonian Hy in the ground state), as was rst shown by Galiskii and Migdal [GM58].
Alternative formulae for the ground state energy are provided by the Luttinger-Ward for-
mula [LW60] and the Klein's formula [Kle61].

Theorem 4.36 (Galitskii-Migdal formula) . For all N 2, the ground state energy can be
recovered as

1
Hy 1+ EJ A + 5+ Vex A A (4.49)

i 5t Vex Gn() : (4.50)
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The proof of this theorem can be read in Sectiom.6.1Q Formula (4.50) is one way to
obtain the right-hand side of (4.49, and is the one found in the original article [GM58].
There are however other ways to obtain 4.49 from the hole Green's function, without the
use of derivative (which are cumbersome to evaluate numerically). One can for instance use
the following equality, that we do not prove for the sake of brevity,

Tre, A Hy 1+ ER A = lim 1 2Try, ReGn( +il)

The time-ordered Green's function G

It is often claimed in the physics literature that the main object of interest is neither the
particle nor the hole Green's function, but the function

Grt; r9 = G(rt; r49 + Gy(rt; r19;

called the time-ordered Green's function, which can be seen as a convenient way to concatenate
the information contained in the particle and hole Green's functions. Obviously, the time-
ordered Green's function only depends on the time dierence = t t% In view of (4.38 and
(4.49, our de nition of the time-ordered Green's function therefore is the following.

De nition 4.37  (Green's function). The (time-ordered) Green's function is the family of
bounded operatorG( )) 2r dened asG( ) = Gp( )+ Gn( ), or equivalently,

G()= i( )Ace! (e EDA +i( A & v 1 EDA

The following results straightforwardly follow from Propositions 4.28 and 4.34, as well
as Lemmas4.29 and 4.35 We recall that is a chemical potential of the electrons for the
ground state 9 of the reference system, and thaE} EJ ;< <E {, EQ. Inthe
following, we introduce someC?! (R, ) cut-o functions satisfying 0 1, ++ =1,
Supp( +) (EJ EQ p;+1)andSupp( ) (1 ;EQ,; EJ) (see Figure4.9. These
cut-o functions allow us to write properties of the Green's function in the time representation
without specifying whether is positive or negative.

m
Zo
+
[N
TTT
ZOo

Figure 4.3 The cut-o functions

Proposition 4.38 (Properties of the Green's function) The Fourier transform 8= G, + G

isin H S(R,;B(H1)) for any s > 1=2. The operator-valued analytic function & de ned on
the physical Riemann sheeC n(Sy[ Sn) by
1 1

8z 2 Cn(S Sh); (] = A, A, +A A 451
22CnS L Sn) (@) Z (Hnei E9) 2 (B9 hy p @Y
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is such that

lim 6( i) & inH S(Ry;B(H,)) forall s> 1=2:

I 0+

The function ! 7! &( +i!) is real analytic from R, to B(H1), and is in LP(R, ; B(H1)) for
all p > 1. Moreover, it satis es the symmetry property

8! 2R/; ReG( +i!')=Re@( i):

For any f 2 H 1, the function ! 7! hf jRe&( +i!)jfi isin LY(R,), and
+1 D E

f ReG( +i!)f d = Hijln, 2 Q)jfi:
1

The spectral functions Ap, Ap and A

Spectral functions are essential tools to study many-body e ects since they are concentrated
on (subsets of) the particle and hole excitation sets.

De nition 4.39  (Spectral functions). The particle spectral function is the operator-valued
Borel measure onR, de ned by

802B(R), Ap= TImGy(H= A, PNt Fia,: (4.52)
The hole spectral functionis similarly de ned:
82 B(R); An(D= SimGn(h= A PEH MY A

The time-ordered spectral functionis then obtained asA = A, + Aj,.

With those de nitions, the following lemma is straightforward, and is usually referred to
as the sum-rule for spectral functions (see for instancé-fr99, Section 4.5]).

Proposition 4.40.  The spectral functionsA,, Ay and A are S(H)-valued Borel measures
on Ry, with supports contained inSp, S, and Sy [ Sy respectively. For allb2 B (R ), Ap(b),
An(b) and A(b) are bounded positive self-adjoint operators o1 with norms lower or equal
to 1. Moreover, 0 A p(b1) A p(bp) as self-adjoint operators whenb; by (and similar
inequalities for A, and A), and it holds

Ap(R)=1n, R An(R)= 31 AR)= 1ug:

Finally, the Plemelj formulae (4.14) allow us to recover the real part of the Green's func-
tions from the spectral functions: ReG, = H(Ap) and ReG = H(Ap). It therefore holds
Re@ = HA.

4.3.3 Linear response operators

We study in this section the reducible polarizability operator , which can be de ned from the
so-called charge- uctuation operator introduced in Sectiord.3.3 We give a precise mathemat-
ical meaning to in Section4.3.3 and prove Johnson's sum-ruleJoh74] for in Section4.3.3
We nally de ne the dynamically screened Coulomb interaction operator (see Sectiort.3.3).
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The charge- uctuation operator H

The charge- uctuation operator is de ned, within the second quantization formalism, by
(see Far99, Equation (97)])

Hrt) = 40t wit) R
so that the action of this operator on the N -body ground state is
Hj Ri= @ ED Y (nj R R R

_ . (4.53)
R N I I (O 1k

In order to de ne more rigorously 4, we need to introduce functional spaces of charge densities
(the Coulomb space) and electrostatic potentials. The complex-valued Coulomb space

n 0
C= f2SqR%C) M2LE.(R%C);j ) ()2 LAR%C) ; (4.54)
is endowed with the inner product

QIO

Kz
where the normalization condition for the space-Fourier transform is chosen such that its
restriction to L?(R%;C) is a unitary operator. The spaceC is a Hilbert space, and it holds
L53(R3;C) | C thanks to the Hardy-Littlewood-Sobolev inequality (upon rewriting the
products in Fourier space as convolutions). The dual ofC (taking L?(R3;C) as a pivoting
space) is

Hjfaic=4

n 0}
Q= v2L8R%C) rv2 L3R3%:C)® (4.55)

endowed with the inner product

HV41jVai co = R Vi r Vo= 1 jkj2u(k) B (k) dk:
4 g3 4 s

We also introduce the Coulomb operaton,, de ned as the multiplication operator by 4 jkj 2
in the Fourier representation, and its square rootvézz, de ned as the multiplication opera-
tor by (4 )¥2jkj ! in the Fourier representation. The following result, whose proof is a
straightforward consequence of the above de nitions, will be repeatedly used throughout this
chapter.

Lemma 4.41. The operator v¢ de nes a unitary operator from Cto C°. The operator vézz
de nes a unitary operator from Cto H1, as well as a unitary operator fromHq to C°

It follows that the adjoint of the unitary operator v; : C ! C %is the unitary operator
ve=v. t:Ad1C .

We are now able to reformulate the charge- uctuation operator in the ground state as a
well de ned bounded operator. Forv 2 C! (R3; C), it formally holds
n I #

Yoy r)y () j iv(ndr (rg;iiirn) = v(ri) R3v,(\’l O(ry;iiirn):
i=1

In order to rewrite more rigorously this equality, we introduce the operator

B: C ! H.n |
! #

X
v 7! v(ri)  hv; Ricc j Ri;

i=1

(4.56)
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which is well de ned since { 2 L%®(R3;R) by Proposition 4.26 In fact, as made clear in
Lemma 4.42 below, B is bounded. In view of @.53, we can nally de ne the application
to % of the charge- uctuation operator y(t) as follows:

h(Dj Yi=ettn EQ)p: (4.57)

Let us conclude this section by giving some properties of the operators introduced above
(see Sectiord.6.11for the proof).

Lemma 4.42. The operator B de ned by (4.56) is a bounded operator fromC®to Hy . Its
adjoint B is a bounded operator fronH y to CPwhich satisesB j i =0. As a consequence,
Hi Q12 LY (R;B(CHN)), and  wj Qi 2 L* (Ri;B(HN;CY).

The (symmetrized) reducible polarizability operator

De nition of the reducible polarizability operator. The reducible polarizability oper-
ator (t;t9 is the operator giving the response of the density of the system to perturbations
of the external potential. It is formally de ned by its kernel (see [Far99, Equation (96)])

;%= i 3T o[t ety § Hy (4.58)

In the above equation, y is the charge- uctuation operator whose action on (I\’l is de ned

by (4.57), and T stands for the bosonic time-ordering operator:

A1(t)AL(tY if t9<t;

T Ai()A2(t) = Ao(t9A(1) if tO>t:

In view of (4.57), the de nition ( 4.58 of the kernel is formally equivalent to the following
identity, stated for t°<t (a similar equality being true for t°> t):

f (tt9g i () R wt) wr® R, 9(rdrdr®
R3 N

R3 RS

i f(r) w(rt) §dr gr9 w(r%9 § dr®
R3 R3

Hn

-D jt(Hy EQ jt%Hn  EQ =
i e'( N N)Bf el (Hn N)Bg 9y
N

D E
= j f Bellt )Hv EDBg -
(o4
In order to interpret  as giving the variation of the ground state density (an element ofC)

generated by a variation of the external potential (an element ofC9, we rewrite the scalar
product in C°as a duality braket betweenC® and C:

Mijfai= fov 2 wc: (4.59)
This motivates de ning (t;t9 as the bounded operator fromC’to C given by
tt9= v, B e it YiHy EQ)p;

In particular, (t;t9 only depends on the time dierencet t% and we write in the se-
quel ():= (;O0):

()= v, 1B e TitHv ER)p: (4.60)

It turns out to be useful to symmetrize the action of the polarizability operator us-
ing appropriate Coulomb operators. We recall that it holds Bvéz2 2 B(H1;HN) while

(BVE?) = v.™B 2B(Hy:H1).
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De nition 4.43.  The symmetrized reducible polarizability operator sym 2 L1 (R ;B(H1))
is de ned by sym( )= Ve > ( )ve 2, or equivalently,

— — e
iv. 172B e 1 I(Hn Ex)gy1=2:

sym( )=

It is convenient to decompose the symmetrized reducible polarizability operator into two
parts, namely its causal part and its anti-causal part:

om( )= Sm( )+ gm() with ()= ( ) v 2B e TiHn Enlgyl=2

In the above expression, the HamiltonianHy can be replaced by o0
HY = Hi g oo

This is a consequence of Lemma.42 which shows that Ran (B) % ? . Note that

HL, E% EL EJ.

Properties of the symmetrized reducible polarizability operator. As rigorously

stated below, the symmetrized polarizability operator has singularities at the energy dif-
ferences corresponding to excitation energies for a system with a xed numb&t of electrons,
called neutral excitations in [Far99, Section 8]. We therefore introduce the neutral excitation
set

Sy = (Hy EQ)nfog= HL EY ;

itsreection S, = Sj andSp = Sj [ S,. Note that S; [EL EJ;+1) so that
So\ S =5

As for Proposition 4.38 it turns out to be convenient to introduce appopriate cut-o
functions. Consider ' such that ! and 1 are in C! (R/) and satisfy 0 1 1,
T+ Y =1,supp(1) ( (E§y ER)+1)andsSupp(l) (1 ;Ef ER) (see
Figure 4.4).

Figure 4.4 The cut-o functions 1.

Proposition 4.44. The symmetrized reducible polarizability operator sym satis es the fol-
lowing properties:

Q) ( ;ym( )) 2r is a bounded causal operator oty while ( s;n( )) 2r is @ bounded anti-
causal operator onH ;. They satisfy the following symmetry properties:

8 2R, gm( )= sm() and ()= gm( ) (4.62)
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+

(2) the real and imaginary parts of the time-Fourier transforms of ¢ ; s are respectively
given by |

Re[Sym = v, 2B pu:

and
mlgm= v, 2B P My EN)pyl2

In particular, Supp Im [sym Sy and Supp Im [ sym So;

(3) consider the B(H1)-valued analytic functions! Syms ] sym and ] sym respectively de ned by

8z2Cnsy;  lgym@ = v.B Bv™
0 sym(2) c 5 (H,]\l EQ) ¢
and
872 CnSy: ] (Z) — ] + (Z) + ] (Z) — v 1:28 2(HL El(\)l) BVl:Z.
01 sym . sym sym C (H’]\I E,(\)l )2 22 c -
(4.63)
It holds
8z 2 CnS{;; ];ym(Z)z ]sym( z) = ];rym(j)

and

822CnSy lsym(2)= lsym( 2)= 1sym(2)

The functions ] symju and symjL are respectively the Laplace transforms of;’ym and g,
and the following convergences hold il (R, ;B(H31)) for all s > 1=2:

i ] i :[ : i 1 iy= 1 :
i o 0= ot lomt D= o

(4) forall ' 2 (EY EQMEY EJ . lsym(') = [sym(') is a negative bounded self-
adjoint operator on Hy;

(5) forall I 2 R, Jsym(i!) is a negative bounded self-adjoint operator okl ;.

We omit the proof of Proposition 4.44 since the rst three assertions are similar to those
of Lemma 4.38 while the last two ones are direct consequences o4.63.

On the integrability of Gym(i! ). As for the Green's function,! 7! [sym(!) is dicult to
study on the real-axis, and it is more convenient to study its analytical continuation ] sym on
the imaginary axisiR. This is possible thanks to the existence of the gap (E} EJQ);E}
EJ) around 0. The representation provided in Proposition4.44 allows one to directly deduce
the integrability properties of the functions ! 7! Jsym(i! ) (as in Lemma4.29).

Corollary 4.45. The functions! 7! ] sym(i! ) are real-analytic from R, to S(H1), and are in
LP(R;S(H31)) forall p> 1. Forany f 2 H 4, the function ! 7! hf j] sym(i! )jf i is non-positive
and in LY(R,), and it holds

+1 2
HFj]sym(@!)jfid! = 2 BvI? ; (4.64)

Hn
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The sum-rule for the reducible polarizability operator

The behavior of the reducible polarizability operator in the high imaginary-frequency regime
is well understood. This asymptotic behavior is given by the so-called Johnson's sum-
rule [Joh74] or f -sum rule, the latter terminology being motivated in [Far99, Section 8.8] by
the fact that it can formally be seen as some equality involving thefirst moment of Im[ sym.
Knowing the large-! behavior of | sym is important to design appropriate approximate opera-
tors, used in plasmon-pole models to avoid the numerical inversion of the dielectric operator
(which is computationally expensive).

The fth point of Proposition 4.44implies that for all ! 2 R, , the operator

eli!) = Vo] gymli! v, 2

de nes a symmetric, continuous, non-negative sesquilinear form og®

_ 2H},  EQ)
8(f;g)2cl c© H; e(i!)gicoc= N N B :
(f:9) (i )gicoc (Rl E8)2+ 12 9 .
so that, formally,
D E

im | 2e(i! )gicoc = 2MBf jH), EQjBgin, =2 Fv.'B Hl EJ Bg o

The following theorem, whose proof is postponed until Sectiod.6.12 con rms that this limit
exists and allows one to identify it.

Theorem 4.46 (Johnson's sum rule) The operator 2v, 1B (H), EQ)B is bounded fromC®

to C, and 2v. !B (Hr]\n EJQ)B = div {r . Moreover, the following weak convergence
holds:
8(f;g)2c® c® Jim F 1%e(i!)g we= F div( 1 Q) = . 0rf rg:

For all g2 C%such that g2 L?(R3), the following strong convergence holds:

0

12 %rg inC

' IIilm e(i! )g =div

The dynamically screened interaction operator W

As the name indicates, the two key operators in the GW method are on the one hand, the
time-ordered Green's functionG, and on the other hand, the so-calleddynamically screened
interaction operator W. The latter operator is de ned as

W( )= veol )+ Vo2 sym( Vo5 (4.65)

wherev, is the Coulomb operator introduced in Lemmad4.41 It is convenient to split W into a
local-in-time exchange contributionv. o( ) (although this is not obvious at this stage, @.99
below shows thatv; o( ) can be interpreted as an exchange term), and a nonlocal-in-time
correlation contribution:

W()= Vool )+ We( ) with Wo( ):= Vo (Vo= VE2 gm( VA2 (4.66)

The properties of the operatorW¢( ) 2 B(C, 9 therefore readily follow from the properties
of the operatorsvéz2 and sym( ) established in Lemma4.41and Proposition 4.44.
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4.3.4 The self-energy operator

We give in this section the de nition of the self-energy operator using the Dyson equation
(see @.72 below). Let us emphasize that, while the Dyson equation provides a de nition of

in terms of Green's functions, numerical methods work the other way round: an approximation
of the Green's functionG is obtained from the Dyson equation @.72), using an approximation
of the self-energy operator . This approach is made precise in Sectiod.4.

The non-interacting Hamiltonian Ho and associated Green's function Go

The self-energy operator is de ned as the di erence between the inverse of the exact Green's
function G and the inverse of some reference Green's functidBg. The reference Green's func-
tion is the resolvent of a mean- eld non-interacting Hamiltonian. There are several possible
choices for this operator, discussed in Remark.49 below. In order to remain as general as
possible, we introduce a one-body operatdn; acting on H1, with domain H?(R3), real-valued
(in the sense thath is real-valued whenever is real-valued), and such that esdhi) =[0;1 ).
The corresponding e ective non-interacting N -body Hamiltonian is de ned on Hy by

X
HO;N = hl(ri)l

We de ne

= inf sup vihyvi,
“T VeV kvavenog ViV

whereV, is the set of the subspaces dfi 1(R3) of dimensionk. Recall that ", 0 and that if
"« < 0, then h; has at leastk negative eigenvalues (counting multiplicities) and" is the k™
smallest eigenvalue oh (still counting multiplicities). We make the following assumption in
the sequel.

Hyp. 3 : The one-body Hamiltonian h1 has at leastN negative eigenvalues, andy <" n+1 :‘

This assumption implies that there is a gap between theN™ eigenvalue and the(N + 1) st
eigenvalue (or the bottom of the essential spectrum ih; has onlyN non-positive eigenvalues).

Letus denote by( 1; ; n) an orthonormal family of eigenvectors ot; associated with
the eigenvalues'1; ;"N - Without loss of generality, we can assume that the \'s are real-
valued. The ground state energy oHo, is Eg;N = "1+ :::+ "Nn. The condition "y <" N+1
ensures thatEg, is a non-degenerate eigenvalue dfioy and that the normalized ground
state { = 1~ " y of Hon is unique up to a global phase. We introduce the one-body
mean- eld density matrix

X
on(rir9 = (1) k(r9: (4.67)
k=1
This function can be seen as the kernel of the spectral projectdr 1 . )(h1), where g is any
real number in the range (" ;"n+1) (it is an admissible Fermi level for the ground state of
the non-interacting e ective Hamiltonian Ho.y). The density of the non-interacting system
is denoted by J.,, . Results similar to the ones stated in Proposition4.26 for 3., g --
hold true. Finally, similarly as in Section 4.3.2, we introduce

Ao+ (F)=a(f)j Ri and Ao (f)= af)j {i:

De nition 4.47  (Reference non-interacting Green's functions) The reference particle, hole
and time-ordered non-interacting Green's functions are respectively de ned as

Gop( )= i( )Agee ! Mows EGOA L = Gop( ) =i )Ag € Honw 1 Eawag
and Go( ) = Gop( )+ Gon( ).
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Results similar to Propositions 4.28 4.34 and 4.38 hold for these operators, but we do
not write them explicitly for the sake of brevity. However, it should be noted that, in the
non-interacting case, the Green's functions have simple explicit expressions in terms lof (see
Section4.6.13for the proof).

Proposition 4.48. It holds

Gop( )= i( ) 1n, g;N e ihi| and Gon( )=i( )g;Neihlz

In particular, for any z2 Cn (hy),
Gop(z)= 14, on (z h)) ' and Gon(z)= gn(z hy) & (4.68)

Hence,
Goz)=(z hy)? (4.69)

is the resolvent of the one-body operatdn;.

Remark 4.49 (On the choice ofGp). There are several possible choices for the one-body oper-
ator hq, although this choice is not really properly discussed in the literature to our knowledge.
The rst option, which is used in the original derivation of the GW method Hed69, consists
in choosing

hy = % + Vet S 0L (4.70)
where { is the exact ground state density. Another option (see for instanc&#r99, page 112])
is to consider a one-body operator whose assaociated ground state density is (as close as possible
to) the exact ground state density &. The motivation is that, in this case, the self-energy
should be smaller. The Kohn-ShamkS65 model formally satis es this requirement. The
associated one-body operator reads

1 .
hy = 5t Vet Qi Trwe % (4.71)

where vy is the (exact) exchange-correlation potential. In practice, approximations of,?l
and v { are computed by means of a Kohn-Sham LDA or GGA calculationK[S65,
PBE96]. This is believed to provide a su ciently accurate approximation of the exact ground
state density which does not spoil the results subsequently obtained by GW calculations.

The dynamical Hamiltonian | (2)

In view of (4.69), it is natural to introduce the inverse of the time-ordered Green's function,
which will correspond to some dynamical one-body Hamiltonian. More precisely, we would
like to de ne, at least for eachz 2 C nR, a one-body operatortq (z) such that

C2)= z KB(2 l; or equivalently, K(z)=z &(2)

The following proposition, proved in Section4.6.14 shows that such a de nition makes sense.

Proposition 4.50. Let z 2 CnR. The operator €(z) is an invertible operator from H; onto
some vector subspac®(z) of H1. Moreover, 8(z) is dense inH1, B(z) H?2(R®), and 18 (2)
is a well-de ned closed operator with domain® (z).

Remark 4.51. We do not know whether the equalit{g(z) = H?(R®) is true, nor do we know
whetherB(z,) = B(zp) for z; 6 7.
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De nition of the self-energy operator from the Dyson equation

We are now able to de ne the exact self-energy operatof via the Dyson equation. Note that
we do not de ne the self-energy in the time domain, but consider only§ z) (as in [Far99,
Section 5.1]).

De nition 4.52  (Self-energy) The self-energy operator is de ned as

8z2 CnR; €2)=602) ' €@ '=(z h) z K@ =8 hyl (472

whereh; is the one-body mean- eld Hamiltonian introduced in Sectioré.3.4.

The operator € z) is the di erence between the one-body dynamical Hamiltonian and the
reference one-body mean- eld Hamiltonianh;. With this writing, € z) can be seen as the
correction term to be added to the reference one-body Hamiltonian in order to obtain the
dynamical mean- eld one-body Hamiltonian:

B(z)= h 1+ € 2):

4.4 The GW approximation for nite systems

441 GoW?O, self-consistent GW?°, self-consistent GW, and all that
The GW equations

We now turn to the GW approximation for nite systems. The purpose of the GW approxima-
tion is to estimate the time-ordered Green's functionG via the Dyson formula (4.72. Instead
of using (4.72) to de ne the self-energy € z), we use this equationwith some approximation
€GW (2) of € z) to obtain an approximation G°W (z) of the time-ordered Green's function
via

(S 1(z): z hy+ €W(z) (4.73)

Using the Dyson equation tode ne the time-ordered Green's function is only possible if an
alternative expression of the self-energy operator is available. Such an expression was formally
obtained by Hedin in 1965 (seeHled6q). The GW approximation consists in replacing the
so-called vertex function in Hedin's equations by a tensor product of Dirac masses.

The original GW equations were derived on the time domain and on the frequency do-
main. However, as noticed several times in Sectiod.3, the operators involved in the GW
equations are not smooth on these axes. It turns out that it is formally possible to recast
the equations on some imaginary axis using Theorem.24. This approach, rst introduced
by Rojas, Godby and NeedsRGN95] (see also RSW* 99)), is now known under the name of
the analytic continuation method . For reasons that we will explain throughout this section,
these equations are recast as follows within our mathematical framework.
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De nition 4.53 (GW equations on the imaginary axis of the frequency domain)
Find dSGW( +i) 2 L?(R; ;B(H)) solution to the system

1

PSW (i1 ) = Zivf2 Eow  wi(r +19  boW( +i19d1° v (4.74a)
1
Iew@r)y= 14 BSW(!) ST (4.74b)
ew i) = vl gm(in vi, (4.74c)
1
Tew( +i1)= Ky Zi Eew o+t 19 W (it 9ar @ (4.74d)
h ! i
EGW( +ily=  #il hg+ lew( 41y (4.74e)

where h; is the one-body operator de ned in ¢4.70) and whereK 4 is the integral operator on
H1 with kernel o 9
on (rsr
Ke(r;rd:= ——=%;
iy = SN

where \ was de ned in (4.67).

Remark 4.54. Inthe GW equations @.74), the chemical potential is supposed to be known a
priori.

The GW equations (4.74) would be the natural equations to work with from a mathemat-
ical viewpoint (they are formally equivalent to the original Hedin's GW equations). However,
we were not able to study @.74) for reasons detailed in Remark4.55 below.

As one can directly see, the equations involve quite a large number of operators, which all

have a physical signi cance. The operatorﬂ’scf,\,Q{ is the GW approximation of the symmetric
irreducible polarizability operator, the operator ]SyV,% is the GW approximation of the sym-

metric reducible polarizability operator, the operator WGW s the GW approximation of the

dynamically screened Coulomb interaction operator, and nally] GW is the GW approxima-
tion of the self-energy operator. We recognize in Equation4.74¢ the Dyson equation. The
name GW comes from Equation @.74d).

Di erent levels of GW approximation

As mentioned below (see Remarld.55, we were not able to study the full self-consistent
problem (4.74). We will therefore restrict ourselves to the so-called GW° and GW° approx-
imations. We explain in this section how these di erent models are obtained.

(i) In the fully self-consistent GW (sc-GW) approximation, we assume that the full prob-

lem (4.74) is well-posed, so that there exists a (unique) solutionbGW . 1t is then solved

self-consistently: the idea is to start from some trial Green's function, and keep updating
it with ( 4.74) until convergence. This method is for instance used inRR* 12, CRR™ 13,

KFSP10, RJT10, SDvLO€]. It was implemented only quite recently due to its high numerical

cost (one needs to perform the inversion in4.74b) at each iteration).

(i) In the so-called self-consistentGW® approximation, or simply GW? approximation,
only the Green's function (and not the screened Coulomb operator) is updated in4.74d
(see for instance $DvL09, vBH96]). This partial update not only speeds up the calculation
(the inversion in (4.74b) is only performed once), but is sometimes in better agreement with
experimental results than the sc-GW approximation. This is the model that we study in
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Section4.4.3

(iii) Finally, most works simply consider the GoW? approximation, where only one itera-
tion of the sc-GW (or equivalently one iteration of GW?) is performed. This model is very
popular due to its relatively low computational cost, and provides already very satisfactory
results (see for instanceBAO11)).

Let us also emphasize that it is unclear that a solution of the fully self-consistent GW
model is a better approximation in any sense to the exact Green's function than a non self-
consistent approximation such as the one obtained by the @N° approximation. This is
discussed in Far99, Section 9.8], where the author also comments on the possibilities to up-
date the e ective one-body operatorh; + K« along the iterations.

Remark 4.55. We do not know how to give a proper mathematical meaning to Equatiod.f744a).

More speci cally, one would like to de ne, for a reasonable choice of Green's functiofsap,
the operator

1
8! 2Ri; Poym[G¥P](i!) = zivf2 Gare  +i(t +19  Bae( +i1 Qd1 O VI
1

and we would like this operator to be a self-adjoint bounded negative operator éty. It
is the case for instance wher32PP is the non-interacting Hamiltonian 6o de ned in (4.69

(see Proposition 4.59 and Remark 4.64), or when 2P is the exact Green's function de ned
in (4.51) (this fact can be proved by adapting the arguments given in Sectich4.2). We

were not able to obtain this result for a generic class of approximate Green's functiods®p
say 62pp of the form (4.749 with 16W ( +il) in a small ball of L1 (R, ; B(H1)).

For this reason, we will not study the self-consistent GW equation 4.74).

4.4.2 The operator W° and the random phase approximation

The remainder of this section is devoted to the study of theGW® approximation (which
includes the GW? approximation), which amounts to study the two equations (4.74d)-(4.749
with a specic xed choice of the screening operatorw . This approximation bypasses the
di culties mentioned in Remark 4.55. In order to present and study the GW° approximation,
one must rst de ne the operator WP.

The RPA irreducible polarizability operator po
The GW approximation of the irreducible polarizability operator P is formally de ned as
PW(r:r® Y= iG(r;r® )G(r%r; ): (4.75)

When the Green's functionG is the non-interacting oneGg de ned in (4.47), this corresponds
to the so-called random phase approximation of the reducible polarizability operator (compare
for instance (4.83 with the expression in [CS17) de ned by

POr;r® ):= iGo(r;r® )Go(rr; ):

This operator is expected to have properties similar to the operator de ned in Section 4.3.3
In particular, P°( ) is expected to be a bounded operator fron€’to C. It is therefore more

convenient to work with its symmetrized counterpart Psoym( ) = v%:ZPO( )v%zz, which is
expected to be a bounded operator ol 1. We decomposePSOym as PSOym = Psos}a + Pso)}m where,
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using the kernel-product de ned in Section 4.2.4 and the explicit expressions oG, and
Go:n given in Proposition 4.48

Pam( )= i( WV¢?Gop( ) Gon( IV~ (4.76)
= 0 W2 1y, Qe M Qneht i (4.77)

and

PSm( )= i( VeZGon( ) Gop( Vg™
= ( )Vézz 8;N e ' 1H1 8;N el h Vézzz
Actually, with this de nition, we were not able to give a meaning to Psoy;m (it may not be a

bounded operator onH1). We therefore prefer to use the modi ed kernel-product€ de ned
in Remark 4.19. Our correct mathematical de nition for Psoy'm then is

Pom( )

i( WVI2Gon( ) € Gop( Vi (4.78)

i )ve? gne'Me 1y, gy €M v (4.79)

As will be shown in Lemma4.56, this amounts to de ning P% ( )= P%*( ). We recall
that 8;,\, is the orthogonal projector on the vector space spanned by the eigenvectors lof
associated with the lowestN eigenvalues (see4.67)), so that

On = «ih ; (4.80)
k=1
whereh; ¢ = "k «, and the eigenfunctions y are real-valued and orthonormal. The follow-

ing result shows that our de nitions make sense, and gives explicit formulae foP%* (see
Section4.6.15for the proof).

Lemma 4.56. The family Ps%}%( ) - de ned by (4.76) is a bounded causal operator

on Hi, while Pso)}m( ) - de ned by (4.78) is a bounded anti-causal operator orH1. It

holds Paim( ) = P3m( ) and
Pem( )= 1( ) VePk Ly gn '™ 1y Oy kv (4.81)

Remark 4.57. For1 k N, the notation | in (4.81) refers to the multiplication operator
by the function . It is a bounded operator fromC°to H1, and from H1 to C (see the proof

of Lemma 4.56). The operator kvé=2 is bounded onH 1, and one can check that its adjoint
1=2

onHyis ( (V&) = vi2 .
The properties of the Laplace and Fourier transforms oPSOy;% are easily deduced from4.81)
using Proposition 4.13and Lemma4.14.

Proposition 4.58. The function z 7! ﬂDSO;ﬁ](z) is analytic on the upper half-planeU, and can
be analytically continued to the lower half-plané through the semi-real line(1 ;"n+1  "N)-
Forall z2 Cn["'n+1  "nN:1),
!
: _ 1y 9 _
gm()= v B (4.82)
k=1 Z itk
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Moreover ﬂDSym( +1i ) converges toIE’Sym inH (R ;B(H1)) as ! 0', with
W ! !
: - 1y S _
RePJm = p:v: vi2, oL ON I
hy + "k
k=1
and [
0+ X 1=2 0 hy 1=2
Im sym = VC_ k ].H1 O;N P 1 k kVC_
k=1
It also holds

8z2Cn['nv+1 "n31); ﬂDSym(Z)_ |]Dsym( z),
sothat, forz2 U[ L[ ( ("n+z "N)i"N+1 "N

hy "

m (In, g;N) ngzzz (4.83)

0 X 1=2 0
ﬂDsym(Z) = 2 vz k(n, oN)
k=1

The properties oflgoﬁ and of L%m can be directly read o from the previous expressions.

For instance, we see thatim ﬁsym and Im Lso;m are negative operator-valued measures, with
support in ("n+1  “"n3;1)and (1 ; ("n+1 "n)) respectively. For! in the real gap
( ("n+1 "N)"N+1 "N), We see thatrgsos}m(! ) = Re Igsos}m(! ) is a negative bounded self-
adjoint on Hj.

For our purpose, we only need to know the behavior oiDSym on the imaginary axis iR; .
We summarize the corresponding most important results in the following proposition (see
Section4.6.16for the proof).

Proposition 4.59. It holds

8l 2R/; b2 (i!)= 2)(q =2 1 0 AS 1 0 1=2.
! vy Pm(it) = Ve o k IHr oN g 2 (hy ")? Hi  ON kVo -
k=1 ' 1ok

(4.84)

In particular, forall ! 2 R, , the operator ﬂDSym(l' ) is a negative, self-adjoint bounded operator

on H; satisfying ﬂ’sym( i) = ﬂ:’soym(l. . In addition, the function ! 7! ﬂ’soym(i! ) is analytic
from R to S(H1),@and is in LP(R, ;S(Hy)) for all p > 1. For any f 2 H, the function

L7 f bsoym(l ) fis non-positive, in L(R; ), and

+1 D E D E
fPYut)f di = 2 fVvi? 1, Gy Qn Velf
* +
- 2 f X\I 1=2 0 l=2f . 8
= VC k 1Hl O;:N kVC . (4. 5)
k=1

Finally, there exists a constantC 2 R* such that

- C = =,
8 2R;; 0  BY.(i) T V2 0 v (4.86)

where 8N is the multiplication operator by the (real-valued) function 8N , the latter operator
being bounded fromto C.
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The sum-rule for the operator PO, We end this section with the sum-rule for the operator
po= Ve 1:2ﬂ350ymvc 1:2, which goes fromC°to C. We postpone the proof until Section4.6.17.

Theorem 4.60. The operator 2P N, k(L Sn)(h1 ") « is bounded fromC®to C,
and it holds
X
2 k(w1 ") k=div( Gt ):
k=1

Moreover, the following weak-convergence holds:
0 ~0 D 2 E 0 0 ¢
. ; N of; — I ; — .
8(f;g)2C° C*, !!|I1m f; 12p @i")og e f, div gnT O ocT onf fora:

Finally, for all g2 C°such that g2 L?(R3), the following strong convergence holds:
! !|I1m ! f’o(l! )g=div. gnr g inC

This sum-rule automatically leads to a sum-rule for the reducible polarizability operator
in the random phase approximation © (see Theorem4.67).

The analytical continuation method

In this section, we explain why @.748 can be thought of as a natural reformulation of the usual
physical de nition ( 4.75), and why problems arise with De nition ( 4.749 (see Problem4.55).
This section also serves as a guideline to understand why.(740d) is a natural reformulation of
the usual physical de nition of ©W (see @.97) below). In the previous section, we gave the

properties of PO using the explicit expression ofP° given in (4.81). While this approach sim-
pli es the proofs, it somehow hides some structural properties that we highlight in this section.

Recall that P3,, = P3m + PSm with

Pom( )= 1 WVe?Gop( ) Gon( Iv¢~

and
Pem( )= i(  )vg?Gon( ) € Gop( Ive™

where
Gop( )= i( )Agre ' Moner EQOAL = Gop( )=i( Ay € How 1 Edway

The idea is to use the results of Theoremt.24 We rst consider PSOQE\, and prove that the
hypotheses of Theorem4.24 are satis ed. This is given by the following lemma.

Lemma 4.61. There exists a constaniC 2 R* such that, for anyf 2 H 4, it holds Ao, vézzf 2
S2(H1) with

Ao VR CKf Ky,
S2(H1)
Moreover, Hon+1  Egy "N+t @ndHon 1 EQy -
Proof. The rst point comes from the fact that A, Ao, = §, and that Vi 201 LG

wheneverf 2 H 1, together with Lemma 4.77. O
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In particular, the hypotheses of Theorem4.24 are satis ed, and we deduce that for any
0>y and + O<"yug,

+1

8l 2R; PJm( +il)= zi ) Vi Gop + OHi(1 +19 Gon( O+it Y v
(4.87)

We treat ﬂaggm is a similar way, and nd that for any °<"y41 and + 9>y,
8 2R PGn( +i1)= T G+ i1 419 e @ O+i1Y Vol
' (4.88)

Actually, the kernel-product € in the latter expression can be transformed into the kernel-
product , thanks to the following lemma, whose proof is given in Sectiod.6.18

Lemma 4.62. For any O™ 41, any + 0>\ and any!;! 2Ry,
Gon  + %+i(1 +19 € @op( %+i! 9= Gon + %+i(1 +19  Gop( O+il9;
as bounded operators fromC°to C.

We can perform the same type of calculation foiG, G;. Following the proof of Theo-
rem 4.24 we deduce fromGp( ) Gp( )=0 that,forany °>"y and + 0>"y,

+1
1 1

8 2R o vi2 @pn + O+i(1 #1019 Gon( O+i!Y vIT2d10=0: (4.89)
1

Similarly, from Gp( ) Gp( ) =0, we deduce that,at least formally, for any O™ Ns1,
and any + O0<"\41,
+1

8 2R ; zi V2 Gop + O#i(P + 19 Eop( %+i! Y v 0=0: (4.90)
1

Remark 4.63. The last equality is formal, in the sense that the integrandSy,, Ggy is

actually not well-de ned: it does not de ne a bounded operator fromC®to C. However, we

can proceed as follows. Fot 2 R, let I]>]+;+ (i' ) be the operator de ned on the coreH;\C
by

8fg 2H1\C; f BT (l) g
1 +1 h i

=3 Truy Gop  + %+i(! +19 vg2g Gop( %+it9 v al @
1

Noticing that vézzf and vézzg are in Hi since f;g 2 C, and reasoning as in the proof of
Lemma 4.62, we can prove that the operator in the trace is indeed trace-class, with
h [
Tru, Gop + O+i(! +19 vIP%g @gp( O+i! 9 v pr (! Ykf kekgke;

where pi is an integrable function independent of and g. Moreover, following the proof of
Theorem 4.24, we can prove that, as expected,

8;g 2H,\C; f B () g =0:

The unique continuation onH 1 of I]>]+;+ (i! ) therefore is the null operator. It is unclear to us
how to extend a similar reasoning for a generic class of approximated Green's functids@ep.
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By gathering (4.87), (4.89), (4.89 and (4.90, we nd that, for any %2 ("n;"n+1) and
+ 92 ("Ni"N+1),

+1
8 2Ry; BY,( +il)= Zi vi2 6o o+ O+i(1 %+ 1) o %+it 9 viFPar @
1

In particular, this equality holds for the particular choice °= gand =0.

Remark 4.64. To summarize the work performed in this section, we transformed the equation
PO(r;r% )= iGo(r;r% )Go(rSr; ) (4.91)

into: forany %2 ("n;"n+z)and 2 ("n 0 %"nez 9

1 *1

bo( +i)= > Eo + O+i(1% )  &o( %+i19 ar® (4.92)
1

Note that the manipulations performed in this section to transform 4.91) into (4.92) are
possible since the two operators involved in the kernel-product (here, both are equaﬁ%(z))
are analytic on some common domainJ [ L [ (a;b with a < b (the presence of a gap is
important to deform the contour as in Theorem4.24).

The RPA reducible polarizability operator 0

In order to calculate the GW approximation of the self-energy, one needs the reducible polariz-
ability operator , de ned in Section 4.3.3 Unfortunatly, the expression of is not accessible
in practice. One needs to approximate this operator. The GW approximation, which amounts
to approximating the so-called vertex function, provides a natural approximation W of :
in Equation (4.74b), CW is de ned from G®W (see also [Far99, Equation (103)] or [Hed65
Equations (A.20) and (A.28)]). However, in view of Remark4.55 the de nition of ©W is not
well-understood mathematically. In the GW° framework, we use the RPA reducible polariz-
ability operator ©, which is itself de ned in terms of the RPA irreducible polarizability PO,
The GW? approximation of the (symmetrized) reducible polarizability operator is usually
de ned in the frequency domain as

[gym(!):: 1n, bsoym(!) ' 1y,:

The formal analytic continuation of the above de nitions is (see Far99, Equation (139)])
] 1
Im@ = 1lny Pm(@ Ly (4.93)

Note that we use the tilde notation in ]gym, although it is unclear that this operator-

valued function is indeed the Laplace transform of some operator-valued function in the time
domain. Also, it is a priori unclear whether the operatorsly, FE’S?,\,Q{(! )orly, ﬂ>§,\n"{(z)
are invertible. This is however the case for appropriate values of, as shown by the following

lemma.

Lemma 4.65. Forz2 ( ("n+1 "n);"nN+1  "n) and z 2 iR, the operator 1y, ﬂDSOym(z)
is invertible.

This result is a direct consequence of the explicit formula 4.83 for PSO, which ensures
that ﬂDSOym(z) is a bounded self-adjoint negative operator for the values of under consideration.
Let us deduce some extra properties dfo.
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Lemma 4.66. For any ! 2 R, the operator ] Sym(lI ) is a bounded, negative, self-adjoint
operator on H, satisfying lo Sym( i) = ]sym(l| ), and such that

POn() 19 o (4.94)

The function ! 7! ]gym(n ) is analytic from R, to S(H1) and is in LP(R, ;S(H41)) for all
p > 1. Finally, there exists a constantC 2 R* such that

. C = =,
o 1g.ai) = Vi S v (4.95)

This result is deduced from the de nition (4.93), the inequality x (1 x) ' 1 Ofor
X 0, and Proposition 4.59,

Sum-rule for  f0.  From the sum-rule stated in Theorem4.60 we readily deduce the sum-

rule for f0:= v, 2] OymVe 122 \which is a bounded operator fromCto C. Indeed, from the
equality (1 x) I 1=x+x%1 x) 1 we obtain

8 2R 19nG1)= PYnG)+ PYn(!) ’ 1n, PYn(i!)

In particular,

8! 2R ; !2"0(i!)=!2¢>0(i!)+|i2 12P0Gi1)  vi2 14, PYn() lvcl=2 1 2poj1 )

This shows that the asymptotic behavior of f O(i! ) is, at dominant order, the same as for

ﬁ’o(i! ). Taking the limit ! ! 1 leads to a theorem similar to Theorem4.60 whose proof
is skipped here for the sake of brevity.

Theorem 4.67. The following weak-convergence holds:

D E
. 0 Q ; FH 2f oy; - ; 0 — f .
8(f;g)2Cc” C*® !“].m f; 1<103i1)g wc f, div gnr g oc = N org

!

oo

R3

For all g2 C%such that g2 L?(R3), the following strong convergence holds:
Jim 2foityg=div $yrg incC

By comparing Theorems4.67 and 4.46 we see why using 4.71) instead of (4.70 for the
de nition of h; may lead to better approximations, since §, = § in this case, so that the

GW approximation ©W of becomes exact in the high imaginary frequency domain.

Theorem 4.67is useful for the design of the so-calle@lasmon-Pole modelgPPM) [ HL86,
vdLH88, GN89, EF93]. Since the de nition (4.93 requires the computation of a resolvent, the

calculation of f 0(z) is numerically very expensive in practice. Some authors suggested to ap-

proximate fo by an operator “PPM which is computationally less expensive. In practice, PPM
has a prescribed functional form, with adjustable parameters. Di erent approaches are taken
in order to tune these parameters, and the previous sum-rule provides a standard way to t
some of them. This is done for instance in the PPM by Hybersten and LouieHL86] and in
the PPM by Engel and Farid [EF93]. In the later article, the authors extensively comment
on the fact that this sum-rule is an important requirement to be satis ed for a PPM.
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The RPA dynamically screened operator wo

From the approximation © of , we directly deduce the approximationW? of W. Following
the path taken in Section 4.3.3 we de ne

WOo(z) == v+ WO(2) with W(z) = viZ] Am()ve > (4.96)

This operator, when well-de ned (say on the gap( ("n+1  "N);"n+1  "n) Or on the
imaginary axis iR) is a bounded operator fromC to C°. The properties of &/ are directly
deduced from the ones of 9m» SO we do not repeat them here for brevity.

4.4.3 A mathematical study of the GW? approximation
The G oW © approximation of the self-energy

In this section, we study the GoW?° approximation as a preliminary step to the study of the
self-consistentGW? approximation. This will help us understand some technical points to
address in the analysis of theGW° method.

The GoW? approximation of the self-energy operator is formally de ned as
O(r;r® ) =i Go(r;r® )WOo(r;r%  *): (4.97)

Here, Go represents the Green's function of the non-interacting system introduced in De ni-
tion 4.47, and WP is the random phase approximation of the dynamically screened operator
de ned in Section 4.4.2 Already one di culty arises: in Section 4.4.2, we only de ned the

function W9(z) on the complex frequency domain, but we did not de ne some operator-valued

function on the time-domain. In this section, we assume that the function®/°(z) is indeed
the Laplace transform of some operato°( ). This will allow us to transform (4.97) into

a formally equivalent de nition that only involves /0. The resulting de nition will be our
starting point for the GW? approximation.

With the kernel-product de ned in Section 4.2.4, the de nition ( 4.97) can be recast as
©()=iGo( ) WO )

In view of the decomposition provided in @.96), it is natural to split % into an exchange
part 99 and a correlation part 20 (the terminology is motivated below):

0= 0+ 2 with 3% )=iGon(0) Veol) and P()=iGo() We( ):
Let us rst consider the exchange part. AsSiGor(0 )= 8;,\, , We obtain
P )= Ky o ); (4.98)
where K« is the integral operator on H1 with kernel

8;N (r; r%_

Ky(r;r9:= T

(4.99)

We recover the usual Fock exchange operator associated witlg;N , Which justi es the termi-
nology exchange part for 0. Let us now consider the correlation part. Observing that

6o is analyticonU[ L[ ("n;"n+1) (hence has a gap around g);
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WoisanalyticonU[ L[ ( ("n+1 "N);"n+1  "n) (hence has a gap around),

we can use the same ideas as in Sectidgh4.2 By analogy with Remark 4.64, we recast

the physical de nition of 99 in (4.97) in a formally equivalent de nition in the complex
frequency plane. This reformulation was rst given by Rojas, Godby and Needs§QGN95] (see
also RSW* 99)), and is now known as the contour deformation technique.

De nition 4.68  (GoW?° approximation of the self-energy) The exchange part of the self-
energy in the GW? approximation is de ned in the complex frequency domain by

8z2 C; gQO(Z)z Kx;

while the correlation partis de ned, for %2 ( ("n+1 "N);"n+r "n)and + 02 ("NiUN+1)
by

1 1

8l 2Ri; 90 +it)= - Go + O#i(r 419 WO O+i1 9
1

The fact that the above quantity is independent of the choice of ° comes from the ana-
lyticity of the integrand on the region of interest. In practice, we will focus on the case °= 0

and = o, and therefore consider the functionR, 3! 7! 93°( o+i!) de ned by
1t
8 2R;; 99 o+il)= > Go o+i(r +19Y WY (4.100)
1

The next proposition shows that the above de nition makes sense.

Proposition 4.69. The operator K arising in the exchange part ° of the self-energy is
a negative Hilbert-Schmidt operator onH;. Furthermore, for any ! 2 R,, the operator
990 5+i!) is a bounded operator orH;, and satises 9%( o it)= 9%9( o+il) . The
function ! 7! 990( +i!) is analytic from R, to B(H1) and is in LP(R; ; B(H1)) for all p > 1.

The rst statements of Proposition 4.69 can be seen as a special case of Propositidrv3
while the symmetry property for the adjoint and the LP integrability follow from the properties
of &0 and W.

Well-posedness of the GW? approximation in the perturbative regime.

We nally study the GW?° approximation. Following our de nition ( 4.100 of the GoW?°
approximation of the self-energy, we recast th&dW? equation as follows.

De nition 4.70  (The GW? problem on the imaginary axis in the frequency domain)
Find GSW° 2 L1 (R, ;B(H1)) solution to the system

Q
O

+1
3 oW (oril)= K o GOW i+ 1 o Yar e
(GW? 1
2 AW g4il)z  o+il  hyt (OW( oil)

where hy is the one-body mean- eld Hamiltonian de ned in 4.70) and K is the exchange
operator de ned by (4.67)-(4.99).

Remark 4.71. We are looking for a solution inL* (R, ;B(H1)). Note that the true Green's
function &( +i ) isin LP(R, ;B(H4)) for all p > 1 (in particular for p= 1 ). We chose to
work with L (R, ; B(H1) for simplicity, but it is possible to work with other spaces P(R; ; B(H1))
with p > 1.



4.4. The GW approximation for finite systems 129

Since this problem seems quite di cult to study mathematically, we will only study it in
a perturbative regime. More speci cally, seeing W as a correction term (see the discussion
after De nition 4.52), we propose to study the following problem.

De nition 4.72  (The GW? problem on the imaginary axis on the frequency domain)
Find GEW® 2 L1 (R, ;B(H1)) solution to the system

Q

3 AGWo . 1 +1 AGWO . . 0
3 (o+i1)=Ke o G o+i(1 + 19 oG 9d!
(GW?) ! ) (4.101)
N N
.§GGW°(o+i!): o+il hi+ GW( g+il)
According to (4.69, the unique solution for = 0 is the Green's function for the non

interacting system G/‘\’Wozo = &,. This fact will allow us to treat the equation perturbatively.
The exact GW? equations correspond to the case = 1. Of course, several other choices of
perturbation can be used. For instance, we can put the parameter in front of the correlation
part of the self-energy only. This amounts to considering the Hartree-Fock Hamiltonian as
the reference Hamiltonian (instead of the Hartree Hamiltonian). The theory that we develop
here can be straightforwardly generalized to such other cases.

It is convenient for the mathematical analysis to introduce the functionalss and g respec-
tively de ned as

s: L2(R/;B(Hy) ! Lrll (Ri;B(H1))
| 1 +

Gaep( g +i) 71 s BaP (o+i )= Ky > 1&3app(0+i( +19) WO 9dr @
1

and

g @ LY (Ri:B(HY) ! LR ;B(H) h i
lae( g+i) 70 g laee (g+i):i=  o+i hy+ lap( g+i)

With this notation, éGWO is a solution of the GW? equations @.107) if and only if it is a
xed-pointof g s. The fact that these maps are indeed well-de ned is proved in the following
proposition (see Sectiord.6.19for the proof).

Proposition 4.73. The operator s is a bounded linear operator fromL?(R, ;B(H1)) to
L! (R ;B(H1)). On the other hand, for allM > 0, there exists y > 0 and Cy 2 R*

such that for all 0 < wm,and all %prp such that 9PP( g+i) M, the
L1 (R ;B(H1))

function g [ @P]( o +i ) is well-de ned as an element ofL2(R, ;B(H1)) \ L* (R ;B(H1)),
with
h i h [
@ ( o+ + g WP (o+i :
9 Coti) L2(Ri ;B(H1)) J Cot+l) Lt (Ri;B(H1) o

Moreover, for all %°P; GPP 2 |1 (R, ;B(H1)) such that &PP( o +i)
forl j 2

L1 (R ;B(H1))

g O g PP - g PP gP gERP o QERp (4.102)
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To prove the existence of a xed-point forg s, we rely on Picard's xed-point theorem.
Since the solution of theGW0=0 equations @.101) for =0 is G0, we are lead to introduce,
for r > 0, the (closed) ball

B &or = &ap( g+i)2 L3R ;B(Hy); Gaee( o+i +i

Goir = BW( 0+1) 2 LARIiB(HD); B¥P(o+i) ol o+i) |, 00
The existence of a xed-point is given by the following theorem (see Sectiod.6.20for the
proof).

Theorem 4.74. There exists > 0 andr > 0 such that, for all 0 , there exists a

N
unique elementGeW° 2 B Go:r  solution to the GW? equations @.101), or equivalently to
the xed point equation
GGW° — g s GGW°

N
In addition, for all ! 2 R, GEW°( o +i!) is an invertible operator, and

1
GOWC( o +i) Eo( 0+i) <1 (4.103)
LY (R ;B(H1))
h i A
Finally, the iterative sequence(g  s)X &o converges toGCW"° | and there exists0 < 1
and C 2 R* such that

Acwo kh | ; K.
G 9 9% & (o+i) c
L1 (R ;B(H1))

Remark 4.75. It is not di cult to deduce from ( 4.103) that the function ! 7! éGWO( +il)
is actually in LP(R, ;B(H1)), for all p> 1.

45 Conclusion

In this chapter, we formalized with full mathematical rigor the GW theory for nite molecular
systems derived by Hedin in his seminal work published in 19651ed69. In Section 4.3, we
provided a mathematical de nition of some one-body operators arriving in many-body per-
turbation theory for electronic systems, namely the one-body Green's functiors, the spectral
function A, the reducible polarizability operator , the dynamically screened interaction op-
erator W, and the self-energy operator .

In Section 4.4, we worked out a mathematically consistent formulation of theGW©° ap-
proximation of the GW equations, and we proved that the GW° model has a solution in a
perturbation regime. As a by-product, we also showed that the widely used gN° approxi-
mation of the self-energy makes perfect mathematical sense.
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4.6 Proofs

46.1 Proof of Lemma 4.3
Lets>1=2. Forf 2L (R)andb2 S (R/),

hFrf; bigog = M Frbigoeg =2 f( )F:M)( )d
R
FC )

w2 rR(1+ 252

1+ 2%2(F M)( )d  Cskfk1 Kbkys;

where we have used the Cauchy-Schwarz inequality in the last step. By densitf;+f can be
extended to a linear form onH (R). The equality casekF+f ky s = Cskf k1 is obtained for
constant functions.

4.6.2 Proof of Theorem 4.10
Proof of ().  The analyticity of g directly follows from the results of [Sch66 Chapter VIII].

Proof of (ii). Let s> 1=2, and consider’ 2 S (R). Relying on the fact that g( +i ) can
be seen as the Fourier transform of 7! g( )e , we obtain

hg( +i );" in S:Hs hp;' iy s

ge :bgog hgibigos

! g( ) (1+ 2)S=2|b( ) e 1d:
o 1+ 2= '

(4.104)

where the integral makes sense since 7! g( )(1+ 2) S2and 7! (1+ 2)S2D( ) are
in L2(R). It is then possible to extend the above formula to any’ 2 HS(R). Moreover, by

the Cauchy-Schwarz inequality,

fg( +i ),' iH s:Hs h g,' iH S:Hs I;Skl kHSkgkLl X

where -
+1 2 =
_ d e ) .
[ s — 2 o (1+ 2)s d <1:
Therefore,kg( +i ) bky s k gki:|.s. By dominated convergence] s ! Oas ! 0,

which allows us to conclude to the strong convergence g{ +i )to hin H S(R)).
A similar computation shows that, for 0< 1 2ands?2 R,

+1 2 1=2
kg( +i 1) g( +i 2)kys k gkr 2 e?t 1 eflz 1) "1+ 23 :
0
where we crucially use that 1 > 0to ensure the convergence of the time integral fos > 1=2.
The right-hand side goes to0 as » goes to ; by dominated convergence. This allows one to
conclude to the continuity of 7! g( +i ) from (0;+1 ) to HS(R). Whens < 1=2 itis
possible to pass to the limit 1! 0 and obtain the uniform continuity from [0;+1 ) to H3(R).

Proof of (iii). We follow the approach used in Tay58] for instance. Fix zp 2 U, and
consider, forR > 0 and 0 < Im (z0)=2, the oriented contour C in the complex plane
composed of the semi-circle + R€ for 0 and the linei +! for R ! R. The

value R is taken su ciently large for zg to be inside the domain encircled by the contour (see
Figure 4.5).
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X 20
! R
Figure 4.5 The contour C used in the proof of (iii).
By Cauchy's residue theorem,
1 oz ,_ 1 Rogl+i) 1 _ - Ré
8(z0) = 3; cz zodZ_Zi R ! +i zod'+2 Og(l +Ré)Rei +i 29
(4.105)

Now, for z 2 U,

. . kgkLl .

18(2)] im(2)’
so that

: - Ré R
o TR R 8 K T RengiRe +T 2

which, by dominated convergence, convergesto 0 &! +1 when is xed. On the other
hand, g( +i ) belongs toL?(R;), while ( +i z0) Yisin HY(R,), sincei Zo has a
non-zero imaginary part. Therefore, the imitR! +1 can be taken in the rst integral on
the right-hand side of (4.109, which leads to

1 Y og( +i) . . n
= — — -~ d = — + (O + :
The conclusion now follows from the strong convergences ¢f + i 20) Yto( z) lin

H(R/)andofg( +i )toginH YR/ )as ! 0.

Proof of (iv). Let ' be a real-valued function inS (R: ). From (4.12), we get

1

Rg(! +i ) (1)d! = T g i)t e (1)l

Taking the real parts of both sides, we obtain

Re (g(! +i ))' ()d!
R

1 . ! . L} .
= —2 . Im g!( | )2+ 2 H 1;H1+ Reg1( ! )2+ 2 bl (l )d'
(4.106)
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Consider now 2 C! (R?), with support contained in [ R;R] R for some nite R > 0.
Then, Fubini's theorem for distributions (see [Sch6§ Chapter 1V, Theorem 1V]) asserts that,
for a given distribution T2 S R) and' 2 S (R),

hr, (GD)igoes " (t)dt = T (51) (1)d!
R

R S os

WhenT 2 H %(R), the above linear form can be extended to functions irH 1(R). Therefore,
(4.106 can be rewritten as

1 !
R P+ )" (1)d = Imbg;— @ ———"(1)d!
oo @t ) m"z1 O e 2 O (4.107)
¥ Reg;? R( !)2+ ZI (!)d! H 1:H!?
In view of the following strong convergences irH 1(R),
1 ! , 1., . 1 : 1 ..
TRW (!)d”!oé(H )(); ?RW (!)d”!oé()’

the equality (4.107) leads, in the limit ! 0", to
. 1 L 1 .
hReb;" iy 141 = éhmg;H( Jig 1yt érReg; Iy 11t

The rst equality in the statement of item (iv) is nally obtained with the following lemma
(recall that, according to Lemma 4.4, HS(R) is stable by the Hilbert transform). The second
equality follows by applying H to both sides and remembering thatH? = Id.

Lemma 4.76. Lets 0. Forany T2 H 3(R) and' 2 H3(R),

Proof. Consider rst the case whenT;' 2 S (R). Then, using Plancherel's formula, the
duality product can be rewritten using a L2-scalar product

MHT; isos =(HT; ).2=2 F I(HT);F v =2 isgn()F TE L
=2 F 'Tisgn()F ™ ,= T;H ,= hT;Hises:
The conclusion is obtained by a density argument. O

4.6.3 Proof of Proposition 4.12

The proof presented in Sectior4.6.2 can be followedmutatis mutandis upon introducing, for
given elementsf; g 2 H, the bounded causal function

ang ()= hjTe( )jai;

and noting that kaf;g kir k Tekps (B(H)) kf kkgk
The only additional technical point is the strong analyticity property, which is however
easily obtained from the following bound: forz="! +i 2 U,

dF”(2)

1 .
Te( )i )e €' d

B(H) 0 B(H)

1

k Tcki1 (R ;B(H)) . e <+1:

_ KTckis (r ;B(H))
- 2
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4.6.4 Proof of Proposition 4.13

For z 2 U, we have

Re(2)= Ac()€? d = i e'"e? d:
R 0
A simple computation shows that
+1 . . 1
Re(! +i )= i d ¥ IgpHd = —— dP"=(1+i H) .
0 R rR! *i

The series of equalities can be made rigorous by testing them against functiofisy 2 H, and
using Fubini's theorem to justify the exchange in the order of integration.

The strong convergence of;( +i ) to A¢in HY(R ;B(H)) is ensured by Proposition4.12
The Fourier transform can therefore be deduced from this limiting procedure. We consider the
limit of Im &;( +i ), the real part of &.( +i ) being obtained from (4.14) and De nition 4.8.

Letf 2H and' 2 S (Ry). Then, using Fubini's theorem,

DD - E E 9y 9y
fomAc(+i ) f ; sos 2 r ()2 2 (') f(d)dl = Rt()f(d);
(4.108)
where the measure ' isdened by }' (b= H P} fi forany b2 B (R), and
t()z ey ()l = o (4 )d
r (! )2+ 2 V0 R 2+1
Note that
p P-
te) O g G ) T Oid k' %y 2 il

where the last bound is obtained by rewriting' ( + ) ' ( ) as the integral of its deriva-
tive and using a Cauchy-Schwarz inequality. This also shows that is uniformly bounded

as ! 0'. Since the measure }! is nite, ( 4.108 leads by dominated convergence to
DD E E 9y
foamA(+i)f ; sos' 1o SO
which shows thatimB&.= P H,

4.6.5 Proof of Lemma 4.14

Letus rst assume that Im P, 0. The aim is to prove that Re®, 0on(1 ;!]. Consider
tothisend' 2 S (R) with Supp( ) (1 ;!o]and’ 0. Then, for any! lgand! % 0,
itholds' (! 19=0, so that

(N *Looao
8l Lo (H)(1)=lim . ";"](!O%d! 0= fim | (!Ogd!o 0:
(4.109)
Letf 2H. In view of (4.14 and Lemma4.76
DD E E DD E E D D E E
fRe®F ;» = fHmME = H fmRfo
' DD E E ' ‘
= fImBf ;W

H LHL
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