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Préambule

Cette thèse comprend trois sujets di�érents, tous en rapport à des problèmes de structures
électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.

Cette thèse commence par une introduction générale présentant les problématiques et les
principaux résultats.

La première partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appli-
quée aux modèles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres.
Dans le premier de ces chapitres, nous introduisons la notion deN -représentabilité, et nous
caractérisons les ensembles de matrices de densité de spin représentables. Dans le second cha-
pitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît
dans les modèles comprenant une polarisation de spin. Le résultat d'existence qui est démon-
tré dans [AC09] pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas
des systèmes avec polarisation de spin.

Dans la seconde partie, nous étudions l'approximationGW. Dans un premier temps, nous
donnons une dé�nition mathématique de la fonction de Green à un corps, et nous expliquons
comment les énergies d'excitation des molécules peuvent être obtenues à partir de cette fonc-
tion de Green. La fonction de Green peut être numériquement approchée par la résolution des
équationsGW. Nous discutons du caractère bien posé de ces équations, et nous démontrons
que les équationsGW0 sont bien posées dans un régime perturbatif. Ce travail a été e�ectué
en collaboration avec Eric Cancès et Gabriel Stoltz.

Dans le troisième et dernière partie, nous analysons des méthodes numériques pour cal-
culer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux
chapitres. Dans le premier, nous nous intéressons à l'approximation de Hartree-Fock réduite
(voir [CDL08]). Nous prouvons que si le cristal est un isolant ou un semi-conducteur, alors
les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution
exacte lorsque la taille de la supercellule tend vers l'in�ni. Ce travail a été réalisé en collabo-
ration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode
numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien
isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère
les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie
Ehrlacher et Damiano Lombardi.
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Preamble

This thesis contains three di�erent topics, all related to electronic structure problems. These
three topics are presented in three independent parts.

This thesis begins with a general introduction presenting the problematics and main re-
sults.

The �rst part is concerned with Density Functional Theory (DFT), for spin-polarized
models. This part is divided in two chapters. In the �rst of these chapters, the notion
of N -representability is introduced and the characterizations of theN -representable sets of
spin-density 2 � 2 matrices are given. In the second chapter, we show how to mathematically
treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was
proved in [AC09] for spin-unpolarized Kohn-Sham models within the local density approxi-
mation is extended to spin-polarized models.

The second part of this thesis focuses on theGW approximation. We �rst give a math-
ematical de�nition of the one-body Green's function, and explain why methods based on
Green's functions can be used to calculate electronic-excited energies of molecules. One way
to compute an approximation of the Green's function is through the self-consistentGW equa-
tions. The well-posedness of these equations is discussed, and proved in theGW0 case in a
perturbative regime. This is joint work with Eric Cancès and Gabriel Stoltz.

In the third and �nal part, numerical methods to compute band-diagrams of crystalline
structure are analyzed. This part is divided in two chapters. In the �rst one, we consider a
perfect crystal in the reduced Hartree-Fock approximation (see [CDL08]). We prove that, if the
crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact
solution with an exponential rate of convergence with respect to the size of the supercell. This
is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method
to calculate the band diagram of a crystal (which can be either an insulator or a conductor).
This method, based on reduced basis techniques, speeds up traditional calculations. This is
joint work with Eric Cancès, Virginie Ehrlacher, and Damiano Lombardi.
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CHAPTER1

INTRODUCTION

1.1 Hamiltonians describing systems of electrons

This thesis focuses on electronic structure problems. We describe a molecule by the non-
relativistic Schrödinger equation in the Born-Oppenheimer approximation. We are interested
in the quantum con�gurations of the electrons for a given nuclear arrangement. The behavior
of the electrons, from which one can deduce useful physical and chemical properties, is well-
modeled by an electronic Hamiltonian.

1.1.1 The Hamiltonian for spinless systems

In atomic units, the Hamiltonian describing a spinless system ofN electrons is of the form

HN (V ) :=
NX

i =1

�
�

1
2

� i

�
+

NX

i =1

V(r i ) +
X

1� i<j � N

1
jr i � r j j

; (1.1)

where � i denotes the Laplacian operator with respect to thei -th spatial component. The
�rst term of ( 1.1) corresponds to the kinetic energy. The second term of (1.1) represents the
external potential. For molecular systems, this potential is the classical Coulomb potential
generated by the nuclei

V (r ) =
MX

k=1

� zk

jr � R k j
; (1.2)

whereR k 2 R3 denotes the location of thek-th nucleus andzk 2 N� its charge. We denote by
Z :=

P M
k=1 zk the total nuclear charge of the system. The last term of (1.1) is the electron-

electron Coulomb repulsion. The HamiltonianHN (V ) acts on theN -fermionic Hilbert space

N̂

L 2(R3; C) =
�

	 2 L 2(R3N ; C); 8p 2 SN ; 	( r p(1) ; : : : ; r p(N ) ) = � (p)	( r 1; : : : ; r N )
	

;
(1.3)

endowed with the natural L 2(R3N ; C) inner product. In ( 1.3), SN denotes the set of permu-
tations of [[1; : : : ; N ]], and � (p) the parity of the permutation p. The permutation condition
appearing in (1.3) is referred to as the Pauli principle, and comes from the fact that electrons
are fermions.

Theorem 1.1. Suppose thatV is of the form (1.2) with N � Z , and let

D (HN ) :=

(

	 2
N̂

L 2(R3); �	 2 L 2(R3N )

)

;
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where � denotes the Laplacian operator with respect to all3N variables. Then the operator
HN (V ) with domain D(HN ) is self-adjoint, and its spectrum is as follows:

� the spectrum is bounded from below;

� there exists � N 2 R such that the essential spectrum ofHN (V ) is � ess(HN (V )) =
[� N ; + 1 );

� there exist an in�nity of eigenvalues below� N , which accumulate only at� N . All these
eigenvalues are of �nite multiplicities [Zhi60];

� if N � 2, then � N = E 0
N � 1 (HVZ Theorem [Hun66, vW64, Zhi60]).

We denote by E 0
N (V ) � E 1

N (V ) � E 2
N (V ) � � � � (or simply E 0

N � E 1
N � E 2

N � � � � when
no confusion is possible) the eigenvalues ofHN (V ) below � N , ranked in increasing order,
counting multiplicities. With this notation, E 0

N (V ) is the ground state energyof HN (V ) (and
a corresponding eigenvector is called aground state wave-function), and E k

N (V ) is the k-th
excited state energyof HN (V ) (and a corresponding eigenvector is called anexcited state
wave-function). The spectrum of HN is represented in Figure1.1.

R

� N

E 0
N E 1

N E 2
N � � � � ess

eigenvalues embedded in� ess

Figure 1.1 � The spectrum of HN (V ).

The set of admissible wave-functions, also called the set ofpure-states, is the set of nor-
malized wave-functions with �nite kinetic energy, namely

WN :=

(

	 2
N̂

L 2(R3; C); k	 kL 2 (R3N ) = 1 ; kr 	 kL 2 (R3N ) < 1

)

; (1.4)

wherer is the gradient with respect to all 3N variables. With this notation, j	 j2(r 1; : : : ; r N )
represents the density of probability that the N (indistinguishable) electrons are located
at (r 1; : : : ; r N ).

The ground state energyE 0
N (V ) is also the solution of the minimization problem (we

adopt Dirac's bra-ket notation)

E 0
N (V ) := inf

�
h	 jHN (V )j	 i ; 	 2 W N

	
: (1.5)

1.1.2 The Hamiltonian for spin-polarized systems

In this thesis, systems of electrons subjected to magnetic �elds will also be studied. A good
model to describe such systems is the Schrödinger-Pauli Hamiltonian, which reads, in atomic
units,

H full-SP
N (V;A ) :=

0

@
NX

i =1

�
1
2

j� ir i + A (r i )j
2 + V(r i )

�
+

X

1� i<j � N

1
jr i � r j j

1

A I2� �
NX

i =1

B (r i )�� i ;

(1.6)
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where I2 is the 2 � 2 identity matrix, A is the external magnetic vector potential, andB :=
curl A is the external magnetic �eld. The constant � is the Bohr magneton (whose value
is � = 1=2 in atomic units). The B � � term in ( 1.6) is the Zeeman term, also called the
Stern-Gerlach term, where� i contains the Pauli matrices acting on thei -th spin variable:

� i := ( � xi ; � yi ; � zi ) =
��

0 1
1 0

�

i
;
�

0 � i
i 0

�

i
;
�

1 0
0 � 1

�

i

�
:

The Schrödinger-Pauli Hamiltonian H full-SP
N (V;A ) acts on the N -fermionic Hilbert space

N̂

L 2(R3; C2) :=
n

	( r 1; s1; : : : ; r N ; sN ); r i 2 R3; si 2 f" ; #g;
X

s1 ;��� ;sN 2f" ;#gN

�

R3N
j	( r 1; s1; : : :)j2 dr 1 : : : dr N < 1 ;

8p 2 SN ; 	( r p(1) ; sp(1) ; : : :) = � (p)	( r 1; s1; : : :)
o

:

endowed with the inner product

h	 1j	 2i =
X

(s1 ;��� sN )2f" ;#gN

�

R3N
	 1(r 1; s1; : : :)	 2(r 1; s1; : : :) dr 1 � � � dr N :

Here r i 2 R3 denotes the position of thei -th electron, and si 2 f" ; #g denotes its spin.

In this thesis, we focus on a simpli�ed version of the Schrödinger-Pauli Hamiltonian that we
describe now. Note that the external magnetic vector potentialA in (1.6) acts on the spatial
coordinates of the electrons, while the magnetic �eldB acts on the spin of the electrons. These
two e�ects are of di�erent nature, so that it is convenient to relax the constraint B = curl A ,
and consider that the �elds A and B are independent. Then, by settingA = 0, which amounts
to neglecting orbital magnetism e�ects, we �nd the simpli�ed Schrödinger-Pauli Hamiltonian

H SP
N (V;B ) :=

NX

i =1

�
�

1
2

� i + V(r i )
�

I2 � �
NX

i =1

B (r i ) � � i +
X

1� i<j � N

1
jr i � r j j

I2; (1.7)

which acts on
V N L 2(R3; C2). If the external potential V is of the form (1.2) and the magnetic

�eld B is in
�
L 3=2(R3) + L 1 (R3)

� 3
and vanishes at in�nity, results similar to the ones of

Theorem 1.1 hold true [Gon15a]. We denote by E 0
N (V;B ) � E 1

N (V;B ) � : : : the eigenvalues
below the essential spectrum, ranked in increasing order and counting multiplicities. With
this notation, E 0

N (V;B ) is the ground state energy of the system, andE k
N (V;B ) is the k-th

excited state energy. As in (1.5), it holds that

E 0
N (V;B ) := inf

n 

	

�
�H SP

N (V;B )
�
� 	

�
; 	 2 W spin

N

o
; (1.8)

where W spin
N is the set of admissible spin-polarized wave-functions, de�ned by

W spin
N :=

(

	 2
N̂

L 2(R3; C2); k	 kL 2 (( R3 ;C2 )N ) = 1 ; kr 	 kL 2 (( R3 ;C2 )N ) < 1

)

:

1.1.3 Problematics

As Dirac wrote in 1929 [Dir29],
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The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
di�culty is only that the exact application of these laws leads to equations much
too complicated to be soluble.

This problem is now known as thecurse of dimensionality, and refers to the fact that the
state space for problem (1.5) and (1.8) is of dimension 3N , where N is the total number of
electrons in the system into consideration. The state-space cannot be represented numerically
whenever the number of electrons is �too large�. Computing the solution of (1.5) for a small
system like the water molecule H2O (N = 10 electrons) is already unfeasible in practice. This
makes the full problems (1.5) and (1.8) impossible to tackle numerically for most systems of
interest.

The purpose of this thesis is to present some of the approximations that were proposed in
the last decades in the physics and chemistry communities to simplify these problems, and to
study the mathematical properties of the resulting models.

1.2 Density Functional Theory

1.2.1 Derivation of Density Functional Theory

We recall in this section how Density Functional Theory (DFT) is derived. Spin-unpolarized
DFT was introduced in 1964 by Hohenberg and Kohn [HK64] and is a very popular tool in
modern quantum chemistry. The goal of Density Functional Theory (DFT) is to calculate
the ground state energy and the ground state density of an electronic system. It transforms
the high-dimensional linear problems (1.5) or (1.8) into a nonlinear low-dimensional problem.
While DFT has been extensively studied for spin-unpolarized or spinless Hamiltonians of the
form (1.1), its counterpart for spin-polarized Hamiltonian of the form (1.7) (with the Zee-
man term included) received much less attention. When spin is included, we use the name
�Spin-DFT�, or �SDFT�. We present SDFT by following the constraint-search approach by
Levy [Lev79], Valone [Val80] and Lieb [Lie83]. In this section we consider the Schrödinger-
Pauli Hamiltonian H SP

N (V;B ) introduced in (1.7), and our goal is to solve (1.8).

The energy of an admissible normalized wave-function	 2 W spin
N is



	

�
�H SP

N (V;B )
�
� 	

�
.

By introducing the N -body density matrix � 	 = j	 ih	 j, which is the orthogonal projector
onto f C	 g in

V N L 2(R3; C2), this quantity is also equal to Tr
�
H SP

N (V;B )� 	
�
. The set of

pure-state N -body density matrices is

Gpure
N :=

n
� 	 ; 	 2 W spin

N

o
;

and (1.8) can be recast into

E 0
N (V;B ) = inf

�
Tr

�
H SP

N (V;B )�
�

; � 2 Gpure
N

	
:

This is a minimization problem of a linear functional on a (bounded) set. It is therefore
natural to introduce the set of mixed-state N -body density matrices Gmixed

N , de�ned as the
convex hull of Gpure

N . Naturally, it holds that

E 0
N (V;B ) = inf

�
Tr

�
H SP

N (V;B )�
�

; � 2 Gpure
N

	
= inf

n
Tr

�
H SP

N (V;B )�
�

; � 2 Gmixed
N

o
:

(1.9)
For � 2 Gmixed

N with Schwartz kernel �( r 1; s1; : : : ; r N ; sN ; r 0
1; s0

1; : : : ; r 0
N ; s0

N ), we introduce the
spin-density 2 � 2 matrix

R� (r ) :=

 
� ""

� � "#
�

� #"
� � ##

�

!

(r );
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where, for �; � 2 f" ; #g2, we set

� ��
� (r ) := N

X

~s2f" ;#g( N � 1)

�

R3( N � 1)
�( r ; �; ~z;~s; r ; �; ~z;~s) d~z: (1.10)

The key-point of SDFT is to notice that, for � 2 Gmixed
N , it holds that

Tr
�
H SP

N (V;B )�
�

= Tr
�
H SP

N (0; 0)�
�

+
�

R3
tr C2

��
V � �B z � �B x + i �B y

� �B x � i�B y V + �B z

�
R�

�
:

(1.11)
Note that the �rst term of ( 1.11) no longer depends on the external potential and �eld. In
the sequel, we denote by

U(V;B ) :=
�

V � �B z � �B x + i �B y

� �B x � i�B y V + �B z

�
(1.12)

the matrix which contains all the external data. Let X represents either the word �pure� or
the word �mixed�. From ( 1.9) and (1.11), we get the so-calledconstrained-searchequality

E 0
N (V;B ) = inf

� 2 GX
N

�
Tr

�
H SP

N (V;B )�
�	

= inf
R2J X

N

� �

R3
tr C2 [U(V;B )R] + F X (R)

�
; (1.13)

where J X
N is the set of (pure-state or mixed-state) spin-density2 � 2 matrices, de�ned by

J X
N :=

�
R� ; � 2 GX

N

	
; (1.14)

and the function F X is de�ned by the formula

F X (R) := inf
�

Tr
�
H SP

N (0; 0)�
�

; � 2 GX
N ; R� = R

	
:

Let us compare (1.8) with ( 1.13). Problem (1.8) is linear, but su�ers from the curse of dimen-
sionality, while (1.13) is a minimization problem on a low-dimensional space, but is nonlinear.
The name SDFT comes from the fact that (1.13) is the minimization of a functional which
depends only on the spin-density2 � 2 matrix R.

In order to solve (1.13), one needs a closed expression for bothJ X
N and F X . Character-

izing the sets J pure
N and J mixed

N is the N -representability problem, and will be discussed in
Section 1.2.2. As far as F X is concerned, there is no convenient formula for it. Actually, it
was proved that there exists potentialsV such that the calculation of E 0

N (V;0) at a polyno-
mial accuracy is QMA1-hard [SV09]. This implies that the calculation of F X at a polynomial
accuracy is also QMA-hard. Fortunately, there exist very good computable approximations
of F X that give results in good agreement with physical experiments for most interesting
physical systems. We will discuss one of these approximations in Section1.2.3.

1.2.2 The N -representability problem

The N -representability problem is concerned with the characterization of the setsJ pure
N

and J mixed
N de�ned in ( 1.14). The �rst results on the N -representability problem were given

by Gilbert [ Gil75], Harriman [Har81] and Lieb [Lie83]. In these articles, the authors only
considered the spin-unpolarized case, which amounts to settingB = 0. In this case, it holds
that

tr C2 [U(V;0)R] = V � R ;

1QMA stands for Quantum Merlin-Arthur. QMA-hard is the quantum version of NP-hard.
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where� R = � ""
R + � ##

R is the total electronic density. In the sequel, we denote by� � = � R � = � R

when no confusion is possible. The constrained-search method (1.13) in this case can be recast
into

E 0
N (V;0) = inf

� 2I X
N

� �

R3
V � + F X

1 (� )
�

;

with

I X
N =

�
� � ; � 2 GX

N

	
and F X

1 (� ) = inf
�

Tr [ HN (0; 0)�] ; � 2 GX
N ; � � = �

	
:

The N -representability problem in the spin-unpolarized case is therefore concerned with the
characterization of I pure

N and of I mixed
N .

Theorem 1.2 (Gilbert, Harriman, Lieb) . For all N 2 N� , it holds that

I pure
N = I mixed

N = I N :=
�

� 2 L 1(R3) \ L 3(R3); � � 0;
�

R3
� = N;

p
� 2 H 1(R3)

�
: (1.15)

When the magnetic �eld is not null, we need to characterize the setsJ pure
N and J mixed

N
de�ned in ( 1.14). This problem was addressed, but left open, in the work by von Barth and
Hedin [vBH72]. In the sequel,M 2� 2(E ) denotes the set of2 � 2 matrices with coe�cients in
the Banach spaceE. We introduce

CN :=
n

R 2 M 2� 2(L 1(R3; C)) ; R� = R; R � 0;
�

R3
tr C2 [R] = N;

p
R 2 M 2� 2(H 1(R3; C))

o
;

(1.16)
and C0

N := f R 2 CN ; det R � 0g. In Chapter 2, we following theorem is proved.

Theorem 1.3 (DG) .
Case N = 1 : It holds that

J pure
1 = C0

1 and J mixed
1 = C1:

Case N � 2: For all N � 2, it holds that

J pure
N = J mixed

N = CN :

Since GX
N is convex and the map� 7! R� is linear, we deduce that the setCN de�ned

in (1.16) is convex (which is not obvious from its de�nition). Comparing (1.15) and (1.16),
we see that Theorem1.3 is a natural extension of Theorem1.2.

Representability with paramagnetic-current.
The version of DFT dealing with both charge and current densities is called Current-(Spin)-
DFT, or C(S)DFT [ VR88]. For � 2 Gmixed

N , we introduce the paramagnetic currentj � = j "
� + j #

�
where

8� 2 f" ; #g; j �
� = Im

0

@N
X

~s2f" ;#gN � 1

�

R3( N � 1)
r r 0�( r ; �; ~z;~s; r 0; �; ~z;~s)

�
�
�
r 0= r

d~z

1

A :

This current appears when performing the constrained-search method (see (1.13)) on the
full Schrödinger-Pauli Hamiltonian H full-SP

N (V;A ) de�ned in ( 1.6). More speci�cally, let us
assume thatA is smooth enough so that the domain ofH full-SP

N (V;A ) is exactly the one of
H full-SP

N (V;0). The constrained-search method in this case leads to

E 0
N (V;A ) = inf

(R; j )2K X
N

� �

R3

�
tr C2 [U(R; B )R] +

jA j2

2
� + A � j

�
+ F X

2 (R; j )
�

;
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where U(V;B ) was de�ned in (1.12),

KX
N =

�
(R� ; j � ); � 2 GX

N

	

is the set we would like to characterize, and

F X
2 (R; j ) = inf

�
Tr

�
H full-SP

N (0; 0)�
�

; � 2 GX
N ; (R� ; j � ) = ( R; j )

	
;

is an unknown functional. In C(S)DFT, the N -representability problem is concerned with
the characterization of Kpure

N and Kmixed
N . Giving an exact expression is known to be very

di�cult, but to give (mild) su�cient conditions for a pair (R; j ) to be representable is possible.
In [LS13], Lieb and Schrader studied the spin-unpolarized case, and gave such conditions for
the representability of a pair (�; j ), where � is the total electronic density. They proved the
following result, valid for N � 4. Recall that I N was de�ned in (1.15).

Theorem 1.4 (Lieb, Schrader). SupposeN � 4. A su�cient set of conditions for a pair
(�; j ) to be pure-stateN -representable is that, on the one hand,

� 2 I N ; � � 1jj j2 2 L 1(R3); (1.17)

and that, on the other hand, there exists� > 0 such that

sup
r 2 R3

f (r )(1+ � )=2�
jw (r )j + jr w(r )j

�
< 1 ; (1.18)

wherew := curl (� � 1j ) is the vorticity, and f (r ) := (1 + ( r1)2)(1 + ( r2)2)(1 + ( r3)2).

The conditions in (1.17) are necessary conditions, and the condition (1.18) is very mild.
By adapting their proof to the spin-polarized case, we were able to prove a similar result,
under the condition N � 12 (see Chapter2). Recall that CN was de�ned in (1.16).

Theorem 1.5 (DG) . SupposeN � 12. A su�cient set of conditions for a pair (R; j ) to be
pure-state N -representable is that, on the one hand,

R 2 CN ; � � 1
R jj j2 2 L 1(R3);

and that, on the other hand, there exists� > 0 such that

sup
r 2 R3

f (r )(1+ � )=2�
jw (r )j + jr w(r )j

�
< 1 :

1.2.3 The Local Spin-Density Approximation

We now turn to the question of how to approximate the functionalF X (R) appearing in (1.13).
In this thesis, we consider the approximation ofF mixed (R). In spin-unpolarized models, the
�rst successful approximation, called theLocal Density Approximation (LDA) was introduced
by Kohn and Sham [KS65], and is still broadly used nowadays. While in their article, the
authors gave some clues on how to adapt their method to spin-polarized systems, the corre-
sponding theory was pioneered by von Barth and Hedin [vBH72] and is known as the Local
Spin-Density Approximation (LSDA).

For a mixed-state � 2 Gmixed
N , we introduce the corresponding one-body spin-density

matrix


 � :=

 

 ""

� 
 "#
�


 #"
� 
 ##

�

!

;
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where


 ��
� (r ; r 0) := N

X

~s2f" ;#gN � 1

�

R3( N � 1)
�( r ; �; ~z;~s; r 0; �; ~z;~s) d~z: (1.19)

Comparing (1.10) and (1.19), we see that R� (r ) = 
 � (r ; r ), so that R� depends on� only
through 
 � . We will write R
 instead ofR� when no confusion is possible. Likewise, the total
electronic density of a state� 2 Gmixed

N will be denoted by � � = � R = � 
 .

The set of mixed-state one-body spin-density2 � 2 matrices is

PN := f 
 � ; � 2 Gmixed
N g:

Identifying the kernel 
 (r ; r 0) with the corresponding operator ofS(L 2(R3; C2)) , whereS(H)
denotes the set of bounded self-adjoint operators acting on the Hilbert spaceH, Coleman
[Col63] proved that

PN =
�


 2 S(L 2(R3; C2)) ; 0 � 
 � 1; Tr( 
 ) = N; Tr( � � 
 ) < 1
	

:

Physically speaking, this is the set of one-body density matrices of systems withN -electrons
(Tr( 
 ) = N ), satisfying the Pauli principle (0 � 
 � 1), and with �nite kinetic energy
(Tr( � � 
 ) < 1 ). In a similar way, we can de�ne, for � > 0,

P� :=
�


 2 S(L 2(R3; C2)) ; 0 � 
 � 1; Tr( 
 ) = �; Tr( � � 
 ) < 1
	

: (1.20)

We also de�ne

J mixed
� := f R
 ; 
 2 P � g and I mixed

� := f � 
 ; 
 2 P � g:

The setsJ mixed
� and I mixed

� have expressions similar toJ mixed
N and I mixed

N (see Theorem1.5
and (1.15) respectively). The idea of Kohn and Sham [KS65], then adapted by von Barth and
Hedin [vBH72] to the spin-unpolarized setting, is to split F mixed (R) into three contributions

F mixed (R) = TKS (R) + J (� R ) + Exc(R): (1.21)

The �rst term TKS represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

8R 2 J mixed
� ; TKS (R) := inf

�
1
2

Tr ( � � 
 ) ; 
 2 P � ; R
 = R
�

:

The second term of (1.21) is the Hartree term, de�ned by

8� 2 I mixed
� ; J (� ) :=

1
2

�

R3 � R3

� (r )� (r 0)
jr � r 0j

dr dr 0:

Finally, the last term of ( 1.21) is the exchange-correlation functional de�ned by

Exc(R) := F mixed (R) � TKS (R) � J (� R ):

SinceF mixed is a non-explicit functional, Exc is also a non-explicit functional. It is however
possible to construct explicit approximations of Exc giving rise to accurate predictions for
the ground state energies of most molecular systems [ED11]. In the Local Spin-Density
Approximation derived by von Barth and Hedin [vBH72], it reads

Exc(R) � E LSDA
xc (� + ; � � ) :=

1
2

�
E LDA

xc (2� + ) + E LDA
xc (2� � )

�
; (1.22)
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where � + =� are the two eigenvalues of the spin-density2 � 2 matrix R, and E LDA
xc is the

standard LDA exchange-correlation functional in the spin-unpolarized case [KS65], of the
form

E LDA
xc (� ) :=

�

R3
g(� (r )) dr : (1.23)

For all � 2 R+ , the real value g(� ) is an approximation of the exchange-correlation energy
density of the uniform electron gas with density � . Several functionsg are available (VWS
[VWN80], PZ81 [PZ81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic
conditions for low and high densities. The minimization problem (1.13) with the approxima-
tion ( 1.22)-(1.23) can be rewritten, using one-body density matrices, as a variational problem
of the form

E 0
� := inf fE (
 ); 
 2 P � g; (1.24)

where

E(
 ) =
1
2

Tr
�

� � 
 ""
�

+
1
2

Tr
�

� � 
 ##
�

+ J (� 
 ) +
�

R3
tr C2 [UR
 ] + E LSDA

xc (� +

 ; � �


 ):

We recall that the 2 � 2 matrix U contains all the external data, i.e. the electric potential V
and the magnetic �eld B (see (1.12)). The physical situation corresponds to� = N 2 N, but
as usual in variational problems set on the whole space, it is useful to relax the constraint
Tr( 
 ) 2 N to allow the particles to escape to in�nity.

The spin-unpolarized model corresponds to the situation where we impose
 to satisfy

 "" = 
 ## and 
 "# = 
 #" = 0 . The resulting model was studied mathematically by Anan-
tharaman and Cancès [AC09].

In Chapter 3, we prove the following theorem.

Theorem 1.6 (DG) . Under the following assumptions

1/ the function g in ( 1.23) is of class C1(R+ ) and satis�es:
8
>>>>>>>><

>>>>>>>>:

g(0) = 0

g0 � 0

9 0 < � � � � + <
2
3

; sup
� 2 R+

jg0(� )j
� � � + � � + < 1

9 1 � � <
3
2

; lim sup
� ! 0+

g(� )
� � < 0;

(1.25)

2/ all entries of U are in L
3
2 + � (R3)+ L 1 (R3) and vanish at in�nity, and V := tr C2 (U) has

the form (1.2),

the problemE 0
� de�ned in ( 1.24) has a minimizer whenever� � Z .

This theorem is a generalization of the spin-unpolarized result [AC09]. In particular, the
conditions (1.25) are the ones found in [AC09]. These conditions are satis�ed for the usual
choices ofg mentioned above.

1.3 The GW approximation

The fourth chapter of this thesis is concerned with theGW approximation.2 This method was
introduced by Hedin [Hed65, HL70] and is a very successful method to calculateelectronic-
excitation energiesfor �nite systems, or band gaps for crystalline structures. Together with

2GW is not an acronym: G denotes the Green's function and W the screened Coulomb operator.
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Eric Cancès and Gabriel Stoltz, we gave a rigorous de�nition of the operators involved in the
GW formalism, we reformulated the so-calledGW0 equations, and proved the existence of a
solution in a perturbative regime.

While the density functional theory introduced in the previous section works well to cal-
culate ground state energies, it fails to predict excitation properties of molecules, such as the
electronic-excitation energies. In order to calculate such quantities, several approaches have
been considered in the last decades [ORR02]. Among them are the time-dependent DFT
(TDDFT) [ MMN + 12, MUN + 06], wave-function methods [HJO14] such as Coupled-Cluster or
full-CI, and Green's function methods. The GW method is part of the last category.

From now on, we work with spinless systems for simplicity: our startingN -body Hamil-
tonian is the one in (1.1).

1.3.1 Electronic-excitation energies and Green's functions

Let us consider anN -electron system modeled by a Hamiltonian of the form (1.1). We perform
the following experiment (called angle-resolved photoelectron spectroscopy, or ARPES):

� we start from the N -electron system in its ground state, with energyE 0
N ;

� we give the system some energy (photons) in order to rip an electron o�.

After this experiment, we expect the system to relax in either the ground state or an excited
state of the corresponding(N � 1)-electron system (see Figure1.2).

h�

System with N particles

Ekin

System with N � 1 particles

� NE 0
N

� N � 1E 0
N � 1 E 1

N � 1

(HVZ theorem)

electronic excitation

Figure 1.2 � Schematic view of an electronic excitation (here, loss of an electron). The system
in the ground state of HN (V ) goes to an excited state ofHN � 1(V ).

One can also consider the experiment where the system absorbs an electron, and releases
energy. With the notation introduced after Theorem 1.1, the quantities we would like to
evaluate are

E 0
N � E k

N +1 (gain of an electron) and E 0
N � E k

N � 1 (loss of an electron); (1.26)
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called theelectronic-excitation energiesof the system. The electronic-excitation energies di�er
from the optical-excitation energies, which are quantities of the form E 0

N � E k
N (same number

of electrons). Note that we neglect the e�ects due to the relaxation of the nuclei: we impose
the external potential V to be the same before and after the experiment.

We suppose in the sequel thatV is of the form (1.2) with N � 2. We also make the
following additional assumptions (we denote byE 0

N +1 := inf � (HN +1 )):

� the ground state E 0
N is a simple eigenvalue ofHN ;

� stability condition: 3 it holds 2E 0
N � E 0

N +1 + E 0
N � 1:

The �rst assumption is a very standard one. The second assumption states that theionization
energy E 0

N � 1 � E 0
N > 0 is strictly greater than the a�nity energy E 0

N � E 0
N +1 > 0. It will

be useful to �link� the problems with N + 1 , N and N � 1 electrons. We denote by	 0
N the

(real-valued) ground state ofHN .

In order to compute the electronic-excitation energies, we introduce the following natural
sets

Sp := � (HN +1 � E 0
N ) (particle electronic-excitation set)

Sh := � (E 0
N � HN � 1) (hole electronic-excitation set):

These sets are linked to the so-called particle and hole one-body Green's functions, that we
de�ne now. Since we are working with a variable number of electrons, it is natural to work
in the Fock space

F =
1M

N =0

H N ; where H 0 = C; H 1 = L 2(R3; C); H N =
N̂

H 1:

The creation and annihilation operators ay and a are bounded operators fromH 1 to B(F),
where B(E) denotes the space of bounded operators from the Banach spaceE into itself.
They satisfy

8� 2 H 1; 8N 2 N; ay(� ) : H N ! H N +1 ; a(� ) : H N +1 ! H N ; ay(� ) = ( a(� )) � ;

and the expression ofa is given by

8� 2 H 1; 8	 N 2 H N ;
�
a(� )j	 N i

�
(r 1; : : : ; r N � 1) =

p
N

�

R3
� (r )	 N (r ; r 1; : : : ; r N � 1) dr :

When the creation and annihilation operators are evaluated on	 0
N , we obtain the operators

A �
+ : H 1 ! H N +1

f 7! ay(f )j	 0
N i

and
A � : H 1 ! H N � 1

f 7! a
�
f

�
j	 0

N i
: (1.27)

They satisfy A �
+ 2 B(H 1; H N +1 ) and A � 2 B(H 1; H N � 1). The adjoint of A � is denoted by

A �
� and the one ofA �

+ is denoted byA+ :=
�
A �

+

� � . The one-body particle Green's function
Gp and hole Green's functionGh are functions from the time domainR to B(H 1), de�ned by

8� 2 R; Gp(� ) := � i�( � )A+ e� i � (H N +1 � E 0
N )A �

+ (particle), (1.28)

3The question �Is the stability condition always true for Coulomb systems?� is an open problem [ BDS14,
Part VII].
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and
8� 2 R; Gh(� ) := i�( � � )A �

� ei � (H N � 1 � E 0
N )A � (hole): (1.29)

Here, � denotes the Heaviside function. Let us give a physical interpretation of the one-body
particle Green's function Gp. From (1.27) and (1.28), we obtain

8f; g 2 H 1; hg jGp(� )j f i = � i�( � )
D

	 0
N

�
�
�a(g)e� i � (H N +1 � E 0

N )ay(f )
�
�
� 	 0

N

E
;

which can be read as follows. We �rst start from the ground state withN electrons	 0
N . We

then add an electron in the �orbital� f , and let the system evolves with itsN + 1 electrons
for some time � > 0. Finally, we remove the electron in the �orbital� g, and measure how
close we are from the initial ground state	 0

N . A similar interpretation can be given for the
one-body hole Green's function.

The Green's functions are fundamental quantities in many-body perturbation theory. The
hole Green's function contains a lot of useful information about the electronic system. For
instance, by introducing the one-body density matrix 
 0

N 2 B(H 1) with kernel


 0
N (r ; r 0) := N

�

R3( N � 1)
	 0

N (r ; r 2; � � � ; r N ) 	 0
N (r 0; r 2; � � � ; r N ) dr 2 � � � dr N ;

it can be checked that 
 0
N = � iGh(0� ) = A �

� A � . As a consequence, the electronic ground-
state density

� 0
N (r ) := N

�

R3( N � 1)

�
� 	 0

N (r ; r 2; � � � ; r N )
�
�2

dr 2 � � � dr N = 
 0
N (r ; r )

is a quantity encoded in the hole Green's function. The ground state energyE 0
N can also be

recovered from the hole Green's function via the Galiskii-Migdal formula [GM58]:

E 0
N =

1
2

Tr H 1

��
d
d�

� i
�

�
1
2

� + V
��

Gh(� )
�
�
�
� =0 �

�
: (1.30)

Finally, it is possible to extract the particle and hole electronic-excitation sets from the Green's
functions. To see this, we time-Fourier transformGp and Gh. We use the following normal-
ization for the time-Fourier transform:

8f 2 L 1(R; E); E Banach space; [FT f ] (! ) = bf (! ) =
� + 1

�1
f (� ) ei!� d�:

From the following equality, which holds in the negative Sobolev spaceH � 1(R) for instance,

b�( ! ) = �� 0 + ip :v:
�

1
!

�
; (1.31)

where p:v: is the Cauchy principal value and � 0 is the Dirac distribution at the origin, we
obtain

cGp = A+ p:v:
�

1
� � (HN +1 � E 0

N )

�
A �

+ � i
�

�A + PH N +1 � E 0
N A �

+

�
in H � 1(R! ; B(H 1)) ;

(1.32)
and

cGh = A �
� p:v:

�
1

� � (E 0
N � HN � 1)

�
A � + i

�
�A �

� PE 0
N � H N � 1 A �

�
in H � 1(R! ; B(H 1)) ;

(1.33)
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where we denoted byPH
b := 1b(H ) the spectral projection on the Borelianb 2 B (R) of the

operator H (here B (R) denotes the Borel� -algebra of R). In the sequel, if A is a bounded
operator on H 1, we denote byReA := 1

2(A + A � ) its self-adjoint part (or real part), and by
Im A := 1

2i (A � A � ) its skew-adjoint part (or imaginary part).

From (1.32) and (1.33), we see that the electronic-excitation setsSh and Sp are linked to
the imaginary part of the Green's functions (also calledspectral functions, up to a multiplica-
tive factor). More speci�cally, it holds that

Sp � Supp
�

Im cGp

�
and Sh � Supp

�
Im cGh

�
:

From this we deduce two facts. First, we can indeed recover the electronic-excitation
energies from the (time-Fourier transform of the) Green's functions. Then, we expect bothcGp

and cGh to be highly peaked (they are irregular distributions) which makes the mathematical
analysis cumbersome and the numerical approximation of these operators quite di�cult.

1.3.2 Analytic continuation and chemical potential

In order to work with more regular objects, we consider the analytical continuations ofcGp

and cGh in the complex plane. To give a �avor of the tools used to perform such an analytical
continuation, we recall the Titchmarsh's theorem [Tit48 ] in its simplest form. In the sequel,
we denote byU := f z 2 C; Im (z) > 0g, and by L := f z 2 C; Im (z) < 0g the (strict) upper
and lower half complex planes respectively. The Laplace transform of a functionf 2 C1

c (R)
is4

8z 2 C; ef (z) :=
�

R
f (t)eiztdt:

It can be extended in some distributional sense.

Theorem 1.7 (Titchmarsh's theorem in L 2(R) [Tit48 ]). Let f 2 L 2(R) and let bf 2 L 2(R) be
its time-Fourier transform. The following assertions are equivalent:

(i) f is causal (i.e. f (t) = 0 for almost all � < 0) ;

(ii) there exists an analytic function F in the upper half-planeU satisfying

sup
�> 0

� � + 1

�1
jF (! + i � )j2 d!

�
< 1

and such that,F (� + i � ) ! bf strongly in L 2(R), as � ! 0+ ;

If these assertions are satis�ed, then the functionF in (ii) is unique, and coincides with the
Laplace transform ef of f .

This theorem states that the function bf (which may be irregular) has a regular analytic
continuation ef in the strict upper half-plane U, and that we can indeed recoverbf from ef . A
similar theorem holds true for anti-causal functions (i.e. f (t) = 0 for almost all t < 0) by
changing U into L.

4The Laplace transform is usually de�ned as

F (p) =
� 1

0
f (� )e� p� d�:

Our de�nition, which is better adapted to our setting, amounts to setting z = i p.
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In our case, the Laplace transforms ofGp and Gh are respectively given by

8z 2 U; fGp(z) := A+
1

z � (HN +1 � E 0
N )

Ay
+ and 8z 2 L; fGh(z) := Ay

�
1

z � (E 0
N � HN � 1)

A � :

(1.34)
They are analytic functions on U and L respectively. However, from (1.34), we see that we
can extend the domain of analyticity of fGp and fGh to C n Sp and C n Sh respectively (see
Figures 1.3 and 1.4).

� (HN +1 � E 0
N )E 0

N +1 � E 0
N

analytic continuation

Figure 1.3 � The continuation of fGp(z).

� (E 0
N � HN � 1) E 0

N � E 0
N � 1

analytic continuation

Figure 1.4 � The continuation of fGh(z).

From the stability condition, it holds E 0
N � E 0

N � 1 < E 0
N +1 � E 0

N . We de�ne the total
Green's function eG(z) by (see Figure1.5)

8z 2 U [ L [ (E 0
N � E 0

N � 1; E 0
N +1 � E 0

N ); eG(z) := fGp(z) + fGh(z): (1.35)

We introduce the chemical potential � , which is any real number satisfying

E 0
N � E 0

N � 1 < � < E 0
N +1 � E 0

N : (1.36)

In the sequel, we will only work with the operator-valued regular function ! 7! eG(� + i ! ).
This function has very nice properties, both in term of regularity and integrability, and it
contains the same information asGh and Gp altogether. The goal of the GW method is to
provide a computable approximation of this function.

� (E 0
N � HN � 1)

� (HN +1 � E 0
N )

E 0
N � E 0

N � 1

E 0
N +1 � E 0

N

� + i R

Figure 1.5 � The domain of analyticity of eG(z).

Let us conclude this section by identifying the Green's function in the case of a non-
interacting system. Let

h1 = �
1
2

� + V1



1.3. The GW approximation 29

be a one-body Hamiltonian, and consider the mean-�eldN -body non-interacting Hamiltonian

H0;N :=
NX

i =1

h1;r i =
NX

i =1

�
�

1
2

� r i + V1(r i )
�

:

We assume that h1 has at least N negative eigenvalues"1 � "2 � : : : � "N , counting
multiplicities, and that "N < " N +1 , where "N +1 is either the (N + 1) st eigenvalue ofh1 if it
exists, or the bottom of the essential spectrum ofh1 otherwise. This fact implies both that
the ground state E 0

0;N of H0;N is simple (with E 0
0;N = "1 + : : : + "N ), and that the stability

condition is satis�ed for the non-interacting system, since

E 0
0;N � E 0

0;N � 1 = "N < " N +1 = E 0
0;N +1 � E 0

0;N :

We denote by � 0 the chemical potential of the non-interacting system,i.e. any real number
satisfying

"N < � 0 < " N +1 : (1.37)

Finally, the H 1-orthogonal projection on the occupied states is denoted by


 0
0;N := 1(�1 ;� 0 ) (h1) =

NX

k=1

j� k ih� k j; (1.38)

where f � kg1� k� N is an orthonormal family of (real-valued) eigenfunctions ofh1 correspond-
ing to its lowest eigenvalues:h1� k = " k � k . The one-body particle, hole and total Green's
functions G0;p, G0;h and G0 of the non-interacting system have properties similar to the ones
of the interacting system.

Lemma 1.8. It holds

8� 2 R; G0;p(� ) = � i�( � )
�

 0

0;N

� ?
e� i �h 1 and G0;h(� ) = i�( � � )
 0

0;N e� i �h 1 : (1.39)

The analytic continuations of their Laplace transforms, gG0;p and gG0;h are respectively

8z 2 C n ("N +1 ; 1 ); gG0;p(z) =

�

 0

0;N

� ?

z � h1
; and 8z 2 C n (�1 ; "N ); gG0;h(z) =


 0
0;N

z � h1
:

The total Green's function of the non-interacting system is, in the complex frequency domain,

8z 2 U [ L [ ("N ; "N +1 ); fG0(z) = ( z � h1) � 1 : (1.40)

The Green's function for the non-interacting system is simply the resolvent of the corre-
sponding one-body operatorh1.

1.3.3 The self-energy operator

By analogy to the non-interacting case (1.40), we de�ne the one-body dynamical Hamilto-
nian eH (z) as

8z 2 U [ L [ (E 0
N � E 0

N � 1; E 0
N +1 � E 0

N ); eH (z) = z � eG(z) � 1;

so that eG(z) =
�

z � eH (z)
� � 1

. The following lemma shows that this de�nition indeed makes
sense.

Lemma 1.9. For any z 2 U [ L [ ((E 0
N � E 0

N � 1); E 0
N +1 � E 0

N ), the operator eH (z) is a well-
de�ned closed operator onH 1, with domain eD(z), where eD(z) is dense in H 1 and eD(z) �
H 2(R3; C).
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For each complex frequencyz, eH (z) may have (complex) eigenvalues. Such an eigenvalue
is called aquasi-energy, and a corresponding eigenvector is called aquasi-particle.

We �nally link the one-body non-interacting Hamiltonian with the one-body dynamical
Hamiltonian. To do so, we assume that the chemical potentials� and � 0 de�ned in ( 1.36)
and (1.37) respectively can be chosen equal. In this case, we can de�ne the self-energy� on
the imaginary axis � + i R by the Dyson equation

8! 2 R; e�( � + i ! ) := eH (� + i ! ) � h1 = fG0(� + i ! ) � 1 � eG(� + i ! ) � 1 (Dyson equation).
(1.41)

The self-energy can be de�ned on a larger domain, but its de�nition on� + i R will be enough
for our purpose. Note that the Dyson equation de�nes the self-energy, and that the self-energy
depends on the choice ofh1.

The road-map of the GW method is as follows:

� Construct a good one-body mean-�eld Hamiltonian h1. In the original article by
Hedin [Hed65], h1 is the Hartree model, solution of the self-consistent equation

8
>><

>>:

h1 = � 1
2 � + V + � 0

0;N �
1

j � j
;

� 0
0;N density of 
 0

0;N := 1(�1 ;� 0 ) (h1):

(1.42)

We refer to [Sol91] for a mathematical analysis of this model.

� Construct an approximation of the self-energy: ]� GW (� + i �) � e�( � + i �). To construct
such an approximation is the topic on the next section.

� De�ne the approximation of the Green's function ]GGW (� + i �) via the Dyson equa-
tion ( 1.41).

1.3.4 The Hedin's equations, the GW equations and the GW0 equations

The de�nition ( 1.34)-(1.35) of the Green's function eG is not usable in practice, for it neces-
sitates to compute quantities which su�er from the curse of dimensionality (for instance the
resolvent of HN +1 � E 0

N ). Fortunately, it turns out that eG satis�es a set of self-consistent
equations, called the Hedin's equations. These equations were introduced by Hedin in its
pioneering article [Hed65]. They were derived from physical considerations, using many-body
perturbation theory. The derivation of Hedin is beyond the scope of this thesis, and is not
well-understood mathematically speaking.

We denote by 1 := ( r 1; t1), 2 := ( r 2; t2), etc. a space-time point. The space-time point
1+ is (r 1; t+

1 ), wheret+
1 is a time strictly after t1, but in�nitesimally close to t1. The notation

d1 stands for dr 1dt1. A space-time operatorA has a kernelA(12) = A(r 1; t1; r 2; t2), and all
operators that we will consider satisfy the relationA(12) = A(r 1; 0; r 2; t2 � t1) := A(r 1; r 2; � )
where � = t2 � t1. We denote by A(� ) the operator with kernel A(r 1; r 2; � ). The Hedin's
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equations read as follows [Hed65]:

The Hedin's equations

G(12) = G0(12) +
�

d(34)G0(13)�( 34)G(42) (Dyson equation)

�( 12) = i
�

d(34)G(13)W (41+ )�( 32; 4) (Self-energy)

W (12) = vc(12) +
�

d(34)vc(13)P(34)W (42) (Screened interaction)

P(12) = � i
�

d(34)G(13)G(41+ )�( 34; 2) (Irreducible polarization)

�( 12; 3) = � (12)� (13) +
�

d(4567)
� �( 12)
�G (45)

G(46)G(75)�( 67; 3) (Vertex function).

Here, vc represents the Coulomb operator, with kernel

vc(12) := vc(r 1; r 2)� 0(� ) :=
1

jr 1 � r 2j
� 0(� ): (1.43)

As we can see, the Hedin's equations involve a lot of operator-valued functions. Some
of them are well-de�ned, and some of them are not well-understood mathematically. In
particular, it is unclear in what sense the partial derivative

@�( 12)
@G(45)

(1.44)

is taken. In practice, it turns out that this term may be neglected for most interesting systems.
To set it to 0 leads to the GW equations, also introduced by Hedin in the same article.

The GW equations Find GGW solution to the system

GGW (12) = G0(12) +
�

d(34)G0(13)� GW (34)GGW (42) (1.45a)

� GW (12) = i GGW (12)W GW (21+ ) (1.45b)

W GW (12) = vc(12) +
�

d(34)vc(13)PGW (34)W GW (42) (1.45c)

PGW (12) = � iGGW (12)GGW (21+ ) (1.45d)

The name �GW� comes from (1.45b). These equations are usually solved self-consistently.
In Chapter 4, we focus on theGW0 equations, which adds an extra simpli�cation. The GW0

equations are obtained by settingW GW � W 0, where W 0 is the screened interaction in the
random phase approximation(RPA).

The GW0 equations Find GGW 0
solution to the system

GGW 0
(12) = G0(12) +

�
d(34)G0(13)� GW 0

(34)GGW 0
(42) (1.46a)

� GW 0
(12) = i GGW 0

(12)W 0(21+ ) (1.46b)

In Chapter 4, we transform the GW0 equations (1.46) into formally equivalent equations
having better properties, and we study the resulting equations.
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The kernel-product of operators
The GW0 equation (1.46b) is of the form C(12) = A(12)B (21). The Schwartz kernels of the
operators A and B are multiplied. It is unclear that such a de�nition makes sense, as the
multiplication of two kernels is not, in general, the kernel of a well-de�ned operator. We need
to clarify the meaning of such a multiplication.

We start with time-independent operators. Let A 2 B(H 1) and B 2 B(H 1) have ker-
nels A(r ; r 0) and B (r ; r 0) respectively. We would like to de�ne the operator C with ker-
nel C(r ; r 0) := A(r ; r 0)B (r 0; r ). Formally, it holds that, for f; g 2 H 1,

hf jCjgi =
�

R3

�

R3
f (r )C(r ; r 0)g(r 0) dr dr 0 =

�

R3

�

R3
f (r )A(r ; r 0)g(r 0)B (r 0; r ) dr dr 0

= Tr H 1 (AgB f ): (1.47)

This motivates the following de�nition.

De�nition 1.10 (kernel-product). The kernel-product ofA 2 H 1 and B 2 H 1 is the opera-
tor C := A � B , if it exists, de�ned by the sesquilinear form

8f; g 2 H 1; hf jCjgi = Tr H 1 (AgB f ):

In practice, the well-posedness of the kernel-productA � B is given by results similar
to the following lemma. In the sequel, we denote byS k (H ) the k-th Schatten class of the
Hilbert space H ; S 1(H ) is the set of trace-class operators onH, and S 2(H ) is the set of
Hilbert-Schmidt operators on H.

Lemma 1.11. If B 2 B(H 1) is such that, for all f; g 2 H 1, the operator gBf is Hilbert-
Schmidt (i.e. in the Schatten classS 2(H 1)), with

9K B 2 R+ ; 8f; g 2 H 1;



 gBf






S 2 (H 1 ) � K B kgkH 1 kf kH 1 ;

then, for all A 2 B(H 1), the operator A � B is a well-de�ned bounded operator onH 1, and

kA � B kB(H 1 ) � K B kAkB(H 1 ) :

Reformulation of the GW0 equations
After some manipulations, that we do not describe in this introduction, we were able to show
that the GW0 equations (1.46) are formally equivalent to the following equations.

The -new- GW0 equations

Find ĜGW 0 (� 0 + i �) 2 L 2(R! ; B(H 1)) solution to the system

�
GW0�

8
>>><

>>>:

ĜGW 0 (� 0 + i ! ) =
�
� 0 + i ! �

�
h1 + �̂ GW 0 (� 0 + i ! )

�� � 1

;

�̂ GW 0 (� 0 + i ! ) = K x �
1

2�

� + 1

�1
ĜGW 0 �

� 0 + i( ! + ! 0)
�

� gW 0
c (i ! 0) d! 0;

(1.48)

whereh1 is the one-body Hartree operator de�ned in (1.42), and K x is the operator with
kernel

K x (r ; r 0) = �

 0

0;N (r ; r 0)

jr � r 0j
: (1.49)
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The �rst equation of ( 1.48) is the Dyson equation (1.41). The right-hand side of the sec-
ond equation of (1.48) contains two terms. The �rst one K x is the Fock operator (the one
that we �nd in Hartree-Fock models), and the second one involves the operatorgW 0

c , which is
the correlation part of the screened interaction (we do not de�ne this operator in this intro-
duction, and refer to Chapter 4, Section4.4.2). Note that the convolution is performed on an
imaginary axis. The fact that this convolution is equivalent to the time-multiplication ( 1.46b)
comes from the so-calledcontour deformation techniqueintroduced �rst by Rojas, Godby and
Needs [RGN95] (see also [RSW+ 99]).

Seeing the RPA screened operatorgW 0 = vc + gW 0
c as a dynamical screened Coulomb

operator, the GW approximation can be interpreted as a dynamical version of the Hartree-
Fock model.

1.3.5 Well-posedness of the GW0 equations in a perturbative regime

The main results of Chapter 4 is concerned with the study of the GW0 equations (1.48).
Together with Eric Cancès and Gabriel Stoltz, we �rst proved that the kernel-product of the
�rst equation indeed makes sense.

Lemma 1.12. For all Gapp(� 0 + i �) 2 L 2(R; B(H 1)) and all ! 2 R, the operator

g� app
c (� 0 + i ! ) = �

1
2�

� + 1

�1

]Gapp
�
� 0 + i( ! + ! 0)

�
� gW 0

c (i ! 0) d! 0

is a well-de�ned bounded operator onH 1.

Unfortunately, we were not able to fully analyze (1.48): we did not �nd mathematical

evidence that the operator� 0 + i ! �
�

h1 + ]� app(� 0 + i ! )
�

should be invertible at each step

of a self-consistent algorithm. We therefore studied theGW0 equations in a perturbative
regime. For � > 0, we introduce

The GW0
� equations

Find ĜGW 0
� 2 L 2(R; B(H 1)) solution to the system

�
GW0

�

�

8
>>><

>>>:

ĜGW 0
� (� 0 + i ! ) =

�
� 0 + i ! �

�
h1 + � �̂ GW 0

� (� 0 + i ! )
�� � 1

;

�̂ GW 0
� (� 0 + i ! ) = K x �

1
2�

� + 1

�1
ĜGW 0

�
�
� 0 + i( ! + ! 0)

�
� gW 0

c (i ! 0) d! 0;

(1.50)

The case� = 0 corresponds to the non-interacting system:ĜGW 0
� =0 (� 0 + i �) = fG0(� 0 + i �).

The parameter � can be seen as a coupling constant for the two-body interaction between
electrons. We proved the following existence and unicity result.

Theorem 1.13 (Eric Cancès, DG, Gabriel Stoltz). There exists � � > 0 such that, for all

0 � � � � � , there exists a unique solutionĜGW 0
� (� 0 + i �) 2 L 2(R; B(H 1)) to (1.48) which is

close to fG0(� 0 + i �) in L 2(R; B(H 1)) .
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1.4 Numerical simulation of crystalline structures

The last part of this thesis concerns the numerical simulation of perfect crystals. A perfect
crystal is characterized by a latticeR of R3 and an R-periodic function � per representing the
nuclear charge density. The electronic system is described by a mean-�eld one-body electronic
Hamiltonian of the form

Hper := �
1
2

� + Vper; acting on L 2(R3; C); (1.51)

where Vper is an R-periodic potential. In practice, Vper is the solution of a nonlinear self-
consistent equation. Such type of equations are motivated by means ofthermodynamic limit
procedures [CLL98b]. In the sequel, we denote by� the unit cell of the lattice R, and
by � L := L � , so that � L contains L 3 times the unit cell � .

The thermodynamic limit
To perform a thermodynamic limit, one must �rst choose a model to calculate the ground
state energy of a �nite system. One can consider the fullN -body Schrödinger model (1.5),
or an approximation of it, like a Kohn-Sham model (seee.g. (1.24)), a GW model (1.30), and
so on. We then consider, forL 2 N� the �nite system with external (nuclear) potential

Vnuc;L (r ) :=
�

R3

� nuc;L (r 0)
jr � r 0j

dr 0; with � nuc;L := � per(r )1 (r 2 � L ) :

In other words, we only consider the �nite system consisting of the nuclei contained in a
�box� of size L (see Figure1.6). For L 2 N � , we calculate the corresponding ground state
energyEL . The questions then are

� Existence: Does the sequence of energies per unit volume
�
j� L j � 1EL

�
L 2 N� converge

to someEper as L goes to in�nity?

� Characterization : If it is the case, is Eper the solution to an explicit problem?

L = 1 L = 2 L = 3

: : :

Figure 1.6 � The thermodynamic limit: � per;L for L = 1 , L = 2 and L = 3 .

These questions have a positive answer for the Thomas-Fermi (with or without the von
Weizsäcker term) model [CLL96, CLL98b], the Hartree and restricted Hartree models [CLL98a,
CLL02] and the Hartree-Fock and reduced Hartree-Fock models [CLL01]. In addition, some
existence results (but no characterization) were proved for the fullN -body Schrödinger
model [Fef85, BLL03, HLS09a, HLS09b].

The supercell thermodynamic limit
Another natural thermodynamic limit one could think of is the supercell thermodynamic limit.
This type of thermodynamic limit was considered in [CDL08] for the reduced Hartree-Fock
model, and is closely linked to numerical simulations. In a supercell model, the system is
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con�ned in a box � L := L � with periodic boundary conditions. We denote byL 2
per(� L ) the

Hilbert space of locally square integrable functions that areLR-periodic, and we would like
to study one-body mean-�eld Hamiltonians of the form

HL := �
1
2

� L + Vper;L acting on L 2
per(� L ): (1.52)

Here, � � L denotes the Laplacian operator acting onL 2
per(� L ), and Vper;L is the sum of the

periodic Coulomb potential generated by the nuclei (and a uniform background of negative
charge)

Vnuc :=
�

�
� per(r 0)G1(r � r 0) dr 0; (1.53)

which is independent ofL , and of a mean-�eld potential Vel;L generated by the electrons (and
a uniform background of positive charge), which may depend onL. The role of the uniform
backgrounds is to neutralize the charge in the supercell so that the Poisson equation with
periodic boundary conditions may be solved. In (1.53), G1 denotes theR-periodic Green
kernel of the Poisson interaction [LS77], solution of

8
>>><

>>>:

� � G1 = 4 �

 
X

k 2R

� k � 1

!

G1 is R-periodic and
�

�
G1 = 0 :

(1.54)

Once a model is chosen for the de�nition ofVel;L , one may ask oneself the same questions
(existence and characterization of the energy per unit cell) as in the standard thermodynamic
limit (see Figure 1.7).

L = 2 L = 3

Figure 1.7 � The supercell thermodynamic limit: � L for L = 2 and L = 3 .

The supercell method for the linear model (whereVper;L is an R-periodic function inde-
pendent of L ) is equivalent to performing a regular sampling of the reciprocal Brillouin zone
(see Section1.4.3), and is the model usually considered in numerical codes [MP76]. The non-
linear reduced Hartree-Fock model was considered in [CDL08].

In this introduction, we will only present the results for the linear model, and brie�y
mention the results in the case of the reduced Hartree-Fock model.

1.4.1 The Bloch transformation

The Bloch transformation is a suitable tool to study periodic operators (see also [RS78,
Chapter XIII] or [ Del08]). Let (a1; a2; a3) be a basis ofR3 that generates the lattice R, so
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that
R :=

�
k1a1 + k2a2 + k3a3; (k1; k2; k3) 2 Z3	

:

We de�ne the dual lattice

R � :=
�

k1a�
1 + k2a�

2 + k3a�
3; (k1; k2; k3) 2 Z3	

;

where the vectorsa�
i are such that a�

i � aj = 2 �� ij . The unit cell and the reciprocal unit cell
are respectively de�ned by

� :=
�

� 1a1 + � 2a2 + � 3a3; (� 1; � 2; � 3) 2 [� 1=2; 1=2)3	
;

and
� � :=

�
� 1a�

1 + � 2a�
2 + � 3a�

3; (� 1; � 2; � 3) 2 [� 1=2; 1=2)3	
:

For w 2 C1
c (R3), we de�ne the Bloch transform Z w of w by

8q 2 R3; 8r 2 R3; (Z w)(q; r ) := wq (r ) :=
X

R 2R

e� iq�(r + R )w(r + R ): (1.55)

Note that since w is compactly supported, the sum in the right-hand side of (1.55) is �nite
for all r 2 R3. For R 2 R , we de�ne the translation operator � R on L 2(R3) by (� R f ) ( r ) =
f (r � R ). From the de�nition ( 1.55), the function wq is R-periodic for any q 2 R3: � R wq = wq

for all R 2 R . On the other hand, by introducing, for m 2 R � , the unitary operator Um

(on L 2
per(�) ) de�ned by

8m 2 R � ; 8f 2 L 2
per(�) ; (Um f ) ( r ) = e � im �r f (r ); (1.56)

we see thatwq+ m = Um wq . Altogether,

8w 2 C1
c (R3);

�
8R 2 R ; 8q 2 R3; � R wq = wq

8m 2 R � ; 8q 2 R3; wq+ m = Um wq :
(1.57)

In particular, the function Z w is completely characterized by its values forq 2 � � and
r 2 � . We consider the Hilbert spaceL 2(� � ; L 2

per(�)) , endowed with the normalized inner
product (we denote by

�
� � = j� � j � 1 �

� � )

hf (q; r ); g(q; r )i L 2 (� � ;L 2
per (�)) :=

 

� �

�

�
f (q; r )g(q; r ) dr dq:

A classical calculation shows that

8w 2 C1
c (R3);

�

R3
jw(r )j2 dr =

 

� �

�

�
j(Z w) (q; r )j2 dr dq = kZ wk2

L 2 (� � ;L 2
per (�)) :

We can therefore extend by continuity the Bloch transform Z to L 2(R3). Its extension, still
denoted by Z , is an isometry from L 2(R3) to L 2(� � ; L 2

per(�)) . Its inverse is given by

Z � 1 : L 2(� � ; L 2
per(�)) ! L 2(R3)

wq (r ) 7! (Z � 1w)(r ) :=
 

� �
eiq�r wq (x) dq:

Let A with domain D(A) be a possibly unbounded operator acting onL 2
per(�) . We say

that A commutes with R-translations if � R A = A� R for all R 2 R . If A commutes with
R-translations, then Z AZ � 1 is block diagonal, which means that there exists a family of
operators (Aq )q2 R3 acting on L 2

per(�) , such that, if f 2 L 2(R3) and g 2 D (A) are such
that f = Ag, then, for almost any q 2 R3, gq 2 L 2

per(�) is in the domain of Aq , and

f q = Aqgq :
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From (1.57), we obtain that

8m 2 R � ; 8q 2 � � ; Aq+ m = Um AqU � 1
m ; (1.58)

so that the family (Aq )q2 R3 is entirely characterized by its values forq 2 � � . We write

Z AZ � 1 =
 �

� �
Aq dq (Bloch decomposition ofA). (1.59)

1.4.2 The linear model on the whole space

Let us apply the Bloch theory to the self-adjoint operator Hper (with domain H 2(R3; C))
de�ned in ( 1.51). SinceHper commutes with R-translations, it admits a Bloch decomposition
of the form (1.59):

Z HperZ � 1 =
 �

� �
Hq dq;

with
Hq :=

1
2

j� ir 1 + qj2 + Vper =
1
2

�
� � 1 � 2iq � r 1 + jqj2

�
+ Vper: (1.60)

Here, we denoted by5 r 1 the gradient operator acting on L 2
per(�) and by � 1 the Laplacian

operator acting on L 2
per(�) . For each q 2 R3, the operator Hq with domain H 2

per(�) is self-
adjoint, bounded below and with compact resolvent. We denote by� 1;q � � 2;q � � � � its eigen-
values, ranked in increasing order, counting multiplicities, and by(un;q )n2 N� 2 (L 2

per(�))
N�

an orthonormal basis of associated eigenvectors, so that

8q 2 R3; 8n 2 N� ; Hqun;q = � n;qun;q : (1.61)

From (5.22), we obtain that

8q 2 R3; 8n 2 N� ; 8m 2 R � ; � n;q+ m = � n;q and un;q+ m = U � 1
m un;q :

The map q 7! Hq is an holomorphic family of type (A) (see [Kat12, Chapter VII]). In par-
ticular, the maps q 7! � n;q are Lipschitz (hence continuous). As a result, from [RS78, Chapter
XIII], we deduce that the spectrum of Hper can be recovered from the spectra of(Hq )q2 � � ,
with

� (Hper) =
[

q2 � �

� (Hq ) =
1[

n=1

�
� �

n ; � +
n

�
with

�
� �

n ; � +
n

�
= f � n;q ; q 2 � � g:

The spectrum of H is therefore composed of bands. The mapq 7! f � 1;q ; � 2;q ; � � � g is called
the band diagram(see Figure (1.8)). We de�ne the integrated density of stateper unit cell by

I : R 3 " 7! I (" ) :=
1X

n=1

 

� �
1(� n;q � " ) dq: (1.62)

It is a continuous non-decreasing function satisfyingI (�1 ) = 0 and I (+ 1 ) = + 1 . Let
N be the number of electrons per unit cell in the system under consideration. We write
I � 1(f N g) = [ " � ; "+ ]. Any number " inside this interval is an admissible Fermi level, or Fermi
energy of the system. When" � = "+ , this number "F is unique, and the system is a metal.
Otherwise, the system is an insulator or a semiconductor, depending on the magnitude of the

5 If f 2 L 2
per (�) has a Fourier decomposition of the form f (r ) =

P
k 2R � ck (f )ei k � r , then

ck (� � 1 f ) = jk j2 ck (f ) and ck (q � (� ir 1)f ) = ( q � k ) ck (f ):
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gap g := "+ � " � > 0, and we set"F := ( " � + "+ )=2. By introducing the integrated density
of energy per unit cell

E : R 3 " 7! E(" ) :=
1X

n=1

 

� �
� n;q1(� n;q � " ) dq; (1.63)

the energy per unit cell of the system isE("F ).

q 2 � �

� n;q � (Hper)

"Fg

Figure 1.8 � Band diagrams of Hper. Here, Hper represents an insulator.

The L 2(R3)-orthogonal projector on the occupied states
 is de�ned with the spectral
theorem by 
 := 1(Hper � "F ). If the system is an insulator or a semiconductor, then we can
rewrite 
 using the Cauchy residual formula as


 =
1

2i�

�

C

dz
z � Hper

:

Here, C is a positively oriented simple closed loop in the complex plane, schematized in
Figure 1.9.

� "F

� (Hper)

C

Figure 1.9 � The loop C.

Since
 commutes with R-translations, it admits a Bloch decomposition of the form (1.59)
with

Z 
 Z � 1 =
 �

� �

 q dq; with 
 q :=

1
2i�

�

C

dz
z � Hq

: (1.64)

For all q 2 � � , the operator 
 q is trace-class. Let� 
 q be the R-periodic density of 
 q . The
density of the operator 
 is the R-periodic function de�ned by

� 
 :=
 

� �
� 
 q dq: (1.65)
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R �

� �

� �

� L

Figure 1.10 � (left) The lattice R � and the reciprocal unit cell � � (in red). (right) The
discretization � L (in blue) of � � (in red). Here, L = 4 .

Finally, the energy per unit cell of the system de�ned in (1.63) is also

Eper := E("F ) =
 

� �
Tr L 2

per (�) (Hq 
 q ) : (1.66)

1.4.3 The linear model on supercells

In practice, the calculation of the Fermi energy and of the total energy would necessitate
the calculation of � n;q for all q 2 � � (see (1.62) and (1.63)). This is of course not possible
numerically. The reciprocal unit cell � � needs to be discretized. Since the work of Monkhorst
and Pack [MP76], it has been observed that very good results were obtained when consider-
ing uniform discretizations, at least for insulators and semiconductors. As will be make clear
below, this is equivalent to performing a supercell calculation.

We are interested in studying the operatorHL de�ned in ( 1.52). The operator HL is a
bounded-below self-adjoint operator with compact resolvent, so that we could directly study
the full operator HL . However, it is possible to further simplify the problem by considering a
Bloch-like transform, that we call the supercell Bloch transform.

For L 2 N � , we introduce the regular sampling of the reciprocal unit cell,� L :=
�
L � 1R �

�
\

� � , i.e.

� L :=

(
2k1

L
a�

1 +
2k2

L
a�

2 +
2k3

L
a�

3; (k1; k2; k3) 2
�

� L + �
2

;
� L + �

2
+ 1 ; � � � ;

L + �
2

� 1
� 3

)

;

(1.67)
with � = 1 if L is odd, and � = 0 if L is even, so that there are exactlyL 3 points in � L (see
Figure 1.10). Likewise, we de�ne R L := R \ � L .

For w 2 C1
per(� L ), we de�ne the supercell Bloch transform ofw by

8Q 2 � L ; (ZL w) (Q; r ) := wQ (r ) :=
X

R 2R L

e� iQ �(r + R )w(r + R ):

The operator ZL enjoys properties similar to the ones of the operatorZ de�ned in ( 1.55).
For instance,

8w 2 C1
per(� L );

�

� L

jwj2 =
1

L 3

X

Q 2 � L

�

�
j(ZL w) (Q; r )j2 dr ;
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so that the operatorZL can be extended to an unitary operator fromL 2
per(� L ) to `2

�
� L ; L 2

per(�)
�
,

where `2
�
� L ; L 2

per(�)
�

is endowed with the normalized inner product

hf (Q; r ); g(Q; r )i `2 (� L ;L 2
per (�)) :=

1
L 3

X

Q 2 � L

�

�
f (Q; r )g(Q; r ) dr :

The inverse ofZL is

Z � 1
L : `2(� L ; L 2

per(�)) ! L 2
per(� L )

wQ (x) 7! (Z � 1
L w)(x) :=

1
L 3

X

Q 2 � L

eiQ �x wQ (x):

An easy calculation shows that ZL HL Z � 1
L is block diagonal. We write, by analogy

with ( 1.59),

ZL HL Z � 1
L :=

1
L 3

M

Q 2 � L

HQ (supercell Bloch decomposition ofHL ),

where the operatorsHQ , acting on L 2
per(�) , are exactly the ones de�ned in (1.60). This shows

the relationship between the uniform sampling and the supercell calculation. We deduce that,
if the crystal is an insulator or a semiconductor,

� the Fermi level of the supercell model can be chosen equal to the one of the periodic
model "F ;

� the L 2
per(�) -orthogonal projection initially de�ned by 
 L := 1(HL � "L

F ) is also


 L =
1

L 3

M

Q 2 � L


 Q ;

where 
 Q were introduced in (1.64). It is a trace-class operator, and its density is

� 
 L =
1

L 3

X

Q 2 � L

� 
 Q ; (1.68)

� the energy per unit cell of the supercell model is

EL :=
1

L 3

X

Q 2 � L

Tr L 2
per (�) (HQ 
 Q ) : (1.69)

1.4.4 Exponential rate of convergence of supercell models

The error on the energy per unit volumeEper � EL , where Eper and EL were respectively
de�ned in ( 1.66) and (1.69), is of the form

jEper � EL j =

�
�
�
�
�
�

 

� �
f (q) dq �

1
L 3

X

Q 2 � L

f (Q)

�
�
�
�
�
�
; where f (q) := Tr L 2

per (�) (Hq 
 q ) : (1.70)

This is the di�erence between an integral and a corresponding Riemann sum. From this
observation, we were able with Salma Lahbabi to prove the following result (see Chapter5).

Theorem 1.14 (DG, Salma Lahbabi). Assume Vper 2 L 1 . There exist constantsC 2 R+

and � > 0, that depend on the latticeR, kVperkL 1 , g and "F only, such that

8L 2 N� ; jEper � EL j � Ce� �L (convergence of the ground state energy per unit volume)

and

8L 2 N� ; k� 
 � � 
 L kL 1 � Ce� �L (convergence of the ground state density):
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The idea of the proof is to show that the integrandf in (1.70) is an R � -periodic function
which admits an analytical continuation on a complex strip of the formR3 + i[ A; A ]3 for some
A > 0, and use the theory of convergence for Riemann sums. The same type of arguments
were used to prove the exponential decay of Wannier functions for insulators [DC64a, DC64b,
Koh59, BPC+ 07, Pan07].

The reduced Hartree-Fock model
The reduced Hartree-Fock (rHF) model for perfect crystals, or periodic rHF, has been rig-
orously derived from the rHF model for �nite molecular systems by means of the classical
thermodynamic limit by Catto, Le Bris and Lions [ CLL01]. In [CDL08], Cancès, Deleurence
and Lewin proved that the same periodic rHF model is also the supercell thermodynamic
limit of the supercell rHF model.

The rHF model is a nonlinear model in which the external potential is solution of a self-
consistent equation (both for the supercell modelVper;L and for the periodic modelVper). We
refer to Chapter 5 or to [Del08] for a complete description of these models.

Together with Salma Lahbabi, we proved a result similar to (1.14) in the rHF case (see
Chapter 5). We proved that, if the system is an insulator or a semiconductor, then

� the supercell rHF energy per unit cell converges exponentially fast towards the periodic
rHF energy per unit cell ;

� the supercell rHF ground state density converges exponentially fast towards the periodic
rHF ground state density, in the L 1

per(�) norm.

The theoretical exponential convergence rates are con�rmed by numerical simulations in
Chapter 5.

1.4.5 Reduced basis methods for Brillouin-zone integration

As mentioned before, a numerical calculation needs the discretization of the reciprocal unit
cell. The theory described in the previous section shows that, at least for insulators, the
values obtained on a regular coarse grid gives good results (this is due to the exponential rate
of convergence proved in Theorem1.14). For metallic systems, a slower rate of convergence is
expected and a much �ner sampling is needed to calculate for instance the integrated density
of states I de�ned in ( 1.62) (from which we obtain the Fermi level). As a consequence, the
calculation of the eigenmodes of the operatorHq at all the points q of the grid is numeri-
cally much more expensive than in the insulating case. Together with Eric Cancès, Virginie
Ehrlacher and Damiano Lombardi, we proposed areduced basismethod to speed up tradi-
tional calculations (see Chapter6). Our approach consists in creating reduced bases that are
q-point dependent (hence di�ers from the method described in [Pau07]).

The basic idea of the proposed numerical scheme is to extract local small reduced bases
from calculations on a coarse uniform grid of sizeL 1 � L 1 � L 1 of � � for some valueL 1 2 N� .
These are used to compute the eigenmodes ofHq for q on a �ne uniform grid of size
L 2 � L 2 � L 2, with L 2 � L 1. The resulting method is very easy to implement, and al-
ready provides very satisfactory results. It is then possible to further improve the accuracy of
the approximate eigenmodes at a low extra computational time, using a perturbation-based
post-processing method similar to the one introduced in [CDM+ 14].

The full algorithms and the corresponding numerical results are analysed in Chapter6.
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Spin Density Functional Theory





CHAPTER2

THE N -REPRESENTABILITY PROBLEMS

We expose in this chapter the arguments given in [Gon13] and in [Gon15b].

Abstract. This chapter is concerned with the pure-stateN -representability problem for
systems under a magnetic �eld. Necessary and su�cient conditions are given for a spin-
density 2� 2 matrix R to be representable by a Slater determinant. We also provide su�cient
conditions on the paramagnetic currentj for the pair (R; j ) to be Slater-representable in the
case where the number of electronsN is greater than 12. The caseN < 12 is left open.

2.1 The N -representability problem in SDFT

The density functional theory (DFT), �rst developed by Hohenberg and Kohn [HK64], then
further developed and formalized mathematically by Levy [Lev79], Valone [Val80] and Lieb [Lie83],
states that the ground state energy and density of a non-magnetic electronic system can be
obtained by minimizing some functional of the density only, over the set of all admissible
densities. Characterizing this set is called theN-representability problem. More precisely,
as the so-called constrained search method leading to DFT can be performed either with
N -electron wave functions [Lev79, Lie83], or with N -body density matrices [Val80, Lie83],
the N -representability problems can be recast in the pure-state setting resp. in the mixed-
state setting as follows: What is the set of electronic densities that come from an admissible
N -electron wave function, resp. an admissibleN -body density matrix? This question was
answered by Gilbert [Gil75], Harriman [Har81] and Lieb [Lie83] (see (2.6) below).

In order to deal with spin magnetic e�ects, it is necessary to resort to spin-polarized
density functional theory (SDFT) where the objects of interest are the spin-polarized densi-
ties � �� with �; � 2 f" ; #g. This theory was �rst developed by von Barth and Hedin [vBH72]
in a very general setting, but most applications use a restricted version of it, where local
magnetization is constrained along a �xed direction (collinear spin-polarized DFT). While
this simpli�ed version is able to account for many magnetic e�ects, it misses some important
physical behaviors (frustrated solids like
 -Fe or spin dynamics for instance). Actually, the
�rst calculations for non-collinear spin-polarized DFT have been performed by Sandratskii
and Guletskii [SG86] and Kübler et al. [KHSW88b, KHSW88a] (see [BSFS13] or [SDAD+ 07]
for some recent works), but no rigorous mathematical background has yet been developed in
this case. We emphasize that SDFT deals with spin e�ects, but not with orbital magnetic
e�ects. If the latter are not negligible, we should use another variant of DFT, namely current
-spin- density functional theory (C-S-DFT). This will be the topic of Section 2.2.
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In this section, we are interested in theN -representability problem for the so-called spin-
density 2 � 2 matrix (from which we recover the spin-polarized densities). The question was
addressed but left open in the pioneering work by von Barth and Hedin [vBH72]. We provide
in this section a complete characterization of the set of admissible spin-polarized densities
used to perform self-consistent minimizations.

2.1.1 Setting the stage: the spin-density 2 � 2 matrix

Recall that the set of admissible antisymmetric wave functions is

W pure
N :=

(

	 2
N̂

L 2(R3; C2); k	 kL 2 (R3N ) = 1 ; kr 	 kL 2 (R3N ) < 1

)

;

where L 2(R3; C2) is the one-electron state-space

L 2(R3; C2) �
�

� = ( � " ; � #)T ; k� k2
L 2 :=

�

R3
j� " j2 + j� #j2 < 1

�
:

A special case of wave functions is given by Slater determinants: let� 1; � 2; : : : ; � N be a set
of orthonormal functions in L 2(R3; C2), the Slater determinant generated by(� 1; : : : ; � N ) is
(we denote byxk := ( r k ; sk ) the k-th spatial-spin component)

S [� 1; : : : ; � N ] (x1; : : : ; xN ) :=
1

p
N !

det (� i (x j ))1� i;j � N :

The subset ofW pure
N consisting of all �nite energy Slater determinants is denoted byW Slater

N .
It holds that W Slater

1 = W pure
1 and W Slater

N ( W pure
N for N � 2.

For a wave-function 	 2 W pure
N , we de�ne the correspondingN -body density matrix

� 	 := j	 ih	 j, which corresponds to the projection onf C	 g in
V N L 2(R3; C2). The set of

pure-state and Slater-stateN -body density matrices are respectively

Gpure
N :=

�
� 	 ; 	 2 W pure

N

	
and GSlater

N :=
n

� 	 ; 	 2 W Slater
N

o
: (2.1)

It holds that GSlater
1 = Gpure

1 and that GSlater
N ( Gpure

N for N � 2. The set of mixed-state
N -body density matricesGmixed

N is de�ned as the convex hull ofGpure
N :

Gmixed
N =

(
1X

k=1

nk j	 k ih	 k j; 0 � nk � 1;
1X

k=1

nk = 1 ; 	 k 2 W pure
N

)

: (2.2)

It is also the convex hull of GSlater
N .

In SDFT, we are interested in the spin-density2� 2 matrix. For � 2 Gmixed
N , the associated

spin-density 2 � 2 matrix is the 2 � 2 hermitian function-valued matrix

R� (r ) :=

 
� ""

� � "#
�

� #"
� � ##

�

!

(r );

where, for �; � 2 f" ; #g2,

� ��
� (r ) := N

X

~s2f" ;#g( N � 1)

�

R3( N � 1)
�( r ; �; ~z;~s; r ; �; ~z;~s) d~z: (2.3)
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Here, we denoted by�( r 1; s1; : : : ; r 0
1; s0

1; : : :) the Schwartz kernel of the operator� 2 Gmixed
N .

In the case where� comes from a Slater determinantS [� 1; : : : ; � N ], we get

R� (r ) =
NX

k=1

 
j� "

k j2 � "
k � #

k

� "
k � #

k j� #
k j2

!

(r ): (2.4)

The Slater-state, pure-state and mixed-state sets of spin-density2� 2 matrices are respectively
de�ned by

J Slater
N :=

n
R� ; � 2 GSlater

N

o
; J pure

N :=
�

R� ; � 2 Gpure
N

	
and J mixed

N :=
n

R� ; � 2 Gmixed
N

o
:

Since the map � 7! R� is linear, it holds that J Slater
N � J pure

N � J mixed
N , that J mixed

N is
convex, and that J mixed

N is the convex hull of both J Slater
N and J pure

N . With this notation, the
N -representability problem is

N -representability problem : Characterize the setsJ Slater
N , J pure

N and J mixed
N . (2.5)

2.1.2 Pure-state and mixed-state representable spin-density 2� 2 matrices

Before answering problem (2.5), let us address some remarks. In the physics community, the
spin density 2 � 2 matrix R� is usually replaced by the pair(� � ; m � ), where, � � = � ""

� + � ##
�

denotes the total electronic density, andm � = tr C2 [�R � ] the spin angular momentum density.
Here,

� := ( � x ; � y ; � z) :=
��

0 1
1 0

�
;
�

0 � i
i 0

�
;
�

1 0
0 � 1

��

contains the Pauli-matrices. The pair (� � ; m � ) contains the same information asR� , hence
the N -representability problem for the matrix R is the same as the one for the pair(�; m).
However, as will become clear, it is more natural mathematically speaking to work withR� .

In the spin-unpolarized case, which amounts to setting� "#
� = � #"

� = 0 and � ""
� = � ##

�
(see Chapter3, Section 3.2), it is su�cient to characterize I X

N = f � � ; � 2 GX
N g, where X

represents either the set of Slater, pure of mixed states. This problem was �rst considered
by Gilbert [ Gil75] and completely solved by Harriman [Har81]. They proved that I Slater

N =
I pure

N = I mixed
N := I N with

I N =
�

� 2 L 1(R3); � � 0;
�

R3
� = N;

p
� 2 H 1(R3)

�
: (2.6)

A rigorous mathematical construction of DFT was then developed by Lieb in [Lie83].

In the spin-polarized setting, unlike the previous case, we have to distinguish pure-state
representability from mixed-state representability, as is illustrated by the following exam-
ple. Let N = 1 and � = ( � " ; � #) 2 W pure

1 . For � = j� ih� j, it holds, according to (2.4),
� ��

� (r ) = � � (r )� � (r ), so that the determinant of R� is null. Therefore, J pure
1 only contains

�elds of at most rank-1 matrices, whereas, as will be proved latter,J mixed
1 contains full-rank

matrices.

We now state the main theorem of this section. We �rst recall that for a Hermitian
matrix R satisfying R � 0,

p
R is a well-de�ned Hermitian matrix. We also recall the

de�nition of the Lebesgue spacesL p(Rd) := f f;
�

Rd f p < 1g and of the Sobolev spaces
W 1;p(Rd) := f f 2 L p(Rd); r f 2 L p(Rd)g. We introduce

CN :=
n

R 2 M 2� 2(L 1(R3; C)) ; R� = R; R � 0;
�

R3
tr C2 [R] = N;

p
R 2 M 2� 2(H 1(R3; C))

o
;

(2.7)
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and C0
N := f R 2 CN ; det R � 0g. The characterization of CN is given by the following lemma

(see Section2.1.3 for the proof).

Lemma 2.1. A function-valued matrix R =
�

� " �
� � #

�
is in CN i� its coe�cients satisfy

8
>>>>>>>><

>>>>>>>>:

� " =# � 0; � " � # � j � j2 � 0;
�

R3
� " +

�

R3
� # = N;

q
� " =# 2 H 1(R3); �;

p
det(R) 2 W 1;3=2(R3);

jr � j2� � 1 2 L 1(R3);
�
�
�r

p
det(R)

�
�
�
2

� � 1 2 L 1(R3):

(2.8)

The complete answer forN -representability in SDFT is given by the following theorem
(see Section2.1.3 for the proof).

Theorem 2.2.
Case N = 1 : It holds that

J Slater
1 = J pure

1 = C0
1 and J mixed

1 = C1:

Case N � 2: For all N � 2, it holds that

J Slater
N = J pure

N = J mixed
N = CN :

The �rst line of ( 2.8) states that R must be a positive Hermitian matrix and that the
number of electrons isN . The other three lines are regularity conditions that ensure the
�niteness of the kinetic energy. Comparing (2.6) and (2.7), we see that the above theorem is
a natural and nice extension of the classicalN -representability result (2.6).

An interesting consequence of our result is that it is possible to control the eigenvalues
of R. Most applications of SDFT use exchange-correlation functionals of the formExc(� + ; � � ),
where � + and � � are the eigenvalues ofR (see Chapter3, Equation (3.7) for examples and
discussion), so that the knowledge of the regularities of� + and � � is desirable for the study
of these applications.

Corollary 2.3.
If R is mixed-state representable, then its two eigenvalues� + and � � satisfy

p
� � 2 H 1(R3).

Let R 2 J pure
N be represented by a wave-function	 R . One can ask oneself whether there

is a way to control the kinetic energy of	 R (which we know is �nite by de�nition of R) with

respect to, say,





 r

p
R








L 2
? In the spin-unpolarized setting, there is such a control: it is pos-

sible to represent� 2 I N , where I N where de�ned in (2.6), by a wave-function 	 � such that
kr 	 � kL 2 (R3 ) � CN kr

p
� k6

L 2 , whereCN 2 R+ is a constant independent of� . Unfortunately,
we were not able to prove such a control. This is due to the use of the Lazarev-Lieb orthonor-
malization process [LL13] (see also Lemma2.5) in the proof. This process is a powerful tool
for representability, but looses control on the kinetic energy [Rut13].

We now prove Lemma2.1, Theorem 2.2 and Corollary 2.3.
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2.1.3 Proofs of the SDFT results

Proof of Lemma 2.1

Proof. If R satis�es (2.8), then R 2 CN .
Let R be a matrix satisfying (2.8), so that R is a positive hermitian matrix. The only

non-trivial point to check is that
p

R 2 M 2� 2(H 1(R3; C)) . Writing
p

R :=
�

r " s
s r#

�
, the

equality R =
p

R
p

R is equivalent to
8
<

:

jr " j2 + jsj2 = � " ;
jr #j2 + jsj2 = � #;
s(r " + r #) = �:

(2.9)

Together with the relation det(
p

R) = r " r # � j sj2 =
p

det, where we denoted bydet := det( R),
this leads to

r " =
� " +

p
det

�
� + 2

p
det

� 1=2
; r # =

� # +
p

det
�

� + 2
p

det
� 1=2

; and s =
�

�
� + 2

p
det

� 1=2
:

Let us show for instance thatr " 2 H 1(R3), the other cases being similar. Using the inequalities
(a + b)2 � 2(a2 + b2), � � � " and det � 0, we obtain

�
�
�r "

�
�
�
2

�

�
� " +

p
det

� 2

� + 2
p

det
�

2
�
� � "

�
�2

+ 2 det

� + 2
p

det
� 2� +

p
det;

and the right-hand side is integrable, thanks to (2.8). On the other hand, the gradient of r "

is

r r " =
r � " + r

p
det

�
� + 2

p
det

� 1=2
�

1
2

�
r � + 2 r

p
det

� �
� " +

p
det

�

�
� + 2

p
det

� 3=2
;

so that, using the same type of inequalities,

�
�
�r r "

�
�
�
2

� 2
(r � " + r

p
det)2

� + 2
p

det
+

(� +
p

det)2(r � + 2 r
p

det)2

(� + 2
p

det)3

� 4

 
jr � " j2

� " +
jr

p
detj2

�
+

jr � j2

�
+

jr
p

detj2

�

!

:

Every term of the right-hand side is in L 1(R3) according to (2.8). We deduce that r " 2
H 1(R3; C), and consequently,

p
R 2 M 2� 2(H 1(R3; C)) . In conclusion, R 2 CN .

If R 2 CN , then R satis�es (2.8).
Reciprocally, using (2.9), it is not di�cult to prove that R satis�es all conditions in (2.8). Let

us prove for instance that
�
�
�r

p
det

�
�
� � � 1. From

p
det = r " r # � j sj2, we get

r
p

det =
�

r r "
�

r # + r "
�

r r #
�

� 2Re (sr s) :

Together with the inequality (a + b+ c)2 � 3(a2 + b2 + c2), we deduce
�
�
�r

p
det

�
�
�
2

�
= 3

�
�r r "

�
�2 �

�r #
�
�2

�
+ 3

�
�r r #

�
�2 �

�r "
�
�2

�
+ 6

jr sj2 jsj2

�
� 3

�
�
�r r "

�
�
�
2

+ 3
�
�
�r r #

�
�
�
2

+ 6 jr sj2 ;

and the right-hand side is in L 1(R3) sinceR 2 CN . The result follows.



50 Chapter 2. The N -Representability problems

Proof of Theorem 2.2

Proof. We break the proof in many parts.

Step 1: J mixed
N � C N .

For a mixed state � 2 Gmixed
N , we de�ne the one-body spin-density matrix


 � (r ; r 0) =

 

 ""

� 
 "#
�


 #"
� 
 ##

�

!

(r ; r 0); (2.10)

where


 ��
� (r ; r 0) := N

X

s2f" ;#gN � 1

�

R3( N � 1)
�( r ; �; z; s; r 0; �; z; s) dz: (2.11)

It holds that R� (r ) = 
 � (r ; r 0). We denote by R
 := R� in the sequel. The one-body spin-
density matrix is a very useful quantity in quantum chemistry, and is completely understood
mathematically. Coleman [Col63] proved that any such 
 can be written as


 �� (r ; r 0) =
1X

k=1

nk � �
k (r )� �

k (r 0); 0 � nk � 1;
1X

k=1

nk = N;

h� k j� l i = � kl ; Tr( � � 
 ) :=
1X

k=1

nkkr � kk2 < 1 :

Let R 2 J mixed
N . To prove R 2 CN , it is enough to prove that R satis�es the conditions (2.8),

thanks to Lemma 2.1. By de�nition, there exists 
 satisfying the above conditions such that
R = R
 , so that

R =
1X

k=1

nk

0

@

�
�
�� "

k

�
�
�
2

� "
k � #

k

� #
k � "

k

�
�
� � #

k

�
�
�
2

1

A :

Under this form, the �rst line of ( 2.8) is obvious. Also, since all elements ofR are of the form
P

nk � �
k (r )� �

k (r ) with
P

nkkr � �
k k2 < 1 , we easily deduce from the Sobolev embedding that

R 2 W 1;3=2(R3). Moreover, using the Cauchy-Schwarz inequality, it follows, for� 2 f" ; #g,

jr � � j2 = 4

 
1X

k=1

nkRe
�
� �

k r � �
k

�
! 2

� 4

 
1X

k=1

nk j� �
k j2

!  
1X

k=1

nk jr � �
k j2

!

;

so that jr
p

� � j2 � 4
P

nk jr � �
k j2 (we recall that for f � 0, it holds jr f j2 = 4 f jr

p
f j2).

Integrating this relation gives kr
p

� � k2
L 2 � Tr( � � 
 �� ) < 1 . Likewise,

jr � j2 =

�
�
�
�
�

1X

k=1

nk

�
r � "

k � #
k + � "

k r � #
k

�
�
�
�
�
�

2

�

�
�
�
�
�

1X

k=1

nk

�
j� "

k j2 + j� #
k j2

� 1=2 �
jr � "

k j2 + jr � #
k j2

� 1=2
�
�
�
�
�

2

� �

 
1X

k=1

nk

�
jr � "

k j2 + jr � #
k j2

�
!

;

so that jr � j2� � 1 �
P

nk (jr � "
k j2 + jr � #

k j2). Integrating this relation gives the inequality
kjr � j2� � 1kL 1 � Tr( � � 
 ) < 1 . Finally, let us evaluate det(R). From det(R) = � " � # � j � j2,
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we get

det(R) =
1X

k;l =1

nknl

� �
�
� � "

k

�
�
�
2 �

�
� � #

l

�
�
�
2

� � "
k � #

k � #
l � "

l

�

=
X

1� k<l< 1

nknl

� �
�
� � "

k

�
�
�
2 �

�
� � #

l

�
�
�
2

+
�
�
� � "

l

�
�
�
2 �

�
� � #

k

�
�
�
2

� � "
k � #

k � #
l � "

l � � "
l � #

l � #
k � "

k

�

=
X

1� k<l< 1

nknl

�
�
� � "

k � #
l � � #

k � "
l

�
�
�
2

=
1
2

1X

k;l =1

nknl

�
�
� � "

k � #
l � � #

k � "
l

�
�
�
2

:

Using similar arguments as before, we obtain that
p

det 2 W 1;3=2(R3) and that

jr det(R)j2 � 8 det(R)�
1X

k=1

nk

�
jr � "

k j2 + jr � #
k j2

�
:

Integrating this inequality leads to





 jr

p
det(R)j2� � 1








L 1
� 2Tr( � � 
 ) < 1 . Therefore, any

R 2 J mixed
N satis�es (2.8), hence is inCN .

Step 2: CaseN = 1 : J Slater
1 = J pure

1 = C0
1 .

The fact that J Slater
1 = J pure

1 simply comes from the fact that GSlater
1 = Gpure

1 . To prove
J Slater

1 � C 0
1 , we let R 2 J Slater

1 be represented by� = ( � " ; � #)T 2 H 1(R3; C2), so that

R =

 
j� " j2 � " � #

� #� " j� #j2

!

:

SinceR 2 J Slater
1 � J mixed

1 � C N according to Step 1, and sincedet(R) � 0, we deduce that
R 2 C0

N .

We now prove that C0
1 � J Slater

1 . Let R =
�

� " �
� � #

�
2 C0

1 . From det R � 0 and Lemma 2.1,

we get 8
>>>><

>>>>:

� " =# � 0; � " � # = j� j2;
�

R3
� " +

�

R3
� # = 1 ;

q
� " =# 2 H 1(R3); � 2 W 1;3=2(R3);

jr � j2� � 1 2 L 1(R3):

(2.12)

There are two natural choices that we would like to make for a representing orbital, namely

� 1 =
� p

� " ;
�

p
� "

� T

and � 2 =
� �

p
� #

;
p

� #
� T

: (2.13)

Unfortunately, it is not guaranteed that these orbitals are indeed inH 1(R3; C2). It is the case
only if jr � j2=� # is in L 1(R3) for � 1, and if jr � j2=� " is in L 1(R3) for � 2. Due to (2.12), we
only know that jr � j2=� 2 L 1(R3). The idea is therefore to interpolate between these two
orbitals, taking � 1 in regions where� " � � #, and � 2 in regions where� # � � " . This is done
via the following process.

Let � 2 C1 (R) be a non-decreasing function such that0 � � � 1, � (x) = 0 if x � 1=2
and � (x) = 1 if x � 1. We write � = � + i � where � is the real-part of � , and � is its
imaginary part. We introduce

� 1 :=

p
� 2 + � 2(� " =� #)� 2

p
� #

; � 1 :=
p

1 � � 2(� " =� #)
�

p
� #

;

� 2 :=
�� 1 + �� 1

� " ; � 2 :=
�� 1 � �� 1

� " ;
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and we set
� " := � 1 + i � 1 and � # := � 2 + i � 2:

Let us prove that � := ( � " ; � #) representsR and that � 2 W Slater
1 . First, an easy calculation

shows that

j� " j2 = � 2
1 + � 2

1 =
� 2 + � 2� 2 + (1 � � 2)� 2

� # =
j� j2

� # = � " ;

j� #j2 =
(� 2 + � 2)( � 2

1 + � 2
1)

(� " )2 =
j� j2

� " = � #;

Re
�

� " � #
�

= � 1� 2 � � 1� 2 =
� (� 2

1 + � 2
1)

� " = �;

Im
�

� " � #
�

= � 1� 2 + � 2� 1 =
� (� 2

1 + � 2
1)

p
� "

= �;

so that � 2 L 2(R3; C2) with k� k = 1 , and � representsR. To prove that � 2 W Slater
1 , we

need to check that� 1; � 2; � 1 and � 2 are in H 1(R3). For � 1, we choose another non-increasing
function � 2 C1 (R) such that 0 � � � 1, � (x) = 0 for x � 1, and � (x) = 1 for x � 2. Note
that (1 � � )� � 0. It holds that

r � 1 = (1 � � 2(� " =� #)) r � 1 + � 2(� " =� #)r � 1: (2.14)

The second term in the right-hand side of (2.14) is non-null only if � " � � #, so that on this
part, it holds � (� " =� #) = 1 . In particular, from the equality � " � # = j� j2, we get

� 2(� " =� #)� 1 = � 2(� " =� #)
j� j

p
� #

= � 2(� " =� #)
p

� " ;

and similarly,
� 2(� " =� #)r � 1 = � 2(� " =� #)r

p
� " ;

which is in L 2(R3) according to (2.12). On the other hand, the �rst term in the right-hand
side of (2.14) is non-null only if � " � 2� #, so that (1=3)� � � # on this part. In particular,
from the following pointwise estimate

jr
p

f + gj =
jr f + r gj
2
p

f + g
�

jr f j
2
p

f + g
+

jr gj
2
p

f + g
�

jr f j
2
p

f
+

jr gj
2
p

g
= jr

p
f j + jr

p
gj; (2.15)

which is valid almost everywhere wheneverf; g � 0, the inequality (a + b)2 � 2(a2 + b2), and
the fact that � 2 + � 2� 2 � j � j2, we get (we write � for � (� " =� #))

jr � 1j2 =

�
�
�
�
�

p
� #r

p
� 2 + � 2� 2 �

p
� 2 + � 2� 2r

p
� #

� #

�
�
�
�
�

2

� 2

 
jr

p
� 2 + � 2� 2j2

� # +
(� 2 + � 2� 2)

(� #)2 jr
p

� #j2
!

� 2

0

B
@

jr � j2

� # +
2

�
�
�r � � # r � " � � " r � #

(� # )2

�
�
�
2

� 2

� # +
2� 2jr � j2

� # +
2j� j2

(� #)2 jr
p

� #j2

1

C
A :

We �nally use the inequality (� #) � 1 � (3=� ), and the inequality j� j2=(� #)2 = � " =� # � 2 and
get

jr � 1j2 � C
�

jr � j2

�
+ kr � k2

L 1

�
jr � " j2

� " +
jr � #j2

� #

�
+

jr � j2

�
+ jr

p
� #j2

�
:
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The right-hand side is in L 1(R3) according to (2.12). Hence,(1 � � 2(� " =� #)) jr � 1j 2 L 2(R3),
and �nally � 1 2 H 1(R3).
The other cases are treated similarly, observing that,

� whenever� " � � #, then � = 1 , and � = � 1 where � 1 was de�ned in (2.13). We then
control (� " ) � 1 with the inequality (� " ) � 1 � 2� � 1 ;

� whenever � " � � #=2, then � = 0 , � = � 2. We control (� #) � 1 with the inequality
(� #) � 1 � 3

2 � � 1 ;

� whenever� #=2 � � " � � #, then both (� " ) � 1 and (� #) � 1 are controlled via (� " ) � 1 � 3� � 1

and (� #) � 1 � 2� � 1.

The result follows.

Step 3: CaseN � 2 : J Slater
N = J pure

N = J mixed
N = CN .

Since J Slater
N � J pure

N � J mixed
N = CN , according to Step 1, it is enough to prove that

CN � J Slater
N . We start with a key lemma.

Lemma 2.4. For all M; N 2 N2, it holds that J Slater
N + M = J Slater

N + J Slater
M .

Proof of Lemma 2.4. The caseJ Slater
N + M � J Slater

N + J Slater
M is trivial: if R 2 J Slater

N + M is rep-
resented by the Slater determinantS [� 1; : : : � N + M ], then, by denoting by R1 (resp. R2)
the spin-density 2 � 2 matrix associated to the Slater determinant S [� 1; : : : ; � N ] (resp.
S [� N +1 ; : : : ; � N + M ]), it holds R = R1 + R2 (see Equation (2.4) for instance), with R1 2
J Slater

N and R2 2 J Slater
M .

The converse is more involving, and requires an orthogonalization step. LetR1 2 J Slater
N

be represented by the Slater determinantS [� 1; : : : ; � N ], and R2 2 J Slater
M be represented by

the Slater determinant S [e� 1; : : : ; e� M ]. We cannot directly consider the Slater determinant
S [� 1; : : : ; � N ; e� 1; : : : ; e� M ], for (� 1; : : : ; � N ) is not orthogonal to ( e� 1; : : : ; e� M ).

We use the following lemma, which is a smooth version of the Hobby-Rice theorem [HR65]
(see also [Pin76]), and that was proved by Lazarev and Lieb in [LL13] (see also [LS13]).

Lemma 2.5 (Lazarev, Lieb). For all N 2 N� , and for all (f 1; : : : ; f N ) 2 L 1(R3; C), there
exists a function u 2 C1 (R3), with bounded derivatives, such that

81 � k � N;
�

R3
f keiu = 0 :

Moreover, u can be chosen to vary in ther1 direction only.

We now modify the phases off� 1; : : : ; g� M as follows. First, we choosefu1 as in Lemma2.5
such that,

81 � k � N;
�

R3

�
� "

k
f� "

1 + � #
k
f� #

1

�
ei fu1 = 0 ;

and we set� N +1 = f� 1ei fu1 . Note that, by construction, � N +1 is normalized, in H 1(R3; C2),
and orthogonal to (� 1; : : : ; � N ). We then construct fu2 as in Lemma2.5 such that

81 � k � N + 1 ;
�

R3

�
� "

k
f� "

2 + � #
k
f� #

2

�
ei fu2 = 0 ;

and we set� N +2 = f� 2ei fu2 . We continue this process for3 � k � M and construct � N + k =
f� kei fuk . We thus obtain an orthonormal family (� 1; : : : ; � N + M ). Since the spin-density2 � 2
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matrix of the Slater determinant S [f� 1; : : : ; g� M ] is the same as the one ofS [� N +1 ; : : : ; � N + M ]
(the phases cancel out), we obtain thatR = R1 + R2, whereR is the spin-density2� 2 matrix
represented byS [� 1; : : : ; � N + M ]. The result follows.

We now prove that CN � J Slater
N for N � 2. We start with the case N = 2 .

Case N = 2 .

Let R =
�

� " �
� � #

�
2 C2. We write

p
R =

�
r " s
s r#

�
, with r " ; r # 2 H 1(R3; R) and s in

H 1(R3; C). Let

R" :=
�

jr " j2 sr "

sr " jsj2

�
and R# :=

�
jsj2 sr#

sr# jr #j2

�
: (2.16)

It is easy to check that R = R" + R#, that R" =# are hermitian, of null determinant, and
that

p
R" =# 2 M 2� 2

�
H 1(R3; C)

�
. However, it may hold that

�
R3 tr C2 [R" ] =2 N� , so that R" is

not in C0
M for someM 2 N� .

The casesR" = 0 or R# = 0 are trivial. Let us suppose that m� :=
�

R3 � R � 6= 0 for

� 2 f" ; #g. In this case, the matricesfR� = ( m� ) � 1R� are in C0
1 , hence are representable by a

single orbital according to Step 2. Let e� =
�

f� "
1; f� #

1

� T

2 H 1(R3; C2) and e� 2 =
�

f� "
2; f� #

2

� T

2

H 1(R3; C2) be normalized orbitals that represent respectivelyfR" and fR#. It holds

e� 1e� �
1 = fR" = ( m" ) � 1R" and e� 2e� �

2 = fR# = ( m#) � 1R#:

From the Lazarev-Lieb orthogonalization process (see Lemma2.5), there exists a function
u 2 C1 (R) with bounded derivatives such that

he� 1j e� 2eiu i =
�

R3

�
f� "

1
f� "

2 + f� #
1
f� #

2

�
eiu = 0 : (2.17)

Once this function is chosen, there exists a functionv 2 C1 (R) with bounded derivatives
such that

he� 1j e� 1eiv i = he� 1j e� 2ei( u+ v) i = he� 2eiu j e� 1eiv i = he� 2j e� 2eiv i = 0 : (2.18)

We �nally set

� 1 :=
1

p
2

� p
m" e� 1 +

p
m#e� 2eiu

�
and � 2 :=

1
p

2

� p
m" e� 1 �

p
m#e� 2eiu

�
eiv :

From (2.17), we deducek� 1k2 = k� 2k2 = 1 , so that both � 1 and � 2 are normalized. Also,
from (2.18), we get h� 1j� 2i = 0 , hence f � 1; � 2g is orthonormal. As e� 1 and e� 2 are in
H 1(R3; C2), and u and v have bounded derivatives,� 1 and � 2 are in H 1(R3; C2). Finally, it
holds that

� 1� �
1 + � 2� �

2 =
1
2

�
m" e� 1e� �

1 + m#e� 2e� �
2 + 2

p
m" m#Re

�
e� 1e� �

2e� iu
�

+ m" e� 1e� �
1 + m#e� 2e� �

2 � 2
p

m" m#Re
�

e� 1e� �
2e� iu

��

= m" e� 1e� �
1 + m#e� 2e� �

2 = R:

We deduce that the Slater determinant S [� 1; � 2] representsR, so that R 2 J Slater
2 . Alto-

gether, C2 � J Slater
2 , and thereforeC2 = J Slater

2 .
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Case N > 2.
We proceed by induction. Let R 2 CN +1 with N � 2, and supposeCN = J Slater

N . We use the
decomposition (2.16) and write R = R" + R#, whereR" =# are two null-determinant hermitian
matrices. For � 2 f" ; #g, we denote bym� :=

�
R3 � R � . Sincem" + m# = N + 1 � 3, at least

m" or m# is greater than 1. Let us suppose without loss of generality thatm" � 1. We write
R = R1 + R2 with

R1 := ( m" ) � 1R" and R2 :=
��

1 � (m" ) � 1
�

R" + m#R#
�

:

It holds that R1 2 C0
1 = J Slater

1 and R2 2 CN = J Slater
N (by induction). Together with

Lemma 2.4, we deduce thatR 2 J Slater
N +1 . The proof is complete.

Proof of Corollary 2.3

Proof. Let R 2 J mixed
N = CN , and let

p
R =

�
r " s
s r#

�
: The eigenvalues ofR are denoted

by 0 � � � � � + , so that
p

� � are the eigenvalues of
p

R. In particular,

p
� � =

1
2

�
r " + r # �

p
�

�
with � = ( r " � r #)2 + 4 jsj2:

According to Theorem 2.2, r " , r # and s are in H 1(R3). Hence,� is the sum of two quantities
whose square roots are inH 1(R3), so that

p
� 2 H 1(R3) by convexity of k

p
�k2

L 2 .The result
follows.
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2.2 Representability in CSDFT

We now get interested in current-spin-density function theory (CSDFT). For a system sub-
jected to a magnetic �eld, the energy of the ground state can be obtained by a minimization
over the set of admissible pairs(R; j ), whereR is the spin-density 2 � 2 matrix introduced in
Section2.1.1, and j is the paramagnetic current [VR88]. This has lead to several density-based
theories, that come from several di�erent approximations. In spin-density functional theory
(SDFT), one is only interested in spin e�ects, hence the paramagnetic term is neglected. In
parallel, in current-density functional theory (CDFT), one is only interested in magnetic or-
bital e�ects, and spin e�ects are neglected [Vig87]. In this case, the CDFT energy functional
of the system only depends on� and j , and we need a characterization of the set of pure-state
and mixed-state N -representable pairs(�; j ). Such a characterization was given recently by
Hellgren, Kvaal and Helgaker in the mixed-state setting [TKH14], and by Lieb and Schrader
in the pure-state setting, when the number of electrons is greater than 4 [LS13].

In this section, we give some answers to theN -representability problems in the current-
spin-density functional theory (CSDFT): What is the set of pairs (R; j ) that come from an
admissibleN -electron wave-function, resp. an admissibleN -body density matrix? (pure-state
resp. mixed-state representability). We will answer the question in the mixed-state setting
for all N 2 N� , and in the pure-state setting whenN � 12 by combining the results of the
previous section and the results in [LS13]. The proof relies on the Lazarev-Lieb orthogonaliza-
tion process. In particular, our method does not give an upper-bound for the kinetic energy
of the wave-function in terms of the previous quantities (we refer to [LL13, Rut13] for more
details). We leave open the caseN < 12 for pure-state CSDFT representability.

2.2.1 Representable spin-density 2 � 2 matrix with paramagnetic current

We will use the same notation as in the previous section. In addition to the spin-density
2 � 2 matrix, we need to de�ne the paramagnetic current j . For a N -body density matrix
� 2 Gmixed

N , the associated paramagnetic current isj � = j "
� + j #

� where

j �
� = Im

0

@N
X

~s2f" ;#gN � 1

�

R3( N � 1)
r r 0�( r ; �; ~z;~s; r 0; �; ~z;~s)

�
�
�
r 0= r

d~z

1

A :

In the case where� comes from a Slater determinantS [� 1; : : : ; � N ], we get

j � =
NX

k=1

Im
�

� "
k r � "

k + � #
k r � #

k

�
: (2.19)

While only the total paramagnetic current j appears in C(S)DFT, the pair (j " ; j #) is some-
times used to design accurate current-density functionals (see [VR88] for instance). In this
thesis, we only focus on the representability ofj , and not on the pair (j " ; j #).

Let us recall some classical necessary conditions for a pair(R; j ) to be N -representable (we
refer to [TKH14, LS13] for the proofs). In the sequel, we will denote by� " := � "" , � # := � ##

and � := � "# the elements of a matrix R, so that R =
�

� " �
� � #

�
, and by � = � " + � # the

associated total electronic density. Recall that the setCN was de�ned in (2.7).

Lemma 2.6. If a pair (R; j ) is representable by a mixed-stateN -body density matrix, then
�

R 2 CN

jj j2� � 1 2 L 1(R3):
(2.20)
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From the second condition of (2.20), it must hold that the support of j is contained in the
support of � . The vector v := � � 1j is called thevelocity �eld, and w := curl (v ) is the vorticity .

Let us �rst consider the pure-state setting. In the spin-unpolarized setting, for N =
1, a pair (�; j ) representable by a single orbital� generally satis�es the curl-free condition
curl (� � 1j ) = 0 (this is the case for instance when� is of the form � = j� je� iu , where the
phaseu is in C1(R3), see [LS13, TKH14]). This is no longer the case when spin is considered,
as is shown is the following Lemma (see Section2.2.2 for the proof).

Lemma 2.7 (CSDFT, case N = 1 ). Let � = ( � " ; � #)T 2 W Slater
1 be such that both� " and

� # have phases inC1(R). Then, the associated pair(R; j ) satis�es R 2 C0
1 , jj j2� � 1 2 L 1(R3),

and the two curl-free conditions

curl
�

j
�

�
Im ( � r � )

�� #

�
= 0; curl

�
j
�

+
Im ( � r � )

�� "

�
= 0: (2.21)

Remark 2.8. If we write � = j� jei � , then, j� j2 = � " � #, and

Im ( � r � ) = j� j2r � = � " � #r �: (2.22)

In particular, it holds that

curl
�

Im ( � r � )
�� # +

Im ( � r � )
�� "

�
= curl (r � ) = 0;

so that one of the equalities in (2.21) implies the other one.

Remark 2.9. We recover the traditional result in the collinear spin setting, where� � 0.

In the caseN > 1, things are very di�erent. In [ LS13], the authors proved the following
theorem for N � 4.

Theorem 2.10 (Lieb, Schrader).
A su�cient set of conditions for a pair (�; j ) to be pure-stateN -representable is

� � 2 I N with N � 4 and j satis�es jj j2� � 1 2 L 1(R3).

� there exists� > 0 such that

sup
r 2 R3

f (r )(1+ � )=2�
jw (r )j + jr w(r )j

�
< 1 (2.23)

where
f (r ) := (1 + ( r1)2)(1 + ( r2)2)(1 + ( r3)2): (2.24)

By adapting their proof to our case, we are able to ensure representability of a pair(R; j )
by a Slater determinant for N � 12 under the same mild condition (see Section2.2.2 for the
proof).

Theorem 2.11 (CSDFT, caseN � 12).
A su�cient set of conditions for a pair (R; j ) to be representable by a Slater determinant is

� R 2 CN with N � 12 and j satis�es jj j2� � 1 2 L 1(R3)

� there exists� > 0 such that,

sup
r 2 R3

f (r )(1+ � )=2�
jw (r )j + jr w(r )j

�
< 1 ; (2.25)

where f is the function de�ned in (2.24).
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Remark 2.12. The condition (2.25) has of course the same origin as the condition (2.23).
In [LS13], the authors conjectured that this condition �can be considerably loosened�.

Let us turn to the mixed-state case. If (R; j ) is representable by a Slater determinant
S [� 1; : : : ; � N ], then, for all k 2 N� , the pair (k=N)(R; j ) is mixed-state representable,
where N is the number of orbitals (simply take the uniform convex combination of the pairs
represented byS [� 1], S [� 2], etc.). In particular, from Theorem 2.11, we deduce the follow-
ing corollary.

Corollary 2.13 (CSDFT, case mixed-state).
A su�cient set of conditions for a pair (R; j ) to be mixed-state representable isR 2 CN for
someN 2 N� , j satis�es jj j2� � 1 2 L 1(R3), and (2.25) holds for some� > 0.

In [TKH14], the authors provide di�erent su�cient conditions than ( 2.25) for a pair (�; j )
to be mixed-state representable. They proved that if

(1 + j � j 2)�
�
�r (� � 1j )

�
�2

2 L 1(R3);

then the pair (�; j ) is mixed-state representable. Their proof can be straightforwardly adapted
for the representability of the pair (R; j ), so that similar results hold.

We now prove Lemma2.7 and Theorem2.11.

2.2.2 Proofs of the CSDFT results

Proof of Lemma 2.7

Proof. Let � = ( � " ; � #) 2 H 1(R3; C2) having phases inC1(R), and let (R; j ) be the associated
spin-density 2 � 2 matrix and paramagnetic current. It holds that

R =
�

� " �
� � #

�
:=

 
j� " j2 � " � #

� #� " j� #j2

!

:

For � 2 f" ; #g, we let � � be the phase of� � , so that � � =
p

� � ei � �
. Setting � = � " � � #,

we obtain � = j� jei � =
p

� " � #ei � . On the other hand, the paramagnetic current is, according
to (2.19),

j = � " r � " + � #r � # = � r � # + � " r � = � r � " � � #r �:

In particular, using ( 2.22),

j
�

�
Im ( � r � )

�� # =
j � � " r �

�
= r � # and

j
�

+
Im ( � r � )

�� " = r � " :

are curl-free.

Proof of Theorem 2.11

Proof. We break the proof in several steps.

Step 1: Any R 2 CN can be written asR = R1 + R2 + R3 with Rk 2 C0
N k

, Nk � 4.

Let R =
�

� " �
� � #

�
2 CN , with N � 12. Then,

p
R =

�
r " s
s r#

�
, with r " ; r # 2 H 1(R3; R)

and s in H 1(R3; C). We write R = R" + R# where R" =# were de�ned in (2.16). As in
the proof of Theorem 2.2 for the caseN = 2 , R" =# are hermitian, of null determinant, andp

R" =# 2 M 2� 2
�
H 1(R3; C)

�
. However, it may hold that

�
tr C2 [R" ] =2 N� , so that R" is not
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in C0
M for someM 2 N� . In order to handle this di�culty, we will distribute the mass of R"

and R# into three spin-density 2 � 2 matrices.

More speci�cally, let us suppose without loss of generality that
�

tr C2 [R" ] �
�

tr C2 [R#].
We set

R1 = (1 � � 1)R" + � 2R#;

R2 = � 1(1 � � 3)R" ;

R3 = (1 � � 2)R# + � 3R" ;

(2.26)

where � 1; � 2; � 3 are suitable non-decreasing functions inC1 (R3), that depends only on r1,
and such that, for 1 � k � 3, it holds 0 � � k � 1. We will choose them of the form� k (r ) = 0
for r1 < � k and � k (r ) = 1 for r1 � � k > � k , and such that

(1 � � 1)� 2 = (1 � � 2)� 3 = (1 � � 1)� 3 = 0 : (2.27)

These functions are tuned so that
�

R3 tr C2 (Rk ) 2 N� and
�

R3 tr C2 (Rk ) � 4 for all 1 � k �
3 (see Figure2.1 for a canonical example of such a triplet(� 1; � 2; � 3)). In Figure 2.1, we
clearly see how the non-overlapping condition (2.27) guarantees the null-determinant condition
everywhere. Note that such a spatial decomposition could not have been performed with only
two spin-density 2 � 2 matrices. Although it is not di�cult to convince oneself that such
functions � k exist, we provide a full proof of this fact in Section2.2.3.

(1 � � 1) � 2

� 1(1 � � 3)

(1 � � 2) � 3

(a)

(b)

(c)

Figure 2.1 � Weights of the matrices R" (blue) and R# (red) in (a) R1 = (1 � � 1)R" + � 2R#,
(b) R2 = � 1(1 � � 3)R" and (c) R3 = (1 � � 2)R" + � 3R#.

From (2.27), it holds that, for all 1 � k � 3, Rk 2 C0
NK

, and that R1 + R2 + R3 =
R" + R# = R. In order to simplify the notation, we introduce the total densities of R" and
R#:

f " := jr " j2 + jsj2 and f # := jr #j2 + jsj2:

Recall that � = f " + f #. We decomposej in a similar fashion. We write j = j 1 + j 2 + j 3 with

j 1 := (1 � � 1)
�

f "

�
j � Im (sr s)

�
+ � 2

�
f #

�
j + Im ( sr s)

�
;

j 2 := � 1(1 � � 3)
�

f "

�
j � Im (sr s)

�
;

j 3 := (1 � � 2)
�

f #

�
j + Im ( sr s)

�
+ � 3

�
f "

�
j � Im (sr s)

�
:

(2.28)
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Step 2: The pair (R1; j 1) is representable by a Slater determinant.
Following [LS13], we introduce

� (x) =
1
m

� x

�1

1
(1 + y2)(1+ � )=2

dy;

where � is the one in (2.25), and m is a constant chosen such that� (1 ) = 1 . We then
introduce

� 1;1(r ) =
2

N1
� (r + � );

� 1;2(r ) =
2

N1 � 1
� (x1 + � )(1 � � 1(r )) ;

� 1;3(r ) =
2

N1 � 2
� (x2 + 
 )(1 � � 1(r ) � � 2(r )) ;

� 1;k (r ) =
1

N1 � 3
(1 � � 1(r ) � � 2(r ) � � 3(r )) for 4 � k � N1;

(2.29)

where �; �; 
 are tuned so that, if � 1 := tr C2 R1 denotes the total density ofR1,

81 � k � N1;
�

R3
� 1;k � 1 = 1 : (2.30)

It can be checked (see [LS13]) that � 1;k � 0 and that
P N1

k=1 � 1;k = 1 . We seek orbitals of the
form

� 1;k :=
p

� 1;k

� p
(1 � � 1)

�
r "

s

�
+

p
� 2

�
s
r #

��
eiu1;k ; 1 � k � N1;

where the phasesu1;k are chosen carefully later. From (2.27), we recall that (1 � � 1)� 2 = 0 ,
so that, by construction, � 1;k is normalized, and

� 1;k � �
1;k = � 1;kR1:

Let us suppose for now that the phasesu1;k are chosen so that the orbitals are orthogo-
nal. This will indeed be achieved thanks to the Lazarev-Lieb orthogonalization process (see
Lemma 2.5). Then, 	 1 := S [� 1;1; : : : ; � 1;N ] represents the spin-density2� 2 matrix R1. Ac-
cording to (2.19), the paramagnetic current of 	 is (we recall that r " and r # are real-valued,
and we write s = jsjei � for simplicity)

j 	 =
N1X

k=1

� 1;k (1 � � 1)
�

jr " j2r u1;k + jsj2r (� � + u1;k )
�

+ � 1;k � 2

�
jsj2r (� + u1;k ) + jr #j2r u1;k

�

=
�

(1 � � 1)f " + � 2f #
�

 
N1X

k=1

� 1;k r u1;k

!

+ ( � 2 � (1 � � 1)) jsj2r �:

Sincejsj2r � = Im ( sr s), this current is equal to the target current j 1 de�ned in ( 2.28) if and
only if

� 1
j
�

= � 1

N1X

k=1

� k r u1;k : (2.31)

In [LS13], Lieb and Schrader provided an explicit solution (u1;1; : : : ; u1;N 1 ) of this system
when1 N1 � 4. We do not repeat the proof, but emphasize on the fact that since condi-
tion ( 2.25) holds true, the phasesu1;k can be chosen to have bounded derivatives, so that

1 In the same article, the authors recall (see [TME09 ] for instance) that ( 2.31) may not have solutions when
N1 = 2 . The case N1 = 3 is still open. Of course, would someone �nd an explicit solution for N1 = 3 , the
condition N � 12 in Theorem 2.11 could be replaced by the weaker condition N � 9.
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the functions � 1;k are in H 1(R3; C2). Also, as their proof relies on the Lazarev-Lieb orthog-
onalization process, it is possible to choose the phasesu1;k so that the functions � 1;k are
orthogonal, and orthogonal to a �nite-dimensional subspace ofL 2(R3; C2).

We proved that the pair (R1; j 1) is representable by the Slater determinantS [� 1;1; : : : ; � 1;N 1 ].

Step 3: Representability of (R2; j 2) and (R3; j 3), and �nally of (R; j ).
In order to represent the pair (R2; j 2), we �rst construct the functions � 2;k for 1 � k � N2 of
the form (2.29) so that (2.30) holds for � 2 := tr C2 R2. We then seek orbitals of the form

� 2;k :=
q

� 2;k � 1(1 � � 3)
�

r "

s

�
eiu2;k ; for 1 � k � N2:

Reasoning as above, the Slater determinant of these orbitals represents the pair(R2; j 2) if and
only if

� 2
j 2

�
= � 2

N2X

k=1

� 2;k r u2;k :

Again, since N2 � 4, this equation admits a solution (u2;1; : : : ; u2;N 2 ). Moreover, it is pos-
sible to choose the phasesu2;k so that the functions � 2;k are orthogonal to the previously
constructed � 1;k .

We repeat again this argument for the pair(R3; j 3). Once the new set of functions� 3;k is
constructed, we seek orbitals of the form

� 3;k :=
p

� 3;k

� p
(1 � � 2)

�
s
r #

�
+

p
� 3

�
r "

s

��
eiu3;k

and construct the phases so that the functions� 3;k are orthogonal to the functions � 1;k

and � 2;k .

Altogether, the pair (R; j ) is represented by the (�nite energy) Slater determinant

S [� 1;1; : : : ; � 1;N 1 ; � 2;1; : : : ; � 2;N 2 ; � 3;1; : : : ; � 3;N 3 ];

which concludes the proof.

2.2.3 Construction of the functions � 1, � 2 and � 3

We explain in this section how to construct three functions� 1; � 2; � 3 2 C1 (R) like in Fig-
ure 2.1. In order to simplify the notation, we introduce

f (r ) :=
�

R� R
tr C2 (R#)( r; r 2; r3) dr2dr3; and g(r ) :=

�

R� R
tr C2 (R" )( r; y; z ) dr2dr3;

where R" ; R# were de�ned in (2.16). We denote by

F (� ) :=
� �

�1
f (x)dx and G(� ) :=

� �

�1
g(x)dx;

and we setF := F (1 ) =
�

R f and G := G(1 ) =
�

R g. Note that F and G are continuous
non-decreasing functions going from0 to F (respectivelyG), and that it holds F + G = N . Let
us suppose without loss of generality thatF � G , so that 0 � F � N=2 � G � N . If F = 0 ,
then R# = 0 and we can chooseR1 = R2 = (4 =N)R" 2 C0

4 and R3 = ( N � 8)=NR" 2 C0
N � 8.

Since N � 12, it holds N � 8 � 4, so that this gives the desired decomposition. We now
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consider the caseF 6= 0 .

In order to keep the notation simple, we will only study the caseF < 8 (the caseF > 8
is similar by replacing the integer 4 by a greater integerM such that F < 2M < N � 4 in
the sequel). We seek for� such that

8
>>>><

>>>>:

� �

�1
f (x)dx < 4 and

� �

�1
f (x) +

� 1

�
g(x) > 4;

� 1

�
f (x)dx < 4 and

� �

�1
g(x)dx +

� 1

�
f (x)dx > 4;

or equivalently

F � 4 < F (� ) < 4; and F (� ) + 4 � F < G (� ) < F (� ) + G � 4: (2.32)

Let � (F� 4) be such that F (� (F� 4)) = F � 4 (with � (F� 4) = �1 if F � 4), and � (4) be
such that F (� (4) ) = 4 (with � (4) = + 1 if F � 4). As F is continuous non-decreasing, the
�rst equation of ( 2.32) is satis�ed whenever � (F� 4) < � < � (4) .

The function [� (F� 4) ; � 4] 3 � 7! m(� ) := F (� ) + 4 � F goes continuously and non-
decreasingly from0 to 8�F , and the function [� (F� 4) ; � 4] 3 � 7! M (� ) := F (� )+ G � 4 goes
continuously and non-decreasingly fromN � 8 to G between� (F� 4) and � (4) . In particular,
sinceG(� ) goes continuously and non-decreasingly from0 to G, only three cases may happen:

Case 1: There exists � 0 2 (� (F� 4) ; � (4) ) such that m(� 0) < G (� 0) < M (� 0).
In this case, (2.32) holds for � = � 0. By continuity, there exists " > 0 such that

F (� + " ) < 4; F (� ) + G � G(� + ") > 4; and G(� ) + F � F (� + " ) > 4:

Let � 2 2 C1 (R) be a non-decreasing function such that� 2(x) = 0 for x < � and � 2(x) = 1
for x > � + " . Then, as 0 � � 2 � 1, it holds that:

�

R
(1 � � 2)f � F (� + " ) < 4 and

�

R
(1 � � 2)f +

� 1

� + "
g � F (� ) + G � G(� + ") > 4:

We deduce that there exists an non-decreasing function� 3 2 C1 (R) such that � 3(x) = 0 for
x < � + " , and such that �

R
(1 � � 2)f + � 3g = 4 :

Note that (1 � � 2)� 3 = 0 . On the other hand, from
�

R
� 2f � F � F (� ) < 4 and

�

R
� 2f +

� �

�1
g � F � F (� + " ) + G(� ) > 4;

we deduce that there exists an non-decreasing function� 1 2 C1 (R) such that � 1(x) = 1 for
x > � , �

R
(1 � � 1)g + � 2f = 4 :

and (1 � � 1)� 2 = (1 � � 1)� 3 = 0 . Finally, we set

R1 = (1 � � 1)R" + � 2R#; R2 = � 1(1 � � 3)R" ; and R3 = (1 � � 2)R# + � 3R" :

By construction, R = R" + R# = R1 + R2 + R3, R1 2 C0
4 and R3 2 C0

4 . We deduce that
R4 2 C0

N � 8, where N � 8 � 4. This leads to the desire decomposition.
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Case 2: For all � 2 (� (F� 4) ; � (4) ), it holds G(� ) < m (� ).
This may only happen if m(� (4) ) > 0, or F < 4, so that G > N � 4 � 8. It holds G(� (F� 4)) =
0, so that g(r ) is null for r < � (F� 4) . Let � 0 be such that � (F� 4) < � 0 < � (4) . As

�

R
f = F > 4 and

� 1

� 0

f = F � F (� 0) < 4;

there exists a non-decreasing function� 1 2 C1 (R) satisfying � 1(x) = 1 for x � � 0 and such
that �

R
� 1f = 4 :

Now, sinceG(� (4) ) < m (� (4) ) = 8 � F , it holds that

�

R
(1 � � 1)f � F (� (4) ) = 4 and

�

R
(1 � � 1)f +

� 1

� 0

g � F (� (F� 4)) + G � G(� (4) ) > 4:

There exists a non-decreasing function� 2 2 C1 (R) satisfying � 2(x) = 0 for x � � 0 and such
that �

R
(1 � � 1)f + � 2g = 4 :

Note that (1 � � 1)� 2 = 0 . Finally, we set

R1 = � 1R#; R2 = (1 � � 2)R" ; and R3 = � 2R" + (1 � � 1)R#:

By construction, it holds that R = R1 + R2 + R3, and that R1 2 C0
4 and R3 2 C0

4 . We deduce
R2 2 C0

N � 8, and the result follows.

Case 3: For all � 2 (� (F� 4) ; � (4) ), it holds G(� ) > M (� ).
This case is similar to the previous one.





CHAPTER3

EXISTENCE OF MINIMIZERS FOR KOHN-SHAM WITHIN THE
LOCAL SPIN DENSITY APPROXIMATION

We expose in this chapter the results given in [Gon15a].

Abstract. The purpose of this chapter is to extend the work by Anantharaman and
Cancès [AC09], and prove the existence of minimizers for the spin-polarized Kohn-Sham model
in the presence of a magnetic �eld within the local spin density approximation. We show
that for any magnetic �eld that vanishes at in�nity, the existence of minimizers is ensured for
neutral or positively charged systems. The proof relies on classical concentration-compactness
techniques.

3.1 Introduction

The density functional theory (DFT) introduced in 1964 by Hohenberg and Kohn [HK64] is a
very popular tool in modern quantum chemistry. This theory transforms the high-dimensional
Schrödinger problem into a low-dimensional one, hence computationally solvable. The price
to pay is the introduction of the so-called exchange-correlation (xc) energy term, which is
unknown. Throughout the literature, several di�erent approximations of this energy can be
found. The �rst successful one, and still broadly used nowadays, was proposed by Kohn and
Sham [KS65], and is called the local density approximation (LDA). The mathematical prop-
erties resulting of the Kohn-Sham LDA are still not fully understood. Proving the existence
of minimizers is made di�cult by the non-convexity of the problem due to the LDA term.
Using concentration-compactness techniques introduced by Lions [Lio84], it has been possible
to prove the existence of minimizers in several cases. Le Bris [LB93] proved that for a neutral
or positively charged system, the Kohn-Sham problem with LDA exchange-correlation energy
admits a minimizer. A similar result was proved by Anantharaman and Cancès [AC09] for
the so-called extended-Kohn-Sham model with LDA exchange-correlation energy.

In this chapter, we extend the result by Anantharaman and Cancès to spin-polarized
systems, the electrons of the molecular system into consideration being subjected to the
electric potential V created by the nuclei, and to an arbitrary external magnetic �eld B that
vanishes at in�nity. In order to take into account spin e�ects, we have to resort to spin
density functional theory (SDFT). In this theory, all magnetic contributions coming from
orbital magnetism (paramagnetic current, spin-orbit coupling,...) are neglected. Historically,
while Kohn and Sham brie�y discussed the inclusion of spin e�ects in their model, the general
theory was pioneered by von Barth and Hedin [vBH72] and is known as the local spin density
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approximation (LSDA). These authors proposed the following ansatz to transform a spin-
unpolarized exchange-correlation energy to a spin-polarized version of it:

E LSDA
xc (� + ; � � ) :=

1
2

�
E LDA

xc (2� + ) + E LDA
xc (2� � )

�
;

where E LDA
xc is the spinless exchange-correlation energy, and� + =� are the eigenvalues of

the spin-density 2 � 2 matrix (see Chapter 2, Section 2.1.1). There are two other major
di�erences between spin-polarized and spin-unpolarized models. First, the ground state of
spin-unpolarized models is given by a minimization problem onto the set of electronic den-
sities, while in spin-polarized models, it is given by a minimization problem onto the set of
spin-density 2 � 2 matrices, which are hermitian matrices. Second, the magnetic �eld adds a
Zeeman-type term� �

�
B � m to the energy functional, wherem is the spin angular momen-

tum density.

Due to all those additional di�culties with respect to the spin-unpolarized case, the
fully polarized SDFT has not been very popular until recently. Chemists generally prefer
its collinear version (collinear-SDFT), where all the spins are constrained to be orientated
along a �xed direction on the whole space. This allows one to work with two scalar �elds
(one for spin-up, and one for spin-down), instead of �elds of hermitian matrices. While this
simpli�cation provides very good results, it misses some physical properties (spin dynamics
[SDAD+ 07], frustrated solids [BSFS13], and so on). The implementation of the unconstrained
(fully polarizable) model appeared with the work of Sandratskii and Guletskii [SG86], and
Kübler et al. [KHSW88a, KHSW88b], and this model is becoming a standard tool nowadays.
To the best of our knowledge, no rigorous proof of the existence of solutions has yet been
provided for this case.

Our result is that, under the same hypotheses as in [AC09], plus some mild conditions
on B , the existence of minimizers is still ensured for neutral or positively charged systems.
Whereas the main tools of the proof are similar to those used in [AC09], namely concentration-
compactness techniques, some adaptations are necessary, in particular to handle the Zeeman
term. The structure of this chapter is as follows. We �rst recall how to derive the LSDA
models, and formulate the main theorem. Then, we break the proof of the theorem into
several lemmas, that we prove at the end.

3.2 Derivation of the local spin density approximation models

We recall how extended Kohn-Sham models are derived in the spin setting. We start from
the Schrödinger-Pauli Hamiltonian for N -electrons in the Born-Oppenheimer approximation.
In atomic units, this operator reads

H full-SP
N (V;A ) =

NX

i =1

1
2

(� ir i + A (r i ))
2 I2 +

NX

i =1

V(r i )I2 � �
NX

i =1

B (r i ) � � i +
X

1� i<j � N

1
jr i � r j j

I2;

where I2 is the 2 � 2 identity matrix,

V (r ) = �
MX

k=1

zk

jr � R k j
(3.1)

is the electric potential generated by the M nuclei,A is the external magnetic vector potential,
and B := r � A is the external magnetic �eld. We denote by r i (resp. R k ) the positions of
the electrons (resp. nuclei). The charge of thek-th nucleus is zk 2 N� and Z :=

P M
k=1 zk is
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the total nuclear charge. We can assume without loss of generality thatR 1 = 0. The constant
� is the Bohr magneton. Its value is1=2 in atomic units, but we prefer to keep the notation
� in the rest of the chapter. The term � i appearing in the Hamiltonian contains the Pauli
matrices acting on the i -th spin variable:

� i := ( � xi ; � yi ; � zi ) =
��

0 1
1 0

�

i
;
�

0 � i
i 0

�

i
;
�

1 0
0 � 1

�

i

�
:

Although the magnetic �eld B and magnetic vector potential A are linked by the rela-
tion B = r � A , it is often preferable to consider them as two independent �elds. Indeed,B
acts on the spin of the electrons, whileA acts on the spatial component of the orbitals.
For instance, would we be interested only in studying orbital e�ects (e.g. paramagnetic cur-
rents), we would neglect the spin e�ects. We would then takeB = 0 and A 6= 0. Such an
approximation leads to the so-called current-density functional theory [VR88]. In this chap-
ter, we are interested in spin e�ects. We therefore setA = 0, which amounts to neglecting
the paramagnetic currents, while keepingB 6= 0. This approximation is commonly used to
study phenomena such as spin dynamics [SDAD+ 07] or frustrated solids [BSFS13]. With this
approximation, our Hamiltonian for N electrons reads

H SP
N (V;B ) =

0

@
NX

i =1

�
1
2

� i +
NX

i =1

V(r i ) +
X

1� i<j � N

1
jr i � r j j

1

A I2 � �
NX

i =1

B (r i ) � � i :

This Hamiltonian acts on the fermionic Hilbert space

N̂

L 2(R3; C2) :=
n

	( r 1; s1; � � � ; r N ; sN ); r i 2 R3; si 2 f" ; #g;
X

s1 ;��� sN 2f" ;#gN

�

R3N
j	( r 1; s1; � � � )j2dr 1 � � � dr N < 1 ;

8p 2 SN ; 	( r p(1) ; sp(1) ; � � � ) = � (p)	( r 1; s1; � � � )
o

:

Here, SN denotes the set of all permutations of[[1; : : : ; N ]], and � (p) is the parity of the
permutation p. The space

V N L 2(R3; C2) is endowed with the inner product

h	 1j	 2i =
X

(s1 ;��� sN )2f" ;#gN

�

R3N
	 1(r 1; s1; � � � )	 2(r 1; s1; � � � )dr 1 � � � dr N :

The ground state energy of the system is obtained by solving the minimization problem

E(V;B ) := inf
�

Tr
�
H SP

N �
�

; � 2 Gpure
N

	
= inf

n
Tr

�
H SP

N �
�

; � 2 Gmixed
N

o

where Gpure
N resp. Gmixed

N is the set of spin-polarized pure-state (resp. mixed-state)N -body
density matrices de�ned in (2.1) resp. (2.2). We study the extended-Kohn-Sham model based
on mixed-state N -body density matrices, for this problem has better properties mathemat-
ically speaking, and allows one to handle more general physical situations as, for instance,
positive temperatures. For � 2 Gmixed

N , direct calculations lead to

Tr
�
H SP

N (V;B )�
�

= Tr
�
H SP

N (0; 0)�
�
+

�

R3
tr C2

" �
V � �B z � �B x + i �B y

� �B x � i�B y V + �B z

�  
� ""

� � "#
�

� #"
� � ##

�

!#

;

(3.2)
where, for �; � 2 f" ; #g2, � ��

� was de�ned in (2.3). In the following, we write

U :=
�

V � �B z � �B x + i �B y

� �B x � i�B y V + �B z

�
and R� :=

 
� ""

� � "#
�

� #"
� � ##

�

!

:



68 Chapter 3. Local Spin Density Approximation

We recognize inR� the spin-polarized density 2 � 2 matrix introduced in Chapter 2, Sec-
tion 2.1. When B = 0, one recovers the usual potential energy densityV � � appearing in
spin-unpolarized DFT. Introducing the spin angular momentum density m � = tr C2 [� � R� ],
and the total electronic density � � = � ""

� + � ##
� , it holds

tr C2 [UR� ] = V � � � � B � m � : (3.3)

We now apply the constrained search method introduced and studied by Levy [Lev79],
Valone [Val80] and Lieb [Lie83], and write the minimization problem (3.2) in terms of R� :

E (V;B ) = inf
�

F (R) +
�

R3
tr C2 [UR] ; R 2 J mixed

N

�
; (3.4)

with
F (R) := inf

n
Tr [ H (0; 0)�] ; � 2 Gmixed

N ; R� = R
o

:

The set J mixed
N is the set of mixed stateN -representable spin-density2 � 2 matrices, that

we characterized in Theorem2.2. The functional F cannot be straightforwardly evaluated.
In order to make this problem practical, we approximateF . It is standard since the work of
Kohn and Sham [KS65] to approximate this functional by studying a system of non-interacting
electrons. For this purpose, we recall that, for a mixed state� 2 Gmixed

N , the spin-polarized
one-body density matrix 
 � (r ; r 0) was de�ned in (2.10)-(2.11). The set of mixed-state 1-body
density matrices is

PN := f 
 � ; � 2 Gmixed
N g;

and, identifying the kernel 
 (r ; r 0) with the corresponding operator of S(L 2(R3; C2)) , the
space of self-adjoint operators onL 2(R3; C2), Coleman [Col63] proved that

PN =
�


 2 S(L 2(R3; C2)) ; 0 � 
 � 1; Tr( 
 ) = N; Tr( � � 
 ) < 1
	

:

Physically speaking, this is the set of one-body density matrices of systems withN electrons
(Tr( 
 ) = N ), satisfying the Pauli principle (0 � 
 � 1), and with �nite kinetic energy
(Tr( � � 
 ) < 1 ). In a similar way, we can de�ne, for � > 0,

P� :=
�


 2 S(L 2(R3; C2)) ; 0 � 
 � 1; Tr( 
 ) = �; Tr( � � 
 ) < 1
	

: (3.5)

A more practical and equivalent formulation of the Coleman result is that, using the spectral
theory for compact self-adjoint operators, we can write the components
 �� of any 
 2 P � in
the form


 �� (r ; r 0) =
1X

k=1

nk � �
k (r )� �

k (r 0); 0 � nk � 1;
1X

k=1

nk = �; � k =

 
� "

k
� #

k

!

2 L 2(R3; C2);

h� k j� l i = � kl ; Tr( � � 
 ) :=
1X

k=1

nkkr � kk2
L 2 = Tr( � � 
 "" ) + Tr( � � 
 ##) < 1 : (3.6)

Notice that 
 � (r ; r ) = R� (r ), so that we will write R
 (r ) := 
 (r ; r ) for 
 2 P N . We �nally
introduce

J mixed
� :=

�
R 2 M 2� 2(L 1(R3)) ; 9
 2 P � ; R = R


	
:

The extended version of the Kohn-Sham approach consists in splitting the unknown func-
tional F (R) into three parts:

F (R) = TKS (R) + J (� R ) + Exc(R):
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The �rst term TKS represents the kinetic energy of a non-interacting electronic system. It
reads, in the one-body formalism,

8R 2 J mixed
� ; TKS (R) := inf

�
1
2

Tr ( � � 
 ) ; 
 2 P � ; R
 = R
�

:

The second term is the Hartree term, de�ned by

J (� ) :=
1
2

�

R3 � R3

� (r )� (r 0)
jr � r 0j

dr dr 0:

Finally, the last term is the exchange-correlation functional de�ned by

8R 2 J mixed
N ; Exc(R) := F (R) � TKS (R) � J (� R ):

Notice that since F is a non-explicit functional, Exc is also a non-explicit functional. It is how-
ever possible to construct explicit approximations ofExc giving rise to accurate predictions of
the ground state energies of most molecular systems [ED11]. The caseExc = 0 corresponds
to the reduced Hartree-Fock model [Sol91].

The local-spin density approximation introduced by von Barth and Hedin [vBH72] consists
in writing

Exc(R) � E LSDA
xc (� + ; � � ) :=

1
2

�
E LDA

xc (2� + ) + E LDA
xc (2� � )

�
(3.7)

where � + =� are the two eigenvalues of the spin-density2 � 2 matrix R, and E LDA
xc is the

standard exchange-correlation functional in the spin-unpolarized case, that we can write under
the form [KS65]

E LDA
xc (� ) =

�

R3
g(� (r )) dr : (3.8)

The fact that E LSDA
xc only depends onR via its eigenvalues comes from the locality of the

functional. Indeed, this energy functional must be invariant with respect to local spin rota-
tions. SinceR is hermitian at each point, we can always diagonalizeR locally, so that a local
energy functional can only depend on the two eigenvalues ofR.

In this chapter, we deal with exchange-correlation functionals of the form (3.7)-(3.8). For
all � 2 R+ , the real valueg(� ) is an approximation of the exchange-correlation energy density
of the uniform electron gas with density� . Several functionsg are available (VWS [VWN80],
PZ81 [PZ81], CP [CP82], PW92 [PW92], ...), which all satisfy the same asymptotic conditions
for low and high densities. Their mathematical properties are similar to the ones of theX� -
functional introduced by Slater [Sla51]

E LDA ;X�
xc (� ) = � CX

�

R3
� 4=3(r )dr :

Altogether, by recasting problem (3.4) in terms of the one-body density matrices, we end
up with a variational problem of the form

I � := inf fE (
 ); 
 2 P � g; (3.9)

where

E(
 ) =
1
2

Tr
�

� � 
 ""
�

+
1
2

Tr
�

� � 
 ##
�

+ J (� 
 ) +
�

R3
tr C2 [UR
 ] dr + E LSDA

xc (� +

 ; � �


 )

and whereP� has been de�ned in (3.5). The physical situation corresponds to� = N 2 N,
but as usual in variational problems set on the whole space, it is useful to relax the constraint
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Tr( 
 ) = N to allow the particles to escape to in�nity.

We can recover some other common models by further constraining the minimization set.
For instance, the collinear-SDFT consists in minimizing the functionalE onto the set

P collinear
� :=

n

 2 P � ; 
 "# = 
 #" = 0

o
:

In this case, the matrices
 and R are both diagonal. In particular, the two eigenvalues ofR
are f � + ; � � g = f � "" ; � ##g. In this model, it holds that

�

R3
tr C2 [UR] =

�

R3
V(� "" + � ##) � �

�

R3
Bz(� "" � � ##) =

�

R3
V � � �

�

R3
Bz� �:

where

� :=
� "" � � ##

� "" + � ## 2 [� 1; 1]

is the relative spin-polarization. This model is simpler than the noncollinear spin-polarized
model, as we are not dealing with �elds of matrices, but with two scalar �elds. Physically, it
corresponds to constraining the spin along a �xed direction on the whole space. This method
provides results in good agreement with experiments whenever the energy accounting for the
noncollinearity of the spins is negligible.

Then, the spin-unpolarized case consists in minimizing the functionalE onto the set

Punpolarized
� :=

n

 2 P � ; 
 "# = 
 #" = 0 ; 
 "" = 
 ##

o
:

Equivalently, it corresponds to the collinear case with� � 0. It then holds that
�

R3
tr C2 [UR] =

�

R3
V �;

so that the model is independent of the magnetic �eldB , and can be used whenever spin
e�ects are negligible. We refer to [AC09] for a mathematical introduction of this model.

3.3 An existence result for the Kohn-Sham LSDA model

The main result of this section is the following

Theorem 3.1. Under the following assumptions

1/ the function g in ( 3.8) is of class C1(R+ ) and satis�es:

8
>>>>>>>><

>>>>>>>>:

g(0) = 0

g0 � 0

9 0 < � � � � + <
2
3

; sup
� 2 R+

jg0(� )j
� � � + � � + < 1

9 1 � � <
3
2

; lim sup
� ! 0+

g(� )
� � < 0;

(3.10)

2/ all entries of U are in L
3
2 + � (R3)+ L 1 (R3) and vanish at in�nity, and V := tr C2 (U) has

the form (3.1),

the problemI � de�ned in ( 3.9) has a minimizer whenever� � Z .
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Remark 3.2. The assumptions (3.10) are the same as in [AC09], and are satis�ed for all
common functionals. Theorem3.1 extends [AC09, Theorem 1] to the case when the sys-
tem is spin-polarized by an external magnetic �eldB . While the strategy of proof, based on
concentration-compactness arguments, is similar to that in [AC09], an additional technical tool
is needed to handle the Zeeman term. This tool seems to be new to the best of our knowledge.
We called it the �ip transformation (see Equation (3.11) below).

Remark 3.3. This result does not make any assumption on the strength of the magnetic �eld
B other than that it vanishes at in�nity. If B becomes in�nite at in�nity, it is easy to see that
the energy is not bounded below: we can orientate the spins of all electrons along the magnetic
�eld and push them to in�nity, so that the energy can be arbitrarily negative.

3.3.1 Strategy of the proof of Theorem 3.1

We use the concentration-compactness method introduced in [Lio84]. We introduce the prob-
lem at in�nity

I 1
� = inf fE 1 (
 ); 
 2 P � g;

where

E1 (
 ) :=
1
2

Tr
�

� � 
 ""
�

+
1
2

Tr
�

� � 
 ##
�

+ J (� 
 ) + E LSDA
xc (� + ; � � ):

We need several lemmas, the proofs of which are postponed until the following section
for the sake of clarity. We begin with some functional inequalities (see Section3.4.1 for the
proof).

Lemma 3.4. There exists a constantC such that for all � > 0 and all 
 2 P � , it holds

kr R
 kL 3=2 � CTr( � � 
 ) and kr � + =�

 kL 3=2 � CTr( � � 
 ):

In particular, for all 1 � p � 3, there existsCp such that, for all � > 0 and all 
 2 P � ,

kR
 kL p � Cp�
3� p
2p Tr( � � 
 )

3( p� 1)
2p ;

and similarly for � + =�

 .

We easily deduce from the above lemma that the energiesI � and I 1
� are bounded below.

Lemma 3.5. For all � > 0, we haveI � > �1 and I 1
� > �1 . Moreover, all minimizing

sequences(
 n ) for I � or I 1
� are bounded in the Banach spaceB, where

B := f 
 2 S(L 2(R3; C2)) ; k
 kB := Tr( j
 j) + Tr( jjrj 
 jrjj ) < 1g :

The proof of Lemma3.5 is given in Section3.4.2. In the following, we consider sequences
(
 n )n2 N� 2 B, and we will write Rn := R
 n and � n := � 
 n . The proof of the following lemma
is given in Section3.4.3.

Lemma 3.6. Let (
 n )n2 N� be a bounded sequence ofB. Then, there exists
 0 2 B, such that,
up to a subsequence,(
 n )n2 N� converges to
 0 for the weak-� topology ofB, all components of
Rn converge to their respective components inR0 strongly in L p

loc(R3) for 1 � p < 3, weakly
in L p(R3) for 1 � p � 3, and almost everywhere. The eigenvalues ofRn converge to the
eigenvalues ofR0 strongly in L p

loc(R3) for 1 � p < 3, weakly in L p(R3) for 1 � p � 3 and
almost everywhere.

Moreover, if 
 n 2 P � for all n, and 
 0 2 P � , the convergences hold strongly inL p(R3) for
1 � p < 3, and E(
 0) � lim inf E(
 n ).
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It follows from Lemma 3.5 and Lemma 3.6 that one can extract from any minimizing
sequence(
 n )n2 N� of (3.9) a minimizing sequence, still denoted by(
 n )n2 N, converging to
some 
 0 for the weak-� topology of B. In particular, 0 � 
 0 � 1 and Tr( � � 
 0) < 1 .
To prove that 
 0 is indeed a minimizer of (3.9), it remains to prove that Tr( 
 0) = � . Let
� = Tr( 
 0). It is easy to get � � � . If � < � , then we have loss of compactness (some
electrons leak away). Therefore, to prove that� = � (at least when � � Z ), we need to
control the behavior at in�nity of the minimizers, which is not as simple as in [AC09] because
of the Zeeman term� �

�
B � m. In order to control this term, we introduce the following �ip

transformation:

For � =
�

� "

� #

�
; we de�ne e� :=

 
� #

� � "

!

;

For 
 =
X

nk j� k ih� k j; we de�ne e
 :=
X

nk j e� k ihe� k j

(�ip transformation). (3.11)

Note that if


 =
�


 "" 
 "#


 #" 
 ##

�
and R
 =

�
R"" R"#

R#" R##

�
;

then

e
 (x ; y ) =
�


 ## � 
 "#

� 
 #" 
 ""

�
(y ; x) and Re
 =

�
R## � R"#

� R#" R""

�
;

from which we deduce the following lemma, whose proof is straightforward.

Lemma 3.7. If 
 2 P � , then e
 2 P � . Moreover, it holds that Tr( � � e
 n ) = Tr( � � 
 n ), e� = � ,
and em = � m, where � and m have been de�ned in (3.3). In particular, it holds that

tr C2 [UR] + tr C2

h
U eR

i
= 2

�

R3
V �: (3.12)

In other words, this transformation �ips the spin-up and spin-down channels. Lemma3.7
allows to cancel the Zeeman term, and is an essential tool throughout the proof. The following
lemma is proved in Section3.4.4.

Lemma 3.8.

(i) For all � > 0, it holds �1 < I � < I 1
� < 0.

(ii) For all 0 < � < � , it holds I � � I � + I 1
� � � .

(iii) The functions � 7! I � and � 7! I 1
� are non increasing.

We then have the important result (see Section3.4.5 for the proof).

Lemma 3.9. Let � > 0 and (
 n )n2 N� 2 P � be any minimizing sequence ofI � that converges
to some
 0 for the weak-� topology ofB. Let � := Tr( 
 0). Then

(i) � � � .

(ii) � 6= 0 .

(iii) If 0 < � < � , then 
 0 is a minimizer for the problemI � , there exists� > 0 with � + � � �
such that I 1

� has also a minimizer, andI � = I � + I 1
� + I 1

� � � � � .

According to Lemma 3.9, if � < � , then 
 0 is a minimizer for I � . In this case, it satis�es
the Euler-Lagrange equation


 0 = 1(�1 ;" F ) (H 
 0 ) + � with 0 � � � Ker(H 
 0 � "F )
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for some "F < 0 called the Fermi energy, and with H 
 0 de�ned in ( 3.24) below. Here,
1(�1 ;" F ) is the characteristic function of the interval (�1 ; "F ), and the spectral projection
1(�1 ;" F ) (H 
 0 ) is de�ned by the functional calculus. We then use the very general result,
whose proof is given in Section3.4.6.

Lemma 3.10. It holds � ess(H 
 0 ) = [0 ; + 1 [. Moreover, if 0 < � < Z , then H 
 0 has in-
�nitely many negative eigenvalues, and every eigenvector corresponding to such an eigenvalue
is exponentially decreasing.

From Lemma 3.10, we deduce the concentration-compactness result (see Section3.4.7 for
the proof).

Lemma 3.11. Let � > 0 and � > 0 be such that� + � � Z . Suppose thatI � and I 1
� admit

minimizers. Then
I � + � < I � + I 1

� ( < I � ):

The end of the proof of Theorem3.1 goes as follows. Let us assume that� � Z , and
� < � . Then, according to the third point of Lemma 3.9, 
 0 is a minimizer for I � , and
there exists � > 0 such that � + � � � � Z so that I 1

� has also a minimizer, and it holds
I � = I � + I 1

� + I 1
� � � � � . Moreover, Lemma3.11 holds, and I � + � < I � + I 1

� . Finally, we get

I � = I � + I 1
� + I 1

� � � � � > I � + � + I 1
� � � � � ;

which contradicts the second point of Lemma3.8. Therefore, it holds � = � , and, according
to Lemma 3.6, 
 0 is a minimizer for I � , which concludes the proof.

3.4 Proofs of the sub-lemmas of Theorem 3.1

3.4.1 Proof of Lemma 3.4

Let � > 0 and 
 2 P � . We use the representation (3.6) of 
 , and write


 �� (r ; r 0) =
1X

k=1

nk � �
k (r )� �

k (r 0); 0 � nk � 1;
1X

k=1

nk = �;

� k =

 
� "

k
� #

k

!

2 L 2(R3; C2); h� k j� l i = � kl ; Tr( � � 
 ) :=
1X

k=1

nkkr � kk2
L 2 < 1 :

In particular, � �� (r ) =
P

nk � �
k (r )� �

k (r ). Di�erentiating this expression and using the Cauchy-
Schwarz inequality lead to

jr � �� j2 =

�
�
�
�
�

1X

k=1

nk

�
r � �

k (r )� �
k (r ) + � �

k (r )r � �
k (r )

�
�
�
�
�
�

2

�

�
�
�
�
�

1X

k=1

nk

�
jr � �

k j2 + jr � �
k j2

� 1=2 �
j� �

k j2 + j� �
k j2

� 1=2
�
�
�
�
�

2

�

"
1X

k=1

nk

�
jr � �

k j2 + jr � �
k j2

�
# "

1X

k=1

nk

�
j� �

k j2 + j� �
k j2

�
#

:

We let � � :=
P 1

k=1 nk jr � �
k j2, so that � � 2 L 1(R3) and

�
R3 � � = Tr( � � 
 �� ). The

previous inequality leads to the pointwise estimate

jr � �� j �
�

� � + � �
� 1=2 �

� �� + � ��
� 1=2

: (3.13)
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In particular, if � = � , we recover the Ho�man-Ostenhof inequality [HOHO77]

kr
p

� �� k2
L 2 � Tr( � � 
 �� ):

Together with the homogeneous Sobolev embeddingH 1(R3) ,! L 6(R3), we deduce

k� �� kL 3 � C Tr( � � 
 �� ):

Then, using the fact that
�
� � + � �

� 1=2
2 L 2(R3) and

�
� �� + � ��

� 1=2
2 L 6(R3) and the Hölder

inequality, it follows from ( 3.13) that

kr � �� kL 3=2 � k (� � + � � )1=2kL 2 k(� �� + � �� )1=2kL 6 � 4C Tr( � � 
 ): (3.14)

For � + =� , we use the exact expression of the eigenvalues of a2 � 2 hermitian matrix:

� + =� =
1
2

�
� �

p
� 2 � 4 det(R)

�
=

1
2

�
� �

q
(� "" � � ##)2 + 4 j� "# j2

�
: (3.15)

If f and g are non negative, then, according to (2.15), we have the pointwise estimate

jr
p

f + gj = jr
p

f j + jr
p

gj:

We di�erentiate ( 3.15) to get

jr � + =� j �
1
2

jr � j +
1
2

�
�
�
�r

q
(� "" � � ##)2 + 4 j� "# j2

�
�
�
�

�
1
2

jr � "" j +
1
2

jr � ##j +
1
2

�
jr � "" j + jr � ##j + 2

�
�rj � "# j

�
�
�

:

All the terms on the right-hand side are in L 3=2(R3) and of norms bounded byCTr( � � 
 ),
hence the same holds forr � + =� .

Moreover, 
 is in P� , so that Tr( 
 ) =
�

R3 � = � . From the inequality 2jabj � j aj2 + jbj2,
we get that

j� �� j =

�
�
�
�
�

1X

k=1

nk � �
k (r )� �

k (r )

�
�
�
�
�

�
1X

k=1

nk

2

�
j� �

k j2 + j� �
k j2

�
�

1X

k=1

nk

�
j� "

k j2 + j� #
k j2

�
= �: (3.16)

Integrating on R3 leads to k� �� kL 1 � � . From the positiveness ofR
 , it also holds that
0 � � + =� � � so that k� + =� kL 1 � � . We conclude from (3.14), the homogeneous Sobolev
embeddingW 1;3=2(R3) ,! L 3(R3), and the Hölder inequality with 1 � p � 3, that

k� �� kL p � Cp�
3� p
2p Tr( � � 
 )

3( p� 1)
2p ;

and similarly for � + =� .

3.4.2 Proof of Lemma 3.5

We prove that I � > �1 . The proof is similar for I 1
� . Let � > 0, and 
 2 P � . Under

conditions (3.10), a straightforward calculation shows that

�
�E LSDA

xc (� + ; � � )
�
� � C

� �

R3
(� + )p�

+
�

R3
(� + )p+

�
+ C

� �

R3
(� � )p�

+
�

R3
(� � )p+

�

� 2C
� �

R3
� p+

+
�

R3
� p�

�
;
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where p+ =� := 1 + � + =� < 5=3. We used the fact that R
 is a positive hermitian matrix, so
that 0 � � + =� � � . Therefore, sinceJ (� ) � 0, we have the estimate

E(
 ) �
1
2

Tr( � � 
 ) � C1kUk
L

3
2 + � + L 1

kRkL 1 \ L 3� � 0 � C2

�
k� kp+

L p+ + k� kp�

L p�

�
;

where � 0 = 4 �=(1 + 2 � ) > 0 is chosen such thatL 3� � 0
is the dual space ofL

3
2 + � . With

Lemma 3.4, it follows

E(
 ) �
1
2

Tr( � � 
 ) � C0
1kUk

L
3
2 + � + L 1

(1 + Tr( � � 
 ) � 1 ) � C2 (Tr( � � 
 ) � 2 + Tr( � � 
 ) � 3 )

with 0 � � 1; � 2; � 3 < 1. The function Y 7! 1
2Y � C00

1 (1 + Y � 1 ) � C2Y � 2 � C2Y � 3 goes to
+ 1 when Y goes to + 1 for 0 � � 1; � 2; � 3 < 1. Hence, E(
 ) � � C for all 
 2 P � . It
also follows from the above inequality that if (
 n )n2 N� is a minimizing sequence forI � , then
(Tr( � � 
 n ))n2 N� is uniformly bounded. In particular, (
 n )n2 N� is a bounded sequence ofB.

3.4.3 Proof of Lemma 3.6

Let (
 n )n2 N� be a bounded sequence inB. According to Lemma 3.4, the sequences
�

� ��
n

�

n2 N�

for �; � 2 f" ; #g2 and
�

� + =�
n

�

n2 N�
are bounded in W 1;3=2(R3). In virtue of the Banach-

Alaoglu theorem, up to a subsequence, the sequence(
 n )n2 N� converges to some
 0 2 B

for the weak-� topology of B, and
�

� ��
n

�

n2 N�
and

�
� + =�

n

�

n2 N�
converge for the weak topol-

ogy of W 1;3=2(R3). To identify the limits, we recall that, for any compact operator K on
L 2(R3; C2),

Tr( 
 nK ) ���!
n!1

Tr( 
 0K ) and Tr( jrj 
 n jrj K ) ���!
n!1

Tr( jrj 
 0jrj K ): (3.17)

ChooseW 2 C1
c (R3; R). The operator (1+ jrj ) � 1W (1+ jrj ) � 1 is compact and in the Schatten

classS p(L 2(R3; C)) for p > 3
2 according to the Kato-Seiler-Simon inequality [Sim05]. Taking

successively in (3.17)

K =
�

W 0
0 0

�
; K =

�
0 0
0 W

�
; K =

�
0 W

W 0

�
and K =

�
0 iW

� iW 0

�
;

we obtain that, for the �rst choice of K ,
�

R3
� ""

n W = Tr( 
 nW ) = Tr
�
(1 + jrj )
 n (1 + jrj ) � (1 + jrj ) � 1W (1 + jrj ) � 1�

���!
n!1

Tr
�
(1 + jrj )
 0(1 + jrj ) � (1 + jrj ) � 1W (1 + jrj ) � 1�

=
�

R3
� ""

0 W
(3.18)

and similarly for � ##
0 , Re (� "#

0 ) and Im ( � "#
0 ). We deduce that

�
� ��

n

�

n2 N�
converges to� ��

0

in D0(R3; C) for all �; � 2 f" ; #g2. Identifying the limits, the convergences hold also weakly
in W 1;3=2(R3), strongly in L p

loc(R3) for 1 � p < 3, and almost everywhere, in virtue of the

Sobolev embedding theorem. From (3.15) and the pointwise convergence of
�

� ��
n

�

n2 N�
to

� ��
0 , we also deduce that(� + =�

n )n2 N� pointwise converges to� + =�
0 . Again, by identifying the

limits, the convergence also holds weakly inW 1;3=2(R3) and strongly in L p
loc(R3) for 1 � p < 3.

Then, let � 2 C1
c (R) be a cut-o� function such that � (x) = 1 if jxj < 1 and � (x) = 0 if

x � 2. We take WA = � (x=A) in (3.18), and let A go to in�nity to obtain that

� ""
0 2 L 1(R3) and

�

R3
� ""

0 � lim inf
n!1

�

R3
� ""

n ; (3.19)
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and similarly for � ##
0 . Now, if 
 n 2 P � and 
 0 2 P � , we get

� =
�

R3
� 0 =

�

R3
� ""

0 + � ##
0 �

�

R3
� ""

n + � ##
n = �;

and the inequality (3.19) is an equality. Therefore,(� n )n2 N� converges to� 0 strongly in L 1(R3).
We deduce from (3.16) and 0 � � + =�

n � � n that � "#
n and � + =�

n are bounded inL 1(R3). A clas-

sical application of the dominated convergence theorem then leads to the fact that
�

� ��
n

�

n2 N�

converges to� ��
0 strongly in L 1(R3) for �; � 2 f" ; #g2, and that

�
� + =�

n

�

n2 N�
converges strongly

to � + =�
0 in L 1(R3). Finally, the strong convergence still holds inL p(R3) for 1 � p < 3 accord-

ing to the Hölder inequality.
The proof for the energy is similar to the one in [AC09, Lemma 3]. We do not repeat it

here, but notice that the strong convergence of
�

� + =�
n

�

n2 N�
to � + =�

0 in L p(R3) for 1 � p < 3

is needed for the convergence of the exchange-correlation functional.

3.4.4 Proof of Lemma 3.8

(ii) Let us �rst prove that for 0 < � < � , it holds that I � � I � + I 1
� � � . Let � > 0, 
 2 P �

and 
 0 2 P � � � be such that I � � E (
 ) � I � + � and I 1
� � � � E 1 (
 0) � I 1

� � � + � . By density
of �nite-rank one-body density matrices in B, and density of C1

c (R3; C2) in H 1(R3; C2), we
can assume that
 and 
 0 are both of the form


 (0) =
MX

i =1

n(0)
k j� (0)

k ih� (0)
k j with � (0)

k 2 C1
c (R3; C2):

We consider
 n := 
 + � ne
 0� � ne and 
 ]
n := 
 + � nee
 0� � ne where � x f (r ) = f (r � x), and e is a

non-null vector. We recall that e
 0 is the �ipped transformation of 
 0, as introduced in (3.11).
For n0 large enough, and forn � n0, the supports of the � k 's and of the � ne� 0

k 's are disjoint,
so that 
 n and 
 ]

n are in P� for all n � n0. Also, for n large enough,J (� n ) � J (� ) + J (� 0) + � .
Altogether, we get, for n large enough,

E(
 n ) + E(
 ]
n ) = 2 E(
 ) + 2 E1 (
 0) + 2

�
V � 0(� � ne) + 2 " � 2E(
 ) + 2 E1 (
 0) + 2 �

� 2I � + 2 I 1
� � � + 6 �:

Hence, eitherE(
 n ) or E(
 ]
n ) is smaller than I � + I 1

� � � + 3 � , so that I � � I � + I 1
� � � . Similar

arguments show that I 1
� � I 1

� + I 1
� � � .

(i) We �rst prove that there exists � 0 small enough such that for all0 < � � � 0, it holds
I 1

� < 0. We use a scaling argument. Let� 2 C1
c (R3; C) be such that k� kL 2 = 1 , and let

� � = � 3=2� (� �) for � > 0. Note that k� � kL 2 = 1 . For � � 1, we introduce


 �� (r ; r 0) = �
�

� � (r )� � (r 0) 0
0 0

�
;

so that 
 �� 2 P � for all 0 < � � 1 and � > 0. Using (3.10), there exists 1 � � < 3=2 such
that E LSDA

xc (� j� � j2; 0) � � C� � � 3(� � 1)k� k2�
L 2� . Direct calculations lead to

E1 (
 �� ) =
�� 2

2

�

R3
jr � j2 + � 2�J (j� j2) +

�

R3
E LSDA

xc (j� �� j2; 0)

�
�� 2

2

�

R3
jr � j2 + � 2�J (j� j2) � C� � � 3(� � 1)k� k2�

L 2� :
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It is easy to check that under the condition � < 3=2, there exists � 0 > 0 such that for all
0 < � � � 0, there exists � such that E(
 �� ) < 0. In particular, I 1

� � E 1 (
 �� ) < 0. Together
with (ii) , we deduce that, for all � > 0, I 1

� < 0 and I � < 0.

We now prove that I � < I 1
� , for all � > 0. Let (
 n )n2 N� be a minimizing sequence forI 1

� .
We �rst suppose that

8A > 0; lim
n!1

sup
r 2 R3

�

r + B A

� n = 0 ;

where BA is the ball of radius A centered at the origin. Since(� n )n2 N� is bounded inW 1;3=2

according to Lemma3.5 and 3.6, we deduce from [Lio84, Lemma I.1] that (� n )n2 N converges
to 0 strongly in L p(R3) for 1 < p < 3. Also, because of (3.16), the components ofRn and its
eigenvalues converge to0 strongly in L p(R3) for 1 < p < 3. Similarly to [ AC09], we deduce
that

I 1
� = lim inf

n!1
E1 (
 n ) = lim inf

n!1

�
1
2

Tr( � � 
 n ) + J (� n ) + E LSDA
xc (� +

n ; � �
n )

�
= lim inf

n!1

1
2

Tr( � � 
 n ) � 0

which contradicts the �rst point. Therefore

9A; � > 0; 8n 2 N; 9r n 2 R3;
�

r n + B A

� n � �: (3.20)

Up to translations of the 
 n 's, we can assume without loss of generality thatr n = 0.
We now introduce e
 n , the �ipped version of 
 n introduced in (3.11). Using (3.12) and the

fact that V (r ) � �
z1

r
, we get

E(
 n ) + E(e
 n ) = Tr( � � 
 n ) + 2 J (� n ) + 2 E LSDA
xc (� +

n ; � �
n ) + 2

�

R3
V � n

= 2E1 (
 n ) + 2
�

R3
V � n � 2E1 (
 n ) � 2

�

B R

z1

jr j
� n � 2E1 (
 n ) � 2

z1

R
�:

Hence, eitherE(
 n ) or E(e
 n ) is smaller thanE1 (
 n ) � z1R� 1� . Therefore,I � � I 1
� � z1R� 1� <

I 1
� .

(iii) The fact that � 7! I � and � 7! I 1
� are non increasing can be read from the other

statements.

3.4.5 Proof of Lemma 3.9

Let � > 0, and let (
 n )n2 N� 2 P � be a minimizing sequence forI � . According to Lemma 3.5,
up to a subsequence, we can assume that(
 n )n2 N� converges to some
 0 2 B for the weak-�
topology of B.

(i) The fact that � � � can be directly deduced from (3.19).

(ii) Suppose that� = 0 , so that 
 = 0 . Then, we haveI � = lim inf E(
 n ) = E(
 0) = 0 (we
used the continuity of E, which can be proved similarly to [AC09]). This contradicts the �rst
point of Lemma 3.8. Hence,� 6= 0 .

(iii) Suppose that0 < � < � . Following [AC09, FLSS07], we let �; � 2 C1
c (R3; R+ ) be

radial functions such that � 2 + � 2 = 1 , with � (0) = 1 , � < 1 on R3 n f 0g, � (r ) = 0 for jr j > 1,
kr � kL 1 � 2 and kr � kL 1 � 2. We introduce � A (r ) := � (r =A) and � A (r ) := � (r =A) and
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�nally 
 n;A := � A 
 n � A . With those notations, A 7! Tr( 
 n;A ) is a continuous and increasing
function from 0 to � . Therefore, there existsAn such that 
 n;A n is in P� .

The sequence(An )n2 N� goes to in�nity. Otherwise, we would have forA large enough and
according to (3.19),

�

R3
� 0� 2

A = lim
n!1

�

R3
� n � 2

A � lim
n!1

�

R3
� n � 2

A n
= � =

�

R3
� 0;

which is impossible, sincej� 2
A j < 1 on R3.

We introduce 
 1;n := � A n 
 n � A n and 
 2;n := � A n 
 n � A n . Note that 
 1;n 2 P � and 
 2;n 2
P� � � , and that � n = � 1;n + � 2;n . From the decomposition (3.6) of 
 n , we can write 
 n =P 1

k=1 nk;n j� k;n ih� k;n j, with 0 � nk;n � 1. We deduce that

Tr(
�
� jrj 
 1;n jrj

�
�) + Tr(

�
� jrj 
 2;n jrj

�
�) � Tr(

�
� jrj 
 n jrj

�
�) + 8

�
A2

n
:

Hence,(
 1;n )n2 N� and (
 2;n )n2 N� are bounded inB. Also, direct calculations lead to

Tr( � � 
 1;n ) + Tr( � � 
 2;n ) � Tr( � � 
 n ) + 8
�

A2
n

: (3.21)

According to Lemma 3.5, up to a subsequence,(
 1;n )n2 N� converges for the weak-� topology
of B. In this case, for � = ( � " ; � #) 2 C1

c (R3; C2), it holds that

Tr( 
 1;n j� ih� j) =
�

R3
� ""

1;n j� " j2 +
�

R3
� ##

1;n j� #j2 =
�

R3
� 2

A n
� ""

n j� " j2 +
�

R3
� 2

A n
� ##

n j� #j2:

For n large enough, the support of� is inside the support of � A n , and

Tr( 
 1;n j� ih� j) = Tr( 
 n j� A n � ih� � A n j) ���!
n!1

Tr( 
 j� ih� j):

We deduce that (
 1;n )n2 N� converges to
 0 for the weak-� topology of B. Finally, since

 1;n 2 P � and 
 0 2 P � , (� 1;n )n2 N� converges strongly to� 0 in L p(R3) for 1 � p < 3, and
E(
 0) � lim inf E(
 1;n ) according to Lemma3.6.

Let us look more closely to
 2;n . Since (� 1;n )n2 N� converges to� 0 strongly in L p(R3)
and (� n )n2 N� converges to� 0 strongly in L p

loc(R3) for 1 � p < 3, we obtain that � 2;n = � n � � 1;n

(and thus all the components ofR2;n and its eigenvalues) converges strongly to0 in L p
loc(R3)

for 1 � p < 3. Also, it holds that � + =�
1;n + � + =�

2;n = � + =�
n . Using (3.21) and the fact that�

� 1;n (r )� 2;n (r 0)jr � r 0j � 1 dr dr 0 � 0, we obtain

E(
 n ) =
1
2

Tr( � � 
 n ) + J (� n ) +
�

R3
tr C2 [URn ] + E LSDA

xc (� +
n ; � �

n )

�
1
2

Tr( � � 
 1;n ) +
1
2

Tr( � � 
 2;n ) � 4
�

A2
n

+ J (� 1;n ) + J (� 2;n )+

+
�

R3
tr C2 [UR1;n ] +

�

R3
tr C2 [UR2;n ] + E LSDA

xc (� +
1;n + � +

2;n ; � �
1;n + � �

2;n )

� E (
 1;n ) + E1 (
 2;n ) � 4
�

A2
n

+
�

R3
tr C2 [UR2;n ] +

+ E LSDA
xc (� +

1;n + � +
2;n ; � �

1;n + � �
2;n ) � E LSDA

xc (� +
1;n ; � �

1;n ) � E LSDA
xc (� +

2;n ; � �
2;n ):
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We �rst consider the term
�

tr C2 [UR2;n ]. We have for A � 0, (we use, for a matrix M , the
notation jM j for the sum of the absolute values of the entries ofM )

�
�
�
�

�

R3
tr C2 [UR2;n ]

�
�
�
� =

�
�
�
�

�

B A

tr C2 [UR2;n ]

�
�
�
� +

�
�
�
�
�

�

(B A )c
tr C2 [UR2;n ]

�
�
�
�
�

� k Uk
L

3
2 + � + L 1 (B A )

kR2;n kL 1 \ L 3� � 0(B A ) + sup
r 2 (B A )c

jU(r )j
�

(B A )c
jR2;n j

� k Uk
L

3
2 + � + L 1 (R3 )

kR2;n kL 1 \ L 3� � 0(B A ) + sup
r 2 (B A )c

jU(r )j
�

R3
jR2;n j;

where� 0 = 4 �=(1+2 � ) > 0 is chosen such thatL 3� � 0
is the dual space ofL

3
2 + � . Using inequality

(3.16), and the fact that
�

� ��
2;n � � , we get an inequality of the form

�
�
�
�

�

R3
tr C2 [UR2;n ]

�
�
�
� � C1kR2;n kL 1 \ L 3� � 0(B A ) + C2 sup

r 2 (B A )c
jU(r )j

with C1 and C2 independent ofA and n. Since all entries ofU are vanishing at in�nity, we
can �rst choose A large enough to control the second term, and then use the convergence
of (R2;n )n2 N� to 0 strongly in L p(BA ) for 1 � p < 3, to establish the convergence of the
right-hand-side to 0.
For the last term, using (3.10), it holds (we write g2(� ) = g(2� ))

E LSDA
xc (� +

1;n + � +
2;n ; � �

1;n + � �
2;n ) � E LSDA

xc (� +
1;n ; � �

1;n ) � E LSDA
xc (� +

2;n ; � �
2;n ) =

1
2

� �

R3

�
g2(� +

1;n + � +
2;n ) � g2(� +

1;n ) � g2(� +
2;n )

�
+

�

R3
g2(� �

1;n + � �
2;n ) � g2(� �

1;n ) � g2(� �
2;n )

�
:

(3.22)
Then, we get (dropping the super-script+ =� for the sake of clarity)

�
�
�
�

�

R3
g2(� 1;n + � 2;n ) � g2(� 1;n ) � g2(� 2;n )

�
�
�
�

�
�

B A

jg2(� 1;n + � 2;n ) � g2(� 1;n )j +
�

B A

jg2(� 2;n )j+

+
�

(B A )c
jg2(� 1;n + � 2;n ) � g2(� 2;n )j +

�

(B A )c
jg2(� 2;n )j

� C
� �

B A

� 2;n

�
� p+

n + � p�

n

�
+

�

B A

�
(� 2;n )p�

+ ( � 2;n )p+
� �

+ C

 �

(B A )c
� 1;n

�
� p+

n + � p�

n

�
+

�

(B A )c

�
(� 1;n )p�

+ ( � 1;n )p+
�

!

:

We recall that p+ =� = 1 + � + =� < 5=3. Since(� 1;n )n2 N� and (� n )n2 N� are bounded inL p(R3)
for 1 � p < 3, and since (� 2;n )n2 N� converges to0 in L p

loc(R3) for 1 � p < 3, we deduce
that ( 3.22) goes to0 when n goes to in�nity (�rst take A large enough, thenn large enough,
as before).
Altogether, for � > 0, for n large enough,

E(
 n ) � E (
 1;n ) + E1 (
 2;n ) � 3� � I � + I 1
� � � � 3�:

Therefore, E(
 n ) � I � + I 1
� � � , and I � � I � + I 1

� � � . The second point of Lemma3.8 states
that I � � I � + I 1

� � � . HenceI � = I � + I 1
� � � , and (
 2;n )n2 N� is a minimizing sequence forI 1

� � � .
As in the proof of Lemma 3.8, it holds (3.20):

9A; � > 0; 8n 2 N; 9r n 2 R3;
�

r n + B A

� 2;n � �:
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We let 
 0
2;n = � r n 
 2;n � � r n . Then, (
 2;n ) is bounded for the weak-� topology of B, and con-

verges, up to a subsequence, to some
 0
0 satisfying Tr( 
 0

0) � � . Let � := Tr( 
 0
0). We can

repeat the same arguments as before and truncate
 0
2;n to ensure that Tr( � A n 
 2;n � A n ) = � .

We deduce as before that
 0
0 is a minimizer for I 1

� , and that I � = I � + I 1
� + I 1

� � � � � .

3.4.6 Proof of Lemma 3.10

Let us �rst derive the expression of H 
 0 . Suppose that 
 0 2 P � is a minimizer for I � . Then
for 
 2 P � and 0 � t � 1, it holds E(t
 + (1 � t)
 0) � E (
 0). In particular, one must have

@E(t
 + (1 � t)
 0)
@t

�
�
�
t=0

� 0: (3.23)

To perform the calculations, we use the explicit formula (3.15) for � + =� , and get

@(t� + (1 � t)� 0)+ =�

@t

�
�
�
t=0

=

1
2

tr C2

0

@

2

4
�

1 0
0 1

�
�

1
q

(� ""
0 � � ##

0 )2 + 4 j� "#
0 j2

 
� ""

0 � � ##
0 2� "#

0

2� #"
0 � ##

0 � � ""
0

! 3

5 (R � R0)

1

A :

Similarly to [ AC09, CDL08], we conclude that

@E(t
 + (1 � t)
 0)
@t

�
�
�
t=0

= Tr ( H 
 0 (
 � 
 0))

with

H 
 0 =
�

�
1
2

� + � 0 � j � j � 1
�

I2 + U

+
g0(� +

0 )
2

2

4
�

1 0
0 1

�
+

1
q

(� ""
0 � � ##

0 )2 + 4 j� "#
0 j2

 
� ""

0 � � ##
0 2� "#

0

2� #"
0 � ##

0 � � ""
0

! 3

5

+
g0(� �

0 )
2

2

4
�

1 0
0 1

�
�

1
q

(� ""
0 � � ##

0 )2 + 4 j� "#
0 j2

 
� ""

0 � � ##
0 2� "#

0

2� #"
0 � ##

0 � � ""
0

! 3

5 :

(3.24)

Using (3.23), we deduce that 
 0 2 arginff Tr( H 
 0 
 ); 
 2 P � g. Finally,


 0 = 1(�1 ;" F ) (H 
 0 ) + � with � � Ker(H 
 0 � "F );

where "F is the Fermi energy, determined by the conditionTr( 
 0) = � .

Let us �rst calculate the essential spectrum of H 
 0 . We recall that H0 = �
1
2

� I2 has

domain H 2(R3; C2) and that if u 2 H 2(R3; C), then u vanishes at in�nity. We also recall
that for all V 2 L 3=2(R3; C2) + L 1

� (R3; C2) (that is V is of the form V = V3=2 + V1 with
V3=2 2 L 3=2(R3; C2), V1 2 L 1 (R3) and kV1 kL 1 arbitrary small), V is a compact perturbation

of H0. In our case, we can easily check that \� 0 � j � j � 1 = b� 0j � j � 2 2 L 1(R3), so that � 0 � j � j � 1

vanishes at in�nity. Altogether,

� � 0 � j � j � 1 2 L 3=2(R3) + L 1
� (R3) ;

� U 2 L 3=2(R3; C2) + L 1 (R3; C2) and all entries of U vanish at in�nity ;

� j g0(� + =�
0 )j � C(� � �

0 + � � +

0 ) hence g0(� + =�
0 ) 2 L 3=2(R3; C2):
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Therefore, according to the Weyl's theorem, the domain ofH 
 0 is H 2(R3; C2), and its essential
spectrum is � ess(H 
 0 ) = � ess(H0) = [0 ; + 1 [.

Let us now prove that H 
 0 has in�nitely many negative eigenvalues whenever� < Z . First
notice that the matrix

1
q

(� ""
0 � � ##

0 )2 + 4 j� "#
0 j2

 
� ""

0 � � ##
0 2� "#

0

2� #"
0 � ##

0 � � ""
0

!

has two eigenvalues, respectively� 1 and 1, so that the matrices appearing into the two pairs
of brackets in (3.24) have 0 and 2 as eigenvalues, and therefore are hermitian positive. Also,
recall that under the conditions (3.10) on g, it holds g0 � 0. Altogether, for  2 C1

c (R3; C),
	 = (  ;  )T 2 C1

c (R3; C2), and e	 de�ned as in (3.11), it holds that

h	 jH 
 0 j	 i + he	 jH 
 0 j e	 i �
�

	
�
�
��

�
1
2

� + � 0 � j � j � 1
�

I2 + U
� �

� 	
�

+
�

e	
�
�
��

�
1
2

� + � 0 � j � j � 1
�

I2 + U
� �

� e	
�

� 4
�

 
�
� �

1
2

� + � 0 � j � j � 1 + V
�
� 

�
= h jH1j i 1

whereH1 := � 1
2 � + � 0 � j � j � 1 + V acts onL 2(R3; C), and V is de�ned in (3.1). We used the

subscript 1 to emphasize thath�j�i1 is the scalar product onL 2(R3; C), whereash�j�i is the one
on L 2(R3; C2). In virtue of [ Lio87, Lemma 2.1], the operatorH1 has in�nitely many negative
eigenvalues of �nite multiplicity whenever � < Z . So hasH 
 0 by the min-max principle.
Eventually, "F < 0, and


 0 =
N1X

i =1

j� i ih� i j +
N2X

i = N1+1

ni j� i ih� i j with h� i j� j i = � ij and H 
 0 � i = " i � i :

It holds " i < " F if i � N1, and " i = "F if N1 + 1 � i � N2. In the following, we set ni := 1
for i � N1.

Finally, we prove that all eigenvectors associated with negative eigenvalues are exponen-
tially decreasing. Any function u satisfying H 
 0 u = �u is in H 2(R3; C2), and each component
of u vanishes at in�nity. As a byproduct, we obtain that � 0 =

P N2
i =1 ni j� i j2 also vanishes at

in�nity. Finally, all the components of

U
 0 := � 0 � j � j � 1I2 + U+

+
X

� =+ =�

g0(� �
0)

2

2

4
�

1 0
0 1

�
+ ( � 1)� 1

q
(� ""

0 � � ##
0 )2 + 4 j� "#

0 j2

 
� ""

0 � � ##
0 2� "#

0

2� #"
0 � ##

0 � � ""
0

! 3

5

vanish at in�nity. Recall that H 
 0 � i = � 1
2 �� i + U
 � i = " i � i . Multiplying this equation by

� i and adding all the terms with prefactors ni , it holds that

N2X

i =1

ni � T
i

�
�

1
2

�
�

� i +
N2X

i =1

ni � T
i U
 � i =

N2X

i =1

" i ni j� i j2: (3.25)

From the relation � 0 =
P N2

i =1 ni j� i j2, we get

� � 0 =
N2X

i =1

2ni
�
� T

i (�� i ) + jr � i j2
�
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and (3.25) becomes

�
�
4

� 0 +
N2X

i =1

ni

2
jr � i j2

| {z }
� 0

+
N2X

i =1

ni � T
i U
 � i +

N2X

i =1

("F � " i )ni j� i j2

| {z }
� 0

� "F � 0 = 0 :

Let A be large enough such that, for allr 2 R3 with jr j � A, the eigenvalues of the ma-

trix U
 (r ) are between
"F

2�
and �

"F

2�
(recall that "F < 0). In particular, for jr j � A,

j� T
i (r )U
 (r )� i (r )j � �

"F

2�
j� i j2, and, on (BA )c,

�
�
4

� 0 +
"F �
2�

� 0 � "F � 0 � 0 or �
�
2

� 0 � "F � 0 � 0:

We easily deduce that� 0 decreases exponentially. Hence, the same holds true for all the� i 's
with 1 � i � N2. A similar proof can be used for the remaining negative eigenvalues.

3.4.7 Proof of Lemma 3.11

Let 
 0 2 P � be a minimizer for I � , and 
 0
0 2 P � be a minimizer for I 1

� . According to the
proof of Lemma 3.10, since� < � , then 
 0 is of form


 0 =
N2X

i =1

ni j� i ih� i j with H 
 0 � i = " i � i and " i � "F < 0:

We can derive a similar expression for
 0
0:


 0
0 =

1X

i =1

n0
i j�

0
i ih� 0

i j with H 1

 0

0
� 0

i = " i � 0
i and "0

i � "0
F � 0; (3.26)

whereH 1

 0

0
has a similar expression asH 
 0

0
in (3.24), without the U term. Note that in ( 3.26),

we do not know whether"0
F < 0 or "0

F = 0 .

First assume that "0
F < 0, so that � i and � 0

i are exponentially decreasing, and the sum
in (3.26) is �nite. We introduce


 n := min f 1; k
 0 + � n 
 0
0� � nk� 1g

�

 0 + � n 
 0

0� � n
�

and

 ]

n := min f 1; k
 0 + � ne
 0
0� � nk� 1g

�

 0 + � ne
 0

0� � n
�

;

where e
 0
0 is the �ipped transformation of 
 0

0, as de�ned in (3.11). Note that Tr( 
 n ) � � + �
and Tr( 
 ]

n ) � � + � , so that I � + � � E (
 n ) and I � + � � E (e
 ) according to the third assertion
of Lemma 3.8. A straightforward calculation leads to

E(
 n ) + E(
 ]
n ) = 2 E(
 0) + 2 E1 (e
 0) �

� (Z � � )
n

+ O(e� �n )

= 2 I � + 2 I 1
� �

� (Z � � )
n

+ O(e� �n ):

For n large enough,� � (Z � � )n� 1 + O(e� �n ) becomes negative. Hence, eitherE(
 n ) or E(
 ]
n )

is strictly less than I � + I 1
� . Therefore, I � + � < I � + I 1

� .
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Let us now assume that"0
F = 0 . Then, there exists	 2 H 2(R3; C2) such that k	 kL 2 = 1 ,

H 1

 0

0
	 = 0 and 
 0

0	 = � 	 with � > 0. For 0 < � < � , we introduce
 � = 
 0+ � j� N2+1 ih� N2+1 j

and 
 0
� = 
 0

0 � � j	 ih	 j, so that 
 � 2 P � + � and 
 0
� 2 P � � � . Moreover,

E(
 � ) = E(
 0) + 2 �" N2+1 + o(� ) = I � + 2 �" N2+1 + o(� )

and
E1 (
 0

� ) = E1 (
 0
0) + o(� ) = I 1

� + o(� ):

Using the facts that 
 0 + � j� N2+1 ih� N2+1 j 2 P � + � and 
 0
0 � � j	 ih	 j 2 P � � � , it holds that

I � + � � I � + � + I 1
� � � � E (
 � ) + E1 (
 0

� ) � I � + I 1
� + 2 �" N2+1 + o(� ):

Since "N2+1 < 0, for � small enough, the left hand side is strictly less thatI � + I 1
� , which

concludes the proof.
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CHAPTER4

THE GW METHOD FOR FINITE SYSTEMS

We expose in this chapter the theory and results given in [CGS15]. This work was done in
collaboration with Eric Cancès and Gabriel Stoltz.

Abstract. We analyze theGW method for �nite electronic systems in this chapter. In
a �rst step, we provide a mathematical framework for the usual one-body operators that
appear naturally in many-body perturbation theory. We then discuss the GW equations
which construct an approximation of the one-body Green's function, and give a rigorous
mathematical formulation of these equations. Finally, we study the well-posedness of theGW0

equations, proving the existence of a unique solution to these equations in a perturbative
regime.

4.1 Introduction

Computational quantum chemistry is nowadays a standard tool to numerically determine the
properties of molecules. The Density Functional Theory (DFT) �rst developed by Hohenberg
and Kohn [HK64] and by Kohn and Sham [KS65], is a very powerful method to obtain ground
state properties of molecular systems. However, it does not allow one to compute optical prop-
erties and electronic excited energies. In order to calculate such quantities, several approaches
have been considered in the last decades [ORR02]. Among them are the time-dependent DFT
(TDDFT) [ MUN + 06, MMN + 12], wave-function methods [HJO14] such as Coupled-Cluster,
full-CI and Green's function methods. In this chapter, we study the GW method, which is
based on Hedin's equations for the one-body Green's function [Hed65]. The formal derivation
of the latter equations relies on many-body perturbation techniques. While the GW method
has been proven very successful in practice to predict electronic-excited energies, no rigorous
mathematical framework has yet been developed to understand its mathematical properties.
The aim of this work is to present such a framework.

In non-relativistic �rst-principle molecular simulation, the electrons of a molecular system
are described by anN -body Hamiltonian operator HN , which is a bounded below self-adjoint
operator on the fermionic space

V N L 2(R3) (see Equation (4.30) below). Whenever N � Z ,
where Z is the total nuclear charge of the molecular system,HN has an in�nity of discrete
eigenvaluesE 0

N � E 1
N � E 2

N � � � � below the bottom of the essential spectrum, whereE 0
N is

its ground state energy. The quantities we would like to evaluate are theelectronic-excitation
energies

E 0
N � E k

N +1 (gain of an electron); and E 0
N � E k

N � 1 (loss of an electron):
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These energy di�erences are not to be confused with the optical-excitation energies, which
are energy di�erences of the formE k

N � E 0
N , between two states with the same number of

electrons. More generally, it is interesting to compute the particle electronic-excitation set
Sp := �

�
HN +1 � E 0

N

�
and the hole electronic-excitation setSh := �

�
E 0

N � HN � 1
�
. As will

be made clear in Section4.3.2, these sets are closely linked to the one-body Green's function:
the time-Fourier transform of the Green's function becomes singular on these sets. In order to
study the electronic-excitation sets, we therefore study the one-body Green's function. Also,
the one-body Green's function is a fundamental object which contains a lot of useful informa-
tion, and allows one to easily compute the ground state electronic density, the ground state
one-body density matrix, and even the ground state energy thanks to the Galitskii-Migdal
formula [GM58].

Calculating the one-body Green's function is however a di�cult task. In his pioneering
work in 1965, Hedin proved that the Green's function satis�es a set of (self-consistent) equa-
tions, now called the Hedin's equations [Hed65]. These equations link many operator-valued
distributions, namely the reducible and irreducible polarizability operators, the dynamically
screened interaction operator, the self-energy operator, the vertex operator, and of course the
one-body Green's function. The state-of-the-art method to compute the one-body Green's
function consists in solving Hedin's equations.

Immediately, two di�culties arise. The �rst one is related to the lack of regularity of the
Green's function (we expect its time-Fourier transform bG to be singular on the electronic-
excitation sets). One way to get around this problem is to consider the analytical extension
of bG into the complex plane, which we denote byeG. This is possible whenever the following
classical stability condition holds true1:

Stability assumption: It holds that 2E 0
N < E 0

N +1 + E 0
N � 1:

The physical relevance of this inequality is discussed for instance in [Far99, Section 4.2]. It
allows one to de�ne the chemical potential� , chosen such that

E 0
N � E 0

N � 1 < � < E 0
N +1 � E 0

N :

Instead of studying the Green's functionG(� ) in the time domain, or its Fourier transform
bG(! ) in the frequency domain, we rather study its analytical continuation eG on the imagi-
nary axis � + i R. The function ! 7! eG(� + i ! ) enjoys very nice properties, both in terms of
regularity and integrability, which makes it a privileged tool for numerical calculations.

The second di�culty comes from the fact that Hedin's equations cannot be exactly solved
and, even more importantly, that the mathematical de�nition of some terms in these equa-
tions are unclear. It however opens the way to some approximate resolutions. The most
widely used approximation nowadays is the so-called GW-approximation, also introduced
by Hedin [Hed65]. These equations are traditionally set on the time-axis, or on the energy-
axis [RJT10, KFSP10]. However, as previously mentioned, the various operators under consid-
eration are singular on these axes, which makes the traditional GW equations cumbersome to
implement numerically, and di�cult to analyze mathematically. In order to manipulate better-
behaved equations, it is more convenient to replace every operator-valued distribution involved
in the GW equations by its analytic continuation on an appropriate imaginary axis, thanks
to the �contour deformation� technique introduced in [RGN95, RSW+ 99]. The resulting GW
equations, which give an approximation of the map! 7! eG(� +i ! ), turn out to give simulation

1The question �Is the stability condition always true for Coulomb systems� is still an open problem [ BDS14,
Part VII].
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results in very good agreement with experimental data [SDvL06, SDvL09, CRR+ 12, CRR+ 13].

From the GW equations set on the imaginary axis, several further approximation may
be performed. The GW equations are solved self-consistently, and the Green's function is
updated at each iteration until convergence. When only one iteration is performed, we obtain
the one-shot GW approximation, also called the G0W0 approximation of the Green's func-
tion. For molecules, self-consistent GW approaches give results of similar quality as G0W0,
sometimes almost identical [SDvL09, KFSP10], sometimes slightly worse [RJT10], sometimes
slightly better [ CRR+ 12, CRR+ 13]. When several iterations are performed, while keeping the
screening operatorW �xed, equal to a reference screening operatorW 0, we obtain the GW0

approximation of the Green's function [SDvL09, vBH96]. Since the update of the screening
operator W in a self-consistent GW scheme seems di�cult to analyze mathematically, we
prefer to study in this chapter the equations resulting from theGW0 approximation.

The purpose of this work is threefold. First, we clarify the mathematical de�nitions and
properties of the usual one-body operators involved in many-body perturbation theory. Then,
we embed theGW0 equations in a mathematical framework. Finally, we prove that, in a per-
turbative regime, the GW0 equations admit a unique solution close to a reference Green's
function.

From a physical viewpoint, the analysis we perform in this work is more relevant for atoms
and molecules. Indeed, as discussed in [BG14, Section 4.1] for instance, fully self-consistent
GW approaches are questionable for solid-state systems, for which quasiparticle methods are
preferred [AG98, AJW00].

This chapter is organized as follows. In Section4.2, we provide the mathematical tools
that will be used throughout the chapter. We recall the Titchmarsh's theorem, and introduce
the kernel-product of two operators, which can be seen as an in�nite dimensional version of
the Hadamard product for matrices. We also explain the underlying structure that makes the
�contour deformation� possible. In Section4.3, we recall the standard de�nitions of the usual
one-body operators that appear in many-body perturbation theory. A consistent functional
setting is given for each of these operators, and their basic properties are recalled and proved.
Section 4.4 is concerned with the GW approximation. We explain why some of the GW
equations are not well-understood mathematically, and prove that theGW0 equations are
well-posed in a perturbative regime. Most of the proofs are postponed until Section4.6.

4.2 Setting the stage

4.2.1 Some notation

The GW method is based on time-dependent perturbation theory and therefore involves
space-time operators. Following the common notation in physics, we denote byt the time
coordinate, by r the space coordinates, and byx or r t the space-time coordinates. The
functional spaces considered in this work are by default composed of complex-valued functions,
unless we explicitly mention that the functions are real-valued.

Most of the space-time operators appearing in the GW formalism are time-translation
invariant. A time-translation invariant operator C can be characterized by the family of
operators (C(� )) � 2 R such that, formally, the kernel of C is of the form

C(r 1t1; r 2t2) = C(r 1; r 2; t1 � t2);

whereC(r ; r 0; � ) is the kernel of the operatorC(� ). For clarity, we will systematically use the
letter � to denote a time variable which is in fact a time di�erence.
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Let H be a separable complex Hilbert space, whose associated scalar product is simply
denoted by h�; �i and the associated normk � k. We denote by B(H) the space of bounded
linear operators onH, by S(H) the space of bounded self-adjoint operators onH, by S p(H )
(1 � p < 1 ) the Schatten class

S p(H ) =
n

A 2 B(H)
�
�
� kAkS p (H ) := Tr( jAjp)1=p < 1

o
;

and by A � the adjoint of a linear operator A on H with dense domain. The real and imaginary
parts of an operator A 2 B(H) are de�ned as

ReA =
A + A �

2
; Im A =

A � A �

2i
:

Note that, when A is closed (which impliesA �� = A), the operators ReA and Im A are
self-adjoint. For f; g 2 H and given operatorsA; B on H, we will often use the notation

hf jAjgi H := hf; Ag i H ; hf jAB jgi H := hf; ABg i H ;

even in cases when the operators are not self-adjoint. Operators are always understood to act
on the function on the right in this notation.

We will sometimes need to manipulate the adjoints of operators between two di�erent
Hilbert spacesH a and H b. The adjoint of a bounded operatorA 2 B(H a; H b) is the bounded
operator A � 2 B(H b; H a) de�ned by

8(x; y) 2 H a � H b; (A � y; x)H a
= ( y; Ax )H b

:

Let E be a Banach space. We denote byS 0(R; E) the space ofE-valued tempered-
distributions on R, i.e. the set of continuous linear maps from the Schwartz's functional
spaceS (R) into E . Recall that, by de�nition, a family (T� ) �> 0 of elements ofS 0(R; E)
converges inS 0(R; E) to someT 2 S 0(R; E) when � goes to0 if

8� 2 S (R);



 hT� ; � i S 0;S � h T; � i S 0;S






E �!
� ! 0+

0:

Let f 2 L 1(R; E) be a time-dependentE-valued integrable function. The time-Fourier
transform of f is de�ned, using the standard convention in physics, as

8! 2 R; bf (! ) := ( FT f ) ( ! ) :=
�

R
f (� )ei!� d�: (4.1)

For the sake of clarity, we will sometimes denote byRt or R� the time-domain, by R!

the frequency-domain, byS 0(R� ; E ) (resp. S 0(R! ; E )) the space of time-dependent (resp.
frequency-dependent)E -valued distributions, etc. We will also denote with a hat the functions
de�ned on the frequency domain. Using this notation,FT can be extended to a bicontinuous
isomorphism from S 0(R� ; E ) into S 0(R! ; E ). When bf 2 L 1(R! ; E ), we have

8� 2 R;
�

F � 1
T

bf
�

(� ) =
1

2�

�

R

bf (! )e� i!� d!:

The Dirac distribution at a 2 Rd is denoted by� a, and the Heaviside function onR by � :

�( � ) = 1 for � > 0; �( � ) = 0 for � < 0; �(0) = 1 =2: (4.2)

Recall that the time-Fourier transform of � is, in the tempered distributional sense,

b�( ! ) = �� 0(! ) + ip :v:
�

1
!

�
; (4.3)

where p:v: is the Cauchy principal value. We will also make use of the notation� + for a
number strictly above � , but in�nitesimally close to � , and of the convention

�( � )� 0(� + ) := � 0(� ); �( � � )� 0(� + ) := 0 :
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4.2.2 Hilbert transform of functions and distributions

The Hilbert transform, which amounts to a convolution by � � 1p:v:( 1
� ), plays a crucial role in

the GW formalism. We �rst recall some well-known results on the standard Hilbert transform
on L p(R! ), and extend the results to the Sobolev spacesH s(R! ) for s 2 R. Usually, the name
�Hilbert transform� is only used on functional spacesE � L 1

loc(R! ) such that, for any function
bf 2 E , the limit

�
bf � p:v:

�
1
�

��
(! ) = p :v:

� + 1

�1

bf (! 0)
! � ! 0 d! 0 := lim

� ! 0+

�

Rn[! � �;! + � ]

bf (! 0)
! � ! 0 d! 0

exists for almost all ! 2 R! . However, in the sequel, we will also use the name �Hilbert
transform� in functional spaces where the above integral representation is not always valid
(for instance when bf is not a locally integrable function). Note that we de�ne the Hilbert
transform on Fourier transforms of functions (i.e. on functions on the frequency domain)
since this is the typical setting in the GW formalism.

Hilbert transform in L p spaces

We �rst begin with the following classical de�nition (see for instance [Gra04, Section 4.1]).

De�nition 4.1 (Hilbert transform on S (R! )). The Hilbert transform of a function b� 2
S (R! ) is de�ned by

Hb� :=
1
�

p:v:
�

1
�

�
� b�; (4.4)

or equivalently by
Hb� :=

�
FT (� i sgn(�)) F � 1

T

� b�; (4.5)

wherep:v:
� 1

�

�
is the Cauchy principal value of the function! 7! 1

! , � the convolution product,
FT the Fourier transform de�ned in ( 4.1) and � i sgn(�) the multiplication operator by theL 1

function t 7! � i sgn(t) (where sgn(t) = �( t) � �( � t) is the sign function).

The Hilbert transform can be extended by continuity to a large class of tempered distri-
butions. We refer to [Gra04, Rie28] for a proof of the following theorem.

Theorem 4.2. For all bf 2 L p(R! ) with 1 < p < 1 , the Hilbert transform

H bf (! ) = p :v:
� 1

�1

bf (! 0)
! � ! 0 d! 0

is well-de�ned for almost all ! 2 R. It holds H 2 B(L p(R! )) with

kHkB(L p (R! )) =

�
�
�
�

tan( �= (2p)) if 1 < p � 2;
cotan(�= (2p)) if 2 � p < 1 :

Moreover, the Hilbert transform commutes with the translations and the positive dilations, and
anticommutes with the re�exions. Finally, it is a unitary operator on L 2(R! ).

Hilbert transform in Sobolev spaces

Recall that for any s 2 R, the Sobolev spaceH s(R! ) is the Hilbert space de�ned as

H s(R! ) :=
n

bf 2 S 0(R! ))
�
�
� (1 + j � j 2)s=2F � 1

T
bf 2 L 2(R� )

o
;

and endowed with the scalar product

D
bf ; bg

E

H s
= 2 �

� + 1

�1
(1 + � 2)s(F � 1

T
bf )( � ) (F � 1

T bg)( � ) d�;
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and that H � s(R! ) can be identi�ed with the dual of H s(R! ) when the spaceL 2(R! ) = H 0(R! )
is used as a pivoting space. One of the reasons to introduce these spaces is that the image
of L 1 (R� ) by the Fourier transform FT is contained in the Sobolev spaces of indices strictly
lower than � 1=2.

Lemma 4.3 (Fourier transform in L 1 (R� )). Let s > 1=2. Then FT (L 1 (R� )) � H � s(R! )
and

kFT kB(L 1 ;H � s ) = Cs with Cs =
�

2�
�

R

d�
(1 + � 2)s

� 1=2

: (4.6)

For completeness, we recall the proof of Lemma4.3 in Section 4.6.1.

Since the Hilbert transform in S (R! ) amounts to a multiplication by the bounded func-
tion � i sgn(�) in the time domain (see (4.5)), it can be directly extended to the Sobolev spaces
H s(R! ).

Lemma 4.4. For any s 2 R, the Hilbert transform H is a unitary operator on the Sobolev
spacesH s(R! ) satisy�ng H� 1 = � H (and therefore H2 = � Id).

Remark 4.5 (Hilbert transform of distributions) . Extending the Hilbert transform to Sobolev
spaces is straightforward using (4.5). Extensions of the Hilbert transform to other subspaces
of D 0(R! ), such as theD 0

L p (R! ) spaces de�ned in [Sch66, Section VI.8], can be obtained
from (4.4).

Hilbert transforms of operator-valued distributions

We now need to properly de�ne the Hilbert transform of operator-valued distributions on the
frequency domain, as such objects naturally appear in the GW formalism. We �rst introduce,
for s 2 R, the Banach space

H s(R! ; B(H)) :=
n

bA 2 S 0(R! ; B(H)))
�
�
� (1 + j � j 2)s=2F � 1

T
bA 2 L 2(R� ; B(H))

o
;

endowed with the norm






 bA








H s (R! ;B(H ))
=

p
2�

� � + 1

�1
(1 + � 2)s







�

F � 1
T

bA
�

(� )







2

B(H )
d�

� 1=2

:

The following de�nition makes sense in view of Lemma4.4.

De�nition 4.6 (Hilbert transforms of frequency-dependent operators). Let H be a Hilbert
space, and considers 2 R and bA 2 H s(R! ; B(H)) . The Hilbert transform of bA is the element
of H s(R! ; B(H)) , denoted byH( bA), and de�ned by

8(f; g ) 2 H � H ;
D

f
�
�
�H( bA)

�
�
� g

E
= H

�D
f

�
�
� bA

�
�
� g

E�
: (4.7)

In particular, it is possible to de�ne the Hilbert transform of the Fourier transform of a
uniformly bounded �eld of time-dependent operators, using the following result, which is a
straightforward extension of Lemma4.3.

Lemma 4.7. Let H be a Hilbert space, and lets > 1=2. Then for all A 2 L 1 (R� ; B(H)) , we
have bA 2 H � s(R! ; B(H)) , with






 bA








H � s (R! ;B(H ))
=

�
2�

�

R

�
1 + � 2� � s

kA(� )k2
B(H ) d�

� 1=2

� Cs kAkL 1 (R� ;B(H )) ;

whereCs is de�ned in ( 4.6).
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Let B (R) be the set of Borel subsets ofR, b 2 B (R) a Borelian set, andH a self-adjoint
operator on a Hilbert spaceH. We denote by PH

b := 1b(H ) the spectral projection on b
of H (here, 1b is the characteristic function of the setb, and 1b(H ) 2 B(H) is de�ned by the
spectral theorem for self-adjoint operators; see for instance [RS78, Theorem VII.2]).

De�nition 4.8 (Principal value of the resolvent of a self-adjoint operator). Let H be a self-

adjoint operator on a Hilbert spaceH. We de�ne the B(H)-valued distribution p:v:
�

1
�� H

�
on

the frequency domainR! by

8(f; g ) 2 H � H ;
�

f

�
�
�
�p:v:

�
1

� � H

� �
�
�
� g

�
:= � H(� H

f;g );

where � H
f;g is the �nite complex Borel measure onR! de�ned by

8b 2 B (R! ); � H
f;g (b) = hf jPH

b jgi :

As any complex-valued bounded Borel measure onR! is an element of H � s(R! ) for
any s > 1=2 (this is a consequence of the continuous embeddingH s(R! ) ,! C0(R! ) \ L 1 (R)
for s > 1=2), it follows from De�nitions 4.6 and 4.8 that

p:v:
�

1
� � H

�
= � H(PH ) in H � s(R! ; B(H)) ; s > 1=2;

which is the operator analog of the well-known formula

p:v:
�

1
�

�
= � H(� 0) in H � s(R! ); s > 1=2; (4.8)

which is itself a simple reformulation of the equality

F � 1
T

�
p:v:

�
1
�

��
= �

i
2

sgn(�) in L 1 (R� ):

4.2.3 Causal and anti-causal operators

The GW formalism makes use of families of time-dependent operators(Tc(� )) � 2 R and (Ta(� )) � 2 R

of the form

Tc(� ) = �( � )Ac(� ) and Ta(� ) = �( � � )Aa(� );

where � : R ! R is the Heaviside function (4.2), and Ac and Aa belong to L 1 (R; B(H)) for
a given Hilbert spaceH. The family of operators (Tc(� )) � 2 R is called a causal operator, as
Tc(� ) = 0 for all � < 0. Likewise, the family of operators(Ta(� )) � 2 R is called ananti-causal
operator, as Ta(� ) = 0 for all � > 0. We recall in this section the basic properties of causal
and anti-causal operators.

Causal operators

Causal functions have very nice properties, because their Fourier transforms have analytic
extensions in the upper half-plane

U := f z 2 C j Im z > 0g:
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This comes from the fact that, if f 2 L 1(R� ) + L 1 (R� ) is such that f (� ) = 0 for � < 0, the
Laplace transform ef of f , de�ned on U by2

8z 2 U; ef (z) :=
�

R
f (� )eiz� d� =

� + 1

0
f (� )eiz� d�; (4.9)

is a natural analytic lifting onto U of the time-Fourier transform bf of f de�ned on R! = @U.
Note that the Laplace transform can be extended to appropriate classes of tempered distri-
butions, see [Sch66, Chapter VIII].

Let us �rst recall the Titchmarsh's theorem [ Tit48 ] (see for instance [Nus72, Section 1.6]).

Theorem 4.9 (Titchmarsh's theorem in L 2 [Tit48 ]). Let f 2 L 2(R� ) and bf 2 L 2(R! ) be its
time-Fourier transform. The following assertions are equivalent:

(i) f is causal (i.e. f (� ) = 0 for almost all � < 0);

(ii) there exists an analytic function F in the upper half-planeU satisfying

sup
�> 0

� � + 1

�1
jF (! + i � )j2 d!

�
< 1

and such that,F (� + i � ) ! bf strongly in L 2(R! ), as � ! 0+ ;

(iii) Re bf and Im bf satisfy the �rst Plemelj formula

Re bf = � H
�

Im bf
�

in L 2(R! ); (4.10)

(iv) Re bf and Im bf satisfy the second Plemelj formula

Im bf = H
�

Re bf
�

in L 2(R! ): (4.11)

If these four assertions are satis�ed, then the functionF in (ii) is unique, and coincides with
the Laplace transform ef of f .

We refer to [Tit48 ] for a proof of this theorem. Formulae (4.10)-(4.11) are sometimes
referred to as the Kramers-Krönig formulae or the dispersion relations in the physics literature.
Titchmarsh's theorem implies in particular that square integrable causal functions, which can
be very easily characterized in the time domain (they vanish for negative times), can also be
easily characterized in the frequency domain (the imaginary parts of their Fourier transforms
are the Hilbert transforms of their real parts).

We emphasize that the above version of Titchmarsh's theorem is only valid inL 2, while
the GW setting mostly involves L 1 causal functions (see Section4.3.2 for instance). Weaker
versions of Titchmarsh's theorem are available for wider classes of tempered distributions (see
[Nus72] and references therein), but theL 1 setting turns out to be su�cient for our purposes
and has the advantage of allowing short, self-contained proofs of all statements. Note that
the assertions are no longer equivalent.

2The Laplace transform is usually de�ned as

F (p) =
� 1

0
f (� )e� p� d�:

Our de�nition, which is better adapted to the GW framework, simply amounts to rotating the axis, or, in
other words, to setting z = i p.
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Theorem 4.10 (Titchmarsh's theorem in L 1 (R)). Let g 2 L 1 (R� ) be a causal function (i.e.
g(� ) = 0 for � < 0) and let bg 2 H � s(R! ) for all s > 1=2 be its time-Fourier transform, and
eg be its Laplace transform de�ned onU. Then,

(i) eg is analytic on U;

(ii) the function � 7! eg(� + i � ) is continuous from (0; + 1 ) to H s(R! ) for all s 2 R, and is
uniformly continuous from [0; + 1 ) to H � s(R! ) for all s > 1=2. Moreover, eg(� + i � ) ! bg
strongly in H � s(R! ) for all s > 1=2, as � ! 0+ ;

(iii) for all z 2 U,

eg(z) =
1

2i�



bg;(� � z) � 1�

H � 1 ;H 1 : (4.12)

(iv) Rebg and Im bg satisfy the Plemelj formulae:

Rebg = � H (Im bg) and Im bg = H (Rebg) in H � 1(R! ): (4.13)

The proof of Theorem4.10, which is a simpli�ed version of the proof of the more general
result given by [Tay58, Lemma 1] (see also [Nus72, Section 1.7]), is given in Section4.6.2. For
simplicity, we stated (4.12) and (4.13) in H � s for the value s = 1 , but similar results hold for
any value s > 1=2.

Let us now extend these results to operator-valued functions. We recall that a map
eA(z) from an open setU � C to a Banach spaceE is said to be strongly analytic on U if
U 3 z 7! eA(z) 2 E is C-di�erentiable on U, i.e. d eA(z)=dz 2 E for all z 2 U.

De�nition 4.11 (bounded causal operator). Let H be a Hilbert space andTc 2 L 1 (R� ; B(H)) .
We say that Tc is a bounded causal operator onH if Tc(� ) = 0 for almost all � < 0.

Lemma 4.3 and Theorem4.10can be straightforwardly extended to operator-valued maps
(see Section4.6.3 for the proof).

Proposition 4.12. Let H be a Hilbert space andTc 2 L 1 (R� ; B(H)) a bounded causal oper-
ator on H. Then its time-Fourier transform bTc belongs toH � s(R! ; B(H)) for any s > 1=2,
and its Laplace transform

eTc(z) :=
�

R
Tc(� ) eiz� d� =

� + 1

0
Tc(� ) eiz� d�

is well de�ned on the upper-half planeU. Moreover,

(i) eTc is a strongly analytic function from U to B(H);

(ii) the function � 7! eTc(� + i � ) is continuous from (0; + 1 ) to H s(R! ; B(H)) for all s 2 R,
and uniformly continuous from [0; + 1 ) to H � s(R! ; B(H)) for s > 1=2. Moreover, for
any s > 1=2, eTc(� + i � ) ! bTc strongly in H � s(R! ; B(H)) as � ! 0+ ;

(iii) for all z 2 U, it holds

eTc(z) =
1

2i�

D
bTc; (� � z) � 1

E

H � 1 ;H 1
;

(iv) the operators Re bTc and Im bTc satisfy the Plemelj formulae:

Re bTc = � H
�

Im bTc

�
and Im bTc = H

�
Re bTc

�
in H � 1(R! ; B(H)) : (4.14)
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Besides the general case covered by Proposition4.12, the particular case of causal time-
propagators is often encountered. Explicit formulae can be provided for the Laplace and
Fourier transforms in this case, as made precise in the following result (see Section4.6.4 for
the proof).

Proposition 4.13 (Analytic extension of causal time propagators). Let H be a self-adjoint
operator on a Hilbert spaceH and Ac(� ) := � i�( � )e� i �H . The Laplace transform ( eAc(z)) z2 U

coincides with the resolvent ofH in U:

eAc(z) = ( z � H ) � 1:

Moreover, eAc(� + i � ) converge to bAc in H � 1(R! ; B(H)) as � ! 0+ , and

Re bAc = p :v:
�

1
� � H

�
and Im bAc = � �P H in H � 1(R! ; B(H)) :

Let us conclude this section with a useful result (see Section4.6.5 for the proof).

Lemma 4.14. Let Tc 2 L 1 (R� ; B(H)) be a bounded causal operator such that it holds
Supp(Im bTc) � [! 0; 1 ) for some ! 0 2 R. Then Im bTc � 0 on R! if and only if Re bTc � 0
on (�1 ; ! 0].

Anti-causal operators

De�nition 4.15 (bounded anti-causal operator). Let H be a Hilbert space andTa 2 L 1 (R� ; B(H)) .
We say that Ta is a bounded anti-causal operator ifTa(� ) = 0 for almost all � > 0.

All the results for causal operators stated in the previous section can be straightforwardly
transposed to anti-causal operators, by remarking that if(Ta(� )) � 2 R is an anti-causal operator,
then (Ta(� � )) t2 R is a causal operator. We will use in particular the following results, which
are the counterparts of Proposition4.12, Proposition 4.13 and Lemma 4.14.

Proposition 4.16. Let H be a Hilbert space andTa 2 L 1 (R� ; B(H)) a bounded anti-causal
operator on H. Then its time-Fourier transform cTa belongs toH � s(R! ; B(H)) for any s > 1=2,
and its Laplace transform fTa is well de�ned on the lower half-plane

L = f z 2 C j Im (z) < 0g:

Moreover,

(i) eTa is a strongly analytic function from L to B(H);

(ii) the function � 7! eTa(� � i� ) is continuous from (0; + 1 ) to H s(R! ; B(H)) for all s 2 R,
and uniformly continuous from [0; + 1 ) to H � s(R! ; B(H)) for s > 1=2. Moreover, for
any s > 1=2, eTa(� � i� ) ! bTa strongly in H � s(R! ; B(H)) as � ! 0+ ;

(iii) for all z 2 L, it holds

fTa(z) = �
1

2i�

D
cTa; (� � z) � 1

E

H � 1 ;H 1
;

(iv) the operators RecTa and Im cTa satisfy the Plemelj formulae:

RecTa = H
�

Im cTa

�
and Im cTa = � H

�
RecTa

�
in H � 1(R! ; B(H)) : (4.15)
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Note that the signs in the Plemelj formulae are di�erent for causal and anti-causal oper-
ators (compare (4.14) and (4.15)). Also, the Laplace transform is de�ned in the lower-half
plane L for anti-causal operators, while it is de�ned in the upper-half plane U for causal
operators. The counterpart of Proposition4.13 is the following proposition.

Proposition 4.17 (Analytic extension of anti-causal time propagators). Let H be a self-
adjoint operator on a Hilbert spaceH and Aa(� ) := i�( � � )ei �H . The Laplace transform
( eAa(z)) z2 L is

eAa(z) = ( z + H ) � 1:

Moreover, eAa(� � i� ) converge to bAa in H � 1(R! ; B(H)) as � ! 0+ , and

Re bAa = p :v:
�

1
� + H

�
and Im bAa = �P � H in H � 1(R! ; B(H)) :

Finally, a result similar to Lemma 4.14 can also be stated.

Lemma 4.18. Let Ta 2 L 1 (R� ; B(H)) be a bounded anti-causal operator such that it holds
Supp(Im cTa) � (�1 ; ! 0] for some ! 0 2 R! . Then, Im cTa � 0 if and only if RecTa(! ) � 0 on
[! 0; + 1 ).

4.2.4 Operators de�ned by kernel products

Two of the fundamental equations in the GW method (see Sections4.4.2and 4.4.3) are of the
form

C(x1; x2) = i A (x1; x2)B(x2; x1); (4.16)

where A(x; x0) and B(x; x0) are the kernels of space-time operators invariant by time trans-
lations. As the product of the kernels of two operators is not, in general, the kernel of
a well-de�ned operator, we have to clarify the meaning of (4.16). We �rst treat the case of
time-independent operators in Section4.2.4, and consider time-dependent operators and their
Laplace transforms in a second step (see Section4.2.4).

De�nition of the kernel product

We �rst consider the special case when the operators in (4.16) are time-independent. Our
aim is to give a meaning to equalities such as

C(r 1; r 2) := A(r 1; r 2)B (r 2; r 1); (4.17)

where A(r ; r 0) and B (r ; r 0) are the kernels of two integral operatorsA and B on L 2(R3). For
this purpose, we replace (4.17) by the formally equivalent de�nition

8(f; g ) 2 L 2(R3) � L 2(R3); hf jCjgi :=
�

R3

�

R3
f (r 1)C(r 1; r 2)g(r 2) dr 1 dr 2

=
�

R3

�

R3
A(r 1; r 2)g(r 2)B (r 2; r 1)f (r 1) dr 1 dr 2

= Tr L 2 (R3 )
�
AgB f

�
; (4.18)

where the last line involves the operatorsA and B themselves, and not their kernels (f and
g are there seen as multiplication operators by the functionsf and g respectively).

The formal equalities leading to (4.18) suggest to de�ne the kernel product of two opera-
tors A and B (de�ned on dense subspaces ofL 2(R3)), as the operator onL 2(R3) with domain
D � L 2(R3), denoted by A � B and characterized by

8(f; g ) 2 L 2(R3) � D; hf j(A � B )jgi := Tr L 2 (R3 )
�
AgB f

�
: (4.19)
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In particular, the product A� B is a well-de�ned bounded operator onL 2(R3) as soon asAgB f
is trace-class for all(f; g ) 2 L 2(R3) � L 2(R3) and (f; g ) 7! Tr L 2 (R3 ) (AgB f ) is a continuous
sesquilinear form onL 2(R3) � L 2(R3). It follows from the above considerations that ifA and
B are operators with well-behaved (for instance smooth and compactly supported) kernels
A(r 1; r 2) and B (r 1; r 2), then A� B is a bounded integral operator with kernel(A� B )( r 1; r 2) =
A(r 1; r 2)B (r 2; r 1).

Remark 4.19. It is also possible to rely on the formal equality

8(f; g ) 2 L 2(R3) � L 2(R3); hf jCjgi = Tr L 2 (R3 )
�
fAgB

�
;

and de�ne another kernel producte� by

8(f; g ) 2 L 2(R3) � D;


f

�
�A e� B

�
� g

�
:= Tr L 2 (R3 )

�
fAgB

�
:

It may hold that A � B is a well-de�ned bounded operator, whileA e� B is an unbounded
operator.3 In the sequel, we will mostly state the results for the� kernel product.

Remark 4.20. The product A � B can be seen as an in�nite-dimensional extension of the
Hadamard productA � B T de�ned for two matrices A 2 Cm� n and B 2 Cn� m by

81 � i � m; 81 � j � n;
�
A � B T �

ij = A ij
�
B T �

ij = A ij B ji :

Let us specify possible su�cient conditions for the operatorA � B to be well-de�ned. The
typical situation we will encounter in the GW setting (see Sections4.4.2and 4.4.3) is the case
when A 2 B(L 2(R3)) , while B is an operator onL 2(R3) satisfying

8f; g 2 L 2(R3); Tr
� �
�gBf

�
� � � CB kf kL 2 kgkL 2 : (4.20)

In this case, the operatorA � B de�ned in ( 4.19) is a well-de�ned bounded linear operator
on L 2(R3), and

kA � B kB(L 2 (R3 )) � CB kAkB(L 2 (R3 )) :

The operators B arising in the GW formalism are usually of the form B = B �
1B2B1, where

B1 is an operator from L 2(R3) to some Hilbert spaceH, and B2 2 B(H). In fact, assume
that the operator B1 is such that B1f 2 S 2(L 2(R3); H ) for any f 2 L 2(R3), with

kB1f kS 2 (L 2 (R3 );H ) � K kf kL 2 ; (4.21)

for a constant K 2 R+ independent of f . In the left-hand side of (4.21), f denotes the
multiplication operator by the function f . In this case, (4.20) holds with

CB = K 2kB2kB(H ) :

Let us conclude by giving a simple example when (4.21) is satis�ed, in the situation when
H = L 2(R3).

3 As an example of such a situation, take � 2 L 2(R3) \ L 1 (R3),  2 L 2(R3) n L 1 (R3), and set A = j ih� j
and B = j� ih� j. Then, for all f; g 2 L 2(R3), the operator AgB f = j ih� jgj� ih�f j is a well-de�ned rank- 1
bounded operator since �f 2 L 2(R3), hence is trace class. Moreover,

Tr L 2 ( R3 )

�
AgB f

�
�

�
k� k2

L 1 k� kL 2 k kL 2

�
kf kL 2 kgkL 2 ;

so that A � B is a well-de�ned bounded operator on L 2(R3). On the other hand, it formally holds fAgB =
jf  ih� jgj� ih� j. If f is such that f  =2 L 2(R3), then this operator is not bounded.
We are grateful to Yanqi Qiu for pointing out this counter-example to our attention.
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Lemma 4.21. Let B1 be a linear operator with integral kernelB1(r ; r 0) 2 L 2
loc(R3 � R3),

such that r 7! k B1(r ; �)kL 1 2 L 2(R3). Then B1 2 B(L 1(R3); L 2(R3)) , so that B1 de�nes
an operator on L 2(R3) with domain L 1(R3) \ L 2(R3). Moreover, for any f 2 L 2(R3), the
operator B1f is Hilbert-Schmidt on L 2(R3), with

kB1f kS 2 (L 2 (R3 )) �
� �

R3
kB1(r ; �)k2

L 1 (R3 ) dr
� 1=2

kf kL 2 (R3 ) :

The proof of this result can be read in Section4.6.6. In the GW setting, a technical result
similar to Lemma 4.21 is provided by Lemma4.77.

Properties of the kernel product

Lemma 4.22. Consider two bounded operatorsA; B 2 B(L 2(R3)) such that A; B � 0
and (4.20) holds. Then, A � B is a bounded, positive operator onL 2(R3).

The proof of this result is very simple: it relies on the observation that, for anyf 2 L 2(R3),

hf jA � B j f i = Tr L 2 (R3 )
�
AfB f

�
= Tr L 2 (R3 )

�
A1=2fB fA 1=2

�
� 0;

sincefB f is a positive, trace class operator andA1=2 � 0 is a bounded operator.

Lemma 4.23. Consider two bounded operatorsA; B 2 B(L 2(R3)) such that (4.20) holds.
Then, A � B is a bounded operator with adjoint(A � B ) � = A � � B � .

The proof of this result is also elementary: for anyf; g 2 L 2(R3),



f

�
� (A � B ) g

�
= Tr L 2 (R3 )

�
AgB f

�
= Tr L 2 (R3 )

� �
AgB f

� �
�

= Tr L 2 (R3 ) (fB � gA� )

= Tr L 2 (R3 ) (A � fB � g) = hg;(A � � B � )f i = h(A � � B � )f; g i :

In particular, A � B is self-adjoint wheneverA and B are self-adjoint.

Laplace transforms of kernel products

We �nally combine the results on causal operators with those on the kernel product� de-
�ned in Section 4.2.4 in order to give a meaning to (4.16). Note �rst that the space-time
operator with kernel C(x; x0) is also time-translation invariant and that the family of opera-
tors (A(� )) � 2 R, (B (� )) � 2 R and (C(� )) � 2 R such that, formally, A (x1; x2) = A(r 1; r 2; t1 � t2),
B(x1; x2) = B (r 1; r 2; t1 � t2), and C(x1; x2) = C(r 1; r 2; t1 � t2), are related by

C(� ) = i A(� ) � B (� � ): (4.22)

We assume here thatA and B are such that (4.22) is well-de�ned. When all the operator-
valued functions have su�cient regularity in time, their Fourier transforms decay su�ciently
fast at in�nity and it is possible to Fourier transform ( 4.22). This is however not the typical
case in the GW setting since we work with causal and anti-causal operators, whose Fourier
transforms are in H � s(R! ) for somes > 1=2.

We therefore rather consider Laplace transforms. More precisely, for two �elds of uniformly
bounded operators(A(� )) � 2 R and (B (� )) � 2 R, and provided C(� ) := i A(� ) � B (� � ) is well
de�ned, we can decomposeA, B and C as the sums of their causal and anti-causal parts as

A(� ) = A+ (� ) + A � (� ) with A+ (� ) := �( � )A(� ) and A � (� ) := �( � � )A(� );

and similarly for B and C. Then,

C+ (� ) = i A+ (� ) � B � (� � ) and C � (� ) = i A � (� ) � B + (� � ): (4.23)
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We next consider! > 0 and 0 < � < ! . From the equality

C+ (� ) e� !� = i
h
A+ (� ) e� (! � � )�

i
�

�
B � (� � ) e� �� �

;

we deduce, by Fourier transform, that

fC+ (� + i ! ) =
i

2�

� + 1

�1

fA+
�
� � ! 0+ i( ! � � )

�
� gB � (� ! 0� i� ) d! 0: (4.24)

The convolution on the right-hand side is well de�ned in view of Propositions4.12 and 4.16.
It however becomes ill-de�ned as!; � ! 0. In the case when the causal and anti-causal
operatorsA+ and B � under consideration are time-propagators, it is possible to remove this
singularity by rewriting the convolution on appropriately shifted imaginary axes.

Theorem 4.24. Consider three Hilbert spacesH; H a; H b, and assume that

A+ (� ) = � i�( � )A �
1e� i �A 2 A1; A � (� ) = i�( � � )A �

1ei �A 2 A1;

B + (� ) = � i�( � )B �
1e� i �B 2 B1; B � (� ) = i�( � � )B �

1ei �B 2 B1;

where A1 2 B(H ; H a), B1 2 B(H ; H b) and A2; B2 are possibly unbounded, self-adjoint op-
erators on H a and H b respectively, for which there exist real numbersa; b such that A2 �
a and B2 � b. We assume in addition that, for any f 2 H , B1f 2 S 2(H ; H b) with
kB1f kS 2 (H ;H b) � K kf kH , for a constant K 2 R+ independent of f . Then, the opera-
tors C, C+ and C � in ( 4.22)-( 4.23) are well-de�ned, the Laplace transforms ofC+ and C �

admit analytical continuations on U [ L [ (�1 ; a + b) and U [ L [ (� (a + b); 1 ) respectively,
and it holds for any � < a + b and � 0 2 (� b; a� � ),

8! 2 R; fC+ (� + i ! ) = �
1

2�

� + 1

�1

fA+
�
� + � 0+ i( ! + ! 0)

�
� gB � (� 0+ i ! 0) d! 0; (4.25)

while, for any � > � (a + b) and � 0 2 (� a � �; b ),

8! 2 R; fC � (� + i ! ) = �
1

2�

� + 1

�1

fA �
�
� + � 0+ i( ! + ! 0)

�
� gB + (� 0+ i ! 0) d! 0: (4.26)

Finally, the following equality holds providedb > 0 and a+ b > 0: for any � 2 (� (a+ b); a+ b)
and � 0 2 (� b; b),

8! 2 R; eC(� + i ! ) = �
1

2�

� + 1

�1

eA
�
� + � 0+ i( ! + ! 0)

�
� eB (� 0+ i ! 0) d! 0: (4.27)

The proof of Theorem4.24 can be read in Section4.6.7. The choices of�; � 0 ensure that
the function ! 0 7! fA+

�
� + � 0+ i( ! + ! 0)

�
is in L p(R! ; B(H)) for any p > 1, while, for any

f; g 2 H , the function ! 0 7! ggB � (� 0+ i ! 0)f is in L p(R! ; S 1(H )) for any p > 1. Therefore, in
view of (4.25), the function ! 7! fC+ (� + i ! ) is in L p(R! ; B(H)) for any p > 1. Similar results
hold for ! 7! fC � (� + i ! ) and ! 7! eC(� + i ! ).

Let us conclude this section by deducing interesting properties from the analytic continu-
ation results given by Theorem4.24 (see Section4.6.8 for the proof).

Corollary 4.25. Assume that the conditions of Theorem4.24 hold. Then,

Supp
�

Im cC+
�

� [a + b;+ 1 ) ; Im cC+ � 0;

Supp
�

Im cC �
�

� (�1 ; � (a + b)] ; Im cC � � 0;
(4.28)
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so that
Supp

�
Im bC

�
� Rn(� (a + b); a + b) ; Im bC � 0:

Moreover,
cC+ = Re cC+ � 0 on

�
� 1 ; a + b

�
;

cC � = Re cC � � 0 on
�

� (a + b); + 1
�
:

(4.29)

In particular, bC = Re bC � 0 on
�

� (a + b); a + b
�
.

4.2.5 Second quantization formalism

We recall here the de�nitions of the main mathematical objects used in the second quantization
formalism, which are used to de�ne � at least formally � the kernels of the operators arising
in the GW method. More details about the second quantization formalism can be founde.g.
in [DG97].

We consider a system ofN electrons in Coulomb interaction subjected to a time-independent
real-valued external potential vext 2 L 2(R3; R) + L 1 (R3; R). In order to study the response
of the system when electrons are added or removed, we embed thisN -body problem in a
more general framework where the number of electrons is not prescribed. We denote by
H 1 = L 2(R3; C) the one-electron state space (the spin variable is omitted for simplicity), by
H N =

V N H 1 the N -electron state space, and byF = � + 1
N =0 H N the Fock space, with the

convention that H 0 = C. The Hamiltonian of the N -particle system reads

HN = �
1
2

NX

i =1

� r i +
NX

i =1

vext (r i ) +
X

1� i<j � N

1
jr i � r j j

; (4.30)

and the corresponding Hamiltonian acting on the Fock space is denoted byH, so that
HN = HjH N .

For f 2 H 1, the creation and annihilation operators ay(f ) and a(f ) are the bounded
operators on the Fock spaceF de�ned by

8N 2 N; ay(f )jH N 2 B(H N ; H N +1 ); a(f )jH N +1 2 B(H N +1 ; H N );

and for all � N 2 H N ,

[ay(f )� N ](r 1; : : : r N +1 ) :=
1

p
N + 1

N +1X

j =1

(� 1)j +1 f (r j )� N (r 1; : : : ; r j � 1; r j +1 ; : : : ; r N +1 );

[a(f )� N ](r 1; : : : r N � 1) :=
p

N
�

R3
f (r )� N (r ; r 1; : : : ; r N � 1) dr :

(4.31)
The creation and annihilation operators satisfyay(f ) = a(f ) � and the anticommutation rela-
tions

8(f; g ) 2 H 1 � H 1; [a(f ); a(g)]+ = 0 ; [ay(f ); ay(g)]+ = 0 ; [a(f ); ay(g)]+ = hf jgi 1F;
(4.32)

where [A; B ]+ = AB + BA is the anti-commutator of the operators A and B , and where1F

is the identity operator on F. In particular,

ay(f )a(f ) + a(f )ay(f ) = kf k2
H 1

1F:

The mappings H 1 3 f 7! ay(f ) 2 B(F) and H 1 3 f 7! a(f ) 2 B(F) are respectively linear
and antilinear.
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In most physics articles and textbooks, the GW formalism is presented in terms of the
quantum �eld operators in the position representation 	( r ) and 	 y(r ). We recall that, for-
mally,

8r 2 R3; 	 y(r ) =
1X

i =1

� i (r )ay(� i ); 	( r ) =
1X

i =1

� i (r )a(� i );

where f � i gi 2 N is any orthonormal basis ofH 1. Note that for any f 2 H 1,

�

R3
	 y(r )f (r )dr = ay(f ) and

�

R3
	( r )f (r )dr = a(f ):

In the second-quantization formalism,H reads,

H =
�

R3
	 y(r )

�
�

1
2

� r + vext (r )
�

	( r ) dr +
1
2

�

(R3 )2
	 y(r )	 y(r 0)jr � r 0j � 1	( r 0)	( r ) dr dr 0:

Finally, we introduce the Heisenberg representation of the annihilation and creation �eld
operators 	 H(r t) and 	 y

H(r t), formally de�ned by

	 y
H(r t) = e itH 	 y(r )e� itH and 	 H(r t) = e itH 	( r )e� itH :

Note that, still formally, 	 H(r t) � = 	 y
H(r t), and

	 y
H(r t)

�
�
H N

= e itH N +1 	 y(r ) e� itH N ; 	 H(r t)
�
�
H N +1

= e itH N 	( r ) e� itH N +1 : (4.33)

4.3 Operators arising in the GW method for �nite systems

This section aims at providing rigorous mathematical de�nitions of the operators arising in
the GW method. For each one of them, we �rst recall the formal de�nition given in the physics
literature, using the second quantization formalism. We then explain how to recast this formal
de�nition into a (formally equivalent) satisfactory mathematical de�nition involving only well-
de�ned operators on thek-particle spacesH k , with k = 1 ; N � 1; N; N +1 , the Coulomb space
C(de�ned in Section 4.3.3), and its dual C0. We �nally establish some mathematical properties
of the operator under consideration, using our de�nition as a starting point. Unless otherwise
speci�ed, scalar products and norms are by default considered onH 1 = L 2(R3; C).

We �rst need to make some assumptions on the physical system under consideration (see
Section 4.3.1). We can then de�ne the one-body Green's functions in Section4.3.2. Linear
response operators are considered in Section4.3.3, which culminates with the de�nition of the
dynamically screened interaction operatorW . We �nally introduce the self-energy operator
in Section 4.3.4.

4.3.1 Assumptions on the reference N -electron system

Recall that the reference system withN electrons is described by the HamiltonianHN on H N

de�ned by (4.30). Our �rst assumption concerns the ground state energyE 0
N of the reference

system described byHN :

Hyp. 1: The ground state energyE 0
N is a simple discrete eigenvalue ofHN .

In this case, the normalized ground state wave-function	 0
N of the reference system is unique

up to a global phase. We also de�ne the energy of the �rst excited state:

E 1
N = min

�
� (HN )nf E 0

N g
�

:
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Together with 	 0
N , we introduce the ground state one-body reduced density-matrix


 0
N (r ; r 0) := N

�

(R3 )N � 1
	 0

N (r ; r 2; � � � ; r N )	 0
N (r 0; r 2; � � � ; r N ) dr 2 � � � dr N ; (4.34)

the ground state density

� 0
N (r ) := 
 0

N (r ; r ) = N
�

(R3 )N � 1
j	 0

N (r ; r 2; � � � ; r N )j2 dr 2 � � � dr N ;

and the ground state two-body density

� 0
N;2(r ; r 0) :=

N (N � 1)
2

�

(R3 )N � 2
j	 0

N (r ; r 0; r 3; � � � ; r N )j2 dr 3 � � � dr N (4.35)

of the referenceN -electron system.
We recall in the following proposition some important properties on	 0

N , 
 0
N , � 0

N and � 0
N;2

(most of the assertions below are well known; we provide elements of proof in Section4.6.9
for the less standard statements). Note that both
 0

N (r ; r 0) and � 0
N;2(r ; r 0) can be seen as the

kernels of bounded operators onH 1 = L 2(R3) that we also denote by
 0
N and � 0

N;2.

Proposition 4.26 (Properties of the ground state). Assume thatvext is of the form

vext (r ) = �
MX

k=1

zk

jr � R k j
;

with zk 2 N� and R k 2 R3 for all 1 � k � M , and that Hyp. 1 is satis�ed. Then,

(1) the ground state wave-function	 0
N can be chosen real-valued and	 0

N 2 H 2(R3N );

(2) the ground state density� 0
N is in L 1(R3; R) \ L 1 (R3; R) and r

q
� 0

N 2
�
L 2(R3; R)

� 3.

Moreover, � 0
N is continuous and everywhere positive onR3;

(3) the ground state one-body reduced density operator
 0
N is in

KN :=
n


 N 2 S(H 1)
�
�
� 0 � 
 N � 1; Tr H 1 (
 N ) = N; Tr H 1 (jrj 
 N jrj ) < 1

o
;

and satis�es

8(f; g ) 2 H 1 � H 1; hf j
 0
N jgi = h	 0

N jay(g)a(f )j	 0
N i H N ; (4.36)

(4) the kernel 
 0
N (r ; r 0) satis�es the pointwise estimatej
 0

N (r ; r 0)j2 � � 0
N (r )� 0

N (r 0);

(5) the operator � 0
N;2 belongs toS(H 1), and k� 0

N;2kB(H 1 ) �
N � 1

2
k� 0

N kL 1 .

Much �ner regularity results on 	 0
N are available [FHOHOØS02, FHOHOØS05, Yse10],

but are not needed for our purpose. Similar results hold true ifvext is replaced by a potential
generated by smeared nuclei or pseudo-potentials.

Our second assumption is concerned with the (discrete) convexity ofN 7! E 0
N . We assume

that N � 1, and that (with the convention E 0
0 = 0 in the caseN = 1)

Hyp. 2: E 0
N � E 0

N � 1 < E 0
N +1 � E 0

N :

In this case, any real number� such that E 0
N � E 0

N � 1 < � < E 0
N +1 � E 0

N is an admissible
chemical potential (Fermi level) of the electrons for the ground state of the reference system.
The physical relevance of this assumption is discussed for instance in [Far99, Section 4.2].
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4.3.2 Green's functions

We begin our journey in the GW formalism with Green's functions. The GW method has
been designed from the equation of motion for the time-ordered one-body Green's function
G [Hed65], which is the concatenation of two meaningful physical objects: the particle Green's
function Gp and the hole Green's functionGh.

The particle Green's function Gp

Rigorous de�nition of the particle Green's function. The particle (or forward, or
retarded) Green's function is formally de�ned by (see for instance [FW03, Section 7])

Gp(r t; r 0t0) := � i�( t � t0) h	 0
N j	 H(r t)	 y

H(r 0t0)j	 0
N i ; (4.37)

where � is the Heaviside function (4.2), and 	 H(r t) and 	 y
H(r t) are the Heisenberg repre-

sentations of the annihilation and creation �eld operators introduced in Section4.2.5. As
	 0

N 2 H N , we can replace	( r t) and 	 y(r t) by their expressions (4.33):

Gp(r t; r 0t0) = � i�( t � t0) h	 0
N jeitH N 	( r )e� i( t � t0)H N +1 	 y(r 0)e� it0H N j	 0

N i

= � i�( t � t0) h	 0
N j	( r )e� i( t � t0)( H N +1 � E 0

N ) 	 y(r 0)j	 0
N i :

As Gp only depends on the time di�erence t � t0, it is su�cient to study the function
Gp(r ; r 0; � ) := Gp(r �; r 00). We then notice that, for all f 2 H 1,

�

R3
	 y(r 0)j	 0

N i f (r 0) dr 0 = ay(f )j	 0
N i :

Introducing
A �

+ : H 1 ! H N +1

f 7! ay(f )j	 0
N i

and A+ = ( A �
+ ) � , we observe thatGp(r ; r 0; � ) is formally the kernel of the following one-body

operator.

De�nition 4.27 (Particle Green's function). The particle Green's function is de�ned as

Gp(� ) := � i�( � ) A+ e� i � (H N +1 � E 0
N )A �

+ : (4.38)

First properties of the particle Green's function. The study of Gp can be decomposed
into the study of the operatorsA+ and e� i � (H N +1 � E 0

N ) . The latter is clearly bounded onH N +1 .
As for the operator A �

+ , we deduce from (4.32) and (4.36) that

hay(f )	 0
N jay(g)	 0

N i = h	 0
N ja(f )ay(g)j	 0

N i = hf jgi � h 	 0
N jay(g)a(f )j	 0

N i = hf j1 � 
 0
N jgi ;

or equivalently,
A+ A �

+ = 1H 1 � 
 0
N : (4.39)

Hence, A �
+ is a bounded operator fromH 1 to H N +1 , and A+ is a bounded operator from

H N +1 to H 1. In fact, since

kA �
+ f k2

H N +1
=



f j(1H 1 � 
 0

N )jf
�

=



 (1H 1 � 
 0

N )f



 2

H 1
;

it holds kA �
+ kB(H 1 ;H N +1 ) = 1 . The following properties are obtained as a direct corollary of

Proposition 4.13.
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Proposition 4.28 (Properties of the particle Green's function). The family (Gp(� )) � 2 R de-
�nes a bounded causal operator onH 1. The real and imaginary parts of its time-Fourier
transform are in H � s(R! ; B(H 1)) for all s > 1=2, and are given by

Re cGp = A+ p:v:
�

1
� � (HN +1 � E 0

N )

�
A �

+ and Im cGp = � �A + PH N +1 � E 0
N A �

+ : (4.40)

The analytic operator-valued function eGp de�ned in the upper half-plane by

8z 2 U; fGp(z) := A+
1

z � (HN +1 � E 0
N )

A �
+ (4.41)

is the Laplace transform ofGp and satis�es

cGp = lim
� ! 0+

fGp(: + i � ) in H � s(R! ; B(H 1)) for all s > 1=2:

The imaginary part of cGp is related to the so-called spectral functionA p (see Section
4.3.2).

Analytic continuation to the complex plane. Let us introduce the particle optical
excitation set

Sp := � (HN +1 � E 0
N ): (4.42)

We recall that the operator HN +1 � E 0
N with domain H N +1 \ H 2(R3(N +1) ) is self-adjoint

on H N +1 . Its essential spectrum is of the form� ess(HN +1 � E 0
N ) = [� N +1 ; 1 ), and there

are possibly in�nitely many eigenvalues below� N +1 that can only accumulate at � N +1 .
According to the HVZ theorem [Hun66, vW64, Zhi60], � N +1 = E 0

N � E 0
N = 0 . In particular,

Sp is the union of a discrete negative part, and the half-line[0; + 1 ).
We next infer from (4.41) that fGp(z) can be extended to an analytic function fromC n Sp

to B(H 1). This is of particular interest for the following reason. The operator-valued distri-
bution cGp(! ) is highly peaked and irregular (for instance, its imaginary part is a sum of Dirac
measures on the discrete part ofSp). Instead of studying cGp(! ) on the real axis, we will study
its analytic continuation fGp(z) (de�ned a priori only in the upper-half plane, but actually
on C nSp) on the imaginary axis � + i R, where� < E 0

N +1 � E 0
N � 0 is an admissible chemical

potential (see Hyp. 2 ). The set Sp can be recovered from! 7! fGp(� + i ! ) by locating
the singularities of cGp, obtained from fGp either by analytic continuation, or by �tting some
parameters [RGN95]. We will not address this interesting numerical reconstruction problem.

The following lemma makes precise the behavior of the Green's function on the vertical
axis � + i R. It is a direct consequence of the representation (4.41).

Lemma 4.29. Consider � < E 0
N +1 � E 0

N . Then the function ! 7! fGp(� + i ! ) is real analytic
from R! to B(H 1) and is in L p(R! ; B(H 1)) for all p > 1. Moreover, for all ! 2 R,

Re fGp(� + i ! ) = � A+
HN +1 � E 0

N � �
! 2 + ( HN +1 � E 0

N � � )2 A �
+

is a negative, bounded, self-adjoint operator onH 1 which enjoys the following symmetry prop-
erty:

8! 2 R! ; Re fGp(� + i ! ) = Re fGp(� � i! ):

For any f 2 H 1, the function ! 7! hf jRe fGp(� + i ! )jf i is non-positive, in L 1(R! ), and
� + 1

�1

D
f

�
�
�Re fGp(� + i ! )

�
�
� f

E
d! = � � hf j(1H 1 � 
 0

N )jf i : (4.43)
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0 � ess(HN +1 � E 0
N )E 0

N +1 � E 0
N

�

! 7! cGp(! )
! 7! fGp(� + i ! )

analytic continuation

Figure 4.1 � Illustration of the analytic continuation: from ! 7! cGp(! ) to ! 7! fGp(� + i ! ).

The last assertion comes from the spectral theorem, (4.39), and the equality

8E > 0;
� + 1

�1

E
! 2 + E 2 d! = �:

Remark 4.30. Unfortunately, althoughRe fGp(� + i �) has a sign and (4.43) is satis�ed for all

f 2 H 1, the function ! 7!





 Re fGp(� + i �)








B(H 1 )
does not belong toL 1(R! ). This is essentially

due to the fact that

sup
E � 0

�
E

! 2 + E 2

�
=

1
2!

=2 L 1(R! ):

Note that the imaginary part of fGp(� + i ! ),

Im fGp(� + i ! ) = � A+
!

! 2 + ( HN +1 � E 0
N � � )2 A �

+ ;

has no de�nite sign onR! , and that, for a genericf 2 H 1, the function ! 7!
D

f
�
�
� Im fGp(� + i ! )

�
�
� f

E

does not belong toL 1(R! ). It will therefore be more convenient in general to work with the
real part of fGp(i ! ) only, especially since the imaginary part can be recovered from the real
part (see Lemma4.31below). Indeed, the operator-valued functionsggp;� : ! 7! fGp(� � � + i ! )
are in L 2(R; B(H 1)) for any � > 0, and converge to egp : ! 7! fGp(� + i ! ) in L 2(R; B(H 1)) as
� ! 0+ . We can therefore apply Titchmarsh's theorem (see Theorem4.9), which gives the
following result.

Lemma 4.31. Let � < E 0
N +1 � E 0

N . The function bgp(! ) := fGp(� + i ! ) is the Fourier
transform of the causal function

gp(� ) = � �( � )A+ e� � (H N +1 � E 0
N � � )A �

+ ; (4.44)

which belongs toL 2(R� ; S(H 1)) . In particular, the Plemelj formulae hold true:

Re bgp = � H (Im bgp) and Im bgp = H (Re bgp) in L 2(R! ; B(H 1)) :

Moreover, the function � 7! k gp(� )kB(H 1 ) is exponentially decreasing asj� j ! + 1 .

Remark 4.32. The exponential decay ofgp is consistent with the analyticity of its Fourier
transform. This property is of interest when calculating numerically convolutions on the imag-
inary axis � +i R, since convolutions can be replaced, up to a Fourier transform, with point-wise
multiplications of causal functions which are exponentially decreasing. This approach was ad-
vocated in [RSW+ 99], and is now routinely used in GW computations.



4.3. Operators arising in the GW method for finite systems 107

The hole (backward) Green's function Gh

De�nition and �rst properties of the hole Green's function. Together with the
particle Green's function, we introduce the hole (or backward, or advanced) Green's function,
formally de�ned within the second quantization formalism by

Gh(r t; r 0t0) := i�( t0� t) h	 0
N j	 y

H(r 0t0)	 H(r t)j	 0
N i :

Observing that �

R3
	( r )j	 0

N i f (r ) dr = a(f )j	 0
N i ;

we introduce
A � : H 1 ! H N � 1

f 7! a(f )j	 0
N i :

Similarly as before, we note thatGh(r t; r 0t0) only depends on the time di�erencet � t0. Intro-
ducing Gh(r ; r 0; � ) := Gh(r �; r 00), we see thatGh(r ; r 0; � ) is formally the kernel of the following
one-body operator.

De�nition 4.33. The hole Green's function is de�ned as

Gh(� ) := i�( � � )A �
� ei � (H N � 1 � E 0

N )A � : (4.45)

Similarly as in (4.39), it holds that

A �
� A � = 
 0

N :

Hence,A � is a bounded operator fromH 1 to H N � 1, A �
� is a bounded operator fromH N � 1

to H 1, and it holds kA � kB(H 1 ;H N ) = kA �
� kB(H N � 1 ;H 1 ) � 1. The properties of the hole Green's

function are quite similar to the properties of the particle Green's function (compare with
Proposition 4.28).

Proposition 4.34 (Properties of the hole Green's function). The family (Gh(� )) � 2 R de�nes
a bounded anti-causal operator onH 1. The real and imaginary parts of its time-Fourier
transform are in H � s(R! ; B(H 1)) for all s > 1=2, and are given by

Re cGh = A �
� p:v:

�
1

� � (E 0
N � HN � 1)

�
A � and Im cGh = �A �

� PE 0
N � H N � 1 A � : (4.46)

The analytic operator-valued function fGh de�ned in the lower half-plane by

8z 2 L; fGh(z) := A �
�

1
z � (E 0

N � HN � 1)
A � (4.47)

is the Laplace transform ofGh and satis�es

cGh = lim
� ! 0+

fGh(: � i� ) in H � s(R! ; B(H)) for all s > 1=2:

Analytic continuation into the complex plane. The hole optical excitation set is de-
�ned as

Sh := � (E 0
N � HN � 1): (4.48)

It is clear from (4.47) that the operator-valued function fGh can be analytically continued to
CnSh. Instead of studying the highly irregular distribution ! 7! cGh(! ), it is more convenient
to study its analytical continuation fGh on the imaginary axis � + i R, with � > E 0

N � E 0
N � 1.
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0

� ess(E 0
N � HN � 1) E 0

N � E 0
N � 1

�
! 7! cGh(! )

! 7! fGh(� + i ! )analytic continuation

Figure 4.2 � Illustration of the analytic continuation: from ! 7! cGh(! ) to ! 7! fGh(� + i ! ).

We can state a result similar to Lemma4.29.

Lemma 4.35. Consider � > E 0
N � E 0

N � 1. Then the function ! 7! fGh(� + i ! ) is real analytic
from R! to B(H 1) and is in L p(R! ; B(H 1)) , for all p > 1. Moreover, for all ! 2 R,

Re fGh(� + i ! ) = A �
�

HN � 1 + � � E 0
N

! 2 + ( E 0
N � HN � 1 � � )2 A �

is a positive, bounded, self-adjoint operator, which enjoys the following symmetry property:

8! 2 R! ; Re fGh(� + i ! ) = Re fGh(� � i! ):

For any f 2 H 1, the function ! 7!
D

f
�
�
� jRe fGh(� + i ! )

�
�
� f

E
is non-negative, in L 1(R! ), and

� + 1

�1

D
f

�
�
�Re fGh(� + i ! )

�
�
� f

E
d! = � hf j
 0

N jf i :

The Galitskii-Migdal formula. The hole Green's function is of particular interest, as
it contains useful information on the N -body ground state. For instance, from the identity
A �

� A � = 
 0
N , we directly obtain Gh(0� ) = i 
 0

N , so that the expectation value in the ground
state of any one-body operator

P N
i =1 Cr i (for C 2 B(H 1)) can be evaluated via

*

	 0
N

�
�
�
�
�

NX

i =1

Cr i

�
�
�
�
�
	 0

N

+

= Tr H 1

�
C
 0

N

�
= � i Tr H 1 (CGh(0� )) :

This calculation is valid only for one-body operators. It is not possible to obtain the expecta-
tion value in the ground state of a generic two-body operator from the one-body Green's func-
tion. This is however the case for the ground state energy (the expectation value of the two-
body Hamiltonian HN in the ground state), as was �rst shown by Galiskii and Migdal [GM58].
Alternative formulae for the ground state energy are provided by the Luttinger-Ward for-
mula [LW60] and the Klein's formula [Kle61].

Theorem 4.36 (Galitskii-Migdal formula) . For all N � 2, the ground state energy can be
recovered as

E 0
N =

1
2

Tr H 1

�
� A �

�

�
HN � 1 � E 0

N

�
A � +

�
�

1
2

� + vext

�
A �

� A �

�
(4.49)

=
1
2

Tr H 1

��
d
d�

� i
�

�
1
2

� + vext

��
Gh(� )

�
�
�
� =0 �

�
: (4.50)
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The proof of this theorem can be read in Section4.6.10. Formula (4.50) is one way to
obtain the right-hand side of (4.49), and is the one found in the original article [GM58].
There are however other ways to obtain (4.49) from the hole Green's function, without the
use of derivative (which are cumbersome to evaluate numerically). One can for instance use
the following equality, that we do not prove for the sake of brevity,

Tr H 1

�
A �

�

�
HN � 1 + � � E 0

N

�
A �

�
= lim

! !1
! 2Tr H 1

�
Re fGh(� + i ! )

�
:

The time-ordered Green's function G

It is often claimed in the physics literature that the main object of interest is neither the
particle nor the hole Green's function, but the function

G(r t; r 0t0) = Gp(r t; r 0t0) + Gh(r t; r 0t0);

called the time-ordered Green's function, which can be seen as a convenient way to concatenate
the information contained in the particle and hole Green's functions. Obviously, the time-
ordered Green's function only depends on the time di�erence� = t � t0. In view of (4.38) and
(4.45), our de�nition of the time-ordered Green's function therefore is the following.

De�nition 4.37 (Green's function). The (time-ordered) Green's function is the family of
bounded operators(G(� )) � 2 R de�ned as G(� ) = Gp(� ) + Gh(� ), or equivalently,

G(� ) = � i�( � ) A+ e� i � (H N +1 � E 0
N )A �

+ + i�( � � ) A �
� ei � (H N � 1 � E 0

N )A � :

The following results straightforwardly follow from Propositions 4.28 and 4.34, as well
as Lemmas4.29 and 4.35. We recall that � is a chemical potential of the electrons for the
ground state 	 0

N of the reference system, and thatE 0
N � E 0

N � 1 < � < E 0
N +1 � E 0

N . In the
following, we introduce someC1 (R! ) cut-o� functions � � satisfying 0 � � � � 1, � + + � � = 1 ,
Supp(� + ) � (E 0

N � E 0
N � 1; + 1 ) and Supp(� � ) � (�1 ; E 0

N +1 � E 0
N ) (see Figure4.3). These

cut-o� functions allow us to write properties of the Green's function in the time representation
without specifying whether � is positive or negative.

E 0
N � E 0

N � 1

E 0
N +1 � E 0

N�

� � � +

Figure 4.3 � The cut-o� functions � � .

Proposition 4.38 (Properties of the Green's function). The Fourier transform bG = cGp + cGh

is in H � s(R! ; B(H 1)) for any s > 1=2. The operator-valued analytic function eG de�ned on
the physical Riemann sheetC n (Sp [ Sh) by

8z 2 Cn(Sp [ Sh) ; eG(z) := A+
1

z � (HN +1 � E 0
N )

A �
+ + A �

�
1

z � (E 0
N � HN � 1)

A � (4.51)
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is such that

lim
� ! 0+

� � eG(� � i� ) = � � bG in H � s(R! ; B(H 1)) for all s > 1=2:

The function ! 7! eG(� + i ! ) is real analytic from R! to B(H 1), and is in L p(R! ; B(H 1)) for
all p > 1. Moreover, it satis�es the symmetry property

8! 2 R! ; Re eG(� + i ! ) = Re eG(� � i! ):

For any f 2 H 1, the function ! 7! hf jRe eG(� + i ! )jf i is in L 1(R! ), and

� + 1

�1

D
f

�
�
�Re eG(� + i ! )

�
�
� f

E
d! = � � hf j(1H 1 � 2
 0

N )jf i :

The spectral functions A p, A h and A

Spectral functions are essential tools to study many-body e�ects since they are concentrated
on (subsets of) the particle and hole excitation sets.

De�nition 4.39 (Spectral functions). The particle spectral function is the operator-valued
Borel measure onR! de�ned by

8b 2 B (R! ); A p(b) = �
1
�

Im cGp(b) = A+ P
H N +1 � E 0

N
b A �

+ : (4.52)

The hole spectral function is similarly de�ned:

8b 2 B (R! ); A h(b) =
1
�

Im cGh(b) = A �
� P

E 0
N � H N � 1

b A � :

The time-ordered spectral function is then obtained asA = A p + A h.

With those de�nitions, the following lemma is straightforward, and is usually referred to
as the sum-rule for spectral functions (see for instance [Far99, Section 4.5]).

Proposition 4.40. The spectral functionsA p, A h and A are S(H 1)-valued Borel measures
on R! , with supports contained inSp, Sh and Sp [ Sh respectively. For all b 2 B (R! ), A p(b),
A h(b) and A(b) are bounded positive self-adjoint operators onH 1 with norms lower or equal
to 1. Moreover, 0 � A p(b1) � A p(b2) as self-adjoint operators whenb1 � b2 (and similar
inequalities for A h and A), and it holds

A p(R! ) = 1H 1 � 
 0
N ; A h(R! ) = 
 0

N ; A (R! ) = 1H 1 :

Finally, the Plemelj formulae (4.14) allow us to recover the real part of the Green's func-
tions from the spectral functions: Re cGp = � H(A p) and Re cGh = � H(A h). It therefore holds
Re bG = � HA.

4.3.3 Linear response operators

We study in this section the reducible polarizability operator � , which can be de�ned from the
so-called charge-�uctuation operator introduced in Section4.3.3. We give a precise mathemat-
ical meaning to � in Section4.3.3, and prove Johnson's sum-rule [Joh74] for � in Section4.3.3.
We �nally de�ne the dynamically screened Coulomb interaction operator (see Section4.3.3).
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The charge-�uctuation operator � H

The charge-�uctuation operator is de�ned, within the second quantization formalism, by
(see [Far99, Equation (97)])

� H(r t) := 	 y
H(r t)	 H(r t) � � 0

N (r );

so that the action of this operator on the N -body ground state is

� H(r t)j	 0
N i =

�
eit (H N � E 0

N )
�

	 y(r )	( r )j	 0
N i � � 0

N (r )j	 0
N i

=
�

eit (H N � E 0
N )

� �
	 y(r )	( r ) � � 0

N (r )
�

j	 0
N i :

(4.53)

In order to de�ne more rigorously � H , we need to introduce functional spaces of charge densities
(the Coulomb space) and electrostatic potentials. The complex-valued Coulomb space

C :=
n

f 2 S 0(R3; C)
�
�
� bf 2 L 1

loc(R3; C); j � j � 1 bf (�) 2 L 2(R3; C)
o

; (4.54)

is endowed with the inner product

hf 1jf 2i C = 4 �
�

R3

bf 1(k) bf 2(k)
jk j2

dk;

where the normalization condition for the space-Fourier transform is chosen such that its
restriction to L 2(R3; C) is a unitary operator. The spaceC is a Hilbert space, and it holds
L 6=5(R3; C) ,! C thanks to the Hardy-Littlewood-Sobolev inequality (upon rewriting the
products in Fourier space as convolutions). The dual ofC (taking L 2(R3; C) as a pivoting
space) is

C0 :=
n

v 2 L 6(R3; C)
�
�
� r v 2

�
L 2(R3; C)

� 3
o

; (4.55)

endowed with the inner product

hV1jV2i C0 :=
1

4�

�

R3
r V1 � r V2 =

1
4�

�

R3
jk j2 bV1(k) bV2(k) dk:

We also introduce the Coulomb operatorvc, de�ned as the multiplication operator by 4� jk j � 2

in the Fourier representation, and its square rootv1=2
c , de�ned as the multiplication opera-

tor by (4� )1=2jk j � 1 in the Fourier representation. The following result, whose proof is a
straightforward consequence of the above de�nitions, will be repeatedly used throughout this
chapter.

Lemma 4.41. The operator vc de�nes a unitary operator from C to C0. The operator v1=2
c

de�nes a unitary operator from C to H 1, as well as a unitary operator fromH 1 to C0.

It follows that the adjoint of the unitary operator vc : C ! C 0 is the unitary operator
v�

c = v� 1
c : C0 ! C .

We are now able to reformulate the charge-�uctuation operator in the ground state as a
well de�ned bounded operator. For v 2 C1

c (R3; C), it formally holds

� �

R3

�
	 y(r )	( r ) � � 0

N (r )
�

j	 0
N i v(r )dr

�
(r 1; : : : ; r N ) =

" 
NX

i =1

v(r i )

!

�
�

R3
v� 0

N

#

	 0
N (r 1; : : : r N ):

In order to rewrite more rigorously this equality, we introduce the operator

B : C0 ! H N

v 7!

" 
NX

i =1

v(r i )

!

� h v; � 0
N i C0;C

#

j	 0
N i ;

(4.56)
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which is well de�ned since � 0
N 2 L 6=5(R3; R) by Proposition 4.26. In fact, as made clear in

Lemma 4.42 below, B is bounded. In view of (4.53), we can �nally de�ne the application
to 	 0

N of the charge-�uctuation operator � H(t) as follows:

� H(t)j	 0
N i = e it (H N � E 0

N )B: (4.57)

Let us conclude this section by giving some properties of the operators introduced above
(see Section4.6.11for the proof).

Lemma 4.42. The operator B de�ned by (4.56) is a bounded operator fromC0 to H N . Its
adjoint B � is a bounded operator fromH N to C0which satis�es B � j	 0

N i = 0 . As a consequence,
� H j	 0

N i 2 L 1 (Rt ; B(C0; H N )) , and
�
� H j	 0

N i
� � 2 L 1 (Rt ; B(H N ; C0)) .

The (symmetrized) reducible polarizability operator �

De�nition of the reducible polarizability operator. The reducible polarizability oper-
ator � (t; t 0) is the operator giving the response of the density of the system to perturbations
of the external potential. It is formally de�ned by its kernel (see [Far99, Equation (96)])

� (r t; r 0t0) := � i



	 0
N

�
� T

�
� H(r t)� H(r 0t0)

	 �
� 	 0

N

�
H N

: (4.58)

In the above equation, � H is the charge-�uctuation operator whose action on	 0
N is de�ned

by (4.57), and T stands for the bosonic time-ordering operator:

T
�

A1(t)A2(t0)
	

=

�
�
�
�

A1(t)A2(t0) if t0 < t;
A2(t0)A1(t) if t0 > t:

In view of (4.57), the de�nition ( 4.58) of the kernel is formally equivalent to the following
identity, stated for t0 < t (a similar equality being true for t0 > t ):

�

R3
f

�
� (t; t 0)g

�
= � i

�

R3

�

R3
f (r )



	 0

N

�
� � H(r t)� H(r 0t0)

�
� 	 0

N

�
H N

g(r 0) dr dr 0

= � i
� �

R3
f (r )� H(r t)	 0

N dr

�
�
�
�

�

R3
g(r 0)� H(r 0t0)	 0

N dr 0
�

H N

= � i
D

eit (H N � E 0
N )Bf

�
�
� eit0(H N � E 0

N )Bg
E

H N

= � i
D

f
�
�
�B � e� i( t � t0)( H N � E 0

N )Bg
E

C0
:

In order to interpret � as giving the variation of the ground state density (an element ofC)
generated by a variation of the external potential (an element ofC0), we rewrite the scalar
product in C0 as a duality braket betweenC0 and C:

hf 1 jf 2 i C0 =


f 1; v� 1

c f 2
�

C0;C : (4.59)

This motivates de�ning � (t; t 0) as the bounded operator fromC0 to C given by

� (t; t 0) = � iv� 1
c B � e� i jt � t0j(H N � E 0

N )B:

In particular, � (t; t 0) only depends on the time di�erence t � t0, and we write in the se-
quel � (� ) := � (�; 0):

� (� ) = � iv� 1
c B � e� i j � j(H N � E 0

N )B: (4.60)

It turns out to be useful to symmetrize the action of the polarizability operator us-
ing appropriate Coulomb operators. We recall that it holds Bv1=2

c 2 B(H 1; H N ) while
(Bv1=2

c ) � = v� 1=2
c B � 2 B(H N ; H 1).
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De�nition 4.43. The symmetrized reducible polarizability operator� sym 2 L 1 (R� ; B(H 1))

is de�ned by � sym(� ) = v1=2
c � (� )v1=2

c , or equivalently,

� sym(� ) = � iv� 1=2
c B � e� i j � j(H N � E 0

N )Bv1=2
c :

It is convenient to decompose the symmetrized reducible polarizability operator into two
parts, namely its causal part and its anti-causal part:

� sym(� ) = � +
sym(� ) + � �

sym(� ) with � �
sym(� ) = �( � � )

�
� iv� 1=2

c B � e� i j � j(H N � E 0
N )Bv1=2

c

�
:

(4.61)
In the above expression, the HamiltonianHN can be replaced by

H ]
N := HN

�
�
f 	 0

N g? :

This is a consequence of Lemma4.42 which shows that Ran (B ) �
�

	 0
N

	 ? . Note that
H ]

N � E 0
N � E 1

N � E 0
N .

Properties of the symmetrized reducible polarizability operator. As rigorously
stated below, the symmetrized polarizability operator has singularities at the energy dif-
ferences corresponding to excitation energies for a system with a �xed numberN of electrons,
called neutral excitations in [Far99, Section 8]. We therefore introduce the neutral excitation
set

S+
0 := � (HN � E 0

N ) n f 0g = �
�

H ]
N � E 0

N

�
;

its re�ection S�
0 := � S+

0 and S0 := S+
0 [ S�

0 . Note that S+
0 � [E 1

N � E 0
N ; + 1 ) so that

S�
0 \ S+

0 = ; .
As for Proposition 4.38, it turns out to be convenient to introduce appopriate cut-o�

functions. Consider � 1
� such that � 1

� and � 1
+ are in C1 (R! ) and satisfy 0 � � 1

� � 1,
� 1

+ + � 1
� = 1 , Supp(� 1

+ ) � (� (E 1
N � E 0

N ); + 1 ) and Supp(� 1
� ) � (�1 ; E 1

N � E 0
N ) (see

Figure 4.4).

E 1
N � E 0

NE 0
N � E 1

N

� 1
� � 1

+

Figure 4.4 � The cut-o� functions � 1
� .

Proposition 4.44. The symmetrized reducible polarizability operator� sym satis�es the fol-
lowing properties:

(1) (� +
sym(� )) � 2 R is a bounded causal operator onH 1 while (� �

sym(� )) � 2 R is a bounded anti-
causal operator onH 1. They satisfy the following symmetry properties:

8� 2 R; � sym(� � ) = � sym(� ) and � +
sym(� ) = � �

sym(� � ); (4.62)
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(2) the real and imaginary parts of the time-Fourier transforms of � +
sym; � �

sym are respectively
given by

Re [� �
sym = � v� 1=2

c B � p:v:

 
1

� � (H ]
N � E 0

N )

!

Bv1=2
c ;

and
Im [� �

sym = � �v � 1=2
c B � P � (H ]

N � E 0
N )Bv1=2

c :

In particular, Supp
�

Im [� �
sym

�
� S�

0 and Supp
�
Im [� sym

�
� S0;

(3) consider the B(H 1)-valued analytic functions ]� +
sym, ]� �

sym and ]� sym respectively de�ned by

8z 2 C n S�
0 ; ]� �

sym(z) := � v� 1=2
c B � 1

z � (H ]
N � E 0

N )
Bv1=2

c ;

and

8z 2 C n S0; ]� sym(z) := ]� +
sym(z) + ]� �

sym(z) = � v� 1=2
c B � 2(H ]

N � E 0
N )

(H ]
N � E 0

N )2 � z2
Bv1=2

c :

(4.63)
It holds

8z 2 C n S+
0 ; ]� +

sym(z) = ]� �
sym(� z) =

�
]� +

sym(z)
� �

and
8z 2 C n S0; ]� sym(z) = ]� sym(� z) =

�
]� sym(z)

� � :

The functions ]� +
sym jU and ]� �

sym jL are respectively the Laplace transforms of� +
sym and � �

sym,
and the following convergences hold inH � s(R! ; B(H 1)) for all s > 1=2:

lim
� ! 0+

]� �
sym(� � i� ) = [� �

sym; lim
� ! 0+

� 1
� ]� sym(� � i� ) = � 1

� [� sym;

(4) for all ! 2
�
� (E 1

N � E 0
N ); E 1

N � E 0
N

�
, ]� sym(! ) = [� sym(! ) is a negative bounded self-

adjoint operator on H 1;

(5) for all ! 2 R, ]� sym(i ! ) is a negative bounded self-adjoint operator onH 1.

We omit the proof of Proposition 4.44 since the �rst three assertions are similar to those
of Lemma 4.38, while the last two ones are direct consequences of (4.63).

On the integrability of g� sym(i ! ). As for the Green's function, ! 7! [� sym(! ) is di�cult to
study on the real-axis, and it is more convenient to study its analytical continuation ]� sym on
the imaginary axis iR. This is possible thanks to the existence of the gap(� (E 1

N � E 0
N ); E 1

N �
E 0

N ) around 0. The representation provided in Proposition4.44allows one to directly deduce
the integrability properties of the functions ! 7! ]� sym(i ! ) (as in Lemma 4.29).

Corollary 4.45. The functions ! 7! ]� �
sym(i ! ) are real-analytic from R! to S(H 1), and are in

L p(R! ; S(H 1)) for all p > 1. For any f 2 H 1, the function ! 7! hf j ]� sym(i ! )jf i is non-positive
and in L 1(R! ), and it holds

� + 1

�1
hf j ]� sym(i ! )jf i d! = � 2�






 Bv1=2

c f







2

H N

: (4.64)
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The sum-rule for the reducible polarizability operator �

The behavior of the reducible polarizability operator in the high imaginary-frequency regime
is well understood. This asymptotic behavior is given by the so-called Johnson's sum-
rule [Joh74] or f -sum rule, the latter terminology being motivated in [Far99, Section 8.8] by
the fact that it can formally be seen as some equality involving thefirst moment of Im [� sym.
Knowing the large-! behavior of ]� sym is important to design appropriate approximate opera-
tors, used in plasmon-pole models to avoid the numerical inversion of the dielectric operator
(which is computationally expensive).

The �fth point of Proposition 4.44 implies that for all ! 2 R! , the operator

� e� (i ! ) := � v� 1=2
c ]� sym(i ! )v� 1=2

c

de�nes a symmetric, continuous, non-negative sesquilinear form onC0:

8(f; g ) 2 C0� C 0; hf ; � e� (i ! )gi C0;C =
�

Bf

�
�
�
�

2(H ]
N � E 0

N )

(H ]
N � E 0

N )2 + ! 2

�
�
�
�Bg

�

H N

;

so that, formally,

lim
! !�1

hf ; � ! 2e� (i ! )gi C0;C = 2hBf jH ]
N � E 0

N jBgi H N = 2
D

f; v � 1
c B �

�
H ]

N � E 0
N

�
Bg

E

C0;C
:

The following theorem, whose proof is postponed until Section4.6.12, con�rms that this limit
exists and allows one to identify it.

Theorem 4.46 (Johnson's sum rule). The operator 2v� 1
c B � (H ]

N � E 0
N )B is bounded fromC0

to C, and 2v� 1
c B � (H ]

N � E 0
N )B = � div

�
� 0

N r�
�
. Moreover, the following weak convergence

holds:

8(f; g ) 2 C0� C 0; lim
! !�1



f ; � ! 2e� (i ! )g

�
C0;C =



f ; � div ( � 0

N r g)
�

C0;C =
�

R3
� 0

N r f � r g:

For all g 2 C0 such that � g 2 L 2(R3), the following strong convergence holds:

lim
! !�1

! 2e� (i ! )g = div
�
� 0

N r g
�

in C:

The dynamically screened interaction operator W

As the name indicates, the two key operators in the GW method are on the one hand, the
time-ordered Green's functionG, and on the other hand, the so-calleddynamically screened
interaction operator W . The latter operator is de�ned as

W (� ) = vc� 0(� ) + v1=2
c � sym(� )v1=2

c ; (4.65)

wherevc is the Coulomb operator introduced in Lemma4.41. It is convenient to split W into a
local-in-time exchange contribution vc� 0(� ) (although this is not obvious at this stage, (4.98)
below shows that vc� 0(� ) can be interpreted as an exchange term), and a nonlocal-in-time
correlation contribution:

W (� ) = vc� 0(� ) + Wc(� ) with Wc(� ) := vc� (� )vc = v1=2
c � sym(� )v1=2

c : (4.66)

The properties of the operatorWc(� ) 2 B(C; C0) therefore readily follow from the properties
of the operatorsv1=2

c and � sym(� ) established in Lemma4.41 and Proposition 4.44.
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4.3.4 The self-energy operator �

We give in this section the de�nition of the self-energy operator� using the Dyson equation
(see (4.72) below). Let us emphasize that, while the Dyson equation provides a de�nition of�
in terms of Green's functions, numerical methods work the other way round: an approximation
of the Green's functionG is obtained from the Dyson equation (4.72), using an approximation
of the self-energy operator� . This approach is made precise in Section4.4.

The non-interacting Hamiltonian H0 and associated Green's function G0

The self-energy operator is de�ned as the di�erence between the inverse of the exact Green's
function G and the inverse of some reference Green's functionG0. The reference Green's func-
tion is the resolvent of a mean-�eld non-interacting Hamiltonian. There are several possible
choices for this operator, discussed in Remark4.49 below. In order to remain as general as
possible, we introduce a one-body operatorh1 acting on H 1, with domain H 2(R3), real-valued
(in the sense thath is real-valued whenever is real-valued), and such that� ess(h1) = [0 ; 1 ).
The corresponding e�ective non-interacting N -body Hamiltonian is de�ned on H N by

H0;N =
NX

i =1

h1(r i ):

We de�ne

" k := inf
Vk �V k

sup
v2 Vk nf 0g

hvjh1jvi
hvjvi

;

whereVk is the set of the subspaces ofH 1(R3) of dimensionk. Recall that " k � 0 and that if
" k < 0, then h1 has at leastk negative eigenvalues (counting multiplicities) and" k is the kth

smallest eigenvalue ofh1 (still counting multiplicities). We make the following assumption in
the sequel.

Hyp. 3 : The one-body Hamiltonian h1 has at leastN negative eigenvalues, and"N < " N +1 :

This assumption implies that there is a gap between theN th eigenvalue and the(N + 1) st

eigenvalue (or the bottom of the essential spectrum ifh1 has onlyN non-positive eigenvalues).
Let us denote by(� 1; � � � ; � N ) an orthonormal family of eigenvectors ofh1 associated with

the eigenvalues"1; � � � ; "N . Without loss of generality, we can assume that the� k 's are real-
valued. The ground state energy ofH0;N is E 0

0;N = "1 + : : : + "N . The condition "N < " N +1

ensures that E 0
0;N is a non-degenerate eigenvalue ofH0;N and that the normalized ground

state � 0
N = � 1 ^ � � � ^ � N of H0;N is unique up to a global phase. We introduce the one-body

mean-�eld density matrix


 0
0;N (r ; r 0) :=

NX

k=1

� k (r )� k (r 0): (4.67)

This function can be seen as the kernel of the spectral projector1(�1 ;� 0 ) (h1), where� 0 is any
real number in the range("N ; "N +1 ) (it is an admissible Fermi level for the ground state of
the non-interacting e�ective Hamiltonian H0;N ). The density of the non-interacting system
is denoted by � 0

0;N . Results similar to the ones stated in Proposition4.26 for � 0
0;N , 
 0

0;N , ...
hold true. Finally, similarly as in Section 4.3.2, we introduce

A �
0;+ (f ) = ay(f )j� 0

N i and A0;� (f ) = a(f )j� 0
N i :

De�nition 4.47 (Reference non-interacting Green's functions). The reference particle, hole
and time-ordered non-interacting Green's functions are respectively de�ned as

G0;p(� ) = � i�( � )A0;+ e� i � (H 0;N +1 � E 0
0;N )A �

0;+ ; G0;h(� ) = i�( � � )A �
0;� ei � (H 0;N � 1 � E 0

0;N )A0;� ;

and G0(� ) = G0;p(� ) + G0;h(� ).



4.3. Operators arising in the GW method for finite systems 117

Results similar to Propositions 4.28, 4.34 and 4.38 hold for these operators, but we do
not write them explicitly for the sake of brevity. However, it should be noted that, in the
non-interacting case, the Green's functions have simple explicit expressions in terms ofh1 (see
Section 4.6.13for the proof).

Proposition 4.48. It holds

G0;p(� ) = � i�( � )
�
1H 1 � 
 0

0;N

�
e� i �h 1 and G0;h(� ) = i�( � � )
 0

0;N e� i �h 1 :

In particular, for any z 2 C n � (h1),

gG0;p(z) =
�
1H 1 � 
 0

0;N

�
(z � h1) � 1 and gG0;h(z) = 
 0

0;N (z � h1) � 1: (4.68)

Hence,
fG0(z) = ( z � h1) � 1 (4.69)

is the resolvent of the one-body operatorh1.

Remark 4.49 (On the choice ofG0). There are several possible choices for the one-body oper-
ator h1, although this choice is not really properly discussed in the literature to our knowledge.
The �rst option, which is used in the original derivation of the GW method [Hed65], consists
in choosing

h1 = �
1
2

� + vext + � 0
N � j � j � 1; (4.70)

where� 0
N is the exact ground state density. Another option (see for instance [Far99, page 112])

is to consider a one-body operator whose associated ground state density is (as close as possible
to) the exact ground state density� 0

N . The motivation is that, in this case, the self-energy
should be smaller. The Kohn-Sham [KS65] model formally satis�es this requirement. The
associated one-body operator reads

h1 = �
1
2

� + vext + � 0
N � j � j � 1 + vxc

�
� 0

N

�
; (4.71)

where vxc is the (exact) exchange-correlation potential. In practice, approximations of� 0
N

and vxc
�
� 0

N

�
are computed by means of a Kohn-Sham LDA or GGA calculation [KS65,

PBE96]. This is believed to provide a su�ciently accurate approximation of the exact ground
state density which does not spoil the results subsequently obtained by GW calculations.

The dynamical Hamiltonian eH (z)

In view of (4.69), it is natural to introduce the inverse of the time-ordered Green's function,
which will correspond to some dynamical one-body Hamiltonian. More precisely, we would
like to de�ne, at least for each z 2 C n R, a one-body operator eH (z) such that

eG(z) :=
�

z � eH (z)
� � 1

; or equivalently, eH (z) = z �
�

eG(z)
� � 1

:

The following proposition, proved in Section4.6.14, shows that such a de�nition makes sense.

Proposition 4.50. Let z 2 C nR. The operator eG(z) is an invertible operator from H 1 onto
some vector subspaceeD(z) of H 1. Moreover, eD(z) is dense inH 1, eD(z) � H 2(R3), and eH (z)
is a well-de�ned closed operator with domaineD(z).

Remark 4.51. We do not know whether the equalityeD(z) = H 2(R3) is true, nor do we know
whether eD(z1) = eD(z2) for z1 6= z2.
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De�nition of the self-energy operator � from the Dyson equation

We are now able to de�ne the exact self-energy operatore� via the Dyson equation. Note that
we do not de�ne the self-energy in the time domain, but consider onlye�( z) (as in [Far99,
Section 5.1]).

De�nition 4.52 (Self-energy). The self-energy operator is de�ned as

8z 2 C n R; e�( z) := fG0(z) � 1 � eG(z) � 1 = ( z � h1) �
�

z � eH (z)
�

= eH (z) � h1; (4.72)

whereh1 is the one-body mean-�eld Hamiltonian introduced in Section4.3.4.

The operator e�( z) is the di�erence between the one-body dynamical Hamiltonian and the
reference one-body mean-�eld Hamiltonianh1. With this writing, e�( z) can be seen as the
correction term to be added to the reference one-body Hamiltonian in order to obtain the
dynamical mean-�eld one-body Hamiltonian:

eH (z) = h1 + e�( z):

4.4 The GW approximation for �nite systems

4.4.1 G 0W 0, self-consistent GW0, self-consistent GW, and all that

The GW equations

We now turn to the GW approximation for �nite systems. The purpose of the GW approxima-
tion is to estimate the time-ordered Green's functionG via the Dyson formula (4.72). Instead
of using (4.72) to de�ne the self-energy e�( z), we use this equationwith some approximation
e� GW (z) of e�( z) to obtain an approximation eGGW (z) of the time-ordered Green's function
via �

eGGW
� � 1

(z) = z �
�

h1 + e� GW (z)
�

: (4.73)

Using the Dyson equation tode�ne the time-ordered Green's function is only possible if an
alternative expression of the self-energy operator is available. Such an expression was formally
obtained by Hedin in 1965 (see [Hed65]). The GW approximation consists in replacing the
so-called vertex function in Hedin's equations by a tensor product of Dirac masses.

The original GW equations were derived on the time domain and on the frequency do-
main. However, as noticed several times in Section4.3, the operators involved in the GW
equations are not smooth on these axes. It turns out that it is formally possible to recast
the equations on some imaginary axis using Theorem4.24. This approach, �rst introduced
by Rojas, Godby and Needs [RGN95] (see also [RSW+ 99]), is now known under the name of
the �analytic continuation method�. For reasons that we will explain throughout this section,
these equations are recast as follows within our mathematical framework.



4.4. The GW approximation for finite systems 119

De�nition 4.53 (GW equations on the imaginary axis of the frequency domain).

Find ]GGW (� + i �) 2 L 2(R! ; B(H)) solution to the system

]PGW
sym (i ! ) =

1
2�

v1=2
c

� � 1

�1

]GGW
�
� + i( ! + ! 0)

�
� ]GGW (� + i ! 0) d! 0

�
v1=2

c ; (4.74a)

]� GW
sym (i ! ) =

�
1H � ]PGW

sym (i ! )
� � 1

� 1H 1 ; (4.74b)

Ŵ GW
c (i ! ) = v1=2

c
]� GW

sym (i ! )v1=2
c ; (4.74c)

]� GW (� + i ! ) = K x �
1

2�

� 1

�1

]GGW
�
� + i( ! � ! 0)

�
� Ŵ GW

c (i ! 0) d! 0; (4.74d)

]GGW (� + i ! ) =
h
� + i ! �

�
h1 + ]� GW (� + i ! )

�i � 1
; (4.74e)

where h1 is the one-body operator de�ned in (4.70) and whereK x is the integral operator on
H 1 with kernel

K x (r ; r 0) := �

 0

0;N (r ; r 0)

jr � r 0j
;

where 
 0
0;N was de�ned in (4.67).

Remark 4.54. In the GW equations (4.74), the chemical potential� is supposed to be known a
priori.

The GW equations (4.74) would be the natural equations to work with from a mathemat-
ical viewpoint (they are formally equivalent to the original Hedin's GW equations). However,
we were not able to study (4.74) for reasons detailed in Remark4.55 below.

As one can directly see, the equations involve quite a large number of operators, which all
have a physical signi�cance. The operator]PGW

sym is the GW approximation of the symmetric

irreducible polarizability operator, the operator ]� GW
sym is the GW approximation of the sym-

metric reducible polarizability operator, the operator Ŵ GW is the GW approximation of the
dynamically screened Coulomb interaction operator, and �nally ]� GW is the GW approxima-
tion of the self-energy operator. We recognize in Equation (4.74e) the Dyson equation. The
name �GW� comes from Equation (4.74d).

Di�erent levels of GW approximation

As mentioned below (see Remark4.55), we were not able to study the full self-consistent
problem (4.74). We will therefore restrict ourselves to the so-called G0W0 and GW0 approx-
imations. We explain in this section how these di�erent models are obtained.

(i) In the fully self-consistent GW (sc-GW) approximation, we assume that the full prob-

lem (4.74) is well-posed, so that there exists a (unique) solution]GGW . It is then solved
self-consistently: the idea is to start from some trial Green's function, and keep updating
it with ( 4.74) until convergence. This method is for instance used in [CRR+ 12, CRR+ 13,
KFSP10, RJT10, SDvL06]. It was implemented only quite recently due to its high numerical
cost (one needs to perform the inversion in (4.74b) at each iteration).

(ii) In the so-called self-consistentGW0 approximation, or simply GW0 approximation,
only the Green's function (and not the screened Coulomb operator) is updated in (4.74d)
(see for instance [SDvL09, vBH96]). This partial update not only speeds up the calculation
(the inversion in (4.74b) is only performed once), but is sometimes in better agreement with
experimental results than the sc-GW approximation. This is the model that we study in
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Section 4.4.3.

(iii) Finally, most works simply consider the G0W0 approximation, where only one itera-
tion of the sc-GW (or equivalently one iteration of GW0) is performed. This model is very
popular due to its relatively low computational cost, and provides already very satisfactory
results (see for instance [BAO11]).

Let us also emphasize that it is unclear that a solution of the fully self-consistent GW
model is a better approximation in any sense to the exact Green's function than a non self-
consistent approximation such as the one obtained by the G0W0 approximation. This is
discussed in [Far99, Section 9.8], where the author also comments on the possibilities to up-
date the e�ective one-body operatorh1 + K x along the iterations.

Remark 4.55. We do not know how to give a proper mathematical meaning to Equation (4.74a).
More speci�cally, one would like to de�ne, for a reasonable choice of Green's function]Gapp,
the operator

8! 2 R! ; ]Psym[Gapp](i ! ) :=
1

2�
v1=2

c

� � 1

�1

]Gapp
�
� + i( ! + ! 0)

�
� ]Gapp(� + i ! 0) d! 0

�
v1=2

c ;

and we would like this operator to be a self-adjoint bounded negative operator onH 1. It
is the case for instance when]Gapp is the non-interacting Hamiltonian fG0 de�ned in ( 4.69)
(see Proposition 4.59 and Remark 4.64), or when ]Gapp is the exact Green's function de�ned
in ( 4.51) (this fact can be proved by adapting the arguments given in Section4.4.2). We
were not able to obtain this result for a generic class of approximate Green's functions]Gapp,
say ]Gapp of the form (4.74e) with ]� GW (� + i ! ) in a small ball of L 1 (R! ; B(H 1)) .

For this reason, we will not study the self-consistent GW equation (4.74).

4.4.2 The operator gW 0 and the random phase approximation

The remainder of this section is devoted to the study of theGW0 approximation (which
includes the G0W0 approximation), which amounts to study the two equations (4.74d)-(4.74e)
with a speci�c �xed choice of the screening operatorW 0. This approximation bypasses the
di�culties mentioned in Remark 4.55. In order to present and study theGW0 approximation,
one must �rst de�ne the operator W 0.

The RPA irreducible polarizability operator fP0

The GW approximation of the irreducible polarizability operator P is formally de�ned as

PGW (r ; r 0; � ) = � iG(r ; r 0; � )G(r 0; r ; � � ): (4.75)

When the Green's functionG is the non-interacting oneG0 de�ned in ( 4.47), this corresponds
to the so-called random phase approximation of the reducible polarizability operator (compare
for instance (4.83) with the expression in [CS12]) de�ned by

P0(r ; r 0; � ) := � iG0(r ; r 0; � )G0(r 0; r ; � � ):

This operator is expected to have properties similar to the operator� de�ned in Section 4.3.3.
In particular, P0(� ) is expected to be a bounded operator fromC0 to C. It is therefore more
convenient to work with its symmetrized counterpart P0

sym(� ) := v1=2
c P0(� )v1=2

c , which is
expected to be a bounded operator onH 1. We decomposeP0

sym asP0
sym = P0;+

sym + P0;�
sym where,



4.4. The GW approximation for finite systems 121

using the kernel-product � de�ned in Section 4.2.4, and the explicit expressions ofG0;p and
G0;h given in Proposition 4.48,

P0;+
sym(� ) = � i�( � )v1=2

c G0;p(� ) � G0;h(� � )v1=2
c (4.76)

= � i�( � )v1=2
c

� �
1H 1 � 
 0

0;N

�
e� i �h 1 � 
 0

0;N ei �h 1

�
v1=2

c (4.77)

and

P0;�
sym(� ) = � i�( � � )v1=2

c G0;h(� ) � G0;p(� � )v1=2
c

= � i�( � � )v1=2
c

�

 0

0;N e� i �h 1 �
�
1H 1 � 
 0

0;N

�
ei �h 1

�
v1=2

c :

Actually, with this de�nition, we were not able to give a meaning to P0;�
sym (it may not be a

bounded operator onH 1). We therefore prefer to use the modi�ed kernel-producte� de�ned
in Remark 4.19. Our correct mathematical de�nition for P0;�

sym then is

P0;�
sym(� ) = � i�( � � )v1=2

c G0;h(� ) e� G0;p(� � )v1=2
c (4.78)

= � i�( � � )v1=2
c

�

 0

0;N e� i �h 1 e�
�
1H 1 � 
 0

0;N

�
ei �h 1

�
v1=2

c : (4.79)

As will be shown in Lemma 4.56, this amounts to de�ning P0;� (� ) = P0;+ (� � ). We recall
that 
 0

0;N is the orthogonal projector on the vector space spanned by the eigenvectors ofh1

associated with the lowestN eigenvalues (see (4.67)), so that


 0
0;N =

NX

k=1

j� k ih� k j; (4.80)

where h1� k = " k � k , and the eigenfunctions� k are real-valued and orthonormal. The follow-
ing result shows that our de�nitions make sense, and gives explicit formulae forP0;+ (see
Section 4.6.15for the proof).

Lemma 4.56. The family
�

P0;+
sym(� )

�

� 2 R�
de�ned by (4.76) is a bounded causal operator

on H 1, while
�

P0;�
sym(� )

�

� 2 R�
de�ned by (4.78) is a bounded anti-causal operator onH 1. It

holds P0;�
sym(� ) = P0;+

sym(� � ) and

P0;+
sym(� ) = � i�( � )

NX

k=1

v1=2
c � k

�
1H 1 � 
 0

0;N

�
e� i � (h1 � " k ) �

1H 1 � 
 0
0;N

�
� kv1=2

c : (4.81)

Remark 4.57. For 1 � k � N , the notation � k in ( 4.81) refers to the multiplication operator
by the function � k . It is a bounded operator fromC0 to H 1, and from H 1 to C (see the proof
of Lemma 4.56). The operator � kv1=2

c is bounded onH 1, and one can check that its adjoint
on H 1 is (� kv1=2

c ) � := v1=2
c � k .

The properties of the Laplace and Fourier transforms ofP0;+
sym are easily deduced from (4.81)

using Proposition 4.13 and Lemma 4.14.

Proposition 4.58. The function z 7! ]P0;+
sym(z) is analytic on the upper half-planeU, and can

be analytically continued to the lower half-planeL through the semi-real line(�1 ; "N +1 � "N ).
For all z 2 C n ["N +1 � "N ; 1 ),

]P0;+
sym(z) =

NX

k=1

v1=2
c � k

 
1H 1 � 
 0

0;N

z � h1 + " k

!

� kv1=2
c : (4.82)
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Moreover ]P0;+
sym(� + i � ) converges to[P0;+

sym in H � 1(R! ; B(H 1)) as � ! 0+ , with

Re [P0;+
sym = p :v:

 
NX

k=1

v1=2
c � k

 
1H 1 � 
 0

0;N

� � h1 + " k

!

� kv1=2
c

!

and

Im [P0;+
sym = � �

 
NX

k=1

v1=2
c � k

�
1H 1 � 
 0

0;N

�
Ph1 � " k � kv1=2

c

!

:

It also holds

8z 2 C n ["N +1 � "N ; 1 ); ]P0;�
sym(z) = ]P0;+

sym(� z);

so that, for z 2 U [ L [ (� ("N +1 � "N ); "N +1 � "N ),

]P0
sym(z) = � 2

NX

k=1

v1=2
c � k (1H 1 � 
 0

0;N )
�

h1 � " k

(h1 � " k )2 � z2

�
(1H 1 � 
 0

0;N )� kv1=2
c : (4.83)

The properties of [P0;+
sym and of [P0;�

sym can be directly read o� from the previous expressions.

For instance, we see thatIm [P0;+
sym and Im [P0;�

sym are negative operator-valued measures, with
support in ("N +1 � "N ; 1 ) and (�1 ; � ("N +1 � "N )) respectively. For ! in the real gap

(� ("N +1 � "N ); "N +1 � "N ), we see that [P0;�
sym(! ) = Re [P0;�

sym(! ) is a negative bounded self-
adjoint on H 1.
For our purpose, we only need to know the behavior of]P0

sym on the imaginary axis iR! .
We summarize the corresponding most important results in the following proposition (see
Section 4.6.16for the proof).

Proposition 4.59. It holds

8! 2 R! ; ]P0
sym(i ! ) = � 2

NX

k=1

v1=2
c � k

�
1H 1 � 
 0

0;N

�
�

h1 � " k

! 2 + ( h1 � " k )2

�
�
1H 1 � 
 0

0;N

�
� kv1=2

c :

(4.84)

In particular, for all ! 2 R! , the operator ]P0
sym(i ! ) is a negative, self-adjoint bounded operator

on H 1 satisfying ]P0
sym(� i! ) = ]P0

sym(i ! ). In addition, the function ! 7! ]P0
sym(i ! ) is analytic

from R! to S(H 1), and is in L p(R! ; S(H 1)) for all p > 1. For any f 2 H 1, the function

! 7!
D

f
�
�
� ]P0

sym(i ! )
�
�
� f

E
is non-positive, in L 1(R! ), and

� + 1

�1

D
f

�
�
� ]P0

sym(i ! )
�
�
� f

E
d! = � 2�

D
f

�
�
�v1=2

c

��
1H 1 � 
 0

0;N

�
� 
 0

0;N

�
v1=2

c

�
�
� f

E

= � 2�

*

f

�
�
�
�
�

NX

k=1

v1=2
c � k

�
1H 1 � 
 0

0;N

�
� kv1=2

c

�
�
�
�
�
f

+

: (4.85)

Finally, there exists a constantC 2 R+ such that

8! 2 R! ; 0 � � ]P0
sym(i ! ) �

C
(! 2 + 1) 1=2

�
v1=2

c � 0
0;N v1=2

c

�
; (4.86)

where� 0
0;N is the multiplication operator by the (real-valued) function� 0

0;N , the latter operator
being bounded fromC0 to C.
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The sum-rule for the operator fP0. We end this section with the sum-rule for the operator
fP0 = v� 1=2

c
]P0

symv� 1=2
c , which goes fromC0 to C. We postpone the proof until Section4.6.17.

Theorem 4.60. The operator 2
P N

k=1 � k (1H 1 � 
 0
0;N )(h1 � " k )� k is bounded fromC0 to C,

and it holds

2
NX

k=1

� k (1H 1 � 
 0
0;N )(h1 � " k )� k = div ( � 0

0;N r� ):

Moreover, the following weak-convergence holds:

8(f; g ) 2 C0� C 0; lim
! !�1

D
f; � ! 2 fP0(i ! )g

E

C0;C
=



f ; � div

�
� 0

0;N r g
��

C0;C
=

�

R3
� 0

0;N r f � r g:

Finally, for all g 2 C0 such that � g 2 L 2(R3), the following strong convergence holds:

lim
! !�1

! 2 fP0(i ! )g = div
�
� 0

0;N r g
�

in C:

This sum-rule automatically leads to a sum-rule for the reducible polarizability operator
in the random phase approximation� 0 (see Theorem4.67).

The analytical continuation method

In this section, we explain why (4.74a) can be thought of as a natural reformulation of the usual
physical de�nition ( 4.75), and why problems arise with De�nition ( 4.74a) (see Problem4.55).
This section also serves as a guideline to understand why (4.74d) is a natural reformulation of
the usual physical de�nition of � GW (see (4.97) below). In the previous section, we gave the
properties of fP0 using the explicit expression ofP0 given in (4.81). While this approach sim-
pli�es the proofs, it somehow hides some structural properties that we highlight in this section.

Recall that P0
sym = P0;+

sym + P0;�
sym with

P0;+
sym(� ) = � i�( � )v1=2

c G0;p(� ) � G0;h(� � )v1=2
c

and
P0;�

sym(� ) = � i�( � � )v1=2
c G0;h(� ) e� G0;p(� � )v1=2

c ;

where

G0;p(� ) = � i�( � )A0;+ e� i � (H 0;N +1 � E 0
0;N )A �

0;+ ; G0;h(� ) = i�( � � )A �
0;� ei � (H 0;N � 1 � E 0

0;N )A0;� :

The idea is to use the results of Theorem4.24. We �rst consider P0;+
sym, and prove that the

hypotheses of Theorem4.24 are satis�ed. This is given by the following lemma.

Lemma 4.61. There exists a constantC 2 R+ such that, for anyf 2 H 1, it holds A0;�

�
v1=2

c f
�

2

S 2(H 1) with 




 A0;�

�
v1=2

c f
� 







S 2 (H 1 )
� Ckf kH 1 :

Moreover, H0;N +1 � E 0
0;N � "N +1 and H0;N � 1 � E 0

0;N � � "N .

Proof. The �rst point comes from the fact that A �
0;� A0;� = 
 0

0;N and that v1=2
c f 2 C0 ,! L 6

wheneverf 2 H 1, together with Lemma 4.77.
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In particular, the hypotheses of Theorem4.24 are satis�ed, and we deduce that for any
� 0 > " N and � + � 0 < " N +1 ,

8! 2 R; ]P0;+
sym(� + i ! ) =

1
2�

� + 1

�1
v1=2

c

�
gG0;p

�
� + � 0+ i( ! + ! 0)

�
� gG0;h(� 0+ i ! 0)

�
v1=2

c d! 0:

(4.87)

We treat ]P0;�
sym is a similar way, and �nd that for any � 0 < " N +1 and � + � 0 > " N ,

8! 2 R; ]P0;�
sym(� + i ! ) =

1
2�

� + 1

�1
v1=2

c

�
gG0;h

�
� + � 0+ i( ! + ! 0)

�
e� gG0;p(� 0+ i ! 0)

�
v1=2

c d! 0:

(4.88)
Actually, the kernel-product e� in the latter expression can be transformed into the kernel-
product � , thanks to the following lemma, whose proof is given in Section4.6.18.

Lemma 4.62. For any � 0 < " N +1 , any � + � 0 > " N and any !; ! 0 2 R! ,

gG0;h
�
� + � 0+ i( ! + ! 0)

�
e� gG0;p(� 0+ i ! 0) = gG0;h

�
� + � 0+ i( ! + ! 0)

�
� gG0;p(� 0+ i ! 0);

as bounded operators fromC0 to C.

We can perform the same type of calculation forGh � Gh. Following the proof of Theo-
rem 4.24, we deduce fromGh(� ) � Gh(� � ) = 0 that, for any � 0 > " N and � + � 0 > " N ,

8! 2 R! ;
1

2�

� + 1

�1
v1=2

c

�
gG0;h

�
� + � 0+ i( ! + ! 0)

�
� gG0;h(� 0+ i ! 0)

�
v1=2

c d! 0 = 0 : (4.89)

Similarly, from Gp(� ) � Gp(� � ) = 0 , we deduce that,at least formally, for any � 0 < " N +1 ,
and any � + � 0 < " N +1 ,

8! 2 R! ;
1

2�

� + 1

�1
v1=2

c

�
gG0;p

�
� + � 0+ i( ! + ! 0)

�
� gG0;p(� 0+ i ! 0)

�
v1=2

c d! 0 = 0 : (4.90)

Remark 4.63. The last equality is formal, in the sense that the integrandgG0;p � gG0;p is
actually not well-de�ned: it does not de�ne a bounded operator fromC0 to C. However, we

can proceed as follows. For! 2 R! , let ]P+ ;+
] (i ! ) be the operator de�ned on the coreH 1 \ C

by

8f; g 2 H 1 \ C ;
�

f

�
�
�
�
]P+ ;+

] (i ! )

�
�
�
� g

�

:=
1

2�

� + 1

�1
Tr H 1

h
gG0;p

�
� + � 0+ i( ! + ! 0)

� �
v1=2

c g
�

gG0;p(� 0+ i ! 0)
�

v1=2
c f

�i
d! 0:

Noticing that v1=2
c f and v1=2

c g are in H 1 since f; g 2 C, and reasoning as in the proof of
Lemma 4.62, we can prove that the operator in the trace is indeed trace-class, with

�
�
�Tr H 1

h
gG0;p

�
� + � 0+ i( ! + ! 0)

� �
v1=2

c g
�

gG0;p(� 0+ i ! 0)
�

v1=2
c f

�i �
�
� � p! (! 0)kf kCkgkC;

where p! is an integrable function independent off and g. Moreover, following the proof of
Theorem 4.24, we can prove that, as expected,

8f; g 2 H 1 \ C ;
�

f

�
�
�
�
]P+ ;+

] (i ! )

�
�
�
� g

�
= 0 :

The unique continuation on H 1 of ]P+ ;+
] (i ! ) therefore is the null operator. It is unclear to us

how to extend a similar reasoning for a generic class of approximated Green's function]Gapp.
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By gathering (4.87), (4.88), (4.89) and (4.90), we �nd that, for any � 0 2 ("N ; "N +1 ) and
� + � 0 2 ("N ; "N +1 ),

8! 2 R! ; ]P0
sym(� + i ! ) =

1
2�

� + 1

�1
v1=2

c

�
fG0

�
� + � 0+ i( ! 0+ ! )

�
� fG0(� 0+ i ! 0)

�
v1=2

c d! 0:

In particular, this equality holds for the particular choice � 0 = � 0 and � = 0 .

Remark 4.64. To summarize the work performed in this section, we transformed the equation

P0(r ; r 0; � ) := � iG0(r ; r 0; � )G0(r 0; r ; � � ) (4.91)

into: for any � 0 2 ("N ; "N +1 ) and � 2 ("N � � 0; "N +1 � � 0)

fP0(� + i �) =
1

2�

� + 1

�1

�
fG0

�
� + � 0+ i( ! 0+ �)

�
� fG0(� 0+ i ! 0)

�
d! 0: (4.92)

Note that the manipulations performed in this section to transform (4.91) into ( 4.92) are
possible since the two operators involved in the kernel-product (here, both are equal tofG0(z))
are analytic on some common domainU [ L [ (a; b) with a < b (the presence of a gap is
important to deform the contour as in Theorem4.24).

The RPA reducible polarizability operator � 0

In order to calculate the GW approximation of the self-energy, one needs the reducible polariz-
ability operator � , de�ned in Section 4.3.3. Unfortunatly, the expression of � is not accessible
in practice. One needs to approximate this operator. The GW approximation, which amounts
to approximating the so-called vertex function, provides a natural approximation � GW of � :
in Equation (4.74b), � GW is de�ned from GGW (see also [Far99, Equation (103)] or [Hed65,
Equations (A.20) and (A.28)]). However, in view of Remark4.55, the de�nition of � GW is not
well-understood mathematically. In the GW0 framework, we use the RPA reducible polariz-
ability operator � 0, which is itself de�ned in terms of the RPA irreducible polarizability P0.
The GW0 approximation of the (symmetrized) reducible polarizability operator is usually
de�ned in the frequency domain as

[� 0
sym(! ) :=

�
1H 1 � [P0

sym(! )
� � 1

� 1H 1 :

The formal analytic continuation of the above de�nitions is (see [Far99, Equation (139)])

]� 0
sym(z) :=

�
1H 1 � ]P0

sym(z)
� � 1

� 1H 1 : (4.93)

Note that we use the �tilde� notation in ]� 0
sym, although it is unclear that this operator-

valued function is indeed the Laplace transform of some operator-valued function in the time
domain. Also, it is a priori unclear whether the operators1H 1 � [PGW

sym (! ) or 1H 1 � ]PGW
sym (z)

are invertible. This is however the case for appropriate values ofz, as shown by the following
lemma.

Lemma 4.65. For z 2 (� ("N +1 � "N ); "N +1 � "N ) and z 2 iR, the operator 1H 1 � ]P0
sym(z)

is invertible.

This result is a direct consequence of the explicit formula (4.83) for fP0, which ensures

that ]P0
sym(z) is a bounded self-adjoint negative operator for the values ofz under consideration.

Let us deduce some extra properties off� 0.



126 Chapter 4. The GW method for finite systems

Lemma 4.66. For any ! 2 R, the operator ]� 0
sym(i ! ) is a bounded, negative, self-adjoint

operator on H 1, satisfying ]� 0
sym(� i! ) = ]� 0

sym(i ! ), and such that

]P0
sym(i ! ) � ]� 0

sym(i ! ) � 0: (4.94)

The function ! 7! ]� 0
sym(i ! ) is analytic from R! to S(H 1) and is in L p(R! ; S(H 1)) for all

p > 1. Finally, there exists a constantC 2 R+ such that

0 � � ]� 0
sym(i ! ) �

C
(! 2 + 1) 1=2

�
v1=2

c � 0
0;N v1=2

c

�
: (4.95)

This result is deduced from the de�nition (4.93), the inequality x � (1 � x) � 1 � 1 � 0 for
x � 0, and Proposition 4.59.

Sum-rule for f� 0. From the sum-rule stated in Theorem4.60, we readily deduce the sum-
rule for f� 0 := v� 1=2

c
]� 0

symv� 1=2
c , which is a bounded operator fromC0 to C. Indeed, from the

equality (1 � x) � 1 � 1 = x + x2(1 � x) � 1, we obtain

8! 2 R! ; ]� 0
sym(i ! ) = ]P0

sym(i ! ) +
�

]P0
sym(i ! )

� 2 �
1H 1 � ]P0

sym(i ! )
� � 1

:

In particular,

8! 2 R! ; ! 2f� 0(i ! ) = ! 2 fP0(i ! )+
1

! 2

�
! 2 fP0(i ! )

� �
v1=2

c

�
1H 1 � ]P0

sym(i ! )
� � 1

v1=2
c

� �
! 2 fP0(i ! )

�
:

This shows that the asymptotic behavior of f� 0(i ! ) is, at dominant order, the same as for
fP0(i ! ). Taking the limit ! ! �1 leads to a theorem similar to Theorem4.60, whose proof
is skipped here for the sake of brevity.

Theorem 4.67. The following weak-convergence holds:

8(f; g ) 2 C0� C 0; lim
! !�1

D
f; � ! 2f� 0(i ! )g

E

C0;C
=



f ; � div

�
� 0

0;N r g
��

C0;C
=

�

R3
� 0

0;N r f � r g:

For all g 2 C0 such that � g 2 L 2(R3), the following strong convergence holds:

lim
! !�1

! 2f� 0(i ! )g = div
�
� 0

0;N r g
�

in C:

By comparing Theorems4.67 and 4.46, we see why using (4.71) instead of (4.70) for the
de�nition of h1 may lead to better approximations, since� 0

0;N = � 0
N in this case, so that the

GW approximation � GW of � becomes exact in the high imaginary frequency domain.

Theorem 4.67 is useful for the design of the so-calledPlasmon-Pole models(PPM) [ HL86,
vdLH88, GN89, EF93]. Since the de�nition ( 4.93) requires the computation of a resolvent, the
calculation of f� 0(z) is numerically very expensive in practice. Some authors suggested to ap-

proximate f� 0 by an operator �̂ PPM which is computationally less expensive. In practice,̂� PPM

has a prescribed functional form, with adjustable parameters. Di�erent approaches are taken
in order to tune these parameters, and the previous sum-rule provides a standard way to �t
some of them. This is done for instance in the PPM by Hybersten and Louie [HL86] and in
the PPM by Engel and Farid [EF93]. In the later article, the authors extensively comment
on the fact that this sum-rule is an important requirement to be satis�ed for a PPM.
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The RPA dynamically screened operator W 0

From the approximation � 0 of � , we directly deduce the approximationW 0 of W . Following
the path taken in Section 4.3.3, we de�ne

gW 0(z) := vc + gW 0
c (z) with gW 0

c (z) := v1=2
c

]� 0
sym(z)v1=2

c : (4.96)

This operator, when well-de�ned (say on the gap(� ("N +1 � "N ); "N +1 � "N ) or on the
imaginary axis iR) is a bounded operator fromC to C0. The properties of gW 0 are directly

deduced from the ones of]� 0
sym, so we do not repeat them here for brevity.

4.4.3 A mathematical study of the GW0 approximation

The G 0W 0 approximation of the self-energy

In this section, we study the G0W0 approximation as a preliminary step to the study of the
self-consistentGW0 approximation. This will help us understand some technical points to
address in the analysis of theGW0 method.

The G0W0 approximation of the self-energy operator is formally de�ned as

� 00(r ; r 0; � ) := i G0(r ; r 0; � )W 0(r ; r 0; � � + ): (4.97)

Here, G0 represents the Green's function of the non-interacting system introduced in De�ni-
tion 4.47, and W 0 is the random phase approximation of the dynamically screened operator
de�ned in Section 4.4.2. Already one di�culty arises: in Section 4.4.2, we only de�ned the
function gW 0(z) on the complex frequency domain, but we did not de�ne some operator-valued
function on the time-domain. In this section, we assume that the functiongW 0(z) is indeed
the Laplace transform of some operatorW 0(� ). This will allow us to transform ( 4.97) into
a formally equivalent de�nition that only involves gW 0. The resulting de�nition will be our
starting point for the GW0 approximation.

With the kernel-product de�ned in Section 4.2.4, the de�nition ( 4.97) can be recast as

� 00(� ) = i G0(� � ) � W 0(� � ):

In view of the decomposition provided in (4.96), it is natural to split � 00 into an exchange
part � 00

x and a correlation part � 00
c (the terminology is motivated below):

� 00 = � 00
x + � 00

c with � 00
x (� ) = i G0;h(0� ) � vc� 0(� ) and � 00

c (� ) = i G0(� ) � Wc(� � ):

Let us �rst consider the exchange part. AsiG0;h(0� ) = � 
 0
0;N , we obtain

� 00
x (� ) = K x � 0(� ); (4.98)

where K x is the integral operator on H 1 with kernel

K x (r ; r 0) := �

 0

0;N (r ; r 0)

jr � r 0j
: (4.99)

We recover the usual Fock exchange operator associated with
 0
0;N , which justi�es the termi-

nology �exchange part� for � 00
x . Let us now consider the correlation part. Observing that

� fG0 is analytic on U [ L [ ("N ; "N +1 ) (hence has a gap around� 0);
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� gW 0 is analytic on U [ L [ (� ("N +1 � "N ); "N +1 � "N ) (hence has a gap around0),

we can use the same ideas as in Section4.4.2. By analogy with Remark 4.64, we recast
the physical de�nition of g� 00 in (4.97) in a formally equivalent de�nition in the complex
frequency plane. This reformulation was �rst given by Rojas, Godby and Needs [RGN95] (see
also [RSW+ 99]), and is now known as the �contour deformation� technique.

De�nition 4.68 (G0W0 approximation of the self-energy). The exchange part of the self-
energy in the G0W0 approximation is de�ned in the complex frequency domain by

8z 2 C; g� 00
x (z) = K x ;

while the correlation part is de�ned, for � 0 2 (� ("N +1 � "N ); "N +1 � "N ) and � + � 0 2 ("N ; "N +1 )
by

8! 2 R! ; g� 00
c (� + i ! ) = �

1
2�

� + 1

�1

fG0
�
� + � 0+ i( ! + ! 0)

�
� gW 0

c (� 0+ i ! 0) d!:

The fact that the above quantity is independent of the choice of� 0 comes from the ana-
lyticity of the integrand on the region of interest. In practice, we will focus on the case� 0 = 0
and � = � 0, and therefore consider the functionR! 3 ! 7! g� 00

0 (� 0 + i ! ) de�ned by

8! 2 R! ; g� 00
c (� 0 + i ! ) = �

1
2�

� + 1

�1

fG0
�
� 0 + i( ! + ! 0)

�
� gW 0

c (i ! 0) d!: (4.100)

The next proposition shows that the above de�nition makes sense.

Proposition 4.69. The operator K x arising in the exchange part� 00
c of the self-energy is

a negative Hilbert-Schmidt operator onH 1. Furthermore, for any ! 2 R! , the operator
g� 00

c (� 0 + i ! ) is a bounded operator onH 1, and satis�es g� 00
c (� 0 � i! ) = g� 00

c (� 0 + i ! ) � . The
function ! 7! g� 00

c (� 0+i ! ) is analytic from R! to B(H 1) and is in L p(R! ; B(H 1)) for all p > 1.

The �rst statements of Proposition 4.69can be seen as a special case of Proposition4.73,
while the symmetry property for the adjoint and the L p integrability follow from the properties
of fG0 and gW 0

c .

Well-posedness of the GW0 approximation in the perturbative regime.

We �nally study the GW0 approximation. Following our de�nition ( 4.100) of the G0W0

approximation of the self-energy, we recast theGW0 equation as follows.

De�nition 4.70 (The GW0 problem on the imaginary axis in the frequency domain).
Find GGW 0

2 L 1 (R! ; B(H 1)) solution to the system

(GW 0)

8
>>><

>>>:

�̂ GW 0 (� 0 + i ! ) = K x �
1

2�

� + 1

�1
ĜGW 0 �

� 0 + i( ! + ! 0)
�

� gW 0
c (i ! 0) d! 0;

ĜGW 0 (� 0 + i ! ) =
�
� 0 + i ! �

�
h1 + �̂ GW 0 (� 0 + i ! )

�� � 1

;

where h1 is the one-body mean-�eld Hamiltonian de�ned in (4.70) and K x is the exchange
operator de�ned by (4.67)-( 4.99).

Remark 4.71. We are looking for a solution in L 1 (R! ; B(H 1)) . Note that the true Green's
function eG(� + i �) is in L p(R! ; B(H 1)) for all p > 1 (in particular for p = 1 ). We chose to
work with L 1 (R! ; B(H 1) for simplicity, but it is possible to work with other spacesL p(R! ; B(H 1))
with p > 1.
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Since this problem seems quite di�cult to study mathematically, we will only study it in
a perturbative regime. More speci�cally, seeing� GW as a correction term (see the discussion
after De�nition 4.52), we propose to study the following problem.

De�nition 4.72 (The GW0
� problem on the imaginary axis on the frequency domain).

Find GGW 0
� 2 L 1 (R! ; B(H 1)) solution to the system

(GW 0
� )

8
>>><

>>>:

�̂ GW 0
� (� 0 + i ! ) = K x �

1
2�

� + 1

�1
ĜGW 0

�
�
� 0 + i( ! + ! 0)

�
� gW 0

c (i ! 0) d! 0

ĜGW 0
� (� 0 + i ! ) =

�
� 0 + i ! �

�
h1 + � �̂ GW 0

� (� 0 + i ! )
�� � 1

:

(4.101)

According to (4.69), the unique solution for � = 0 is the Green's function for the non

interacting system ĜGW 0
� =0 = fG0. This fact will allow us to treat the equation perturbatively.

The exact GW0 equations correspond to the case� = 1 . Of course, several other choices of
perturbation can be used. For instance, we can put the parameter� in front of the correlation
part of the self-energy only. This amounts to considering the Hartree-Fock Hamiltonian as
the reference Hamiltonian (instead of the Hartree Hamiltonian). The theory that we develop
here can be straightforwardly generalized to such other cases.

It is convenient for the mathematical analysis to introduce the functionalss and g respec-
tively de�ned as

s : L 2(R! ; B(H 1)) ! L 1 (R! ; B(H 1))

]Gapp(� 0 + i �) 7! s
h

]Gapp
i

(� 0 + i �) := K x �
1

2�

� + 1

�1

]Gapp(� 0 + i( � + ! 0)) � gW 0
c (i ! 0) d! 0;

and

g� : L 1 (R! ; B(H 1)) ! L 2(R! ; B(H 1))

]� app(� 0 + i �) 7! g
h
]� app

i
(� 0 + i �) :=

h
� 0 + i � �

�
h1 + � ]� app(� 0 + i �)

�i � 1
:

With this notation, ĜGW 0
� is a solution of the GW0

� equations (4.101) if and only if it is a
�xed-point of g� � s. The fact that these maps are indeed well-de�ned is proved in the following
proposition (see Section4.6.19for the proof).

Proposition 4.73. The operator s is a bounded linear operator fromL 2(R! ; B(H 1)) to
L 1 (R! ; B(H 1)) . On the other hand, for all M > 0, there exists � M > 0 and CM 2 R+

such that for all 0 � � < � M , and all g� app such that





 g� app(� 0 + i �)








L 1 (R! ;B(H 1 ))
� M , the

function g� [� app](� 0 + i �) is well-de�ned as an element ofL 2(R! ; B(H 1)) \ L 1 (R! ; B(H 1)) ,
with






 g�

h
g� app

i
(� 0 + i �)








L 2 (R! ;B(H 1 ))
+






 g�

h
g� app

i
(� 0 + i �)








L 1 (R! ;B(H 1 ))
� CM :

Moreover, for all g� app
1 ; g� app

2 2 L 1 (R! ; B(H 1)) such that





 g� app

j (� 0 + i �)







L 1 (R! ;B(H 1 ))
� M

for 1 � j � 2,

g�

h
g� app

1

i
� g�

h
g� app

2

i
= � g�

h
g� app

1

i �
g� app

2 � g� app
1

�
g�

h
g� app

2

i
: (4.102)
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To prove the existence of a �xed-point for g� � s, we rely on Picard's �xed-point theorem.
Since the solution of theGW0

� =0 equations (4.101) for � = 0 is fG0, we are lead to introduce,
for r > 0, the (closed) ball

B
�

fG0; r
�

=
�

]Gapp(� 0 + i �) 2 L 2(R! ; B(H 1)) ;





 ]Gapp(� 0 + i �) � fG0(� 0 + i �)








L 2 (R! ;B(H 1 ))
� r

�
:

The existence of a �xed-point is given by the following theorem (see Section4.6.20 for the
proof).

Theorem 4.74. There exists � � > 0 and r > 0 such that, for all 0 � � � � � , there exists a

unique elementĜGW 0
� 2 B

�
fG0; r

�
solution to the GW0

� equations (4.101), or equivalently to
the �xed point equation

ĜGW 0
� = g� � s

�
ĜGW 0

�

�
:

In addition, for all ! 2 R! , ĜGW 0
� (� 0 + i ! ) is an invertible operator, and












�
ĜGW 0

� (� 0 + i �)
� � 1

�
�

fG0(� 0 + i �)
� � 1












L 1 (R! ;B(H 1 ))

< 1 : (4.103)

Finally, the iterative sequence(g� � s)k
h

fG0

i
converges toĜGW 0

� , and there exists0 � � < 1

and C 2 R+ such that









�
ĜGW 0

� � (g� � s)k
h

fG0

i �
(� 0 + i �)










L 1 (R! ;B(H 1 ))
� C� k :

Remark 4.75. It is not di�cult to deduce from ( 4.103) that the function ! 7! ĜGW 0
� (� + i ! )

is actually in L p(R! ; B(H 1)) , for all p > 1.

4.5 Conclusion

In this chapter, we formalized with full mathematical rigor the GW theory for �nite molecular
systems derived by Hedin in his seminal work published in 1965 [Hed65]. In Section 4.3, we
provided a mathematical de�nition of some one-body operators arriving in many-body per-
turbation theory for electronic systems, namely the one-body Green's functionG, the spectral
function A , the reducible polarizability operator � , the dynamically screened interaction op-
erator W , and the self-energy operator� .

In Section 4.4, we worked out a mathematically consistent formulation of theGW0 ap-
proximation of the GW equations, and we proved that the GW0 model has a solution in a
perturbation regime. As a by-product, we also showed that the widely used G0W0 approxi-
mation of the self-energy makes perfect mathematical sense.
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4.6 Proofs

4.6.1 Proof of Lemma 4.3

Let s > 1=2. For f 2 L 1 (R� ) and b' 2 S (R! ),

�
�
�hFT f; b' i S 0;S

�
�
� =

�
�
�hf; FT b' i S 0;S

�
�
� = 2 �

�
�
�
�

�

R
f (� � )(F � 1

T b' )( � ) d�

�
�
�
�

= 2 �

�
�
�
�

�

R

f (� � )
(1 + � 2)s=2

(1 + � 2)s=2(F � 1
T b' )( � ) d�

�
�
�
� � Cs kf kL 1 kb' kH s ;

where we have used the Cauchy-Schwarz inequality in the last step. By density,FT f can be
extended to a linear form onH s(R). The equality casekFT f kH � s = Cskf kL 1 is obtained for
constant functions.

4.6.2 Proof of Theorem 4.10

Proof of (i). The analyticity of eg directly follows from the results of [Sch66, Chapter VIII].

Proof of (ii). Let s > 1=2, and consider' 2 S (R). Relying on the fact that eg(� + i � ) can
be seen as the Fourier transform of� 7! g(� )e� �� , we obtain

heg(� + i � ); ' i H � s ;H s � h bg; ' i H � s ;H s =


ge� �� ; b'

�
S 0;S � h g; b' i S 0;S

=
� 1

0

�
g(� )

(1 + � 2)s=2

�
(1 + � 2)s=2 b' (� )

�
e� �� � 1

�
d�;

(4.104)
where the integral makes sense since� 7! g(� )(1 + � 2) � s=2 and � 7! (1 + � 2)s=2 b' (� ) are
in L 2(R). It is then possible to extend the above formula to any' 2 H s(R). Moreover, by
the Cauchy-Schwarz inequality,

�
�heg(� + i � ); ' i H � s ;H s � h bg; ' i H � s ;H s

�
� � I �;s k' kH s kgkL 1 ;

where

I �;s =
�

2�
� + 1

0

(1 � e� �� )2

(1 + � 2)s d�
� 1=2

< 1 :

Therefore, keg(� + i � ) � bgkH � s � k gkL 1 I �;s . By dominated convergence,I �;s ! 0 as � ! 0+ ,
which allows us to conclude to the strong convergence ofeg(� + i � ) to bg in H � s(R! ).

A similar computation shows that, for 0 < � 1 � � 2 and s 2 R,

keg(� + i � 1) � eg(� + i � 2)kH s � k gkL 1

�
2�

� + 1

0
e� 2� 1 �

�
1 � e� (� 2 � � 1 )�

� 2
(1 + � 2)s d�

� 1=2

;

where we crucially use that� 1 > 0 to ensure the convergence of the time integral fors > � 1=2.
The right-hand side goes to0 as � 2 goes to� 1 by dominated convergence. This allows one to
conclude to the continuity of � 7! eg(� + i � ) from (0; + 1 ) to H s(R). When s < � 1=2, it is
possible to pass to the limit� 1 ! 0 and obtain the uniform continuity from [0; + 1 ) to H s(R).

Proof of (iii). We follow the approach used in [Tay58] for instance. Fix z0 2 U, and
consider, for R > 0 and 0 < � � Im (z0)=2, the oriented contour C in the complex plane
composed of the semi-circlei� + Rei � for 0 � � � � and the line i� + ! for � R � ! � R. The
value R is taken su�ciently large for z0 to be inside the domain encircled by the contour (see
Figure 4.5).
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z0

i� R

C

Figure 4.5 � The contour C used in the proof of (iii).

By Cauchy's residue theorem,

eg(z0) =
1

2i�

�

C

eg(z)
z � z0

dz =
1

2i�

� R

� R

eg(! + i � )
! + i � � z0

d! +
1

2�

� �

0
eg(i � + Rei � )

Rei �

Rei � + i � � z0
d�:

(4.105)
Now, for z 2 U,

jeg(z)j �
kgkL 1

Im (z)
;

so that
�
�
�
�

� �

0
eg(i � + Rei � )

Rei �

Rei � + i � � z0
d�

�
�
�
� � k gkL 1

� �

0

R
j� + R sin � j jRei � + i � � z0j

d�;

which, by dominated convergence, converges to 0 asR ! + 1 when � is �xed. On the other
hand, eg(� + i � ) belongs to L 2(R! ), while (� + i � � z0) � 1 is in H 1(R! ), since i� � z0 has a
non-zero imaginary part. Therefore, the limit R ! + 1 can be taken in the �rst integral on
the right-hand side of (4.105), which leads to

eg(z0) =
1

2i�

� + 1

�1

eg(! + i � )
! + i � � z0

d! =
1

2i�



eg(� + i � ); (� + i � � z0) � 1�

H � 1 ;H 1 :

The conclusion now follows from the strong convergences of(� + i � � z0) � 1 to (� � z0) � 1 in
H 1(R! ) and of eg(� + i � ) to bg in H � 1(R! ) as � ! 0.

Proof of (iv). Let ' be a real-valued function inS (R! ). From (4.12), we get
�

R
eg(! + i � )' (! ) d! =

1
2i�

�

R



bg;(� � ! � i� ) � 1�

H � 1 ;H 1 ' (! ) d!:

Taking the real parts of both sides, we obtain
�

R
Re (eg(! + i � )) ' (! ) d!

=
1

2�

�

R

 �
Im bg;

� � !
(� � ! )2 + � 2

�

H � 1 ;H 1
+

�
Rebg;

�
(� � ! )2 + � 2

�

H � 1 ;H 1

!

' (! ) d!:

(4.106)
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Consider now � 2 C1 (R2), with support contained in [� R; R] � R for some �nite R > 0.
Then, Fubini's theorem for distributions (see [Sch66, Chapter IV, Theorem IV]) asserts that,
for a given distribution T 2 S 0(R) and ' 2 S (R),

�

R
hT; � (�; ! )i S 0;S ' (! ) d! =

�
T;

�

R
� (�; ! )' (! ) d!

�

S 0;S
:

When T 2 H � 1(R), the above linear form can be extended to functions inH 1(R). Therefore,
(4.106) can be rewritten as

�

R
Re (eg(! + i � )) ' (! ) d! =

�
Im bg;

1
2�

�

R

� � !
(� � ! )2 + � 2 ' (! ) d!

�

H � 1 ;H 1

+
�

Rebg;
1

2�

�

R

�
(� � ! )2 + � 2 ' (! ) d!

�

H � 1 ;H 1
:

(4.107)

In view of the following strong convergences inH 1(R),

1
2�

�

R

� � !
(� � ! )2 + � 2 ' (! ) d! ���!

� ! 0

1
2

(H' )( � );
1

2�

�

R

�
(� � ! )2 + � 2 ' (! ) d! ���!

� ! 0

1
2

' (� );

the equality (4.107) leads, in the limit � ! 0+ , to

hRebg; ' i H � 1 ;H 1 =
1
2

hIm bg;H(' )i H � 1 ;H 1 +
1
2

hRebg; ' i H � 1 ;H 1 :

The �rst equality in the statement of item (iv) is �nally obtained with the following lemma
(recall that, according to Lemma 4.4, H s(R) is stable by the Hilbert transform). The second
equality follows by applying H to both sides and remembering thatH2 = � Id.

Lemma 4.76. Let s � 0. For any T 2 H � s(R) and ' 2 H s(R),

hH(T); ' i H � s ;H s = � h T; H(' )i H � s ;H s :

Proof. Consider �rst the case when T; ' 2 S (R). Then, using Plancherel's formula, the
duality product can be rewritten using a L 2-scalar product

hHT; ' i S 0;S = ( HT ; � )L 2 = 2 �
�

F � 1(HT); F � 1'
�

L 2
= 2 �

�
� i sgn(�)F � 1T ; F � 1'

�
L 2

= 2 �
�
F � 1T ; i sgn(�)F � 1'

�
L 2 = �

�
T ; H'

�
L 2 = �h T; H' i S 0;S :

The conclusion is obtained by a density argument.

4.6.3 Proof of Proposition 4.12

The proof presented in Section4.6.2 can be followedmutatis mutandis upon introducing, for
given elementsf; g 2 H , the bounded causal function

af;g (� ) = hf jTc(� )j gi ;

and noting that kaf;g kL 1 � k TckL 1 (B(H )) kf kkgk.
The only additional technical point is the strong analyticity property, which is however

easily obtained from the following bound: forz = ! + i � 2 U,











d eTc(z)
dz












B(H )

=










� 1

0
Tc(� )(i � )e� �� ei!� d�










B(H )

� k TckL 1 (R� ;B(H ))

� 1

0
� e� �� d� =

kTckL 1 (R� ;B(H ))

� 2 < + 1 :
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4.6.4 Proof of Proposition 4.13

For z 2 U, we have

eAc(z) =
�

R
Ac(� ) eiz� d� = � i

� + 1

0
e� i �H eiz� d�:

A simple computation shows that

eAc(! + i � ) = � i
� + 1

0

�

R
ei � (! +i � � � ) dPH

� d� =
�

R

1
! + i � � �

dPH
� = ( ! + i � � H ) � 1:

The series of equalities can be made rigorous by testing them against functionsf; g 2 H , and
using Fubini's theorem to justify the exchange in the order of integration.

The strong convergence ofeAc(�+i � ) to cAc in H 1(R� ; B(H)) is ensured by Proposition4.12.
The Fourier transform can therefore be deduced from this limiting procedure. We consider the
limit of Im eAc(� + i � ), the real part of eAc(� + i � ) being obtained from (4.14) and De�nition 4.8.

Let f 2 H and ' 2 S (R! ). Then, using Fubini's theorem,

DD
f

�
�
�Im fAc(� + i � )

�
�
� f

E
; '

E

S 0;S
= �

�

R

�

R

�
(! � � )2 + � 2 ' (! ) � H

f (d� ) d! = �
�

R
t � (� ) � H

f (d� );

(4.108)
where the measure� H

f is de�ned by � H
f (b) = hf

�
�PH

b

�
� f i for any b 2 B (R), and

t � (� ) =
�

R

�
(! � � )2 + � 2 ' (! ) d! =

�

R

1
� 2 + 1

' (� + �� ) d�:

Note that

jt � (� ) � �' (� )j �
�

R

1
� 2 + 1

j' (� + �� ) � ' (� )j d� �
p

� k' 0kL 2

�

R

p
�

1 + � 2 d�;

where the last bound is obtained by rewriting ' (� + �� ) � ' (� ) as the integral of its deriva-
tive and using a Cauchy-Schwarz inequality. This also shows thatt � is uniformly bounded
as � ! 0+ . Since the measure� H

f is �nite, ( 4.108) leads by dominated convergence to

DD
f

�
�
�Im fAc(� + i � )

�
�
� f

E
; '

E

S 0;S
���!
� ! 0

� �
�

R
' (� ) � H

f (d� );

which shows that Im cAc = � � P H .

4.6.5 Proof of Lemma 4.14

Let us �rst assume that Im bTc � 0. The aim is to prove that Re bTc � 0 on (�1 ; ! 0]. Consider
to this end ' 2 S (R) with Supp(' ) � (�1 ; ! 0] and ' � 0. Then, for any ! � ! 0 and ! 0 � 0,
it holds ' (! � ! 0) = 0 , so that

8! � ! 0; (H' )( ! ) = lim
" ! 0+

�

Rn[� ";" ]

' (! � ! 0)
! 0 d! 0 = lim

" ! 0+

� + 1

"

' (! � ! 0)
! 0 d! 0 � 0:

(4.109)
Let f 2 H . In view of (4.14) and Lemma 4.76,
DD

f
�
�
�Re bTc

�
�
� f

E
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E

H � 1 ;H 1
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DD
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E
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E
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