. [. Bibliography, A. Ahdida, and . Alfonsi, Exact and high-order discretization schemes for Wishart processes and their affine extensions, Ann. Appl. Probab, vol.23, issue.3, pp.1025-1073, 2013.

A. [. Ahdida, E. Alfonsi, and . Palidda, Smile with the gaussian term structure model. preprint, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01098554

]. A. Ada08 and . Adam, Handbook of Asset and Liability Management: From Models to Optimal Return Strategies. The Wiley Finance Series, 2008.

]. A. Alf10 and . Alfonsi, High order discretization schemes for the CIR process: application to affine term structure and Heston models, Math. Comp, vol.79, issue.269, pp.209-237, 2010.

A. [. Avellaneda, A. Levy, and . Parás, Pricing and hedging derivative securities in markets with uncertain volatilities, Applied Mathematical Finance, vol.7, issue.2, pp.73-88, 1995.
DOI : 10.2307/2330793

A. Benabid, H. Bensusan, and N. Karoui, Wishart Stochastic Volatility: Asymptotic Smile and Numerical Framework. 48 pages, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00458014

A. [. Buraschi, F. Cieslak, and . Trojani, Correlation risk and the term structure of interest rates, 2008.

. Bdj-+-00-]-n, P. Baud, D. Demey, G. Jacomy, T. Riboulet et al., Plan epargne logement evaluation des options cachées d'un pel, 2000.

]. H. Ben10 and . Bensussan, Interest rate and longevity risks : dynamic modelling and applications to derivative products and life insurance, 2010.

J. [. Bergomi and . Guyon, Stochastic volatilities orderly smiles, Risk Magazine, 2012.

A. [. Biagini, M. Gnoatto, and . Härtel, Affine HJM Framework on positive matrixes and Long-Term Yield. ArXiv e-prints, 2013.

A. Brace, D. Gatarek, and M. Musiela, The Market Model of Interest Rate Dynamics, Mathematical Finance, vol.7, issue.2, pp.127-155, 1997.
DOI : 10.1111/1467-9965.00028

Z. [. Bauerle and . Li, Optimal Portfolios for Financial Markets with Wishart Volatility, Journal of Applied Probability, vol.50, issue.04, pp.1025-1043
DOI : 10.1137/100803687

F. [. Brigo and . Mercurio, Interest Rate Models -Theory and Practice: With Smile, Inflation and Credit, 2006.
DOI : 10.1007/978-3-662-04553-4

A. [. Brigo and . Pallavicini, Nonlinear consistent valuation of CCP cleared or CSA bilateral trades with initial margins under credit, funding and wrong-way risks, Journal of Financial Engineering, vol.01, issue.01, p.11450001, 2014.
DOI : 10.1142/S2345768614500019

P. [. Buraschi, F. Porchia, and . Trojani, Correlation Risk and Optimal Portfolio Choice, The Journal of Finance, vol.37, issue.1, pp.393-420, 2010.
DOI : 10.1111/j.1540-6261.2009.01533.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. Bru91 and . Bru, Wishart processes, Journal of Theoretical Probability, vol.20, issue.4, pp.725-751, 1991.
DOI : 10.1007/BF01259552

. Bsc-+-99-]-j-p, N. Bouchaud, R. Sagna, N. Cont, M. El-karoui et al., Phenomenology of the interest rate curve, Applied Mathematical Finance, vol.6, issue.3, pp.209-232, 1999.

L. [. Boyd and . Vandenberghe, Convex Optimization, 2003.

R. [. Brace and . Womersley, Exact fit to the swaption volatility matrix using semidefinite programming. Working paper, ICBI Global Derivatives Conference, 2000.

L. [. Balitskaya and . Zolotuhina, On the representation of a density by an Edgeworth series, Biometrika, vol.75, issue.1, pp.185-187, 1988.
DOI : 10.1093/biomet/75.1.185

P. [. Collin-dufresne and . Goldstein, Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility, The Journal of Finance, vol.14, issue.4, pp.1685-1729, 2002.
DOI : 10.1111/1540-6261.00475

[. Collin-dufresne and R. S. Goldstein, Pricing swaptions within an affine framework, The Journal of Derivatives, 2002.
DOI : 10.3905/jod.2002.319187

C. Cuchiero, D. Filipovi´cfilipovi´c, E. Mayerhofer, and J. Teichmann, Affine processes on positive semidefinite matrices, The Annals of Applied Probability, vol.21, issue.2, pp.397-463, 2011.
DOI : 10.1214/10-AAP710

]. O. Che92 and . Cheyette, Multifactor models of the term structure of interest rates. Working paper, 1992.

J. [. Cox, S. A. Ingersoll, and . Ross, A Theory of the Term Structure of Interest Rates, Econometrica, vol.53, issue.2, pp.385-407, 1985.
DOI : 10.2307/1911242

P. Carr and D. Madan, Option valuation using the fast Fourier transform, The Journal of Computational Finance, vol.2, issue.4, 1999.
DOI : 10.21314/JCF.1999.043

]. H. Cra57 and . Cramér, Mathematical Methods of Statistics, 1957.

]. C. Cuc11 and . Cuchiero, Affine and polynomial processes, 2011.

H. [. Chiu, J. Wong, and . Zhao, Commodity derivatives pricing with cointegration and stochastic covariances, European Journal of Operational Research, vol.246, issue.2, p.2015
DOI : 10.1016/j.ejor.2015.05.012

A. Aspremont, F. R. Bach, and L. Ghaoui, Full regularization path for sparse principal component analysis, Proceedings of the 24th International Conference on Machine Learning, ICML '07, pp.177-184, 2007.

S. [. Douady and . Crépey, Lois: credit and liquidity. Risk magazine, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01477998

T. [. Dieci and . Eirola, Positive definiteness in the numerical solution of Riccati differential equations, Numerische Mathematik, vol.67, issue.3, 1994.
DOI : 10.1007/s002110050030

[. Fonseca and M. Grasselli, Riding on the smiles, Quantitative Finance, vol.3, issue.3, pp.1609-1632, 2011.
DOI : 10.1016/0024-3795(81)90086-0

[. Fonseca, M. Grasselli, and F. Ielpo, HEDGING (CO)VARIANCE RISK WITH VARIANCE SWAPS, International Journal of Theoretical and Applied Finance, vol.14, issue.06, pp.899-943, 2011.
DOI : 10.1142/S0219024911006784

[. Fonseca, M. Grasselli, and F. Ielpo, Estimating the wishart affine stochastic correlation model using the empirical characteristic function, Studies in Nonlinear Dynamics & Econometrics, vol.18, issue.3, p.2014

]. J. Dfgt08a, M. Da-fonseca, C. Grasselli, and . Tebaldi, Option pricing when correlations are stochastic: an analytical framework, Review of Derivatives Research, 2008.

J. Fonseca, M. Grasselli, and C. Tebaldi, A multifactor volatility Heston model, Quantitative Finance, vol.2, issue.6, pp.591-604, 2008.
DOI : 10.1093/rfs/6.2.327

P. Demey, A. Frachot, and G. Riboulet, IntroductionàIntroductionà la gestion actif-passif bancaire, Economica, 2003.

D. Duffie, D. Filipovi´cfilipovi´c, and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab, vol.13, issue.3, pp.984-1053, 2003.
DOI : 10.3386/t0281

]. D. Dk96a, R. Duffie, and . Kan, Multi factor term structure models, Philosophical Transactions of the Royal Society of London, Series A, 1996.

]. D. Dk96b, R. Duffie, and . Kan, A yield-factor model of interest rates, Mathematical Finance, vol.6, pp.379-406, 1996.

K. [. Dai and . Singleton, Specification Analysis of Affine Term Structure Models, The Journal of Finance, vol.11, issue.5, pp.1943-1978, 2000.
DOI : 10.1111/0022-1082.00278

]. B. Dup94 and . Dupire, Pricing with a smile, Risk, 1994.

P. [. Karoui and . Durand, Interest rates dynamics and option pricing with the quadratic gaussian model in several economies. working paper, 1998.

M. [. Karoui, S. E. Jeanblancpicqù, and . Shreve, Robustness of the Black and Scholes Formula, Mathematical Finance, vol.8, issue.2, pp.93-126, 1998.
DOI : 10.1111/1467-9965.00047

V. [. Karoui and . Lacoste, Multifactor models of the term structure of interest rates, 1992.

. Eklm-+-91-]-n, C. Karoui, R. Lepage, N. Myneni, R. Roseau et al., The valuation and hedging of contingent claims with markovian interest rates, 1991.

]. D. Fil09 and . Filipovi´cfilipovi´c, Term-structure models. Springer Finance, 2009.

[. Fouque, G. Papanicolaou, K. R. Sircarft11-]-m, A. Fujii, and . Takahashi, Derivatives in financial markets with stochastic volatility Choice of collateral currency The Volatility Surface ( A practitioner's Guide) Wiley Finance, Gat06] J. Gatheral, 2000.

]. A. Gg14a, M. Gnoatto, and . Grasselli, An affine multicurrency model with stochastic volatility and stochastic interest rates, SIAM J. Financial Math, vol.5, issue.1, pp.493-531, 2014.

]. A. Gg14b, M. Gnoatto, and . Grasselli, The explicit Laplace transform for the Wishart process, J. Appl. Probab, vol.51, issue.3, pp.640-656, 2014.

A. [. Gourieroux, R. Monfort, and . Sufana, International money and stock market contingent claims, Journal of International Money and Finance, vol.29, issue.8, pp.1727-1751, 2010.
DOI : 10.1016/j.jimonfin.2010.06.001

A. Gnoatto, The wishart short rate model. Working paper, 2013.

]. C. Gou06 and . Gourieroux, Continuous time wishart process for stochastic risk, Econometric Reviews, vol.25, issue.2-3, pp.177-217, 2006.

H. Geman, J. Rochet, and N. Karoui, Changes of num??raire, changes of probability measure and option pricing, Journal of Applied Probability, vol.5, issue.02, pp.443-458, 1995.
DOI : 10.2307/3003143

R. [. Gourieroux and . Sufana, Wishart Quadratic Term Structure Models, SSRN Electronic Journal, 2003.
DOI : 10.2139/ssrn.757307

R. [. Gourieroux and . Sufana, Derivative pricing with multivariate stochastic volatility : Application to credit risk. Working Paper CREF, pp.4-09, 2007.

C. [. Grasselli and . Tebaldi, SOLVABLE AFFINE TERM STRUCTURE MODELS, Mathematical Finance, vol.275, issue.1, pp.135-153, 2008.
DOI : 10.1111/j.1467-9965.2007.00325.x

R. [. Heath, A. Jarrow, and . Morton, BOND PRICING AND THE TERM STRUCTURE OF INTEREST RATES: A NEW METHODOLOGY FOR CONTINGENT CLAIMS VALUATION, Econometrica, vol.60, issue.1, pp.77-105, 1992.
DOI : 10.1142/9789812819222_0013

D. [. Harrison and . Kreps, Martingales and arbitrage in multiperiod securities markets, Journal of Economic Theory, vol.20, issue.3, pp.381-408, 1979.
DOI : 10.1016/0022-0531(79)90043-7

P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward, Managing smile risk, pp.84-108, 2002.

J. [. Hunt, A. Kennedy, and . Pelsser, Markov-functional interest rate models, Finance and Stochastics, vol.4, issue.4, pp.391-408, 2000.
DOI : 10.1007/PL00013525

S. [. Harrison and . Pliska, Martingales and Stochastic Integrals in the Theory of Continuos Trading, Stochastic Processes and Their Applications, pp.313-316, 1981.

A. [. Hull and . White, Numerical Procedures for Implementing Term Structure Models I, The Journal of Derivatives, vol.2, issue.1, pp.7-16, 1994.
DOI : 10.3905/jod.1994.407902

]. F. Jam97 and . Jamshidian, Libor and swap market models and measures, Finance and Stochastics, vol.1, issue.4, pp.293-330, 1997.

Y. [. Jarrow and . Yildirim, Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model, Journal of Financial and Quantitative Analysis, vol.38, issue.6, pp.337-358, 2003.
DOI : 10.1142/9789812819222_0016

[. Knobloch, Differential inequalities and maximum principles for second order differential equations, Nonlinear Analysis: Theory, Methods & Applications, vol.25, issue.9-10, pp.9-101003, 1995.
DOI : 10.1016/0362-546X(95)00094-C

R. W. Lee, Option pricing by transform methods: extensions, unification and error control, The Journal of Computational Finance, vol.7, issue.3, 2004.
DOI : 10.21314/JCF.2004.121

]. J. Lev59 and . Levin, On the matrix Riccati equation, Proc. Amer, pp.519-524, 1959.

J. [. Litterman and . Scheinkman, Common Factors Affecting Bond Returns, The Journal of Fixed Income, vol.1, issue.1, pp.54-61, 1991.
DOI : 10.3905/jfi.1991.692347

]. M. Mor09 and . Morini, Solving the interest rates puzzle, 2009.

]. M. Mor11 and . Morini, Funding valuation adjustment: a consistent framework including cva, dva, collateral, netting rules and rehypothecation. arXiv, 2011.

L. [. Piterbarg and . Andersen, Interest Rate Modeling, 2010.

D. [. Pallavicini and . Brigo, Interest-Rate Modelling in Collateralized Markets: Multiple Curves, Credit-Liquidity Effects, CCPs, SSRN Electronic Journal, 2013.
DOI : 10.2139/ssrn.2244580

]. V. Pit09 and . Piterbarg, Rates squared, Risk Magazine, 2009.

]. V. Pit10 and . Piterbarg, Funding beyond discounting: collateral agreements and derivatives pricing. Risk magazine, 2010.

T. [. Privault and . Teng, Risk-neutral hedging of interest rate derivatives. Working paper, 2011.

]. W. Rei70 and . Reid, Monotoneity properties of solutions of Hermitian Riccati matrix differential equations, SIAM J. Math. Anal, vol.1, issue.2, pp.195-213, 1970.

]. F. Rou12 and . Roupin, Programmation semidéfinie: introduction et applications en optimisation combinatoire, 2012.

]. T. Ryd97 and . Rydberg, A note on the existence of unique equivalent martingale measures in a markovian setting, Finance and Stochastics, vol.1, issue.3, pp.251-257, 1997.

]. M. Sha86 and . Shayman, Phase portrait of the matrix riccati equation, SIAM J. Control Optim, vol.24, issue.1, pp.1-65, 1986.

A. [. Schrager and . Pelsser, PRICING SWAPTIONS AND COUPON BOND OPTIONS IN AFFINE TERM STRUCTURE MODELS, Mathematical Finance, vol.5, issue.4, pp.673-694, 2006.
DOI : 10.1111/j.1467-9965.2006.00289.x

L. [. Singleton and . Umantsev, PRICING COUPON-BOND OPTIONS AND SWAPTIONS IN AFFINE TERM STRUCTURE MODELS, Mathematical Finance, vol.3, issue.4, pp.427-446, 2002.
DOI : 10.1002/(SICI)1096-9934(199704)17:2<131::AID-FUT1>3.0.CO;2-K

E. [. Trolle and . Schwartz, An empirical analysis of the swaption cube. Working Paper 16549, National Bureau of Economic Research, 2010.