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Dans un contexte où l’environnement est au cœur des préoccupations générales, et alors que les 

ressources de combustibles fossiles diminuent, limiter l’impact de l’humanité sur le climat est l’un 

des défis majeurs du XXIème siècle. Le chauffage et la climatisation des bâtiments sont 

responsables des émissions de CO2 les plus importantes en Europe, et comptent pour près de 40% 

de la consommation énergétique globale. Améliorer l’efficacité énergétique des constructions 

existantes est indispensable afin d’économiser l’énergie de chauffage et de réduire les émissions 

de CO2 atmosphériques pour les prochaines décennies. L’accomplissement de cet objectif passe 

par l’élaboration de solutions d’isolation thermique plus efficaces. De plus, l’utilisation de 

meilleurs matériaux isolants pourrait même permettre l’obtention d’une performance accrue pour 

des matériaux plus fins. Dans les régions où le prix par rapport à la surface habitable est élevé, un 

tel gain d’espace serait économiquement significatif. Parallèlement, de nombreux secteurs 

nécessitent des matériaux super-isolants, tels l’électroménager et l’industrie des transports (ce qui 

inclut le transport d’énergie). Pour l’électroménager, l’isolation des réfrigérateurs et des 

congélateurs joue un rôle important, tandis que l’industrie des transports nécessite une bonne 

isolation pour les containers et les camions réfrigérés. 

En guise d’illustration, nous pouvons citer la réglementation française (RT 2012) qui requiert que 

tout bâtiment neuf possède une résistance thermique R (définie par le rapport entre l’épaisseur de 

la couche isolante et sa conductivité thermique supérieure à 4 m².K.W-1 pour les murs et à 8 

m².K.W-1 pour les combles. Les conductivités thermiques des matériaux couramment utilisés 

comme isolants thermiques, ainsi que les épaisseurs correspondantes permettant d’atteindre une 

résistance thermique de 4 m².K.W-1 sont présentées dans le tableau 1. Un matériau est considéré 

comme superisolant s’il présente une conductivité thermique inférieure à celle de l’air, avec λair = 

0.025 W.m-1.K-1 en conditions ambiantes. Suite aux avancées récentes en sciences des matériaux, 

cette limite est descendue à 0.020 W.m-1.K-1 

Les matériaux superisolants peuvent être divisés en deux catégories: les panneaux d’isolation sous 

vide (PIV), et les super-isolants à pression ambiante (SIPA). Pour ces derniers, leurs propriétés 

d’isolation exceptionnelles sont dues à leur capacité à confiner l’air à l’intérieur de mésopores (ce 

phénomène physique est appelé l’effet Knudsen). 

Table 1: Conductivités thermiques et épaisseurs requises pour obtenir une résistance R de 4 m².K.W-1 pour 

des matériaux isolants communément utilisés par l’industrie du bâtiment. 

Type d’isolation Matériau λ (W.m-1K-1) Epaisseur (cm) 

Isolation classique 

Laine minérale 0.035 14 

Laine de verre 0.040 16 

Polystyrene expansé 0.032 13 

Mousse polyurethane 0.026-0.030 10.4 - 12 

Superisolation 

Aérogels organiques 0.013-0.020 5.2 - 8 

Aerogels de silice 0.013 5.2 

Panneaux d’isolation 

sous vide (PIV) 
0.007 3 

Parmi les matériaux à pression ambiante utilisés pour améliorer la performance énergétique des 

systèmes d’isolation, les aérogels de silice sont les plus connus et les plus développés. Les aérogels 

de silice présentent des densités apparentes relativement faibles (avec des  avoisinant les 0.013 

W.m-1.K-1 en conditions ambiantes). Cependant l’utilisation à grande échelle des aérogels de silice 

est encore limitée à ce jour et ce, pour différentes raisons. Premièrement, les aérogels de silice sont 

des matériaux fragiles et cassants, ayant tendance à libérer des poussières nanostructurées. 
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Deuxièmement, le procédé d’élaboration des aérogels de silice est long et coûteux à la fois  du fait 

du prix élevé des précurseurs de silice et des spécificités du procédé de séchage au CO2 

supercritique. De plus ce procédé d’élaboration n’est pas continu. Une procédure de séchage à 

pression ambiante a été développée à la fin du 20ème siècle grâce à un traitement chimique des gels 

de silice; elle aboutit à des « grains »  de silice de quelques millimètres de diamètre après un simple 

séchage évaporatif. Ce développement a été utilisé pour produire des lits granulaires et des 

« blankets » superisolants (dont la cohésion est assurée par un mat fibreux non tissé) 

commercialisés respectivement par les sociétés Cabot et Aspen Aerogels. Cependant ces matériaux 

posent toujours un problème lié à une émission de poussières très conséquente. 

A ce jour, des aérogels organiques à base de polyuréthane sont en cours de développement 

industriel par BASF (produit Slentite™ de λ = 0.016 W.m-1.K-1) qui devrait inaugurer sa ligne de 

production pilote pour 2015. Cependant la chimie du polyuréthane implique le recours à des 

matières toxiques. Par conséquent, de nouveaux aérogels, non-toxiques, présentant des coûts 

acceptables par le marché, mécaniquement résistants et aux propriétés superisolantes demeurent 

nécessaires. 

Dans ce cadre, les polysaccharides sont des matériaux biosourcés qui semblent être des candidats 

prometteurs pour renforcer ou, à terme, se substituer aux aérogels de silice. Les premiers aérogels 

à base de polysaccharides ont été synthétisés il y a environ 10 ans ; ces matériaux n’existent encore 

qu’à l’échelle laboratoire. La cellulose, l’amidon, les alginates ou la pectine sont désormais connus 

pour former des aérogels après dissolution du polymère dans un solvant approprié suivi d’un 

séchage au CO2 supercritique. Ces matériaux ultraporeux, appelés « bio-aérogels », présentent des 

masses volumiques apparentes de 0.1-0.2 g.cm-3, des surfaces spécifiques - assez élevées - autour 

de 200 - 400 m2.g-1 et sont mécaniquement plus résistants que les aérogels de silice (ils présentent 

un large domaine de déformation plastique jusqu’à 60-80% avant effondrement de la structure 

poreuse). 

A ce jour, très peu d’études des propriétés thermiques des bio-aérogels sont disponibles, et seuls 

trois exemples de bio-aérogels superisolants thermiques ont été rapportés: l’aéropectine obtenue 

par dissolution et coagulation puis séchage au CO2 supercritique à partir d’une solution aqueuse 

de pectine, dont la conductvité thermique atteint 0.016-0.020 W.m-1K-1 en conditions ambiantes 

(Rudaz et al., 2014); un aérogel de cellulose à base de nanofibres carboxylées en surface, avec une 

conductivité de 0.018 W.m-1K-1 (Kobayashi et al, 2014) ; et un aérogel à base d’amidon atteignant 

0.024 W.m-1K-1 (Glenn et al., 1999). Pour les aérogels à base de cellulose préparés par dissolution-

coagulation, la distribution de taille de pores s’étale de quelques dizaines de nm à plusieurs 

microns, ce qui nuit à leur niveau de conductivité. En ce qui concerne les aérogels à base de 

nanofibres de cellulose, la préparation des nanocelluloses est en elle-même un procédé énergivore, 

car elle résulte d’une suspension diluée de nanofibrilles dans l’eau, cette dernière ne pouvant être 

éliminée aisément. 

L’une des voies potentielles pour l’élaboration de matériaux superisolants à partir de bio-aérogels 

est le « remplissage » des plus gros pores d’une matrice polysaccharide par une phase de silice 

nanostructurée, phase plus isolante que l’air qui s’y trouve. La contribution de la phase gazeuse à 

la conductivité thermique devrait dans ce cas être considérablement réduite grâce à la présence de 

silice superisolante au sein des pores du réseau de polysaccharide. Le réseau cellulosique pourrait  

alors agir comme renfort mécanique pour la phase de silice générée in situ. Il sera parallèlement 

nécessaire, afin d’assurer des propriétés superisolantes, de limiter l’augmentation de densité de 

tels matériaux composites de par l’adjonction significative de matière. 
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L’objectif de la thèse est d’élaborer des aérogels composites polysaccharide-silice dotés de 

propriétés thermiques superisolantes, puis d’établir les relations structure-propriétés permettant 

d’accroître la connaissance de ce nouveau type de matériaux. Pour cela, nous étudierons deux 

polysaccharides connus comme précurseurs de bio-aérogels : la cellulose et la pectine. Deux 

procédés visant à obtenir ces composites ont été étudiés dans le cadre de ce travail : 

- Le mélange direct, dans un solvant commun, du polysaccharide et d’un précurseur de silice, suivi 

de la gélification simultanée des deux phases. Les aérogels composites ont alors été obtenus par 

séchage au CO2 supercritique. Ce procédé est appelé méthode « one-pot ».  

- L’imprégnation par un sol de silice d’une matrice polysaccharide poreuse imprégnée de solvant ; 

le gel de slice est alors formé in situ dans la porosité de la matrice par synthèse sol-gel en catalyse 

basique. Les composites ont été ensuite séchés au CO2 supercritique. Ce procédé ayant donné les 

résultats plus prometteurs, une hydrophobisation des phases organique et inorganique a été réalisée 

afin de diminuer la sensibilité des aérogels à l’humidité ambiante. Ces aérogels hydrophobisés ont 

également permis d’obtenir des xérogels composites par séchage évaporatif à pression 

atmosphérique. 

Ces travaux ont été réalisés dans le cadre du projet européen AEROCOINs (Aerogel-Based 

Composite/Hybrid Nanomaterials for Cost-Effective Building Super-Insulation Systems). Ce 

projet a réuni neuf partenaires industriels et académiques, avec pour objectif la réalisation de 

matériaux superisolants monolithiques à partir d’aérogels de silice renforcés synthétisés au 

moindre coût possible. 

Les partenaires impliqués dans le projet AEROCOINs et leurs principales tâches respectives sont 

brièvement présentés ainsi : 

Coordination du projet: 

Fundación Tecnalia research & innovation (TECNALIA), Bilbao, Espagne 

Synthèse des matériaux: 

- Centres CEMEF et PERSEE de MINES ParisTech, Sophia Antipolis, France 

- Swiss federal laboratories for materials testing and research (EMPA), Zurich, Suisse 

- Fundación Tecnalia research & innovation (TECNALIA), Bilbao, Espagne 

Séchage supercritique: 

- SEPAREX, SA, Nancy, France  

Fournisseur de précurseurs de silice, polyethoxydisiloxane (PEDS): 

- PCAS, Longjumeau, France 

Caracterisation des matériaux, étude des propriétés thermo-mécaniques, analyse de cycle 

de vie et modélisation du séchage : 

- Technical University of Lòdz (TUL), Varsovie, Pologne 

- Technical Research Centre of Finland (VTT), Helsinki, Finlande 

- Bavarian Center for Applied Energy Research (ZAE), Würzburg, Allemagne 

- ACCIONA infraestructuras, Madrid, Espagne. 
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Le présent manuscrit se divise en six chapitres comme suit. 

Chapitre I: Etat de l’art 

Ce chapitre décrit tout d’abord les propriétés et les procédés de mise en forme des deux 

polysaccharides étudiés dans nos travaux : la cellulose et la pectine. Le procédé de synthèse sol-

gel utilisé pour l’élaboration des aérogels est présenté, ainsi que le procédé général d’élaboration 

des bio-aérogels. Les propriétés de ces matériaux, en particulier en termes de conductivité 

thermique sont exposées. Les trois techniques utilisées pour le séchage des gels, à savoir le séchage 

supercritique, la lyophilisation et le séchage à pression ambiante sont décrites en détails. Quelques 

exemples de techniques d’hydrophobisation connues pour les aérogels de silice sont présentés. 

Enfin, l’état de l’art concernant les composites et les hybrides à base de cellulose et de silice est 

établi. 

Chapitre II: Matériel et méthodes 

Le second chapitre est dédié à la description des matériaux et procédures expérimentales utilisés 

au cours des travaux. Les détails de la synthèse des bio-aérogels et de leurs composites élaborés 

avec la silice sont présentés, ainsi que les techniques de séchage utilisés. 

La caractérisation des solutions, gels et aérogels a été réalisée en utilisant une vaste gamme de 

techniques complémentaires. Le comportement en solution des mélanges cellulose-silicate de 

sodium a été étudié par mesures en rhéologie dynamique. La densité apparente et la morphologie 

des matériaux ont été examinées respectivement par pycnométrie à poudre et microscopie 

électronique à balayage (MEB). La composition chimique des composites a été analysée par 

spectroscopie infrarouge ainsi que par analyse élémentaire et spectroscopie de diffraction 

d’énergie (EDS). L’adsorption d’azote à 77 K a été utilisée pour l’évaluation de la surface 

spécifique des matériaux poreux grâce à la méthode de Brunauer, Emmet and Teller (BET). Les 

propriétés mécaniques des bio-aérogels et de leurs composites avec la silice ont été étudiées par 

compression uniaxiale. Enfin, les deux techniques de caractérisation de la conductivité thermique 

utilisées sont présentées. 

Chapitre III: Aérogels composites cellulose-silice via une synthèse “one-pot”. 

Dans ce chapitre nous étudions la préparation d’aérogels composites cellulose-silice à partir du 

mélange direct en solution de cellulose et d’un précurseur de silice, ici le silicate de sodium 

(Na2SiO3). Pour assurer un mélange homogène des solutions initiales, un solvant commun aux 

deux systèmes a dû être utilisé. La cellulose n’étant pas solubles dans les solvants classiques, la 

solution la plus simple est d’utiliser une solution de cellulose dissoute en milieu alcalin (eau-NaOH 

8%wt) et de mélanger cette solution avec une solution alcaline de silicate de sodium. Le mélange 

ainsi obtenu se solidifie rapidement à température ambiante ; la coagulation a été réalisée dans un 

bain acide (HCl). Le comportement rhéologique des mélanges de cellulose et de silicate de sodium 

a été étudié par mesures en rhéologie dynamique pour différentes proportions de cellulose/silicate 

de sodium et en fonction de la température. Le fort effet déstabilisant du silicate de sodium sur les 

solutions de cellulose-NaOH a ainsi été mis en évidence. 

Le séchage au CO2 supercritique des gels a donné les aérogels composites. Les matériaux obtenus 

avaient des densités comprises entre 0,1 et 0,25 g.cm-3. La microscopie électronique à balayage a 

montré que les pores de l’aérocellulose étaient remplis par des particules micrométriques de silice. 

La diminution significative de la surface spécifique observée en présence de ces particules 
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démontre leur non-porosité. La conductivité thermique des composites a augmenté de 0.035-0.040 

W.m-1.K-1 pour l’aérocellulose pure à 0,045-0,050 W.m-1.K-1 pour les composites, car les 

particules de silice ont augmenté la contribution du squelette solide du composite à la conductivité 

thermique. Enfin, le module d’Young a augmenté de 20MPa pour l’aérocellulose pure à 30-40MPa 

pour les composites, montrant que les particules de silice avaient un effet de renfort mécanique sur 

le composite. Ce procédé « one-pot » s’est donc montré inefficace pour l’élaboration de composites 

nanostructurés, car les deux matériaux ne peuvent être mélangés que dans une gamme restreinte 

de concentrations, et ces conditions ne permettent pas la formation d’une structure d’aérogel de 

silice. 

Chapitre IV: Aérogels composites cellulose-silice obtenus par de imprégnation 

de matrices cellulosiques poreuses par un sol de polyethoxydisiloxane. 

Le quatrième chapitre traite de la préparation de composites cellulose-silice par imprégnation d’un 

réseau tridimensionnel de cellulose coagulée (alcogel) avec un sol de polyethoxydisiloxane 

(PEDS). L’objectif ciblé est l’obtention d’un  composite constitué d’un réseau interpénétré de 

cellulose et de silice, suivie de l’étude de ses propriétés thermomécaniques. 

Des aérogels légers, monolithiques et mécaniquement résistants peuvent être obtenus par 

imprégnation de cellulose coagulée par une solution de PEDS, suivie par une immersion dans une 

solution de catalyseur NH4OH dans un mélange eau/éthanol, une étape d’échange de solvant puis 

un séchage supercritique. L’imprégnation peut être réalisée soit par simple diffusion moléculaire, 

soit par un procédé dit « par flux forcé »  où le PEDS est forcé de circuler dans la porosité de la 

cellulose par l’application d’une différence de pression. Le but de l’imprégnation forcée est une 

réduction significative du temps nécessaire à l’imprégnation, de 7 heures pour la diffusion 

moléculaire à une vingtaine de minutes pour l’imprégnation par flux forcé. Une analyse par 

spectroscopie à diffraction d’énergie des rayons X et au MEB ont permis d’observer la structure 

et la distribution de la phase silice formée au sein de la matrice cellulosique. 

L’analyse par BET a confirmé la formation de silice nanostructurée à l’intérieur de la matrice 

cellulosique: la surface spécifique a augmenté de ≈ 300 m2.g-1 pour l’aérocellulose de référence à 

750-800 m2.g-1 pour les composites. La conductivité thermique en conditions ambiantes a diminué 

de 0,033 W.m-1.K-1 pour l’aerocellulose à 0,027 W.m-1.K-1 pour les aérogels composites grâce aux 

propriétés superisolantes de l’aérogel de silice, démontrant ainsi la validité de la méthode 

d’imprégnation pour obtenir des composites nanostructurés aux performances thermiques accrues. 

Les aérogels composites ont été renforcés mécaniquement par rapport aux aérogels de silice de 

référence : le module d’Young a augmenté d’un facteur 3-4 et la déformation à la rupture était de 

60% pour les composites contre 4-10% pour la référence. 

Chapitre V: Aérogels et xerogels composites cellulose-silice hydrophobes. 

A cause de l’importante sensibilité à l’humidité des phases de cellulose et de silice en l’absence 

de traitement hydrophobant, les aérogels composites cellulose-silice perdent leurs propriétés 

thermo-mécaniques avec le temps, ce qui limite fortement leur application à la superisolation pour 

l’industrie du bâtiment. Ce chapitre est donc focalisé sur l’obtention de composites cellulose-silice 

entièrement hydrophobés. Une cellulose chimiquement modifiée, la tritylcellulose, a été 

synthétisée comme base pour des alcogels cellulosiques, qui ont été ensuite imprégnés par le PEDS 

selon la méthode décrite au Chapitre IV. La phase silice est hydrophobisée par un traitement du 

composite à l’hexamethyldisilazane (HMDZ) et les échantillons sont séchés au CO2 supercritique. 
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Les aérogels obtenus sont résistants à l’humidité, la reprise hydrique massique a été réduite de 

10% pour un composite non hydrophobe à 1-3% et des angles de contact avec l’eau de 133° ont 

été obtenus. Les composites sont finement structurés, présentant des surfaces spécifiques de 600-

800 m2.g-1. La présence de la phase silice dans la porosité de la tritylcellulose a renforcé le matériau 

mais l’a rendu plus cassant. Cependant les propriétés mécaniques des composites étaient bien 

meilleures que celles des aérogels de silice. Des aérogels superisolants ont été obtenus, leur 

conductivité thermique étant de 0.021-0.022 W.m-1.K-1. 

Un développement à long terme pour les composites cellulose-silice entièrement hydrophobés est 

l’obtention de matériaux superisolants séchés à pression ambiante. Nous avons donc étudié les 

propriétés de ces xérogels composites tritylcellulose-silice, et comparé leurs propriétés à celles des 

aérogels composites.  

La densité apparente des xérogels à base de tritylcellulose et de composites tritylcellulose-silice 

est notablement supérieure à celle des aérogels correspondants du fait d’une forte contraction au 

séchage évaporatif. En revanche l’effet cohésif de la phase cellulosique au sein du composite 

permet d’obtenir des xérogels monolithiques, bien que présentant des fissures macroscopiques. 

Cette densification importante indique que les xérogels de tritylcellulose ne sont pas encore 

adaptés à des applications pour l’isolation thermique. L’hydrophobicité des xérogels est 

maintenue, comme le montrent des angles de contact avec l’eau de 120-148°. 

Chapitre VI: Aeropectine et aerogels composites aeropectine-silice. 

Dans le sixième et dernier chapitre, un autre polysaccharide, la pectine, est étudié comme renfort 

mécanique pour les aérogels de silice. Premièrement, les propriétés des aérogels basés sur la 

pectine réticulée par les ions calcium sont étudiées. La pectine est un déchet peu coûteux provenant 

de l’industrie agro-alimentaire ; elle peut former des gels après dissolution dans l’eau par 

réticulation avec les ions divalents come les ions calcium (Ca2+). Le séchage au CO2 supercritique 

permet d’obtenir des matériaux nanostructurés et ultra-légers. L’influence de la concentration de 

pectine, du pH de gélification et de la densité de l’aéropectine sur sa conductivité thermique ont 

été étudiés. 

Des composites pectine-silice ont été préparés en utilisant la stratégie déjà développée pour es 

composites cellulose-silice. Les aérogels composites ont été étudiés en termes de morphologie, 

surface spécifique, et densité apparente. L’hydrophobisation de surface des composites a été 

réalisée à l’aide de trois agents d’hydrophobisation bien connus pour la silice.  

Un rapport molaire d’environ 0.22 entre les ions calcium et les groupements acide carboxyliques, 

et un pH de 6-8 a donné les aérogels avec la plus faible densité. Pour l’aéropectine une dépendance 

linéaire de la conductivité thermique avec la densité a été observée, avec des valeurs de 

conductivité de 0.013 à 0.022 W.m-1.K-1 pour des densités de 0.03-0.10 g.cm-3. La morphologie 

des aérogels composites observée au MEB s’apparente à un fin réseau de nanofibres de pectine 

couvertes par l’aérogel de silice. La surface spécifique des aérogels a augmenté de 200-300 m2.g-

1 pour la pectine pure à 800-850 m2.g-1 pour les composites. La conductivité des composites 

pectine-silice est restée dans le domaine 0.015-0.022 W.m-1.K-1. Les aéropectines sont capables 

de se déformer à 80% sans casser. L’hydrophobisation de la phase silice des composites a donné 

des angles de contact de 135° et a permis de réduire la reprise massique en eau à 5-6% au lieu de 

20% pour l’aéropectine pure. 
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Conclusions et perspectives: 

Au cours de cette thèse nous avons étudié des matériaux composites à base de polysaccharides et 

de silice et obtenu des propriétés prometteuses pour l’isolation thermique. Le mélange en solution 

de cellulose et de silice ne permet pas d’élaborer des composites nanostructurés. En revanche il 

est possible d’obtenir un réseau interpénétré de cellulose et de silice par imprégnation d’une 

matrice cellulosique par un précurseur de silice, suivie de la synthèse in-situ de l’aérogel de silice 

dans la porosité de la cellulose. Imprégner la cellulose en forçant la circulation du précurseur de 

silice dans la matrice cellulosique via un gradient de pression permet de diminuer 

considérablement le temps d’imprégnation.  

Les aérogels composites ainsi obtenus ont une conductivité thermique réduite comparé à 

l’aérocellulose pure ; le composite est également bien plus résistant en compression que l’aérogel 

de silice. L’utilisation d’une cellulose hydrophobisée comme matrice d’imprégnation a permis 

d’obtenir des aérogels entièrement hydrophobes et donc capables de résister aux conditions 

d’humidité auxquelles les matériaux d’isolation sont soumis en usage. Enfin, la pectine, nouveau 

polysaccharide utilisé pour la production de bio-aérogels, présente des propriétés thermiques 

superisolantes remarquables, que ce soit seule ou en composite avec la silice. 

Ces matériaux extrêmement poreux peuvent en outre être employés pour d’autres domaines que 

l’industrie du bâtiment, telle l’isolation pour l’industrie du transport et de l’électroménager ; leur 

grande porosité peut également convenir à des applications pour la libération contrôlée de 

médicaments ou la récupération de déchets organiques. 
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In a context of growing environmental awareness and decreasing fossil fuel resources, lowering 

the impact of mankind on Earth climate is among the greatest challenges of the XXIst century. 

Heating and cooling of buildings is responsible for the largest CO2 emissions in Europe, and 

represents 40% of the total energy consumption. Improving the energy efficiency of existing 

buildings is thus required to save energy and lower CO2 emissions in the coming decades. To 

achieve this, more efficient thermal insulation solutions are required. Moreover, the use of 

better insulating materials could allow a better insulation performance with thinner materials. 

Moreover, in the areas where the price per habitable surface is high, the space gain would be 

economically significant. In the same way, another important set of sectors requiring thermal 

super-insulating materials is appliances and transport industries (including transport of energy). 

In appliances, the insulation of refrigerators and freezers plays a major role, whereas in the 

transport industry, the insulation concerns reefer containers and refrigerated trucks. 

As an example, the French thermal regulation (RT 2012) requires for all new buildings to 

possess a thermal resistance R (defined as the ratio between insulation panel thickness and its 

thermal conductivity ) above 4 m².K.W-1 for walls and above 8 m².K.W-1 for attics. The 

thermal conductivities of common insulation materials and the thickness required for reaching 

a thermal resistance of 4 m².K.W-1 is presented in table I.2. A material was historically 

considered superinsulating if its thermal conductivity is lower that the conductivity of air, with 

λair = 0.025 W.m-1.K-1 in ambient conditions. Nowadays, because of growing improvements in 

materials science, this limit has been decreased within the main players to 0.020 W.m-1.K-1.  

Superinsulating materials can be divided in two categories: vacuum insulation panels (VIP), 

and ambient pressure insulating materials. For the latter, their exceptional insulation properties 

come from their ability to reduce drastically the gaseous contribution to the thermal transfer by 

confining air inside small pores (physical mechanisms known as Knudsen effect). 

Table 1: Typical thermal conductivities and thickness required to have R = 4 m².K.W-1 for common 

insulation materials used in the building industry 

Type of insulation Material λ (W.m-1K-1) Thickness (cm) 

Conventional 

insulation 

Mineral wool 0.035 14 

Glass Wool 0.040 16 

Expanded 

polystyrene 
0.032 13 

Polyurethane foams 0.026-0.030 10.4 - 12 

Superinsulation 

Organic aerogels 0.013-0.020 5.2 - 8 

Silica aerogels 0.013 5.2 

Vacuum insulation 

panels (VIP) 
0.007 3 

Among ambient pressure materials used to improve the energy performance of insulation 

systems, silica aerogels are the most developed. Silica aerogels show rather low density (< 0.15 

g.cm-3) and superinsulating thermal properties ( as low as 0.013 W.m-1.K-1 in ambient 

conditions). However, the larger-scale usage of silica aerogels is limited to this day, for several 

reasons. First, silica aerogels are very fragile, brittle materials, and have a tendency to release 

“dust”. Second, the preparation process of silica aerogels is long and costly because of the high 

price of silica precursors and supercritical CO2 drying process; in addition it is not a continuous 

process. A drying procedure at ambient pressure was developed at the beginning of the 21st 

century resulting in silica granules of few millimetres in diameter thanks to chemical treatments. 

This improvement was used for production of granular beds and so-called “blankets” (in which 
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cohesion is given by fibrous structures) commercialised respectively by Cabot and Aspen 

Aerogels. However, the problem of intense “dusting” remains. Besides organic (polyurethane) 

aerogels are under industrial development with strong advancements made by BASF 

(Slentite™ with thermal conductivity around 0.016 W.m-1.K-1, pilot line promised to be started 

in 2015). However, polyurethane chemistry is harsh. Thus there is still a need in non-toxic, 

cost-effective and mechanically robust aerogels with thermal super-insulating properties, i.e. 

an extremely low thermal conductivity in room conditions. 

Polysaccharides are bio-sourced polymers which appear to be suitable candidates either to 

reinforce or even replace silica aerogels. The first aerogels based on polysaccharides were 

synthesised around 10 years ago and still remain at the laboratory scale. Cellulose, starch, 

alginate or pectin have been reported to form aerogels after polymer dissolution in an 

appropriate solvent, followed by coagulation in a non-solvent and drying with supercritical (sc) 

CO2. These ultraporous materials, called “bio-aerogels”, have typical bulk densities of 0.1-0.2 

g.cm-3, quite high specific surface areas around 200 - 400 m2.g-1 and are mechanically stronger 

than silica-based aerogels (with a large plastic deformation region up to 60-80% strain before 

pore collapse).  

Until now, there are very few studies of the thermal conductivity of bio-aerogels and only three 

examples of thermal super-insulating bio-aerogels are known: one is Aeropectin obtained via 

pectin dissolution-coagulation-drying with sc CO2 route and presenting a thermal conductivity 

between 0.016 and 0.020 W.m-1K-1 in room conditions (Rudaz et al., 2014); the second is 

surface carboxylated nanofibrillated cellulose aerogel with the lowest thermal conductivity of 

0.018 W.m-1.K-1 (Kobayashi et al., 2014) and finally, the lowest value of the thermal 

conductivity of starch aerogels (prepared, as Aeropectin, via dissolution-coagulation-drying 

with sc CO2 route) were reported to be just below that of air, 0.024 W.m-1K-1 (Glenn et al., 

1999). For cellulose-based aerogels prepared via dissolution-coagulation route the relatively 

large pore size distribution, from tens of nm to a few microns, is detrimental to their thermal 

insulation properties. As for nanofibrillated cellulose based aerogels, the preparation of 

nanocellulose itself is an energy consuming process because it results in a dilute suspension of 

nanofibrils dispersed in water the elimination of which is not straightforward and very costly. 

One of the potential ways to make thermal superinsulating materials with bio-based aerogels 

could be by filling of the large pore in polysaccharide matrix by a nanostructured 

superinsulating silica phase, which should result in lower thermal conductivity compared to the 

pristine bio-aerogels. Theoretically, it is then expected that the conductivity of the gaseous 

phase, which represents about 60% of the total conductivity, would be significantly decreased 

due to the presence superinsulating silica aerogel matrix in the pores of the bio-aerogel network. 

Moreover, the fibrous polysaccharide network will act as reinforcement for the aerogel 

structure. Of course, to obtain at the end a superinsulating material, the density increase of the 

so-prepared composite must be controlled.  

The goal of this thesis is to prepare polysaccharide-silica composite aerogels with thermal 

superinsulating properties and correlate their morphology and properties to improve the 

knowledge in this new domain. For this purpose, we focus the study on two polysaccharides 

that are known as starting materials for bio-aerogels: cellulose and pectin. Two different 

methods to obtain such composites were investigated in this study: 
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- Direct mixing, in a common solvent, of dissolved polysaccharide and silica precursor, 

followed by the simultaneous gelation of each phase. Composite aerogels were then obtained 

by supercritical CO2 drying. This process was called “one-pot” method. 

- Impregnation of a porous wet polysaccharide matrix by a silica sol; the silica gel is formed by 

sol-gel process inside the pores of the polysaccharide network. The wet composites were then 

dried with supercritical CO2. Because this process gave the most promising results, 

hydrophobisation of both phases, organic and inorganic, was performed to decrease the 

sensitivity of composite aerogels to humidity uptake. Finally, the first composite xerogels were 

prepared on this basis via ambient drying. 

The work was performed in the frame of the European project AEROCOINs (Aerogel-Based 

Composite/Hybrid Nanomaterials for Cost-Effective Building Super-Insulation Systems). This 

project united 9 partners from the academy and industry, with the objective of making 

monolithic superinsulating materials from mechanically reinforced silica aerogels at the lowest 

possible cost. 

The partners involved in AEROCOINS and an overview of their main respective associated 

tasks within the project were as follows: 

Project coordination: 

Fundación Tecnalia research & innovation (TECNALIA), Bilbao, Spain 

Synthesis of new materials: 

- CEMEF and PERSEE centers from MINES ParisTech, Sophia Antipolis, France 

- Swiss federal laboratories for materials testing and research (EMPA), Zurich, 

Switzerland 

- Fundación Tecnalia research & innovation (TECNALIA), Bilbao, Spain 

Supercritical drying: 

- SEPAREX, SA, Nancy, France  

Manufacturer and provider of polyethoxydisiloxane (PEDS) silica precursors: 

- PCAS, Longjumeau, France 

Materials characterization, assessment of thermo-mechanical properties, life cycle 

analysis (LCA) and modelling of drying: 

- Technical University of Lòdz (TUL), Warsaw, Poland 

- Technical Research Centre of Finland (VTT), Helsinki, Finland 

- Bavarian Center for Applied Energy Research (ZAE), Würzburg, Germany 

- ACCIONA infraestructuras, Madrid, Spain. 
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The present manuscript is divided in six chapters: 

Chapter I: State of the art 

This chapter describes first the properties and processing of the two polysaccharides used in 

this work: cellulose and pectin. The sol-gel synthesis process used to synthesize silica aerogels 

is presented, as well as the general synthesis processes for bio-aerogels. Their properties, with 

the focus on thermal insulation, are discussed. The three techniques used to obtained dry porous 

materials from the initial “wet” gels, i.e. supercritical drying, freeze-drying and ambient 

pressure drying are also described in details. We also present a few examples of the common 

techniques used to make hydrophobic silica aerogels. Finally, the state of the art in the domain 

of cellulose-silica composite and hybrid materials is reviewed. 

Chapter II: Materials and methods 

The second chapter is dedicated to the description of the materials and experimental procedures 

used in the work. The synthesis of bio-aerogels and polysaccharide-silica composites is 

detailed, as well as the drying methods used.  

The characterization of solutions, gels and aerogels was performed using a wide array of 

complementary techniques. The solution behavior of cellulose-silica mixtures is studied by 

dynamic rheology measurements. For the morphological characterization of the materials, 

powder pycnometry and scanning electron microscopy (SEM) are used. The chemical nature 

of the composites is surveyed using FTIR spectroscopy as well as elemental analysis and energy 

diffractive spectroscopy (EDS). Nitrogen adsorption at 77 K was used to evaluate the specific 

surface area of the materials by the Brunauer, Emmet and Teller (BET) method. The mechanical 

properties of the bio-aerogels and their composites with silica are studied by uniaxial 

compression measurements. Finally, the two techniques used to evaluate thermal conductivity 

of aerogel samples are reviewed. 

Chapter III: Cellulose-silica composite aerogels through “one-pot” synthesis. 

In this chapter, we study the preparation of cellulose-silica composites from direct mixing of 

cellulose and silica precursor solutions. To ensure homogeneous mixing of the initial solutions, 

a common solvent for both systems and thus of the corresponding silica sol has to be identified. 

Because cellulose is not soluble in classical solvents, the only “easy” option was to use cellulose 

dissolved in alkaline media (water-8%wt NaOH) and mix it with an alkaline sodium silicate 

solution. The resulting mixture quickly solidifies at ambient temperature, it was then coagulated 

in an acid bath. The behavior of the cellulose-sodium silicate mixture is studied by dynamic 

rheological measurements for different cellulose/silicate proportions and as a function of 

temperature. 

Supercritical CO2 drying of the wet gels gave the composite aerogels. The materials are 

characterized in terms of bulk density, specific surface area and their morphology is examined 

by scanning electron microscopy (SEM). The Young modulus of the composites is evaluated 

by sound velocity measurements. Finally, the thermal conductivity of one-pot cellulose-silica 

composites was studied by hot-wire method. The morphology and thermal properties of freeze-

dried one-pot samples is also characterized.  

 



 

22 

 

Chapter IV: Cellulose-silica composite aerogels from impregnation of 

cellulose porous matrices with polyethoxydisiloxane sol. 

The fourth chapter deals with the preparation of cellulose-silica composite by the impregnation 

of a cellulose alcogel (coagulated cellulose tridimensional network) with a silica sol. 

Polyethoxydisiloxane (PEDS) in ethanol is used as the silica precursor. The goal of this work 

was to obtain a composite made of an interpenetrated network of nanostructured cellulose and 

silica and study its thermo-mechanical properties. 

Strong, light and monolithic crack-free cellulose-silica composite aerogels are prepared by 

impregnation of wet coagulated cellulose with PEDS solution, followed by immersion of the 

sample in a water/ethanol NH4OH catalyst solution, solvent exchange, and supercritical drying. 

The impregnation can be performed either by molecular diffusion or by a forced flow process 

where the silica sol is forced to penetrate inside the cellulose matrix due to a pressure difference. 

The goal of forced flow impregnation method is to significantly reduce processing times as 

compared to impregnation driven by simple molecular diffusion. Energy diffractive 

spectroscopy and SEM analysis are performed to compare silica spatial distribution in both 

series of samples. Bulk density, porosity, specific surface area, thermal conductivity and 

mechanical properties of cellulose-silica composites are evaluated and compared to those of the 

corresponding “pure” aerogels. 

Chapter V: Hydrophobic cellulose-silica composite aerogels and xerogels 

Due to high sensitivity to humidity, cellulose-silica composites are prone to losing their 

properties (notably porosity and thermal conductivity) with time, which can be a hindrance to 

their applications for the superinsulation of buildings. This chapter is thus focused on the 

preparation of fully hydrophobic cellulose-silica composite aerogels. We synthesize chemically 

modified cellulose, tritylcellulose, as the basis of cellulosic alcogels, which were impregnated 

with PEDS with the same methods as described in chapter IV. The silica phase is hydrophobized 

by treatment of the composite with hexamethyldisilazane (HMDZ) and the samples are dried 

with supercritical CO2. Additionally to the characterization of materials in terms of bulk 

density, specific surface area, morphology and thermo-mechanical properties, the water contact 

angle and the evolution of mass and volume of samples placed in extreme humidity conditions 

are studied to assess their hydrophobicity level. 

A long-term development prospect of fully hydrophobized cellulose-silica composites is the 

preparation of ambient-dried superinsulating materials. Thus we investigate the properties of 

tritylcellulose-silica composite xerogels, i.e. gels dried at ambient pressure, and compare their 

properties to those of the corresponding aerogels. 

Chapter VI: Aeropectin and aeropectin-silica composite aerogels. 

In the sixth and final chapter, another polysaccharide, pectin, is studied as a reinforcing material 

for silica aerogels. First, the properties of aerogels based on cross-linked pectin were 

investigated. Pectin, an inexpensive waste from food industry can form gels in aqueous solution 

by reticulation by divalent ions such as Ca2+. Further coagulation and drying with supercritical 

CO2 gives nanostructured ultralight materials. The influence of pectin concentration, gelation 

pH and of the amount of calcium ions on aeropectin density and thermal conductivity is studied. 
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Pectin-silica composites are prepared using the same strategy as developed for cellulose-silica 

route. The composite aerogel are studied in terms of morphology, specific surface area, and 

bulk density. The surface hydrophobization of the silica phase of the composites was studied 

using three well-known silica hydrophobizing agents to allow the composites to handle ambient 

humidity without losing their thermo-mechanical properties. 

Conclusion and prospects 

Finally, we draw conclusions about the superinsulating materials studied in the thesis. We 

discuss the possibilities of further works and the array of potential applications for 

nanostructured interpenetrated polysaccharide-silica hybrid aerogels. 
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Introduction 

This chapter will focus on the state of the art on bio-aerogels based on two polysaccharides 

used in this work, cellulose and pectin, and also on main characteristics of silica aerogels and 

cellulose-silica hybrid and composite materials. 

The first part focuses on cellulose, the most abundant polysaccharide on Earth. After reviewing 

the general properties of cellulose, we will focus on the different techniques used to dissolve 

and process cellulose. The water-NaOH and ionic liquids, “green” solvents for cellulose, will 

be examined in details. The two major existing industrial processes for cellulose forming, 

Viscose and Lyocell, will also be presented. 

The second part is centered on pectin. Pectin is a polysaccharide, constituent of plant cell walls. 

It is extracted from various plants, particularly fruits peel and seeds. The major interest of 

pectins is its gelling properties, used in applications targeting the food industry: we will present 

two mechanisms of pectin gelation, acid-based and calcium binding. 

Our third part will be focused on aerogels. These extremely light materials have a large array 

of very interesting properties, such as high porosity and low thermal conductivity in ambient 

conditions. After a review of the main modes of preparation of aerogels, we will give some 

details about the most notable aerogel materials: silica aerogels. Two main families of silica 

aerogel precursors will be presented: sodium silicate and silica alcoxyde derivatives (called 

alcoxysilanes). Obtaining hydrophobic materials was an important step for the industrial-scale 

applications of silica aerogels, thus we will discuss the main routes reported for the 

hydrophobization of SiO2 aerogels.  

A new class of aerogels is polysaccharide-based aerogels, also known as bio-aerogels. We will 

show two very promising examples of this brand new class of materials, aerogels from cellulose 

and pectin. 

Finally, cellulose-silica hybrid and composite materials will be reviewed in the fourth part. 

Although most literature on cellulose-silica hybrids aims at covering cellulose fibers with silica 

particles or films, some cellulose-silica composite aerogels were obtained in recent years. 
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Introduction 

Ce chapitre dresse l’état de l’art sur les bio-aerogels en se basant sur les deux polysaccharides 

utilisés dans cette thèse : la cellulose et la pectine, ainsi que sur les caractéristiques principales 

des aérogels de silice et des composites ou hybrides à base de cellulose et de silice. 

La première partie se concentrera sur la cellulose, le polysaccharide naturel le plus abondant 

sur Terre. Après avoir passé en revue les propriétés générales de la cellulose, nous nous 

intéresserons aux différentes techniques utilisées pour la dissolution et la mise en forme de cette 

dernière. En particulier, les solvants eau-NaOH et liquides ioniques, solvants « verts » de la 

cellulose, seront étudiés en détails. Nous présenterons également les deux procédés Viscose et 

Lyocell, procédés majeurs de mise en forme industrielle de la cellulose. 

La deuxième partie sera centrée sur la pectine. La pectine est un polysaccharide, constituant des 

parois des cellules végétales. Elle est extraite de différentes plantes, en particulier des écorces 

et pépins de fruits. Le principal intérêt de la pectine réside dans ses propriétés gélifiantes, 

utilisées dans de nombreuses applications par l’indutrie agro-alimentaire. Deux mécanismes de 

gélification de la pectine, l’un en milieu acide et le second via la réticulation par des ions 

calcium, seront présentés. 

Notre troisième partie sera consacrée aux aérogels. Ces matériaux extrêmement légers 

possèdent une large gamme de propriétés très intéressantes, parmi lesquelles une grande 

porosité et une extrêmement faible conductivité thermique dès la pression ambiante. Après 

avoir examiné les différentes méthodes conduisant à la préparation des aérogels, nous 

donnerons plus de détails au sujet des aérogels les plus connus : les aérogels de silice. Deux 

types de précurseurs siliciques seront présentés : le silicate de sodium et les dérivés d’alcoxydes 

de silice (appelés alcoxysilanes). L’obtention de matériaux hydrophobes a été l’un des 

principaux challenges pour la production à échelle industrielle des aérogels de silice, nous 

discuterons donc des différentes voies connues pour l’hydrophobisation de ces aérogels. 

Très récemment, un nouveau type d’aérogel est apparu. Il est constitué par les aérogels à base 

de polysaccharides, également appelés bio-aérogels. Deux exemples de cette toute nouvelle 

classe de matériaux seront présentés, l’Aerocellulose et l’Aéropectine. 

Enfin, en quatrième partie nous nous intéresserons aux hybrides ou composites à base de 

cellulose et de silice. Bien que l’essentiel de la littérature scientifique soit focalisée sur la 

fonctionnalisation des fibres de cellulose par des particules ou des films de silice, plusieurs 

articles récents mentionnent des aérogels composites ou hybrides à base de cellulose et de silice.  
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1. Cellulose: structure and properties 

  Structure of cellulose 

 Origin 

Cellulose is the most abundant natural polymer on Earth, and accounts for more than 50% of 

biomass, with more than 140 billion tons produced per year through photosynthesis (Klemm et 

al., 2005). It is a key part of plant cell walls and can be extracted from various sources, such as 

cotton, wood, or flax. Cellulose content in plant fibres varies from 10% to 99% depending on 

the source (Table I.1). The degree of polymerization, (DP), also depends on the cellulose origin. 

Some bacteria such as Acetobacter xylinum are also able to produce cellulose (so-called 

bacterial cellulose) of very high degree of polymerization of several thousands (Hestrin and 

Schramm, 1954). 

Table I.1: Average cellulose content in different cellulose sources (Klemm, 1998 ; Krassig, 1993) 

Cellulose source Wt% cellulose 

Corn 15-20 

Wood pulp 40-50 

Cotton 95-99 

Straw, flax, hemp 70-80 

Bacterial cellulose 99 

 

 Chemical structure and organization 

The morphology of cellulose fibers is presented on figure I.1. Macrofibrils, of a length of 1-2 

mm and 60-360µm diameter are the main structural unit of the cell walls (Lerouxel et al., 2006). 

They are constituted of agglomerated cellulose microfibrils, 2-20 µm in diameter depending on 

the cellulose source. Each microfibril is made of elementary cellulose fibrils containing six 

glucose chains linked together by hydrogen bonds. Elementary fibrils dimensions are around 

1-10µm in length and 10 nm in diameter (figure I.1) (Klemm et al, 1998). 

 

Figure I.1: Schematic view of the structure of cellulose fibers 

Polysaccharides are long chains of saccharide (sugar) molecules. Their general formula is 

(Cx(H2O)y)n where n is the degree of polymerization. 
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Cellulose is a linear polysaccharide consisting of anhydroglucopyranose units (AGU) linked 

through β-(1-4) glycosidic bonds. Two AGU molecules make cellobiose, the repeating unit of 

cellulose (figure I.2). The molar mass of an AGU unit is 162 g.mol-1. The degree of 

polymerization (DP) of cellulose, calculated from the number of anhydroglucopyranose units 

in the chain can vary from 100 to several trousands depending on the cellulose source. 

 

Figure I.2: Chemical structure of cellulose chains (Klemm et al, 1998) 

Glucose rings adopt a “chair” conformation, where hydroxyl groups on carbons C2, C3 and 

CH2OH group on C6 are in axial position, while hydrogen atoms are in equatorial position. This 

configuration favors the formation of inter- and intra- molecular hydrogen bonds between 

cellulose chains (Nishiyama, 2002). 

Cellulose adopts a semi-crystalline structure. Four main polymorphs have been discovered and 

studied: cellulose I, II, III and IV (O’Sullivan, 1997). Celulose I is the native form of cellulose, 

and two coexisting crystalline structures were identified by 13C NMR (Atalla, 1984). Cellulose 

Iα is triclinic and contains one cellulose chain per crystalline lattice while cellulose Iβ is 

monoclinic and has two chains per lattice. The proportion between the two depends on the 

cellulose source (Sugiyama, 1991). Cellulose II is a more stable form obtained through a 

treatment in alkaline media (called mercerization) or by cellulose dissolution followed by 

precipitation (aka regeneration) in a non-solvent (Sarko, 1974). The crystal lattice is monoclinic 

with two antiparallel chains. 

 

Figure I.3: Molecular chains arrangements in (a) cellulose Iβ and (b) cellulose II (Zugenmaier, 2001, 

reprinted with permission from Elsevier) 

An intramolecular hydrogen bond forms between the OH on C6 on one chain and the oxygen 

atom on the C3 of another (fig. I.3). Intermolecular hydrogen bonds for cellulose I (see fig I.3 

a) are formed between –OH of C3 and the hydrogen on C5, and another between –OH of C6 and 
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–OH of C2. These interactions give cellulose I a structure in layers, holding together through 

Van der Waals interactions (Zugenmaier, 2001). 

In cellulose II, hydrogen bond structure is modified because of the change in chains orientation. 

The position of the –OH group on C6 is now reversed as compared to cellulose I, that is gauche 

to the oxygen on C5 and trans to the oxygen on C4 . Thus there are less intramolecular H-bonds, 

as the interaction between –OH of C6 and –OH of C2 is now formed between two neighboring 

chains instead of being intramolecular (figure I.4). The result is stronger bonds between 

molecular layers, and thus a greater stability of cellulose II as compared to cellulose I (Lagan, 

Nishiyama and Chanzy, 1999). 

 

Figure I.4: Hydrogen bonding structure of (a) cellulose I and (b) cellulose II (reproduced from O’Sullivan 

1997, with permission from Springer) 

Cellulose III is obtained by alkaline treatment of cellulose I and II (giving polymorphs IIII and 

IIIII respectively) in liquid ammonia or other amines such as ethylenediamine (Sarko, 

Southwick and Hayashi, 1976). Cellulose IV can be obtained by a heat treatment of cellulose 

III (Gardiner and Sarko, 1985). 

 Dissolution and processing of cellulose 

 Solvents for cellulose dissolution 

Cellulose cannot melt, since it degrades before reaching its melting point (Stamm, 1956). 

Cellulose processing is challenging: the strong hydrogen bonds between chains give great 

stability to its solid form, rendering its dissolution uneasy in most common solvents. For 

instance, although the numerous hydroxyl functions make cellulose hydrophilic, it cannot be 

dissolved in water. Water interacts with cellulose by making the fibers “swell” through 

hydrogen bonds formed between water molecules and hydroxyl groups (Froix, 1975). There 

are, however, a handful of solvents able to break hydrogen bonds between chains and dissolve 

cellulose.  

Solutions of lithium chloride in N,N Dimetylacetamide have been widely used to dissolve 

cellulose in an organic media, in order to perform chemical modifications (Dawsey and Mc 

Cormick, 1990). Cellulose treatment with concentrated alkaline solutions followed by 

derivatisation (cellulose xanthate) is known as a way of processing cellulose fibers since 1893 

(viscose process). Cellulose has been shown to be soluble in NaOH-water solutions within a 

narrow range of temperatures and NaOH concentrations (Sobue, Kiessig and Hess, 1939). 

Hydrated N,N methylmorpholine oxide is the basic solvent for another industrial process, called 

Lyocell (Fink et al., 2001). Finally, a new category of cellulose solvent has attracted interest 
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over the last two decades: ionic liquids (Swaltowski, 2002). They are less toxic and flammable 

than most usual cellulose solvents, and allow dissolving cellulose in a wide range of 

concentrations (Gericke et al 2009; Sescousse et al., 2010). The most relevant solvents or 

categories of solvents will be presented in details in the following sections. 

 Water/ sodium hydroxide 

Cellulose dissolution in water/NaOH was studied since the 1930s. Sobue (Sobue, Kiessig and 

Hess, 1939) established the complete phase diagram of the cellulose-water-NaOH system 

(figure I.5). This work showed that complete dissolution of cellulose was possible in a limited 

range of temperatures (-10°C to -5°C) and NaOH concentrations (7-10% in weight). Cellulose 

solubility decreases when increasing the chain length, and cellulose of very high molecular 

weight cannot be dissolved anymore (Davidson, 1936). 

 

Figure 1.5: Phase diagram of the water/NaOH/cellulose system (Sobue 1939) with dissolution region 

shown in red 

Dissolution of cellulose in aqueous NaOH was extensively studied since 80s. A group of 

Japanese researchers elaborated a method to treat native cellulose pulp with water vapor at high 

pressure and temperature to ease its dissolution in water-NaOH (Kamide and Okajima, 1987). 

They determined the main mechanisms involved through CP/MAS 13C NMR, infrared 

spectroscopy and X-ray diffraction (Kamide et al. 1987; Yamashiki et al., 1990; Kamide et al., 

1992). The weakening of the O3-H--O5 and of O2-H--O6 intramolecular hydrogen bonds of 

cellulose was identified as the key factor for cellulose dissolution in the alkali solution. Swelling 

of cellulose (by vapor treatment or direct mixing with water) is a way to weaken the H-bonds. 

X-ray diffraction and 13C NMR showed that the disappearance of these hydrogen bonds 

partially destroyed the crystalline structure, creating new amorphous domains suitable for 

dissolution by sodium hydroxide. 

Solubility of cellulose in water-NaOH varies greatly depending on the cellulose source, 

molecular weight, and the presence or not of lignin or hemicellulose. Isogai and Atalla dissolved 

cellulose from different sources and compositions in water/NaOH (Isogai and Atalla, 1998). 

Their dissolution process consisted in mixing cellulose powder or fibers with an 8-9%wt NaOH 

solution, freezing the system at -20°C, then thawing it at room temperature, followed by the 

addition of water to dilute NaOH to 5%wt. Final cellulose concentration was 2%wt. They 
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showed that while microcrystalline cellulose of low degree of polymerization was well soluble 

in these concentrations, higher molar mass cellulose such as cotton or kraft pulp were only 

partially dissolved. However, regenerated cellulose from other solvent systems, in the 

crystalline forms II and III, has better solubility. The presence of lignin along with cellulose 

decreases solubility, but hemicelluloses are of little influence. 

Cellulose-NaOH solutions are essentially constituted of three parts: (1) free water molecules, 

(2) sodium hydroxide hydrates made of a core of H2O molecules bound to NaOH and a shell of 

amorphous water, and (3) NaOH hydrates bound to cellulose molecules (Yamashiki et al., 1988; 

Roy et al. 2001; Egal, Budtova and Navard, 2007). It was shown that at least 4 NaOH per 

anhydroglucose unit (AGU) are needed to dissolve cellulose. The dissolution of cellulose in 

water-NaOH does not change the amount of free water in the solution. Cellulose-water-NaOH 

solutions are thermodynamically instable. Rheological studies shown that micro-phase 

separation of cellulose occurs with time and temperature increase, leading to the formation of 

gels (Roy, Budtova and Navard, 2003). Time of gelation decreased when increasing cellulose 

concentration. The instability of cellulose-NaOH solution is problematic for processing, as the 

solutions cannot be stored for a too long time. The presence of other solutes along cellulose, 

such as lignin, can have a further destabilizing effect (Sescousse, Smacchia and Budtova, 2010). 

Several additives have been studied in order to stabilize cellulose-NaOH solutions, notably urea 

and thiourea (Zhang et al. 2002; Cai et al., 2004; Zhou et al, 2006; Lu et al., 2011), and zinc 

oxide (Yang et al. 2011). These compounds were able to form hydrates with free water 

molecules, thus reducing the free water-cellulose interactions that lead to micro-phase 

separation and thus to cellulose gelation. Although these additives allowed an easier solvation 

of cellulose, the cellulose solubility limit was the same as for standard NaOH-cellulose 

solutions. Moreover, gelation was delayed by the action of the additives, but never suppressed. 

For example, time dependence of gelation for cellulose-NaOH-ZnO solutions follows a power 

law, but the addition of ZnO does not change significantly the scaling exponent, because the 

gelation mechanism of cellulose is not modified (Liu, Budtova and Navard, 2011). Stabilized 

cellulose-NaOH solutions were easier to use as the basis for regenerated cellulose objects such 

as membranes and fibers. 

 Viscose process 

While direct dissolution of cellulose in water-NaOH is still mostly limited to lab-scale 

applications, modification of cellulose in alkali media is the basis of the major industrial process 

for cellulose processing: the viscose process, patented in 1893 (figure I.6). 
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Figure I.6: Overall scheme of the Viscose and Carbacell processes 

The first step is called mercerization: cellulose is swelled in concentrated NaOH (18-20%wt) 

to obtain cellulose in the alkaline form. A treatment with carbon disulfide forms cellulose 

xanthogenate, soluble in the alkali solution. Pure cellulose can then be “regenerated” from the 

highly viscous solution using an aqueous salt/acid bath. Different materials can be obtained 

depending on the application: spinning for fibers (Rayon fibers) or casting to obtain films. This 

process is still the major industrial source of man-made cellulose films and fibers, the latter 

with a production superior to 2.2 million tons per year (Klemm et al., 2005). However, this 

process is energy consuming and releases H2S and CS2, very polluting gases. Cost-effective 

and less polluting procedures are now privileged when installing new cellulose processing units. 

The Carbacell process is an alternative using urea as substituent in replacement of CS2, to form 

the alkali-soluble cellulose carbamate in xylene. After dissolution in concentrated NaOH the 

cellulose carbamate is spun and regenerated in an acid bath; then the substituent is eliminated 

by immersing the fibers in an alkali bath at high temperatures. The main advantage of this 

process is the stability of cellulose carbamate solutions, which can be stored for over one year 

without significant loss of product quality (Klemm 1998). 

 NMMO/ Lyocell process 

An industrial alternative to the viscose process is called Lyocell process, developed by the 

Austrian company Lenzing (Fink et al., 2001). The basis for this process is the direct dissolution 

of cellulose in N-methyl morpholine oxide (NMMO) monohydrate between 80 and 120°C 

(figure I.7), which is possible without any cellulose functionalization. NMMO has the 

advantage of low toxicity, biodegradability and easy recycling during process. The Lyocell 

procedure is as follows: 

(1) Cellulose dissolution in NMMO monohydrate. 

(2) Spinning of the highly viscous cellulose solution into a precipitation bath. 

(3) Coagulation of the cellulose fibers in the precipitation bath. 

(4) Washing, drying and post-treatment of cellulose fibers. 

(5) Recycling of NMMO from regeneration bath and washing residues. 
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Figure I.7: Chemical structure of N-methyl morpholine-N oxyde 

The dissolution of cellulose in tertiary amines has been first studied in 1939 (Graenacher & 

Sallmann, 1939). The preparation of regenerated objects from cellulose coagulated from 

cellulose-NMMO solutions was extensively studied by Chanzy (Chanzy et al., 1980; Chanzy 

et al., 1982). Due to the strong polarity of the N-O bond, NMMO is highly hydrophilic and 

forms strong hydrogen bonds. It is able to break cellulose hydrogen bonds and forms new H-

bonds binding with cellulose and the solvent (Harmon et al., 1992). The presence of water in 

the system is essential to dissolve cellulose; however complete cellulose dissolution is only 

possible between 13%wt and 17%wt water content. Too low water ratio requires very high 

temperatures for dissolution, while when water content is higher than 17%wt, cellulose is 

swollen but not dissolved; at a water content over 35%wt there is no more specific interactions 

between cellulose and the solvent (Cussinat and Navard, 2006). A water rate of 13.3%wt has 

been identified as the optimal value for cellulose dissolution. 

It is well known that side reactions occur in the cellulose-water-NMMO ternary system 

(Rosenau et al., 2001). Decomposition of NMMO generates several harmful effects for the 

Lyocell process, such as unnecessary losses of solvent, release of toxic or explosive compounds, 

unwanted coloration of cellulose, or even its degradation. 

Lyocell fibers can be formed from a broad range of different cellulose sources. They display 

high strength and stability; however they have a tendency to fibrillate easily, due to a high 

crystallization ratio and the high orientation of the cellulose chains in the non-crystalline 

regions (Lenz, 1992). It is possible to modulate Lyocell fibers properties (notably strength and 

elasticity) and to limit side-effects of chemical degradation of NMMO through the use of 

various additives, depending on the targeted application (Chanzy et al. 1990). 

 Ionic liquids 

Ionic liquids are organic salts with a melting point lower than 100°C, therefore liquid at ambient 

temperature. Most of them that are dissolving cellulose are quaternary ammonium compounds 

(figure 1.8). Their properties are extremely interesting for the dissolution of cellulose: high 

polarity, non-flammability, very high chemical and thermal stability (up to 400°C) and low 

vapor pressure. There is a large variety of ionic liquids, and their properties can be finely tuned 

by changing the nature of ammonium substituents, or the counter-anions. 
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Figure I.8: Chemical structure of a few ionic liquids commonly used to dissolve cellulose: (a) 1-ethyl-3-

methylimidazolium acetate (EMIMAc); (b) 1-butyl-3-methylimidazolium chloride (BMIMCl) (c) 1-ethyl-

3-methylimidazolium chloride (EMIMCl). 

The cellulose dissolution capacity in liquid ammonium salts was first reported by Graenacher 

(Graenacher, 1934) but at that time the dissolution could only take place at temperatures 

superior to 100°C and the solvent system was not well known. It was not until 2002 that the 

potential usage of a variety of ionic liquids to dissolve cellulose was studied for various 

imidazolium based compounds such as BMIMCl, where cellulose could be dissolved at 

concentrations up to 25%wt (Swaltowski, 2002; El Seoud, 2007). 

Solvation mechanism, while not perfectly understood as of today, was investigated by several 

NMR techniques (1H, 13C, 35/37Cl) (Remsing et al., 2006; Zhang et al., 2005; Feng and Chen 

2008). Non-hydrated anions can act as electron donors, forming strong hydrogen bonds with 

the hydrogen atoms on cellulose hydroxyl groups, disrupting the interactions between glucose 

units. The ammonium cations provide hydrogen atoms acting as electron acceptors, forming 

new H-bonds with the oxygen atoms of cellulose hydroxyl groups (figure 1.9). In the case of 

EMIMAc the 1-ethyl-3-methylimidazolium acetate cation appears to form H-bonds 

preferentially on oxygen atoms with less steric hindrance (Zhang et al., 2010). 

 

Figure I.9: Mechanism suggested by (Zhang et al., 2010) for cellulose dissolution in EMIMAc. Reproduced 

with permission from the Royal Society of Chemistry. 

The understanding of the rheological behavior of cellulose/ionic liquids systems is extremely 

important for their use in cellulose processing and/or chemical derivatization. The properties of 

solutions of cellulose in BIMMCl, EMIMAc (Gericke et al 2009; Sescousse et al., 2010) and 

AMIMCl (Kuang et al., 2008) were thoroughly investigated in the dilute and semi-dilute 

regimes. Solution viscosity predictably increases with cellulose molecular mass and 

concentration. For cellulose-BIMMCl and cellulose-EMIMAc, a Newtonian behavior was 

observed over at least two decades of shear rates. In the case of AMIMCl-cellulose solution, a 

shear-thinning behavior was reported. It was observed that the intrinsic viscosity of cellulose-

IL solutions decreases with increasing temperature, showing a decrease of the thermodynamic 

quality of the solvent (therefore a potential decrease in solubility). The very high viscosity of 

ionic liquid systems compared to more traditional solvents can be a hindrance for cellulose 

processing at high concentrations. The use of organic co-solvents, for example DMSO, is a 

possibility to lower the system viscosity and limit the overall costs (Le, Rudaz and Budtova, 

2014) 

(a) (b) (c) 
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The use of ionic liquids provides new opportunities for cellulose forming. Regenerated 

cellulose objects from ionic liquid solutions such as fibers (Kosan et al. 2008), membranes and 

films (Cao et al., 2010) or porous materials (Sescousse, Gavillon, & Budtova, 2011; Tsioptsias 

et al., 2008) were studied in recent years. Ionic liquids also proved themselves to be an 

interesting media for various cellulose chemical modifications, such as etherification, 

esterification or silylation (Kölher, Liebert and Heinze 2008; Heinze et al., 2008; Gericke, 

Fardim and Heinze, 2012). 

When using ionic liquids as cellulose solvents, several drawbacks have to be kept in mind. First, 

the purity of ionic liquids is a concern: even small amounts of impurities can hinder the physical 

and chemical properties of ionic liquids (Seddon, Stark and Torres, 2000). The presence of 

impurities can make the recycling of ionic liquids more difficult (Keil, Kick and König, 2012). 

Commercial EMIMAc in particular, has a purity of 90-95%. The purification techniques have 

improved over the past years, allowing obtaining ionic liquids with purities over 98-99%. The 

often high hydrophilicity of ionic liquids means they tend to absorb moisture from the air in 

high quantities. The presence of water may play an important role on various IL properties, 

although rheological measurements shown that cellulose dissolution at low concentrations was 

still possible at a water content up to 15% in EMIMAc (Le, Sescousse, and Budtova, 2011). 

Secondly, side reactions can occur with ionic liquids when dissolving cellulose or proceeding 

to chemical modifications. For example, acetylation of cellulose by EMIMAc may happen, 

generating unwanted by-products (Ebner, 2008; Karatzos, 2011). 

Finally, ionic liquids are costly materials, and this is probably the main obstacle to the 

democratization of their usage, particularly at industrial scale where the new IL/cellulose 

systems face competition from the well-established Viscose or even Lyocell processes. 

2. Pectin: structure and properties 

 General properties of pectins 

 Origin and molecular structure 

Pectins are found in most plants. They are a primary constituent of lamellae and primary plant 

cell walls, where they bring rigidity and cohesion between cells. They are found associated by 

physical or chemical bonds with other polysaccharides such as cellulose and hemicelluloses. 

Depending on the age of plants, pectins are found in two forms, protopectin, insoluble in water 

because it is linked to other cell components, and water-soluble pectic acid. Protopectin is 

gradually transformed into pectin by the action of enzymes such as pectinase and pectinesterase 

(Tilly, 2010). This ripening process diminishes the cohesion of cell walls as the lamellae break, 

and induces a softening of the fruit. 

The pectin molecule is made of linear polymers of D-galacturonic acid linked by 1,4 glycosidic 

bonds (fig. I.10). The chain has a spiral configuration with a period of 3. Along the galacturonic 

acid chain several substituents are present: carboxylic acid functions are partially esterified by 

methanol. The percentage of methyl esterified groups in the pectin chain is called degree of 

methylation (DM) or degree of esterification (DE).  
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Figure I.10: Molecular structure of pectin 

Pectin with DE > 50% are called high methylated (HM) pectins, while pectins with DE < 50% 

are called low methylated (LM) pectins. This factor has a great influence on pectin properties, 

notably its ability to form gels. The galacturonic acid function can also be amidated during the 

industrial processing of pectins. Pectin chains are also ramified by short lateral chains made of 

other polysaccharides (arabinanes, xylanes) attached to the C2 or C3 of the main chain. 

Deviations in the chain axis, also called “pectic elbows”, are caused by inclusions of (r)-L 

rhamnose. These flexible zones play a role to help the formation of pectin gels (Sila et al., 

2009). All commercially available pectins are extremely hydrophilic and readily dissolve in 

water. 

 Extraction 

The extraction of pectin is performed from waste from fruit juice industry. Apple pomace and 

citrus peel are the main sources due to their abundance and rich protopectin content. The source 

material is heated several hours in acidic conditions (pH is 1.5 to 3.5) to hydrolyze protopectin 

into pectic acid. The insoluble phase is filtered out, and pure pectin is precipitated with 

isopropanol. This fibrous precipitate is washed, pressed and grinded into a fine powder. The 

control of temperature, pH, and duration of heating allow tuning the degree of esterification of 

pectins. Extraction yields high molar mass, HM pectins with DE between 55 and 75%. To 

obtain LM pectins, de-esterification is done in alkaline or acidic conditions. Amidation of LM 

pectins can be done by alkaline treatment in an ammoniacal media (May, 1990). 

 Gelation of pectins 

 Gelation of high methylated pectins in acidic conditions 

One of the most interesting property of pectin is its ability to form gels. Its main applications 

in the food industry take advantage of these properties, by using pectins as gelling agents or to 

increase viscosity. Two gelation mechanisms are distinguished: gelation through a combination 

of hydrogen bonds and hydrophobic interactions in acidic conditions (figure I.11), and cross-

linking via electrostatic interactions with divalent ions such as Ca2+ (see section 2.2.2). 
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Figure I.11: Gelling mechanism of HM pectins in acidic conditions (adapted from (Tilly, 2010)). 

In the first case, the gelation can be favored by the addition of sugars. Sugars act as dehydration 

agents, favoring the hydrogen bonding between chains, and stabilize junction zones by 

improving hydrophobic interactions (Oakenfull and Scott, 1984). Gelation of HM pectins is 

only possible when pH is lower than 3.5, when the carboxylic acid functions are protonated 

which diminishes electrostatic repulsions between chains. A lower degree of methylation 

increases the gelation time as well as the temperature required to form a gel. 

 Gelation of pectins with Ca2+ binding 

The use of divalent cations to link LM pectin chains is the best known way to form pectin gels, 

and the most used in the food industry. The main mechanism of gelation involves electrostatic 

bonding of carboxylic moieties by calcium ions. The coordination mechanism is believed to be 

similar to that of alginate, called “egg-box” model (Grant et al., 1972) (figure I.12). In this 

model one calcium ion is participating to 9 coordination links between pectin molecules, 

involving carboxylic and hydroxyl functions. This structure can only exist in regions of the 

molecule containing only galacturonic monomers, no side chains or pectic elbows, and no 

esterified functions. The bonds are considered stable when there are at least seven consecutive 

galacturonic acid monomers (Powell et al, 1982). The egg-box model, while convenient, may 

not be a perfect description of pectin gelation mechanism: Braccini and Perez (Braccini and 

Pérez, 2001) simulated several dimers of polygalacturonic acid linked by calcium ions; they 

established that the calcium gelation occurred in two steps: dimerization through electrostatic 

interaction with calcium followed by chain aggregation with aging. The gelation of LM pectins 

also involves inter and intramolecular hydrogen bonding as well as hydrophobic interactions 

between methyl groups (Walkinshaw and Arnott, 1981). 

 

Figure I.12: Gelling mechanism of LM pectins in the presence of calcium ions (adapted from (Tilly, 

2010)). 
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The calcium based gelation is generally faster when the DE is lower, because lower DE means 

a larger amount of free carboxyl groups. A lower DE will actually reduce the required quantity 

of calcium required for gelation, as the higher number of free carboxyls increases the 

probability of calcium binding. However, it is possible to gel pectins with higher DE by the 

action of calcium (Tibbits et al., 1998); in plant cell walls, HM pectins are coordinated by 

calcium ions. For the calcium binding to be effective, free carboxylic acid groups must be in 

the deprotonated form; this is achieved at relatively high pH values. If the pH is too high, the 

gels tend to be very rigid and brittle; the optimal pH value is in neutral conditions (6-8) (Capel 

et al., 2006; Garnier et al., 1992; Fraeye et al., 2010). 

3. Silica and bio-based aerogels: properties and applications for 

thermal superinsulation 

 Generalities on drying methods 

A “gel” is defined as a solid-liquid biphasic system, thermodynamically stable, made of a 

double interpenetrated tridimensional network, one solid and the other liquid. Aerogels can be 

considered as gels whose liquid phase was replaced by a gaseous phase, generally air, without 

too significant degradation (Phalippou and Kocon, 2005). The term “aerogel” was first 

employed by Kistler (Kistler, 1932) who reported the first synthesis of porous materials from 

gels dried without destruction of their initial porous structure, using supercritical (sc) drying. 

Aerogels typically show very high porosity (> 90%) and rather low density. The gel network 

can be formed either by polymerization of a precursor via sol-gel synthesis, or by physical 

interactions (such as electrostatic or hydrogen bonds between polymer chains or particles). 

These two types of gels are defined as “chemical gels” and “physical gels”, respectively. There 

are currently three main drying routes to obtain dry materials: evaporative drying, freeze drying 

and supercritical drying (Pajonk, 1989). 

During evaporative drying, the evaporating liquid forms liquid-vapour meniscus inside the gel 

porosity (figure I.13). This generates capillary forces, that can be described by the Young-

Laplace equation (eq.I.1) The capillary pressure can be high enough to collapse the pores 

(because of their very small characteristic dimension), provoking cracks, densification and 

ultimate destruction of the network structure: the resulting materials may not be monolithic, are 

with high densities and a low porosity. For silica gels a method was developed to considerably 

reduce the capillary tension through chemical hydrophobization; this allowed obtaining 

materials with similar properties as for supercritically dried aerogels (so-called ambient dried 

silica aerogels). However, this chemical grafting does not allow to avoid fragmentation in most 

cases. This will be discussed in more details in section 3.1.4. In general, materials obtained 

through evaporative drying at ambient pressure can be called xerogels. 
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Figure I.13: Liquid-gas interface within the gel pores during evaporative drying (adapted from Phalippou 

and Kocon, 2005). 

𝑃𝑐 =
2𝛾𝑐𝑜𝑠𝜃

𝑟𝑝
 

with Pc the capillary pressure inside the pores (Pa) 

 γ the surface tension between the evaporating liquid and gas phase (N.m-1). 

θ the contact angle formed between the solid and the liquid (or meniscus angle in °) 

rp the pore radius (m).  

Freeze-drying consists of freezing the liquid inside the gel pores and then eliminating it by 

sublimation under vacuum (Pajonk et al., 1990; Scherer, 1993). As these conditions will 

provoke direct transition of the solvent from solid to gaseous state, liquid-gas meniscus is less 

likely to happen. However, the freezing of the solvent by itself can damage the pore structure 

as the rapid formation of solvent crystals generates strong pressure on the pore walls. 

Sublimation may not occur perfectly and liquid-gas menisci may form in non-ideal conditions. 

Generally, the fragile materials such as silica gels are cracked and/or powdered during this 

process. Because of the formation of large pores during the solvent freezing, freeze-dried gels 

usually have specific surface area lower than that of supercritically dried gels. Monolithic 

materials can be formed from more resistant polymeric or organic-inorganic composite gels. 

Freeze-dried materials are generally called cryogels. 

Supercritical drying remains the method of choice for the preparation of aerogels. Nowadays 

supercritical CO2 is the solvent most usually employed due to its very low critical temperature 

31°C and its moderate critical pressure 73.7 bars (figure I.14). 

 

Figure I.14: Phase diagram of a pure compound, adapted from (Phalippou and Kocon, 2005) 

(I.1) 
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Beyond its critical point, a fluid has intermediate properties, in-between those of a liquid and 

those of a gas. Starting from liquid CO2 at low pressure, it is compressed and heated beyond its 

critical point; then it makes a solution with the liquid phase in the gel pores. To avoid occurrence 

of capillary tension, it is necessary to operate above the critical point of this “binary” mixture 

schematically composed of gelation solvent and CO2. Depressurization of the sc phase (mostly 

CO2 after sc extraction is complete) is performed until it is gaseous at ambient pressure. It must 

be isothermal (to avoid liquid/gaseous CO2 menisci occurrence because of recondensation) and 

slow (to avoid fracturation and fragmentation because of very low permeability of the solid 

matrix). The gas is then extracted and replaced by air through simple molecular diffusion. In 

this way the liquid phase inside the pores is “extracted” without crossing the liquid-vapor curve 

(Perrut, 1999; Bisson et al. 2003). The use of supercritial fluids allows forming monolithic and 

crack-free aerogels presenting limitated densification during drying step. 

 

Figure I.15: Schematic view of the preparation of an aerogel. 

Aerogels can be created from a large variety of organic and inorganic precursors. Inorganic 

aerogels are mostly synthesized from metal alcoxydes, whose general formula is M(OR)x(OH)y 

with M a metallic or semi-metallic element (e.g. Si, Al, Ti, Zr) and x + y = 4. The case of silica 

gels from silica alcoxydes will be detailed in the following section. Organic aerogels can be 

made from several polymers, such as polyurethanes (Biesmans et al., 1998; Rigacci et al., 

2004), resorcinol-formaldehyde (Pekkala et al., 1990; Mulik and Sotiriou-Leventis, 2011), or 

polysaccharides (see section 3.2). 

Aerogels possess a large range of current and potential applications (Schmidt and Schwertfeger, 

2008; Aergeter et al, 2011). A few examples are thermal and acoustic insulation, highly porous 

catalyst support, depollution through selective absorptions of organic fluids, fuel storage, 

controlled release of drugs or even space-dust collecting. 

 Silica-based aerogels 

 Sol-gel process and SiO2 aerogel synthesis from alcoxysilanes 

Preparation of silica aerogels starts from an alcoxysilane such as tetraethoxysilane (TEOS) in 

an organic solvent (very often the solvent is ethanol) (Rigacci and Pierre, 2008). The first step 

is the hydrolysis of the silane, which can be realized in acidic or basic conditions. Then 

polycondensation of the hydrolysed species occurs, following two mechanisms simultaneously: 

condensation of two silanols (Si-OH) groups is called oxolation, while condensation of a silanol 

on a siloxane (Si-OR) is called alcoxolation. The final texture of the gel can be varied a lot, 

depending on the synthesis parameters, such as the nature of the precursors, pH, reagent 

concentrations (Wagh et al. 1999; Pierre and Pajonk, 2002, Rao and Kalesh, 2003), temperature 

(Colby, Osaka and Mackenzie, 1986), water-to-alcoxyde molar ratio or presence of other 
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chemical entities (Sinkò, 2010). Gradually a SiO2 tridimensional porous network is formed 

(Brinker and Scherer, 2013) (figure I.16).  

 

Figure I.16: Reaction mechanisms of the different steps of the sol-gel synthesis of silica from TEOS. (1a) 

Hydrolysis in acid conditions; (1b) Hydrolysis in basic conditions; (2a) Condensation of two silanols 

groups (oxolation); (2b) condensation of a silanol group with a siloxane group (alcoxolation). 

Tilgner and Fisher determined the influence of catalysis type on gel texture (Tilgner and Fisher, 

1995). With acid catalysis, hydrolysis is favoured on chain end groups, more accessible and 

thus easier to protonate. In this case the hydrolysis rate is faster than the condensation one. The 

result is linear entangled “polymeric” chains. Generally, these gels have lower mean pore sizes 

than with basic catalysis. Basic catalysis is a nucleophilic attack by OH- that favours the 

hydrolysis of  silicium atoms with the highest partial charge. The condensation rate is then 

higher than the hydrolysis rate. Highly branched chains are obtained, and the gel is made of 

colloidal nanoparticle clusters. Porosity is mainly due to spacing between particles, and mean 

pore sizes are generally higher than those obtained with acid catalysis. Finally, Tilgner and 

Fisher investigated fluoride-catalysed formation of silica gels. The mechanism is analogous to 

basic catalysis, with fluoride anions (F-) playing the role of nucleophile. The final structure of 

the gel is similar to that obtained in acid conditions with some characteristics coming from basic 

route. 

Two-step processes can be used for a finer control of the gel nanostructuration. Acid-catalyzed 

pre-hydrolysis is immediately followed by basic (or fluoride) catalyzed polycondensation 

(Boonstra and Bernards, 1988). This process was used to synthesize the lightest silica aerogel 

ever made to date, with a bulk density of 0.003 g.cm-3 (Kocon, Despetis and Phalippou, 1998). 

The influence of water on TEOS based silica aerogel was studied in terms of molar ratio 

between water and TEOS (so-called hydrolysis ratio). It was determined (Rao and Parvathy, 

1993) that an H2O:TEOS molar ratio lower than 2 favorized the condensation reactions as 

compared to the hydrolysis, where at least a stoechiometric ratio is needed; if the 

water/alcoxyde ratio gets too high (> 12), the aerogels formed are denser, opaque and cracked. 

1a 

1b 

2a 

2b 
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The optimal water to alcoxyde molar ratio was evaluated between 4 and 10 for the obtention of 

crack-free and transparent aerogels, with porosities superior to 90% and bulk densities around 

0.15 g.cm-3 (figure I.17). It has to be kept in mind that the optimal water/alcoxyde molar ratio 

will vary depending on the silica precursor used. 

 

Figure I.17: SEM micrograph showing the nanostructure of a typical silica aerogel, with a bulk density of 

0.18 g.cm-3 (Koebel, Rigacci and Achard, 2012) Inset: visual aspect of the aerogel after supercritical 

drying (courtesy of N. Diascorn, Centre PERSEE, Mines ParisTech.) 

Silica aerogels are highly porous. Overall the porosity of silica aerogels is generally higher than 

90%, and their specific surface areas can range from 250 cm2.g-1 to more than 1000 cm2.g-1 

(Zhou et al. 2007). Most silica aerogels are mesoporous materials, with pore size from 5 to 100 

nm and an average pore diameter between 20 and 40 nm (fig.I.18).The characteristics of the 

porous networks such as pore size distribution, specific pore volume can be estimated by 

nitrogen adsorption (Reichnauer and Scherrer, 2001) or mercury porosimetry (Pirard et al. 

1995) with different degree of accuracy, the latter permitting to characterize a significantly 

wider porous fraction than nitrogen-based technique. 

 

Figure I.18: Pore size distribution of a 0.15 g.cm-3 silica aerogel synthesized from TEOS, as obtained by 

non-intrusive mercury porosimetry (Pierre and Rigacci, 2011). 

The mechanical properties of pure silica aerogels are known to be poor: they are very brittle 

and crack easily. Their compressive strength, tensile strength and elastic modulus are low, and 

strongly dependent on aerogel density (Ma, Roberts, Jullien, Prévost and Scherrer, 2000). As a 

general rule, the elastic moduli (E) of aerogels exhibit power-law scaling with their densities 

with E ~ ρm , with 2.5 < m < 4. 
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The mechanical reinforcing of silica aerogels without loosing the very low level of thermal 

conductivity is thus a strategic concern for their large-scale use for massive application like 

thermal insulation. Several reinforcing methods for silica aerogels have been studied over the 

past years. They are the preparation of aerogel composites by dispersing fibers (e.g. Parmenter, 

1998, Yang et al, 2011) directly inside the silica sol, or the synthesis of organic-inorganic 

hybrids from precursor containing polymerizable organic chains. Well-known examples of the 

later are Ormosils (standing for “organically modified silicates”) (Mackenzie, 1994) or 

ceramers (Huang et al, 1985). 

 Silica aerogels from sodium silicate 

Sodium silicate (Na2SiO3), so-called waterglass, is the historical source of the very first silica 

aerogels made by Kistler in 1932. Sodium silicate is synthesized from reacting quartz sand with 

sodium hydroxide or carbonate at elevated pressures and temperatures. The abundance of these 

starting materials makes it a less expensive silica source. The highly polar nature of Na2SiO3 

renders it easily soluble in water on the contrary of alkoxysilanes (Venkateswara Rao et al., 

2011).  

Two main chemical routes lead to silica aerogels from sodium silicate: both involve the 

acidification of Na2SiO3 into silicic acid, H2SiO3. The first route is the reaction in one step of 

the silicate with HCl or an organic acid. This method is fast but results in the formation of 

sodium salts, which must be washed away through long steps of washing and solvent exchange. 

The second method involves the acidification of an aqueous sodium silicate solution by passing 

on an ion-exchange column, a process that removes the sodium ions and thus prevents the 

formation of salts by-products. The polycondensation and subsequent gelation is catalyzed by 

adding a base to increase the pH from ~2 to 5-9 (Schfwerterger, Frank and Smith, 1998). A 

general reaction scheme of sodium silicate gelation is presented on figure I.19. 

 

Figure I.19: Reaction mechanism of the formation of silica from sodium silicate (adapted from 

Venkateswara Rao et al., 2011.) 

The simplified mechanism presented on fig. I.19 does not take into account the complex 

chemistry of sodium silicate, strongly dependent on pH. In sodium silicate alkaline solution 

(pH > 10), negatively charged silicate oligomers of various sizes between two and eight units 

coexist, and condensation is prevented because of electrostatic repulsion. When the pH is lower 
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than 4, neutrally charged silicic acid oligomers are the dominant species, which can condensate 

into small molecular clusters. The complete condensation of these clusters, and thus, sol 

gelation, is slowed down because partial re-dissolution of silicic species can occur through 

protonation of oxygen atoms. Moreover, negatively-charged silicium oxide groups are not 

present at low pH, which slows down the gelation because -Si-O- is a better nucleophile overall 

than -Si-OH. When gelation occurs at low pH, aerogels tend to be denser and have slightly 

lower porosity as compared to what is obtained in more neutral conditions. A pH value between 

5 and 9 has been determined as an optimal value for sodium silicate gelation in the given 

conditions (Rao et al., 2008). Resulting silica aerogels had porosities around 95% and bulk 

densities lower than 0.1 g.cm-3 (figure 1.20). 

 

Figure I.20: Influence of pH on the bulk density and porosity of silica aerogels from ion-exchanged 

sodium silicate solutions. (from Rao et al., 2008, reprinted with permission from Springer) 

The majority of sodium silicate-based aerogels are made now through the process of ion 

exchange, followed by basic catalysis. Many authors performed chemical modifications of the 

gel to obtain monolithic aerogels with hydrophobic properties via ambient drying (Hwang et 

al., 2007; Bhaghat et al, 2007). In terms of general properties, sodium silicate-based aero- and 

xerogels are similar to those of their silica alcoxydes counterparts. 

In recent years sodium silicate has attracted renewed interest as a cheaper alternative to 

alcoxysilanes for the larger scale fabrication of silica aerogels. The parallel development of 

hydrophobization methods for silica gels allowed for the subcritical evaporative drying of silica 

aerogels, by definition less resource consuming than supercritical drying. This is why most of 

the recent research on sodium silicate-based aerogels focuses on ambient pressure dried 

materials. 

 Hydrophobization of silica aerogels 

During the sol-gel process, some of the alcoxyde side-chains remain unreacted, or stay in the 

form of silanol functions Si-OH. When hydroxyl groups are found at the pore surface of silica 

aerogel, they render the gel hydrophilic and interact with water vapours. In some cases silica 

aerogels can be very hygroscopic. Hydrophilicity induced by the silanol surface groups of pure 

silica aerogels can be a problem for several applications. First, as seen in section 3.1.1, an 

hydrophilic gel cannot be dried at ambient pressure, because of high surface tension leading to 

high capillary pressure and thus inducing pore collapse and densification during drying. 

Secondly, moisture sensitivity can be harmful for the long-term use of silica aerogel, as 
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properties will deteriorate over time when adsorbing water (Miner, 2004). As a consequence it 

is not surprising that a lot of research focuses on various chemical modification techniques to 

render silica aerogels hydrophobic (Anderson and Caroll, 2011). 

To obtain hydrophobic silica aerogel, the polar hydroxyl groups must be replaced through 

chemical modification by apolar functions such as alkylsilanes (Si-CH3). The structure of 

three common hemical modification agents is presented as an illustration on figure I.21.  

 

Figure I.21: Chemical structure of three common hydrophobization agents used for the preparation of 

hydrophobic silica aero- and xerogels. From left to right:  methyltrimetoxysilane (MTMS), 

hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDZ). 

Three main routes are reported for making hydrophobic silica aerogels. Vapor phase treatment 

can be used on dry aerogels: they are exposed to gaseous methanol at high temperatures (220-

240 °C) (Lee et al., 1995). The effective replacement of Si-OH groups by Si-OCH3 is visible by 

FTIR spectroscopy as the characteristic silanol peaks disappear over time; 10 to 40 hours of 

treatment are necessary. Among some obvious drawbacks of this method are the duration of 

treatment and double drying. Moreover the alcoxy groups can be re-hydrolyzed over time as 

the chemical process is reversible. 

The co-precursor route is much more used and effective; it makes a large part of the literature 

on hydrophobic silica aerogels. The starting alcoxysilane is mixed in solution with another 

alcoxysilane with alkyl terminal chains, such as methyltrimethoxysilane (MTMS) 

(Schwertfeger et al., 1992). The sol-gel process and subsequent drying are then carried out, 

yielding a gel containing a certain apolar groups concentration. Several additional studies on 

MTMS were performed by Rao et al. (Rao and Pajonk, 2001; Rao et al. 2003). The 

hydrophobicity and transparency of tetramethoxysilane (TMOS)/MTMS aerogels was found to 

depend on the molar ratio between precursors: higher MTMS content gave better 

hydrophobicity but higher opacitybecause of the creation of large pores during the synthesis. 

Contact angles with water could go up to 140°. A good compromise aimed at applications for 

transparent insulating panels was an MTMS/TMOS molar ratio of 0.7 that gave 80% light 

transmittance at 750 nm, along with a contact angle of 110° stable in time (Rao, Pajonk and 

Haranath, 2001). A pure MTMS aerogel showing contact angles of 152° was synthesized by 

Baghat (Baghat et al., 2007).  

MTMS derived aerogels also show good flexibility and elasticity: bendable silica aerogels have 

been obtained, either from pure MTMS (Rao et al., 2006; Hedge and Rao, 2007), or by using 

MTMS along with other alkylsilane precursors (Hayase et al., 2011). The flexible aerogels 

reported were able to sustain up to 60% elastic deformation and their Young moduli ranged 

from 0.034 to 0.13 MPa (figure I.22). Flexible gels were also achieved from mixing TMOS 

with vinyltrimethoxysilane, a co-precursor containing vinyl groups. This gel was further 

strengthened by adding bis [3-(triethoxysilyl) propyl] disulfide to the mixture, providing cross-
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linking thanks to disulfide bridges, resulting in a fully elastic gel whose contact angle with 

water was 125° (Guo et al.,2009). While MTMS is one of the less expensive co-precursors 

available within this family, several other co-precursors containing perfluoroalkylsilanes (Zhou 

et al., 2007) or alkylsilanes (Rao and Kalesh 2004; Baghat and Rao 2006; Aravind, Niemeyer 

and Ratke, 2013) moieties were examined. An increase in the contact angle with water when 

the chain length of the co-precursor is increased was observed. In these cases, both supercritical 

and ambient drying can give highly porous materials, with densities lower than 0.1  g.cm-3. The 

presence of a non-condensable apolar group in polysiloxane chains induces the formation of 

large pores during the sol-gel synthesis; thus the thermal conductivities of these materials are 

often higher than those of other silica aerogels (Maleki, Duares and Portugal, 2014). 

 

Figure I.22: Bendable silica aerogel from MTMS derived gel, dried in supercritical CO2. Molar ratio 

between MTMS:EtOH:H2O was 1:35:8 (from Rao et al., 2006) 

Finally, another alternative is the surface silylation of the wet gel before drying (i.e. after 

gelation). In this method an already formed silica wet gel goes through solvent exchange and is 

immersed in a solution containing the functionalizing agent. The reaction is generally 

performed at mild temperatures between ambient and 100°C. This method is often chosen for 

the preparation of xerogels through ambient pressure drying. However, silylation processes can 

be long to complete because of the solvent exchange steps involved and the diffusion of the 

silylating agent in the mesoporosity of the gels. As opposite to the co-precursor method, in 

which hydrophobic groups are present in the bulk of the sample, the surface sililation only 

covers the pore walls with hydrophobic groups. The chemicals used for surface 

functionalization are often chloroalkylsilanes:  trimethylchlorosilane (TMCS) is the best 

known, and has been used to obtain hydrophobized aerogel powders (Jeong et al, 2000) as well 

as monolithic materials (Wei et al., 2007). Hexamethyldisilazane (HMDZ) is another silylation 

agent (figure I.23) used in basic conditions. Aerogels treated with HMDZ in different organic 

solvents were reported (Shewale et al., 2008; Rao et al., 2005). They all showed very high 

contact angles with water around 140-160°. Hexamethyldisiloxane (HMDSO) can also 

functionalize gel surface with HCl catalysis (Bisson, 2004; Achard et al., 2007). 
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Figure I.23: Silylation of silica aerogel surface with HMDZ and water droplets on the surface of an 

HMDZ-modified silica aerogel. Photo courtesy of SEPAREX S.A., Nancy, France. 

As the functionalization is performed on the already formed silica gel, most surface silylation 

is also applicable to sodium silicate based gels (Lee, Kim and Hyun, 2002; Shewale et al., 2009; 

Shi et al., 2006; Bangi et al. 2008). This is of particular interest for the large-scale application 

of silica aerogels, as the combination of ambient pressure drying and availability of sodium 

silicate makes it a rather inexpensive process. However, the steps of ion-exchange and solvent 

exchange remain time and energy consuming. 

Rao et al. compared the effect of different modifying agents, as well as the co-precursor and 

surface silylation methods (Rao et al., 2003). They concluded that better hydrophobization was 

achieved with  tri-alkyl compounds as compared to mono-alkylsilanes, as assessed by 

respective contact angles of 135° against 95°. They also observed that aerogels from the co-

precursor method were more hydrophobic but less transparent than the silylated aerogels. 

 Thermal properties of aerogels: applications to superinsulation 

 Heat transfer in aerogels 

The remarkable thermal properties of aerogels were studied ever since Kistler synthesized the 

first silica aerogels in 1932. Silica aerogels in particular are the most popular superinsulating 

materials: the thermal conductivity of most silica aerogels is significantly lower than 0.025 

W.m-1.K-1, the conductivity of air in ambient conditions, so-called “free air”. 

The heat transfer in aerogels can be described by the heat transfer equation and the Fourier Law 

which states that the heat flux density is proportional to the local temperature gradient and 

defines the thermal conductivity λ (equation I.2 and I.3) (Ebert, 2011).  

∇𝑞⃗ + 𝛷 =  𝜌. 𝑐.
𝜕𝑇

𝜕𝑡
 

𝑞⃗ = −𝜆∇𝑇 

with q the heat flux density, λ the thermal conductivity, ρ material bulk density, c its specific 

heat, Φ the heat source term describing the thermal radiation and T the local temperature. In the 

case of an isotropic aerogel, and if the heat transfer only depends on the temperature gradient, 

the heat transfer equation simplifies to eq. I.4: 

∆𝑇 =
𝜌. 𝑐

𝜆
.
𝜕𝑇

𝜕𝑡
 

in which case the thermal conductivity is a material property and do not depend on the 

experimental conditions of its determination. 

(I.2) 

(I.3) 

(I.4) 
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The thermal transport in aerogels is made of three components: solid heat transfer along the 

aerogel backbone, gaseous conductivity from the gas inside the pore structure and radiative heat 

transfer. The effective conductivity can be simply deduced from the sum of all three 

contributions when thermal conditions and materials characteristics (optical thickness) permit 

to decorrelate thermal transferts by conduction and radiation (eq. I.4).  

𝜆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝜆𝑠𝑜𝑙𝑖𝑑 + 𝜆𝑔𝑎𝑠 + 𝜆𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 

A brief overview of each contribution will be presented in the following sections. 

 Solid thermal conductivity 

The heat transfer through the aerogel backbone depends directly of the skeleton structure and 

connectivity, as well as its chemical composition. Heat transfer is mainly due to diffusing 

phonons within the chains of the aerogel backbone. The diffusion of phonons can be described 

with equation 6. 

𝜆𝑠𝑜𝑙𝑖𝑑(𝑇) = 𝐺(𝜌).
1

3
. 𝜌0 . 𝑐𝑣(𝑇). 𝑙𝑝ℎ(𝑇). 𝜈0(𝑇) 

with 𝜆𝑠𝑜𝑙𝑖𝑑 the solid thermal conductivity (W.m-1.K-1), 𝜌0 the density of the backbone material 

(kg.m-3), cv its specific heat at constant volume (J.kg-1.K-1), lph the average mean free path of 

phonons (m) and 𝜈0 the average velocity of the elastic waves within the backbone material (m.s-

1). G is a temperature independent geometric factor only depending on apparent density 

(Scheuerpflug et al. 1991). 

At a given temperature, the thermal conductivity of the solid backbone only depends on the 

material apparent density 𝜌𝑎𝑝𝑝 following a power law; eq. 6 can thus be simplified:  

𝜆𝑠𝑜𝑙𝑖𝑑 = 𝐶. 𝜌𝑎𝑝𝑝
𝛼  

with C a constant. The exponent factor alpha was determined to be around 1.5 for silica 

aerogels. (Fricke et al., 1992; Lu et al., 1993).  

 Gaseous thermal conductivity 

Because of the very small size of pores in aerogel materials, the gas is confined in the porosity, 

and as a consequence the gas contribution is much lower than the conductivity of the free air 

(Knudsen effect). The gas confinement inside the pores is the main reason superinsulation can 

be achieved with ultraporous materials like aerogels. The heat transfer in the gas is 

characterized by the Knudsen number Kn: 

𝐾𝑛 =
𝑙𝑔

𝐷
 

with D the pore diameter (m) and lg the free mean path of the air molecules  

lg is determined by:  

𝑙𝑔 =
𝑘𝑇

√2𝜋𝑑2𝑃
  

(I.6) 

(I.9) 

(I.5) 

(I.7) 

(I.8) 
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with k the Boltzmann constant (k=1.38.10-23 J.K-1), T the temperature (K), d the diameter of gas 

molecules (d = 3.7.10-10 m for air), and P the pressure of gas (Pa). For air at 300 K and 1 bar, lg 

≈ 70 nm. 

The gas heat transfer is described by:  

𝜆𝑔𝑎𝑠 =
𝜆𝑔0. 𝜀

1 +  𝛼𝐾𝑛
 

with ε the porosity, 𝜆𝑔0 the thermal conductivity of free air, α a coefficient depending on the 

nature of the gas and the solid (i.e. interaction of gas with the pore walls).  

When D >> lg , Kn << 1, which means that gas molecules are not confined and the majority of 

collisions happen between two gas molecules; in this case the gas thermal conductivity is equal 

to the free gas conductivity which is in case of air 0.025 W.m-1.K-1. When D < lg , Kn < 1, which 

means that the majority of collisions happen between the gas molecules and the solid backbone. 

As a consequence, lgas < lg0. This phenomenon is called the Knudsen effect and gas is considered 

to bbe confined, as illustrated by figure I.24. 

 

Figure I.24 : Variation of the thermal conductivity of air contained in porous materials, as a function of 

pressure, plotted for different pore diameters. Reproduced from (Baetens et al., 2011), with permission 

from Elsevier. 

Because of the Knudsen effect, control of the aerogel pore sizes is extremely important to obtain 

superinsulating materials by significantly reducing the gas conductivity. 

 Radiative thermal conductivity 

The radiative heat transfer in a material is dependent on its optical thickness τ, representative 

on how often a photon with the mean free path lpht will interact with the material in a given 

distance d. We have 𝜏 =  
𝑑

𝑙𝑝ℎ𝑡
. The radiative contribution to thermal transport can be expressed 

as:  

(I.10) 
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𝜆𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 =
16

3
𝑛². 𝜎.

𝑇𝑟
3

𝜌. 𝑒𝑟
 

with 𝜎 the Stefan-Boltzmann constant, (σ = 5.67.10-8 W.m-2.K-4), Tr the mean radiative 

temperature (K), er the specific extinction coefficient (m-1) and n the refractive index. 

The so-called “radiative conductivity” is inversely proportional to material bulk density. To 

reduce the radiative transfer in silica aerogels, opacifiers can be loaded to reduce their optical 

thickness. Suitable opacifiers have high absorbing or light-scattering properties; carbon black 

or titanium dioxide are two respective examples (Kuhn et al.,1995; Lee et al., 1995). 

 Aerogels for thermal superinsulation 

Thermal conductivity of some aerogels is significantly lower than 0.025 W.m-1.K-1, the 

conductivity of air, thus they really can be called superinsulating materials. These thermal 

insulation properties of aerogels make them suitable candidates for many fields of insulation 

applications, particularly the buildings sector where thin insulation is a very challenging issue. 

Silica-based aerogels are considered to be very promising atmospheric pressure insulation 

materials. However, monolithic aerogel plates are generally fragile and it is difficult to produce 

crack-free plates of large size to address panel-based applications. Most of commercial 

applications use either aerogels granules, or “blankets” which have been considered for long 

like aerogel granules “linked” with fibers. Recently it was shown that such blankets had actually 

few real macropores as compared to granular beds, and that the macropores present were mostly 

due to small internal cracks (Diascorn, 2014). Some glazing solutions use monolithic 

translucent plates (fig. I.25.a). 

 

Figure I.25: Silica aerogel-based superinsulation materials aimed at various potential applications in the 

building domain. (a) Transparent aerogel glazing panel developed in the frame of the HILIT+ European 

project; (b) Aerogels blankets (here from the company Aspen Aerogels). (c) Render with dispersed aerogel 

granules developed by EMPA (Switzerland) and Fixit. Pictures taken from (Koebel et al., 2011 and 

Baetens et al., 2011), reproduced with permission from Springer and Elsevier respectively. 

Organic or quartz fibers are used in aerogel blankets to obtain more flexible and structurally 

resistant insulating materials for the retrofitting of walls (fig. I.29 b). Ambient pressure blankets 

started to be marketted, the better known are the Spaceloft® blankets produced by the north-

american company Aspen. The main disavantage of aerogel blanket is their tendency to release 

quantities of thin powder: they require anti-dust protective equipment to be manipulated safely. 

Aerogels granules are easy to manipulate. Cabot corporation is the main supplier of aerogels 

powdered or granular materials with its Nanogel® (now marketed as Lumira®) products. For 

(I.11) 
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instance, they can be used to fill the space between two transparent panels to obtain translucent 

insulating windows, or dispersed in a solid matrix such as concrete or render (fig. I.29 c). 

The main competition for aerogels in terms of superinsulation comes from vacuum insulation 

panels (VIP). Vacuum insulation panels are made of core of pressed mesoporous powder, 

generally fumed silica with IR opacifiers and short fibers, wrapped in a several layers of 

aluminum barrier foil. The material is evacuated below 1 hPa pressure and sealed, which 

effectively suppress the gas contribution to thermal conductivity, allowing VIPs to reach 

conductivities as low as 0.005 W.m-1.K-1. However, VIPs performances tend to decrease with 

time because of the loss of vacuum; VIP are also fragile and have to be handle delicately. 

Finally, the price of silica aerogel-based materials is a real hindrance to their large scale 

development and applications. A current reference market price for a cubic meter of silica 

aerogel is on the order of 4,000 US$. With increasing commercialization, this value could drop 

below the 1,500 US$ mark by the year 2020 (Koebel et al., 2012). 

 Polysaccharide-based aerogels 

Aerogels from polysaccharides have somewhat similar properties as compared to inorganic or 

other polymeric aerogels: they are highly porous and have low densities and quite high specific 

surface areas. They can be potentially used for numerous applications such as controlled drug 

release (Smirnova, 2011), catalysis (Quignard, 2008), or can be pyrolyzed to give carbon porous 

materials for electrochemical applications (White, 2009) like standard organic aerogels (e.g. 

resorcirnol-formaldehyde ones). In the following section we will only focus on aerogels from 

cellulose and pectin, as they are the materials of interest for the present study. 

 Cellulose aerogels 

The general route to prepare cellulose aerogels based on cellulose II, often called 

“Aerocellulose”, is summed up in figure I.26. This rather new type of aerogels was done by 

coagulating cellulose solutions in a non-solvent such as water or ethanol, followed by the 

standard drying with supercritical CO2.   

 

Figure I.26: General preparation route of Aerocellulose. Inset: visual aspect and microstructure (as seen 

by SEM) of an aerocellulose made from 8%wtNaOH-water solution. 



Chapter 1: State of the art 

 

 

55 

 

Aerocellulose have been synthesized from a large variety of cellulose solvents. Aerogels with 

bulk densities ranging from 0.02 g.cm-3 to 0.2 g.cm-3 and specific surface areas ranging from 

100-400 m².g-1 were obtained from coagulated cellulose-NMMO solutions (Innerlohinger, 

2006; Liebner et al., 2008). Water-NaOH or LiOH-cellulose solutions are thermodynamically 

unstable and spontaneously form gels over time or when increasing temperature. This property 

helps shaping Aerocellulose (Gavillon and Budtova, 2008; Cai et al., 2008). Ionic liquids are 

another direct cellulose solvent that can be used as the basis for elaborating aerocellulose 

(Aaltonen and Jauhainen, 2009; Sescousse et al., 2011; Tsioptsias et al., 2008; Deng et al., 

2009). 

Cellulose cryogels can also be obtained from freeze-drying of cellulose gels. Highly porous 

cellulose films were obtained from cellulose-calcium isocyanate solutions: cellulose could be 

dissolved in the salt hydrate at 110°C, and then a gel was formed by cooling the solution. The 

gels were freeze dried to obtain shock resistant porous films (Jin et al., 2004). Monolithic 

materials with bulk densities around 0.065 g.cm-3 were obtained from supercritical and freeze 

drying, using the same cellulose dissolution method (Hoepfner, 2008). 

Cellulose aerogels cited above are made of coagulated cellulose, in the crystalline form of 

cellulose II. However, cellulose I can also be used for making cellulose aerogels or cryogels, 

for example, from bacterial cellulose (Liebner et al., 2008), or from cellulose nanofibers 

dispersions (Kettunen, 2011; Cervin et al., 2012). Recently, an aerogel from surface-

carboxylated cellulose nanofibers, dispersed in a nematic liquid crystalline order was reported. 

This new type of cellulosic gel was transparent, had good mechanical resistance and thermally 

superinsulating properties with a minimal conductivity in room conditions of 0.018 W.m-1.K-1 

(Kobayashi, Saito and Isogai, 2014). 

The nature of the solvent has a strong influence on the final morphology of aerocellulose. In 

the case of NaOH, LiOH, and calcium isocyanate, solutions are gelling and these gels are then 

coagulated; as a result a fibrous network of entangled “fibres” is formed. When NMMO or ionic 

liquids are the solvent, cellulose is directly coagulated in a non-solvent, resulting in a more 

nodular structure (figure I.27). The difference in phase separation mechanisms during the gel 

formation can explain the morphological differences in the final aerogels. In the case of 

spontaneous gelation of solution, a micro-phase separation occurs because of the 

thermodynamical instability of the solution; cellulose chains reorganize and self-associate. For 

cellulose-NMMO and cellulose-EMIMAc systems, coagulation happens in one step called 

spinodal decomposition, forming small spherical beads (Biganska and Navard, 2009). 
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Figure I.27: SEM images showing the morphology of aerocelluloses from different solvents. Fibrillar 

structures are observed in the case of cellulose gelled in (a) calcium isocyanate (Hoepfner 2008) and (b) 

Water-NaOH (Gavillon and Budtova, 2008), while nodular, hairy beads structure is observed for samples 

coagulated from (c) NMMO monohydrate (Gavillon and Budtova, 2008) and (d) ionic liquid ( EMIMAc) 

(Sescousse et al., 2011). 

Aerocellulose density is directly proportional to cellulose concentration in solution. Using 

cellulose of higher molar mass gives higher bulk density at equal concentration. The pore size 

distributions in aerocelluloses are wide, ranging from a few nanometers to a few microns. 

Mechanical properties of aerocellulose were studied by uniaxial compression tests (Sescousse 

et al. 2011). Stress-strain curves were studied for aerocellulose from water-NaOH and ionic 

liquid solutions, to determine Young’s modulus and yield stress. As for silica aerogels, the 

modulus depends directly on bulk density following a power law. The exponent factor for 

aerocellulose is around 3, which is similar to silica or resorcinol-formaldehyde (Pekala et al., 

1990) aerogels and not to polymer foams, for which the exponent predicted by Gibbson and 

Ashby’s model is 2 (Gibbson and Ashby, 1999). 

Chemical cross-linking of cellulose derivatives such as cellulose acetate (Tan et al., 2001; 

Fisher et al., 2006) can also yield cellulosic aerogels. Cellulose acetate is cross-linked by 

isocyanates in acetone; pyrydin or dibutylin dilaurate are used as catalysts. Direct cross-linking 

of cellulose is also possible, for example by using epichlorhydrin (ECH) (Bai et al., 2006; 

Rudaz, 2013), or isocyanates. By varying the amount of cross-linker and the cellulose 

concentration, the structure of the aerogels can be controlled more precisely. Density and 

mechanical strength increase when increasing the cross-linker to glucose unit molar ratio. When 

cellulose is reticulated with isocyanates, thermal conductivities of 0.015 W.m-1.K-1 can be 

obtained on supercritically dried samples. However it is unlikely that such aergoels see large–

scale development, as isocyanate are very toxic compounds. In the case of ECH-reticulated 

cellulose, an optimal molar ratio was identified as ECH/anhydroglucose unit = 0.5 
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(stoichiometric ratio): it resulted in the maximal specific surface area and the lowest thermal 

conductivity (0.026 W.m-1.K-1)  for ECH-crosslinked cellulose samples (Rudaz, 2013). 

 Pectin aerogels 

The first report on pectin aerogels or Aeropectin is rather recent (White et al., 2010): the goal 

was making porous carbon materials by pyrolysis of pectin aerogels. Two methods were used 

to produce pectin gels from citrus: thermal gelation by heating a pectin solution at 90 °C, and 

dissolving pectin in an acidic aqueous solution, then leaving it to gel at room temperature for 

48 h. The gels were progressively solvent exchanged with ethanol and dried with supercritical 

CO2. In the case of thermal gelation, a fine powder was obtained, while gelation in acid 

conditions yielded monolithic materials. The powders were denser than the monoliths (0.20 

g.cm-3 against 0.07 g.cm-3, both for a pectin concentration in solution around 5%wt); 

observation of their structure by SEM (fig. I.28) showed that the structure of the monolithic 

aerogels was that of a fibrous nanostructured network, while the powders were made of more 

compact blocks. Specific surface areas were similar to other polysaccharide based materials, 

monolithic materials showed a specific surface area around  200 m².g-1. 

 

Figure I.28: Visual aspect and SEM micrographs of powdered and monolithic aeropectins obtained by 

(White et al, 2010, reproduced with permission from John Wiley & Sons). 

Similar results were obtained by other authors (Garcìa-Gonzales et al. 2012). They obtained 

aeropectin with incorporated magnetic particles from 6%wt pectin aqueous solutions heated at 

40-60°C; the pectin was coagulated by direct addition of ethanol to the mixture. Washing the 

gel with ethanol and supercritical CO2 drying lead to aerogels with densities around 0.08 g.cm-

3 and specific surface areas around 250 m².g-1. Pectin-clay biodegradable composite cryogels 

were obtained by (Chen et al. 2013). The authors investigated reticulation of pectins with 

monovalent (Na+), bivalent (Ca2+) and trivalent (Al3+) cations, in the presence of 

montmorillonite. As expected, monovalent cations did not reticulate the pectin, while divalent 

and trivalent cations allowed the formation of gels. Increasing the valence of the cation lead to 

mechanically stronger gels; however, calcium had a better cross-linking ability than aluminium. 

The freeze dried pectin had bulk densities between 0.06 and 0.19 g.cm-3 for pectin concentration 

in solution between 5 and 15%wt.The materials showed high biodegradability (around 40-57% 

of mass lost after 10 days in compost). 
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Finally, pectin aerogels showing thermal superinsulating properties (Rudaz et al. 2014) were 

reported for the very first time. The pectin aerogels were obtained from an acidic (pH < 1.5) 

apple or citrus pectin aqueous solutions gelled at room temperature for 48h, then submitted to 

gradual solvent exchange with ethanol and dried with supercritical CO2. The obtained pectin 

aerogels had bulk densities between 0.05 to 0.20 g.cm-3, specific surface areas around 200 m².g-

1 and compressive modulus between 4 and 18 MPa under uniaxial compression. Aeropectins 

were able to sustain up to 60% deformation before irreversible pore collapse. Their structure 

was alike the monolithic aeropectins obtained by White et al. in similar conditions: a 

nanostructured network of entangled fibers (fig. I.29). Finally, their thermal conductivity was 

0.016 to 0.022 W.m-1.K-1, making them the first fully bio-based thermal superinsulating 

materials ever reported at the same time as nanocellulose aerogels (Kobayashi, Saito and Isogai, 

2014). 

 

Figure I.29: Aeropectins obtained by (Rudaz et al., 2014) from (a) apple pectin and (b) citrus pectin. 

Pectin initial concentration was 3%wt. 

4. Cellulose-silica hybrid and composite materials 

 Physical hybrids and composites 

The present study aims at the preparation of new polysaccharide-silica composite aerogels with 

low thermal conductivity. The majority of literature about polysaccharide-silica composites 

focuses on cellulose-silica materials. Many studies are centered on the modification of cellulose 

fibers, mainly for application in the textile industry. In the past three years, cellulose-silica 

composite aerogels have been reported, in parallel with our studies: many possibilities are 

opened for highly porous aerogel composites, such as improved mechanical resistance or 

enhanced thermal insulation properties. The following section will detail the current properties 

and applications of silica modified cellulose fibers, as well as cellulose-silica composite 

aerogels. 

 Surface modification of cellulose fibers with silica 

In the case of “physical hybrids”, silica was not chemically grafted on cellulose surface by a 

coupling agent. Silica is simply deposited on cellulose fibers surface, stabilized by the 

formation of hydrogen bonds or electrostatic interactions. Covalent bonds between cellulose 

and silica may be possible at the interface, even without chemical coupling: thermal treatments 

may allow the formation of such bonds as can be observed on wood treatment with 
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alcoxysilanes (Tingault, 2006). However, very few studies investigate the exact nature of 

cellulose-silica chemical interaction when specific chemical coupling is not involved. 

Silica phase can be synthesized in situ by sol-gel process in the presence of cellulose fibers, 

resulting in silica nanoparticles deposited on fibers surface, or, in certain cases, a continuous 

silica film partially covering the cellulose fibers. Kulpinsky reported the preparation of silica 

modified cellulose fibers, obtained by using cellulose fibers from a cellulose-NMMO solution 

which were mixed with an aqueous dispersion of silica nanaoparticles (Kulpinsky, 2004). The 

modified fibers showed a slightly better elastic modulus but lower resistance to tearing. This 

work demonstrated the possibility of easily coating cellulose fibers with silica nanoparticles, 

with loadings up to 30%. Although Kulpinsky did not investigate the microstructure of his 

modified fibers, it is likely to be similar to what was obtained by Pinto et al. on similar materials 

(Pinto et al. 2008). They investigated two different routes to obtain the coated fibers: (1) 

synthesis in situ of silica from tetraethoxysilane (TEOS) with basic (NH4OH) catalysis, in the 

presence of cellulose fibers, and (2) electrostatic bonding of negatively charged silica particles 

to positively charged cellulose surface by layer-by-layer polyelectrolyte adsorption (fig. I.30)  

 

Figure I.30: SEM pictures of cellulose fibers covered with silica nanoparticles (Pinto et al., 2008) obtained 

by (A) Layer by layer polyelectrolyte assembly; (B): [NH4OH] = 0.06M; (C): [NH4OH] = 0.2M and (D) 

[NH4OH] = 2M. Reproduced with permission from Elsevier. 

As seen on SEM pictures (Figure 1.30), in both cases nanoparticles are scattered on the surface 

of cellulose fibers. In the case of in situ synthesis, it is easier to form a continuous film on 

cellulose surface, especially at low catalyst concentrations (0.06 M). Water uptake by these 

modified fibers, as measured after swelling in water at room temperature, was lower (26-40 

wt% gain) than for untreated fibers (60 wt% gain). 

Similar coated cellulose fibres can be obtained by acid-catalyzed formation of silica in the 

presence of cellulose fibers (Sequiera et al, 2007). The material degraded at 345°C against 

305°C for the native cellulose pulp. Thermal conductivity of the treated fibers was investigated 

by the same authors (Sequiera, 2009): treated fibers had a thermal conductivity of 0.11 W/m.K, 

against 0.08 W/m.K for untreated cellulose. The presence of silica did improve fibre capacity 

A B 

C D 
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to withstand heat treatments, but not their thermal conductivity, probably because the obtained 

material was neither homogeneous and the silica phase was of high density. 

 Composite cellulose-silica aerogels  

Many articles discuss the modification of the surface of cellulose fibres with silica, but very 

few consider combining cellulose aerogels with silica aerogels in the view of making 

interpenetrating networks. Such structures could prove particularly interesting for applications 

such as thermal insulation, controlled release or catalysis. Cellulose nanofibrils or cellulose 

aerogels have higher mechanical strength than pure silica aerogels, and thus could be used as a 

reinforcing matrix for nanostructured silica. 

A cellulose alcogel obtained from an NMMO cellulose solution coagulated in ethanol, was 

impregnated by TEOS and/or chloropropyltrimethoxysilane (CPTMS) (Liebner et al.,2011) in 

acid conditions and then dried with supercritical CO2 (fig. I.31).  

 

Figure I.31: Aerogel from (A) pure cellulose and silica impregnated cellulose gels using (B) TEOS; (C) 

CPTS and (D) CPTS + TEOS. The catalyst used for silica formation was HCl 0.12M. From (Liebner, 

2011), reproduced with permission from Springer. 

This study pointed out a few drawbacks of the direct synthesis of silica from TEOS within a 

porous cellulose matrix: cellulose degradation was observed due to the presence of strong acid 

necessary to catalyze the sol-gel process, and the diffusion of silica-based species within the 

porosity of cellulose was hindered by silica gel layer rapidly forming at the surface of the 

cellulose sample. Using CPTMS in conjunction with TEOS allowed to obtain more 

homogeneous materials. Specific surface area of the composite aerogels ranged from 220 to 

290 m²/g. 

Impregnation of cellulose alcogels from coagulation of a cellulose solution in aqueous NaOH 

was also reported by (Cai et al., 2012; Liu et al. 2014). In these studies, TEOS or sodium silicate 

(Na2SiO3) were respectively used as silica precursors. In the case of TEOS, the specific surface 

area of composite aerogel increased significantly, indicating the formation of nanostructured 

silica in the pores of cellulose. However, the presence of silica in the pores of cellulose matrix 

induced the increase of the thermal conductivity to 0.035-0.045 W/(m.K), and their mechanical 

properties slightly decreased as compared with those of neat aerocellulose. When sodium 

silicate was used for the impregnation, the specific surface area remained the same or even 

slightly decreased from 320 m2.g-1 for the neat Aerocellulose to 270 m2.g-1 for the composite 

aerogels, probably because of the formation of dense silica particles and not of an aerogel in 

the pores of cellulose matrix. Liu et al. did not report thermal conductivity of their composites. 

A 

B C D 
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Flexible hybrid aerogels were obtained starting from nanofibrillated cellulose, derived from 

wood pulp. Nanofibrils were put in suspension in ethanol in the presence of 

methyltrimethoxysilane (MTMS) and gels were dried with sc CO2: bendable aerogel 

composites with a thermal conductivity from 0.015 to 0.025 W.m-1.K-1) were obtained (Hayase 

et al., 2014). The obtained composites showed high hydrophobicity, with water contact angles 

up to 150°. 

Another type of “nanofibrillated” cellulose is bacterial cellulose produced by bacteria which 

make a network made of high molecular weight cellulose nanofibres. After washing out bacteria 

and substrate, a network of nanofibers dispersed in water or ethanol can be obtained. Although 

its production takes time, bacterial cellulose is a particularly interesting source for cellulose-

silica nanostructured composites. Maeda et al. elaborated reinforced composite materials 

inspired by rice leaves (Maeda et al., 2006). Bacterial cellulose was impregnated with pre-

hydrolyzed TEOS, and acid catalysis was used to yield SiO2. Compression of the wet samples 

at 120°C and 1-2 MPa gave mechanically reinforced samples, with a Young modulus of 17.4 

GPa against 11 GPa for pure bacterial cellulose counterpart. The same authors determined that 

a load of 8% wt in silica nanoparticles was optimal for the mechanical reinforcement of their 

composites (Maeda and Yano, 2008). The nanostructured morphology attainable when mixing 

bacterial cellulose and silica nanoparticles was observed by SEM (Barud et al., 2008). 

Bacterial cellulose/silica composite cryogels with high specific surface area were recently 

reported by a Chinese team. Freeze-dried bacterial cellulose was impregnated by TEOS (Sai et 

al., 2013) and then freeze-dried again. By immersing wet bacterial cellulose in a sodium silicate 

solution, the same authors obtained comparable results with only one freeze-drying step (Sai et 

al., 2014). The specific surface area significantly increased in the presence of silica, from 129 

m2/g for the neat freeze-dried bacterial cellulose to 800-900 m2/g for composite materials, 

demonstrating the formation of nanostructured silica aerogel in the porosity of cellulose (fig. 

I.32). Unfortunately, the thermal conductivity also increased with the increase of silica content 

from 0.030 for the neat bacterial cellulose to 0.033-0.037 W.m-1.K-1). A potential decrease of 

thermal conductivity of cellulosic matrix due to the impregnation of silica did not work 

probably because the increase of hybrid material overall density. The authors also performed 

hydrophobization of their composites by immersion in a MTMS sol, obtaining contact angles 

with water around 140° and high oil absorption capability. 

 

Figure I.32: SEM micrographs of cellulose silica hybrid aerogels from (Sai et al., 2013), reproduced with 

permission from RSC. TEOS concentrations were 0.19M (A and B) and 0.168 (C and D). 

A B 

C D 
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Table I.3 reviews the general properties of the major composite cellulose-silica aerogels 

reported in literature so far. The bulk densities, specific surface areas and thermal conductivities 

vary with cellulose and silica content. In the table we displayed for each parameter the overall 

range of values obtained by the respective authors. 

Table I.3: General properties of nanostructured cellulose silica composite aerogels  

Cellulose source 
Silica 

precursor 

Bulk 

density 

(g.cm-3) 

Specific 

surface 

area 

(cm².g-1) 

Thermal 

conductivity 

(W.m-1K-1) 

Reference 

Cellulose dissolved in 

NMMO monohydrate 

and coagulated in 

ethanol 

TEOS/CPTMS n/a 220-290 n/a 
Liebner et 

al, 2011 

Cellulose dissolved in 

NaOH-urea-water 

and coagulated in 

ethanol 

TEOS 
0.35-

0.58 
400-650 0.025-0.045 

Cai et al., 

2012 

Cellulose dissolved in 

LiOH/urea solution 

and coagulated in 

ethanol 

Na2SiO3 
0.202-

0.228 
271-341 n/a 

Liu et al., 

2014 

Nanofibrillated 

cellulose, water 

exchanged to ethanol 
MTMS 

0.020-

0.186 
525-732 0.015-0.024 

Hayase et 

al., 2014 

Bacterial cellulose, 

water exchanged to 

ethanol 
TEOS 

0.020-

0.200 
180-900 0.033-0.037 

Sai et al., 

2013 

Bacterial cellulose, 

water exchanged to 

ethanol 
Na2SiO3 

0.010-

0.230 
270-540 0.031-0.037 

Sai et al., 

2014 

 

 Grafting of silica on cellulose: preparation of cellulose-silica 

chemical hybrids 

Cellulose silica hybrid materials can be obtained by using reticulating agents with silanol 

functions, chemically grafted on cellulose chains. A possible application for such covalent 

hybrids is surface hydrophobization of textile cellulose fibers. 

Cotton fibers functionalized with silica allowed the grafting of hexamethyltriethoxysilane 

(HMTES) on the fibers surface. The silica grafted to the fiber surface was synthesized from 

sodium silicate; the catalyst used for the reaction was citric acid. The C16 chains from HMTES 

permitted to attain a contact angle with water of 150° after synthesis (Liu et al., 2011). Thanks 

to the covalent bonding to the cellulose surface, the hydrophobic coating on the fibers was very 

stable with time, even after strong washing with water. 
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Figure I.33: Cellulose fibers: coating with silica and hydrophobization process from (Liu et al., 2011), 

reprinted with permission from Springer. 

Omniphobic fibers, i.e fibers hydrophilic and lipophilic at the same time were also obtained by 

grafting of a silicium alcoxyde containing fluorocarbonated moieties, 

perfluorodecyltriethoxysilane (PFTTEOS) (Cunha et al., 2010). Similarly to the process used 

by Liu, the grafting of the PFTTEOS was made possible by prior modification of the cellulose 

fibers surface with a silane compound, 3-Isocyanopropyltriethoxysilane (ICPTEOS). Contact 

angles were reported as 140° with water, and 134° with dodecane.  

Thermal stability of cellulose fibers can also be a concern; in this case, fully coating the 

cellulose by a homogeneous silica film significantly increases their thermal degradation 

temperature (Xie et al., 2009). To achieve this result, they used 2,4,6- tri[(2-Epihydrin-3-

Bimethyl-Ammonium)propyl]-1,3,5-triazine Chloride (Tri-EBAC) as a reticulating agent: 

reticulation was ensured by the formation of amine bonds between the cross-linker, cellulose 

surface and TEOS. TEOS was then polycondensated to form a uniform silica layer around the 

cellulose fibres. A similar result could also be obtained directly from a cellulose-NMMO 

solution, using amidated polyhedral oligomeric silsesquioxanes (POSS-NH2) as the cross-linker 

(Xie, Zhang and Lu, 2009).  
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Conclusions 

This introductive chapter had several goals. First, we briefly presented two polysaccharides 

used in the work, cellulose and pectin, as well as their solutions and gels .Then the nature and 

properties of aerogels, made from silica and the aforementioned polysaccharides, was explored. 

Finally, we studied the few cases of cellulose-silica composites and hybrids reported in the 

literature. 

Cellulose is a linear polysaccharide made of anhydroglucopyranose units linked together by β 

1.4 glycosidic bonds. It is the main constituent of plant cell walls. The cellulose molar mass 

and degree of crystallinity vary depending on its source. Cellulose is structured through 

hydrogen bonds which gives the chain rigidity and makes it difficult to dissolve in common 

solvent. Industrial processing of cellulose requires either cellulose chemical modification 

before dissolution and precipitation (Viscose process), or direct dissolving in a few selected 

solvent; the most used in industry is NMMO monohydrate (Lyocell process). Other solvents 

are able to dissolve cellulose at the lab scale, for purposes of forming coagulated cellulose 

objects or chemical modifications.  Among those solvents, water-NaOH and ionic liquids are 

the most promising. In particular, ionic liquids allow dissolving cellulose up to 25%wt 

concentrations and forming various cellulose materials (fibres, films); however, these solvents 

are still rather expensive. 

Pectin is a polysaccharide made of linear chains of partially esterified galacturonic acid. Pectin 

is a constituent of plant cell walls and is mainly extracted from waste from the food industry, 

such as apple pomace or citrus peel. Pectins are characterized by their galacturonic acid content, 

degree of esterification, and degree of methylation (DM). This polysaccharide is a well-known 

gelling agent used in the food industry; two gelling mechanisms can be distinguished: for high 

methoxy pectins, gelation occurs due to the formation of hydrogen bonds between chains, it is 

favored at low pH and in the presence of sugars. In the case of low methoxy pectins, gelation 

can be triggered by electrostatic bonding with divalent ions, such as calcium, at neutral to 

slightly alkaline pH. The gel strength and texture can be varied by changing the pH, 

temperature, or DM of the pectins. 

Gels are porous solid networks whose pores are filled by a liquid. Aerogels are nanostructured 

gels in which the liquid phase has been replaced by air without prejudicial texture degradation. 

Drying gels in supercritical conditions, freeze drying, or evaporative drying in the case of some 

hydrophobic gels allows removing the solvent without damaging the pore structure. The most 

famous aerogels are silica aerogels. They can be made from various precursors: sodium silicate 

or silica alcoxydes. Chemical modification of silica gels allows adding various properties to 

silica aerogels, like hydrophobicity or flexibility. Silica aerogels have remarkable thermal 

properties: due to their small pore sizes in the range of mesoporosity they are able to confine 

air inside their pores, which reduces their thermal conductivity far below that of free air (0.025 

W.m-1.K-1) in ambient conditions and make them superinsulating materials. Although silica 

aerogels remain too expensive, several commercial applications targeted at the superinsulation 

for the building industry have been elaborated in the past 10 years. 

A brand new class of aerogels is aerogels made from natural polymers. We reviewed two kinds 

of these bio-aerogels: Aerocellulose and Aeropectin. Both are obtained from polysaccharide 

solutions let to gel or directly coagulated. After solvent exchange and supercritical drying with 
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CO2, porous materials are easily obtained. They show quite low densities (< 0.2 g.cm-3) and 

rather high specific surface areas in the 200-400 m².g-1 range. Aeropectins are entirely bio-

based superinsulating materials with thermal conductivities reported between 0.016 and 0.022 

W.m-1.K-1. 

Most works on cellulose hybrid/composite materials reported in the literature focus on the 

coating of cellulose fibers with silica, for functionalization or heat protection purposes. 

However, a few recent reports exist on nanostructured cellulose/silica composite aerogels. 

Impregnation of cellulose with a silica precursor, followed with the gelation of the silica phase 

has been attempted with TEOS derivatives as well as sodium silicate. Cellulose matrices were 

obtained from coagulated cellulose solutions, nanofiber dispersions or bacterial cellulose. 

Cellulose-silica composite aerogels with various degrees of flexibility and nanostructuration 

were obtained. The reported composite materials showed an increase in specific surface area, 

but up to date no significant improvement in their thermal conductivities. 
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Introduction 

In this second chapter we present materials used in this study and the preparation and 

characterization methods for bio-aerogels from cellulose and pectin, and their hybrids with 

silica. 

First, the main materials used in this work are presented: cellulose, pectin, and silica precursors 

sodium silicate and polyethoxydisiloxane, as well as the solvents and chemicals used for the 

dissolution of starting materials and the preparation of gels. 

The procedure used to obtain hydrophobic cellulose aerogel by chemical modification of 

cellulose is also described. 

The different steps of the preparation of polysaccharide gels, aerogels and composites are given 

in details: polysaccharide dissolution, gelation (if any) and coagulation, mixing or impregnation 

with silica precursor, washing and supercritical drying. 

The gelation of cellulose solutions mixed with sodium silicate was studied with dynamic 

rheological measurements. 

The dry aerogels were characterized in terms of bulk density, specific surface area and porosity 

(specific porous volume and pore size distribution). The morphology of all samples was 

thoroughly checked by Scanning Electron Microscopy (SEM). The silica contents of cellulose-

silica composites were evaluated by elemental analysis and Energy diffractive X-ray 

spectroscopy coupled with SEM. 

Hydrophobicity of chemically modified samples was assessed by water contact angle 

measurements. The humidity uptake of the treated aerogels over time was also recorded and 

compared to non-hydrophobized materials. 

The mechanical properties were examined by uniaxial compression measurements. Young 

modulus, yield stress and strain plus stress at break were characterized. Some Young moduli 

were also determined by ultrasonic velocity measurements. 

Finally, the thermal conductivity of samples was measured by two techniques: hot-wire method 

and heat-flowmetry. 
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Introduction 

Ce chapitre présente les méthodes d’élaboration et de caractérisation des bio-aérogels à base de 

cellulose et de pectine ainsi que leurs hybrides avec la silice. 

Premièrement, nous présentons les matériaux utilisés: cellulose, pectine et précurseurs de silice 

(silicate de sodium et polyéthoxydisiloxane), ainsi que les solvants et les produits chimiques 

servant à leur dissolution et à la préparation des gels. 

La procédure pour obtenir des aérogels hydrophobes par modification chimique de la cellulose 

est également décrite. 

Les différentes étapes de préparation des gels à base de polysaccharides et de leurs composites 

avec la silice sont décrites en détails : dissolution des polysaccharides, gélification et/ou 

coagulation, mélange ou imprégnation de la matrice par la solution de précurseur de silice, 

lavage et séchage supercritique. 

La gélification des mélanges cellulose-silicate de sodium a été étudiée par des mesures en 

rhéologie dynamique. 

Les aérogels, une fois séchés, ont été caractérisés en termes de densité apparente, surface 

spécifique et porosité (distribution de tailles de pores et volume poreux spécifique). La 

morphologie de tous nos échantillons a été étudiée en détails au microscope électronique à 

balayage (MEB). La teneur en silice des aérogels composites a été évaluée par analyse 

élémentaire et spectroscopie dispersive en énergie des rayons X couplée au MEB. 

L’hydrophobicité des échantillons de cellulose modifiée a été contrôlée par mesure d’angle de 

contact avec l’eau. La reprise hydrique des aérogels hydrophobisés a été également mesurée et 

comparée à celle d’échantillons de référence natifs i.e. hydrophiles. 

Les propriétés mécaniques ont été analysées par mesures des modules d’Young, contrainte et 

déformations seuil, et contrainte à la rupture via des tests de compression uniaxiale. Les 

modules d’Young pour certains composites ont également été déterminés par mesure de la 

vitesse des ultrasons à travers un échantillon. 

Enfin, la conductivité thermique des échantillons a été mesurée par la méthode du fil chaud et 

par thermo-fluxmétrie.  
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1. Preparation of polysaccharide and polysaccharide-silica composite 

aerogels 

 Materials 

 Cellulose 

In this work two sources of cellulose were used: 

Avicel PH101 was purchased from Sigma-Aldrich. It is microcrystalline cellulose (MCC) with 

a degree of polymerisation of 180, as given by the manufacturer. Avicel is a white 

microcrystalline powder with a mean size of particles around 50 μm. This cellulose was used 

as the basis of aerogels from cellulose-NaOH solutions (chapter III). It was also the starting 

material for cellulose chemical modifications to obtain hydrophobic materials (chapter V). 

Cellulose of higher molecular weight was kindly provided by Thuringian Institute of Textile 

and Plastics Research (TITK), Rudolstadt, Germany; the degree of polymerization is 600, as 

provided by TITK. This material was used to elaborate the aerogels from cellulose-ionic liquids 

solutions (chapter IV). 

 Pectin 

The pectin studied was citrus pectin, purchased from Sigma Aldrich. The proportion of 

galacturonic acid in this pectin is above 74% with at least 6.7% of methoxy groups as given by 

the manufacturer. The degree of etherification can be determined by IR spectroscopy (Synytsya, 

2003; Rudaz, 2013): a strong band at 1740 cm-1 is attributed to the C=O stretching of -COOCH3 

groups, while –COO- ions generate an absorption band at 1640 cm-1. By using the peak height 

of the bands at 1740 and 1610 cm-1, DE can be calculated with the following equation (eq.II.1), 

with ACOOCH3 being the area of the band corresponding to esterified carboxyl groups, and ACOO- 

the area of the band corresponding to free carboxyl groups: 

𝐷𝐸 =  
𝐴𝐶𝑂𝑂𝐶𝐻3

𝐴𝐶𝑂𝑂𝐶𝐻3 + 𝐴𝐶𝑂𝑂−
 

With (Eq.1), the degree of esterification of citrus peel pectin DEcitrus = 52%. 

 Silica precursors 

To elaborate one-pot composites (chapter III), sodium silicate solution (Na2SiO3, general 

purpose grade) was purchased from Fisher Scientific and used as received. 

For the impregnation of coagulated polysaccharides (chapters IV, V and VI), the silica 

precursor used was a polyethoxydisiloxane (PEDS). PEDS, is the prepolymerized form of 

tetraethoxysilane (TEOS), prehydrolyzed under H2SO4 catalysis, with SiO2 concentration of 20 

wt% in ethanol. Analysis by dynamic light scattering (DLS) and sterical exclusion 

chromatography performed at Institut Charles Sadron, Strasbourg, France, showed that the 

mean length of PEDS oligomers was about 7 monomer units; the mean particle size was around 

1nm, with a small quantity of bigger agglomerates (< 1µm) dispersed in the solution. It was 

kindly provided by ENERSENS, Bourgoin-Jallieu, Isère, France.  

(II.1) 
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 Solvents and other chemicals 

Ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc) was purchased from BASF. 

Dimethylsulfoxyde (DMSO, purity > 99%), N,N,dimethylformamide (DMF, purity >98%), 

methanol (98% purity), and ethanol (purity 98%) were purchased from Fischer Scientific. All 

solvents were used as received. 

Hydrochloric acid (HCl aqueous solution, 32%wt) and citric acid (C6H8O7, purity > 97%) was 

purchased from Fisher Scientific. The catalyst used for the gelation of the PEDS precursor was 

NH4OH (35 wt% aqueous solution), purchased from Sigma-Aldrich. 

Reagents for the synthesis of tritylcellulose, lithium chloride (99% purity), triphenylmethyl 

chloride (the triphenylmethyl group will be referred as “trityl” in the following) (98% purity), 

N,N-dimethylformamide (DMF), N,N Dimethyl acetamide (DMAc, 99% purity), NaOH, and 

pyridine (purity > 95%) were purchased from Fisher Scientific.  

 Cellulose solutions and gels 

 General principle of making polysaccharide-based aerogels 

The preparation of polysaccharide-based aerogels (or bio-aerogels) can be summed up in three 

essential steps (figure II.1): dissolution of polysaccharide in an appropriate solvent, gelation (if 

any) and coagulation, solvent exchange and drying with supercritical CO2. 

 

Figure II.1 : Preparation of bio-aerogels 

 Preparation of aerogels from 8%water-NaOH solutions : cellulose and 

cellulose-silica composites 

The one-pot process followed for the synthesis of composite aerogels is presented on figure 

II.2. Cellulose was dried for 2 hours in a vacuum oven (50 °C, 50 mbar) before dissolution. So-

dried cellulose was impregnated with water for 1h at 5 °C. 15.2%wt NaOH aqueous solution 

was prepared under magnetic stirring (250 rpm) and ZnO was added immediately after NaOH 

dissolution. After total dissolution of ZnO, this aqueous mixture was cooled to - 6 °C. ZnO was 

added to ensure better cellulose dissolution and to slow down cellulose gelation (see part 3.1). 

Then wet cellulose and aqueous NaOH-ZnO solution were mixed at - 6°C under mechanical 

stirring (500 rpm) for 2 h; final solutions were of 5 wt% cellulose dissolved in aqueous 8 

wt%NaOH-1wt%ZnO, solution pH was 14. 

40wt% sodium silicate solution was prepared by dissolving solid Na2SiO3 at 75 °C in distilled 

water under mechanical stirring (350 rpm) for about 2 h, until a clear solution was obtained. 

The pH of the resulting sodium silicate solution was 14.  

The solution of sodium silicate was cooled to - 6°C (no precipitation was observed by eye) and 

mixed with cellulose-8%NaOH-1%ZnO solution at - 6°C in various proportions. The obtained 

mixtures were poured into cylindrical plastic moulds and sealed. The mixtures spontaneously 
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Polysaccharide 
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solidified in a few minutes at ambient temperature. Typical sample shape was a disk of 4 cm 

diameter and 1 cm height. The samples were then immersed in 100 ml of either 0.3M HCl or 

0.2M citric acid solution to neutralize NaOH, coagulate cellulose and induce the formation of 

silica particles from Na2SiO3 inside the pores of coagulated cellulose, according to reaction (1). 

The volume of 0.3M HCl or 0.2M citric acid bath was such that the amount of acid was equal 

to one molar equivalent of NaOH (for neutralization) plus 2 molar equivalents of sodium silicate 

(necessary for silica condensation, reaction (1)). As a reference, some solidified samples were 

simply coagulated in water.  

Na2SiO3 + 2HCl  SiO2 + 2 NaCl + H2O 

 

Figure III.2 : Scheme of “one-pot” synthesis of organic-inorganic composite aerogels from mixed aqueous 

solutions of cellulose-8%NaOH-1%ZnO and sodium silicate (Demilecamps et al., 2014). 

This method allows an efficient mixing of cellulose and silica precursor, while controlling the 

gelation for each phase. NaOH-cellulose solution gels spontaneously depending on parameters 

such as temperature, cellulose concentration, or presence of other solutes. Sodium silicate only 

gels when the pH of the system is lowered, as is the case when it is put into an acid bath. 

 Cellulose solutions from cellulose-EMIMAc solutions 

First, cellulose powder was dried for 2 hours in a vacuum oven (50 °C, 50 mbar) before 

dissolution. Cellulose was dissolved in EMIMAc:DMSO = 80:20 for 16 h at 70 °C to form a 3 

wt% cellulose solution. DMSO was used to facilitate cellulose dissolution due to solvent 

viscosity decrease; at this concentration of DMSO cellulose is completely dissolved according 

to the phase diagram obtained for EMIMAc:DMSO mixture (Le, Rudaz and Budtova, 2014). 

Cellulose solution was poured into plastic moulds and coagulated in ethanol. Then several 

washings with ethanol (the volume of ethanol being 3-5 times that of the gel) were performed, 

with solvent exchange every 24h, to fully remove the traces of cellulose solvents. 

 Synthesis of chemically hydrophobized cellulose: tritylcellulose 

 Synthesis procedure 

The synthesis of tritylcellulose was performed using the procedure described in (Camacho 

Gomez et al., 1996; Pour et al., 2015). The grafting of triphenylmethyl groups on the carbon 6 

of cellulose was done using an etherification reaction of MCC and tritylchloride, in the presence 

of pyridin. The cellulose solvent was DMAC/LiCl. 
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Figure II.3: Reaction of tritylchloride and cellulose 

The molar proportions of each reactant, for a batch of 500 mL, is shown on table II.1. Cellulose 

was swollen in DMAc for 16 h at ambient temperature, under mechanical stirring (500 rpm), 

and then the system was heated for 2 hours at 130 °C. After cooling to 100 °C, lithium chloride 

was added and the mixture was let to cool until reaching ambient temperature. Tritylchloride 

(3 molar equivalent per anhydroglucose unit) was dissolved in DMAc in the presence of 

pyridine for 1~2 hours, and added to cellulose solution. The reaction was then carried out under 

mechanical stirring (500rpm) for 48 h at 70 °C. 

Table II.1 : Proportions of reagents necessary for the synthesis of a 500 mL batch of tritylcellulose with a 

DS of 0.62. 

 Cellulose TritylCl LiCl DMAc (swelling) DMAc (grafting) Pyridin 

Molar Eq 1 3 5,7 35 17,5 9,38 

M (g/mol) 162,14 278,78 42,39 87,12 87,12 79,09 

m (g) 12,97 66,91 19,33 243,94 121,97 59,35 

n (mol) 0,080 0,240 0,456 2,80 1,40 0,750 

V (ml)       260,3 130,2 60,6 

Tritylcellulose was then precipitated with a methanol/ethanol mixture (1:3 v/v) and filtered. 

The filtrate was re-dissolved in DMF, precipitated again with methanol/ethanol 1:3 and washed 

for a few hours in methanol at room temperature. The so-obtained wet white powder was dried 

for about 16 h at 40 °C in a vacuum oven under primary vacuum (50 mbar).  

 Preparation of tritylcellulose aerogels 

Tritylcellulose was dissolved in DMF, polymer concentrations were 5, 7.5 and 10 wt%. 

Dissolution was performed at ambient temperature under nitrogen atmosphere. The solution 

was poured into the appropriate molds. Tritylcellulose was coagulated by delicately pouring 

methanol over the surface to avoid damaging the fragile coagulated gel. This step was repeated 

every 24 h until complete coagulation. Solvent exchange with ethanol was then performed every 

24 h for at least 5 days to ensure there was no remaining methanol; resulting “alcogels” were 

ready either for drying to obtain tritylcellulose aerogels or for the impregnation with silica sol. 

 Preparation of pectin gels 

 Gelation in acid media 

Pectin and 1M HCl solutions (with various pectin concentrations) were mixed and stirred 

vigorously at room temperature for 4 h. A viscous solution was obtained. Solutions were 

centrifuged at 6000 rpm for 20 min to eliminate residual undissolved materials. They were 

poured into moulds and let gelling for 24 h to 48h (depending on pectin concentrations). 
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 Reticulation with calcium ions 

Citrus pectin was dissolved at different concentrations in water for 4h at room temperature. The 

pH was adjusted with a KOH 0.5M solution, to obtain a basic solution (pH was varied between 

7.5 and 13). The resulting solution was centrifuged for 20 min at 6000 rpm, then poured into 

the appropriate molds. 

Calcium chloride, from a calcium chloride 1M solution was added to give an overall calcium 

concentration in the mixture of 10 to 50 mM, depending on sample. The system was left to gel 

at room temperature for a few hours. 

 Washing of pectin gels in ethanol 

Gels were immersed in a 50/50 vol/vol water/ethanol bath to coagulate pectin. The ratio of 

ethanol in the coagulation bath was then increased progressively to 100% (by 20% increment). 

Ethanol baths were then changed every day for 3 to 5 days. 

 Impregnation of gels with the silica phase 

 Diffusion-controlled impregnation 

Coagulated-in-ethanol polysaccharides (cellulose or pectin gels) were immersed for 24h in a 

16%wt PEDS solution in ethanol. The targeted concentration of silica was of 8%wt in the 

sample; thus we had mgel = mPEDS. Once the impregnation was complete, the sample was 

removed from the flask and immersed into the catalyst solution (1.3%wt NH4OH in ethanol-

water 95:5 solution) for 24h at room temperature. The samples were then washed with ethanol, 

and stored in ethanol until drying. 

 Forced-flow impregnation 

To increase the speed of cellulose impregnation, we used a pressure gradient to force the PEDS 

solution to pass through the porosity of the coagulated-in-ethanol polysaccharide matrix 

(chapter IV). Using 3-D printer, a homemade “filter” system was designed for the impregnation 

of wet disc-shaped samples with 4 cm diameter (figure II.4). 

 

Figure II.4: Homemade filter apparatus for forced-flow impregnation of polysaccharide gels. 

The filter system was fixed above a Büchner flask linked to a water-connected vacuum pump. 

The upper tank of the filter apparatus was filled with 16%wt PEDS solution so that mPEDS = 

Tank 

Gasket 

Filter grid 

Filter 

Primary vacuum 

Funnel 
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2mgel. The vacuum pump was run for 20-60 minutes, depending on sample thickness. The 

filtrate was recovered at different impregnation times; the impregnation was considered 

complete when the dry mass of the filtrate equaled the dry mass of the initial PEDS solution. 

Once the impregnation was complete, the gelation of the silica phase was performed immersed 

into the catalyst solution (1.3%wt NH4OH in ethanol-water 95:5 solution) for 24h at room 

temperature. 

 Drying methods 

 Supercritical drying 

A functional scheme of the supercritical (sc) CO2 drying facility used at MINES ParisTech, 

Centre PERSEE, is shown on figure II.5. 

 

Figure II.5: Functionnal scheme of the supercritical CO2 facility at Centre PERSEE, MINES ParisTech.. 

Gels were placed in a 1 litre autoclave filled with ethanol in order to avoid evaporation before 

the beginning of sc drying. The system was closed, pressurized to 50 bars with gaseous CO2, 

and heated to 37 °C. The excess of ethanol was purged, maintaining the pressure and the 

temperature constant with gaseous CO2. The system was then pressurized until the operating 
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conditions were reached: 80 bars and 37 °C. When the thermodynamic equilibrium was 

reached, the liquid phase in the pores of the precursor was exchanged with sc CO2 through a 

dynamic washing step (80 bars, 37 °C, 5 kg of CO2 per hour) over approximately 7 hours. The 

system was then slowly and isothermally depressurized (4 bars per hour at 37 °C) to avoid 

condensation of liquid CO2 and cracking because of very low permeability of the matrices. 

Once the atmospheric pressure was reached, the system was cooled down to ambient 

temperature and the autoclave was opened (Masmoudi et al., 2006). 

 Freeze-drying 

When a freeze-drying procedure was used in this work (chapter III), cellulose and cellulose-

silica composite samples was coagulated directly in water and no washing in ethanol was 

performed. These swollen-in-water samples were placed first in a glass beaker. A close contact 

with glass walls is preferable since it will optimize heat transfer during freezing. Beakers were 

immersed in either in a liquid nitrogen (-196°C) bath for 3 minutes or in an ethanol bath placed 

in a freezer for about an hour. Frozen samples were then placed in a freeze-dryer Cryotec 

Cosmos 80. Vacuum was slowly made inside the chamber so that cracks were avoided. Samples 

were let drying for 48 hours. Water vapour was condensed in the refrigerated unit (Figure II. 6) 

 

Figure II.6: Freeze drying apparatus. 

 Ambient pressure drying 

Ambient pressure drying was performed at 60 °C overnight in a hermetic lab oven, or at ambient 

temperature for 7 days. In order to increase ambient humidity around the gels and minimize 

convection effects during drying (Cervin et al., 2013) the gels were placed in a petri dish and 

covered with a perforated aluminium cap. 
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2. Characterization of the materials 

 Rheological study of cellulose and cellulose-sodium silicate 

solutions and mixtures 

 Determination of the gel point of cellulose-sodium silicate solutions 

The determination of gel point was performed following the procedure established by (Winter 

and Chambon, 1986) on polymethildisiloxane gelling systems. The method follows the 

evolution of elastic modulus, G’, and viscous modulus G’’ over time at constant frequency. At 

first the gelling system behaves like a viscous fluid: the viscous modulus is higher than the 

elastic modulus. As gelation goes on, both moduli increase over time, until the system behaves 

as an elastic solid when G’ becomes higher than G’’. The gel point tgel is taken at the time where 

G’=G’’(figure II.7). 

 

Figure II.7: Example of the determination of gel point for a cellulose-sodium silicate solution at 25 °C. 

Measurements of dynamic rheology of cellulose-sodium silicate solutions were performed on 

a Bohlin Gemini rheometer equipped with cone-plate geometry (4°–40 mm) and Peltier 

temperature control system. The measurements were done at a frequency of 0.1 Hz and the 

stress was 0.1 Pa to ensure being in the linear regime, and temperatures between 0 °C and 40 

°C were studied. 

 Chemical composition of polysaccharides and polysaccharide-

silica composites 

 Elemental analysis 

To evaluate the silica to cellulose ratio in the composite materials, elemental analysis was done 

in CNRS Service Central d’Analyse (Villeurbanne, France), with a microanalyzer CHN. Wt% 

of silicium (wt%Si) was measured allowing the calculation of wt% of silica ( 𝑤𝑡%𝑆𝑖𝑂2
) (eq.2) 

and silica mass yield in the dry aerogel ( 𝑌𝑖𝑒𝑙𝑑𝑆𝑖𝑂2
) (eq.II.2): 

  𝑤𝑡%𝑆𝑖𝑂2
=  

𝑀𝑆𝑖𝑂2

𝑀𝑆𝑖
𝑤𝑡%𝑆𝑖  

(II.2) 
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where MSi = 29 g/mol and 𝑀𝑆𝑖𝑂2
= 61 g/mol are the molar mass of silicon and silica, 

respectively. 

  𝑌𝑖𝑒𝑙𝑑𝑆𝑖𝑂2
=  

𝑤𝑡%𝑆𝑖𝑂2

𝑤𝑡%𝑆𝑖𝑂2(𝑡ℎ)
  

The theoretical yield in SiO2 is expressed as follows (eq II.4): 

𝑤𝑡%𝑆𝑖𝑂2
(𝑡ℎ) =

𝑤𝑡%𝑆𝑖𝑂2,𝑚𝑎𝑥

𝑤𝑡%𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒  +  𝑤𝑡%𝑆𝑖𝑂2,𝑚𝑎𝑥
 

where 𝑤𝑡%𝑆𝑖𝑂2,𝑚𝑎𝑥 is the silica concentration in the dry material (for a given initial proportion 

between cellulose and silica) in case of total silica conservation in the sample during processing 

(coagulation, washing and drying steps). 

 FTIR spectroscopy 

Fourier-transform infrared (FTIR) spectroscopy was performed using a Bruker Tensor 27 TGA-

IR (figure II.8) with OPUS 5.6 software. Samples were analyzed in attenuated total reflectance 

mode (ATR) using a Pike MIRacle accessory equipped with a Ge crystal (Pike Technology). 

The spectrum has been collected 16 times and corrections for CO2 and water were applied to 

eliminate background noise. 

 

Figure II.10: Infrared spectrometer Brüker Tensor 27 with ATR equipment. 

 Electron microscopy 

 Scanning Electron microscopy 

Scanning electron microscopy (SEM) gives information on the morphology of a sample at the 

micrometer scale. A focused beam of electrons is scanning the sample in a high vacuum 

environment; the interaction of the electron beam with the sample produces the emission of 

various particles (electrons, photons) that are analysed through a detector. The electrons from 

the beam interact with the surface within a pear-shaped volume called the interaction volume 

(figure II.9.a). Depending on the depth of interaction and the energy of the electrons re-emitted 

by the sample, several types of detected particles can be distinguished (figure II.9.b):  

(II.3) 

(II.4) 
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Figure II.11: (a) Interaction volume of electrons on a sample surface and (b) Energy diagram of the 

electrons re-emitted by the scanned sample. E1 corresponds to the ionisation energy. 

Secondary electrons originate from inelastic interactions with the electron cloud of atoms near 

the surface of the sample. They have low energy (< 50 keV). The detection of these electrons 

give information about the topography of the sample, up to a depth of a few tens of nm. 

Secondary electron detectors allow higher resolution images than back-scattered detectors. 

Back-scattered electrons are the result of elastic or quasi-elastic interaction with the atom cores 

of the sample. Their energy is higher than that of secondary electrons, and is close to the energy 

of the incident beam. They come from deeper inside the sample. Back-scattered electrons give 

information on the sample atomic composition, as the number of re-emitted electrons increase 

with the atomic number. 

Finally the Auger electrons are emitted from extreme surface atoms which had an electron from 

an inner layer ejected by the action of the incident beam. An electron of higher energy may fill 

the vacant space left, resulting in a release of energy; this energy can be transferred to another 

atomic electron, which is ejected in turn from the atom; this phenomenon is called Auger 

emission. 

In order to get sufficient signal from secondary electrons, and to avoid accumulation of 

electrostatic charge at the surface, the samples must be electrically conductive. Insulating 

samples, such as the aerogels studied in this work, must be metallized by a thin (few nm) coating 

of gold or platinum, and are glued to a metallic support by a conductive adhesive, like carbon 

tape or silver glue. Metallization is performed by putting the samples in a small vacuum 

chamber. Then, argon gas is ionized by the action of an electric field; the positively charged 

argon ions interact with a negatively charged gold or platinum foil. The argon ions knock 

gold/platinum atoms from the surface of the foil. These gold atoms then settle onto the surface 

of the sample producing a thin metallic coating. 
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Figure II.12: High-resolution scanning electron microscope Zeiss Supra 40 

The morphology of our aerogel samples was studied using high resolution scanning electron 

microscope SEM-FEG Zeiss Supra 40 (figure II.10). Acceleration voltage was set up at 3 keV 

and a diaphragm of 20µm. Samples were coated with a 7 nm platinum layer on a QUORUM 

Q150T rotating metallizer before observations. 

 Energy diffractive spectroscopy 

Energy diffractive spectroscopy (EDS) analyses the elemental composition of a sample, by 

detecting X-rays emitted by the sample surface during the interaction with an electron beam 

from a SEM. The beam excites atoms in the sample, and they release energy in the form of X-

rays. The energy of emitted X-rays is characteristic from the atoms that produced them. Thus a 

spectrum can be obtained, where the different elements in the sample are identified by peaks at 

characteristic energy values. The electron beam can be precisely controlled, to analyze selected 

areas of the material. 

In the case of EDS analysis, metallized samples could not be used because the signal from the 

surface metal coating partly masks the signal from the sample. Non-metallized, electrically 

insulating samples had to be studied with an environmental electron microscope. This type of 

SEM allows to study samples in back-scattered electrons at low vacuum (0.1 to 1.3 mbar), 

which does not requires the samples to be metallized.  

 

Figure II.13: (a) XL30 environmental scanning electron microscope and (b) Column and EDS X-ray 

detector  

a b 
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Philips XL30 environmental scanning electron microscope (figure II.11.a) coupled with an X-

ray detector (figure II.1.b) was used to study silicon distribution inside the composite aerogels 

by Energy Diffractive Spectroscopy (EDS). An acceleration voltage of 12 keV was used and 

the vacuum pressure in the chamber was 0.5mbar. 

 Density and porosity measurements 

 Density measurements 

The bulk (or apparent) density of a sample is defined as the ratio between its mass and the 

volume of ist enveloppe (eq II.5).  

 𝜌𝑏𝑢𝑙𝑘 =  
𝑚

𝑉
 

If a sample shape is not regular, it is difficult to precisely evaluate its volume by simple 

geometric measurements. The volume of samples was thus evaluated via powder pycnometry. 

The measurements were done using a powder pycnometer Geopyc 1360 from Micromeritics 

(figure II.12). A glass chamber is filled with a powder of small, rigid spheres of ceramics and 

graphite with a heterogeneous granulometry (40 to 230 µm). The powder has a high degree of 

flowability, and is called under the commercial name DryFlo®. For all experiments we assumed 

that the powder could not penetrate pores smaller than 15 µm.  

 

Figure II.12: Powder pycnometry densimeter Geopyc 1360 

The powder is compressed inside a glass tube by a piston applying a determined force. First, 

the displacement l0 of the piston with the powder alone is registered for the predefined force. 

Then the sample is weighted and introduced into the tube with the powder. The sample must be 

fully enveloped by the powder to ensure reliable measurements. Then the displacement of the 

piston l at the same compression force is recorded; the sample volume can be calculated from 

the tube diameter D and the displacement values (eq. 6).  

𝑉 = (
𝐷

2
)

2

× (𝑙 − 𝑙0) × 𝜋 

A 19.1 mm sample chamber and a force of 25 N were used within this study, particularly 

optimized for fragile porous materials based on our internal expertise. 

(II.6) 

(II.15) 
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 Determination of apparent porosity 

Porous materials such as aerogels and foams are materials containing cavities or channels, filled 

with air, called pores, and a solid backbone. The porosity of a material is defined as the ratio 

between the volume of void space and the total volume (solid + voids). Apparent porosity (i.e. 

open porosity) can thus be determined from the bulk and skeletal density (equation 7). The bulk 

density is generally determined by mercury porosimetry or powder pycnometry. The skeletal 

density skeletal of a sample is the density of the material calculated when excluding all open 

pores and open spaces, it is generally calculated from helium pycnometry.    

𝜀 =  
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 −

𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
 

To be as precise as possible, we can make a distinction between open and closed pores. The 

former are easily characterized by gas adsorption techniques as well as pycnometry (mercury 

or powder), while the latter cannot be accessed by these molecules. The total pore volume is 

the sum of the volume of open and closed pores.  

 Principle of gas adsorption 

Nitrogen adsorption at 77 K was used to determine the specific surface area and pore size 

distribution in the materials. Gas adsorption is the accumulation of gas molecules over the 

surface of a material, at the gas-solid interface. We can distinguish between chemisorption, 

where the gas molecules form chemical covalent bonds with the adsorbent, and physisorption, 

where the gas is connected to the adsorbent by weaker physical links such as Van der Waals 

interactions. 

Physisorption experiments are conducted at the boiling point of liquid nitrogen (77 K) at 

atmospheric pressure. The adsorption isotherm plots the adsorbed quantity of gas per gram of 

adsorbate as a function of equilibrium relative pressure p/p0, where p is the equilibrium pressure 

of adsorbate gas and p0 the vapour pressure of nitrogen. Adsorption is reversible and the 

opposite phenomenon is called desorption. The adsorption/desorption isotherms are a way to 

evaluate the porosity of materials. According to IUPAC there are six different types of 

adsorption isotherms (Sing et al., 1985) (figure II.13). 

(II.7) 
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Figure II.13: The six types of adsorption/desorption isotherms according to IUPAC classification (adapted 

from Luciani, Denoyel and Rouquerol, 2003). 

Type I isotherm has a horizontal plateau due to the saturation of the absorbent event with 

increasing pressure. It is typical for microporous solids with small external surfaces. 

Type II isotherm has a gradual increase of adsorbed quantity with pressure and is obtained for 

macroporous or non-porous solids. The adsorbed layer is thickening gradually and is typical of 

multilayer adsorption. 

Type IV isotherm is similar to type II for low relative pressure. At higher relative pressure, a 

saturation plateau is observed with variable length. It is typical for mesoporous adsorbent. A 

hysteresis loop is observed during desorption, due to capillary condensation, which is unique 

to each adsorbate/adsorbent system. 

Type III and V isotherms are not common and have a convex plot due to very weak interactions 

between adsorbate and adsorbent. They are more typical for water vapour adsorption on 

hydrophobic surface. 

Type VI isotherm was observed for adsorption by energetically homogeneous surfaces on 

which gas layers are successively adsorbed. 

The properties of porous materials strongly depend on the pores shape and diameter. Three 

categories of pores are defined by IUPAC depending on size (Sing et al., 1985): 

- Macropores have a diameter above 50 nm. 

- Mesopores have diameters between 50 and 2 nm. 

- Micropores have a diameter below 2 nm 

 Specific surface area by BET method 

Specific surface area is the total open pore surface surface per gram of matter. The specific 

surface area is strongly related to particle diameters and size distribution as well as their surface 

rugosity; as a consequence materials with many small pores gives higher specific surface area. 

Thus it is an important characteristic for porous materials. The Brunauer, Emmett and Teller 

method was defined in 1938 to determine the specific surface areas of porous solids. The BET 
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model is based on a multilayer adsorption model, assuming an absence of interaction between 

adsorption layers, the number of adsorption layers on a solid is infinite, and thus the Langmuir 

theory can be applied to each layer. In a relative pressure range between 0.05 and 0.3, the 

adsorption isotherm is quasi-linear and follows the following equation (eq II.8):  

𝑝
𝑝0⁄

𝑞𝑎𝑑𝑠(1 −
𝑝

𝑝0⁄ )
=  

(𝐶 − 1)
𝑝

𝑝0⁄

𝑞𝑚𝐶
+  

1

𝑞𝑚𝐶
 

where qads the amount of gas adsorbed at the relative pressure p/p0, qm the monolayer capacity 

(corresponding to the quantity of adsorbate necessary to fill an adsorption monolayer), and C 

the BET constant. 

When the available pore surface is completely covered by adsorbed molecules, specific surface 

area can be determined by (eq. II.9):  

𝑆𝐵𝐸𝑇 =  (
𝑞𝑎𝑑𝑠

𝑚𝑠
) 𝑁𝐴𝜎𝑚 

with NA the Avogadro number (NA= 6.022.1023), σm the cross section covered by each nitrogen 

molecule (σm = 0.162 mm²) and ms the mass of adsorbent. 

As the apparatus measures the volume of adsorbed gas vads, the quantity adsorbed is obtained 

by (eq.10):  

𝑞𝑎𝑑𝑠 =  
𝑣𝑎𝑑𝑠

𝑣𝑙
 

with vl the molar volume of perfect gas defined by vl = 22 414 cm3.mol-1. 

Thus the BET equation becomes (eq.II.11):  

𝑆𝐵𝐸𝑇 =  (
𝑣𝑚

𝑚𝑠
)

𝑁𝐴𝜎𝑚

𝑣𝑙
 

Experimentally, SBET was obtained by plotting 

𝑝
𝑝0⁄

𝑣𝑎𝑑𝑠(1−
𝑝

𝑝0⁄ )
 as a function of 

𝑝
𝑝0⁄  between 0.05 

and 0.3. The slope and y-intercept of the linear curve give the constant C and the value of qads, 

allowing the direct calculation of SBET. 

 Pore size distribution by BJH method 

The pore size distribution of mesopores can be obtained by the Barett, Joyner and Halenda 

(BJH) method. It is based on capillary condensation of nitrogen inside mesopores. The Kelvin 

law can be applied (eq.II.12):  

ln (
𝑝

𝑝0⁄ ) =  
−2𝛾𝑉𝑙

𝑟𝐾𝑅𝑇
 

with γ the surface tension, Vl the molar volume of the adsorbed liquid at temperature T, and rK 

the radius of the liquid meniscus inside the pore.  

(II.9) 

(II.10) 

(II.11) 

(II.12) 

(II.8) 
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In the case of nitrogen at 77K, the Kelvin law is:  

𝑟𝐾 = −0.415(
𝑝

𝑝0⁄ )  

The pore size distribution can be reconstructed from equation 12 for each relative pressure. The 

calculations are generally performed on the desorption curve, and gives information on pores 

with a radius lower than 80 nm. 

 Experimental setup for BET and BJH measurements 

Specific surface area and BJH pore size distribution was determined using treatment of N2 

adsorption isotherms at 77 K on ASAP 2020 apparatus from Micromeritics (figure II.14). All 

samples were degassed for 300 minutes at 70 °C before analysis. To ensure consistent BET 

values without increasing too much the equilibration time, the mass of samples taken for 

measurements were comprised between 100 and 300 mg. 

 

Figure II.14: Gas adsorption apparatus Micromeritics ASAP 2020 for the analysis of specific surface area 

and pore size distribution. 

 Study of hydrophobic properties 

 Water contact angle analysis 

The simplest way to assess the hydrophobicity of a material is the measurement of the contact 

angle of the material with water. When a drop of water is deposed at the surface of a material, 

a thermodynamical equilibrium between the solid, liquid and gas phases is reached (figure 

II.15).  

 

Figure II.15: Contact angle and interfacial tensions at a sample surface. 

γ
LG

 

γ
LS

 γ
SG

 

θH2O 

(II.13) 
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The surface tensions between the different phases are noted γSG for the solid-gas interface, γLG 

for the liquid-gas interface and γLS for the liquid-solid interface; the contact angle θH2O can be 

theoretically determined from Young-Dupré equation (eq. 14):  

𝛾𝑆𝐺 −  𝛾𝐿𝐺 − 𝛾𝐿𝑆𝑐𝑜𝑠𝜃𝐻2𝑂 = 0 

Samples showing contact angles with water superior to 90° are considered hydrophobic. 

Generally the contact angle is measured directly at the surface of the sample. For all aerogels 

studied in this work, water contact angle measurements were performed with a Krüss Drop 

Analyzer DSA 100 goniometer in controlled atmosphere (20°C, 50%RH). 50mm3 droplets were 

deposited on a sample flat and horizontal surface. The contact angle was measured from 

pictures of the droplets using Drop Shape Analysis software. 

 Aging studies in an humid environment 

For water vapor uptake measurements, the sample was placed in controlled climate chamber 

Binder MKF 230 (figure II.16) at 20 °C and 20% relative humidity (%RH) for 24 hours and the 

mass m0 and volume V0 of the sample at this “dry point” was recorded. The sample was then 

submitted to 30 °C and 80% RH during 30 hours, and sample mass and volume, mt and Vt, 

respectively, were recorded as a function of time. 

 

Figure II.16: Controlled climate chamber Binder MKF 230. 

Mass and volume ratio at equilibrium, Hm and Hv, respectively, were calculated as follows: (eq 

II.15 and II.16):  

  𝐻𝑚(%) =  
𝑚𝑡− 𝑚0

𝑚0
∗ 100 

  𝐻𝑉(%) =  
𝑉𝑡−𝑉0

𝑉0
∗ 100 

Long term aging tests over 45 days were performed by Markku Leivo and Tuomo Ojanen, at 

the Technical Research Centre of Finland (VTT, Helsinki) within the frame of the FP7 

AEROCOINS project. The tests were carried out using closed containers including salt 

solutions producing known relative humidity conditions under constant temperature. The 

vessels were equipped with fans that circulate the air in order to ensure equal humidity 

distribution in the closed air space.  

(II.14) 

(II.15) 

(II.16) 
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The aerogel samples were set in lightweight aluminum vessels, each set of material placed in 

its own vessel. First the test samples were dried out initially under 0 % RH. Then they were set 

in the containers having known relative humidity. The weight of the vessels containing the test 

materials were monitored until there were no significant changes. The final weights were used 

to solve the equilibrium moisture contents. The weight change under different relative humidity 

conditions were compared to the dry weight levels to acquire the moisture content of the 

material using eq. II.15. 

Three different relative humidity levels were used in the experiments to find out the equilibrium 

moisture content levels. The samples were stabilized under different humidity conditions 

starting from 75 % RH and increasing the humidity to next level (85%RH and 95%RH) after 

the equilibrium was reached. The experiments were stopped if the samples showed signs of 

deterioration. All tests were performed at a constant temperature of 20°C.  

 Mechanical characterization 

 Sound velocity measurements 

The mechanical properties of cellulose-silica composite aerogels from direct mixing of 

cellulose-NaOH and sodium silicate solutions (chapter III) were determined by sound velocity 

measurements performed by Gudrun Reichenauer (Bavarian Center for Applied Energy 

Research, Am Galgenberg 87, 97074 Wurzburg, Germany). It was established by (Gross, 

Reichnauer and Fricke, 1988) that the sound velocity in aerogel samples depended on sample 

bulk density with a scaling law. 

Disc-shaped samples with 4 cm diameter and 1 cm thickness were placed between two 

piezoelectric sensors, one being the emitter, the second one the captor. An ultrasonic pulse was 

run through the sample; measuring the sound circulation time allows calculating sound velocity 

V. 

Young’s modulus E of the samples can then be calculated from the density bulkand the 

longitudinal sound velocity of the samples determined by ultrasonic run time (eq.II.17) (Gross, 

1992):  

𝐸 = 𝜌
𝑏𝑢𝑙𝑘

𝑉2
1 − 𝜇 − 2𝜇2

1 − 𝜇
= 𝐶11

1 − 𝜇 − 2𝜇2

1 − 𝜇
 

with 𝐶11 being the elastic constant and  the Poisson´s ratio which is equal to zero for 

Aerocellulose (Sescousse et al, 2011);  thus we assumed E = C11 for cellulose aerogels. 

 Uniaxial compression measurements 

The mechanical properties of aerogels from cellulose, tritylcellulose, and pectin, as well as their 

composites with silica (chapters IV, V and VI) were characterized by uniaxial compression 

measurements. The experiments were carried out on Zwick mechanical testing machine. The 

samples were placed between two parallel plates. Before measurements, samples were polished 

to make upper and lower surfaces planar and parallel which was verified with a micrometric 

sensor. Two different loads were applied, as suggested in (Rudaz et al., 2014). 

-100 N for precise measurements of Young modulus (E) in the linear visco-elastic regime. 

(II.17) 
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-2000 N for complete stress-strain curve.  

The samples were cylindrical in shape, with a diameter/length ratio of 2/3. 

The tests were performed at room temperature (20-22 °C), atmospheric pressure and around 

40%RH. The displacement rate was 1 mm/min and experiments were performed until 75-80% 

deformation or until sample break. These experimental conditions were chosen to be the same 

as in the works done previously in CEMEF on Aerocellulose samples (Gavillon, 2007). At least 

three samples per formulation were tested to ensure reproducibility and mean values for Young 

modulus and fracture stress were calculated. The experimental errors were determined, for each 

formulation, from standard deviation. 

The compression for cellulose and pectin aerogels is uniform and the cross-section area of the 

cylindrical samples does not change during the tests (Sescousse et al., 2011; Rudaz et al., 2014). 

The stress σ(t) is directly related to the ratio between the applied force F(t) and the initial cross-

section A0 (eq.II.18):  

𝜎(𝑡) =
𝐹(𝑡)

𝐴0
=

4𝐹(𝑡)

𝜋𝑑2
 

The strain is defined by equation II.19:  

𝜀 =
𝑙(𝑡) − 𝑙0

𝑙0
 

with l(t) the length of the sample at a given strain and l0 its initial length. 

The ratio between axial and transversal strains of a sample is the Poisson ratio, noted ν (eq. 

II.20).  

𝜈 =

𝐿(𝑡) − 𝐿0

𝐿0

𝑙(𝑡) − 𝑙0

𝑙0

 

with L(t) the width of the sample at a given strain and L0 the initial width. 

An example of stress-strain curve for Aerocellulose is shown on figure II.17. 

(II.18) 

(II.19) 

(II.20) 
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Figure II.17: Example of stress-strain curve for an aerocelllose from 3%wt cellulose in EMIMAc/DMSO 

solution. 

On the stress-strain curve three domains can be distinguished: 

The elastic domain corresponds to elastic, reversible deformation of the material. The cell walls 

are deformed under the stress but recover when the stress is released. In this domain stress is 

directly proportional to strain, and the proportionality coefficient is the Young modulus E. Thus 

the Young modulus can be determined by the slope of the curve σ = f(ε). 

Then the plasticity domain is reached: cell walls start to collapse irreversibly by buckling under 

the increasing stress. The observed plateau on the stress-strain curve is called the plasticity 

plateau. The onset of plasticity is defined by the yield stress σyield and yield strain εyield. During 

this step the material is absorbing energy.  

The third domain of the stress-strain curve is the densification domain. Cell walls start to touch 

each other, leading to pore collapse and the stress steeply increases as a result. The start of 

densification is given by the densification strain εd. 

 

Figure II.18: Schematic of the deformation of cell walls according to the open-foam model by (Gibson and 

Ashby, 1999), with a) elastic deformation; b) plastic deformation and c) pore collapse and densification. 

The total absorbed energy during the elastic + plastic domains is noted W. It is defined as the 

area under the stress-strain curve from 0 to the start of densification set at the densification 

strain εd. It can be calculated with (eq.II.21):  

Elastic 
deformation 

Plastic 
deformation 

Densification 

ε
d
 

σ
yield

 

Young 
Modulus E 
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𝑊 = ∫ 𝜎(𝑡)𝑑𝑡
𝜀𝑑

0

 

The mechanical properties of bio-based and silica aerogels can be compared with those of other 

cellular materials. A model for open-cell foams was described by (Gibson and Ashby, 1999). 

The model predicts a power-law dependence of Young modulus and yield stress with material 

bulk density (eq. II.22 and II.23).  

𝐸~𝜌𝑚 

𝜎~𝜌𝑛 

The model predicts a scaling exponent around 2 for foams. The power-law dependency of 

mechanical properties with bulk density was verified in the case of aerogels from silica (Alaoui 

et al., 2008), resorcinol-formaldehyde (Pekala et al.,1990), or cellulose (Gavillon, 2007; 

Sescousse, 2010; Sescousse et al., 2011). The scaling exponents calculated for aerogels were in 

all cases close to 3. This may be explained by inhomogeneities formed during gelation, such as 

side branches or dangling end chains, which do not contribute to the elastic properties of the 

main solid backbone (Ma et al., 2000). 

 Thermal properties 

The thermal conductivity of porous materials is the sum of three components: the solid 

backbone conduction, the conduction of the gas confined in the pores, and the radiative heat 

transfer contribution (eq. II.24).  

𝜆 =  𝜆𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙 + 𝜆𝑔𝑎𝑠 + 𝜆𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 

Two methods used in this study to measure the thermal conductivity are described below: hot 

wire dynamic measurements and hot plate steady state measurements. 

 Hot wire measurements 

Within the frame of AEROCOINS project thermal conductivities of cellulose and cellulose-

silica composites (chapters III and V) were measured by the hot-wire method by Gudrun 

Reichnauer in Bavarian Center for Applied Energy Research (ZAE), Wurzburg, Germany, 

following the procedure described by (Nilsson et al., 1989). The experimental setup is pictured 

on figure II.19. 

 

(II.21) 

(II.22) 

(II.23) 

(II.24) 
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Figure II.19: Functional scheme and picture of the hot wire apparatus used in ZAE. Courtesy of G. 

Reichnauer. 

The principle is as follows: a heating wire and a temperature sensor are placed between two 

identical samples with flat and parallel surfaces, a “thermal shock” is applied to the sample and 

the temperature increase is monitored over time. If the sensor is far enough from the extremity 

of the wire, the heating wire can be assimilated to an ideal, infinite, linear heat source. The 

sample thickness must be sufficient so that its external surface is considered isotherm, fitting 

the hypothesis of a semi-infinite media. Therefore the heat transfer can be considered one-

dimensional and the heat transfer equation becomes, in long times (eq. II.25):  

∆𝑇 =
𝑄

4𝜋𝜆
𝑙𝑛 (

4. 𝑎. 𝑡

𝑟2. 𝐶
) 

with Q the heat production of the thermal shock per unit time and unit length of the heating 

wire (W.m-1),  

- λ the thermal conductivity (W.m-1.K-1),  

- a the thermal diffusivity (m².s-1) with 𝑎 =
𝜆

𝜌𝐶𝑝
 with ρ the bulk density (kg.m-3) of the sample 

and Cp the heat capacity (J.kg-1.K-1). 

- r the distance between the wire and the thermocouple (m) 

- C a constant (C~1.781),  

- t is time. 

The thermal conductivity of the sample can thus be determined by measuring the evolution of 

temperature of the sensor with time (eq. 26).  

𝜆 =
𝑄

4𝜋

𝑙𝑛𝑡2 − 𝑙𝑛𝑡1

𝑇2 − 𝑇1
 

The heating wire and temperature sensor used in our experiments were a Pt-wire, 50 µm in 

diameter. It was placed in between two discs of 4 cm diameter and 1 cm thickness. The Pt-wire 

serves as the heating element and temperature sensor at the same time. At t = 0 the temperature 

of the wire was raised by an application of a constant electric power. Subsequently, the 

temperature was measured as a function of time for typically 20 s.  

The temperature profile recorded depends on the thermal conductivity of the surrounding media 

i.e. the aerogel sample here. It was evaluated by fitting the experimental data with an analytical 

(II.25) 

(II.26) 



Chapter II: Materials and methods 

 

 

104 

 

solution that takes into account the contact resistance between the wire and the sample, as well 

as thermal losses along the wire (Ebert et al., 1993). To ensure good contact with the wire the 

sample surfaces facing the Pt-wire were carefully polished with sand paper. The samples were 

measured at ambient conditions (P, T and %RH). To provide better statistics each pair of 

identical samples was measured 10 times in a row. The resulting curves were averaged and used 

to calculate the mean thermal conductivity (eq. II.26).  

 Heat flow meter 

Steady state hot-plate measurements were also performed to measure the thermal conductivity 

of bio-aerogels and their silica-based composites. A disc-shaped sample with flat and parallel 

surfaces was placed between two plates. The upper plate (or “hot plate”) is heated at a 

temperature Th and the lower plate (or “cold plate)” is put at a lower temperature, noted Tc 

(figure II.20). Once the temperature of each plate is constant, the heat flow passing through the 

sample from the hot to the cold plate is measured with a heat flux sensor; the thermal 

conductivity is given by equation II.27:  

𝜆 =
𝑄. 𝑑

𝐴. (𝑇ℎ − 𝑇𝑐)
 

with Q the quantity of heat through the sample (W), A the sample area in m² and d the thickness 

of the sample. 

 

Figure II.20: Principle of heat flowmetry. 

Two different heat flow meters were used for the measurements within this study: 

- Laser Comp Fox 150 in PERSEE MINES ParisTech (chapter IV). This setting required 

samples of a minimal surface of 5 cm × 5 cm. The apparatus is pictured on figure II.21. 

 

Figure II.2: Fox 150 heat-flow meter in PERSEE MINES ParisTech. 

The temperature difference ΔT betwen hot and cold plates was fixed at 20 °C for all 

measurements. The thermal conductivity values were determined directly by the equipped 

flowmeter software WinTerm32. 

Hot plate 

Heat flux 
sensors 

Cold plate 

Sample Heat flow Q 

(II.27) 
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- Micro-flowmeter Laser Comp Fox 200 in CSTB, Grenoble (chapter VI). Measurements were 

kindly performed by Hébert Salée. This setting was particularly adapted to the analysis of 

smaller samples, i.e. discs of 2-4 cm diameter. The setup and process is shown on figure II.22. 

 

Figure 14 Micro-heat-flowmeter from CSTB, Grenoble. (a) micro-flowmeters with 10 mm diameter; (b) 

sample embedded in a thin insulating envelope; (c) sample + microflowmeters and insulating envelope are 

placed between two aluminium plates (d) measurement of sample thermal conductivity in the heat 

flowmeter. 

The micro-flowmeter experiments were calibrated with reference commercial samples of 

known thermal conductivity: a glass wool IRMM-440 A with a thermal conductivity λ = 0,0317 

± 0,0002 W.m-1.K-1, and a thin blanket Spaceloft® from the company ASPEN (λ = 0,0160 ± 

0,0003 W.m-1.K-1). 
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Conclusions 

In this chapter we have shown the materials used for preparing polysaccharide and silica based 

aerogels, as well as polysaccharide-silica composite aerogels. 

The aerogel preparation is based on the dissolution of polysaccharides, cellulose or pectin, in 

an appropriate solvent, followed by gelation (case of pectin) and coagulation, solvent exchange 

with ethanol, and supercritical CO2 drying. To make polysaccharide-silica composites, two 

methods are presented: 

- “one-pot” or direct mixing of sodium silicate and cellulose solutions. The particular 

gelation of these mixtures was characterized by dynamic rheological measurements. 

- Impregnation of a coagulated-in-ethanol polysaccharide by polyethoxydisiloxane 

solution. 

Moreover, some hydrophobic aerogels can be prepared from chemically modified cellulose 

with tritylchloride. 

The properties of the final aerogels were characterized in details. 

Bulk density measurements were performed with powder pycnometry, and specific surface area 

analysis by nitrogen adsorption method. The morphology was characterized by SEM 

observations. 

To assess the fraction of silica in the polysaccharide-silica composite, we evaluated the silica 

content by elemental analysis of silicium; the silica distribution inside the composites was 

evaluated by EDS spectroscopy coupled with SEM. 

Some of the aerogels elaborated in this work are hydrophobic. To quantify their hydrophobic 

properties, we conducted water contact angle measurements, and water uptake of 

hydrophobized samples and non-hydrophobized ones was determined by putting the sample in 

controlled humidity and temperature environments for determined durations. 

The mechanical properties of polysaccharide and composite aerogels were examined. Young 

modulus, yield stress and strain, and stress at break were determined from stress-strain curves 

from uniaxial compression measurements. In some cases, Young modulus was measured by 

measuring the run time of an ultrasonic pulse through a sample. 

For the evaluation of thermal insulation properties of the various aerogels studied, two methods 

were used to determine the overall thermal conductivity of the materials in transitory and 

steady-date conditions: the hot wire and hot-plate methods respectively. 
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Introduction 

In this third chapter we describe the preparation of cellulose-silica composite aerogels, through 

a “one-pot” synthesis process. The properties of the composite aerogels were investigated in 

details. The goal was to elaborate composite combining the good mechanical properties of 

cellulose aerogels with the thermal superinsulating properties of silica aerogels. We aim to 

generate a cellulose-silica interpenetrated aerogel structure: thus we chose to sart by directly 

mixing in solution cellulose and silica precursor, followed by cellulose coagulation and in situ 

generation of silica structure inside the aerocellulose porosity.  

First we determined a suitable solvent system for direct mixing of cellulose and silica to obtain 

interpenetrated composite aerogels. As cellulose is only soluble in a limited array of solvents, 

it is difficult to find a suitable solvent allowing the direct mixing of cellulose with a silica 

precursor solution without an incontrollable phase separation. An aqueous alkaline media is 

chosen, as water-8%wtNaOH-cellulose solution could readily be mixed with an alkaline 

sodium silicate solution, which can form silica matrix by a sol-gel process upon acidification. 

The gelation of both pure sodium silicate and cellulose-sodium silicate mixtures was 

investigated by oscillatory rheological measurements at constant frequency. First, the influence 

of temperature and nature of catalyst on the gelation time of alkaline sodium silicate was 

investigated. It is known that cellulose-8%NaOH-water solutions are gelling with time and 

temperature increase. Thus the next step was to study the effect of temperature and amount of 

sodium silicate on cellulose gelation, and the gelation kinetics were compared to that of pure 

cellulose-NaOH solutions. 

The composite aerogels were obtained after cellulose coagulation from the cellulose-sodium 

silicate mixtures and silica formation in an acid bath, followed by supercritical drying with CO2. 

The effects of various preparation parameters, such as the presence of additives, the 

composition of the coagulation bath, and the silica content on composite bulk density were 

studied. The morphology of the composite was investigated by scanning electron microscopy 

(SEM), and was related to the specific surface area, mechanical properties and thermal 

conductivities of the composites. 
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Introduction 

L’objet de ce troisième chapitre est l’élaboration d’aérogels composites combinant les bonnes 

propriétés mécaniques des Aérocelluloses aux propriétés super-isolantes des aérogels de silice. 

Le but ciblé est l’obtention d’aérogels cellulose-silice nanostructurés, présentant une structure 

de réseaux organiques-inorganiques interpénétrés. Un procédé « one-pot », c’est-à-dire à partir 

un mélange direct en solution de la cellulose avec un précurseur de silice a été choisi en premier 

lieu. Les propriétés de ces composites ont été caractérisées en détails. 

Premièrement nous avons déterminé un solvant adapté au mélange de la cellulose avec un 

précurseur de silice. En effet la cellulose n’est soluble que dans un nombre très limité de 

solvants, et il est difficile de trouver un système adapté au mélange de la cellulose avec un 

précurseur de silice sans provoquer une séparation de phase. Une solution de cellulose dans 

8%wt NaOH a pu être mélangée avec une solution aqueuse de silicate de sodium, qui donne 

naissance à la phase silicique via une réaction sol-gel après acidification. 

La gélification des solutions de silicate de sodium, ainsi que des mélanges cellulose-silicate de 

sodium a été caractérisée par des mesures rhéologiques, en mode oscillatoire, à fréquence 

constante. D’abord, l’influence de la température et de la nature du catalyseur sur le temps de 

gélification du silicate de sodium ont été étudiées. Les solutions de cellulose-8%NaOH-eau sont 

connues pour gélifier avec le temps et l’augmentation de la température.  L’étape suivante a 

donc été l’étude des effets de la température et de la quantité de silicate sur le temps de 

gélification dans le cas des mélanges cellulose-silicate de sodium. La cinétique de gélification 

des mélanges cellulose-silicate a été comparée à celle obtenue pour les solutions de cellulose 

pure. Les effets de l’addition du silicate de sodium sur la gélification ont été étudiés. 

Les aérogels composites ont été obtenus à partir des mélanges cellulose-silicate après 

coagulation de la cellulose, formation de silice dans un bain acide, et séchage au CO2 

supercritique. Les effets de plusieurs paramètres sur la densité des aérogels, tels que la présence 

d’additifs, la composition du bain de coagulation et la quantité de silice ont été examinés. La 

morphologie des composites a été caractérisée par microscopie électronique à balayage, et a été 

corrélée avec la surface spécifique, ainsi que les propriétés mécaniques et thermiques des 

composites. 
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1. Experimental approach for the preparation of cellulose-silica 

composites 

  Choice of a silica precursor for “one-pot” process 

The preparation of cellulose-silica composites requires the mixing of cellulose with a silica 

precursor. Indeed in this chapter we aim to elaborate cellulose-silica composite aerogels by a 

one-pot process. The impregnation of cellulose alcogels will be discussed in details in chapter 

IV. The preparation processes of aerogels from cellulose and silica have many similarities: in 

both cases a precursor is dissolved or dispersed in a solvent (sol), and forms a gel either by 

chemical reticulation (silica gel) or by physical interactions (cellulose). The gelation is followed 

by washing and solvent exchange steps, to eliminate reaction by-products. Supercritical CO2 

drying is used to dry the porous material without significantly damaging its internal porosity. 

These similarities should allow a direct mixing of both precursors in a common solvent, 

followed by controlled gelation of both precursors and a supercritical drying. The main problem 

is finding a common solvent and precursors soluble in said solvents, to avoid direct phase 

separation or uncontrolled gelation upon mixing. Cellulose solutions could not be directly 

mixed with the most common silica aerogel precursors, polyethoxydisiloxanes or other TEOS 

derivatives, as far as solvents of silica are non-solvents of cellulose. Furthermore cellulose 

solvent 8wt%NaOH-water, is extremely basic, inducing a rapid and uncontrolled gelation of 

the silica phase. The resulting materials were dramatically heterogeneous. Thus we needed a 

silica precursor soluble in basic aqueous solutions. Sodium silicate (Na2SiO3) was chosen for 

this purpose as it is water-soluble and strongly basic (pH of a saturated solution being 13-14) 

which is similar to 8%NaOH-water (pH 14). The details of the preparation process of one-pot 

composites was shown in Chapter II. 

 Rheological study: gelation of sodium silicate solution 

 Nature of catalyst 

The conditions of silica gel formation inside the cellulose matrix were selected to match the 

conditions for sodium silicate gelation. In this section we study the gelation of sodium silicate 

solutions induced by two different catalysts: 0.3M hydrochloric acid and 0.2M citric acid. The 

acid was added to an 8%wt sodium silicate solution and the evolution of elastic modulus G’ 

and viscous modulus G” was monitored with time (see example in Figure III.1). The 

measurements were done at a frequency of 0.1 Hz and the stress was 0.1 Pa, at a temperature 

of 20 °C. The initial pH of the sodium silicate solution was ~ 13.5; addition of both acids 

lowered the pH around 2. As already explained, the gelation time tgel was measured as the 

moment where G’ = G”. 
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Figure III.1 : Evolution with time of the viscous (G’) and elastic (G’’) moduli during gelation of 8%wt 

sodium silicate solution catalyzed by (a) 0.3 M HCl and (b) 0.2 M citric acid, both at 20 °C. 

The observed rheological behavior matches with what is expected of a gelling system. Before 

sol-gel transition the system behaves essentially as a viscous liquid, and the viscous modulus is 

superior to the elastic modulus. With time, silica agglomerates formed inside the system by 

reaction with the acid reach a limiting concentration, or percolation threshold, at which the 

condensation of silicic acid into SiO2 leads to a continuous network. Viscosity increases 

drastically, up to the point where the system behaves as an elastic solid: the elastic modulus 

becomes higher than the viscous modulus. Past the gel point, the gels were rather fragile and 

easily cracked even under the low stress values imposed by the experiment. 

8%wt sodium silicate solution had an initial viscous modulus around 3.10-3 Pa. For both 

catalysts the modulus of the system when crossing gel point was near 0.1 Pa. In similar 

conditions, HCl gives a faster gelation than citric acid: tgel for HCl was 12060 s (3 h 21min) 

against 32880 s (9 h 08 min) for citric acid at 20°C. It was expected that HCl, being a strong 

acid, would have a stronger reaction and induce faster gelation. In our case we aim for a rapid 

formation of a silica gel inside the pores of cellulose, to avoid loss of unreacted sodium silicate 

during the washing steps; the positive effect of using HCl on yield in SiO2 will be investigated 

in section 4.2. 

 Effect of temperature on sodium silicate gelation 

The influence of temperature on sodium silicate gelation catalyzed by HCl was studied. A molar 

ratio HCl: Na2SiO3 of 1:3 was fixed, and sodium silicate concentration was fixed at 8%wt. The 

gel point was measured at the crossing of G’ and G” curves for different temperatures between 

0 and 40 °C. Increasing the temperature speeds up sodium silicate gelation. Kinetic parameters 

were extracted from the experimental data by plotting the dependence of the logarithm of 

gelation time as a function of the inverse temperature. The data were fitting an Arrhenius-type 

law (eq.III.1):  

ln 𝑡𝑔𝑒𝑙 = ln 𝐶 +
𝐸𝑎

𝑅. 𝑇
 

(III.1) 
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where tgel is the gelation time (s), Ea the apparent activation energy (in J.mol-1), R the ideal gas 

constant (R = 8.314 J.mol-1.K-1) and T the temperature (K).  

 

Figure III.2: Logarithmic dependence of the gelation time of sodium silicate aqueous solutions with 

temperature. The Na2SiO3:HCl molar ratio was 1:3. 

The experimental curve gives lnC as the y-intercept coordinate, and the plot of the curve is 
𝐸𝑎

𝑅
. 

Thus we have: 

Ea = 50.7 kJ.mol-1 

lnC = - 10.997 

The activation energy value obtained for the gelation of sodium silicate solutions is in the same 

order of magnitude as what was observed from gelation of alcoxysilanes, tetramethoxysilane 

(TMOS) or tetraethyl orthosilicate (TEOS) (Colby et al., 1986; Ponton et al., 2002). We 

compared the apparent activation energies for different silica forming systems in table III.1. 

Table III.1: Comparison of apparent activation energies calculated for different silica sol-gel systems 

Precursor Catalyst Ea (kJ.mol-1) Reference 

TEOS 
HF 61.1 Colby et al, 1986 

HCl 55.2 ibid 

TMOS 

HF 39.8 ibid 

HCl 49.4 ibid 

Base (DMAP) 37.5 
Ponton et al., 

2002 

Sodium silicate HCl 50.7 this work 

The activation energy for the gelation of sodium silicate in HCl is around 50 kJ.mol-1, closer to 

those of alcoxysilanes sol-gel forming systems with HCl catalysis than with base or HF 

catalysis. It is known that when HCl is used to catalyze the sol-gel reactions of alcoxydes, 

polycondensation is the kinetically determinant step as hydrolysis is faster at low pH. The 

activation energy values suggest a similar trend for the sodium silicate system, with first a rapid 

protonation of silicate into silicic acid, followed by slower condensation of silicic acid 
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molecules on one another. Colby et al. attributed the higher activation energies observed for 

TEOS gelation to steric hindrance of the ethoxy groups, larger than “simple” metoxy- groups 

or oxygen atoms. 

2. Study of the gelation of cellulose-NaOH-sodium silicate mixtures 

  Preliminary studies 

 Effect of additives on the cellulose-sodium silicate system 

Direct mixing of sodium silicate with the cellulose-NaOH solution at room temperature induces 

spontaneous “solidification” of the cellulose matrix. At this pH silicate ions cannot form a gel 

because of strong electrostatic repulsion. As it will be explained later, most probably cellulose 

is gelling and partially coagulating at the same time, but for simplicity we shall call this 

“gelation”. This so-called gelation step results in very inhomogeneous gels. To improve the 

mixing of cellulose-NaOH solution and sodium silicate solution, we needed to slow down 

cellulose gelation. A first step was to mix the sodium silicate with the cellulose-NaOH solution 

at - 6°C, the temperature used for cellulose dissolution. In this case the mixing was easier but 

gelation still occurred too fast to correctly mold the gels. 

Several additives are known to delay cellulose gelation time in water-NaOH solutions. Two of 

these additives were investigated previously: zinc oxide (ZnO) and urea (Egal, 2006; Liu et al., 

2011). Those additives can be easily eliminated during the solvent exchange steps before drying 

the gels. The formulations of the different cellulose-additive systems are summed up in table 

III.2. The cellulose was first fully dissolved in water/NaOH at - 6°C in the presence of additives, 

and then the sodium silicate solution was added. The mass ratio between cellulose and silicate 

was kept at R = 1 for all the mixtures. Gel time was only evaluated qualitatively from the 

moment the solution was poured into the molds. 

Table III.2: Formulations of composite gels from cellulose/NaOH + ZnO or Urea + Na2SiO3.  (For all 

samples Rcellulose/silica = 1) 

Additive 

% weight 

cellulose in 

the mixture 

% weight 

additive 

 

t gel  cellulose 

(at 25°C) 

ZnO 

3.33% 1% 5 min 

5.33% 1% 3 min 

5.33% 1.5% 3 min 

Urea 
5.33% 4% 2 min 

5.33% 6% instantaneous 

When ZnO was used as an additive, a relatively fluid cellulosic solution was obtained, which 

eased mixing with the sodium silicate solution. After mixing, all solutions gelled in a few 

minutes. In one sample, cellulose concentration was 3.33%: for this sample the gelation time 

was slower as far as gelation time of cellulose solutions decreases when increasing cellulose 

concentration. However, the wet composite gel made from this cellulose concentration was 

quite fragile, and cracked during the subsequent solvent exchange and supercritical drying 

steps. 
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Increasing the quantity of ZnO from 1 to 1.5%wt had no visible gelation slowing effect. 

Samples containing 4%wt urea were gelling in around 2 minutes. The solutions were more 

viscous. Increasing the quantity of urea induced a very fast gelation of the system. 

We can conclude that ZnO appears a suitable additive for delaying cellulose gelation, even in 

the presence of sodium silicate. We used a ZnO concentration of 1%wt in all samples used in 

the following of the study. 

 Choice of experimental parameters. 

As we observed rapid spontaneous solidification or gelation when cellulose and sodium silicate 

solutions were mixed, we had to select experimental parameters for which gelation time was in 

the detection frame of the rheological set up. In order to investigate the influence of sodium 

silicate on cellulose solution behavior, solutions of lower concentrations as compared with the 

ones used for preparing cellulose-silica composite aerogels were made to reach measurable 

gelation times. 5wt% cellulose-8%NaOH-1%ZnO solutions were mixed with sodium silicate 

solutions in various proportions; the resulting mixtures were of 4wt%cellulose and 2 to 5wt% 

of sodium silicate.  

Mass ratio between cellulose and sodium silicate R1 in the mixture was calculated as (eq.III.2):  

R1 =  
𝑚𝑁𝑎2𝑆𝑖𝑂3  

𝑚𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
 

 where 𝑚𝑁𝑎2𝑆𝑖𝑂3
 and mcellulose are sodium silicate and cellulose dry mass in the mixture, 

respectively. 

 Influence of sodium silicate concentration on cellulose gelation 

An example of elastic G’ and viscous G” moduli evolution with time of aqueous 

cellulose/sodium silicate mixtures at 15 °C is presented in Figure III.5. Mixtures of two 

compositions, 4%cellulose-2% Na2SiO3 (R1 = 0.5) and 4%cellulose-4% Na2SiO3 (R1 = 1) are 

shown. Similar data were obtained for other compositions with R1 varying from 0.50 to 1.25, 

keeping cellulose concentration in the mixture constant and equal to 4wt%. Classically, the 

gelation time tgel was determined as the time at which G’ = G”. 

(III.2) 
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Figure III.3: Time evolution of elastic (G') and viscous (G") moduli at 15 °C for two mixtures with mass 

ratio cellulose/sodium silicate R1 = 0.5 (triangles) and R1 = 1 (circles) (Demilecamps et al., 2014) 

Figure III.3 shows that higher sodium silicate concentrations in the mixture (i.e. higher values 

of R1) result in a shorter gelation time. It should be noted that 4%cellulose-8%NaOH solution 

is gelling at 15 °C in about 3 days and 4%cellulose-8%NaOH-1%ZnO does not form a gel 

within the measurable times (Liu et al. 2011). There is a clear evidence of a dramatic 

acceleration of cellulose gelation in the presence of sodium silicate solution. Gelation time 

varies with the concentration of sodium silicate following a power-law (Figure III.4). The 

calculated power law exponent was 2.5.  

𝑡𝑔𝑒𝑙~ 𝑅1
2.5 

A similar phenomenon was recorded when aqueous cellulose-8%NaOH was mixed with 

organosolv lignin dissolved in the same solvent (Sescousse et al. 2010). When another solute is 

mixed with cellulose-NaOH solution, it interacts with the solvent and disrupts the H-bonds 

between cellulose and NaOH hydrates; as a result cellulose chains tend to aggregate and phase 

separation occurs. 
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Figure III.4 : Gelation time (s) of cellulose-sodium silicate mixtures (cellulose concentration in all mixtures 

is 4wt%) at 15 °C as a function of R1. Dashed line is power law approximation with tgel ~ R1
-2.5 

(Demilecamps et al., 2014) 

 Effect of temperature on the gelation of cellulose-sodium silicate 

systems 

The influence of temperature on gelation time of cellulose/sodium silicate mixture of a given 

composition, 4%cellulose-2%Na2SiO3 (R1=0.5), is presented in Figure III.5, and compared 

with gelation times for aqueous 4%cellulose-8%NaOH solution and for 4%cellulose-8%NaOH-

0.7%ZnO (data taken from Liu et al. 2011). As demonstrated by Liu et al., the exponents 

characterising the order of gelation kinetics, tgel ~ exp(aT) where a is a constant, are similar for 

cellulose dissolved in 8%NaOH-water and in 8%NaOH-ZnO-water, for ZnO concentrations 

varying from 0 to 1.5wt%. The reason is that cellulose gelation mechanism is the same with or 

without ZnO; gelation is simply delayed due to the presence of ZnO. It was also shown in the 

same work that ZnO does not change the properties of cellulose on the molecular level and does 

not improve the thermodynamic quality of solvent, 8%NaOH-water, towards cellulose. The 

exponent a describing cellulose gelation in the presence of sodium silicate is lower by a factor 

of two as compared to that in NaOH-ZnO solvent. 
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Figure III.5 : Temperature dependence of gelation time (min) for different 4%cellulose aqueous solutions: 

in 8%NaOH (1), in 8%NaOH-0.7%ZnO (2), both sets of data are taken from (Liu et al. 2011) and in 

8%NaOH-1%ZnO mixed with 2% sodium silicate, R1 = 0.50 (3). Lines correspond to exponential 

approximations. (Demilecamps et al., 2014) 

When cellulose solution is mixed with sodium silicate at - 6 °C, the mixture becomes turbid 

which is an indication of the formation of micrometer-size entities that are scattering light. As 

it will be shown in part 4, when coagulated, a phase separation between cellulose and silica 

occurs: cellulose forms a network and silica is condensing forming beads inside cellulose 

matrix; obviously there are no attractive interactions between two phases. 

Another possible reason for the rapid gelation of the system could be the lowering of the pH 

due to sodium silicate addition: as cellulose is not soluble in non-alkaline solutions, a change 

in pH will induce cellulose phase separation. However, both solutions are of the same initial 

high pH, around 13.5 - 14, resulting in the mixture with pH  = 13.5 - 14 as measured. The high 

concentration of sodium silicate was chosen specifically to reduce the added volume of sodium 

silicate so that the dilution effects are negligible; NaOH and cellulose concentrations after 

mixing are still in the “solubility zone” of the cellulose-NaOH-water phase diagram at - 6°C. 

The viscosity of sodium silicate aqueous solutions is below 5 mPa.s. This means that in no way 

sodium silicate can “thicken” cellulose-8%NaOH-1%ZnO solution even if the total 

concentration of dissolved matter is slightly increasing with the increase of R1 from 2 to 5 %wt 

of sodium silicate.  

Finally, at this pH sodium silicate is a stable solution (not gelling, not precipitating): the gelation 

of sodium silicate cannot happen until the pH is lowered below 9. Thus the most probably 

phenomenon that occurs is cellulose coagulation after the addition of sodium silicate. We obtain 

a continuous network of coagulated cellulose impregnated by an aqueous solution where NaOH 

and sodium silicate are fully dissolved.  

Consequently, attractive interactions between silicate and cellulose leading to coagulation, 

lowering of the pH of the solution, significant viscosity increase due to a thickening effect of 

the added sodium silicate solution, or simultaneous formation of both gels just after mixing are 

not likely reasons for the quick gelation of the system. 
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Cellulose “gelation” as a function of temperature is strongly accelerated since other 

mechanisms are involved in the presence of sodium silicate. While ZnO interacts mostly with 

free water and thus slows down the phase separation between cellulose and solvent, sodium 

silicate enters in direct competition with cellulose for solvatation. The presence of sodium 

silicate further diminishes the solvent thermodynamical quality, and thus considerably speeds 

up cellulose gelation. When increasing temperature, molecular movement is increased: this 

means more contacts between cellulose chains and faster aggregation, but also more contacts 

between silicate ions and water-NaOH complexes, thus more disrupting of the H-bonds 

stabilizing the cellulose solution. 

It is known that in 7-9%NaOH-water cellulose does not form a molecular solution (Lu et al. 

2011). With time and temperature and above the overlap concentration cellulose solution is 

gelling and gelation is accompanied by micro-phase separation (Roy et al. 2003, Gavillon and 

Budtova 2008): solutions are transparent and gels are opaque. In overall, cellulose dissolved in 

7-9%NaOH-water is not stable, cellulose chains are self-associating with time leading to 

gelation. The addition of sodium silicate perturbs the equilibrium and leads to the formation of 

cellulose-rich and cellulose-poor domains; “gelation” is thus accelerated. Cellulose is most 

probably close to coagulation point after being mixed with sodium silicate; we will analyse the 

morphology of composite aerogels in the next section to confirm this hypothesis. 

3. Properties of « one-pot » composite aerogels from cellulose/sodium 

silicate mixtures 

 Effect of gelling conditions on aerogels bulk density 

To prepare composite materials, cellulose-8%NaOH-1%ZnO-water and aqueous sodium 

silicate solutions were mixed in different proportions. Several constraints have to be taken into 

account if willing to prepare homogeneous materials. First, it is not possible to make composite 

samples containing less than 3wt% of cellulose as far as cellulose is hardly making a 3D-

network upon coagulation at lower concentrations (the overlap concentration of 

microcrystalline cellulose in 8%NaOH-water is 1 – 1.5 wt% (Roy et al, 2003). Second, it was 

not possible to prepare cellulose-8%NaOH solutions of cellulose concentration higher than 

7wt% because of the limit of cellulose dissolution in this solvent (Egal, 2007) and very quick 

gelation above this concentration. Finally, as it was demonstrated in the previous section, 

mixing cellulose and sodium silicate solutions with high content of silica induces very quick 

mixture “solidification” which prevents making homogeneous materials. 

Taking into account the constraints mentioned above, mixtures with cellulose concentrations 

varying from 3 to 5wt% and SiO2/cellulose weight ratios from 0.5 to 1.5 were prepared. After 

homogenization of the mixture and rapid spontaneous solidification, samples were coagulated 

in different baths: water, 0.3M HCl and 0.2M C6H7O8. Water was used as a reference. 

Hydrochloric acid is a standard catalyst for sodium silicate gelation (Kistler, 1932), and citric 

acid was already used to make cellulose fibres coated with silica (Liu et al., 2011). After 

renewing coagulation bath by fresh acid solutions several times, the samples were washed in 

water to eliminate NaCl formed during the reaction of acid with sodium silicate, water was 

exchanged by ethanol and the resulting alcogels were dried with supercritical CO2. Monolithic, 
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mechanically stable and cohesive white samples were obtained, from the very first glance 

similar to pure Aerocellulose (Figure III.6). 

   

Figure III.6 : Photos of a) pure Aerocellulose from 5%cellulose-8%NaOH-1%ZnO and b) cellulose-silica 

composite aerogel from 5%cellulose-8%NaOH-1%ZnO-5%SiO2 (R2,th =1) coagulated in 0.3M HCl 

(Demilecamps et al., 2014) 

When placed in an acid medium, sodium silicate is converted into silica and sodium chloride 

(NaCl) is removed during the washing steps. Thus in the following, when characterizing 

cellulose-silica composite properties we shall reason in SiO2 and not Na2SiO3 concentrations. 

The theoretical and experimental values of the ratio between SiO2 and cellulose mass are noted 

R2:  

R2,th = 
𝑚𝑆𝑖𝑂2  

𝑚𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
  

R2,exp = 
𝑚𝑆𝑖𝑂2  

𝑚𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
× 𝑌𝑖𝑒𝑙𝑑𝑆𝑖𝑂2

 

Samples’ characteristics from various formulations prepared in different coagulation baths are 

given in Table III.4. The total concentration of cellulose given take into account the dilution 

involved by the addition of sodium silicate solution. Dried cellulose-silica composite aerogels 

have rather low bulk densities, in overall lower than 0.2 g.cm-3. Total shrinkage upon drying is 

rather important, volume loss in the 40-60% range for most composites is observed. Gelling 

and coagulation of some samples at higher 50 °C was attempted, in order to fasten the gelation 

of the silica phase and increase the yield in silica. However, samples gelled at higher 

temperature all had high shrinkage and their bulk densities were superior to 0.25 g.cm-3, which 

is rather high for aerogels particularly when dealing with thermal insulation application: 

coagulation and washing at ambient temperature was preferred in the following in order to 

obtain aerogel with lower densities. Overall, total volume shrinkage after sc drying was less 

pronounced for cellulose concentration near 5%wt than when the cellulose concentration was 

in the 3-4%wt range. However, there is no clear correlation between global shrinkage and total 

matter concentration in the samples. 

Table III.4: Apparent densities and total volume shrinkage after sc drying of cellulose-silica composite 

aerogels of various compositions coagulated in different acid baths. 

Coagulation 

bath 

Coagulation 

temperature 
Ccell wt% R2,th 

Volume 

shrinkage 
ρ (g/cm3) 

H2O 25 °C 

3.33% 1.07 46% 0.115 

3.08% 1.40 61% 0.185 

5.33% 0.67 15% 0.154 

a) b) 

4cm 4cm 

(III.4) 

(III.5) 
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HCl 
25 °C 

3.81% 0.67 50% 0.130 

3.33% 1.07 60% 0.168 

3.08% 1.40 42% 0.136 

5.33% 0.67 49% 0.204 

50 °C 3,33% 0.67 63% 0.272 

Citric acid 

25 °C 

 

3.81% 0.67 70% 0.217 

3.33% 1.07 48% 0.273 

3.08% 1.40 60% 0.174 

5.33% 0.67 29% 0.134 

50 °C 3,33% 0.67 69% 0.379 

The apparent densities of the composites of various formulations prepared via coagulation in 

0.3M HCl as a function of total matter concentration in solution are presented in Figure III.7. 

Total matter concentration is the sum of cellulose and silica concentrations in the precursor 

(before supercritical drying) with a 40% yield of silica (as calculated from elemental analysis, 

see details in next section) taken into account. In overall, the higher the matter concentration in 

the sample, the higher is apparent density, as expected. In the view of small interval of cellulose 

and silica concentrations used, it is not possible to analyze the input of each component to the 

final composite apparent density. 

 

Figure III.7 : Apparent density of supercritically dried cellulose-silica composites (coagulation in 0.3 M 

HCl) as a function of total matter concentration in the precursor. Dashed line is linear approximation 

(Demilecamps et al., 2014). 

 Evaluation of the amount of silica in the aerogel composites 

The acid bath volume used was taken to correspond to one molar equivalent of NaOH, 

necessary for neutralization, plus a stoichiometric quantity for reaction with sodium silicate. 

The evolution of the pH of the coagulation bath, just after immersion of the cellulose hydrogel 

and after 48h, is shown in table III.5. When the sample is washed in pure water, the only 

phenomenon is the diffusion of the solutes, NaOH and Na2SiO3, outside the porous cellulosic 
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network into the solution until an equilibrium concentration is reached between the porous 

system and the outside solution: as a result the pH of the bath increases up to ~13. When a 

strong acid bath (HCl) is used, the pH of the bath remains low (~1) after neutralization and 

reaction with sodium silicate. Citric acid is a weaker acid, and is not fully dissociated in 

solution; neutralization and reaction with sodium silicate do occur, but the final pH of the bath 

is higher. Ideal conditions for the gelation of sodium silicate are considered at pH between 5 

and 9; however, our composite materials are a particular case, as silicate ions are not free in 

solution but are “included” in the pores of the cellulosic solid network. The reaction of the 

silicate is thus limited by its diffusion inside and outside the porous network.  

Table III.5 : Evolution of the pH of acid coagulation baths after coagulation, neutralization and 

condensation of sodium silicate into SiO2. 

Coagulation bath pH bath 

(t = 0) 

pH bath (t= 

48h) 

H2O 6,5 13 

HCl  0,5 1 

Citric acid 1,5 6,5 

The composition of dry cellulose-silica composites was examined using EDS. The examples of 

spectra from the cross-sections of two samples prepared from the same mixture with R2,th = 1.07 

but in different coagulation baths (0.3 M HCl and 0.2 M citric acid) are presented in Figure 

III.8. EDS spectra show a Si Kα peak at 1.73 keV. Sodium (Kα at 1.04 keV) and chloride (Kα at 

2.62 keV) peaks come from residual salts formed during the reaction of sodium silicate with 

the acid that were not removed by washing. A rather low intensity of the sodium peaks for the 

case when hydrochloric acid is used confirms that most of the salts are washed out from the 

composite before drying. No Zn (Lα at 1.01 keV and Kα at 8.63 keV) peak appears indicating 

that ZnO has been dissolved completely in acid baths and washed away during the processing 

route. 

 

Figure III.8: EDS spectra from a cross-section of samples obtained with R2,th = 1.07 coagulated in (a) 

0.3M HCl and in (b) 0.2 M citric acid. 

 

Peak intensity is proportional to matter content in the observed zone. The intensity of the peak 

corresponding to Si in the composite coagulated in 0.3M HCl (Figure II.8.a) is much higher 

than that in the composite coagulated in 0.2 M C6H7O8 (Figure II.8.b). The qualitatively 

obtained higher concentration of silica in samples coagulated in hydrochloric acid, as compared 

(a) (b) 
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to citric acid, was confirmed by elemental analysis. Table III.5 shows that when coagulated in 

water, practically all silica is washed out: the yield is 3wt%. The yield of silica in the dry 

composite is about 20wt% after coagulation in 0.2 M citric acid and is twice higher after 

coagulation in 0.3 M hydrochloric acid (~ 40wt% ± 4). 

Table III.5: Mass yields in SiO2 in composite aerogels of various R, obtained in different coagulation 

baths, as calculated from elemental analysis. 

Coagulation 

bath 

Ccell (wt%)  R2,th 𝒀𝒊𝒆𝒍𝒅𝑺𝒊𝑶𝟐
, % 

H20 

5.00 0.00 0 

3.33 1.07 3.3 

HCl 

5.33 0.67 36 

3.33 1.07 44 

5.00 1.40 42 

Citric acid 
3.33 1.07 20 

When “solidified” cellulose/sodium silicate is placed in an acid bath, sodium silicate enters in 

contact with the acid and condensates as SiO2 particles. It is a diffusion driven process, 

accompanied by the formation of NaCl and the release of NaOH into the bath. With a weaker 

acid, non-reacted sodium silicate diffuses out from cellulose network. Hydrochloric acid, being 

stronger and more reactive, appears a better gelation agent of sodium silicate in our conditions 

for having higher yield of silica as compared with citric acid. As we have observed in part 2.1, 

the gelation of sodium silicate in the presence of citric acid is slower. A slower gelation will 

favor the diffusion of silicate outside of the cellulose pores. This silicate is thus “lost” for the 

composite, hence a significant lower silica yield when using citric acid. Further increase of acid 

concentration was attempted to decrease the silica formation time, but this leads to the 

formation of large amounts of NaCl crystals inside the cellulose pores, which are difficult to 

wash out. 

 Morphology of the cellulose-silica composite aerogels 

 Structure of the composite aerogels 

The morphology of cellulose-silica composites is shown in Figure III.9. Pure Aerocellulose 

from 5%cellulose-8%NaOH-water solution has a fibrous network-like structure (Figure III.9,a), 

as already reported in the literature (Gavillon and Budtova, 2008) with pore size ranging from 

a few tens of nanometers to few microns. Silica aerogel reference sample obtained from the 

aqueous 8wt%sodium silicate gelled after the addition of 0.3M HCl appears as assembly of 

small roughly spherical silica particles of a size between 10-100 nm (Figure III.9,b). In 

composites, when silica is formed inside the cellulose porosity (Figure III.9, c, d), silica 

condensates as larger monodisperse spherical particles, except few agglomerates probably 
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formed due to coalescence. Their size distribution is shown in Figure III.10. Two cases can be 

distinguished: R2,th > 1 giving beads with most of diameters located around 500-600 nm, and 

R2,th < 1 with slightly higher diameter around 800 nm. Figure III.9 c, d shows that beads are 

homogeneously distributed in cellulose network and that silica and cellulose are forming 

separate phases in the organic-inorganic composite. Detailed titration studies are needed to 

better understand the processes occuring in this complex system. 

 

Figure III.9 : SEM images of (a) pure Aerocellulose from5%cellulose-8%NaOH solution coagulated in 

water; (b) silica aerogel from 8%wt sodium silicate coagulated with 0.3M HCl  and (c, d) cellulose-silica 

composite from 5%cellulose solution with R2,th= 0.67 coagulated in 0.3M HCl (Demilecamps et al., 2014). 

 

Figure III.10: Silica particle size distribution in cellulose-silica composite aerogels (coagulation in 0.3M 

HCl) of different R2,th. (Demilecamps et al., 2014) 
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The morphology of cellulose in the composite is different from the one in pure Aerocellulose. 

In the latter case cellulose makes a network of homogeneous cellulose “strands” of diameter of 

some tens of nanometers. In the composite, the “strands” are composed of small beads 

assembled together. A similar morphology was found in Aerocelluloses when cellulose was 

directly coagulated from a solution, either in ionic liquid or in hot N-methylmorpholine-N oxide 

monohydrate, contrary to the case of NaOH-water solvent in which cellulose solution is gelling. 

As suggested by (Sescousse et al, 2011), when directly coagulated from solution, cellulose is 

undergoing a phase separation via spinodal decomposition mechanism which leads to a 

formation of small regular spheres. When coagulated from a gelled solution, cellulose already 

underwent microphase separation during gelation in NaOH-water. Cellulose morphology in 

composites with silica suggests that cellulose was coagulating in the presence of sodium 

silicate. Formation of coagulated cellulose network (and not of a “gel” in the proper sense of 

the term) is thus the reason of the significant acceleration of cellulose-sodium silicate mixture 

“solidification”. 

 Specific surface area 

As already underlined, the specific surface area SBET was measured by G. Reichenauer from 

Bavarian Center for Applied Energy Research, Wurzburg, Germany. SBET was obtained from 

sorption isotherms at 0.05 < p/p0 < 0.3 A typical N2 adsorption-desorption curve for a so-

prepared composite aerogel with R2,th = 0.67 and a density of 0.220 g.cm-3 is presented on III.11. 

The hysteresis appears close to a relative pressure p/p0 of 1, which is indicative of presence of 

large macropores. The variations in total adsorbed volume and shape of the adsorption-

desorption curves did not appear clearly related to the total matter concentration in the samples. 

 

Figure III.11 : N2 adsorption isotherm for cellulose-silica composite aerogel with cellulose concentration of 

5%wt and R2,th of 0.67 

The specific surface areas of Aerocellulose-silica composites of various formulations 

coagulated in 0.3 M HCl is presented in Figure III.12 as a function of R2,exp. Three cases with 

3, 4 and 5wt% cellulose in the initial mixture are shown. SBET is systematically decreasing with 

the increase of silica fraction in the composite. One of the reasons for this trend is likely the 

fact that the silica particles are neither porous nor have a surface with roughness on the 

nanoscale (see Figure III.12,d). Assuming that the silica particles do not contain accessible 
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porosity within the particles, the particles themselves are too large to provide any significant 

contribution to total specific surface area of the composite. Therefore the silica phase can be 

assumed to essentially only increase the mass (or density) rather than the surface area of the 

composite, yielding the following relationship:  

 
exp2,

celluloseBETcompositeBET
R

SS



1

1
,,

  

where SBET,composite and SBET,cellulose are specific surfaces of Aerocellulose-silica composite and 

the pure Aerocellulose, respectively.  

 

Figure III.12 : Specific surface area of Aerocellulose-silica composites as a function of silica-to-cellulose 

ratio R2exp. Dashed line corresponds to eq.6 which suggests the absence of porosity in silica particles. 

The specific surface area of the composite calculated via eq. (6) is shown by the dashed line in 

Figure III.12 with SBET,cellulose = 220 m2/g. A good agreement between experimental data and 

calculated SBET,composite confirms the assumption that silica phase represents a “dead” mass that 

is not contributing to the specific surface of the final composite. 

 Mechanical and thermal properties of composite aerogels 

 Mechanical strength 

Young’s modulus E of the samples was measured by G. Reichenauer from Bavarian Center for 

Applied Energy Research, Wurzburg, Germany. It was calculated from the bulk density and 

the longitudinal sound velocity V of the samples determined by ultrasonic run time (Gross, 

1992):  

𝐸 = 𝐶11
1−𝜇−2𝜇2

1−𝜇
 

with 𝐶11 =  𝜌𝑉2 being the elastic constant and  the Poisson´s ratio which is equal to zero 

for Aerocellulose (Sescousse et al, 2011);  thus E = C11.  
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Young’s modulus E was determined from sound velocity measurement, as described in 

Methods section. For Aerocellulose-silica composite the Young’s modulus varied from 30 to 

40 MPa, while for pure Aerocellulose with a bulk density of 0.117 the modulus is about 20 

MPa. Although the composites always showed an increase in modulus compared to the one of 

pure Aerocellulose, the values were not systematically related to either synthesis parameters or 

the bulk density of the composite. The modulus of the composite is also higher than that of 

silica aerogels of a similar density (0.20-0.25 g.cm-3) synthesized either from 

tetramethoxysilane (TMOS) and measured with the same method at Montpellier, 10-25 MPa 

(Alaoui et al 2008; Gross et al, 1988) or from polyethoxydisiloxane (PEDS) measured at EMPA 

by uniaxial compression 10–20 MPa (Wong et al, 2014). Measurements performed in centre 

PERSEE on PEDS-based aerogels with bulk densities around 0.1 g.cm-3 shown Young moduli 

in the 1-2MPa range; however for aerogels the Young modulus is linked to bulk density with a 

power law; (Diascorn, 2014) found a power-law exponent of 3.8 and a prefactor of 6765 for 

PEDS based aerogels; thus for silica aerogels with densities around 0.200 g.cm-3, Young moduli 

near 15 MPa shall be expected. 

Table III.6: Young modulus and densities for cellulose-silica composites with different values of R2,th 

Cellulose 

concentratio

n 

R2th 
ρ 

(g.cm-3) 

Young 

modulu

s (MPa) 

5% 0 0.117 20 

5% 0,67 0,210 40 

5% 1,07 0,203 24 

5% 1,40 0,212 30 

 

 Thermal conductivity 

The thermal properties of cellulose-silica composite aerogels have been evaluated by hot-wire 

measurements by G. Reichenauer from Bavarian Center for Applied Energy Research, 

Wurzburg, Germany. The thermal conductivity of pure Aerocellulose in ambient conditions is 

in the range of 0.035-0.040 W.m-1.K-1 depending on cellulose concentration. The composites 

show higher conductivities at ambient pressure, in the 0.045-0.050 W.m-1.K-1 range (table III.7). 

Table III.7: Thermal conductivities measured by hot wire method in room conditions for cellulose-silica 

composites with  different values of R2,th. Cellulose concentration was 5%wt. 

R2th 
ρ 

(cm3.g-1) 
λ,amb (mW.m-1.K-1) 

0 0.117 [35 ; 40] 

0,67 0,210 50 

1,07 0,203 45 

1,40 0,212 46 
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The high values for the composites conductivities had to be expected as we demonstrated that 

the silica particles formed into the cellulose network have a smooth surface and are not 

contributing to the porosity of the network. Although the silica particles do fill some of the 

larger Aerocellulose pores, they do not form a continuous mesoporous network. In this case we 

can assume that the added silica particles only contribute to increase the total material 

conductivity, by affecting the solid heat transfer along the composite backbone. A conductivity 

of 0.050 W.m-1.K-1 is obtained for the samples where R2,th= 0.67 against 45-46 mW.m-1.K-1 for 

higher values of R2,th , despite the fact that the later have higher contents of silica. The 

contribution of silica particles to the solid conductivity of the samples can be illustrated by 

measuring the variation of the thermal conductivity of a sample with decreasing pressure. A 

comparison between Aerocellulose and a cellulose-silica composite aerogel can be visualized 

on figure III.13. 

 

Figure III.13 : Thermal conductivity as a function of pressure for (1) pure Aerocellulose (ρAerocellulose = 

0.117 g.cm-3) and (2) cellulose-silica composite with R2,th= 0.67 (ρComposite = 0.210 g.cm-3) 

When the pressure is decreased, the gas contribution to the thermal conductivity is lowered and 

can disappear when sufficient level of vacuum is reached; in that case, the conductivity under 

vacuum only includes the radiative and solid thermal contributions. At a pressure of 0.1 mbar, 

the thermal conductivity of the composite has dropped from 0.050 to ~ 0.035 W.m-1.K-1, while 

for Aerocellulose it dropped from 0.044 to ~ 0.017 W.m-1.K-1. Even if the lowest conductivity 

level with vacuum is not reached nor for Aerocellulose, neither for composites, the shape of the 

conductivity curves as a function of pressure tends to indicate a higher solid (and possibly 

radiative) contribution in the case of the cellulose-silica composite aerogel as compared to pure 

Aerocellulose, confirming that the non-porous silica particules mostly contribute to the 

composite total conductivity by increasing notably the solid backbone conductivity. 

4. Freeze-drying of cellulose-silica composites 

Another way to obtain porous, light materials from wet gels is freeze drying. Unlike drying in 

supercritical CO2, freeze-drying can be performed without water to ethanol solvent exchange, 

as the solvent is directly eliminated by sublimation. The freeze-drying procedure was performed 

(2) 

(1) 
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as described in materials and methods section. Briefly, hydrogel composite samples were 

immersed in liquid nitrogen to freeze the solvent, followed by drying at 25 °C under high 

vacuum. The same formulations as given in Table III.8 were freeze-dried to compare with the 

morphology and properties of cellulose-silica composite aerogels. Freeze-dried samples 

appeared white and homogeneous; however surface cracks appeared on most samples during 

drying (figure III.14). 

 

Figure III.14: Visual aspect of freeze-dried cellulose-silica composites with R2,th=1.07 

 Figure III.15 compares apparent densities of freeze-dried composites of varying R2,th with those 

of composite aerogels with similar formulations. The apparent densities for freeze-dried 

samples are in the 0.10-0.15 cm3.g-1 range, slightly lower than for the corresponding sc CO2-

dried materials, thanks to lower volume contraction of freeze-dried samples upon drying, as 

well as the formation of macropores during the freezing step. Obviously, bulk densities slightly 

increase when increasing silica content. Specific surface area for freeze-dried samples is 

consequently significantly lower than for supercritically dried samples: the specific surface area 

for cryogels from 5%wt cellulose is only 37 m².g-1 against 220 m².g-1 for supercritically dried 

Aerocellulose.  

 

Figure III.15: Comparison of apparent densities for cellulose-silica composites (1) dried with sc CO2 and 

(2) freeze-dried. 

The morphology of the freeze-dried samples was examined by SEM (figure III.15). The 

microstructure of freeze-dried cellulose is a porous network; however the pores appear larger 

overall than for supercritically dried cellulose: most pores are in the 1-10µm range. Mesopores 

present on Aerocellulose were mostly interstices between cellulose strands of a few nanometers 

in diameter. In the case of freeze-dried samples, the cellulose backbone appears non-fibrous, 
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and the cellulose walls are flattened, sheet-like structures. This is attributed the growth of ice 

crystals during the water freezing step, which compresses the pore wall structure, leading to the 

contraction of the smaller pores.  

Silica particles can be observed on all composite samples. As silica particles are formed during 

the coagulation step, as described in part 4.3.1. They present similar characteristics as the ones 

observed in sc CO2 dried samples: roughly spherical geometry and diameter in the 0.5-0.8 µm 

range (fig III.16.d). 

 

Figure III.16 : SEM images of freeze-dried cellulose-silica composites obtained from 5%wt cellulose 

solutions, with varying silica contents (a) R2,th=0 ; (b) R2,th = 0.67 ; (c) R2,th = 1.07 and (d) R2,th =1.40. 

The thermal conductivities of freeze-dried cellulose-silica composites were measured with heat 

flow meter apparatus in PERSEE/MINES ParisTech, as described in materials and methods 

section. Table III.8 compares the conductivities of freeze dried and sc CO2 samples.  

Table III.8: comparison of thermal conductivities of freeze-dried cellulose-silica composites with those of 

samples dried in supercritical CO2 

R2,th 
λ sc CO2 

(mW.m-1.K-1) 

λ freeze-dried 

(mW.m-1.K-1) 

0,67 51 47 

1,07 45 - 

1,4 46 45 

As could be deduced from SEM pictures, the macroporosity of freeze-dried samples result in 

high conductivity values around 45 mW.m-1.K-1. The thermal conductivity values for freeze-

dried samples are similar to those of composite aerogels, due to the conductive nature of the 

1µm 1µm 

1µm 
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c d 
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silica particles. The slightly lower thermal conductivity value for freeze-dried samples as 

compared to supercritically dried ones can be attributed to their lower density. 
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Conclusions 

The preparation of cellulose-silica composite aerogels through one-pot process was reported. 

Water-8%wt NaOH is a well-known “green” solvent for cellulose; however it is not possible to 

mix a cellulose-NaOH solution with most of silica precursors because of the reactivity of the 

alkaline media towards silica on one hand, and silica solvent incompatibility with cellulose 

inducing cellulose phase separation on the other hand. To ensure a better mixing of cellulose 

and silica and thus making homogeneous composite, sodium silicate was chosen as silica 

precursor: its alkaline nature makes it suitable for mixing with cellulose-NaOH solutions. The 

mixtures were prepared at - 6°C and in the presence of ZnO, a gelation-delaying additive so 

that cellulose gelation was delayed and the final material was more homogeneous. 

Sodium silicate forms a gel in acidic conditions. Using dynamic rheology we demonstrated that 

the gelation time of sodium silicate solution in the presence of strong acid, HCl, is decreased as 

compared to citric acid, a weak acid. The temperature dependence of the gelation time of 

sodium silicate follows Arrhenius-type law, and the activation energy of 50 kJ.mol-1 was 

determined when HCl was used as the catalyst. This value is comparable to other silica-based 

sol-gel systems reported in the literature. The behaviour (“solidification”) of the cellulose-

sodium silicate system was studied for different cellulose/silicate proportions and as a function 

of temperature. Cellulose gelation time strongly decreased when increasing sodium silicate 

concentration, following a power law. The gelation time dependence on temperature follows 

the exponential law, with characteristic exponents being twice lower than those obtained for 

gelation of pure cellulose-NaOH solutions. The addition of sodium silicate on the cellulose-

NaOH system had a strong destabilizing effect, inducing rapid association of cellulose which 

in turn leads to a microphase separation because of the competition for the solvent between 

silicate and cellulose. 

The composite aerogels were obtained by supercritical drying of the coagulated mixtures. 

Cellulose concentrations were varied between 3-5wt% and silica/cellulose mass ratio was 

varied from 0 to 1.4. The bulk densities of the composites were around 0.2 g.cm-3. The higher 

yield in silica (40% ±4) was obtained when coagulating the composite in an HCl bath, favoring 

a rapid reaction of sodium silicate and limiting its loss by diffusion outside of cellulose porous 

network. The morphology of the composite aerogels was rather different from that of aerogels 

based on neat materials: cellulose appeared as a network formed of small beads, characteristic 

of a coagulated system, while silica formed large particles with diameters in the 600-800 nm. 

The presence of such large silica particles filling the pores of Aerocellulose lowered 

significantly the specific surface  area, proving that those silica particles are non-porous. 

Thermal conductivity was increased from 0.035-0.040 W.m-1.K-1 for pure Aerocellulose to 

0.045-0.050 W.m-1.K-1 for the composites, due to the dense silica particles increasing the solid 

contribution of the aerogels backbone to the total conductivity. Finally, the Young modulus of 

the composite was increased as compared to pure Aerocellulose, showing that the silica 

particles acted as a reinforcing additive for the cellulose matrix. However, this “one-pot” 

method proved ineffective for the preparation of nanostructured cellulose-silica composites 

(particularly for thermal insulation application), as the two starting materials can only be mixed 

in a very limited range of concentrations, in which condition the formation of a silica aerogel 

structure cannot be obtained. 
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Introduction 

This fourth chapter focuses on the preparation of cellulose-silica composite aerogels from the 

impregnation of a cellulose matrix with a polyethoxydisiloxane (PEDS) sol. The cellulosic 

matrix was obtained from cellulose coagulated from 3%wt cellulose-EMIMAc-DMSO 

solution. In situ formation of silica gel was then performed by immersion of the impregnated 

material in a basic catalyst solution. Drying with supercritical CO2 resulted in cellulose-silica 

composite aerogels. 

First we studied the impregnation process and followed the impregnations kinetics. Two 

impregnation methods were investigated. The first one was diffusion-controlled impregnation, 

where a coagulated-in-ethanol cellulose porous matrix was immersed in a PEDS solution. In 

this case the PEDS slowly penetrated into the cellulose matrix following a mechanism of 

molecular diffusion. Studying the mass increase of the sample for different impregnation times 

allowed evaluating the impregnation kinetics. As diffusion-controlled impregnation is a slow 

process particularly when working with mesoporous networks to be intruded, a forced-flow 

setup was thus designed to decrease the impregnation time. In this setup the PEDS solution is 

forced to penetrate the cellulose matrix by generating a pressure gradient from on surface to 

another. The dry mass of the filtrate was studied to confirm the very large improvement in 

impregnation time from more than 7 hours (diffusion) to about 30 minutes (forced-flow). 

Energy diffractive spectroscopy (EDS) was used to compare the silica distribution between 

diffusion and forced-flow impregnated samples obtained after sc drying. 

The aerogel composites obtained with supercritical CO2 drying of the impregnated samples 

were then characterized. Bulk densities, morphology, specific surface areas, mechanical 

properties under the uniaxial compression experiments and thermal conductivities of the 

composites were compared between forced-flow and diffusion impregnated samples, as well as 

to those of pure silica and cellulose aerogels. 
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Introduction 

Dans ce chapitre nous avons étudié l’élaboration d’aérogels composites cellulose-silice, à partir 

de l’imprégnation d’une matrice poreuse nanostructurée de cellulose par un sol de 

polyethoxydisiloxane (PEDS). La matrice de cellulose a été obtenue par la coagulation d’une 

solution de cellulose 3%wt dans l’EMIMAc dans l’éthanol. La formation de l’aérogel de silice 

a été réalisée in situ par immersion d’échantillons imprégnés dans une solution de catalyseur 

basique. 

Premièrement, nous avons étudié le procèdé d’imprégnation et suivi sa cinétique. Deux 

méthodes d’imprégnation ont été étudiées. La première était l’imprégnation par diffusion, 

consistant à immerger une matrice poreuse de cellulose coagulée dans une solution de PEDS. 

Dans ce cas le PEDS pénètre lentement à l’intérieur de la matrice cellulosique via un mécanisme 

de diffusion moléculaire. L’étude de l’augmentation massique d’échantillon pour différents 

temps d’imprégnation nous a permis d’évaluer la cinétique du procédé. L’imprégnation par 

seule diffusion moléculaire étant un procédé long tout particulièrement dans le cas de substrat 

mésoporeux, un système d’imprégnation par flux forcé a été mis au point. Il consiste à forcer 

la pénétration du PEDS dans la matrice de cellulose en générant un gradient de pression entre 

les surfaces de la matrice cellulosique. La masse sèche du filtrat a été étudié pour confirmer la 

très importante diminution du temps d’imprégnation obtenu via cette méthode par rapport à 

l’imprégnation par diffusion moléculaire, de plus de 7 heures à environ une demi-heure. 

Les aérogels composites obtenus après séchage au CO2 supercritique ont été caractérisés. Les 

densités apparentes, morphologies, surfaces spécifiques ainsi que les propriétés mécaniques en 

compression uniaxiale et la conductivité thermique des composites ont été comparées, d’une 

part entre les échantillons élaborés via diffusion moléculaire et flux forcé, d’autre part par 

rapport à des aérogels de cellulose et de silice de référence. 
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1. Preparation of the cellulose-silica composites by impregnation 

  Strategy for cellulose impregnation 

The goal of this chapter is to prepare monolithic composite aerogels made of interpenetrated 

networks of nanostructured and (partly) mesoporous cellulose and silica. The idea is “filling” 

the pores of cellulose matrix with superinsulating silica phase in order to decrease the thermal 

conductivity of Aerocellulose while reinforcing the silica aerogel thanks to the more 

mechanically resistant cellulose matrix. As nanostructured silica could not be obtained through 

one-pot synthesis as previously demonstrated, we opted for a two-step impregnation process. 

Cellulose can be coagulated from solutions in ionic liquids in a non-solvent, generally ethanol. 

After several washings with the non-solvent to remove the traces of ionic liquids, a cellulose 

continuous network, “alcogel”, impregnated with ethanol is obtained. Given the open pore 

nature of coagulated cellulose, “mixing” cellulose with a silica precursor solution can be 

obtained by filling the cellulose porosity by an ethanol solution containing the dissolved silica 

precursor. TEOS or TMOS derivatives are the most common silica aerogel precursors, and are 

soluble in ethanol. Silica can be formed directly inside cellulose porosity by subsequent 

immersion of the impregnated wet material in an acid or basic catalyst bath. Drying the 

composite gels in supercritical CO2 then yields a composite cellulose-silica aerogel. 

For this study we used a polyethoxydisiloxane (PEDS) as the silica precursor. The formulation 

used to form silica was based on that used by (Achard et al., 2007, Bisson et al., 2004): the 

objective is to obtain a concentration of 8%wt PEDS inside the impregnated matrix. 

We considered two ways for impregnating cellulose: first, the direct immersion of the alcogel 

in an alcoholic PEDS sol would lead to PEDS diffusion inside the cellulose pores until an 

equilibrium concentration is reached between the inside of the alcogel structure and the outside. 

This diffusion-driven process will be investigated in details in part 1.2.2. Secondly, in order to 

decrease the impregnation time, the forced impregnation of the PEDS sol inside the alcogel 

pores was obtained by applying a pressure gradient, until a target concentration of precursor 

inside the alcogel was reached. The forced-flow impregnation process will be investigated in 

part 1.2.3. 

 Preparation of composite celulose-silica aerogels  

1.2.1 Preparation of the cellulose matrix. 

The cellulose matrix was prepared from a cellulose solution in an ionic liquid solvent. The 

cellulose concentration was fixed at 3%wt to ensure faster penetration of silica precursor in the 

cellulose matrix thanks to the low cellulose concentration, while keeping good mechanical 

properties. The ionic liquid used was 1-ethyl-2-methylimidazolium acetate (EMIMAc). DMSO 

was used as a co-solvent to lower the viscosity of the system, the proportion EMIMAc:DMSO 

was 20:80 in weight. The solution was coagulated by pouring ethanol over the sample surface, 

followed by several consecutive steps of washing with ethanol. The detailed procedure was 

described in Materials and method section (Chapter II). 
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 Diffusion process 

Cellulose alcogel was immersed in 16 %wt silica solution in ethanol (malcogel = msilica solution) for 

24 h at room temperature, then extracted and placed in alcolohic catalyst solution in the 

proportion mcatalyst solution = mgel for the next 24 h (Figure IV.1) resulting in in situ silica gelation.  

 

Figure IV.1 : A schematic presentation of the preparation route of cellulose-silica composite aerogels via 

the diffusion process. 

The impregnation of the cellulose matrix in this case is controlled by molecular diffusion. In a 

first approximation, the diffusion coefficient of molecules in a fluid can be estimated thanks to 

the Stokes-Einstein formula (eq. IV.1): 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑅
 

where kB is Boltzmann constant (kB = 1.38 × 10-23 m2.kg.s-2.K-1), T is temperature in K,  the 

viscosity of the medium (Pa.s), R the radius of the diffusion entity (m). 

The distance L made by a particle over a given time t can be calculated from equation IV.2: 

𝐿 = √𝐷𝑡 

In the case of the PEDS used in this study, the mean particle diameter was measured by dynamic 

light scattering (DLS) experiments by the Institut Charles Sadron (Strasbourg, France). The 

size for 95% of the particles is around 1 nm, with a minor quantity (< 5%) of larger agglomerates 

around 1000-1500 nm, which can easily be eliminated by filtering the solution. Thus we used 

R = 1 nm. In our samples the PEDS concentration is around 8%wt, and it can be considered as 

a dilute solution. Considering the viscosity of ethanol is 1.2.10-3 Pa.s, we obtain, for T = 25°C, 

DPEDS = 1.8.10-10 m².s-1. In table IV.1, we estimate the distance a PEDS particle can travel during 

a given time. 

Table IV.1: Theoretical distance made by a PEDS particle with R = 1 nm at different times in the case of 

PEDS dilute solution. 

t (h) 
LPEDS 

(mm) 

1 0,81 

3 1,40 

8 2,29 

24 3,96 

48 5,61 

(IV.1) 

(IV.2) 
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To follow experimentally the impregnation kinetics of cellulose alcogels by PEDS via 

molecular diffusion (before immersion in the catalyst solution), wet disks of 5 mm diameter 

were extracted from silica solution at various impregnation times and dried in a vacuum oven 

at 80 °C and 150 mbar up to constant weight. The evolution of the mass of the disks as a function 

of impregnation time was recorded. The relative mass of silica in the dried gel was measured 

as follows (eq. IV.3):  

 𝑤𝑟𝑒𝑙,1(𝑡) =  
𝑤1(𝑡)

𝑤𝑚𝑎𝑥,1
  

where w1(t) is the dry weight of the impregnated cellulose at time t and wmax,1 is the theoretical 

maximal dry weight of impregnated cellulose matrix calculated assuming silica fully 

penetrating cellulose porosity and thus a PEDS concentration inside the impregnated material 

equal to 8%wt. 

To estimate the theoretical impregnation time, we have to consider that the theoretical LPEDS 

has to be doubled in the case of a disc-shaped sample where impregnation occurs through both 

free faces. We assumed that the diffusion front is regular throughout the sample and 

perpendicular to its lateral surface. Thus we can deduce the volume of sample impregnated by 

the silica sol, and theoretical relative silica weight by using equation (IV.4):  

𝑤𝑟𝑒𝑙,𝑡ℎ(𝑡) =  
(1 − 𝑤𝑡%𝑐𝑒𝑙𝑙). 𝑉𝑖𝑚𝑝𝑟𝑒𝑔𝑛𝑒(𝑡). 𝜌𝑃𝐸𝐷𝑆

𝑉𝑡𝑜𝑡𝑎𝑙. 𝜌𝑔𝑒𝑙
 

As the fraction of each constituent in the gel is low as compared to the quantity of solvent(3%wt 

for cellulose and maximum 8%wt for silica), we considered that ρPEDS ≈ ρgel. The theoretical 

filling of the silica gel was plotted along the experimental points on figure IV.2. 

 

Figure IV.2 : Silica relative weight as a function of impregnation time during diffusion impregnation of 

cellulose alcogel made from a 3%wt cellulose-EMIMAc-DMSO solution. Dotted line correspond to 

theoretical value calculated according to equation (IV.4) Sample thickness is 5 mm.  

The impregnation by diffusion occurs in two steps: first quick silica penetration into cellulose 

alcogel (wrel,1 increases by about 70% within the first 3 hours) and then slow approach to 

equilibrium. Diffusion is slowed down because of silica “filling” the pores of cellulose matrix 

close to sample surface and creating silica concentration gradient reducing permeability of the 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

0 5 10 15 20 25 30 35 40

wrel,1    

t (h)

(IV.3) 

(IV.4) 



Chapter IV: Cellulose-silica composite aerogels from impregnation of cellulose porous 

matrices with polyethoxydisiloxane sol.  

 

 

141 

 

media. In overall, the impregnation process by molecular diffusion is very slow. The theoretical 

calculation based on the estimated diffusion coefficient of PEDS gives an estimated time for 

100% impregnation of 10h in the case of a 5 mm thick cellulose alcogel disk. At equilibrium, 

it seems that silica weight inside cellulose matrix is reaching 90% of the theoretical maximal 

value wmax,1 within 10% experimental error.  

Although the theoretical calculation is a rough approximation, the experimental points fit rather 

well the theoretical values of silica relative weight over time. Probably due to the low cellulose 

concentration, PEDS diffusion does not appeared slowed down by the presence of the cellulose 

network, as the best fitting for the experimental points was obtained using the diffusion 

coefficient estimated for “free” PEDS. However, diffusion should be slowed down considerably 

when the solute is moving inside a porous polymer matrix. Based on results obtained on the 

diffusion of NaOH molecules in coagulating cellulose (Gavillon and Budtova, 2007, Sescousse 

et al., 2011), the diffusion coefficient of NaOH in dilute solution is DNaOH = 1.5.10-9
 m².s-1, and 

it is lowered by a factor of 3-10 in the presence of a cellulose porous matrix, depending on 

cellulose concentration. The impregnation time will obviously increase strrongly if increasing 

sample thickness and/or cellulose concentration. 

 Forced-flow process 

In order to accelerate silica impregnation, we developed a set-up to perform so-called “forced 

flow impregnation”. Cellulose alcogel disc of the same thickness as for molecular diffusion 

impregnation was placed in a home-made plastic funnel fixed on a grid, the whole setup placed 

above a Büchner flask connected to a primary vacuum pump (Figure IV.3). 16wt% PEDS 

solution was poured over the gel (msol = 2×malcogel). A pressure gradient was generated using 

the vacuum pump to force the transport of silica sol through cellulose disk porosity. The 

impregnated gel was then immersed in the catalyst solution in the same way as described above 

for simple molecular diffusion impregnation.  

 

Figure IV.3 : Scheme of the forced-flow impregnation set-up. 

The impregnation kinetics was followed by the increase of the relative silica weight in the 

filtrate, wrel,2 (t):  

𝑤𝑟𝑒𝑙,2(𝑡) =  
𝑤2(𝑡)

𝑤𝑚𝑎𝑥,2
× 100%  

PEDS solution 

Büchner flask 

To vacuum 
pump 

Plastic grid 

Cellulose 
alcogel 

(IV.5) 
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where w2(t) is the silica weight in the filtrate at time t and wmax,2 is the theoretical maximal silica 

weight in the filtrate calculated assuming the initial silica concentration in the sol is decreased 

by 2/3 as far as msol = 2×malcogel, resulting in 10.6%wt PEDS in the porosity of the cellulosic 

wet gel.  

 

Figure IV.3 : Silica relative weight in the filtrate as a function of time for forced flow impregnation of 

cellulose alcogel from a cellulose-EMIMAc coagulated sample. Sample thickness is 5 mm. 

The rate of impregnation via forced flow set-up is much faster as compared to molecular 

diffusion process: the time needed to reach 80-90% of the theoretical maximal impregnation of 

cellulose matrix of 5 mm thickness is drastically reduced from 7 hours for diffusion to ~ 15-20 

minutes for forced flow. It should also be noted that for diffusion-controlled impregnation the 

effective impregnation distance is equal to the half-thickness of the sample while for the forced-

flow it is the whole thickness of the disk. “Filling” a 2.5 mm thick disk via forced-flow 

impregnation would be thus at least four times quicker than what is shown in figure IV.3 as far 

as time is roughly proportional to the distance in power two. 

To prepare the aerogels composites, silica gel was formed in the cellulose porosity by 

immersion in NH4OH catalyst solution as shown in figure IV.1. The wet composites from 

forced flow and diffusion controlled impregnation were dried with supercritical CO2 as 

described in materials and methods section. 

2. Properties of composite aerogels 

  Distribution of silica in the composite aerogels. 

Because we target the decrease of Aerocellulose thermal conductivity by “filling” its pores with 

silica aerogel (a materials far less conducting than entrapped air), it is important to understand 

if silica is homogeneously distributed in the cellulose matrix. This was done using EDS 

spectroscopy. The spectra were taken on a transversal cut of samples prepared via molecular 

diffusion as well as forced flow impregnation (figure IV.4). One spectrum was taken every 100 

µm over a straight line along the sample cross-section. The weight per cent of Si, wt%Si, was 
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determined from the intensity of the silicon Kα peak at 1.71 keV and the concentration of SiO2 

was calculated as follows (eq. IV.6):  

 𝑤𝑡%𝑆𝑖𝑂2
=  

𝑀𝑆𝑖𝑂2

𝑀𝑆𝑖
𝑤𝑡%𝑆𝑖  

where MSi = 29 g/mol and 𝑀𝑆𝑖𝑂2
= 61 g/mol are the molar mass of silicon and silica, 

respectively. 

 

Figure IV.4: Example of a cross-section of a cellulose-silica composite aerogel from 3%wt cellulose, as 

seen by SEM. The EDS spectra shown on the right were taken along the red line. The peak shown on the 

spectra corresponds to the Si Kα at 1.71 keV. 

Figure IV.5 shows the distribution of SiO2 along the cross-section of composite aerogel, as a 

function of the distance l from the sample surface, for both diffusion and forced flow 

impregnation. For diffusion-controlled impregnation, both sides of the sample are equivalent in 

terms of silica impregnation, while for the forced flow impregnation l = 0 corresponds to the 

upper sample surface in contact with PEDS solution.   

 

Figure IV.5: %wt of silica along the transversal cut of composite aerogels impregnated by (1) molecular 

diffusion for 24 h and (2) forced-flow process (after 1h) as a function of distance from the upper surface of 

the sample (with thickness equal to 5 mm). Dashed lines are given to guide the eye. 
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EDS shows local elemental composition on the surface of the sample cross-section and does 

not analyse the bulk of the sample. The obtained high values of silica concentration indicate 

that most of the signals come from Si element. This means that cellulose is well coated by silica 

resulting in overestimated values of silica concentration as compared to the maximal bulk 

theoretical value of 72 wt%. Despite the fact that EDS is not reflecting average bulk silica 

concentration, it gives valuable information on silica penetration and distribution inside the 

sample. The sample impregnated with forced flow process shows slightly higher silica 

concentration as compared to diffusion process, especially near sample upper surface. 

Diffusion-controlled impregnation is showing a more homogeneous silica distribution in the 

cellulose matrix as compared to forced-flow impregnated composites: in the latter case, silica 

concentration gradient appears with the distance from the upper sample surface. In overall, 

forced flow impregnation appears to be an efficient way to reduce impregnation times while 

keeping a good filling of the cellulose matrix with silica. 

In order to estimate silica average concentration in composite aerogel, elemental analysis was 

done in CNRS Service Central d’Analyse laboratory (Villeurbanne, France) using atomic 

absorption spectroscopy. Weight concentration of silicon (wt%Si) was measured allowing 

evaluation of wt% of silica ( 𝑤𝑡%𝑆𝑖𝑂2
)  using equation 6 and silica mass yield in the dry aerogel 

( 𝑌𝑖𝑒𝑙𝑑𝑆𝑖𝑂2
) was determined as follows:  

𝑌𝑖𝑒𝑙𝑑𝑆𝑖𝑂2
=  

𝑤𝑡%𝑆𝑖𝑂2

𝑤𝑡%𝑆𝑖𝑂2
(𝑡ℎ)

 

where 𝑤𝑡%𝑆𝑖𝑂2
(𝑡ℎ) =

𝑤𝑡%𝑆𝑖𝑂2 ,𝑚𝑎𝑥

𝑤𝑡%𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + 𝑤𝑡%𝑆𝑖𝑂2 ,𝑚𝑎𝑥
 with 𝑤𝑡%𝑆𝑖𝑂2

, 𝑚𝑎𝑥 being theoretical silica 

concentration in the wet material in case of total silica conservation in the sample during 

coagulation and washing steps. We thus obtain, for the initial proportion between cellulose and 

silica used,  𝑤𝑡%𝑆𝑖𝑂2
, 𝑚𝑎𝑥 = 8% and 𝑤𝑡%𝑆𝑖𝑂2

(𝑡ℎ) =72%. 

Silica yield for both impregnations was calculated according to eq. 6: it is around 70 and 77% 

for diffusion and forced flow processes, respectively (table IV.3). The amount of silica wt% in 

the dry samples obtained with each method is very similar (51 wt % for diffusion against 56 wt 

% for forced flow impregnation), confirming the observations by EDS spectroscopy that 

cellulose impregnation using both methods results in a similar filling of cellulose porosity by 

silica. The silica mass ratio was also consistent with the dry mass measured by drying the 

samples just after impregnation. It is likely that a loss of silica occurs during the catalysis step, 

when the impregnated sample is immersed in the NH4OH solution. The gelation of silica takes 

about 10 minutes in these conditions (Achard et al., 2007) and partial diffusion of silica sol 

from cellulose matrix into the catalyst solution can occur even in this short time. Some silica 

transparent gel was observed around the impregnated cellulose after the catalysis step, 

confirming a partial loss of the silica due to diffusion from the matrix prior to gelation. 

 

 

(IV.7) 
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Table IV.3: Experimental (via elemental analysis) and theoretical silica content in hybrid aerogels and the 

corresponding impregnation yields for diffusion and forced flow impregnation. 

Method of 

impregnation 
𝒘𝒕%𝑺𝒊𝑶𝟐

 (exp) 𝒘𝒕%𝑺𝒊𝑶𝟐
(𝒕𝒉) Yield, % 

Diffusion 51% 72% 70% 

Forced flow 56% 72% 77% 

In ambient temperature and in the mild basic conditions required to form silica aerogel, there is 

no apparent reason for the formation of covalent bonds between cellulose and silica. To confirm 

the absence of chemical bonds between cellulose and silica, an FTIR spectrum of an 

impregnated composite gel was compared to that of pure Aerocellulose and a reference silica 

aerogel (figure IV.6). 

 

Figure IV.6: FTIR spectra of reference Aerocellulose and silica aerogels, compared to that of a cellulose-

silica composite aerogel. 

Cellulose ether and silica (Si-0-Si) bonds are both vibrating in 1100 cm-1 wavenlenght domains 

which makes difficult to detect the difference between the composite and raw silica. The 

apparent decrease the –OH absorption band in the [3700-3000] cm-1 region as well as that of 

the band at 900 cm-1 observed on the Aerocellulose spectrum in composite aerogel is due to a 

scaling effect because of the high intensity of the 1100 cm-1 band in the composite. We cannot 

see any disappearance or appearance of any absorption band in the composite spectrum 

compared to those of the reference components which could account for a chemical bonding. 
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 General properties of the composite aerogels 

2.2.1 Morphology 

The visual aspect of reference Aerocellulose from 3%wt solution in EMIMAc, a silica aerogel 

from 8%wt PEDS and a composite aerogel are shown in figure IV.7. Supercritically dried 

cellulose reference and composite aerogels were white, rigid and monolithic, without visible 

cracks. On pure cellulose and silica-impregnated composite samples, the upper surface of the 

samples is slightly deformed during the coagulation step, when ethanol was poured over the 

cellulose-EMIMAc solution. However, the samples appeared homogeneous and the smooth 

surfaces necessary for thermal characterization were obtained easily by polishing the surface of 

the dry sample with abrasive paper. 

 

Figure IV.7: Visual aspect of the aerogels from (a) pure cellulose (b) reference silica aerogel from 8%wt 

PEDS and (c) cellulose-silica composite aerogel.Drying was done at SEPAREX SA, Nancy, France, in the 

frame of the AEROCOINs project. 

The morphology of composite aerogels obtained with both impregnation methods, as well as 

the reference samples (Aerocellulose and silica aerogel) was analysed by SEM (figure IV.8). 

Aerocellulose (Figure IV.8.a) has a hierarchical structure with “hairy” beads assembled 

together, as demonstrated previously for Aerocellulose from cellulose-ionic liquid solutions 

(Sescousse et al., 2011). The beads are supposed to be formed via spinodal decomposition 

during cellulose coagulation from solution (Sescousse et al., 2011). The inside morphology of 

a bead is a “network” of fine cellulose strands. Characteristic pores size varies from several tens 

of nanometers to several microns, as seen by SEM and also studied by non-intrusive mercury 

porosimetry (Rudaz, 2013). Silica aerogel morphology (figure 5b) is typical of base-catalysed 

silica aerogels. It looks like a colloidal network formed of “nanometric” silica beads with pore 

diameter being few tens of nanometer, with no macropores observable by SEM (Pierre and 

Rigacci, 2011). 

 

 

a b c 
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Figure IV.8: SEM images of Aerocellulose from 3% cellulose-EmimAc-DMSO solution (a); reference 

silica aerogel (b) and hybrid aerogels obtained with molecular diffusion (c) and forced flow (d, e) 

impregnation. 

SEM images of composite aerogels are shown in Figure IV.8.c for molecular diffusion-

controlled and Figure IV.8.d, e for forced-flow impregnation. In both cases, silica phase appears 

homogeneously distributed all over cellulose network confirming the formation of organic and 

mineral interpenetrated networks. The cellulose strands are difficult to see on the images as the 

cellulose backbone is mostly covered by silica; however the fiber-like shapes seen on figure 

IV.8.c can be interpreted as cellulose strands. Silica is filling the macroporosity present in 

Aerocellulose matrix and is “coating” cellulose backbone itself. The latter explains high values 

of silica concentration obtained by EDS. Figure IV.8.e shows the zoom of the morphology of 

composite sample obtained with forced flow impregnation: the silica phase is made of 

agglomerated “nanoparticles”. The pore size in the silica phase seems to be in the range of some 

tens of nanometers.  
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1µm 

200nm 
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2.2.2  Density and evaluation of porosity  

The porosity %) was estimated as a ratio between the specific volume of voids Vpores and the 

total specific volume (solid + voids) Vtotal which can also be expressed as a function of bulk and 

skeletal skeletal densities: 

𝜀(%) =
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 −

𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
 

 

A theoretical specific pore volume Vth was calculated according to equation IV.9:  

𝑉 𝑡ℎ =
1

𝜌𝑏𝑢𝑙𝑘
−

1

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
 

Bulk density ρbulk of composite aerogels and of cellulose and silica reference samples was 

measured as described in Experimental section and porosity % was calculated according to 

eq.1; the values are given in table IV.4. Porosity was calculated supposing cellulose and silica 

skeleton density being roughly 1.5 (Rudaz, 2013) and 2.0 (Ayral, Phalippou and Woignier, 

1992) g.cm-3, respectively. The average skeletal density of composite aerogels was calculated 

taking into account the amount of silica for each impregnation case as obtained with elemental 

analysis, 51 wt% for diffusion and 56 wt% for forced flow. The density of composite materials 

appears higher, as expected, and porosity slightly lower than that of each of the reference 

samples. In overall, the porosity of composite aerogels is around 90%. 

TableIV.4: Bulk density, porosity  %, theoretical specific pore volumeVtheor , specific surface area SBET, 

for cellulose and silica reference samples and composite aerogels. 

Formulation 

ρbulk, 

g/cm3 

, % 

Vth, 

cm3/g 

SBET, 

m²/g 

Aerocellulose 0.123 0.92 8.8 290 

SiO2 aerogel 0.130 0.94 8.2 975 

Diffusion 0.225 0.87 5.0 810 

Forced-flow 0.156 0.91 7.0 750 

Assuming silica aerogel fills the entirety of the porosity of Aerocellulose, and that the bulk 

density of the aerogel formed inside the cellulose porosity is the same as the pure SiO2 aerogel 

synthesized in similar conditions, the theoretical apparent density for maximal filling of the 

composites by SiO2 can be expressed as follows: 

𝜌𝑚𝑎𝑥 =  (1 − 𝜀𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒). 𝜌𝑏𝑢𝑙𝑘,𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 +  𝜀𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒. 𝜌𝑆𝑖𝑂2 

𝜌𝑚𝑎𝑥 = 1.5 × 0.08 + 0.92 × 0.130 

(IV.9) 

(IV.8) 
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ρmax = 0.240 g. cm−3 

The comparison of the measured apparent density of the composites with ρmax suggests that in 

the case of diffusion impregnated samples, 93% of the cellulose pores are filled with silica 

aerogel, while in the case of forced-flow impregnation only 65% of the cellulose porosity is 

filled by silica. This result seems to be inconsistent with the silica mass percentages calculated 

from elemental analysis, which were very close to fully impregnated samples obtained through 

diffusion or forced-flow methods. However, in the case of the composites silica gel has been 

synthesized inside the cellulose pores, i.e in a confined environment where the catalyst had to 

diffuse to reach the PEDS. These conditions may induce a certain difference in the silica 

synthesis conditions. Thus we can speculate that the density of the silica synthesized within the 

cellulose porosity may be someway different than that of silica synthesized in the absence of 

cellulose. This point could be studied more in details in future works. 

As compared to Aerocellulose, the specific surface area of both composites increased 

significantly, reaching values that are comparable with the ones characteristic to silica aerogels. 

This result is a direct confirmation of the formation of finely nanostructured silica aerogel in 

the pores of cellulose matrix. The complete adsorption-desorption N2 isotherms for both 

composite samples and for reference aerogels (figure IV.9) correspond to type IV according to 

IUPAC classification.   

 

Figure IV.9 : N2 sorption-desorption isotherms for Aerocellulose from 3wt%cellulose-EmimAc solution 

(1), diffusion-controlled (2) and forced flow (3) impregnated composites and reference silica aerogel (4) 

The total volume of adsorbed nitrogen in composite aerogels is the same for both impregnation 

techniques and more than twice higher than that for reference Aerocellulose, attesting a larger 

total pore surface area due to nano-structured silica.  

There is a significant difference between the theoretical pore volume calculated from density 

measurements and the pore volume measured by BJH method from N2 isotherms: 50 to 80% of 

the total pore volume is ignored by BJH measurements. It is known for cellulose (Rudaz et al., 

2014) as well as for silica aerogels (Reichnauer and Scherrer, 2001) that BJH approach does 

not provide the information on pores of a diameter larger than few hundred nanometers which 

does not cover the whole range of pore sizes in Aerocellulose (see SEM pictures in part 2.1.2). 
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Thus we shall not rely on BJH method to quantify the porosity in the case of cellulose-silica 

composites. From the results of the elemental analysis of silica content as well as the analysis 

of composite density, we can assume that silica do not fill entirely the cellulose porosity: it is 

likely that some large open pores remain in the composite. 

  Mechanical properties and thermal conductivity 

2.2.3 Mechanical properties 

Uniaxial compression of reference and composite aerogels is presented in Figure IV.10 as 

stress-strain plots; the values of Young modulus E and fracture stress * and strain ε* are 

reported in table IV.5. Each compression experiment was performed to the moment when the 

sample was starting to break. Because of the restricted sample geometry for forced-flow 

impregnation set-up, only diffusion-impregnated composite were studied. 

 

Figure IV.10: Stress-strain uniaxial compression curves for cellulose-silica composite aerogels obtained 

via molecular diffusion impregnation (1), reference Aerocellulose (2) and silica (3) aerogels. Graph A is a 

zoom at low stresses and strains, while graph B shows the complete stress-strain curves until break. 

Table IV.5: Young modulus (E), strain (ε*) and stress (*) at break for 3%wt aerocellulose from cellulose-

EMIMAc solution, reference silica aerogel, and cellulose-silica composite aerogels. 

Formulation 

E, 

MPa 

*, 

MPa 

ε *, 

% 

Aerocellulose 2.8 ± 0.47 9.20 ± 0.12 80 

SiO2 aerogel 1.9 ± 0.10 0.07 ± 0.007 4 

Composite aerogel (via 

diffusion impregnation) 

11.5 ± 1.11 6.30 ± 1.55 60 

A B 
(1) 

(3) 

(2) 

(1) 
(2) 
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Stress-strain curve for the reference Aerocellulose (figure IV.10, curve 1) is typical for bio-

aerogels such as Aerocelluloses prepared from cellulose dissolved in aqueous 8%NaOH or in 

ionic liquid (Sescousse et al., 2007) or Aeropectins from pectin dissolved in acid medium  

(Rudaz et al., 2014). Three regions can be distinguished: linear regime at low strains, long 

plastic deformation region with pore walls bending and finally densification due to pore walls 

collapse.  

Aerocellulose shows very high deformability, up to 70-80% strain, but does not recover its 

shape after being highly compressed. The reference silica aerogel is brittle, breaking at low 

strains of a few per cent, and with lower (as compared to Aerocellulose) values of fracture stress 

and Young modulus (table IV.5). According to a recent study of the mechanical properties of 

hydrophobic (silylated) silica aerogels from the same PEDS precursor (Wong et al. 2014), silica 

aerogels with densities between 0.1 and 0.2 g.cm-3 show an elastic-like behavior deforming till 

40% strain and partially “springing back” to their original shape when the stress is released. 

Their Young moduli were from ≈ 1 to 10 MPa and fracture stress from ≈ 0.02 to 2.5 MPa in 

this bulk density interval. Aerogel with densities above 0.2 g.cm-3 were shown to exhibit a 

brittle behavior, while those with the densities lower than 0.1 g.cm-3 were highly compressible. 

In our case, silica aerogels with bulk densities around 0.13 g.cm-3 have Young modulus of 

around 2 MPa and fracture stress of 0.07 MPa, but broke at low strains and showed no 

measurable elastic recovery probably because no hydrophobisation was performed consistent 

with other observation done on similar formulations (Diascorn, 2014).  

Cellulose-silica composite aerogel shows significantly improved Young modulus as compared 

to its reference counterparts, both Aerocellulose and silica aerogel (Figure 6, curve 1 and Table 

1). With a mean value of Young modulus around E=11.5 MPa the composite is three-four times 

stiffer than each of reference materials with E = 2.8 and 1.8 MPa for Aerocellulose and silica 

aerogel, respectively. The composite aerogel can also withstand deformation up to 60% before 

break, which is similar to Aerocellulose and is ten times higher than what is obtained for the 

reference silica aerogel. One of the reasons of high Young modulus is composite higher density, 

0.156 vs 0.123 and 0.130 g.cm-3 as compared to each of reference aerogels, Aerocellulose and 

silica, respectively. However, even if considering that Young modulus is proportional to aerogel 

density in power ~ 3 (Ma et al., 2000), the increase in modulus is higher than what could be 

theoretically expected from density increase. Cellulose is clearly playing an important 

reinforcing role but more data (such as mechanical properties of individual cellulose strands) 

are needed to quantify this phenomenon. The synergy of cellulose-silica interpenetrated 

network provides stiff and ductile aerogel materials, despite at this stage there is no evidence 

of chemical interaction between the two components, as suggested by FTIR spectra (see part 

2.1.1) 

2.2.4 Thermal conductivity 

Silica aerogels are known to be amazing thermal superinsulating materials in room conditions, 

as also obtained in this work, see Table 1: λ20°C = 0.015 W.m-1.K-1. The main reason for a low-

density porous material to fall into superinsulation region is air confinement in the pores of size 

below the free mean path of air molecule (Knudsen effect); at atmospheric conditions it is 

around 70 nm. Mesoporous and light-weight silica aerogels satisfy these conditions. Here the 

conductivities of reference silica aerogels are compared to those of pure Aerocellulose and 

cellulose-silica composites made from impregnation and forced-flow processes. All tested 
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samples were obtained from 3%wt cellulose in EMIMAc-DMSO. The thermal conductivities 

were measured with heat flow meter apparatus in PERSEE/MINES ParisTech, as described in 

materials and methods section. 

Table IV.6 : Bulk densities and thermal conductivities in ambient conditions of reference Aerocellulose, 

reference silica aerogel, and diffusion and forced flow cellulose-silica composites obtained from cellulose 

3%wt in EMIMAc 

Formulation 

ρbulk, 

g/cm3 

λ25°C 

(W.m-1.K-1) 

Aerocellulose 0.123 0.033 

SiO2 aerogel 0.130 0.015 

Composite aerogels via diffusion 

impregnation 

0.225 0.026 

Composite aerogel via forced-flow 

impregnation 

0.156 0.028 

Aerocellulose also has low bulk density, but the presence of numerous large macropores, as 

seen on figure IV.8.a, results in relatively high thermal conductivity values, 0.033 W.m-1.K-1 in 

room conditions. In composite cellulose-silica aerogels, superinsulating silica aerogel is filling 

Aerocellulose pores in general and macropores in particular: thermal conductivity is thus 

decreased to 0.027 ± 0.001 W.m-1.K-1 but remains rather high because notable increase in 

density. This result demonstrates the feasibility of decreasing thermal conductivity by 

“incorporating” a superinsulating silica aerogel into cellulose matrix. The thermal 

superinsulation level, i.e. a thermal conductivity below that of air (0.025 W.m-1.K-1) is not 

achieved yet for the present composites. Possible complementary reasons are the presence of 

some remaining macropores not filled with silica aerogel phase; however these macropores 

could not be detected precisely through BJH analysis because this method detects pores under 

200 nm diameter. The conditions in which the silica aerogel phase was formed, within the pores 

of the coagulated cellulose, can possibly also affect the thermal properties of the silica phase. 

Slight modifications in the formulation of silica, such as varying water-to-PEDS or catalyst-to-

PEDS molar ratios, could be investigated in future in order to optimize the thermal conductivity 

of the silica phase. The presence of -OH groups on the surface of cellulose strands should also 

be taken into consideration as a potential source of “perturbation” of silica gelation.  
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Conclusion 

This part dealt with the preparation of cellulose-silica composite aerogel by “impregnation” 

technique. A 3%wt cellulose was dissolved in EMIMAc-DMSO, coagulated in ethanol and 

used as the cellulose matrix. A solution of polyethoxysiloxane (PEDS) in ethanol was used as 

the silica precursor. Strong, light (bulk density around 0.2 g.cm-3) and monolithic crack-free 

cellulose-silica composite aerogels have been prepared by impregnation of wet coagulated 

cellulose with PEDS solution, followed by immersion of the impregnated sample  in a 

water/ethanol NH4OH catalyst solution, silica gelation, solvent exchange, and supercritical CO2 

drying.  

Two impregnation routes were performed: either by molecular diffusion or by a forced flow 

process where the silica sol was forced to penetrate inside the cellulose matrix due to a pressure 

difference. Energy diffractive spectroscopy and SEM analysis were performed to compare 

silica spatial distribution in both series of samples. Forced flow impregnation method 

significantly reduced processing times as compared to impregnation driven by simple molecular 

diffusion: impregnation times were reduced from ~ 7 hours to less than 30 minutes for a sample 

with the same geometry. The morphology of diffusion impregnated and forced-flow 

impregnated samples was similar: cellulose matrix was filled with nanostructured silica. 

BET analysis confirmed the formation of nanostructured silica inside cellulose matrix: specific 

surface area increased from ≈ 300 m2.g-1 for Aerocellulose to 750-800 m2.g-1 for silica-

impregnated composites. The thermal conductivity in room conditions was reduced from 0.033 

W.m-1.K-1 for aerocellulose to 0.027 W.m-1.K-1 ± 0.001 for composite aerogels due to the 

superinsulating properties of silica aerogel itself, demonstrating that the concept of 

impregnation for decreasing the total thermal conductivity of a porous matrix with large 

macropores works. Finally, composite aerogels were strongly reinforced as compared with the 

reference aerogels still keeping high ductility characteristic to Aerocellulose: Young modulus 

of composite aerogel increased in 3-4 times as compared to pure silica aerogel, and fracture 

strain remained very high, about 60% for the composite against 4-10% for reference silica 

aerogels showing that the concept of using cellulosic matrix to reinforce silica aerogels works 

as well.  
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Introduction 

In the previous chapter we showed that the approach of introducing superinsulating silica phase 

in the pores of cellulose matrix allows and a significant improve of the mechanical properties  

and decreasing thermal conductivity as compared to pure cellulose as compared to silica 

aerogels. However, Cellulose-silica composites described in the previous chapter are highly 

hydrophilic, as cellulose and silica phase bear hydroxyl and silanol groups, respectively, which 

are responsible for the high water sensitivity of the materials. Water adsorption in aerogels may 

lead to pores collapse, apparition of cracks, densification and loss of thermal and mechanical 

properties. An application of aerogels for superinsulation in the building industry requires 

aerogels to be resistant to ambient humidity so that they keep their thermal properties over long 

periods of time. 

To decrease cellulose hydrophilicity it has to be chemically modified. This was done by 

functionalizing cellulose with triphenylmethylchloride, allowing to graft very hydrophobic 

triphenyl (abbreviated trityl) groups on cellulose chains. We called the modified cellulose 

“tritylcellulose”. After the chemical modification of cellulose, dissolution of the tritylcellulose 

in dimethylformamide (DMF), followed by coagulation in a non-solvent and supercritical 

drying allows to obtain tritylcellulose aerogels. 

As seen on chapter IV, impregnation of a cellulose matrix with PEDS allows to make cellulose-

silica composites with decreased thermal conductivity. The same approach was taken with 

tritylcellulose gels to make tritylcellulose-silica composites: coagulated tritylcellulose was 

impregnated with polyethoxisiloxane, and silica gel was formed with basic catalysis inside the 

pores of the tritylcellulose matrix. Hexamethyldisilazane (HMDZ) treatment was performed to 

hydrophobize the silica phase. Supercritical CO2 drying gives composite tritylcellulose-silica 

aerogels. 

Another improvement that can be performed is the process of aerogels preparation. The 

supercritical CO2 drying process is time and energy consuming. For silica-based aerogels a 

successful alternative route was developed: pores surface of a wet gel is chemically modified 

by silylation. In this case subcritical drying in conditions close to ambient does not lead to 

dramatic pore collapse responsible for high densification. Such an ambient-pressure drying 

results in materials historically called “xerogels” and currently named “ambient-dried aerogels” 

as far as their structure and properties are very similar to their aerogel counterparts. The route 

of silica hydrophobisation for making xerogels was taken as an example for making cellulose 

xerogels from tritylcellulose. 

The morphology and bulk density, of tritylcellulose and tritylcellulose-silica composite 

aerogels and xerogels will be studied in details. A viscosimetric study will be performed on 

tritylcellulose-DMF solutions to compare its properties with common cellulose solutions. 

We will study the mechanical properties of hydrophobized aerogels and composite aerogels by 

uniaxial compression measurements. The thermal properties of the aerogels will be studied by 

hot wire method. 

The hydrophobic nature of the composites, as compared to untreated hydrophilic reference 

materials, will be studied through water contact angle measurements, an accelerated aging test 
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for two days at 30°C and 80% relative humidity, and long-term aging tests in an humid 

environment over 45 days. 

Finally, we will examine the morphology, bulk density, apparent porosity and hydrophobic 

properties of tritylcellulose xerogels and tritylcellulose-silica composite xerogels; the 

possibility of elaborating fully hydrophobic xerogels of low density from cellulose-silica 

composites will be discussed.  
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Introduction 

Dans le chapitre précèdent, nous avons montré que la génération d’une phase de silice 

superisolante au sein d’une matrice cellulosique poreuse permet une diminution sensible de la 

conductivité thermique du composite par rapport à la conductivité de l’Aérocellulose pure. Le 

composite ainsi élaboré présente également une amélioration significative des propriétés 

mécaniques par rapport aux aérogels de silice de référence. Cependant, ces composites 

cellulose-silice sont très hydrophiles, les phases cellulose et silice portant respectivement des 

groupements hydroxyl et silanols en grandes quantités. Ces groupements sont responsables de 

la forte sensibilité à l’eau de ces matériaux. L’adsorption d’eau par les aérogels peut conduire 

après condensation à un effondrement des pores, à l’apparition de fissures, et à une perte des 

propriétés mécaniques et thermiques. L’application des aérogels à l’industrie de la 

superisolation pour le bâtiment comme nombre d’autres applications nécessite des matériaux 

résistants à l’humidité et pouvant ainsi conserver leurs propriétés thermo-mécaniques avec le 

temps. 

Pour diminuer l’hydrophilie de la cellulose, il est nécessaire de la modifier chimiquement. Dans 

ce chapitre nous avons fonctionnalisé la cellulose avec le triphenylmethylchloride, par une 

réaction d’étherification permettant de greffer aux chaînes de cellulose des groupements 

triphenyl (abrégé trityl) très hydrophobes. La cellulose ainsi modifiée est appelée 

« tritylcellulose ». Après cette modification chimique de la cellulose, la tritylcellulose peut être 

dissoute dans le dimethylformamide (DMF), coagulée dans un non solvant puis séché en 

conditions supercritiques, ce qui permet d’obtenir des aérogels de tritylcellulose. 

Comme nous l’avons vu au chapitre IV, l’imprégnation d’une matrice cellulosique avec un 

polyethoxydisiloxane permet d’élaborer des composites à la conductivité thermique réduite. La 

même approche a été envisagée avec les gels de tritylcellulose pour élaborer des composites 

tritylcellulose-silice : une matrice de tritylcellulose coagulée a été imprégnée par le PEDS de 

cette étude, et le gel de silice a été formé en catalyse basique dans les pores de la matrice de 

tritylcellulose lors d’une seconde étape. Un traitement à l’hexaméthyldisilazane (HMDZ) a été 

réalisé afin d’hydrophobiser la phase silice. Le séchage au CO2 supercritique de ces gels permet 

d’obtenir des aérogels composites tritylcellulose-silice. 

Une autre amélioration rendue possible par l’hydrophobisation des gels se trouve au niveau du 

procédé d’élaboration. Le séchage au CO2 supercritique est connu pour être long et 

consommateur en énergie. Pour les aérogels de silice, la sylilation de la surface des pores permet 

un séchage à pression atmosphérique sans effondrement de la structure poreuse ou 

densification. Les matériaux ainsi obtenus sont appelés « xérogels » ou « aérogels séchés à 

pression ambiante » ; ils possèdent des propriétés proches de celles des aérogels séchés en 

conditions supercritiques. L’élaboration de xérogels de cellulose à partir de tritylcellulose et de 

composites tritylcellulose-silice sera ainsi réalisée. 

La morphologie et la densité des aerogels de tritylcellulose et leurs composites avec la silice 

sera étudiée en détails. Une étude viscosimétrique des solutions de tritylcellulose dans le DMF 

a été réalisée afin de comparer les propriétés de cette solution à celles de la cellulose pure. 
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Ensuite nous étudierons les propriétés mécaniques des aérogels et aérogels composites 

hydrophobisés par des mesures en compression uniaxiale. Leurs conductivités thermiques 

seront également étudiées par la méthode du fil chaud. 

L’hydrophobicité des composites, par comparaison à des matériaux non traités et hydrophiles 

sera étudiée par mesure de l’angle de contact avec l’eau, test de vieillissement accéléré durant 

deux jours à 80% d’humidité relative et 30°C, et test de vieillissement « long », i.e. durant 45 

jours en environnement humide contrôlé. 

Enfin, nous examinerons la morphologie, la densité, la porosité et les propriétés hydrophobes 

des xérogels à base de tritylcellulose et de composites tritylcellulose-silice ; la possibilité 

d’élaborer des xérogels composites à base de cellulose et de silice, entièrement hydrophobés et 

de basse densité sera discutée. 
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1. Principle of synthesizing hydrophobic organic-inorganic composite 

aerogels 

  Hydrophobisation of cellulose and silica phases 

 Principle of grafting tritylchloride on cellulose 

Cellulose sensitivity to humidity is detrimental to the properties of the cellulose and cellulose-

silica composite aerogels described in chapter IV. For example, after two month storage in 

ambient temperature and humidity, specific surface area of untreated cellulose-silica composite 

made from 3%wt cellulose solution in EMIMAc-DMSO impregnated with silica decreased 

from 650-700 m².g-1 to 470 m².g-1. The aged composites strongly contracted over the same two 

month period, resulting in a density increase of 80%. The thermal conductivity of cellulose-

silica composites exposed to ambient humidity also increased with time. These strong aging 

effects are due to cellulose hydrophilicity. Water from air humidity gets adsorbed at the surface 

of cellulose fibers. In porous cellulosic materials as well as aerogels in general, this can create 

capillary stresses among the pore walls if condensation occurs, leading to pores collapse and 

ultimately sample contraction. To prevent such detrimental humidity adsorption by cellulose 

and subsequent degradation of cellulose aerogels properties with time, hydrophobization of 

cellulose must be performed. Moreover, hydrophobization of cellulose may allow to avoid an 

energy-consuming supercritical drying, and to obtain monolithic and ultraporous xerogels via 

ambient pressure drying.  

To obtain hydrophobic cellulose, a homogeneous etherification reaction with 

triphenylmethylchloride (abridged tritylchloride in the following) (figure V.1) described in the 

literature was chosen (Camacho Gomez et al., 1996). The preparation of the modified cellulose 

was performed as described in details in Materials and methods section (Pour et al., 2015). The 

resulting material was called tritylcellulose. 

 

Figure V.1: Reaction scheme of the modification of cellulose with tritylchloride 

The tritylcellulose powder was then dissolved in DMF, and coagulated in methanol. Wet 

coagulated tritylcellulose was obtained after several washings in ethanol. Supercritical CO2 

drying leads to tritylcellulose aerogels.  

 Degree of substitution of tritylcellulose 

The degree of substitution (noted DS in the following) is the mean number of trityl groups per 

anhydroglucose unit. As each AGU contains three –OH groups available for etherification, the 

maximum DS value correspond to the substitution of every hydroxyl on the cellulose backbone, 

i.e. DSmax = 3. However, triphenylmethyl is a large functional group: because of sterical 

hindrance, the substitution of the –OH group on C6 is favored, as this is the most easily available 

hydroxyl group on AGU (Camacho Gomez et al., 1996). DS values for tritylcellulose were 
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determined through elemental analysis of carbon. The mass percentage of carbon, C%, 

measured in the sample is given by equation (V.1), M being the molar mass of the repeating 

unit and NC the total number of carbon atoms in the sample:  

𝐶% =
12 × NC

M𝑡𝑟𝑖𝑡𝑦𝑙𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒
 

An AGU unit contains 6 carbon atoms and its molecular weight is MAGU =162 g.mol-1. The 

trityl group contains 19 carbon atoms, for a molar mass of MTrityl =242 g/mol. We have :  

Nc = 6 + 𝐷𝑆 × 19 

M𝑡𝑟𝑖𝑡𝑦𝑙𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 = M𝐴𝐺𝑈 + 𝐷𝑆 × M𝑡𝑟𝑖𝑡𝑦𝑙 = 162 + 𝐷𝑆 ∗ 242 

Then:  

𝐶% =
12 × (6 + 𝐷𝑆 × 19)

162 + 𝐷𝑆 × 242
 

𝐶% =
72 + 228𝐷𝑆

162 + 242𝐷𝑆
 

𝐷𝑆 =  
72 − 162 ∗ 𝐶%

242 ∗ 𝐶% − 228
 

Elemental analysis was performed over 4 batches prepared in the same proportions of 3 molar 

equivalent of tritylchloride per glucose unit. This formulation was used as the basis of all 

materials used in the present chapter. An average degree of substitution DS = 0.62 was obtained. 

 Preparation of tritylcellulose matrix 

Tritylcellulose dissolution-coagulation procedure is described in details in materials and 

methods section. Before coagulation, the solution was poured into the appropriate molds, 

usually discs of 4 cm diameter and 1 cm thickness. For mechanical characterization, the shape 

was cylinders with a length/diameter ratio of 3/2. The preparation processes of aero- and 

xerogel from tritylcellulose (and composites with silica) is schematized in figure V.2. 

 

Figure V.2: Schematic presentation of synthesis of tritylcellulose and tritylcellulose-silica aerogels. 

(V.1) 

(V.2) 

(V.3) 

(V.5) 

(V.4) 

(V.6) 
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To obtain composite aerogels the impregnation was performed as follows: cellulosic alcogels 

were immersed first in 16 wt% PEDS (mPEDS solution = malcogel) for 24h and then in NH4OH 

catalyst solution (1.3 wt% in ethanol-water 95/5 wt/wt) for another 24 h to form in situ silica 

gel inside the pores of coagulated tritylcellulose. These samples were either dried with 

supercritical CO2, and named “tritylcellylose-silica composite aerogel”, or silica phase was 

hydrophobised before drying with HMDZ (as described below for the reference silica aerogels) 

and named “tritylcellulose-hydrophobic silica aerogel composite” (Figure V.2). All samples 

were washed in ethanol before drying to remove non-reacted chemicals. 

 Hydrophobization of the silica phase 

Silica aerogels contains many –OH surface groups that are responsible for humidity adsorption 

and degradation of insulating and mechanical properties. In the objective of making fully 

hydrophobic cellulose-silica composites, the silica phase must be hydrophobized as well as the 

cellulose phase. In chapter I we described several examples of synthesis methods aiming to turn 

the hydrophilic Si-OH groups on silica aerogels surface into hydrophobic Si(CH3)3 groups. In 

our tritylcellulose-silica composite route, silica is formed directly inside cellulose porosity. 

Thus hydrophobization of the silica phase was performed in situ after silica gel formation. 

Hexamethyldisilazane (HMDZ) is a compound that is now often used for surface modification 

of silica gels (Rao et al., 2004; Shewale et al, 2008), to prepare hydrophobic aerogels or 

xerogels. The reaction of HMDZ on silica is schematized on (figure V.3). 

 

Figure V.3: Schematic presentation of silica hydrophobisation with HMDZ 

The gels were immersed in HMDZ solution for 16h at 60°C, washed in ethanol and stored in 

this solvent until drying. The quantity of HMDZ was calculated to be 35%wt relative to the 

theoretical maximal weight of silica. HMDZ-treated gels were dried in supercritical CO2 to 

obtain composite aerogels, or overnight at 60 °C in a laboratory oven to obtain composite 

xerogels. 

 Determination of intrinsic viscosity of tritylcellulose in DMF 

Intrinsic viscosity is an important property of dissolved polymer, directly related to the 

molecule gyration radius and is thus an indicator of the solvent thermodynamic quality. 

Capillary viscosimetric studies were performed on tritylcellulose-DMF solutions. The usual 

method for the determination of intrinsic viscosity was applied as follows: the flow time through 

a capillary viscosimeter was measured. At low values of polymer concentration, the solvent 

viscosity η0 and solution viscosity η are directly related to the flow time t by a constant directly 

depending on the capillary diameter. The intrinsic viscosity is defined by equation 7:  
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[𝜂] = lim
𝐶→0

𝜂𝑠𝑝𝑒

𝐶
= lim

𝐶→0
𝜂𝑟𝑒𝑑𝑢𝑐𝑒𝑑 

where C is polymer concentration, and ηspe the specific viscosity defined by (eq. 8): 

𝜂𝑠𝑝𝑒 =
𝜂

𝜂0
− 1 

The intrinsic viscosity was determined at different temperatures at the y-intercept coordinate of 

the ηreduced= f(C) curve (Figure V.4). 

 

Figure V.4 : Intrinsic viscosity of tritylcellulose in DMF as a function of temperature. Inset : 

determination of intrinsic viscosity at three different temperatures 

The intrinsic viscosity of tritylcellulose dissolved in DMF decreases when temperature 

increases. This is indicative of a lowering of the thermodynamic quality of the solvent with 

temperature. A similar phenomenon was observed for cellulose dissolved in NaOH solutions 

(Roy, 2003) and in ionic liquid solutions (Sescousse, 2010). In the case of cellulose-NaOH 

systems at higher concentrations the lowering of the solvent quality is accompanied by a micro-

phase separation leading to gelation. Tritylcellulose-DMF solution does not gel with increasing 

temperature or over time. 

2. Properties of tritylcellulose and tritylcellulose-silica composite 

aerogels 

 Structure and density of aerogels 

 Chemical composition of tritylcellulose-silica composites 

FTIR spectra for tritylcellulose-silica composites, treated or not with HMDZ, are compared 

with spectra for non-modified Aerocellulose and pure tritylcellulose on figure V.6. The spectra 

for tritylcellulose, (figure V.6.a and V.6.b) show a flattened –OH peak at 3342 cm-1 as compared 

to pure aerocellulose from microcrystalline cellulose Avicel. This is due to the substitution of 

–OH groups of cellulose by tritylchloride. Peaks at 3062cm-1 and 1490 cm-1 on tritylcellulose 
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spectra (fig V.5 b, c, d and table V.1) are attributed to aromatic double bonds. Si-O-Si peaks 

around 1000 cm-1, and 800 cm-1 are observed for silica-impregnated tritylcellulose (fig V.5 c 

and 1d). The 1000 cm-1 peak is particularly intense, and is overlapping with the ether peaks for 

cellulose in the same region. Two additional peaks on the FTIR spectrum for HMDZ-treated 

sample (fig. V.5 d) are visible: one at 2980 cm-1, corresponding to -CH3 ; and 849 cm-1, 

corresponds to Si-C bonds from HMDZ (Shewale and Rao, 2008). The detailed identification 

of the main FTIR peaks is presented in table V.1. 

 

Figure V.5 : FTIR spectra of (a) aerocellulose from avicel 5%wt in NaOH (b) aero-tritylcellulose from 

5%wt solution in DMF (c) Silica-impregnated aero-tritylcellulose and (d) Silica-impregnated aero-

tritylcellulose with HMDZ treatment. 

Table V.1: FTIR peak attributions for reference Aerocellulose, aero-tritylcellulose, and tritylcellulose-

silica composites aerogel. 

Peak 

attribution 

Aerocellulose 

(cm-1) 

Aero 

tritylcellulose 

(cm-1) 

Aerotritylcellulose 

+SiO2 

(cm-1) 

Aerotritylcellulose 

+SiO2 + HMDZ 

(cm-1) 

ν OH 3342 3428 3433 3431 

ν C=CH 

(aromatic) 
- 3062 - - 

ν CH2 - 2930 2933 2930 

ν CH3 (HMDZ) - - - 2980 

ν CH2 2901 2889 2895 2897 

ν C-C=C 

(aromatic) 
 1490 1491 1491 

ν H-C-H 1429 1449 1449 1449 

ν CO (ether) 1107 1158 1152 1156 

ν Si-O-Si - - ~1000 ~1000 

ν Si-C - - - 849 

ν Si-O-Si - - 802 799 

(a) 

(b) 

(c) 

(d) 



Chapter V: Hydrophobic cellulose-silica composite aerogels and xerogels 

 

 

165 

 

The distribution of silica in the bulk of composite aerogels was evaluated by means of EDS 

spectroscopy on 4-5 mm thickness samples. The composition along sample internal cross-

section was recorded every 100 µm. Figure V.6 shows a typical silicon repartition in 

tritylcellulose-silica (non hydrophobised) composite aerogel as a function of l, the distance from 

the sample surface. Mass percentage of silicon was calculated from the intensity of the silicon 

Kα peak at 1.71 keV and compared to mass percentage of silicon corresponding to a theoretical 

maximal value in the case of homogeneous impregnation (here for the case of composite aerogel 

prepared from 5wt% tritylcellulose solution impregnated by 8wt% PEDS solution).  

 

Figure V.6 : EDS analysis of the silicon distribution along the internal cross-section of tritylcellulose-silica 

composite aerogel (non-hydrophobised) prepared from 5wt% tritylcellulose solution. Dashed line is 

theoretical maximal silicon mass percentage in the sample 

Silicon and thus silica is well distributed in the composite sample. A number of points on figure 

V.6 display silicon percentages above the expected theoretical maximal value for 

tritylcellulose-silica composites. The measured values of silicon concentration are 

overestimated, as EDS gives only a “local” composition on the studied surface. As far as the 

cellulosic network is covered by silica, the presence of cellulose is not detected by EDS, thus 

the spectra only accounts for the silica. 

 Morphology 

Tritylcellulose aerogels are white, cohesive, monolithic solids (figure V.7). Surface 

irregularities can be observed on some samples, due to surface perturbation during coagulation 

or to the intrinsic form of the moulds. Tritylcellulose-silica composites have a similar external 

aspect as pure tritylcellulose aerogels. The composites seem to be more rigid than the pure 

tritylcellulose samples, for all concentrations. 
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Figure V.7 : Aerogels from (a) 5%wt tritylcellulose ; (b) 5%wt tritylcellulose-silica composite aerogel (c) 

tritylcellulose-silica composite treated with HMDZ. 

Figure V.9 (a-c) shows the representative morphologies of aerogels prepared from 

tritylcellulose, silica and tritylcellulose-silica (non-hydrophobised) composite, respectively, as 

seen by SEM. Tritylcellulose-silica composites hydrophobized with HMDZ present a similar 

aspect as non-hydrophobised samples.  

 

Figure V.8: SEM micrographs of aerogels based on tritylcellulose (a, d), silica (b, e) and tritylcellulose-

silica composite aerogel (c, f). The concentration of tritylcellulose in solution in (a), (d) and (c), (f) was 

5wt%. 

Tritylcellulose aerogels morphology is a network of intertwined fibrils (Figure V.8.a,d). The 

porous network leave us consider a potential wide pore size distribution, pore diameter ranging 

from several tens of nanometers to several microns. This morphology is similar to that of 

Aerocellulose, obtained from unmodified cellulose dissolved, coagulated and dried with sc CO2 

(Gavillon 2008). Silica aerogel morphology (figure V.8.b) is a colloidal network formed of 

silica beads with no macropores observable by SEM. A nanostructured network formed of 

nanoparticles in the tens of nm with pores of a few nm is a common morphology for base-

catalysed silica aerogels (Brinker and Scherer, 1990); however SEM pictures only are not 

enough to precisely quantify the particle sizes for our aerogels. Figure V.8.c shows the 

morphology of tritylcellulose-silica composite aerogel. Cellulosic network is coated by the 

silica phase; some cellulosic fibrils can be seen emerging from the silica network (fig V.8.f). 
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 Bulk density and porosity 

The densities of the reference Aerocellulose, and aerogels based on tritylcellulose and 

tritylcellulose-silica composites are summarized in table V.2. Porosity was calculated according 

to (equation V.10), considering the skeleton density of tritylcellulose to be roughly equal to that 

of cellulose (1.5 g.cm-3) and the silica skeleton density to be 2.0 g.cm-3 (Ayral, Phalippou and 

Woignier, 1992). 

𝜀(%) =
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 −

𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
 

Tritylcellulose aerogels are ultra-light: their bulk densities are around 0.08 g.cm-3 which is 

lower than that of the reference Aerocellulose. The volume contraction of 5%wt tritylcellulose 

and tritylcellulose-silica composite aerogels from wet to dry state is very low, 8.8% and 4.3% 

respectively, while non-modified cellulose sample is shrinking by about 40-50% (Sescousse 

and Budtova, 2009). Most of the shrinkage occurs during drying; it is known to depend on the 

chemical affinity of the gels with supercritical CO2. Grafting trityl groups onto cellulose chains 

increases the cellulosic gel chemical affinity with SC CO2 and thus the gels contract less upon 

drying. Lower volume contraction during drying results in lower densities in the final aerogels. 

Tritylcellulose-silica aerogel composites, with silica phase hydrophobised and not, are of higher 

densities (0.23-0.24 g.cm-3) as the silica phase is added to the tritylcellulose network without 

significant macroscopic volume variation. 

Table V.2: Densities, specific surface areas and estimated porosities of a reference 5%wt cellulose aerogel, 

tritylcellulose aerogels and tritylcellulose-silica composite aerogels. 

Aerogel Sample 

Hydrophobization 

of silica 

Cellulose 

concentration 

(wt%)  



g/cm3 

SBET 

(m²/g) 

 % 

Aerocellulose 
n/a 5% 0.15 210 90% 

Tritylcellulose 
n/a 5% 0.079 330 95% 

Tritylcellulose 
n/a 7.5% 0.080 250 95% 

Tritylcellulose-silica 

composite 

Non-

hydrophobized 
5% 0.244 850 87% 

Tritylcellulose-silica 

composite 

Hydrophobized 

with HMDZ 
5% 0.232 750 87% 

Tritylcellulose-silica 

composite 

Hydrophobized 

with HMDZ 
7.5% 0.240 610 87% 

(V.10) 
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Specific surface area of tritylcellulose aerogels is 200-300 m².g-1, in line with what has been 

observed for other non-modified cellulose based aerogels (Sescousse et al., 2011; Liebner et 

al., 2009; Demilecamps et al., 2014). For the composite aerogels, the specific surface area is 

increased enormously, up to 600-850 m²/g, depending on tricylcellulose initial concentration as 

well as silylation of the silica backbone. The increase of specific surface area for tritylcellulose-

silica composites can be considered a direct proof of the in-situ formation of finely 

nanostructured silica aerogel phase in the pores of tritylcellulose matrix. 

 Mechanical and thermal properties 

 Mechanical characterization 

The uniaxial compression of cylindrical samples was used to assess the mechanical properties 

of aerogels; stress-strain cures are shown in Figure V.9. Aerogels from tritylcellulose and it 

composites were prepared from tritylcellulose solutions of 5, 7.5 and 10wt%, a reference non 

hydrophobised silica aerogel is also shown in the inset.  

 

Figure V.9: Stress-strain compression curves for aerogels from tritylcellulose solution of 5% (a), 7.5% (b) 

and 10% (c) and composite tritylcellulose-nonhydrophobised silica from the impregnated 5% (d), 7.5% 

(e) and 10% (f) tritylcellulose solution.  

Inset: reference silica aerogel (g) and aerogels from 5% tritylcellulose solution (h) and its composite 

counterpart (i). 

No buckling and no diameter increase were observed during the whole compression experiment 

indicating that the Poisson ratio is close to zero. The same was reported for the Aerocellulose 

(Sescousse, 2011). Stress-strain curves of tritylcellulose aerogels are very similar to those of 

bio-aerogels, Aerocellulose (Sescousse, 2011) and Aeropectin (Rudaz, 2014) and can be 

divided in three regions: linear elastic region at low strains ε < 10% allowing determination of 

the Young modulus E; plastic deformation up to ε ~ 40-60% (depending on polymer 

concentration) and densification phase when the pore walls collapse under the pressure. At the 

end of plastic region small cracks appear on the surface of tritylcellulose aerogels leading to 

irregularities in the stress-strain curves. Young modulus increases with the increase of polymer 

concentration (Table V.3). Per analogy to reference polysaccharide aerogels, we can assume 
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that the variation of modulus with bulk density follows a power law (Gibson and Ashby, 1997); 

however, as the differences in bulk density between tritylcellulose of 5, 7.5 and 10% 

concentrations are small, there are not enough points to precisely determine the scaling 

exponent. Young modulus values for tritylcellulose aerogels are comparable with those of 

Aerocellulose of similar density (Sescousse, 2011).  

Table V.3: Young modulus E, maximal stress at break m and deformation at break m for the reference 

silica aerogel, tritylcellulose and tritycellulose-silica composite aerogels 

Sample 

Tritylcellulose 

concentration, 

wt% 



g/cm3 

E 

(MPa) 

m 

(MPa) 

m 

(%) 

Reference silica 

aerogel 

0 0.130 1.9 0.07 4 

Tritylcellulose 

aerogel 

5 0,087 0.3 1.2 83 

7.5 0,100 1.0 0.7 64 

10 0,099 0.9 1.1 55 

Tritylcellulose-silica 

composite aerogel 

5 0,171 2.2 0.1 12 

7.5 0,182 2.7 0.2 11 

10 0,213 4.0 0.1 13 

All tritylcellulose-silica composite aerogels have better mechanical characteristics as compared 

to the reference silica aerogel: composites are stiffer and have a larger plastic region with higher 

stress and deformation at break. As compared to tritylcellulose aerogels, composites are more 

than twice stiffer but more brittle: composite aerogels break at lower stresses and strains than 

tritylcellulose aerogels due to fragile silica phase. In overall, tritylcellulose fibrous network can 

act as a reinforcing “skeleton” for silica aerogels just as Aerocellulose studied in chapter IV. 

 Hydrophobicity of tritylcellulose and tritycellulose-silica 

composite aerogels 

 Water uptake and contact angle with water 

The hydrophobic properties of Aerocellulose, tritylcellulose aerogels and tritylcellulose-silica 

composite aerogels were assessed by water contact angle measurements (table V.5). An aging 

study of the samples was also performed for 30 h at 30°C and 80% humidity rate, to study the 

kinetics of water vapour uptake by measuring the variation of sample mass and volume over 

time. The mass uptake Hm and volume contraction Hv were determined according to equations 

II.15 and II.16 respectively, described in materials and methods section. The mass uptake values 

at equilibrium are reported in Table V.4. 
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Due to the hydrophilicity of native cellulose, water contact angle values for Aerocellulose could 

not be measured, as the droplet was absorbed immediately when placed on the surface of 

Aerocellulose. The same happens for untreated silica aerogels and tritylcellulose-

nonhydrophobised silica hybrid aerogel. Without hydrophobisation treatment, the native silica 

network is covered by silanols groups (~ 3-5 [OH]/nm²) (Iler, 1979) which are hydrophilic 

species. In the case of the composite, silica phase represents the majority of hybrid material 

filling the pores of tritylcellulose and covering cellulosic network. Tritylcellulose aerogels are 

highly hydrophobic, as shown by the contact angle with water around 125°. Even higher surface 

hydrophobicity is reached when silica phase is HMDZ-treated in composite aerogels: the 

contact angle is 133°. 

TableV.4: Contact angle with water θH2O, mass uptake at equilibrium Hm and corresponding volume loss 

Hv when submitted for 24h to 30°C and 80% RH for the reference Aerocellulose, tritylcellulose and 

composite aerogels. 

Aerogel Sample 

Cellulose 

concentration 

(%wt) 

HMDZ 

treatment 

θH2O 

Hm 

% 

Hv % 

Aerocellulose  5% no 

drop absorbed 

immediately 

13.5 > 70 

Silica reference - no 

drop absorbed 

immediately 

22 - 

Silica reference - yes 135° 1 < 1 

Tritylcellulose 

aerogel 

5% no 125° 2.3 6.6 

Tritylcellulose 

aerogel 

7.5% no 125° 1.6 3.5 

Composite aerogel 5% no drop absorbed 6.4 18.6 

Composite aerogel 5% yes 133° 3.5 1.9 

Composite aerogel 7.5% yes 133° 1.6 0.5 

Figure V.10 shows the mass increase of the aerogels over time from the “dry” state (24 h at 

20%  RH) to “humid” state at 30°C and 80% relative humidity. The mass of hydrophilic samples 

(untreated Aerocellulose and tritylcellulose impregnated with untreated silica) increases as 

water is adsorbed inside the sample. Hydrophilic aerogels, Aerocellulose and its untreated 
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composite with silica, reach the equilibrium Hm and Hv in about 30 hours. The mass of 

hydrophobic samples (tritylcellulose and tritylcellulose impregnated with silica and treated with 

HMDZ) increases by 1 to 3% in 1 – 1.5 hours, after what they become stable in mass and 

volume. 

 

Figure V.10 : Kinetics of water vapour uptake at 30°C and 80%RH, expressed in wt% for the following 

aerogels: (1) reference 5%wt Aerocellulose, (2) 5wt% tritylcellulose-silica composite with non 

hydrophobised silica; (3) 5wt% tritylcellulose-silica composite  with HMDZ-treated silica, (4) 5wt% 

tritylcellulose , (5) 7.5%wt tritylcellulose; and (6) 7.5%wt tritylcellulose-silica composite treated with 

HMDZ (6). 

Reference Aerocellulose exhibits spectacular volume shrinkage, more than 70%, even though 

the mass uptake is only around 13%. In humid conditions pores are contracting. The aerogel 

prepared from 5%wt tritylcellulose solution adsorbs much less humidity: 2.33% in mass and 

“loses” only 6.6% of its initial volume; lower values were obtained for the aerogel from 7.5wt% 

tritylcellulose (Hm = 1.6 % and Hv = 3.5%). Hydrophobized silica aerogels adsorbs less than 

1% in weight and barely shrink at all, while untreated silica can absorbs up to 20% of its own 

weight in water. Instead of shrinking, untreated silica gels tend to fracture into small irregular 

parts when submitted to such humidity levels. The very slightly higher sensitivity to water 

vapors of tritylcellulose aerogels as compared to fully hydrophobic silica can be explained by 

the presence of non-substituted groups on anhydroglucose unit. The volume stability of 

tritylcellulose-silica aerogels treated with HMDZ is the highest among the composites: Hv = 

1.9 and 0.5% for aerogels prepared from 5 and 7.5wt% impregnated tritylcellulose, 

respectively. Summarizing, contact angle and water vapor adsorption show that the 

tritylcellulose-silica composite aerogels not submitted to HMDZ treatment are hydrophilic 

despite the hydrophobicity of tritylcellulose, with Hm and Hv values three times higher than its 

HMDZ-treated counterpart. As shown in table V.5, the sililated tritylcellulose-silica composites 

had similar Hm at equilibrium than sililated silica aerogels, showing that our approach of 

synthetizing fully hydrophobized composites is very efficient in improving the overall material 

resistance to humidity. 
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 Aging of the aerogels in humid environment 

Moisture adsorption and aging tests over 45 days at varying humidity levels on reference 

Aerocellulose and silica aerogel, as well as tritylcellulose and tritylcellulose-hydrophobised 

silica composite aerogels, were performed by Markku Leivo and Tuomo Ojanen, at the 

Technical Research Centre of Finland (VTT), Helsinki within the frame of AEROCOINs 

project. The samples were submitted for 20 days to 75% relative humidity, then 15 days at 85% 

and finally 15 days at 95% at 25 °C.  

The visual aspect of some of the tested samples after the humidity aging tests is presented in 

figure V.11). Only the non-hydrophobized silica reference samples had macroscopic damages 

that could be seen, cracking and eventually falling into small pieces; no other sample had visual 

signs of material deterioration. The pure aerocellulose samples changed their appearance during 

the 15 days exposure under 95 % RH. Clear shrinkage had taken place and the material pore 

structure has likely collapsed due to the moisture load. For the reference composites from non-

modified cellulose and silica, as well as tritylcellulose-nonhydrophobised silica composites, 

only limited shrinkage was observed. The presence of the silica phase in the composite has a 

stabilizing effect towards humidity induced shrinkage; the higher stiffness of the composites 

(see part 2.2.1) may help prevent shrinking.  

 

FigureV.11 : Visual aspect of reference silica, cellulose, tritylcellulose and tritylcellulose-silica composites 

after being submitted to the aging tests up to 95% humidity rate. Cellulose, tritylcellulose and 

tritylcellulose-silica composites were all 4cm in dialeter before the tests. 

The analysis was first performed on reference, non-hydrophobized Aerocellulose and 

Aerocellulose-silica composites from chapter IV, followed by tests on reference silica aerogels, 

tritylcellulose aerogel, and tritylcellulose-silica aerogel composites. In the case of pure silica 

aerogels and tritylcellulose-silica composites, HMDZ-treated samples were compared to 

untreated ones.   

Figure V.12.a presents the evolution of Hm as a function of time at various humidity levels and 

Figure V.12b shows the values at equilibrium as a function of relative humidity.  
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Figure V.12 : (a) mass uptake over time during the aging tests at increasing humidity and (b) 

Sorption curves  showing maximum water mass uptake depending on relative humidity. The 

following aerogel samples were analysed, with courtesy of Markku Leivo and Tuomo Ojanen, 

Technical Research Centre of Finland (VTT), Helsinki: 

(1) 3%wt cellulose-silica composite, non-hydrophobized. 

(2) Silica aerogel, non-hydrophobized. 

(3) 3%wt aerocellulose reference. 

(4) 3%wt tritylcellulose-silica composite, non-hydrophobized. 

(5) 5%wt tritylcelluose-silica composite hydrophibized with HMDZ. (2 identical samples) 

(6) 5%wt Tritylcellulose. 

(7) Silica aerogel, hydrophobized with HMDZ 

The sorption curves on figure V.14 highlight very well the difference between hydrophilic 

samples (refered as 1-4 on the graphs) and hydrophobic samples (5-7 on the graphs).  

Hm (%) 

(a) 

(b) 
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Hydrophilic samples have a relatively similar water adsorption behaviour. At 75% relative 

humidity, they show a rapid weight increase of 10-13%wt over 2-3 days after which they reach 

an equilibrium state. Then, when the humidity is increased, Hm increases again: at 85% relative 

humidity Hm goes up to 15-17%; the weight increase is spectacular at 95% relative humidity, 

reaching 34% for reference aerocellulose and 27% for cellulose-silica composite. Interestingly, 

the mass uptake curve of the tritylcellulose-silica composites that were not treated with HMDZ 

(curve number 4 on figure V.12) is extremely similar to that of the untreated silica, confirming 

that the untreated silica phase is responsible for the water sensitivity in the composite. 

Hydrophobic samples, i.e silica aerogel treated with HMDZ, tritylcellulose aerogel, and 

tritylcellulose-silica composite treated with HMDZ present low humidity absorption. Hm for 

hydrophobic samples is below 7 % by weight at equilibrium under 95 % RH. Untreated silica 

and untreated tritylcellulose-silica composites had higher moisture accumulation, exceeding 25 

% by weight under 95 %RH. The starting of the water uptake curves at 75%RH is very similar 

to the tests performed in our laboratories at 30 °C and 80%RH: the equilibrium appears to be 

reached in less than 48h, after what the sample mass does not increase until the humidity rate 

is raised. 

Overall, the long-term water vapour adsorption tests performed in VTT confirm the results of 

the accelerated aging and water contact angle tests: the hydrophobization of both cellulose and 

silica phases is necessary to obtain fully hydrophobic composites. 

 Thermal conductivity 

The thermal properties of tritylcellulose and tritylcellulose-silica composite aerogels have been 

evaluated by hot-wire measurements by G. Reichenauer from Bavarian Center for Applied 

Energy Research, Wurzburg, Germany. The measured thermal conductivities are presented in 

table V.5. 

 

 

 

 

 

 

 

 

 



Chapter V: Hydrophobic cellulose-silica composite aerogels and xerogels 

 

 

175 

 

Table V.5: Thermal conductivities for tritylcellulose and tritylcellulose-silica composites. 

Aerogel Sample 

Hydrophobization 

of silica phase 

Cellulose 

concentration 

(%wt) 

λ (W.m-1.K-1) 

Aerocellulose 
n/a 5% 0.035 

Silica aerogel  Hydrophobised 

(HMDZ) 
- 0.012 

Tritylcellulose  
n/a 5% 0.027 

Tritylcellulose  
n/a 7.5% 0.029 

Tritylcellulose-silica 

composite 
n/a 5% - 

Tritylcellulose-silica 

composite 

Hydrophobised 

(HMDZ) 
5% 0.021 

Tritylcellulose-silica 

composite 

Hydrophobised 

(HMDZ) 
7.5% 0.022 

Tritylcellulose aerogels appear notably thermally less conductive than non-modified 

Aerocellulose, with conductivities of 0.027-0.029 W.m-1.K-1 as opposed to 0.035 W.m-1.K-1. 

Two potential reasons explaining this difference can be given:  

a) Lower intrinsic conductivity of the tritylcellulose aerogel backbone as compared to the non-

modified cellulose, due to loose packing of chains because of the steric hindrance induced by 

grafted trityl groups. This could be verified by measuring the thermal conductivity of 

tritylcellulose under vacuum and low temperature to eradicate radiative transfer. 

b) Significantly higher hydrophobicity of tritylcellulose aerogels which reduces the presence of 

bound water. 

The conductivity of composite aerogels based on tritylcellulose-hydrophobic silica is 0.021-

0.022 W.m-1.K-1: these composites are thus a promising new thermal super-insulation material, 

if their conductivity can be lowered a bit further (below 0.020 W.m-1.K-1). The presence of the 

hydrophobic nanostructured silica phase filling the pores of tritylcellulose matrix allowed a 

significant reduction of air conduction, thus lowering the total conductivity of the materials, 

even if it is accompanied by a certain increase in bulk density. 
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3. Tritylcellulose and tritylcellulose-silica composite xerogels 

 Morphology and bulk density 

 Influence of drying conditions on tritylcellulose xerogel properties 

Tritylcellulose and HMDZ-treated tritylcellulose-silica composites being highly hydrophobic, 

they may be suitable for the preparation of xerogels via ambient pressure drying. Tritylcellulose 

coagulated in ethanol from 5%wt solution were dried at ambient pressure at two different 

temperatures: 20 and 60 °C. The evaporative drying was continued until the mass of the xerogel 

was constant: the drying time was 2h for 60 °C and 24h for 20 °C. First of all, it is important to 

underline that the samples remain monolithic after evaporative drying at atmospheric pressure. 

The visual aspect of the xerogels, as compared to tritylcellulose aerogel of a similar 

concentration is shown on figure V.13. Tritylcellulose xerogels show a high volume contraction 

upon drying: around 85-88% against only 8.8% when tritylcellulose is dried in supercritical 

CO2. On the xerogel that was slowly dried at 20 °C, the surface shows a concave deformation 

(a kind of bending) indicating the formation of a meniscus during solvent evaporation. The 

xerogels contraction indicates that pore collapse upon ambient pressure drying because of 

inherent capillary tensions also happens with tritylcellulose, resulting in strong volume 

shrinkage.  

 

Figure V.13: Visual aspect of (a) tritylcellulose xerogel dried at 20°C ; (b) tritylcellulose xerogel dried at 

60°C and (c) aerotritylcellulose dried in SC CO2 

The bulk density of tritylcellulose xerogels was compared to that of untreated cellulose 

xerogels in different drying conditions; a theoretical density, assuming no volume contraction 

during the drying, is shown as a reference for each particular case (figure V.14). The values 

are compared with aerogel and xerogel prepared from pure cellulose. 

a a b c 

4cm 
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Figure V.14: Bulk densities of tritylcellulose xerogels from 5%wt tritylcellulose-DMF solution, as 

compared to untreated cellulose of similar concentration, depending on drying conditions. The theoretical 

density corresponds to hypothetical samples showing no shrinkage upon drying and aging. 

Slow drying at 20 °C produces the higher bulk density xerogels, for both cellulose and 

tritylcellulose. A reference cellulose xerogel dried in these conditions has a density of 1.19 

g.cm-3, which becomes close to the bulk density of native cellulose (1.5 g.cm-3). The bulk 

density of the tritylcelllulose xerogel dried in the same conditions is 2.6 times lower than that 

of the reference cellulose xerogel. When the drying is performed faster, i.e. at 60 °C, the bulk 

density of the native cellulose xerogel comes closer to that of the tritylcellulose one. Although 

xerogels with bulk densities comparable to those of supercritically dried material were not 

obtained for the given drying conditions, we have to note that the bulk densities of tritylcellulose 

xerogels show no dependence on the drying temperature, being around 0.45 g.cm-3 at 20 °C and 

60 °C, contrary to Aerocellulose. 

The influence of subcritical drying conditions on the microstructure of the materials was 

examined by SEM for tritylcellulose and native cellulose xerogels. Figure V.15 compares the 

morphology of modified and unmodified cellulose xerogels dried at 20 and 60 °C. 
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Figure V.15: SEM images of the microstructure of (a) cellulose xerogel dried at 20 °C ; (b) cellulose 

xerogel dried at 60 °C ; (c) tritylcellulose xerogel dried at 20 °C ; (d) tritylcellulose xerogel dried at 60 °C. 

The structure of tritylcellulose xerogels is similar to that of the corresponding aerogels, with 

interwined fibers forming a porous network, with pore sizes expected to range from 100 nm to 

a few microns. However, the xerogel present some plate-like structures (figure V.17 c and d), 

with characteristic dimensions between 1 and 10 µm in length. Although those plate-like 

structures can sometimes be seen in supercritically dried tritylcellulose, they are much more 

abundant in the xerogels, and are particularly visible in samples slowly dried at 20 °C. 

We can assume that the formation of these plate-like structures is due to the material shrinkage 

during drying, and seems to be favored by slow drying kinetics at ambient temperature. It 

should be noted that the “fiber network plus plates” structure of tritylcellulose is not observed 

on non-modified cellulose xerogels (figure V.15 a and b): when hydrophilic cellulose is dried 

at 20 °C the fibers are still visible but appear totally condensed with no visible porosity; the 

sample dried at 60 °C shows a fibrous and slightly porous structure, somehow similar to that of 

aerocellulose despite the significant increase in bulk density in the xerogel. 

Besides drying conditions had a significant effect on specific surface area of cellulose and 

tritylcellulose xerogels. Tritylcellulose xerogels show a very low specific surface area of 39-42 

m².g-1. The plate-like structure observable of the SEM micrographs of the gels seem not to 

contain either meso- or micropores or to have microrugosity. Surprisingly, despite its density 

increase and volume shrinkage, hydrophilic cellulose xerogels dried at 60 °C have a specific 

surface area of 191 m².g-1, against 220 m².g-1 for supercritically dried samples coming from 

gels of similar concentrations. This later result, albeit surprising considering cellulose 

densification upon ambient pressure drying, is consistent with the microstructure observed in 

figure V.15.b. 

1 µm 1 µm 

1 µm 1 µm 

a b 

c d 
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Figure V.16: Specific surface areas of tritylcellulose xerogels from 5%wt tritylcellulose-DMF solutions 

depending on drying conditions. 

 Evolution of xerogel density as a function of degree of substitution of 

tritylcellulose 

It is known from previous studies (Pour et al., 2015) that the degree of substitution of 

tritylcellulose affects strongly the final properties of aero- and xerogels. Figure V.17 displays 

the experimentally measured densities for 5%wt tritylcellulose aerogels and xerogels, dried for 

2h at 60°C, for different values of DS. 

 

Figure V.17: Densities of tritylcellulose aero- and xerogels in function of cellulose DS 

A higher degree of substitution leads to lower apparent densities in the xerogels, as expected. 

A DS of 1 or higher needs to be achieved to obtain bulk densities comparable to aerogels, i.e. 

lower than 0.15 g.cm-3. In the case of supercritically dried materials, a slight decrease of the 

apparent density when increasing DS is observed. A high DS means a higher number of trityl 

groups grafted on cellulose chains, thus more important steric hindrance between chains. Plus, 

the interfacial tension between ethanol and pore walls is also suspected to change with the 

increase of DS. These two factors play a role in preventing sample contraction during 

supercritical drying. 
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 Properties of tritylcellulose-silica composite xerogels 

Tritylcellulose-silica composites from 5%wt tritylcellulose-DMF solutions impregnated with 

PEDS were dried at ambient pressure, for 2h at 60 °C. Samples treated with HMDZ were 

compared with untreated composites. Figure V.18 shows the visual aspect of the composite 

xerogels. The volume loss of the untreated and HMDZ-treated composites upon evaporative 

drying are rather equal, being 78% and 76% respectively. 

 

Figure V.18: Visual aspect of tritylcellulose-based xerogels : (a) 5% tritylcelllulose; (b) 5%tritylcellulose-

silica composite; and (c) 5% tritylcellulose-silica composite treated in HMDZ. 

The composite xerogels show visible cracks, although they do not fall apart during drying which 

is the case of HMDZ-treated silica xerogels. The cellulose matrix helps holding the composite 

together and prevents the silica phase from falling apart during ambient pressure drying.  

The density, specific surface area and estimated theoretical porosity (calculated with eq. V.10) 

of the composite xerogels, as compared to the corresponding composite aerogels (see part 2.1.3) 

is shown on table V.6. 

TableV.6: Bulk densities, specific surface areas and estimation of porosity for tritylcellulose-silica 

composites xerogels and aerogels elaborated from 5%wt tritylcellulose solution impregnated with PEDS. 

 
Type of 
material 

density 
(g.cm-3) 

S BET 
(m².g-1) 

ε (%) 

Tritylcellulose-silica 
composites 

aerogel 0,244 849 87% 

xerogel 0,636 877 65% 

Tritylcellulose- HMDZ-
treated silica composites  

aerogel 0,232 746 87% 

xerogel 0,628 847 66% 

The important volume contraction of tritylcellulose xerogels upon drying in ambient conditions 

resulted in densities that are three times higher than the corresponding aerogels. The subsequent 

hydrophobization of the silica phase does not appear to have an effect on the final composite 

density. The estimated porosity of the composite xerogels is logically lower than that of the 

aerogels, 65-66% against 86-87%. Specific surface area, however, do not change significantly 

in composite xerogels as compared to composite aerogels, still being in the 700-850 m².g-1 

range, confirming the formation of a nanostructured silica phase in the porosity of 

tritylcellulose. As tritylcellulose xerogels show low specific surface area, and considering that 

the macroporosity of tritylcellulose is largely filled with the nanostructured silica phase, the 

silica aerogel contained in the tritylcellulose porosity accounts for the major part of the 

materials specific surface area even without posterior hydrophobization. 

(a) (b) (c) 
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Figure V.21 shows the typical microstructure of tritylcellulose-silica composite xerogels as 

seen by SEM. 

 

Figure V.19: SEM pictures of (a), (b) 5%wt tritylcellulose-silica composite xerogel dried at 60 °C and 

ambient pressure at two different magnifications. 

SEM micrographs confirm the presence of the silica phase, forming an interpenetrated network 

with the tritylcellulose. The larger plate-like structures characteristic of tritylcellulose xerogels 

can be seen on figure V. 19.a.  

Given their strong volume shrinkage and frequent cracking upon drying, it was not possible to 

reliably evaluate the thermal and mechanical properties of tritylcellulose and tritylcellulose-

silica composite xerogels. However, given their high apparent density, it is unlikely that these 

xerogels will show good thermal and mechanical properties. Tritylcellulose with higher DS 

should be used in further development to obtain ambient-dried hydrophobic materials with 

lower bulk density and higher porosity, thus more suited to thermal superinsulation 

applications. 

 Hydrophobic properties of the xerogels 

The hydrophobic properties of tritylcellulose and tritylcellulose-silica composite xerogels were 

evaluated through water contact angle measurements and accelerated aging at 30 °C and 80% 

relative humidity. The contact angle values are displayed in table V.7 and the values of mass 

and volume uptake in the humidity tests is displayed on figure V.22. For the untreated 

tritylcellulose-silica composite xerogel, the water contact angle could not be measured as the 

water drop was absorbed when touching the sample surface. 

TableV.7: Water contact angle for tritylcellulose and tritylcellulose-silica composite xerogels depending on 

evaporative drying conditions. The composite dried at 20 °C could not be measured because of cracks 

inducing an irregular surface. 

drying conditions 20 °C 60 °C 

Tritylcellulose xerogel 133° 125° 

Tritylcellulose-HMDZ-treated silica 
composite + xerogel 

- 148° 

The contact angle values indicate that the xerogels are strongly hydrophobic; the treated 

composite xerogels have a very high contact angle with water, 148°. Although the 

functionalization by tritylchloride did not allow the synthesis of low-density xerogels, the trityl 

groups still provide a good surface hydrophobization. 

1µm 1µm 

a b 
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Figure V.22 : values of mass uptake (Hm) and volume variation (Hv) of (1) pure tritylcellulose xerogel and 

(2) tritylcellulose-silica composite xerogels impregnated with untreated silica and (3) tritylcellulose-silica 

composite xerogels impregnated with HMDZ-treated silica, when submitted to 30 °C and 80% RH for 

48h. 

The water uptake results on the xerogels are very similar to what was observed for the aerogels 

in part V.2.3.1. Fully hydrophobic composite xerogel (tritylcellulose and HMDZ-treated 

tritylcellulose-silica samples) show low mass uptake values of 2.9% and 2.5% respectively, 

while the xerogel impregnated with untreated silica is hydrophilic, absorbing 18.8% in mass. 

The volume contraction for all xerogel is lower than 6%, even for the untreated composite 

xerogels. However, it shall be noted that the xerogels already underwent strong volume 

shrinkage upon drying. 
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Conclusions 

The hydrophobization of cellulose and cellulose-silica composite was investigated. We 

hydrophobized cellulose by using a homogeneous chemical modification process, to graft 

triphenylmethyl functions on cellulose chains. The resulting material was called tritylcellulose 

and it was with the degree of substitution 0.62. Aerogels from tritylcellulose dissolved in DMF 

and coagulated in ethanol were obtained.  

Composite aerogels were prepared by impregnation of wet tritylcellulose with PEDS. To obtain 

fully hydrophobic composites, wet tritylcellulose impregnated with PEDS was treated with 

hexamethyldisilazane (HMDZ). 

The obtained organic-inorganic aerogels were finely nanostructured, with high specific surface 

areas between 600 and 800 m2.g-1 confirming the presence of a nanostructured network 

interpenetrated with the tritylcellulose. The morphology of the hydrophobized composites was 

similar to that of those based on non-hydrophobized materials. Composite aerogels were stiffer 

than pure tritylcellulose and pure silica aerogels, with Young moduli ranging around 2-4 MPa 

vs 0.3 to 1 MPa for tritylcellulose and 1.9 MPa for silica aerogels. The presence of silica phase 

in the pores of tritylcellulose in composite aerogels reinforces the material but makes it more 

brittle. It should be underlined that the mechanical properties of composite organic-inorganic 

aerogels are strongly improved as compared with pure silica aerogels. The maximal stress at 

break of tritylcellulose-silica composite aerogels is lower than the value for cellulose-silica 

composites (chapter IV). Improving the mechanical properties of tritylcellulose may require 

further chemical modification, such as chemical cross-linking between cellulose chains. 

Tritylcellulose and tritylcellulose-HMDZ-treated composite aerogels were resistant towards 

humidity: contact angles with water were 125° and 133°, respectively and water mass uptake 

was reduced from 13% for the untreated material to 1-3% in rather severe conditions. The 

results of accelerated aging of the samples at 80% relative humidity (%RH) were confirmed by 

long term uptake measurements over 45 days in more severe conditions: while the mass of 

hydrophobic silica, tritylcellulose and hydrophobized tritylcellulose-silica composite aerogels 

increased only by 2-5%, composites impregnated with non hydrophobized silica gained up to 

30% in mass at 95% RH. 

The thermal conductivity of tritylcellulose aerogels were measured; it is lower than that of 

aerocellulose, 0.027 W.m-1.K-1 vs 0.035 W.m-1.K-1., most probably due tritylcellulose 

hydrophobicity and lower bulk density. Organic-inorganic fully hydrophobised composite 

aerogels appeared to be thermal superinsulating materials, showing a thermal conductivity in 

room conditions of 0.021-0.022 W.m-1.K-1. This result shows that the concept of interpenetrated 

organic-inorganic hydrophobic networks allows obtaining monolithic, nanostructured, 

mechanically strong, and thermally superinsulating materials. 

Finally we studied the effect of ambient pressure drying on the hydrophobised cellulose 

(tritylcellulose) and tritylcellulose-silica composites. While the xerogels obtained showed very 

high hydrophobicity with contact angles of 120°-148° depending on evaporative drying 

conditions, they exhibited very strong volume shrinkage upon subcritical drying, resulting in 

high densification and loss of  porosity. The microstructure of the tritylcellulose xerogels 

showed a mixture of condensed, plate-like structures and fibrous network. The composite 
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xerogels had high specific surface area due to the presence of the silica phase within the 

tritylcellulose network. Composite xerogels were almost monolithic contrary to silica xerogels 

which break under drying; this result shows that cellulose “holds” silica phase in a certain 

manner. While overall the hydrophobization process was successful, the synthesis of 

tritylcellulose with higher degree of substitution appears necessary to obtain lower density, 

highly porous xerogels potentially suitable for thermal superinsulation. 
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Introduction 

This chapter focuses on the preparation and properties of brand new bio-based aerogels made 

with pectin and their composites synthesized with silica. In previous chapters we determined 

that cellulose-silica composites elaborated through impregnation of a wet cellulose matrix 

showed a reduced thermal conductivity (chapter IV), and superinsulating properties were 

obtained on hydrophobized cellulose-silica composites (chapter V).  

The thermal conductivities of polysaccharide and polysaccharide-silica composites could be 

further improved by using another polysaccharide matrix allowing for a significantly lower 

thermal conductivity. In a very recent work (Rudaz et al., 2014), pectin-based aerogels called 

“Aeropectins” were elaborated from pectin aqueous solutions. They were shown to possess 

extremely interesting properties for thermal superinsulation, such as low bulk densities lower 

than 0.1 g.cm-3, very high porosity, and thermal conductivities in room conditions in the 0.018-

0.025 mW.m-1.K-1 range. Pectin has also the advantage of being fully soluble in water, which 

contrary to cellulose allows to process it without the use of specific and expensive solvents such 

as ionic liquids. 

In this last chapter we study an alternative method to elaborate aeropectins: reticulation of 

pectin chains by calcium ions. The morphology, density, porosity and specific surface areas of 

calcium-reticulated aeropectins will be compared to those of acid-gelled samples. The influence 

of different synthesis parameters such as pH, pectin concentration and calcium to carboxylate 

molar ratio on the morphology of calcium-reticulated aeropectins will be studied. 

The mechanical properties of calcium reticulated aeropectins will be studied as a function of 

aeropectins bulk densities by uniaxial compression, and compared to those of acid gelled 

aeropectins, as well as aerocelluloses and reference silica aerogels. 

To vary the morphology and properties of polysaccharide-based aerogels, aeropectin-silica 

composites were synthesized using the same methods as described for cellulose-silica 

composites in Chapter IV: forced-flow and diffusion controlled impregnation. The composites 

were characterized in terms of density, morphology and silica content. The thermal 

conductivities of calcium reticulated aeropectins will be measured by microflowmetry and 

compared to those of acid-gelled aeropectins and reference silica aerogels. 

Finally, the hydrophobization of the composites will be considered through the surface 

treatment of the silica phase by three well-known hydrophobizing agents. Hydrophobicity of 

the treated composites will be checked by measurements of water uptake and water contact 

angle. 
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Introduction 

Ce chapitre étudie l’élaboration et les propriétés de nouveaux aérogels à base de pectine, ainsi 

que de leurs composites avec la silice. Au cours des chapitres précédents nous avons montré 

que l’imprégnation d’une matrice de cellulose par le PEDS permettait d’obtenir des aérogels 

composites cellulose-silice de conductivité thermique réduite comparée à l’Aérocellulose pure 

(Chapitre IV). Des propriétés superisolantes ont pu être obtenues pour des composites cellulose-

silice hydrophobes (Chapitre V). 

Les conductivités thermiques des aérogels basés sur les polysaccharides et de leurs composites 

élaborés avec la silice peuvent encore être améliorés en utilisant une autre matrice 

polysaccharide permettant d’atteindre une conductivité nettement moindre. Au cours de très 

récents travaux (Rudaz, 2014), des aérogels à base de pectine, appelés « aéropectines » ont été 

élaborés à partir de pectines en solution aqueuse. Ces aéropectines possèdent des propriétés 

extrêmement intéressantes pour la superisolation thermique, telles de basses densités (< 0.1 

g.cm-3), une porosité importante, et des conductivités thermiques comprises entre 0.018-0.025 

mW.m-1.K-1. La pectine a également pour avantage notable d’être entièrement soluble dans 

l’eau, ce qui contrairement à la cellulose permet de la mettre en forme sans recourir à des 

solvants coûteux tels que les liquides ioniques. 

Dans ce chapitre nous étudierons une nouvelle méthode visant à l’élaboration des aéropectines: 

la réticulation par les ions calcium. La morphologie, la densité apparente, la porosité et la 

surface spécifique d’aéropectines réticulées par les ions calcium seront comparées à celles 

d’aéropectines gélifiées en milieu acide. L’influence de différents paramètres de préparation 

tels le pH, la concentration de pectine et le rapport molaire entre ions calcium et groupements 

carboxylate sur la morphologie des aéropectines réticulées par les ions calcium sera étudiée. 

Les propriétés mécaniques des aéropectines réticulées par les ions calcium seront étudiées en 

fonction de la densité des matériaux par mesures de compression uniaxiale. Ces données seront 

comparées aux valeurs obtenues pour des aéropectines gélifiées en milieu acide, à 

l’aérocellulose ainsi qu’aux aérogels de silice de référence. 

Pour faire varier la morphologie et les propriétés des aéropectines, des composites 

« aéropectine-silice » seront élaborés en utilisant les méthodes décrites au Chapitre IV pour 

l’élaboration de composites « cellulose-silice » : imprégnation par diffusion moléculaire et par 

flux forcé. Les composites seront caractérisés en termes de densité, morphologie et teneur en 

silice. Les conductivités thermiques des composites seront mesurées par micro-fluxmétrie et 

comparées à celles des aéropectines pure et des aérogels de silice. 

Enfin, nous considérerons l’hydrophobisation des composites via le traitement de surface de la 

phase silice par trois agents d’hydrophobisation bien connus. L’hydrophobicité des composites 

sera contrôlée par mesures d’angle de contact avec l’eau et de reprise hydrique en atmosphère 

humide. 
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1. Structural properties of calcium-reticulated aeropectin. 

 Comparison of acid-gelled and calcium-reticulated aeropectins 

 Preparation of aeropectins 

Aeropectin can be prepared via a dissolution-gelation-coagulation process, quite similar to the 

preparation of Aerocellulose from cellulose solutions: after dissolution in water and gelation of 

the pectin solution, the pectin is washed in a non-solvent (ethanol) and dried in supercritical 

CO2 to obtain aeropectin (figure VI.1). The detailed experimental procedure is described in 

materials and methods section.  

 

Figure VI.1: General schematization of two methods used in the preparation of aeropectins 

Pectin solutions in water can form gels following two different mechanisms (Tilly, 2010):  

- Physical gelation in acid media (figure VI.2.a): at pH lower than 3, the carboxylic acid groups 

on pectin chains are mostly in their protonated form. Hydrogen bonds can then be formed 

between polymer chains in a way similar to the gelation of cellulose-NaOH solutions. In the 

following aeropectins obtained from gelation of pectin in an acid media will be referred by 

“acid-gelled aeropectins”. This method is more suited to pectins with high degree of 

esterification (DE). 

 

- Reticulation through the formation of ionic bonds between pectin chains by a divalent cation 

(figure VI.2.b): cation-triggered pectin gelation occurs at neutral or basic pH values. The main 

component of the pectin chain, D-galacturonic acid, has a pKa of 3.51 (Kohn and Kovac, 

1978); the pKa of pectin has been evaluated to be 2.90 (Ralet et al., 2001). Thus a ionic bridge 

between negatively charged deprotonated carboxylic groups on pectin chains can be formed 

at basic pH by binding with bivalent cations, such as calcium ions. The “egg-box” model has 

been suggested for describing the calcium induced gelation of alginates and pectins (Grant et 

al., 1973). In this model pectin chains form dimers when reticulated by calcium ions; the 

oxygen atoms on the hydroxyl groups on C2 and C3, as well as the ones from the ring and 

glycosidic bonds also participate in the binding of the calcium ions through complexation. In 

the following, aeropectins obtained with this method will be referred to as “calcium-

reticulated (CR) aeropectins.” 
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Figure VI.2: Schematic view of the molecular structure of (a) physical pectin gels obtained in acidic 

conditions and (b) CR pectin gels (Tilly, 2010). 

In the present work we focused on making aeropectins from calcium reticulated pectin solutions 

in water. The pectin used for the study is a relatively highly methylated pectin extracted from 

citrus peel, with a DE about 56%, as confirmed by FTIR measurements (Synytsya et al., 2000; 

Rudaz, 2013). Pectins of a higher DE are less suited to reticulation with calcium ions because 

of their lower number of free carboxyl groups that can be bind by calcium ions; nevertheless 

the calcium-induced gelation of HM pectins is also possible and the properties of such gels have 

been reported by (Tibbits et al., 1998). 

The source of calcium ions used in this work is calcium chloride (CaCl2). The molar ratio 

between carboxylic moieties and calcium ions is an important factor in the understanding of 

calcium reticulated pectin properties. The calcium-to-carboxyl molar ratio is defined by 

equation VI.1:  

𝑅 =
𝑛𝐶𝑎2+

𝑛𝑅𝐶𝑂𝑂−
 =

[𝐶𝑎2+]

[𝑅𝐶𝑂𝑂−]
 

with [Ca2+] the calcium molar concentration (mol.L-1) and [RCOO-] the molar concentration of 

deprotonated carboxyl groups in the solution. The proportion between galacturonic acid and its 

deprotonated form at a given pH can be calculated by equation VI.2 and VI.3.  

𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔
[𝑅𝐶𝑂𝑂−]

[𝑅𝐶𝑂𝑂𝐻]
 

[𝑅𝐶𝑂𝑂−]

[𝑅𝐶𝑂𝑂𝐻]
=  10𝑝𝐻−𝑃𝐾𝑎 

As the pectin pKa is 2.90, for a pH superior to 6 the concentration of galacturonic acid becomes 

negligible as compared to its deprotonated form. In the following the overall concentration of 

free carboxyl groups can be assimilated to the concentration of deprotonated galacturonic acid 

[RCOO-]. The concentration of carboxyl groups can be evaluated from the degree of 

esterification and molar mass of galacturonic acid, the repeating unit of pectin chains, as follows 

(eq. VI.4):  

[𝑅𝐶𝑂𝑂−] =  
𝑛𝑅𝐶𝑂𝑂−

𝑉𝑝𝑒𝑐𝑡𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=

𝑤𝑡%𝑝𝑒𝑐𝑡𝑖𝑛(1−𝐷𝐸)
𝑀𝑔𝑎𝑙𝑎𝑐𝑡𝑢𝑟𝑜𝑛𝑖𝑐 𝑎𝑐𝑖𝑑

⁄

𝑉𝑝𝑒𝑐𝑡𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

with 𝑛𝑅𝐶𝑂𝑂−  the amount of carboxylate group in pectin solution, Vpectin solution the volume of the 

gelling pectin solution, Mgalacturonic acid = 192 g.mol-1 and DE = 56%. 

b a 

(VI.3) 

(VI.4) 

(VI.1) 

(VI.2) 
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Calcium reticulated aeropectins will be compared with previously studied (Rudaz, 2013) acid-

gelled aeropectins obtained from the same pectin starting material. In the following, we study 

the influence of different preparation parameters (pectin concentration, pH, calcium to carboxyl 

groups molar ratio) on the morphological properties of calcium reticulated aeropectins. 

 Effect of pectin concentration on morphology and bulk density of 

aeropectins 

Calcium reticulated pectin gels were prepared at initial pectin concentration between 1 and 5 

%wt. To reliably study the influence of concentration on pectin morphology, the calcium-to-

carboxyl molar ratio was fixed at 0.20 for all samples. Below 1%wt, the pectin solution did not 

gel upon addition of calcium ions at any calcium-to-caboxyl molar ratio. From this observation 

we can assume that the minimal concentration of pectin to obtain a stable pectin fibrous network 

is around 1%wt. For pectin with high degree of esterification (around 70%) of molecular weight 

between 3.104 and 10.104, the intrinsic viscosity was shown to vary from 100 to 600 mL/g 

(Harding et al., 1991), which gives the overlap concentration (minimal concentration need to 

form a gel) around 0.2 – 1 wt%. The conformation of that pectin was reported to be a rigid rod. 

The pectin used in our study was with lower degree of esterification which should lead to more 

flexible conformation; we can thus assume that indeed the overlap concentration is roughly 

around 0.5 – 1wt%. 

Gels with pectin concentration below 2%wt were quite fragile. The higher the concentration 

(and thus the higher the initial solution viscosity), the faster was gelation. At higher 

concentrations than 5%wt, pectin solution was too viscous and heterogeneous to be handled. In 

some cases, air bubbles remained trapped into the wet samples, generating visible surface 

irregularities after drying. Moreover, the surface of the samples becomes concave, forming a 

meniscus during the solvent exchange with ethanol. After supercritical CO2 drying, monolithic, 

white samples were obtained (figure VI.3).  

 

FigureVI.3: Visual aspect of CR aeropectins from different pectin initial concentrations in wt%. 

Most of the overall contraction of aeropectins occurred during sc drying. Volume contraction 

of samples during supercritical CO2 drying was quite high, reaching 30 to 50%. As seen in 

previous chapters, Aerocelluloses shrink by about 30% upon sc drying. Mechanical constraints 

are not likely to induce this shrinkage, as supercritical drying avoids capillary constrains 

between the pore walls. Supercritical CO2 is an inorganic, apolar and aprotic solvent with which 

the polar polymers (here, polysaccharides) have less chemical affinity. During supercritical 

drying, the solvent (ethanol) filling the pores of coagulated polysaccharide is replaced with 

CO2, then air, forcing the polymer chains to reach a new state of equilibrium by contracting. 

The extent of this phenomenon depends on polymer chains flexibility and chemical affinity of 

the polymer for the solvent. Shrinkage upon drying up to 85% has been observed previously 

for several aerogels based on organic polymers, such as cellulose acetate (Fischer et al., 2006) 

or polyurethane (Diascorn, 2014). 

4 cm 
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Similar observations were made by studying the effect of pectin concentration on the gelation 

and physical aspect of acid-gelled pectin (Rudaz, 2014). It has to be noted that gelation by 

calcium reticulation of pectin chains occurs much faster than physical gelation of pectin in acid 

media: few minutes to one hour are necessary for the former, while the latter may require a few 

hours to even several days at low pectin concentrations. 

The densities of calcium-reticulated aeropectins obtained from pectin solutions of different 

initial concentrations are shown on figure VI.4, data for acid-gelled from (Rudaz, 2014) are 

added for comparison. Theoretical density, assuming no volume contraction upon the whole 

synthesis process, was calculated and is shown for reference on the figure as a solid line. 

 

Figure VI.4: Bulk density as a function of pectin initial concentration for (1) CR aeropectins and (2) 

aeropectin from pectin gelled in acid conditions (data taken from Rudaz et al., 2014). Solid line is 

theoretical bulk density of aeropectins assuming no volume contraction upon processing.  

All aeropectins show low bulk densities in 0.02-0.12 g.cm-3 range. Volume change upon drying 

does not vary significantly when increasing pectin concentration; thus the densities linearly 

increase with concentration increase. The bulk densities of CR pectins are much lower than 

those of acid-gelled pectins and closer to the theoretical density values. 

The microstructure of calcium reticulated aeropectins as seen by SEM is shown on figures VI.5 

and VI.6. Aeropectins are formed of a porous network of entangled “nanofibers”, as is the case 

for aerocellulose. However, in aeropectin case, the pore sizes are lower: while for aerocellulose 

typical pore sizes are spread out between 10 µm and a few tens of nm, for aeropectins very few 

pores have a diameter superior to 1 µm, and most of them are from few tens to few hundreds 

nanometer range. For aeropectins obtained from pectin concentrations lower than 2 %wt, the 

structure present more “open” spaces, and micrometric pores of 1-5 µm can be seen. Higher 

pectin concentrations, of 3 and 5 %wt, give denser aerogels with more uniform and smaller 

pore sizes around 10-500 nm. 
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Figure VI.5: SEM images of CR aeropectins with initial pectin concentrations of (a) 1 %wt; (b) 2 %wt 

and (c) 3 %wt. 

Figure VI.6 shows the structure at the nanometer scale of calcium reticulated (CR) aeropectins, 

as seen by SEM. Image analysis allow to situate more precisely the diameter of nanofibers in 

the 10-30 nm range. The small pores were also measured from these high magnification 

pictures, confirming their diameters to be from a few tens to a few hundreds of nm. Acid-gelled 

and calcium reticulated aeropectins are very similar in terms of microstructure. 

 

Figure VI.6: SEM pictures showing the morphology of a CR aeropectin (R = 0.28) from 3 %wt solution at 

various scales with some examples of pore size and pore wall thickness. 

Theoretical porosities ε and specific pore volume Vth of calcium reticulated aeropectins at 

different concentrations were determined from sample apparent and skeletal densities with eq. 

VI.5 and VI.6. The skeletal density ρskeletal = 1.57 g.cm-3 ± 0.03 for citrus pectin was determined 

by helium pycnometry in the L2C laboratory of the university of Montpellier, France (Rudaz, 

2013).  

𝜀(%) =
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 −

𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
 

𝑉 𝑡ℎ =
1

𝜌𝑏𝑢𝑙𝑘
−

1

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
 

The porosities, theoretical specific pore volumes and specific surface area SBET of CR 

aeropectins obtained by nitrogen adsorption using the BET method are shown in table VI.1. 

Pore diameter can be estimated as follows, even though nitrogen adsorption only provides very 

limited information on the aerogels porosity:  

𝐷𝑝𝑜𝑟𝑒 =
4𝑉𝑡ℎ

𝑆𝐵𝐸𝑇
 

a 

1µm 1µ
m 

b 

1µ
 

200 nm 

b 

246 nm 

66 nm 

84 nm 

15 nm 

16 nm 

20 nm 

100 nm 

a 

c 

(VI.7) 

(VI.5) 

(VI.6) 
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Table VI.1: Densities, porosity, theoretical specific pore volume and diameter and specific surface areas of 

CR aeropectins at different pectin concentrations in solution. 

Pectin 

concentration 

(wt%) 

ρ (g/cm3) εth (%) 
V th (cm3.g-

1) 

Dpore 

 (nm) 

SBET 

(m².g-1) 

1% 0,021 99% 47,0 712 264 

2% 0,038 98% 25,7 351 293 

3% 0,044 97% 22,1 294 301 

5% 0,066 96% 14,5 289 201 

The theoretical porosities of CR aeropectins are very high, between 96% and 99%, the direct 

consequence of their low bulk density. Pore volume Vth decreases with the increase of polymer 

concentration in solution (and density), as expected.  

Specific surface areas are close to those of aerocellulose and acid-gelled aeropectins, with SBET 

values of 200-300 m².g-1. As was previously observed for aerocellulose and acid-gelled pectins, 

no obvious correlation can be determined between polymer concentration and specific surface 

area. 

 Effect of pH on CR aeropectin gelation and bulk density  

To investigate the effect of pH on the bulk density of CR aeropectins, the pH of a 2%wt pectin 

solution was varied from 5 to 13 by addition of a 0.1M KOH solution. Calcium chloride was 

added (the R value being 0.20 for all samples) and the solution was left to gel at room 

temperature. The macroscopic appearance of CR aeropectin depending on pH is shown on 

figure VI.7. 

 

Figure VI.7: Visual aspect of calcium reticulated aeropectins gelled at different pH. 

Practically no gelation was observed at a pH lower than 7; gels formed at pH 6 and 7 were 

extremely fragile and the gelation was relatively slow (few hours) for pH < 8. For pH values of 

11 and 13, syneresis was observed rapidly after gelation, and the gels contracted more than at 

lower pH; these high pH gels had a yellowish color, while the other where white. The difference 

of coloration observed for the wet gels is carried on during sc drying. Gels formed at a lower 

pH form a more pronounced meniscus during the solvent exchange process, as they are more 

flexible and easier to deform. Aerogels formed at a higher pH (especially those made at pH 11-

13) are the more rigid and harder to break. 

Figure VI.8 shows the evolution of bulk density of CR aeropectin samples as a function of 

solution pH. 

4cm 
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Figure VI.8: Bulk density variation of CR aeropectins from 2%wt pectin solution as a function of solution 

pH. 

Aeropectins densities increase with the solution pH. As could be expected from the volume 

contraction observed on these aerogels, CR aeropectins gelled at pH 11 and 13 have noticeably 

higher densities at 0.08 g.cm-3 because of higher contraction. As the pKa of pectin is 2.9, the 

vast majority of the carboxyl groups are in deprotonated form and thus able to bind with calcium 

ions in the pH range studied. However, in highly basic conditions, a saponification reaction can 

occur between ester functions and the OH- from the KOH solution used to adjust the pH. Partial 

de-esterification of pectin leads to the formation of new carboxylate ions able to bind with 

calcium, resulting in faster gelation and the formation of a more rigid gel. 

Thus, to obtain low-density samples and cohesive gels, the ideal pH is between 8 and 10. All 

samples synthesized in the following were gelled at pH 8 to optimize their properties. 

 Influence of calcium concentration 

To evaluate the effect of calcium concentration on aeropectins morphology, the calcium 

concentration in pectin gels was varied from 10 to 150 mM at pectin concentrations of 1%wt, 

2%wt and 3%wt, corresponding to values of R between 0.05 and 0.45. Gels obtained with the 

highest calcium concentrations were stronger, which is consistent with what is reported in 

literature about pectin-calcium gels (Fraeye et al., 2006; Capel et al., 2010). The gelation time 

decreased when increasing the calcium concentration; however, all pectin gels visually had a 

similar aspect before and after supercritical drying. The evolution of bulk density with calcium 

to carboxyl group molar ratio R is displayed on figure VI.9. 
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Figure VI.9 : Bulk density of CR aeropectins of different pectin concentrations as a function of calcium to 

carboxylate molar ratio. Dotted line shows the general trend of density versus R. 

As expected, bulk density is globally higher for more concentrated samples. At very low R 

values (R < 0.1), the aeropectins are more dense, in the 0.04-0.07 g.cm-3 range. For values of R 

between 0.1 and 0.2, a local minimal value for density is reached, with densities around 0.03 

g.cm-3 for 2 wt% aeropectins and 0.04 for 3 wt% aeropectins. Past this point the density slightly 

increases but the variation with R is less noticeable. It must be kept in mind that given the 

extremely low densities of calcium reticulated aeropectins, experimental errors are important 

as illustrated directly on the graph: bulk density variations up to 20% can be observed between 

samples of the same formulation but from different batches which could smooth in some way 

the evolution of this curve. 

As seen on SEM pictures on figure VI.10, the microstructure of aeropectins is not visibly 

affected by the amount of calcium added to pectin. 

 

Figure VI.10: SEM images of the microstructure of CR, 2 wt% aeropectins with a) R = 0.066; b) R = 0.2; 

c) R = 0.28 and d) R = 0.36 
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The theoretical apparent porosities and specific pore volumes have been calculated for a few 

selected values of R and pectin concentrations. These values are shown along with specific 

surface areas in table VI.2. The porosity remains very high (97-98%) independently of the 

amount of calcium added to the pectins. Specific surface areas does not directly correlate with 

bulk density, as was previously observed; the higher measured values are obtained for R = 0.2 

with 293 m².g-1 for 2 wt% aeropectin and 301 m².g-1 for 3 wt% aeropectin. These observations 

being limited to a small number of different formulations, it is difficult to draw significant 

conclusions on the effect on calcium to carboxyl molar ratio on the porosity and specific surface 

areas of reticulated aeropectins. 

Table VI.2: Density, porosity, theoretical pore volume and specific surface area of CR pectins at different 

calcium-carboxyl ratios. 

Pectin 

concentration 

(wt%) 

R 

(mol/mol) 
ρ (g/cm3) εth (%) 

V th (cm3.g-

1) 

SBET 

(m².g-1) 

2% 

0,11 0,031 98% 32,04 185 

0,17 0,025 98% 38,73 203 

0,20 0,038 98% 25,68 293 

0,36 0,036 98% 27,14 173 

3% 

0,10 0,041 97% 23,75 241 

0,2 0,044 97% 22,09 301 

2. Thermal and mechanical properties of CR aeropectins 

 Mechanical compression properties of CR aeropectins 

The mechanical properties of CR aeropectins were studied by uniaxial compression tests. 

Samples were cylinders with a height/diameter ratio of 3/2. The detailed procedure is described 

in materials and methods section. Two series of measurements were performed to evaluate the 

mechanical properties: Young modulus was evaluated from stress-strain curves at low 

deformations (ε < 10%). Varying the strain from up to 90% gave the complete stress-strain 

curve from which the densification strain and total absorbed energy at densification were 

determined.  

Figure VI.11 shows the stress-strain compression curves of CR aeropectins at two different 

densities. The stress-train curves of CR aeropectins are comparable to those of cellulose based 

aerogels (Chapters IV and V) and acid gelled aeropectins: after elastic deformation at low 

strains, plastic deformation occurs while the pore walls of the aerogel irreversibly bend under 

the stress; a plasticity plateau is observed, during which the material absorbs energy. Finally, 

pore walls collapse under strain and cell walls enter in contact with each other: this is the 

beginning of the densification, characterized by a steep increase in stress as the sample cannot 

deform anymore (see Chapter II). 
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Figure VI.11 : Stress-strain curves of CR aeropectins with bulk densities of (a) 0.041 g.cm-3 and (b) 0.086 

g.cm-3, R = 0.2, initial pectin concentration in solution 2%wt and 3%wt respectively. 

CR aeropectins are extremely compressible, sustaining deformations up to 90% without 

breaking. The densification strain is extremely high, being 83% for CR aeropectin with a bulk 

density of 0.086 g.cm-3 and 90% for a CR aeropectin with a density of 0.041 g.cm-3. Table VI.3 

shows the mechanical properties of CR aeropectins as compared to an acid-gelled sample. The 

measured values of Young moduli of CR pectin are lower than those of acid gelled aeropectins 

of comparable densities (0.65 MPa against 4.1 for acid-gelled pectin). 

Despite their higher deformation strain, energy absorbed by CR pectin is comparable to that of 

acid-gelled aeropectins; total absorbed energy at densification increases with sample density. 

Table VI.3 : Mechanical properties of acid gelled (Rudaz, 2013) and CR aeropectins. 

Pectin 

formulation 

ρ  
(g.cm-3) 

E (MPa) 
εd  

(%) 

Wεd 

(kJ.m-3) 

3%wt Acid-
gelled 

0.090 4.10 52% 217 

2% CR  0,041 0.44 90% 169 

3% CR 0,086 0.65 83% 394 

We compared Young modulus values of CR aeropectins with those of different aerogels from 

literature (fig.VI.12). The plot of E against bulk density follows a power law for silica and 

polysaccharide-based aerogels, according to the models proposed by (Alaoui, 2008, Sescousse 

et al., 2011, Rudaz, 2014). Because of the very limited number of available samples of CR 

aeropectins, we cannot reliably derive a value for the scaling exponent for CR aeropectins.  
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Figure VI.12 : Comparisons of Young moduli and scaling exponent m as a function of bulk density for CR 

aeropectin; acid-gelled aeropectins (Rudaz, 2013); aerocellulose (data taken from Gavillon, 2007; 

Sescousse et al., 2011; Sescousse, 2010); and silica aerogel (Alaoui, 2008).  

The calcium-to-carboxylate ratio is known to have an influence on the stiffness of aqueous 

pectin gels (Capel et al., 2006; Fraeye et al., 2010, Basak and Bandyopadhyay, 2014). We can 

assume that varying the value of R could have a significant impact on the mechanical properties 

of supercritically dried CR aeropectins. 

 Thermal properties of CR aeropectins 

Thermal conductivities of both acid gelled and CR aeropectins were evaluated by Hébert Sallée, 

CSTB Grenoble, France. A microflowmeter set up was used to allow measuring of small disc-

shaped samples with 4 cm diameter. All samples were polished with sand paper before analysis 

to obtain the even and flat surfaces required for the analysis. The thermal conductivities of CR 

aeropectin was classically plotted as a function of sample density; figure VI.13 compares their 

thermal conductivity with that of acid-gelled aeropectins and reference silica aerogels. The 

thermal conductivity of CR aeropectins was also studied in parallel by hot-wire measurements 

performed by G. Reichenauer from Bavarian Center for Applied Energy Research, Wurzburg, 

Germany, within the frame of AEROCOINS, on 2%wt CR aeropectins, for R between 0.11 and 

0.22 These results are presented on table VI.4.  

Table VI.4 : Thermal conductivities of CR aeropectins obtained from 2%wt pectin solution, as obtained 

by hot wire measurements. 

R ρ (g.cm-3) λ (W.m-1.K-1) 

0,11 0,031 0,0218 

0,15 0,031 0,0213 

0,17 0,025 0,0216 

0,22 0,044 0,0214 

Samples measured by hot-wire method in Bavarian Center for Applied Energy Research had 

densities ranging from 0.030 to 0.040 m².g-1. It was found that all samples had similar thermal 

conductivities between 21 and 22 mW.m-1.K-1. Those values are slightly higher than those 

obtained in CSTB (see figure VI.13), however, they remain in the super-insulating region. In 
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the studied range of R, the amount of calcium added to form the gel seems to have a limited 

effect on the final thermal properties of the material. 

 

Figure VI.13: Thermal conductivities, as measured by microflowmetry, of CR aeropectins, compared with 

those of acid-gelled aeropectins (data taken from Rudaz et al., 2014) and reference silica aerogels (data 

taken from Bisson et al., 2004). 

The thermal conductivity of pure CR aeropectin is remarkably low, being for all samples lower 

than 0.025 W.m-1.K-1, i.e. in the superinsulating range. The thermal conductivity of CR 

aeropectins decreases with decreasing aerogel density as measured by microflowmetry. A 

similar trend was observed for acid gelled aeropectins with the same metrology (Rudaz, 2014). 

Within the present study, interestingly, the conductivity decrease with the decrease of aerogel 

density is steady over the density range studied, contrary to the conductivity of reference silica 

aerogels (Bisson et al., 2004.; Wong et al., 2014) or resorcinol-formaldehyde (Lu et al., 1995) 

and polyurethane (Diascorn et al., 2015). The latter shows systematically a decrease in 

conductivity with decreasing density, due to the diminution of solid contribution with density, 

until a minimum thermal conductivity value is reached at specific densities (generally in the 

0.100-0.150 g.cm-3 range). The minimum is followed by an increase of thermal conductivity 

at extremely low densities. The reason of the increase of thermal conductivity with density 

decrease at very low density values is the appearance of larger and larger macropores for which 

Knudsen effect is no longer valid and for which radiative transfer is increasing. Within the 

frame of the present study, the absence of the minimum on the thermal conductivity-density 

dependence for aeropectins, obtained for both acid-gelled and Ca-gelled pectins, remains an 

intriguing question that requires more studies.  

3. CR aeropectin-silica composites 

We showed that using Ca-induced cross-linking of pectin, it is possible to obtain ultra-light 

weight, ductile and thermal super-insulating aerogels, aeropectin. In order to enlarge the 

spectrum of porosity, density and specific surface area, we used the approach developed for 

synthesising organic-inorganic composite aerogels (Chapter IV and V). In the following section 
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we describe the preparation and properties of pectin-silica aerogels. We also used the known 

ways of silica hydrophobisation to try to obtain hydrophobic pectin-silica composite aerogels. 

  Impregnation of pectin matrix with silica 

The pectin alcogels were obtained from pectin solutions of concentration between 1-5%, 

adjusted to a pH of 8, and reticulated with calcium chloride with R = 0.20, as described above. 

The impregnation of pectin alcogels was performed with 16 wt% PEDS, following the same 

protocol as for the synthesis of cellulose-silica composites (see chapter IV). Forced-flow (1h 

processing) and diffusion impregnation (24h immersion in PEDS sol) were tested on a 3 wt% 

pectin gel, following by 24h immersion in a NH4OH catalyst solution. It has to be noted that 

for practical reasons, most of the pectin-silica composite gels studied in the following parts 

were elaborated using diffusion controlled impregnation, as at lab scale this method allows the 

preparation of more samples in parallel.  

The spatial distribution of the silica in the pectin matrix after sc drying was checked by means 

of EDS spectroscopy performed on a transversal cut. The wt% in silicium was derived from the 

intensity of the Kα silicium peak at 1.71 keV. Figure VI.14 shows the silica content as a function 

of distance from the upper surface for forced-flow and diffusion impregnated samples of 4-

5mm thickness. 

 

Figure VI.14: Distribution of silica (expressed in silicium wt%) in aeropectin-silica composite aerogel 

from 3 %wt pectin solution, in the case of (1) 1h forced-flow impregnation and (2) 24h diffusion controlled 

impregnation, measured by EDS spectroscopy on 4-5mm thickness samples. 

The forced flow impregnated sample shows a relatively uniform distribution of silica over the 

sample cross-section. In the case of diffusion impregnation, the middle part of the sample is 

less rich in silica, with wt% of Si dropping from ~35%wt to ~20%wt. The impregnation time 

was 24h, the same as for cellulose samples from chapter IV and V for the sake of comparison. 

Because pectin gels possess smaller pore size than cellulose ones, the diffusion of PEDS in the 

pectin matrix is very probably slowed down as compared to cellulose. Longer impregnation 

times (by at least a few hours) shold be required to uniformly impregnate pectin gels samples 

by diffusion-controlled impregnation. 
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Although EDS-X is a surface analysis and thus gives only approximate values, we can see that 

very similar values of silica content are obtained for both processes. EDS results show that it is 

possible to obtain, in a similar way to aerocellulose composites, a comparable homogeneous 

filling of the pectin network with silica aerogel with both forced-flow and diffusion processes. 

 Morphology and density 

Volume contraction upon supercritical drying of aeropectin-silica composites prepared from 3 

wt% pectin solution and reference aeropectin are respectively shown in figure VI.15a and 

VI.15b. Before drying the dimensions of both plates were 9 cm × 9 cm × 1cm; the composite 

have shrunk by 30% while the pure aeropectin sample shrank by 50%. As noted in part 1.1.2., 

organic aerogels tend to shrink significantly more than silica aerogels due to higher chain 

flexibility and lower chemical affinity for supercritical CO2. The addition of the silica phase to 

the pectin matrix makes it more rigid, limiting the volume contraction of silica-impregnated 

aeropectin. 

 

Figure VI.15: Pictures of (a) silica-impregnated aeropectin (right) and (b) reference aeropectin, both from 

3 wt% pectin solution. (NB : Crack on silica-pectin composite aerogel occurred during sample 

transportation after supercritical drying.) 

The macroscopic aspect of pectin-silica composites for different pectin concentrations is shown 

on figure VI.16. Aeropectin-silica composites are white, monolithic solids. No powder release 

can be seen by visual examination. Surface irregularities and small holes are present, as is the 

case for pure CR aeropectins. 

 

Figure VI.16: CR aeropectin-silica composites from different initial pectin concentrations in solution. 

The bulk densities of aeropectin-silica composite aerogels is shown along with the densities of 

aeropectins of the corresponding concentrations on figure VI.17. Pectin-silica composites 

densities range from 0.114 to 0.156 g.cm-3, increasing as pectin concentration increases. Thanks 

to the extremely low density of the pectin matrix, silica-pectin composites are 1.5 to 2 times 

lighter than the untreated cellulose-silica composites described in chapter IV. Low densities 

together with reduction of mean pore size (by impregnation of macroporosity of the organic 

matrix by silica) are particularly interesting as we are targeting thermal insulation applications. 
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For pure silica aerogels from PEDS, optimal thermal conductivities are obtained in the 0.100-

0.150 g/cm3 density range (Wong et al., 2014). 

 

Figure VI.17: Density of a) CR aeropectins and b) CR pectin-silica composite aerogels for different values 

of pectin concentration.  

The microstructure of aeropectin-silica composites as observed by SEM is shown on figure 

VI.18.  

 

Figure VI.18: SEM micrograph of the structure of (a) reference silica aerogel from 8%wt PEDS solution; 

(b) 2%wt and (c) 3%wt diffusion-impregnated CR pectin-silica hybrid aerogels. 

SEM pictures of silica-impregnated CR aeropectins show that the pectin backbone is covered 

with a finely nanostructured network made of aggregated silica particles. The morphology of 

silica in the composites (fig. VI.18 b and c) is in good accordance with what is observed on the 

reference silica aerogel (fig. VI.18 a). Most of the larger pores in aeropectins are filled with 

silica aerogel. However some macroporosity, only partially filled with silica, can also be seen. 

SEM observations show that the silica is homogeneously distributed within the composites, 

consistent with EDS measurements. 

Specific surface areas, porosity and theoretical specific pore volume were measured for two 

formulations of 2%wt aeropectin-silica composites (table VI.4) with different cross-linking 

ratio. The specific surface area for these samples reaches 845-855 m².g-1 which confirms the 

presence of the nanostructured SiO2 aerogel network within the pectin matrix. The composites 

keep more than 90% porosity. Theoretical pore volume was estimated with the skeletal density 

taken as 1.57 for pectin and 2.0 for silica (Ayral et al. 1992). Vth is of course lowered as 

compared to pure materials, as silica aerogel fills the pores of aeropectins. 
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Table VI.4 : Porosities, theoretical specific pore volume and specific surface areas of 2%wt aeropectin-

silica composites. 

Pectin 

concentration 

(wt%) 

R  

(mol/mol) 

density 

(g.cm-3) 
ε(%) 

Vpore, th 

(cm3.g-1) 

SBET 
(m².g-1) 

SiO2 aerogel - 0.130 94% 3.29 975 

2% 

0,03 0,143 91% 6,36 845 

0,20 0,135 94% 9,34 855 

 Thermal conductivity of CR pectin-silica composite aerogels 

Thermal conductivities of CR aeropectin-silica composites were evaluated by Hébert Sallée, 

CSTB Grenoble, France. The same procedure as described in section 2.2. was used. The thermal 

conductivities of CR aeropectin-silica composites was plotted as a function of sample bulk 

density; figure VI.19 compares their thermal conductivity with that of pure CR aeropectins and 

reference silica aerogels. 

 

Figure VI.19: Thermal conductivities, as measured by microflowmetry, plotted as a function of bulk 

density for CR aeropectins and CR aeropectin-silica composites as compared to silica aerogels (data taken 

from Bisson et al., 2004).  Dotted line at 25 mW.m-1.K-1 corresponds to the thermal conductivity of free 

air. 

CR aeropectin-silica composites are superinsulating materials with conductivities of 15-23 

mW.m-1.K-1. The conductivity values of composites are close to those of reference silica 

aerogels of corresponding densities albeit slightly higher, probably because the percolating 

pectin network has an impact on solid contribution to conductivity. However, the thermal 

conductivity of CR aeropectin-silica composites is not improved as compared to pure CR 

aeropectins because of the increase in density which leads to an increase in the conductive input 

coming from the global solid network. 
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In CR aeropectins, the silica formulation used is the same as the one used for the preparation of 

cellulose-silica composite by impregnation of a cellulose matrix (see chapters IV and V). As 

discussed in those chapters, the measured density of the composite aerogels is higher than the 

theoretical maximal density calculated from the bulk density of each phase. It is known that 

synthesis conditions strongly influence the structure and final density of silica aerogels. 

Because the reaction is occurring within the small pores in which the catalyst has to slowly 

spread through molecular diffusion, the structure and properties of the silica gel formed within 

the organic matrix may be different as compared to reference silica aerogels. In the case of 

pectin the acidity of the chain can also affect the sol-gel process. Thus silica aerogel with higher 

density, and likely of higher thermal conductivity, could be formed within the polymer pores. 

Silica-pectin composite aerogels conductivities could be improved by adapting the formulation 

of PEDS sol-gel system to the particular conditions of the synthesis within an impregnated 

organic matrix. 

 Hydrophobization of the silica phase of aeropectin-silica 

composites 

As discussed in chapter V, hydrophobization of polysaccharide-silica composites is required 

for these materials to avoid densification due to humidity adsorption and keep good thermal 

properties in time. This is particularly crucial as materials used for building insulation are 

constantly exposed to humidity. A long term development perspective of hydrophobic 

aeropectins and aeropectin-silica composites would be the development of ambient-dried 

samples: bypassing the supercritical drying steps would prove extremely interesting for the 

large scale development of such materials. In this part we first focused on the hydrophobization 

of the silica phase in aeropectin-silica composites. 

Hydrophobization of silica aerogels have been performed using a large variety of methods. In 

its section concerning the synthesis of hydrophobic silica aerogels, the Aerogels Handbook lists 

more than 100 chemical agents that can be used for making hydrophobic silica aerogels 

(Anderson and Caroll, 2011). To hydrophobize the silica phase of aeropectin-silica aerogels, 

we have tested three hydrophobization agents: Hexamethyldisilazane (HMDZ), 

Methyltrimethoxysilane (MTMS) and Hexamethyldisiloxane (HMDSO). Coagulated pectin 

from 3 wt% acid-gelled pectin solution were impregnated with PEDS, followed by gelation of 

the silica phase in NH4OH. The resulting wet composite was placed in an ethanol solution of 

the hydrophobization agent during 8h at 65°C. The volume of added solution was equal to that 

of the gel. The concentration of hydrophobizing agents were calculated relatively to the mass 

of silica in the sample; they were respectively 36%wt for HMDZ, 32.5%wt for MTMS, and 

33.7%wt for HMDSO. The reaction of MTMS and HMDSO with silica was done in the 

presence of 0.1M hydrochloric acid (HCl). All samples were then dried in supercritical CO2. 

Ambient pressure drying overnight at 60 °C was attempted in laboratory oven for pectin-silica 

composites treated with HMDZ, however the samples densified dramatically and cracked upon 

evaporative drying. 

The quantity of each hydrophobization agent, expressed in weight percentage towards the silica 

phase, is presented on table VI.5, along with composite densities and contact angle with water 

characterized after drying. 
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Table VI.5: Quantities of hydrophobization agents used (expressed in mass percentage relative to silica), 

bulk densities and water contact angles θH2O for hydrophobized silica impregnated 3 wt% acid gelled 

aeropectins and dried with sc CO2. 

Hydrophobization agent 

Quantity of 

hydrophobizing 

reagent (relative to 

silica) 

density 

(g.cm-3) 
θH2O 

Reference aeropectin - 0,070 
Drop 

absorbed 

Reference aeropectin-

silica composite 
- 0.150 

Drop 

absorbed 

HMDZ 36.0% 0,136 135° 

MTMS 32.5% 0,194 138° 

HMDSO 33.7% 0,172 132° 

Higher bulk densities are obtained for samples treated in MTMS (0.194 g.cm-3) and HMDSO 

(0.172 g.cm-3) than for reference composite aerogels (i.e. untreated ones); HMDZ-treated 

composite sample had a density similar to the reference pectin-silica aerogel. MTMS and 

HMDSO react with silica in the presence of an acid (here, HCl). The acidic media can influence 

pectin, partially de-esterifying the pectin chains and disrupting the balance of hydrogen bonds 

that maintain pectin chains linked together. In this partial degradation scenario, during the 

hydrophobization treatment the microstructure of coagulated pectin can be modified, possibly 

leading to a partial densification. This confirm the necessity to follow sylilation routes in a basic 

environment.  

All composite aerogels treated with hydrophobizing agents have contact angles with water 

superior to 130°, showing their high surface hydrophobicity. The difference in contact angle 

between the three chemical modification process is low showing that all three procedures were 

efficient in hydrophobizing the silica phase. On reference aeropectin and aeropectin-silica 

composites, the water dropled was absorbed by the sample, leaving a hole in its surface (Figure 

VI.20a) while with hydrophobised samples water drop has high contact angle Figure VI.20b).  

  

Figure VI.20: Top (a) and side (b) view of water droplet on the surface of pectin-silica composites 

aerogels: a) non-hydrophobised and b) HMDSO-treated, both samples coming from 3 wt% pectin 

solution.  

a b 
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Water uptake of hydrophobically treated aeropectin-silica composites was measured by letting 

samples (that were first put in dry conditions 20 °C and 20 %RH) for 48 h at 80%RH and 30 

°C. The mass uptake m after 48 h was calculated according to eq. VI.8 and is shown on figure 

VI.21. 

𝐻𝑚(%) =  
𝑚48ℎ − 𝑚0

𝑚0
∗ 100 

With m48h the mass of the sample after 48h at 85% humidity and m0 the mass of the sample 

before the water uptake test. 

 

Figure VI.21: Water vapour uptake Hm at 30 °C and 80 %RH (in wt%) of reference aeropectin and silica-

impregnated aeropectin hydrophobized with different silylating agents. 

The reference aeropectin from 3 wt% solution shows 19 wt% humidity uptake in our 

experimental conditions, accompanied by spectacular volume contraction. The water vapour 

uptake for hydrophobized composites is 3 to 4 times lower, and their volume contraction is 

limited. In composite aerogels most of the pectin backbone is covered with layers of 

nanostructured silica that are hydrophobized by the chemical treatment. The lowest water 

uptake value is obtained with HMDZ treated sample with m being around 4.5 wt%; HMDSO-

treated sample has the highest water uptake among partly hydrophobized composites. As seen 

in chapter V, pure silica aerogel hydrophobized by HMDZ or HMDSO have very low water 

uptake inferior to 1 wt%. This means that despite the well distributed hydrophobized silica 

phase in the composites, the hydrophilic pectin backbone remains reachable by water vapour 

and is probably mostly unaffected by the hydrophobization treatment. The water uptake of pure 

aeropectins submitted to the same hydrophobization treatments was checked to verify this 

hypothesis: water uptake of these treated aeropectins are in the 17-25%wt range, confirming 

that the hydrophilic character of pectins is unaffected by any of the hydrophobization treatment 

used on the composites. 

Pectins are known to be extremely hydrophilic materials (as far as pectin is water-soluble). As 

a consequence, aeropectins are extremely sensitive to the ambient humidity: like aerocellulose 

(see chapter V), aeropectins densify during storage in room conditions; this densification is 

accompanied by a loss of porosity and increase of thermal conductivity. Almost no reports exist 

in literature about the hydrophobization of pectins; grafting of organic functions giving a certain 
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hydrophobicity to the pectin chains have been performed by thiolation (Perera et al., 2010) or 

amidation (Synytsya et al., 2000; Synystya et al., 2004; Zouambi et al., 2009); however the 

purpose of these studies was generally making of sorbents sensitive to specific organic 

molecules, and not the preparation of fully water-resistant pectins. Future developpements of 

aeropectin-silica composites will require an in-depth study of hydrophobization methods for 

pectin molecules. 
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Conclusions 

In this chapter the preparation and properties of aeropectin based on calcium-gelled pectin and 

their composite aerogels with silica were presented and discussed. 

A calcium-carboxyl group ratio around 0.11 and a pH of 6-8 resulted in aeropectins with the 

very low bulk densities (0.02 – 0.05 g/cm3). Aeropectin morphology is a porous network made 

of “nanofibers” with diameters around 10-30 nm. The pore sizes of aeropectins tend to decrease 

as the material concentration increases; for all calcium-reticulated aeropectins pore with 10-500 

nm diameters were observed by SEM. 

The morphology of the aeropectin-silica composite aerogels observed by SEM was a fine 

network of nanostructured pectin fibers covered with silica aerogel. Pectin-silica composite 

aerogels showed an increase of specific surface area from 200-300 m2.g-1 for the pure 

aeropectins to 800-850 m2.g-1 for the composites, confirming the in-situ nanostructuration of 

the silica phase. 

Aeropectins are able to sustain up to 80-90% strain without breaking; their low elastic modulus 

is consistent with their extremely low bulk densities. More characterization is needed to reliably 

evaluate the influence of formulation parameters on the final aerogels mechanical properties; 

silica-pectin composites need to be mechanically characterized as well to see how associated 

densification impacts mechanics. 

In the case of acid gelled and calcium-reticulated aeropectin, we observed by microflowmetry 

an unexpected linear dependence of the thermal conductivity with density, with values from 

0.013 to 0.022 W.m-1.K-1 for bulk densities in the 0.03-0.10 g.cm-3 range. Further studies are 

necessary to study why the theoretical increase of conductivity at very low densities was not 

observed experimentally. The conductivity of the pectin-silica composites was in the 0.015-

0.022 W.m-1.K-1 range, slightly higher than that of silica aerogel based on the same formulation 

of the silica-sol, indicating that the silica formulation should be optimized to further reduce the 

composite density if necessary. 

Finally, the surface hydrophobization of the silica phase of the composites was attempted using 

three different hydrophobization reagents able to silylate the silica phase. Contact angles with 

water of 135° and reduced humidity uptake from 19%wt for pure aeropectin to 5-6%wt for 

composites were obtained. However it appears necessary to hydrophobize also the pectin part 

to synthesize an hydrophobic composite. 

Calcium-reticulated aeropectins are entirely biobased, ultra-light aerogel materials. Their 

thermal conductivities are the lowest of all polysaccharide-based aerogels known so far. While 

further characterization of these materials is needed to better understand how optimize their 

formulation to control their nanostructure and obtain more homogeneous samples, calcium 

reticulated aeropectins and their composites with silica are extremely promising materials for 

super-insulating applications. 
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The main goal of this thesis was to synthesize and characterize thermal superinsulating and 

mechanically strong polysaccharide-silica composite aerogels.  

In Chapter 3 and 4 we studied two methods to obtain such composites from cellulose gels: i) 

“one-pot” mixing of cellulose solution in alkaline media with sodium silicate, followed by 

simultaneous coagulation of each phase in acid media, and ii) impregnation of a wet porous 

cellulose matrix by a polyethoxydisiloxane (PEDS)-ethanol solution, followed by base-

catalyzed sol-gel synthesis of silica within the cellulose porosity. In the case of “one-pot” 

synthesis, rheological measurements show that the addition of sodium silicate on the cellulose-

NaOH system has a strong “destabilizing” effect on cellulose, inducing rapid association of 

polymer chains which in turn leads to a microphase separation because of the competition for 

the solvent between silicate and cellulose. Supercritical CO2 drying of the wet “one-pot” gels 

gave the composite aerogels: a cellulose matrix with dispersed (dense) silica beads. 

The materials obtained showed densities between 0.10 and 0.25 g.cm-3. Scanning electron 

microscopy (SEM) revealed the presence of micron-size silica particles, embedded in the pores 

of Aerocellulose. The specific surface area was lowered, proving that those silica particles are 

non-porous. Thermal conductivity was increased from 0.035-0.040 W.m-1.K-1 for pure 

Aerocellulose to 0.045-0.050 W.m-1.K-1 for the composites, due to the silica particles increasing 

the solid contribution of the aerogels backbone to the thermal tranfser. Finally, the Young 

modulus is increased from 20 MPa for pure Aerocellulose to 30-40 MPa for the composites, 

showing that the silica particles act in parallel as a reinforcing additive for the cellulose matrix.  

The morphology and thermal conductivity of freeze-dried “one-pot” samples was also studied. 

Freeze-dried samples presented low specific surface areas and large pores because the 

formation of ice crystals during the freezing step. The thermal conductivity of freeze-dried 

composites is similar to that of supercritically dried samples.  

These results showed that “one-pot” cellulose-silica approach is not leading to 

nanostructuration and thus does not improve the thermal properties of the aerogels obtained. 

In the case of impregnation of a wet cellulose matrix, two impregnation methods were tested: 

simple molecular diffusion, and forcing the penetration of the PEDS solution inside cellulose 

porosity by a pressure gradient. Thanks to forced-flow process, impregnation times were 

reduced from ~ 7 hours to less than 30 minutes for a sample with the same geometry. Energy 

diffractive spectroscopy and SEM analysis were performed to compare silica spatial 

distribution in both series of samples. The morphology of diffusion impregnated and forced-

flow impregnated samples was similar: the cellulose matrix is filled with the nanostructured 

silica aerogel. 

BET analysis confirms the formation of nanostructured silica inside cellulose matrix: specific 

surface area increases from ≈ 300 m2.g-1 for Aerocellulose to 750-800 m2.g-1 for composite 

aerogel. The thermal conductivity in room conditions is reduced from 0.033 W.m-1.K-1 for 

aerocellulose to 0.027 W.m-1.K-1 ± 0.001 for composite aerogels due to the superinsulating 

properties of silica aerogel itself, demonstrating that the concept of impregnation works for 

decreasing the total thermal conductivity of a porous matrix with large macropores. Finally, 

composite aerogels are strongly reinforced as compared with the reference aerogels still keeping 

high ductility characteristic to Aerocellulose: Young modulus increases in 3-4 times as 
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compared to pure silica aerogel, and fracture strain remains very high, about 60% for the 

composite against 4-10% for the reference silica aerogels.  

The impregnation of a porous wet cellulose matrix by PEDS followed by base-catalyzed sol-

gel synthesis of silica aerogel within the polysaccharide porosity appeared to be a well suited 

method to obtain finely structured composite polysaccharide-silica aerogels; this technique was 

thus used for the preparation of all composites studied in the following parts of the work. 

An important requirement for aerogels destined to thermal insulation application is their ability 

to sustain ambient humidity without losing their thermal and mechanical properties. As 

cellulose and silica aerogels are hydrophilic, we proceeded to elaborate hydrophobized 

composite aerogels, synthesizing a chemically modified cellulose (tritylcellulose) as 

impregnation matrix for PEDS. After impregnation, the silica phase was hydrophobized by 

silylation in basic conditions. 

The resulting aerogels are resistant towards humidity, water mass uptake is reduced from 

10%wt for the untreated material to 1-3%wt for “fully” hydrophobised composites, and contact 

angles with water of 133° are obtained. The obtained organic-inorganic aerogels are finely 

nanostructured, with high specific surface areas between 600 and 800 m2.g-1. The morphology 

of the hydrophobized composites was similar to that of aerogels based on non-hydrophobized 

components. Composite aerogels were stiffer than pure tritylcellulose aerogels with Young 

moduli ranging around 2-4 MPa vs 0.3 to 1 MPa for tritylcellulose and 1.9 MPa for silica 

aerogels. Thermally superinsulating composite aerogels were obtained, showing a minimal 

thermal conductivity of 0.021 W.m-1.K-1. This is an important result showing the potential of 

synthesis of organic-inorganic monolithic and strong aerogels. 

The bulk densitiy of xerogels from subcritically dried tritylcellulose and tritylcellulose-silica 

composites was much higher than that of the corresponding aerogels due to strong volume 

contraction during evaporative drying. However, the presence of the cellulose phase within the 

composite allowed the xerogels to remain monolithic after drying, despite the presence of 

macroscopic cracks. The important densification implies that the xerogels from tritylcellulose 

are not yet suitable for thermal insulation implications. However, the hydrophobicity of the 

xerogels was maintained, as assessed by contact angle values of 120°-148°. 

In the last chapter we studied an alternative nanostructured polysaccharide matrix for the 

reinforcement of silica aerogels: aeropectin. Aeropectins were shown in a previous work to 

have the best thermal insulating properties of the known polysaccharide aerogels. In the sixth 

chapter we studied aeropectin from calcium-reticulated (CR) pectins and their composites with 

silica. 

A calcium-to-carboxyl group molar ratio around 0.2 and a pH of 6-8 gave the aeropectins with 

the lowest density. The observed dependence of the thermal conductivity with density was, 

unusually for porous materials, linear, with values from 0.013 to 0.022 W.m-1.K-1 for bulk 

densities in the 0.03-0.10 g.cm-3 range. Moreover aeropectins are able to sustain up to 80% 

deformation without breaking. 

Pectin-silica composites were prepared using the impregnation strategy as developed for 

cellulose-silica route. The morphology of the composite aerogel observed by SEM was a fine 
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network of nanostructured pectin fibers filled and covered with silica aerogel. Pectin-silica 

composite aerogels showed an increase of specific surface area from 200-300 m2.g-1 to 800-850 

m2.g-1 for the composites. However, the conductivity of the pectin-silica composites remained 

in the 0.015-0.022 W.m-1.K-1 range as compared to pure aeropectin despite certain increase in 

bulk density, indicating that further optimization of the silica formulation is required to 

synthesize the composites. The surface hydrophobization of the silica phase of the composites 

gave contact angles with water of 135° and reduced the water mass uptake to 5-6%wt as 

compared to 20%wt for the pure aeropectin studied in the same conditions. 
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Prospects and future work 

Polysaccharide-silica composite aerogels are promising nanostructured materials for thermal 

insulation applications. While this work mainly aimed at creating innovative insulation 

materials for the building industry, superinsulation combined with good mechanical properties 

and stability against humidity can be extremely useful for other domains, such as food 

refrigeration appliances or transport industry. 

 

These composite aerogels can be suitable for some other domains, thanks to their high porosity 

and very high specific surface area: storage of active drug molecules within the porosity and 

controlled release in the organism is particularly useful for many bio-medical applications. 

 

The hydrophobized aerogels may show increased chemical affinity for organic solvents, 

allowing them to be used as adsorbents to collect oil spills and help disposing of liquid chemical 

waste. 

The mechanical properties of composite aerogels could be further improved in case of creating 

chemical bonds between cellulose and silica phase. The same could be said about pure 

tritylcellulose aerogels, which could be easier to handle in coagulated form and have better 

mechanical resistance with cross-linking of cellulose chains themselves. 

In parallel, pectin-silica composite aerogels should be characterized in more details (particularly 

in terms of mechanical properties), to better understand the overall properties and potential uses 

of this new category of composite aerogels. Using pectin with lower degree of esterification 

might allow a better control of cross-linked aeropectins morphology and bulk density.  

Finally an open question which requires more experimental work and also modelling of thermal 

transfer is the linear dependence of aeropectin thermal conductivity as a function of bulk 

density.  

Of course, the hydrophobization of pectin also has to be studied in depth for these aerogels to 

become, for instance, efficient insulation materials. 

 

  



 

 

 

 

Synthèse et caractérisation d’aérogels composites à base de polysaccharides 

et de silice pour la superisolation thermique 

RESUME : L’amélioration des propriétés des matériaux pour l’isolation thermique est un défi 

clé pour la réduction de la consommation énergétique et de l’émission de gaz à effets de serre. 

Cette thèse a pour objectif l’élaboration de matériaux composites nanostructurés, combinant les 

bonnes propriétés mécaniques des bio-aérogels avec les excellentes propriétés d’isolation 

thermique des aérogels de silice. Deux polysaccharides ont été étudiés comme source de bio-

aérogels : la cellulose et la pectine. Deux stratégies pour l’élaboration des composites ont été 

considérées : un procédé « one-pot »; et l’imprégnation d’une matrice polysaccharide poreuse. 

Les aérogels composites ont été obtenus par séchage au CO2 supercritique. Alors que la 

méthode « one-pot » génère des particules de silice micrométriques au sein d’un réseau poreux, 

le procédé d’imprégnation a permis d’obtenir un réseau nanostructuré interpénétré. La surface 

spécifique atteint 700-800 cm².g-1, les propriétés mécaniques sont améliorées par rapport aux 

aérogels de silice et la conductivité thermique est réduite comparée à l’Aerocellulose pure. 

Utiliser une cellulose hydrophobisée chimiquement, la tritylcellulose, comme matrice 

d’imprégnation, a permis d’obtenir des composites hydrophobes ayant un angle de contact avec 

l’eau de 133° et des conductivités thermiques de 0.021-0.022 W.m-1.K-1. Les aérogels à base de 

pectine réticulée et leurs composites avec la silice présentent des densités extrêmement basses 

(0.05 g.cm3) et des conductivités thermiques de 0.013-0.022 W.m-1.K-1. 

Mots clés : Aerogels, cellulose, pectine, bio-aerogels, aerogels de silice, composites, 

materiaux nanostructurés, superisolation thermique. 

Synthesis and characterization of polysaccharide-silica composite aerogels for 

thermal superinsulation 

ABSTRACT : Improving the thermal insulation of materials is a key challenge to lower global 

energy consumption and greenhouse effect gas emissions in the coming decades. This thesis 

focuses on the preparation and characterization of nanostructured composite materials 

combining the good mechanical properties of bio-aerogels with the excellent thermal insulation 

properties of silica aerogels. Two polysaccharides were used to make bio-aerogels: cellulose 

and pectin. Two strategies aiming to elaborate composite materials were investigated: “one-

pot” process and impregnation of a porous “wet” polysaccharide matrix by 

polyethoxydisiloxane. Drying with supercritical CO2 yields the composite aerogels. While the 

one-pot method gave micron-sized silica particles embedded in a porous cellulose network, 

impregnation process allowed obtaining a nanostructured interpenetrated network of cellulose 

and silica. The specific surface area was 700-800 cm².g-1, the mechanical properties improved 

as compared to neat silica aerogels and thermal conductivity lower than that of cellulose 

aerogels. Using a chemically hydrophobized cellulose, tritylcellulose, as the impregnation 

matrix, hydrophobic composites were obtained showing a contact angle with water of 133° and 

thermal conductivities of 0.021 W.m-1.K-1. Aerogels from cross-linked pectin and their 

composites with silica show extremely low densities (around 0.05 g/cm3 for the neat pectin 

aerogels) and thermal conductivities in the 0.013-0.022 W.m-1.K-1 range. 

Keywords : Aerogels, cellulose, pectin, bio-aerogels, silica aerogels, composites, 

nanostructured materials, thermal superinsulation. 


