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Abstract

In this thesis we use tropical mathematics to locate and numerically compute eigenvalues of
matrices and matrix polynomials. The first part of the work focuses on eigenvalues of matrices,
while the second part focuses on matrix polynomials and adds a numerical experimental side
along the theoretical one.

By “locating” an eigenvalue we mean being able to identify some bounds within which
it must lie. This can be useful in situations where one only needs approximate eigenvalues;
moreover, they make good starting values for iterative eigenvalue-finding algorithms. Rather
than full location, our result for matrices is in the form of majorization bounds to control
the absolute value of the eigenvalues. These bounds are to some extent a generalization to
matrices of a result proved by Ostrowski for polynomials: he showed (albeit with different
terminology) that the product of the k largest absolute values of the roots of a polynomial
can be bounded from above and below by the product of its k largest tropical (max-times)
roots, up to multiplicative factors which are independent of the coefficients of the polynomial.
We prove an analogous result for matrices: the product of the k largest absolute values of
eigenvalues is bounded, up to a multiplicative factor, by the product of the k largest tropical
eigenvalues. It should be noted that tropical eigenvalues can be computed by using the
solution to a parametric optimal assignment problem, in a way that is robust with respect to
small perturbations in the data. Another thing worth mentioning is that the multiplicative
factor in the bound is of combinatorial nature and it is reminiscent of a work by Friedland,
who essentially proved a specialization of our result to the particular case k = 1 (i.e. for the
largest eigenvalue only). We can interpret the absolute value as an archimedean valuation; in
this light, there is a correspondence between the present result and previous work by Akian,
Bapat and Gaubert, who dealt with the same problem for matrices over fields with non-
archimedean valuation (specifically Puiseux series, with the leading exponent as valuation)
and showed in that case more stringent bounds, with no multiplicative factor, and with generic
equality rather than upper and lower bounds.

The second part of the thesis revolves around the computation of eigenvalues of matrix
polynomials. For linear matrix polynomials, stable algorithms such as the QZ method have
been known for a long time. Eigenproblems for matrix polynomials of higher degree are usually
reduced to the linear case, using a linearization such as the companion linearization. This



however can worsen the condition number and backward error of the computed eigenvalue
with respect to perturbations in the coefficients of the original polynomial (even if they remain
stable in the coefficients of the linearized). To mitigate this inconvenience it is common to
perform a scaling of the matrix polynomial before linearizing. Various scaling methods have
been proposed. In our work, we introduce a two-sided diagonal scaling strategy based on
the tropical eigenvalues of the matrix polynomial obtained by taking entrywise valuation of
the original one (and we will consider both the archimedean and non-archimedean case). We
study the effect of this scaling on the conditioning and backward error, with both analytic
formulas and numerical examples, showing that it can increase the accuracy of the computed
eigenvalues by several orders of magnitude.



Résumé

Dans cette thèse nous utilisons des outils d’algèbre tropicale pour localiser et calculer de
façon numérique les valeurs propres de matrices et de polynômes matriciels. La première
partie porte sur les valeurs propres de matrices, la deuxième se concentre sur les polynômes
matriciels tout en rajoutant à l’étude théorique un coté numérique.

“Localiser” une valeur propre veut dire pouvoir identifier des bornes entre lesquelles elle
se trouve. Cela peut être utile dans des situations où l’on n’a besoin que de valeurs propres
approximées; ces approximations permettent aussi d’obtenir de bons points d’initialisation
d’algorithmes itératifs de calcul des valeurs propres. Notre résultat pour les matrices prend
la forme d’inégalités de type majorisation qui contrôlent le module des valeurs propres. Ces
bornes peuvent être vues comme une généralisation au cas matriciel d’un résultat prouvé par
Ostrowski pour les polynômes : il a montré (en utilisant une terminologie différente) que le
produit des k plus grands modules des racines d’un polynôme sont bornées inférieurement et
supérieurement par le produit de ses k plus grandes valeurs propres tropicales, à un facteur
multiplicatif près qui est indépendent des coefficients du polynôme. Nous prouvons un résultat
analogue pour le cas d’une matrice : le produit des k plus grands modules des valeurs propres
est borné, à un facteur multiplicatif près, par le produit des k plus grandes valeurs propres
tropicales. On notera que les valeurs propres tropicales peuvent être calculées au moyen de
la solution d’un problème d’affectation optimale paramètrique, et ceci de façon stable par
rapport à des perturbations des données. On notera aussi que le facteur multiplicatif est
de nature combinatoire, et qu’il est inspiré d’un résultat de Friedland, lequel a démontré
notre inégalité dans le cas particulier k = 1. On peut interpréter le module comme une
valuation archimédienne; ainsi, il y a une correspondance entre le résultat présenté ici et
un travail précédent d’Akian, Bapat et Gaubert, qui ont traité le même problème pour des
matrices à coefficients dans un corps avec une valuation non-archimédienne (notamment le
corps des séries de Puiseux, équipé de la valuation donnée par l’exposant dominant) et qui
ont montré des bornes supérieures plus sérées pour ce cas, sans facteur multiplicatif, et avec
égalité générique à la place de bornes supérieures et inférieures.

La deuxième partie de la thèse traite du calcul des valeurs propres de polynômes ma-
triciels. Pour des polynôme matriciels linéaires, des algorithmes stables tels que la méthode
QZ sont connus dépuis longtemps. L’approche pour les polynômes de degré supérieur con-



siste souvent à se ramener au cas linéaire, à l’aide de linéarisations telles que la linéarisation
compagnon. Cela peut néanmoins dégrader le conditionnement et l’erreur inverse des valeurs
propres calculées, par rapport aux coefficients du polynôme originel (même s’ils restent sta-
bles par rapport au linéarisé). Pour faire face à cet inconvénient il est commun de procéder à
un changement d’échelle avant de linéariser le polynôme. Plusieurs techniques de changement
d’échelle ont été proposées. Dans notre travail, nous introduisons un changement d’échelle
par multiplication diagonale à gauche et à droite basée sur les valeurs propres tropicales du
polynôme matriciel obtenu en prenant la valuation (archimédienne ou non, selon le cas) de
chaque coefficient du polynôme originel. Nous étudions l’effet de ce scaling sur le condition-
nement et sur l’erreur inverse, en obtenant des formules analytiques ainsi qu’en donnant des
exemples numériques, et nous montrons que la précision des valeurs propres calculées peut
être améliorée de plusieurs ordres de grandeur.
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I am indebted to Peter Butkovič and Paul Van Dooren for reviewing this manuscript, pro-
viding insightful remarks and suggestions to improve it. I not-so-proudly claim full paternity
of all remaining errors.

Bernadette Charron-Bost, Laurence Grammont and Françoise Tisseur have honored me
by accepting to sit in my thesis committee, and to them goes my gratitude. In particular I
would like to thank Françoise, as well as James Hook, for the warm hospitality during my
stays in Manchester and for the fruitful discussions that they sparked.

I must also thank the CMAP laboratory and Inria, both for the financial support and for
their amazing administrative staff: without Nasséra, Alexandra, Jessica and all the others
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CHAPTER 1

Introduction

In this thesis we use tropical algebra to locate and numerically compute eigenvalues of matrices
and matrix polynomials. Tropical algebra (named this way in honor of Brazilian mathemati-
cian Imre Simon, who pioneered the field in the ’70s) was initially developed to tackle problems
in theoretical computer science, such as automata theory, and it is essentially mathematics
done on an idempotent semiring where max (or min) and + play the role of addition and
multiplication, respectively, whence the alternative names of max-plus or min-plus algebra.

The first part of the present work focuses on the interplay between tropical algebra and
eigenvalues of matrices. By “locating” an eigenvalue we mean being able to identify some
bounds within which it must lie. This can be useful in situations where one only needs
approximate eigenvalues; moreover, they make good starting values for iterative eigenvalue-
finding algorithms, such as the Ehrlich-Aberth method [BNS13]. For the case of roots of
complex polynomials, numerous classical bounds are known. Rather than full location, they
are usually in the form of bounds on the absolute value of the roots. One notable instance
of such bounds, from which we drew inspiration, is a result by Ostrowski [Ost40]. The
tool that he used to prove his bounds is known as the Newton polygon. Given a complex
polynomial p = anz

n + · · · + a1z + a0, its Newton polygon is the polygonal line obtained
as the convex hull of the set {(0,− log|a0|), . . . , (n,− log|an|)} in the two-dimensional plane.
Ostrowski (building on previous work by Hadamard, and with the collaboration of Pólya)
showed that the exponentials of the opposite of the slopes of the Newton polygon can be seen
as approximations of the moduli of the roots of p. In modern terminology, the opposites of
the slopes are called the tropical roots of the polynomial represented by the Newton polygon,
and Ostrowski’s result is best enounced as a majorization inequality: if ζ1, . . . , ζn are the



2 Chapter 1. Introduction

roots of p, ordered by decreasing magnitude, and if α1 ≥ · · · ≥ αn are the exponentials of the
tropical roots, then

1(
n
k

)α1 · · ·αk ≤ |ζ1 · · · ζk| ≤
√
e(k + 1)α1 · · ·αk ∀k ∈ {1, . . . , n} .

In [AGM14] we generalized Ostrowski’s result to the matrix case, giving majorization
bounds to control the absolute value of the eigenvalues of a matrix by means of its tropical
eigenvalues. Tropical eigenvalues are defined in an algebraic fashion, as the tropical roots of
a polynomial which is constructed to be the tropical transposition of the usual characteristic
polynomial of a matrix; as it turns out, tropical eigenvalues can be thought of as solutions
to an optimal assignment problem, and as such they can be computed in polynomial time
(O(n3), see [GK10]) and in a way that is robust with respect to small perturbations in the
data. The multiplicative factors in the bounds are of combinatorial nature, based on exterior
algebra and on maximal mean cycles in a graph, being reminiscent in this respect of work by
Friedland [Fri86], who essentially proved a specialization of our result to the particular case
k=1 (i.e. a relation between the spectral radius of a matrix, and a quantity that will prove
to be its largest tropical eigenvalue).

All bounds mentioned so far involve the absolute value, which we can interpret as an
archimedean valuation; in this light, there is a correspondence between the present result and
previous work by Akian, Bapat and Gaubert [ABG04], who dealt with the same problem
for matrices over fields with non-archimedean valuation. More specifically, their model of
non-archimedean field was the field of Puiseux series, with the leading exponent as valuation.
In the non-archimedean case results are more exact: rather than having upper and lower
bounds, they showed that if A is a matrix and A is the matrix obtained by taking the
valuation entrywise, then the tropical eigenvalues of A coincide with the valuations of the
eigenvalues of A.

The second part of the thesis revolves around the computation of eigenvalues of matrix
polynomials. For linear matrix polynomials, stable algorithms such as the QZ method [MS73]
have been known for a long time. Eigenproblems for matrix polynomials of higher degree are
usually reduced to the linear case; linearizations work by transforming a matrix polynomial
of size n and degree d into a linear matrix polynomial of size nd with the same spectrum.
While being theoretically equivalent, the two problems can have a very different numerical
behavior. In fact, the condition number and backward error of a computed eigenvalue both
deal with perturbations in the coefficients of the input data, not of the results: different
inputs can thus lead to different values for these two measures of stability, often making them
worse, especially in case of matrix polynomials with entries of different orders of magnitude.
To mitigate this inconvenience it is common to perform a scaling of the matrix polynomial
before linearizing. Various scaling methods have been proposed. The first kind of methods
involves a scaling in the variable of the matrix polynomial: to compute the eigenvalues of
P (λ) one can compute the eigenvalues of Q(µ) = P (αµ) and then multiply them by α to
obtain eigenvalues for the original polynomial; the choice of the parameter α influences the
effectiveness of this method. Fan, Lin and Van Dooren [FLVD04] have proposed such a
method for a quadratic matrix polynomial, choosing α to bring the norm of the matrices
close to a constant (and then further dividing by this constant to get close to 1). Their
method was generalized by Gaubert and Sharify [GS09] to allow application to higher degree
polynomials via some sort of “patchwork scaling”, whereby multiple scalings are performed
successively, each one of them used to retrieve a portion of the eigenvalues. Another kind
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of scaling is what is known as balancing, inspired from the practice of balancing a matrix,
i.e. finding a diagonal change of coordinates which makes the norm of each i-th row equal
to the norm of the corresponding i-th column. This technique has been adapted to matrix
polynomial in several ways [War81, LD06, Bet08].

In a joint work with Akian, Gaubert, Hook and Tisseur [AGH+15], we combine these
two kinds of scaling and we introduce a two-sided diagonal scaling strategy based on the
tropical eigenvalues of the matrix polynomial obtained by taking entrywise valuation of the
original one (and we will consider both the archimedean and non-archimedean case). The
ideas behind this scaling come from the aforementioned work by Akian, Bapat and Gaubert,
and they are based on solving a parametric optimal assignment problem by means of dual
variables, using what is known as the Hungarian method. For this reason we called this
the Hungarian scaling. We study its effect on the conditioning and backward error both
from an analytic and a numerical point of view. We derive formulas for the before- to after-
linearization ratios of condition number and backward error, and finally we show the results
of numerical simulations performed in matlab showing that the accuracy of the computed
eigenvalues can be increased by several orders of magnitude.
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CHAPTER 2

Preliminaries

2.1 Basic elements of tropical algebra

The max-plus semiring Rmax is the set R∪{−∞} endowed with an addition a⊕ b = max(a, b)
and a multiplication a ⊗ b = a + b. The identity elements are 0 = −∞ for the addition and
1 = 0 for the multiplication. Addition as we just defined it is not invertible (hence the “semi”
in semiring); as a consequence, there is no such thing as max-plus subtraction.

The max-times semiring T is the set R≥0 endowed with the maximum as addition a⊕ b =
max(a, b) and the usual multiplication a⊗ b = ab.

Note that the max-times semiring is the isomorphic image of the max-plus semiring under
the logarithmic map (extended so that log(−∞) = 0). The isomorphism allows us to identify
Rmax and T as the same algebraic object, and to refer to either of them as the tropical
semiring.

Other forms of the tropical semiring notably include the min-plus semiring. We refer the
reader to [CG79, But10, HOW06, Pin98] for more information on various tropical semirings.

Tropical semirings were initially introduced to solve applied problems arising from schedul-
ing (see [CG94]), discrete optimization (see for instance [GM84]), or discrete event sys-
tems [BCOQ92], or to solve decision problems in automata and language theory [Sim78].
Since 2000, they have been extensively studied in pure mathematics. In particular, tropical
structures have been used to develop combinatorial methods in algebraic geometry [GKZ94,
Vir01, Mik04, EKL06, SS04, IMS07].
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2.1.1 Tropical polynomials

The set of formal polynomials over Rmax (or T) can be defined naturally and it is itself
a semiring once we provide it with the usual formal addition and multiplication between
polynomials. The notions of degree and valuation still make sense over the tropical semiring,
and we shall use the standard constructions and notations with obvious modifications: if
p = a0 + · · ·+adX

d, deg p (resp. val p) denotes the largest (resp. smallest) integer k such that
ak 6= 0.

One crucial difference between tropical polynomials and polynomials over the real or
complex field is that tropical polynomials are not in one-to-one correspondence with their
associated polynomial functions: in other words, we can find two polynomials p and q with
different coefficients such that p(x) = q(x) for all x ∈ Rmax (or T).

An example will help to get a more intuitive feel for tropical polynomials.

Example 2.1. Consider the max-plus polynomial p = X2 ⊕ 2. We draw the graph of its
associated polynomial function in the R2

max plane. It is immediate to see that in general a
monomial aXk is represented in the max-plus plane by the line a + kx (when a = 1 = 0 we
drop it and just write Xk). The graph of the whole polynomial function is then the max-plus
sum (i.e. the pointwise maximum, i.e. the upper envelope) of all its monomials.

Now consider q = X2 ⊕X ⊕ 2. Clearly q 6= p, but the upper envelope does not change,
so the associated functions coincide. It is also easy to see that every polynomial of the form
X2 ⊕ aX ⊕ 2 with a ≤ 1 will yield the same function.
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Definition 2.1. Given a max-plus polynomial p, the points of non-differentiability of the
associated tropical polynomial function are called the tropical roots of p. Thinking of the
function as an upper envelope, the tropical roots can be characterized equivalently as the
points at which the maximum is attained at least twice (i.e. by at least two different monomi-
als). The multiplicity of a tropical root α is the change of slope of the graph of the function at
α, or equivalently the difference between the largest and the smallest exponent of the mono-
mials of p which attain the maximum at α. If p has no constant term, then p is said to have
a root at −∞, whose multiplicity is the exponent of the first non-vanishing monomial term.

The choice of the term “roots” is justified by the following result, which we might consider
a tropical analogue of the fundamental theorem of algebra.

Proposition 2.1 (Cuninghame-Green and Meijer, [CGM80]). Every tropical polynomial
p =

⊕n
k=0 akX

k of degree n has exactly n tropical roots α1 ≥ . . . ≥ αn, and the associated
polynomial function can be uniquely factored as

p(x) = an(x⊕ α1) . . . (x⊕ αn) .

Convex analysis offers an alternative way of visualizing tropical polynomials and roots. Let
f : R → R be an extended real-valued function. The lower semi-continuous convex envelope
(or convexification) and upper semi-continuous concave envelope (or concavification) of f are
defined, respectively, as the largest convex l.s.c. minorant of f , and its smallest concave
u.s.c. majorant. They can be characterized as

cvx f = sup {g | g affine, g 6 f} ,
cav f = inf {g | g affine, g > f} .

For any (formal) max-plus polynomial we can define an extended real-valued function on
R that represents its coefficients: more precisely, to the max-plus polynomial p =

⊕
k∈N akX

k

we associate the function

coef p : R→ R, (coef p)(x) =

{
ak if x = k ∈ N
−∞ otherwise.

Then the max-plus polynomial function p(x) corresponds to the Legendre-Fenchel transform
of the map − coef p (notice the minus sign). This allows us to give dual characterizations of
tropical polynomials and roots.

Definition 2.2. Let p =
⊕n

k=0 akX
k be a max-plus polynomial. The Newton polygon ∆(p) of

p is the graph of the function cav(coef p) restricted to the interval where it takes finite values.
In other terms, the Newton polygon of p is the upper boundary of the two-dimensional convex
hull of the set of points {(k, ak) | 0 6 k 6 n, ak 6= −∞}.

The values cav(coef p)(0), . . . , cav(coef p)(n) are called the concavified coefficients of p,
and they are denoted by a0, . . . , an. An index k such that ak = ak (so that the point (k, ak)
lies on ∆(p)) will be called a saturated index. With a slight abuse, we will extend the cav
notation from functions to formal polynomials, defining the concavified polynomial of p as
p = cav p :=

⊕n
k=0 akX

k.
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We use similar notions and notation for max-times polynomials. Consider the isomor-
phism of semirings which sends a max-times polynomial p =

⊕n
k=0 akX

k to the max-plus
polynomial Log p :=

⊕n
k=0(log ak)X

k. We define the log-concavified polynomial of p as
p̂ = lcav p := Log−1 ◦ cav ◦Log p. Its coefficients are called the log-concavified coefficients of
p, and they are denoted by â0, . . . , ân.

Proposition 2.2 (see e.g. [Roc70, Chap 12, p. 104]). Two max-plus polynomials have the
same associated polynomial function if and only if they have the same concavified coefficients,
or equivalently the same Newton polygons.

Proposition 2.3 (see e.g. [ABG15, Proposition 2.4]). Let p ∈ Rmax[X] be a max-plus poly-
nomial. The roots of p coincide with the opposite of the slopes of the Newton polygon of p.
The multiplicity of a root α of p coincides with the length of the interval where the Newton
polygon has slope −α.

The last proposition is illustrated in the following figure:

Graph of p = −1X3⊕X2⊕2X⊕1. Note
that the line with slope 2 does not appear
in the convex hull.

Newton polygon of p. Black circles repre-
sent the coefficients. The coefficient of de-
gree 2 is not saturated, and the white cir-
cle represents the concavified coefficient.

Figure 2.1: Graph and Newton polygon representations of a polynomial. The
tropical roots are −1 (with multiplicity 1) and 3/2 (with multiplicity 2), and
one can check that the slopes of the polygonal line on the right are the opposite
of the roots.

Corollary 2.4. Let p =
⊕n

k=0 akX
k be a max-plus polynomial, and let α1 > . . . > αn be its

roots, counted with multiplicities. Then the following relation for the concavified coefficients
of p holds:

an−k = an + α1 + · · ·+ αk ∀k ∈ {1, . . . , n} .

Analogously, if p =
⊕n

k=0 akX
k is a max-times polynomial with roots α1 > · · · > αn, then the

following relation for its log-concavified coefficients holds:

ân−k = anα1 · · ·αk ∀k ∈ {1, . . . , n} .
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As a consequence of the Newton polygon characterization, computing tropical roots has at
most the complexity of computing the convex hull of n points in the plane: using the Graham
scan algorithm [Gra72] this can be done in O(n) time (assuming the points are already sorted
by abscissa).

2.1.2 Tropical matrices and eigenvalues

For a matrix A ∈ Cn×n, eigenvalues can be defined either as the roots of the characteristic
polynomial det(A− λI) or as those λ that satisfy Ax = λx for some x 6= 0.

We can transpose both definitions in the tropical setting, but as we will see they will no
longer be equivalent.

Definition 2.3. Let S be a semiring, with addition and multiplication denoted by ⊕ and ⊗,
respectively. The permanent of a matrix A ∈ Sn×n is defined as perS A =

⊕
σ∈Sn

⊗n
k=1 ak,σ(k),

where σ ranges over all the permutations of {1, . . . , n}. We will sometimes drop the subscript
if the semiring is clear from the context.

Remark: when S = Rmax, the permanent amounts to

max
σ∈Sn

n∑
k=1

ak,σ(k) .

A maximization problem of this kind is known in the literature as an optimal assignment
problem. Many algorithms exist to solve it, the Hungarian algorithm being one of the most
well-known; we will make extensive use of the Hungarian algorithm in Chapter 4.

Given a matrix A ∈ Rn×nmax , the tropical characteristic polynomial of A is perRmax[λ](A⊕λI)
(the doublestroke I is to emphasize that we are taking the max-plus identity matrix, with
1 = 0 on the main diagonal and 0 = −∞ off of it). The algebraic tropical eigenvalues of A are
the tropical roots of the tropical characteristic polynomial. The geometric tropical eigenvalues
of A, on the other hand, are defined as the λ for which A⊗ x = λ⊗ x holds for some nonzero
vector x, called a tropical eigenvector. The exact same definitions apply for matrices in Tn×n.

Here is a simple example to show that the two types of eigenvalues do not coincide.

Example 2.2. Consider the max-plus matrix

A =

(
0 −∞
0 1

)
.

Its tropical characteristic polynomial is

perRmax[λ](A⊕ λI) = perRmax[λ]

(
λ⊕ 0 −∞

0 λ⊕ 1

)
= (λ⊕ 0)(λ⊕ 1) ,

so its algebraic tropical eigenvalues are 0 and 1. On the other hand, the equation A⊗x = λ⊗x
leads to the system {

max(x1,−∞) = λ+ x1

max(x1, x2 + 1) = λ+ x2

whose only nontrivial solutions are of the form (λ = 1, x1 = −∞, x2) for any x2 6= −∞,
which means the only tropical geometric eigenvalue is 1.
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It is no coincidence that in our example 1 is both a geometric and algebraic eigenvalue.
Indeed, one can prove that the largest algebraic eigenvalue is guaranteed to be a geometric
eigenvalue as well. We give here a more precise statement of this result in max-times terms.
By analogy with the spectral radius, we denote by ρT(A) the largest algebraic eigenvalue of
a max-times matrix A.

Definition 2.4. Consider a matrix A ∈ Tn×n, and let I be a subset of {1, . . . , n} of cardi-
nality `. Denote by ΩI the set of all cyclic permutations of I (i.e. permutations whose cycle
decomposition consists of a single cycle of length `). For any σ ∈ ΩI we define the weight of
σ with respect to A as wA(σ) =

∏
i∈I ai,σ(i), and we define the mean weight of σ with respect

to A as

µA(σ) = wA(σ)1/` =
(∏
i∈I

ai,σ(i)

)1/`
.

Finally, we define the maximal cycle mean of A as

ρmax(A) = max
I⊆{1,...,n}

max
σ∈ΩI

µA(σ) .

If we interpret A as the adjacency matrix of a directed graph with weighted edges, then
ρmax(A) represents the maximum geometric-mean weight of a cycle over the graph.

Remark 2.3. Since any permutation can be factored into a product of cycles, we can equiv-
alently define the maximal cycle mean in terms of general permutations instead of cyclical
ones:

ρmax(A) = max
I⊆{1,...,n}

max
σ∈SI

µA(σ) .

Proposition 2.5 ([CG79], [CG83]). Let A ∈ Tn×n be an irreducible matrix. The following
hold:

• there exists a unique geometric eigenvalue λ

• λ is equal to the maximal cycle mean ρmax

• ρmax is equal to the largest algebraic tropical eigenvalue of A.

We should remark that while in our previous toy example computations were easy, finding
the coefficients of a tropical characteristic polynomial is in general a challenging problem, for
which no polynomial time algorithm is known [BL07]. The tropical eigenvalues, however,
only depend on the associated polynomial function, and can be computed by solving at most
n optimal assignment problems, leading to the complexity bound of O(n4) of Burkard and
Butkovič [BB03]. Gassner and Klinz [GK10] showed that this can be reduced to O(n3) using
parametric optimal assignment techniques.

In any case, we can give explicit expressions for the coefficients of the tropical characteristic
polynomial: if A ∈ Tn×n and we write

perT[X](A⊕ λI) = Xn ⊕ cn−1X
n−1 ⊕ · · · ⊕ c0 , (2.1)
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then it is not difficult to see that

cn−k =
⊕
I⊂[n]
#I=k

⊕
σ∈SI

a1,σ(1) . . . an,σ(n) =
⊕
I⊂[n]
#I=k

perTA[I, I] ∀k ∈ {1, . . . , n} ,

where [n] = {1, . . . , n}, SI is the group of permutations of the set I, and A[I, J ] is the k × k
submatrix obtained by selecting from A the rows i ∈ I and the columns j ∈ J . It will be
convenient to write the coefficients of the tropical characteristic polynomial in terms of the
exterior powers of A.

Definition 2.5. The k-th exterior power of a matrix A ∈ Cn×n is the matrix
∧kA ∈ C(nk)×(nk)

whose rows and columns are indexed by the subsets of cardinality k of {1, . . . , n}, and whose
entries are defined as (∧kA

)
I,J

= detA[I, J ] . (2.2)

The k-th trace of A is then defined as

trk A = tr
(∧kA

)
=
∑
I⊂[n]
#I=k

detA[I, I]

for all k ∈ {1, . . . , n}. If we replace the determinant with the permanent in Equation (2.2),
we get the k-th permanental exterior power of A, denoted by

∧k
perA.

Analogously, for a matrix A ∈ Tn×n, we define the k-th tropical exterior power of A to be

the matrix
∧k

TA ∈ T(nk)×(nk) whose entries are(∧k
TA
)
I,J

= perTA[I, J ]

for all subsets I, J ⊂ {1, . . . , n} of cardinality k. The k-th tropical trace of A is defined as

trkTA = trT

(∧k
TA
)

= max
I⊂[n]
#I=k

perTA[I, I] . (2.3)

One readily checks that the coefficients of the tropical characteristic polynomial in (2.1)
are given by cn−k = trkTA.

2.2 Eigenvalues of matrix polynomials

A matrix polynomial (also called a matrix pencil) over some ring R is a formal polynomial
whose coefficients are matrices over R. We will generally denote the degree of the polyno-
mial by d and consider square matrices of size n over the complex field, so a typical matrix
polynomial is of the form

P =

d∑
k=0

AkX
k, Ak ∈ Cn×n . (2.4)

One can also see matrix polynomials as matrices whose entries are polynomials (there
is an obvious isomorphism between Rn×n[X] and R[X]n×n). This interpretation grants us
the right to speak of the determinant of a matrix polynomial, which will be a polynomial
of degree at most nd. A matrix polynomial is singular if its determinant is identically zero,
otherwise it is regular.



12 Chapter 2. Preliminaries

Definition 2.6. The eigenvalues of a regular complex matrix polynomial P are the roots
of its determinant. If the degree of the determinant is k < nd (which happens when the
leading coefficient Ad is singular), the matrix polynomial is said to have an infinite eigenvalue
of multiplicity nd− k. Vectors x and y ∈ Cn×n such that P (λ)x = y∗P (λ) = 0 are the right
and left eigenvectors associated to λ, respectively (here y∗ denotes the conjugate transpose of
y). We refer to (λ, x) and (λ, y) as right and left eigenpairs, and to (λ, x, y) as an eigentriple.

Remark 2.4. The multiplicity of the infinite eigenvalue is equal to the multiplicity of 0 as an
eigenvalue of the reversed polynomial XdP (1/X).

The problem of finding eigenvalues and eigenvectors of a matrix polynomial goes under
the name of polynomial eigenvalue problem.

2.2.1 Desirable properties of algorithms

Numerical computations involving real and complex numbers are usually carried out using
floating point numbers. Since these are a discrete set of rational numbers, most of the time
our data will not be representable exactly. Whenever this occurs, a rounding to the nearest
representable number is automatically performed. Double-precision floating point numbers
are laid out in such a way that the worst-case relative error between two consecutive repre-
sentable numbers is ∼ 10−16. Elementary arithmetic operations on floating point numbers
are also guaranteed to yield as a result the closest representable number to the true result.
When the computations involve multiple operations, however, the small relative errors can
combine and become relevant.

Consider an algorithm to compute some function f : X → Y at a point x, and assume X
and Y are normed spaces (we denote both norms by ‖·‖ for convenience). Call y the exact

value f(x), and ŷ the value returned by the algorithm. We would like the relative error ‖ŷ−y‖‖y‖
to be as small as possible.

The backward error is defined as the distance (in absolute or relative terms) from x to the
set of pre-images of ŷ. In other words, the backward error is the answer to the question “how
much does one have to perturb the original data in order for ŷ to be an exact solution?”, or
“how close is the problem we actually solved to the problem we wanted to solve?”

An algorithm is backward stable if its backward error is small enough; the quantification
of “small enough” is problem-dependent. For problems where inputs are not exact by nature
(e.g. because they come from physical measurements with inherent uncertainty), the best one
can hope for is to have a backward error of the same order as the uncertainty in the data: in
this case the two errors may well cancel each other, and the solution would be exact.

Nonetheless, knowing that the problem we actually solved is close to the one we wanted
to solve is no guarantee that the solutions of the two problems are close as well. There
are problems where tiny differences in initial conditions lead to results which are far apart.
The sensitivity of a problem to initial data is usually measured by means of the condition
number. The condition number has different definitions for different problems, but in general
one can think of it as a worst-case amplification factor between the error in the input and the
resulting error in the output. It often takes the form of the operator norm of the first order
approximation of the function to compute, which implies it becomes less reliable when the
error in the input is not small to begin with.

Unlike the backward error, the condition number is an intrinsic characteristic of the prob-
lem at hand and it is independent of the algorithm used to solve it. Problems with small
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condition numbers are called well-conditioned, while problems with large condition numbers
are said to be ill-conditioned.

Knowing both the condition number and the backward error associated to a problem (and
to the specific algorithm used), one can then take their product to obtain a first-order bound
for the error in the solution.

2.2.2 Conditioning and backward error for the polynomial eigenvalue problem

Let P be a regular matrix polynomial of the form (2.4). Following definitions in [Tis00] we
introduce condition number and backward error as follows.

Definition 2.7. Let λ be a nonzero simple eigenvalue of P with corresponding right eigen-
vector x and left eigenvector y. Let ∆P = ∆A0 + · · · + λd∆Ad be a perturbation of P. The
normwise relative condition number of λ is defined as

κ(λ, P ) = lim sup
ε→0

{
|∆λ|
ε|λ|

∣∣∣ (P (λ+ ∆λ) + ∆P (λ+ ∆λ))(x+ ∆x) = 0,

‖∆Ak‖2 ≤ ε‖Ak‖2 for k = 0, . . . , d

}
.

The backward error of an approximate eigentriple (λ̃.x̃, ỹ) is defined as

η(λ̃, x̃, ỹ) = min
{
ε | P (λ̃)x̃+ ∆P (λ̃)x̃ = 0, ỹ∗P (λ̃) + ỹ∗∆P (λ̃) = 0,

‖∆Ak‖2 ≤ ε‖Ak‖2 for k = 0, . . . , d
}
.

One can derive formulas for the condition number and backward error.

Proposition 2.6 ( [Tis00]). Let α =
∑d

k=0|λ|k‖Ak‖2, and let α̃ be the analogous quantity for
the approximate computed eigenvalue λ̃. Then,

κ(λ, P ) =
α‖x‖2‖y‖2
|λ||y∗P ′(λ)x|

and

η(λ̃, x̃, ỹ) =
1

α̃
max

{
‖P (λ̃)x̃‖2
‖x̃‖2

,
‖ỹ∗P (λ̃)‖2
‖ỹ‖2

}
.

2.2.3 Solving polynomial eigenvalue problem via linearization

The eigenvalue problem for linear matrix polynomials (d = 1) has been studied extensively;
it is referred to as the generalized eigenvalue problem and it is usually presented in the form
Ax = λBx.

The generalized eigenvalue problem can be solved via the QZ algorithm by Moler and
Stewart [MS73], which is backward stable. The QZ algorithm is not the most suitable one
for very large sparse matrices, or when only a small number of eigenvalues are required. In
this case one can resort to some form of power iteration.

The most common approach to compute the eigenvalues of a matrix polynomial P of
degree d > 1 is to reduce to the linear case, that is to find nd × nd matrices A and B such
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that the matrix pencil A + λB has the same spectrum as P , and then solve the generalized
eigenvalue problem using QZ or some other algorithm. This process goes under the name of
linearization. Note that while the eigenvalues of the linearized pencil are the same as those
of P , the eigenvector are certainly not (the dimensions do not match). The convenience of
the formula to recover the eigenvectors of P is one of the factors to weigh when choosing a
linearization.

Among the most widely used linearizations are the so called first and second companion
linearization, which have block structure respectively

C1 = λ


An

I
. . .

I

+


An−1 An−2 . . . A0

−I 0
. . .

. . .

−I 0


and

C2 = λ


An

I
. . .

I

+


An−1 −I

An−2 0
. . .

...
. . . −I

A0 0

 .

Linearizations C1 and C2 can be seen as special cases of two larger classes of linearizations:
Mackey et al. [MMMM06] showed that for each matrix polynomial P as in (2.4) there exist
two vector subspaces of the space of linear pencils of size nd, denoted by L1(P ) and L2(P )
respectively, which are almost entirely composed of linearizations for P (the exceptions form
a closed nowhere dense set of measure zero). One interesting characteristic is that z ∈ Cnd is
a right eigenvector corresponding to an eigenvalue λ of a linearization in L1(P ) if and only if
it is of the form z = [λd−1x, λd−2x, . . . , λx, x]> where x ∈ Cn is an eigenvector corresponding
to the same eigenvalue λ for the original polynomial P . The corresponding property holds
for left eigenvectors of linearizations in L2(P ).

Linearizations belonging to DL(P ) := L1(P )∩L2(P ) are particularly convenient to study.
DL(P ) is a d-dimensional vector space, parametrized by a vector v ∈ Cd. Higham, Mackey
and Tisseur [HMT06] solved the problem of finding the parameter v for which the condition
number of an eigenvalue of the linearization is minimized. They also compared the condition
number κ(λ, L) for any linearization L ∈ DL(P ) to κ(λ,C1) and to κ(λ, P ), obtaining upper
and lower bounds for the ratios of each pair of condition numbers considered. Similar study
and comparisons have been done by Higham, Li and Tisseur [HLT07] for the backward error
of a polynomial matrix P and its companion and DL linearizations.

As a final note it should be remarked that some methods that do not resort to linearization
have been developed as well, such as iterative methods [BN13], reduction to lower-degree non-
linear matrix polynomials (quadratization and more generally `-ification, see e.g. [DTDM14]),
or one-sided factorization (which can also be used to solve nonhomogeneous parametric linear
systems, see [GHT11]).

2.2.4 Scaling

When solving a polynomial eigenvalue problem via linearization we are essentially dealing
with a different problem which happens to have the same solution, at least in theory; anyway,
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due to the finite precision of floating point numbers, the computed solutions can be very
different. This is where scaling comes into play; there is no unique definition of scaling,
but rather many different approaches which have in common the goal of transforming one
matrix or matrix polynomial into another with the same eigenvalues but with better numerical
properties. Here we present a few of them.

Eigenvalue scaling Consider the eigenproblem for a matrix polynomial P (λ) = A0 + λA1 +
· · ·+λdAd, and build the scaled polynomial Q(µ) = βP (αµ) = Ã0 +µÃ1 + · · ·+µdÃd, where
Ãk = βαkAk. It is immediate to see that if (λ, x, y) is an eigentriple for P , then (µ = λ/α, x, y)
is an eigentriple for Q. We can thus find eigenvalues for P by solving the eigenproblem for
Q and multiplying the obtained eigenvalues by α. Using the formulas of Proposition 2.6 one
can check that the condition number and backward error do not change when we recover the
eigenvalues of P from those of Q; however, by choosing wisely the scaling parameters α and
β we can hope to find a polynomial Q for which the linearization algorithm is more stable.

Fan, Lin and Van Dooren [FLVD04] proposed such a scaling for the particular case of a
quadratic polynomial, with the aim of bringing the norms of the scaled matrices close to one.
More precisely, α and β were chosen as the minimizers of the min-max problem

min
α,β

max
k=0,1,2

{∣∣‖Ãk‖ − 1
∣∣} ,

which results in

α =

√
‖A0‖
‖A2‖

, β =
2

‖A0‖+ α‖A1‖
.

This leads to an improvement of the backward error by several orders of magnitude.

Gaubert and Sharify [GS09] interpreted the previous result in terms of tropical algebra.
They noted that if the max-times polynomial R(x) = ‖A0‖⊕‖A1‖x⊕‖A2‖x2 has one double
tropical root, then this root must be the α found by Fan, Lin and Van Dooren. On the
other hand, for cases where R(x) has two distinct tropical roots α1 ≤ α2 they proposed a
differentiated scaling whereby they performed eigenvalue scaling twice, first with parameter
α1, then α2. The idea is that the first scaling improves the accuracy of the n smallest
eigenvalues, while the second improves the n largest ones. This can be easily generalized
to matrix polynomials of higher degree: it is sufficient to perform one eigenvalue scaling for
each tropical root of the polynomial

⊕d
i=0‖Ai‖xi, then by keeping the appropriate group of

n eigenvalues from each scaling one can improve accuracy over the whole spectrum, at the
cost of repeating the scaling step multiple times.

Balancing For the classical eigenvalue problem, the notion of balancing a matrix has been
introduced by Osborne [Osb60] and refined by Parlett and Reinsch [PR69]. A matrix is said
to be balanced (with respect to a given norm) if its i-th row and i-th column have the same
norm for all i. A balanced matrix has minimal Frobenius norm among all matrices in its
diagonal similarity orbit. This property, together with the observation that errors in the
computation of eigenvalues are in general roughly proportional to the Frobenius norm, lead
to the development of Osborne’s iterative algorithm to balance a matrix before proceeding to
compute its eigenvalues.
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Diagonal scaling Ideas similar to balancing have been applied to the generalized eigenvalue
problem. Given the problem Ax = λBx, Ward [War81] proposed a method to find diagonal
nonsingular matrices D1 and D2 such that the elements of D1AD2 and D1BD2 would be close
to 1 in magnitude. Later, Lemonnier and Van Dooren [LD06] gave a different interpretation
of the original balancing algorithm, showing that the matrix which minimizes the Frobenius
norm is also, in some precise sense, the closest to a normal matrix among those in the diagonal
similarity orbit. Starting from this observation, they proposed to apply the same principle
to linear pencils, after giving a notion of normal pencil and a quantification of the deviation
from normality. The resulting scaling is a two-sided diagonal scaling that leads to a pencil
λB̃ − Ã with the property ‖Aei‖22 + ‖Bei‖22 = ‖e∗iA‖22 + ‖e∗iB‖22 = constant (here ei denotes
the i-th canonical basis vector).

A further generalization of the balancing scaling to matrix polynomials of degree larger
than one was proposed by Betcke [Bet08]. Given P as in (2.4), with right and left eigenvectors
x and y corresponding to an eigenvalue λ, he showed that if |xi| = |yi| = 1 ∀i ∈ {1, . . . , n},
then κ(λ, P ) is almost optimal (more precisely, κ(λ, P ) ≤ n3/2κ(λ,D1PD2) for any choice
of nonsingular diagonal matrices D1 and D2). He thus proposed a scaling aimed at getting
eigenvectors with components as homogeneous as possible, imposing the balancing condition
‖D1P (λ)D2ei‖ ≈ ‖e∗jD1P (λ)D2‖ ≈ 1 ∀i, j ∈ {1, . . . , n}. Since the value of λ is not known a
priori, he introduced a weighting parameter ω meant as an initial guess of the magnitude of
the wanted eigenvalue. We will show in the next chapters that tropical eigenvalues can play
this role.

Betcke also proposed a generalization of Fan, Lin and Van Dooren scaling (which was
defined for the quadratic case) to all matrix polynomials of degree d ≥ 2. The target to
minimize in this case is the ratio

maxi α
i‖Ai‖

min(‖A0‖, αd‖Ad‖)
,

which gives as a result the scaling parameter

α =

(
‖A0‖
‖Ad‖

) 1
d

.

It is not always immediate to see which scaling could bring more benefit to the computa-
tion. For an algorithm that implements (selectively) all the scalings discussed above, in the
quadratic case, see [HMT13].

2.3 Tropical algebra and valuation theory

A valuation on a field F is a map ν : F→ R ∪ {−∞} satisfying

• ν(a) = −∞ ⇐⇒ a = 0

• ν(ab) = ν(a) + ν(b)

• ν(a+ b) ≤ max(ν(a), ν(b))

for all a, b ∈ F. In the last property, equality holds when ν(a) 6= ν(b).
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Valuations are closely related to non-archimedean absolute values, i.e. absolute values for
which the triangular inequality is replaced by the stronger |a+ b| ≤ max(|a|, |b|): for these
absolute values, ν(a) = log|a| is a valuation, provided that we extend the logarithm so that
log 0 = −∞.

For this reason we will also refer to valuations as non-archimedean valuations, and by
analogy we will call archimedean valuation any map ν : a 7→ log|a| where |·| is an archimedean
absolute value (as are for instance the usual absolute values on R and C).

The max-plus semiring arises naturally when studying non-archimedean valuations, since
the valuation axioms can be rewritten as

• ν(ab) = ν(a)⊗ ν(b)

• ν(a+ b) ≤ ν(a)⊕ ν(b)

which makes ν almost a homomorphism from F to Rmax.

When dealing with vectors or matrices we will write, with a slight abuse of notation, ν(v)
or ν(A), to mean entrywise valuation.

We need to introduce the notion of majorization, which will be used in the next paragraphs.

Definition 2.8. Let u, v ∈ Rnmax. Let u[1] > · · · > u[n] (resp. v[1] > · · · > v[n]) denote the
components of u (resp. v) in decreasing order. We say that u is weakly sub-majorized by v,
and we write u ≺w v, if the following conditions hold:

u[1] · · ·u[k] 6 v[1] · · · v[k] ∀k = 1, . . . , n .

2.3.1 Valuation and roots

Given a polynomial p ∈ F[x1, . . . , xn], p(x) =
∑

k∈Nd akxk and a valuation ν : F→ R∪{−∞},
the tropicalization of p is defined as pτ = maxk∈Nd{ν(ak)+u1k1 +· · ·+udkd}, where u1, . . . , ud
are the coordinates in Rdmax.

Einsiedler, Kapranov and Lind [EKL06] showed that the image of the algebraic hypersur-
face of p under a non-archimedean valuation map (applied coordinate-wise) coincides with the
locus of non-differentiability points of its tropicalization. Since the non-differentiability points
are the tropical roots, this morally means that the operations of applying a non-archimedean
valuation and taking the roots commute.

The same result does not hold for archimedean valuations. In its place, majorization
inequalities arise between the image of the roots of a polynomial and the tropical roots of its
tropicalization. One result of this kind dates back to the work of Ostrowski [Ost40]: rephrased
in a more modern terminology, he showed that if ζ1, . . . , ζn are the roots of a univariate
complex polynomial, ordered by decreasing absolute value, and logα1 ≥ · · · ≥ logαn are the
points of non-differentiability of the (archimedean) tropicalization obtained via the valuation
associated to the usual absolute value, i.e. ν(x) = log|x|, then one has

1(
n
k

)α1 · · ·αk ≤ |ζ1 · · · ζk| ≤
√
e(k + 1)α1 · · ·αk ∀k ∈ {1, . . . , n} . (2.5)
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2.3.2 Valuations and eigenvalues

The study of relations between algebraic objects and their valuation can be extended to the
case of matrices. One question which arises naturally is whether one can find an equivalent of
the Einsiedler-Kapranov-Lind theorem, i.e. whether the tropical eigenvalues of the valuated
counterpart of a matrix correspond to the valuations of its classical eigenvalues.

While this is not true in general, Akian, Bapat and Gaubert [ABG04, ABG15] showed
that if A is a square matrix over an algebraically closed field equipped with a non-archimedean
valuation ν, then the sequence of valuations of the eigenvalues of A is weakly sub-majorized
by the sequence of the (algebraic) tropical eigenvalues of ν(A). Moreover, they proved that
this result remains valid for quasi-valuations (i.e. valuations ν where the requirement ν(ab) =
ν(a) + ν(b) is weakened to ν(ab) ≤ ν(a) + ν(b), as is the case for first order asymptotics),
and they extended it to matrix polynomials. To do so, one first needs to define eigenvalues
of a tropical matrix polynomial. Just as for the matrix case, this is done by replacing the
determinant with the permanent in the definition of the characteristic polynomial. The
tropical eigenvalues of a tropical matrix polynomial P are then the tropical roots of perRmax

P .



CHAPTER 3

Majorization bounds for eigenvalues

In this chapter we provide majorization-type upper and lower bounds for the absolute value
of the eigenvalues of a matrix A. These bounds are given in terms of the tropical eigenvalues
of a max-times matrix associated to A. The content of this chapter has appeared in [AGM14].

3.1 Upper bound

In order to link classical and tropical eigenvalues, we must first define what are tropical
eigenvalues for a complex matrix.

Definition 3.1. Given a complex polynomial p =
∑n

k=0 akz
k, we define its max-times relative

p× ∈ T[X] as

p× =

n⊕
k=0

|ak|Xk .

The tropical roots of p are defined as the the tropical roots of its max-times relative p×.

Definition 3.2. Given a complex matrix A = (ai,j) ∈ Cn×n, the tropical eigenvalues of A
are defined as the tropical eigenvalues of the associated max-times matrix |A| = (|ai,j |).

Theorem 3.1. Let A ∈ Cn×n be a complex matrix, and let λ1, . . . , λn be its eigenvalues,
ordered by nonincreasing absolute value (i.e., |λ1| > . . . > |λn|). Moreover, let γ1 > . . . > γn
be the tropical eigenvalues of A. Then for all k ∈ {1, . . . , n}, we have

|λ1 · · ·λk| 6 Ukγ1 · · · γk
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where
Uk = ρ(

∧k
per(patA)) .

In the last formula, patA denotes the pattern matrix of A, a (0, 1)-matrix depending only
on the position of nonzero entries of A; more precisely, it is defined as

(patA)i,j =

{
0 if ai,j = 0

1 otherwise

In the following sections we present some auxiliary results needed to prove this theorem.

3.1.1 Friedland’s Theorem

Let A = (ai,j) and B = (bi,j) be nonnegative matrices. We denote by A ◦ B the Hadamard
(entrywise) product of A and B, and by A[r] the entrywise r-th power of A. That is:

(A ◦B)i,j = ai,jbi,j , (A[r])i,j = ari,j .

Theorem 3.2 (Friedland, [Fri86]). Let A be a nonnegative matrix. Define the limit eigenvalue
of A as

ρ∞(A) = lim
r→+∞

ρ(A[r])1/r.

Then we have
ρ∞(A) = ρmax(A), (3.1)

and also
ρ(A) 6 ρ(patA)ρmax(A) .

Friedland’s result is related to the following log-convexity property of the spectral radius.

Theorem 3.3 (Kingman [Kin61], Elsner, Johnson and Da Silva, [EJD88]). If A and B are
nonnegative matrices, and α, β are two positive real numbers such that α + β = 1, then
ρ(A[α] ◦B[β]) 6 ρ(A)αρ(B)β.

Corollary 3.4. If A and B are nonnegative matrices, then ρ(A ◦B) 6 ρ(A)ρmax(B).

Proof. Let p, q be two positive real numbers such that 1
p + 1

q = 1. By applying Theorem 3.3

to the nonnegative matrices A[p] and B[q], and α = 1
p , we get ρ(A ◦ B) 6 ρ(A[p])

1
p ρ(B[q])

1
q .

Then by taking the limit for q → ∞ and using the identities of Theorem 3.2 we obtain
ρ(A ◦B) 6 ρ(A)ρmax(B).

3.1.2 Spectral radius of exterior powers

The next two propositions are well known.

Proposition 3.5 (See e.g. [HJ90, Theorem 8.1.18]). The following statements about the
spectral radius hold:

(a) For any complex matrix A we have ρ(A) 6 ρ(|A|);

(b) If A and B are nonnegative matrices and A 6 B, then ρ(A) 6 ρ(B).
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Proposition 3.6 (See e.g. [MM92, 2.15.12]). If A ∈ Cn×n has eigenvalues λ1, . . . , λn, then
the eigenvalues of

∧kA are the products
∏
i∈I λi for all subsets I ⊂ {1, . . . , n} of cardinality

k.

An immediate corollary of Proposition 3.6 is that if |λ1| > . . . > |λn|, then the spectral
radius of

∧kA is

ρ(
∧kA) = |λ1 · · ·λk| .

In the tropical setting we can prove the following combinatorial result, which will be one of
the key ingredients of the proof of Theorem 3.1.

Theorem 3.7. Let A ∈ Cn×n be a complex matrix, and let γ1 > · · · > γn be its tropical
eigenvalues. Then for any k ∈ {1, . . . , n} we have

ρT(
∧k

T|A|) 6 γ1 · · · γk.

The proof of this theorem relies on the following result, which is a variation on classical
theorems of Hall and Birkhoff on doubly stochastic matrices. Recall that a circulation matrix
of size n× n is a nonnegative matrix B = (bi,j) such that for all i ∈ {1, . . . , n},

∑
j∈[n] bi,j =∑

j∈[n] bj,i. The weight of this matrix is the maximum value of the latter sums as i ∈ {1, . . . , n}.
We call partial permutation matrix a matrix having a permutation matrix as a principal
submatrix, all the other entries being zero. The support of a partial permutation matrix
consists of the row (or column) indices of this principal submatrix.

Lemma 3.8. Every circulation matrix B = (bi,j) with integer entries, of weight `, can be
written as the sum of at most ` partial permutation matrices.

Proof. We set si =
∑

j∈[n] bi,j =
∑

j∈[n] bj,i, so that si 6 ` ∀i ∈ {1, . . . , n}. If we add to B
the diagonal matrix D = Diag(`−s1, . . . , `−sn), we obtain a matrix with nonnegative integer
entries in which the sum of each row and each column is `. A well known theorem (see e.g.
Hall, [Hal98, Theorem 5.1.9]), allows us to write

B +D = P (1) + · · ·+ P (`)

where the P (i)’s are permutation matrices. Furthermore we can write D as a sum of diagonal
matrices D(1), . . . , D(`) such that D(i) 6 P (i) ∀i ∈ {1, . . . , `}. In this way we have

B = (P (1) −D(1)) + · · ·+ (P (`) −D(`)) = B(1) + · · ·+B(`)

where every B(m) = (b
(m)
i,j ) is a partial permutation matrix (possibly zero).

Proof of Theorem 3.7. Let A ∈ Cn×n be a complex matrix. By definition, the tropical
eigenvalues γ1 > · · · > γn of A are the roots of the tropical characteristic polynomial
q|A| = perT(|A| ⊕ XI). Recall that trkT |A| is the (n − k)-th coefficient of q|A|, with the

convention tr0
T |A| = 1. We shall denote by t̂r

k
T|A| the (n− k)-th log-concavified coefficient of

q|A|.
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In the following formulas we will denote by SI,J the set of bijections from I to J . By
Proposition 2.5, we have

ρT(
∧k

T|A|) = max
`∈[n]

max
#I1=k

...
#I`=k

(∧k
T|A|I1I2 · · ·

∧k
T|A|IlI1

)1/`

= max
`∈[n]

max
#I1=k

...
#I`=k

max
σ1∈SI1,I2...
σ`∈SI`,I1

( ∏
i1∈I1

|ai1σ1(i1)| · · ·
∏
i`∈I`

|ai`σ`(i`)|
)1/`

. (3.2)

The product in parentheses is a monomial in the entries of |A| of degree k · `. We rewrite it
as ∏

i∈[n]
j∈[n]

|ai,j |bi,j ,

where bi,j is the total number of times the element |ai,j | appears in the product. We can
arrange the bi,j into a matrix B = (bi,j), and observe that

∑
j∈[n] bi,j =

∑
j∈[n] bj,i ∀i ∈

{1, . . . , n}, so that B is a circulation matrix. In fact, for every m ∈ {1, . . . , `}, every index
i ∈ Im contributes for 1 to the i-th row of B (because of the presence of |ai,σm(i)| in the
product), and also for 1 to the i-th column of B (because of the presence of |aσ−1

m−1(i),i|
in the product). By Lemma 3.8, we can write B = B(1) + · · · + B(r) with r 6 `, where
B(1), . . . , B(r) are partial permutation matrices, with respective supports I(1), . . . , I(r). We
set B(r+1) = · · · = B(`) = 0 and I(r+1) = · · · = I(`) = ∅.

The product in the definition of ρT(
∧k

T |A|) (inside the parentheses in (3.2)) can thus be
rewritten as ∏

i∈[n]
j∈[n]

|ai,j |bi,j =
∏̀
m=1

(∏
i∈[n]
j∈[n]

|ai,j |b
(m)
i,j

)

6
∏̀
m=1

tr#I(m)

T |A|

6
∏̀
m=1

t̂r
#I(m)

T |A|

6(t̂r
k
T|A|)`,

where the last inequality follows from the log-concavity of k 7→ t̂r
k
T|A| and from the fact that

1
`

∑`
m=1 #I(m) = k. So, using (3.2), we conclude that ρT(

∧k
T|A|) 6 t̂r

k
T|A|.

Now, t̂r
k
T|A| is the (n− k)-th concavified coefficient of the tropical polynomial q|A|, whose

roots are γ1 > . . . > γn. Applying Corollary 2.4, and recalling that tr0
T |A| = 1, we obtain

t̂r
k
T|A| = γ1 · · · γk,

so we conclude that
ρT(
∧k

T|A|) 6 γ1 · · · γk.
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3.1.3 Proof of Theorem 3.1

For all subsets I, J of {1, . . . , n}, we have

|
∧kA|I,J = |detA[I, J ]| 6 per |A[I, J ]|

6 #{σ ∈ SI,J |wA(σ) 6= 0} · max
σ∈SI,J

|wA(σ)|

=
(∧k

per(patA)
)
I,J

(∧k
T|A|

)
I,J
.

Since this holds for all I and J , we can write, in terms of matrices,

|
∧kA| 6

(∧k
per(patA)

)
◦
(∧k

T|A|
)
. (3.3)

We have

|λ1 . . . λk| = ρ(
∧kA) (by Proposition 3.6)

6 ρ
(
(
∧k

per(patA)) ◦ (
∧k

T|A|)
)

(by (3.3) and Proposition 3.5),

6 ρ(
∧k

per(patA))ρT(
∧k

T|A|) (by Corollary 3.4 and Proposition 2.5)

6 ρ(
∧k

per(patA))γ1 · · · γk (by Theorem 3.7)

and the proof of the theorem is complete.

3.2 Lower bound

We next show that the product of the k largest absolute values of eigenvalues can be bounded
from below in terms of the k largest tropical eigenvalues, under some quite restrictive non-
degeneracy conditions.

Lemma 3.9. Let A = (ai,j) ∈ Cn×n be a complex matrix, and let λ1, . . . , λn be its eigenvalues,
ordered by nonincreasing absolute value (i.e. |λ1| > . . . > |λn|). Moreover, let γ1 > . . . > γn
be the tropical eigenvalues of A. Let k ∈ {1, . . . , n} be a saturated index for the tropical
characteristic polynomial q|A|. Suppose trk A 6= 0, and let Ck be any positive constant such
that

Ck trkT |A| 6 | trk A| . (3.4)

Then the following bound holds:

Ck(
n
k

)γ1 · · · γk 6 |λ1 · · ·λk| .

Proof. Thanks to Ostrowski’s lower bound in (2.5), we already have

α1 · · ·αk 6
(
n

k

)
|λ1 · · ·λk|,

where α1 > . . . > αn are the tropical roots of the ordinary characteristic polynomial

pA(x) = det(xI −A) = xn − (trA)xn−1 + (tr2A)xn−2 + · · ·+ (−1)n trnA .
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Moreover, by Corollary 2.4 we have

α1 · · ·αk = coefk(lcav p×A) ≥ coefk(p
×
A) = | trk A|

γ1 · · · γk = coefk(lcav q|A|) ≥ coefk(q|A|) = trkT |A| ,
(3.5)

where we denoted by coefk(p) the coefficient of degree k of the polynomial p. Since k is a
saturated index for q|A|, the second line in (3.5) is actually a chain of equalities. Now we can
use Equation (3.4) and write

γ1 · · · γk = trkT |A| 6
1

Ck
| trk A| 6 1

Ck
lcav(| trk A|) =

1

Ck
α1 · · ·αk 6

(
n
k

)
Ck
|λ1 · · ·λk| .

Theorem 3.10. Let A, λ1, . . . , λn, γ1, . . . , γn be as in Lemma 3.9, and let k be a saturated
index for the tropical characteristic polynomial q|A|. Suppose that among the subsets of cardi-

nality k of {1, . . . , n} there is a unique subset Ik for which there exists a (possibly not unique)
permutation σ ∈ SIk that realizes the maximum

max
I⊂[n]
#I=k

max
σ∈SI

∏
i∈I
|ai,σ(i)| (3.6)

(that is, w|A|(σ) = trkT |A|). Suppose detA[Ik, Ik] 6= 0. Finally suppose that, for any permu-

tation σ of any subset of cardinality k except Ik, w|A|(σ) 6 δk · w|A|(σ̄) = δk trkT |A|, with

δk <
|detA[Ik, Ik]|

trkT |A|
((
n
k

)
− 1
)
k!
.

Then the inequality

Lkγ1 · · · γk 6 |λ1 · · ·λk|

holds with

Lk =
1(
n
k

) ( |detA[Ik, Ik]|
trkT |A|

− δk
((
n
k

)
− 1
)
k!

)
.

Proof. To prove the theorem it is sufficient to show that (3.4) holds with

Ck =

(
|detA[Ik, Ik]|

trkT |A|
− δk

((
n

k

)
− 1

)
k!

)
.
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We have

| trk A| =
∣∣∣ ∑
I∈[n]
#I=k

detA[I, I]
∣∣∣

>
∣∣∣detA[Ik, Ik]

∣∣∣− ∣∣∣ ∑
#I=k
I 6=Ik

detA[I, I]
∣∣∣

>
∣∣∣detA[Ik, Ik]

∣∣∣− ∑
#I=k
I 6=Ik

per
∣∣A[I, I]

∣∣
>
∣∣∣detA[Ik, Ik]

∣∣∣− ((n
k

)
− 1

)
k!δk trkT |A| ,

>

(
|detA[Ik, Ik]|

trkT |A|
− δk

((
n

k

)
− 1

)
k!

)
trkT |A|

= Ck trkT |A| ,

and the hypothesis on δk guarantees that Ck > 0.

If the maximum in (3.6) is attained by exactly one permutation, then the statement of
Theorem 3.10 can be slightly modified as follows.

Theorem 3.11. Let A, λ1, . . . , λn, γ1, . . . , γn and k be as in Theorem 3.10. Suppose that the
maximum in (3.6) is attained for a unique permutation σ̄, and that for any other permutation

σ of any k-subset of {1, . . . , n} the inequality
w|A|(σ)

w|A|(σ̄) 6 ηk holds for some

ηk <
1((

n
k

)
k!− 1

) .
Then the inequality

Lkγ1 · · · γk 6 |λ1 · · ·λk|

holds with

Lk =
1(
n
k

) (1− ηk
((

n

k

)
k!− 1

))
.

Proof. The arguments of the proof are the same as for Theorem 3.10. In the present case, we
have

| trk A| =
∣∣∣ ∑
I∈[n]
#I=k

detA[I, I]
∣∣∣

>
∣∣∣w|A|(σ̄)

∣∣∣− ∣∣∣∑
σ 6=σ̄

w|A|(σ)
∣∣∣

> trkT |A| −
((

n

k

)
k!− 1

)
ηk trkT |A| ,

and we conclude applying Lemma 3.9.
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3.3 Optimality of upper bound and comparison with bounds for
polynomial roots

We now discuss briefly the optimality of the upper bound for some special classes of matrices.
Throughout this paragraph, if A is a complex n × n matrix, then λ1, . . . , λn will be its
eigenvalues (ordered by nonincreasing absolute value), and γ1 > · · · > γn will be its tropical
eigenvalues.

3.3.1 Monomial matrices.

Recall that a monomial matrix is the product of a diagonal matrix (with non-zero diagonal
entries) and of a permutation matrix. We next show that the upper bound is tight for
monomial matrices.

Proposition 3.12. If A is a monomial matrix, then, for all k ∈ {1, . . . , n}, the inequality in
Theorem 3.1 is tight,

|λ1 · · ·λk| = ρ(
∧k

per(patA))γ1 · · · γk ∀k ∈ {1, . . . , n} (3.7)

Proof. We claim that if A is a monomial matrix, then, the absolute values of the eigenvalues
of A coincide with the tropical eigenvalues of |A|, counted with multiplicities.

To see this, assume that A = DC where D is diagonal and C is a matrix representing
a permutation σ. If σ consists of several cycles, then, DC has a block diagonal structure,
and so, the characteristic polynomial of A is the product of the characteristic polynomials of
the diagonal blocks of A. The same is true for the tropical characteristic polynomial of |A|.
Hence, it suffices to show the claim when σ consists of a unique cycle. Then, denoting by
d1, . . . , dn the diagonal terms of D, expanding the determinant of xI−A or the permanent of
xI ⊕ A, one readily checks that the characteristic polynomial of A is xn − d1 . . . dn, whereas
the tropical characteristic polynomial of |A| is xn ⊕ |d1 . . . dn|. It follows that the eigenvalues
of A are the nth roots of d1 . . . dn, whereas the tropical eigenvalues of |A| are all equal to
|d1 . . . dn|1/n. So, the claim is proved.

It remains to show that ρ(
∧k

per(patA)) = 1. Note that patA = C. We claim that∧k
perC is a permutation matrix. In fact, for any fixed k ∈ {1, . . . , n}, let I be a subset

of cardinality k of {1, . . . , n}. Since C is a permutation matrix, there is one and only one
subset J ⊂ {1, . . . , n} such that perC[I, J ] 6= 0: precisely, if C represents the permutation
σ : {1, . . . , n} → {1, . . . , n}, then perC[I, σ(I)] = 1 and perC[I, J ] = 0 ∀J 6= σ(I). This
means that each row of

∧k
perC contains exactly one 1, and the other entries are zeroes. Since

the same reasoning is also valid for columns, we can conclude that
∧k

perC is a permutation
matrix, and as such its spectral radius is 1.

3.3.2 Full matrices.

Monomial matrices are among the sparsest matrices we can think of. One may wonder what
happens in the opposite case, when all the matrix entries are nonzero. We next discuss a
class of instances of this kind, in which the upper bound is not tight. We only consider the
case k = n for brevity, although it is not the only case for which the equality fails to hold.

Proposition 3.13. Let A =
(
ai,j
)

be a n× n complex matrix, n > 3, and suppose |ai,j | = 1
for all i, j ∈ {1, . . . , n}. Then the inequality in Theorem 3.1 can not be tight for k = n.



3.3. Optimality of upper bound and comparison with bounds for polynomial roots 27

Proof. For any couple (I, J) of k-subsets of {1, . . . , n}, the (I, J) element of the matrix∧k
per(patA) is given by the permanent of a k × k matrix of ones, that is k!; so

∧k
per(patA)

is a
(
n
k

)
×
(
n
k

)
matrix with all entries equal to k!. Its spectral radius is therefore

(
n
k

)
k! (and

(1, . . . , 1)> is an eigenvector for the maximum eigenvalue). For k = n, ρ(
∧k

per(patA)) reduces
to n!, so our upper bound would be |λ1, · · · , λn| 6 n! · γ1 · · · γn. Now, the left-hand side can
be thought of as |detA|, and on the other hand γ1 = · · · = γn = 1 (the tropical characteristic
polynomial is qA(x) = xn⊕ xn−1⊕ · · · ⊕ x⊕ 1 = xn⊕ 1 = (x⊕ 1)n ∀x > 0). So the inequality
in Theorem 3.1 is equivalent to |detA| 6 n!. But the well-known Hadamard bound for the
determinant yields in this case |detA| 6 (

√
n)n = nn/2, and since nn/2 < n! ∀n > 3 the

inequality of Theorem 3.1 can not be tight.

3.3.3 Comparison with the Hadamard-Pólya’s bounds for polynomial roots.

Finally, we discuss the behavior of the upper bound of Theorem 3.1 for the case of a companion
matrix. Since the eigenvalues of a companion matrix are exactly the roots of its associated
polynomial, this will allow a comparison between the present matrix bounds and the upper
bound of Hadamard and Pólya discussed in the introduction. We start by showing that the
usual property of companion matrices remains true in the tropical setting.

Lemma 3.14. Consider the polynomial p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, and let A be

its companion matrix. Then the tropical eigenvalues of A are exactly the tropical roots of p.

Proof. The matrix is

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 .

By definition, its tropical eigenvalues are the tropical roots of the polynomial qA(x) =⊕n
k=0 trkT|A| xn−k, so to verify the claim it is sufficient to show that trkT|A| = |an−k| for

all k ∈ {0, . . . , n}. Recall that trkT|A| is the maximal tropical permanent of a k × k principal
submatrix of |A| (see Equation (2.3)). It is easy to check that the only principal submatrices
with a non-zero contribution are those of the form |A|[Ik, Ik] with Ik = {n − k + 1, . . . , n},
and in this case perT |A|[Ik, Ik] = |an−k|.

Lemma 3.15. If A is the companion matrix of a polynomial of degree n, then,

ρ(
∧k

per(patA)) 6 min(k + 1, n− k + 1) .

Proof. First, we note that nonzero entries of
∧k

per(patA) can only be 1’s, because patA is
a (0, 1)-matrix, and the tropical permanent of any of its square submatrices has at most
one non-zero term. By computing explicitly the form of

∧k
per(patA), for example following

the method used by Moussa in [Mou97], we see that each column of
∧k

per(patA) has either
one or k + 1 nonzero entries, and each row has either one or n − k + 1 nonzero entries. In
terms of matrix norms, we have ‖

∧k
per(patA)‖

1
= k + 1, and ‖

∧k
per(patA)‖∞ = n − k + 1.

Since both these norms are upper bounds for the spectral radius, we can conclude that
ρ(
∧k

per(patA)) 6 min(k + 1, n− k + 1).
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Thus, by specializing Theorem 3.1 to companion matrices, we recover the version of the
upper bound (2.5) originally derived by Hadamard, with the multiplicative constant k+1. By
comparison, the multiplicative constant in Lemma 3.15 is smaller due to its symmetric nature.
However, it was observed by Ostrowski that the upper bound in (2.5) can be strengthened
by exploiting symmetry. We give a formal argument for the convenience of the reader.

Lemma 3.16. Let P = {p ∈ C[z] | deg p = n} be the set of complex polynomials of degree
n. Denote the roots and the tropical roots as above. Suppose that the inequality |ζ1 · · · ζk| 6
f(k) ·α1 · · ·αk holds for some function f , for all k ∈ {1, . . . , n} and for all polynomials p ∈ P .
Then the inequality |ζ1 · · · ζk| 6 f(n − k) · α1 · · ·αk also holds for all k ∈ {1, . . . , n} and for
all polynomials p ∈ P .

Proof. Consider a polynomial p ∈ P, p(z) = anz
n + · · · + a0 with roots ζ1, . . . , ζn (ordered

by nonincreasing absolute value) and tropical roots α1 > . . . > αn. Arguing by density,
we may assume that a0 6= 0. Then, we build its reciprocal polynomial p∗(z) = znp(1/z) =
a0z

n + · · ·+ an. It is clear that the roots of p∗ are ζ−1
1 , . . . , ζ−1

n . Moreover, its tropical roots
are α−1

1 6 . . . 6 α−1
n : this can be easily proved by observing that the Newton polygon of p∗

is obtained from the Newton polygon of p by symmetry with respect to a vertical axis, and
thus it has opposite slopes.

Since p∗ ∈ P , by hypothesis we can bound its n− k largest roots:∣∣∣∣ 1

ζn
· · · 1

ζk+1

∣∣∣∣ 6 f(n− k) · 1

αn
· · · 1

αk+1
.

By applying Corollary 2.4 (and observing that 0 is a saturated index for the max-times relative
p×) we also have

|a0| = |an|α1 · · ·αn ,

so we can write

|ζ1 · · · ζk| = |ζ1 · · · ζn|
∣∣∣∣ 1

ζn
· · · 1

ζk+1

∣∣∣∣
=
|a0|
|an|

∣∣∣∣ 1

ζn
· · · 1

ζk+1

∣∣∣∣
6
|a0|
|an|
· f(n− k) · 1

αn
· · · 1

αk+1

= α1 · · ·αn · f(n− k) · 1

αn
· · · 1

αk+1
= f(n− k) · α1 · · ·αk

Therefore, it follows from the Pólya’s upper bound (2.5) that

|ζ1 · · · ζk| 6 min

√(k + 1)k+1

kk
,

√
(n− k + 1)n−k+1

(n− k)n−k

α1 · · ·αk,

for all k ∈ {1, . . . , n}. This is tighter than the bound derived from Theorem 3.1 and
Lemma 3.15. In the latter lemma, we used a coarse estimation of the spectral radius, via
norms. A finer bound can be obtained by computing the true spectral radius of

∧k
per(patA)
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for the companion matrix A, but numerical experiments indicate this still does not improve
Pólya’s bound. This is perhaps not surprising as the latter is derived by analytic functions
techniques (Jensen inequality and Parseval identity), which do not naturally carry over to the
more general matrix case considered here.
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CHAPTER 4

Hungarian scaling of asymptotic
matrix polynomials

In this chapter we propose a new scaling technique to be applied to matrix polynomials before
computing its eigenvalues via linearization, aimed at improving the numerical stability of the
computed eigenvalues.

The chapter is organized as follows. In Section 4.1, we recall the main results of [ABG04],
including the definition and properties of the tropical eigenvalues, in relation with the optimal
assignment problem. In Section 4.2, some auxiliary properties on the optimal dual variables
of this problem are established or recalled from [ABG15]. Then, the two following sections
concern matrix polynomials depending on a small parameter ε. Since the condition number
of an eigenvalue depends on the corresponding left and right eigenvectors, we first study in
Section 4.3 the asymptotics of these eigenvectors. In particular, we show in Corollary 4.16
that, under irreducibility and genericity assumptions, the valuations of the eigenvectors are
equal to the optimal dual variables of the assignment problem associated to the valuation
of the eigenvalue. We then study, in Section 4.4, the asymptotics of eigenvalue condition
numbers. We show in Theorem 4.19 that for a simple nonzero eigenvalue of the matrix
polynomial, the condition number of the polynomial eigenvalue problem for the scaled matrix
polynomial remains bounded as ε→ 0. In contrast, under a genericity assumption, and if the
scaling is not trivial, the same eigenvalue condition number tends to infinity for the unscaled
matrix polynomial (Corollary 4.23).

Then, we consider matrix polynomials with fixed coefficients (independent of ε). We give
in Section 4.5 quantitative bounds comparing the eigenvalue condition numbers in the scaled
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and unscaled cases. These indicate that the eigenvalue condition number is reduced after
scaling, under some structural assumptions on the orders of magnitudes of the entries of the
matrices. We also consider in Section 4.6 the effect of the diagonal scaling on the condition
number of the eigenvalue problem for the companion linearization of the matrix polynomial,
and demonstrate a similar improvement, by showing that, after the diagonal scaling, the
eigenvalue condition numbers for the matrix polynomial and for its companion linearization
are close as soon the tropical eigenvalue is close to the modulus of the complex eigenvalue.
We present in Section 4.7 numerical results, showing the efficiency of the scaling for families
of deformed matrix polynomials.

The present chapter is part of a manuscript in preparation as a joint work with Akian,
Gaubert, Hook and Tisseur [AGH+15].

4.1 Asymptotics of eigenvalues and parametric optimal assignment
problems

We recall here the result of [ABG04], which determines the images by the nonarchimedean
valuation of the eigenvalues of a matrix polynomial over the field of converging Puiseux series.
More generally, the result there applies to entries in the ring of functions with a polynomial
growth at point 0, that we next define.

We denote by C the set of germs at point 0 of complex valued continuous functions f of
the nonnegative parameter ε, having an asymptotic expansion around zero of the form

f(ε) = aε−A + o(ε−A)

for some a ∈ C and A ∈ R ∪ {−∞}, with the convention that ε+∞ = 0. By germ, we mean
that we identify two functions that coincide in a sufficiently small neighborhood of zero. The
set C is a ring, which includes in particular the field K of Puiseux series in the parameter ε
that are absolutely converging when ε is of small enough modulus. It also includes fields of
generalized power series with real exponents [vdDS98].

When a 6= 0 or A = −∞, we have the asymptotic equivalent f(ε) ∼ aε−A as ε tends to
zero. Then, we shall say that f has a first order asymptotics, and that aε−A is the leading
monomial of f and A the leading exponent.

We consider a matrix polynomial of degree d in the indeterminate Y, whose coefficients
are n× n matrices A0, . . . ,Ad with entries in C:

A = A0 + YA1 + · · ·+ YdAd . (4.1)

Equivalently, A is a n×n matrix, the coefficients of which are polynomials of degree at most
d with coefficients in C (Aij ∈ C[Y]). The characteristic polynomial of A is the polynomial
PA := det(A) ∈ C[Y]. We say that A is regular if PA is nonzero, and in that case, the
eigenvalues of A are the roots of the polynomial PA. Also if the degree of PA is smaller than
nd, we say that∞ is an eigenvalue of A with multiplicity nd−degPA, so that PA has always
nd finite or infinite eigenvalues, counting multiplicities.

We shall occasionally write Aε instead of A to emphasize the dependence in ε. We denote
by Aij the (i, j) entry of any matrix or matrix polynomial A, so that for instance (Ak)ij
denotes the (i, j) entry of Ak. We assume that, for all k ∈ {0, . . . , d}, there are matrices
ak ∈ Cn×n and Ak ∈ (R ∪ {−∞})n×n, such that

(Ak)ij = (ak)ijε
−(Ak)ij + o(ε−(Ak)ij ) , for all i, j ∈ {1, . . . , n} . (4.2)
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Our goal is to determine the leading monomials of the eigenvalues of A knowing only the
coefficient matrices ak and of the exponent matrices Ak. To this end we associate to the
matrix polynomial A ∈ C[Y]n×n the n× n tropical matrix polynomial of degree d

A = A0 ⊕ YA1 ⊕ · · · ⊕ YdAd , (4.3)

where the matrices Ak are n × n matrices over Rmax, that is, as elements of Rn×nmax , so that
A ∈ Rmax[Y]n×n. The result of [ABG04] that we recall below shows that under some nonde-
generacy assumptions the leading exponents of the eigenvalues of A are characterized by the
tropical eigenvalues of A, i.e. the tropical roots the tropical characteristic polynomial of A,
defined as

PA := perRmax[Y]A ∈ Rmax[Y] . (4.4)

In particular, if PA has a positive valuation valPA, 0 is a tropical eigenvalue of A, with
multiplicity valPA. Moreover, when the degree degPA is less than nd, we shall say, by
convention, that +∞ is a tropical eigenvalue of A with multiplicity nd− degPA.

The tropical eigenvalues of A can be computed in polynomial time. To see this, observe
that evaluating the tropical characteristic polynomial function PA at a given point y reduces
to compute per Â(y), where Â(y) = A0 ⊕ A1y ⊕ · · · ⊕ Adyd ∈ Rn×nmax is the evaluation of A at
y. For any matrix B ∈ Rn×nmax , we have

perB = max
σ∈Sn

∑
16i6n

Biσ(i) .

As we anticipated in Chapter 2, this latter expression is the value of the optimal assignment
problem with weight matrix B. It can be computed in strongly polynomial time, by the
Hungarian algorithm which uses O(n3) arithmetic operations. Alternatively, it can be com-
puted in weakly polynomial time, by an algorithm of Gabow and Tarjan [GT88], which uses
O(n2.5 log(nW )) operations, where W denotes the greatest absolute value of the finite entries
of B, assuming that these entries are integers. We refer the reader to [BR97, § 2.4] or [Sch03,
§ 17] for more background on the optimal assignment problem.

Computing the tropical characteristic polynomial function PA amounts to solving a para-
metric optimal assignment problem, in which which the weight matrix depends of the parame-
ter y. Burkard and Butkovič [BB03] considered the situation in which d = 1 and A1 = I is the
identity matrix, and showed that the eigenvalues of the matrix polynomial A = A0 + IY can
be computed in O(n4) time, by calling O(n) times an oracle solving an optimal assignment
problem. Gassner and Klinz [GK10] showed that this can be reduced in O(n3) using para-
metric optimal assignment techniques. The same ideas apply to tropical matrix polynomial
functions of any degree. In particular, an adaptation of the method of [BB03] readily leads to
an algorithm running in time O(n4d), whereas Hook [Hoo13] adapted the method of [GK10]
to get an algorithm running in time O(n3d2). Therefore, computing the tropical eigenvalues
is not more expensive than computing the classical eigenvalues, and it is actually cheaper as
combinatorial algorithms are available. The interest of the tropical eigenvalues is also that
they can be computed in a numerically robust way, as the optimal assignment algorithms are
insensitive to numerical errors.

The following result motivates the introduction of tropical eigenvalues. We shall say that
a property depending on N complex parameters holds generically if the set of parameters for
which it fails is included in an algebraic hypersurface of CN .
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Theorem 4.1 ([ABG04, ABG15]). Let A = A0 + YA1 + · · ·+ YdAd ∈ C[Y]n×n, and assume
that the entries of the matrices A0, . . . ,Ad have asymptotic expansions of the form (4.2).
Then, for generic values of the parameters (ak)ij, i, j ∈ [n], k ∈ [d], the leading exponents of
the eigenvalues of A are precisely the tropical eigenvalues of A, and the multiplicities are the
same.

This theorem can be made more precise, by characterizing the leading coefficients (not
only the leading exponents) of the eigenvalues of A. These coefficients will be seen to depend
on the leading coefficients of A that participate to optimal permutations, in a sense that we
next explain. For this purpose, we need to recall the characterization of optimal assignments
in terms of the optimal dual variables.

To any matrix B ∈ Rn×nmax , we associate the directed graph G(B) with set of nodes [n] and
an arc (i, j) if Bij 6= −∞. In the sequel, we shall omit the word “directed” as all graphs will
be directed.

The optimal assignment problem for a weight matrix B can be cast as the following linear
programming problem

max
X

∑
i,j∈[n]
Bij 6=−∞

BijXij ,

where the maximum is taken over the set of bistochastic matrices (nonnegative matrices of
column and row sum one) whose support is included in the set of arcs of B. This linear
programming problem has a dual, which reads

min
U,V ∈Rn

∑
i∈[n]

Ui +
∑
j∈[n]

Vj , Ui + Vj > Bij , i, j ∈ [n] .

If perB 6= −∞, meaning the primal problem is feasible, we define the graph Opt(B) as the set
of arcs belonging to optimal assignments: the set of nodes of Opt(B) is [n] and there is an arc
from i to j ∈ [n] if there exists σ ∈ Sn such that j = σ(i) and perB = B1σ(1) + · · ·+Bnσ(n).

We shall call Hungarian pair with respect to B any optimal solution (U, V ) of the dual
problem. The strong duality theorem in linear programming implies that U1 + · · ·+Un+V1 +
· · ·+ Vn = perB.

For any Hungarian pair (U, V ), we now define the saturation graph, Sat(B,U, V ), which
has set of nodes [n] and an arc from i to j ∈ [n] if Bij = Ui + Vj .

By complementary slackness, if σ is an optimal permutation, the support of σ is included in
Sat(B,U, V ), and conversely, if σ is a permutation whose support is included in Sat(B,U, V ),
then it is optimal. Therefore Opt(B) is included in Sat(B,U, V ), moreover, an arc is in
Opt(B) if and only if it belongs to a cover of Sat(B,U, V ) by disjoint oriented cycles, so
Opt(B) can be recovered from Sat(B,U, V ). The interest of Sat(U, V,B) is that it can be
readily computed.

For any tropical matrix polynomial A, any scalar γ ∈ Rmax, and any k ∈ {0, . . . , d},
we denote by Gk(A, γ) the graph with set of nodes [n], and an arc from i to j ∈ [n] if
γk(Ak)ij = Âij(γ) and Âij(γ) 6= 0. This is a subgraph of the graph of Â(γ). For any graphs
G and G′, the intersection G ∩ G′ is the graph the set of nodes (resp. arcs) of which is the
intersection of the sets of nodes (resp. arcs) of G and G′. If G is any graph with set of nodes
S ⊂ [n], and if b ∈ Cn×n, we define the matrix bG ∈ CS×S by (bG)ij = bij if (i, j) ∈ G, and
(bG)ij = 0 if (i, j) ∈ S × S \G.

The following result was stated in [ABG04] (with the notation of the min-plus semifield),
the proof can be found in [ABG15].
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Theorem 4.2 ([ABG04, Thm 1.1] and [ABG15, Thm 8.2 and 8.3]). Let A be a regular
matrix polynomial over C as in (4.1) satisfying (4.2) and denote by A the tropical matrix
polynomial (4.3) with coefficients Ak as in (4.2). Then A is a regular matrix polynomial, and
we have: valPAε > valPA, degPAε 6 degPA.

Let γ denote any finite (6= ±∞) algebraic eigenvalue of A, and denote by mγ,A its multi-
plicity. Let us also denote by m′γ,A the sum of the multiplicities of all the algebraic eigenvalues
of A smaller than γ (−∞ included), putting m′γ,A = 0 if no such eigenvalues exist. Let G

be equal either to Opt(Â(γ)) or Sat(Â(γ), U, V ), for any choice of the Hungarian pair (U, V )
with respect to Â(γ), and let Gk = Gk(A, γ) ∩ G for all 0 6 k 6 d. Consider the matrix
polynomial

a(γ,G) := aG0
0 + YaG1

1 + · · ·+ YdaGdd ∈ C[Y]n×n , (4.5)

and assume that it is regular. If a(γ,G) has mγ nonzero eigenvalues, λ1, . . . , λmγ , then
mγ 6 mγ,A and the matrix polynomial Aε has mγ eigenvalues lε,1, . . . , lε,mγ with first or-

der asymptotics of the form lε,i ∼ λiε
−γ. If 0 is an eigenvalue of the matrix polynomial a(γ)

with multiplicity m′γ, then m′γ > m′γ,A, and the matrix polynomial Aε has precisely m′γ eigen-

values lε such that lε = o(ε−γ). All the other eigenvalues lε of Aε are such that the modulus
of εγ lε converges to infinity.

Moreover, for generic values of the parameters (ak)ij, the matrix polynomial a(γ,G) is
regular, and all the above inequalities are equalities: valPAε = valPA, degPAε = degPA,
mγ = mγ,A and m′γ = m′γ,A.

4.2 Preliminaries on Hungarian pairs

In the present section, we recall some of the results on Hungarian pairs that are proved
in [ABG15, §9] as preliminaries for the proof of Theorem 4.2, and that we shall also need
for the proof of our main results on asymptotics of eigenvectors and on condition numbers of
eigenvalues. We also state and prove some additional necessary results on Hungarian pairs.

We shall adopt the following notation. For any U ∈ Rn, we denote by dm(U) the diagonal
n × n matrix over Rmax such that (dm(U))ii = Ui, so that (dm(U))ij = −∞ for i 6= j. For
any permutation σ of [n], we denote by P σm its associated tropical matrix: (P σm)ij = 1 if
j = σ(i) and (P σm)ij = 0 otherwise. We also denote by P σ its associated complex matrix:
(P σ)ij = 1 if j = σ(i) and (P σ)ij = 0 otherwise. Moreover, if U ∈ Rn, we use the notation
Uσ := P σmU which is simply (Uσ(i))i=1,...,n. We shall say that a matrix M ∈ Rn×nmax is monomial
if it can be written as M = dm(U)P σm for some U ∈ Rn and σ ∈ Sn. We have equivalently
M = P σm dm(V ), by taking V = Uσ−1 . Recall that the monomial matrices are the only
invertible matrices over Rmax, and that M−1 = P σ

−1

m dm(−U). Now if G is a graph with set
of nodes [n], and σ, τ ∈ Sn, we denote by Gσ,τ the graph with same set of nodes [n], and an
arc (i, j) if and only if (σ(i), τ−1(j)) is an arc of G.

We denote by 1 the vector of Rn with all its entries equal to 1 = 0. The following results
and their corollaries are proved in [ABG15, §9]. The first ones allow one to normalize matrices
in a suitable way, the last ones show that one can take either G = Sat(B,U, V ) or G = Opt(B)
in Theorem 4.2.
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Lemma 4.3 ([ABG15, §9]). Let B ∈ Rn×nmax such that perB 6= 0, and let M = dm(W )P σm and
N = dm(X)P τm be monomial matrices, with W,X ∈ Rn and σ, τ ∈ Sn. Then

per(MBN) = W1 · · ·WnX1 · · ·Xn perB = (perM)(perB)(perN) ,

ν is an optimal permutation for MBN if and only if τ−1 ◦ ν ◦ σ−1 is an optimal permutation
for B, and Opt(MBN) = Opt(B)σ,τ .

Let (U, V ) be a Hungarian pair with respect to B. Then (MU,NTV ) is a Hungarian pair
with respect to MBN , and we have Sat(MBN,MU,NTV ) = Sat(B,U, V )σ,τ .

Corollary 4.4 ([ABG15, §9]). Let B ∈ Rn×nmax such that perB 6= 0, and (U, V ) be a Hun-
garian pair with respect to B. Then (1,1) is a Hungarian pair with respect to the matrix
C := dm(U)−1B dm(V )−1 ∈ Rn×nmax , Sat(B,U, V ) = Sat(C,1,1) and Opt(B) = Opt(C). In
particular, perC = 1, Cij 6 1 = 0 for all i, j ∈ [n] and (i, j) is an arc of Sat(B,U, V ) if and
only if Cij = 1.

Corollary 4.5 ([ABG15, §9]). Let B ∈ Rn×nmax such that perB 6= 0, let σ be an optimal
permutation for B, and let (U, V ) be a Hungarian pair with respect to B. Then, the identity
map is an optimal permutation for P σ

−1

m B and (Uσ−1 , V ) is a Hungarian pair with respect
to P σ

−1

m B. Moreover, we have per(P σ
−1

m B) = per(B), Opt(P σ
−1

m B) = Opt(B)σ−1,id, and

Sat(P σ
−1

m B,Uσ−1 , V ) = Sat(B,U, V )σ−1,id.

Corollary 4.6 ([ABG15, §9]). Let B ∈ Rn×nmax such that perB 6= 0, and (U, V ) be a Hungarian
pair with respect to B. Then Opt(B) ⊂ Sat(B,U, V ).

Proposition 4.7 ([ABG15, §9]). Let B ∈ Rn×nmax such that perB 6= 0, (U, V ) be a Hungarian
pair with respect to B, and the identity map is an optimal permutation of B. Then Opt(B)
is the disjoint union of the strongly connected components of Sat(B,U, V ).

The previous result was the main ingredient of the proof of the following result.

Lemma 4.8 ([ABG15, Lemma 10.1]). Let b be a matrix polynomial with coefficients in Cn×n
and degree d, let B ∈ Rn×nmax be a tropical matrix such that perB 6= 0, and let (U, V ) be a
Hungarian pair with respect to B. Then the matrix polynomials bG := bG0 + · · ·+YdbGd defined
respectively with G = Sat(B,U, V ) and with G = Opt(B) have same eigenvalues.

We now prove some additional results, which will help us to find the best eigenvalue
condition number.

Proposition 4.9. Let B ∈ Rn×nmax such that perB = 1, (1,1) is a Hungarian pair with respect
to B and the identity map is an optimal permutation of B. Then (U, V ) is a Hungarian pair
with respect to B if and only if U, V ∈ Rn, with BU = U , and Vi = U−1

i for all i ∈ [n].

Proof. Let (U, V ) be a Hungarian pair with respect to B. By definition, Bij 6 UiVj , and
U1 · · ·UnV1 · · ·Vn = 1 = perB. By Assumption, (1, 1) is a Hungarian pair with respect to
B, and since also (U, V ) is a Hungarian pair with respect to B, we deduce, by Corollary 4.6,
that Opt(B) ⊂ Sat(B,U, V ) and Opt(B) ⊂ Sat(B, 1,1). Hence Bij = UiVj = 1 for all arcs
(i, j) in Opt(B). Since the identity map is an optimal permutation of B, we get that, for all
i ∈ [n], (i, i) is an arc of Opt(B), hence Bii = UiVi = 1, so Vi = U−1

i . Then BijUj 6 Ui for
all i, j ∈ [n] and since BiiUi = Ui, we deduce that BU = U . Conversely, if U ∈ Rn, BU = U ,
and V = (U−1

i )i∈[n], then Bij 6 UiVj and U1 · · ·UnV1 · · ·Vn = 1 = perB, so that (U, V ) is a
Hungarian pair with respect to B.
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For a matrix A ∈ Rn×nmax , we denote by A? its Kleene star, defined as A? = ⊕n>0A
n, with

the convention that A0 = I, and by ρmax(A) the maximal eigenvalue of A, which is also the
maximal circuit mean weight of the graph of A. Moreover, for i ∈ [n], A·i denotes the ith
column of A.

Proposition 4.10. Let B be as in Proposition 4.9. Let c1, . . . , cm be the sets of nodes of
the strongly connected components of Sat(B, 1,1). Consider the matrix A ∈ Rm×mmax such that
Akk = 0 and Ak` = max{Bij | i ∈ ck, j ∈ c`}, for all k 6= ` ∈ [m]. Then α := ρmax(A) < 1,
and W = ⊕i∈[m](α

−1A)?·i belongs to Rm and is an eigenvector of A. Consider the vectors

U, V ∈ Rn such that Ui = V −1
i = Wk for all i ∈ ck and k ∈ [m]. Then (U, V ) is a Hungarian

pair with respect to B, such that Bij 6 αUiVj for all i, j ∈ [n] belonging to different strongly
connected components of Sat(B, 1, 1), and it satisfies Sat(B,U, V ) = Opt(B).

Proof. By Proposition 4.7, c1, . . . , cm coincide with the strongly connected components of
Opt(B). Let A be as in the proposition. Then Ak` 6 1 for all k, ` ∈ [m], and all circuits
of A have a weight strictly less than 1. Indeed, all circuits with length 1 have a weight 0

since Akk = 0 for all k ∈ [m]. Now assume by contradiction that there exists a circuit with
length p > 1 and weight 1 for A, (k1, . . . kp, kp+1 = k1). Since all entries of A are less or
equal to 1, this implies that Akq ,kq+1 = 1 for all q ∈ [p]. Moreover, by definition of A, for
all q ∈ [p], there exists iq ∈ ckq and jq+1 ∈ ckq+1 , such that Biq ,jq+1 = Akq ,kq+1 = 1. Denote
j1 = jp+1. Since ckq is the set of nodes of a strongly connected component of Sat(B, 1, 1),
there exists, for all q ∈ [p], a path from jq to iq in ckq with weights 1 for B. Concatenating
these paths with the arcs (iq, jq+1), we obtain a circuit all the weights of witch are equal to
1 for B, hence a circuit of Sat(B, 1, 1). This implies that iq and jq+1 belong to the same
connected component of Sat(B, 1,1), a contradiction. This shows that α = ρmax(A) < 1.
Let W be as in the proposition. Since all columns Z of (α−1A)? are in Rmmax and satisfy
α−1AZ 6 (α−1A)?Z = Z, we deduce that W ∈ Rnmax and AW 6 αW . Moreover since
(α−1A)? > I, we get that W = ⊕i∈[m](α

−1A)?·i > 1, hence W ∈ Rm. Consider now U, V ∈ Rn
as in the proposition. We have that BijUj 6 αUi for all i, j ∈ [n] belonging to different
strongly connected components of Sat(B, 1,1), and BijUj 6 Ui for all i, j ∈ [n]. Then U
is a fixed point of B, so that (U, V ) is a Hungarian pair with respect to B. Since α < 1,
Sat(B,U, V ) is exactly the union of the strongly connected subgraphs of Sat(B, 1,1), hence
it is equal to Opt(B) by Proposition 4.7.

Corollary 4.11. Let B ∈ Rn×nmax such that perB 6= 0. Then there exists a Hungarian pair
(U, V ) with respect to B such that Sat(B,U, V ) = Opt(B).

Proof. Let (U, V ) be a Hungarian pair with respect to B, C be as in Corollary 4.4, σ be
an optimal permutation for B, or equivalently for C and consider C ′ = P σ

−1

m C. Then, by
Corollaries 4.4 and 4.5, and Lemma 4.3, (1, 1) is a Hungarian pair with respect to C ′, perC ′ =
perC = 1, and the identity map is an optimal permutation for C ′. Then, by Proposition 4.10,
there exists a Hungarian pair U ′, V ′ with respect to C ′ such that Sat(C ′, U ′, V ′) = Opt(C ′).
By Lemma 4.3, we deduce the same assertion for B.

Lemma 4.12. Let B ∈ Rn×nmax such that perB 6= 0, the identity map is an optimal per-
mutation for B and Opt(B) is strongly connected. Then, for any permutation σ, the graph
Opt(P σ

−1

m B) = Opt(B)σ−1,id is strongly connected. If in addition σ is an optimal permuta-

tion for B, then the identity map is an optimal permutation for P σ
−1

m B and so Opt(B)σ−1,id

contains all loops (i, i) with i ∈ [n].
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Proof. Let G = Opt(B). Since the identity map is an optimal permutation for B, G contains
all loops (i, i) with i ∈ [n]. Let a = (aij) be the matrix with 0 or 1 entries, such that aij = 1
if (i, j) is an arc of G and aij = 0 otherwise. Then G is the graph of a, and G is strongly
connected if and only if a is irreducible. Since G contains all loops, aii = 1 for all i ∈ [n].
Then, by [BR91, Thm 4.2.3], a is a fully indecomposable matrix, which means that there does
not exist permutations σ and τ of [n], such that P σaP τ is block triangular (with blocks of size
6 n − 1). This implies in particular that P σ

−1
a is irreducible for all permutations σ. Since

the graph of P σ
−1
a is equal to Gσ−1,id, we deduce that Gσ−1,id is strongly connected, which

shows the first assertion of the lemma. The last assertion follows from Corollary 4.5.

4.3 Asymptotics of eigenvectors

Let us add some notations. For any U ∈ Rn, we denote by dε(U) the diagonal n× n matrix
over C such that (dε(U))ii = ε−Ui (and (dε(U))ij = 0 for i 6= j). Then dε(U) is invertible (in
Cn×n) and dε(U)−1 = dε(−U). Denote by (Cn)∗ the set of n dimensional row vectors. Recall
that if A ∈ C[Y]n×n is a complex matrix polynomial, we say that a vector z ∈ Cn (resp.
w ∈ (Cn)∗) is a right (resp. left) eigenvector of A with respect to the eigenvalue l ∈ C of A
if A(l )z = 0 (resp. wA(l ) = 0). We shall adopt an analogue definition for eigenvectors of
matrix polynomials A over the ring C, as in (4.1): eigenvectors are elements of Cn or (Cn)∗.
Finally, for a n× n matrix B (with coefficients in any ring), and any subsets M,N of [n], we
shall denote by BMN the M×N submatrix of B. Also B(i)(j) will be the ([n]\{i})×([n]\{j})
submatrix of B.

Theorem 4.13. Let A be a regular matrix polynomial over C as in (4.1) satisfying (4.2) and
denote by A the tropical matrix polynomial (4.3) with coefficients Ak as in (4.2). Let γ be
a finite algebraic eigenvalue of A, and let (U, V ) be a Hungarian pair with respect to Â(γ).
Consider the scaled matrix polynomial

Bε = dε(−U)A(ε−γY) dε(−V ) .

Then, for G = Sat(Â(γ), U, V ), Gk = Gk(A, γ) ∩G for all 0 6 k 6 d, and a(γ,G) as in (4.5),
we have

lim
ε→0
Bε = a(γ,G) .

Assume that a(γ,G) is a regular matrix polynomial, that λ is a simple nonzero eigenvalue of
a(γ,G), and let z and w be respectively right and left eigenvectors of a(γ,G) for the eigenvalue
λ. Let lε be an eigenvalue of Aε with first order asymptotics lε ∼ λε−γ, as in Theorem 4.2.
Then, for ε > 0 small enough, lε is a simple nonzero eigenvalue of Aε, mε = lεεγ is a simple
eigenvalue of Bε and limε→0 mε = λ. Moreover, zε and wε are respectively right and left
eigenvectors of Aε for the eigenvalue lε if and only if xε = dε(V )zε and yε = wε dε(U) are
respectively right and left eigenvectors of Bε for the eigenvalue mε. Also, one can choose zε
and wε, so that z ∈ Cn, w ∈ (Cn)∗, and

z = lim
ε→0

xε, w = lim
ε→0

yε .

In particular if all the entries of z and w are nonzero, then the entries of zε and wε have first
order asymptotics:

(zε)i ∼ ziεVi , (wε)i ∼ wiε
Ui , i ∈ [n] .
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Proof. Let us consider the matrix polynomial:

b := a
G0(A,γ)
0 + Ya

G1(A,γ)
1 + · · ·+ Yda

Gd(A,γ)
d .

It is easy to see that for all γ ∈ R, all y ∈ C, and all i, j ∈ [n], we have

(Aε(ε−γy))ij = bij(y)ε−(Â(γ))ij + o(ε−(Â(γ))ij ) .

Then

(Bε(y))ij = bij(y)ε−(B̂(γ))ij + o(ε−(B̂(γ))ij ) ,

where B̂(γ) = dm(−U)Â(γ) dm(−V ) = dm(U)−1Â(γ) dm(V )−1. By Corollary 4.4, B̂(γ) has
its entries less or equal to 1 and Sat(B̂(γ), 1, 1) = Sat(Â(γ), U, V ) = G, which implies that
limε→0 Bε(y) = (b(y))G = a(γ,G)(y).

The following assertions of the theorem up to the last one are immediate. Indeed, mε = lεεγ
is an eigenvalue of Bε, it satisfies limε→0 mε = λ, and since λ is simple, then for ε > 0
small enough, mε is a simple eigenvalue of Bε, so is lε for Aε. Moreover, zε and wε are
respectively right and left eigenvectors of Aε for the eigenvalue lε if and only if xε = dε(V )zε
and yε = wε dε(U) are respectively right and left eigenvectors of Bε for the eigenvalue mε. Since

λ and mε are simple eigenvalues of a(γ,G) and Bε respectively, there are unique eigenvectors
z and w of a(γ,G) for the eigenvalue λ up to a multiplicative constant, and there are unique
eigenvectors xε and yε of Bε up to a multiplicative constant. Moreover, if we denote by
Cε ∈ Cn×n the adjugate matrix of Bε(mε) (the transpose of the comatrix), and by c ∈ Cn×n
the adjugate matrix of a(γ,G)(λ), we have that limε→0 Cε = c and since λ is a simple eigenvalue
of a(γ,G), there exists i, j ∈ [n] such that cij 6= 0, and so for ε small enough (Cε)ij 6= 0. Then
z (resp. xε) is proportional to the column j of c (resp. Cε), w (resp. yε) is proportional to the
row i of c (resp. Cε), and we have zi 6= 0, wj 6= 0, (xε)i 6= 0, and (yε)j 6= 0. Moreover, we
can choose the eigenvectors xε and yε such that they are continuous functions of ε satisfying
(xε)i = zi and (yε)j = wj . Then xε and yε converge towards z and w respectively, and zε, wε,
xε, and yε have all their entries in C. Then, the last assertion is immediate.

Theorem 4.14. With the notations and assumptions of Theorem 4.13, we have that, for
generic values of the parameters (ak)ij, the matrix polynomial a(γ,G) is regular, it has mγ,A

nonzero eigenvalues, where mγ,A is the multiplicity of the finite eigenvalue γ of A, and all
these nonzero eigenvalues are simple.

Proof. By Theorem 4.2, we have that for generic values of the parameters (ak)ij , the matrix
polynomial a(γ,G) is regular, that it has mγ,A nonzero eigenvalues, where mγ,A is the multi-
plicity of the finite eigenvalue γ of A, and that its valuation is equal to the sum m′γ,A of the
multiplicities of all the algebraic eigenvalues of A smaller than γ (−∞ included). Then, for

generic values of the parameters (ak)ij , P := det(a(γ,G))/Ym
′
γ,A is a polynomial with valua-

tion zero and degree mγ,A. Then P has only simple nonzero roots when its discriminant is
nonzero. Since the discriminant of a polynomial P is a polynomial expression in its coeffi-
cients Pk, k = 0, . . . ,mγ,A, we get that P has only simple nonzero roots, for generic values of
its coefficients Pk. Since the coefficients Pk of P , k = 0, . . . ,mγ,A, are polynomial functions
of the parameters (ak)ij , we get that P has only simple nonzero roots for generic values of
the parameters (ak)ij , so has the polynomial det(a(γ,G)).
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Remark 4.1. Assume that the asymptotic expansions in (4.2) are true first order asymptotics,
meaning that

for all 0 6 k 6 d and i, j ∈ [n], we have either (ak)ij 6= 0 or (Ak)ij = −∞ . (4.6)

Then, we can prove that the matrix polynomial a(γ,G) in (4.5) is nonzero. Indeed, G is
nonempty by definition (it exists since per(Â(γ)) 6= 0). Let (i, j) be an arc of G, then
Â(γ)ij = UiVj 6= 0, and there exists some k = 0, . . . , d, such that (Ak)ijγ

k = Â(γ)ij , hence

(i, j) ∈ Gk(A, γ), and (Ak)ij 6= −∞. By (4.6), this implies that (ak)ij = (a
(γ,G)
k )ij 6= 0, hence

the polynomial a
(γ,G)
ij is nonzero, and so is the matrix polynomial a(γ,G). However, even

if (4.6) holds, some cancellations may occur in the computation of the asymptotics of the
characteristic polynomial of A, so that the characteristic polynomial of a(γ,G) is zero, hence
the matrix polynomial a(γ,G) is singular. For instance consider the matrix polynomial over
the field K of Puiseux series with degree 2 and dimension n = 4:

A =


Y2 Y Y ε
Y 1 1 0
0 1 Y 0
0 0 ε 1

 =


0 0 0 ε
0 1 1 0
0 1 0 0
0 0 ε 1

+ Y


0 1 1 0
1 0 0 0
0 0 1 0
0 0 0 1

+ Y2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

We have detA = −ε2Y so that A is regular and 0 as its unique finite eigenvalue. The
corresponding matrix polynomial A is given by:

A =


Y2 Y Y −1
Y 0 0 −∞
−∞ 0 Y −∞
−∞ −∞ −1 0

 .

The characteristic polynomial of A is given by perA = Y3 ⊕ Y2 ⊕ (−2)Y, the tropical roots
of which are 0, 1 = 0 and −2, with multiplicities 1. Considering the finite tropical eigenvalue
γ = 0 of A, we see that (1, 1) is Hungarian pair of

Â(0) =


0 0 0 −1
0 0 0 −∞
−∞ 0 0 −∞
−∞ −∞ −1 0

 .

Taking G = Sat(Â(0),1,1), we obtain a matrix polynomial a(γ,G) equal to Aε for ε = 0.
Hence det(a(γ,G)) = 0, and the matrix polynomial a(γ,G) is singular.

Theorem 4.13 shows that, if the right and left eigenvectors z and w of a(γ,G) have only
nonzero entries, then the eigenvectors of Aε have first order asymptotics. In the following
result, we give sufficient conditions under which this holds generically.

Theorem 4.15. Let a = a0 + Ya1 + · · · + Ydad ∈ C[Y]n×n be a complex matrix polynomial.
Let G0, . . . , Gd be some graphs with set of nodes [n], and consider the matrix polynomial
b = aG0

0 + YaG1
1 + · · · + YdaGdd . Assume that G := ∪dk=0Gk contains all the loops (i, i) with

i ∈ [n] (or equivalently that the identity map is a permutation of G) and that G is strongly
connected. Then, for generic values of the parameters (ak)ij, all the nonzero eigenvalues of b
(if such eigenvalues exist) are simple, and the entries of any right and left eigenvectors z and
w of b associated to a nonzero simple eigenvalue are nonzero.
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Proof. Note that if all the coefficients (ak)ij are nonzero (which holds generically), then G is
the graph associated to b: (i, j) is an arc of G if and only if the polynomial bij is nonzero.

Let us consider the tropical matrix polynomial A = A0 ⊕ · · · · · ·YdAd, which coefficients
are given by: (Ak)ij = 1 if (i, j) ∈ Gk and (Ak)ij = 0 otherwise. Then A corresponds to
the tropical matrix polynomial (4.3) defined for the matrix polynomial A over C as in (4.1)
satisfying (4.2) and such that Aε = b for all ε > 0. We have (Â(1))ij = 1 if and only if

(i, j) ∈ G, and since G contains all loops, we get that per Â(1) = 1, so that A is regular.
Moreover, (1,1) is a Hungarian pair for Â(1), G = Sat(Â(1),1,1), and since G is strongly
connected and contains the identity permutation, we have also G = Opt(Â(1)). Since all the
entries of the Ak are 0 or 1, we get that the characteristic polynomial PA of A is of the form
(either formally or not) PA = ⊕k∈KYk for some subset K of {0, . . . , nd}, with minK = valPA
and maxK = degPA. So, either PA has no nonzero roots (if K is reduced to a point), or 1 is
the only nonzero root of PA and its multiplicity is equal to m := degPA− valPA. In the first
case, b has no nonzero eigenvalue (since Pb is also equal to a single monomial), and there is
nothing to prove. In the second case, b has at most m nonzero eigenvalues, and for generic
values of the parameters (ak)ij , b has exactly m nonzero eigenvalues and they are all simple
(use for instance Theorem 4.13 with Aε = b). Also, the valuation of Pb is greater or equal to
valPA, and for generic values of the parameters (ak)ij , it is equal to valPA.

Let λ be a nonzero simple eigenvalue of b. Then the right and left eigenvectors z and w
of b are unique up to a multiplicative constant, and they are respectively proportional to the
nonzero columns and rows of the adjugate of b(λ), so that their entries are proportional to
minors of size n− 1 of b(λ). Then all the entries of z and w are nonzero if and only if all the
minors of size n− 1 of b(λ) are nonzero, that is, if det(b(s)(t)(λ)) 6= 0 for all s, t ∈ [n].

Let s, t ∈ [n] and Q = Pb(s)(t) . Then Q is a (complex) polynomial, the coefficients of
which are polynomials in the parameters (ak)ij . If Q(λ) = 0, then λ is a common nonzero
root of Q and Pb. We know that valPb > v1 := valPB and degPb 6 d1 := degPB.
We also have that valQ > v2 := valPB(s)(t)

and degQ 6 d2 := degPB(s)(t)
. Then λ is

a common root of Pb/Y
v1 and Q/Yv2 . Given two complex polynomials Q1 and Q2, sat-

isfying the following bounds on the valuation and degree, vi 6 valQi and degQi 6 di,
i = 1, 2, we shall denote by R(Q1, v1, d1, Q2, v2, d2) the resultant of the polynomials Q1/Y

v1

and Q2/Y
v2 with respective degrees d1 − v1 and d2 − v2. Since Pb and Q are polyno-

mials, the coefficients of which are polynomials in the parameters (ak)ij , their resultant
R(Pb, v1, d1, Q, v2, d2) = R(Pb, valPB,degPB, Pb(s)(t) , valPB(s)(t)

, degPB(s)(t)
) is a polynomial

expression in the parameters (ak)ij , that we shall denote by Rb,s,t(a). From the above re-
marks, Q(λ) = 0 implies that Rb,s,t(a) = 0. Therefore, the condition Rb,s,t(a) 6= 0 for all
s, t ∈ [n] would imply that all the entries of the right and left eigenvectors z and w of b are
nonzero. If all the polynomials Rb,s,t, with s, t ∈ [n], are nonzero, then the former condition
would define a generic condition, and so, we would obtain that for generic values of the pa-
rameters (ak)ij , the entries of any right and left eigenvectors z and w of b associated to a
nonzero simple eigenvalue are nonzero, hence the conclusion of the theorem.

To show that the polynomial Rb,s,t, with s, t ∈ [n], is nonzero, we need to prove that there
exists some parameters (ak)ij such that Rb,s,t(a) 6= 0. Moreover, Rb,s,t(a) 6= 0 in particular
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when

valPb(s)(t) = valPB(s)(t)
, (4.7a)

degPb(s)(t) = degPB(s)(t)
, and (4.7b)

Pb(s)(t) and Pb have no common nonzero roots. (4.7c)

In the sequel, we fix the degree d, and we shall show, by induction on the size n, that for all
n× n matrix polynomials b of degree d as in the theorem (so all graphs G0, . . . , Gd satisfying
the conditions of the theorem), and for all s, t ∈ [n], there exist some parameters (ak)ij (or a
n× n matrix polynomials a of degree d), such that (4.7) holds. This property holds trivially
for n = 1, with the convention that an empty matrix has a determinant equal to 1, since then
Pb(s)(t) has no root.

To show the induction, we now assume that the latter property holds for all sizes 6 n−1.
Let us show under this assumption that the latter property is true for size n. For this, we
consider a n × n matrix polynomials b of degree d as in the theorem, and indices s, t ∈ [n],
and we shall exhibit parameters (ak)ij satisfying (4.7). Applying the same permutation τ on
rows and columns of b and a changes the graph G into Gτ,τ−1 which has the same properties
as G. Exchanging t and n, we are reduced to prove the above result for t = n.

Assume first that either s = n or (s, t = n) is an arc of G. In the second case, there exists
a permutation of G such that σ(s) = t. Applying the permutation σ−1 on rows of b and
a changes the graph G into the graph Gσ−1,id which satisfies the same properties as G, by
Lemma 4.12. Since the properties (4.7) for b and (s, t) are equivalent to the same properties
for the new b and (n, n), we are reduced to prove the above result for t = s = n. Let G′ be
the restriction of G to [n− 1]× [n− 1]. The graph G′ contains all loops, but is not in general
strongly connected. Let S denote the set of strongly connected components of G′, I denote
the set of initial strongly connected components of G′, that is the set of c ∈ S such that there
is no arc from c′ ∈ S, c′ 6= c (or from [n− 1] \ c) to c, and F denote the set of the final ones,
that is the set of c ∈ S such that there is no arc from c to c′ ∈ S, c′ 6= c. We have:

Pb(n)(n)(Y) =
∏
c∈S

Pbcc(Y) , (4.8)

so that the set of roots of Pb(n)(n) is the union of the sets of roots of the polynomials Pbcc .

For any c ∈ I, there exists an arc from n to some node jc of c. Indeed, since G is strongly
connected, for any j ∈ I, there is a path from n to j, and since c is an initial strongly
connected components of G′, this path does not pass through [n − 1] \ c, hence the first arc
of this path is of the form (n, jc) with jc ∈ c. Moreover, since G = ∪dk=0Gk, there exists
kc ∈ {0, . . . , d} such that (n, jc) ∈ Gkc . Similarly, for any c ∈ F , there exists an arc from
some node ic of c to n and kc ∈ {0, . . . , d} such that (ic, n) ∈ Gkc . Let us fix some of the
parameters (ak)ij , by taking (ak)ij = 0 for k = 0, . . . , d, and either i = n and j 6∈ {jc | c ∈ I},
or j = n and i 6∈ {ic | c ∈ F}, for i = n, j = jc and k 6= kc with c ∈ I, and for i = ic, j = n
and k 6= kc with c ∈ F . Then

Pb(Y) =
∑

c∈I, c′∈F
(akc)njc(akc′ )ic′nY

kc+kc′ (−1)jc+ic−1 det((b(n)(jc))(ic′ )(n)(Y)), (4.9)

and det((b(n)(jc))(ic′ )(n)(Y)) = det((b(n)(n))(ic′ )(jc)
(Y)).
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The latter expression is the sum of the (signed) weights of the bijections from [n−1]\{ic′}
to [n− 1] \ {jc}. So it is nonzero if and only if there exists a permutation σ in G′ ∪ {(ic′ , jc)}
such that σ(ic′) = jc. Since G′ contains all loops, this is equivalent to the condition that
there is a path in G′ from jc to ic′ . For any c ∈ I and c′ ∈ F , let us denote by Sc,c′ the set
of nodes i ∈ [n − 1] such that there is a path from c to i and a path from i to c′ in G′, an
let S′c,c′ = [n − 1] \ Sc,c′ . If Sc.c′ is empty, we get that there is no path from c to c′, and so
det((b(n)(n))(ic′ )(jc)

(Y)) = 0.

Let c, c′ be such that Sc.c′ is non empty. One can show that

det((b(n)(jc))(ic′ )(n)(Y)) = det((b(n)(n))(ic′ )(jc)
(Y))

= det(bS′
c,c′ ,S

′
c,c′

(Y)) det((bSc,c′ ,S′c,c′
)(ic′ )(jc)

(Y))

=
∏

c′′∈S, c′′⊂S′
c,c′

Pbc′′c′′ (Y)) det((bSc,c′ ,Sc,c′ )(ic′ )(jc)
(Y)) . (4.10)

Using (4.8), we get that Pb(n)(n)(Y) =
∏
c′′∈S, c′′⊂S′

c,c′
det(bc′′c′′(Y)) det(bSc,c′ ,Sc,c′ (Y)). Then

λ 6= 0 is a common root of Pb(n)(n) and det((b(n)(jc))(ic′ )(n)(Y)) if and only if either it is a
root of some Pbc′′c′′ with c′′ ∈ S, c′′ ⊂ S′c,c′ , or it is a common root of det(bSc,c′ ,Sc,c′ (Y)) and
det((bSc,c′ ,Sc,c′ )(ic′ )(jc)

(Y)).

Since c is initial and c′ is final, there is no arc (ic′ , jc) in G′. We shall denote by b̃cc′ the
matrix polynomial bSc,c′ ,Sc,c′ in which we add a parameter α (a polynomial of degree 0) in

position (ic′ , jc). Then (bSc,c′ ,Sc,c′ )(ic′ )(jc)
= (b̃cc′)(ic′ )(jc)

and det(b̃cc′(Y)) = det(bSc,c′ ,Sc,c′ (Y))±
α det((b̃cc′)(ic′ )(jc)

(Y)). So when α 6= 0, λ is common eigenvalue of bSc,c′ ,Sc,c′ and (bSc,c′ ,Sc,c′ )(ic′ )(jc)

if and only if λ is common eigenvalue of b̃cc′ and (b̃cc′)(ic′ )(jc)
. Let Gcc

′
k be the restriction of

the graph Gk to the set of nodes Sc,c′ , and let us add the arc (ic′ , jc) to Gcc
′

0 . Define also
Gcc

′
= ∪dk=0G

cc′
k . From the definition of Sc,c′ , G

cc′ is strongly connected. Moreover, since G′

contains all loops, so does Gcc
′
. Denoting by ã the matrix polynomial aSc,c′ ,Sc,c′ , and denoting

α = (ã0)ic′jc , we get that the matrix b̃cc′ satisfies the conditions of the theorem with the

graphs Gcc
′

k and the matrix ã, and has a size 6 n − 1. Applying the induction assumption,
there exists some parameters some parameters (ãk)ij such that (4.7) holds for b̃cc′ , s = ic′ , and
t = jc. Therefore the polynomial Rb̃cc′ ,ic′ ,jc

(ã) 6= 0. Since ã depends only on the restriction

of a to [n− 1]× [n− 1], and since the constraint α 6= 0 does not change the genericity, we get
that for generic values of the parameters (ak)ij , i, j ∈ [n− 1], there is no common eigenvalue
of bSc,c′ ,Sc,c′ and (bSc,c′ ,Sc,c′ )(ic′ )(jc)

.

We know that for generic values of the parameters (ak)ij , i, j ∈ [n−1], the properties (4.7a)
and (4.7b) hold for s = t = n, and the eigenvalues of b(n)(n) are all simple. So applying the
latter property to all c ∈ I and c′ ∈ F such that Sc.c′ is non empty, we can choose the
parameters (ak)ij , i, j ∈ [n − 1] so that (4.7a) and (4.7b) hold for s = t = n, the nonzero
eigenvalues λ1, . . . , λm (with m = degPb(n)(n) = valPb(n)(n)) of b(n)(n) are all simple, and there
is no common eigenvalue of bSc,c′ ,Sc,c′ and (bSc,c′ ,Sc,c′ )(ic′ )(jc)

for all c ∈ I and c′ ∈ F such that
Sc.c′ is non empty. Let these parameters be fixed and λ = λk for some k ∈ [m]. From (4.9)
and (4.10), we have

Pb(λ) =
∑

c∈I, c′∈F ,Sc.c′ 6=∅

(akc)njc(akc′ )ic′nξcc′ ,
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with
ξcc′ = λkc+kc′ (−1)jc+ic−1

∏
c′′∈S, c′′⊂S′

c,c′

Pbc′′c′′ (λ) det((bSc,c′ ,Sc,c′ )(ic′ )(jc)
(λ)) .

Since λ is a simple root of b(n)(n), there exists one and only one c′′ ∈ S such that Pbc′′c′′ (λ) = 0.
Moreover, by definition of initial and final strongly connected components, there exists c ∈ I
and c′ ∈ F such that c′′ ⊂ Sc.c′ . In that case, Sc.c′ is nonempty, and λ is an eigenvalue of
bSc,c′ ,Sc,c′ and since there is no common eigenvalue of bSc,c′ ,Sc,c′ and (bSc,c′ ,Sc,c′ )(ic′ )(jc)

, we get
that det((bSc,c′ ,Sc,c′ )(ic′ )(jc)

(λ)). Moreover, c′′ 6∈ S′c,c′ , so
∏
c′′∈S, c′′⊂S′

c,c′
Pbc′′c′′ (λ)) 6= 0. Since

also λ 6= 0, we get that ξcc′ 6= 0. Then, for each λ, Pb(λ) is a nonzero polynomial expression
in the parameters (ak)nj and (ak)in, with i, j ∈ [n]. We thus can choose the parameters
(ak)nj and (ak)in, with i, j ∈ [n], in such a way that all these polynomial expressions are
nonzero. This implies that the polynomials Pb(n)(n) and Pb have no common nonzero roots,
that is (4.7c). This shows that for these parameters (4.7) holds for s = t = n, and proves the
induction in the case where (s, t = n) is an arc of G.

Assume now that (s, t = n) is not an arc of G. Since G is strongly connected, there
exists a path i0 = n, . . . , ik = s in G from n to s. Let σ be the cyclic permutation
(i0, . . . , ik, i0). Although, this is not a permutation of G, the graph Gσ−1,id is strongly con-
nected, by Lemma 4.12. Moreover, since G contains all loops and the arcs of the path
i0 = n, . . . , ik = s, we get that Gσ−1,id contains the loops (i, i) with i ∈ [n − 1]. Defining G′

as before, that is G′ is the restriction of G to [n − 1] × [n − 1], we get that G′ contains all
loops. Since the above proof uses only the properties that G′ contains all loops, and that G
is strongly connected, it applies also in the present case, and so the induction is proved in all
cases.

Using Theorems 4.13 and 4.15, we deduce:

Corollary 4.16. Let A, A, a, γ, (U, V ), G be as in Theorem 4.13 and denote b := a(γ,G).
Assume that the identity map is an optimal permutation of Â(γ), and that G is strongly
connected. Let λ be a nonzero simple eigenvalue of b, let l be an eigenvalue of A with first
order asymptotics lε ∼ λε−γ, as in Theorem 4.2, and let z and w be associated right and left
eigenvectors of A as in Theorem 4.13. Then, for generic values of the parameters (ak)ij, the
entries of z and w have first order asymptotics:

(zε)i ∼ ziεVi , (yε)i ∼ wiεUi , i ∈ [n] ,

where z and w are right and left eigenvectors of b with nonzero entries.

Corollary 4.17. Let A, A, a, γ, (U, V ), G be as in Theorem 4.13 and denote b := a(γ,G).
Assume that the identity map is an optimal permutation of Â(γ). Let c be a strongly connected
component of G such that γ is an eigenvalue of the restricted matrix polynomial Acc with
multiplicity mc. Then, for generic values of the parameters (ak)ij, the matrix polynomial bcc
has exactly mc nonzero simple eigenvalues. Any such an eigenvalue λ of bcc is necessarily
an eigenvalue of b. Moreover, for generic values of the parameters (ak)ij, any right and left
eigenvectors z and w of b for the eigenvalue λ are such that their restrictions to c, zc and wc,
are right and left eigenvectors of bcc with nonzero entries.

Proof. Let Aε, A, γ, (U, V ), G, b, c and mc be as in the corollary. Let also mγ be the multiplic-
ity of γ for the matrix polynomial A. From Theorems 4.2 and 4.13, for generic values of the
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parameters (ak)ij , the matrix polynomial b is regular, it has exactly mγ nonzero eigenvalues
λ1, . . . , λmγ , and all these nonzero eigenvalues are simple. Also, the matrix polynomial Aε has
mγ simple nonzero eigenvalues lε,1, . . . , lε,mγ with first order asymptotics lε,i ∼ λiε

−γ . More-
over, applying also Theorem 4.2 to the restricted matrix polynomial (Aε)cc, we obtain that,
for generic values of the parameters (ak)ij , bcc has exactly mc nonzero eigenvalues (counted
with multiplicities), and that 0 is an eigenvalue of bcc if and only if m′c > 0 and then its
multiplicity is m′c, where m′c is the sum of the multiplicities of the tropical eigenvalues of Acc
smaller than γ (−∞ included), putting m′c = 0 if no such eigenvalues exist. The nonzero
eigenvalues of bcc belong necessarily to the set of eigenvalues of b, and then are simple.

When λ is a nonzero simple eigenvalue of bcc and also a simple eigenvalue of b as above,
and z and w are right and left eigenvectors b for b, we have, that their restriction to c, zc
and wc are right and left eigenvectors of bcc. Indeed, we can find a permutation τ such that
applying the same permutation τ on rows and columns of the matrix polynomials A, A and
a, we obtain that the nodes of the strongly connected components c1, . . . , cq of G are ordered
from initial to final components: if (i, j) is an arc of G, i ∈ ck and j ∈ c` then k 6 `. Then
b is block upper triangular with blocks equal to bc1c1 , . . . , bcqcq , and there exists 1 6 k 6 q
such that c = ck. Since λ is a simple eigenvalue of b, it is the eigenvalue of the c × c block
only. Therefore, zc` = 0 for all ` > k and zc is a right eigenvector of bcc for the eigenvalue λ.
Similarly, wc` = 0 for all ` < k and wc is a left eigenvector of bcc for the eigenvalue λ.

Since zc and wc only depend on the restriction of the matrix polynomials a and A to c×c,
and c is a strongly connected component of G, we can reduce the proof of the last assertion
to the case where c = [n] and G is strongly connected, containing the identity permutation,
hence the loops. The matrix polynomial b depends only on the parameters (ak)ij and on

the graphs Gk = Gk(A, γ) ∩ G, 0 6 k 6 d, since b = aG0
0 + YaG1

1 + · · · + YdaGdd . Moreover
∪dk=0Gk = G, so that a, b and the graphs Gk satisfy the assumptions of Theorem 4.15, and
the result of the corollary follows from this theorem.

Remark 4.2. Note that the same type of result holds without the assumption that the identity
map is an optimal permutation of Â(γ). For this, consider a strongly connected component
c of Gσ−1,id, the restriction of matrix polynomials to the arcs in σ−1(c) × c instead of c × c,
and wσ−1(c) instead of wc.

4.4 Asymptotics of eigenvalue condition numbers

We recall that the condition number of a complex matrix polynomial A =
∑d

k=0AkYk ∈
C[Y]n×n for the simple nonzero eigenvalue l , with respect to relative errors is equal to [Tis00,
Theorem 5]:

κ(A, l ) =
‖w‖2‖z‖2(

∑d
k=0 ‖Ak‖|l |k)

|l ||wA′(l )z|
, (4.11)

where z ∈ Cn and w ∈ (Cn)∗ are respectively right and left eigenvectors of A, and A′ denotes
the derivative of the matrix polynomial with respect to Y. Here ‖ · ‖2 is the Euclidean norm,
and for any matrix A ∈ Cn×m, we denote by ‖A‖ the norm relative to the vectorial Euclidean
norms on Cn and Cm: ‖A‖ = max{‖Av‖2 | v ∈ Cm, ‖v‖2 = 1}. Then, for all ε > 0 small
enough, the condition number formula can be applied to the matrix polynomial Aε and an
eigenvalue lε.
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Theorem 4.18. Let us use the notations and assumptions of Theorem 4.13. In particular,
let a(γ,G) be regular, λ be a simple nonzero eigenvalue of a(γ,G), and mε be a simple eigenvalue
of Bε such that limε→0 mε = λ. Then, we have

lim
ε→0

κ(Bε,mε) = κ(a(γ,G), λ) .

Proof. This is immediate using Theorem 4.13. Indeed limε→0 Bε = a(γ,G) means that Bε =∑d
k=0 Bε,kYk and that limε→0 Bε,k = a

(γ,G)
k = aGkk . Then, if λ = limε→0 mε, we have limε→0 B′ε(mε) =

(a(γ,G))′(λ). Choosing right and left eigenvectors xε and yε of Bε as in Theorem 4.13, we get
that all terms in the expression κ(Bε,mε) have a limit which correspond to the same term
in the expression of κ(a(γ,G), λ) defined using the limits z, w of xε and yε. This shows the
convergence of the eigenvalue condition number.

For any matrix A ∈ Cn×n and any subsets I, J of [n], we denote by AIJ the I × J
submatrix of A, AIJ = (Aij)i∈I,j∈J . Similarly, for any vector v ∈ Cn, vI denotes the vector
vI = (vi)i∈I ∈ CI .

Theorem 4.19. Let us use the notations and assumptions of Theorem 4.13. In particular
let G = Sat(Â(γ), U, V ) for some Hungarian pair (U, V ) with respect to Â(γ), let a(γ,G) be
regular, and let λ be a simple nonzero eigenvalue of a(γ,G). Then

κ(a(γ,G), λ) > κ(a(γ,Opt(Â(γ))), λ) ,

and the inequality is an equality for any Hungarian pair satisfying Sat(Â(γ), U, V ) = Opt(Â(γ))
as in Corollary 4.11.

Proof. Let σ ∈ Sn be an optimal permutation of Â(γ). Then, by Corollary 4.5, the identity is
an optimal permutation of P σ

−1

m Â(γ). By multiplying the matrix polynomial Aε by P σ
−1

on
the left, we do the same on a(γ,G) and we multiply the tropical matrix polynomial A by P σ

−1

m ,
and left eigenvectors are multiplied on the right by P σ. Since this does not change the 2-norm,
it is sufficient to prove the result in the case where the identity is an optimal permutation of
Â(γ). Then, by Proposition 4.7, Opt(Â(γ)) is the disjoint union of the strongly connected
components of G. Also, as in the proof of Corollary 4.17, we can find another permutation τ
such that applying the same permutation τ on rows and columns of the matrix polynomials
A, A and a, we obtain that the nodes of the strongly connected components c1, . . . , cm of G
are ordered from initial to final components: if (i, j) is an arc of G, i ∈ ck and j ∈ c` then
k 6 `. Then a(γ,G) is block upper triangular with blocks of sizes |c1|, . . . , |cm|, where |c| is the

size of the set c. Moreover, a(γ,Opt(Â(γ)) corresponds to the block diagonal part of a(γ,G).
So it is sufficient to prove that for any matrix polynomials a and b such that a is block

upper triangular and b corresponds to the block diagonal part of a, and any simple nonzero
eigenvalue λ of a or equivalently of b, we have κ(a, λ) > κ(b, λ), which is an easy consequence
of (4.11) formula. Indeed, let us denote by aij and bij the blocks of a and b, with i, j ∈ [m],
so that aij = 0 for i > j, bij = 0 for i 6= j and aii = bii. Since λ is simple, there exists
a unique i ∈ [m] such that λ is an eigenvalue of the block aii = bii. Let z and w be right
and left eigenvectors of a with respect to λ, and for all j ∈ [m], let us denote by zj and wj

the restriction of z and w to the block j. Then necessarily z` = 0 for ` > i, and w` = 0
for ` < i. Moreover zi and wi are right and left eigenvectors of aii. This implies that
|wa′(λ)z| = |wi(aii)′(λ)zi|. If now z̃ and w̃ are right and left eigenvectors of b, we get that
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z̃` = 0 and w̃` = 0 for ` 6= i, and that z̃i and w̃i are right and left eigenvectors of bii = aii.
Since λ is a simple eigenvalue of aii, we have z̃i = zi and w̃i = wi, up to a multiplicative
constant. This implies that |wa′(λ)z| = |w̃b′(λ)z̃|. Since bk is equal to the block diagonal
part of ak, we get that ‖bk‖ 6 ‖ak‖. Indeed, it is easy to see that ‖bk‖ = maxi∈[m] ‖biik ‖, and

that ‖ak‖ > maxi,j∈[m] ‖a
ij
k ‖ > maxi∈[m] ‖aiik ‖. Moreover, z̃i = zi and z̃` = 0 for ` 6= i, hence

‖z̃‖2 6 ‖z‖2. The same holds for w̃ and w, so that we get that

κ(a, λ) =
‖w‖2‖z‖2(

∑d
k=0 ‖ak‖|λ|k)

|λ||wb′(λ)z|
>
‖w̃‖2‖z̃‖2(

∑d
k=0 ‖bk‖|λ|k)

|λ||w̃b′(λ)z̃|
= κ(b, λ) .

Theorem 4.20. Let us use the notation and assumptions of Theorem 4.13. In particular
let γ be a finite eigenvalue of A, (U, V ) be any Hungarian pair with respect to Â(γ), G =
Sat(Â(γ), U, V ), assume that b := a(γ,G) is regular, and let λ be a simple nonzero eigenvalue
of b, z and w be respectively right and left eigenvectors of a(γ,G) for the eigenvalue λ, and lε
be an eigenvalue of Aε such that lε ∼ λε−γ.

Denote

δ := min
i∈[n],wi 6=0

Ui + min
j∈[n],zj 6=0

Vj − max
i,j∈[n],k=0,...,d,(bk)ij 6=0

(Ui + Vj) . (4.12)

Then δ 6 0 and
lim inf
ε→0

(κ(Aε, lε)ε−δ) > 0 .

Proof. From Theorem 4.13, there exist right and left eigenvectors z ∈ Cn and w ∈ (Cn)∗ of
A for the eigenvalue l , such that x = dε(V )z and y = w dε(U) are right and left eigenvectors
of B for the simple eigenvalue m = l εγ , and

z = lim
ε→0

xε, w = lim
ε→0

yε . (4.13)

We have:

κ(Aε, lε) =
‖wε‖2‖zε‖2(

∑d
k=0 ‖Ak,ε‖|lε|k)

|lε||wεA′ε(lε)zε|

=
‖yε dε(−U)‖2‖ dε(−V )xε‖2(

∑d
k=0 ‖ dε(U)Bk,ε dε(V )‖|mε|k)

|mε||yεB′ε(mε)xε|

= κ(Bε,mε)
Kε

Qε
,

with

Kε :=‖yε dε(−U)‖2‖ dε(−V )xε‖2

(
d∑

k=0

‖ dε(U)Bk,ε dε(V )‖|mε|k
)

,

Qε :=‖yε‖2‖xε‖2(

d∑
k=0

‖Bk,ε‖|mε|k) .

From Theorem 4.18, κ(Bε,mε) has a limit equal to κ(b, λ) and from Theorem 4.13 and (4.13),
Qε has a limit equal to ‖w‖2‖z‖2(

∑d
k=0 ‖bk‖|λ|k). These two limits are finite and nonzero
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since b is regular and λ is a simple nonzero root of b. Let us lower bound Kε. Since ‖z‖2 > |zi|
for all z ∈ Cn, and i ∈ [n], and similarly ‖a‖ > |aij | for all a ∈ Cn×n and i, j ∈ [n], we deduce
that for all i, j, i′, j′ ∈ [n], and k = 0, . . . , d, we have

Kε > |(yε)i|εUiεVj |(xε)j |ε−Ui′ |(Bk,ε)i′j′ |ε−Vj′ |mε|k

= εUi+Vj−Ui′−Vj′ |(yε)i||(xε)j ||(Bk,ε)i′j′ ||mε|k .

Let δ be as in (4.12). Since z and w are different from zero (they are eigenvectors), the
minimum in the expression of δ is nonempty so is finite. Moreover, since b is not identically
zero, then there exists k = 0, . . . , d such that bk is non zero, hence there exists i, j ∈ [n] such
that (bk)ij 6= 0. This shows that the maximum in the expression of δ is nonempty so is finite,
and δ is finite. Let us show that δ 6 0. Indeed, since λ is a simple eigenvalue of b, we get
that wb′(λ)z 6= 0. Since wb′(λ)z =

∑
i,j∈[n]

∑
k∈[d](wi(bk)ijkλ

k−1zj), there exists i, j ∈ [n] and
k ∈ [d] such that wi 6= 0, zj 6= 0 and (bk)ij 6= 0. Then, from the expression of δ in (4.12), we
get that δ 6 Ui + Vj − (Ui + Vj) = 0, which gives the result.

Let us now take i, j realizing the minimum in the expression of δ in (4.12) and i′, j′, k
realizing the maximum. We get that

Kεε
−δ > |(yε)ij ||(xε)j ||(Bk,ε)i′j′ ||mε|k ,

and passing to the limit, we obtain:

lim inf
ε→0

Kεε
−δ > |wi||zj ||(bk)i′j′ ||λ|k ,

which is different from 0 by the definition of i, j and i′, j′, k. This implies the assertion of the
theorem: lim infε→0(κ(Aε, lε)ε−δ) > 0.

Corollary 4.21. Let us use the notations and assumptions of Theorem 4.20. Assume also
that (4.6) holds. Then, we have:

δ = min
i∈[n],wi 6=0

Ui + min
j∈[n],zj 6=0

Vj − max
(i,j)∈G

(Ui + Vj) . (4.14)

Moreover, assume that the identity is an optimal permutation of Â(γ) and that c is the set of
nodes of the strongly connected component of G such that λ is an eigenvalue of bcc. Then zc
and wc are respectively right and left eigenvectors of bcc for the eigenvalue λ. If all coordinates
of zc and wc are non zero, and if either Uc or Vc is a non constant vector, then δ < 0 and so

lim inf
ε→0

κ(Aε, lε) = +∞ .

Proof. Assume that (4.6) holds. By the arguments of Remark 4.1, any arc (i, j) of G is
such that bij is not identically equal to 0, or equivalently that there exists k = 0, . . . , d with
(bk)ij 6= 0. Since bij = 0 if (i, j) is not an arc of G, we get that the maximum in the
expression of δ in (4.12) is equal to the maximum over all arcs (i, j) of G, hence δ is equal to
the expression in (4.14).

Assume in addition that the identity is an optimal permutation of Â(γ) and that c is the
set of nodes of the strongly connected component of G such that λ is an eigenvalue of bcc.
Then by Corollary 4.17, zc and wc are respectively right and left eigenvectors of bcc for the
eigenvalue λ.
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Now, restricting the max and min in (4.14) to nodes in c, and denoting byGc the restriction
of G to the nodes in c, we always get the following upper bound for δ:

δ 6 min
i∈c,wi 6=0

Ui + min
j∈c,zj 6=0

Vj − max
(i,j)∈Gc

(Ui + Vj) .

If zc and wc have all their coordinates different from 0, the previous expression reduces to:

δ 6 min
i∈c

Ui + min
j∈c

Vj − max
(i,j)∈Gc

(Ui + Vj) .

Assume also that Uc or Vc is not constant, and by contradiction that δ = 0. Then Ui′ +Vj′ 6
Ui + Vj , for all (i′, j′) ∈ Gc and i, j ∈ c. Since the identity is an optimal permutation of

Â(λ), we get that (i, i) ∈ Gc for all i ∈ c. Hence, Taking j′ = i′ = j, we get that Ui′ 6 Ui,
for all i, i′ ∈ c, hence Uc is a constant vector. Similarly Vc is a constant vector, which leads
to a contradiction. This concludes the proof of δ < 0. Then the last assertion follows from
Theorem 4.20.

The following result gives restrictions on the connected component c in Corollary 4.21.

Lemma 4.22. Let us use the notations and assumptions of Theorem 4.13, and assume that
the identity is an optimal permutation of Â(γ). For all strongly connected components c of
G, let mc be the multiplicity of the eigenvalue γ of the restricted tropical matrix polynomial
Acc, where by convention mc = 0 when γ is not an eigenvalue. Then there exists c such that
mc 6= 0 and the multiplicity of the eigenvalue γ of A is equal to the sum of the multiplicities
mc, for all the strongly connected components c of G. Moreover, for all strongly connected
components c of G, such that bcc has a nonzero eigenvalue λ, we have mc > 0.

Proof. By continuity, for γ′ close to γ, the set of optimal permutations of Â(γ′) is included in
the set of optimal permutations of Â(γ), hence Opt(Â(γ′)) ⊂ Opt(Â(γ)). Since, by Proposi-
tion 4.7, Opt(Â(γ)) is the disjoint union of the strongly connected components of G, we get

that for γ′ close to γ, per(Â(γ′)) =
∏
c per(Âcc(γ

′)), where the product is over all strongly
connected components c of G. Then γ is an eigenvalue of A if and only if it is an eigenvalue
of Acc for some c and then its multiplicity is equal to the sum of the multiplicities mc of γ
for Acc.

If now, mc = 0 for some strongly connected components of G, that is if γ is not an
eigenvalue of Acc, then the maximum in the tropical polynomial expression of per(Âcc(γ)) is
attained in an unique monomial. If k is the degree of this monomial, we also get that the
matrix polynomial bcc is such that det(bcc) is a monomial of degree k. This implies that bcc
has no nonzero eigenvalues, which shows the last assertion of the lemma.

Corollary 4.23. Let A be a regular matrix polynomial over C as in (4.1) satisfying (4.2)
and denote by A the tropical matrix polynomial (4.3) with coefficients Ak as in (4.2). Let
γ be a finite algebraic eigenvalue of A, let (U, V ) be a Hungarian pair with respect to Â(γ).
and denote G = Sat(Â(γ), U, V ), and b = a(γ,G). Assume that the identity map is an optimal
permutation of Â(γ). Let c be a strongly connected component of G such that γ is an eigenvalue
of the restricted matrix polynomial Acc with multiplicity mc, and either Uc or Vc is a non
constant vector. Then, for generic values of the parameters (ak)ij, the matrix polynomial bcc
has exactly mc nonzero simple eigenvalues. Any such an eigenvalue λ of bcc is necessarily
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an eigenvalue of b, and for ε small enough, the matrix polynomial Aε has a simple nonzero
eigenvalue lε ∼ λε−γ, and, for generic values of the parameters (ak)ij, it satisfies

lim inf
ε→0

κ(Aε, lε) = +∞ .

Proof. The first part of the corollary follows from the first part of Corollary 4.17. The last
assertion of Corollary 4.17 shows that, for generic values of the parameters (ak)ij , any right
and left eigenvectors z and w of b for a nonzero simple eigenvalue λ of bcc are such that all
the entries of zc and wc are nonzero. Then, by Corollary 4.21 and the assumption that either
Uc or Vc is a non constant vector, we get that lim infε→0 κ(Aε, lε) = +∞.

Remark 4.3. Note that the same type of result holds without the assumption that the identity
map is an optimal permutation of Â(γ). For this, consider a strongly connected component
c of Gσ−1,id, the restriction of matrix polynomials to the arcs in σ−1(c) × c instead of c × c,
and the restriction of U to σ−1(c) instead of c.

Example 4.4. We give now an example where the above genericity condition does not hold
and showing that the assumption in Corollary 4.21 that all coordinates of zc and wc are non
zero is necessary to get the conclusion. Let us consider the following linear matrix polynomial
with dimension n = 3, depending on the parameter ε and also on another parameter δ > 0
which will be chosen close to 0:

A =

(Y − δ)ε2 ε ε
ε Y − δ 0
ε 0 Y − δ

 =

−δε2 ε ε
ε −δ 0
ε 0 −δ

+ Y

ε2 0 0
0 1 0
0 0 1

 .

We have PA(Y) = ε2(Y− δ)((Y− δ)2 − 2), so the eigenvalues of A are independent of ε, they
are equal to δ and δ ±

√
2 and they are simple. Let us study the condition number of the

eigenvalue δ. We have

A(δ) =

0 ε ε
ε 0 0
ε 0 0

 ,

so that the vectors z and w such that zT = w =
[
0 1 −1

]
are right and left eigenvectors

of A for the eigenvalue δ. We have

κ(Aε, δ) =
‖(Aε)0‖+ δ‖(Aε)1‖

δ
,

and

lim
ε→0

κ(Aε, δ) =

∥∥∥∥∥∥
0 0 0

0 −δ 0
0 0 −δ

∥∥∥∥∥∥+ δ

∥∥∥∥∥∥
0 0 0

0 1 0
0 0 1

∥∥∥∥∥∥
δ

= 2 .

Let us construct the scaling of Theorem 4.13. The tropical matrix polynomial associated to
A is given by:

A =

−2 −1 −1
−1 0 −∞
−1 −∞ 0

⊕ Y

 −2 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

 .
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It has a unique eigenvalue 1 = 0 with multiplicity 3, and:

Â(1) =

−2 −1 −1
−1 0 −∞
−1 −∞ 0

 .

A Hungarian pair (U, V ) for Â(1) is given by U = V =
[
−1 0 0

]
, and the graph G =

Sat(Â(1), U, V ) of Theorem 4.13 contains the identity permutation and is strongly connected.
The scaling of Theorem 4.13 leads to the scaled matrix polynomial:

B =

(Y − δ) 1 1
1 Y − δ 0
1 0 Y − δ

 =

−δ 1 1
1 −δ 0
1 0 −δ

+ Y

1 0 0
0 1 0
0 0 1

 .

This matrix polynomial does not depend on ε, and the above vectors z and w are still right
and left eigenvectors of B for the eigenvalue δ. Computing the condition number, we get:

κ(Bε, δ) =
‖(Bε)0‖+ δ‖(Bε)1‖

δ
>

√
2

δ
.

Then, for lε = δ = mε and δ small, not only the property limε→0 κ(Aε, lε) =∞ fails, but also
κ(Bε,mε) is much larger than κ(Aε, lε), which means that in this case the scaling will diminish
the efficiency of the computations.

4.5 Some general bounds on eigenvalue condition numbers

The previous results show the behavior of the eigenvalue condition numbers of matrix poly-
nomials depending on the parameter ε, when ε goes to 0. Here we shall describe the behavior
of these condition numbers when ε is in the order of 1. In particular, we shall compare the
condition numbers before and after a diagonal scaling similar to the one considered in previ-
ous section and obtain bounds similar to the ones used in Theorem 4.20. We shall see that
these scalings and bounds can also be used in the context of matrix polynomials depending
on the parameter ε, leading to some improvements of the previous results.

We consider now a matrix polynomial

A = A0 + YA1 + · · ·+ YdAd , (4.15)

where Y is an indeterminate, and for every 0 6 k 6 d, Ak ∈ Cn×n. For any scalar, vec-
tor, matrix, polynomial or matrix polynomial x with complex coefficients, we shall denote
by v(x) the tropical scalar, vector, matrix, polynomial or matrix polynomial obtained by
applying the logarithm of the absolute value entrywise or coordinatewise. In particular
v(X) = (log |Xij |)i,j=1,...,n ∈ Rn×nmax when X = (Xij)i,j=1,...,n ∈ Cn×n, and

v(A) = v(A0)⊕ Y v(A1)⊕ · · · ⊕ Yd v(Ad) .

In the sequel, we shall use the following notations. For any U ∈ Rn, we denote by d(U)
the diagonal n × n complex matrix such that (d(U))ii = exp(Ui) (and (d(U))ij = 0 for
i 6= j). Then d(U) is invertible (in Cn×n) and d(U)−1 = d(−U). Note that formally, we have
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d(U) = dε(U) for ε = e−1, but this time d(U) is a constant matrix, whereas dε(U) was a
matrix valued continuous function of the parameter ε.

For any vectors x ∈ Rp, p > 1, we denote by:

‖x‖∞ = max(|x1|, . . . , |xp|) , (4.16a)

|x|H = max(x1, . . . , xp)−min(x1, . . . , xp) , (4.16b)

respectively for the sup-norm and for the Hilbert’s seminorm (also called Hopf’s oscillation)
of x. We shall also use the notations:

T (x) := max(max(|x1|, . . . , |xp|),
1

min(|x1|, . . . , |xp|)
) = exp(‖ v(x)‖∞) , (4.17a)

H(x) :=
max(|x1|, . . . , |xp|)
min(|x1|, . . . , |xp|)

= exp(| v(x)|H) , (4.17b)

with the convention that T (x) = H(x) = +∞ if some entries of x are zero. The latter
scalars are respectively the exponentials of the Thompson and Hilbert distances of the vector
(|xi|)i∈[p] to the vector 1 of Rp. Then, if U ∈ Rp, and eU denotes the vector of Rp with

i-th entry eUi , we have T (eU ) = exp(‖U‖∞) and H(eU ) = exp(|U |H). When x ∈ Rp has
zero entries, and S ⊂ [p] is the support of x, that is the set of i ∈ [p] such that xi 6= 0,
we shall also use the notation Hsu(x) for H(xS). In the sequel, we shall use T for scalars
only: T (a) = max(|a|, 1/|a|). The Hilbert’s seminorm | · |H will be used for additive objects,
such as the Hungarian pairs, whereas H and Hsu will be used on complex vectors such as the
eigenvectors of a complex matrix polynomial, or the matrix polynomial itself.

In the sequel, we shall consider the following diagonal scaling of the matrix polynomial A.

Lemma 4.24. Let A be a regular complex matrix polynomial as in (4.15), and let us consider
the tropical matrix polynomial A := v(A). Then A is regular. Let γ be any finite eigenvalue
of A, (U, V ) be any Hungarian pair with respect to Â(γ), denote G = Sat(Â(γ), U, V ), and
consider the scaled matrix polynomial

B = d(−U)A(eγY) d(−V ) .

Then |(Bk)ij | 6 1 for all i, j = 1, . . . , n and k = 0, . . . , d. Moreover, for 0 6 k 6 d, we have

|(Bk)ij | = 1 ∀(i, j) ∈ Gk = Gk(A, γ) ∩G .

Let m be a simple nonzero eigenvalue of B. Then x and y are respectively right and left
eigenvectors of B for the eigenvalue m if and only if z = d(−V )x and w = y d(−U) are
respectively right and left eigenvectors of A for the eigenvalue l = eγm.

Proof. Since v̂(B)(1) = dm(−U)Â(γ) dm(−V ) over Rmax, we get that

max
k=0,...,d

(log |(Bk)ij |) = [v̂(B)(1)]ij = (Â(γ))ij − Ui − Vj , for all i, j = 1, . . . , n .

Moreover, (U, V ) is a Hungarian pair with respect to Â(γ), hence (Â(γ))ij − Ui − Vj 6 0 for

all i, j = 1, . . . , n, and (Â(γ))ij−Ui−Vj = 0 for all (i, j) ∈ G = Sat(Â(γ), U, V ). This implies
that |(Bk)ij | 6 1 for all i, j = 1, . . . , n and k = 0, . . . , d, and that maxk=0,...,d(|(Bk)ij |) = 1
for (i, j) ∈ G. Since the former maximum is attained for (i, j) ∈ Gk(A, γ), we deduce that
|(Bk)ij | = 1 for (i, j) ∈ Gk = Gk(A, γ)∩G. The last assertion of the lemma is immediate.
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Recall that the condition number κ(A, l ) of the matrix polynomial A of (4.15) for the
simple nonzero eigenvalue l , with respect to relative errors satisfies (4.11).

Remark 4.5. The diagonal scaling defined in Lemma 4.24 differs in general from the tropical
scaling proposed in [GS09] and further studied in [HMT13, ST14], that we next recall. Let p :=
⊕di=0pkY

k ∈ Rmax[Y] be the tropical polynomial with coefficients pk = log ‖Ak‖, k = 0, . . . , d,
and let γ be a finite tropical root of p. Then, the tropical scaling relatively to γ transforms
the matrix polynomial A into the matrix polynomial B such that B(Y) = e−p̂(γ)A(eγY). Since
in general γ is not an eigenvalue of A = v(A) and the vectors U and V of a Hungarian pair as
in Lemma 4.24 are not constant, the tropical scaling differs from the above diagonal scaling.
As for the diagonal scaling, l is an eigenvalue of A if and only if m = e−γ l is an eigenvalue
of B. However, the eigenvectors do not change, so as the condition number of the eigenvalue
with respect to the matrix polynomial given in (4.11): κ(A, l ) = κ(B,m).

Proposition 4.25. Let us use the notations of Lemma 4.24. Then

exp(−|U |H) exp(−|V |H) 6
κ(A, l )

κ(B,m)
6 exp(|U |H) exp(|V |H) . (4.18)

Proof. Let m , x , y , l , z,w be as in Lemma 4.24. We have

κ(A, l ) =
‖w‖2‖z‖2(

∑d
k=0 ‖Ak‖ |l |k)

|l | |wA′(l )z|

=
‖y d(−U)‖2‖ d(−V )x ‖2(

∑d
k=0 ‖ d(U)Bk d(V )‖ |m |k)

|m | |yB′(m)x |
.

Hence

κ(A, l )

κ(B,m)
=
‖y d(−U)‖2‖ d(−V )x ‖2(

∑d
k=0 ‖ d(U)Bk d(V )‖ |m |k)

‖y‖2‖x ‖2(
∑d

k=0 ‖Bk‖ |m |k)
. (4.19)

It is easy to see that ‖ d(V )x ‖2 6 exp(max(V1, . . . , Vn))‖x ‖2, for all V ∈ Rn and x ∈ Cn,
from which we deduce that

‖ d(U)C d(V )‖ 6 exp(max(U1, . . . , Un)) exp(max(V1, . . . , Vn))‖C‖

for all U, V ∈ Rn and C ∈ Cn×n. Applying these inequalities to (4.19), we obtain

κ(A, l )

κ(B,m)
6 exp(max(−U1, . . . ,−Un)) exp(max(−V1, . . . ,−Vn))

exp(max(U1, . . . , Un)) exp(max(V1, . . . , Vn))

= exp(|U |H) exp(|V |H) .

Symmetrically, we have

κ(B,m)

κ(A, l )
=
‖w d(U)‖2‖ d(V )z‖2(

∑d
k=0 ‖ d(−U)Ak d(−V )‖ |l |k)

‖w‖2‖z‖2(
∑d

k=0 ‖Ak‖ |l |k)
6 exp(|U |H) exp(|V |H) ,

which finishes the proof of the proposition.



54 Chapter 4. Hungarian scaling of asymptotic matrix polynomials

The previous bounds do not depend on any estimations of the eigenvalues. The aim of the
following lower bounds is to show that for a given eigenvalue and the scaling adapted to this
eigenvalue, a lower bound can be obtained similar to the upper bound in Proposition 4.25.
These lower bounds depend in particular on the distance between |m | and 1, so on the distance
between |l | and eγ . Thus, they have to be associated to any general bounds on this distance,
that we shall not discuss here. Such bounds are for instance given in [AGM14] in the case
of matrices: we gave there some upper and lower bounds on the ratio between the moduli of
the eigenvalues of a matrix A and the exponential of the tropical eigenvalues of the matrix
v(A). Moreover, if A is a matrix polynomial as in (4.15) with either A0 = I or Ad = I, then a
linearization of A transforms the eigenvalues of A into the eigenvalues of a matrix C, and the
tropical eigenvalues of A into the tropical eigenvalues of v(C), so that the bounds of [AGM14]
can also be applied in that case.

Theorem 4.26. Let us use the notations of Lemma 4.24. Let S, S′ be the supports of the
vectors x and y respectively. Let ∆ = max(i,j)∈G(Ui + Vj). The following lower bounds hold:

κ(A, l )

κ(B,m)
> exp(∆−max

i∈[n]
Ui −max

j∈[n]
Vj))

1

nd T (m)d
(4.20)

κ(A, l )

κ(B,m)
> exp(∆−max

i∈[n]
Ui −min

j∈S
Vj)

1

n3/2d T (m)d Hsu(x )
(4.21)

κ(A, l )

κ(B,m)
> exp(∆−min

i∈S′
Ui −max

j∈[n]
Vj)

1

n3/2d T (m)d Hsu(y)
(4.22)

κ(A, l )

κ(B,m)
> exp(∆−min

i∈S′
Ui −min

j∈S
Vj)

1

n2d T (m)d Hsu(x ) Hsu(y)
. (4.23)

Proof. Let m , x , y , l , z,w be as in Lemma 4.24. From the first assertion of this lemma,
we deduce that ‖Bk‖ 6 n, for all k = 0, . . . , d. Moreover, from the second one, we have
|(Bk)ij | = 1, for (i, j) ∈ Gk, hence

‖ d(U)Bk d(V )‖ > eUi |(Bk)ij |eVj = eUieVj ∀(i, j) ∈ Gk .

In particular, since |m |k > min(1, |m |)k > min(1, |m |)d, we deduce that∑d
k=0 ‖ d(U)Bk d(V )‖ |m |k∑d

k=0 ‖Bk‖ |m |k
>

max(i,j)∈G(eUieVj ) min(1, |m |)d

n
∑d

k=0 |m |k

> max
(i,j)∈G

(eUieVj )
min(1, |m |)d

ndmax(1, |m |)d

> exp(∆)
1

nd T (m)d

Combining this inequality with (4.19), we deduce

κ(A, l )

κ(B,m)
>
‖y d(−U)‖2‖ d(−V )x ‖2

‖y‖2‖x ‖2
exp(∆)

1

nd T (m)d
. (4.24)

Since ‖x ‖2 6 exp(max(V1, . . . , Vn))‖ d(−V )x ‖2, for all V ∈ Rn and x ∈ Cn, and ‖y‖2 6
exp(max(U1, . . . , Un))‖y d(−U)‖2, for all U ∈ Rn and y ∈ (Cn)∗, (4.20) follows from (4.24).
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Now, we also have ‖ d(−V )x ‖2 > e−Vi |xi| for all i ∈ [n] such that xi 6= 0. Hence, if
S ⊂ [n] is the support of x , we have ‖ d(−V )x ‖2 > maxj∈S e

−Vj minj∈S |xj | and ‖x ‖2 6
maxj∈S |xj |

√
n. This implies

‖ d(−V )x ‖2
‖x ‖2

> max
j∈S

e−Vj
1

Hsu(x )
√
n
.

Gathering this inequality with the previous lower bound of ‖y d(−U)‖2/‖y‖2, and with (4.24),
we obtain (4.21). Inequality (4.22) is obtained similarly by exchanging the roles of x and y .
Moreover, (4.23) is obtained by applying the same second type of inequality for x and y
in (4.24).

The lower bound (4.23) of Theorem 4.26 is similar to the lower bound used in the proof of
Theorem 4.20. It implies easily the following one, which has to be compared with the result
of Corollary 4.21.

Corollary 4.27. Let us use the notations of Lemma 4.24. Assume that the supports of the
vectors x and y are full. Then

κ(A, l )

κ(B,m)
> exp(max(|U |H, |V |H))

1

n2d T (m)d H(x ) H(y)
.

By applying the same arguments as in the proof of Theorem 4.26 to xC and yC instead of
x and y , one can obtain the inequalities of Theorem 4.26, with G, S and S′ restricted to the

nodes of C, and up to the multiplication of the right hand sides by the scalar ‖xC‖2‖x ‖2
‖yC‖2
‖y‖2 . In

particular, one deduces the following result.

Corollary 4.28. Let us use the notations of Lemma 4.24. Assume that C is a strongly
connected component of G, and that the supports of the vectors x and y both contain C. Then

κ(A, l )

κ(B,m)
> exp(max(|UC |H, |VC |H))

1

n2d T (m)d H(xC) H(yC)

‖xC‖2
‖x ‖2

‖yC‖2
‖y‖2

.

If one of the above lower bounds is greater than 1, then the diagonal scaling of Lemma 4.24
improves the condition number of the eigenvalue l of A. This holds in particular as soon as
|m | is close to 1, that the scaled eigenvectors x , y have full supports and small oscillations,
and that one of the vectors U and V is not constant and has large oscillations. The first
property means that eγ is a good approximation of the modulus of the complex eigenvalue l
of A. The second one means that the vectors e−V and (e−U )T are good approximations of
the right and left eigenvectors z and w of A for the eigenvalue l . To obtain the last one, one
can apply the following result which is bounding from below the oscillations of the Hungarian
pair, using the oscillations of some of the matrix polynomial entries.

Proposition 4.29. Let us use the notations of Lemma 4.24. Then

max
k=0,...,d

Hsu(AGkk ) 6 exp(|U |H + |V |H) 6 exp(2 max(|U |H, |V |H)) .

Proof. Since |(Ak)ij |ekγ−Ui−Vj = |(Bk)ij | = 1 for all (i, j) ∈ Gk = Gk(A, γ)∩G, we get that for

all k = 0, . . . , d and (i, j), (i′, j′) ∈ Gk, we have
|(Ak)ij |
|(Ak)i′j′ |

= eUi+Vj−Ui′−vj′ 6 exp(|U |H + |V |H).

Taking the maximum over all (i, j), (i′, j′) ∈ Gk, and then over all k = 0, . . . , d, we obtain the
left inequality. The right inequality is immediate.
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The difficulty in the above lower bound is that it depends on the knowledge of the tropi-
cal eigenvalues and on the associated optimal permutations. However, gathered with Corol-
lary 4.27 and the above observations, it shows that under some structural assumptions on
the matrix polynomial, the eigenvalue condition number is reduced after scaling. Note that
one can also obtain an upper bound on the oscillations of the Hungarian pair, by using the
oscillations of all the matrix polynomial entries.

Example 4.6. Let us return to the matrix polynomial of Example 4.4. For any fixed ε > 0,
one can construct the scaling of Lemma 4.24 on the matrix polynomial Aε. We have

Aε := v(Aε) =

log δ + (log ε2) log ε log ε
log ε log δ −∞
log ε −∞ log δ

⊕ Y

log ε2 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0


=

(log ε2)⊗ (Y ⊕ log δ) log ε log ε
log ε Y ⊕ log δ −∞
log ε −∞ Y ⊕ log δ

 .

Since δ < 1, we get per(Aε) = (log ε2)⊗ (Y⊕ log δ)⊗ (Y2⊕ (log δ)⊗Y⊕ 0), the tropical roots
of which are log δ with multiplicity 1 and 0 with multiplicity 2. For γ = log δ, we have

Âε(γ) =

2 log ε+ log δ log ε log ε
log ε log δ −∞
log ε −∞ log δ

 ,

a Hungarian pair (U, V ) of which is given by

U =

log ε− log δ
0
0

 , V =

log ε
log δ
log δ

 .

The graph G contains the arcs (1, i), (i, 1) and (i, i) with i = 2, 3. The diagonal scaling of Aε
proposed in Lemma 4.24 gives

Bε = d(−U)Aε(eγY) d(−V ) =

(Y − 1)δ2 1 1
1 Y − 1 0
1 0 Y − 1


=

−δ2 1 1
1 −1 0
1 0 −1

+ Y

δ2 0 0
0 1 0
0 0 1

 .

The eigenvalue δ of Aε is transformed into the eigenvalue 1 of Bε, and for this eigenvalue, we
have:

Bε(1) =

0 1 1
1 0 0
1 0 0

 ,

so the vectors z and w such that zT = w =
[
0 1 −1

]
are again the right and left eigenvec-

tors of Bε, then κ(Bε, 1) = ‖(Bε)0‖+ ‖(Bε)1‖, and we found

√
2 + 1 6 κ(Bε, 1) 6

√
7 + 1 .
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Note that κ(Bε, 1) > κ(Aε, δ), so that the above diagonal scaling is still increasing the eigen-
value condition number, however the above upper bound shows that this time the increasing
is not too large. This example shows that even in the case of a matrix polynomial depending
on the parameter ε, it is more efficient to apply the diagonal scaling constructed from the
archimedean valuation rather than the one constructed from the non-archimedean valuation.
This is because the diagonal scaling constructed from the archimedean valuation has entries
with general first order asymptotics, whereas the one constructed from the non-archimedean
valuation has entries of the form εU only.

4.6 Eigenvalue Condition numbers of linearizations

In general, the numerical computation of eigenvalues is done by first linearizing the matrix
polynomial, and then applying a QZ algorithm to the linearization. If we apply this method
to compute the eigenvalues of a matrix polynomial, then the error on the eigenvalues can
be bounded by the product of the eigenvalue condition number and of the backward error,
either by considering these numbers with respect to the matrix polynomial under study,
or by considering these numbers with respect to the linearized matrix polynomial used in
the numerical computation. Then, given the property that the QZ algorithm is backward
stable, the efficiency of the diagonal scaling of the previous section can be measured by
its effect on the condition number of the eigenvalues with respect to the linearized matrix
polynomial. The latter parameter can be studied by studying separately the condition number
of the eigenvalues with respect to the matrix polynomial, and the ratio between the condition
number of the eigenvalues with respect to the linearized matrix polynomial and the condition
number of the same eigenvalues with respect to the initial matrix polynomial. The first study
has already been done in the previous section. In the present section, we consider the second
study. Note that another way to measure the efficiency would have been to combine the first
study (the one of the previous section), with a study of the ratio between the backward error
of the computed eigenvalues with respect to the initial matrix polynomial and the backward
error with respect to the linearized matrix polynomial.

Let us consider the matrix polynomial of (4.15), and let CA = C0 +YC1 be the companion
linearization of A given in block form by:

C0 :=


A0 0 · · · 0

0 I
. . .

...
...

. . .
. . . 0

0 · · · 0 I

 , C1 :=


A1 A2 · · · Ad
−I 0 · · · 0

...
. . .

. . .
...

0 · · · −I 0

 . (4.25)

Then any eigenvalue l of A is an eigenvalue of CA with same multiplicity and vice versa.
Moreover, any right and left eigenvectors x and y of CA associated to a simple nonzero
eigenvalue of l can be written in block form:

x =

x1
...

xd

 , y =
(
y1 · · · yd

)
,
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with

xi = l i−1z, i = 1, . . . d, (4.26a)

y1 = w , (4.26b)

yi = l −(i−1)w(A0 + l A1 + · · ·+ l i−1Ai−1) (4.26c)

= −l −(i−1)w(Ail i + · · ·+ l dAd), i = 2, . . . d , (4.26d)

where z and w are right and left eigenvectors of A associated to l .
The following result appeared already in [HMT06], for the companion linearization ex-

changing the roles of Ak and Ad−k. We give a proof for completeness.

Proposition 4.30 (Compare with [HMT06, Thm 7.3 and after]). Let A be a matrix polyno-
mial, and CA be the companion linearization of (4.25). Let l be a simple nonzero eigenvalue of
A, and let x and y be right and left eigenvectors of CA associated to l with block form (4.26).

Denote λ =
√

1 + · · ·+ |l |2(d−1). We have

κ(CA, l )

κ(A, l )
=
‖y‖2
‖w‖2

λ
‖C0‖+ ‖C1‖ |l |∑d
k=0 ‖Ak‖ |l |k

.

Proof. We have
yC′A(l )x = yC1x = wA′(l )z,

hence
κ(CA, l )

κ(A, l )
=
‖y‖2‖x ‖2(‖C0‖+ ‖C1‖ |l |)
‖w‖2‖z‖2(

∑d
k=0 ‖Ak‖ |l |k)

.

In view of Equations (4.26), we get that

‖x ‖2 = ‖z‖2
√

1 + · · ·+ |l |2(d−1) = ‖z‖2λ

which implies the result of the proposition.

We deduce the following estimates (the lower bound appeared in [HMT06, §7] in the case
of quadratic matrix polynomials):

Theorem 4.31. Let A be a matrix polynomial, and CA be the companion linearization
of (4.25). For any simple nonzero eigenvalue l of A, we have:

1√
d

max(
1

a
, 1) 6

κ(CA, l )

κ(A, l )
6 Cd

max(1, a)2 max(1, |l |)d∑d
k=0 ‖Ak‖ |l |k

,

with a = max(‖A0‖, · · · , ‖Ad‖) and Cd = d

√
(d+1)(2d+1)

6 (
√
d+ 1 + 1).

Proof. Let a be as in the theorem. In view of Equations (4.26), we obtain

‖w‖2 6 ‖y‖2 6 ‖w‖2

√√√√1 + max(‖A2‖, . . . , ‖Ad‖)2

d∑
i=2

(|l |+ · · ·+ |l |d−i+1)2

6 ‖w‖2

√√√√1 + a2 max(1, |l |)2(d−1)

d∑
i=2

(d− i+ 1)2

6 ‖w‖2 max(1, a) max(1, |l |)d−1

√
1 +

d(d− 1)(2d− 1)

6
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and symmetrically:

‖y‖2 6 ‖w‖2

√√√√1 + max(‖A0‖, . . . , ‖Ad−1‖)2

d∑
i=2

(1 + · · ·+ |l |−i+1)2

6 ‖w‖2

√√√√1 + a2 max(1, |l |−1)2(d−1)

d∑
i=2

i2

6 ‖w‖2 max(1, a) max(1, |l |−1)d−1

√
d(d+ 1)(2d+ 1)

6

Taking the minimum of the two inequalities, and using that either |l | 6 1 or |l |−1 6 1, and
d > 1, we obtain:

‖w‖2 6 ‖y‖2 6 ‖w‖2 max(1, a)C ′d . (4.27)

with C ′d :=

√
d(d+1)(2d+1)

6 . Equation (4.25) implies

‖C0‖ = max(1, ‖A0‖) . (4.28)

Moreover

‖C1‖2 = max{‖A1x1 + · · ·+Adxd‖22 + ‖x1‖22 + · · · ‖xd−1‖22 | x , ‖x1‖22 + · · · ‖xd‖22 = 1} ,

hence

max(1, ‖A1‖, · · · , ‖Ad‖) 6 ‖C1‖ 6
√

1 + ‖A1‖2 + · · · ‖Ad‖2 (4.29)

6
√
d+ 1 max(1, ‖A1‖, · · · , ‖Ad‖) . (4.30)

Let us show the left inequality of the theorem. Using Proposition 4.30, (4.27),(4.28),
and (4.29), we obtain in particular

κ(CA, l )

κ(A, l )
> λ

max(1, ‖A0‖) + max(1, ‖A1‖, . . . , ‖Ad‖)|l |∑d
k=0 ‖Ak‖ |l |k

. (4.31)

Now

d∑
k=1

‖Ak‖ |l |k 6 |l |max(‖A1‖, · · · , ‖Ad‖)(
d−1∑
k=0

|l |k)

6 |l |min(a, 1) max(1, ‖A1‖, · · · , ‖Ad‖)λ
√
d

and
‖A0‖ 6 min(a, 1) max(1, ‖A0‖)λ

√
d .

So, we deduce that

d∑
k=0

‖Ak‖ |l |k 6 min(a, 1)
(

max(1, ‖A0‖) + max(1, ‖A1‖, · · · , ‖Ad‖) |l |
)
λ
√
d
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which, with (4.31), implies

κ(CA, l )

κ(A, l )
>

1√
d

1

min(a, 1)
=

1√
d

max(
1

a
, 1) .

Let us show now the right inequality of the theorem. From (4.27), (4.28), and (4.30), we
get

κ(CA, l )

κ(A, l )
6 max(1, a)C ′dλ

max(1, ‖A0‖) + |l |
√
d+ 1 max(1, ‖A1‖, . . . , ‖Ad‖)∑d
k=0 ‖Ak‖ |l |k

.

Using λ 6
√
dmax(1, |l |)d−1, and the previous inequality, we deduce:

κ(CA, l )

κ(A, l )
6 C ′d

√
dmax(1, a)2 max(1, |l |)d−1 1 + |l |

√
d+ 1∑d

k=0 ‖Ak‖ |l |k

6 d

√
(d+ 1)(2d+ 1)

6
(
√
d+ 1 + 1) max(1, a)2 max(1, |l |)d∑d

k=0 ‖Ak‖ |l |k
,

which is the upper bound of the theorem.

We then derive from the upper bound of Theorem 4.31 several coarser upper bounds
which will allows us to determine sufficient conditions under which the eigenvalue condition
numbers with respect to the linearized polynomial and the initial polynomial have same order
of magnitude. The following one is similar to the one obtained in [HMT06, §7] for quadratic
matrix polynomials.

Corollary 4.32. Let A be a matrix polynomial, and CA be the companion linearization
of (4.25). For any simple nonzero eigenvalue l of A, we have:

1√
d

max(
1

a
, 1) 6

κ(CA, l )

κ(A, l )
6 Cd

max(1, a)2

min(‖A0‖, ‖Ad‖)
,

with a and Cd as in Theorem 4.31.

Proof. Using
d∑

k=0

‖Ak‖ |l |k > min(‖A0‖, ‖Ad‖) max(1, |l |)d

together with the upper bound of Theorem 4.31, we get the upper bound in the corollary.

The following one is new and is based on the Thompson distance between the eigenvalue
modulus and 1 and the one between a and 1.

Corollary 4.33. Let A be a matrix polynomial, and CA be the companion linearization
of (4.25). For any simple nonzero eigenvalue l of A, we have:

1√
d
6
κ(CA, l )

κ(A, l )
6 CdT (a)T (l )d ,

with a and Cd as in Theorem 4.31. More precisely if a = ‖Ak‖ for 0 6 k 6 d, we have

κ(CA, l )

κ(A, l )
6 CdT (a) max(1/|l |k, |l |d−k) .
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If in addition a = ‖Ak′‖ for k < k′ 6 d, then

κ(CA, l )

κ(A, l )
6 CdT (a) max(1/|l |k, |l |d−k′) .

Proof. Using

d∑
k=0

‖Ak‖ |l |k > max(‖A0‖, · · · , ‖Ad‖) min(1, |l |)d = amin(1, |l |)d ,

and max(1, |l |)/min(1, |l |) = max(|l |, 1/|l |) = T (l ) in the upper bound of Theorem 4.31,
we deduce the first upper bound of the corollary. Now if a = ‖Ak‖, we deduce that∑d

k=0 ‖Ak‖ |l |k > a |l |k, and applying this inequality in the upper bound of Theorem 4.31,
we get:

κ(CA, l )

κ(A, l )
6 CdT (a)

max(1, |l |)d

|l |k

= CdT (a) max(1/|l |k, |l |d−k) .

If in addition a = ‖Ak′‖ for k < k′ 6 d, then applying the previous inequality, we get

κ(CA, l )

κ(A, l )
6 CdT (a) min(max(1/|l |k, |l |d−k),max(1/|l |k′ , |l |d−k′))

= CdT (a) max(1/|l |k, |l |d−k′) .

Remark 4.7. The previous result can be used to justify the use of the tropical scaling. Indeed,
let p, γ and B be as in Remark 4.5, so as B is the matrix polynomial obtained after tropical
scaling. Then, as explained there l is an eigenvalue of A if and only if m = e−γ l is an
eigenvalue of B, and we have κ(A, l ) = κ(B,m). However, the tropical scaling is changing
the eigenvalue condition number with respect to the linearized matrix polynomial. Denote
by CB the companion linearization of B. Let m be the multiplicity of the root γ of p. There
exists 0 6 k < k′ = k + m 6 d such that p̂(γ) = pkγ

k = pk′γ
k′ > p`γ

` (in Rmax), for
all 0 6 ` 6 d. After scaling, we have ‖B`‖ = e`γ−p̂(γ)‖A`‖ for all ` = 0, . . . , d, so that
a := max(‖B`‖, ` = 0, . . . , d) = 1 = ‖Bk‖ = ‖Bk′‖. Applying Corollary 4.33 to B, we get

1√
d
6
κ(CB,m)

κ(B,m)
6 Cd max(1/|m |k, |m |d−k′) . (4.32)

Also a similar bound has been obtained by Sharify and Tisseur [ST14], in the case of more
general linearizations. This bound shows that, if eγ is a good approximation of |l |, so that
|m | is close to 1, then κ(CB,m) is in the same order as κ(B,m) = κ(A, l ). In that case, the
numerical computation of l with QZ algorithm combined with the companion linearization
will be accurate if and only if κ(A, l ) is not too large. Moreover, a sufficient condition for the
property that eγ is a good approximation of some of the eigenvalues |l | of A to hold is that
the matrices Ak are well conditioned and that the tropical eigenvalues are well separated,
see [GS09, BNS13, AGS13, NST14].
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The following result shows that the above behavior of the tropical scaling holds similarly
for the diagonal scaling.

Corollary 4.34. Let us use the notations of Lemma 4.24. Denote by CA and CB the compan-
ion linearizations of A and B, respectively. Let m be a simple eigenvalue of B and l = eγm
be the corresponding eigenvalue of A. We have:

1√
d
6
κ(CB,m)

κ(B,m)
6 CdnT (m)d 6

√
dCdnT (m)d

κ(CA, l )

κ(A, l )
.

with Cd as in Theorem 4.31.

Proof. From Lemma 4.24, we have b := max(‖B0‖, . . . , ‖Bd‖) 6 n, and, for all (i, j) ∈ G, there
exists k ∈ {0, . . . , d} such that |(Bk)ij | = 1. Since G contains at least one arc (it contains
a permutation), we get that b > ‖Bk‖ > 1. These bounds on b imply that T (b) 6 n, and
applying the first assertion of Corollary 4.33 to B and m , we get the two first inequalities
of the present corollary. Then applying the lower bound of Corollary 4.33 to A and l , we
deduce the last inequality of the present corollary.

The above bound can be improved by adding a multiplicative factor to the diagonal scaling
as follows. Note that this factor should be crucial when n is large.

Corollary 4.35. Let us use the notations of Lemma 4.24, and let B′ = (max(‖Bk‖, k =
0, . . . , d))−1B. Denote by CA and CB′ the companion linearizations of A and B′, respectively.
Let m be a simple eigenvalue of B′ and l = eγm be the corresponding eigenvalue of A. We
have:

1√
d
6
κ(CB′ ,m)

κ(B′,m)
6 CdT (m)d 6

√
dCdT (m)d

κ(CA, l )

κ(A, l )
.

with Cd as in Theorem 4.31.

Remark 4.8. The inequalities in Corollaries 4.34 and 4.35 show that if eγ is a good approxi-
mation of |l |, so that |m | is close to 1, then κ(CB,m) is in the same order as κ(B,m) and the
ratio between the eigenvalue condition number of the linearized matrix polynomial and the
eigenvalue condition number of the matrix polynomial cannot increase too much after diag-
onal scaling. Combined with the result of Corollary 4.27 and the comments which follow it
and which remain true for the scaling of Corollary 4.35, we obtain under the same conditions
described there, that the condition number of m with respect to the linearization CB of B
is improved. Combined with the property that QZ is backward stable, this implies that the
eigenvalue computation is improved by the diagonal scaling.

The following result shows that the condition that eγ is a good approximation of |l |, or
that |m | is close to 1, is in general necessary to obtain that κ(CB,m) is in the same order as
κ(B,m).

Theorem 4.36. Let A be a matrix polynomial, and let CA be the companion linearization
of (4.25). Let a = max(‖A0‖, · · · , ‖Ad‖). Then, for any simple nonzero eigenvalue l of A,
we have:

κ(CA, l )

κ(A, l )
>

1

a
max

 1

|l |
√
d+ ‖A0‖

a

,
1

√
d
|l | + ‖Ad‖

a

,
1√
d

 .
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Moreover, if a > 1 and a = max(‖A1‖, · · · , ‖Ad‖), then

κ(CA, l )

κ(A, l )
> max

 1
√
d
|l | + ‖Ad‖

a

,
1√
d

 .

Proof. From the arguments of the proof of Theorem 4.31, we have the lower bound (4.31).
which implies in particular:

κ(CA, l )

κ(A, l )
> λ

1 + |l |∑d
k=0 ‖Ak‖ |l |k

, (4.33)

with λ as in Proposition 4.30. Now

d−1∑
k=0

‖Ak‖ |l |k 6 max(‖A0‖, · · · , ‖Ad−1‖)λ
√
d 6 aλ

√
d ,

and
‖Ad‖ |l |d 6 ‖Ad‖ |l |λ .

With (4.33), this implies:

κ(CA, l )

κ(A, l )
>

1 + |l |
a
√
d+ ‖Ad‖ |l |

>
1

a

1
√
d
|l | + ‖Ad‖

a

.

Similarly,
d∑

k=1

‖Ak‖ |l |k 6 max(‖A1‖, · · · , ‖Ad‖) |l |λ
√
d 6 a|l |λ

√
d ,

hence, using 1 6 λ and (4.33), this implies:

κ(CA, l )

κ(A, l )
>

1 + |l |
a|l |
√
d+ ‖A0‖

>
1

a

1

|l |
√
d+ ‖A0‖

a

.

Gathering the above inequalities, we obtain the first lower bound of the theorem. If now
a > 1 and a = max(‖A1‖, · · · , ‖Ad‖), then using (4.31), we can replace (4.33) by

κ(CA, l )

κ(A, l )
> λ

1 + a|l |∑d
k=0 ‖Ak‖ |l |k

,

which with the above arguments gives the second lower bound of the theorem.

Corollary 4.37. Let A be a matrix polynomial, and CA be the companion linearization
of (4.25). Assume that a = max(‖A0‖, · · · , ‖Ad‖) 6 1, and let b = min(‖A0‖, ‖Ad‖). If
l is a nonzero simple eigenvalue such that either |l | 6 b/a and b = ‖A0‖, or 1/|l | 6 b/a and
b = ‖Ad‖, then

1

(
√
d+ 1)b

6
κ(CA, l )

κ(A, l )
6
Cd
b

.

Proof. The lower bound follows from Theorem 4.36, and the upper bound follows from Corol-
lary 4.32.
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Remark 4.9. The previous result shows that if b is much smaller than 1, it may happen that
the eigenvalue condition number of the linearized polynomial is much larger than the one
of the matrix polynomial. This holds in particular in the following situation. Let A be a
matrix polynomial such that a = max(‖A0‖, · · · , ‖Ad‖) 6 1 and such that 1 is a root of the
tropical polynomial p := ⊕di=0pkY

k ∈ Rmax[Y] with coefficients pk = log ‖Ak‖, k = 0, . . . , d
(this holds with a = 1, if we already applied the tropical scaling of [GS09]). Assume that
b = min(‖A0‖, ‖Ad‖) < a, which holds if and only if 1 is not the only root of p, that is if its
multiplicity is < d. Then − log(b/a) is a lower bound of the distance between the root 1 and
the minimal and maximal roots of p. It is also an upper bound of the separation between the
root 1 and the roots of p which are closest to 1. So b is much smaller than 1 if either a is
much smaller than 1, or 1 is well separated from the other roots of p.

Assume now that b = ‖A0‖ and A0 is invertible. Since b < a, we get that a =
max(‖A1‖, · · · , ‖Ad‖). Consider in that case the companion linearization C′ of A−1

0 A as
in (4.25). We have that C′ = I +YC′1, and so l is an eigenvalue of A if and only if −1/l is an
eigenvalue of the matrix C′1. Moreover, using the formula of C′1, and a = max(‖A1‖, · · · , ‖Ad‖),
we get that

‖C′1‖ > max(‖A−1
0 Ak‖, k = 1, . . . , d) > max(

‖Ak‖
‖A0‖

, k = 1, . . . , d) =
a

b
.

Hence, if ‖C′1‖ is equal to the spectral radius of C′1, then there exists an eigenvalue l of A
such that 1/|l | = ‖C′1‖ > a/b, or equivalently |l | 6 b/a, and if l is a simple eigenvalue of
A (or equivalently −1/l is a simple eigenvalue of C′1), the assumption of Corollary 4.37 is
satisfied. Moreover, a similar situation holds in the case where b = ‖Ad‖, Ad is invertible,
and the matrix C′1 obtained as above with Ak replaced by Ad−k, is such that ‖C′1‖ is equal to
the spectral radius of C′1.

4.7 Numerical examples

Given an asymptotic matrix polynomial Aε as in (4.1), we shall compute its eigenvalues for
several values of ε → 0 and study the eigenvalue condition numbers and backward errors of
their approximations.

We will use three different scalings on the matrix polynomial before computing the eigen-
values: first no scaling at all, then an “eigenvalue scaling” and finally the diagonal scaling
described in Theorem 4.13, that we shall also call Hungarian scaling. The eigenvalue scaling
goes as follows. As in Section 4.3, we consider the tropical matrix polynomial A in (4.3) with
coefficients as in (4.2). For each tropical eigenvalue γ of A with multiplicity mγ , we expect
mγ eigenvalues of order ε−γ (see Theorem 4.1 or 4.2); we then build the matrix polynomial
βÃε(Y) = Aε(ε−γY), where β is a normalization parameter. Each eigenvalue lε of order ε−γ

of Aε corresponds to an eigenvalue lεεγ of order 1 of Ã. So, for each fixed ε > 0, we take the
mγ eigenvalues of Ã the modulus of which are the closest to 1 (for the Thompson distance)
and multiply them back by ε−γ to recover the corresponding original eigenvalues of Aε. Once
we have done this for every γ, we expect to recover all the n · d eigenvalues.

The diagonal scaling follows the same idea, except this time instead of Ãε we make use of
the Hungarian variables and build the matrix polynomial Bε described in Theorem 4.13.

After scaling the matrix polynomial, we apply a customized version of matlab’s polyeig
function (which applies the companion linearization of Section 4.6 followed by QZ algorithm)
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to compute its eigenvalues. The three methods should theoretically give the same results. We
will test them against our best approximation of the true eigenvalues: the zeros of detAε(λ)
as computed with the help of matlab’s symbolic toolbox MuPAD.

Example 4.10. We choose n = 5, d = 4, and for 50 logarithmically equally spaced values of ε
between 10−1 and 10−16 we generate the matrix polynomial

Aε = Aε,0 + YAε,1 + · · ·+ YdAε,d, with (Aε,k)ij = ak(J + Eε,k)ijε−(Ak)ij . (4.34)

The entries of the matrices Ak are either random small-denominator rationals between
−2 and 2, or −∞. All tropical eigenvalues of A are finite. The entries of the matrices ak are
complex, and both their real and imaginary parts are chosen from a Gaussian distribution
N (0, 1). J is the matrix of all ones, and the entries of the matrices Eε,k are perturbations
of 0 sampled independently from a normal distribution with mean 0 and standard deviation
−1/ log(ε) (so that limε→0 Eε,k = 0). The choice of a slowly convergent standard deviation was
made to keep the perturbation noticeable. We assume that Condition (4.6) is also satisfied.

In Figures 4.1 to 4.3, we plot the modulus of all the eigenvalues obtained for the three
types of scalings and compare them to the true ones obtained by symbolic computation. For
each value of ε we expect n ·d = 20 distinct eigenvalues; nonetheless, each vertical slice in the
following pictures will appear to account for less than that. This is actually a consequence
of Theorem 4.2: eigenvalues corresponding to the same tropical eigenvalue are clustered in
magnitude, and thus we are not able to tell them apart at the scale of the picture.

We only show one random instance of the problem; the features it exhibits are consistent
throughout all the simulations we have run.
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Figure 4.1: Comparison between the moduli of the true eigenvalues (computed with arbitrary
precision as roots of detAε, represented by hollow circles) and the moduli of the eigenvalues
computed with polyeig (solid dots) of the matrix polynomial (4.34). Each vertical slice
represents one particular value of ε. Clusters of eigenvalues with the exponential behavior
predicted by Theorem 4.2 are noticeable when computing with arbitrary precision. It is clear
from this picture that when ε is small, so that the entries of A vary a lot in magnitude, polyeig
is not dependable.
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Figure 4.2: Comparison between the moduli of the true eigenvalues of (4.34) and the moduli of
the eigenvalues obtained with polyeig after performing an “eigenvalue scaling”. The resulting
figure is less chaotic than the previous one, but still far from satisfying, as approaching zero
some spurious eigenvalues appear, while some other ones are computed as infinite by polyeig

(and thus they are not plotted).
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Figure 4.3: Comparison between the moduli of the true eigenvalues of (4.34) and the moduli
of the eigenvalues obtained with polyeig after performing a diagonal scaling. Here the
correspondence between true and computed eigenvalues is much better. The second graph
shows, for each value of ε, the largest relative error among the nd computed eigenvalues.
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Figure 4.4: Condition number of the eigenvalues before and after diagonal scaling. The
condition numbers are relative to the eigenvalues of the polynomial in its original form (4.1)
(not the linearized form), and they are computed using formula (4.11). Note that since the
formula depends on eigenvalues and eigenvectors, applying it with the low-accuracy eigenpairs
obtained from polyeig before scaling can yield poor approximations of the true condition
numbers (see the dashed lines in the picture). Plugging in the arbitrary precision values gives
more consistent results (solid blue lines).
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Figure 4.5: Ratios between the condition numbers of the eigenvalues of the linearization and
those of the corresponding eigenvalues of the original matrix polynomial.
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Rafael Bru and Sergio Romero-Vivó, editors, Proceedings of the third Multi-
disciplinary International Symposium on Positive Systems: Theory and Appli-
cations (POSTA 09), volume 389 of LNCIS, pages 291–303, Valencia, Spain,
2009. Springer. arXiv:0905.0121.

[GT88] H.N. Gabow and R.E. Tarjan. Almost-optimum speed-ups of algorithms for
bipartite matching and related problems. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, pages 514–527, New York, 1988. The
Association for Computing Machinery.

[Hal98] M. Hall. Combinatorial Theory. Wiley Interscience Series in Discrete Mathe-
matics. Wiley, 1998.

[HJ90] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press,
1990.

[HLT07] Nicholas J. Higham, Ren-Cang Li, and Françoise Tisseur. Backward error of
polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal. Appl.,
29(4):1218–1241, 2007.

[HMT06] Nicholas J. Higham, D. Steven Mackey, and Françoise Tisseur. The conditioning
of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl., 28(4):1005–
1028, 2006.

[HMT13] S. Hammarling, C. J. Munro, and F. Tisseur. An algorithm for the complete so-
lution of quadratic eigenvalue problems. ACM Trans. Math. Software, 39(3):Art.
18, 19, 2013.

[Hoo13] J. Hook, 2013. Privately circulated notes.

[HOW06] Bernd Heidergott, Geert Jan Olsder, and Jacob W. van der Woude. Max Plus
at work : modeling and analysis of synchronized systems : a course on Max-Plus
algebra and its applications. Princeton series in applied mathematics. Princeton
University Press, Princeton (N.J.), 2006.

[IMS07] I. Itenberg, G. Mikhalkin, and E. Shustin. Tropical algebraic geometry. Ober-
wolfach seminars. Birkhäuser, 2007.
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