M. Akian, R. Bapat, and S. Gaubert, Perturbation of eigenvalues of matrix pencils and the optimal assignment problem, ABG15] M. Akian, R. Bapat, and S. Gaubert. Non-archimedean valuations of eigenvalues of matrix polynomials, pp.103-108, 2004.
DOI : 10.1016/j.crma.2004.05.001

S. M. Akian, J. Gaubert, A. Hook, F. Marchesini, and . Tisseur, Tropical diagonal scaling of matrix polynomials, 2015.

S. [. Akian, A. Gaubert, and . Marchesini, Tropical bounds for eigenvalues of matrices, Linear Algebra and its Applications, vol.446, pp.281-303, 2014.
DOI : 10.1016/j.laa.2013.12.021

URL : https://hal.archives-ouvertes.fr/hal-00881205

S. [. Akian, M. Gaubert, and . Sharify, Log-majorization of the moduli of the eigenvalues of a matrix polynomial by tropical roots, Linear Algebra and its Applications, 2013.
DOI : 10.1016/j.laa.2016.11.004

URL : https://hal.archives-ouvertes.fr/hal-00881196

P. [. Burkard and . Butkovic, Finding all essential terms of a characteristic maxpolynomial, Discrete Applied Mathematics, vol.130, issue.3, pp.367-380, 2003.
DOI : 10.1016/S0166-218X(03)00223-3

G. [. Baccelli, G. J. Cohen, J. P. Olsder, and . Quadrat, Synchronization and Linearity ? an Algebra for Discrete Event Systems, 1992.

]. T. Bet08 and . Betcke, Optimal scaling of generalized and polynomial eigenvalue problems

S. [. Butkovi? and . Lewis, On the job rotation problem, Discrete Optimization, vol.4, issue.2, pp.163-174, 2007.
DOI : 10.1016/j.disopt.2006.11.003

A. Dario, V. Bini, and . Noferini, Solving polynomial eigenvalue problems by means of the ehrlich?aberth method, 17th Conference of the International Linear Algebra Society, pp.1130-1149, 2011.

. A. Bibliography-[-bns13-]-d, V. Bini, M. Noferini, and . Sharify, Locating the Eigenvalues of, Matrix Polynomials. SIAM J. Matrix Anal. Appl, vol.34, issue.4, pp.1708-1727, 2013.

H. [. Brualdi and . Ryser, Combinatorial Matrix Theory, 1991.

T. [. Bapat and . Raghavan, Nonnegative Matrices and Application, 1997.
DOI : 10.1017/CBO9780511529979

P. Butkovi?, Max-linear systems : theory and algorithms. Springer monographs in mathematics, 2010.

. [. Cuninghame-green, Minimax algebra. Lecture notes in economics and mathematical systems, 1979.

. [. Cuninghame-green, The characteristic maxpolynomial of a matrix, Journal of Mathematical Analysis and Applications, vol.95, issue.1, pp.110-116, 1983.
DOI : 10.1016/0022-247X(83)90139-7

. [. Cuninghame-green-[-cgm80-]-r, P. F. Cuninghame-green, and . Meijer, Minimax algebra and applications An algebra for piecewise-linear minimax problems, of Advances in Imaging and Electron Physics, pp.1-121267, 1980.

. Fernando-de-terán, M. Froilán, S. Dopico, and . Mackey, Spectral equivalence of matrix polynomials and the Index Sum Theorem, Linear Algebra and its Applications, vol.459, pp.264-333, 2014.
DOI : 10.1016/j.laa.2014.07.007

C. [. Elsner, J. A. Johnson, . Dias, and . Silva, The perron root of a weighted geometric mean of nonneagative matrices. Linear and Multilinear Algebra, pp.1-13, 1988.

M. [. Einsiedler, D. Kapranov, and . Lind, Non-archimedean amoebas and tropical varieties, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2006, issue.601, pp.139-157, 2006.
DOI : 10.1515/CRELLE.2006.097

W. Fan, P. Lin, and . Van-dooren, Normwise Scaling of Second Order Polynomial Matrices, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.1, pp.252-256, 2004.
DOI : 10.1137/S0895479803434914

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Friedland, Limit eigenvalues of nonnegative matrices, Linear Algebra and its Applications, vol.74, pp.173-178, 1986.
DOI : 10.1016/0024-3795(86)90120-5

[. Grammont, N. J. Higham, and F. Tisseur, A framework for analyzing nonlinear eigenproblems and parametrized linear systems, Linear Algebra and its Applications, vol.435, issue.3, pp.623-640, 2011.
DOI : 10.1016/j.laa.2009.12.038

URL : https://hal.archives-ouvertes.fr/hal-00866820

B. [. Gassner and . Klinz, A fast parametric assignment algorithm with applications in max-algebra. Networks, pp.61-77, 2010.

M. [. Gondran, . L. Minouxgra72-]-r, and . Graham, Linear algebra in dioids: a survey of recent results An efficient algorithm for determining the convex hull of a finite planar set, Algebraic and combinatorial methods in operations research, pp.147-163132, 1972.

M. [. Gaubert and . Sharify, Tropical Scaling of Polynomial Matrices, Proceedings of the third Multidisciplinary International Symposium on Positive Systems: Theory and Applications, pp.291-303, 2009.
DOI : 10.1007/978-3-642-02894-6_28

R. [. Gabow and . Tarjan, Almost-optimum speed-ups of algorithms for bipartite matching and related problems, Proceedings of the twentieth annual ACM symposium on Theory of computing , STOC '88, pp.514-527, 1988.
DOI : 10.1145/62212.62263

C. [. Horn and . Johnson, Matrix Analysis, 1990.

J. Nicholas, R. Higham, F. Li, and . Tisseur, Backward error of polynomial eigenproblems solved by linearization, SIAM J. Matrix Anal. Appl, vol.29, issue.4, pp.1218-1241, 2007.

J. Nicholas, D. S. Higham, F. Mackey, and . Tisseur, The conditioning of linearizations of matrix polynomials, SIAM J. Matrix Anal. Appl, vol.28, issue.4, pp.1005-1028, 2006.

C. [. Hammarling, F. Munro, and . Tisseur, An algorithm for the complete solution of quadratic eigenvalue problems, ACM Transactions on Mathematical Software, vol.39, issue.3, 2013.
DOI : 10.1145/2450153.2450156

[. Heidergott, G. J. Olsder, and J. W. Van-der-woude, Max Plus at work : modeling and analysis of synchronized systems : a course on Max-Plus algebra and its applications. Princeton series in applied mathematics, 2006.
DOI : 10.1515/9781400865239

G. [. Itenberg, E. Mikhalkin, and . Shustin, Tropical algebraic geometry. Oberwolfach seminars. Birkhäuser, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00143239

]. J. Kin61 and . Kingman, A convexity property of positive matrices, The Quarterly Journal of Mathematics, vol.12, issue.1, pp.283-284, 1961.

D. Lemonnier and P. Van-dooren, Balancing Regular Matrix Pencils, Different faces of geometry, pp.253-263, 2006.
DOI : 10.1137/S0895479804440931

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. [. Marcus and . Minc, A Survey of Matrix Theory and Matrix Inequalities, Phoenix Edition Series, 1992.

D. , S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl, vol.28, issue.4, pp.971-1004, 2006.

]. O. Mou97 and . Moussa, An inequality about the largest roots of a polynomial, Applicable Algebra in Engineering, Communication and Computing, vol.8, pp.497-504, 1997.

G. [. Moler and . Stewart, An Algorithm for Generalized Matrix Eigenvalue Problems, SIAM Journal on Numerical Analysis, vol.10, issue.2, pp.241-256, 1973.
DOI : 10.1137/0710024

M. [. Noferini, F. Sharify, . E. Tisseurosb60-]-e, and . Osborne, Tropical roots as approximations to eigenvalues of matrix polynomials. http://eprints.ma.man.ac.uk/2126/01/ covered/MIMS_ep2014_16.pdf, to appear in SIAM On pre-conditioning of matrices, J. Matrix Anal. Appl. J. ACM, vol.7, issue.4, pp.338-345, 1960.

]. A. Ost40 and . Ostrowski, Recherches sur la méthode de Graeffe et les zéros des polynomes et des séries de Laurent, Acta Math, vol.72, pp.99-155, 1940.

[. Pin, Tropical semirings Balancing a matrix for calculation of eigenvalues and eigenvectors, Idempotency, pp.50-69293, 1969.

]. R. Roc70 and . Rockafellar, Convex Analysis. Princeton mathematical series, 1970.

A. Schrijver, Combinatorial Optimization, 2003.

I. Simon, Limited subsets of a free monoid, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pp.143-150, 1978.
DOI : 10.1109/SFCS.1978.21

B. [. Speyer and . Sturmfels, The tropical Grassmannian, Advances in Geometry, vol.4, issue.3, pp.389-411, 2004.
DOI : 10.1515/advg.2004.023

M. Sharify and F. Tisseur, Effect of tropical scaling on linearizations of matrix polynomials: backward error and conditioning. t-mims-eprint, inst-MIMS, inst- MIMS:adr, 2014

]. F. Tis00 and . Tisseur, Backward error and condition of polynomial eigenvalue problems [vdDS98] L. van den Dries and P. Speissegger. The real field with convergent generalized power series, Linear Algebra Appl. Trans. Amer. Math. Soc, vol.309, issue.1-311, pp.339-361, 1998.

]. O. Vir01 and . Viro, Dequantization of real algebraic geometry on logarithmic paper, In European Congress of Mathematics Progr. Math, vol.201, pp.135-146, 2001.

R. C. Ward, Balancing the Generalized Eigenvalue Problem, SIAM Journal on Scientific and Statistical Computing, vol.2, issue.2, pp.141-152, 1981.
DOI : 10.1137/0902012