Conception et optimisation d'amortisseurs à masse accordée pour les structures du génie civil

Abstract : The architectural demand and the desire to reduce costs permit the construction of light structures with innovating shapes. The great flexibility of these structures makes them increasingly sensitive to the external dynamic loads such as traffic, wind and earthquakes. Vibration control techniques allow to construct modern buildings increasingly slender, and, whether they are economic or architecturally audacious. Instead of modifying the geometrical and mechanical characteristics of a structure, vibration control consists in producing reaction forces which are opposed to the negative effects of the external excitations when they appear. This technological advance has the great advantage to not influencing planners and architects’ work and it provides them with additional creative options in both geometrical and mechanical characteristics of buildings. We restrict our focus to passive vibration control. Among available passive vibration absorber systems, Tuned Mass Dampers (TMDs) were selected for their simplicity and reliability. A TMD consists of a mass, a dashpot, and a spring, and is commonly attached to a vibrating primary system to suppress undesirable vibrations. The performance of TMDs is strongly affected by the adjustment of their parameters. The problem is the optimization of the mechanical parameters of TMD and their location in order to attenuate vibrations of the main structure. This thesis is based on understanding the dynamic characteristics of TMD. It aims to make an innovative and original contribution to classify, generalize and optimize some criteria in order to ensure an optimal design of TMDs, depending on their application. Our work consisted to treat these criteria in an original way. After solving the direct problem based on the modelling of systems with one or several TMD, we tackled the indirect problem by considering various optimization criteria. Thus, several optimization criteria of the mechanical parameters of TMDs applied to a main system (single (SDOF) or multiple degrees of freedom (MDOF)) are used. The excitation of the main system can be done in two different ways; either on the base (for seismic application) or on the structure (for wind effects).Numerical simulations based on a time and frequency approach are used to examine the performance of each optimized model. The robustness of each optimization criterion is assessed by taken into account the uncertainties related to the change of the physical parameters of the main structure. Such problems can be discussed by considering sensitivity analysis for criteria under uncertainty of the optimum TMD parameters. A new and original contribution of this thesis is the design and optimization of multiple TMDs in parallel with a MDOF main structure. In this context, during seismic loads, modes in the main structure with relatively high effective masses can be readily excited by base excitation. Afterwards, optimization criterion can be developed based on the most sensitive storeys to vibration modes which are a cumulative modal effective mass fraction exceeding 90%. To protect structures under earthquake loads, we seek to assess the effectiveness of TMDs in mitigating the response of structure under different real earthquakes. A comparative study is then achieved with four real earthquakes applied on systems with TMD optimized parameters. To illustrate the results obtained, characterization tests are conducted on a TMD with damping by eddy currents effect and adjustable stiffness. They allow the validation of the model and optimization criterion adopted
Complete list of metadatas

https://pastel.archives-ouvertes.fr/tel-01291427
Contributor : Abes Star <>
Submitted on : Monday, March 21, 2016 - 2:42:26 PM
Last modification on : Tuesday, November 13, 2018 - 6:48:40 PM

File

TH2015PESC1137_complete.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01291427, version 1

Citation

Anissa Allani. Conception et optimisation d'amortisseurs à masse accordée pour les structures du génie civil. Matériaux et structures en mécanique [physics.class-ph]. Université Paris-Est, 2015. Français. ⟨NNT : 2015PESC1137⟩. ⟨tel-01291427⟩

Share

Metrics

Record views

1447

Files downloads

6451