?. {w, G. B}, L. , C. , C. Des-anodes-´-echantillon et al., 2 est utilisée afin de caractériser séparément chacune des phases de l'ensemble aléatoire (h) est estimée comme la moyenne obtenue sur les n images segmentées Le vecteur h est pris dans 10 cônes (en coordonnées cylindriques) de directions uniformément réparties dans le plan. L'´ etude de la covariance permet dans un premier temps de valider l'hypothèse d'isotropie des matériauxmatériauxétudiés Comme le suggère la Fig. 3.9, la covariance est inchangée par changement d'orientation du vecteur h. Ce comportement est observé pour l'ensemble des trois phases de l'ensemble deséchantillonsdeséchantillons De ce fait, Cette erreur est liéè a la fraction volumique (P = f i selon le formalisme défini en Sec. 2.5) et elle est calculée en considérant la totalité des n images segmentées pour chaqué echantillon. 3.3.2 Covariances Moment d'ordre deux

M. Mis, E. Oeuvre, . Le, and . De-courant-mousse-imprégnée-par-la-céramique, LST-Pores) puis laminée (Fig. 4.2a) Ils seront notés 'SF-LST-X' (pour Single Foam), o` u X représente le numéro associé associéà l'´ echantillon. D'autres ontétéontété réalisésréalisésà partir de deux mousses juxtaposées, imprégnées par la céramique puis laminés (Fig. 4.2b et Fig. 4.2c), ils seront référencées comme 'DF-LST-X' (pour Double Foam). Enfin, en raison d'un manque de conductivité de ces couches (vraisemblablement lié aux propriétés en bulk du LST utilisé dans le projet), il a ´ eté décidé d'´ etudier l'influence de l

. Cet-ajout-permet-d-'augmenter-la-conductivitéconductivitéélectronique-de-la-céramique, Leséchantillons Leséchantillons associés sont notésDF-LST-Ni-X') selon qu'ils ontétéontété réalisésréalisésà partir d'une (resp. deux) mousse(s) La remarque concernant la séparation deséchellesdeséchelles caractéristiques reste valable après l'incorporation de nickel dans la phase céramique. La céramique est toujours vue comme un milieu homogènehomogènè a l'´ echelle de la mousse. Dans un second temps, nous nous plaçonsplaçonsà l'´ echelle de la céramique de longueur caractéristique l ceramique ? 500 nm. Des acquisitions de la microstructure de ces matériauxmatériauxà cetté echelle sont disponibles (Fig. 4.4). CeséchantillonsCeséchantillons sont nommés 'LST-X', o` u X représente le numéro associéassociéà l'´ echantillon, dans le cas d'une céramique (LST-Pores) comme c'est le cas Fig, leséchantillonsleséchantillons associés sont notés 'LST-Ni-X'

. Cependant, les images obtenues (Fig. 4.1a) sont difficilement exploitables du point de vue de la segmentation en raison d'un manqué

L. Sur-les-images-acquisesàacquisesà-l-'´-echelle-de-la-mousse, M. Nicral, and . Cylindre, La phase céramique transpara??tpara??t quandàquandà elle en gris intermédiaire (avec localement des petites zones claires au sein de la céramique lorsqu'il y a présence de nickel c.f. Fig. 4.2d, Fig. 4.2e et Fig. 4.2f) La phase poreuse, traduisant l'absence de ré-´ emissionélectroniqueemissionélectronique, est en noir. On remarque qu'une fine couche sombre d'´ epaisseur < 20 nm entoure l'ensemble de la phase métallique (NiCrAl) Il s'agit d'une couche d'alumine qui se forme naturellement autour de la mousse. Dans la suite, ` a l'´ echelle de la mousse, seront considérées uniquement les images de type Fig. 4.1b, acquises suitè a la campagne d'acquisition collaborative entre le CdM et le CMM Pour les images acquisesàacquises`acquisesà l'´ echelle de la céramique (Fig. 4.4), les pores apparaissent en noir et le LST en gris. Suitè a une analyse EDXàEDXà fort grossissement (Fig. 4.3), les particules de nickel ontétéontété formellement identifiées. Elles apparaissent en gris clair/ blanc au sein de la céramique (pour leséchantillonsleséchantillons LST-Ni, seuls IST-14-i IST-14-s IST-15-i IST-15-s IST-24-i IST-24-s IST-25-i IST-25-s IST-28-i IST-28-s IST-29-i IST-29-s IST-32-i IST-32-s IST-33

A. Effectuer, = G 0 ij (q)A j (q) pour q = 0 et A i (q = 0) := E i

. Dans-c, ´ etape 3. est une boucle effectuée pour tous les modes de Fourier q o` u G 0 ij (q) l'opérateur de Green continu (voir Eq. 9.7) est calculécalculéà la volée. L'espace mémoire total alloué est constitué d'un champ vectoriel A et de la microstructuré etudiée. Le champ vectoriel A devient le lieu de stockage successif du champ de polarisation dans l'espace direct [´ etape 1.] puis dans l'espace de Fourier [´ etape 2 Le critère de convergencè a l'´ etape 5. doitêtredoitêtre revu car il n'est pas pertinent d'utiliser les critères type conservation du courant (voir Eq. 9.11) dans un algorithme in-situ, Il représente ensuite le champélectrique champélectrique E dans le domaine de Fourier [´ etape 3.] et dans l'espace direct [´ etape 4 Ces critères sont remplacés en pratique par le calcul de la différence 1. En tout point x, Effectuer A(x) := div P(x) o` u P i (x) = [?(x) ? ? 0 ][E ? grad A(x)] ; Calculer ? 1 selon l'Eq. 9.11

. Cependant, De plus, l'inversion de l'opérateur Laplacien est la seule opération effectuée dans le domaine de Fourier, elle s'effectue sous la forme d'une division par |k| 2 (sauf pour A(q = 0) = 0) [´ etape 3 Le champ scalaire A est utilisé pour stocker successivement différentes quantités. Dans un premier temps la divergence du champ de polarisation div P est exprimée dans le domaine direct [´ etape 1 La parallélisation dans l'´ etape 1. nécessite une attentionparticulì ere puisqu'il s'agit d'une opération non locale. Cependant, cette nouvelle implémentation réduit le nombre de FFTs par itération de 2 * d (o` u d ? {2; 3} représente la dimension duprobì eme) ` a 2 FFTs par itération. En plus de cetté economie notable du CPU, nous notons la réduction d, Ensuite la partie périodique du potentiel ? est calculée dans le domaine de Fourier [´ etape 3.] puis dans le domaine réel [´ etape 4 Nous avons implémenté cette stratégie dans le code Fortran parallélisé

B. Abdallah, F. Willot, and D. Jeulin, Morphological 3D models of a threephases SOFC anode microstructure from SEM 2D images, Journal Of Microscopy, vol.15, issue.08, p.83, 2015.

B. Abdallah, F. Willot, and D. Jeulin, Stokes Flow Through a Boolean Model of Spheres: Representative Volume Element, Transport in Porous Media, pp.711-726, 2015.
DOI : 10.1007/s11242-015-0545-2

URL : https://hal.archives-ouvertes.fr/hal-01232510

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions : with formulas, graphs, and mathematical tables, Courier Corporation, vol.189, p.191, 1964.

H. Altendorf and D. Jeulin, Stochastic Modeling of a Glass Fiber Reinforced Polymer, Mathematical Morphology and Its Applications to Image and Signal Processing, p.22, 2011.
DOI : 10.1007/978-3-642-21569-8_38

URL : https://hal.archives-ouvertes.fr/hal-00834392

M. Armstrong, A. Galli, H. Beucher, G. Loc-'h, D. Renard et al., Plurigaussian Simulations in Geosciences, p.68, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00709324

M. Avellaneda, A. V. Cherkaev, K. A. Lurie, and G. W. Milton, On the effective conductivity of polycrystals and a three???dimensional phase???interchange inequality, Journal of Applied Physics, vol.63, issue.10, pp.4989-5003, 1988.
DOI : 10.1063/1.340445

M. Avellaneda and S. Torquato, Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Physics of Fluids A : Fluid Dynamics, pp.2529-171, 1991.

D. Azzimonti, F. Willot, and D. Jeulin, Optical properties of deposit models for paints: full-fields FFT computations and representative volume element, Journal of Modern Optics, vol.32, issue.7, pp.519-528, 2013.
DOI : 10.1017/CBO9780511613357

URL : https://hal.archives-ouvertes.fr/hal-00836118

A. Belkhabbaz, R. Brenner, N. Rupin, B. Bacroix, and J. Fonseca, Predictionoftheoverallbehaviorofa3DmicrostructureofausteniticsteelbyusingFFTnumericalscheme, Procedia Engineering, vol.10, pp.1883-1888, 2011.
DOI : 10.1016/j.proeng.2011.04.313

M. Beran, Use of the vibrational approach to determine bounds for the effective permittivity in random media, Il Nuovo Cimento, vol.30, issue.2, pp.771-782, 1965.
DOI : 10.1007/BF02748596

D. J. Bergman, The dielectric constant of a composite material???A problem in classical physics, Physics Reports, vol.43, issue.9, pp.377-407, 1978.
DOI : 10.1016/0370-1573(78)90009-1

B. Berkowitz, Characterizing flow and transport in fractured geological media: A review, Advances in Water Resources, vol.25, issue.8-12, pp.861-884, 2002.
DOI : 10.1016/S0309-1708(02)00042-8

J. G. Berryman and G. W. Milton, Normalization constraint for variational bounds on fluid permeability, The Journal of Chemical Physics, vol.83, issue.2, pp.754-148, 1985.
DOI : 10.1063/1.449489

F. Bignonnet and L. Dormieux, FFT-based bounds on the permeability of complex microstructures, International Journal for Numerical and Analytical Methods in Geomechanics, vol.33, issue.20-22, pp.1707-1723, 2014.
DOI : 10.1002/nag.2278

URL : https://hal.archives-ouvertes.fr/hal-01084229

F. S. Bourgeois and G. J. Lyman, Morphological analysis and modelling of fine coal filter cake microstructure, Chemical Engineering Science, vol.52, issue.7, pp.1151-1162, 1997.
DOI : 10.1016/S0009-2509(96)00475-7

C. Boutin, Study of permeability by periodic and self-consistent homogenisation, European Journal of Mechanics - A/Solids, vol.19, issue.4, pp.603-632, 2000.
DOI : 10.1016/S0997-7538(00)00174-1

URL : https://hal.archives-ouvertes.fr/hal-00943756

E. Brightman, D. Ivey, D. Brett, and N. Brandon, The effect of current density on H2S-poisoning of nickel-based solid oxide fuel cell anodes, Journal of Power Sources, vol.196, issue.17, pp.7182-7187
DOI : 10.1016/j.jpowsour.2010.09.089

S. Brisard and L. Dormieux, FFT-based methods for the mechanics of composites: A general variational framework, Computational Materials Science, vol.49, issue.3, pp.663-671, 2010.
DOI : 10.1016/j.commatsci.2010.06.009

URL : https://hal.archives-ouvertes.fr/hal-00722339

S. Brisard and L. Dormieux, Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites, Computer Methods in Applied Mechanics and Engineering, vol.217, issue.220, pp.197-212, 2012.
DOI : 10.1016/j.cma.2012.01.003

URL : https://hal.archives-ouvertes.fr/hal-00722361

S. Brisard and F. Legoll, Periodic homogenization using the Lippmann? Schwinger formalism. nov 2014, p.123
URL : https://hal.archives-ouvertes.fr/hal-01080251

F. Bron and D. Jeulin, MODELLING A FOOD MICROSTRUCTURE BY RANDOM SETS, Image Analysis & Stereology, vol.23, issue.1, pp.33-44, 2004.
DOI : 10.5566/ias.v23.p33-44

URL : https://hal.archives-ouvertes.fr/hal-00142174

D. Bruggeman, Calculation of various physical constants of heterogenous substances II. Dielectricity constants and conductivity of non regular multi crystal systems, Annalen Der Physik, vol.25, issue.7, pp.645-672, 1936.

P. C. Carman, Fluid flow through granular beds, Chemical Engineering Research and Design, vol.75, issue.125, pp.150-166, 1937.
DOI : 10.1016/S0263-8762(97)80003-2

H. Cheng and G. Papanicolaou, Flow past periodic arrays of spheres at low Reynolds number, Journal of Fluid Mechanics, vol.335, pp.189-212, 1997.
DOI : 10.1017/S002211209600448X

S. Childress, Viscous Flow Past a Random Array of Spheres, The Journal of Chemical Physics, vol.56, issue.6, pp.2527-2539, 1972.
DOI : 10.1063/1.1677576

I. L. Claeys and J. F. Brady, Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions, Journal of Fluid Mechanics, vol.44, issue.-1, p.140, 1993.
DOI : 10.1063/1.866914

D. Clague, B. Kandhai, R. Zhang, and P. Sloot, Hydraulic permeability of (un)bounded fibrous media using the lattice Boltzmann method, Physical Review E, vol.61, issue.1, pp.140-143, 2000.
DOI : 10.1103/PhysRevE.61.616

P. B. Corson, Correlation functions for predicting properties of heterogeneous materials. I. Experimental measurement of spatial correlation functions in multiphase solids, Journal of Applied Physics, vol.45, issue.7, pp.3159-173, 1974.
DOI : 10.1063/1.1663741

A. Costa, Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption, Geophysical Research Letters, vol.91, issue.2, pp.2318-107, 2006.
DOI : 10.1029/2005GL025134

E. Couka, F. Willot, and D. Jeulin, A MIXED BOOLEAN AND DEPOSIT MODEL FOR THE MODELING OF METAL PIGMENTS IN PAINT LAYERS, Image Analysis & Stereology, vol.34, issue.2, pp.125-134, 2015.
DOI : 10.5566/ias.1220

URL : https://hal.archives-ouvertes.fr/hal-01154597

R. V. Craster and Y. V. Obnosov, Four-Phase Checkerboard Composites, SIAM Journal on Applied Mathematics, vol.61, issue.6, pp.1839-1856, 0106.
DOI : 10.1137/S0036139900371825

R. V. Craster and Y. V. Obnosov, A three-phase tessellation: solution and effective properties, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.460, issue.2044, pp.1017-1037, 0106.
DOI : 10.1098/rspa.2003.1196

L. Decker, D. Jeulin, and I. Tovena, 3D morphological analysis of the connectivity of a porous medium, Acta Stereologica, vol.17, issue.1 21, pp.107-112, 1998.

A. Delarue, Prévision du comportementéléctromagnétiquecomportementéléctromagnétique de matériaux compositesàpositesà partir de leur morphologie et de leur mode d'´ elaboration, p.110, 2001.

M. Doi, A New Variational Approach to the Diffusion and the Flow Problem in Porous Media, Journal of the Physical Society of Japan, vol.40, issue.2, pp.567-572, 1976.
DOI : 10.1143/JPSJ.40.567

X. Du and M. Ostoja-starzewski, On the size of representative volume element for Darcy law in random media, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.462, issue.2074, pp.2949-2963, 2006.
DOI : 10.1098/rspa.2006.1704

C. F. Dunant, B. Bary, A. B. Giorla, C. Péniguel, J. Sanahuja et al., A critical comparison of several numerical methods for computing effective properties of highly heterogeneous materials Advances in Engineering Software, pp.1-12, 2013.

V. Dusastre and J. Kilner, Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, vol.126, issue.1-2, pp.163-174, 1999.
DOI : 10.1016/S0167-2738(99)00108-3

S. D. Ebbesen and M. Mogensen, Exceptional Durability of Solid Oxide Cells, Electrochemical and Solid-State Letters, vol.13, issue.9, pp.106-108, 2010.
DOI : 10.1149/1.3455882

H. I. Ene and E. Sanchez-palencia, Equations et phénomenes de surface pour l'´ ecoulement dans un modele de milieu poreux, Journal de mécanique, vol.14, issue.107, pp.73-108, 1975.

J. Escoda, Modélisation morphologique et micromécanique 3D de matériaux cimentaires, p.65, 2012.

D. Eyre, G. O. Milton-]-r, R. T. Fuentes, and . Baker, A fast numerical scheme for computing the response of composites using grid refinement Synthesis and properties of Gadoliniumdoped ceria solid solutions for IT-SOFC electrolytes, EPJ APPLIED PHYSICS International Journal of Hydrogen Energy, vol.6, issue.1114513, pp.41-47, 1999.

R. O. Fuentes and R. T. Baker, Structural, morphological and electrical properties of Gd0.1Ce0.9O1.95 prepared by a citrate complexation method, Journal of Power Sources, vol.186, issue.2, pp.268-277, 0152.
DOI : 10.1016/j.jpowsour.2008.09.119

G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker, M. R. Prestat et al., Stochastic 3D modeling of La0.6Sr0.4CoO3????? cathodes based on structural segmentation of FIB???SEM images, Computational Materials Science, vol.67, issue.69, pp.48-62, 2013.
DOI : 10.1016/j.commatsci.2012.08.030

E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids, Physical Review E, vol.52, issue.1, pp.819-828, 1995.
DOI : 10.1103/PhysRevE.52.819

B. Gebart, Permeability of Unidirectional Reinforcements for RTM, Journal of Composite Materials, vol.7, issue.8, p.141, 1992.
DOI : 10.1177/002199839202600802

R. A. George, Status of tubular SOFC field unit demonstrations, Journal of Power Sources, vol.86, issue.1-2, pp.134-139, 2000.
DOI : 10.1016/S0378-7753(99)00413-9

P. C. Gervais, N. Bardin-monnier, and D. Thomas, Permeability modeling of fibrous media with bimodal fiber size distribution, Chemical Engineering Science, vol.73, pp.239-248, 2012.
DOI : 10.1016/j.ces.2012.01.040

URL : https://hal.archives-ouvertes.fr/hal-00674411

D. Gostovic, J. R. Smith, D. P. Kundinger, K. S. Jones, and E. D. Wachsman, Three-Dimensional Reconstruction of Porous LSCF Cathodes, Electrochemical and Solid-State Letters, vol.10, issue.12, pp.214-69, 2007.
DOI : 10.1149/1.2794672

A. Greco, D. Jeulin, and J. Serra, The Use Of The Texture Analyser To Study Sinter Structure: Application To The Morphology Of Calcium Ferrites Encountered In Basic Sinters Of Rich Iron Ores, Journal of Microscopy, vol.54, issue.2, pp.199-211, 1979.
DOI : 10.1111/j.1365-2818.1979.tb00202.x

V. A. Haanappel, J. Mertens, and A. Mai, Performance Improvement of (La,Sr)MnO[sub 3] and (La,Sr)(Co,Fe)O[sub 3]-Type Anode-Supported SOFCs, Journal of Fuel Cell Science and Technology, vol.3, issue.3, p.263, 2006.
DOI : 10.1115/1.2205359

H. Hadwiger, Vorlesungen iiber Inhalt, Oberfiétche und Isoperimetrie, p.12, 1957.

H. S. Harutyunyan and V. K. Ohanyan, Covariogram of a cylinder, Journal of Contemporary Mathematical Analysis, vol.49, issue.6, pp.366-375, 2014.
DOI : 10.3103/S1068362314060120

Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials, Journal of Applied Physics, vol.33, issue.10, pp.3125-3131, 1962.
DOI : 10.1063/1.1728579

E. J. Hinch, An averaged-equation approach to particle interactions in a fluid suspension, Journal of Fluid Mechanics, vol.37, issue.04, pp.695-720, 1977.
DOI : 10.1007/BF02120313

I. Howells, Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects, Journal of Fluid Mechanics, vol.52, issue.03, pp.449-476, 1974.
DOI : 10.1016/0009-2509(66)85036-4

O. Huseby, J. Thovert, and P. M. Adler, Geometry and topology of fracture systems, Journal of Physics A: Mathematical and General, vol.30, issue.5, p.142, 1999.
DOI : 10.1088/0305-4470/30/5/012

E. Ivers-tiffée, W. Wersing, M. Schießl, and H. Greiner, Ceramic and Metallic Components for a Planar SOFC, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.134, issue.9, pp.978-981, 1990.
DOI : 10.1002/bbpc.19900940919

H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto et al., Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique, Journal of Power Sources, vol.195, issue.4, pp.955-961, 2010.
DOI : 10.1016/j.jpowsour.2009.09.005

J. R. Izzo, A. S. Joshi, K. N. Grew, W. K. Chiu, A. Tkachuk et al., Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50???nm Resolution, Journal of The Electrochemical Society, vol.155, issue.5, pp.504-69, 2008.
DOI : 10.1149/1.2895067

G. W. Jackson and D. F. James, The permeability of fibrous porous media, The Canadian Journal of Chemical Engineering, vol.22, issue.177
DOI : 10.1002/cjce.5450640302

A. Jean, F. Willot, S. Cantournet, S. Forest, and D. Jeulin, LARGE-SCALE COMPUTATIONS OF EFFECTIVE ELASTIC PROPERTIES OF RUBBER WITH CARBON BLACK FILLERS, International Journal for Multiscale Computational Engineering, vol.9, issue.3, pp.271-303, 2011.
DOI : 10.1615/IntJMultCompEng.v9.i3.30

URL : https://hal.archives-ouvertes.fr/hal-00661612

D. Jeulin, Modèles morphologiques de structures aléatoires et de changement d'´ echelle, Thèse de Doctorat d'Etat des Sciences Physiques, p.147, 1991.

D. Jeulin, Models of random structures, Lecture Notes, p.65, 2000.

D. Jeulin, Correlation of orientations in a vector field and statistics of alignments, p.22, 2013.

D. Jeulin, Modelling three phase random media, Internal report N-01, MM, CMM, Mines ParisTech, p.71, 2014.

D. Jeulin, Modeling three phase random media with some contact constraints, Internal report, CMM, Mines ParisTech, p.94, 2015.

D. Jeulin, Optimal conductivity of two-components porous media, Internal report N-03, MM, CMM, Mines ParisTech, p.172, 2015.

D. Jeulin and M. Moreaud, Percolation d'agrégats multi-´ echelles de sphères et de fibres ? Application aux nanocomposites, Congrés matériaux, pp.1-12, 2006.

S. P. Jiang, A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes, Solid State Ionics, vol.146, issue.1-2, pp.1-22, 2002.
DOI : 10.1016/S0167-2738(01)00997-3

D. L. Johnson, J. Koplik, and R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics, vol.24, issue.-1, pp.379-402, 1987.
DOI : 10.1121/1.388036

D. L. Johnson, T. Plona, S. C. , F. Pasierb, and H. Kojima, Tortuosity and acoustic slow waves. Physical review letters, pp.491840-137, 1982.

J. Joos, T. Carraro, A. Weber, and E. Ivers-tiffée, Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling, Journal of Power Sources, vol.196, issue.17, pp.7302-7307, 2011.
DOI : 10.1016/j.jpowsour.2010.10.006

J. Joos, M. Ender, T. Carraro, A. Weber, and E. Ivers-tiffée, Representative volume element size for accurate solid oxide fuel cell cathode reconstructions from focused ion beam tomography data, Electrochimica Acta, vol.82, issue.30, pp.268-276, 2012.
DOI : 10.1016/j.electacta.2012.04.133

J. Joos, M. Ender, I. Rotscholl, N. H. Menzler, and E. Ivers-tiffée, Quantification of double-layer Ni/YSZ fuel cell anodes from focused ion beam tomography data, Journal of Power Sources, vol.246, issue.30, pp.819-830, 2013.
DOI : 10.1016/j.jpowsour.2013.08.021

H. Jung, Y. Sun, H. Y. Jung, J. S. Park, H. Kim et al., Investigation of anode-supported SOFC with cobaltcontaining cathode and GDC interlayer, Solid State Ionics, vol.179, pp.27-321535, 2008.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.3647-3679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

V. Kharton, F. Marques, and . Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, vol.174, issue.1-4, pp.135-149, 2004.
DOI : 10.1016/j.ssi.2004.06.015

L. Kindermann, D. Das, H. Nickel, K. Hilpert, C. C. Appel et al., Chemical Compatibility of (La[sub 0.6]Ca[sub 0.4])[sub x]Fe[sub 0.8]M[sub 0.2]O[sub 3] with Yttria-Stabilized Zirconia, Journal of The Electrochemical Society, vol.144, issue.2, pp.717-720, 1997.
DOI : 10.1149/1.1837474

S. Koo and A. S. Sangani, Effective-medium theories for predicting hydrodynamic transport properties of bidisperse suspensions, Physics of Fluids, vol.14, issue.10, pp.3522-3533, 2002.
DOI : 10.1063/1.1503352

A. Koponen, D. Kandhai, E. Hellén, M. Alava, A. Hoekstra et al., Permeability of Three-Dimensional Random Fiber Webs, Physical Review Letters, vol.80, issue.4, p.140, 1998.
DOI : 10.1103/PhysRevLett.80.716

N. Koudina, R. Gonzalez-garcia, J. Thovert, and P. Adler, Permeability of three-dimensional fracture networks, Physical Review E, vol.57, issue.4, p.141, 1998.
DOI : 10.1103/PhysRevE.57.4466

J. Kozeny, Ueber kapillare leitung des wassers im boden, Sitzungsber. Akad. Wiss. Wien, vol.136, issue.107, pp.271-306, 1927.

S. Kuwabara, The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers, Journal of the Physical Society of Japan, vol.14, issue.4, pp.527-532, 1959.
DOI : 10.1143/JPSJ.14.527

P. S. Lang, A. Paluszny, and R. W. Zimmerman, Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions, Journal of Geophysical Research: Solid Earth, vol.28, issue.4, pp.6288-6307, 2014.
DOI : 10.1016/0148-9062(91)90597-F

A. Lanzini, P. Leone, and P. Asinari, Microstructural characterization of solid oxide fuel cell electrodes by image analysis technique, Journal of Power Sources, vol.194, issue.1, pp.408-422, 2009.
DOI : 10.1016/j.jpowsour.2009.04.062

P. H. Larsen, C. Bagger, M. Mogensen, and J. G. Larsen, Stacking of planar SOFCs, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells, pp.69-75, 1995.

J. Laurencin, R. Quey, G. Delette, H. Suhonen, P. Cloetens et al., Characterisation of Solid Oxide Fuel Cell Ni???8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification, Journal of Power Sources, vol.198, issue.8, pp.182-189, 2012.
DOI : 10.1016/j.jpowsour.2011.09.105

URL : https://hal.archives-ouvertes.fr/hal-00858097

E. Lay, Utilisation conjointe de la tomographie par FIB/SEM et par rayonnement synchrotron pour la détermination des propriétés effectives de matériaux composites poreux : application auxéléctrodesauxéléctrodes d'EHVT, Premieres Journees Materiaux Numeriques, pp.43-69, 2013.

R. Lebensohn, N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform, Acta Materialia, vol.49, issue.14, pp.2723-2737, 2001.
DOI : 10.1016/S1359-6454(01)00172-0

R. Lebensohn, O. Castelnau, R. Brenner, and P. Gilormini, Study of the antiplane deformation of linear 2-D polycrystals with different microstructures, International Journal of Solids and Structures, vol.42, issue.20, pp.425441-5459, 2005.
DOI : 10.1016/j.ijsolstr.2005.02.051

URL : https://hal.archives-ouvertes.fr/hal-00096934

J. Lee, The impact of anode microstructure on the power generating characteristics of SOFC, Solid State Ionics, vol.158, issue.3-4, pp.225-232, 2003.
DOI : 10.1016/S0167-2738(02)00915-3

J. Li, S. Meng, X. Tian, F. Song, and C. Jiang, A non-local fracture model for composite laminates and numerical simulations by using the FFT method, Composites Part B: Engineering, vol.43, issue.3, pp.961-971, 2012.
DOI : 10.1016/j.compositesb.2011.08.055

J. M. Luck, Conductivity of random resistor networks: An investigation of the accuracy of the effective-medium approximation, Physical Review B, vol.43, issue.5, pp.3933-112, 1991.
DOI : 10.1103/PhysRevB.43.3933

O. A. Marina, N. L. Canfield, and J. W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate, Solid State Ionics, vol.149, issue.1-2, pp.21-28, 2002.
DOI : 10.1016/S0167-2738(02)00140-6

J. J. Martin, W. L. Mccabe, and C. C. Monrad, Pressure drop through stacked spheres. Effect of orientation, Chem. Eng. Progress, vol.47, issue.125, pp.91-94, 1951.

N. Martys, S. Torquato, and D. Bentz, Universal scaling of fluid permeability for sphere packings. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, pp.403-408, 1994.

D. Masson, B. Abdallah, F. Willot, D. Jeulin, E. Mercadelli et al., Morphological modeling of a metal foam SOFC configuration Ecs, ECS Conference on Electrochemical Energy Conversion & Storage with SOFC-XIV, p.140, 2015.

G. Matheron, Elements pour une theorie des milieux poreux, pp.66-106, 1967.

G. Matheron, The theory of regionalized variables and its applications, Paris School of Mines publications, 1921.

G. Matheron, Random sets theory and its applications to stereology, Journal of Microscopy, vol.49, issue.1, pp.15-23, 1972.
DOI : 10.1111/j.1365-2818.1972.tb03708.x

G. Matheron, Random sets and integral geometry, p.147, 1975.

K. Matsuzaki, N. Shikazono, and N. Kasagi, Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope, Journal of Power Sources, vol.196, issue.6, pp.3073-3082, 2011.
DOI : 10.1016/j.jpowsour.2010.11.142

F. Meyer, Topographic distance and watershed lines, Signal Processing, vol.38, issue.1, pp.113-125, 1994.
DOI : 10.1016/0165-1684(94)90060-4

J. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non???linear composites with arbitrary phase contrast, International Journal for Numerical Methods in Engineering, vol.58, issue.12, pp.139-160, 2001.
DOI : 10.1002/nme.275

R. E. Miles, On the homogeneous planar Poisson point process, Mathematical Biosciences, vol.6, issue.65, pp.85-127, 1970.
DOI : 10.1016/0025-5564(70)90061-1

G. W. Milton, Bounds on the complex permittivity of a two???component composite material, Journal of Applied Physics, vol.52, issue.8, pp.5286-5293, 1981.
DOI : 10.1063/1.329385

G. W. Milton, The coherent potential approximation is a realizable effective medium scheme, Communications in Mathematical Physics, vol.55, issue.4, pp.463-500, 1985.
DOI : 10.1007/BF01215906

G. W. Milton, The theory of composites, p.110, 2002.
DOI : 10.1017/CBO9780511613357

N. Mishra, J. Vondrejc, and J. Zeman, A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media, Journal of Computational Physics, vol.321
DOI : 10.1016/j.jcp.2016.05.041

V. Monchiet and G. Bonnet, A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast, International Journal for Numerical Methods in Engineering, vol.21, issue.3, pp.1419-1436, 2012.
DOI : 10.1002/nme.3295

URL : https://hal.archives-ouvertes.fr/hal-00687816

V. Monchiet, G. Bonnet, and G. Lauriat, A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium, Comptes Rendus M??canique, vol.337, issue.4, pp.192-197, 2009.
DOI : 10.1016/j.crme.2009.04.003

URL : https://hal.archives-ouvertes.fr/hal-00687819

M. Moreaud, Propriétés morphologiques multi-´ echelles et prévision du comportement diéeléctrique de nanocomposites, p.110, 2006.

M. Mori, T. Abe, H. Itoh, O. Yamamoto, Y. Takeda et al., Cubicstabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells, Solid State Ionics, vol.74, issue.3, pp.3-4157, 1994.

N. A. Mortensen, F. Okkels, and H. Bruus, Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels, 57301, may 2005. 107 [125] H. Moulinec. CraFT software. (Available from, p.2013
DOI : 10.1103/PhysRevE.71.057301

H. Moulinec and F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, International Journal for Numerical Methods in Engineering, vol.42, issue.2, pp.960-985, 2014.
DOI : 10.1002/nme.4614

URL : https://hal.archives-ouvertes.fr/hal-00787089

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l'Académie des sciences, Série II, vol.110, issue.193, pp.3181417-1423, 1994.

V. V. Mourzenko, J. Thovert, and P. M. Adler, Macroscopic permeability of three-dimensional fracture networks with power-law size distribution, Physical Review E, vol.69, issue.6, pp.66307-141, 2004.
DOI : 10.1103/PhysRevE.69.066307

W. H. Müller, Mathematical vs. Experimental Stress Analysis of Inhomogeneities in Solids, Le Journal de Physique IV, vol.06, issue.C1, pp.139-148, 1996.
DOI : 10.1051/jp4:1996114

A. Nabovati, E. W. Llewellin, and A. C. Sousa, A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method, Composites Part A: Applied Science and Manufacturing, vol.40, issue.6-7, pp.860-869, 2009.
DOI : 10.1016/j.compositesa.2009.04.009

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.308-313, 1965.
DOI : 10.1093/comjnl/7.4.308

T. Nguyen, V. Monchiet, and G. Bonnet, A Fourier based numerical method for computing the dynamic permeability of periodic porous media, European Journal of Mechanics - B/Fluids, vol.37, issue.0, pp.90-98, 0110.
DOI : 10.1016/j.euromechflu.2012.07.004

URL : https://hal.archives-ouvertes.fr/hal-01165817

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.
DOI : 10.1109/TSMC.1979.4310076

M. N. Panda and L. W. Lake, Estimation of single-phase permeability from parameters of particle-size distribution, AAPG bulletin, vol.78, issue.7, pp.1028-1039, 1994.

M. S. Paterson, The equivalent channel model for permeability and resistivity in fluid-saturated rock???A re-appraisal, Mechanics of Materials, vol.2, issue.4, pp.345-352, 1983.
DOI : 10.1016/0167-6636(83)90025-X

D. Pérez-coll, E. Sánchez-lópez, and G. C. Mather, Influence of porosity on the bulk and grain-boundary electrical properties of Gd-doped ceria, Solid State Ionics, vol.181, issue.21-22, pp.181-202, 2010.
DOI : 10.1016/j.ssi.2010.06.006

C. Peyrega and D. Jeulin, ESTIMATION OF TORTUOSITY AND RECONSTRUCTION OF GEODESIC PATHS IN 3D, Image Analysis & Stereology, vol.32, issue.1, pp.27-43, 2013.
DOI : 10.5566/ias.v32.p27-43

URL : https://hal.archives-ouvertes.fr/hal-01016052

J. L. Poiseuille, Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres, Imprimerie Royale, vol.107, pp.1844-121

M. Politis, E. Kikkinides, M. K. Kainourgiakis, and . Stubos, A hybrid process-based and stochastic reconstruction method of porous media, Microporous and Mesoporous Materials, vol.110, issue.1, pp.92-99, 2008.
DOI : 10.1016/j.micromeso.2007.09.024

S. Prager, Viscous Flow through Porous Media, Physics of Fluids, vol.4, issue.12, pp.1477-1482, 1961.
DOI : 10.1063/1.1706246

A. Prakash and R. A. Lebensohn, Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms, Modelling and Simulation in Materials Science and Engineering, vol.17, issue.6, pp.64010-110, 2009.
DOI : 10.1088/0965-0393/17/6/064010

S. K. Pratihar, R. N. Basu, S. Mazumder, and H. S. Maiti, Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method, 6th International Symposium on Solid Oxide Fuel Cells (SOFC-VI). ELECTROCHEMICAL SOCIETY INC, p.159, 1999.

T. Prill, K. Schladitz, D. Jeulin, M. Faessel, and C. Wieser, Morphological segmentation of FIB-SEM data of highly porous media, Journal of Microscopy, vol.7, issue.9, pp.77-87, 2013.
DOI : 10.1111/jmi.12021

URL : https://hal.archives-ouvertes.fr/hal-00879709

D. J. Priour-jr, Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis, Physical Review E, vol.89, issue.1, pp.1-5, 2014.
DOI : 10.1103/PhysRevE.89.012148

C. Redenbach, O. Wirjadi, S. Rief, and A. Wiegmann, Modeling of Ceramic Foams for Filtration Simulation, Advanced Engineering Materials, vol.15, issue.3, pp.171-177, 2011.
DOI : 10.1002/adem.201000222

J. Richardson and W. Zaki, The sedimentation of a suspension of uniform spheres under conditions of viscous flow, Chemical Engineering Science, vol.3, issue.2, pp.65-73, 1954.
DOI : 10.1016/0009-2509(54)85015-9

S. Rief, A. Latz, and A. Wiegmann, Computer simulation of Air Filtration including electric surface charges in three-dimensional fibrous micro structures. Filtration, pp.169-172, 2006.

M. D. Rintoul and S. Torquato, Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model, Journal of Physics A: Mathematical and General, vol.30, issue.16, pp.585-126, 1997.
DOI : 10.1088/0305-4470/30/16/005

A. D. Rollett, R. A. Lebensohn, M. Groeber, Y. Choi, J. Li et al., Stress hot spots in viscoplastic deformation of polycrystals, Modelling and Simulation in Materials Science and Engineering, vol.18, issue.7, pp.74005-110
DOI : 10.1088/0965-0393/18/7/074005

J. Rubinstein and S. Torquato, Diffusion???controlled reactions: Mathematical formulation, variational principles, and rigorous bounds, The Journal of Chemical Physics, vol.88, issue.10, pp.6372-6380, 1988.
DOI : 10.1063/1.454474

J. Rubinstein and S. Torquato, Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds, Journal of Fluid Mechanics, vol.1, issue.-1, pp.25-46, 1989.
DOI : 10.1016/0301-9322(82)90047-7

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

H. Samet and M. Tamminen, Efficient component labeling of images of arbitrary dimension represented by linear bintrees, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.4, pp.579-586, 1988.
DOI : 10.1109/34.3918

N. M. Sammes, Y. Du, and R. Bove, Design and fabrication of a 100W anode supported micro-tubular SOFC stack, Journal of Power Sources, vol.145, issue.2, pp.428-434, 2005.
DOI : 10.1016/j.jpowsour.2005.01.079

A. S. Sangani and A. Acrivos, Slow flow through a periodic array of spheres, International Journal of Multiphase Flow, vol.8, issue.4, pp.343-360, 1982.
DOI : 10.1016/0301-9322(82)90047-7

J. Sanyal, G. M. Goldin, H. Zhu, and R. J. Kee, A particle-based model for predicting the effective conductivities of composite electrodes, Journal of Power Sources, vol.195, issue.19, pp.1956671-6679
DOI : 10.1016/j.jpowsour.2010.04.013

M. Schmitt and F. Prêteux, Un nouvel algorithme en morphologie mathématique : les rh maxima et rh minima, Proc. 2ieme Semaine Internationale de l'Image Electronique, pp.469-475, 1986.

M. Schneider, F. Ospald, and M. Kabel, Computational homogenization of elasticity on a staggered grid, International Journal for Numerical Methods in Engineering, vol.43, issue.8, pp.2015-123
DOI : 10.1002/nme.5008

J. Serra, Image analysis and mathematical morphology, p.21, 1983.

M. M. Shahmardan, M. Nazari, M. Khaksar, and M. Khatib, A New Mathematical Model for Permeability of Composites, Journal of Solid Mechanics, vol.5, issue.4, pp.371-379, 2013.

P. Shearing, J. Golbert, R. Chater, and N. Brandon, 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique, Chemical Engineering Science, vol.64, issue.17, pp.3928-3933, 2009.
DOI : 10.1016/j.ces.2009.05.038

F. Shechao, B. Halperin, and P. Sen, Transport properties of continuum systems near the percolation threshold, Physical review. B, vol.35, issue.1, pp.197-214, 1987.

P. Soille, Morphological Image Analysis : Principles and Applications, 1999.

S. D. Souza, S. J. Visco, and L. C. Jonghe, Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte, Journal of The Electrochemical Society, vol.144, issue.3, pp.35-37, 1997.
DOI : 10.1149/1.1837484

B. Steele, Survey of materials selection for ceramic fuel cells, Solid State Ionics, vol.86, issue.6, pp.1223-1234, 1996.

B. Steele, Appraisal of Ce1???yGdyO2???y/2 electrolytes for IT-SOFC operation at 500??C, Solid State Ionics, vol.129, issue.1-4, pp.95-110, 2000.
DOI : 10.1016/S0167-2738(99)00319-7

O. Stenzel, D. Westhoff, I. Manke, M. Kasper, D. P. Kroese et al., Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures, Modelling and Simulation in Materials Science and Engineering, vol.21, issue.5, pp.1-21, 2013.
DOI : 10.1088/0965-0393/21/5/055004

C. Sun, R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: a review, Journal of Solid State Electrochemistry, vol.33, issue.115, pp.1125-1144, 2009.
DOI : 10.1007/s10008-009-0932-0

Y. Suzue, N. Shikazono, N. Kasagi, ]. P. Szabo, J. Arnold et al., Micro Modeling of Solid Oxide Fuel Cell Anode based on Stochastic Reconstruction Progress in the metal supported solid oxide fuel cells and stacks for APU, ECS transactions, vol.59, issue.252 5, pp.175-185, 2008.

C. K. Tam, The drag on a cloud of spherical particles in low Reynolds number flow, Journal of Fluid Mechanics, vol.1, issue.03, pp.537-546, 1969.
DOI : 10.1103/PhysRev.67.107

A. Tamayol and M. Bahrami, Analytical determination of viscous permeability of fibrous porous media, International Journal of Heat and Mass Transfer, vol.52, issue.9-10, pp.2407-2414, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2008.09.032

M. L. Thomas, D. B. Ingham, and M. Pourkashanian, Prediction of the Permeability of Fibrous Porous Media Using the Lattice Boltzmann Method in Conjuction with Coarse Numerical Lattices, Open Transport Phenomena Journal, vol.2, pp.80-89, 2010.

Z. Tianshu, P. Hing, H. Huang, and J. Kilner, Ionic conductivity in the CeO2???Gd2O3 system (0.05???Gd/Ce???0.4) prepared by oxalate coprecipitation, Solid State Ionics, vol.148, issue.3-4, pp.567-573, 2002.
DOI : 10.1016/S0167-2738(02)00121-2

F. Tietz, Q. Fu, V. A. Haanappel, A. Mai, N. H. Menzler et al., Materials Development for Advanced Planar Solid Oxide Fuel Cells, International Journal of Applied Ceramic Technology, vol.177, issue.3, pp.436-445, 2007.
DOI : 10.1149/1.1420706

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), p.30, 1998.
DOI : 10.1109/ICCV.1998.710815

S. Torquato, Microstructure characterization and bulk properties of disordered two-phase media, Journal of Statistical Physics, vol.33, issue.5-6, pp.843-873, 1986.
DOI : 10.1007/BF01020577

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, p.130, 2002.
DOI : 10.1115/1.1483342

S. Torquato and A. Donev, Minimal surfaces and multifunctionality, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.460, issue.2047, pp.1849-1856, 2004.
DOI : 10.1098/rspa.2003.1269

S. Torquato, S. Hyun, and A. Donev, Multifunctional composites : optimizing microstructures for simultaneous transport of heat and electricity. Physical review letters, pp.266601-171, 2002.

S. Torquato, S. Hyun, and A. Donev, Optimal design of manufacturable three-dimensional composites with multifunctional characteristics, Journal of Applied Physics, vol.94, issue.9, pp.5748-5755, 2003.
DOI : 10.1063/1.1611631

S. Torquato and B. Lu, Rigorous bounds on the fluid permeability : Effect of polydispersivity in grain size. Physics of Fluids A : Fluid Dynamics, pp.487-140, 1990.

S. Uhlenbruck, T. Moskalewicz, N. Jordan, H. Penkalla, and H. Buchkremer, Element interdiffusion at electrolyte???cathode interfaces in ceramic high-temperature fuel cells, Solid State Ionics, vol.180, issue.4-5, pp.418-423, 2009.
DOI : 10.1016/j.ssi.2009.01.014

F. J. Valdes-parada, J. A. Ochoa-tapia, and J. Alvarez-ramirez, Validity of the permeability Carman???Kozeny equation: A volume averaging approach, Physica A: Statistical Mechanics and its Applications, vol.388, issue.6
DOI : 10.1016/j.physa.2008.11.024

S. C. Van-der-marck, Network Approach to Void Percolation in a Pack of Unequal Spheres, Physical Review Letters, vol.77, issue.9, pp.1785-1788, 1996.
DOI : 10.1103/PhysRevLett.77.1785

L. Vincent and D. Jeulin, Minimal paths and crack propagation simulations, Acta Stereologica, vol.8, issue.2, pp.487-494, 1921.

J. Vond?ejc, J. Zeman, and I. Marek, Analysis of a Fast Fourier Transform Based Method for Modeling of Heterogeneous Materials. Large-Scale Scientific Computing, pp.515-522, 2012.

H. L. Weissberg and S. Prager, Viscous Flow through Porous Media. III. Upper Bounds on the Permeability for a Simple Random Geometry, Physics of Fluids, vol.13, issue.12, pp.132958-2965, 1958.
DOI : 10.1063/1.1692887

A. Wiegmann, Computation of the permeability of porous materials from their microstructure by FFF-Stokes, Fraunhofer ITWM, vol.129, issue.193, pp.185-2013, 0191.

F. Willot, B. Abdallah, and Y. Pellegrini, Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, International Journal for Numerical Methods in Engineering, vol.94, issue.6, pp.518-533, 2014.
DOI : 10.1002/nme.4641

URL : https://hal.archives-ouvertes.fr/hal-00840986

F. Willot, L. Gillibert, and D. Jeulin, Microstructure-induced hotspots in the thermal and elastic responses of granular media, International Journal of Solids and Structures, vol.50, issue.10, pp.1699-1709, 0110.
DOI : 10.1016/j.ijsolstr.2013.01.040

URL : https://hal.archives-ouvertes.fr/hal-00728155

F. Willot and D. Jeulin, Elastic behavior of composites containing Boolean random sets of inhomogeneities, International Journal of Engineering Science, vol.47, issue.2, pp.313-324, 2009.
DOI : 10.1016/j.ijengsci.2008.09.016

URL : https://hal.archives-ouvertes.fr/hal-00426398

F. Willot and D. Jeulin, Elastic and electrical behavior of some random multiscale highly-contrasted composites, International Journal for Multiscale Computational Engineering, vol.9, issue.3, pp.1-30, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00553376

F. Willot and Y. Pellegrini, Fast Fourier Transform computations and buildup of plastic deformation in 2D, elastic-perfectly plastic, pixelwise-disordered porous media. Continuum Models and Discrete Systems CMDS 11, pp.443-449, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00412544

F. Willot, Y. Pellegrini, M. I. Idiart, and P. P. Castaneda, Effective-medium theory for infinite-contrast, 2D-periodic, linear composites with strongly anisotropic matrix behavior : dilute limit and cross-over behavior, Physical Review B, issue.10, pp.7817-110, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00413019

J. R. Wilson, J. S. Cronin, A. T. Duong, S. Rukes, H. Chen et al., Effect of composition of stabilized ZrO 2 ) cathodes : Correlating three-dimensional microstructure and polarization resistance, Journal of Power Sources, issue.7, pp.1951829-1840, 2010.

O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, vol.45, issue.15-16, pp.15-162423, 2000.
DOI : 10.1016/S0013-4686(00)00330-3

O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani et al., Electrical conductivity of stabilized zirconia with ytterbia and scandia, Solid State Ionics, vol.79, issue.6, pp.137-142, 1995.
DOI : 10.1016/0167-2738(95)00044-7

K. Yazdchi, S. Srivastava, and S. Luding, Microstructural effects on the permeability of periodic fibrous porous media, International Journal of Multiphase Flow, vol.37, issue.8, pp.956-966, 2011.
DOI : 10.1016/j.ijmultiphaseflow.2011.05.003

H. Yokokawa, H. Tu, B. Iwanschitz, and A. Mai, Fundamental mechanisms limiting solid oxide fuel cell durability, Journal of Power Sources, vol.182, issue.2, pp.400-412, 2008.
DOI : 10.1016/j.jpowsour.2008.02.016

K. B. Yoo and G. M. Choi, Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC, Solid State Ionics, vol.180, issue.11-13, pp.11-13867, 2009.
DOI : 10.1016/j.ssi.2009.02.013

J. Yvonnet, A fast method for solving microstructural problems defined by digital images: a space Lippmann-Schwinger scheme, International Journal for Numerical Methods in Engineering, vol.40, issue.1, pp.178-205, 2012.
DOI : 10.1002/nme.4334

URL : https://hal.archives-ouvertes.fr/hal-00822037

J. Zeman, J. Vond?ejc, J. Novák, and I. Marek, Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients, Journal of Computational Physics, vol.229, issue.21, pp.8065-8071
DOI : 10.1016/j.jcp.2010.07.010

S. Zhang, M. Lynch, .. M. Gokhale, and M. Liu, Unbiased characterization of three-phase microstructure of porous lanthanum doped strontium manganite/yttria-stabilized zirconia composite cathodes for solid oxide fuel cells using atomic force microscopy and stereology, Journal of Power Sources, vol.192, issue.2, pp.367-371, 2009.
DOI : 10.1016/j.jpowsour.2009.03.043

A. A. Zick and G. M. Homsy, Stokes flow through periodic arrays of spheres, Journal of Fluid Mechanics, vol.12, issue.-1, pp.13-125, 2006.
DOI : 10.1016/0009-2509(74)80200-9