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Abstract 
 

 

 

This thesis deals with sensor fusion between camera and inertial sensors measurements in order 

to provide a robust motion estimation algorithm for embedded video applications. The targeted 

platforms are mainly smartphones and tablets. 

 

We present a real-time, 2D online camera motion estimation algorithm combining inertial and 

visual measurements. The proposed algorithm extends the preemptive RANSAC motion 

estimation procedure with inertial sensors data, introducing a dynamic lagrangian hybrid 

scoring of the motion models, to make the approach adaptive to various image and motion 

contents. All these improvements are made with little computational cost, keeping the 

complexity of the algorithm low enough for embedded platforms. The approach is compared 

with pure inertial and pure visual procedures. 

 

A novel approach to real-time hybrid monocular visual-inertial odometry for embedded 

platforms is introduced. The interaction between vision and inertial sensors is maximized by 

performing fusion at multiple levels of the algorithm. Through tests conducted on sequences 

with ground-truth data specifically acquired, we show that our method outperforms classical 

hybrid techniques in ego-motion estimation. 

 
 

Keywords: Motion estimation, computer vision, inertial sensors, sensor fusion, real-time, 

embedded, RANSAC, SLAM, odometry, particle filter. 
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Chapitre 1: Introduction 
 

 

Below is a French summary of chapter 1: Introduction. 

 

La popularité des téléphones intelligents (ou smartphones) et des tablettes, fait que de 

nombreuses applications sont développées pour ces plateformes. Une partie de ces applications 

est en relation avec la vidéo : amélioration de qualité du contenu, reconnaissance de scène ou 

de personne, réalité augmentée… Une étape clé de toutes ces applications est l’estimation du 

mouvement de l’appareil. Pour ce faire, plusieurs moyens sont à dispositions sur les téléphones 

intelligents et tablettes. La vidéo est très souvent utilisée afin d’estimer le mouvement, mais 

d’autres capteurs sont également exploitables, tels que les capteurs inertiels.  

 

Le but de cette thèse est d’étudier la fusion des données de caméras et de capteurs inertiels afin 

d’estimer de façon précise et robuste le mouvement de la plateforme embarquée pour des 

applications vidéos. Ce chapitre introduit les applications concernées, les capteurs inertiels et 

visuels, les bases de la vision par ordinateur ainsi que les divers modèles de mouvement 

existants.  
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Chapter 1: Introduction 
 

 

With the massive popularity of smartphones and tablets, various applications are developed on 

those devices. Part of them concern video-related content: improving the quality of the video 

sequence, computing semantic information on the content of the scene, superimposing contents 

for augmented reality or gaming… A key step in many of these applications is to estimate the 

motion of the platform. In order to perform this, one can use directly the camera recordings or 

other sensors available on the smartphone or tablet, such as the inertial sensors. The goal of 

this thesis is to perform sensor fusion between the camera and inertial sensors measurements 

for these embedded video applications. 

 

In section 1.1 of this introductory chapter the two main actors of this thesis are presented: 

STMicroelectronics and the Robotic Center laboratory from Mines Paristech’. 

STMicroelectronics has demonstrated over the years many algorithms for embedded video 

applications using cameras on smartphones. One of the possible improvements of those 

techniques is to develop fusion methods with inertial sensors. The Robotic Center laboratory 

displays a high expertise on sensor fusion for mobile robotic, with a wide array of sensors 

(cameras, laser, GPS, etc…). This knowledge can be transposed to embedded platforms such 

as smartphone and tablets.  

 

Section 1.2 introduces the main applications that were targeted in the thesis. Firstly, image 

quality enhancement techniques should be improved with inertial sensors. Robustness 

improvement and assessment of those need to be performed. Secondly, Simultaneous 

Localization And Mapping (SLAM) methods should be developed, targeting the current 

robustness and accuracy issues that concern state of the art techniques. 

 

A deeper look into the two types of sensors studied in the thesis is proposed in section 1.3 . 

Video sensors, or cameras, possess very complex characteristics, which lead to many possible 

artifacts with various causes and effects. Inertial sensors on embedded platforms such as 

Smartphones display high noise values. This leads to the application of ad hoc strategies when 

performing processing on those types of sensors. 

 

Motion models are discussed in section 1.4 . Being the heart of this thesis, one should carefully 

define the possible types of models that are encountered when performing motion estimation 

applications.  2D motion model selection is often dependent on the degree of freedom needed 

in the desired application. 3D motion model choice is also very variable, but the main concern 

is a tradeoff between interpretability of the data and good mathematical properties such as the 

lack of singularities and easiness of differentiability. 

 

Finally, section 1.5 presents the structure of the thesis. 
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1.1 Context 
 

This thesis was realized in the “Digital Convergence Group” unit of STMicroelectronics. The 

academic partner is the Robotic center of Mines Paristech. The subject under study concerns 

mainly the extended fusion between a video sensor (a camera) and inertial sensors (such as 

gyroscope, accelerometers…) for embedded video applications. 

 

1.1.1 STMicroelectronics 

 

STMicroelectronics (ST) is a worldwide actor on the semi-conductor market, having client 

covering the range of technologies « Sense & Power » and applications of multimedia 

convergence. From power management to energy saving, data confidentiality and security, 

health and care to smart public devices, ST is present where the micro-technology brings a 

positive and novel contribution to everyday life. ST is in the heart of industrial applications 

and entertainment at home, desk, mobile devices and cars. 

 

Particularly, in the « Digital Convergence Group », solutions for image and video processing 

are developed and have been integrated for many years for cellular phones. The “Algorithm 

for Image Quality” group mission is to design and develop algorithms for those types of 

processing, specifically for the embedded domain. This includes reference code 

implementation, platform implementation and inputs for new hardware blocs. The group is also 

in charge of evaluation activities, standards tracking, coordination and technical expertise for 

clients or internally. It is also very active for patenting ideas associated to these innovations. 

 

1.1.2 The Robotic Center  
 

One of the major axes of research of the Robotic Center from the “Ecole des Mines de Paris” 

is to develop tools, algorithms, and applications of real-time analysis from readings coming 

from multiple sensors, including cameras. Many applications were designed in the domains of 

virtual reality, augmented reality, driving assisting systems, and video surveillance. Real-time 

recognition techniques have been developed in this context [Zaklouta & Stanciulescu 2011; 

Moutarde et al. 2008; Stanciulescu et al. 2009]. 

 

A software platform resulting from the center work is today commercialized by the company 

INTEMPORA under the name of Real-time Advances Prototyping Software (RT-MAPS). It 

allows the acquisition, prototyping, and execution of real-time processing of synchronized 

readings of sensors. It is used by many companies and academic research labs such as Thales, 

Valeo, PSA, Renault, the INRIA, the INRETS, etc… including several projections such as 

Cybercars1 and CityMobil2. Finally, the laboratory has acquired a solid expertise on the use of 

                                                
1 http://www.cybercars.org/ 
2 http://www.citymobil-project.eu/ 

http://www.cybercars.org/
http://www.citymobil-project.eu/
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several methods for data fusion (particle filtering, possibilities theory, etc…) in a real-time 

context. 

 

1.2 Aimed applications 
 

Fusion methods between a video sensor and inertial sensors can lead to or improve many 

potential applications. The study of this type of fusion in the context of this thesis can be 

summarized in two parts: video quality improvements, and Simultaneous Localization And 

Mapping (SLAM). 

 

1.2.1 Video quality improvement methods 
 

Main video applications  for embedded platforms are: video stabilization [Im et al. 2006], 

panorama creation (up to 360 degrees with loop closure) [Brown & Lowe 2006], temporal 

denoising [Lagendijk & Biemond 1990], or increase of the dynamic by multiple frame 

alignment [Kang et al. 2003]. Each of those techniques is already under study in ST [Auberger 

& Miro 2005]. Camera motion estimation is a key step in those applications. 

 

To estimate the camera motion on a smartphone or a tablet, two main sources of information 

are very relevant: inertial sensors and visual strategies. The first goal of this thesis is to fuse 

these two. Sensors fusion combined with classical motion estimation techniques should allow 

an improvement of the robustness of many algorithms based on camera motion. This should 

remove ambiguities that occur in many purely visual analyses: distinction between local and 

global motion, immunity to light changes, noise, low textured scenes. Overall, this fusion 

should lead to an improvement of the vision-based motion estimation without loss in accuracy.  

 

Furthermore, some of these methods make use of extraction of points of interest or keypoints 

to compute the motion between frames. Inertial data can also produce additional information 

for a better selection and tracking of these points. This could include prediction of the 

displacement of points, or the deletion of some constraints of certain descriptors.  

 

1.2.2 SLAM for indoor navigation and augmented reality 

 

The second major part of the thesis concerns the domain of SLAM for 3D mapping and indoor 

navigation. The estimation of camera motion along with the mapping of a 3D scene from an 

image sequence is a technique called Simultaneous Localization And Mapping (SLAM). Many 

studies have been proposed concerning this subject [Davison et al. 2007] [Klein & Murray 

2007]. The simultaneous motion estimation and building of the 3D scene is a very challenging 

problem with the sole utilization of video sequence. In the literature, applications created for 

mobile robotics or augmented realities encounter robustness issues. Some approaches 
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combining cameras with other sensors (stereo-vision, laser, GPS) improve the robustness but 

are not relevant in the context of embedded platforms. 

 

The ROBOTIC CENTER has acquired a certain amount of experience in the fusion of sensors 

for the SLAM in the DGA-ANR challenge Carotte3. The “Corebots” prototype has won the 

competition twice on three attempts, by localizing itself and mapping in a more accurate 

manner than its opponents in an outdoor environment. Figure 1-1 shows an example of 

mapping by the Corebots prototype. 

 

 
Figure 1-1: Mapping by the Corebots prototype. 

Recently, the main drawbacks of state-of-the art SLAM approaches have been the following: 

heavy computational cost, relatively complex methods, inaccurate results based only on video 

sensors. This is where the use of fusion with inertial and magnetic sensors should play a 

decisive role by completing the image and playing as substitution for more complex sensors 

used in tradition mobile robotics. The estimation of the camera motion is tightly coupled to 

inertial and visual fusion, allowing the improvement of the 3D trajectory, therefore also 

impacting the 3D mapping. A decrease of the computational cost is also aimed at as in [Castle 

et al. 2007]. 

 

1.2.3 Main axis of research 

 

Beyond the pure algorithmic improvements, a certain amount of questions should be answered 

concerning the feasibility and the interest of inertial visual fusion in industrial processing, 

especially when applied to embedded platforms: 

 

- What are the performance improvements that can be reached compared to the usage of 

only one sensor (typically pure visual techniques)? 

 

- What are the complexity increases created by the fusion? In terms of direct 

computational time as well as complexity. 

                                                
3 http://www.defi-carotte.fr/index.php 

http://www.defi-carotte.fr/index.php
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- What is the accuracy needed in terms of calibration? This concerns both temporal 

calibration (data synchronization) and spatial calibration (axis alignment between the 

sensors). 

 

The assessment of these points for every developed technique in this thesis is a very important 

aspect of the work provided. In effect, the industrial viability of a method has to be 

demonstrated for these algorithms to be relevant for ST. 

 

1.3 Sensors 
 

The main goal of this thesis is to build robust and computationally efficient methods for motion 

estimation, based on camera and inertial sensors measurements. A quick overview of the 

respective sensors capabilities and characteristics is given is this section. 

 

1.3.1 Vision sensors 

 

Many possible sensors can be utilized in order to estimate motion for an embedded platform in 

a video application. Cameras are a very straightforward choice, as the video sequence is the 

direct target of the application. Many techniques have been developed in order to estimate 

motion based on the video sequence, and many are already integrated in industrial applications 

such as video stabilization, panorama creation, tracking, video encoding, etc… Computing the 

motion from the video sequence alone is not a simple task, especially when the device is 

handheld, leading to artifacts and difficult cases. 

 

When a device with the camera is handheld, it can undergo high motions (often corresponding 

to wrist twists). Heavy movements not only require specific steps or considerations in the 

motion estimation process, but they can also lead to visual artifacts. A commonly known issue 

is motion blur. As motion occurs while recording a scene during the exposure time, pixels do 

not record the same place. This implies that nearby pixels will influence the final recording of 

a pixel, degrading the image quality as illustrated in Figure 1-2. 
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Figure 1-2: Motion blur examples from [Ben-Ezra & Nayar 2003]. 

Embedded cameras are often based on CMOS (Complementary Metal–Oxide–Semiconductor) 

transistors. The specificity of this type of cameras is that pixel rows are recorded sequentially 

rather than simultaneously, as shown on Figure 1-3. This technique is called the Rolling 

Shutter. A motion occurring between the acquisitions of the lines can lead to distortions in the 

image, not only degrading image quality but also the motion estimation to a lesser extent. 

Rolling Shutter distortions can lead to skewed images (Figure 1-3) as well as stretches or 

compressions. 

 

 
Figure 1-3: Left: Rolling Shutter readout system. Right: Example of skew due to Rolling Shutter 

distortions. 

 

While these types of effects are often considered as an image quality degradation, they can also 

affect the motion estimation process because of the geometric changes that they apply on the 

images. Furthermore, embedded cameras have lower field of view than usual cameras, leading 

to a lesser angle of the scene recorded, lowering the amount of usable information. They also 

have a lower resolution, leading to a less detailed content. To conclude, embedded motion 

estimation induces heavy requirements in terms of robustness to large motions and its 

consequences in terms of artifacts and distortions. 
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1.3.2 Inertial sensors 
 

Most recent smartphones and tablets have inertial sensors integrated in their hardware. The 

three widely used types of inertial sensors are the gyroscope, the accelerometer and the 

magnetometer. Most embedded inertial sensors are MEMS (Microelectromechanical systems), 

notably known for their low consumption and volume. An example of MEMS sensors on a 

board can be seen on Figure 1-4. Other types of sensors are present such as pressure, light and 

proximity sensors. However, in the context of motion estimation they appeared less relevant. 

Each type of sensor possesses its own characteristics and they can be used directly or fused to 

perform a large range of applications. The fusion process consists in performing an estimation 

using measurements from multiple sensors types. This allows to overcome specific drawbacks 

from each sensor, even if some remain after using fusion techniques. 

 

 
Figure 1-4: MEMs sensors on a board, with a 1 cent of Euro piece for scale. 

1.3.2.1 Sensors characteristics 

 

The gyroscope measures rotation speed in three dimensions. The measurement rate 

ranges from 50Hz up to 500Hz. To obtain orientation information, it is necessary to integrate 

the data from the gyroscope, giving only a relative estimation on the rotation of the device from 

one measurement to the next. It leads to error accumulation, also known as drift, when 

measuring a biased sensor, which is always the case for MEMS gyroscopes. In our experiments, 

we noticed this type of sensor was the least noisy of the three, but as it only gives a relative 

estimation and it can drift, either fusion or specific filtering needs to be performed before using 

its measurements. 

 

The accelerometer indicates the mobile acceleration that is composed of the gravity 

and the mobile’s own acceleration. In the MEMS case, the sensor is usually very noisy. It is 

therefore very challenging to retrieve the true mobile acceleration from it, and even harder to 

estimate the speed or the position, as it requires integration of a highly noisy signal. Therefore 

the accelerometer is usually only used to deduce the direction of the gravity, providing an 

estimation of the mobile orientation without any integration needed. It must be considered that 
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making this assumption implies that the mobile’s own acceleration then becomes a form of 

noise. 

 

The magnetometer estimates the earth magnetic field direction and so the magnetic 

north. Similarly to the accelerometer, the measures are very noisy. In addition, magnetic 

perturbations add to the noise; the effects known as “soft iron” and “hard iron” lead to distortion 

in the local magnetic field. The hard iron is due to a magnetic reflection from an object, while 

the soft iron comes from interferences in the magnetic field, for instance due to a cellphone. 

Figure 1-5 displays an example of what a magnetometer measures when performing a 360° 

yaw rotation. We only represent the x and y axis, as the vertical axis does not vary. The upper 

graph shows the measurement without perturbations. The lower-left one displays the hard iron 

effect, and the lower-right one the effects of the soft iron. It can be seen that without any 

disturbances the north direction describes a round circle while the 360° turn is performed. 

However, in the presence of either soft or hard iron, the circle is either shifted (hard iron) or 

not round anymore (soft iron), which induces errors when estimating the north direction. 

 

 
Figure 1-5: The effect of soft and hard iron on a magnetometer when performing a 360° turn. 

To sum up, each sensor has its own issues: 

- The gyroscope provides a rotation speed estimation. Performing orientation estimation 

requires integration, which can create drift from biases. 

- The accelerometer is very noisy, and as we want to estimate the gravity direction only, 

platform’s acceleration is to be added to noise. 

- The magnetometer is also very noisy, and can undergo a lot of distortions due to various 

magnetic effects. 

 

It is necessary to overcome those drawbacks by fusing the sensors to obtain a robust and 

accurate estimation of the orientation of the mobile.  
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1.3.2.2 Inertial sensors fusion techniques and applications 

 

There are a lot of applications domains for inertial sensors fusion in embedded platforms, from 

Unmanned Aerial Vehicles (UAVs) navigation to Smartphone applications. For the 

Smartphones and Tablets the targets are mainly gaming, orientation awareness, pedestrian step 

counting, etc…  The goal of inertial sensor fusion is to utilize the measurements from the three 

sensors simultaneously in order to compute the 3D orientation (and eventually position, even 

if it is highly challenging for low-cost sensors [Baldwin et al. 2007]) of the device. Two main 

techniques are utilized in the literature to accomplish this: the Kalman filter and the 

complementary filter.  

 

The Kalman filter [Kalman 1960] is utilized in many domains and applications. It 

estimates over time a set of Gaussian unknown variables, called the state of the filter. The first 

two statistic moments are computed, that is the mean and the covariance of the state. This 

estimation is based on a physical model and measurement equations. Like most Bayesian 

filters, it proceeds in two steps: a prediction of the state of the filter and a correction of the 

prediction based on the measurements. The detailed operation of the Kalman filter is shown in 

Appendix A: The main requirement to apply it for inertial sensor fusion is to have an 

approximate knowledge of the noise model of every sensor. Usually, the biases of every sensor 

are explicitly computed in the state of the filter. One major limitation of the Kalman filter is 

that it can only estimate linear systems, both in terms of propagation and measurement. 

Therefore an extended version of it has been designed for non-linear systems: it linearizes 

locally the propagation and measurement equations. Many applications and adaptations of the 

filter, or its extended version, have been presented for inertial sensor fusion [Lefferts et al. 

1982] [Julier & Uhlmann 1997] [Marins et al. 2003] [Kiriy & Buehler 2002] [Foxlin 1996].  

 

The complementary filter is much more specific to inertial sensor fusion in terms of field 

of application. The sensors characteristics are taken into account in terms of their frequency 

performance for orientation estimation. On one hand, gyroscopes are quite accurate but suffer 

from drift as we need to integrate the measurements to compute orientation. Thus, they perform 

well to estimate high frequency motions, but poorly for low frequency ones. On the other hand, 

magnetometers and accelerometers possess heavy noise and perturbations, but their orientation 

measurements do not drift, as they respectively record the direction of the gravity and magnetic 

north. Therefore their performance is good in the low frequencies, but poor in the high 

frequencies. To maximize the potential of both sensors, the complementary filter has two steps: 

filtering every sensor output according to its frequency quality of estimation, and then 

combining the filtered signals. For instance, a low-pass filtering is performed on the 

accelerometer and magnetometer; a high-pass filtering is performed on the gyroscope; then the 

signals are combined. This type of filtering has been widely applied for inertial sensor fusion 

[Mahony et al. 2008; Mahony et al. 2005] [Euston et al. 2008] [Fux 2008]. The main advantage 

of this technique is its low-parameterization, as only cutoff frequencies are to be set. It can also 

be lighter in terms of computation processing than Kalman filtering. 

 

 



Chapter 1: Introduction 

21 
 

1.4 Representation of a motion 
 

As the study presented here is focused on motion estimation, a problem that arises is to adopt 

proper motion model representation. This will impact heavily some algorithmic and 

implementation choices and limitations. Firstly, the pinhole projective model is introduced, 

which is the classical model used for embedded video applications. In two dimensions, the 

problematic revolves around restrictions to the planar motion, going from a pure translation to 

perspective models, and even some more specific ones. In 3D the main concern is the type of 

rotation representations that can lead to singularities, difficulties in interpretation, and filtering 

problems. 

 

1.4.1 Envisioning a 3D world with a 2D sensor 

 

The pinhole camera model is the most applied in the computer vision domain. It describes the 

mathematical relationship between a 3D object viewed by the camera and its 2D projection on 

the image, as shown in Fig.1-1. It possesses many limitations: it does not take into account the 

focus of the camera which creates blur and it does not directly model the discretization that 

occurs when translating projected image into pixels. In addition, Image distortions due to lenses 

are not considered. However, this model is considered as a sufficient geometric approximation 

for many applications [Hartley & Zisserman 2003]. As one can see on fig. 1-1, the real final 

image plane presents a 180° rotation due to image rays crossing at the pinhole location. To 

simplify computation, a virtual image plane is often considered in front of the pinhole. All 

equations presented in this thesis will be based on this virtual image, which will now directly 

be referred to as the image to clarify and lighten the subject. 

 

 
Figure 1-6: A pinhole camera model 

We now consider a point 𝑋 in 3D world homogenous (we add a 1 at the end of the classical 

coordinates to treat translation using multiplication) coordinates: 𝑋 = (𝑥, 𝑦, 𝑧, 1)𝑇. The 

quantities 𝑥, 𝑦 and 𝑧 represent the world coordinates of the point. The image projection of the 

point 𝑋 is noted 𝐼𝑥 with its 2D pixel coordinates 𝐼𝑥 = (𝑢, 𝑣, 1)𝑇 , 𝑢 and 𝑣 being the horizontal 
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and vertical pixel coordinates respectively. A scheme of this representation is displayed on fig. 

2-2. 

 
Figure 1-7: Coordinates notation 

The pinhole camera model describes the relationship between 𝑋 and 𝐼𝑥. This is made in two 

steps. Firstly, we need to explicitly model the geometric position and orientation of the camera 

with respect to world coordinates. This information is contained in a 3x4 projection matrix 

𝑷 = [𝑹|𝒕], where 𝑅 is a 3x3 rotation matrix that encodes the orientation of the camera, and 𝑡 a 

column vector of 3 elements, representing the position of the pinhole center of the camera. 

Secondly, we need to explicit the transformation of the projection into pixel points. This is 

modeled by a camera matrix 𝑲. In some studies, 𝐾 is named the instrinsic matrix. 

 

  
𝐾 = (

𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

) (1)  

 

where 𝑓 is the focal length of the camera, and (𝑐𝑥 , 𝑐𝑦)𝑇
 the principal point of the camera, that 

defines the projection of the camera principal rays into the image plane. Note that a square 

pixel is considered here, otherwise we would need to define two distinct focal length for the 

horizontal and vertical axis of the camera.  The complete relationship between pixel location 

𝐼𝑥 and 3D coordinates 𝑋 is thus: 

 

 𝐼𝑥 = 𝐾𝑃𝑋 (2)  
 

While one may consider on-the-fly computation of both 𝐾 and 𝑃 matrices, in this study we 

considered that the camera matrix was computed once in a calibration process and then was 

considered fixed. The method of [Zhang 2000] was applied to every testing device used in the 

context of the thesis in order to compute the intrinsic camera matrix K. 

 

 

1.4.2 In-plane motions 

 

A 2D transformation between two frames can be expressed in many different manners. To keep 

the notation homogenous and simple, we will represent the transformation using the 
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coordinates’ changes of a point. A 2D homogenous point 𝐼𝑥 = (𝑢, 𝑣, 1)𝑇 in the first frame is 

mapped to a point 𝐼′𝑥 = (𝑢′, 𝑣′, 1)𝑇 in the second frame by the transformation. Most of the 

following descriptions for motion models is further described in the second chapter of [Hartley 

& Zisserman 2003]. 

 

The first type of motion that can be modeled is a direct translation 𝑇 = (𝑇𝑥 , 𝑇𝑦). It has a very 

simple effect on the coordinates: 

 

 
𝐼′𝑥 = (

𝑢′

𝑣′

1

) = (
𝑢 + 𝑇𝑥

𝑣 + 𝑇𝑦

1

) (3)  

 

The main characteristic of this motion model is that it only has 2 degrees of freedom. Therefore 

it is computable from only one point correspondence from a local motion estimation technique 

or a global one such as integral projections [Crawford et al. 2004]. The limitation in terms of 

motion is very restrictive, and makes it only usable for very closely recorded frames. To our 

knowledge, the translational motion model has mainly been used for video encoding, where 

every block’s motion is estimated with a local translational motion model. This type of model 

can also be used in panorama and stabilization, if in-plane rotation is not considered. 

 

Another type of 2D motion model is the rotation-preserving isometry, which correspond to an 

in-plane rotation by an angle 𝜃 combined with a translation: 

 

 

𝐼′
𝑥 = (

𝑢′

𝑣′

1

) = (
cos(𝜃) − sin(𝜃) 𝑇𝑥

sin(𝜃) cos(𝜃) 𝑇𝑦

0 0 1

) (
𝑢

𝑣

1
) (4)  

 

Only one degree of freedom is added to the translation model, but as a point correspondence 

provides two pieces of data, two point correspondences are needed to compute the isometry. 

This motion model is widely used for video stabilization, providing translational and rotational 

movement estimation that can be filtered. It is also sometimes used in tracking applications, 

when the size of the object on the image is not expected to change during the sequence. 

 

For non-subsequent image motion estimation, scale changes need to be added to the motion 

model. This type of model is called a similarity transformation, with a scale change of 𝑍: 

 

 

𝐼′
𝑥 = (

𝑢′

𝑣′

1

) = (
Z cos(𝜃) −𝑍 sin(𝜃) 𝑇𝑥

Z sin(𝜃) 𝑍 cos(𝜃) 𝑇𝑦

0 0 1

) (
𝑢
𝑣
1

) (5)  

 

The augmentation of the model with scale opens up many application domains: long term 

tracking, recognition, etc… See fig. 2-7 for a recognition example based on local matching 

followed by a similarity motion model estimation. It can be seen that without the addition of 

the scale parameter, this recognition would have been impossible. 
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Figure 1-8: An example of similarity motion model applied to recognize a stop sign 

Certain types of motions can lead to a deformation in the shape of the image. To include some 

simple transformations such as stretching or skewing we need to increase the number of 

parameters in the model: 

 
𝐼′

𝑥 = (
𝑢′

𝑣′

1

) = (
𝑎11 𝑎12 𝑇𝑥

𝑎21 𝑎22 𝑇𝑦

0 0 1

) (
𝑢

𝑣

1
) (6)  

 

This type of representation is an affine transformation. For instance in [Auberger & Alibay 

2014], this model is mapped to deduce specific deformations, created by motions recorded with 

a rolling shutter sensor. The extension to affine model was needed as these distortions do not 

preserve the shape of the image. As the degree of freedom is increased to 6, three points 

correspondences are needed to create this type of representation. 

 

The last extension of this type of representation presented here is the projective transformation. 

The form of the transformation is the following: 

 

 

𝐼′
𝑥 = (

𝑢′

𝑣′

𝑤′

) = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) (
𝑢

𝑣

1
) (7)  

 

Note than the third coordinate is modified in the final image point 𝐼′
𝑥. To retrieve the final 

location of the point on the image, one should divide the coordinates of the point by 𝑤′. This 

model is needed when modeling “out-of-plane” transformations, for instance 3D rotations. It 

is useful in applications requiring the tracking of a planar structure moving freely in a scene. 

More complex 2D motion representations can be used, but their domain of application is more 

limited in the scope of this study.  

 

1.4.3 Three dimensional representation of motions 

 

3D motion representation is a complex subject. Many types of models exist, but only the most 

applied in our context of general motion estimation purposes will be displayed here. Rotation 
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representation will first be described. A discussion is made on how to combine it with 

translation. We here present the rotation matrix and Euler angles as they will be used in the 

thesis. Presentation of quaternions and exponential maps are presented in Appendix B:. 

 

1.4.3.1 Rotation matrix 

 

A rotation can be represented as a 3x3 matrix 𝑅. The matrix columns are each of unit length 

and mutually orthogonal, and the determinant of the matrix is +1. This type of matrices 

constitutes the SO(3) (for special  orthogonal) group. Each matrix belonging to this group is a 

3D rotation, and any composition of matrices from this group is a rotation. This representation 

of a rotation is the most direct one to apply, as a 3D point 𝑋 = (𝑥, 𝑦, 𝑧, 1)𝑇 is transformed by 

𝑅 to a point 𝑋𝑟𝑜𝑡 = (𝑥𝑟𝑜𝑡, 𝑦𝑟𝑜𝑡 , 𝑧𝑟𝑜𝑡, 1)𝑇 by a simple 4x4 matrix multiplication based on the 

rotation 𝑅: 

 

 𝑋𝑟𝑜𝑡 = (
𝑅 0

0 1
) 𝑋 (8)  

 

It must be noted that most of the other rotations representations are converted to a rotation 

matrix to be applied. The main drawback of the rotation matrix is the complexity of the 

constraints to keep the matrix in the SO(3) group when applying optimization of filtering 

techniques. In effect, those techniques will modify the coefficients of the matrix, but it should 

always be orthonormalized to belong to the SO(3) group. This is done at heavy cost and needs 

to be performed at each step of the algorithm where the matrix is modified. 

 

1.4.3.2 Euler angles 

 

The Euler angles representation is the most used for 3D rotations. It consists in separating the 

rotations to a minimal 3 angle values that represent the respective rotations around the axis of 

the coordinates in a sequential way. They are referred to as the yaw, the pitch and the roll 

angles. According to the choice of the user, these three values are either expressed in degrees 

or radians. In order to apply the transformation to a point, the Euler angles are transformed into 

separate rotation matrices, which are combined to form the total rotation matrix that is then 

applied to the point. In this study, we will refer to the yaw as 𝛼, the pitch as 𝛽, and the roll as 

𝛾. A big issue in using Euler angles is the necessity to establish a convention on the order of 

application of the angles. In effect, one can select which angle represents a rotation around an 

axis, as well as the order chosen to apply them. This can create confusion and 

misunderstandings. In fig. 2-8, one can see the axes displayed on a smartphone scheme. To 

specify the convention used in this study: the yaw is the rotation around the red axis, pitch 

around the green axis, and roll around the blue axis. 
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Figure 1-9: Smartphone with axis of superimposed. Image extracted from 4.  

Another issue arising from Euler angles application is called the Gimbal lock. It happens when 

one Euler angle is equal to 90° (this can depend on the convention chosen), which leads to two 

axes of rotation becoming aligned, as displayed in fig1-10. This degenerate configuration 

induces a loss of one degree of freedom. Another issue with this representation is that it splits 

the rotation on the axis, it is difficult to interpolate and differentiate rotations, as it ignores 

relationship between the several directions. 

 

 
Figure 1-10: Gimbal lock example. On the left, a regular configuration. On the right, one can see that two 

axes of rotation are aligned, decreasing the number of degrees of freedom. Image extracted from 

Wikipedia5  

 

1.4.3.3 Combination with translation 

 

                                                
4 http://www.legalsearchmarketing.com/mobile-apps/creating-a-mobile-app-for-your/ 
5 https://fr.wikipedia.org/wiki/Blocage_de_cardan 

http://www.legalsearchmarketing.com/mobile-apps/creating-a-mobile-app-for-your/
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A 3D motion is a combination of a rotation and a translation 𝜏 = [𝜏𝑥 , 𝜏𝑦, 𝜏𝑧]𝑇. As seen 

previously, one must always convert a rotation to a rotation matrix in order to apply it to a 

point. The complete motion regrouping a rotation 𝑅 and a translation 𝜏 is applied to a point 𝑋 

by: 

 

  

 𝑋′ = (
𝑅 𝜏
0 1

) 𝑋 (9)  

 

As seen previously, many representations for 3D rotations can be used with various advantages 

and drawbacks. In SLAM systems, optimization or filtering techniques are applied to retrieve 

the 3D pose of a device. This often leads to the selection of Quaternion or exponential maps 

representations that show good properties for differentiation process and do not present 

disturbing singularities. 

 

1.5 Structure of the thesis 
 

Chapter 2 focuses on motion vector computation. An overview on local methods to compute 

motion is given, with a focus on feature-based procedures, and especially the ones with the less 

amount of computation needed. Additions on these techniques using inertial sensors are 

proposed, and then compared to non-hybrid techniques in terms of performance and 

computational cost. 

 

In Chapter 3 the problem of computing the camera motion in two dimensions using visual and 

inertial measurements is studied. An overview of the state of the art techniques is made. Then, 

a real-time hybrid variation of the RANdom SAmple Consensus (RANSAC) method is 

proposed. Performance and computational resources are also studied. 

 

Chapter 4 introduces the problem of hybrid localization, or visual-inertial odometry. With an 

overview on the state of the art techniques presented, hands-on experiments and discussions 

are made. A novel hybrid localization method is then proposed, which specificity relies on the 

numerous levels of fusion between visual and inertial measurements, in a very specific manner 

designed towards embedded platforms. Ground-truth based comparisons are made with state 

of the art methods, thanks to a setup based on infrared markers and cameras.  

 

Finally, Chapter 5 draws the conclusions and perspectives on the work presented in this thesis.  
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Chapitre 2: Calcul de point-clés 
 

 

Below is a French summary of chapter2: Feature estimation. 

 

L’estimation d’une image à l’autre du mouvement de la caméra dans une séquence vidéo est 

un problème bien connu dans le monde de la vision par ordinateur. Dans une majorité de cas, 

la première étape de ces techniques est de calculer des vecteurs de mouvements entre deux 

images. Ceci est réalisé en mettant en correspondances des points d’une image à l’autre.  

 

Pour générer des vecteurs de mouvements, certaines méthodes procèdent à une extraction de 

points d’intérêts dans l’image, ou points-clés. Ceux-ci sont ensuite stockés sous forme de 

descripteurs, des représentations haut niveau du point qui sont en général construites afin d’être 

invariantes à certaines transformations : changement d’illumination, rotation du plan, flou… 

Nous proposons une amélioration d’un type de descripteur visuel, basée sur les mesures des 

capteurs inertiels. 

 

Ce chapitre présente tout d’abord les différentes méthodes de génération de vecteurs de 

mouvements. Les descripteurs peu coûteux en temps de calcul sont étudiés de façon plus 

approfondie. L’extension inertielle apportée à ce type de descripteur est ensuite présentée. 

Finalement, une évaluation de ce nouveau système est présentée, avec des considérations sur 

l’efficacité calculatoire de notre approche. 
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Chapter 2: Feature estimation 
 

 

Estimating the frame to frame camera motion in a video sequence is a highly studied problem. 

It is a key step in many applications: camera stabilization, rolling shutter distortions correction, 

encoding, tracking, image alignment for High Dynamic Range, denoising… The first step of 

this type of technique is generally to extract motion vectors between pairs of images. This is 

performed by putting in correspondences points from one frame to another. 

 

Many factors can impact the performance of these methods. In a sequence, illumination 

changes can occur, modifying the pixels values from one frame to another. In-plane rotations 

create another dimension in the problem, which can no longer be solved as a 2D translation 

estimation. Motion artifacts, such as motion blur or rolling shutter distortions also intervene in 

the process, creating variation in terms of pixel values and localizations. Finally, scene 

characteristics can make a great impact on the results of those techniques: a lack of texture in 

the scene, low-light heavy noise, etc…  

 

An overview of motion vectors generation methods is proposed in section 2.1 . A first category 

of algorithm makes use of pixel-wise computation. For a set of fixed given points in the first 

frame, a correspondence is searched in the second frame. This can be performed either for 

every point, which is generally called optical flow, or in a sparse manner, with techniques such 

as block matching or tracking. The second category of vector generation techniques consists in 

extracting points of interest in every frame that are also called keypoints, rather than using 

fixed points (or every point) in the frame. Descriptors of each set of points are then computed, 

which consist in a higher-level, more robust information on the surrounding of the keypoint. 

Correspondences are then drawn between these two sets of points, in an operation known as 

matching. 

 

In section 2.2 , the focus is on a deeper look into light keypoint detection and description 

techniques. In the context of embedded platforms, it is suitable to spend as little resources as 

possible on the computation of motion vectors. Therefore, the focus of this thesis for feature 

estimation was centered on as light as possible methods.  

 

A novel technique of light keypoint description extension with inertial sensors is described in 

section 2.3 . The main contribution in this scope is to study the possible impact of inertial 

sensors for description techniques, and to provide a valuable addition to binary descriptors. 

Robustness to geometric variations such as in-plane rotation or viewpoint changes is improved. 

 

With the global scheme of the method described, section 2.4 presents implementation and 

results of the process. Results show the improvement in robustness induced by the techniques. 

Implementation approximation is proposed to save as much computation as possible.  
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Finally, conclusions are drawn in section 2.5 . 

 

2.1 From images to motion vectors 
 

Two main methods exist to compute the motion vectors: 

 

- Computing the position of a particular set of points from one frame to the next. It can 

be done in a dense manner (every point position is computed) or sparsely.  

- Extracting points of interest in both frames, and intending to put them in 

correspondences, which is also called matching. 

 

After performing the motion vectors computation, global camera motion is estimated with 

robust techniques. More recent techniques intend to combine the inertial measurements with 

the motion vectors to provide a robust and accurate estimation of the motion. 

 

 
Figure 2-1: The two main types of motion vector computation techniques.  

In Figure 2-1, one can see the two types of motion vector creation techniques. For block-based 

/ tracking techniques, the first stage is selection of points: either considering points at a fixed 

location on the frame (with a grid pattern for instance), detecting keypoints, or every points for 

dense methods. Then the technique consists in finding the corresponding locations of the 

selected points in the second frame. For keypoints-based methods, keypoints are detected on 

every frame. Description algorithms are performed on the keypoints locations, creating 

descriptors, which are matched from one frame to another to generate motion vectors. 
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2.1.1 Block-based and global methods 

 

While some techniques intend to find motion directly based on the whole image [Crawford et 

al. 2004], most of the recent techniques compute local motion vectors as a first step of a motion 

estimation procedure. A motion vector describes a mapping of a point in the previous frame to 

the current one. Block matching methods compute a difference function between two pixels 

based on their surroundings, which is a square area around each pixel called blocks. The main 

consideration in this type of algorithms is the number of candidates to test, as well as their 

locations. Differential methods intend to compute the motion for every pixel of the frame, by 

minimizing an energy that incorporates local and global terms [Horn & Schunck 1981].  

 

2.1.1.1 Block matching techniques 

 

Block matching algorithms computes the similarity of two pixel blocks based on a difference 

function, either the Sum of Square Differences (SSD) or Sum of Absolute Differences (SAD). 

Then the motion vector computed is considered as an estimation of the motion of the center of 

the block. For a pixel point 𝑝 = [𝑢, 𝑣]𝑇 in the previous frame, we note its intensity 𝐼(𝑢, 𝑣). The 

difference of this point 𝑝 with another point in the current frame 𝑝′ = [𝑢′, 𝑣′]𝑇 is computed 

as 𝐷(𝑝, 𝑝′): 

 

 

𝐷(𝑝, 𝑝′) = ∑ ∑ 𝑑𝑖𝑓𝑓(𝐼(𝑢 + 𝑖, 𝑣 + 𝑗) − 𝐼(𝑢′ + 𝑖, 𝑣′ + 𝑗))

𝑗=𝑁

𝑗=−𝑁

𝑖=𝑁

𝑖=−𝑁

 (10)  

 

Where the function 𝑑𝑖𝑓𝑓 is either the absolute or square difference. This function 𝐷 is 

computed on a certain amount of locations, and the found minimum of the function is selected. 

The motion vector 𝑚𝑣(𝑝) = [𝑢′ − 𝑢, 𝑣′ − 𝑣] is therefore created.  

 

The SSD (or SAD) score presented can be used as a starting point in order to compute similarity 

between two points. However, it is not robust to illumination changes, neither to a shift nor to 

affine transformation. That is why a zero-normalized SSD score is preferable: 

 

 
𝑍𝑁𝑆𝑆𝐷(𝑝, 𝑝′) =

1

(2𝑁 + 1)²
∑ ∑ (

𝐼(𝑢 + 𝑖, 𝑣 + 𝑗) − 𝑚𝑝

𝜎𝑝

−
𝐼(𝑢′ + 𝑖, 𝑣′ + 𝑗) − 𝑚𝑝′

𝜎𝑝′

)²

𝑗=𝑁

𝑗=−𝑁

𝑖=𝑁

𝑖=−𝑁

 (11)  

 

Where 𝑚𝑝 and 𝑚𝑝′ are the mean values of pixel blocks around points 𝑝 and 𝑝′ respectively, 

and 𝜎𝑝, 𝜎𝑝′ the standard deviation of those patches. While this technique is effective in order 

to compare points, it is not robust to rotations, scale, or viewpoints changes.  

 

The key step of this method is to carefully choose the tested points in the previous frame. Many 

types of techniques exist to choose points, from spatial ones [Koga et al. 1981][Li et al. 
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1994][Po & Ma 1996][Zhu & Ma 2000], to spatial-temporal strategies [de Haan et al. 1993]. 

These methods were mainly developed towards video encoding. 

 

2.1.1.2 Optical flow differential methods 

 

Optical flow differential techniques intent to minimize the brightness constant constraint of the 

neighborhood around the pixels with derivate-based methods. Rather than only testing a few 

candidates, the Lucas Kanade Tracker (LKT) [Lucas & Kanade 1981] performs a gradient 

descent on the neighborhood around the point, inferring that the flow do not vary much in this 

location. A major improvement was proposed in [Bouguet 2001], that implements a pyramidal 

version of the tracker. It computes the gradient and optimizes the position on a reduced size 

image. This computed position is then taken as the starting point for the next image pyramid 

level, going from a very small image up to the real image size. Due to heavy cost of 

computation, adaptations have been made to port the algorithms on a graphical processor [Kim 

et al. 2009].  

 

On another hand, the pioneer work of [Horn & Schunck 1981] displays an iterative method to 

compute the optical flow for every pixel, minimizing an energy term for each motion vector in 

both horizontal and vertical directions. This term relies on a combination of the brightness 

constancy constraint and the smoothness expected in the optical flow. A weighting value 

balances the importance between the smoothness and brightness constancy constraints. In a 

similar fashion to the LKT, the heavy computation cost has led to processing time reduction 

techniques  [Bruhn et al. 2005].  

 

The main difference between the two presented types of methods is that LKT strategy only 

relies on the neighborhood of a pixel, while Horn & Schunck variational methods add global 

constraints to the optical flow fields. In the literature, LKT is used when tracking a sparse set 

of points. When needing a dense field, variational methods are preferred. 

 

2.1.2 Keypoints 
 

The main drawback of previously presented methods for pixel motion estimation, is that every 

pixel does not carry the same amount of useful information. For instance, estimating the motion 

of a white point on a white wall is much more challenging than a black point on the same wall. 

If a motion needs to be estimated from two images that present changes in terms of conditions 

and location, we need robustness to various transformations in our estimation approach: 

illumination changes, rotation, scale… Approaches of feature extraction have been designed 

with the goal of finding locations in the images that carry most information and distinctiveness. 

Many types of features exist, including points, blobs, edges… In this study we restricted our 

interest to points and blobs that are present in most types of sequences which makes them 

suitable for embedded applications. These points of interest are called keypoints.  

 



 2.1 From images to motion vectors 

34 

 

An overview of feature detection strategies is presented, followed by feature description 

techniques. Then a short discussion is made about matching vs. tracking strategies. Finally, an 

overview of existing hybrid methods for keypoints computation is done. 

 

2.1.2.1 Detection: From corners to Local extrema detection 

 

One of the first works done in keypoint detection has been demonstrated in [Moravec 1980] 

which served as base for the Harris corner detector [Harris & Stephens 1988]. It is based on an 

auto-correlation function 𝑎 of a point 𝑝 = [𝑢, 𝑣]𝑇 and a shift [Δ𝑢, Δ𝑣]𝑇  : 

 

 

𝑎(𝑝, Δ𝑢, Δ𝑣) = ∑ ∑ (𝐼(𝑢 + 𝑖, 𝑣 + 𝑗) − 𝐼(𝑢 + Δ𝑢 + 𝑖, 𝑣 + Δ𝑣 + 𝑗))²

𝑗=𝑁

𝑗=−𝑁

𝑖=𝑁

𝑖=−𝑁

 (12)  

 

If this auto-correlation is small in every direction, this translates a uniform region with little 

interest. Only a strong value in one direction most likely indicates a contour. If every direction 

displays strong values however, the point is considered a keypoint. With a first-order Taylor 

approximate, the auto-correlation matrix can be expressed in function of spatial derivate of the 

image. The keypoint evaluation is then made with regard to the eigenvalues 𝜆1, 𝜆2 of that 

matrix. The corner-ness function is: 

 

 𝑓(𝑝) = 𝑑𝑒𝑡(𝑎(𝑝)) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑎(𝑝)))
2

= 𝜆1𝜆2 − 𝑘(𝜆1 + 𝜆2)² (13)  

 

If this value at pixel 𝑝 is higher than a threshold and higher than cornerness function 𝑓 evaluated 

on neighborhood points, the point is considered a corner. The threshold can be set in function 

of the total desired number 𝑁𝑐𝑜𝑟𝑛𝑒𝑟𝑠 of corners, or an absolute quality desired. The fact that the 

detectors consider all directions of a gradient matrix induces its robustness to illumination 

changes as well as in-plane rotations. Other methods have been designed based on the gradient 

matrix to detect corners [Förstner 1994], some extending the Harris detector to make it scale 

invariant [Mikolajczyk & Schmid 2001]. [Rosten & Drummond 2006; Rosten et al. 2010] 

presented Features from Accelerated Segment Test (FAST), a very light extractor in terms of 

computational time that will be further described in section 2.2.1 . The FAST keypoint extractor 

is based on a number of continuous pixels on a circle with a marked difference with the center. 

 

Several detectors have been developed to cope with scale invariance. They consist in searching 

the scale-space dimensions of the image and finding the extremas of an operator, which can be 

the gradient, Laplacian, etc… The image is first convolved by a Gaussian Kernel to smooth 

noise. Values are then normalized with respect to scale, and a point that possesses the highest 

absolute value of the neighborhood is then considered an interest blob (a keypoint with higher 

scale than just a pixel). The Laplacian has been demonstrated to be the best operator to choose 

[Lindeberg 1998]. 
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In this context, the SIFT detector is presented in the work of [Lowe 2004], making use of the 

difference of Gaussians approach between scales. On Figure 2-2, an example can be seen of a 

feature detected in a difference of Gaussians image. For every scale, the Laplacian operator is 

approximated by a difference between two Gaussians smoothed images with different values 

for Gaussian smoothing. Maxima / minima are then detected by comparing every point with its 

direct neighborhood in the space scale dimensions, reducing the number of comparisons needed 

to only 26 neighbors.  

 

 
Figure 2-2: Scale space detection based on difference of Gaussian, extracted from 6. 

To speed-up processing, [Bay, Tuytelaars 2006] presented SURF, a method based on the 

Hessian matrix of a point 𝑝 at scale 𝜎: 

 

 
𝐻(𝑝, 𝜎) = (

𝐼𝑥𝑥(𝑝, 𝜎) 𝐼𝑥𝑦(𝑝, 𝜎)

𝐼𝑥𝑦(𝑝, 𝜎) 𝐼𝑦𝑦(𝑝, 𝜎)
) (14)  

 

Where 𝐼𝑥𝑥(𝑝, 𝜎), 𝐼𝑥𝑦(𝑝, 𝜎), 𝐼𝑦𝑦(𝑝, 𝜎) are the second-order derivate of the image in their 

respective directions. The value used to perform blob detection is the determinant of the 

Hessian matrix. A non-maxima suppression by comparison of the neighborhood in the space 

scale dimensions is then performed, in a similar fashion to the SIFT method. SURF was mainly 

developed to propose a less expensive alternative to SIFT, using approximations to perform 

similar treatments. Mixed techniques also exist, using different operators to compute the scale 

and space selections [Mikolajczyk 2004]. 

 

To increase robustness to viewpoint changes, affine-invariant detectors were developed, 

using second moment matrix to estimate affine neighborhood [Lindeberg 1998], before 

applying it to the scale invariant blobs [Mikolajczyk & Schmid 2002]. Other techniques apply 

a connected components strategy in thresholded images in order to detect blobs [Matas et al. 

2004]. While showing excellent results in terms of repeatability and robustness to viewpoint 

changes, these detectors have been measured as prohibitively expensive for real-time 

                                                
6 https://fr.wikipedia.org/wiki/Scale-invariant_feature_transform 
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applications in multiple comparisons [Mikolajczyk et al. 2005] [Moreels & Perona 2007] 

[Gauglitz et al. 2011]. 

 

2.1.2.2 Feature description 

 

In the same efforts to improve detection robustness, keypoints descriptors techniques were 

developed to provide invariant representation of the surroundings of the desired area. Early 

techniques have been presented in order to deal with this issue  [Freeman & Adelson 1991] 

[Schmid & Mohr 1997], but the SIFT descriptor [Lowe 2004] was the first widely used robust 

keypoint descriptor. The descriptor is based on the scale extracted from the keypoint (see 

previous section). It determines a dominant rotation in the scaled patch around the point. Image 

gradients are then computed in zones, and a soft assignment is made to map them into 8 discrete 

orientations (see Figure 2-3). The normalized histogram of gradients strength into each 

direction for every spatial zone constitutes the descriptor. It is a 128-dimensional vector of 

continuous numbers: 4x4 spatial zones times 8 orientations. To compute the similarity between 

two SIFT descriptors, one simply has to compute the L2-norm between them. 

 

 
Figure 2-3: Feature description with SIFT, courtesy of 7. 

 SIFT is still a widely used descriptor, its main drawback being that the L2-norm between two 

128-dimensional vectors can become very expensive to compute, especially when computing 

similarities between many points. [Ke & Sukthankar 2004] and [Mikolajczyk & Schmid 2005] 

introduced Principal Component Analysis (PCA) methods to reduce the dimension of the 

vector, decreasing the computation of matching. In the same spirit than extractors, [Bay, 

Tuytelaars 2006] presented approximations by box filtering of the description with SURF. 

 

Taking into account the computer quickness in computing the binary Hamming distance (just 

a XOR operation followed by a bit count), recent techniques were developed to produce binary 

                                                
7 http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O 
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descriptors. Binary Robust Independent Element Features (BRIEF) [Calonder et al. 2010] 

utilizes pairwise comparisons along a determined pattern to build the binary string descriptor. 

The pattern is built with a random generation technique based on a Gaussian sampling that has 

been proven superior against other sampling strategies [Calonder et al. 2010]. This descriptor 

will be further described in section 2.2.2 . As BRIEF is not robust to scale or rotation changes, 

it is mostly used for video sequences needing frame to frame matching. To circumvent this, 

propositions have been made to bring invariance to rotation and scale to the detector with ORB 

[Rublee et al. 2011] and BRISK [Leutenegger et al. 2011]. Other methods used a regular pattern 

to perform the comparisons either for dense matching purposes [Tola et al. 2010], to avoid 

sampling effect [Leutenegger et al. 2011] or to approach the computation to human retina 

interpretation [Alahi et al. 2012].  

 

The following table summarizes the invariances of some descriptors presented: 

 

Technique In-plane 

rotation 

Scale 

invariant 

Perspective 

invariance 

Computational 

cost 

Matching 

norm used 

SIFT ++ ++ + -- L2 

SURF ++ ++ + - L2 

BRIEF - -- - ++ Hamming 

ORB ++ -- - + Hamming 

BRISK ++ ++ - + Hamming 
Table 1: Summary of the performance of some keypoint descriptors. ++ indicates strong performance in 

the considered category, down to – for inefficiency.  

 

2.1.2.3 Methods using hybrid keypoints  

 

To further improve robustness to rotation of the descriptors, [Kurz & Ben Himane 2011] 

proposed a gravity oriented version of SIFT. Rather than performing a visual technique to 

extract the dominant orientation of the patch, the readings of an accelerometer are used. This 

allows further discrepancy of the patch to transformations, as well as slightly reducing the 

computational cost. In Figure 2-4, one can see the benefit of orientating the descriptor with 

respect to gravity on a synthetic example. On the left, one can see that with visual information 

only, every window’s corner would have been described similarly along the dominant gradient. 

With the addition of gravity direction on the right, their descriptors are effectively modified, 

allowing to distinguish one from another. In further work [Kurz & Benhimane 2011; Kurz & 

Benhimane 2012] the utility of gravity oriented features has been demonstrated for more 

specific augmented reality applications. 
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Figure 2-4: Gravity benefit on keypoint discrepancy, extracted from [Kurz & Ben Himane 2011] 

 

[Hwangbo et al. 2009] directly apply the gyroscopes readings in order to change the window 

of research of the LKT algorithm. With the yaw and pitch measurements they pre-set a 

translation value to the research window of every point, while the roll is applied to rotate it. 

This makes the LKT much more robust to quick motions.  

 

2.1.2.4 Keypoint state of the art: discussion 

 

As seen in the various techniques developed in the literature, inertial sensors bring an 

information on the orientation of the smartphone that is used to increase robustness to 

geometric transformations. They can also be used to predict the motion of the platform to adapt 

the search window of a technique. However, they do not bring any valuable addition to scale 

computation of a keypoint, which can only be computed from visual sensor recordings. 

 

As this study targets real-time performance for applications with high frame rate (up to 60 fps 

on modern smartphones) and resolution, an emphasis on low-cost technique selection has been 

stated. The addition of inertial sensors has been proven efficient for classical descriptors such 

as SIFT [Kurz & Ben Himane 2011], or heavy tracking strategies such as the LKT [Hwangbo 

et al. 2009]. 

 

To provide maximum efficiency of computation, we decided to utilize binary descriptors and 

light detectors (such as FAST) for the applications developed in this thesis. An example of 

processing time comparison between classical descriptors such as Upright SURF (U-SURF), 

which is a non-rotational invariant variation of SURF, and BRIEF is provided in [Calonder et 

al. 2012]: 
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Technique BRIEF (32 Bytes version) U-SURF (64 values version) 

Description time (ms) 6.81 101 

Matching time (ms) 0.833 28.3 
Table 2: A comparison of U-SURF and BRIEF computational cost on a CPU. 

The measurement of processing time were recorded on a CPU. This demonstrates how the 

binary descriptors are much lighter to compute than classical ones, by a few orders of 

magnitude. This allows to integrate more points at the same cost, compared to more complex 

techniques. However, binary descriptors and light detectors also raise some drawbacks:  

 

- Descriptors are binary and not very flexible nor interpretable: one cannot extract 

information or modify the descriptor directly.  

- As matching techniques will be used, the error on measurement is not easy to model, 

which can be a problem for filtering or optimization techniques that may infer a certain 

behavior of the error in order to perform properly.  

- Some of the binary descriptors are known for presenting slightly lower robustness to 

geometric changes than more complex ones. 

 

In the next sections, detailed processing of light extraction and description methods will be 

displayed. Then, two examples of possible improvements with inertial sensors addition 

developed in this thesis will be presented, with several tests to check the efficiency of the 

modifications.  

 

2.2 Light detectors and binary descriptors 
 

In the recent years, strategies aiming at detecting and describing keypoints with minimal 

computational cost were developed. The FAST detector and the binary descriptors are the most 

applied, as they provide simple yet effective methods to perform local motion estimation. 

 

2.2.1 FAST feature detector 

 

[Rosten & Drummond 2006] introduced FAST, an algorithm to extract keypoints designed to 

be the lightest possible strategy, sparing computational resources for other tasks. It is a corner 

detector based on the Bresenham circle of radius 3 around a point 𝑝, which is simply the 

“pixelized” version of a circle. This circle contains 16 points, if a certain amount 𝑁𝑟𝑎𝑑𝑖𝑢𝑠 of 

contiguous points’ intensities are all either lower or brighter than the point 𝑝 (plus / minus a 

threshold 𝜏), the point 𝑝 is considered a corner. An example of a detected corner is displayed 

on Figure 2-5. 
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Figure 2-5: A keypoint detected as a corner, image extracted from [Rosten & Drummond 2006] 

A rigorous analysis of keypoints repeatability and processing time has been performed in 

[Rosten et al. 2010], with an addition of a machine learning based version of the FAST detector.  

It has been shown that using the 𝑁𝑟𝑎𝑑𝑖𝑢𝑠 = 9 (9 contiguous points are used to detect a corner) 

was a very good choice compared to other values, such as 𝑁𝑟𝑎𝑑𝑖𝑢𝑠 = 12 [Rosten & Drummond 

2006]. A selection of specialized decision trees to modify the execution of tests and masks in 

FAST has been demonstrated in [Mair et al. 2010], which decreases the average amount of 

computational time per point extracted. While the modification of test executions is often 

utilized in further work [Leutenegger et al. 2011], the 9-16 configuration is retained. 

 

The main drawbacks of this feature detector are: 

- Reliance on a threshold 𝜏 that highly influences the performance of the extractor. 

- No detection on multiple scale, it is only a corner detector. It is however possible to 

achieve multiple scale detection thanks to pyramidal strategies like in BRISK 

[Leutenegger et al. 2011]. 

- It is highly sensitive to image noise, as a single pixel that changes value can break the 

contiguous pixel arc. 

 

2.2.2 Binary keypoint descriptors 

 

The BRIEF  descriptor technique has been introduced in [Calonder et al. 2010]. It is based on 

a pattern of point correspondences around the point 𝑝 that we want to describe. Many types of 

patterns exist, see Figure 2-6 for examples of the several patterns tested in BRIEF. 
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Figure 2-6: Several patterns possible for BRIEF. Each line represent a couple of points, which 

comparison will lead to a binary element in the descriptor. On the left, several patterns possible, on the 

right, the selected one that has proven to be more efficient 

 

 

 Given a pattern of predefined pairs (𝐶𝑖  , 𝐶𝑖
′) in the pixel patch around the point 𝑝, the BRIEF 

descriptor 𝐷𝑝 is built as follows: 

 

1) Every pixel in the patch is smoothed with a 9x9 Gaussian Kernel with a 𝜎 value of 2 

(multiple values of the parameters where tested, these ones had the best results 

[Calonder et al. 2010]) 

2) For every pair (𝐶𝑖 , 𝐶𝑖
′): 

 if 𝐼(𝐶𝑖) < 𝐼(𝐶𝑖
′) then 𝐷𝑝(𝑖) = 1, otherwise  𝐷𝑝(𝑖) = 0 

 

where 𝐷𝑝(𝑖) is the value of the binary descriptor 𝐷𝑝 at index 𝑖. The total number of pairs 𝑛𝑑is 

very often a multiple of 8, therefore the descriptor has a length of 𝑛𝑑/8 bytes. The common 

values for 𝑛𝑑 are 128, 256 or 512. Comparisons between two descriptors are made with the 

Hamming distance, which is simply computed with a XOR operation followed by a bit count 

that can be implemented very efficiently on a classical processor.  

 

The locations of the points pairs where determined with a Gaussian random pattern, that has 

been demonstrated as the most efficient (see fig.2-6). As a Gaussian blur is applied before 

performing the comparisons, the BRIEF descriptor is robust to noise. However, it is not robust 

to in-plane rotations. With its high speed of computation and matching, it is a very adapted 

descriptor for video sequences frame-to-frame local motion estimation, but is not the ideal 

descriptor for longer term estimation. 

 

Two techniques have been developed in order to bring more invariances to the BRIEF 

technique: ORB [Rublee et al. 2011] and BRISK [Leutenegger et al. 2011]. ORB was designed 

to improve the FAST / BRIEF local motion estimation technique to cope with in-plane 
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rotations, thanks to a dominant orientation estimation, that is used to rotate the BRIEF pattern 

according to it. To save computational time and avoid to recomputed a pattern for every point, 

a few discrete angles values are applied and computed, and are used to perform the rotated 

BRIEF descriptor technique. BRISK makes use of a scale space search with the FAST 

extractor, orientation is detected with similar technique as ORB. Then a different pattern from 

BRIEF is applied, every point is blurred with a different Gaussian Kernel according to given 

locations: see Figure 2-7, red dotted circle shows the kernel size for every point on the pattern, 

which are the blue points.  

 

 
Figure 2-7: The BRISK pattern. Each blue circle represent a point, the red circle is the used kernel to 

blur it [Leutenegger et al. 2011]. 

 

2.2.3 Blur experiments on BRIEF 
 

Now that an overview of the literature and in-depth description of the FAST and BRIEF 

techniques have been performed, improvements using inertial sensors on binary feature 

descriptors in this thesis will be presented. 

 

After tests and manipulations on BRIEF used on recorded sequences, a first issue identified 

was its relative lack of robustness to motion blur. Motion blur is a well-known issue in the 

computer vision domain. If a motion occurs during the exposure time of the camera, a pixel 

will capture a combination of the light that was supposed to hit nearby pixels, according to the 

motion that occurred. An example of this can be seen on Figure 2-8. On the left, we can see 

three pixels recorded, with a fixed camera and non-moving objects. On the right, due to motion 

during the capture, the light is distributed on many pixels. 
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Figure 2-8: the difference between a classical recording and the effect of motion on it. 

 

The Point Spread Function (PSF) describes the motion that occurred during the capture. It is 

necessary to have an estimation of this function in order to correct blur and restore sharpness 

[Bovik 2010] . In the context of keypoint description, an idea that we wanted to implement was 

to adapt the blur applied in the BRIEF descriptor with respect to this PSF function.  

 

The first step is therefore to have an estimation of the PSF. To perform this, we use the 

gyroscope readings that were measured during the capture of two frames. We convert the yaw 

and pitch speed of rotations into motion vectors using the factors 𝜌𝑥, 𝜌𝑦  proposed by [You, U. 

Neumann, et al. 1999]: 

 

 𝜌𝑥 =  𝐿𝑥/2 𝑡𝑎𝑛−1(𝐿𝑥/2𝑓𝑥) (15)  

 

where 𝐿𝑥  is the resolution of the image in the horizontal direction, and 𝑓𝑥  the focal length of 

the camera in the horizontal direction. 𝜌𝑦  is computed in a similar fashion with values for the 

vertical direction. Then, a yaw variation α and a pitch variation β can be converted into a visual 

motion vector 𝑇 = (𝑇𝑥 , 𝑇𝑦)𝑇: 

 

 𝑇𝑥 = 𝜌𝑥 ∗  𝛼 (16)  

 𝑇𝑦 = 𝜌𝑦 ∗  β  (17)  

 

Given 𝑛𝑟 inertial readings between the recordings of two frames, we build an estimation of the 

PSF by placing the motion vectors 𝑇𝑖 measured by the gyroscope on a pixel grid, and 

interpolating the positions to generate a PSF. Each pixel on the way of the motion vector 𝑇𝑖 is 

marked with a value 𝜏𝑖, that is equal to 1/(𝑛𝑟𝜐𝑖), where 𝜐𝑖 is the number of marked pixels for 

each vector 𝑇𝑖. An example for two motion vectors recorded is displayed on Figure 2-9: 
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Figure 2-9: An example of motion vectors estimated and associated PSF. 

 
Now that an inertial estimation of the PSF is available, we want to de-convolute the Gaussian 

kernel utilized in the BRIEF technique with the estimated PSF. It can be done by computing 

the Fourier’s transforms of the Gaussian Kernel and PSF. Then we simply multiply the 

transform of the Gaussian kernel by the inverse of the PSF, and transform back this 

combination. Using this technique, we can compensate the motion blur in the first step of the 

BRIEF algorithm, making it more robust to motion blur.  

 

However, this idea did not work well in practice, even deteriorating matching results. In effect, 

the computing Fourier’s transforms is very expensive. Furthermore, the MEMS gyroscope did 

not present enough accuracy (~5-10 pixels) when estimating the PSF, which led to wrong 

changes in the blurring stage combination. To conclude, changes can be applied to the BRIEF 

technique to make it more robust to motion blur using inertial sensors in a smartphone, but it 

would need very accurate gyroscopes to bring improvements. 

 

2.3 Improving BRIEF descriptors robustness to 

rotations with inertial sensors 
 

As presented in section 2.2.2, the BRIEF algorithm does not cope well with rotations. It is 

neither robust to in-plane rotation nor viewpoint changes (yaw and pitch variations). While this 

lack of robustness is not necessary for a frame-to-frame memory-less motion estimation, it is 

problematic for longer terms tracking of points. If an update of the descriptor is needed at every 

matching step, a simple mismatch can lead to wrong data association. In this context, an 

improvement upon the original BRIEF descriptor has been designed in order to increase its 

robustness to geometric changes. 

 

2.3.1 Design 
 

To improve the geometric invariance of the BRIEF with the addition of inertial sensors, we 

need to define clearly the needs and constraints for our approach. For embedded applications, 

where resources of computation are limited, we want an approach that does not add too much 

complexity to the BRIEF descriptor. The main context of application for a more robust BRIEF 

version with respect to geometric changes is long-term keypoint matching. This could find 

applications in techniques such as tracking, SLAM, augmented reality, object recognition, 

etc…  
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2.3.1.1 Global scheme of the technique 

 

In every rotation invariant descriptor, common steps are performed: find a dominant orientation 

of the pixel patch and rotate it along this axis, then use a description method. The main 

downside of this strategy is the cost it generates: one must add a dominant orientation 

computation step and rotate every patch. In ORB [Rublee et al. 2011], the BRIEF descriptor is 

sampled around a few orientations to avoid performing the rotation step for every point. While 

an efficient way to deal with computation load, this generates inaccuracies when the orientation 

is not very close to the interpolated values.  

 

Inertial sensors offer us a direct orientation estimation in 3 dimensions. This implies that thanks 

to inertial measurements, one is able to compute an absolute orientation of the descriptor. To 

perform invariance with regard to rotation, a first idea would be to rotate the image with the 

orientation information, and then use a detector / descriptor strategy. However, we believe that 

it is not a very efficient way to use this information. Furthermore, with high yaw / pitch angles, 

the image would become too flat to bring valuable visual information.  

 

One characteristic of binary descriptors is to use a fixed pattern of point’s pairs to apply 

comparisons. Our idea is to directly use the 3D rotation information on the pattern of point’s 

pairs. This would allow much less computations than a full frame rotation, as the BRIEF pattern 

can contain up to 512 points, while for instance a 1280x720 pixels frame presents 921600 

points! The global scheme of the techniques would be: 

 

1) Record frame and inertial measurements 

2) Apply inertial orientation estimation to rotate the binary pattern 

3) Perform FAST detection on the image 

4) Use the rotated binary pattern to compute new descriptors 

5) Match the new descriptors with the descriptors from previous image 

 

2.3.1.2 Inertial sensors use 

 

In modern smartphones or tablets, inertial sensors such as gyroscope, magnetometer and 

accelerometer are present and integrated, with inertial fusion algorithms often already 

implemented in hardware that computes orientation estimation. In our experiments, we used a 

Samsung Galaxy ©, with a software that records video stream along with all sensors data 

available: the Cellbot data logger8. This software shows us all hardware sensors that we are 

directly able to record. In Figure 2-10 one can see an example of all available sensors on the 

platform. 

 

                                                
8 http://code.google.com/p/cellbots/downloads/detail?name=CellbotsDataLogger_v0.9.7_lite.apk 

 

http://code.google.com/p/cellbots/downloads/detail?name=CellbotsDataLogger_v0.9.7_lite.apk
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Figure 2-10: All recorded sensors on a classic smartphone using the Cellbot application on a Samsung 

Galaxy (c) 

Many sensors are directly available, with two orientation fusion hardware already present 

(corresponding to MPL_orientation and Orientation_Sensor on Figure 2-10). Therefore for this 

technique we decided to use directly those data to estimate orientation, as they present no 

additional computational load, and are most likely taking account of some form of calibration. 

It should be noted that even if these considerations may seem very specific, most of the modern 

smartphones possess similar hardware inertial fusion implemented.  

 

2.3.2 The detailed algorithm 
 

With the context and global scheme of the technique explained, the detailed choices of 

implementation of the technique will be displayed. 

 

2.3.2.1 Extension to in-plane rotation 

 

As demonstrated in [Rublee et al. 2011] [Leutenegger et al. 2011], in-plane rotation invariance 

can be obtained through rotation of the pattern of a binary descriptor. Thanks to the use of 

inertial sensors, we have an estimation of the 3D rotation in Euler angles, noted  𝛼𝑡 , 𝛽𝑡, 𝛾𝑡 being 

the yaw, pitch, and roll angles respectively measured at time 𝑡. Knowing the roll angle, we can 

rotate the couples (𝑝𝑜𝑠𝑖, 𝑝𝑜𝑠′
𝑖
) around the position 𝑝 that is described in order to obtain an in-

plane invariance of the descriptors: 

 

 𝑅𝑝𝑜𝑠𝑖 = 𝑅(𝑝, 𝛾𝑡) ∗ 𝑝𝑜𝑠𝑖 (18)  

 

Where 𝑅(𝑝, 𝛾𝑡) is the rotation matrix describing the planar rotation of angle 𝛾𝑡 around the 

feature point 𝑝. We usually take the point 𝑝 as the origin of the point’s pair correspondences 
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position, and just add a translation to the point’s pair rotated positions with the point 𝑝 

coordinates. This rotation operation has to be performed only once before describing every 

point, for every couple (𝑝𝑜𝑠𝑖, 𝑝𝑜𝑠′
𝑖
). In the presented approach, we use a 256-bit long 

descriptor, leading to 256 rotations to compute compared to a classical binary descriptor 

strategy. This is a very reasonable cost compared to classical visual invariance extensions that 

need a visual clue on the feature orientation. As in-plane rotation does not affect the 

performance of the descriptor method, any angle can be handled with this strategy, achieving 

complete robustness to roll rotations. 

 

2.3.2.2 Extension to viewpoint changes 

 

As the BRIEF descriptor describes a planar area around a point with fixed point pair’s 

comparisons, it is not robust to yaw and pitch rotations (viewpoint changes). It would be 

impossible to make the descriptor fully invariant to these transformations, as high rotations 

applied to the couples (𝑝𝑜𝑠𝑖, 𝑝𝑜𝑠′
𝑖
) would lead to an overly slim shape of the described area, 

weakening its discriminating characteristics. For that reason, only small but still problematic 

angles changes were considered in this study, typically up to 20° for yaw and pitch angles. For 

roll however, as stated previously, no limitation has to be made.    

 

To apply the rotation exactly, we need to convert the point pairs to 3D coordinates: 

𝑋𝑝𝑜𝑠𝑖 = (𝑢𝑖 , 𝑣𝑖 , 0,1)𝑇 where the coordinates of the points are 𝑝𝑜𝑠𝑖 = (𝑢𝑖 , 𝑣𝑖)𝑇. The inertial 

orientation is then converted to a rotation matrix 𝑅𝑡. As presented in section 1.4.3.1 the points 

𝑋𝑝𝑜𝑠𝑖 are rotated with 𝑅𝑡 to points 𝑋′𝑝𝑜𝑠𝑖. Then a simple projection with a projection matrix 

corresponds to a projection of the points back onto a plane: 

 

 

𝑅𝑝𝑜𝑠𝑖 = (
𝑅𝑢𝑖

𝑅𝑣𝑖

𝑅𝑤𝑖

) = (
1 0 0 0
0 1 0 0
0 0 1 0

) 𝑋′𝑝𝑜𝑠𝑖 (19)  

 

Please note that any orientation representation can be used, it only has to be converted into a 

rotation matrix. With this strategy, the plane of point’s pairs is rotated along the orientation 

measured by inertial sensors. The projection part only consists in keeping the three first 

coordinates of the point 𝑋′𝑝𝑜𝑠𝑖. Therefore the cost of computation is included in the rotation 

matrix calculus and application to the points, and the division of coordinates of the homogenous 

point 𝑅𝑝𝑜𝑠𝑖. 

 

2.4 Implementation and Results 
 

In this section, results of the technique will be displayed to illustrate the gain realized. 

Implementation choices will be shown in order to reach the best performances possible with 

some approximations of the rotations computation. A quick computational cost analysis is then 

performed, to estimate the additional cost generated by the strategy. 
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2.4.1 Results 
 

Two sequences will be detailed here to illustrate the improvement of the technique applied on 

the BRIEF descriptors. Note that it could also be applied to the BRISK [Leutenegger et al. 

2011] or FREAK [Alahi et al. 2012] pattern. On all sequences, the FAST detector is used to 

extract interest points one the first frame. The BRIEF and Inertial-BRIEF (IBRIEF) techniques 

are applied to describe the points. Then the points of the first frame are matched with points 

for every frame. The first sequence, shown on Figure 2-11, mainly contains a roll motion to 

display in-plane rotation invariance. The second sequence, presented on Figure 2-12, contains 

several viewpoint changes. 

 

 

 

 
Figure 2-11: A few frames extracted from the first sequence: we match the first frame (left) with other 

frames in the sequences (right). This sequence consists in a progressive roll motion. 
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Figure 2-12: A few frames extracted from the second sequence: we match the first frame (left) with other 

frames in the sequences (right). This sequence consists in multiple viewpoint changes. 

2.4.1.1 Resilience to in-plane rotation 

 

For the first sequence with every descriptor, an algorithm of perspective motion (1.4.2 

estimation has been performed based on the matching provided by each descriptor type. It is 

based on the RANSAC (3.2.1 architecture that allows a classification of the matches: either 

inlier (good matches that fits the transformation) or outliers (bad matches that do not fit the 

transformation). A measure of the quality of the matches is the inlier percentage amongst the 

computed matches. We use this percentage in function of the frame number to display the 

efficiency of a descriptor. The result of the BRIEF [Calonder et al. 2010], ORB [Rublee et al. 

2011], and presented IBRIEF are displayed on Figure 2-13. The implementations of BRIEF 

and ORB used in this experience were the ones available in OpenCV.  
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Figure 2-13: inlier percentage for three tested descriptors on sequence 1 

 

For the BRIEF technique, that does not present invariance to in-plane rotation, one can see that 

the inlier percentage drops logically from a certain amount of rotation. The ORB algorithm is 

invariant to rotation and presents a more or less steady inlier percentage. However, two little 

decreases happen in frame 15 and 24. We believe that this is due to the fact that the BRIEF 

rotated grid is interpolated in 12 directions, and this frame may correspond to an orientation 

lying in the middle of two interpolated grids. Finally, the IBRIEF technique is the steadiest one 

in terms of inlier percentage. 

 

2.4.1.2 Resilience to viewpoint changes 

 

In the second sequence, multiple viewpoints changes occur. The sequence was recorded so that 

a book cover in the first frame appears on every frame. To illustrate the performance of the 

various methods, we display not only the inlier percentage (fig.2-13), that highly vary in the 

sequence, but also a warping of the first frame in the current frame perspective with the 

transformation found by the RANSAC algorithm. Figure 2-14 displays the results on the 

sequence for ORB, BRIEF, and IBRIEF. 
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Figure 2-14: Inlier percentage per frame on the second sequence. 
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As expected, BRIEF and ORB perform in a similar manner, showing low robustness with 

regard to viewpoint changes. It was to be expected, as ORB does not add any improvement on 

top of BRIEF regarding invariance to viewpoint changes. IBRIEF clearly outperforms them 

when the rotation is high enough (frames 50-100, 233-290, and 337-400). However, when the 

rotation is even higher, even IBRIEF fails to reach correct performance.  

 

On Figure 2-15, the inlier percentage in function of the dominant viewpoint angle is plotted. 

This confirms our hypothesis: a binary pattern rotation can help dealing with viewpoint 

changes, but when a certain amount of rotation is reached, the descriptor becomes too thin. In 

our experiments the yaw and pitch angles where even IBRIEF becomes unable to display good 

performance is ~25°. Some irregularities occur for smaller values, but a significant drop can 

be observed above this value.  

 

 
Figure 2-15: Inlier percentage in function of the highest viewpoint angle (max of yaw and pitch) for 

sequence 2. 

 

In Figure 2-16, the first frame of the sequence is warped along the found perspective by the 

RANSAC algorithm. This shows that with high rotation angles, the method becomes 

ineffective.  
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Figure 2-16: Two frames of the sequence (left) and the first frame warped in the perspective found by 

IBRIEF matches and RANSAC algorithm. In the first frame (353), the pitch is low-enough to allow a 

good performance by the technique. In the second one (375) the pitch is too high for the approach. 

 

 

2.4.2 Implementation: Rotation approximation 

 

The additional cost to the BRIEF technique in our strategy is the computation of the rotated 

pattern of the point’s pairs. As seen in 2.3.2.2 , it consists in a rotation application to each point 

of the pattern, once per frame. In the context of this experience, the orientation is measured by 

the inertial sensors in Euler angles. We therefore need to convert these Euler angles into a 

rotation matrix in order to compute the rotation. Given the Euler angles  𝛼𝑡, 𝛽𝑡 , 𝛾𝑡  that represent 

the rotation at time 𝑡, a rotation matrix that is generated by these angles is: 

 

 

𝑅𝑡 = (

𝐶𝛼𝐶𝛾 𝑆𝛼𝑆𝛽𝐶𝛾 − 𝐶𝛽𝑆𝛾 𝐶𝛼𝑆𝛽𝐶𝛾 + 𝑆𝛼𝑆𝛾

𝐶𝛼𝑆𝛾 𝑆𝛼𝑆𝛽𝑆𝛾 + 𝐶𝛽𝐶𝛾 𝐶𝛼𝑆𝛽𝑆𝛾 − 𝑆𝛼𝐶𝛾

−𝑆𝛼 𝐶𝛼𝑆𝛽 𝐶𝛼𝐶𝛽

) (20)  

 

Where 𝐶𝜃 and 𝑆𝜃  are respectively the Cosine and Sine of angle 𝜃. Please note that as stated in 

1.4.3.2 , this depends on conventions, as the order of application of angles can differ. Applying 

this formula to our point’s pairs gives us: 

 

 𝑅𝑢𝑖 = 𝐶𝛼𝐶𝛾𝑢𝑖 + (𝑆𝛼𝑆𝛽𝐶𝛾 − 𝐶𝛽𝑆𝛾)𝑣𝑖 (21)  
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 𝑅𝑣𝑖 = 𝐶𝛼𝑆𝛾𝑢𝑖 + (𝑆𝛼𝑆𝛽𝑆𝛾 + 𝐶𝛽𝐶𝛾)𝑣𝑖 (22)  

 

As stated previously, the yaw and pitch angles will be limited in our approach, as they would 

make a flat descriptor when taken too high. Therefore we intended to approximate these 

formulas in case of low values for  𝛼𝑡 , 𝛽𝑡. By using both suppression of terms with multiple 

sines products and small angles approximation, this leads us to: 

 

 
𝑅𝑢𝑖 ≈ (1 −

𝛼2

2
)𝐶𝛾𝑢𝑖 + (−(1 −

𝛽2

2
)𝑆𝛾) 𝑣𝑖 (23)  

 

 
𝑅𝑣𝑖 ≈ (1 −

𝛼2

2
)𝑆𝛾𝑢𝑖 + ((1 −

𝛽2

2
)𝐶𝛾) 𝑣𝑖 (24)  

 

To confirm that these approximations are valid in our application, a difference between the 

exact value of 𝑅𝑢𝑖 and 𝑅𝑣𝑖 is computed. The point’s pairs in a BRIEF descriptor are located 

on a 32x32 pixels grid, which implies that the furthest point is located 16 pixels in each 

direction from the center. A 25° angle change in yaw or pitch only causes the difference 

between the accurate and approximation values to be 0.94 pixels for a point located in the 

corner of the patch, as one can see on Figure 2-17. Having the most impacted point by the 

approximation to be shifted by one pixel seem like a tolerable error for our application, as the 

location is always rounded in a BRIEF algorithm, that only uses point’s pair comparisons.  

 

 
Figure 2-17: Difference between approximation and exact value of rotated points in the BRIEF pattern. 

 

2.4.3 A quick word computational cost 
 

In techniques such as ORB, the orientation of a feature is extracted from an intensity centroid 

that is found in the patch. This is performed by summing patches intensity weighted by position 

in the patch, to find its moments. Then a pre-computed rotated patch is picked. In our approach, 
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the computation load is not needed in the estimation of the orientation, as it is directly measured 

by the inertial sensors. However, as the viewpoints changes are also treated, pre-computing 

rotated patches would take too much space, as there is three dimensions of orientation. 

Therefore the computation overload to BRIEF is on the computation of rotated point’s pairs.  

 

The only additional cost to a traditional BRIEF of our method can be expressed as 512 (number 

of points pair in BRIEF) locations rotations as shown in equations (23) and (24). One great 

feature of this strategy is that this cost is not reliant on the number of points described. In effect, 

we only perform a modification to the pattern of BRIEF. Once computed, the new pattern is 

applied in a similar manner as BRIEF. Meanwhile, techniques based on visual information only 

require an estimation of the dominant orientation for every feature, scaling on the number of 

points. 

 

2.5 Conclusion 
 

A quick summary on the state of the art on local motion estimation was made. As in the context 

of the study mainly embedded platforms are targeted, we chose to focus on very light 

approaches, namely the FAST detector and BRIEF feature descriptors. An overview of hybrid 

keypoints shows that the addition of inertial sensors to those binary descriptors has not been 

shown in the literature. Inertial sensors can help the motion vector computation by estimating 

the orientation of the platform that can be used to increase robustness to geometric changes. 

However, inertial sensors do not help the visual techniques regarding scale estimation. 

 

As motion blur invariance would require high accuracy on the motion estimation, MEMS 

inertial sensors are not suitable to reach this performance. Finally, IBRIEF is introduced, a 

technique that not only adds in-plane rotation invariance, but also improves the resilience to 

viewpoint changes of the BRIEF techniques. Tests show that it clearly outperforms classical 

descriptors. Our method has a fixed cost in terms of computation, and is a very light addition 

to the BRIEF algorithm. 
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Chapitre 3: Estimation de 

mouvement planaire hybride basée 

sur les vecteurs de mouvement 
 

 

Below is a French summary of chapter 3: Hybrid planar motion estimation based on motion 

vectors. 

 

Ce chapitre traite de la seconde étape des techniques classiques d’estimation de mouvement 

planaire, le calcul du mouvement global basé sur les vecteurs de mouvement. Les applications 

visées lors de cette thèse nécessitent un traitement robuste et rapide des données. Ceci donne 

lieu à deux contraintes majeures sur le système : la résilience vis-à-vis de vecteurs de 

mouvement incorrects, et la performance temps-réel du système.   

 

L’intégration des mesures inertielles aux méthodes d’estimation planaire de la caméra peut se 

faire de deux façons. Tout d’abord le couplage fort, où les capteurs inertiels sont utilisés comme 

principale source d’information, la vidéo ne servant qu’à calibrer de façon temporelle et 

spatiale les capteurs. Ensuite, le couplage faible, où les deux estimations sont effectuées en 

parallèles, et le résultat final est donné comme une combinaison des évaluations du 

mouvement. Nous présentons un système qui n’appartient pas directement à une des deux 

catégories, car nous pensons pouvoir mieux tenir compte des différentes caractéristiques des 

capteurs en sortant de ces schémas de fusion.  

 

Ce chapitre présente tout d’abord les différentes méthodes de régression robuste. Les 

techniques se basant sur la procédure « RANdom SAmple Consesus » sont étudiées de façon 

plus approfondie. Le nouvel algorithme proposé est présenté et détaillé. Enfin, des 

comparaisons avec d’autres méthodes et une étude de complexité calculatoire sont menées. 
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Chapter 3:  Hybrid planar motion 

estimation based on motion 

vectors 
 

 

This chapter focuses on the second step of classical camera motion estimation techniques, the 

estimation of a motion model based on local motion vectors. Two major requirements arise for 

a global camera motion estimator in our context: robustness to incorrect motion vectors and 

real-time performance.  

 

Motion vector generation based on keypoint techniques often presents a lot of incorrect motion 

vectors, or outliers. Therefore, camera motion estimation requires robust methods to be applied 

on the motion vectors. A complex problem in those methods is the characterization of the noise 

in the data. Different scenes and motion types will lead to very variable constraints and effects 

on the motion vectors. 

 

The scope of this thesis is embedded motion estimation. Thus, real-time performance must be 

reached, which requires for the global motion estimation algorithm to present a bounded and 

steady computational time. This constraints a lot the approach, as iterative strategies and robust 

regression techniques often have highly variable amount of computations. 

 

The integration of inertial sensors in camera motion estimation is often proposed in two ways. 

Firstly, the loosely coupled fashion: the two estimations are performed independently and then 

recombined to propose a final estimation. Secondly, tightly coupled systems use inertial 

sensors as the principal source of information, and only use vision to calibrate the inertial 

sensors, both in terms of temporal synchronization as well as axis alignment. We will aim at 

performing a fusion that does not directly belong to the loosely or tight coupled categories. In 

effect, we believe that 2D camera motion estimation from inertial and visual sensors can benefit 

from deeper considerations of the respective estimations characteristics and drawbacks.  

 

An overview of robust camera motion estimation techniques is proposed in section 3.1 . 

Classical regression methods, such as least-square are often applied on the motion vectors to 

find the global camera motion. To further increase the robustness of those approaches, M-

estimators present numerous advantages. A short summary of visual-inertial fusion is also 

displayed in this section. 

 

The RANdom SAmple Consensus (RANSAC) technique applied to global motion estimation 

and its variations are described in section 3.2 . In the modern literature, those types of 

algorithms have encountered a wide success, thanks to their robustness to incorrect motion 

vectors. In the RANSAC methods, datum is classified as correct (inliers) or incorrect (outliers) 
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in an explicit manner, which enhances the performance of these techniques compared to 

classical regressions methods. 

 

The contribution of this thesis in the 2D camera motion estimation field relies on the hybrid 

RANSAC, which is detailed in section 3.3 . A novel manner of including the inertial 

measurement directly in the selection process of a preemptive RANSAC algorithm is 

introduced. Further quality improvements are made upon it. 

 

Section 3.4 presents the results of the hybrid RANSAC, compared with classical algorithms. 

Computational time is also discussed. The hybrid RANSAC outperforms classical methods, 

without adding major computational steps to the process, therefore keeping a reasonable 

complexity. 

 

3.1 Robust camera motion estimation  
 

Many factors can create incorrect motion vectors for camera motion estimation ranging from a 

straight error of the technique (e.g. two different points with the same descriptor), to camera 

related issues (e.g. motion blur) and scene characteristics (e.g. internal motion, lack of texture). 

To compensate for this issue, many strategies exist. Some visual based methods intend to 

perform robust regression algorithms on the data to extract a correct motion model. Others use 

different means to perform motion estimation with inertial sensors to perform proprioception, 

which is not sensitive to the camera recording, but produces other issues. Finally, hybrid 

methods fuse both motion vectors and inertial readings to estimate robustly the camera motion. 

Figure 3-1 shows an example how a global motion estimation can be utilized to stabilize a 

video content.  

 

 
Figure 3-1: Example of an application to camera motion estimation: video stabilization. Extracted from 9 

                                                
9 http://www.ovation.co.uk/video-stabilization.html 
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3.1.1 Robust regression techniques 
 

Given the computed motion vectors, regression strategies can be used to compute a model that 

minimizes the errors regarding all the vectors. Diverse methods exist to perform such a task, 

the most well-known being the least-square method. Some variants built upon it make use of 

additional weighting terms or energy function to reach further robustness to noise.  

 

3.1.1.1 Least square  

 

We note ℎ the 3x3 matrix corresponding to a motion model as presented in 1.4.2 . The motion 

vectors 𝑣(𝑖) are a sparse mapping of points coordinates from one frame to the next: 𝑣(𝑖) =

(𝑋𝑖
𝑝𝑟𝑒𝑣

 , 𝑋𝑖
𝑐𝑢𝑟𝑟), where 𝑋𝑖

𝑝𝑟𝑒𝑣
 is the point on the previous frame and 𝑋𝑖

𝑐𝑢𝑟𝑟 the point on the 

current frame. The least square approach minimizes the squared residuals 𝑟𝑖² of each motion 

vector, these are defined as: 

 𝑟𝑖² = ‖ 𝑋𝑖
𝑐𝑢𝑟𝑟 − ℎ𝑋𝑖

𝑝𝑟𝑒𝑣‖
2
 (25)  

 

The goal of the least-square algorithm is to find the model ℎ̂ that minimizes the sum of the 

error terms: 

 

 

ℎ̂ = 𝑎𝑟𝑔min
ℎ

∑ 𝑟𝑖²

𝑁−1

𝑖=0

 (26)  

 

This can be performed directly using techniques such as the Gauss-Jordan method. While this 

method is very efficient, it does not really cope well with general noise. In effect, if the noise 

on the data is assumed Gaussian then this estimation can present acceptable accuracy if enough 

motion vectors are provided. However, a non-symmetry in the noise on the data affects directly 

the estimation, especially if some vectors are very incorrect, leading to very high residuals that 

will predominate on other points. 

 

3.1.1.2 M-estimators 

 

To compensate for that, some strategies intent to minimize a function 𝜌 of the residuals rather 

than the residuals directly. These are called M-estimators, as they belong to the maximum 

likelihood estimator class. The main benefit from using a function of the residuals is that it can 

lead to more robustness to noise. Many choices can be utilized for 𝜌, but the function should: 

always be positive, symmetric (𝜌(𝑎) = 𝜌(−𝑎)) and strictly increase as |𝑟𝑖| grows. The goal is 

to limit the effect of a very high residual: 

 

 

ℎ̂ = 𝑎𝑟𝑔min
ℎ

∑ 𝜌(𝑟𝑖)

𝑁−1

𝑖=0

 (27)  
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 While general minimization of these terms can be complicated to perform, it becomes much 

easier when 𝜌 is differentiable. If the estimator is differentiable, it is named 𝜓-type, while non-

differentiable are named 𝜌-type. 𝜓 is called the influence function. The solution to equation 

(32) now becomes: 

 

 

∑ 𝜓(𝑟𝑖)𝜕𝑟𝑖/𝜕ℎ𝑘

𝑁−1

𝑖=0

= 0  (28)  

 

for every parameter of ℎ. These equations are equivalent because 𝜌 is symmetric and strictly 

increasing from 0. Therefore the only value for which its differentiation is 0 is its minimum, 

which corresponds to a null residual. If we define a function 𝜔(𝑟𝑖) = 𝜓(𝑟𝑖)/𝑟𝑖, then this system 

of equation can be related to a weighted least-square problem: 

 

 

ℎ̂ = 𝑎𝑟𝑔min
ℎ

∑ 𝜔(𝑟𝑖)𝑟𝑖²

𝑁−1

𝑖=0

 (29)  

 

This representation has the advantage to be solvable iteratively: we solve the equation (28), 

compute the term 𝜔(𝑟𝑖) with the new value of ℎ̂, and start the process again until a criterion is 

reached: the difference between two successive ℎ̂ is limited or a number of iterations have been 

processed. Many choices are available for 𝜌, with implications on the behavior of the method. 

Here are a few examples of functions that can be chosen: 

 

- For L2 norm:  𝜌(𝑟𝑖) = 𝜌(𝑟𝑖)²/2  ; 𝜓(𝑟𝑖) = 𝑟𝑖  ; 𝜔(𝑟𝑖) = 1  

- The Huber function changes around a threshold 𝑟𝑙𝑖𝑚:  

 

{
𝑖𝑓  |𝑟𝑖| < 𝑟𝑙𝑖𝑚

𝑖𝑓  |𝑟𝑖| > 𝑟𝑙𝑖𝑚
 ;   𝜌(𝑟𝑖) = {

𝑟𝑖²/2

𝑟𝑙𝑖𝑚(|𝑟𝑖| − 𝑟𝑙𝑖𝑚/2)
;   𝜓(𝑟𝑖) = {

𝑟𝑖

𝑟𝑙𝑖𝑚𝑠𝑖𝑔𝑛(𝑟𝑖) ;   𝜔(𝑟𝑖) = {
1

𝑟𝑙𝑖𝑚/|𝑟𝑖|
  

 

Other functions such as the Tukey bi-weight use function with a threshold that can be 

interpreted as a limit to the inlier / outlier separation. Figure 3-2 displays graphs of examples 

of the weight functions 𝜔 used for iteratively reweighted least-square techniques. More details 

on least square approaches can be found in [Fox 1997], [Ake 1990] and [Coakley 1997].  
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Figure 3-2: Function 𝝎 for several choices in M-estimators. Extracted from [Fox 1997]  

 

3.1.1.3 Developed regression strategies of 2D motion estimation  

 

Many motion estimations exhibit an architecture where a global camera motion is extracted 

from sparse correspondences, and a least-square or similar approach is utilized. Classical 

techniques of camera motion estimation were first introduced in [Bergen et al. 1992]. A Gauss-

Jordan method applied to solve for motion model parameters is displayed in [Auberger & Miro 

2005] while keeping a very low computational cost by removing outliers with specific 

techniques. In [Battiato et al. 2007], heuristics combined with two types of errors are used with 

the purpose of motion vector removal to avoid the effect of outliers. [Bergen et al. 1992] make 

use of a special cost function that approximates a 𝐿𝑝 norm. To perform 3D video stabilization, 

[Liu et al. 2009] present a specific combination of energy terms that can directly be solved by 

a sparse least-square strategy. [Baker et al. 2010] utilize linear programming to solve a specific 

energy function that integrates an energy term that emphasis a smooth motion. A specific non-

linear least square is proposed in [Forssen & Ringaby 2010] on LKT tracked points, in order 

to reduce rolling shutter distortions.  

 

While an efficient way to solve the global motion camera estimation, these iterative regression 

techniques can be stuck in local minima, as they rely a lot on a good initialization and outlier 

noise models. They are also quite expensive to perform. This is why iterative “memory-less” 

methods, such as RANSAC or Least-median square where created.  These will be detailed in 

section 3.2.1 .  



Chapter 3: Hybrid planar motion estimation based on motion vectors 

63 
 

 

3.1.2 Inertial and hybrid strategies 

 

Inertial sensors possess very valuable characteristics for 2D embedded camera motion 

estimation applications, especially the gyroscope. In effect, it presents high frequency of 

measurement (typically 100-500Hz), and does not suffer from typical visual motion estimation 

issues, such as blur or internal motions. However, a few conditions need to be assessed to 

ensure the efficiency of the inertial sensors for this purpose, especially if the goal is to use them 

solely to compute the motion estimation. Calibration has to be performed, both temporally and 

spatially. Many inertial / hybrid approaches to camera motion estimation consider a rolling 

shutter camera, as most of the platforms of those applications have CMOS cameras. 

 

Temporal calibration consists in synchronizing the camera recording with the inertial 

measurements. Spatial calibration is needed to correct eventual misalignments between the axis 

of the inertial sensors and cameras. [Karpenko et al. 2011] introduced a complete calibration 

process with a simple sequence, where the motion is estimated offline from SIFT features and 

RANSAC algorithm. Then the difference between inertial recording and visual estimations is 

minimized by findings parameters such as a multiplicative factor, static delay between 

estimations, and dynamic time scaling. The motion is then estimated directly with the inertial 

sensor readings and a specific motion model that uses line-by-line image warping.  

 

Synchronization is performed as a parallel process of the motion estimation in [Hanning et al. 

2011], where a few randomly selected points are tracked over frames in the video, then the 

delay between both sensors is computed based on the difference of both measurements. In 

parallel, an EKF in combination with a form of complementary filtering is performed on the 

inertial data, to fuse the gyroscope and accelerometer. Here, the inertial sensors are the main 

source of estimation, with visual information only used to calibrate the inertial and visual 

sensors. 

 

Rather than using solely inertial sensors, some methods fuse the visual and inertial data to 

estimate the camera motion. In [Zhu et al. 1998], The camera motion is calculated with block 

matching techniques on points located on a fixed grid. With the camera motion estimated, a 

filtering is performed to stabilize the video content. The filter is based on the inertial sensors 

readings, which are used to determine the motions that should be preserved (intentional) and 

the ones that should be filtered (jittering motions). In this system, the fusion is not directly 

made to estimate the motion but rather to obtain information regarding the physical behavior 

of the platform.  

 

 [Jia & Evans 2012] introduced a method based on the Extended Kalman Filter (EKF), where 

specific approximations are made on the EKF that correspond to the video stabilization and 

rolling shutter correction context. In effect, they only consider 3D rotation as the motion, 

allowing reduced forms on the Jacobian computation. Figure 3-3 displays a rolling shutter 

distortion correction with this method. Inertial sensors measurements are integrated in the filter 
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as inputs in the dynamic model update. Each gyroscope reading is incorporated in the motion 

model, until an image frame is recorded. Then, points tracked with the LKT are used in the 

filter as measurements, in the correction step of the EKF. This type of fusion in a probabilistic 

filter to estimate the motion is widespread in the SLAM domain, where the state of the filter 

also incorporates 3D point’s locations. 

 

 
Figure 3-3: A picture captured with a CMOS sensor (left) and the rolling shutter corrected frame with 

the method of [Jia & Evans 2012] 

 

In a similar manner, [Klein & Drummond 2004] present a system where both visual and inertial 

information are used in a probabilistic filter with an application to tracking. Inertial 

measurements provide rotation prediction, as well as a pre-estimation of the amount of blur 

that will occur in the frame, which is applied as a parameter in the visual edge detection. Then 

filtering is performed using visual measurements mainly.  

 

3.2 Ransac and variations 
 

Regression strategies are an efficient manner to compute a 2D motion model based on local 

motion vectors. However, it underperforms when too many outliers occur in the dataset. To 

avoid such issues, “memory-less” (the models from one iteration to the next are not related) 

iterative methods were created. They consist in creating a motion model based on a minimal 

number of pieces of data, and perform selection based on a criterion. They have encountered a 

lot of success, and many variations were created from them. The most famous of these 

algorithms is the RANdom SAmple Consensus (RANSAC). 

 

3.2.1 Classical RANSAC 

 

Introduced in [Fischler & Bolles 1981], The RANSAC algorithm is an iterative procedure that 

finds, among a set of proposed models, the one with the largest consensus, meaning the model 

that accounts for pieces of data with an error inferior to a threshold 𝑇. This model is computed 

with a confidence 𝜂, a parameter that has to be set by the user. The key of the method is to 

explicitly integrate the proportion of good pieces of data, or the inlier percentage 𝜀, in order to 

determine the number of iterations needed to reach a confidence level of 𝜂 that the best model 
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found is indeed the correct one. As it is applied in our context to motion estimation, the notation 

previously proposed is maintained: the input data is a set of 𝑁 motion vectors 𝑣(𝑖) =

(𝑋𝑖
𝑝𝑟𝑒𝑣

 , 𝑋𝑖
𝑐𝑢𝑟𝑟), where 𝑋𝑖

𝑝𝑟𝑒𝑣
 is the point on the previous frame and 𝑋𝑖

𝑐𝑢𝑟𝑟 the point on the 

current frame and ℎ is a 2D motion model in the form of a 3x3 matrix as shown in 1.4.2 .  

 

3.2.1.1 The algorithm 

 

a) The first stage of the procedure is to compute a model ℎ0 with a minimal amount 𝑚 of 

randomly selected motion vectors 𝑣(𝑖) for the desired model type. For instance, a similarity 

transformation that incorporates in-plane rotation, scaling and translation requires 3 motion 

vectors. 

 

b) In a second step, the created motion model is tested with all pieces of data available. For 

each motion vector the reprojection error is computed applying the proposed model to the 

previous points: 

 

 𝜖(ℎ0 , 𝑣(𝑖)) = ‖ℎ0𝑋𝑖
𝑝𝑟𝑒𝑣

−  𝑋𝑖
𝑐𝑢𝑟𝑟‖ (30)  

 

If 𝜖(ℎ0 , 𝑣(𝑖)) is below the threshold 𝑇, the vector 𝑣(𝑖) is considered an inlier with respect   to 

model ℎ0, otherwise it is an outlier for this model. 

 

c) Thirdly, the total number of inliers 𝑘0 leads to the inlier percentage for this model: 𝜀0 =

𝑘0/𝑁. This allow us to calculate the remaining number of iterations. In effect, with this 

estimated percentage of inliers, the probability to create a model with inliers only is 𝜀0
𝑚. If the 

procedure is iterated 𝐾 times, the probability that not a single model was created with inliers 

only is: (1 − 𝜀0
𝑚)𝐾. As the desired confidence is 𝜂, the probability (1 − 𝜀0

𝑚)𝐾  needs to be 

equal to (1 − 𝜂): 

 

 (1 − 𝜀0
𝑚)𝐾 = (1 − 𝜂) (31)  

 

As we look for the number of iterations that should be produced: 

 

 
𝐾 ≥

𝑙𝑜𝑔(1 − 𝜂)

𝑙𝑜𝑔(1 − 𝜀0
𝑚)

 (32)  

 

d) Fourthly, steps a) and b) are repeated 𝐾 times, or until a better model ℎ𝑗 is found, in the 

sense that it displays a higher inlier percentage. If this occurs, then 𝐾 is recomputed with the 

new inlier percentage, which leads to a lower amount of remaining iterations. Figure 3-4 

displays the amount of iterations needed for a 0.999 confidence rate. 
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Figure 3-4: number of iterations needed in the RANSAC algorithm for a 99.9% confidence 

e) Finally, when the number 𝐾 of iterations has been reached, the best model is considered to 

be the one with the highest support, which corresponds to the highest inlier percentage. In most 

implementations, 𝐾 is bounded so that the procedure does not produce too much computations. 

In some implementations, the best model ℎ𝑏𝑒𝑠𝑡 is recomputed with a least-square approach 

with all its inliers.  

 

3.2.1.2 Characteristics 

 

This procedure is “memory-less” in the sense that, for each iteration, the new model under 

testing is not dependent on the previous ones, only the amount of iterations relies on what was 

computed before. Other techniques, such as Least-Median-of-Square (LMedS) proceed 

similarly, but differ in considering the median error of a model ℎ𝑗 as the criteria of performance 

of a model, rather than its inlier percentage 𝜀𝑗.  

 

The main advantage of the RANSAC strategy is that it can extract a motion model without 

restriction on the amount / type of noise. It does not require massive parameterization, as only 

𝑇 and 𝜂 have to be set. Thanks to the lack of dependency between two iterations, it is very 

prone to parallel implementation. However, this procedure cost can vary a lot, as it relies on 

the quality and quantity of the dataset.  

 

3.2.2 Variations from RANSAC 
 

To overcome the limitations of the classical RANSAC approach, methods were designed to 

improve it. The main goals of these improvements are to perform smarter testing through the 

data, to improve the generation of hypothesis and to apply optimization to the model while 

testing it.  

 



Chapter 3: Hybrid planar motion estimation based on motion vectors 

67 
 

[Torr & Zisserman 2000] adapted the RANSAC procedure to make its cost function correspond 

to an M-estimator with the Huber cost function. The inlier / outlier split is treated with 

expectation minimization technique, where a datum is not strictly classified, but rather the 

probability of it to be an inlier is computed. This allows more accuracy in the estimated 

transformations. This inlier probability per datum is also used to sort the data, allowing guided 

sampling approach that was introduced in [Tordoff & Murray 2002], where the tracking of 

multiple motions is performed. 

 

To reduce the amount of computation spent on bad models, [Matas & Chum 2004] introduced 

a pre-testing procedure. This consists in checking a generated model with a reduced set of 

pieces of data; if the testing is successful then the model is tested with every point, otherwise 

it is discarded. In experiments, it was demonstrated that the optimal technique would be to test 

only one piece of data as the pre-test [Matas & Chum 2004]. In a similar goal, [Capel 2005] 

presented a bail-out test that consists in stopping the test procedure if a model do not seem to 

present enough inliers with a reduced set of data. A further interpretation of the data was 

developed in [Matas & Chum 2005; Chum & Matas 2008] where a consistent rate of outlier is 

explicitly modeled. This allows to determine a sequential probability ratio test that indicates in 

an optimal manner if a model should be rejected early. 

 

Model generation is improved in the PROSAC technique [Chum & Matas 2005]. Pieces of data 

are first classified according to a similarity function (for instance the matching score for motion 

vectors). Then hypotheses are generated preferably with the pieces of data that present the 

highest confidences, progressively increasing the subset of data used to generate the models as 

the number of iterations increases.  

 

Finally, a constant (or at least majored) RANSAC is presented by [Nistér 2005] called the 

preemptive RANSAC, which will be detailed in next section. [Raguram et al. 2008] introduced 

an overview of the RANSAC variations, using some of them in their ARRSAC procedure. 

 

3.2.3 Real-time RANSAC: preemptive procedure 

 

As detailed previously, the main drawback of the RANSAC technique is its very variable 

computational time that scales linearly with the amount of data and also relies heavily on the 

dataset quality, by the rate of inliers. To avoid those drawbacks, the RANSAC technique was 

adapted in a preemptive procedure in [Nistér 2005]. Here is an overview of the method: 

 

1. Generate M motion models ℎ𝑗, by selecting randomly a minimal number of vectors 𝑣(𝑖) 

to create each model. Initialize a score 𝑆𝑗 = 0 for each model. Set the increment step 

i = 1 

2. For every model ℎ𝑗, compute the reprojection error 𝜖(ℎ(𝑗), 𝑣(𝑖)) on the set of vectors. 

If it is below the predefined threshold 𝑇 for the model  ℎ𝑗, then update its score: 𝑆𝑗 =

𝑆𝑗 + 1 

3. Only keep the best 𝑓(𝑖) models (sorting by score), where 𝑓() is a preemption function. 
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4. If 𝑓(𝑖) ≤ 1 (only one model left) or 𝑖 = 𝑁 (we have tested every motion vectors), keep 

the model with the highest score as the global estimation. Otherwise, set 𝑖 = 𝑖 + 1 and 

go to step 2.    

 

The preemption function 𝑓(𝑖) defines the number of models kept at each stage of the algorithm. 

For instance, the one used in [Nistér 2005] is: 

 

 𝑓(𝑖) =  ⌊𝑀2−⌊𝑖/𝐵⌋⌋ (33)  

 

Where 𝐵 is a bundle size of motion vectors, and ⌊. ⌋ denotes the downward truncation function. 

In this example, we just divide by two the number of models considered after each bundle of 

𝐵 motion vectors. 

 

The preemptive RANSAC allows having a limited computational time, regardless of the 

number of motion vectors, and of the quality of the dataset. As some motion models are deleted 

early and not tested with all the data, we save some computational time compared to a classical 

RANSAC.  

This is done at the cost of losing the adaptability to the dataset quality of the classical RANSAC 

scheme, because the inlier percentage no longer influences the number of tested models (which 

is fixed in the preemptive approach). Figure 3-5 displays the differences in execution flow 

between a classical and preemptive approach. 

 

 
 

 
Figure 3-5: Execution flow difference between a classic and preemptive RANSAC approach 

 

3.3 Hybrid Ransac 
 

Visual-inertial sensor fusion has been popular in domains such as SLAM. It has also been used 

to solve motion artifacts [Zhu et al. 1998] [Jia & Evans 2012], to circumvent the failure cases 

of vision-based motion estimation as well as the heavy calibration processes of the inertial 

sensors-based estimation [Karpenko et al. 2011]. However these algorithms use probabilistic 
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filters to fuse data and estimate the motion. This implies tracking features on many frames, 

leading to error accumulation in case of false matching, possibly corrupting a full sequence for 

a one-frame mistake. This is why we created a frame-to-frame, real-time, online fusion 

algorithm, built upon the preemptive RANSAC scheme, to perform accurate and robust motion 

estimation [Alibay et al. 2014]. Figure 3-6 displays a scheme of the procedure of the hybrid 

RANSAC. The complete algorithm will be detailed in the next sections. 

 

 
Figure 3-6: A scheme of the hybrid RANSAC procedure. 

 

3.3.1 Hybrid scoring of the models 

 

The RANSAC algorithm scores a candidate motion model through the number of motion 

vectors fitting this model: the more vectors fit, the better the model is considered. But when it 

comes to difficult sequences (for instance with an object passing in front of the camera), the 

desired best model does not always correspond to this definition, as we want to estimate the 

camera motion and not necessarily the motion visible in the scene. This is even more critical 

with a computation-bounded algorithm like the preemptive RANSAC, because some valid 

models can be rejected early in the process.  

 

To overcome those drawbacks, inertial sensors are a valuable addition to the technique, as they 

provide information on the camera motion unrelated with the scene. Rather than combining the 

two motion estimations at the end of a process or in a filter, we designed a technique so that 

the inertial measurements have an active role in the model selection process of the hybrid 

RANSAC based on visual motion vectors.  
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In a preemptive RANSAC procedure, all models are created at the beginning of the procedure, 

then progressively selected based on their score 𝑆𝑗, which is computed by testing all the models 

with each motion vector.  The main issue of this strategy is that the first motion vectors tested 

have a very high impact on the selection process, as incorrect motion vectors can lead to the 

early deletion of every suitable motion model.  

 

That is why we transform the pure visual score 𝑆𝑗 into a hybrid score 𝑆𝑗
ℎ𝑦𝑏

, damping the 

previous visual score with an inertial-related one: 

 

 𝑆𝑗
ℎ𝑦𝑏

= 𝑆𝑗 −  𝑁𝜆(1 − 𝑒−𝜕(ℎ𝑗,𝐼(𝑡))) (34)  

 

where 𝜆 is a lagrangian factor and 𝜕(ℎ𝑗, 𝐼(𝑡)) an error measure between the considered motion 

model ℎ𝑗, and the inertial measurements 𝐼(𝑡), defined by the relative motion between the two 

frames measured by the inertial sensors. The computation of 𝜕(ℎ𝑗, 𝐼(𝑡)) relies heavily on the 

type of model that was chosen for the technique. For instance, with Euler angles and a similarity 

transformation, the computation can be explicated as: 

 

  

𝜕 (ℎ𝑗, 𝐼(𝑡)) =

(
𝑇𝑥

𝜌𝑥
− 𝛼𝑡)

2

+ (
𝑇𝑦

𝜌𝑦
− 𝛽𝑡)

2

+ (𝜃 − 𝛾𝑡)2

𝜕𝑐𝑎𝑟𝑎𝑐

 
 

 

(35)  

 

With  𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 being the yaw, pitch and roll angle displacements. 𝑇𝑥, 𝑇𝑦 and 𝜃 are respectively 

the translation amounts and in-plane rotation angles extracted from ℎ𝑗. 𝜕𝑐𝑎𝑟𝑎𝑐 is a 

normalization factor. As the preemptive procedure unfolds, models are selected based on their 

compliance with both visual and inertial measurements, thanks to the hybrid scoring.  

 

3.3.2 Inertial model inclusion 
 

The previously stated technique with the hybrid scoring of the model allows a better selection 

of the motion models, especially in the early stages of the preemptive RANSAC procedure. In 

some particular cases, improving the selection is not enough to reach an acceptable level of 

performance of the camera motion estimation. 

 

As shown in Figure 3-7, some scenes show too much complexity for the camera motion to be 

estimated based on visually generated models. The first one displays too much internal motion, 

the second one have too much blur, while the third one is not textured enough to present 

satisfying results. 
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Figure 3-7: Some examples of very complex scene. Black vectors are the outliers computed by our 

method, while white vectors are the inliers. 
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All of those observations lead to a conclusion: an integration of the inertial measurements in 

the model generation process is also needed.  

 

To cope with these extreme cases, we add a motion model purely created from 𝐼(𝑡), expressed 

as an affine transformation ℎ𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 . In the case of similarity transformation, we create the 

inertial model as: 

 

 

ℎ𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = (
cos (𝛾𝑡) sin (𝛾𝑡) 𝛼𝑡𝜌𝑥

−sin (𝛾𝑡) cos (𝛾𝑡) 𝛽𝑡𝜌𝑦

0 0 1

) (36)  

 

This transformation will be picked over the visual ones in cases where the visual motion fields 

fail at describing the camera motion, as the model ℎ𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙  is scored in the exact same manner 

as he other models ℎ𝑗. 

 

3.3.3 Dynamic lagrangian computation 
 

The lagrangian value 𝜆  of the scoring equation (39) is very difficult to set for a given sequence. 

Indeed, having a high value will often favor the selection of the inertial model, leading to the 

inaccuracies and drifts of the inertial sensors to become apparent in the motion estimation. 

When performing applications such as video stabilization, this noise can even deteriorate the 

sequence rather than improving its quality, which is not acceptable. 

 

On the other end, a low lagrangian value brings back the impact of visual failure cases (big 

internal motion, lack of texture), while the goal of the technique is to increase the robustness 

to these cases. Therefore it appears that a constant lagrangian factor is not suitable to reach 

good performance level. 

 

A way to set 𝜆 dynamically should be found as we want to adapt the procedure to the difficulty 

of the motion field in real-time. The most difficult the scene, the higher the lagrangian should 

be. Another important requirement is that 𝜆 should be set before testing the motion vectors, 

because we need it to compute the hybrid score of each model. 

 

To do so, we compute 𝜕𝑚𝑒𝑑, the median value of all the distances of visual models to the inertial 

one 𝜕 (ℎ𝑗, 𝐼(𝑡)) , 𝑗 = 1 … 𝑀. The chosen measure is a reliable indicator of the difficulty of the 

motion vector field, since it computes the disparity in the inertial-visual distances. These will 

be high in case of internal motion, lack of texture and blur (where we want to favor the inertial 

model), but low otherwise. We compute the dynamic lagrangian 𝜆𝑑𝑦𝑛  as: 

 

 𝜆𝑑𝑦𝑛 = 𝜆𝑚𝑎𝑥(1 − 𝑒−(𝜕𝑚𝑒𝑑/𝜕𝑐𝑎𝑟𝑎𝑐)²) (37)  
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where 𝜕𝑐𝑎𝑟𝑎𝑐 is a normalization factor, and 𝜆𝑚𝑎𝑥 the maximum lagrangian to be utilized. The 

main advantage of this parameterization is that its cost of computation is very light, while 

improving significantly the flexibility of the method.  

 

3.3.4 Global procedure 
 

We can now summarize the hybrid preemptive RANSAC algorithm with all the steps involved, 

as follows: 

 

Algorithm: Hybrid Preemptive RANSAC 

1. Generate 𝑀 − 1 motion models ℎ𝑗, by selecting randomly a minimal number of vectors 

to create each model. Create the last model using only inertial measurements as in (36) 

2. Compute the distance between the visual and inertial models 𝜕 (ℎ𝑗, 𝐼(𝑡)) for each 

model as in (35) 

3. Using the median value 𝜕𝑚𝑒𝑑, compute 𝜆𝑑𝑦𝑛  as shown in (37) 

4.  Initialize the hybrid score for each model 𝑆ℎ𝑦𝑏(𝑗) = − 𝑁𝜆𝑑𝑦𝑛(1 − 𝑒−𝜕(ℎ𝑗,𝐼(𝑡))). Set the 

increment step 𝑖 = 1 

5. Compute the reprojection error 𝜖(ℎ𝑗, 𝑣(𝑖)) for every model ℎ(𝑗). If it is below 𝑇, then 

update the score of the model ℎ𝑗 as:  𝑆𝑗
ℎ𝑦𝑏

= 𝑆𝑗
ℎ𝑦𝑏

+ 1 

6. Only keep the best 𝑓(𝑖) models (sorting by score), where 𝑓() is a preemption function. 

7. If 𝑓(𝑖) ≤ 1 or 𝑖 = 𝑁, keep the model with the highest score as the global estimation. 

Otherwise, set 𝑖 = 𝑖 + 1 and go to step 5.    

 

3.3.5 Online temporal calibration 

 

One major requirement for the algorithm to perform efficiently is to maintain a correct 

synchronization between the visual data and inertial measurements.  As the device can suffer 

from software latencies, or the various clocks can display relative drift between each other, the 

calibration needs to be maintained online to maintain a proper level of performance.  

 

3.4 Results & discussions 
 

The hybrid RANSAC strategy has been evaluated both in terms of computational time and 

quality performance against classical frame-to-frame correction techniques. 

 

3.4.1 Testing protocol and results 

 

Evaluating a motion estimation algorithm is never an easy task, due to the lack of ground truth 

available, especially when sequences are recorded on embedded platforms, and not virtually 

generated. A large database of sequences was recorded, including high internal motion (passing 

cars, moving objects), texture-less sequences (skies, walls) and high motion sequences. Three 
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algorithms were tested on the database: the pure visual preemptive RANSAC, online correction 

with inertial sensors only, and the proposed hybrid RANSAC. The camera motion was 

corrected in each sequence using the three methods, in order to compare subjectively the 

efficiency of each algorithm.  

 

We found major improvements in terms of robustness compared to the pure visual preemptive 

RANSAC. On Figure 3-88, we plot the horizontal translation estimated by the three methods 

on a sequence of moving cars and trucks, where the camera has very little motion. We can see 

that the visual algorithm is trapped into internal motions, and that the inertial estimation is very 

noisy. Thanks to the hybrid scoring, our algorithm converges on a correct model. 

 

 
Figure 3-8: Estimation of the horizontal translation in a 120 frames long sequence. Three estimations are 

made: a visual one (preemptive RANSAC), an inertial one (compensation of gyroscopes input), and our 

proposed hybrid algorithm (hybrid RANSAC).   

 

 

On multiple sequences (see Figure 3-99), our algorithm demonstrate superior performance to 

classical frame-to-frame approaches. The inliers (white vectors) and the outliers (black vectors) 

are represented on the frames. On the left, the estimated motion by a classic preemptive 

RANSAC algorithm, on the right the hybrid RANSAC algorithm. Blue vectors are the recorded 

inertial measurements converted into motion vectors, green vectors are accumulated inertial 

measurements over one frame. As the camera was a CMOS rolling shutter one, every line is 

recorded at different time, and a time of record can be put in correspondence with a line in the 

frame. The red vector on the middle of the frame displays the total motion estimated by the 

inertial sensors, which is computed by averaging the accumulated inertial vectors on the frame.  

 

The first two frames display resilience to internal motions. In the first frame, the visual 

technique estimates the motion of the moving truck (all inliers on it) relatively to the camera 

which is very problematic as we want to estimate the motion of the camera only. The same 

issue occurs on the second frame with the paper moving in front of the camera. As the visual 

preemptive RANSAC estimates the best motion model as the one with the most inliers, and if 

most motion vectors belong to a moving object, it fails to recover the proper camera motion. 

On the other hand, the score of the hybrid RANSAC is a mix between inertial and visual 

measurements of the motion models. It is therefore able to correctly favor the motion model 

corresponding to the camera, even if it has less visual inliers than another model. 
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 The third frame show how the inertial model included in the technique can help to circumvent 

very complex scene, where pure visual estimation cannot perform correctly. There are too few 

vectors in this texture-less scene. Thanks to the pure inertial model, the hybrid RANSAC is 

able to recover plausible motion model in these very complex cases, where it is very tough to 

recover any valuable information from visual cues only. 

 

 

 

 
Figure 3-9: A few examples of test sequences by the preemptive RANSAC (left) and presented Hybrid 

RANSAC (right) 

 

3.4.2 Computational time 

 

One of the main requirements of the presented algorithm is to run online in real-time. With 

added computations due to the integration of inertial measurements, we want to evaluate if we 

are able to reach an acceptable time of execution. Using the same preemption function as in 
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[Nistér 2005], we can evaluate the complexity of our method. The computational time is 

approximately: 

 

 
𝑡𝑒𝑥𝑒𝑐  ~ 𝑀(𝑡𝑚 +  𝒕𝝏 + 𝒕𝒔) +

𝑀𝐵

2
𝑡𝜖  (38)  

 

with 𝑀 being the number of motion models, 𝐵 the number of vectors in a block, 𝑡𝑚 the time to 

generate a model,  𝒕𝝏 the time to compute each hybrid distance and score, 𝑡𝜖  the time to 

compute a reprojection error, and 𝒕𝒔 the average time per model to find the median value 

(noting that finding the median value in an unsorted list of 𝑀 values is proportional to 𝑀 on 

average through a partial sorting procedure, we write it as 𝑀𝒕𝒔). A strong point of our approach 

is that we keep a bounded computational time, only adding the terms in bold face in Eq. (43) 

to the ones of the pure visual preemptive RANSAC. The overall complexity remains linear to 

the number of models.  Therefore we manage to keep a real-time performance.  

Performances of a direct implementation with no specific algorithmic optimization were 

measured on a 2.8GHz double core, 4GB RAM computer. The average time spent by frame by 

the preemptive RANSAC and the hybrid one are presented on Table 1, with 𝐵 = 30. The 

hybrid RANSAC adds some computational time, but still reaches real-time performance 

(>30fps).  

 

Number of 

models used 

Pure visual 

preemptive RANSAC 

Hybrid 

RANSAC 

𝑀 = 100 5.07 ms 8.65 ms 

𝑀 = 200 15.36 ms 22.45 ms 
Table 1: computation times of the pure visual preemptive and hybrid RANSAC. 

 

 

3.5 Conclusions & perspectives 
 

We have presented an online, frame-to-frame, real-time hybrid motion estimation algorithm 

based on the preemptive RANSAC scheme. Thanks to a hybrid scoring of motion models, and 

a dynamic lagrangian computation, it is able to perform well in very difficult visual motion 

estimation cases, while relying on the inertial measurements only when strictly necessary. The 

fact that it is frame-to-frame avoids error accumulations and limits memory requirements. As 

next steps, we want to use a more elaborate distance measure between models, in order to have 

a better hybrid scoring. Another point of improvement could be to use more information to 

dynamically set the lagrangian factor, such as acceleration and linear translations measured by 

the sensors. 
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Chapitre 4: Localisation hybride 
 

 

Below is a French summary of chapter 4: Hybrid Localization. 

 

Ce chapitre se concentre sur les méthodes de « Simultaneous Localization And Mapping » 

(SLAM), qui consistent à estimer le mouvement de la plateforme tout en cartographiant 

l’environnement entourant celle-ci. Les données de camera et de capteurs inertiels sont 

fusionnées afin d’effectuer le SLAM pour l’appareil embarqué. Nous nous concentrerons sur 

l’estimation du mouvement de la plateforme. 

 

Deux grandes catégories de méthode existent afin d’effectuer l’estimation du mouvement : le 

filtrage et l’optimisation. Après avoir étudié ces deux types de techniques, nous proposons une 

nouvelle méthode qui décompose le calcul de la pose en deux parties. Chaque partie fait appel 

à un type de technique. Il en résulte donc une méthode effectuant la fusion de données sur 

plusieurs niveaux. 

 

Ce chapitre introduit les méthodes de SLAM de la littérature. Des expériences sur chacun des 

types de méthodes sont menées, afin de tirer le maximum d’informations possibles sur leurs 

avantages et inconvénients. Nous présentons ensuite une nouvelle technique d’estimation du 

mouvement hybride. Enfin, un matériel basé sur de la technologie infra-rouge est utilisé pour 

calculer une vérité terrain, et comparer notre méthode et celles de l’état de l’art. 
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Chapter 4:  Hybrid Localization  
 

 

Simultaneous Localization And Mapping (SLAM) consists in estimating the 3D motion of 

a platform in an environment (also known as ego-motion) and map its surrounding scene at the 

same time. Cameras and inertial sensors can be fused in order to perform an accurate and robust 

estimation, using the characteristics of each sensor. This chapter focuses on the ego-motion 

estimation part of the SLAM, which consists in computing in real-time its orientation and 

position. 

 

Two main application domains utilize hybrid visual inertial SLAM: augmented reality and 

robotic navigation. The aimed applications in this thesis are mainly indoor navigation and 

augmented reality for handheld devices such as smartphones and tablets. As with the previous 

work developed in this thesis, robustness to complex scenes and motions is the main focus, 

while keeping a real-time performance. 

 

Section 4.1 presents an overview of the state of the art on visual-inertial SLAM. Firstly, pure 

visual methods are described, as they often constitute the base of a hybrid algorithm. Visual 

odometry is introduced, with the 2D correspondences and 2D to 3D correspondences. Visual 

SLAM procedures are then described. Secondly, a state of the art summary is given on visual-

inertial SLAM techniques. Augmented reality and robotic navigation possess their own 

methods, which are detailed. 

 

In section 4.2, experiments on state of the art visual methods are conducted. An initialization 

technique for the SLAM algorithm is needed, as we need to create a 3D map to start the 

algorithm. An existing algorithm to perform this is detailed, the 7-point algorithm. In general, 

two main methods exist to estimate the ego motion based on 2D to 3D correspondences: 

optimization and filtering. Both display their own advantages and drawbacks, which are 

shown and studied with various experiments and tests.  

 

A novel algorithm to perform visual-inertial odometry is introduced in section 4.3. It makes 

use of both optimization and filtering methods to estimate the ego-motion of the device with a 

sequential method, splitting the computation of the ego-motion in two phases: orientation and 

position. Orientation is first estimated using an optimization technique, the hybrid RANSAC 

that removes outliers and displays high robustness. Position is computed with a filtering stage 

that possesses a specific parameterization, reactive to the visual tracking quality and semantic 

information. 

 

Section 4.4 shows results and conclusions of the proposed approach. We test our algorithm and 

compare it with state of the art techniques. A setup using infrared markers and cameras is used 

to record very accurate data on the ego motion of the device and are used as ground truth. 

Finally, computational complexity is studied and conclusions are drawn. 
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4.1 3D motion estimation: SLAM / Visual odometry 
 

SLAM can be separated in two fields: dense-SLAM, where a very high proportion of points in 

the scene are considered, and feature-based SLAM, which performs a much more sparse 

estimation of points in the environment. Dense (or semi-dense) approaches have become 

increasingly popular recently [Schöps et al. 2014] [Engel et al. 2013] [Wendel et al. 2012], 

allowing to reconstruct many points of the scene with a whole-image alignment. While 

showing good efficiency, they remain very demanding in terms of computational resource. On 

memory side, the dense representation of the map also limits the size of the environment we 

can reconstruct, which is a drawback for applications such as navigation. Therefore, we focus 

our overview on systems relying on features to perform the SLAM algorithm. 

 

4.1.1 Purely visual system 
 

Estimating the ego motion of a platform is a complex task, requiring accuracy and robustness. 

Many sensors can be used to fulfill this purpose, from proprioceptive ones that measures only 

platform-related quantities (inertial sensors, wheels speed, GPS…) to sensors that records data 

from the external environment, deducing the motion regarding the temporal changes that occur 

(monocular cameras, stereo vision, laser, radars…). Monocular cameras are a very popular type 

of sensor in ego motion computation for many reasons. They are cheap, do not present high 

constraints in terms of weight or power, and their recording can be utilized for multiple 

purposes, making it a very flexible sensor, used for many years [Longuet-Higgins 1981] [Harris 

& Pike 1988]. 

 

4.1.1.1 Relationship between positions: matrices definition 

 

As seen in section 1.4.1 , a 3D point 𝑝 = (𝑥, 𝑦, 𝑧, 1)𝑇 is projected on an image 𝐼𝑡 onto a 2D 

point 𝑋𝑡 = (𝑢𝑡, 𝑤𝑡 , 1) with the projective equation:  𝑋𝑡 = 𝐾𝑃𝑡𝑝 where 𝐾 is the calibration 

matrix of the camera, and 𝑃𝑡 is the projection matrix that describes the pose of the camera when 

frame 𝐼𝑡 has been recorded. However, from direct 2D motion vectors, a relationship between 

point’s measurements on different frame can be established. The geometric relationship 

between two separate frames 𝐼𝑡 and 𝐼𝑡′ recording the same point is called the epipolar 

constraint. The fundamental matrix expresses this constraint:  

 

 𝑋𝑡′  𝐹 𝑋𝑡 = 0 (39)  

 

The fundamental matrix is a 3x3 rank 2 homogenous matrix that encapsulates the geometric 

transformation between two recorded images. It is also known as the bifocal tensor of a two 

views system. To directly relate this matrix with the relative rotation and translation between 

the two cameras positions where the images have been recorded, one must use the essential 

matrix 𝐸. It can be computed based on the fundamental matrix: 

 



 4.1 3D motion estimation: SLAM / Visual odometry 

82 

 

 𝐸 = 𝐾𝑇  𝐹 𝐾 (40)  

 

Please note that the constraint is expressed in (39), but the points 𝑋𝑡 have to be un-calibrated 

beforehand. The essential matrix is directly related to the relative rotation and position changes: 

 

 𝐸 ≅ 𝑡̂𝑅 (41)  

 

where 𝑅 is the rotation matrix between the two views and 𝑡̂ the skew-symmetric matrix based 

on translation vector 𝑡. This relationship is only correct up to a scale, as stated with the symbol 

≅. These matrices 𝐹 and 𝐸 allow us to compute the 3D relative motion between two views 

only from 2D to 2D correspondences. This is a very valuable asset, leading to possible 3D 

interpretations only from the 2D camera recordings, without any preliminary knowledge on the 

scene. 

 

4.1.1.2 Visual odometry 

 

Performing this procedure without computing a global consistent map is called visual 

odometry. It aims at incrementally finding the trajectory and orientation of the mobile, possibly 

by building a local map of the environment, but without global optimization nor loop closure 

techniques. For monocular visual odometry, two categories of input can be utilized: 2D 

correspondences, or 3D to 2D correspondences. 

 

- 2D correspondences methods 

 

Methods based on 2D correspondences consist in computing the essential matrix based on 

frame-to-frame motion vectors. We note the input motion vectors 𝑣(𝑖) = (𝑋𝑖
𝑝𝑟𝑒𝑣

 , 𝑋𝑖
𝑐𝑢𝑟𝑟 ). Each 

point’s homogenous coordinates are noted 𝑋𝑖
𝑝𝑟𝑒𝑣

= (𝑢𝑖, 𝑤𝑖 , 1)𝑇 and 𝑋𝑖
𝑐𝑢𝑟𝑟 = (𝑢′𝑖, 𝑤′𝑖, 1)𝑇. As 

defined in (39), each correspondence provides a constraint 𝑋𝑖
𝑐𝑢𝑟𝑟  𝐹 𝑋𝑖

𝑝𝑟𝑒𝑣
= 0. If we put the 

values of 𝐹 in a 9x1 vector 𝐹̃, the constraints take the form: 

 

 (𝑢𝑖𝑢
′
𝑖    𝑤𝑖𝑢′

𝑖  𝑢
′
𝑖    𝑢𝑖𝑤

′
𝑖    𝑤𝑖𝑤′

𝑖    𝑤′
𝑖   𝑢𝑖    𝑤𝑖    1)𝐹̃ = 0 (42)  

 

By stacking several lines of this constraint, one ends up with a system of the type 𝐴𝐹̃ = 0, 

which can be solved with classical techniques such as Singular Value Decomposition (SVD). 

Due to being a “calibrated” relationship between the views, only one property is available for 

the fundamental matrix: det(𝐹) = 0. This leads to the fact that at least seven motion vectors 

have to be provided to be able to compute 𝐹, but if eight or more points are used, the procedure 

is called the eight-point algorithm [Hartley & Zisserman 2003] [Longuet-Higgins 1981] 

[Hartley 1997].  

 

If un-calibrated points are provided, then the essential matrix can be directly computed using 

another constraint: 2𝐸𝐸𝑇 − 𝑡𝑟(𝐸𝐸𝑇)𝐸 = 0. This leads to the ability to compute the essential 

matrix from five points only, with efficient manners to compute it [Nistér 2004] [Hartley 2006]. 
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As the minimal set to compute  the essential matrix is not too prohibitive, RANSAC approaches 

have been utilized in combination with five points solvers [Nistér et al. 2006] [Lhuillier 2005] 

[Nistér 2005] [Mouragnon et al. 2006].  

 

The operation of finding a 3D point coordinates based on the 2D projections and cameras poses 

is called triangulation. Further details on triangulation can be found in [Hartley & Zisserman 

2003]. With the essential matrix computed, one can retrieve 𝑅 and 𝑡 from it with decomposition 

techniques [Nistér 2004]. Note that this decomposition leads to four possible solutions. The 

selection among those possible transformations is made by finding the decomposition that 

projects most 3D points in front of both cameras. When the 3D points are triangulated, we 

compute their depth for both cameras with every possible solutions for 𝑅 and 𝑡, and keep the 

decomposition that projects the most points with positive depths. 

 

The main advantage of 2D correspondences methods is that they only require knowledge of 

the camera calibration, but no information on the scene. The drawback is that the essential 

matrix is only defined up to a scale, leading to a complex relative scale computation that needs 

to be performed at every frame, based on the ratio between distances triangulated with the pose 

between the two views. Further details on this can be found in  [Scaramuzza & Fraundorfer 

2012].  

 

- 3D to 2D correspondences methods 

 

In this case, a sparse 3D map of the scene is supposed to be computed, with appearance of each 

point recorded in the form of a descriptor (either a pixel patch or a higher level descriptor, as 

in 2.1.2.2 ). The input correspondences are therefore of the form (𝑋𝑖
𝑐𝑢𝑟𝑟 , 𝑝𝑖) where 𝑋𝑖

𝑐𝑢𝑟𝑟 is the 

2D projection of the 3D point  𝑝𝑖 in the current frame. This procedure is known as the 

Perspective n Points (PnP) problem, n being the number of points used. On can employ a 

method similar to the 2D correspondences techniques, but this time to retrieve the projection 

matrix 𝑃 = [𝑅|𝑡]:  

 

- Every correspondence creates a constraint from the equation 𝑋𝑖
𝑐𝑢𝑟𝑟 = 𝐾𝑃𝑝𝑖 

- Stack the constraints to obtain a system of the type 𝐴𝑃̃ = 0, with 𝑃̃ being a vector form 

the projection matrix. 

- Solve the system with a decomposition technique such as SVD. 

 

This technique is known as the Direct Linear Transform (DLT) [Hartley & Zisserman 2003]. 

As each point creates two constraints, six correspondences or more are needed to compute the 

projection matrix. However, as seen previously, procedures such as RANSAC can be employed 

with a minimal solver. The rotation matrix only has three degrees of freedom, therefore 

retrieving the pose of the camera is a six DOF problem, and every point correspondences 

provide two constraints. Therefore P3P (𝑛 = 3) techniques have been highly popular in the 

literature [Haralick et al. 1994] [Nistér & Stewénius 2006] [Kneip et al. 2011]. For other solvers 

than minimal ones, the main difficulty lies in the complexity needed to solve the problem, with 
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relation to the amount of points provided. Some techniques display 𝑂(𝑛) complexity: [Moreno-

Noguer et al. 2007] [Lepetit et al. 2008].  

 

To conclude, an efficient way to perform visual odometry is to start with 2D correspondences 

techniques as they do not require any knowledge on the scene. Then, when a first local map is 

available with triangulation, a switch to a 3D to 2D correspondences can be performed. It is in 

effect more robust and accurate, as the geometry of the scene is available. 

 

4.1.1.3 SLAM 

 

The additional process in SLAM compared to visual odometry is to obtain a globally consistent 

map. This induces that every 3D point estimated position should be updated when observed by 

the camera, and loop closure needs to be performed. Two main strategies exist for the visual 

SLAM: filtering techniques (probabilistic) and optimization-based procedures 

(determinist). 

 

- Filtering techniques 

 

The SLAM problem can be treated as a probability density estimation problem. In this 

approach, the first two statistical moments (mean value and covariance) of the camera pose and 

3D points are jointly estimated in a Bayesian filter, which is often either a Kalman filter (KF) 

or a particle filter. For the KF, an extended or unscented version is often used due to non-

linearity of the system. KF-based techniques are described in Appendix A:. Particle filters are 

described in Appendix C:. 

 

A general scheme of these filtering methods is the following. A dynamical temporal model of 

the system is used in the state of the filter, which are the physical values to be estimated: 3D 

orientation and position, along with their first derivatives, rotation speed and translation speed. 

A representation of the locations of the points is also included in the state. In the case of KFs, 

the covariance of both pose and points locations is directly accessible through a covariance 

matrix. For particle filters it is rather implicitly estimated by the particles distributions. 

 

In each case, the procedure is separated in two steps: propagation, or time update, and 

correction, or measurement update. The propagation step consists in applying the physical 

model temporal behavior on the state (and covariance for KFs) of the filter. For instance, the 

estimated 3D orientation of the filter will be updated with the speed orientation of the state. 

Correction uses external measurement to correct the state with inputs from the outside world. 

In the monocular SLAM case, those are often motion vectors obtained from 3D to 2D 

correspondences.  

 

This type of method was initially proposed by [Davison 2003] with an EKF system based on 

high quality points tracking, in this case SIFT features. The system has been further improved 

with the MonoSLAM algorithm [Davison et al. 2007]. This system is illustrated in Figure 4-1, 
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where the current camera view is displayed along with the 3D points map. Ellipses represent 

the uncertainty estimates by the filter, the bigger the ellipse is, the higher the covariance. As 

the EKF is a very generic filtering technique, specific parameterization can be used to further 

enhance its performance for the SLAM algorithm. In the case of MonoSLAM, an inverse depth 

parameterization is applied [Civera et al. 2008], providing a more stable system regarding 

poorly initialized points mean and covariance values. Numerous extensions and studies on the 

EKF-SLAM were proposed in the literature [Paz et al. 2007] [Bailey et al. 2006] [Solà et al. 

2011]. The EKF probabilistic information can also be used in a RANSAC strategy to generate 

hypothesis based on the probabilistic distribution estimated on the filter [Civera et al. 2010]. 

 

 
Figure 4-1: Illustration of the MonoSLAM technique [Davison et al. 2007]. Image courtesy of 10. On the 

left, the current frame with 3D points projected in the 2D camera view. On the right, the 3D map, as well 

as camera pose and trajectory, are shown. 

 

Many more filtering techniques other than the EKF can be used to solve the monocular SLAM 

problem. [Holmes et al. 2009] show an Unscented Kalman filter (UKF) technique, proposing 

a Square Root adaptation to cope with computational cost considerations. The fastSLAM 

[Montemerlo 2003] technique was introduced mainly for robots, using a particle filter scheme 

to estimate the pose of the platform, and each particle estimated its own map. An adaptation of 

this technique for handheld cameras more prone to augmented reality is introduced in [Eade & 

Drummond 2006]. Further extension of this strategy is described in [Lee et al. 2011], where 

the particles are drawn from a 5-point RANSAC technique. 

 

- Optimization based strategies 

 

Another possible technique to solve the Localization problem of the SLAM is to use 

optimization techniques. M-estimators (3.1.1.2 ) are the gold standard way to perform this. The 

Parallel Tracking And Mapping (PTAM) algorithm separates the Localization and mapping 

procedures in distinct threads, to make use of the multiple cores present on modern computers 

and smartphones architectures [Klein & Murray 2007]. The Localization is performed in real-

time using an M-estimator, while the mapping is done on a thread by applying Bundle 

Adjustment (BA).  

 

                                                
10 http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2003ajd_monoslam/project.html 
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The BA technique consists in rectifying the previous camera poses and 3D point’s locations. 

The energy that is minimized is based on the reprojection error of every point on the frames 

considered, with a Levenberg-Marquardt iterative approach [Marquardt 1963].  This type of 

technique possesses the advantage to reconsider the map as a complete system to be solved, 

which allows efficient loop closure. Further details on BA can be found in [Triggs et al. 2000]. 

 

This mapping thread using BA is not constrained with real-time requirement, and is only 

performed on a few key frames that are selected using criteria such as sufficient performance 

of the tracking. This task split is a great asset for applications such as augmented reality that 

needs many features to be tracked in the map. Figure 4-2 is an example of the PTAM applied 

to augmented reality, where a dominant plane is extracted from the 3D point’s locations to 

perform various tasks. 

 

 

 
Figure 4-2: An example of PTAM applied for augmented reality purposes. On the left, points of the map 

are displayed along a grid that represent the dominant plane. One the right, the plane is used to display 

objects in the scene. Image extracted from 11 

Indeed, the real-time localization tasks only consider points observable by the pose of the 

camera, while the mapping is not strictly constrained in computation. The PTAM system have 

been extended to handheld devices [Klein & Murray 2009], including rolling shutter 

considerations and a two-staged tracking process using coarse-to-fine pose computation.  

 

More recent works treat of additional robustness strategies, such as fast re-localization in case 

of poor tracking performance in the localization thread [Martin et al. 2014]. Other techniques 

make use of optimization and BA to compute the pose of the camera. [Mouragnon et al. 2006] 

use a local BA to perform SLAM on ground vehicles, in which a global BA is not needed as 

the scene often changes due to the high speed of motion.  

 

A comparison of filtering and optimization + BA systems was made in [Strasdat et al. 2010]. 

The authors came to the conclusion that, while filtering is still a viable option for very limited 

                                                
11 http://www.robots.ox.ac.uk/~gk/PTAM/ 
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resource platforms, optimization + BA systems display the highest accuracy per amount of 

computational operation performed.  

 

 

4.1.2 Hybrid SLAM 

 

Inertial sensors coupled to monocular cameras are present on many systems. Therefore hybrid 

SLAM procedures using these two sensors have been very popular recently in the literature. 

Two types of applications are aimed: augmented reality and mobile robotics.  

 

4.1.2.1 Fusion for augmented reality 

 

A first way to use inertial sensors in visual augmented reality is simply to incorporate the 

accelerometer as an indicator of the gravity. This allows feature descriptors to be oriented along 

this axis, making them robust to in-plane rotations [Kurz & Ben Himane 2011]. This technique 

is especially valuable for augmented reality used on vertical planes, as the in-plane rotation 

invariance is much easier and cheaper to guarantee [Kurz & Benhimane 2012]. Gravity-based 

orientation can also improve localization on a higher scale, for instance to retrieve image’s 

locations in a wide environment [Arth et al. 2012]. 

 

Augmented reality techniques can also be improved in terms of robustness to quick rotations 

of the platform using gyroscopes, which measure the orientation changes. In [Klein & 

Drummond 2004] and [Klein & Drummond 2003], a visual tracking system is improved with 

tightly integrated sensor fusion. The authors use gyroscopes to predict the motion to be 

estimated with visual techniques, as well as the amount of blur that will occur. Similar methods 

are based on a gyroscope coupled to a magnetometer, where the orientation estimation given 

by the inertial sensors is applied to predict to 2D locations of the points from the 3D map [You, 

U. Neumann, et al. 1999] [You, Ulrich Neumann, et al. 1999], leading to an increase in terms 

of robustness to high motions and blur.  

 

Early work demonstrated by [Azuma et al. 1998] underlined the need of hybrid strategies to 

perform outdoor augmented reality techniques, as the environment is less constrained. [You & 

Neumann 2001] included the measurement of a gyroscope in an EKF, performing two different 

measurement updates, corresponding to each type of sensor: one for the visual measurements, 

one for the inertial measurements. The different frequencies of the sensors can lead to a 

different integration of these in the localization procedure. [Lang et al. 2002] propose an inertial 

based estimation, where the visual measurements are used as a correction, as the camera display 

a lower frequency. Integration of inertial measurement in tracking system of a 3D model of the 

scene is studied in [Bleser & Stricker 2008], including a comparison of several types of fusion. 

 

An addition of inertial sensors to the PTAM algorithm is presented in [Porzi et al. 2012] for 

Android© smartphones. The localization thread is simplified to consume less computational 

resources. Inertial measurements are integrated at every time that they are recorded, to predict 
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the pose of the next frame. In the complete system, this allows not to use a coarse-to-fine 

approach to localization, but rather an inertial-based motion prediction and visual-based 

correction of the prediction with the M-estimator.  

 

Other techniques are especially designed for indoor applications. Some constraints on the scene 

can be applied thanks to the particular geometry inside a building. The Manhattan world 

hypothesis consists in considering that the scene is composed with planes that are either 

perpendicular or parallel with respect to each other. Applications for both monocular 

[Coughlan & Yuille 1999] and stereovision [Furukawa et al. 2009] motion estimation methods 

were designed based on this principle. 

 

4.1.2.2 Fusion for mobile robotics 

 

In mobile robotics, the problematic is not the same as augmented reality when it comes to 

performing inertial visual fusion. In a general manner, an inertial navigation is used as the basis 

of the approach, while visual measurements prevent the drifts to influence the estimation. 

Systems such as the one presented in [Roumeliotis et al. 2002] display this type of fusion, here 

adapted to spacecraft navigation. [Diel et al. 2005] introduces epipolar constraints as a valuable 

addition to inertial navigation based on KFs. [Lobo & Dias 2003] use a combination of the 

vertical reference measured by inertial sensors and vanishing point computed in the frame to 

retrieve the focal length of the camera and reconstructing the scene. More recent works apply 

other constraints coming from the vision sensors, such as ground planes [Panahandeh et al. 

2012]. 

 

Adaptation to the classical EKF technique has been highly popular in the navigation 

applications. In a similar manner as [You & Neumann 2001] for the augmented reality 

strategies, [Strelow & Singh 2003] apply an Iterated Extended Kalman Filter (IEKF), where 

every measurement is treated in the filter at the time of its recording. 

 

[Mourikis & Roumeliotis 2007] introduce a Multi-State Constraint Kalman filter (MSCKF) 

with a motion model constrained with every observed point separately. Rather than augmenting 

the state with every point, the state includes a certain amount of previous poses. It should be 

noted that this procedure is quite demanding in computational resources, which limits it to 

offline processing. This technique is improved in [Li & Mourikis 2013], leading to a 

performance improvement that is reported to be better than the conventional EKF-SLAM 

technique, without storing the mapped points. Another adaptation of the technique is 

introduced in [Li et al. 2013], with a modified computation of the covariance matrices as well 

as the consideration of rolling shutter distortions. 

 

The EKF and its variants are not the only options when it comes to inertial visual navigation. 

[Yap et al. 2011] present a particle filter applied to navigation. [Durrie et al. 2009] also makes 

use of particle filtering to perform localization of unmanned vehicles. Other navigation 

techniques apply more biologically inspired strategies, such as the RatSLAM [Milford et al. 
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2004] that incorporates a pose cells based estimation to cope with ambiguous landmarks 

measurements.  

 

 

4.2 Hands-on experimentation and discussion 
 

To further study the advantages and drawbacks of 3D motion estimation techniques, we 

implemented several procedures in order to perform tests. This has led to a better understanding 

of the advantages, drawbacks, requirements, and parameterization of these techniques. Once 

these experiments conducted, we discuss on the design of a novel localization technique. 

 

4.2.1 Initialization method 
 

As stated previously, the SLAM algorithm requires a 3D “base” map to start working. To 

perform this initialization, a few methods are possible: 

a) To have a 3D model of the scene that we try to map on the observed frames. 

b) To recognize a planar object in the scene (chessboard for instance), which can be used 

as a starting point to compute motion and map other objects, using planar homography 

decomposition techniques [Faugeras & Lustman 1988]. 

c) To compute a map based on 2D to 2D correspondences odometry, such as a 

fundamental (or essential) matrix computation strategy [Hartley 1997] [Nistér 2004]. 

 

The method a) is the easiest to use, as we can start the SLAM procedure right away, but needs 

strong knowledge on the scene, and therefore is not applicable in a general context. The 

technique b) is more general, but still poses a heavy requirement on the scene: the presence on 

the scene of a known object. The procedure c) is the most complex, but also the most general, 

as no requirement on the scene is needed. Thus, we decided to apply method c). in the context 

of embedded platforms, where the aim is to perform video applications on many different 

scenes. The initialization procedure simply consists in performing a translational motion of 

approximately 15 centimeters. The motion should be translational because only this type of 

motion allows to retrieve some information on the depth of the objects in the scene. 

 

As presented in 4.1.1.2 , 2D correspondences can be used to estimate the fundamental (or 

essential if the points are un-calibrated) matrix. Two main strategies exist: using every 

correspondence in a Direct Linear Transform (DLT) system, or perform the estimation in a 

RANSAC procedure 3.2.1 . As one focus of the thesis is to use inexpensive motion estimation, 

which may generate many outliers, we chose to implement a RANSAC algorithm procedure 

for our system. The inputs are motion vectors generated by FAST/BRIEF (or IBRIEF) 

matching. 

 

Two main techniques exist to compute the relationship between the two views: compute the 

fundamental matrix based on a 8-points (or 7-points) procedure, or un-calibrate the points to 

then use a 5-points algorithm. As the usage of a 5-point algorithm requires accurate calibration, 
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we chose to rather use a 7-point algorithm, as we want the technique to be applicable on many 

platforms without heavy requirements in terms of calibration. 

 

The 7-point algorithm is very similar to the 8-point algorithm, but requires one less motion 

vector to produce a solution, which decreases the necessary amount of iterations to be 

performed in the RANSAC algorithm. Another advantage of the 7-point algorithm is that it 

only generates from one to three solutions for the fundamental matrix, opposed to up to ten 

solutions for a 5-point algorithm. Further details on this subject can be found in [Hartley 1997], 

[Hartley & Zisserman 2003], and [Nistér 2004]. 

 

It was tested on sixteen scenes to assess the performance of this approach, and have a better 

understanding of its limitations. Figure 4-3 illustrates a scene with two views of the triangulated 

point cloud using the transformation computed by the 7-point RANSAC algorithm. 
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Figure 4-3: An example of a scene (top) and its triangulated 3D point map (middle and bottom, with 

different viewpoints) using a 7-point algorithm in a RANSAC procedure. 

The main characteristics we were able to underline are that: 

- If no particular assumption on the scene has to be made, assumptions on the motion 

performed are important. A pure rotation does not give any information on the structure 

of the scene. Therefore a sufficient translation needs to be performed for the technique 

to perform efficiently. 

- The technique is quite sensitive to the outlier percentage. If we have a limited amount 

of iterations (or models for the preemptive procedure), the technique does not perform 

satisfyingly on difficult scenes. 

-  No particular assumption on the scene is needed. Visually speaking, the algorithm 

performed well on diverse scenes, from desks to corridors, several depths to flat scenes 

(walls).  

 

To conclude, the 7-point RANSAC algorithm is a solid base to generate a 3D map at the 

beginning of the sequence without previous information on the scene, which is then used to 

perform SLAM techniques. 

  

4.2.2 Localization techniques based on 2D-to-3D matching 

 

 Having the 3D map initialized by a procedure as shown in 4.2.1 , monocular SLAM can be 

performed. As demonstrated in [Strasdat et al. 2010], the BA mapping techniques shows 

superior results, especially if the platform presents parallel computing capabilities that allows 

keyframe-based BA. A point that remains relatively open is the localization technique that 

should be employed. To further consider the characteristics of state of the art methods, it was 

decided to implement two typical ones and test them on relevant sequences.  A succinct 

description of those two techniques will be given, along with the remarks made after the testing. 
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One procedure applies filtering to compute the pose (here an UKF), while the other one makes 

use of optimization.  

 

- Unscented Kalman based Localization 

 

The first method implemented is the UKF-SLAM. While the EKF-SLAM has been more 

popular in the literature, the UKF is more flexible in the sense that it does need the explicit 

representation of the Jacobian for each change in the motion model. The procedure used is the 

same as described in [Holmes et al. 2009]. The UKF technique is implemented in a square root 

version, by directly propagating a Cholesky decomposition of the covariance rather than the 

covariance itself. More details on the Unscented Kalman Filter are given in Appendix A.3 . 

 

As the results of the UKF-SLAM and EKF-SLAM are similar in terms of accuracy [Crassidis 

& Markley 2003], this technique shall be considered as a generic filtering-based SLAM 

technique. 

 

- RANSAC with PnP 

 

The strategy used here is to perform a PnP algorithm (see section 4.1.1.2 ) in a RANSAC 

procedure. The PnP method selected was the EPnP one [Lepetit et al. 2008]. The goal here was 

to test the potential of optimization based approaches. Rather than using an M-estimator for 

this test, it was decided to rather apply a RANSAC procedure. In effect, as the BRIEF 

descriptors matching produces the motion vectors, many outliers may emerge. Thus, an 

iterative estimator may converge on a wrong model, while a “memory-less” one is much more 

robust to this type of high outlier presence.  

 

Note that the implemented RANSAC is a preemptive one (see 3.2.3 ). This induces that we use 

a limited number of motion models. We decided here to utilize five hundred models, which 

seemed like a realistic value with regard to our experiments on the Hybrid RANSAC.  

 

- Results on tested sequences 

 

We tested the approaches on a few sequences, which helped figuring exactly the advantages 

and drawbacks in our context. We started the sequence by an initialization via the 7-point 

RANSAC that was the same for both methods of localization. Figure 4-4 displays a 3D map 

computed with the 7-point algorithm on the video frame.  
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Figure 4-4: A 3D map computed with the 7-point RANSAC algorithm. The smaller the circle is displayed, 

the closest is the point.  

The evaluation of both methods was then performed by looking frame-by-frame that the 3D 

model was well superimposed on the scene, as the aim of this process is only to have a 

qualitative estimation of the performance of the two techniques rather than an accurate 

quantitative comparison.  

 

In terms of performance with regard to simple scenes with few outliers, both methods 

responded satisfyingly. The 3D model was well projected for the two techniques, even if, for 

the UKF-SLAM, the dynamic models can create some latency in the reaction when a fast 

change of direction occurs, as demonstrated on Figure 4-5. The top frame shows a regular 

frame with the model well-mapped on it. The bottom frame occurs right after a change in 

direction from a left translation to a right translation. This leads to a slight offset in the 

localization that can be seen: the points on the bottle are not well-aligned with it, especially 

points that are close to the camera (see the ones inside the red circle). 
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Figure 4-5: A change of direction occurs, leading to the UKF dynamic model prediction to offset a bit the 

localization. Top displays a frame in the sequence where the model is well tracked, bottom shows that 

right when the changes of direction happens, the model is not well mapped on the scene. 

 

The behavior of the two procedures in presence of a heavy amount of outliers is very different. 

Filtering is based on the physical model of the UKF-SLAM, which leads to the pose drifting 

away from the correct one in case of high amount of outliers. While not ideal, this behavior 

leads to a temporal consistency of the pose. For the EPnP RANSAC technique, if the amount 

of iterations was sufficient and the algorithm has found a correct model, the estimation is 

satisfying. Meanwhile, if the best model found is not created from inliers only (because not 

enough iterations were used), the procedure gives a poor result. 
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Figure 4-6: Two frames from the same video as Figure 4-4. Top shows the first frame, bottom row the 

second. Left frames show the UKF-SLAM results, right frames show the PnP RANSAC results.  

Figure 4-6 is an example of the behavior of the procedures. The map computed is the one 

presented in Figure 4-4. We remind that the correspondences are computed between the first 

frame (Figure 4-4) and the current frame. Two frames that are very close are extracted (one is 

on top row, the other on the bottom row). The aim of this test is to validate the reliability of the 

techniques with very similar inputs. 

 

On top row, a first frame where the UKF-SLAM (top left) estimates a pose that is quite far 

from the correct one. The PnP RANSAC (top right) is much more accurate, the pose estimated 

seems correct, as the map superimposed corresponds to the one computed at the beginning on 

Figure 4-4. This shows that on this frame, with the same motion vectors, the UKF-SLAM 

underperforms compared to PnP RANSAC. On the other hand, the bottom row shows a frame 

where the UKF-SLAM (bottom left) behaves similarly as previous frame. The PnP-RANSAC 

(bottom right) however, performs poorly and computes a pose that seems to be far from the 

correct one.  

 

The main conclusion that can be drawn for this is that the UKF-SLAM has a much more 

coherent behavior with respect to a scene with a respectable proportion of outliers. PnP 

RANSAC displays a much more binary behavior, either finding the correct pose even with 

outliers, or failing to retrieve it, depending on its ability to generate a good model in the 

RANSAC procedure. In this approach, very similar inputs can lead to very different results. 
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4.2.3 Discussion on the state of the art 
 

Having performed an overview and some tests on the state of the art methods for the SLAM, 

we are now able to draw some requirements and characteristics on the localization technique 

to be designed. As Bundle Adjustment has proven to be the overall best solution to mapping in 

this context, our interest was to focus on improving the localization part of SLAM. We 

highlight here the well-known flaws and issues of classical visual-inertial odometry algorithms, 

especially on handled devices. 

 

 First, the lack of texture in some images impacts heavily the visual measurements, making 

classical filtering or optimization unstable. It appears that a direct integration of visual motion 

vectors in a filter without discarding outliers can severely degrade the ego-motion estimation, 

even if inertial readings are also fed to the filter. Optimization techniques can deal better with 

outliers, but can also severely diverge in case of a very large proportion of incorrect motion 

vectors.  

 

Quick wrist motions create large rotations, leading to blurry content and important changes of 

viewpoint. Current techniques rarely manage to keep satisfying ego-motion estimation under 

such conditions. Moreover, the embedded inertial sensors that can be found in smartphones 

and tablets can be very noisy. While inertial readings provide a more or less reliable 3D rotation 

estimation, computing position based on their measurements is a very inaccurate process, even 

with precise calibration: the only way to compute position is by a double integration of the 

accelerometer, which leads to heavy drift. 

 

A great advantage of filtering methods is the dynamical physical model that provides temporal 

consistency of the pose estimation. While some optimization methods also make use of a 

temporal propagation [Klein & Murray 2007], some kind of temporal constraints in the motion 

provides more robustness to very complex estimation cases. 

 

In a major part of state of the art techniques, the inertial visual fusion is only performed in one 

stage of the algorithm. For embedded platforms, inertial sensors are used: either to propagate 

the state of a filtering technique [Aksoy & Alatan 2014], to provide a first estimation of the 

rotation [Klein & Drummond 2003] are integrated as some complementary measurements to 

visual sensors [Li & Mourikis 2012], or to give orientation information on the feature points in 

the scene [Kurz & Benhimane 2011]. We feel that the fusion could take place in multiple stage 

of the localization technique, in order to extract the highest possible amount of information 

from their measurements. 

 

Lastly, inertial sensors and cameras can provide more information than their sole measurements 

in the context of this thesis. For instance, inertial sensors can be used to determine if the wearer 

is walking or not [Feliz et al. 2009], or vision used to recognize the type of the scene that is 

observed [Filliat 2007]. Therefore we could also integrate this type of semantic information in 

the localization process. 



Chapter 4: Hybrid Localization 

 

97 
 

 

4.3 Multiple Level Fusion Odometry 
 

We present a novel approach to the localization part, or odometry, in the hybrid visual-inertial 

SLAM. The combination of inertial measurements together with computer vision techniques 

is performed in a Multiple Level Fusion Odometry (MLFO). To combine the best 

characteristics of filtering and optimization approaches, the two are integrated in our approach. 

Figure 4-7 displays the global algorithm scheme. 

 

 
Figure 4-7: The global localization algorithm steps. 

 

As seen previously for the Hybrid RANSAC experiments, MEMS inertial sensors offer an 

accurate and robust estimation of the orientation of the device. However, for position, the 

measurement are much less reliable, as only the accelerometer gives an information on it, and 

the double integration needed leads to noise and drift. To better take into account these 

characteristics, we split the ego-motion estimation in two, and perform several types of fusion 

for each step, including feature measurements. 

 

Firstly, visual features are described with IBRIEF (see 2.3 ) descriptors, leading to less errors 

under rotations in the feature matching process. A separation of the 3D rotation estimation of 

the camera and the calculus of its position in the 3D space is made, in order to provide the most 

optimal use of the combined strength of vision and inertial sensing.  

 

Secondly, the 3D camera rotation is computed with a hybrid RANSAC-based algorithm (3.3 ). 

This method allows us to cope with high rotations and complex scenes, such as texture-less 

sequences. It also removes the outliers, which is important to perform efficient localization. 

 

Finally, with 3D rotation known, a visual measurement-based particle filtering is performed to 

compute the camera position. Embedded inertial sensors are very noisy, therefore it is very 

challenging to have a valid position estimation from their measurements. Rather than using 
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directly the inertial measurement, we guide the particle spreading with a pedestrian step 

detection technique derived from accelerometers data. 

 

4.3.1 Estimating Rotation with Hybrid RANSAC 

 

Adapting the hybrid RANSAC directly to localization would require computing a motion 

model that includes rotation and position from inertial measurements. But as position is 

computed from a double integration of the accelerometer, which is noisy, the position deduced 

from this method cannot be utilized reliably. Thus we decided to use this method to compute 

ego-rotation only. 

 

4.3.1.1 Adapting the algorithm to estimate 3D rotation 

 

The inertial data are modeled as Euler angles 𝐼𝑛𝑒𝑟𝑡(𝑡) =  𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 as the relative yaw, pitch 

and roll differences that occurred between frame 𝑡 − 1 and frame 𝑡. The visual measurement 

are the 3D / 2D correspondences between the 3D map modeled in the SLAM and the current 

2D frame with its extracted features. The motion models ℎ(𝑗) could be taken as rotation 

matrices, but it would lead to a high complexity both in model generation and in error 

computation 𝜖(ℎ(𝑗), 𝑣(𝑖)), since we would need to project exactly every point and then 

compute its reprojection error.  

 

To avoid these costs, we decided to model the rotation representations as Euler angles ℎ(𝑗) =

(𝜔𝑥  , 𝜔𝑦 , 𝜔𝑧). This will lead to approximations that are acceptable when dealing with small 

angles. Measurements are first taken as couples (𝑋𝑘, 𝑝𝑖), with 𝑋𝑘 = (𝑥𝑘, 𝑦𝑘 , 𝑧𝑘, 𝑤𝑘)𝑇 a 3D 

point in homogenous coordinates, and 𝑝𝑖 = (𝑢𝑖, 𝑣𝑖, 𝑤𝑖) a 2D point of the current frame. Those 

measurements are converted to motion vectors, to make the motion model generation less 

expensive.  

 

𝐾 is the 3x3 intrinsic parameters matrix of the camera. 𝑃 is the estimated 3x4 projection matrix 

from the previous frame. For each measurement, the 3D point is projected into the previously 

estimated camera pose according to: 

 

 

 𝑝𝑘
𝑝𝑟𝑜𝑗

= 𝐾 ∗ 𝑃 ∗ 𝑋𝑘  (43)  

 

Measurements 𝑣(𝑖) are now couples (𝑝𝑘
𝑝𝑟𝑜𝑗

, 𝑝𝑖). We note 𝑑𝑢𝑖 the horizontal component of the 

motion vector: 

 

 
𝑑𝑢𝑖 =  

𝑢𝑘
𝑝𝑟𝑜𝑗

𝑤𝑘
𝑝𝑟𝑜𝑗 −

𝑢𝑖

𝑤𝑖
 (44)  
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With similar computations, 𝑑𝑣𝑖 is calculated as the vertical component of the motion vector. 

We now need to generate the motion models ℎ(𝑗), with a minimal number of visual 

measurements 𝑣(𝑖). While an exact computation of the rotation would require fairly complex 

methods, an approximation of it can be performed rapidly with two measurements 𝑣(𝑖) and 

𝑣(𝑖′), as one is not enough to compute the three rotations. The average motion is interpreted 

as the rotation in both directions. We compute yaw (with a similar technique for pitch 𝜔𝑦) as: 

 

 𝜔𝑥 = (𝑑𝑢𝑖 + 𝑑𝑢𝑖′)/2𝜌𝑥 (45)  

 

Where 𝜌𝑥 , 𝜌𝑦 are the respective scaling factors to convert yaw into horizontal translation and 

pitch into vertical translation in the 2D frame. Computation details can be found in [You, U. 

Neumann, et al. 1999], and are solely based on focal length of the camera and resolution of the 

image. Roll is calculated with a difference of angles in polar coordinates: 

 

 𝜔𝑧 = 𝑎𝑡𝑎𝑛2(𝑑𝑣𝑖′, 𝑑𝑢𝑖′) −  𝑎𝑡𝑎𝑛2(𝑑𝑣𝑖, 𝑑𝑢𝑖) (46)  

 

In a preemptive RANSAC procedure, considering an inlier rate 𝜏𝑖𝑛𝑙𝑖𝑒𝑟, the probability to 

generate a model withtout outlier is (𝜏𝑖𝑛𝑙𝑖𝑒𝑟)𝑚, 𝑚 being the number of measurement used to 

create a model. In our approach, 𝑚 = 2, inducing a high probability to generate an outlier-free 

model. This is highly beneficial compared to other rotational models that need a much higher 

𝑚. 𝛿(ℎ(𝑗), 𝐼𝑛𝑒𝑟𝑡(𝑡)) is simply the L2-norm between the two Euler angle representations. The 

error function 𝜖(ℎ(𝑗), 𝑣(𝑖)) is chosen as the reprojection error.  

 

4.3.1.2 Adaptive threshold to point distance 

 

A novel variable constraint with respect to the depth of the 3D point observed 𝐷𝑒𝑝(𝑋𝑝) is 

added in the algorithm. Indeed, the closer a point, the more sensitive it is to translation motions 

that are here considered as noise, as we only want to estimate rotation. Therefore we have a 

variable threshold 𝑇𝑖, for each measurement 𝑣(𝑖): 

 

 
𝑇𝑖 = 𝑇 +

𝑉̂𝑡−1 ∗ 𝐷𝑒𝑝(𝑋𝑝)

𝑓
 (47)  

 

Where 𝑉̂𝑡−1 is the predicted velocity by the particle filter (to be described in section 4.3.2 ), 

and 𝑓 is the focal length of the camera. For the best model ℎ(𝑗𝑏𝑒𝑠𝑡) =  (𝜔𝑥
𝑏𝑒𝑠𝑡  , 𝜔𝑦

𝑏𝑒𝑠𝑡  , 𝜔𝑧
𝑏𝑒𝑠𝑡), 

any point 𝑣(𝑖) with 𝜖(ℎ(𝑗𝑏𝑒𝑠𝑡), 𝑣(𝑖)) >  𝑇𝑖 is considered as an outlier. This allows the approach 

to better estimate the rotation without undergoing the perturbations due to translational 

motions, without adding too many computations. 

 

4.3.2 Particle Swarm strategy to compute position 
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As stated previously, inertial sensors offer a good complementary estimation to vision when it 

comes to rotational motion. For camera position estimation however, they do not provide 

reliable information. On the other hand, visual based motion estimation also has difficulties 

regarding repetitive or low textured contents, typically found for example in large rooms. 

Therefore there is a need for a flexible position estimation, which could cope with very low 

quality measurements without drifting too much, and re-converge when meaningful 

information is provided back. Those considerations drove us to apply a particle swarm filter 

for the 3D position and velocity of the camera. 

 

4.3.2.1 Particle filtering technique  

 

Particle filtering is widely used in many domains of computer vision, from tracking to 

odometry. Also known as sequential Monte-Carlo estimation, it is a density estimator that 

utilizes a sampling strategy to represent the posterior density of the state probability [Lui & 

Chen 1998]. The approach proposed here is based on the particle swarm technique. Based on 

the 3D/2D visual measurements 𝑣(𝑖), now supposedly outlier free with the hybrid RANSAC 

procedure, an estimation of the camera position and velocity is performed. The estimated 3D 

position at frame 𝑡 is noted 𝐷̂𝑡, the estimated velocity is noted 𝑉̂𝑡. Each particle (which is a 

virtual camera) 𝜉𝑙
𝑡 has its own position 𝑑𝑙

𝑡 and velocity 𝑣𝑙
𝑡 . The algorithm consists in two steps. 

First, we perform propagation: 

 

 𝑑𝑙
𝑡 = 𝑑𝑙

𝑡−1 + 𝑣𝑙
𝑡−1 (48)  

 

The probability of each particle with respect to the measurements 𝜋(𝜉𝑙|𝑣(1, … , 𝑁)) is then 

computed. In order to estimate these probabilities, we use the rotation calculated previously, 

ℎ(𝑗𝑏𝑒𝑠𝑡). We convert the Euler angles to an axis 𝑘𝑏𝑒𝑠𝑡 and angle 𝜃𝑏𝑒𝑠𝑡  representation. Then the 

Rodrigues formula is used in order to obtain the corresponding rotation matrix: 

 

 𝑅𝑏𝑒𝑠𝑡 = 𝐼 + 𝐾𝑏𝑒𝑠𝑡𝑠𝑖𝑛𝜃𝑏𝑒𝑠𝑡 + 𝐾𝑏𝑒𝑠𝑡²(1 − 𝑐𝑜𝑠𝜃𝑏𝑒𝑠𝑡) (49)  

 

with 𝐾𝑏𝑒𝑠𝑡 being the cross-product matrix of the vector 𝑘𝑏𝑒𝑠𝑡. A projection matrix 𝑃𝑙 is therefore 

generated for every particle: 𝑃𝑙 = [𝑅𝑏𝑒𝑠𝑡|𝑑𝑙]. Inlier measurements points are projected into the 

frame as shown in (43) for every particle, with projection matrices 𝑃𝑙. The reprojection error 

of measurement 𝑣(𝑖) for particle 𝜉𝑙
𝑡 is noted 𝜀𝑖

𝑙. 𝜋(𝜉𝑙
𝑡|𝑣(1, … , 𝑁)) is computed as: 

 

 𝜋(𝜉𝑙
𝑡|𝑣(1, … , 𝑁)) = 1/ ∑ 𝜀𝑖

𝑙

𝑖

 (50)  

 

The estimated position and velocity are calculated as the probabilistic-weighted average of the 

particles. 

 

 
𝐷̂𝑡 = ∑

𝜋(𝜉𝑙
𝑡|𝑣(1, … , 𝑁))

𝜋𝑡𝑜𝑡
𝑙

𝑑𝑙
𝑡 (51)  
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with 𝜋𝑡𝑜𝑡 = ∑ 𝜋(𝜉𝑙
𝑡|𝑣(1, … , 𝑁))𝑙 . The particle with highest probability, 𝜉𝑏𝑒𝑠𝑡

𝑡 , is now used to 

compute the velocity of each particle. A novel manner to adapt dynamically the filter to the 

quality of tracking is utilized in the velocity calculus: 

 

 𝑣𝑙
𝑡 = 𝑣𝑙

𝑡−1 + 𝜅(𝑑𝑏𝑒𝑠𝑡
𝑡 − 𝑑𝑙

𝑡) + (1 − 𝜅)𝑟(𝑙) (52)  

 

 

𝑟(𝑙) is a random 3D vector, which is generated according to a Gaussian distribution 𝒩(𝜇𝑟 , 𝜎𝑟). 

The choices of (𝜇𝑟 , 𝜎𝑟) will be explicated bellow. 𝜅 is a factor that dictates how heavily we 

want to emphasize the convergence to the best particle found in the current step.  

 

4.3.2.2 Specific parameterization of the filter 

 

To make the filter reactive to the tracking quality, 𝜅 is set according to a relationship between 

the inlier rate found in the Hybrid RANSAC 𝜏𝑖𝑛𝑙𝑖𝑒𝑟 , the absolute reprojection error of the best 

particle 𝜀𝑏𝑒𝑠𝑡, and a typical reprojection error we want to achieve 𝜀𝑡𝑦𝑝: 

 

 
𝜅 = 𝜏𝑖𝑛𝑙𝑖𝑒𝑟𝑒

−(
𝜀𝑏𝑒𝑠𝑡

𝜀𝑡𝑦𝑝 )²
 (53)  

 

Thanks to this specific parameterization, our particle filter reacts to the quality of the 

estimation, heavily diffusing the particles in case of very poor tracking, while providing a high 

convergence to the best particle in case of high quality tracking estimated. 

 

A requirement stated while building this approach was to have an elegant manner to add 

complementary semantic information available. We wanted this to remain a simple process, to 

avoid overly complex parameterization. We choose to offer a simple configurability of the 

filter. The two parameters that can be tuned are (𝜇𝑟 , 𝜎𝑟), the characteristics of the Gaussian 

distribution for particle velocity calculation. 

 

𝜇𝑟 represents a typical velocity expected for the current frame. For instance, with the 

accelerometer, one can quite easily determine if the person holding the device is walking or 

not [Brajdic & Harle 2012]. Therefore, if the person is detected as walking, 𝜇𝑟  is calculated 

as: 

 

 

𝜇𝑟 =  𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ (
0
0

𝑆𝑡/𝑓𝑝𝑠
) (54)  

 

with 𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 being the current estimated rotation matrix, 𝑆𝑡 the typical velocity of step and 

𝑓𝑝𝑠 the frame rate of the camera. This parameterization will orientate the particle spreading 

forward, and help the algorithm to cope with walking motion, without explicitly including a 
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motion model in the approach. For the moment, 𝜎𝑟 is left constant, but this parameter will be 

tuned in future versions of the approach. 

 

4.4 Results & conclusion 
 

A comparison of the MLFO approach with other methods is presented here. To perform this, 

we used an Optitrack© based setup, which is composed by infrared markers and cameras to 

record an accurate pose estimation of the platform. This allows us to measure a ground truth 

(or at least highly accurate) error for every method. Thus, we are able to perform a quantitative 

and qualitative comparison of every tested strategy. We oppose our MLFO technique to state 

of the art methods, as well as dimensioning its computational time. Finally, conclusions are 

drawn.  

 

4.4.1 Setup 

 

Evaluating with accuracy odometry algorithms is a complex task, as it requires knowing the 

exact true motion of the platform. Therefore we decided to use the infrared tracking technology, 

which is widely used for motion capture in a lot of applications (movies, video games, virtual 

reality). A platform was built, containing the smartphone with infrared markers attached to it. 

Eight infrared cameras record their motion, while the smartphone records the video and inertial 

readings. The recording accuracy of a marker by infrared cameras is very high (~1mm 

accuracy), and is performed a high rate (250 fps). Thus it is considered as ground-truth in our 

experiments, because its accuracy is highly superior to the one that a monocular-inertial SLAM 

can provide.  Figure 4-8 displays the setup used.  
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Figure 4-8: The setup used to record ground truth data. On top left the smartphone with infrared 

markers. Top right shows the infrared camera. Bottom shows the complete setup, with cameras and 

markers. 

The main goal of this setup is to allow an accurate recording of the smartphone’s motion while 

not disturbing the camera and inertial measurements. Every marker’s position is triangulated 

using the cameras, and as we manually indicate that the markers all belong to a rigid body, the 

software records the pose of the platform. This is why we built a Lego© based shell where the 

smartphone is contained, and that infrared markers are fixed on that shell.  The main issue is 

that at least four markers need to be in sight of at least three cameras at every moment. This 

limits the spatial coverage of the setup.  

 

As the pose of the platform is recorded by two separate devices, a temporal calibration step had 

to be performed to align the two estimations. A weighted least square method was applied to 

calibrate temporally the two devices. The two estimations are used as inputs, and we look for 

the temporal shift and drift between the measurements. The M-estimator (3.1.1.2 ) using a bi-

weight function typically converges in ten to twenty iterations for every sequence tested. A 

very similar method is used in [Karpenko et al. 2011] to calibrate the visual and inertial 

measurements with a gradient descent technique.  

 

4.4.2 Tested methods 
 

To fairly compare several methods of localization, the same input data need to be provided to 

each technique. In every sequence, a 3D map is initialized with a 7-point RANSAC algorithm. 

The only requirement is that the user performs a translation motion at the beginning of the 

sequence (otherwise, the 7-point algorithm offers poor results). For visual inputs, FAST/BRIEF 

is utilized for every algorithm except ours, where FAST/IBRIEF is used. 

 

With the 3D map initialized, each technique performs its own odometry. The map is refined 

with an offline bundle adjustment, occurring about every 50 frames. It provides refined 3D 

map and poses, based on previous observations. As the comparison is made solely on the on-
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the-fly odometry quality of the tested approaches, refined poses are not utilized to compare the 

methods. However, rectified 3D points are used. 

 

Main inertial-visual odometry algorithms can be separated in two categories: determinists 

optimization-based and probabilistic filtering-based. A comparison is presented here between 

five inertial-visual approaches: three state of the art ones, and two MLFO-based techniques. 

 

- Optimization based method 

 

For the optimization-based category, an implementation of the Iterative Weighted Least-

Square was applied, with a similar parameterization as the one presented in [Klein & Murray 

2007]. A classical model of projection 𝐶𝑎𝑚𝑃𝑟𝑜𝑗 is applied to compute the error in the M-

estimator, which corresponds to the 3D point projection on a 2D plane: 𝐼𝑥 = 𝐾𝑃𝑋 (see section 

1.4.1 for further details). In our test model we do not incorporate the radial distortion correction.  

 

The motion model used is based on the exponential map on 𝑆𝐸(3) that is 3D rotation and 

position representation (see appendix B.2 for more details on exponential map). To integrate 

inertial measurements, the pose utilized for the first iteration of the algorithm is a propagation 

of the previously estimated pose by the inertial sensors. 

 

- Filtering techniques 

 

Filtering-based algorithms are much more varied, therefore two of them were implemented as 

test references. The first one is an Unscented Kalman Filter (UKF), implemented and 

parameterized as in [Holmes et al. 2009] using the Square Root UKF. The second one is based 

on the particle filter, as in the position estimation procedure demonstrated in 4.3.2 , but this 

time applied for the whole 6D pose. We use a state vector that is composed of the 3D pose as 

a six items vector: three for rotation, three for position. It is exactly the same model as in 

optimization-based techniques. 

 

Both state of the art techniques are only based on visual measurements. To integrate inertial 

measurements, we apply their recordings as the propagation step, as in [Aksoy & Alatan 2014]. 

The inertial sensors are not only used to propagate the state, but the covariance of the UKF (or 

the particles spreading) as well. This justifies the fact that we do not include the speed of 

rotation or translational speed in the motion model, as the propagation is performed with 

inertial sensors measurements. While an iterated method that is updated with each 

measurement is also widely used [Li & Mourikis 2013], we preferred to perform the fusion of 

both sensors at the same time, in order to have a more similar operation than the other methods.  

 

- Techniques developed in this thesis 

 

Our Multiple Level Fusion Odometry (section 4.3 ) algorithm is compared to the other 

algorithms. A first version with the classical BRIEF (MLFO w. BRIEF) and the second with 

IBRIEF (MLFO) are shown. 
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4.4.3 Sequences and results 

 

To evaluate the quality of 3D odometry, orientation and position are separately compared, 

using the position 𝑒𝑟𝑟𝑝𝑜𝑠 absolute error (in centimeters) and rotation absolute error 𝑒𝑟𝑟𝑟𝑜𝑡 (in 

degrees) as first metrics. 

 

About 14 sequences were recorded using this setup, in three different places. A variety of 

motion types has been performed in every place, to test the highest number of possible 

conditions. Figure 4-9 shows some frames extracted from sequences, to illustrate the recorded 

footage. 

 

 
Figure 4-9: Frames extracted from some sequences. 
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Figure 4-10: The x-z trajectories. The top one was recorded by the setup, bottom left corresponds to te 

UKF-SLAM estimation, while bottom right is the MLFO with IBRIEF estimation. 

 

 

- First sequence 

 

Two sequences that we believe are representative of the overall performance will be detailed 

in terms of results and errors, then a quick summary on the rest of the sequences will be shown. 

The first sequence is a “simple” forward-backward trajectory. The trajectory recorded by our 

infrared based setup, as well as some result curves are shown on Figure 4-10.  

 

The scene can be seen on the left frame of Figure 4-9. As the camera orientation was kept more 

or less constant during the sequence, each method was more or less equivalent to the others in 

terms of orientation error. For position, Figure 4-11 displays the error of every method. 
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Figure 4-11: Error position of every tested method in the first sequence where the motion is a backward 

forward motion. 

One can see on Figure 4-11 that the optimization and both MLFO techniques perform very 

similarly. UKF-SLAM is much more prone to errors, particle filtering being slightly below, 

even if for the end of the sequence the UKF-SLAM effectively reduces the error, as the 

sequence comes back to already seen objects. Particle filtering seems a bit slower to reduce the 

error regarding that. Another interesting feature is that filtering methods tend to display a better 

stability of error, whereas the optimization based technique seems less stable. For our approach, 

the error is generally on par with the optimization technique, even if the median error is slightly 

above (16 for MLFO vs. 15 for optimization, see Figure 4-13). For this sequence that one could 

qualify as “simple”, no method was completely lost. While it is not completely demonstrable, 

we firmly believe that the difference between the filtering techniques and the others is the lack 

of direct outlier rejection for filtering based methods.  

 

- Second sequence 

 

For the second sequence we want to detail, a more complex motion was performed. In 

particular, some quick rotations occur in the sequence, while keeping the scene in the field of 

view. This underlines the resilience of the approaches to these types of motions that are quite 

frequent for handheld devices. Figure 4-12 shows the orientation error for the sequence. A 

similar trend for filtering techniques is seen as in the first sequence. Indeed, their lack of outlier 

rejection seems to induce a lesser robustness to tough contents. In this case, the importance of 

IBRIEF keypoints can also be seen, as the MLFO technique displays better performance than 

MLFO with BRIEF descriptors. The optimization method seems to perform similarly to MLFO 

except for very complex contents, where the hybrid RANSAC seems to better handle these 

cases.  
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Figure 4-12: Orientation error on the second sequence for the tested methods. 
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Figure 4-13: Table of the median error of position and orientation for every sequence and every method. 

M
et

ho
d

Er
ro

r t
yp

e
Ro

ta
tio

n 
(°

)
Po

si
tio

n 
(c

m
)

Ro
ta

tio
n 

(°
)

Po
si

tio
n 

(c
m

)
Ro

ta
tio

n 
(°

)
Po

si
tio

n 
(c

m
)

Ro
ta

tio
n 

(°
)

Po
si

tio
n 

(c
m

)
Ro

ta
tio

n 
(°

)
Po

si
tio

n 
(c

m
)

Se
q 

1
2,

3
15

3
32

2,
8

27
2,

5
18

2,
3

16

Se
q 

2
6,

1
52

6,
1

68
5,

6
86

5,
1

42
3,

1
31

Se
q 

3
3,

2
23

6,
2

32
4,

2
33

3,
1

25
1,

9
19

Se
q 

4
5,

4
43

4,
5

51
4,

3
52

4,
6

42
2,

9
35

Se
q 

5
4,

2
37

6,
3

45
6,

3
41

3,
5

34
3,

2
31

Se
q 

6
2,

8
26

3,
7

35
4,

1
36

2,
7

25
2,

4
26

Se
q 

7
7,

5
59

9,
8

67
8,

5
63

4,
8

54
3,

4
42

Se
q 

8
6,

8
54

8,
1

58
7,

4
52

5,
6

49
4,

9
41

Se
q 

9
4,

8
42

6,
3

48
5,

6
44

3,
2

35
2,

7
34

Se
q 

10
3,

2
28

4,
6

34
3,

4
31

2,
7

23
2,

7
23

Se
q 

11
5,

3
37

8,
2

32
6,

2
26

4,
7

35
4,

5
34

Se
q 

12
4,

3
41

4,
5

48
5,

7
52

3,
4

42
3,

9
41

Se
q 

13
7,

7
96

7,
6

10
5

8,
2

89
4,

9
61

3,
8

51

Se
q 

14
6,

3
64

6,
4

69
5,

7
61

4,
8

51
3,

9
49

O
pt

im
iz

at
io

n
UK

F-
SL

AM
Pa

rt
ic

le
 

M
LF

O
M

LF
O

 w
.B

RI
EF



 4.4 Results & conclusion 

110 

 

For the other sequences, Figure 4-13 displays the results of every method median error for the 

position and rotation: the larger the bar, the higher the error. Arrows close to the number 

indicates the relative performance of every method for the sequence. The more red (and going 

down) is the arrow, the highest error for this sequence, the greener the arrow (and going up), 

the lowest the error. Each arrow type represents a 20% slice of the error. 

 

MLFO has often the lowest error of all methods, while UKF SLAM is often among the worst 

ones. Optimization-based technique performs well on most of the sequences. It can be seen that 

the addition of IBRIEF improves the result of our method, especially the ones with high 

rotations.  

 

4.4.4 Complexity of the methods 

 

Every method has different scaling regarding various parameters and the amount of points 

being tracked currently. In this section we state the complexity and computational time of every 

method tested. We remind that to keep every approach on the same level, BA is considered as 

the mapping technique for every one of them. Therefore only the localization stage is 

considered. We also wanted every method to display similar processing time, in order to place 

them on an equal footing. 

 

- UKF-SLAM 

 

Unscented Kalman filtering does not offer any parameters that will influence greatly the 

computational time. The dominant computational cost of a Kalman filter generally depends on 

the state vector size. In our experiments, this size is quite low as we only perform filtering on 

the motion model that is a six-element vector.   

 

The cost of propagation is limited, as the state vector size is low, and the propagation is 

performed with inertial sensors measurements. Unscented transform (an inverse transform) 

costs are linear with the size of the state vector. 

 

The dominant cost of the UKF is therefore in the correction step, where every sigma point is 

projected onto the measurements space. Each sigma point generates 𝑁 2D projection of the 3D 

points, where 𝑁 is the number of visible points. Then the major cost is the matrix inversion of 

the mutual information, which leads to a computational load of 𝑂(𝑁2.4) [Thrun 2002]. In 

effect, the inverse unscented transform cost is only of 𝑂(Η ∗ 𝑁), Η being the size of the state 

vector. 

 

- Particle filter 

 

The complexity of the particle filter depends mainly on two inputs: the amount of points 𝑁 and 

the number of particles 𝐿. The cost of propagation of the particles is linear with respect to 𝐿. 
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The main cost is located in the computation of the error of each particle, where the reprojection 

error is computed for every point in every particle; this stage’s complexity is 𝑂(𝑁 ∗ 𝐿). 

 

It should be noted that the amount of particles impacts heavily the performance of the filter: 

the more particles, the better the performance. It should also be noted that the dimension of the 

state in this particle filter (six) is much more important than the one presented in section 4.3.2  

(three). Therefore much more particles are needed.  

 

In our experiments, we found that the filter was working decently at a number of about two 

thousand particles for the full pose estimation. 

 

- Optimization based  

 

The computational cost in optimization based method depends on two values: the number of 

points 𝑁 and the number of iterations performed 𝐼𝑇. The main source of computation is the 

calculus of the error and Jacobian matrix for each point. The update itself in the Levenberg-

Marquart algorithm for an iteration is a matrix computation of type: 

 

 (𝐽𝐽𝑇 + 𝜆𝐼)𝜇𝑢 = 𝐽𝑇[𝜔(𝑟𝑖)𝑟𝑖] (55)  

 

where 𝐽 is the Jacobian matrix, 𝜆 the damping parameter, 𝜔(𝑟𝑖)𝑟𝑖 the weighted residuals of the 

correspondences, and 𝜇𝑢 the update to be added to the current state. This computation is also 

linear with respect to 𝑁. The procedure is stopped when the update is low enough. 

 

Therefore the global complexity of the approach is of the type 𝑂(𝑁 ∗ 𝐼𝑇). In practice, we limit 

the amount of iterations to fifteen to keep the processing low enough. 

 

- MLFO 

 

As the algorithm is a two-stage procedure, we study the complexity of each stage. For the 

rotation computation, the hybrid RANSAC complexity depends on two values: the amount of 

models 𝑀 and the block size 𝐵, further details in section 3.4.2 . The complexity is 𝑂(𝑀 ∗ 𝐵). 

In our experiments, we found that a correct performance was reached at 𝑀 = 100 and 𝐵 = 10. 

These values are not very high due to the fact that the motion model is the 3D rotation that is 

computed on a simplified model. 

 

For the particle filtering part, the complexity is also of 𝑂(𝐿 ∗ 𝑁), with a slight nuance. In effect, 

the particle filtering is only performed on the inliers that are not rejected by the hybrid 

RANSAC procedure. While the complexity of particle filtering is of the type 𝑂(𝐿 ∗ 𝑁), the real 

computational type is inferior as only inliers are considered. The total complexity of our 

approach is 𝑂(𝑀 ∗ 𝐵) + 𝑂(𝐿 ∗ 𝑁). In our tests, a value of 𝐿 = 400 and above allowed us to 

reach correct performance. 
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- Computational time 

 

To illustrate the computational load needed for the methods to compute the pose with the given 

parameters, Figure 4-14 shows the measurements of processing time for each method, with a 

map of seven hundred points. Performances of a direct implementation with no specific 

algorithmic optimization were measured on a 2.8GHz double core, 4GB RAM computer. One 

can see that they are on a nearly equal footing, as intended. Overall, each method but the UKF 

can scale on some parameter to adapt its computational time.  

 

 
Figure 4-14: Processing time needed for each method tested. 

 

4.4.5 Conclusions 
 

We presented a novel approach to visual-inertial odometry, which constitutes the localization 

step in SLAM. Our method makes use of visual inertial fusion at various levels of the algorithm. 

Visual features are made more robust to rotational variations with inertial readings. The 

presented odometry approach mixes optimization techniques and probabilistic filtering. A 

specifically adapted Hybrid RANSAC is applied to compute 3D rotation, while also deleting 

outliers. Finally, position is computed thanks to a particle filter method that is highly adaptable 

to the matching quality, while also allowing several types of inputs. Ground-truth sequences 

were recorded, showing that our approach outperforms state of the art hybrid methods, 

especially in presence of blur or texture-less sequences.  

 

 

 

 

 

 

Method Optimization UKF-SLAM Particle MLFO

Computational time (ms) 52 49 51 47
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Chapitre 5: Conclusion 
 

 

Below is a French summary of chapter 5: Conclusion & perspectives. 

 

La fusion de données capteurs inertiels et caméras est un problème complexe, offrant de 

multiples choix techniques. Cette thèse a présenté plusieurs méthodes afin d’accomplir cette 

tâche. 

 

Un état de l’art sur les techniques de calcul de vecteur de mouvements a été montré au lecteur. 

Cette étape est généralement la première dans les algorithmes d’estimation de mouvement. 

Nous avons concentré notre attention sur les méthodes les moins couteuses en temps de calcul, 

les détecteurs simples et les descripteurs binaires. Une amélioration géométrique des 

descripteurs via les mesures inertielles a été proposée, ajoutant l’invariance aux rotations 

planaires et améliorant la robustesse aux changements de point de vue. Nous avons montré que 

les améliorations sont significatives, et faites avec un surcout de calcul très faible. 

 

Une revue des techniques robustes d’estimation de mouvement 2D a été présentée. Les 

algorithmes visuels et inertiels ont été étudiés. Les procédures de type RANSAC sont 

particulièrement intéressantes pour leur résilience aux vecteurs de mouvement incorrects. Nous 

avons proposé un algorithme de RANSAC hybride, qui intègre la fusion au cœur de la 

procédure en utilisant un score hybride des modèles. Cette technique a été améliorée avec 

l’ajout d’un modèle inertiel et un lagrangien dynamique.  Des tests ont été conduits afin de 

démontrer l’efficacité de l’approche.  

 

Les méthodes de SLAM ont été étudiées, tant celles se reposant uniquement sur la vision que 

les approches hybrides visuelles-inertielles. Après avoir mené des expériences pratiques sur les 

méthodes existantes, nous obtenons une meilleure compréhension des avantages et 

inconvénients des approches à base de filtrage et d’optimisation. Une nouvelle approche de 

fusion à des multiples niveaux dans l’algorithme est introduite. Grâce à un système de caméras 

et de marqueurs infrarouges, nous obtenons une vérité terrain du mouvement de l’appareil, qui 

permet de démontrer que l’approche proposée est supérieure aux méthodes de l’état de l’art. 
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Chapter 5: Conclusion & 

perspectives 
 

 

5.1 Conclusions 
 

Fusion between inertial and visual sensors for motion estimation in embedded video 

application is a complex task to perform, with many possible choices of techniques. This thesis 

has presented some techniques to solve this problem. 

 

We have provided the reader with an overview on the visual feature estimation techniques, 

which are generally the first step of most motion estimation algorithms. We focused our work 

on the least expensive techniques existing in the literature, simple detectors and binary 

descriptors. A geometric robustness improvement, based on the inertial sensors reading, has 

been proposed, which not only provides in-plane rotation invariance, but also increased 

resilience to viewpoint changes. We have shown that the robustness improvement was 

significant, but also performed at very little additional cost, thanks to specific parameterization 

and approximations. 

 

A review on the robust techniques of 2D motion estimation was presented. Hybrid visual 

inertial systems have been studied, with a focus on RANSAC procedure, which displays a very 

high robustness to outliers. A hybrid RANSAC algorithm has been designed, in order to 

integrate the inertial measurement at the heart of the procedure, thanks to a hybrid scoring of 

the motion models. This technique was also improved with an inertial-based model especially 

relevant in case of very complex scenes, as well as a dynamic behavior of the procedure, to 

adapt itself to the complexity of the scene. Tests were conducted to demonstrate the efficiency 

of the approach. 

 

We investigated SLAM techniques, from pure visual ones to hybrid visual inertial ones. Hands-

on experiments led to a better understanding of the advantages and drawbacks from state of the 

art techniques, which either use filtering or optimization strategies. We proposed a novel 

technique performing fusion in many stages of the algorithm. A hybrid RANSAC is applied to 

estimate the orientation of the device, also removing outliers from the motion vectors set. Then, 

a particle filter is performed to compute the position of the platform, with dynamic 

parameterization as well as proposing the possibility of integrating semantic information in the 

filter. A setup using infrared markers and cameras has been designed and used in order to record 

very accurately the motion of the platform. These recordings were used as ground truth data to 

compare our approach with state of the art ones. Our method outperformed the state of the art 

ones, thanks to a deeply integrated fusion between inertial and visual measurements. 

 



Chapter 5: Conclusion & perspectives 

 

117 
 

5.2 Perspectives 
 

We believe that the interaction between visual and inertial measurement could be increased for 

keypoint techniques. Robustness to artifacts such a motion blur can probably be improved 

using inertial sensors. The description method could be dynamically modified with the inertial 

readings in order to cope with rolling shutter distortions. Some techniques such as expectation 

maximization ones could be used to cope with the keypoint changes of appearance, rather than 

just the viewpoint change, in order to offer a better reactivity to fast changing keypoints 

(internal motions for instance). 

 

2D motion estimation using the hybrid RANSAC could be extended to more complex motion 

models, such as some dealing with rolling shutter, perspective changes, etc… Specific 

adaptations in terms of motion models as well as scoring function should be designed in order 

to better handle these cases. A remaining issue in the hybrid RANSAC is that a total outlier in 

the inertial sensors reading (magnetic distortions for instance) heavily affects the procedure. A 

mechanism providing control on the inertial readings should be integrated to the algorithm, to 

increase robustness. 

 

Our Multiple Level of Fusion Odometry approach can be improved in many domains. More 

semantic types of data can be taken as input for the position estimation filter. A dynamic setting 

of the algorithm parameters (number of motion models for hybrid RANSAC, particle number) 

could be used to reach maximum efficiency. The initialization method does not necessitate any 

assumption on the scene, but some type of motion is required (mostly translation one). This 

could be improved, to provide a quicker and less constrained initialization phase. We know 

that relocalization in case of completely lost tracking can be performed with PnP techniques, 

but we believe that this specific stage of the SLAM could be studied, with faster re-initialization 

or a particular mode activation in case of very poor tracking. 
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Appendix A: Kalman Filtering 

Kalman filter, proposed by R.E. Kalman in 1960 [Kalman 1960], is an estimation method that 

makes use of state representation and state transition to propagate a linear system obtaining 

optimal estimation error, and can be seen as an extension of the Wiener filtering theory. 

A.1 Classical Kalman filter 

It is used to combine two estimates of a quantity optimally in order to find an estimate with 

minimal uncertainty. Kalman filter makes use of the state-space representation. This 

representation takes the output of the system as system states. Because of their similarities, it 

can be considered as a state-space version of Recursive Least Squares (RLS) filtering. 

Kalman filter propagates a stochastic state - the state is represented by a probability density 

function. This probability density function is parameterized as a Gaussian distribution and 

described by a mean vector and a covariance matrix. 

As discussed above, Kalman filter is used to combine two full or partial estimates of the state 

vector. Each iteration of a Kalman filter consists of two stages: state transition or prediction 

and measurement update or correction. 

In the state transition stage, a hypothesis for the next state is generated. Previous state vector 

and its covariance are the input of this stage with optional user control input vector. Kalman 

filter requires a linear prediction function: 

 𝜇𝑛 =  𝐴𝑛𝜇𝑛−1 + 𝐵𝑛𝑢𝑛 + 𝜀𝑛 (56)  

Where 𝜇𝑛−1 and 𝜇𝑛 represent the previous and current estimated state vectors, 𝑢𝑛 is the control 

input vector, and 𝜀𝑛 is a zero-mean Gaussian random vector modeling the uncertainty 

introduced by state transition with covariance Γ. 𝐴𝑛 and 𝐵𝑛 are matrices that maps the previous 

state and the control input to the next state, respectively. 

The measurement update stage combines the hypothesis generated in the state transition stage 

and combines it with an observation of the state, called measurement. It is also characterized 

by a linear function: 

 𝑦𝑛 =  𝐶𝑛𝜇𝑛 + 𝜂𝑛 (57)  

Where 𝑦𝑛 is the measurement vector, 𝜂𝑛 is a zero-mean Gaussian random vector modeling the 

uncertainty in the measurement. 𝐶𝑛 is a matrix that maps the state to the measurement vector. 

Since the defined functions are linear in their arguments and the arguments are Gaussian 

random vectors, the estimated new state is also a Gaussian. 

The prediction for the next state and its covariance is computed as: 

 𝜇̂𝑛 =  𝐴𝑛𝜇𝑛−1 + 𝐵𝑛𝑢𝑛 (58)  

 𝑀̂𝑛 =  𝐴𝑛𝑀𝑛−1𝐴𝑛
𝑇 + Γ𝑛 (59)  
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𝑀 represents the covariance of the state vector and the variables with represents that they are 

prediction of the regular ones. The power of Kalman filter lies in the Kalman gain. Kalman 

gain (𝜅𝑛) specifies how the prediction 𝜇̂𝑛 and the measurement 𝑦𝑛 are combined to get the 

next state vector 𝜇. It is computed as: 

 𝜅𝑛 =  𝑀̂𝑛𝐶𝑛
𝑇  (𝐶𝑛𝑀̂𝑛𝐶𝑛

𝑇 + Φ𝑛)−1 (60)  

Then the predicted state is updated with the measurements, weighted by the Kalman gain: 

 𝜇𝑛 =  𝜇̂𝑛 + 𝜅𝑛(𝑦𝑛 − 𝐶𝑛𝜇̂𝑛) (61)  

Finally, the covariance is computed for the current state: 

 𝑀𝑛 =  (𝐼 − 𝜅𝑛𝐶𝑛)𝑀̂𝑛 (62)  

 

A.2 Extended Kalman filter 
 

The Kalman filter is restricted to linear systems and measurements regarding the state, due to 

its matrix-based formulation. In many cases this restriction heavily limits the application of 

this technique, as a lot of systems are not linear. To overcome this issue, the Extended Kalman 

Filter (EKF) has been developed. It consists in linearizing the propagation and measurement 

function locally with a Taylor expansion of the model. 

 

The propagation and measurement stages are now modeled with function 𝑔 and ℎ respectively: 

 

 𝜇𝑛 =  𝑔(𝜇𝑛−1, 𝑢𝑛) + 𝜀𝑛 (63)  

 

 𝑦𝑛 = ℎ(𝜇𝑛) + 𝜂𝑛 (64)  

The Taylor expansion of the propagation equation is formulated as: 

 𝑔(𝜇𝑛 , 𝑢𝑛) ≈ 𝑔(𝜇𝑛−1, 𝑢𝑛) + 𝐽𝑔(𝜇𝑛−1,𝑢𝑛)(𝜇𝑛−1)(𝜇𝑛 − 𝜇𝑛−1) (65)  

 

where 𝐽𝑔(𝜇𝑛−1,𝑢𝑛)(𝑥) is the Jacobian of function 𝑔(𝜇𝑛−1, 𝑢𝑛) with respect to 𝑥. A similar 

linearization is applied to the measurement function ℎ. 

 

The equations of the EKF are highly similar to the ones of the Kalman filter, with the 

linearization included: 

 

 𝜇̂𝑛 =  𝑔(𝜇𝑛−1, 𝑢𝑛) (66)  

 𝑀̂𝑛 =  𝐽𝑔(𝜇𝑛−1,𝑢𝑛)(𝜇𝑛−1)𝑀𝑛−1𝐽𝑔(𝜇𝑛−1,𝑢𝑛)(𝜇𝑛−1)𝑇 + Γ𝑛 (67)  

 𝜅𝑛 =  𝑀̂𝑛𝐽ℎ(𝜇𝑛−1)(𝜇𝑛−1)𝑇  (𝐽ℎ(𝜇𝑛−1)(𝜇𝑛−1)𝑀̂𝑛𝐽ℎ(𝜇𝑛−1)(𝜇𝑛−1)𝑇 + Φ𝑛)−1 (68)  

 𝜇𝑛 =  𝜇̂𝑛 + 𝜅𝑛(𝑦𝑛 − ℎ(𝜇̂𝑛)) (69)  
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 𝑀𝑛 =  (𝐼 − 𝜅𝑛𝐽ℎ(𝜇̂𝑛)(𝜇̂𝑛))𝑀̂𝑛 (70)  

 

A.3 Unscented Kalman filter 
 

The Unscented Kalman Filter (UKF) was introduced in [Julier & Uhlmann 1997], and makes 

use of an Unscented Transform (UT) to overcome the limitation to linear systems of the 

Kalman filter. The UT consists in transforming a Gaussian by a finite number of sigma points, 

which are particles in the state space. An inverse transformation (that is noted 𝑈𝑇−1)  is 

presented to recompute the mean and covariance of the state. This inverse transformation is 

exact in the case of a Gaussian probability density. 

 

The dimension of the state vector is here noted 𝑛. The UT generates 2𝑛 + 1 sigma points. 

Weights are associated to each sigma point. These weights differ for the computation of the 

mean (noted 𝜔𝜇
𝑖 ) and the covariance (noted 𝜔𝑀

𝑖 ). 

 

- Unscented Transform 

 

This operation is based on the covariance matrix 𝑀 and the mean value 𝜇 of the distribution. 

The notation (√(𝑛 + 𝜆)𝑀)𝑖 denotes the i-th line (or column) of the square root matrix of 

(𝑛 + 𝜆)𝑀. The sigma points 𝜒(𝑖) are computed as: 

 

 

{

𝜒(0) = 𝜇

𝑓𝑜𝑟 𝑖 ∈ [1, 𝑛], 𝜒(𝑖) = 𝜇 + (√(𝑛 + 𝜆)𝑀)𝑖

𝑓𝑜𝑟 𝑖 ∈ [𝑛 + 1,2𝑛], 𝜒(𝑖) = 𝜇 − (√(𝑛 + 𝜆)𝑀)𝑖−𝑛

 (71)  

 

With their associated weights for the computation of mean and covariance: 

 

 
𝜔𝜇

𝑖 =
𝜆

𝑛 + 𝜆
 (72)  

 
𝜔𝑀

𝑖 =
𝜆

𝑛 + 𝜆
(1 − 𝛼2 + 𝛽) (73)  

 

where 𝜆 is a scale parameter that is set to 𝑛 − 3 in case of a Gaussian distribution. The 

parameters 𝛼, 𝛽 can be adapted to model several distributions. This is an advantage of the UKF, 

as it can be parameterized to support other distribution. The EKF is quite robust to other 

distributions, but cannot be specifically adapted like the UKF. 

 

- Inverse Unscented Transform 

 

We note the propagated sigma points as 𝛾(𝑖) = 𝑔(𝜒(𝑖), 𝑢𝑛). The operation of computing the 

mean and covariance of the propagated distribution is then: 
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𝜇̂𝑛 =  ∑ 𝜔𝜇
𝑖 𝛾(𝑖)

2𝑛

𝑖=0

 (74)  

 

𝑀̂𝑛 =  ∑ 𝜔𝑀
𝑖 (𝛾(𝑖) − 𝜇̂𝑛)(𝛾(𝑖) − 𝜇̂𝑛)𝑇

2𝑛

𝑖=0

 (75)  

 

- Propagation step 

 

The propagation simply consists in performing the UT of the previous distribution, applying 

the function 𝑔 to the sigma points, and performing a 𝑈𝑇−1 to compute the predicted mean and 

covariance. 

 

 {𝜒𝑛−1(𝑖), 𝜔𝜇𝑛
𝑖 , 𝜔𝑀𝑛

𝑖 } =  𝑈𝑇(𝜇𝑛 , 𝑀𝑛) (76)  

 𝛾𝑛−1(𝑖) = 𝑔(𝜒𝑛−1(𝑖), 𝑢𝑛) (77)  

 {𝜇̂𝑛 , 𝑀̂𝑛} = 𝑈𝑇−1(𝛾𝑛−1(𝑖), 𝜔𝜇𝑛
𝑖 , 𝜔𝑀𝑛

𝑖 ) + Γ𝑛 (78)  

 

- Measurement update 

 

The measurement update consists in performing a UT on the predicted distribution, projecting 

these sigma points into the measurement space. Then these projected sigma points are 

transformed back into a mean covariance representation, which is used to compute the Kalman 

gain along a measurement covariance 𝑀𝑧. 

 

 {𝜒̂𝑛(𝑖), 𝜔𝜇̂𝑛

𝑖 , 𝜔𝑀̂𝑛

𝑖 } =  𝑈𝑇(𝜇̂𝑛 , 𝑀̂𝑛) (79)  

 𝑍𝑛(𝑖) = ℎ(𝜒̂𝑛(𝑖)) (80)  

 {𝑧𝑛 , 𝑆̂𝑛} = 𝑈𝑇−1(𝑍𝑛(𝑖), 𝜔𝜇̂𝑛

𝑖 , 𝜔𝑀̂𝑛

𝑖 ) + Φ𝑛 (81)  

 

𝑀𝑧 = ∑ 𝜔𝑀̂𝑛

𝑖 (𝜒̂𝑛−1(𝑖) − 𝜇̂𝑛)(𝑍𝑛(𝑖) − 𝑧𝑛)𝑇

2𝑛

𝑖=0

 (82)  

 

The Kalman gain is computed by taking into account the covariance from the predicted 

measurements and the measurement covariance: 

 

 𝜅𝑛 = 𝑀𝑧𝑆̂𝑛
−1

 (83)  

 

Finally, the new state is estimated exactly as in the EKF, and the covariance is computed as: 

 

 𝑀𝑛 = 𝑀̂𝑛 − 𝜅𝑛𝑆̂𝑛𝜅𝑛
𝑇 (84)  

 

The handling of non-linear transformations in the UKF is applied to the sigma points, either in 

the propagation or measurement update, before re-computing the probability density with its 

mean and covariance. The UKF possesses mainly two advantages compared to the EKF. 

Firstly, the Jacobian is not utilized, therefore we do not need to calculate it, which makes the 

implementation much more flexible to changes in the model. Secondly, the UKF handles highly 
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non-linear systems better than the EKF [Julier & Uhlmann 1997]. The main drawback of the 

UKF is that its computation cost can be slightly higher than the one of the EKF if the Jacobian 

computation is not too expensive. However, for large dimensions, the predominant cost of both 

approaches is the same, and lies in the inversion of the matrix in the computation of the Kalman 

gain. 
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Appendix B: 3D rotation 

representations 
 

Many representations for three dimensional rotations exist. We here present two of them that 

are often used in the motion estimation literature: quaternions and exponential maps.  

 

B.1 Quaternions 
 

Quaternions possess a lot of mathematical history and backgrounds. They constitute a group 

based on the four dimensional vector set R4 with specific operator for multiplication ‘○’. The 

sub-group S3 corresponds to quaternions of unit length, and is used to represent rotations. A 

quaternion 𝑞 = [𝑞𝑥 , 𝑞𝑦, 𝑞𝑧 , 𝑞𝑤]𝑇 encodes a rotation of angle 𝜃 around a unit 3D axis 𝜇 as: 

 

 
[𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 , 𝑞𝑤]𝑇 = [𝜇 sin (

𝜃

2
) , cos (

𝜃

2
)]𝑇   (85)  

 

Formulas used to compute a rotation matrix 𝑅 and its partial derivates based on quaternions 

members are introduced in [Shoemake 1985].  They are not linearly dependent over S3. This 

means that unit quaternions are free from the gimbal lock issue that is present in Euler angles. 

As for rotation matrices, quaternions possess more members (4) than the degree of freedom of 

a 3D rotation (3). When performing filtering or optimization on quaternions representing 

rotations, one must ensure that their length is kept unit. This is very simply done by dividing 

each member of the quaternion by the total norm of it, which is much simpler than the 

orthonormalization required by rotation matrices.  

 

Quaternions have numerous advantages over Euler angles and direct rotation matrices when it 

comes to representing rotations, they offer a good balance between numerical properties and 

do not present artifacts. They are widely used for inertial sensor fusion [Sabatini 2006] 

[Wheeler & Ikeuchi 1995].  

 

B.2 Exponential maps 
 

Any 3D rotation can be expressed as a rotation of an angle 𝜃 around a unit 3D axis 𝜇. Therefore, 

a relationship between this representation and the rotation matrix 𝑅 that describes the same 3D 

rotation has to be demonstrated. It is shown in [Murray et al. 1994] that, when performing this 

task, one ends up with:  

 

 𝑅(𝜃, 𝜇 ) = 𝑒𝜇 ̂𝜃 (86)  

 

Where 𝜇 ̂ is the skew symmetric matrix of the 3D axis 𝜇 = [𝜇𝑥 , 𝜇𝑦, 𝜇𝑧]𝑇  : 
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𝜇 ̂ = (

0 −𝜇𝑧 𝜇𝑦

𝜇𝑧 0 −𝜇𝑥

−𝜇𝑦 𝜇𝑥 0
) (87)  

 

The computation of 𝑒𝜇 ̂𝜃  is then based on the Taylor expansion: 

 

 

 
𝑒𝜇 ̂𝜃 = 𝐼 + 𝜇 ̂𝜃 +

(𝜇 ̂𝜃)2

2!
+

(𝜇 ̂𝜃)3

3!
+ ⋯ (88)  

 

 

 

By applying properties of skew symmetric matrices of unit vectors, the formula is split in two 

parts that correspond to expansions of sinusoid functions. This leads to the Rodrigues formula: 

 

 𝑅(𝜃, 𝜇 ) = 𝑒𝜇 ̂𝜃 = 𝐼 + 𝜇 ̂ sin(𝜃) + 𝜇 ̂²(1 − 𝑐𝑜𝑠(𝜃)) (89)  

 

The main advantage of the exponential map is its ease of differentiation due to the exponential 

function. More details on exponential map and Lie algebra can be found in [Varadarajan 1974]. 

It should also be noticed that, as in this representation all angles are applied simultaneously in 

the computation of the rotation matrix, there is no gimbal lock nor singularities. 
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Appendix C: Particle filter 
 

 

Particle filtering relies on the law of the big numbers, and is also known as the sequential 

method of Monte-Carlo. This technique consists in estimating a function based on samples to 

estimate it: 

 

 
∫ 𝑔(𝑥)𝑑𝑥 = lim

𝑁→∞
1/𝑁 ∑ 𝑔(𝑖)

𝑖

 (90)  

 

The main advantage of this technique is that it does not suffer from any flaw of the usual 

filtering techniques, as long as the number of samples that we can use is high enough. 

Estimating a function using many samples can be done to perform many tasks: learning 

algorithms, computing the best possible solution given input data (ground truth generation), 

etc… When done sequentially, its main domains of application in computer vision are tracking 

and filtering. 

 

 The algorithm proceeds in three steps: propagation, measurement and diffusion. The 

propagation consists in applying a temporal model to the particles: 

 

 

 ∀𝑙 ∈ {1, … , 𝐿}, 𝜉𝑙
𝑡 = 𝑓(𝜉𝑙

𝑡) (91)  

 

with 𝐿 being the total number of particles. Then, the probability of each particle is measured 

with a function 𝜋. This function is used to produce weights that allow the estimation of the 

state: 

 

 
𝜔𝑙

𝑡 =
𝜋(𝜉𝑙

𝑡|𝑣(1, … , 𝑁))

𝜋𝑡𝑜𝑡
 (92)  

 

where 𝜋𝑡𝑜𝑡 is the sum of all probabilities 𝜋(𝜉𝑙
𝑡) for each particle at time 𝑡. Then the estimated 

state is simply the weighted sum of the particles: 

 

 

 

𝜇𝑡 = ∑ 𝜔𝑙
𝑡𝜉𝑙

𝑡

𝐿

𝑙=0

 (93)  

 

Then, the diffusion step consists in producing new particles in order to continue the procedure. 

This is mainly the stage that makes particle filtering a very rich domain, as many strategies 

exist to perform this. The particle swarm method is described in section 4.3.2 , where the best 

particle is used in combination with a random vector to diffuse the particles. Importance 

sampling diffuses the particles using previous ones, preferably selecting the ones with higher 
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probabilities. Many other techniques can be utilized, depending on the filter context, 

computational time available, expected distribution type, etc… 
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Fusion de données capteurs étendue pour applications vidéo embarquées 

RESUME : Le travail réalisé au cours de cette thèse se concentre sur la fusion des données d’une 

caméra et de capteurs inertiels afin d’effectuer une estimation robuste de mouvement pour des 

applications vidéos embarquées. Les appareils visés sont principalement les téléphones intelligents et 

les tablettes. On propose une nouvelle technique d’estimation de mouvement 2D temps réel, qui 

combine les mesures visuelles et inertielles. L’approche introduite se base sur le RANSAC préemptif, 

en l’étendant via l’ajout de capteurs inertiels. L’évaluation des modèles de mouvement se fait selon un 

score hybride, un lagrangien dynamique permettant une adaptation à différentes conditions et types de 

mouvements. Ces améliorations sont effectuées à faible cout, afin de permettre une implémentation 

sur plateforme embarquée. L’approche est comparée aux méthodes visuelles et inertielles. Une 

nouvelle méthode d’odométrie visuelle-inertielle temps réelle est présentée. L’interaction entre les 

données visuelles et inertielles est maximisée en effectuant la fusion dans de multiples étapes de 

l’algorithme. A travers des tests conduits sur des séquences acquises avec la vérité terrain, nous 

montrons que notre approche produit des résultats supérieurs aux techniques classiques de l’état de 

l’art. 

Mots clés : Estimation de mouvement, vision par ordinateur, capteurs inertiels, fusion capteur, 

temps-réel, embarqué, RANSAC, SLAM, odométrie, filtre à particule.  

 

 

 

 

 

Extended sensor fusion for embedded video applications  

 

ABSTRACT : This thesis deals with sensor fusion between camera and inertial sensors measurements 

in order to provide a robust motion estimation algorithm for embedded video applications. The targeted 

platforms are mainly smartphones and tablets. We present a real-time, 2D online camera motion 

estimation algorithm combining inertial and visual measurements. The proposed algorithm extends the 

preemptive RANSAC motion estimation procedure with inertial sensors data, introducing a dynamic 

lagrangian hybrid scoring of the motion models, to make the approach adaptive to various image and 

motion contents. All these improvements are made with little computational cost, keeping the complexity 

of the algorithm low enough for embedded platforms. The approach is compared with pure inertial and 

pure visual procedures. A novel approach to real-time hybrid monocular visual-inertial odometry for 

embedded platforms is introduced. The interaction between vision and inertial sensors is maximized by 

performing fusion at multiple levels of the algorithm. Through tests conducted on sequences with 

ground-truth data specifically acquired, we show that our method outperforms classical hybrid 

techniques in ego-motion estimation. 

 

Keywords : Motion estimation, computer vision, inertial sensors, sensor fusion, real-time, 

embedded, RANSAC, SLAM, odometry, particle filter. 
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