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Abstract

The knowledge of the Earth subsurface poses economic, environmental, human and sci-
entific issues. Seismic imaging is a procedure to image the Earth subsurface from the
data observed at the surface. In the context of hydrocarbon exploration, seismic imaging
techniques are widely used to characterise the first few kilometres of the Earth’s interior.
Full Waveform Inversion (FWI) is one of the efficient seismic imaging method. Recent ad-
vances in high performance computer make FWI feasible for large applications. In theory,
FWI could reconstruct a high-resolution subsurface image provided that low frequency
and wide angle/aperture/azimuth data are available. FWT is a data-fitting procedure and
is resolved as an optimization problem. Depending on the frequency content of the data,
the objective function of FWI may be highly nonlinear and has many local minima. If a
data set mainly contains reflections, this problem particularly prevents the gradient-based
methods from recovering the long wavelengths of the velocity model.

The model of the subsurface could be separated into two parts by scale separation.
One part is the short-wavelength part which contains the singularities of the model and
the other part is the long-wavelength part which is a smooth version of the model. In
this thesis, I propose a variant of FWI based on the scale separation of these two parts to
mitigate the nonlinearity of the problem.

In the first section, methodologies of the conventional FWI and the new proposed
method are presented. The new method is a Reflection-based Waveform Inversion (RWI)
method . Tt consists of decomposing the gradient of FWI into a short-wavelength part and
a long-wavelength part and the inversion is performed in an alternating fashion between
these two parts. The gradient decomposition is achieved by decomposing the wavefields
into their one-way components. Different wavefield decomposition methods are also pre-
sented.

In the second section, we implement the FWI and the new method to several case
studies. For numerical modeling, we use a finite-difference approach to resolve the acoustic
wave equation with constant density in the time domain. The model update is based on
the L-bfgs algorithm and the wavefield is decomposed using the 2D FFT-based method in
the f-k domain. These case studies show the difficulties associated with FWI to recover
the long-wavelength part of the velocity model when low frequency and large-offset data
are absent, and the initial model is far from the true one. The new method shows its
robustness in this case especially for constructing the long-wavelength model.

Keywords: Waveform inversion, wavefield decomposition, seismic imaging.






Résumé

La connaissance du sous-sol de la Terre pose les enjeux économiques, environnementaux,
humains et scientifiques. L’imagerie sismique est une procédure a imager le sous-sol a par-
tir des données observées a la surface. Dans le cadre de I’exploration des hydrocarbures,
les méthodes d’imagerie sismique sont beaucoup utilisées pour caractériser les premiers
kilométres de I'intérieur de la Terre. Full Waveform Inversion (FWT) est 'une des méth-
odes d’imagerie sismique efficace. Les progrés récents en superordinateur rendent FWI
possible pour les grandes applications. En théorie, FWI pourrait reconstruire une image
du sous-sol & haute résolution, a condition que les données de basse fréquences et grand-
angle /ouverture /azimut sont disponibles. FWI est une procédure d’ajuster des données,
et est résolu comme un probléme d’optimisation. En fonction du contenu en fréquence
des données, la fonction objectif de FWI peut étre fortement non linéaire et présente de
nombreux minima locaux. Pour des données qui contiennent principalement des réflex-
ions, ce probléme empéche notamment les méthodes basées sur le gradient de retrouver
les longues longueurs d’onde du modéle de vitesse.

Le modéle du sous-sol peut étre séparé en deux parties par separation d’échelle. Une
partie est la partie courte longueur d’onde qui contient les singularités du modéle. 'autre
partie est la partie longue longueur d’onde qui est une version lisse du modéle. Dans cette
thése, nous proposons une variante de FWI basée sur la séparation d’échelle entre les deux
parties pour atténuer la non-linéarité du probléme.

Dans la premiére section, les méthodologies de la FWI classique et la nouvelle méthode
proposée sont présentés. La nouvelle méthode est une méthode de I'inversion des formes
d’ondes basées sur les réflexions. Il consiste a décomposer le gradient de FWI en une
partie de courte longueur d’onde et une partie de longue longueur d’onde, et I'inversion
est effectuée d'une maniére alternée entre ces deux parties. La décomposition du gradient
est obtenu par la décomposition des champs d’ondes en leurs composants unidirectionnels.
Différentes méthodes de décomposition des champs d’ondes sont également présentées.

Dans la deuxiéme section, nous appliquons la FWI et la nouvelle méthode & plusieurs
études de cas. Pour la modélisation numérique, nous utilisons une approche différence finie
pour résoudre I’équation des ondes acoustiques avec une densité constante dans le domaine
temporel. La mise & jour du modéle est basé sur I'algorithme L-BFGS et les champs
d’ondes sont décomposés en utilisant la méthode basée sur FF'T 2D dans le domaine f - k.
Ces études montrent les difficultés liées & FWI pour récupérer la partie longue longueur
d’onde du modéle de vitesse lorsque les données de basse fréquence et grands offsets sont
absentes, et le modéle initial est loin du vrai modéle. La nouvelle méthode présente sa
robustesse dans ce cas en particulier pour la construction du modéle de longue longueur

d’onde.

Mots Clés: Inversion des formes d’ondes, décomposition des champs d’ondes, imagerie
sismique.
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CHAPTER 1. INTRODUCTION

Résumé du chapitre 1

[’imagerie sismique permet d’imager l'intérieur de la Terre, pour analyser les propriétés
physiques du sous-sol. L’imagerie sismique pose des questions économiques, humaines, en-
vironnementales et scientifiques. Dans la géophysique d’exploration, cette technique est
principalement utilisée pour la détection d’hydrocarbures. Avec le développement des
ordinateurs de haute performance, 'imagerie sismique 3D est de plus en plus sophis-
tiquée |Biondi, 2006], pour obtenir de meilleures résolutions. Le résultat de I'imagerie
sismique 3D est similaire & une imagerie médicale. Mais l'imagerie sismique se prolonge
plusieurs kilométres ou plus dans la Terre. Et surtout, les sources et récepteurs ne sont
qu’a la surface. Les méthodes d’imagerie sismique continuent & s’améliorer, et les ordina-
teurs les plus avancés maintenant permettent aux scientifiques de traiter les données en
quelques jours plutdt qu’en mois, et accélérent la découverte et la production finale du
pétrole et du gaz.

Dans I'imagerie sismique, la propriété physique nous voulons imager est généralement
le modéle de vitesse de la propagation des ondes, en utilisant les données sismiques en-
registrées a la surface pendant I'acquisition terrestre ou marine. Les données enregistrées
apportent des informations sur le sous-sol. La loi physique reliant le modéle de vitesse
et les données est décrite par I’équation de propagation des ondes. Cette relation est
habituellement non linéaire, et I'imagerie sismique est considérée comme un probléme
d’optimisation non linéaire.

Le modéle de vitesse que nous cherchons a caractériser pourrait étre séparé en deux
parties. Une premiére partie est la partie des grandes longueurs d’onde qui peut étre con-
sidérée comme une version lisse du modeéle, et qui est désignée comme le macro-modéle.
L’autre partie est la partie des courtes longueurs d’onde qui contient toutes les singular-
ités du modeéle, et est appelée le modéle de réflectivité ou I'image migrée. La procédure
standard dans l'imagerie sismique consiste a reconstruire les grandes longueurs d’onde en
premier, suivie par la reconstruction des courtes longueurs d’onde. La qualité de la mise
a jour des courtes longueurs d’onde dépend de I'exactitude du macro modéle.

Avec le développement des ordinateurs de haute performance, 'imagerie sismique 3D et
4D s’est développée. Elle fournit des images du sous-sol de haute résolution. Néanmoins,
I'imagerie sismique présente plusieurs limitations communes. Par exemple, la résolution de
I'imagerie sismique est limitée par la bande de fréquence de la source, de 'atténuation et de
la géométrie d’acquisition. A cause de la bande limitée de la source et de 'acquisition finie,
souvent il est difficile d’obtenir une résolution suffisante. De plus, les basses fréquences
dans la source et les données de grands offsets et grandes ouvertures sont importantes
pour la reconstruction des grandes longueurs d’ondes du modéle. Cependant, les données
de grands offsets et grandes ouvertures présentent des défis de déploiement et financiers.

L’inversion des forme d’ondes (en anglais, Full Wavefrom Inversion, FWI) est 1'une
des techniques principales de I'imagerie sismique. Nous pouvons citer [Fichtner, 2010]
et [Virieux and Operto, 2009] pour une revue tutorielle de cette méthode. FWI définit
un probléme inverse non linéaire dans le domaine des données [Tarantola, 1984, Lailly,
1983, cherchant & minimiser les moindres carrés des différences entre les données observées
et simulées. Le principe de FWT est d’utiliser tous les types d’ondes (ondes directes,
réflexions, réfractions, et multiples) pour résoudre les différents parameétres du modéle
(la vitesse, la densité, 'atténuation, ...). Les informations du champ d’ondes complet
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(phase et 'amplitude) sont tous pris en considération en méme temps, sans avoir besoin
d’introduire explicitement le temps de trajet. FWI est capable de traiter des modéles
complexes et de fournir des images de haute résolution. Dans 'industrie, FWI est prin-
cipalement utilisée pour 'exploration pétroliére. Toutefois, elle est également appliquée a
d’autres domaines, tels que I’électromagnétisme.

Les méthodes d’optimisation utilisées pour FWI pourraient étre divisées en méthodes
d’optimisation globales et méthodes d’optimisation locales. Les méthodes d’optimisation
globales, telles que Monte-Carlo [Jin and Madariaga, 1994], les algorithmes génétique [Jin
and Madariaga, 1993], permettent potentiellement d’explorer 'ensemble de I'espace pour
trouver le minimum global de la fonction objective. Les méthodes d’optimisation locales,
telles que les méthodes basées sur le gradient [Tarantola, 1984], commencent & partir d’un
modéle initial, et calculent la direction de la mise a jour du modéle en utilisant le gradient
de la fonction objective. Le gradient peut étre calculé en utilisant la méthode de I'état-
adjoint [Plessix, 2006], puis le modéle est mis a jour et des itérations sont répétées jusqu’a
ce que la critére de convergence est remplie. Bien que les méthodes globales soient plus
robustes pour résoudre les problémes non linéaires, elles demandent un cofit de calcul
élevé, et la taille de I’espace des modéles et la taille des données a traiter sont au-dela de
la capacité de calcul actuelle pour les applications réelles. Généralement, une méthode
d’optimisation locale est utilisée pour la FWI et le probléme d’optimisation est résolu de
maniére itérative pour compenser la non-linéarité |Tarantola, 1984].

FWI a été initialement appliquée en temps [Tarantola, 1984, Lailly, 1983]. La premiére
application 2D de FWI en géophysique d’exploration a été mise en ceuvre par [Gauthier
et al., 1986]. |[Tarantola, 1986] and |Mora, 1987| ont appliqué FWI en temps au cas
élastique. FWT appliquée sur des données réelles est mis en ceuvre par [Crase et al., 1990].
FWI en fréquence a été proposée depuis les années 90 [Pratt and Worthington, 1990, Pratt,
1999|. FWI multi-échelle a été étudiée dans le domaine temporel [Bunks et al., 1995] et
dans le domaine fréquentiel [Sirgue and Pratt, 2004] en vue d’atténuer la non-linéarité du
probléme inverse. Cette approche consiste a d’abord inverser les données de plus basses
fréquences et d’introduire progressivement des fréquences élevées dans l'inversion. Avec
le développement de l'ordinateur haute performance, FWI est entré dans une nouvelle
ére depuis 2009, lorsque les premiéres applications 3D de FWI ont été obtenus avec des
données réelles [Plessix, 2009, Sirgue et al., 2010].

Un probléme inverse est considéré comme le pendant du probléme direct qui relie les
parameétres de modéle avec les données que nous observons. Le probléme direct de FWI
simule la propagation des ondes dans un modéle donné. Les données réelles sont décrites
plus précisément par la modélisation élastique plutot que la modélisation acoustique, ou
la vitesse des ondes P, la vitesse des ondes S, la densité et 'atténuation sont tous consid-
érées. Toutefois, il est encore une pratique courante d’appliquer la FWI acoustique sur
des données réelles en considérant la propagation des ondes acoustiques. L’équation des
ondes acoustiques pourrait étre résolue dans le domaine temporel [Tarantola, 1984, Mora,
1987, Mora, 1989] ou dans le domaine fréquentiel [Pratt and Worthington, 1990, Sirgue and
Pratt, 2004]. La résolution numérique de I’équation différentielle partielle pourrait étre
réalisée par des méthodes numériques, telles que la méthode des différences finies [Virieux,
1986, Moczo et al., 2004], éléments finis [Marfurt, 1984|, etc. Lorsque la discrétisation spa-
tiale est effectuée sur une grille réguliére, la méthode des différences finies est généralement
choisie car elle est rapide et facile & mettre en ceuvre.
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FWI est capable de potentiellement imager des structures complexes. Cependant, elle
présente plusieurs limitations [Virieux and Operto, 2009]. Pour atténuer la nonlinéarité
de FWI, de nombreuses formulations alternatives sont proposées, qui sont principalement
liées aux choix de la représentation des données, aux choix de la norme des résidus des
données, et aux choix du critére d’optimisation.

Lorsqu’on traite les données de sismique réflexion, I'utilisation des méthodes d’inversion
basées sur les réflexion (en anglais Reflection Waveform Inversion, RWI) [Mora, 1989,
Chavent et al., 1994, Xu et al., 2012, Biondi et al., 2012, Tang and Lee, 2013, Wang et al.,
2013, Brossier et al., 2015, Zhou et al., 2015, Wang et al., 2015b| semblent prometteuses.
Ces approches reposent sur la séparation explicite du modéle en un modéle de grandes
longueurs d’onde et un modéle de réflectivité. Le modéle de réflectivité est obtenu en pre-
mier par la migration et ensuite se comporte comme les sources primaires en profondeur,
ce qui permet de produire les transmissions entre les réflecteurs et la surface. Ces trans-
missions sont utiles pour la mise a jour du modeéle de grandes longueurs d’ondes.

Des données de réflexions contiennent des informations de temps de trajet ainsi que
I’amplitude, donc l'inversion de la forme d’onde des réflexions devrait en principe étre
capable de reconstruire a la fois les grandes longueurs d’ondes et les courtes longueurs
d’ondes [Snieder et al., 1989, Hicks and Pratt, 2001|. Toutefois, en pratique, la qualité
de I'inversion est dégradée a cause des données a bande limitée et offsets limités. Dans le
domaine temporel, lorsqu’une grande gamme de fréquences est utilisée en méme temps, ces
deux composantes sont mélangées pendant la FWI. Ce couplage est un probléme majeur
pour la FWI [Snieder et al., 1989], puisque la mise & jour des grandes longueurs d’ondes a
généralement une amplitude plus faible que la mise a jour des courtes longueurs d’onde.
Par conséquent, lorsque ces deux composants sont mélangées ensemble, la mise a jour
du modéle est dominée par les courtes longueurs d’ondes. Il est donc naturel d’inverser
séparément ces deux parties.

Dans cette thése, nous proposons une méthode d’inversion en deux étapes obtenue par
la décomposition de la formule de gradient de FWI en une partie de grandes longueurs
d’ondes et une partie de courtes longueurs d’ondes [Wang et al., 2013].

Dans le chapitre 2, nous passons en revue les notation basiques de la FWI, y compris la
fonction objective et la résolution du probléme direct en utilisant le schéma de différences
finies. Le calcul du gradient de la fonction objective et les méthodes d’optimisation locales
sont également détaillées. La résolution du gradient est analysée pour étudier la résolution
de FWL

Dans le chapitre 3, nous présentons la méthode d’inversion proposée, et montrons com-
ment les deux étapes d’inversion séparés, soit une pour la mise a jour des courtes longueurs
d’ondes et 'autre pour la mise a jour des grandes longueurs d’ondes, sont formulés. Nous
illustrons cette approche en utilisant un modéle de couche 1D. Différentes méthodes de
décomposition des champs d’ondes sont également introduites, I'une dans le domaine de
Fourier, I'une en utilisant le vecteur de Poynting et la troisiéme dans le domaine des
curvelets.

Dans le chapitre 4, nous appliquons la FWI, la FWI multi-échelle et la nouvelle
méthode d’inversion proposée sur deux modéles synthétiques et comparons les résultats.
Nous analysons aussi 'influence des paramétres clés pendant 'inversion sur le résultat
d’inversion.

Dans le chapitre 5, nous appliquons la FWI et la nouvelle méthode d’inversion proposée
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sur un jeu de données réelles, et présentons les pré-traitements effectués sur les données
et les difficultés que nous rencontrons avec I’hypothése acoustique de la propagation des
ondes.
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1.1 Seismic imaging

1.1.1 General principles

Seismic imaging allows to image the Earth’s interior, to analyze the physical properties of
the subsurface. It poses economic, human, environmental and scientific issues. In explo-
ration geophysics, seismic imaging is mainly used for the detection of hydrocarbons. With
the development of the high performance computers, sophisticated 3D seismic imaging is
investigated |Biondi, 2006], yielding high-resolution images of the subsurface. The result
of 3D seismic imaging is similar to an X-ray scan or medical imaging that extends several
kilometres or more into the Earth. 4D seismic imaging [Zhang et al., 2007] allows imaging
potential fluid migration paths within the reservoir, by inverting for time-lapse parame-
ters. Methods for seismic imaging continues to improve, and more advanced computers
now enable scientists to accelerate the data processing, speeding up the discovery and final
production of oil and gas.

In seismic imaging, the physical property we want to image is usually the model of
the wave propagation velocity, using the seismic data recorded during land or marine
acquisitions. Seismic acquisitions use controlled seismic sources (explosive and vibroseis
for land acquisitions or air guns for marine acquisitions). Then, seismic waves propagate in
the subsurface and reflected or refracted waves are recorded by the seismic sensors placed at
the surface (geophones for land acquisitions or hydrophones for marine acquisitions). The
recorded data bring information of the subsurface. The physical law relating the velocity
model and the data is described by the wave propagation equation. This relationship is
usually nonlinear, and seismic imaging is considered as a nonlinear optimization problem.

1.1.2 Review of classic methods/scale separation

The wave-propagation velocity model that we would like to characterize could be divided
into two parts. One part is the long-wavelength part which can be considered as a smooth
version of the model, and is referred to as the macro or background model. The other
part is the short-wavelength part which contains all the singularities of the model, and is
referred to as reflectivity model or migrated image. The standard procedure in seismic
imaging consists of recovering the long wavelengths first, followed by the reconstruction
of the short wavelengths, as the quality of the short-wavelength update depends on the
accuracy of the background model.

The background model could be recovered either by traveltime tomography [Bishop
et al., 1985, Pratt and Chapman, 1992, Billette and Lambaré, 1998, Woodward et al.,
2008] or by Migration Velocity Analysis (MVA) [Symes and Carazzone, 1991, Chauris and
Noble, 2001, Sava and Biondi, 2004]. Traveltime tomography uses the traveltimes to es-
timate the wave propagation velocity. In industry, the ray-based tomography approaches
involved migration, residual move-out picking, demigration and linear or non-linear veloc-
ity updates. Nonlinear slope tomography uses a local focusing criterion without using a
pre-defined shape of the reflectors or of the RMO curves [Guillaume et al., 2008].Migration
Velocity Analysis (MVA) is performed in the image domain and aims at building a rela-
tionship between migrated image perturbation and model perturbation. This approach a
priori does not require picking.
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The short wavelengths provide the fine structure of the subsurface model, allowing to lo-
calize reflectors in depth. The short wavelengths can be obtained by migration techniques,
assuming the background velocity is correct. There are two major categories of migration
methods: ray-based methods [Beylkin, 1985, Bleistein, 1987|, which are based on the high
frequency assumption, and wave-equation based methods [Baysal et al., 1983, Whitmore
et al., 1983]. |Etgen et al., 2009| gives a comparison of different migration methods. The
principle of migration is formulated by [Claerbout, 1971], and it consists of propagating the
source signal and the recorded data into to the medium and cross correlate these two wave-
fields. The zero-lag cross correlation gives the locations of reflectors. There exist other
imaging conditions, such as deconvolution-based imaging condition [Valenciano et al.,
2003], source/receiver-normalized imaging condition [Kaelin et al., 2006], extended imag-
ing condition [Sava and Fomel, 2006]. [Chattopadhyay and McMechan, 2008| and [Sava
and Hill, 2009] give a summary of the imaging conditions. The classical correlation-based
migration is qualitative, as it only provides a reflectivity image. Alternately, quantitative
migration [Lambaré et al., 1992, Jin et al., 1992, Lameloise et al., 2015, Symes, 2015] al-
lows imaging the values of the physical parameters. Recent developments have shown that
for migration-based velocity analysis, quantitative migration is preferable as it provides a
more accurate migration image.

1.1.3 Difficulties in seismic imaging

With the development of advanced computers, 3D and 4D seismic imaging are investigated,
yielding more accurate subsurface images. Nevertheless, seismic imaging presents several
common limitations:

e Insufficient resolution. The quality of seismic imaging resolution is limited by the
source wavelet bandwidth, the wave propagation attenuation and the acquisition
geometry. In the framework of the single-scattering approximation [Devaney, 1982,
Miller et al., 1987], the wavenumber at a point of the model depends on the local
wavelength and the scattering angle (Figure 1-1).

According to Figure 1-1, high resolution can be obtained with small reflection angle
and small wavelength, and small wavelength corresponds to small velocity and high
frequency. However, during the wave propagation, waves suffer from attenuation
effect. Apart from the geometric spreading, intrinsic attenuation is also presented
due to the nature of some material. High frequency waves are particularly attenu-
ated during the propagation, making difficult to image the deep part of the Earth.
Besides, as we will show in Chapter 2, numerical resolution of the wave equation im-
poses the stability condition on the spatial sampling, which depends on the maximum
frequency of the source wavelet. The use of a high frequency source requires finer
spatial and temporal sampling, making the problem more computational extensive.

e Acquisition limits. The quality of the migrated image depends closely on the ac-
quisition geometry and acquisition devices. [Mora, 1989] and [Pratt et al., 1996]
show that the long wavelengths of the model could be retrieved through the use
of long-offset (diving waves, refractions) and transmission data. If the data lacks
of low frequencies, then long-offset and wide-aperture/azimuth acquisitions [Sirgue
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Figure 1-1: Wavenumber at a scattering point [Huang and Schuster, 2014].

et al., 2010, Shipp and Singh, 2002| are necessary in order to image deep parts of the
model [Sirgue, 2006]. However, long-offset and wide-aperture/azimuth acquisitions
usually present deployment and financial challenges.

e Requirement of good velocity model. [Versteeg, 1993| analysed the sensitivity of
the depth migrated image to the velocity model and found that the accuracy of the
depth image closely depends on the accuracy of the long wavelengths of the model,
and, if an incorrect model is used, the migration image is unfocused and reflectors
are mispositioned. In practice, the inversion of the background velocity model still
remains a challenge.

1.2 Full waveform inversion

We now concentrate on a very popular method used for imaging the Earth. We refer
to [Virieux and Operto, 2009] and [Fichtner, 2010] for recent reviews.

1.2.1 History

Full waveform inversion (FWT) is one technique for seismic imaging which develops rapidly.
FWI defines a nonlinear inverse problem in the data-domain |Tarantola, 1984, Lailly, 1983],
seeking to minimize the least-squares differences between observed and simulated data.
The principle of FWI is to use all types of waves (direct waves, reflections, refractions,
and multiples) to resolve different model parameters (velocity, density, attenuation). The
information of the complete wavefield: traveltime, phase and amplitude are all taken into
consideration at once. FWI is capable of dealing with complex models and of delivering
high resolution images with a resolution of half the minimal wavelength [Sirgue and Pratt,
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2004]. In industry, FWI is mainly used for the oil exploration; however, it could also be
applied to other domains, such as electromagnetics and medical imaging.

The optimization methods used to solve the FWI nonlinear problem could be divided
into global optimization methods and local optimization methods. Global optimization
methods, such as Monte-Carlo [Jin and Madariaga, 1994], genetic [Jin and Madariaga,
1993] and simulated annealing algorithms [Sen and Stoffa, 1991], allow to potentially ex-
plore the whole model space to find the global minimum of the objective function. Local
optimization methods, such as gradient-based methods [Tarantola, 1984|, start from an ini-
tial model, and calculate the model update direction by computing the gradient of the ob-
jective function. The gradient could be calculated using the adjoint-state method [Plessix,
2006] and then the model is updated and iterations will be repeated until the convergence
criterion is met. Although global methods are more robust to handle nonlinear problems,
they require a high computational cost, and the size of the model space and the size of
data to process is beyond current computation capacity for real data applications. Usually
a local optimization method is used and the optimization problem is resolved iteratively
to compensate the nonlinearity |Tarantola, 1984].

FWI was originally applied in the time domain [Tarantola, 1984, Lailly, 1983|. The
first 2D application of FWT in exploration geophysics was implemented by [Gauthier et al.,
1986]. [Tarantola, 1986] and [Mora, 1987| applied the time-domain FWI to the elastic
case. FWI applied on real data set is implemented by |[Crase et al., 1990|. The frequency-
domain FWI was proposed since the '90s [Pratt and Worthington, 1990, Pratt, 1999].
The frequency-domain FWI is equivalent to the time-domain FWI when all frequencies
are considered simultaneously [Pratt et al., 1998]. From a series of discrete frequencies,
FWTI in the frequency domain aims at retrieving model perturbations [Sirgue, 2006]. Rules
have been designed to select frequencies [Sirgue, 2006]. Multiscale FWT was investigated
in the time domain [Bunks et al., 1995] and in the frequency domain [Sirgue and Pratt,
2004] in order to mitigate the nonlinearity of the inverse problem. The method consists
of starting by inverting the lower frequency data and of progressively introducing high
frequencies in the inversion. Moreover, long-offset data could be used to retrieve first the
long wavelengths of the model [Shipp and Singh, 2002, Sirgue, 2006].

With the development of high performance computing, FWI entered in a new era since
2009, when the first 3D FWT applications were successfully obtained with real data [Plessix,
2009, Sirgue et al., 2010]. The redundancy of the 3D acquisitions, together with the
availability of long-offset and wide-azimuth data allow reducing the non linearity of the
problem.

1.2.2 Physics of wave propagation

An inverse problem is considered as the "inverse” of the forward problem which relates
the model parameters to the data we observe. The forward problem in FWI simulates the
wave propagation in a given model.

Among the recorded seismic waves, we can distinguish between P waves and S waves.
P waves, also called pressure waves or primary waves, are characterized by particle motion
in the same direction as wave propagation. S waves, also called shear waves or secondary
waves, are characterized by particle motion in the plane perpendicular to the direction of
wave propagation. P waves and S waves are all body waves but surface waves could also
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be present in real data. Real data are more accurately described by elastic rather than
acoustic modeling, where P-velocity, S-velocity, density and attenuation are all considered.
However it is still common practice to apply acoustic FWI on real data. By considering
the acoustic wave propagation, S waves are neglected and only the P waves are modeled.
The acoustic wave equation could be resolved in the time domain [Tarantola, 1984, Mora,
1987, Mora, 1989 or in the frequency domain [Pratt and Worthington, 1990, Sirgue and
Pratt, 2004]. The numerical resolution of the partial differential wave equation could
be achieved by numerical methods, such as finite difference [Virieux, 1986, Moczo et al.,
2004], finite element [Marfurt, 1984], etc. When the spatial discretization is done using a
regular grid, the finite-difference method is usually chosen because it is fast and easy to
implement.

1.2.3 Current limitations of FWI

FWI is capable of potentially imaging complex structures. However, it presents several
limitations |Virieux and Operto, 2009):

e Local minima. The objective function of FWTI is highly nonlinear with respect to
the model parameters and has many local minima [Bunks et al., 1995]. These local
minima prevent gradient-based techniques from finding the global minimum if the
initial model is far from the global solution. This is known as the cycle-skipping
problem. A phase mismatch of less than one half of the wavelength is required
between the exact model and the initial model, to avoid falling into a local minimum.

e Lack of low frequency data. [Claerbout, 1982] and [Jannane et al., 1989] first demon-
strate that reflectivity model is linearly derived from the reflected waves in the data,
while the large-scale velocity model does not linearly depend on the data. It seems
that the data are not sensitive to middle range scale wavelengths. To avoid the
non-linearity, multiscale FWI is needed to reconstruct the model, starting from low
frequencies and progressively adding higher frequencies. When the low frequencies
are missed in the data, which is often the case with real data, the FWI usually fail to
retrieve the long-wavelength part of the model, and only acts as a migration mode.

Aceuracy

100%

Velocily
Reflectvily

Figure 1-2: Separation of scales between the frequency content of the velocity model and
of the seismic data [Claerbout, 1982].

e Multi-parameter inversion. The principle of FWTI is to use all types of waves (direct
waves, reflections, refractions, and multiples) to resolve different model parameters
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(velocity, density, attenuation). Since the "90s, FWI has been mainly used for imag-
ing the P-wave velocity model by considering the acoustic wave propagation. This
approximation is quite valid when FWI is mainly based on direct arrivals (diving
waves, transmissions), as these waves are less sensitive to density perturbations. But
for reflected data, which are sensitive to density perturbations, the P-wave velocity
model does not always allow the reliable interpretation of the complex structure of
the subsurface, as the density model, the S-wave velocity model and the attenuation
factor all have a great influence on the amplitude of reflection data. [Mulder and
Plessix, 2008] study the effect of acoustic inversion of elastic data through a marine
data set and conclude that variable-density acoustic inversion of marine data can
have some value if the subsurface is not too complex and the target is not too deep.
For complex models, multi-parameter inversion should be considered. However si-
multaneous inversion of several parameters is still challenging. The main obstacle
is that different parameters have coupling effects and different orders of magnitude,
making the inversion poorly conditioned and more nonlinear. In [Operto et al.,
2013, Prieux et al., 2013, Malinowski et al., 2007|, the authors propose guidelines to
choose suitable strategies for multi-parameter FWT.

1.2.4 Alternative formulations

To mitigate the non-linearity of FWI, many alternatives formulations are proposed, which
are mainly related with:

e Choice of the representations of the data, such as logarithm of the complex value
of the data [Shin and Min, 2006], separation of data amplitude and phase [Shin
and Min, 2006, Bozdag et al., 2011|, envelope of the data [Chi et al., 2014, Wu
et al., 2014, Bozdag et al., 2011|, normalized integration of the data [Donno et al.,
2013], energy flux of the data [Causse, 2002]. Among these possible alternatives, the
Laplace-domain FWT [Shin and Cha, 2008] has been shown to be effective to build
a smooth velocity model. The authors show that by transforming the wave in the
Laplace domain, the objective function of the /5 norm of the logarithmic wavefield
appears to be more convex and artificial frequencies smaller than the frequencies in
the source wavelet are created.

e Choice of data residual norm. The ¢, norm is based on the assumption of Gaussian
distribution of data uncertainties [Tarantola, 2005|. It may be not valid for all cases.
Moreover, it is sensitive to large errors [Tarantola, 2005]. ¢; norm [Crase et al.,
1990], which is not based on Gaussian assumption, has been proven to be more
robust in the presence of noise in the data [Brossier et al., 2010]. Besides, as ¢; norm
ignores the amplitude in the residual, the inversion is less sensitive to the large data
error |Virieux and Operto, 2009]. We can also cite the Huber norm |[Guitton and
Symes, 2003, Ha et al., 2009], the sech norm and the Cauchy criterion norm [Crase
et al., 1990, Amundsen, 1991]. These alternative norms could be considered as
intermediate between ¢; norm and ¢ norm.

e Choice of minimization criterion. The conventional criterion measures the least-
squares data misfit which could be quite nonlinear with respect to model. Other
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criterion are proposed to mitigate the nonlinearity of the problem, such as data
differential based criterion [Chauris and Plessix, 2012] or data correlation based
criterion [van Leeuwen and Mulder, 2008]. [van Leeuwen and Mulder, 2008] show
that compared to the least-squares functional, most of the weighted norms of the
correlation function have a large basin of attraction and respond smoothly to a
perturbation of the true velocity model.

1.3 Reflection-based waveform inversion

1.3.1 Principles

When dealing with reflection data, the use of Reflection-based Waveform Inversion (RWI) [Mora,
1989, Chavent et al., 1994, Xu et al., 2012, Biondi et al., 2012, Tang and Lee, 2013, Wang
et al., 2013, Brossier et al., 2015, Zhou et al., 2015, Wang et al., 2015b| appears promising.
The method relies on the explicit separation of the model into a background model and a
reflectivity model. The reflectivity model is inverted first by migration and then serves as
primary sources in depth, which allows computing the transmission wavepaths from the
reflectors to the surface. These transmission wavepaths are useful for the update of the
background model. A new reflectivity model must be generated by migration according
to the background velocity model update at each nonlinear iteration and the two-step
workflow is iterated until a fixed convergence criterion is met [Brossier et al., 2015].

Migration Based Traveltime Tomography (MBTT) [Chavent et al., 1994] is based on
a combination of migration and modelling. It combines the least-squares migration and
the multiscale FWI to mitigate the nonlinearity. |Tang and Lee, 2013| use the wavefield
decomposition to separate the migration part and the tomography part in the gradient.
Their idea is to mix these two parts together and set different weights to enhance the
tomography part. |Tang and Lee, 2013] determine, at each iteration, the weights by solving
an optimization problem, which is not a trivial task. The advantage is that, it is easier
to compute the misfit function at each iteration and then to control the convergence.
[Brossier et al., 2015] propose a reflection-based full waveform inversion. They use a
correlation-based misfit function instead of the classic least-squares data misfit function
to avoid cycle-skipping. Besides, the inversion is performed in the pseudo-time domain
instead of depth domain to avoid recomputing the reflectivity at each iteration of the
inversion. [Zhou et al., 2015| propose to introduce diving waves along with reflections
to improve the reconstruction of the shallow parts of the model, which in turn improves
the imaging of the deeper parts. [Alkhalifah and Wu, 2015] combine FWI and Migration
Velocity Analysis (MVA) to generate a new objective function.

1.3.2 Limitations of RWI

In recent years, RWI has shown its robustness compared to conventional FWI. However,
this method is not mature yet, and several limitations could be listed. Firstly, as RWI is
based on the reflection data, other waves, such as diving waves, refractions, which are useful
for the determination of the long-wavelength model, are neglected. [Zhou et al., 2015]
propose to combine the reflections with the diving waves to enhance the long-wavelength
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components of the model. [Wang et al., 2015b| propose to combine the reflections with
refractions. In [Wang et al., 2013] and |[Tang and Lee, 2013| the proposed methods do
not use reflections explicitly and could a priori incorporate diving waves and refractions
automatically. Further investigations on this point are needed.

Secondly, during the inversion, at each nonlinear iteration a new reflectivity must be
recomputed, causing a slow convergence rate. |Brossier et al., 2015] propose to perform
the migration in the pseudo-time domain as the zero-offset traveltime is preserved during
the inversion, to avoid the re-computation of the reflectivity model at each iteration.

Thirdly, the nonlinear step is sensitive to the reflectivity model obtained in the mi-
gration step. Thus building a true-amplitude reflectivity is important. The reflectivity
is usually obtained by migration methods. However, as the migration uses the adjoint
of forward-modeling operator instead of the inverse operator, a single iteration does not
necessarily preserve the true amplitude of migration images. Alternatively Least-Squares
Migration (LSM) can be used. LSM is an iterative migration method resolving the lin-
earized inversion problem. It has been shown to improve amplitude information and to
better focus migrated images. Several authors show that the LSM provides more reliable
results than conventional migration images [Clapp, 2005, Valenciano, 2008, Zhang et al.,
2005].

1.4 Objective and outline of the thesis

Seismic reflection data contain traveltime information as well as reflection-amplitude in-
formation, therefore waveform inversion of reflections should in principle be able to re-
cover both the long wavelengths and the short wavelengths of the model [Snieder et al.,
1989, Hicks and Pratt, 2001|. However, in practice, the quality of the inversion is de-
graded due to the band-limited and offset-limited data. In the time domain, when a large
frequency range is used at once, these two components are coupled during FWI. This
coupling is a major problem for FWT [Snieder et al., 1989], as the long-wavelength update
usually has a smaller amplitude than the short-wavelength update. Therefore, when these
two components are mixed together, the velocity update is mainly driven by the short-
wavelength update. It is therefore natural to try to invert separately the long-wavelength
and the short-wavelength components of the velocity model.

Following [Xu et al., 2012] and [Zhou et al., 1995], we propose a two-step inversion
workflow achieved by decomposing the gradient formula of FWI into the long wavelength
part and short wavelength part [Wang et al., 2013|. From the literature, the FWT gradient
is computed as the cross-correlation of the forward propagated source wavefield and the
back-propagated residual wavefield |Tarantola, 1984, Lailly, 1983, Plessix, 2006]. With
two-way modeling, both down-going and up-going components are present in the propa-
gating wavefields. After decomposition of the forward and back-propagated wavefields into
their down- and up-going components, the correlation of the two initial wavefields actually
gives four terms. The back-scattered correlations provide the positions of the reflectors
(short-wavelength components), while the forward-scattered correlations give information
along the propagation paths (long-wavelength components). For Reverse-Time Migra-
tion (RTM) imaging, the forward-scattered correlations are usually removed because they
create long-wavelength artifacts in the final migrated image [Liu et al., 2011, Yoon and
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Marfurt, 2006]. But for velocity analysis, these correlations help in updating the long wave-
length components of the velocity model [Diaz and Sava, 2012, Wang et al., 2013, Brossier
et al., 2015].

In Chapter 2, I review the basics of FWI, including the objective function, and the
resolution of the direct problem using the finite-difference scheme. The calculation of the
gradient of the objective function and the available local optimization methods are also
detailed.

In Chapter 3, I outline the proposed inversion procedure, and show how the two sepa-
rate inversion steps, either for short-wavelength or long-wavelength update, are formulated.
I illustrate the method using a 1D layer model. Different wavefield decomposition tech-
niques are also introduced, one in the Fourier domain, one using the Poynting vector and
an alternative in the curvelet domain.

In Chapter 4, T apply FWI, multiscale FWI and the proposed inversion method on two
synthetic models and compare the results. I also analyze the influence of key parameters
during the inversion.

In Chapter 5, I apply FWI and the proposed inversion method on the Brunei real
dataset, and present the preprocessings on the data and the difficulties we meet with the
acoustic assumption.

Publications:

e Wang, F., Chauris, H., Donno, D., and Calandra, H. "Taking advantage of wave field
decomposition in full waveform inversion." 75th EAGE Conference & Exhibition
incorporating SPE EUROPEC 2013. 2013

e Wang, F., Chauris, H., Donno, D., Audebert, F., and Calandra, H. "Full waveform
inversion based on wavefield decomposition." SEG summer research workshop. 2015.

e Wang, F., Chauris, H., Donno, D., Audebert, F., and Calandra, H. "Full waveform
inversion based on wavefield decomposition." Geophysics. Submitted.

36



Chapter 2

Full waveform inversion

Contents
2.1 Imtroduction . .. ... ... .. e 23
2.2 Objective function . . . . ... ... . 0o oo o0 23
2.3 Forwardproblem . . . .. ... ... ... .. 000 25
2.3.1 Waveequation . .. ... ... ... o 25
2.3.2 Numerical resolution . . . . . . .. ... Lo 25
2.3.3 Boundary conditions . . . ... ..o L oL 27
2.4 Source signature estimation . .. ... ... ... 000, 28
2.5 Linearization of the inverse problem . . ... ... ... .... 29
2.6 Gradient and Hessian . . . .. ... ... ... ... .00, 29
2.6.1 Gradient . . . . .. .. 29
2.6.2 Hessian and preconditioning . . . . . . . . .. ... ... ... 31
2.7 Resolution analysis . . . ... .. ... it 32
2.7.1 Gradient formulation . . . . .. .. oo oo 32
2.7.2 Resolution analysis of different waves . . . . . . . . ... ... .. 32
2.7.3 Resolution analysis and acquisition setup . . . ... .. ... .. 36
2.8 Velocity model update methods . . . . . .. ... ........ 38
2.8.1 Steepest descent (or gradient descent) methods . . . ... .. .. 41
2.8.2 Conjugate-gradient method . . . . . . . ... ... ... ... .. 41
2.8.3 Newton and Gauss-Newton methods . . . . . ... ... ... .. 41
2.8.4 Quasi-Newton method . . . . . .. .. ... ... . 42
2.9 Initial model and non-linearities . . ... ... ... ...... 42
2.10 Conclusion. . . . . . . . o0 i it i e e e 47

37



CHAPTER 2. FULL WAVEFORM INVERSION

Résumé du chapitre 2

Un probléme inverse vise a reconstruire le modéle du sous-sol & partir d’un ensemble
de données observées. L’imagerie sismique définit un probléme inverse en géophysique.
En entrée, les données sismiques sont enregistrées aux positions des récepteurs. Les solu-
tions que nous recherchons sont les propriétés physiques du sous-sol. Le probléme directe
consiste & simuler les données sismiques dans un modéle connu. L’inversion des formes
d’ondes est une procédure pour ajuster les données. Le principe de FWI est d’utiliser tous
les types d’ondes (ondes directes, réflexions, réfractions, multiples, ...) pour résoudre les
différents paramétres du modéle (la vitesse, la densité, I’atténuation). Le champ d’onde
n’a pas besoin d’étre décomposé en temps de trajet et amplitudes par exemple.

FWI a été proposée par |Lailly, 1983] et |[Tarantola, 1984]. Cette méthode est largement
utilisée dans la sismologie globale et dans ’exploration pétroliére. Parmi les trés grand
nombre de références, nous pouvons citer [Fichtner, 2010| et [Virieux and Operto, 2009]
pour une revue tutorielle de cette méthode.

Dans ce chapitre, nous introduisons les formulations classiques de FWI, y compris la
fonction objective, la résolution du probléme direct en utilisant le schéma des différences
finies. Le calcul du gradient de la fonction objective et les méthodes d’optimisations
locales sont également détaillées. L’analyse de résolution du gradient est mise en ceuvre
pour étudier 'influence de la configuration d’inversion sur la résolution du gradient.

La fonction objective de la FWI vise & minimiser 1’écart entre les données enregistrées
et les données calculées [Tarantola, 1984]. FWI est généralement considérée comme un
probléme d’optimisation. Vue I’échelle du modéle, souvent les méthodes d’optimisation
locales sont utilisées.

Le probléme direct de FWI consiste & modéliser la propagation des données sismiques
dans un modéle donné. Les données observées sont obtenues par la résolution de ’équation
des ondes. Dans le cadre de cette thése, nous nous limitons & l’équation des ondes
acoustiques. L[’équation des ondes acoustiques peut étre résolue dans le domaine tem-
porel [Tarantola, 1984, Mora, 1987, Mora, 1989| ou fréquentiel [Pratt and Worthington,
1990, Sirgue and Pratt, 2004]. Elle peut étre résolue analytiquement ou numériquement.
Les méthodes numériques, par exemple, différences finies |Virieux, 1986, Crase et al.,
1990, Moczo et al., 2004], éléments finis [Marfurt, 1984, Choi et al., 2008], sont générale-
ment utilisées. Dans cette thése, nous utilisons la méthode des différences finies, d’ordre
4 en temps et d’ordre 8 en espace. La méthode des différences finies est un moyen naturel
pour résoudre des équations aux dérivées partielles car elle est rapide et facile & mettre
en ceuvre. Elle ne repose pas sur 'hypothése haute fréquence. Elle est donc plus générale
que les méthodes basées sur les rais et fournit une implémentation relativement efficace
par rapport aux méthodes des éléments finis. La méthode des différences finies estime di-
rectement chaque terme différentiel en utilisant le développement de Taylor sur une grille
réguliére. En plus, nous utilisons les conditions absorbantes aux bords du modéle pour
simuler un milieu infini.

Pour le probléme d’inversion de données réelles, la signature de la source est générale-
ment inconnue et doit étre estimée en méme temps que les paramétres du modéle. Dans
cette thése, nous utilisons la méthode proposée par [Pratt, 1999] pour estimer la source.

La mise a jour du modéle par FWI est obtenue avec le gradient et le Hessien de la
fonction objective. Le gradient est la dérivée de premier ordre de la fonction objective
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par rapport aux parametres du modeéle. Le gradient relie la perturbation des données
a la perturbation du modele. La mise & jour du modele est basée sur le gradient. En
fait, la direction inverse du gradient donne la plus grande pente de la fonction objective.
Le gradient peut étre calculé efficacement avec la méthode état adjoint [Plessix, 2006],
et est obtenu comme la corrélation entre le champ direct et le champ rétropropagé des
résidus. Dans ce sens, le gradient de FWI est similaire au principe d’imagerie proposée
par [Claerbout, 1971].

Le Hessien est la dérivée du deuxiéme ordre de la fonction objective par rapport au
modéle. L’inverse du Hessien permet de corriger le facteur d’atténuation géométrique et
illumination inégale, et de déconvoluer le gradient causé par la bande limitée des don-
nées [Pratt et al., 1998, Brossier et al., 2009].

La résolution de I'inversion dépend directement de la résolution du gradient. La résolu-
tion du gradient est fonction des différents types d’ondes et des dispositifs de I'acquisition.
Concrétement, les ondes directes, les ondes plongeantes, les ondes transmises et les mul-
tiples donnent une résolution plus basse que les ondes de premiére réflexion [Huang and
Schuster, 2014], donc fournissent un gradient plus basse fréquence. Pour Pacquisition,
I'inversion avec une source plus basses fréquences [Claerbout, 1985, Jannane et al., 1989
et des données de plus grands offsets [Mora, 1989, Pratt et al., 1996] fournissent un modéle
plus basse fréquence. D’ou viennent les stratégies d’inversion multi-échelles [Bunks et al.,
1995, Sirgue, 2003] et la stratégie de multi-étapes qui commence par les grands offsets
pour d’abord retrouver les grandes longueurs d’ondes du modéle.

Selon les méthodes utilisées pour calculer 'inverse du Hessien, les méthodes de mise
a jour du modéle de vitesse peuvent étre divisées en plusieurs catégories. Les méthodes
basées sur le gradient supposent que le Hessien est un diagonal ne dépendant que d’un
scalaire. Elles donnent une solution simple. La méthode du gradient conjugué combine la
direction actuelle et la direction du gradient précédente pour accélérer la convergence. La
méthode de Newton calcule le Hessien complet, tandis que le Gauss-Newton ne considére
que le premier terme du Hessien. La méthode de quasi-Newton [Nocedal, 1980] repose sur
Iestimation du Hessien, permettant de profiter de 'information contenue dans le Hessien
aux itérations précdentes, sans payer le prix d’une vraie itération du Newton complet.
L-BFGS est une variante de BFGS. Elle garde en mémoire seulement un nombre limité
d’itérations, généralement entre 3 a 15 itérations, étant moins exigeante en mémoire que
BFGS. L’algorithme L-BFGS sera utilisé dans les applications présentées dans les chapitres
4 et 5 de cette theése.

Le succés des méthodes d’optimisation locales dépend de 'exactitude du modéle initial.
Comme les fonctions objectives peuvent présenter des minima locaux, le modéle initial
doit étre situé proche du minimum global pour assurer la convergence . Si le déphasage
entre les données calculées et les données observées ne dépasse pas la moitié de la période
du signal, les méthodes d’optimisation ajusteront ces deux données sans ambiguité de
phase. Sinon, les méthodes d’optimisation ajusteront ces deux données avec un déphasage
d’une ou plusieurs périodes, provoquant la convergence vers un minimum local. Ceci est
le phénoméne de “cycle-skipping”. Le modéle initial pour la FWI peut étre obtenu par
tomographie du temps de trajet ou par 'analyse de vitesse par migration. Pour atténuer
la non linéarité, la méthode multi-échelle est souvent utilisée.
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2.1 Introduction

An inverse problem aims at reconstructing the underlying model from a set of observed
data. Seismic imaging defines an inverse problem in geophysics. The input is the recorded
seismic data at receivers positions, and the solution we search for are the physical prop-
erties of the subsurface. The forward problem consists of simulating the seismic data in
a known model. Full Waveform Inversion (FWI) is an inverse problem and is defined
as a data-fitting procedure. The principle of FWI is to use all types of waves (direct
waves, reflections, refractions, and multiples) to resolve different model parameters (veloc-
ity, density, attenuation). The information of the complete wavefield: travel time, phase
and amplitude are all taken into consideration. Full waveform inversion was pioneered by
[Lailly, 1983] and [Tarantola, 1984]. This method is widely used in global seismology and
in oil exploration. Among the extremely large number of references, we refer to [Fichtner,
2010] and [Virieux and Operto, 2009] for a tutorial review of the method.

In this chapter, I review the classic Full Waveform Inversion (FWI) formulation, includ-
ing the objective function, the resolution of the direct problem using the finite-difference
scheme. The derivation of the gradient of the objective function and the local optimization
methods are also detailed. The resolution analysis of the gradient is carried out to study
the influence of inversion setup on the gradient resolution.

2.2 Objective function

FWI is stated as a non-linear optimization problem. [Tarantola, 2005] demonstrates that,
by assuming Gaussian distribution of the data uncertainties, the maximum of the proba-
bility density function of the model is achieved by minimizing the least-squares functional
of data residual. Based on this probabilistic study, the objective function of FWI is
formulated, aiming at minimizing the differences between simulated and observed data
with the o norm. The objective function J(m) in the time domain is therefore written
as [Tarantola, 1984]:

J(m) = %Z/O dt [ (m)(s,T, 1) — 4 (s, 1, )] (2.1)

where m is the model parameter, s = (s,,s,) and r = (r,,r,) are the shot and receiver
positions, T is the recorded time length, ¢ is the time variable, d°* are the simulated data,
and d° are the observed data, both recorded at the surface. The least-squares differences
are summed over all the sources s and all the receivers r.

To simplify, equation (2.1) can be re-written in vectorial notation as:

1
J(m) = A" - Ad. (2.2)

with Ad = d°? — d°* denoting the data residual, and (.)! denoting the transpose operator.
In the time domain, the seismic data are represented by the seismograms of dimension

n; X n,, where n; is the number of recorded time samples and n, is the number of seismic

traces within a shot gather. Figure 2-1 displays an example of a seismic shot gather.
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Offset (km)
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Figure 2-1: An example of seismic data. We can observe the direct wave and the reflected
waves.
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The objective of the inversion is to minimize the functional J(m) in equation (2.2) by
modifying the model m. In order to ease the extraction of information from the data and
to improve the algorithm convergence, a weight W is usually applied to the data. The
weighted least-squares objective function is defined as:

1
J(m) = §AdtWtWAd. (2.3)

Commonly used weights W are data selection functions that, for example, give emphasis
to long/short offsets, select events around the first arrival, etc...

2.3 Forward problem

2.3.1 Wave equation

The forward problem in FWT consists of modeling the seismic data propagation in a given
model m. The simulated data d°* is obtained by solving the wave equation. The physical
law relating the model parameters and the data is the visco-elastic wave equation. For the
scope of this thesis, we limit ourselves to the simplest case, by considering the constant
density acoustic approximation of the wave propagation, which reads:

1 0%u

) —Au=3S5, (2.4)
where ¢ is the velocity, u is the wavefield, and S is the source term. wu at the surface
provides d°®. In the acoustic approximation, u is generally the pressure. We discuss in
Chapter 4 the effect of variable density.

2.3.2 Numerical resolution

The acoustic wave equation can be resolved in the time domain [Tarantola, 1984, Mora,
1987, Mora, 1989] or in the frequency domain [Pratt and Worthington, 1990, Sirgue and
Pratt, 2004]. It can be resolved analytically or numerically. In the time domain, the nu-
merical resolution of the partial differential wave equation could be achieved by numerical
methods, such as finite difference [Virieux, 1986, Crase et al., 1990, Moczo et al., 2004,
finite element [Marfurt, 1984, Choi et al., 2008], discontinuous Galerkin [Cockburn et al.,
2000, Dumbser and Kiser, 2006]. [Virieux et al., 2009] and [Plessix, 2007, Plessix, 2009]
present some analyses of the complexity of different numerical modeling methods.

The finite-difference method is a natural way to solve partial differential equations. It
is not based on high frequency assumption, thus it is more general than ray-based methods
[Cerveny et al., 1977], and it provides a relatively efficient implementation compared to
finite-element approaches. The method directly estimates each differential term using the
Taylor expansion on a regular grid. Suppose that the 2D model dimension is Mmy,04e X
Nmodel, the spatial samplings are Ax and Az, the recording time is ¢, the time step is dt
and the number of time step is ny, then the 2" order Taylor expansion of a wavefield u
at the n'® time step provides the estimation of the 2"¢ order temporal derivative of u as
follows:
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n 1 -1
OPulwy, t")  wgy = 2uf + g

ot? o At? ’

where 7, 7 are the spatial coordinates, and t" is the temporal coordinate. Similarly, we get

the 2" order spatial derivative of u:

(2.5)

n n n n n
(ufyy; +ughyy) — 4udy + (ufy; +uf )
Ah? ’

Au(x;;,t") ~ (2.6)

by setting Ah = Az = Az.

Inserting equation (2.6) and equation (2.5) into equation (2.4) gives the explicit res-
olution of u at time step n + 1 and spatial position (i,7) using values of u at previous
iterations.

n+1

o AP . . . . ) r o
uij + uij—l—l + ui—lj + uij—l - 4“1]) +c At*S. (27)

= 2“?;‘ — Uy W(ui—klj

In this work we use the scheme with 4* order in time and 8 order in space for the
wave propagation modeling. It is based on the same principle as the above formulations.
This wave propagation modeling operator is auto-adjoint as explained later.

In this conventional finite-difference implementation, 5 coefficients (including the cen-
tral position and the 4 neighboring positions on the standard Cartesian coordinate system)
are considered for 2D modeling and 7 coefficients (including the central position and the
6 neighboring positions on the standard Cartesian coordinate system) are considered for
3D modeling. [Operto et al., 2007] propose to use not only the neighboring positions on
the standard Cartesian coordinate system, but also those on the 45° rotated Cartesian
coordinate system. For this implementation, 9 coefficients are considered for 2D modeling
and 27 coefficients are considered for 3D modeling.

[Virieux, 1986] first introduced the finite-difference scheme on a staggered grid for
modeling the seismic rupture problem. Note that for constant density, velocity and pres-
sure are defined at the same position while for variable density, the density is known at
half-integer positions, and the velocity is known at integer positions. This staggered grid
scheme resolves the problems with instabilities in models with high velocity contrasts and
with grid dispersion in media with high Poisson ratio, at least for the conventional grid
finite difference scheme.

The spatial and temporal sampling should be chosen carefully to avoid numerical dis-
persion and to ensure the stability of the solution. The spatial sampling Ah is defined

such that \

nx fmaz DN

where \,,;, corresponds to the smallest wavelength, which depends on the maximum fre-
quency fie: and the minimum velocity V,,;,. n, denotes the number of grid points per
wavelength. The number of points per wavelength depends on the spatial and temporal
order in the Taylor expansion, usually 5.5 points per wavelength is chosen for order 8 in

space and order 4 in time.

Ah <

The temporal sampling At is defined by the Courant-Friedrichs-Lewy (CFL) condition
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to ensure the stability of the forward propagation:

1 1
Atvm\/(A‘T)2 A <1, (2.9)

where V)., i the maximum velocity, and Az and Az are the spatial discretizations.

The spatial discretization of the finite difference method is achieved on a regular grid,
making it simple to implement. Nevertheless, the utilization of regular grid also gives
rise to certain limitations as the spatial sampling is fixed and not adapted to local phys-
ical properties, thus the method is not as flexible as numerical methods using irregular
grids, such as finite elements and discontinuous Galerkin. |[Marfurt, 1984| compares the
accuracy of finite-difference and finite-element for wave propagation modeling and ob-
serves that finite-element scheme better models curvi-linear interfaces and thin beds than
finite-difference scheme. [Lombard and Piraux, 2004] propose the extension of the finite-
difference method with floating interfaces on regular grids. However, for the scope of this
work, we consider the classical finite-difference implementation.

2.3.3 Boundary conditions

Equation (2.4) defines the wave propagation in an infinite domain. However, because of
the limited acquisition extension and of the limited computational capacity, the models
we consider are usually limited in a finite domain. If we do not define any boundary
condition at the borders of the model, waves will be artificially reflected from the borders
of the model. To attenuate these parasite waves, spatial boundary conditions must be
applied.

Absorbing boundary conditions are widely used to simulate an infinite medium. Ideally,
absorbing boundary conditions should let pass the wavefields coming out of the model
but prevent wavefields coming back into the model. Some types of absorbing boundary
conditions rely on the modification of local attenuation properties by adding additional
layers around the model [Cerjan et al., 1985]. The additional layers work as sponges.
However, these sponges layers do not always work perfectly. Waves impinging with normal
incidence are optimally absorbed by the sponges, however parasite reflections would appear
for other incident angles [Brossier et al., 2009].

[Berenger, 1994] introduced a highly effective absorbing boundary condition based on
the Perfectly Matched Layer (PML) for electromagnetics. In the continuous limit, it
is proven that a PML interface between a regular medium and the fictitious perfectly
matched medium completely absorbs incident waves from the regular medium, regardless
of their incidence angle.

To be realistic, free surface boundary condition is also required, which describes the
free surface of the Earth, thus simulating reflections from the Earth-air interface. However,
in this thesis, I do not define the free surface, and I consider absorbing boundary layers
all around the model.
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Figure 2-2: The original Ricker wavelet (black) and the estimated source (red) in the

frequency domain (left) and in the time domain (right).

2.4 Source signature estimation

For a real data inversion problem, the source signature is usually unknown and has to be
estimated along with the model parameters. [Tarantola, 1984] estimates the source using
the adjoint-state method along with the other model parameters. The source wavelet
is resolved iteratively using the gradient and the Hessian of the objective function with
respect to the source wavelet.

|Pratt, 1999] propose a source signature estimation method for each discrete frequency

during the iterative inversion procedure, by resolving a linear inverse problem as the

relationship between the wavefield and the source is linear (refer to equation (2.4)). The
solution of the linear inverse problem is given by:
utd*

S = o (2.10)
where u = d°® is the simulated wavefield in the actual velocity model and d = d°* is the
observed wavefield. The source signature S could be estimated during the inversion pro-
cedure once the forward wavefield is modeled. In principle, the source should be estimated
at each iteration of the inversion process. For the synthetic examples shown in Chapter
4, the source is defined as a given Ricker wavelet, while for the real data test in Chapter
5, the source wavelet is estimated according to equation (2.10).

We have validated the implementation of the method described in equation (2.10) on
a 2D synthetic example. A Ricker wavelet with central frequency of 12 Hz is used for
modeling the observed data. The initial guess of the source wavelet is a Dirac wavelet
with frequency bandwidth between 0 Hz and 40 Hz. For each frequency between 0 Hz
and 40 Hz, we estimate the source wavelet using equation (2.10). Figure 2-2 displays the
initial Ricker wavelet and the estimated wavelet in the frequency domain and in the time
domain. We note that the reconstructed source wavelet is very close to the original one.
The velocity is correct at the surface in this case.

Some authors [Lee and Kim, 2003, Zhou and Greenhalgh, 2003] propose to normalize
the wavefield to make the inversion independent of the source function, such that the
source estimation step is not needed for these methods.
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2.5 Linearization of the inverse problem

FWI is considered as a non-linear optimization problem. Usually a local optimization
method is used. If we assume that the data is locally approximately linear with the model
and that the initial model my is close to the true one, then the objective function is locally
approximately quadratic in the neighbourhood of the starting model mg, and we search
for the minimum of the objective function in the neighbourhood of mg, with

m = mg+ Am. (2.11)

Suppose the model perturbation vector Am is relatively small compared to model vector
m, then the second-order Taylor expansion gives:

O(VoJ)

1
J(m) = J(mog+Am) = J(mo)+VmJ(m0)Am+§Amt .

(mo) Am+O0(Am?®). (2.12)

We denote the Hessian matrix as

(V)

H—
om '’

(2.13)
and we express the derivative of J with respect to m using equation (2.12) with the locally
linear assumption:

Vid(m) =V, J(mg) + H(mg)Am. (2.14)

The minimum of the objective function is reached at m if the gradient at this location is
zero. By setting V,,J(m) to zero we have:

Am = —H 'V,,J(mg). (2.15)

The first term H ! is the pseudo-inverse of the Hessian matrix. The second derivative term
is the gradient vector of the objective function. By substituting equation (2.15) into equa-
tion (2.11), we get the Newton solution that allows updating the initial model [Tarantola,
1984, Virieux and Operto, 2009].

If the objective function is quadratic, leading to the linear inverse problem case, the
convergence of the problem could be achieved in one iteration using equation (2.15). If
the objective function is not exactly quadratic, the Newton method will not converge in
one iteration, and the problem must be resolved iteratively to compensate the problem
non-linearity. In this case, the model update is given by:

m* T = m* — B (m*)V,,,J(m"). (2.16)

2.6 Gradient and Hessian

2.6.1 Gradient

Equation (2.16) allows the calculation of model perturbation at each iteration after the
computation of the gradient and the Hessian matrix. The gradient is a vector with the same
dimension as the model. It relates the data perturbation with the model perturbation. It
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is the first-order derivative of the objective function J with respect to the model parameter
m.

adcal( )
om)

where F' is the Fréchet derivative matrix. If we consider the linear direct problem, F
represents the Born modeling operator, with Ad = FAm [Tarantola, 2005].

G(m) = Vp,J(m) = { } (d'(m) — d°**) = F(m)'Ad, (2.17)

As shown in equation (2.15), the resolution of local optimization problems is based
on the gradient. In fact, the opposite direction of the gradient gives the largest slope of
the objective function. [Pratt et al., 1998| gives a physical interpretation of the gradient
vector by illustrating the partial derivative wavefield F' using a point diffraction model.
They conclude that the partial derivative wavefield represents forward propagation using
virtual sources at the diffracting locations. The gradient is the correlation of the partial
derivative wavefield and the residual vector. This correlation tests the similarity between
these two wavefields and allows getting the diffracting points which give rise to the data
residuals. These diffracting points are initially not present in the model.

[Sirgue, 2003] gives an interpretation of the gradient vector by performing the Singular
Value Decomposition (SVD) on the Fréchet derivative matrix. He expresses the gradient
vector in the model eigenvector basis and concludes that the gradient vector is the sum
of the projected components of true model perturbation along the model eigenvectors,
multiplied by the model eigenvalues. Thus, the gradient direction is the direction of the
true model perturbation in a stretched model space.

Instead of calculating the Fréchet derivative F', which is not trivial, the gradient can be
efficiently calculated with the adjoint-state method [Plessix, 2006], by using the augmented
functional and Lagrange multipliers. With the adjoint-state method, and with the fact
that the modeling operator is auto-adjoint, the computation of the gradient of the objective
function J is simplified and is given by:

G =V, J(m :——Z/ dtQ(s <St> ~P®Q. (2.18)

From equation (2.18), we can observe that the construction of the gradient requires two
wavefields, the forward propagated wavefield P, resolving the direct wave equation (2.4),
and the back-propagated wavefield (), satisfying the adjoint wave equation:
1 0%Q

— = — AQ = d™ — 2.19
with the data residual d°* — d°* as the source term. This equation is back propagated
with @ (e = 0). The gradient G is computed as the cross-correlation of P and Q. This
formula is similar to the migration imaging principle of [Claerbout, 1971]. The gradient
obtained after the first iteration of the local optimization looks like a migrated image
obtained by Reverse-Time Migration (RTM).
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2.6.2 Hessian and preconditioning

The Hessian is a matrix of dimensions Mumeder X Mmoder- 16 18 the second-order derivative of
the objective function J with respect to the model parameter m:

2
= 86;]—”(;1) = F'(m)F(m) + al:;—gtn)Ad. (2.20)

From equation (2.15) we observe that the Hessian relates the gradient with the true
model perturbation. The gradient only does not give a correct model update direction as
the computed gradient may suffer from geometrical spreading and characteristics from the
source and acquisition setup. The inverse of Hessian in equation (2.15) helps to correct
the geometrical spreading, uneven illumination and deconvolves the gradient [Pratt et al.,
1998, Brossier et al., 2009].

Referring to equation (2.20), we can explicitly separate the Hessian into two terms. Of
the two terms, the first term is straightforward to compute if the Fréchet derivatives F are
available, while the second term is much more difficult to compute. [Métivier et al., 2013]
propose a matrix-free method to compute the full Hessian term using 2D adjoint-state
method and inner linear optimization. If the full inverse of Hessian is computed, it yields
the Full-Newton method. If only the first term is considered, it is the approximate Hessian
and it yields the Gauss-Newton method [Pratt et al., 1998].

The diagonal terms of the approximate Hessian of the Gauss-Newton solution contain
the zero-lag autocorrelations and therefore represent the square of the amplitude of the
partial-derivative wavefield. Applying the inverse of these diagonal terms to the gradient
partly compensates the geometric spreading effect. In the framework of surface seismic
experiments, this scaling provides a good balance between shallow and deep perturbations.
The off-diagonal terms of the approximate Hessian are computed by correlation between
partial-derivative wavefields associated with different model parameters.

For 1D media, the approximate Hessian is a band-diagonal matrix, and the numerical
bandwidth decreases as the frequency increases. For a finite range of frequencies, however,
the Hessian is no longer diagonal and not even diagonally dominant [Chavent and Plessix,
1999, Pratt et al., 1998]. The off-diagonal elements of the approximate Hessian account
for the limited-bandwidth effects related to the source term. Applying its inverse to
the gradient can be interpreted as a deconvolution of the gradient from these limited-
bandwidth effects. This deconvolution of gradient enables to focus and sharpen the FWI
images [Pratt et al., 1998].

The explicit resolution of the inverse of the approximate Hessian matrix is difficult, as
the matrix size is too large to be directly used in practical applications. Sometimes, it
is even impossible, as the Hessian may be not positive and requires regularization. Some
authors propose to consider only the diagonal terms of the approximated Hessian [Shin
et al., 2001, Chavent and Plessix, 1999]. But as the gradient of the least-squares functional
multiplied by a diagonal matrix cannot perfectly deconvolve the band-limited effect, iter-
ations are needed to gradually construct the inverse of the approximate Hessian [Lambaré
et al., 1992, Nemeth et al., 1999]. Some approximations of the diagonal of the approximate
Hessian are also proposed to construct amplitude-preserving migration images [Shin et al.,
2001, Plessix and Mulder, 2004].

[Virieux and Operto, 2009] illustrates the scaling effect performed by the diagonal

H(m)
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elements of the approximate Hessian and the deconvolution effect performed by the off-
diagonal elements of the approximate Hessian. They show that the inversion image is
sharper when using the approximate Hessian instead of setting it as a scalar.

It is also possible to precondition the gradient without using the Hessian, but by
exploiting some a priori information. For example, weighting the data residuals in time
or in depth linearly is an appropriate way to compensate the geometrical spreading.

2.7 Resolution analysis

2.7.1 Gradient formulation

The gradient of the objective function of FWI is calculated as the cross-correlation of
the forward wavefield P and back-propagated wavefield ). The gradient formulation
(equation (2.18)) can also be written in the frequency domain using Green’s function as
[Sirgue and Pratt, 2004]:

G =—w?) ) Re(Gy(x,8)G(x,r)Ad(r,s)), (2.21)

where Gy(x,s) and Gy(x,r) are the Green’s functions for the source and receiver wavefield,
and Ad is the data residual at the receiver positions.

As the velocity update of FWI is based on the gradient, the resolution analysis of the
gradient is necessary to study the influence of different parameters on the spectrum of
the gradient, and to find the reason why FWI fails to recover the long wavelengths of the
model.

2.7.2 Resolution analysis of different waves

|[Huang and Schuster, 2014| derive formulas of resolution limits for different types of waves,
including diving waves, primary reflections, multiple reflections, and diffractions. The
resolution analysis was initially realized to study seismic migration. However we can
benefit from it for the spectral analysis of waveform inversion. Here, I give a summary of
the analysis and the conclusions. Readers could refer to [Huang and Schuster, 2014] for a
detailed derivation.

Resolution analysis of a scattering point

In the framework of the inverse-scattering and diffraction tomography [Devaney, 1982,
Miller et al., 1987], the spatial frequency vector k sampled in the image at a diffraction
point is related to the wavelength A and the half-scattering angle 6. We denote the
directions of the the source and the receiver plane wave by dg and d,.. With the assumption
of the far field, and by replacing the Green’s function with the plane-wave approximation,
for a single frequency we have:

Go(x,5) ~ exp(ikods - ),

Go(x,1) =~ exp(ikod, - X). (2.22)
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Figure 2-3: Wavenumber illumination. One source-receiver pair, one scattering point
and one frequency in the data provides one wavenumber in the image space [Huang and
Schuster, 2014].

Inserting equation (2.22) into equation (2.21), yields

G=-w"Y ) Re(exp(—iko(ds + dy))Ad(r,s), (2.23)

The coverage of the wavenumber k of the gradient at the scattering point (Figure 2-3) is
defined according to:

cos

2
k = ko(ds +d,) = 2 cosbn = 4

2.24
: n, (224

where ¢ is the velocity and w is the angular frequency. According to equation (2.24),
the resolution is optimal for zero-offset data, and is equal to % For FWI, low frequency
(small w) and long offset (large #) data provide long-wavelength velocity update, while
high frequency (large w) and short offset (small §) data provide short-wavelength velocity
update. The resolution analysis of other types of waves is also based on this single-
scattering resolution analysis.

Resolution analysis of primary reflections

For primary reflections, in the far-field approximation, the horizontal resolution limit Ax
and the vertical resolution limit Az (Figure 2-4e) are defined according to:

Ar = 22
4X
{ e (2.25)

where Z is the reflector depth, X is the source-receiver offset, and A is the wavelength.
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Figure 2-4: Approximate resolution limits for (a) diving waves, (b) and (c) reflection-
related transmission, (d) diffraction-related transmission and (e) reflection migration
[Huang and Schuster, 2014].
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Figure 2-5: First Fresnel zone for the specular reflection [Huang and Schuster, 2014].

Resolution analysis of diving waves

For diving waves, the vertical limitation Az is equal to half width of the first Fresnel zone
at the point middle-way between the source and the receiver (Figure 2-4a). It depends on
the travel length X and the wavelength \:

20z = VX, (2.26)

Resolution analysis of reflection-related transmission

The reflection-related transmission provides the rabbit-ear wavepaths shown in Figure 2-
4b and 2-4c. The resolution analysis is similar to that of the diving waves. It is calculated
using the mirror-reflection scheme (Figure 2-5) as if the receiver is located at the mirror
position (0, 2d) in a homogeneous model. The resolution limit 2Ar perpendicular to the
ray at the midpoint is equal to the width of the first Fresnel zone, given by:

2Ar = VLA, (2.27)

where L is the travel length and A is the wavelength.

Resolution analysis of diffraction-related transmission

The diffraction-related transmission is similar to the reflection-based transmission, except
that the diffraction point is considered as the virtual receiver and the secondary source.
The propagation distance is halved compared to the reflection transmission, leading to a
narrower wavepath with the same travel length L and wavelength A. The resolution limit

is given by (Figure 2-4d):
20Ar = \/L)\/2. (2.28)

Resolution analysis of multiple-related transmission

The multiple-related transmission simulates the repeated wavepath between the source and
the reflector and between internal reflectors. The resolution limit is computed according
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Figure 2-6: Wavepath for the first-order free-surface multiple [Huang and Schuster, 2014].

to the mirror-reflection scheme (Figure 2-6 and 2-7):

2Ar = VLA, (2.29)
where L is the travel length and A is the wavelength.

a). Diffractor and interbed multiples b). Mirror diffractor sources
VVV ¥ AL,
Ly
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diffractor mirror thicker with
diffractor der of
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multiple

Figure 2-7: a) Ray diagram for interbed multiples generated by a diffractor in a thin layer
and b) the associated mirror sources diagram [Huang and Schuster, 2014].

From the previous analysis, we conclude that the resolution limit of different waves
mainly depends on the scattering angle, the wavelength, and the wave propagation dis-
tance. These parameters are function of the seismic acquisition setup. For example, long
offsets are favorable for recording wide-angle and long-propagation distance data.

2.7.3 Resolution analysis and acquisition setup

In this section, we show the influence of the source bandwidth and the data offset range
on the wavenumber components of the FWI gradient through a 1D layer model example.
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Figure 2-8: 1D exact velocity model.

The true model is shown in Figure 2-8. The model dimensions are 1.7 km by 0.85 km.
The model consists of a strong velocity contrast, and the velocities for the top layer, middle
layer and bottom layer are 2 km/s, 3 km/s and 2 km/s, respectively. The initial model
is a homogeneous model at 2 km/s. Sources and receivers are evenly distributed at the
surface, with the source spacing being 17 m and receiver spacing being 8.5 m.

Resolution analysis and source bandwidth

We perform conventional FWI in the time domain for the 1D layer model. The initial
model is homogeneous at 2 km/s. We analyze four FWI tests with different source wavelets.
These four source wavelets are all Ricker wavelets, but the central frequencies for the four
tests are respectively 4 Hz, 8 Hz, 12 Hz and 16 Hz (Figure 2-9). Here, low frequencies
are present in these source wavelets. The inversion is performed in the time domain with
all frequencies mixed together. Figure 2-10 shows the gradients calculated at the first
iteration of FWI for each test and the wavenumbers of the vertical slice taken in the
middle of each gradient model. We observe that the spectrum of the gradient is closely
related to the bandwidth of the source wavelet and the frequency bandwidth in the gradient
increases with the increase of the frequency bandwidth in the source wavelet. This result
corresponds to equation 2.24 and to the conclusion that for the same acquisition geometry,
lower frequency data provide longer-wavelength velocity update, while higher frequency
data provide shorter-wavelength velocity update. In order to retrieve the long wavelengths
of the model, low-frequency data are favorable [Sirgue, 2003]. And when low frequencies
are missing from the data, which is often the case in real data case, the FWI usually fails
to retrieve the long-wavelength part of the model [Claerbout, 1985, Jannane et al., 1989].

Resolution analysis and offset

[Mora, 1989] and [Pratt et al., 1996] show that FWI acts in two modes, a migration
mode, related to the short wavelengths of the model which could be obtained by iterative
migration, as well as a tomography mode, related to the long wavelengths of the model
which could be retrieved with the benefit of long-offset data.

We compute the gradient of FWI using the 1D layer model of Figure 2-8, and using
data with different offset ranges. The central frequency of the Ricket wavelet is 12 Hz
and the initial model is homogeneous. The offset ranges are respectively [0-0.17| km,
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Figure 2-9: Four Ricker wavelets. From top to bottom and from left to right, the central
frequency is respectively 4 Hz, 8 Hz, 12 Hz, and 16 Hz.

[0.34-0.51] km, [0.68-0.85] km. The gradients at the first iteration and the wavenumbers
of the vertical slice taken in the middle of each gradient are shown in Figure 2-11. As
expected, the long-offset data provides longer wavelengths than short-offset data.

From the analysis in sections 2.7.2 and 2.7.3, we conclude that in order to retrieve
the long-wavelength components of the model, low frequency and long-offset data are
important [Sirgue, 2006]. Based on this idea, offset-windowing [Mora, 1989, Pratt et al.,
1996] strategies are proposed for FWI. Moreover, reflection-related transmission [Xu et al.,
2012, Tang and Lee, 2013, Wang et al., 2013, Brossier et al., 2015], and multiple-related
transmission [Staal et al., 2012] can also be taken into consideration for the reconstruction
of the long-wavelength model.

2.8 Velocity model update methods

Supposing that the initial model mg is situated in the basin of attraction of the global
minimum of the objective function, the local optimization methods should be able to
converge to this global minimum in a limited number of iterations. When added to the
initial velocity, the velocity perturbations calculated using equation (2.11) lead to an
updated velocity model, which is used as the starting model for the next iteration.

Depending on the methods used to calculate the Hessian matrix, the velocity model
update methods could be divided into several categories.
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Figure 2-10: (Left) Gradient of the first iteration of FWI with source wavelets displayed
in Figure 2-9. The central frequency is respectively 4 Hz, 8 Hz, 12 Hz, and 16 Hz. (Right)
The bandwidth of the vertical slice taken at the middle of each model on the left.
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2.8.1 Steepest descent (or gradient descent) methods

The gradient descent method assumes that the Hessian is a scalar, giving a simple solution
for the model perturbation vector:

Am = —aG. (2.30)

This method does not require the estimation of the inverse of the Hessian and only
the descent step length a needs to be determined. The role of the step length can also be
considered as converting the unit of the gradient vector G to model unit [Pratt et al., 1998].
Generally, « is determined by line-search methods [Nocedal, 1980, Gauthier et al., 1986,
Tarantola, 2005] by minimizing the objective function with respect to a. Alternatively, «
can be estimated by quadratic or cubic interpolation [Vigh et al., 2009]. The idea is to
determine a pair (aq,q9) such that

{ J(m* + a1 Am) < J(m*) (2.31)

J(mF + asAm) > J(m* + a3 Am)

The quadratic interpolation passing through these three points (m*, m* + ayAm, m* +
asAm) provides the minimum of the parabola in the interval [0,as|, giving the optimal
descent step cvopt.

Knowing that the gradient represents the direction of the steepest descent of the objec-
tive function, we can always find an « that reduces the objective function in the opposite
direction of the gradient.

2.8.2 Conjugate-gradient method

The convergence rate of the gradient descent method is generally quite slow as the suc-
cessive directions estimated by the gradient are orthogonal if the step length is optimally
chosen. The convergence rate can be improved by the conjugate-gradient method, which
combines the current gradient direction with the previous gradient direction to accelerate
the convergence rate |[Mora, 1987, Crase et al., 1990, Hu et al., 2011].

The current gradient direction P* uses the present gradient direction G* and previous
conjugate-gradient direction P*~!:

Pk = GF + gFpPFL (2.32)

There are various ways to determine 3. One well-known choice of [ is expressed as [Polak
and Ribiere, 1969|
(Gk o Gk—l)tGk

gt = (GF-1)IGk-1

(2.33)

2.8.3 Newton and Gauss-Newton methods

The Newton method computes the full Hessian, while the Gauss-Newton only considers
the first term of the Hessian in equation 2.20 [Pratt et al., 1998, Virieux and Operto,
2009]. These two methods have a faster convergence rate than the previously described
gradient-based methods but they require the calculation of extra direct problems for the
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calculation of the inverse of the Hessian and are considered quite time-consuming for real
data inverse problems. [Métivier et al., 2013| propose a matrix-free method to compute
the full Newton term using 2D adjoint-state method and inner linear optimization.

2.8.4 Quasi-Newton method

The quasi-Newton method relies on the estimation of the Hessian, allowing to take advan-
tage of the information contained in the Hessian without paying the price of a full Newton
iteration. The BFGS (named after Broyden, Fletcher, Goldfarb and Shanno) algorithm
[Nocedal, 1980] estimates the inverse of the Hessian from gradients and objective functions
of previous iterations and increases the precision of the estimation along with iterations.
The limited-memory version (L-BFGS) of the algorithm [Nocedal, 1980] is a variant of
BFGS. It keeps in memory only a limited number of iterations, typically between 3 to 15
iterations, being less demanding in memory than BFGS. The L-BFGS algorithm will be
used in the applications presented in Chapter 4 and Chapter 5 of this thesis.

[Pratt et al., 1998] review different optimization methods and compare their quality
and convergence rate. |Pratt et al., 1998] show that the gradient-based methods are less
robust than the Newton-based methods, and may fail to converge no matter how many
iterations. |Métivier et al., 2012, Castellanos et al., 2015| compare the FWT results using
Newton, Gauss-Newton and quasi-Newton methods. Figure 2-12 shows an example of the
optimization scheme for different optimization methods.

2.9 Initial model and non-linearities

The success of the local optimization methods depends on the accuracy of the initial model.
As the objective functions may present some local minima, the initial model should be
located in the neighbourhood of the global minimum to ensure the success of convergence.
If the phase shift between the calculated data and the observed data does not exceed half
period of the signal, the optimization method will adjust these two data without phase
ambiguity. Otherwise, the optimization method will adjust these two data with a phase
shift of one or several periods (Figure 2-13), causing the convergence to a local minimum.
This is the so-called cycle-skipping phenomenon.

The initial model for FWT can be obtained by traveltime tomography [Bishop et al.,
1985, Pratt and Chapman, 1992, Billette and Lambaré, 1998, Woodward et al., 2008]
or Migration Velocity Analysis (MVA) [Symes and Carazzone, 1991, Chauris and Noble,
2001, Sava and Biondi, 2004]. Traveltime tomography uses the traveltimes to estimate
the wave propagation velocity. Generally, RMO events are picked after prestack depth
migration [Guillaume et al., 2008]. Migration Velocity Analysis (MVA) is performed in the
image domain and aims at building a relationship between migrated image perturbation
and model perturbation. This approach has the advantage of not requiring picking.

In waveform inversion, strategies of using different data at different stages of inver-
sion are proposed to mitigate the non-linearity of the problem. For the same acquisition
geometry, lower frequency data provide longer-wavelength velocity update, while higher
frequency data provide shorter-wavelength velocity update [Sirgue, 2003]. Based on this
idea, [Bunks et al., 1995] perform the inversion in the time domain using scale decomposed
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'l
c) d)

Figure 2-12: Comparison of the convergence rate of local methods applied on a 2D linear
inverse problem. The problem is solved using a) Gauss-Newton, b) gradient descent,
¢) preconditioned gradient and d) conjugate-gradient methods. The gradient in ¢) was
preconditioned with the diagonal term of the inverse Hessian [Sirgue, 2003].

source and data, starting from the lowest available frequencies and gradually increasing the
frequency bandwidth. This point is also illustrated in [Mulder and Plessix, 2008] by show-
ing that the basin of attraction of the objective function becomes narrower for increasing
frequencies. Similarly to [Bunks et al., 1995|, the multiscale inversion can be implemented
in the frequency domain using increasing frequencies [Sirgue, 2003, Mulder and Plessix,
2008]. Guidelines to properly choose successive frequencies or frequency ranges are also
provided [Sirgue and Pratt, 2004, Brossier et al., 2009]. The elastic inversion using the
multiscale scheme is carried out by |Brossier et al., 2009]. Figure 2-14 to Figure 2-19 show
an example that compares the result of conventional FWI and multiscale FWI through
a 2D synthetic model. The true model (Figure 2-14) is a constant gradient model with
a circular anomaly. The initial model (Figure 2-15) is just the constant gradient model.
The circular velocity anomaly is missing. The source wavelet used for FWI is a Ricker
wavelet with central frequency of 8 Hz. The result of FWT after 100 iterations is displayed
in Figure 2-16, and the model perturbation with respect to the initial model is displayed
in Figure 2-17. Compared to the exact model, only the edges of the circular anomaly are
retrieved. FWTI fail to recover the long-wavelength part inside the anomaly. For the multi-
scale FWI, we use 7 singular frequencies: 1.8 Hz, 2.5 Hz, 3.5 Hz, 5 Hz, 7 Hz, 10 Hz, 14 Hz.
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Figure 2-13: Principle of cycle-skipping problem [Virieux and Operto, 2009]. If the phase
mismatch is less than one half of the period, the local optimization methods could adjust
the correct phase. In the contrary case, the local optimization methods adjust these two
signals with one period shift and the inversion falls into a local minimum. [Virieux and
Operto, 2009]

For each frequency, we perform 25 iterations of FWI. The wavefield is initially computed
in the time domain and then the chosen discrete frequency is extracted. Compared to the
conventional FWI, the multiscale FWI (Figure 2-18 and Figure 2-19) better recovers the
long wavelength of the anomaly.

Another strategy to avoid local minima is data-windowing [Sirgue, 2003, Brenders
and Pratt, 2007|. Tt consists of inverting the early arrivals first as they provide lower
wave numbers in the velocity gradient [Sears et al., 2008]. They mainly update the long-
wavelength components of the shallow part of the model [Sirgue, 2003]. Time windowing of
early arrivals is achieved by damping the amplitudes of later arrivals in the data residuals.

The strategy of selecting data with different offsets is also proposed. [Mora, 1989] and
[Pratt et al., 1996] observe that the short wavelengths of the model could be obtained
by iterative migration, and the long wavelength of the model could be retrieved with
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Figure 2-14: Exact velocity model.
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Figure 2-15: Initial velocity model.
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Figure 2-16: Conventional FWI result.
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Figure 2-17: Velocity perturbation obtained with conventional FWI.
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Figure 2-18: Multiscale FWT results. From top to bottom, the frequency used is 1.8 Hz,
2.5 Hz, 3.5 Hz, 5 Hz, 7 Hz, 10 Hz, 14 Hz respectively. For each frequency, 25 iterations of
FWI is performed.
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Figure 2-19: Velocity perturbation found with multiscale FWI.

the benefit of long-offset (diving waves, refractions) and transmission data. Moreover,
they point out that if a data set mainly contains short-offset reflections, only the short
wavelengths of the model are reconstructed by conventional FWI.

Based on this idea, [Shipp and Singh, 2002] propose that the long-offset data should be
used in the early stages of inversion, in order to recover the long-wavelength components of
the model. At later stages, short-offset data are inverted to provide the short-wavelength
components. This strategy of data windowing from long offsets to short offsets is efficient,
provided that there is no cycle skipping in the long-offset data. However, as long-offset data
correspond to long propagation distance, they introduce increasing non-linearities in an
inaccurate model, which makes the application of FWT to long-offset data still challenging
[Sirgue, 2006]. The opposite strategy of windowing the data from short-offset to long-offset
in order to mitigate the risk of cycle skipping has been also proposed [Sirgue, 2003].

2.10 Conclusion

I have reviewed different aspects of classical FWI, including the objective function, the
methods for the numerical modeling of wavefield propagation, the computation of the
gradient and the Hessian of the objective function, and the velocity model update methods.
I have also presented a resolution analysis of the gradient and show that long-offset data
and source with low frequencies help to recover the long-wavelength part of the model.
Finally, I have reviewed the difficulties that FWI meet and some methods to mitigate the
nonlinearity of FWI.

64



Chapter 3

Waveform inversion based on wavefield
decomposition

Contents
3.1 Imtroduction . .. ...... ... ..., 50
3.2 Methodology . ... .. ... 50
3.3 Inversion strategy . .. ... ... ... 52
3.3.1 Choice of offset range . . . . . . ... 53
3.3.2 Tterative inversion . . . . . . . . .. ... L. 53
3.3.3 Gradient smoothing . . . . ... ... 54
3.3.4 1D layer model case . . . . .. .. ... L. 04
3.4 Comparison with similar methods ... ... ... ....... 57
3.5 Wavefield decomposition methods . .. ... ... ....... 62
3.5.1 Methods based on one-way wave equation . . . .. ... ... .. 63
3.5.2 Methods based on two-way wave equation . . . .. ... ... .. 63
3.6 Conclusion. . . . . ... 0ttt il e e e 74

65



CHAPTER 3. WAVEFORM INVERSION BASED ON WAVEFIELD
DECOMPOSITION

Résumé du chapitre 3

La fonction objective de I'inversion des formes d’ondes peut étre fortement non linéaire
et présente beaucoup de minima locaux. Si les données contiennent principalement des
réflexions, ce probléme empéche notamment les méthodes classiques basées sur le gradient
de récupérer les grandes longueurs d’ondes du modéle [Pratt et al.; 1996]. Avec 'analyse
de la résolution du gradient présentée dans le chapitre 2, nous présentons ici une variation
de 'approche FWI en profitant de la transmission liée & la réflexion pour construire les
grandes longueurs d’ondes du modéle. La méthode est basée sur la séparation du gradient
en une partie de courtes longueurs d’ondes et une partie de grandes longueurs d’ondes
aprés la décomposition des champs d’ondes. Nous appelons cette nouvelle méthode en
anglais Decomposition-based Waveform Inversion (DWI).

Notons que la formule du gradient de FWI somme le terme des courtes longueurs
d’ondes et le terme des grandes longueurs d’ondes avec le méme poids. Pour les données
de réflexion , le terme des grandes longueurs d’ondes est généralement beaucoup plus faible
que le terme des courtes longueurs d’ondes. C’est la raison que la FWI classique souvent
n’arrive pas a retrouver les grandes longueurs d’ondes du modéle.

Au lieu de mettre des poids différents, nous proposons d’inverser séparément les deux
parties. Supposons que 'on commence par un modéle lisse, d’abord nous inversons les
courtes longueurs d’onde en utilisant les données zéro offset. Dans cette étape, nous effec-
tuons l'inversion itérative pour retrouver une réflectivité bien focalisée, qui est essentielle
pour I'étape suivante. Notons que cette étape se comporte comme une minimisation au
sens des moindres carrés (en anglais, Least-Squares Migration, LSM). L’utilisation des
données courts offsets est importante pour ne pas introduire les grandes longueurs d’ondes
dans cette étape.

Apreés l'inversion itérative, le champ d’ondes direct et le champ d’onde rétropropagé
maintenant contient les champs descendants et montants. Dans la deuxiéme étape, nous
effectuons la mise a jour des grandes longueurs d’ondes. Dans cette étape, les données
avec plus d’offsets sont utilisées pour obtenir les informations moveout. Un lissage sur le
gradient est appliqué afin d’éliminer les résidus de courtes longueurs d’ondes, causée par
les limitations d’acquisition. Une fois que nous avons mis a jour les grandes longueurs
d’ondes du modéle, nous recommencons la mise a jour des courtes longueurs d’ondes du
modéle puisque les positions des réflecteurs ne sont pas compatibles avec le modéle de
vitesse actuel et devraient étre mis a jour en conséquence. Puis nous continuons a alterner
entre ces deux étapes. Le point clé de cette méthode d’inversion est ce schéma alternatif.

La limitation d’offset et 'application de l'inversion itérative dans la premiére étape et
le lissage du gradient dans la deuxiéme étape sont les points importants pour assurer le
découplage entre les grandes longueurs d’onde et les courtes longueurs d’onde.

Cette méthode d’inversion basée sur la décomposition est similaire & d’autres méthodes
d’inversion basées sur la réflexion. Nous comparons en particulier avec la méthode proposée
par [Xu et al., 2012]. La comparaison des gradients calculés dans un modéle 1D montre
la similarité entre ces deux méthodes.

Les méthodes de décomposition des champs d’ondes sont également présentées dans ce
chapitre. Nous discutons de trois méthodes de décomposition : I'une dans le domaine de
Fourier, 'une utilisant le vecteur de Poynting et la troisiéme dans le domaine des curvelets.
La méthode par la transformé de Fourier est la plus populaire, et a été largement util-
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isée pour supprimer des artefacts de haute fréquence dans les images migrées, mais avec
cette méthode les basses fréquences sont filtrées dans les résultat final. La méthode de
Poynting est la plus rapide car elle pourrait étre calculée au cours de la propagation des
ondes, mais elle souffre du probléme d’artefacts numériques fortes (instabilités). La méth-
ode de décomposition par les curvelets donne le meilleur résultat car il peut prendre en
compte les différentes directions en méme temps, avec le coit de calcul le plus élevé des
trois. Dans cette méthode, le champ d’onde est décomposé en champs d’onde localement
plans. La corrélation permet de savoir dans quelle direction I'onde se propage, sans avoir
a faire d’hypothése sur la direction de propagation. Ce n’est pas le cas avec la méthode
de Fourier pour laquelle il faut savoir si les ondes se propagent essentiellement horizon-
talement ou verticalement. La méthodologie a été développée pour corréler les champs
directement dans le domaine des curvelets. La nouvelle méthode d’inversion et les méth-
odes de décomposition sont illustrées par un modéle de couche 1D. L’application de la
nouvelle méthode d’inversion aux modéles synthétiques et aux données réelles est abordée
dans les chapitres 4 et 5.
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3.1 Introduction

The objective function of the Full Waveform Inversion (FWT) may be highly nonlinear and
has many local minima. If a data set mainly contains reflections, this problem particularly
prevents the classical gradient-based methods from recovering the long wavelengths of the
model [Pratt et al., 1996]. In this chapter, we present a variation of FWI by separating the
gradient of FWI into a migration part and a tomographic part. We call this new method
Decomposition-based Waveform Inversion (DWI). The scale separation in the gradient
is based on the wavefield decomposition into their one-way components. The wavefield
decomposition methods are also presented in this chapter. The new inversion method and
the decomposition methods are illustrated through a 1D layer model. The application
of the new inversion method on synthetic models and real data set will be addressed in
Chapter 4 and Chapter 5.

3.2 Methodology

Based on the resolution analysis of the gradient presented in Chapter 2, we propose a new
inversion method taking advantage of the reflection-related transmission to construct the
long wavelengths of the model. The method is based on the gradient separation into a
short-wavelength part and a long-wavelength part. The scale separation in the gradient is
achieved by the wavefield decomposition.
Given a non-smooth model m, both forward wavefield P and back-propagated wavefield
() contain up- and down-going wavefields, as shown in Figure 3-1 (top panel). They can
therefore be separated into:
P = Pt+ P,
{ Q = Q' +Q 3-1)
where PT is the direct forward wavefield, P~ is the reflected forward wavefield, Q™ is the
direct backward wavefield and Q7 is the reflected backward wavefield. By substituting
the decomposed wavefields in equation (3.1) into the gradient formula (equation (2.18)),
the gradient G' can be decomposed into four terms:

G=PRQ=P"0Q +P @Q"+PTQ"+P ®@Q", (3.2)

where ® indicates the correlation between two wavefields. For the first two terms, the
wavefields PT and @, as well as P~ and Q%, propagate in the same directions (both
downward or upward) and coincide in time at the positions of reflectors (Figures 3-1
second and third panel). Thus, their correlations PT®Q~ and P~ ®Q™ provide the short-
wavelength update of the model (reflectivity) and correspond to the migration imaging
principle proposed by [Claerbout, 1971]. The other two terms PT™ ® QT and P~ ® Q~ are
illustrated in Figure 3-1 (fourth and fifth panel). As the back-propagated wavefield @ is
reversed in time, wavefields P and Q*, as well as P~ and (Q~ propagate in the opposite
direction and coincide in time along the whole propagation path that connects the source
to the reflector, and the reflector to the receiver. Thus, their correlations provide the long
wavelength update of the model (background velocity) |Zhou et al., 1995].

Suppose that the velocity model m consists of a background model mgy and a perturba-
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Figure 3-1: Raypaths and illumination in the model space for different components of the
gradient. Schematic wave propagation in 1D layer model. PT: direct forward wavefield
(red solid line). P~: reflected forward wavefield (red dashed line). Q7: direct backward
wavefield (blue solid line) and Q: reflected backward wavefield (blue dashed line).
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Figure 3-2: Comparison of conventional FWI (left) and the decomposition-based waveform
inversion (right).

tion model r: m = mg+r. If all frequencies are considered at the same time, the gradient
of the short-wavelength update is given by

G, =P"2Q +P QT (3.3)
while the long-wavelength update is given by

Gmy=P"@Q"+P ®Q". (3.4)

3.3 Inversion strategy

Note that the conventional FWI gradient formula (equation (3.2)) sums the long-wavelength
term G, and short wavelength term G, with equal weights. For reflection-dominant data,
the long-wavelength term G,,, is usually much weaker than the short wavelength term G,.,
of a factor r?, where r is a typical reflectivity value. [Mora, 1987] and [Tang and Lee, 2013]
propose to enhance the long-wavelength term G,,, in the gradient by applying different
weights to G, and G,,,,. This is not trivial as the weighting factor is difficult to determine
and may vary with models and iterations. |Tang and Lee, 2013| propose to determine
the weight at each iteration by solving a linear optimization problem which involves the
calculation of the inverse of the Hessian.

Instead of setting different weights, we propose to separately invert the short and long
wavelengths of the model. Let start with a smooth initial velocity model my. First we
retrieve the short wavelengths of the model using equation (3.2) instead of equation (3.3)
to reduce the computing cost, as it avoids to decompose the wavefields into different parts.
This is feasible because the gradient amplitudes are dominated by the short wavelengths
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especially in the first stages of the inversion. It is important to note that in this step,
we use zero or short offset data and we perform iterative inversion. The short-wavelength
model obtained in this first step contains reflectors which are needed for the successive
step.

Note that the short-wavelength update step behaves like a least-squares migration,
but it is not exactly the same as the separation of the long wavelength and the short
wavelength is not explicit in this step, thus the inversion is not linearized. Instead, we
perform the iterative inversion on zero-offset data with all frequencies simultaneously. The
use of short-offset data is crucial because the long-wavelength components of the model
are not updated during this step, as no moveout information is available. The iterative
inversion helps to correct the reflector amplitude as well as to achieve better focusing of the
reflectors [Plessix and Mulder, 2004|, which allows for a more accurate long wavelength
update. However, the reflectors are mispositioned in depth at this stage as the used
background velocity model is probably erroneous.

After the iterative inversion, the forward wavefield P and backward wavefield () found
at the end of the first step are now decomposed into their up- and down-going compo-
nents. We perform the long-wavelength update using equation (3.4). In this step, longer
offset data is used to get the moveout information. A smoothing filter is applied to the
gradient, in order to remove the residual short-wavelength components, that are caused
by acquisition limitations. We carry out one iteration of inversion in this step and the
velocity is updated using the smoothed gradient.

Once we have updated the long-wavelength model, we use this smooth model to update
once more the short-wavelength model using the iterative inversion, as the positions of
reflectors are not consistent with the actual velocity model any more and should be updated
accordingly. At each global iteration, the reflectivity is set to zero before being estimated.
Then we continue alternating between these two steps. The key point of the proposed
inversion method is this alternating scheme. The comparison of the conventional FWI
and the proposed method is shown in Figure 3-2.

The offset limitation and the application of iterative inversion in the first step and the
smoothing of the gradient in the second step are the key issues to ensure the decoupling
between the long wavelength and short wavelength updates of the velocity model, as we
will describe in more details in the following subsections. A 1D-layer model will be used
to better illustrate the method.

3.3.1 Choice of offset range

In the first step of the inversion, we use zero-offset or short-offset data in order to preserve
the vertical traveltime. In this step, we do not want to introduce the long-wavelength
update. As the zero-offset traveltime is preserved, there is no moveout information in the
data residual.

3.3.2 Iterative inversion

In the first step of inversion, we perform the iterative inversion to derive an optimal
reflectivity model. As the second step of inversion is sensitive to the reflectivity model
obtained in the first step, building a true-amplitude reflectivity is important. Otherwise,
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residuals at short offsets will be introduced in the long-wavelength update and degrade
the inversion result. An example describing this issue will be shown in Chapter 4. The
reflectivity is usually obtained by migration methods. However, as the migration uses
the adjoint of forward-modeling operator instead of the inverse operator, they could not
preserve the true amplitude of migration images. For Reflection-based Waveform Inversion
(RWI), usually Least-Squares Migration (LSM) is used in the first step of inversion. LSM
is an iterative migration method resolving the linearized inversion problem. It has been
shown to improve amplitude information and to focus migrated images. The sensitivity
of the update of the macro model to the reflectivity model is also analyzed in [Lameloise
et al., 2015, Symes, 2015] by showing that the global minimum of the objective function
of the Differential Semblance Optimization (DSO) does not necessary coincide with the
exact model due to the artifacts present in the reflectivity model, and that the inversion
result can be improved by performing the iterative migration or the quantitative migration
preceding the update of the long-wavelength part of the model. In our method, as the
scale separation is not explicit, instead of performing the LSM, we perform the nonlinear
inversion in the first step to maintain the compatibility between the two steps of inversion.

3.3.3 Gradient smoothing

In the second step of the inversion, we try to retrieve the long-wavelength components of
the model. In order to remove the residual short-wavelength components in the gradient,
we apply a smoothing operator to the gradient. After 2D Fourier transform of the gradient,
a 2D low-pass elliptic filter is applied to the transformed gradient. The elliptic filter is
defined by the model dimension and the maximum preserved wavenumber. A taper zone
is applied to prevent artifacts caused by discontinuity. After filtering the gradient in the
wavenumber domain, an inverse Fourier transform is performed to recover the filtered
gradient in the space domain.

3.3.4 1D layer model case

Before presenting the wavefield decomposition scheme, let use the 1D layered model in
Figure 2-8 to study the characteristics of the proposed method. A Ricker wavelet with
central frequency of 12 Hz and temporal sampling of 1.5 ms is used as the source function.

The initial velocity model is displayed in Figure 3-3. This is the reflectivity model
and the model contains mainly short-wavelength components. Here, we artificially use
the exact reflectivity to analyse the different wavefields. Later, the reflectivity model is
obtained through iterative inversion. Starting from this model we calculate the forward
wavefield P and backpropagated wavefield () for the single sources located at 0.85 km at
the surface. Usually, all the available source positions are used, but in this case we use a
single source to more easily illustrate the behavior of the proposed algorithm. Then, we
decompose P and () into their up- and down-going parts to get four correlation terms:
PteQ@Q,P Q" Pr®Q" and P~ ® Q-. The decomposition is achieved using the
2D Fourier-transform based method, which will be described in the next section. For one
source and one receiver setup, the four correlation terms are shown in Figure 3-4 and
Figure 3-5. In these figures, the source is fixed at 0.85 km and the receivers are at three
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Figure 3-3: The initial velocity model. It is the sum of the homogeneous model at
2 km/s and the true reflectivity model. The true reflectivity is obtained by subtract-
ing the smoothed true velocity model from the exact velocity model of Figure 2-8.

different positions. For one source and all receivers setup, the four correlation terms are
shown in Figure 3-6. As expected, these images are in accordance with the wavepath
illustration in Figure 3-1.

If we stack for all the sources at the surface, we obtain the results for the correlation of
P and @ in Figure 3-7 on the left. The images on the right of Figure 3-7 show the result of
taking the vertical velocity profile at 0.85 km and analyze the spectrum using the Fourier
transform. The four correlations of decomposed wavefields are shown in Figure 3-8 on the
left. Their corresponding spectra of the central vertical slice are displayed in Figure 3-8
on the right. We can observe that the spectrum of P® () contains both high wavenumbers
and low wavenumbers. Instead, for the decomposed case, the spectra of PT™ ® @~ and
P~ ® Q" mainly contain the high-wavenumber part of P®Q, while PT®@Q" and P~ ®Q~
mainly contain the low-wavenumber part of P ® Q.

3.4 Comparison with similar methods

The decomposition-based FWI has many common features with other Reflection-based
Waveform Inversion (RWI) methods. Here, we particularly compare our method to the
one proposed by [Xu et al., 2012] as an example. The method proposed by [Xu et al.,
2012] is based on a linearization (Born approximation) and on the explicit separation of
the velocity model m into a smooth background model mg and a reflectivity model dm.
The forward problem is described by the wave equation:

L(m)P = S(w)d(x —s), (3.5)

where L(m) = —w?m — A is the forward propagator. P is the wavefield, composed of P
and 0P, with P = Py + dP. P, is the wavefield propagating in the smooth model mgy and
0P is the wavefield generated by the model perturbation dm. The objective function is
defined as:

1
J(6m) = §HMD — 6P |2, (3.6)
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Figure 3-4: Correlation of decomposed forward and backward wavefields for one source-
receiver pair with the model in Figure 3-3. The source is located at 0.85 km. From top to
bottom, the receivers are at 0.085 km, 0.85 km and 1.615 km respectively. Correlation of
Pt and Q~ (left); P~ and QT (right).
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Figure 3-5: Correlation of decomposed forward and backward wavefields for one source-
receiver pair with the model in Figure 3-3. The source is located at 0.85 km. From top to
bottom, the receivers are at 0.085 km, 0.85 km and 1.615 km respectively. Correlation of
PT and QT (left); P~ and @~ (right).
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Figure 3-6: Correlation of decomposed forward and backward wavefield for the source
located at 0.85 km with the model in Figure 3-3. Correlation of P™ and Q™ (top left);
P~ and Q7 (top right); P™ and Q% (bottom left); P~ and @~ (bottom right).
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Figure 3-7: (Left) Correlation of forward wavefield P and backward wavefield @) using
all the available sources at the surface, starting from the model in Figure 3-3. (Right)
Amplitude of spectrum of the vertical velocity profile taken at 0.85 km in the figure on
the left.

where §P°% is the observed wavefield generated by the true model perturbation. At first,
we deduce 6 P by using the Born approximation for the wavefields P and Fy:

L(m)P = S(w)d(x —s),
{ L(mg) Py = S(w)d(x —s). (3.7)

By subtracting these two equations, we get the formula to compute J P:
L(mg)dP = w?*0mP,. (3.8)

The adjoint-state method [Plessix, 2006] is used to compute the gradient of the objective
function in equation (3.6) with respect to mg and dm. Two adjoint variables @y and 6Q)

76



CHAPTER 3. WAVEFORM INVERSION BASED ON WAVEFIELD
DECOMPOSITION

Surface( m)
3
[0)
—_ B 2 I
g 3
E 0.4 g 1’ [
Q
[0)
o 0 . . . . .
0.8 0 5 10 15 20 25 30
VeIocny (m/s) Wavenumber (1/km)
Surface (k
3
[0)
—_ S 21 I
€ B
é Q
c 04 g1 —
Q
[0) ————
= 0 ‘ : ‘ . ‘
0.8 0 5 10 15 20 25 30
VeIOCIty (m/s) Wavenumber (1/km)
Surface (ki
3
S 2] —
€ 2
< a
o
()
[m] 0 : : - ; :
0.8 0 5 10 15 20 25 30
VeIOC|ty (m/s) - Wavenumber (1/km)
Surface (k
3
()
— B 2 I
g 3
E 0.4 g 1’ [
Q
[0)
o 0 ‘ . - ‘ ‘
0.8 0 5 10 15 20 25 30
Velocity (m/s) Wavenumber (1/km)

Figure 3-8: Correlation of decomposed forward wavefield and backward wavefield using all
the available sources at the surface, starting from the model in Figure 3-3 (left). From top
to bottom, correlation of P™ and Q~; P~ and QT; P and Q*; P~ and @~ respectively.
(right) Spectra of the vertical velocity profiles taken at 0.85 km for figures on the left
respectively.
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Figure 3-9: Direct and backpropagated wavefield in the model in Figure 2-8.

are introduced and the augmented function J is:
T 1 obs |12
J = §||5P— IP||
+ // IQ[L(mg) Py — S(w)d(x — s)]dsdxdw (3.9)
+ // Qo[L(mg)dP — w*dmPy)dsdxdw.

We compute the gradient of J with respect to mgy and dm respectively:

aam / / / w? Py (s, %, w)Qo(s, x, w))dsdxdw, (3.10)

amo /// —w?Py(s, x,w)dQ(s, x,w) — w?dP(s,x,w)Qo(s, X, w)]dsdxdw. (3.11)

Qo and Q) are computed by the two back-propagation wave equations:
OJ _ [Jx* obs\ __
851? =L"Qo + ((52]3 or ) 0, (3.12)

where * denotes the adjoint operator.

From equation (3.11) we observe that four wavefields are involved in the gradient
calculation for the background model my. They are respectively the direct source wavefield
Py and the direct receiver wavefield )y, both propagating from the surface to the subsurface
reflector, as well as the perturbed source wavefield 0 P and perturbed receiver wavefield
0@, both propagating from the reflector back to the surface. The reflectivity dm serves as
a secondary source in depth that emits up-going waves towards the surface.

The decomposition-based gradient in equation (3.4), related to the long-wavelength
update, has a similar structure compared to the gradient in equation (3.11). We first show
the comparison using the model in Figure 3-3. We compute the original forward wavefield
P and the back-propagated wavefield @) (Figure 3-9), then the decomposed wavefields as
described in equation (3.4) (Figure 3-10). The four components in the long-wavelength
gradient (equation (3.11)) are shown in Figure 3-11. The gradient calculated with all the
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Figure 3-10: Decomposed wavefields for the initial wavefields in Figure 3-9. P* (top left),
Q" (top right), P~ (bottom left) and @~ (bottom right).
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Figure 3-11: Four wavefields in equation (3.11). P° (top left), 6Q (top right), P (bottom
left) and Q° (bottom right).
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Figure 3-12: Gradients in equation (3.11). Correlation of (left) P° and 6Q, (right) §P and
Q". To be compared with Figure 3-8 (last two panels).
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sources and receivers, using equation (3.11) is displayed in Figure 3-12.

If we compare the correlation of P+ and Q*, with the correlation of P° and §Q), we
can observe that with the time, they both move along the wavepath from the surface to
the reflector. The same conclusion could be drawn when we compare the correlation of
P~ and Q—, with the correlation of 6P and Q°, while they both move along the wavepath
from the reflector to the surface. The gradients in Figure 3-12 and in Figure 3-8 (last
two panels) are also similar. In this sense, we could consider decomposition-based FWI
as an analogue of the method proposed by [Xu et al., 2012]. The mayor difference resides
in how to calculate the four components in the gradient. For the method proposed by
[Xu et al., 2012] they are obtained by resolving the linearized wave equation, and for the
method proposed in this thesis, they are obtained by decomposing the full wavefields after
resolving the nonlinear wave equation.

However, as the method of |Xu et al., 2012| is based on the linearized modeling, it
assumes that the velocity perturbations are small and the data contain only primaries.
While similarly to classical FWI, the proposed decomposition-based FWI method resolves
the nonlinear wave equation; therefore refractions, diving waves and multiples could po-
tentially be included in the dataset. [Symes, 2008] suggests that MVA is a solution method
for the linearized waveform inversion problem.

Besides the method of [Xu et al., 2012], there are in the literature other similar meth-
ods, also based on separating different components in the gradient. |[Tang and Lee, 2013]
also propose the gradient separation by the wavefiled decomposition. The difference is
that they recombines the two parts in the gradient with different weights. [Brossier et al.,
2015, Zhou et al., 2015] propose to get the tomographic part by subtracting the migration
part that is obtained in the smooth model from the full gradient. [Zhou et al., 2015]
propose to combine the reflections with the diving waves to enhance the long-wavelength
components of the model. [Wang et al., 2015b| propose to combine the refractions with
reflections. For reflection data, the long-wavelength part is updated using the tomographic
part in the gradient by including the migration part within the density model. [Alkhal-
ifah, 2015 propose to do the separation in the angle domain by filtering the gradient in
the wavenumber domain according to the scattering angles and then to use the gradi-
ent corresponding to big scattering angles for long-wavelength update and the gradient
corresponding to small scattering angles for short-wavelength update. Migration Based
Traveltime Tomography (MBTT) [Chavent et al., 1994] combines the least-squares migra-
tion and the multiscale FWI to mitigate the nonlinearity.

3.5 Wavefield decomposition methods

The gradient decomposition into four terms is possible with the benefit of the wavefield
decomposition. The objective of the wavefied decomposition is to obtain the one-way
component of the wavefield with respect to the vertical direction (donwgoing/upgoing)
and the horizontal direction (leftgoing/rightgoing). The wavefield decomposition is mainly
used in the literature for:

1. Providing a new imaging condition. The conventional zero-lag cross-correlation
imaging condition of RTM is subject to strong migration artifacts [Liu et al., 2011].
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The decomposition of the full wavefields to their one-way components and the ap-
plication of the imaging condition to the appropriate combinations of the wavefield
components could remove the undesired noise.

2. Retrieving the long wavelength components of the velocity model. The gradient of
FWI could be separated into a migration part and a tomography part, after the
wavefield decomposition. Thus, the wavefield decomposition is used for recovering
the long-wavelength part of the model [Tang and Lee, 2013, Wang et al., 2013, Wang
et al., 2015al.

Here, we give a review of different methods to produce partial wavefields or to decompose
the full wavefields. In general, the wavefield decomposition methods could be divided into
one-way based methods and two-way based methods.

3.5.1 Methods based on one-way wave equation

To produce one-way wavefields, the straightest way is to use the one-way approximation
of the full wave equation. The one-way wave equation is easy to implement, but has dip
limitations. In [Zhang et al., 2006|, the authors propose a modified version of one-way
wave equation to decompose wavefields. With this method, turning waves can be properly
imaged and the imaging capability of one-way wave equation is greatly improved.

3.5.2 Methods based on two-way wave equation

Methods based on two-way wave equation has no dip limitation, and are able to deal with
multiples and turning waves. They produce a better resolution and are more robust with
respect to strong velocity variations. There are two major categories to obtain the one-way
component of wavefields using the two-way wave equation. The first one is by suppressing
internal reflections, and the second one is by decomposing wavefields.

Suppression of internal reflections

These methods aim at modifying the impedance of the media to suppress internal reflec-
tions:

e Impedance matching. [Whitmore et al., 1983] and [Baysal et al., 1984] proposed
a method to suppress undesired reflections by forcing the acoustic impedance, I =
p(x,y, z)v(x,y, z), to be a constant, and deriving an appropriate impedance-matched
counterpart to the full wave equation.

e Smoothing of slowness field [Loewenthal et al., 1987]. This method is based
on the smoothing of the slowness field throughout the media by an operator which is
longer than the wavelengths associated with the acoustic wave. The reason of using
slowness instead of velocity is that the integral of the original slowness curve and
the integral of the smoothed slowness curve are the same, while the integral of the
smoothed velocity curve differs from the original one and causes a shift in the arrival
time.
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Figure 3-13: One snapshot of the wavefield propagated in the model in Figure 2-8 at ¢t =
0.525 s.

e Add of a damping term [Fletcher et al., 2005]. This method applies a di-

rectional damping term to the wave equation in areas of the velocity model where
unwanted reflections occur. A linear derivative operator is used. This linear deriva-
tive operator radiates in one direction and damps in the opposite direction.

Decomposition of wavefields

These methods compute the full wavefield and then decompose it according to the propa-
gation direction. We analyze here three methods for achieving the decomposition of wave-
fields, namely the 2D Fourier transform, the Poynting-vector method and the curvelet
transform.
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e 2D Fourier Transform (FT) decomposition.

[Liu et al., 2011] applied wavefield decomposition in the F-K domain to suppress the
low-frequency artifacts in RTM images. This method was first applied to vertical
seismic profiles [Hu and McMechan, 1987]. The wavefield is decomposed into its
upgoing and downgoing components by using the 2D Fourier transform:

Py (f,k:) = { 0 for fk, <0’ (3.13)
0 for fk. >0 |

Pz—(kaz):{ ﬁ(ﬁkz) for fk, <0 ’

where P(f, k.) is the 2D Fourier transform of P(t,z). P.,(t, z) and P._(t, z) are the
decomposed down- and up-going wavefields. They are the inverse Fourier transform
of P,.(f,k,) and P,_(f,k,) respectively.

The horizontal decomposition is obtained similarly, by replacing z by .

~ _ ﬁ(f? k:c) for ka 2 0
P:c+(f>k5x)_{ 0 for fk, <0’ (3.14)
0 for fk, >0 .

Px—(kaw):{ ﬁ(f7]{;m) for fk, <0 °
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Figure 3-14: (Left) The section of the wavefield in the ¢ — 2z domain for z = 0.85 km in
the middle of the model. (Right) FT of the figure on the left in the f — k, domain.
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We apply this method on a 2D wavefield P(t,z,z). The wavefield is computed in
the model of Figure 2-8 with the source at x = 0.85 km at the surface. A snapshot
at t = 0.525 s is shown in Figure 3-13. The algorithm for the vertical decomposition
is described as follows.

For the central trace (x = 0.85 km) of the image:

1. The image in t — z domain P(¢, z) is shown in Figure 3-14 (left).

2. The 2D FT of P(t, z) gives lg(f, k.) in the f — k, domain, as shown in Figure
3-14 (right).

3. We select appropriate quadrants using the filters in Figure 3-15. ﬁ(f, k.) is

separated into a down-going part ﬁer(f, k.) and an up-going part ﬁz_(f, k.)
(Figure 3-16).

4. Then we apply the 2D inverse FT on P, (f,k.) and P,_(f, k.) to get the de-
composed images in the ¢ — z domain (Figure 3-17).

5. We repeat steps (1)-(4) for each horizontal coordinate z, and we sum all the
contributions to get P (¢, z,x) and P~ (¢, z, ), shown in Figure 3-18.

The drawbacks of the F'T-based decomposition are:
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Figure 3-16: Filtered parts of the initial image in Figure 3-14.
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Figure 3-17: Decomposed wavefields in the ¢ — z domain. Notice the different color-scale
between the two images.
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1. It can not handle vertical directions and horizontal directions at the same time.
Usually, vertical decomposition is performed for models with sources and re-
ceivers at the surface. Therefore, in this case, artifacts will be generated by
wavefield propagating laterally. When a point source is used, direct waves
propagate horizontally along the surface. That is why artefacts tend to appear
near the surface.

2. As we separate data in the f — k domain, we need to apply a smooth cut in the
f —k domain (Figure 3-15) to reduce the artefacts due to discontinuities. Thus
information near the zero axes in the F-K domain is partially filtered and this
information correspond to the low frequency component of the wavefield. Com-
pared to Figure 3-13, the two images in Figure 3-17 look like a low-cut filtered
version. However, applying the smooth cut has also the advantage of reducing
the artefacts near the surface as presented in the previous paragraph (1).

e Poynting-vector decomposition.
Another way to decompose a wavefield is by analyzing the instantaneous wave prop-
agation directions of the wavefields using the Poynting vector [Yoon and Marfurt,
2006]. The Poynting vector measures the energy flow and computes the wave prop-
agation direction. It is defined as:

oP
Poynting wvector = —VPE. (3.15)
The principle of this method is to evaluate the sign of the product VP%—IE. This idea
could be interpreted using the expression under the high frequency approximation
of the wavefield:
P~ A(s,x)S®(t — 7(s,x)), (3.16)

where 7 is the traveltime between the source and the image point. Is satisfies the
Eikonal equation. A(s,x) is the amplitude term, solution of the transport equation.
S(t) is the signature of the source. The term k acting at the source depends on
the dimension (1D, 2D, 3D). For the derivation of the spatial gradient, both 7 and
A depends on x. But the smooth variation of A can be neglected in front of the
oscillatory kernel, yielding

VP~ —A(s,x)S®D(t — 7(s,x)) V7 (s, x), (3.17)
and op
o A(s, x)S* D (t — 7(s,x)). (3.18)

Then the product of VP and % yields

- VP%—]; = A%(s,x)[SHHD(t — 7(s,x))]* V7. (3.19)

The sign of this product only depends on V7, which indicates the direction of wave-
field propagation with time.
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Figure 3-19: (Left) Partial derivative of the wavefield with respect to z. (Right) Partial
derivative of the wavefield with the respect to t.
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Therefore, the wavefield is decomposed in the vertical direction as follows:

P(t,z) for (‘%f‘;f <0
0 for 2298 >

b f0 mEEC (320
= HT P(tz) for 2225

Pz—f—(t,Z) -

The decomposition of left- and right-going wavefields can be deduced in a similar

way:
P(t,z) for 2292 <
Poltya) = Do) dor grgp <0
0 for %7 >0 (3.21)
potay {0 forg—f’g—llzgo '
BT = P for 2202 S
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Figure 3-20: The product of the two images in Figure 3-19.

We show an example of the implementation of this method using the same wavefield
as in the F'T-based method.

1. We calculate the partial derivative of the wavefield P with respect to ¢t and z,

and we get ‘91: and 22 This can be done during the wavefield propagation,
thus requires no extra computamon Two snapshots of ‘9P and 6P are shown in
Figure 3-19.
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Figure 3-21: The decomposed wavefields using Poynting-vector method. P+ (left) and P~

(right).
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Figure 3-22: Original mask (left) and median-filtered mask (right) for the decomposition
by the Poynting-vector method.

2. We then correlate these two wavefields %—1: and %. A snapshot of the product

%—I: %—I; is shown in Figure 3-20. The original wavefield is separated into down-
going and up-going parts according to the sign of the product at each location.
According to equation (3.20), at each location, if the product is positive, then
the original wavefield at this location corresponds to the down-going part, oth-
erwise, it corresponds to the up-going part. The decomposition result is shown
in Figure 3-21. We notice that the down-going and up-going wavefields are not
completely separated. Parasite residuals are present, especially in the middle
of the wavefield. If we set the positive values in Figure 3-20 to 1 and negative
values to 0, we get the image in Figure 3-22 on the left. In this image, points in
black correspond to the locations of down-going wavefield, while points in white
correspond to the up-going wavefield. This image betters shows the locations
of artefacts. These artefacts are like "salt and pepper" artefacts, and they are
due to the numerical approximation of the partial derivative. For the spatial
positions whose partial derivatives are close to zero, the sign may be incorrect,
thus yielding a wrong estimation of the mask. The points corresponding to
near-zero partial derivatives are a) points at the intersections of downgoing and
upgoing wavefield; b) points propagating perpendicularly to the decomposition
direction, for example, horizontally propagating wavefield when the vertical
decomposition is performed, which are usually near the surface; and ¢) points
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Figure 3-23: Decomposed wavefields using the mask in Figure 3-22 on the right. P+ (left)
and P~ (right).
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Figure 3-24: A scale example of curvelet [Chauris et al., 2006].

where P is maximal, which are along the central part of the wavelet of the wave-
field. The artifacts decrease with the increasing of the spatial discretization,
because the derivative value is better estimated.

3. We apply a median filter to suppress the salt and pepper artefact of the mask.
The result is shown in Figure 3-22 on the right. The decomposed wavefields
using the median-filtered mask are shown in Figure 3-23. These two images
present less artifacts than the initial results in Figure 3-21.

\

H ) B LR ] od ki kO & o

Figure 3-25: A direction example of curvelet [Chauris et al., 2006].

e Curvelet decomposition.
The main limitation of the F'T- and Poynting-based methods is that they can not deal
with the vertical and the horizontal directions at the same time. To circumvent this
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Figure 3-26: The direction (left) and scale (right) filter in the curvelet domain |Chauris
and Nguyen, 2008|.
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Figure 3-27: Two snapshots at different recording time for ¢t = 0.525 s (left) and ¢ = 0.54
s (right).
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problem, we have designed a new method to decompose wavefields using curvelets in
order to attenuate the artifacts that F'T- or Poynting-based decomposition methods
cause.

Curvelets form a basis well-adapted for representing smooth images. Curvelets are
multi-directional [Candes et al., 2006, Chauris and Nguyen, 2008| and can decompose
wavefields in several directions at the same time. A curvelet is characterized by three
parameters: scale, direction and position [Candes et al., 2006]. A direction and scale
example of curvelets are shown in Figure 3-24 and 3-25. Curvelets form a tight frame,
such that a function can be decomposed as a sum of curvelets. Besides, [Candes
et al., 1999] show that the curvelet representation of wave propagators is optimally
sparse. For a 2D image with smooth discontinuities f(z, z), the reconstructed image
fn(z, 2), obtained with the n first most important coefficients, approximates the
original image by: ,

I = e~ S5 (3.22)

The optimal convergence rate for all the decomposition methods is % Therefore,

compared to the convergence rate for Fourier transform (\/%7) and for the wavelet

transform (1), the curvelet representation is more efficient. The curvelet is widely
used in geophysics for data denoising [Hennenfent and Herrmann, 2006] and data
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Figure 3-28: One direction after the curvelet transform for the two snapshots in Figure 3-

27.

90

compression [Ma, 2011]. [Chauris and Nguyen, 2008| apply the demigration operator
in the curvelet domain to reduce computation cost.

From a practical point of view, we implement the curvelet transform as [Chauris
and Nguyen, 2008| did. First, we compute the 2D Fourier transform of the original
image. Then, for all scales and all directions, we filter the transformed image by the
predefined curvelet functions. Finally, we apply an inverse 2D Fourier transform.
This provides the curvelet coefficients. The inverse curvelet transform consists of
applying a forward 2D Fourier transform for each scale and direction, filtering once
more, adding the contributions for all scales and all directions, and performing an
inverse Fourier transform to obtain the original image. In this thesis, we consider
all scales at the same time, and the numbers of directions are 64 for all the scales.
The number of directions could also be reduced by two at every two scales to satisfy
the parabolic scaling [Chauris and Nguyen, 2008]. To define curvelet filters, we use
polar coordinates instead of Cartesian coordinates. This naturally leads to consider
rotations instead of shears [Candes and Demanet, 2004] and avoids special consid-
erations for handling edge effects. The design of the filters is based on the approach
proposed by [Simoncelli et al., 1992].

Each filter F;;(6,7) is defined in the polar coordinate system (6,r) and constructed
as the product of two filters, the direction filter G4(f) and the scale filter H;(r)
(Figure 3-26). Suppose we have 2V*! different directions. The directional part
G4(0) is defined as follows:

%0053[]\76 —Lid—1)] forfe|[—L£ +L(d—1), 4 + £(d — 1)]

Ga(0) = { :

otherwise

(3.23)
The factor 15 is a normalization factor, and one could check that the sum of all
squared filters equal to 1. This ensures a perfect reconstruction scheme. The radial
filters H;(r) are defined in a similar way, with a change of variable from r to logr,
as described in [Simoncelli et al., 1992].

Let P;(x) and P»(x) be two successive snapshots, for different 2D spatial positions
x = (z,2), as shown in Figure 3-27. The objective is to decompose the wavefields in
two different parts: a part for which the wavefield expands from the source, and the
remaining contracting part. More precisely,
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Figure 3-29: Decomposed wavefields using the curvelet method. PT (left) and P~ (right).

1.

We first decompose the two images P (x) and P(x) in the curvelet domain for
different directions. Let now consider two curvelets ci(x) and c3(x), for the
selected direction d.

. We decompose the curvelet domain in sub-domains. For each sub-domain €,

the reconstructed images in the space domain for direction d are I;(x) and I5(x)
(Figure 3-28), obtained by

e = [ ayeiwFitx-y) (3.24)

k3

B0 = [ aydmFix-y) (3.25)

K3

where Fj is the filter defining the inverse curvelet transform for direction d.
This is simply a shifted version of the filter, with a weight equal to the curvelet
coefficient. The star * indicates that we consider the complex conjugate because
the ¢4 coefficients and possibly the filters are indeed complex.

. We compute a correlation function £;(\) that computes the correlation between

I; and I5. The local correlation is evaluated along the d direction, and charac-
terized by the normal n, as follows

Ea(N) = /dx[l(x)lg(x+)\nd), (3.26)

where \ is a scalar value, denoting the shift along the d direction. The meaning
of &, is the following: if the maximum of &; is obtained for a positive A\ value,
then the wavefield is considered as in expansion, otherwise in contraction.

. We repeat steps (1) to (3) for each direction and each sub-domain, and we sum

all the contributions. The final result is shown in Figure 3-29.

In the following, we will show that instead of reconstructing images from curvelet
coefficients and then correlating the two images in the space domain, as done in
equation (3.26), we could also achieve this goal in the curvelet domain directly. The
correlation function only depends on the curvelet coefficients.

After step (1), in the curvelet domain, let select the coefficients belonging to a
particular spatial zone €2;. This is the zone where we want to evaluate the behavior
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of the wavefields. For the evaluation of the local correlation, we consider coefficients
in €;. For the correlation, the summation is performed over the full space. We
replace I; and I, in equation (3.26) by their expression in equation (3.24) and 3.25
and interchange the order of integration, leading to

Ea(N) = /Q dy ci(y) /Q dz c%(z) /dx Fj(x —y)Fy(x+ Ang — z). (3.27)

(3

In practice, the Fy filters are very oscillatory in the spatial domain. The main
contribution is thus obtained for z = y + An,;. We thus have

Ea(\) /Q dy ci(y) /Q dz 5 (z)6(z — y + Any) (3.28)

3

= /Q dy C¢11(Y)C(2l* (v + Ang). (3.29)

k3

We observe that the original correlation in the space domain (equation (3.26)) is
equivalent to the correlation in the curvelet domain (equation (3.29)). Compared to
the direct implementation in the space domain, we do not have to reconstruct the
images for all directions nor for all sub-domains. All the computations are performed
with curvelet coefficients. Note that by selecting coefficients in the curvelet domain,
the reconstructed images would have natural tapering on the edges.

In summary, the first step consists of decomposing the two wavefields in the curvelet
domain, then of performing the local correlation. As before, depending on if the
maximum value for &; is obtained for a positive or negative A, the selected coefficients
are stored in two different arrays. After having investigated all spatial positions and
all directions, the inverse curvelet transform is applied to the two intermediate arrays,
providing two reconstructed images.

For the curvelet-based decomposition, we can observe some artifacts of residual direc-
tional element as the curvelet is pseudo localized in the space domain. The artifacts
get reduced when the number of directions considered in the curvelet decomposition
increase.

We investigate a more complex wavefield propagated in the Marmousi model. The
decomposed results for the snapshot in Figure 3-30 using the Fourier transform
method, the Poynting vector method and the curvelet method are shown in Fig-
ure 3-31. For this wavefield, the drawbacks of the Fourier transform method and the
Poynting vector method are obvious. We note that the Fourier transform method
filters out low frequency data and wavefields propagating horizontally near the sur-
face, and the Poynting vector method suffers from strong artefacts at intersections
of different directions. The curvelet method yields the best result of the three.

From the point of view of computational cost, the Poynting vector method is the
most efficient one, as the partial derivative wavefields could be obtained during the
wave propagation and the computational complexity is O(nz % nx), where nz and
nx are the model dimensions.
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Figure 3-30: One snapshot of the wavefield propagated in the Marmousi model.

The Fourier transform method is more expensive than the Poynting vector method
as we have to compute the Fourier transform of the wavefield in the ¢ — z domain
for each horizontal coordinate x. If we use the FFT algorithm, the computational
complexity is O(nzxnzxntxlog(nz*nt)), where nz and nx are the model dimensions,
and nt is the number of time samples.

The curvelet method is also expensive as we have to compute the curvelet transform
for each snapshot of the wavefield. Recall that the curvelet transform consists of one
Fourier transform, one filtering for each direction and one inverse Fourier transform
for each direction. The computational complexity is then O(nt*nzsnz*log(nz+nz)),
where nz and nx are the model dimensions, and nt is the number of time samples.

Note that the Poynting vector method is the most efficient one. The difference of
computational complexity between the Fourier transform method and the curvelet
method is not obvious and should be evaluated case by case. In general, the decom-
position based on the curvelet transform is more expensive than the decomposition
based on the Fourier transform as the curvelet transform is about 10 times more
expensive than the Fourier transform.

From the point of view of memory, for the Fourier transform method, we have to
store the whole wavefield on the hard disk. For the Poynting method, as the partial
derivative wavefields can be obtained during the wave propagation, we do not have
to keep in memory the whole wavefield. For the curvelet transform method, at
each time, we compare two neighbouring snapshots, thus the decomposition can be
done during the wave propagation and we do not need to store the whole wavefield.
Furthermore, since the decomposition is carried out for each snapshot separately, the
curvelet decomposition method is more easily parallelizable. Further investigations
on the curvelet implementation are needed before being able to apply it to large
datasets.

For the tests shown in Chapters 4 and 5, we use the 2D Fourier transform decom-
position method for computational cost and accuracy considerations. At the time
these tests were performed, the correlation was done in the space domain but not in
the curvelet domain, and the method was even more expensive. For this reason, the
2D Fourier domain was preferred.

For 3D applications, the Poynting vector method may be the best choice, as the
need of the Fourier transform method for storing the whole 3D wavefield is difficult
to meet. For the curvelet method, the significant computational cost of the 3D
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Figure 3-31: Decomposed wavefields using the 2D FT method (first panel), Poynting
method (second panel) and curvelet method (third panel). P* (left) and P~ (right).

curvelet transform makes this method difficult to be widely used for large dataset
applications.

3.6 Conclusion

In this chapter, we propose a reflection-based waveform inversion method. The principle
of the proposed method is to decompose the gradient of FWI into a long-wavelength
part and a short-wavelength part. The inversion is performed in an alternating fashion
between these two parts. This method allows to automatically separate the long and
short wavelengths of the model without having a-priori knowledge of the model. The
gradient decomposition is achieved by the wavefield decomposition into their one-way
components. Different wavefield decomposition methods, especially those based on two-
way wave equation, are presented. The 2D FT-based wavefield decomposition method will
be used for the 2D synthetic model in Chapter 4 and for the real data set in Chapter 5.
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Résumé du chapitre 4

Dans ce chapitre, j’applique I'inversion des formes d’ondes (Full Waveform Inversion,
FWI) et I'inversion basée sur la décomposition des champs d’ondes (Decomposition-based
waveform inversion, DWI) sur des modéles synthétiques 1D et 2D. Rappelons que DWI
consiste a décomposer le gradient en une partie de grandes longueurs d’ondes et une partie
de courtes longueurs d’ondes aprés la décomposition des champs d’ondes. L’inversion est
effectuée d’une maniére alternée entre ces deux parties. Pour la modélisation numérique,
nous utilisons un schéma aux différences finies d’ordre 8 en espace et d’ordre 4 en temps.
Des conditions aux limites absorbantes sont imposées aux bords du modéle pour simuler un
milieu infini. Nous utilisons la méthode d’optimisation de quasi-Newton, plus précisément
la L-BFGS avec 5 itérations conservées en mémoire.

D’abord, nous testons FWI et DWI sur un modéle de couche 1D. Pour ce test, la source
contient les basses fréquences, mais comme il y un grand écart entre le modéle exact et le
modéle initial, la FWI classique n’arrive pas a retrouver les basses fréquences du modéle.

Ensuite, nous étudions un modéle synthése 2D et comparons les résultats de 'inversion
avec FWI, FWI multi-échelle et DWI. Nous faisons quatre tests avec deux choix de la source
et deux choix du modéle de vitesse initial. Pour les deux modéles de vitesse initiale, 1'un
est proche, et 'autre est loin du modéle de vitesse exacte pour évaluer les résultats de
Iinversion. Celui proche du modéle exact est un modéle de gradient constant, bien qu’il
ne soit pas si proche du modéle exact, car il n’y a pas d’information a priori dans ce modéle.
Celui loin du modéle exact est un modéle homogeéne. Pour la source, nous utilisons une
source sans les basses fréquences pour étre plus réaliste. Dans ce cas, la fonction objectif
de FWI est moins linéaire, et I'inversion a plus de mal a converger. Cependant, nous
avons également testé F'WI en utilisant une source avec les basses fréquences comme une
référence. La source qui contient les basses fréquences est une ondelette de Ricker avec une
fréquence centrale de 8 Hz. Celle sans les basses fréquences est la méme ondelette Ricker,
mais les fréquences au dessous de 5 Hz sont enlevées. Notons que la densité reste constante
pendant 'inversion. A travers des quatre tests, nous observons que la FWI multi-échelle
est plus robuste que la FWI classique, et la DWI est plus robuste que la FWI classique
et que la FWI multi-échelle face a 'absence de basses fréquences dans la source et aux
erreurs importantes dans le modéle initial.

Nous avons également analysé 'influence de plusieurs parameétres clés pendant I'inversion,
comme l'application de l'inversion itérative non-linéaire dans I'étape de mise a jour des
courtes longueurs d’ondes, et en utilisant les données de hautes fréquences et zéro offset
dans cette étape. Grace a cette analyse, nous pouvons conclure que lorsque ces paramétres
clés sont tous proprement appliqués & l'inversion, la mise & jour des grandes longueurs
d’ondes est plus proche de la perturbation exacte du modéle que dans les cas ou les
parameétres sont partiellement appliqués. Du point de vue du cotit de calcul, DWI est treés
cher, car l'inversion itérative est effectuée a chaque étape de la mise a jour des courtes
longueurs d’ondes pour ajuster les données au lieu de juste imager les réflecteurs. Toutefois,
cette étape itérative est importante, car elle facilite la mise a jour des grandes longueurs
d’ondes du modéle. Cette conclusion est compatible avec I'importance d’introduire la
migration itérative dans I'analyse de vitesse par migration (Migration Velocity Analysis,
MVA) [Symes, 2015, Lameloise et al., 2015].
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4.1 Introduction

In this chapter, T apply the classical FWI and the Decomposition-based Waveform In-
version (DWI) on 1D and 2D synthetic models. Recall that the decomposition-based
waveform inversion consists of decomposing the gradient of FWI into a long-wavelength
part and a short-wavelength part. The inversion is performed in an alternating fashion
between the short-wavelength update and the long-wavelength update. For the numeri-
cal modeling, we use a finite-difference scheme with 8** order in space and 4 order in
time. Absorbing boundary conditions are imposed at the borders of the model to simulate
an infinite medium. We use the quasi-Newton optimization method, more precisely the
L-BFGS with 5 iterations kept in memory.

We first test FWI and DWI on a 1D layer model. Then we investigate a 2D synthetic
model and compare the inversion results of FWI, multiscale FWI and DWI. We also
analyse the influence of key inversion parameters on the inversion result.

4.2 1D layer model with low frequency

We use the simple 1D layer model that has been analyzed in Chapter 3. Figure 4-1
shows the true velocity model. The model dimensions are 1.7 km large by 0.85 km deep.
The model consists of a strong velocity contrast, the velocities for the top layer, middle
layer and bottom layer are 2 km/s, 3 km/s, 2 km/s, respectively. The initial model is a
homogeneous model at 2 km/s, thus there is no a priori information in the initial model
except the velocity at the surface. A Ricker wavelet with a central frequency of 12 Hz
and temporal sampling of 1.5 ms is used as the source function. The sources and receivers
are evenly distributed at the surface, with the source spacing being 17 m and receivers
spacing being 8.5 m.

Figure 4-2 on the top displays the result after running 80 iterations of conventional
FWI with L-BFGS scheme. All offsets available at the surface (up to 1.7 km) are used.
It fails into a local minimum when starting from this homogeneous initial model. We
note that it does not recover the long wavelengths of the model when all frequencies are
inverted at the same time. Figure 4-2 in the second panel displays the final result of DWI
for 20 global iterations, and for each global iteration associated to the long-wavelength
update, we run 20 iterations for the short-wavelength update using zero-offset data. For
the long-wavelength update, we use a mean filter of size 9x9 grid points to remove the
potential residual short-wavelength components. In this step, we use all offsets available
at the surface. Figure 4-2 in the third panel displays the result after 20 iterations of FWI
with the result in the second panel as the initial model. We observe that DWI can better
invert the long-wavelength components of the middle layer than the conventional FWI.
Figure 4-2 on the bottom is the comparison of the vertical profile taken at x = 0.85 km.
Compared to the conventional FWI, the decomposition-based waveform inversion better
recovers the long-wavelength part of the middle layer, and as a result the bottom of the
middle layer is better positioned.
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Figure 4-1: 1D layer exact velocity model.

4.3 2D synthetic model

After the test on the simple 1D layer model, we investigate a more complex 2D synthetic
model. The exact velocity model is shown in Figure 4-3. This model is inspired from
[Perrone, 2013]. The dimensions of the model are 3.12 km by 1.212 km. The model
consists of several layers and a velocity anomaly in the central part. Sources and receivers
are evenly distributed at the surface, with source spacing being 48 m and receiver spacing
being 12 m. The maximum offset we use is 1.2 km in order to mainly simulate reflected
events. This maximum offset is about the same dimension as the model depth. The
density is considered constant with p = 1000 kg/m?.

For the initial velocity model, we consider two models, one that is close, and the other
that is far from the exact velocity model to evaluate convergence results in FWI and DWI.
The one close to the exact model is a gradient-constant model (Figure 4-4 on the top),
however it is not so close to the exact model, as there is no a prior information in the initial
model. The one far from the exact model is a homogeneous model at 1.5 km /s (Figure 4-4
on the bottom). For the source wavelet, we use a source without low frequencies to be
more realistic. In this case, the objective function of FWI is more nonlinear for data
without low frequencies, and the inversion is more difficult to converge. However, we also
test FWT using source wavelet with low frequencies as a reference. The source wavelet
containing low frequencies is a Ricker wavelet with central frequency of 8 Hz (black line
in Figure 4-5). The one without low frequencies is the same Ricker wavelet, but low
frequencies lesser than 5 Hz are filtered (red line in Figure 4-5). The source wavelet is
filtered from the initial Ricker wavelet with a high-pass Butterworth filter of order 9 and
with a cut frequency of 8 Hz . With these two initial models and two source wavelets we
test the four combinations (Table 4.1). We start from the optimal case: good initial model
and source wavelet with low frequencies, and gradually degrade the inversion conditions.

N° Frequency content Initial model
Test1 with low frequency | gradient-constant model
Test2 | with low frequency homogeneous model
Test3 | without low frequency | gradient-constant model
Test4 | without low frequency homogeneous model

Table 4.1: List of tests for the 2D model.
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Figure 4-2: Final inversion results using a homogeneous initial model for FWT (first panel),
long-wavelength model obtained with DWI (second panel), and FWI result starting from
model in the second panel (third panel). Velocity profiles at 0.85 km (fourth panel) for
the exact model (black line), initial model (red line), FWI (blue line) and DWI + FWI
(green line).

99



CHAPTER 4. INVERSION OF SYNTHETIC DATA

Figure 4-4: Initial velocity models considered for 2D model in Figure 4-3. Gradient-
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Figure 4-3: 2D exact velocity model [Perrone, 2013].
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Figure 4-5: Source wavelet in the time domain (left) and in the frequency domain (right).
The black lines represent the initial Ricker wavelet with central frequency of 8 Hz and the
red lines represent the wavelet after the high-pass Butterworth filtering with cut frequency
of 8 Hz.
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Figure 4-6: Test 1. FWI result after 100 iterations.

4.3.1 Test 1: inversion with low frequency and good initial model

In the first test, we apply FWI with the gradient-constant initial model shown in Figure 4-4
on the top. A Ricker wavelet with central frequency of 8 Hz is used as the source function.
In this case, the source wavelet and the initial model are favorable to the success of FWI.
The result of FWTI after 100 iterations is shown in Figure 4-6 and 4-7. The comparison of
the exact data, the initial data and final data is displayed in Figure 4-8. We observe that
the conventional FWI succeeds in this case. The result is considered as a reference for the
inversion without low frequencies.

4.3.2 Test 2: inversion with low frequency and poor initial model

In the second test, we apply FWI starting from the homogeneous model shown in Figure 4-
4 on the bottom. The source wavelet remains the same as in the first test. In this test, as
the initial model is very far from the true model, the conventional FWI fails to converge
to the exact model. The final FWI result is shown in Figure 4-9 and Figure 4-10, and is
considered as a reference for the fourth test with a poor initial model and without low
frequencies. The comparison of the exact data, the initial data and final data is displayed
in Figure 4-11. We note that for this initial model FWT falls into a local minimum.

4.3.3 Test 3: inversion without low frequency and good initial
model

In the third test, the initial model is the same as in the first test (Figure 4-4 on the
top). But low frequencies are filtered in the original Ricker wavelet to be more realistic
(Figure 4-5).

FWI

Firstly, we run FWI on this model. The FWI result after 100 iterations is shown in
Figure 4-12. Compared to the first test, as low frequencies are missing from the source
wavelet, the problem becomes more nonlinear, and the FWI yields a poorer result, espe-
cially for the long-wavelength part in the central anomaly zone. In order to retrieve the
long-wavelength components of the model, multi-scale FWT is widely used [Bunks et al.,
1995]. We perform the multi-scale inversion to see if it could improve the inversion result.
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Figure 4-7: Test 1. 1D vertical profiles of exact (black), initial (red) and FWI model
(blue). From top to bottom: x = 0.4, 1, 1.6 km.
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Figure 4-8: Test 1. Top panels: shot gathers for observed data (left), initial data (middle)
and final data obtained with FWI (right). Bottom panels: observed (black), initial (red)
and modeled (blue) seismic traces taken at three offset positions: 0.5 km (top), 1.5 km
(middle) and 2.5 km (bottom). Note that the observed data and the modeled data are
overlapped.
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Figure 4-9: Test 2. FWI result after 100 iterations.
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Figure 4-10: Test 2. 1D vertical profiles of exact (black), initial (red) and FWI model
(blue). From top to bottom: x = 0.4, 1, 1.6 km.

Multi-scale FWI

The multi-scale FWI is performed here in the time domain [Bunks et al., 1995|, start-
ing from the lowest available frequency band (5 Hz) and then gradually adding higher
frequency bands. Here, we perform 4 FWI steps. The source wavelets are filtered from
the initial Ricker wavelet with a Butterworth filter of order 9 and in the frequency band
of [8-9] Hz, [8-12| Hz, [8-15] Hz, and [8-Inf] Hz respectively (Figure 4-13). We perform
100 iterations of FWI at each step. The FWI result at each step is considered as the initial
model for the next step. The results at each step are shown in Figure 4-14. Compared to
the FWI result in Figure 4-12, the multi-scale FWI provides a better result (Figures 4-14
and 4-15) and allows to better retrieve the main features of the model. However, the
central velocity anomaly between 0.72 km and 0.9 km in depth is not well retrieved. As
a result, two reflectors at 0.72 km and 1.06 km are not positioned correctly due to the
background velocity error.

DWI

We test the same model using DWI. As presented in Chapter 3, we use a nested algo-
rithm. Within each global iteration, we perform 20 iterations of FWTI using zero-offset data
and quasi-Newton (L-BFGS) algorithm for the model update [Nocedal, 1980]. The long-
wavelength update step is then performed using the gradient described in equation (3.4).
A single iteration of inversion is performed using the gradient descent algorithm [Sirgue,
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Figure 4-11: Test 2. Top panels: shot gathers for observed data (left), initial data (middle)
and final data obtained with FWI (right). Bottom panels: observed (black), initial (red)
and modeled (blue) seismic traces taken at three offset positions: 0.5 km (top), 1.5 km
(middle) and 2.5 km (bottom).
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Figure 4-12: Test 3. FWI result after 100 iterations.
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Figure 4-13: Test 3. Source bandwidths used for the four steps in multiscale FWI. The
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high-pass filter with cut frequency of 8 Hz is used in (d).
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Figure 4-15: Test 3. 1D vertical profiles of exact (black line), initial (red line) and FWI
model (blue line) (left), or multiscale FWI model (blue line) (right). From top to bottom:
v =04,1,1.6 km.
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Figure 4-16: Test 3. Long-wavelength model obtained for DWI (top), and FWI result
starting from model on the top (bottom).

2003], choosing « in equation (2.11) such that the product of @ and the maximum value of
the gradient remains a constant fixed at the first iteration. We smooth the gradient in this
step to remove the residual short-wavelength components that are caused by acquisition
limitations and decomposition artefacts. The smoothing is performed in the frequency
domain as shown in Chapter 3. Once the background velocity is updated, a new global
iteration is started.

In the long-wavelength update step, as we perform only one iteration of inversion, to
compensate the geometrical spreading, we need to weight the gradient by the inverse of
the Hessian to speed up convergence. The inverse of the Hessian helps to deconvolve the
gradient, and to compensate for the geometrical spreading and for illumination. But the
computation of the inverse of the Hessian is extremely expensive [Clément et al., 2001].
As the test model is relative simple, we use a linear preconditioning to compensate the
geometrical spreading assuming that the velocity increases linearly with depth. We also
tested the preconditioning presented in [Plessix and Mulder, 2004] which calculates an
approximation of the inverse of the Hessian by the inverse of the norm of the wavefield.
However, the linear preconditioning is sufficient in this case and provides a similar result.

The long-wavelength velocity model we obtain after 30 global iterations is shown in
Figure 4-16 on the top. Starting from this model, we run 100 iterations of the conventional
FWI (inverting for all frequencies at once) and the final result is shown in Figure 4-16
on the bottom. The whole procedure could be regarded as a two-step FWI workflow,
consisting of the DWI followed by the conventional FWI. Compared to the multi-scale
FWI (Figure 4-17 and 4-18), we can observe that the reflectors are better positioned and
the central velocity anomaly, which is absent in the initial model, is successfully recovered.
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Figure 4-17: Test 3. 1D vertical profiles of exact (black line), initial (red line) and multi-
scale FWI model (blue line) (left), or DWI + FWI model (blue line) (right). From top to
bottom: x = 0.4, 1, 1.6 km.
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Figure 4-18: Test 3. Top panels: shot gathers for observed data (left), initial data (right).
Middle panels: Final data obtained with FWT (left), multi-scale FWI (middle) and DWI
(right). Bottom panels: observed (black), initial (red), FWI modeled (blue), multi-scale
FWI modeled (green) and DWI modeled (magenta) seismic traces taken at three offset
positions: 0.5 km (top), 1.5 km (middle) and 2.5 km (bottom).
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Figure 4-19: Test 4. FWI result

4.3.4 Test 4: inversion without low frequencies and poor initial
model

In this test, the inversion conditions are the poorest of the four cases, as the initial model
is the homogeneous model at 1500 m/s (Figure 4-4 on the bottom) and the low frequencies
are filtered in the source wavelet (Figure 4-5).

FWI

Firstly, we apply the FWI on the initial model. The result after 100 iterations is shown in
Figure 4-19. As low frequencies are absent in the source wavelet, and the initial model is
too far from the exact model, the problem becomes quite nonlinear in this case, and the
FWI falls into a local minimum (Figure 4-19). We perform the multi-scale inversion to
see if it could improve the inversion result.

Multi scale FWI

The parameters for multi-scale FWI remain the same as in the third test, and the inversion
results at each step are shown in Figure 4-20. Compared to the conventional FWI, multi-
scale FWI improves the long-wavelength part of the model (Figure 4-21). But with this
initial model and this source wavelet, the multi-scale FWI is still unable to retrieve the
long wavelengths of the velocity model and falls into a local minimum.

112



CHAPTER 4. INVERSION OF SYNTHETIC DATA

Surface (km)

Depth (km) Depth (km)

Depth (km)

0.4

0.8

1.2 5
Velocity (km/s)

Depth (km)

Figure 4-20: Test 4. Multiscale FWI results at each steps. From top to bottom, the source
bandwidths used are respectively from (a) to (d) those shown in Figure 4-13.
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Figure 4-21: Test 4. 1D vertical profiles of exact (black line), initial (red line) and FWI
model (blue line) (left), or multiscale FWI model (blue line) (right). From top to bottom:
r=204,1, 1.6 km.

DWI

Finally, we apply DWI for this test. Except for the initial model, the inversion param-
eters are the same as in the third test. The DWI allows retrieving the long-wavelength
component of the model (Figure 4-22 on the top) such that FWI using this model as
starting model allows getting a good result (Figure 4-22 on the bottom). Note that the
deepest layer of the model cannot be retrieved as there are no waves reflected back from
the bottom of the model. The comparison of the vertical velocity profiles with multi-scale
FWI are shown in Figure 4-23. The comparison of the exact data, the initial data and
final data obtained with FWI, multiscale FWI and DWTI is displayed in Figure 4-24.

114



CHAPTER 4. INVERSION OF SYNTHETIC DATA

Surface (km)

0 1 2 3
0 3
£ 04 25
e
o 08 2
a
1.2 1.5
Velocity (km/s)
Surface (km)
0 1 2 3
0 3
£ 04 25
<
2 08 2
a
1.2 1

Velocity (km/s

Figure 4-22: Test 4. Long-wavelength model obtained for DWI (top), and FWI result
starting from model on the top (bottom).

4.3.5 Analysis of the model perturbation

As presented in Chapter 3, the construction of the short-wavelength reflectivity model is a
critical step of the proposed algorithm, since a more correct reflectivity allows for a better
long-wavelength update. The proposed inversion scheme combines several elements in the
short-wavelength update step to build a true-amplitude, focused and sharp reflectivity
model: (1) zero-offset data; (2) nonlinear iterative inversion (20 iterations in our example)
and (3) a source with high-frequency content. In this section, we show the importance of
these elements by analyzing and comparing the model perturbations that we obtain after
the first iteration of the long-wavelength update. The analysis of the model perturbation
is similar to the analysis of the sensitivity kernel in the gradient.

In the following tests, the initial velocity model is the gradient-constant velocity model
(Figure 4-4 on the top). The true model perturbation (the difference between the true
velocity model and the initial velocity model) is displayed in Figure 4-25 on the top.
The model perturbation retrieved after the first global iteration (short-wavelength update
followed by long-wavelength update) by using the three above-mentioned elements is shown
in Figure 4-25 on the bottom. This is the reference for comparison. The result is close to
the smoothed version of the true model perturbation shown in Figure 4-25 in the middle as
if the new method reduces the nonlinearity of the problem and speeds up the convergence.

In the following, we analyze the effect of partly applying all of the above-mentioned
elements and compare the velocity perturbation to the one displayed in Figure 4-25 on
the bottom.

Figure 4-26 shows the model perturbation after the first iteration of long-wavelength
update when full-offset data (1.2 km offset) instead of zero-offset data is used in the short-
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Figure 4-23: Test 4. 1D vertical profiles of exact (black line), initial (red line) and mul-
tiscale FWI model (blue line) (left), or decomposition-based waveform inversion + FWI
model (blue line) (right). From top to bottom: x = 0.4, 1, 1.6 km.
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Figure 4-24: Test 4. Top panels: Shot gathers for observed data (left), initial data (right).
Middle panels: Final data obtained with FWT (left), multi-scale FWI (middle) and DWI
(right). Bottom panels: Observed (black), initial (red), FWI modeled (blue), multi-scale
FWI modeled (green) and DWI modeled (magenta) seismic traces taken at three offset
positions: 0.5 km (top), 1.5 km (middle) and 2.5 km (bottom).

117



CHAPTER 4. INVERSION OF SYNTHETIC DATA

Surface (km)

0 1 2 3
0 : : 0.5
£ 04] -
£ [————— | (O
% 08' N i
02 . : 0.5

Velocity (km/s)
Surface (km)

0 1 2 3
0 : : 0.5
£ 04] -
< “' 0
S 0.8 .

a
1.2 . ' -0.5
Velocity (km/s)
Surface (km)

0 1 2 3
0 : : 0.1
£ 04] -
< .‘ 0
S 0.8 :

a
1.2 , . -0.1

Velocity (km/s)

Figure 4-25: (Top) The difference between the exact velocity model (Figure 4-3) and the
gradient-constant initial velocity model (Figure 4-4 on the top). (Middle) The smoothed
version of the image on the top. (Bottom) The model perturbation of the first global
iteration for the proposed decomposition-based inversion using zero-offset data and 20
iterations of FWI in the first step of inversion. Source wavelet without low frequencies
less than 5 Hz is used for the two steps of inversion.

Surface (km)

0 1 ) 3
0y : : * g 0.1
e

~ 04

< e 0
£ 08

[

0 121 . : | M

Velocity (km/s)

Figure 4-26: Model perturbation of the first iteration of long-wavelength update for the
proposed decomposition-based waveform inversion when using large offset data (1.2 km)
in the short-wavelength update step of the inversion.

118



CHAPTER 4. INVERSION OF SYNTHETIC DATA

Depth (km)
0 0.4 0.8 1.2

0.7

Velocity (km/s)
o

Depth (km)
0 0.4 0.8 1.2

Velocity (km/s)
o

Depth (km)
0 0.4 0.8 1.2

Velocity (km/s)
o

|
°
N

Figure 4-27: 1D vertical profiles of exact model perturbation (black line), model pertur-
bation for DWI applying all the key parameters (red line) and model perturbation for
DWTI when large offset data (1.2 km) is used in the short-wavelength update step of the
inversion (blue line). From top to bottom: x = 0.4, 1, 1.6 km.
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Figure 4-28: Model perturbation of the first iteration of the long-wavelength update for
DWI when using 1 iteration instead of 15 iterations in the short-wavelength update step
of the inversion.

wavelength update. Compared with the one in Figure 4-25, the result is far from the
true model perturbation (refer to Figure 4-27). The sign is opposite. As by using large-
offset data, move-out information is introduced and long-wavelength components are also
updated in the first step, which is contrary to the idea of decoupling long wavelengths and
short wavelengths, the inversion falls into a local minimum after the first global iteration.

Figure 4-28 shows the model perturbation after a single iteration of the long-wavelength
update step of inversion when running 1 iteration (6 iterations for L-BFGS) instead of 15
iterations (20 iterations for L-BFGS) of zero-offset FWI in the short-wavelength update
step of inversion. Similarly, as shown in Figure 4-29, the result is far from the true model
perturbation as iterations help to correct the reflectivity. If just one iteration is performed,
the amplitude of the reflectivity is not correctly recovered and the amplitude error in the
data residual will be interpreted as background velocity error in the second step.

Figure 4-30 and 4-31 shows the model perturbation when full-spectrum source is used
in the first step. The image is close to the true model perturbation except on the edge.
This is caused by the fact that low frequencies in the source will bring long wavelength
update in the first step.

Figure 4-32 shows the model perturbation when using a linearized inversion based on
the Born approximation in the short-wavelength update step as [Symes and Carazzone,
1991] and [Xu et al., 2012] proposed. Note that the nonlinear inversion is performed
in the second step as discussed previously. The poorer result (Figure 4-33) highlights
the importance of the compatibility of waveform between these two steps even though
the linearized inversion requires less iterations to converge and provides mainly short
wavelength update. Figure 4-34 shows the comparison of a vertical slice taken on the
reflectivity models obtained by FWI and linearized inversion respectively, both using zero-
offset data. We observe that the results are quite similar. But as the velocity contrast
at interfaces is quite large, about 15% in this case, the Born approximation is no longer
strictly valid. As a result, small differences in reflectivity could result in large differences
in the long-wavelength model update. If we use the Born approximation in the first step,
more iterations may be required to get a similar long-wavelength model.

Through these four comparisons we conclude that the three key ingredients: high
frequency source, zero-offset data and iterative inversion in the first step, help to build
a more correct short-wavelength reflectivity which is favorable to the update of the long-
wavelength model in the second step. Besides, we note from the comparison of vertical
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Figure 4-29: 1D vertical profiles of exact model perturbation (black line), model pertur-
bation for DWI (red line) and model perturbation for DWI when 1 iteration instead of 15
iterations is used in the short-wavelength update step (blue line). From top to bottom:
2 =041, 1.6 km.
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Figure 4-30: Model perturbation of the first global iteration for DWI when using source
with low frequency in the short-wavelength update step of the inversion.
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Figure 4-31: 1D vertical profiles of exact model perturbation (black line), model pertur-
bation for DWI (red line) and model perturbation for DWI when using source with low
frequency in the short-wavelength update step of the inversion (blue line). From top to
bottom: x = 0.4, 1, 1.6 km.
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Figure 4-32: Model perturbation of the first global iteration for DWI when using Born
approximation in the short-wavelength update step of the inversion.
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Figure 4-33: 1D vertical profiles of exact model perturbation (black line), model perturba-
tion for DWI (red line) and model perturbation for DWI when using Born approximation
in the short-wavelength update step of the inversion (blue line). From top to bottom: z =
0.4, 1, 1.6 km.
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Figure 4-34: (Top) Velocity profiles at 1.5 km for the model obtained after the first step
of inversion by using zero-offset FWTI (red line) and zero-offset iterative migration based
on the Born approximation (blue line). (Bottom) Zoom of the zone in green box in (a).

profiles (Figures 4-27, 4-29, 4-31, 4-33), that these key issues also help to better balance
the amplitude for different parts of the model.

Figure 4-35 shows the model perturbation when performing the first step (short-
wavelength update) with the high-frequency source and then using full-spectrum source
in the second step (long-wavelength update). The similarity of the results shown in Fig-
ure 4-36, when compared to the one displayed in Figure 4-25 on the bottom, confirms
that the proposed method is capable of retrieving long-wavelength components without
low frequency in the source. This property is similar to that of DSO. As shown by [van
Leeuwen and Mulder, 2010], the DSO functional does not depend on the frequency content
of the data.

There are two possible interpretations to explain the success of the decomposed gradi-
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Figure 4-35: Model perturbation of the first global iteration for DWI when using source
with low frequency in the short-wavelength update step of the inversion.
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Figure 4-36: 1D vertical profiles of exact model perturbation (black line), model pertur-
bation for DWI (red line) and model perturbation for DWI when using source with low
frequency in the short-wavelength update step of the inversion (blue line). From top to
bottom: xz = 0.4, 1, 1.6 km.
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ent to reduce the nonlinearity of the inversion problem. The first one is that the decom-
posed gradient is a filtered version of the original gradient of FWI. The filter serves as a
projector of the original gradient direction into the direction of the true model perturba-
tion. The second interpretation is that since we use only one part of the FWI gradient,
the objective function in equation (2.1) is no longer valid. The new objective function
corresponding to the new gradient is less nonlinear and has a larger basin of attraction.

4.4 Conclusion and discussion

In this chapter, we apply the FWI and DWI on two synthetic models and show that
compared to the conventional FWI and the multi-scale FWI, DWI is more robust with
respect to the absence of low frequencies in the source wavelet and to the large errors in
the initial model. We have also analyzed the influence of three key parameters during the
inversion and show that when these three key parameters are all applied in the inversion,
the update of the long-wavelength part is closer to the true velocity perturbation.

From the computation cost point of view, the new method is computational expensive,
as iterative inversion is performed at the short-wavelength update step to fit the data.
However this iterative step is important, since it facilitates the long-wavelength update
of the model. For migration velocity analysis, [Symes, 2015, Lameloise et al., 2015] also
underline the importance of iterative migration to fit the data in the short-wavelength
update, rather than merely image the reflectivity. A possible remedy to reduce the com-
putation time is to perform the iterative inversion in the pseudo-time domain to avoid the
re-computation of the reflectivity at each step [Plessix, 2012, Brossier et al., 2015].

We have also tested the idea that in the second step of inversion, we do not decompose
wavefields, but directly smooth the FWI gradient to update the long-wavelength part of
the model. However, this method fails to give a satisfactory result. Our analysis is that
the limit between the short wavelengths and the long wavelengths is not fixed at each
iteration, their spectrum may overlap or vary during the iterations, thus it is not trivial
to determine the limit at each iteration.

Finally, all the examples shown in this chapter use models with constant and known
density. We have also tested the more realistic case with the exact model having variable
density, and the model used for the inversion having constant density. In this case, similarly
as for conventional FWI, DWI fails to retrieve the correct model. For future work, we
would like to extend the method to be suitable for elastic models with variable density.
This aspect is described in the perspectives (Chapter 6).
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Résumé du chapitre 5

Dans ce chapitre, nous appliquons la FWI classique et la DWT au jeu de données réelles
2D Brunei fourni par Total. L’acquisition des données Brunei a été réalisée en 2011, et
la géométrie d’acquisition est montrée dans la Figure 5-1. Nous présentons d’abord les
paramétres d’acquisition et les traitements de données que nous effectuons, y compris la
vérification de la cohérence entre traces, le pointé des premiéres réflexions, la suppression
des ondes directes, le filtrage passe-bas des données, le ré-échantillonnage et le débruitage
des données. En particulier, nous testons et comparons trois méthodes de pointé et ob-
servons que celle proposée par [Arbelaez et al., 2011] est la plus efficace.

Nous estimons la source avec la méthode proposée par |Pratt et al., 1996]. La bande
de fréquence estimée pour la source correspond a la bande de fréquence des données. En
théorie, 'ondelette de la source doit étre estimé a chaque itération de I'inversion, en méme
temps que la mise a jour du modéle de vitesse. Toutefois, pour simplifier, 'ondelette de
la source que nous utilisons reste inchangée au cours de l'inversion. Néanmoins, cette
hypothése pourrait pénaliser le résultat d’inversion.

Nous soulignons aussi les défis que nous avons rencontrés. Tout d’abord, nous étudions
le cas de la densité constante. Nous observons que avec I’hypothése de densité constante
la variation de I’amplitude avec offset différe considérablement entre les données observées
et calculées. En outre, pour les grands offsets, nous pouvons aussi constater un déphasage
entre ces deux données. Comme nous utilisons I’approximation acoustique de la propa-
gation des ondes avec densité constante, 'influence de la densité et d’autres paramétres
physiques du sous-sol sur 'amplitude des données de réflexion ne pouvait pas étre incor-
poré correctement. Notons que pour des ondes plongeantes, I'influence de la variation de
densité n’a pas beaucoup d’effet sur 'amplitude des données, mais que pour les réflexions,
cet effet est important. Nous essayons d’utiliser un modéle de densité variable pour com-
penser la différence d’amplitude. Nous testons la formule de Gardner et observons que
I’amplitude est mieux expliquée que dans le cas de densité constante. Mais le probléme de
déphasage aux grands offsets existe toujours. Il semble donc difficile de trouver un modéle
de densité qui pourrait mieux expliquer la variation d’amplitude avec offset. Nous pensons
que l'atténuation est un autre facteur important, surtout dans les zones superficielles en
présence de gaz. De ce fait, nous avons décidé de prendre en compte les offsets limités
dans les données.

Le deuxiéme test préparatoire nous effectuons est d’utiliser le modéle de vitesse fourni
par Total pour faire la migration. Nous observons que l'image migrée dans ce modéle
de vitesse n’est pas focalisée. Si 'on migre avec les trés courts offsets, les images sont
bien focalisées mais différent les unes des autres et la somme des contributions n’est plus
cohérente, surtout dans les zones de gaz.

Avec les difficultés que nous avons rencontrées, nous montrons quand méme les résultats
d’inversion en utilisons FWI classique et DWI. D’aprés le résultat de FWI, nous observons
que la partie des grandes longueurs d’ondes du modéle n’est pas mis a jour. En outre, en
raison de ’hypothése de densité constante, la mise & jour de la densité se retrouve dans la
mise & jour de vitesse, visible a la fond de I’eau. Pour DWI, nous observons que la poche
de gaz est mieux récupérée que dans FWI. Mais le probléme de I’amplitude existe toujours,
qui est aussi visible sur le fond de I'eau. D’autres études sur ce sujet vont certainement
aborder I'utilisation du modéle visco-élastique. En outre, plus de travail serait nécessaire
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pour analyser 'inversion multi-paramétrique avec la méthode DWI.
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5.1 Introduction

In this chapter, we present an application on the 2D Brunei real dataset as provided by
Total. The acquisition of the Brunei data set was carried out in 2011, and the acquisition
geometry is displayed in Figure 5-1. We first present the seismic acquisition parameters
and data processings we performed. We point out the challenges we met when dealing
with this dataset. Then we show the first inversion results using the conventional Full
Waveform Inversion (FWI) and Decomposition-based Waveform Inversion (DWI). More
work is still needed to correctly image the subsurface.

5.2 Seismic dataset

The seismic dataset consists of a sub-line (that mimics a 2D acquisition) with 608 shot
gathers with sources spaced 50 m apart and receivers spaced 12.5 m apart. Within each
shot gather, there are 516 channels. The first channel is situated at 150 m from the source
and the last channel is situated at 6587.5 m. The temporal sampling is 3 ms and the total
recording time is 9 s.

Several preprocessings were already done by the provider of the data:

e Multiple removal using 3D SRME and Radon-based methods.

e Butterworth high-pass filter with low cut frequency of 3 Hz.

e Swell noise and linear noise attenuation.

Figure 5-2 displays one shot gather after the preprocessings described above, and the
spectrum of the data corresponding to this shot gather. To meet our needs, we have also
applied other preprocessings, including:

e Seismic event coherency check. In this step, we check the quality of each shot gather
and noisy traces are dropped.

e Picking and direct wave removal. The direct waves are not completely removed
from the initial data, as shown in Figure 5-2. As we do not use direct waves for
the inversion, we apply a picking on the data and remove the direct waves. For the
first-reflection picking we have first tested two methods that are classically used for
picking of the first-breaks: 1) the method proposed by [Coppens, 1985], that consists
in calculating the ratio of energy of seismogram for two windows, one before the
current time point, and one after the current time point. However, with this dataset,
this approach fails to detect the first-reflection arrival because of the presence of the
residual direct wave (Figure 5-3); and 2) the STA/LTA (Short Term Average / Long
Term Average) ratio method [Allen, 1978], that consists in calculating the ratio of
two averages of energy between a short-term window and a long-term window. The
picking results using different sizes of windows are shown in Figure 5-4. It fails to
pick the first reflection and indicates the second reflection.
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Figure 5-1: Acquisition geometry of the Brunei dataset.
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We also tested an algorithm that is widely used in image processing, but less standard
in geophysics. The method is based on the contour detection [Arbelaez et al., 2011].
It is similar to Coppens’s algorithm. This approach calculates the absolute value of
the difference, instead of the ratio of energy of seismogram for two windows. This
alternative improves the picking result, as the difference operator is more stable
than the ratio operator. The picking result is shown in Figure 5-5. It successfully
picks the first reflection. The result after the muting of the direct wave is shown in
Figure 5-6 on the left.

e Low pass filtering of the data. As shown in Figure 5-2 on the right, the spectrum of
the original data is up to 100 Hz. This frequency is very high for FWI. Moreover,
with this frequency, the spatial and the temporal samplings for the wave propagation
modeling would be very small and the size of model would exceed our computational
capacity. Thus, we apply a low pass filter on the data, by using a 10*" order But-
terworth filter with high cut frequency of 10 Hz. The filtered shot gather is shown
in Figure 5-6 on the right.

e Data resampling. The data is resampled from 3 ms to 2 ms in the time domain, and
from 25 m to 12.5 m in the space domain, to satisfy the criteria for the spatial and
the temporal samplings for the wavefield propagation.

e Data de-noising. In the lower part of the shot gather (Figure 5-6), we can observe
some artefacts that intersects with each other and have slopes different from the
slopes of the signal. We filter these artefacts in the f-k domain. The denoised shot
gather and its spectrum are displayed in Figure 5-7.

Note that there is no 3D to 2D amplitude correction in the initial data. This correction
consists in multiplying the data by v/%, where ¢ is the recorded time. Since there is a lot
of noise in the bottom of the data, rather than amplifying later arrivals in the observed
data, we instead correct the calculated data by dividing it by /t. This behaves as a
preconditioning on the data.

5.3 Selsmic inversion

A FWI model is provided by Total using long-offset data (Figure 5-8). The dimensions of
the model are 16.7625 km large by 3.0125 km deep. The velocity model building has to
contend with challenging geology, including steeply dipping structure and the presence of
large shallow gas pockets. These gas pockets exhibited extremely low seismic velocities,
and had a negative impact on deeper reflector amplitudes. The objective is to localize these
gas traps. When we began to deal with this data set, one of the first tests we wanted to
perform was to compare the data modeled on this FWI model with the processed observed
data. For this, we need first to estimate the source wavelet.

5.3.1 Estimation of the source wavelet

We use the source-estimation method proposed by [Pratt et al., 1996], and described in
Chapter 2. This method was initially applied on direct waves, but as the direct waves are
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Figure 5-2: One original shot gather (left) and its spectrum (right).

partially removed in our initial data, the residual direct waves are not sufficient for the
source estimation (Figure 5-2). Instead we use the first reflection at the water bottom to
estimate the source wavelet. We have tested this approach at three source locations: at
2.5 km, 7.5 km and 10 km respectively. The estimated source wavelets are not exactly
the same for these three locations. However, we decided to use an average source wavelet.
The averaged source wavelet and its spectrum are displayed in Figure 5-9. The bandwidth
of the estimated source corresponds to the bandwidth of the data (Figure 5-7). In theory,
the source wavelet should be estimated at each iteration of the inversion, along with the
velocity update. However, for simplicity, the source wavelet we use remains unchanged
during the inversion. This may penalize the inversion result.

5.3.2 Preparatory tests

With the estimated source wavelet, we compute the data using the model in Figure 5-
8. First, we investigate the constant density case. Let consider the shot gather for the
source situated at 7.5 km. The comparison of the observed data and the calculated data
is displayed in Figures 5-10 and 5-11. We note that the variation of the amplitude with
offset differs greatly between these two data. Besides, for large offset, the phase is also
shifted. As we use the acoustic wave propagation approximation with constant density, the
influence of density and other physical parameters of the subsurface on the reflection data
amplitude could not be incorporated correctly. Note that for diving waves, the influence of
the variation of density does not have much effect on data amplitude, but for reflections,
this effect is important.

We try to use a variable density model to compensate the amplitude difference. We
rely on the Gardner’s formula [Gardner et al., 1974]:

p=aVP’ (5.1)
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Figure 5-3: Picking results using the Coppen’s algorithm (blue) and smoothed versions
(red). From top to bottom, the size of windows are respectively 0.09 s, 0.15 s and 0.21 s.
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Figure 5-4: Picking results using the STA/LTA algorithm (blue) and smoothed versions
(red). From top to bottom, the size of short-term windows are respectively 0.09 s, 0.15 s
and 0.21 s, and the size of the long-term windows are respectively 0.9 s, 1.5 s and 2.1 s
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Figure 5-5: Picking results using the difference-based algorithm (blue) and smoothed
versions (red). The size of the window is 0.09 s.
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Figure 5-6: The shot gather after removal of direct waves (left) and the shot gather after
low-pass filtering with cut frequency of 10 Hz (right).
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Figure 5-7: The shot gather after denoising in the f-k domain (left) and its spectrum
(right).
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Figure 5-8: FWI model provided by Total.
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Figure 5-9: Estimated source wavelet in the time domain (left) and in the frequency
domain (right).
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Figure 5-10: Constant density case. The observed data (left) and the calculated data in
the model of Figure 5-8 (right).

The Gardner’s formula is an empirically derived equation that relates seismic P-wave
velocity to the bulk density of the lithology. We tested different choices of o and 5 and
find none of them could match the data amplitudes satisfactorily. We cite one example
here. To compensate the amplitude difference, a large density contrast at the water-bottom
layer is needed. The velocity of the water here is 1495 m/s. We choose o« = 7.74e — 12 and
B = 3.5. The obtained density model is displayed in Figure 5-12. The source wavelet is
re-estimated. We then recompute the shot gather for the source situated at 7.5 km, using
the velocity model in Figure 5-8 and the density model in Figure 5-12. The comparison of
the calculated and the observed data is shown in Figure 5-13 and 5-14. We observe that
the amplitude is better matched than in the constant density case. But the phase shift
problem still exists. Besides, due to the density change, the amplitude of the events below
the first reflection is attenuated; refer for example to the event at ¢ =5 s and x =6 km.
It seems therefore difficult to find a density model that could better explain the real data
amplitudes with offset variations.

As the decomposition-based waveform inversion does not need large offset data, we
decide to only consider the data in the offset range of [150-2500] m to avoid the large
variations in amplitude and phase.

The second preparatory test we carry out is to use the velocity model in Figure 5-8
to get a migrated image. We use the constant density model. The migrated image is
displayed in Figure 5-15. We note that this image is not focused, especially in the red
circled zone. To analyse this problem, we use data with smaller offset ranges. We test
5 offset ranges: respectively [150-275] m, [275-400] m, [400-525] m, [525-650] m, and
[650-775] m. For each offset range, the migrated image is focused (Figure 5-16). But
if we compare carefully, we find that these images are shifted horizontally (indicated by
red vertical lines in Figure 5-16). Due to this shift, the sum of the five migrated images,
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Figure 5-11: Constant density case. Seismic traces of observed (black) and calculated
(red) data taken at four offset positions, from top to bottom: 0.15 km, 2 km, 4 km and 6
km respectively.
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Figure 5-12: Density model obtained with the Gardner’s formula in equation 5.1.
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Figure 5-13: Variable density case. The observed data (left) and the calculated data
(right) using the density model in Figure 5-12.
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Figure 5-14: Variable density case. Seismic traces of observed (black) and calculated (red)
data taken at four offset positions, from top to bottom: 0.15 km, 2 km, 4 km and 6 km

respectively.
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Figure 5-15: The migrated image using data within offset range of [150-2500] m. Note
that the image is not focused in the red circled zone.

providing the migrated image for data with offset range of [150-775] m, is still unfocused
at = 6 km (see Figure 5-17). Three vertical slices at 2 = 3 km, 6 km, 10 km respectively
in these five gradients are shown in Figure 5-18. We can observe the moveout at different
offsets. For the following inversion tests, we only consider the right part of the model,
starting from x = 8 km, to avoid the difficult zone near x = 6 km.

5.3.3 Seismic inversion

In this section, we apply FWI and DWI on the data. We consider the constant density
case. The initial model (Figure 5-19) we use is the smoothed version of the FWI model in
Figure 5-8.

5.3.4 FWI

We apply the conventional FWI on the data in the time domain, with the estimated
source wavelet (Figure 5-9). All frequencies are involved at the same time. The sources
are spaced 100 m apart and the receivers are spaced 12.5 m apart. The FWI result after
100 iterations is displayed in Figure 5-20. We note that the long-wavelength part of the
model is not updated. Besides, due to the use of constant density, the density update is
leaked into the velocity update (see the bottom of the water layer).

5.3.5 DWI

We apply the DWI on the same data, with the same source wavelet. We use a nested al-
gorithm. For the short-wavelength update step, we perform 20 iterations of conventional
FWI with short-offset data. The offset range is [150-400] m. For the long-wavelength
update, we decompose the wavefield and only consider the long-wavelength part in the
gradient. We perform 3 global iterations. The long-wavelength gradient at the first it-
eration is displayed in Figure 5-21. We compare it with the true velocity perturbation
in Figure 5-22. The "true model" here means the FWI model in Figure 5-8. The true
velocity perturbation thus is the difference between the FWI model and the initial model
(Figure 5-19). We can observe that the gas pocket at x = 2 km is better retrieved than in
the FWI case. But the problem of density still exists as visible below the water-bottom
layer.
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Figure 5-16: From top to bottom: the migrated image using data with offset range of
[150-275] m, |275-400] m, [400-525] m, [525-650| m and [650-775] m respectively. Note
that from top to bottom, the migrated images shift horizontally. The red vertical lines are
fixed at x = 5.2 km in these images.
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Figure 5-17: The migrated image using data with offset range of [150-775] m.
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Figure 5-18: Vertical slices taken in Figure 5-16. From left to right, x = 3 km, 6 km and
11 km respectively.
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Figure 5-19: The initial velocity model for inversion.
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Figure 5-21: The model perturbation of the first global iteration with DWI.
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Figure 5-22: (Top) The difference between the FWI model (Figure 5-8) and the initial
model (Figure 5-19). (Bottom) The smoothed version of the image on the top.
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The long-wavelength velocity model after 3 global iterations is displayed in Figure 5-23
on the top, and the FWI result after 100 iterations, starting from this model, is displayed in
Figure 5-23 on the bottom. The result is not yet satisfactory. Compared to conventional
FWI, one improvement may be found in the gas pocket at x = 2 km, however, the bottom
of the water layer pose more problems in this case.

5.4 Discussion and conclusion

In this chapter, we apply the FWI and DWI on the Brunei real data set and show that
compared to the conventional FWI, DWI better recovers the gas pocket. However, due
to the acoustic approximation with constant density, the data is not correctly simulated,
especially for dealing with the data amplitude at the water-bottom layer (Figure 5-24).
Attenuation with low quality factor is certainly visible due to the presence of gas pock-
ets [Operto et al., 2013]. Further investigations are needed to incorporate elastic, density
and attenuation effect. Besides, we had wanted to consider more frequencies in the data to
get a more focused reflectivity in the short-update step of the inversion, which is favorable
for the long-wavelength update of the model. However, adding higher frequencies in the
data also means a finer spatial and temporal sampling, yielding larger model which is
beyond our actual computational capacity.
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Figure 5-23: Long-wavelength model obtained with DWT (top), and FWT result after 100
iterations, starting from the model on the top (bottom).
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Figure 5-24: Amplitude variation with offset for constant density case. Blue: observed
data; red: calculated data; green: the ratio of calculated data and observed data; magenta:
1/4/t as a reference.
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Résumé du chapitre 6

Ce chapitre est consacré aux conclusions et aux perspectives de la thése.

L’inversion des formes d’ondes (Full Waveform Inversion, FWI) est largement util-
isé pour l'imagerie sismique. Cependant, la fonction objective de FWI est fortement
non linéaire par rapport aux paramétres du modéle et présente beaucoup de minima lo-
caux [Bunks et al., 1995]. Ces minima locaux empéchent les techniques basées sur le
gradient de trouver le minimum global si le modéle initial est loin de la solution globale.
Si un ensemble de données contient principalement des réflexions, les méthodes basées
sur le gradient souvent n’arrivent pas & reconstruire les grandes longueurs d’ondes du
modéle |Pratt et al., 1996]. Dans cette thése, nous avons présenté et testé une nouvelle
méthode d’inversion basée sur la séparation du gradient apres la décomposition du champ
d’onde (Decomposition-based Waveform Inversion, DWI). L’objectif est de reconstruire
les grandes longueurs d’ondes du modéle de vitesse. La recherche est principalement axée
sur trois aspects, comme décrit dans la suite.

Dans le chapitre 2, nous avons revu les formulations classiques de FWI, y compris la
fonction objective, les méthodes de modélisation numérique pour la propagation des on-
des, le calcul du gradient et du Hessien de la fonction objective, et les méthodes de mise
a jour du modeéle de vitesse. L’analyse de la résolution du gradient de FWI indique que
la résolution dépend des différents types d’ondes et de la configuration d’acquisition. Les
ondes plongeantes, les transmissions liée aux réflexions et aux réfractons, et les multiples
particulierement aident a reconstruire les grandes longueurs d’ondes du modéle. Les inver-
sions avec différents parameétres d’acquisition indiquent que les données de grands offsets
et de basses fréquences sont favorables pour la mise & jour des grandes longueurs d’ondes
du modéle. Les analyses effectuées dans ce chapitre et la littérature nous ont amenés a
proposer la nouvelle méthode d’inversion. Pour mieux reconstruire les grandes longueurs
d’ondes du modeéle, dans le chapitre 3, nous avons proposé une méthode d’inversion basée
sur la décomposition. Cette approche consiste a séparer le gradient de FWI en une par-
tie de grandes longueurs d’ondes et une partie de courtes longueurs d’ondes, puis de les
inverser séparément et alternativement. Cette séparation du gradient est obtenue par la
décomposition des champs d’ondes en une partie descendante et une partie montante. Au
lieu de mettre des différents poids dans le gradient |[Tang and Lee, 2013|, ou le poids est
difficile & déterminer, nous proposons d’inverser ces deux parties séparément. L’inversion
est effectuée avec un algorithme imbriqué. La méthode est illustrée au travers d’un modéle
de couche 1D.

Nous avons également comparé DWI avec d’autres méthodes d’inversion basée sur la
réflexion. Nous comparons en particulier avec la méthode proposée par [Xu et al., 2012].
La comparaison a travers le modéle de couche 1D indique que les mises a jour du gradient
pour ces deux méthodes sont trés similaires. La différence réside dans la facon de calculer
les champs d’ondes partiels. En outre, comme la méthode de [Xu et al., 2012] est basée
sur la modélisation linéarisé, elle suppose que les perturbations de vitesse sont petites et
ne considére que les réflexions primaires. En revanche, comme la FWI classique, DWI
résout I’équation des ondes non linéarisée, donc les autres types d’ondes pourraient étre
pris en considération. Comparée a d’autres méthodes qui filtrent le gradient pour obtenir
les grandes longueurs d’ondes, DWI récupére les grandes longueurs d’ondes automatique-
ment. Ceci est un avantage quand on connait peu sur le modéle. Une autre méthode
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similaire est proposé par [Zhou et al., 2015|. Cette approche consiste a combiner la partie
tomographique dans le gradient de FWI obtenu par les réflexions avec le gradient obtenu
par les ondes plongeantes pour extraire les grandes longueurs d’ondes du modéle. Cette
méthode présente I'avantage d’étre plus rapide que DWI, mais elle est plus sensible a la
réflectivité. Elle fonctionne de maniére optimale pour la réflectivité avec une fréquence in-
finie, mais en pratique, en raison des données de bande limitée, la réflectivité est également
limité en fréquence.

La décomposition du gradient est obtenue par la décomposition du champ d’ondes.
Nous avons présenté et comparé trois méthodes pour décomposer le champ d’ondes. Ces
méthodes sont illustrées a travers un champ d’ondes qui se propage dans le modéle de
couche 1D. Les avantages et les inconvénients de chaque méthode sont également détaillée.
La méthode par la transformation de Fourier est la plus populaire, et a été largement
utilisée pour supprimer des artefacts de haute fréquence dans les images migrées, mais
avec cette méthode les basses fréquences sont filtrées dans le résultat final. La méthode
de Poynting est la plus rapide car elle peut étre calculée au cours de la propagation
des ondes, mais elle souffre du probléme d’artefacts numériques forts. La méthode de
décomposition par les curvelet donne le meilleur résultat car il peut prendre en compte
les différentes directions en méme temps, avec le cott de calcul le plus élevé des trois.
Cependant, contrairement & la méthode de Fourier qui nécessite de garder en mémoire
I’ensemble des champs d’ondes, la méthode de curvelet est facilement parallélisable parce
que la décomposition est effectuée séparément pour chaque pas de temps.

Dans le chapitre 4, nous appliquons FWI, FWI multi-échelles et DWI sur deux modéles
synthétiques et montrons que par rapport a la FWI conventionnel et la FWI multi-échelle,
la DWI est plus robuste face & 'absence de basses fréquences dans la source et a des
erreurs importantes dans le modéle initial. Nous avons également analysé l'influence de
plusieurs paramétres clés lors de l'inversion, comme 1'application de l'inversion itérative
et non linéaire en utilisant des données de hautes fréquences et zéro offset dans I’étape de
mise & jour des courtes longueurs d’ondes. Grace a cette analyse, nous pouvons conclure
que lorsque ces paramétres clés sont tous appliqués dans l'inversion, la mise & jour des
grandes longueurs d’ondes est plus proche de la vraie perturbation du modeéle de vitesse
que dans les cas ot les paramétres clés sont partiellement appliqués.

Dans le chapitre 5, nous avons appliqué FWI et DWI sur un jeu de données réelles
de Brunei. Nous montrons que, avec I’hypothése acoustique, densité constante et milieu
non atténuant, il est difficile de simuler les formes d’onde dans ce jeu de données réelles,
en particulier en ce qui concerne le comportement de 'amplitude avec offset. Avec ces
hypothéses limitées, ni FWI ni DWI peuvent fournir un résultat satisfaisant. Cependant,
DWI donne un résultat légérement meilleur pour retrouver les poches de gaz.

A part le probléme de 'amplitude, pour DWI, la variation de densité influence égale-
ment la réflectivité, ce qui est un facteur important pour DWI. Vue dans le chapitre 4, une
petite différence dans la réflectivité peut provoquer une grande différence dans le résultat
de I'inversion.

D’autres investigations sur ce sujet vont certainement aborder I'utilisation du modele
visco-élastique. En outre, des recherches supplémentaires seraient nécessaires pour anal-
yser l'inversion multi-paramétrique avec la méthode DWI. Modéles synthétiques doivent
étre validés avant de traiter les données réelles.

Pour DWI, l'inversion itérative est effectuée pour la mise a jour des courtes longueurs
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d’onde pour ajuster les données. Cette étape est trés cotiteuse en temps de calcul. Toute-
fois, cette étape itérative est importante car elle facilite la mise a jour des grandes longueurs
d’onde du modéle. Cette conclusion est compatible avec 'importance d’introduire la mi-
gration itérative dans I'analyse de vitesse par migration (Migration-based Velocity Anal-
ysis, MVA) [Symes, 2015, Lameloise et al., 2015]. Pour les futures études, nous aimerions
mettre en ceuvre cette étape dans le domaine pseudo-temps pour éviter la calcul a chaque
itération globale [Plessix, 2012, Brossier et al., 2015].

Notons que pour DWI, la longueur du pas pour la mise a jour des grandes longueurs
d’ondes est définie au début. Ainsi, la décroissance de la fonction objective n’est pas
assurée au cours des itérations. Si nous utilisons l'interpolation quadratique pour déter-
miner la longueur du pas a chaque itération, nous avons besoin d’effectuer deux problémes
directs supplémentaires, et ici le probléme direct correspond a l'inversion itérative, donc
rend le calcul trés cher. Si cette étape d’inversion itérative pourrait étre réalisée dans le
domaine pseudo-temps, le cotit de calcul pourrait étre largement réduit.

Par ailleurs, dans cette thése, DWI principalement utilise les réflexions. Cependant,
en théorie, DWI n’est pas limitée aux réflexions, ce qui est différent des autres méthodes
d’inversion basées sur la réflexion, et pourrait intégrer d’autres types d’ondes en méme
temps. Pour les futures études, nous tenons a combiner ces différents types d’ondes et voir
si la combinaison pourrait faciliter I'inversion. [Biondi et al., 2012] introduisent 1’offset en
sous-sol pour atténuer la non linéarité du probléme. Nous aimerions étudier de plus preés
sur ce point, en introduisant 1’offset en sous-sol pour DWI.

Afin d’atténuer la grande dépendance vis-a-vis de 'amplitude des données, nous aime-
rions tester d’autres fonctions objectives, qui sont moins sensibles & 'amplitude, telles que
la fonction objective basée sur la corrélation [van Leeuwen and Mulder, 2008| et fonction
objective normalisée.

Enfin, avec le développement des ordinateurs de haute performance, 'application de
la méthode de décomposition basée sur le curvelet aux données réelles pourrait devenir
bientot possible. L’élément important est la corrélation dans le domaine des curvelets et
non pas en temps pour chacun des directions.
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6.1 Conclusions

Full Waveform Inversion (FWTI) is widely used for seismic imaging. However, the objective
function of FWI is highly nonlinear with respect to the model parameters and has many
local minima |Bunks et al., 1995|. These local minima prevent gradient-based techniques
from finding the global minimum if the initial model is far from the global solution. If a
dataset mainly contains reflections, the gradient-based methods does not recover the long
wavelengths of the model [Pratt et al., 1996]. In this thesis, I have presented and tested
a new inversion method based on the gradient separation after wavefield decomposition.
The objective is to retrieve the long wavelengths of the velocity model. The research
mainly focused on three aspects, as described in the following.

6.1.1 Basic FWI theory and resolution analysis

In Chapter 2, we have reviewed the classical formulations of FWI, including the objective
function, the methods for the numerical modeling of wavefield propagation, the compu-
tation of the gradient and the Hessian of the objective function, and the velocity model
update methods. The resolution analysis of the FWI gradient indicates that the reso-
lution depends on the types of waves and on the acquisition setup. The diving waves,
reflection-related transmission, refraction-related transmission and multiples particularly
help to recover the long-wavelength part of the model. The inversions with different ac-
quisition parameters indicate that long-offset and low-frequency data are favorable for
long-wavelength update of the model. The analyses performed in this chapter and the
revised literature brought us to propose the DWI inversion method.

6.1.2 The DWI method

To better recover the long-wavelength part of the model, in Chapter 3, we have proposed
a Decomposition-based Waveform Inversion (DWI) method. The method consists in sep-
arating the gradient of FWI into a long-wavelength part and a short-wavelength part, and
then inverting them separately. This separation of gradient is based on the decomposition
of the wavefield into their down-going and up-going part. By introducing this wavefield
decomposition into the gradient of FWI, a recombination of them gives the long- and
short-wavelength parts of the gradient. Instead of setting different weights (|Tang and
Lee, 2013]), for which the weight is difficult to determine, we propose to separately invert
these two parts. The inversion is performed using a nested algorithm. The method is il-
lustrated through a 1D layer model. The decomposed gradients using the 1D layer model
show that one part of the gradient of FWI indicates the positions of reflectors and thus
provides the short wavelengths of the model, and the other part indicates the wavepath
that connecting the surface and the reflector and provides the long wavelengths of the
model.

We have also compared DWI with other reflection-based waveform inversion methods.
We compare particularly with the method proposed by [Xu et al., 2012]. The comparison
through the 1D layer model indicates that the gradient updates for these two methods are
very similar. The difference resides in the way to compute the partial wavefields. Besides,
as the method of [Xu et al., 2012] is based on the linearized modeling, it assumes that
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the velocity perturbations are small and the data contain only primaries. While similarly
to classical FWI, DWI resolves the nonlinear wave equation; therefore refractions, diving
waves and multiples could be included in the dataset. Compared to others methods that
filter the gradient to get the long wavelengths, DWI retrieves the long-wavelength part
automatically. This is an advantage when we know little about the model.

Another similar method is proposed by |[Zhou et al., 2015]. This method consists in
combining the tomographic part in the FWI gradient using reflection data with the gra-
dient using diving waves to retrieve the long wavelengths of the model. The tomographic
part in the FWI gradient with reflection is the same as we use. Instead of decomposing
wavefields, the authors first compute the gradient of FWI in the model with reflectivity
mo + 0m, and then they compute the gradient of FWI in the smooth model mg, and
the difference of these two cancels the migration part in the FWI gradient and provides
the tomographic part. This method has the advantage of being faster than the wavefield
decomposition-based method, however it is more sensitive to the reflectivity. It works
optimally for reflectivity with infinite frequency, but in practice, due to the band-limited
data, the reflectivity is also band-limited. This band-limited reflectivity eventually change
the kinematics of the model. Thus, the migration part in the FWI gradient calculated in
the full model and in the smooth model may be different and the difference of these two
gradients may contain residual short wavelengths.

The decomposition of the gradient is based on the wavefield decomposition. We have
presented and compared three methods to decompose the wavefield into their one way
component. These methods are illustrated through a wavefield that propagates in the 1D
layer model. The advantages and the disadvantages of each method are also detailed. The
Fourier transform method is the most popular one, and was widely used for suppressing
high frequency artefacts in migrated images, but low frequencies are filtered in the final
results. The Poynting method is the fastest one as it could be computed during the wave
propagation, but it suffers from strong numerical artefacts. The curvelet decomposition
method yields the best result as it can take into account different directions at the same
time, with the expense of the highest computational cost of the three. However, differently
from the 2D Fourier transform method which requires to keep in memory the whole prop-
agated wavefield, the curvelet decomposition method is more easily parallelizable because
the decomposition is carried out for each snapshot separately.

6.1.3 Applications to synthetic models and real data

In chapter 4, we apply FWI, multiscale FWI and DWI on two synthetic models and show
that compared to the conventional FWI and the multiscale FWI, DWI is more robust
with respect to the absence of low frequencies in the source wavelet and to large errors in
the initial model. We have also analyzed the influence of several key parameters during
the inversion, such as performing the nonlinear iterative inversion in the short-wavelength
update step, and using high frequency and zero-offset data in the short-wavelength update
step. Thanks to this analysis, we can conclude that when these key parameters are all
applied in the inversion, the update of the long-wavelength part is closer to the true velocity
perturbation than in cases where the key parameters are partly applied. From the point
of view of computational cost, DWI is computational expensive, as iterative inversion is
performed at the short-wavelength update step to fit the data. However this iterative step
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is important, since it facilitates the long-wavelength update of the model. This conclusion
is consistent with introducing iterative migration in MVA [Symes, 2015, Lameloise et al.,
2015].

In chapter 5, we have applied FWI and DWI on the Brunei real data set. We show that
with the acoustic and the constant density and non attenuative assumption, it is difficult
to simulate the waveforms present in this real dataset, especially regarding the behavior
of the amplitude with offset. With this limiting assumption, neither FWI nor DWI could
provide a satisfactory result. However, DWI yields a slightly better result to retrieve the
gas pockets.

6.2 Perspectives

6.2.1 Physics of the earth

For the wave propagation, we assume in this thesis the acoustic approximation, with
constant density and no attenuation. This assumption is very limiting when dealing with
real datasets, as they are better interpreted by visco-elastic modeling. The inadequacy
of the acoustic assumption with constant density and without attenuation to interpret
real data and especially to interpret the data amplitude, is observed in Chapter 5. We
think that attenuation is a major factor. Further investigations on this topic will certainly
address the use of visco-elastic model. Moreover, further research would be needed to
analyze multiparameter inversion with the DWI method. Synthetic models need to be
validated before dealing with real data.

6.2.2 Role of density

We have investigated the influence of density on the data amplitude in Chapter 5. Apart
from the data amplitude issue, for DWI, the variation of density also influence the reflec-
tivity, which is an important factor for DWI. We analyze this effect through a 1D simple
model (Figure 6-1). The true velocity for the first and the third layer is 2 km /s and for the
second layer is 2.5 km/s. The true density for the first and the third layer is 1000 kg/m?
and for the second layer is 1500 kg/m3. The initial velocity is homogeneous at 2 km/s.
We have tested three density models. The first one is the true density model. The second
one is the homogeneous model at 1000 kg/m?, and for the third model, the density for the
second layer is 2000 kg/m? and for the rest of the model is 1000 kg/m3. The result after
running 20 FWT iterations with fixed density parameters are shown in Figure 6-2. We ob-
serve that the density error is leaked into the velocity update. For the initial density that
is smaller than the true density, the velocity is overestimated to compensate the density
error, and for the initial density that is larger than the true density, the velocity is under-
estimated to correct the overestimation of density. Besides, the sign of the reflectivity is
changed. As we have analyzed in chapter 4, DWT is quite sensitive to the reflectivity. A
small difference in the reflectivity may cause a large difference in the inversion result. The
influence of the density on the inversion, especially on DWI needs further investigations.
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Figure 6-1: True velocity model (left) and the true density model (right).

6.2.3 Inversion techniques

For DWI, iterative inversion is performed at the short-wavelength update step to fit the
data. This step is quite computational expensive. However this iterative step is important,
since it facilitates the long-wavelength update of the model. For further tests, we would
like to implement this step in the pseudo-time domain to avoid the re-computation of the
short-wavelength model at each step [Plessix, 2012, Brossier et al., 2015]. It should be
noted that for DWI, in the long-wavelength update step, the step length of the gradient
descent method is defined at the beginning. Thus the decrease of the objective function
is not assured during all the steps of the inversion. If we use the quadratic interpolation
to determine the step length at each iteration, we need to carry out two extra direct
problems, however here the direct problem corresponds to the iterative inversion, thus
this is quite computational expensive. If this iterative inversion step could be performed
in the pseudo-time domain, the computational cost could be largely reduced.

Besides, in this thesis, DWI is mainly used for reflections. However, in theory, DWI
is not limited to work with reflections only, which is different from other reflection-based
waveform inversion methods, and could incorporate other types of waves at the same time,
such as diving waves and diffractions. For future research, we would like to combine these
different types of waves and to see if the combination could facilitate the inversion.

[Biondi et al., 2012] introduce the subsurface offset to the reflection-based waveform
inversion to mitigate the nonlinearity of the problem. We would like to investigate more
this point, by introducing the subsurface offset into DWI.

In order to mitigate the problem of data amplitude, we would like to test other objective
functions, that are less sensitive to amplitude, such as the correlation-based objective
function [van Leeuwen and Mulder, 2008] and normalized objective function. We need
to investigate on the feasibility of combining the new objective functions with wavefield
decomposition.

Finally, with the development of high performance computers, the application of the
curvelet-based decomposition method on real datasets could become soon feasible. To
further reduce the computational cost, we would like to test the idea of correlating the
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decomposed wavefields in the curvelet domain before the inverse curvelet transform to
compute the gradient, rather than performing the inverse curvelet transform on each
snapshot and then correlating the whole wavefield in the space domain.
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Figure 6-2: FWI results after running 20 iterations using the true density model (top left),
smaller density model (top right) and larger density model (middle). Vertical slices taken
at © = 0.425 km for the above three FWI models (black: true density model; red: smaller

density model; blue: larger density model. During the inversion, the density model is
fixed.
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L'inversion des formes d'ondes par décomposition des champs d'ondes

RESUME : L'inversion des formes d'ondes (FWI) est une procédure d'imagerie sismique pour
imager le sous-sol de la Terre. FWI est résolue comme un probléme d'optimisation. En fonction
du contenu en fréquence des données, la fonction objective de FWI peut étre fortement non
linéaire. Pour des données associées des réflexions, ce probleme empéche notamment les
méthodes basées sur le gradient de retrouver les grandes longueurs d'onde du modele de
vitesse.

Dans cette thése, nous proposons une variante de FWI basée sur la séparation des champs
d'ondes, typiquement en champs montants et descendants, pour atténuer la non-linéarité du
probleme. Il consiste a décomposer le gradient de FWI en une partie de courte longueur d'onde
et une partie de grande longueur d'onde aprés décomposition des champs d'ondes. L'inversion
est effectuée d'une maniere alternée entre ces deux parties. Nous appliquons cette méthode a
plusieurs études de cas et montrons que la nouvelle approache est plus robuste en particulier
pour la construction du modéle de grande longueur d'onde.

Mots clés : Inversion des formes d'ondes, décomposition des champs d'ondes, imagerie
sismique.

Waveform inversion based on wavefield decomposition

ABSTRACT: Full Waveform Inversion (FWI) is a seismic imaging procedure to image the
subsurface of the Earth. FWI is resolved as an optimization problem . Depending on the
frequency content of the data, the objective function of FWI may be highly nonlinear. If a data
set mainly contains reflections, this problem particularly prevents the gradient-based methods
from recovering the long wavelengths of the velocity model.

In this thesis, | propose a variant of FWI based on the wavefield separation, typically between
up- and down- going waves, to mitigate the nonlinearity of the problem. The new method
consists of decomposing the gradient of FWI into a short-wavelength part and a long-
wavelength part after wavefield decomposition. The inversion is performed in an alternating
fashion between these two parts. We apply this method to several case studies and show that
the new method is more robust especially for constructing the long-wavelength model.

Keywords : Waveform inversion, wavefield decomposition, seismic imaging.
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