Z. A. Aboosadi, A. H. Hahanmiri, and M. R. Rahimpour, Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method, Applied Energy, pp.2691-2701, 2011.

. Ademe, EAE consultant environnement energie, Hespul, Solagro Etude portant sur l'hydrogène et la méthanation, 2014.

K. J. Albrecht, Physically based dynamic modeling of planar anode-supported SOFC cogeneration systems, phd thesis on Mechanical engineering / Faculty and the Board of Trustees of the Colorado School of Mines, 2013.

C. F. Alie, CO2 Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant, thesis in chemical engineering, Canada, 2004.

A. Alihosseinzadeh, B. Nematollahi, M. Rezaei, and E. N. Lay, CO methanation over Ni catalysts supported on high surface area mesoporous nanocrystalline ??-Al2O3 for CO removal in H2-rich stream, International Journal of Hydrogen Energy, vol.40, issue.4, pp.1809-1819, 2015.
DOI : 10.1016/j.ijhydene.2014.11.138

J. M. Amman, Etude de procédé de captage de CO2 dans les centrales thermiques, Thèse en Génie des Procédés, L'école des Mines de, 2007.

C. I. Anyadiegwu, A. Kerunwa, and P. Oviawele, Natural gas dehydration using triethylene glycol (TEG), Petroleum & Coal. -2014, pp.407-417

H. Apfel, M. Rzepka, H. Tu, and U. Stimming, Thermal start-up behaviour and thermal management of SOFC's, Journal of Power Sources, pp.370-378, 2006.

A. and L. Batteries-ni-mh, Nickel Metal-Hydrure) [En ligne], Les batteries pour véhicules hybrides

A. Bader, S. Bauersfeld, C. Brunhuber, R. Pardemann, and B. Meyer, Modelling of a Chemical Reactor for Simulation of a Methanisation Plant, Proceedings from the 8th International Modelica Conference, Technical Univeristy, Dresden, Germany, 2011.
DOI : 10.3384/ecp11063572

F. Bagui, M. A. Abdelghani-idrissi, and H. Chafouk, Heat exchanger Kalman filtering with process dynamic acknowledgement, Computers & Chemical Engineering, vol.28, issue.8, pp.1465-1473
DOI : 10.1016/j.compchemeng.2003.11.005

A. Bandi, CO2 recycling for hydrogen storage and transportation. Electrochemical CO2 removal and fixation, Energy conversion and management. -1995, p.899

F. Belhachemi, Modélisation et caractérisation des supercondensateurs, thèse en génie électrique, p.157, 2001.

G. Benjaminsson, J. Benjaminsson, and R. R. Boogh, Power-to-Gas ? A technical review, 2013.

M. D. Bierschenk, J. W. Scott, and A. Barnett, High efficiency electrical energy storage using a methane???oxygen solid oxide cell, Energy Environ. Sci., vol.157, issue.3, pp.944-951, 2011.
DOI : 10.1039/C0EE00457J

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, 1960.

U. Bossel, Rapid Startup SOFC Modules, Energy Procedia. -2012, pp.48-56

N. Boultif, C. Bougriou, and N. Wakim, Comportement des échangeurs de chaleur à tubes coaxiaux face aux perturbations, Revue des Energies Renouvelables, pp.607-615, 2009.

R. J. Braun, Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small-scale Stationary Applications, phd thesis, Mechanical Engineering, 2002.

D. J. Bunce and S. G. Kandlikar, Transient response of heat exchangers, Heat and Mass Transfer, Proceedings of the Second ISHMT?ASME Heat and Mass Transfer Conference, pp.28-31, 1995.

Q. Cai, E. Luna-ortiz, C. S. Adjiman, and N. P. Brandon, The Effects of Operating Conditions on the Performance of a Solid Oxide Steam Electrolyser: A Model-Based Study, Fuel Cells, vol.34, issue.6, pp.1114-1128, 2010.
DOI : 10.1002/fuce.200900211

URL : https://hal.archives-ouvertes.fr/hal-00591285

M. A. Camara, Modélisation du stockage de l'énergie photovoltaïque par supercondensateurs CCS Global Carbon Capture and Storage Institute Qualification procedures for CO2 capture technology, Thèse en science de l'ingénieur. -GUINEE : Institut Polytechnique de CONAKRY ? Université Gamal Abdel NASSER, pp.1-195, 2010.

S. Chanshan and P. Wei, Tri-reforming : a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios, catalysis today, pp.463-484

M. Chareonpanich, N. Teabpinyok, and S. Kaewtaweesub, Effect of Nickel Particle Size on Dry Reforming Temperature, Proceedings of the World Congress on Engineering and Computer Science, 2008.

P. Cheekatamarla, C. M. Finnerty, and J. Cai, Internal reforming of hydrocarbon fuels in tubular solid oxide fuel cells, International Journal of Hydrogen Energy, vol.33, issue.7, pp.1853-1858, 2008.
DOI : 10.1016/j.ijhydene.2008.02.004

M. Chen and T. L. Jiang, The analyses of the heat-up process of a planar, anode-supported solid oxide fuel cell using the dual-channel heating strategy, International Journal of Hydrogen Energy, vol.36, issue.11, pp.6882-6893, 2011.
DOI : 10.1016/j.ijhydene.2011.02.129

S. Chettibi, Y. Benguedouar, and N. Keghouche, The metal-support interaction in the oxide supported nickel nanoparticles synthesized by radiolysis, Physics Procedia, pp.707-712, 2009.

L. D. Christensen, Gas dehydration: Thermodynamic simulation of the Water/Glycol mixture, 2009.

R. G. Compton and . Chapter, Kinetics of electrode reactions, 1987.

C. R. Davis, Methanation plant design for HTGR process heat, technical report, 1981.

J. Davis and G. Rochelle, Thermal degradation of monoethanolamine at stripper conditions, Energy Procedia, pp.327-333, 2009.

M. De-saint-jean, Etude énergétique et évaluation économique d'une boucle de stockagedéstockage d'énergie électrique d'origine renouvelable sur méthane de synthèse à l'aide d'un convertisseur électrochimique réversible SOEC-SOFC, 2014.

D. Smet, C. De-croon, M. Berger, R. Marin, G. Schouten et al., Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells, Chemical Engineering Science, vol.56, issue.16, pp.4849-4861, 2001.
DOI : 10.1016/S0009-2509(01)00130-0

G. Dillenseger, Caractérisation de nouveaux modes de maintien en charge pour batteries stationnaires de secours, thèse en électronique : Composants et Systèmes. -Monpellier-France, pp.1-195, 2004.

M. Ditl and N. Pavel, Natural Gas -Extraction to End Use

E. B. Doesburgs, S. Orr, R. H. Ross, and L. L. Van-reijen, Effect of Temperature of Reduction on the Activity and Selectivity of a Coprecipitated Ni-Al2O3, Catalyst for the Fischer- Tropsch and Methanation Reactions, Journal of the Chemical Society, Chemical Communications, pp.734-735, 1977.

G. Donati and R. Paludetto, Chapter 17 Scale up of chemical reactors, Catalysis Today, pp.483-533, 1997.

E. Harkins, M. Pando, and D. Sobel, Electrical Energy Storage using Fuel Cell technology, Senior Design Project Written Report. -Pennsylvanie : [s.n, 2011.

P. Harriott and S. V. Ho, The Kinetics of Methanation on Nickel Catalysts, Journal of catalyst, vol.64, pp.272-283, 1980.

J. P. Hartnett and I. C. Young, Handbook of heat transfert, third Edition, McGraw-Hill Handbook, 1998. IEC Electrical energy storage: White paper [E ligne

J. H. Jensen, J. M. Poulsen, and N. U. Audersen, Natural Gas (SNG) from petcoke: model development and simulation, 2011.

G. Jiajian, W. Yingli, P. Yuan, H. Dacheng, X. Guangwen et al., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Advances. -2012, pp.2358-2368

J. Maddocks, W. Mckay, and V. Hansen, Technology Update, 2014.
DOI : 10.1002/9781118511138.ch7

X. Jin and X. Xue, Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions, Journal of Power Sources, vol.195, issue.19, pp.6652-6658, 2010.
DOI : 10.1016/j.jpowsour.2010.04.018

A. Josef, State of the art electricity storage systems: Deutsche bank research

L. Jürgensen, E. A. Ehimen, J. Born, and J. B. Holm-nielsen, Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation, Bioresource Technology. -2015, pp.323-329

S. Kakaç and H. Liu, Heat exchangers, selection, rating and thermal design, 1998.

S. Kakaç, A. Pramuanjaroenkij, and X. Y. Zhou, A review of numerical modeling of solid oxide fuel cells, International Journal of Hydrogen Energy, vol.32, issue.7, pp.761-786, 2007.
DOI : 10.1016/j.ijhydene.2006.11.028

P. Karditsas and M. Baptiste, Thermal and structural properties of fusion related materials, 1995.

M. Kaviany, Principles of Heat Transfer in Porous Media, Mechanical Engineering Series Mechanical Engineering Series, 1991.

P. Kazempoor and R. Braun, Model validation and performance analysis of regenerative solid oxide cells: Electrolytic operation, International Journal of Hydrogen Energy, vol.39, issue.6, pp.1-16
DOI : 10.1016/j.ijhydene.2013.12.010

P. Kazempoor and R. Braun, Model validation and performance analysis of??regenerative solid oxide cells for energy storage applications: Reversible operation, International Journal of Hydrogen Energy, vol.39, issue.11, pp.5955-5971
DOI : 10.1016/j.ijhydene.2014.01.186

P. Kazempoor, V. Dorer, and F. Ommi, Evaluation of hydrogen and methane-fuelled solid oxide fuel cell systems for residential applications: System design alternative and parameter study, International Journal of Hydrogen Energy, vol.34, issue.20, pp.8630-8644, 2009.
DOI : 10.1016/j.ijhydene.2009.07.119

C. Kemp-ian, Pinch Analysis and Process integration: a user guide on process integration for the efficient use of energy, USA : IChemE: Instituuion of Chemical engineers, 2007.

A. M. Khan and A. S. Maruf, Optimizing Effective Absorption during Wet Natural Gas Dehydration by Tri Ethylene Glycol, Journal of Applied Chemistry, vol.2, pp.1-6

K. Khorsan, M. A. Marvast, N. Pooladian, and M. Kakavan, Modeling and simulation of methanation catalytic reactor in ammonia unit, Petroleum & Coal, pp.46-53, 2007.

J. Ki and D. Kim, Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process, Journal of Power Sources, vol.195, issue.10, pp.3186-3200, 2010.
DOI : 10.1016/j.jpowsour.2009.11.129

J. Kopyscinski, Production of synthetic natural gas in a fluidized bed reactor: Understanding the hydrodynamic, mass transfer, and kinetic effects, phd Thesis, Paul scherrer institute, Suisse, 2010.

T. Kuppan, Heat exchanger design handbook, 2000.

J. L. Labbé, hydrogène électrolytique comme moyen de stockage d'électricité pour systèmes photovoltaïques isolés, Thèse de doctorat en énergétique, pp.1-226, 2006.

A. Laghzaoui and D. Peerhossaini, Etude bibliographique : stockage de chaleur : énergie solaire et autres applications, 2013.

X. Li, J. Li, B. Yang, and Y. Zhang, Dynamic analysis on methanation reactor using a double-input???multi-output linearized model, Chinese Journal of Chemical Engineering, vol.23, issue.2, pp.389-397
DOI : 10.1016/j.cjche.2014.11.007

X. Li, B. Yang, and Y. Zhang, Dynamics and control study on the low temperature methanation reactor with mass and heat recycle, Journal of Process Control, vol.23, issue.10, pp.1360-1370
DOI : 10.1016/j.jprocont.2013.09.003

M. Lopez, Contribution à l'optimisation d'un système de conversion éolien pour une unité de production isolée, Thèse en physique, pp.1-185, 2010.

Y. Luo, Y. Shi, W. Li, and N. Cai, Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell, Energy . -2015

M. Götz, R. Reimert, D. Buchholz, and S. Bajohr, Storage of volatile renewable energy in the gas grid applying 3-phase methanation, Proceeding of International Gas Union Research Conference, 2011.

B. V. Mathiesen, I. Ridjan, D. Connolly, and M. P. Nielsen, Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers, rapport / The Faculty of Engineering and Science, 2013.

J. Milewski and J. Lewandowski, Modeling the dynamic behavior of a sigle solid oxide fuel cell, Recent Advances in Environmental Science, Chypre : Proceedings of the 9th International Conference on Energy, pp.27-36, 2013.

D. A. Morris and C. H. Bartholomew, Heterogeneous Catalyst Deactivation and Regeneration: A Review, Catalysts. -2015, pp.145-269

G. Mouriès, Condensateurs utilisés en électronique de puissance, Technique de l'ingénieur D3010, 2007.

A. Nakajo, Z. Wuillemin, J. Van-herle, and D. Favrat, Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: Probability of failure of the cells, Journal of Power Sources, vol.193, issue.1, pp.203-215, 2009.
DOI : 10.1016/j.jpowsour.2008.12.050

O. M. Necati, Finite difference methods in heat transfer, 1994.

M. Netu-il and P. Ditl, Natural Gas -Extraction to End Use

M. Ni, 2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis, International Journal of Hydrogen Energy, vol.37, issue.8, pp.6389-6399
DOI : 10.1016/j.ijhydene.2012.01.072

M. Ni, An electrochemical model for syngas production by co-electrolysis of H2O and CO2, Journal of Power Sources. -2012, pp.209-216
DOI : 10.1016/j.jpowsour.2011.11.080

S. P. Nikunj and A. Bhabhor, Design and analytical calculation of reactor pressure vessel, International Journal of Sciance and research (IJSR). -2013, pp.231-235

J. Nivargi, D. Gupta, S. J. Shaikh, and K. Shah, TEG Contactor for Gas Dehydration

O. 'brien, J. E. Mc-kellar, M. G. Stoots, C. M. Herring, J. S. Hawkes et al., Parametric study of large-scale production of syngas via high-temperature co-electrolysis, International Journal of Hydrogen Energy, vol.34, issue.9, pp.4216-4226, 2009.
DOI : 10.1016/j.ijhydene.2008.12.021

O. 'brien, J. E. Stoots, C. M. Herring, J. S. Hartvigsen, and J. J. , High temperature coelectrolysis of steam and Carbon Dioxide for direct production of Syngas; Equilibrium model and single cell tests, INL (Idaho National Laboratory), 2007.

. Obser-'er, La production d'électricité d'origine renouvelable dans le monde, Collection chiffres et statistiques, 2013.

. Obser-'er, La production d'électricité d'origine renouvelable dans le monde, détails par pays et par région

F. Petipas, Conception et conduite d'électrolyseurs à haute température alimentés par des énergies renouvelables, thèse en énergétique et procédé, L'école Nationale Supérieure des Mines de Paris, 2013.

F. Petipas, A. Brisse, and C. Bouallou, Model-based behaviour of a high temperature electrolyser system operated at??various loads, Journal of Power Sources, vol.239, pp.584-595
DOI : 10.1016/j.jpowsour.2013.03.027

URL : https://hal.archives-ouvertes.fr/hal-00880126

L. Polák, Modelling absorption drying of natural gas, Trondheim : NTNU Department of Petroleum Engineering and Applied Geophysics, 2009.

Y. Qi, B. Huang, and J. Luo, Dynamic modeling of a finite volume of solid oxide fuel cell: the effect of transport dynamics, Chemical Engineering Science, pp.6057-6076, 2006.

M. R. Rahimpour, S. M. Jokar, P. Feyzi, and R. Asghari, Inverstigating the performance of dehydration unit with Coldfinger technology in gas processing, Journal of Natural Gas Sciance and Engineering. -2013, pp.1-12

M. R. Rahimpour, Z. A. Aboosadi, and A. H. Jahanmiri, Synthesis gas production in a novel hydrogen and oxygen perm-selective membranes tri-reformer for methanol production, Journal of Natural Gas Science and Engineering, vol.9, pp.149-159, 2012.
DOI : 10.1016/j.jngse.2012.06.007

N. B. Rajendra, Recent Trends in Fuel Cell Science and Technology, 2007.

F. Reichert, Wind-to-Gas-to-Money? Economics and Perspectives of the Power-to-Gas Technology, 2012.

S. Rieke and . Gmbh, Power-to-Gas technology ? the missing link in renewable energy systems [En ligne]. -2012. -consulté le 11 13, 2012

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of heat transfert, 1998.

M. Sahli, Etude de la production d'hydrogène et électrolyse et par pile à combustible, mémoire de magister, pp.17-32, 2010.

T. Schaad, J. Grunig, M. R. Schester, T. Rothenfluh, and A. Orth, Methanation of CO2- Storage of renewable energy in a gas distribution system, Sustainability and Society, pp.4-29

R. Shin-kun, W. L. Sung, R. H. Kyung, and S. Jong, Production of synthetic natural gas by means of a catalytic nickel membrane, Fuel. -2012, pp.64-69

Z. Solarfuel, . Builds, . Plant, and . Audi, Renewable methane " e-gas " on megawatt scale. - Stuttgart : Press release, pp.5-13, 2011.

M. Soomro and R. Hughes, The Thermal Conductivity of Porous Catalyst Pellets, The Canadian journal of Chemical Engineering. -1979, pp.24-28

J. P. Stempien, Q. Sun, and S. H. Chan, Solid oxide electrolyzer cell modeling: A review, Journal of Power Technologies. -2013, pp.216-246

M. Sterner, Bioenergy and renewable power methane in integrated 100% renewable energy systems, chemical engineering thesis, pp.1-230, 2009.

C. M. Stoots, J. E. O-'brien, J. S. Herring, and J. J. Hartvigsen, Syngas Production via High-Temperature Coelectrolysis of Steam and Carbon Dioxide, Journal of Fuel Cell Science and Technology, vol.6, issue.1, 0112.
DOI : 10.1115/1.2971061

M. Sudiro, A. Bertucco, G. Groppi, and E. Tronconi, Simulation of a structured catalytic reactor for exothermic methanation reactions producing synthetic natural gas, 20th European Symposium on Computer Aided Process Engineering ? ESCAPE20, 2010.
DOI : 10.1016/S1570-7946(10)28116-6

M. Sudiro, C. Zanella, L. Bressan, M. Fontana, and A. Bertucco, Synthetic natural Gas (SNG) from petcoke: model development and simulation, In: AIDEC conference series, pp.309-327, 2009.

M. Sudiro and B. Alberto, Synthetic Natural Gas (SNG) from Coal and Biomass: a Survey of Existing Process Technologies, Open Issues and Perspectives
DOI : 10.5772/9835

P. Trambouze, H. Vanlandeghem, and J. P. Wauquier, Les réacteurs chimiques [Book]. - Paris : [s.n, 1984.

J. Udagawa, P. Aguiar, and N. Brandon, Hydrogen production through steam electrolysis: Control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.180, issue.1, pp.354-364, 2008.
DOI : 10.1016/j.jpowsour.2008.01.069

J. Udagawa, P. Aguiar, and N. Brandon, Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.180, issue.1, pp.46-55, 2008.
DOI : 10.1016/j.jpowsour.2008.02.026

A. M. Uqaili, K. Harijan, and M. Memon, Potential of Hydrogen Production from Wind Energy in Sindh, Pakistan [En ligne]. -consulté le 03 19, 2013.

P. S. Varbanov, J. J. Klemes, and F. Friedler, Cell-based dynamic heat exchanger models_Direct determination of the cell number, Computers and chemical Engineering, pp.943-948, 2011.

S. M. Walas, Chemical Process Equipment: Selection and Design, 1988.

M. Wang, A. Lawala, P. Stephenson, and R. J. Sidders, Post-combustion CO2 capture with chemical absorption: a state-of-the-art review, chemical engineering research and design, pp.1609-1624, 2011.

Q. Wang, L. Li, and C. Wang, Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane, Journal of Power Sources, vol.186, issue.2, pp.399-407, 2009.
DOI : 10.1016/j.jpowsour.2008.10.034

S. S. Warudkar, K. R. Cox, M. S. Wong, and G. J. Hirasaki, Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. High pressure strippers, International Journal of Greenhouse Gas Control, vol.16, pp.342-350, 2013.
DOI : 10.1016/j.ijggc.2013.01.050

G. H. Watson, Methanation catalysts, Technical report of International Energy Agency Coal Research, 1980.

A. Weber and E. Ivers-tiffee, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, Journal of Power Sources, vol.127, issue.1-2, pp.273-283, 2004.
DOI : 10.1016/j.jpowsour.2003.09.024

D. Douglas and P. Taeshin, Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis, catalysis Today, pp.261-267, 2009.

C. H. Yu, C. H. Huang, and C. S. Tan, A Review of CO2 Capture by Absorption and Adsorption, Aerosol and Air Quality Research. -2012, pp.745-769

H. Zhan, W. Kobsiriphat, J. R. Wilson, M. Pillai, I. Kim et al., O: The Basis for a Renewable Energy Cycle, Energy & Fuels, vol.23, issue.6, pp.3089-3096, 2009.
DOI : 10.1021/ef900111f

H. L. Zhi, T. L. Keat, B. Subhash, and R. M. Abdul, Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials, Renewable and Sustainable Energy Reviews. - 2012, pp.2599-2609

. Le-modèle-redlich-kwong, Soave utilise la même équation d'état pour calculer la fugacité des composant en phase vapeur et liquide : Coefficient de fugacité pour un corps pur ou un mélange

. Le-paramètre-a-est-en-fonction-de-la-température, La valeur de a (T) à des températures autres que celles critiques est calculée en utilisant l'équation (B-37) : (B-37)

A. Kazempoor, P. Braun, and R. , ) temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance Recycling CO2 into Sustainable Hydrocarbon Fuels: Electrolysis of CO2 and H2O . Thèse à Colombia university Model validation and performance analysis of regenerative solid oxide cells: Reversible operation, Pour Tr < Journal of Power Sources C. R. International Journal of Hydrogen Energy, vol.1, issue.39, pp.120-136, 2010.

X. Li, J. Li, B. Yang, and Y. Zhang, Dynamic analysis on methanation reactor using a double-input???multi-output linearized model, Chinese Journal of Chemical Engineering, vol.23, issue.2, pp.389-397, 2015.
DOI : 10.1016/j.cjche.2014.11.007

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of heat transfert. third Edition, McGraw-Hill Handbook Fundamentals of heat and mass transfer, 1998.

S. 18-kakaç and H. Liu, Heat exchangers, selection, rating and thermal design, 1998.