.. Stability, 109 Chemical composition inn metallic elements of carbides at equilibrium, p.109

.. Experimental-characterization, 111 TEM observations, EDX analyses and electron diffraction 111 X-Ray diffraction on electroetching residues, p.114

.. Experimental-results, 138 2.1 Effect of tempering on mechanical properties 139 Hardness measurements, p.139

M. Microstructural, Optical microscopy: metallographic observations and austenite grain size measurements, p.174

F. Ebsd and E. , 176 Observation of carbides on carbon extraction replicas, Scanning electron microscope: carbon extraction replicas, p.177

X. Characterization-of-carbides-using, 177 3.1 X-Ray diffraction and sample preparation by selective dissolution, p.177

.. Thermal, 179 4.1 Characterization of phase transformations using dilatometry 179 4.2 Determination of ferrite-austenite transformation temperatures using calorimetric measurements, p.180

A. Trautwein, H. Mayer, W. Gysel, and B. G. Walser, Structure and mechanical properties of 21/4Cr-1Mo cast steel for pressure components with wall thickness up to 500mm, 1982.

S. Pillot, C. Chauvy, S. Corre, L. Coudreuse, A. Gingell et al., Effect of temper and hydrogen embrittlement on mechanical properties of 2,25Cr???1Mo steel grades ??? Application to Minimum Pressurizing Temperature (MPT) issues. Part I: General considerations & materials' properties, International Journal of Pressure Vessels and Piping, vol.110, pp.17-23, 2013.
DOI : 10.1016/j.ijpvp.2013.04.017

S. Pillot, C. Chauvy, S. Corre, L. Coudreuse, A. Gingell et al., Effect of temper and hydrogen embrittlement on mechanical properties of 2,25Cr???1Mo steel grades ??? Application to Minimum Pressurizing Temperature (MPT) issues. Part II: Vintage reactors & MPT determination, International Journal of Pressure Vessels and Piping, vol.110, pp.24-31, 2013.
DOI : 10.1016/j.ijpvp.2013.04.018

Y. Murakami, T. Nomura, and J. Watanabe, Heavy-section 21/4Cr-1Mo steel for hydrogenation reactors Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.383-417, 1982.

J. Orr, F. R. Beckitt, and G. D. Fawkes, The physical metallurgy of chromiummolybdenum steels for fast reactor boilers In Ferritic steels for fast reactor steam generators, pp.91-109, 1978.

G. Manna, Factors limiting the in-service lifetime of CrMoV steels and weldments for pressure equipment, 2004.

H. Andrén, G. Cai, and L. Svensson, Microstructure of heat resistant chromium steel weld metals, Applied Surface Science, vol.87, issue.88, pp.87-88, 1995.
DOI : 10.1016/0169-4332(94)00491-9

K. Dawson, Dissimilar metal welds, 2012.

M. Pelletier, Study of structural transformations occuring in low carbon chromiummolybdenum ferritic steels: influence of small additions of vanadium and molybdenum, 1981.

R. L. Klueh, Chromium-molybdenum steels for fusion reactor first walls ??? a review, Nuclear Engineering and Design, vol.72, issue.3, pp.329-344, 1982.
DOI : 10.1016/0029-5493(82)90047-4

T. Wada and G. T. Eldis, Transformation characteristics of 21/4Cr-1Mo steel Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.343-361, 1982.

S. Suresh, G. F. Zamiski, and R. O. Ritchie, Fatigue crack propagation behavior of 21/4Cr-1Mo steels for thick-wall pressure vessels, Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.49-67, 1982.

R. G. Baker and J. Nutting, The Tempering of 2.25Cr?1Mo. Steel after Quenching and Normalising, Journal of the Iron and Steel Institute, vol.7, pp.257-268, 1959.

B. J. Cane, Creep-fracture initiation in 2??%Cr-1%Mo steel, Metal Science, vol.8, issue.1, pp.29-34, 1976.
DOI : 10.1111/j.1365-2818.1973.tb03771.x

P. Parameswaran, M. Vijayalakshmi, and V. S. Raghunathan, The Influence of Prior Microstructure on Tempering Stages in 2.25Cr-1Mo Steel, High Temperature Materials and Processes, pp.251-267, 2003.
DOI : 10.1515/HTMP.2002.21.5.251

D. R. Mitchell and C. Ball, A quantitative X-ray diffraction and analytical electron microscopy study of service-exposed 2.25Cr???1Mo steels, Materials Characterization, vol.47, issue.1, pp.17-26, 2001.
DOI : 10.1016/S1044-5803(01)00147-4

Y. Nishizaka, Y. Hara, A. Hori, H. Tsukahara, K. Miyano et al., Changes in Microstructure and Mechanical Properties of Cr-Mo Reactor Vessel Steels During Long-Term Service, Journal of Pressure Vessel Technology, vol.107, issue.3, pp.285-294, 1985.
DOI : 10.1115/1.3264452

N. S. Cheruvu, Degradation of mechanical properties of Cr-Mo-V and 2.25Cr-1Mo steel components after long-term service at elevated temperatures, Metallurgical Transactions A, vol.8, issue.1, pp.87-97, 1989.
DOI : 10.1007/BF02647496

S. Sato, S. Matsui, T. Enami, and T. Tobe, Strength and temper embrittlement of heavysection 21/4Cr-1Mo Steel, Application of 21/4Cr- 1Mo steel for thick-wall pressure vessels, pp.363-383, 1982.

M. Guttmann, P. Dumoulin, and M. Wayman, The thermodynamics of interactive cosegregation of phosphorus and alloying elements in iron and temper-brittle steels, Metallurgical Transactions A, issue.10, pp.13-1693, 1982.

T. E. Scott, Pressure vessels for coal liquefaction -an overview Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.7-25, 1982.

C. J. Moss and P. M. Kelly, THE MECHANISMS AND DETECTION OF EMBRITTLEMENT IN Cr-Mo PRESSURE VESSEL STEELS, Fatigue & Fracture of Engineering Materials and Structures, vol.22, issue.3, pp.369-380, 1994.
DOI : 10.1016/0029-5493(91)90256-H

J. Wanagel, T. Hakkarainen, and L. Che-yun, Hydrogen attack in thick-section 21/4Cr- 1Mo steels at elevated temperatures, Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.93-108, 1982.

B. Marini, X. Averty, P. Wident, P. Forget, and F. Barcelo, Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel, Journal of Nuclear Materials, vol.465, pp.20-27, 2015.
DOI : 10.1016/j.jnucmat.2015.05.023

M. K. Miller, P. Pareige, and M. G. Burke, Understanding Pressure Vessel Steels, Materials Characterization, vol.44, issue.1-2, pp.235-254, 2000.
DOI : 10.1016/S1044-5803(99)00056-X

H. Huang, B. Radiguet, P. Todeschini, G. Chas, and P. Pareige, Atom Probe Tomography characterization of the microstructural evolution of a low copper reactor pressure vessel steel under neutron irradiation, MRS Proceedings, pp.1264-1269, 2011.
DOI : 10.1016/j.nimb.2009.01.146

E. Meslin, M. Lambrecht, M. Hernández-mayoral, F. Bergner, L. Malerba et al., Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses, Journal of Nuclear Materials, vol.406, issue.1, pp.73-83, 2010.
DOI : 10.1016/j.jnucmat.2009.12.021

Y. Nikolaev, A. Nikolaeva, and Y. I. Shtrombakh, Radiation embrittlement of low-alloy steels, International Journal of Pressure Vessels and Piping, vol.79, issue.8-10, pp.8-10, 2002.
DOI : 10.1016/S0308-0161(02)00065-0

Y. I. Shtrombakh, B. A. Gurovich, E. A. Kuleshova, A. S. Frolov, S. V. Fedotova et al., Effect of Ni content on thermal and radiation resistance of VVER RPV steel, Journal of Nuclear Materials, vol.461, pp.292-300, 2015.
DOI : 10.1016/j.jnucmat.2015.02.023

D. T. Blagoeva, L. Debarberis, M. Jong, and P. Pierick, Stability of ferritic steel to higher doses: Survey of reactor pressure vessel steel data and comparison with candidate materials for future nuclear systems, International Journal of Pressure Vessels and Piping, vol.122, pp.1-5, 2014.
DOI : 10.1016/j.ijpvp.2014.06.001

S. P. Ghiya, D. V. Bhatt, and R. V. Rao, Stress relief cracking in advanced steel material -Overview, Lecture Notes in Engineering and Computer Science, pp.217711737-1740, 2009.

R. L. Klueh and R. W. Swindeman, The microstructure and mechanical properties of a modified 2.25Cr-lMo steel, Metallurgical Transactions A, vol.69, issue.6, pp.1027-1034, 1986.
DOI : 10.1007/BF02661268

T. Ishiguro, Y. Murakami, K. Ohnishi, and J. Watanabe, A 21/4Cr-1Mo pressure vessel steel with improved creep rupture strength, Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.129-147, 1982.

R. J. Kar and J. A. Todd, Alloy modification of of thick-section 21/4Cr-1Mo steel, Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.228-255, 1982.

J. A. Berthet, R. Blondeau, D. Catelin, A. Cheviet, and J. H. Roux, Data Obtained on Industrial Production Plates 150 to 500 mm (6 to 20 in.) Thick in Chromium-Molybdenum Steel, Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.148-166, 1982.
DOI : 10.1520/STP28414S

R. A. Swift, Effects of composition and heat treatments on the mechanical properties of a 300-mm-gage 21/4Cr-1Mo steel plate Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.166-189, 1982.

A. Ghosh, Segregation in cast products, Sadhana, vol.35, issue.1-2, pp.5-24, 2001.
DOI : 10.1007/BF02728476

G. Abbruzzese, I. Heckelmann, and K. Lücke, Statistical theory of two-dimensional grain growth???I. The topological foundation, Acta Metallurgica et Materialia, vol.40, issue.3, pp.519-532, 1992.
DOI : 10.1016/0956-7151(92)90401-Y

K. Lücke, I. Heckelmann, and G. Abbruzzese, Statistical theory of two-dimensional grain growth???II. Kinetics of grain growth, Acta Metallurgica et Materialia, vol.40, issue.3, pp.533-542, 1992.
DOI : 10.1016/0956-7151(92)90402-Z

J. E. Burke and D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, pp.220-292, 1952.
DOI : 10.1016/0502-8205(52)90009-9

S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction Model for the Austenite Grain Size in the Coarse Grained Heat Affected Zone of Fe-C-Mn Steels: Considering the Effect of Initial Grain Size on Isothermal Growth Behavior, ISIJ International, vol.44, issue.7, pp.44-1230, 2004.
DOI : 10.2355/isijinternational.44.1230

P. A. Beck, J. C. Kremer, L. J. Demer, and M. L. Holzworth, Grain growth in High- Purity Aluminum and in an Aluminum-Magnesium alloy, Transactions of the Metallurgical Society of AIME, vol.175, pp.372-400, 1947.

R. M. Miranda and M. A. Fortes, Austenite grain growth, microstructure and hardness in the heat-affected zone of a 2.25 Cr-1Mo steel, Materials Science and Engineering: A, vol.108, pp.1-8, 1989.
DOI : 10.1016/0921-5093(89)90399-7

H. Hu and B. B. Rath, Time exponent in isothermal grain growth, Metallurgical Transactions, vol.1, issue.11, pp.3181-3184, 1970.

I. Andersen and Ø. Grong, Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates???I. Normal grain growth, Acta Metallurgica et Materialia, vol.43, issue.7, pp.43-2673, 1995.
DOI : 10.1016/0956-7151(94)00488-4

F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Acta Metallurgica et Materialia, 2004.

H. Pous-romero, I. Lonardelli, D. Cogswell, and H. K. Bhadeshia, Austenite grain growth in a nuclear pressure vessel steel, Materials Science and Engineering: A, vol.567, pp.72-79, 2013.
DOI : 10.1016/j.msea.2013.01.005

C. S. Smith, Introduction to grains, phases, and interfaces -an interpretation of microstructure, Transactions of the Metallurgical Society of AIME, vol.175, pp.15-51, 1948.

P. A. Manohar, M. Ferry, and T. Chandra, Five Decades of the Zener Equation., ISIJ International, vol.38, issue.9, pp.913-924, 1998.
DOI : 10.2355/isijinternational.38.913

M. F. Ashby, J. Harper, and J. Lewis, The interaction of crystal boundaries with secondphase particles, Transactions of the Metallurgical Society of AIME, issue.8, pp.245-413, 1969.

S. P. Ringer, W. B. Li, and K. E. Easterling, On the interaction and pinning of grain boundaries by cubic shaped precipitate particles, Acta Metallurgica, vol.37, issue.3, pp.831-841, 1989.
DOI : 10.1016/0001-6160(89)90010-2

K. Lücke and K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metallurgica, vol.5, issue.11, pp.628-637, 1957.
DOI : 10.1016/0001-6160(57)90109-8

M. Hillert, Solute drag, solute trapping and diffusional dissipation of Gibbs energy, Acta Materialia, issue.18, pp.47-4481, 1999.

M. Hillert and B. Sundman, A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys, Acta Metallurgica, vol.24, issue.8, pp.731-743, 1976.
DOI : 10.1016/0001-6160(76)90108-5

J. W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metallurgica, vol.10, issue.9, pp.789-798, 1962.
DOI : 10.1016/0001-6160(62)90092-5

F. Barcelo and J. C. Brachet, Quantification par analyse d???images de la taille de l???ancien grain aust??nitique d???aciers martensitiques 9Cr-1Mo., Revue de M??tallurgie, vol.91, issue.2, pp.255-266, 1994.
DOI : 10.1051/metal/199491020255

N. A. Gjostein, H. A. Domian, H. I. Aaronson, and E. Eichen, Relative interfacial energies in Fe???C alloys, Acta Metallurgica, vol.14, issue.12, pp.14-1637, 1966.
DOI : 10.1016/0001-6160(66)90016-2

S. Shahandeh and M. Militzer, Grain boundary curvature and grain growth kinetics with particle pinning, Philosophical Magazine, vol.245, issue.24, pp.93-3231, 2013.
DOI : 10.1016/0001-6160(89)90333-7

M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W. J. Poole, In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel, Acta Materialia, vol.60, issue.3, pp.60-1015, 2012.
DOI : 10.1016/j.actamat.2011.11.016

M. Rath and E. Kozeschnik, Coupled Grain Growth and Precipitation Modeling in Multi-Phase Systems, Materials Science Forum, vol.753, pp.357-360, 2013.
DOI : 10.4028/www.scientific.net/MSF.753.357

K. Banerjee, M. Militzer, M. Perez, and X. Wang, Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel, Metallurgical and Materials Transactions A, vol.101, issue.12, pp.41-3161, 2010.
DOI : 10.1007/s11661-010-0376-2

URL : https://hal.archives-ouvertes.fr/hal-00511281

H. C. Nieuwland, S. Kawaguchi, H. Tsukada, K. Suzuki, I. Sato et al., Development of thick wall 2.25Cr-1MoNiNb steel forgings for steam generators of fast breeder reactors, Nuclear Engineering and Design, vol.84, issue.2, pp.123-146, 1985.
DOI : 10.1016/0029-5493(85)90184-0

R. L. Bodnar, T. Ohhashi, and R. I. Jaffee, Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels, Metallurgical Transactions A, issue.8, pp.20-1445, 1989.

F. G. Wilson and T. Gladman, Aluminium nitride in steel, International Materials Reviews, vol.14, issue.16, pp.221-226, 1988.
DOI : 10.1243/PIME_PROC_1960_174_056_02

M. Bouet, The effect of molybdenum in silicon-manganese-niobium TRIP steels, 2000.

M. Enomoto, N. Maruyama, K. M. Wu, and T. Tarui, Alloying element accumulation at ferrite/austenite boundaries below the time???temperature???transformation diagram bay in an Fe???C???Mo Alloy, Materials Science and Engineering: A, vol.343, issue.1-2, pp.151-157, 2003.
DOI : 10.1016/S0921-5093(02)00375-1

N. Maruyama, G. D. Smith, and A. Cerezo, Interaction of the solute niobium or molybdenum with grain boundaries in ??-iron, Materials Science and Engineering: A, vol.353, issue.1-2, pp.126-132, 2003.
DOI : 10.1016/S0921-5093(02)00678-0

H. A. Fletcher, A. J. Garratt-reed, H. I. Aaronson, G. R. Purdy, R. Jr et al., A STEM method for investigating alloying element accumulation at austenite???ferrite boundaries in an Fe???C???Mo alloy, Scripta Materialia, vol.45, issue.5, pp.45-561, 2001.
DOI : 10.1016/S1359-6462(01)01060-0

J. L. Ham, The rate of diffusion of molybdenum in austenite and ferrite, Transactions References 165 of the American Society for Metals, pp.331-361, 1945.

M. Enomoto, C. L. White, and H. I. Aaronson, Evaluation of the effects of segregation on austenite grain boundary energy in Fe-C-X alloys, Metallurgical Transactions A, vol.2, issue.7, pp.1807-1818, 1988.
DOI : 10.1007/BF02645149

Z. Liu, The transformation phenomenon in Fe-Mo-C alloys: A solute drag approach, Metallurgical and Materials Transactions A, vol.41, issue.8, pp.1625-1631, 1997.
DOI : 10.1007/s11661-997-0254-8

R. G. Faulkner, Combined grain boundary equilibrium and non-equilibrium segregation in ferritic/martensitic steels, Acta Metallurgica, vol.35, issue.12, pp.2905-2914, 1987.
DOI : 10.1016/0001-6160(87)90289-6

R. G. Faulkner, S. H. Song, and P. E. Flewitt, Determination of impurity???point defect binding energies in alloys, Materials Science and Technology, vol.21, issue.11, pp.12-904, 2013.
DOI : 10.1016/0022-3115(94)90282-8

G. R. Purdy, R. Jr, W. T. Aaronson, and H. I. , Analysis of the solute drag-like effect on thickening kinetics of grain boundary ferrite allotriomorphs in Fe-C-Mo alloys, Solid-Solid Phase Transformations, pp.1461-1465, 1999.

M. Hoerner, M. Eberhart, and J. Speer, Ab-initio calculation of solute effects on austenite grain boundary properties in steel, 3rd World Congress on Integrated Computational Materials Engineering, 2015.

I. Toda-caraballo, C. Capdevila, G. Pimentel, and C. G. De-andrés, Drag effects on grain growth dynamics, Computational Materials Science, vol.68, pp.95-106, 2013.
DOI : 10.1016/j.commatsci.2012.10.012

L. Rancel, M. Gómez, S. F. Medina, and I. Gutierrez, Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel, Materials Science and Engineering: A, vol.530, pp.21-27, 2011.
DOI : 10.1016/j.msea.2011.09.001

A. F. Gourgues, H. M. Flower, and T. C. Lindley, Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Materials Science and Technology, vol.12, issue.1, pp.26-40, 2000.
DOI : 10.1016/0001-6160(67)90207-6

E. Bouyne, Propagation et arrêt de fissure de clivage dans l'acier 21/4Cr-1Mo, ENSMP, 1999.

H. K. Bhadeshia, Bainite in Steels second edition, Institute of Materials, 2001.

H. J. Chang and J. J. Kai, The effects of thermal treatment on the microstructure and tensile properties of 2.25Cr???1Mo steel, Scripta Metallurgica et Materialia, vol.24, issue.11, pp.24-2101, 1990.
DOI : 10.1016/0956-716X(90)90493-Z

J. Chen, S. Tang, Z. Liu, and G. Wang, Influence of molybdenum content on transformation behavior of high performance bridge steel during continuous cooling, Materials & Design, vol.49, pp.465-470, 2013.
DOI : 10.1016/j.matdes.2013.01.017

K. Junhua, Z. Lin, G. Bin, L. Pinghe, W. Aihua et al., Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel, Materials & Design, vol.25, issue.8, pp.25-723, 2004.
DOI : 10.1016/j.matdes.2004.03.009

W. T. Reynolds, F. Z. Li, C. K. Shui, and H. I. Aaronson, The Incomplete transformation phenomenon in Fe-C-Mo alloys, Metallurgical Transactions A, vol.21, issue.6, pp.1433-1463, 1990.
DOI : 10.1007/BF02672561

K. M. Wu, M. Kagayama, and M. Enomoto, Kinetics of ferrite transformation in an Fe-0.28mass%C-3mass%Mo alloy, Materials Science and Engineering: A, vol.343, issue.1-2, pp.143-150, 2003.
DOI : 10.1016/S0921-5093(02)00374-X

K. R. Kinsman and H. I. Aaronson, Transformation and hardenability in steels, Arbor, 1967.

H. I. Aaronson, W. R. Reynolds, and G. R. Purdy, Coupled-solute drag effects on ferrite formation in Fe-C-X systems, Metallurgical and Materials Transactions A, vol.49, issue.2, pp.1187-1210, 2004.
DOI : 10.1007/s11661-004-0294-2

C. R. Hutchinson, H. S. Zurob, and Y. Bréchet, The growth of ferrite in Fe-C-X alloys: The role of thermodynamics, diffusion, and interfacial conditions, Metallurgical and Materials Transactions A, vol.45, issue.6, pp.37-1711, 2006.
DOI : 10.1007/s11661-006-0114-y

URL : https://hal.archives-ouvertes.fr/hal-00140281

M. Militzer, R. Pandi, and E. B. Hawbolt, Ferrite nucleation and growth during continuous cooling, Metallurgical and Materials Transactions A, vol.32, issue.6, pp.1547-1556, 1996.
DOI : 10.1007/BF02649814

M. Suehiro, Z. Liu, and J. Ågren, Effect of niobium on massive transformation in ultra low carbon steels: a solute drag treatment, Acta Materialia, vol.44, issue.10, pp.44-4241, 1996.
DOI : 10.1016/S1359-6454(96)00036-5

V. Jayan, M. Y. Khan, and M. Hussain, X-ray investigation of solid solution partitioning in 2.25Cr-1Mo steel after extended elevated temperature service in power station, Materials Science and Technology, vol.15, issue.11, pp.19-1546, 2003.
DOI : 10.1007/BF02660632

J. Nutting, The Structural Stability of Low Alloy Steels for Power Generation Applications, Advanced Heat Resistant Steels for Power Generation, pp.1-20, 1998.

R. C. Thomson and H. K. Bhadeshia, Changes in chemical composition of carbides in 2??25Cr???1Mo power plant steel, Materials Science and Technology, vol.73, issue.3, pp.193-203, 1994.
DOI : 10.1007/BF02644419

A. Výrostková, A. Kroupa, J. Janovec, and M. Svoboda, Carbide reactions and phase equilibria in low alloy Cr???Mo???V steels tempered at 773???993 K. Part I: Experimental measurements, Acta Materialia, vol.46, issue.1, pp.31-38, 1998.
DOI : 10.1016/S1359-6454(97)00238-3

J. R. Yang, C. Y. Huang, C. N. Yang, and J. L. Horng, Microstructural examination of 2.25Cr???1Mo Steel Steam pipes after extended service, Materials Characterization, vol.30, issue.2, pp.75-88, 1993.
DOI : 10.1016/1044-5803(93)90011-J

J. Yu, Carbide stability diagrams in 2.25Cr-1Mo steels, Metallurgical Transactions A, vol.2, issue.8, pp.1561-1564, 1989.
DOI : 10.1007/BF02665512

J. M. Leitnaker, R. L. Klueh, and W. R. Laing, The composition of eta carbide phase in 2 1/4 Cr-1 Mo Steel, Metallurgical Transactions A, vol.224, issue.10, pp.1949-1955, 1975.
DOI : 10.1007/BF02646861

J. Pilling and N. Ridley, Tempering of 2.25 Pct Cr-1 Pct Mo Low Carbon Steels, Metallurgical Transactions A, vol.12, issue.4, pp.557-563, 1982.
DOI : 10.1007/BF02644419

M. C. Murphy and G. D. Branch, Metallurgical changes in 2-25 CrMo steels during creep-rupture test, Journal of the Iron and Steel Institute, vol.209, pp.546-561, 1971.

N. Gope, A. Chatterjee, T. Mukherjee, and D. S. Sarma, Influence of long-term aging and superimposed creep stress on the microstructure of 2.25cr-1Mo steel, Metallurgical Transactions A, vol.13, issue.5, pp.315-326, 1993.
DOI : 10.1179/030634584790420195

V. Jayan, P. K. Mandal, M. Hirani, and S. K. Sanyal, X-ray investigation of carbide precipitation in 2.25Cr-1Mo steel for predicting remaining life of boiler components after extended service in fossil fuel fired power stations, Materials Science and Technology, issue.11, pp.15-1308, 1999.

C. S. Kim, I. K. Park, and K. Y. Jhang, Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr???1Mo steel, NDT & E International, vol.42, issue.3, pp.42-204, 2009.
DOI : 10.1016/j.ndteint.2008.09.002

P. Parameswaran, M. Vijayalakshmi, P. Shankar, and V. S. Raghunathan, Influence of carbon content on microstructure and tempering behaviour of 2 1/4 Cr 1 Mo steel, Journal of Materials Science, vol.27, issue.20, pp.28-5426, 1993.
DOI : 10.1007/BF00367811

V. A. Bi?s and T. Wada, Microstructural changes in 1Cr-0.5Mo steel after 20 years of service, Metallurgical Transactions A, vol.8, issue.1, pp.109-114, 1985.
DOI : 10.1007/BF02656718

E. Parthé and V. Sadogopan, The structure of dimolybdenum carbide by neutron diffraction technique, Acta Crystallographica, vol.16, issue.3, pp.202-205, 1963.
DOI : 10.1107/S0365110X63000487

R. A. Swift, The mechanism of stress relief cracking in 21/4Cr-1Mo steel, Welding Journal, vol.50, issue.5, pp.195-200, 1971.

S. Nagakura and S. Oketani, Structure of transition metal carbides, Transactions of the Iron and Steel Institute of Japan, vol.8, issue.5, pp.265-294, 1968.

D. J. Dyson and K. W. Andrews, Carbide M7C3 and its formation in alloy steels, Journal of the Iron and Steel Institute, vol.207, pp.208-219, 1969.

R. Fruchart and A. Rouault, Twin crystals of orthorhombic isomorphous Cr7C3, Mn7C3, Fe7C3 carbides, Annales de Chimie France, vol.4, issue.3, pp.143-145, 1969.

A. M. Abdel-latif, J. M. Corbett, and D. M. Taplin, Analysis of carbides formed during accelerated aging of 2??25Cr???1Mo steel, Metal Science, vol.203, issue.2, pp.90-96, 1982.
DOI : 10.1007/978-1-4757-5581-7_3

A. Benvenuti, P. Bontempi, S. Corti, and N. Ricci, Assessment of material thermal history in elevated temperature components, Materials Characterization, vol.36, issue.4-5, pp.4-5, 1996.
DOI : 10.1016/S1044-5803(96)00058-7

A. Inoue and T. Masumoto, Carbide reactions (M3C???M7C3???M23C6???M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels, Metallurgical Transactions A, vol.20, issue.5, pp.739-747, 1980.
DOI : 10.1007/BF02661203

M. Holzmann, J. Man, and B. Vlach, Upper-nose temper phenomena and transition behaviour of fracture toughness of 2.25Cr???1Mo pressure vessel steel, Scripta Metallurgica et Materialia, vol.29, issue.12, pp.29-1633, 1993.
DOI : 10.1016/0956-716X(93)90290-9

M. Holzmann, B. Vlach, and J. Man, The effect of microstructure on the mechanical and brittle fracture properties of 2 1/4 Cr???1Mo steel, Welding International, vol.15, issue.11, pp.912-919, 1992.
DOI : 10.1016/0013-7944(87)90055-5

E. Takahashi and K. Iwai, Omission of intermediate postweld heat treatment (PWHT) by utilizing low-temperature PWHT for welds in pressure vessels Application of 21/4Cr-1Mo steel for thick-wall pressure vessels, pp.418-450, 1982.

X. Yu, Multi-scale characterization of heat-affected zones in martensitic steels. Dissertation, 2012.

S. D. Norris and J. D. Parker, The effect of microstructure on fracture mechanisms of 2??25Cr1Mo low alloy steel, part B: the influence of carbides, International Journal of Pressure Vessels and Piping, vol.67, issue.3, pp.329-337, 1996.
DOI : 10.1016/0308-0161(95)00057-7

J. G. Zhang, F. W. Noble, and B. L. Eyre, Comparison of effects of aging on fracture of 9Cr???1Mo and 2??25Cr???1Mo steel Part 1 Quenched and tempered material, Materials Science and Technology, vol.335, issue.3, pp.218-223, 1991.
DOI : 10.1016/0001-6160(83)90132-3

R. G. Ding, T. S. Rong, and J. F. Knott, Phosphorus segregation in 2.25Cr???1Mo steel, Materials Science and Technology, vol.33, issue.1, pp.85-92, 2005.
DOI : 10.1016/S0167-577X(00)00210-X

S. A. Khan and M. A. Islam, Influence of Prior Austenite Grain Size on the Degree of Temper Embrittlement in Cr-Mo Steel, Journal of Materials Engineering and Performance, vol.40, issue.1, pp.16-80, 2007.
DOI : 10.1007/s11665-006-9012-0

M. Wada, S. Fukase, and O. Nishikawa, Role of carbides in the grain boundary segregation of phosphorus in a 2.25 Cr-1 Mo steel, Scripta Metallurgica, vol.16, issue.12, pp.16-1373, 1982.
DOI : 10.1016/0036-9748(82)90430-6

D. D. Shen, S. H. Song, Z. X. Yuan, and L. Q. Weng, Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr???Mo low-alloy steel, Materials Science and Engineering: A, vol.394, issue.1-2, pp.53-59, 2005.
DOI : 10.1016/j.msea.2004.10.036

J. Gubicza, G. Ribárik, G. Goren-muginstein, A. Rosen, and T. Ungár, The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction, Materials Science and Engineering: A, vol.309, issue.310, pp.309-310, 2001.
DOI : 10.1016/S0921-5093(00)01666-X

J. Béchade, D. Menut, S. Doriot, S. Schlutig, and B. Sitaud, X-ray diffraction analysis of secondary phases in zirconium alloys before and after neutron irradiation at the MARS synchrotron radiation beamline, Journal of Nuclear Materials, vol.437, issue.1-3, pp.1-3, 2013.
DOI : 10.1016/j.jnucmat.2013.02.020

E. Kozeschnik, Modeling Solid-State Precipitation, 2012.
DOI : 10.5643/9781606500644

J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, Modelling of kinetics in multicomponent multi-phase systems with spherical precipitates, Materials Science and Engineering: A, vol.385, issue.12, pp.166-174, 2004.

K. C. Russell, Nucleation in solids: The induction and steady state effects, Advances in Colloid and Interface Science, vol.13, issue.3-4, pp.3-4, 1980.
DOI : 10.1016/0001-8686(80)80003-0

S. Zajac, J. Komenda, P. Morris, P. Dierickx, S. Matera et al., Quantitative structure-property relationships for complex bainitic microstructures, 2005.

L. M. Fu, H. R. Wang, W. Wang, and A. D. Shan, Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels, Materials Science and Technology, vol.205, issue.6, pp.27-996, 2011.
DOI : 10.1016/j.msea.2006.01.027

M. Microstructural, 174 2.1 Optical microscopy: metallographic observations and austenite grain size measurements . 174 2.2 Scanning electron microscope: carbon extraction replicas, p.176

X. Characterization-of-carbides-using, 177 3.1 X-Ray diffraction and sample preparation by selective dissolution, p.177

.. Thermal, 179 4.1 Characterization of phase transformations using dilatometry 179 4.2 Determination of ferrite-austenite transformation temperatures using calorimetric measurements, p.180