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Résumé

La formulation de modèles sophistiqués et fiables pour l’évaluation du comportement sous sol-
licitations sismiques des structures de maçonnerie reste un vrai défi pour l’Ingénierie. Cette
thèse contribue au développement et à l’utilisation de modèles continus pour la maçonnerie non
renforcée et non chainée.

Dans ce travail de doctorat, une méthode analytique pour l’estimation de la résistance
globale de la maçonnerie est développée. La méthode s’appuie sur la théorie micropolaire
(ou du milieu continu de Cosserat) et sur l’utilisation conjointe de l’approche cinématique de
l’analyse limite et d’une technique d’homogénéisation. Dans un premier temps, la méthode est
présentée pour le cas bidimensionnel. La méthode est introduite de manière générale, en ce qui
concerne les milieux discrets périodiques. L’application à la maçonnerie est ensuite abordée. La
résistance homogénéisée de colonnes et murs de maçonnerie est calculée en termes de contraintes
et couples-contraintes généralisées du milieu continu de Cosserat. La formulation d’une méthode
basée sur le milieu de Cosserat permet la prise en compte de l’influence de la rotation relative
des particules du milieu discret. Cette influence est mise en évidence à travers l’application à
la maçonnerie, en comparaison avec les autres méthodes présentes dans la littérature.

Dans un deuxième temps, la méthode est étendue au cas tridimensionnel. Des milieux dis-
crets périodiques ayant leurs particules disposées le long de trois directions spatiales et montrant
trois vecteurs de périodicité sont alors considérés. L’extension de la méthode s’inscrit dans le
cadre de la théorie micropolaire tridimensionnelle. Cela permet la prise en compte des effets 3D
de la translation et la rotation relative des particules. L’application aux colonnes et aux murs
de maçonnerie montre comment la résistance dans le plan et hors-plan de la maçonnerie sont,
par ces effets, couplées. La rotation relative des blocs accentue cette interaction, qui comporte
une diminution de la résistance dans-le-plan précédemment calculée. Les murs de maçonnerie
sont ici décrits par des modèles de plaque micropolaire.

Une formulation aux élément finis pour des modèles de plaque micropolaire est ensuite
développée. Dans un premier temps, la formulation est présentée pour l’élasticité et la dy-
namique. La validation d’un élément fini spécifique pour le calcul des structures est faite
à l’aide d’exemples numériques. L’utilisation de cet élément sur des structures de maçon-
nerie est ensuite abordée, par l’implémentation d’un modèle d’homogénéisation déjà existant.
Les fréquences fondamentales d’un mur maçonné sont ainsi calculées et comparées avec celle
obtenues par un modèles aux éléments discrets. L’importance des rotations des blocs dans le
plan du mur ainsi que leur participation dans la réponse inertielle du mur vis-à-vis des actions
sismiques sont enfin investiguées.

Dans un deuxième temps, la formulation aux élements finis est étendue à la plasticité, à
travers l’implémentation de la théorie multi-critère pour les milieux de Cosserat. L’implémentation
de cette théorie est basée sur un algorithme de projection, dont le schéma itératif de résolution
est reporté. Les aspects numériques reliés à l’implémentation de l’algorithme sont examinés.
Une importante limitation de l’implémentation classique de l’algoritme est montrée et une nou-
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velle stratégie de solution est proposée. L’élément fini de Cosserat est donc validé pour la
plasticite à l’aide de nombreux exemples numériques.

En conclusion, trois approches de modélisation pour les structures de maçonnerie sont pro-
posées et comparées. Un model continu d’homogénéisation basée sur le milieu de Cosserat est
d’abord présenté. Le modèle est construit en introduisant les critères de ruptures homogénéisés
calculés dans la première partie du travail dans l’élément fini développé dans la deuxième partie
du travail. Un modèle continu basée sur le milieu de Cauchy est ensuite considéré. Ce denier est
construit à partir de modèles déjà présents dans la littérature. L’efficacité de ces deux modèles
est examinée dans la représentation du comportement élastoplastique d’un mur de maçonnerie.
Leur comparaison se base sur un troisième modèle, crée à l’aide des éléments discrets. La ca-
pacité des trois modèles de modéliser l’effet d’échelle dans la formation des mécanismes de ruine
est enfin investiguée sur une application pratique aux structures de maçonnerie.

Mots-clés : Maçonnerie • Milieu de Cosserat • Homogénéisation • Analyse limite •
Élements finis • Théorie de la plasticité • Élements discrets
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Summary

The formulation of reliable and sophisticated models for the seismic assessment of masonry
structures is a challenging task. This thesis contributes in this field to the development and the
use of continuum models for unreinforced masonry.

An analytical method for the evaluation of the homogenised in-plane strength of masonry
is first developed. The method is based on the two-dimensional micropolar continuum theory
and makes use of the kinematic approach of limit analysis in conjunction with a rigorous ho-
mogenisation technique. The method is introduced in a general way, with regard to the generic
class of discrete periodic media made of particles of the same type. The case of masonry is
presented as application. The homogenised strength domains of masonry columns and walls
are retrieved in terms of the generalized stresses and couple stresses of the Cosserat continuum.
The formulation of the method based on the Cosserat continuum enables the investigation of
the influence of the relative rotation of the particles on the strength of the discrete medium.
This influence is illustrated by the application to masonry structures, in comparison with other
methods presented in the literature.

The development of the homogenisation method continues with its extension to discrete
periodic media made of particles disposed along three directions and showing three periodicity
vectors. In this case, the approach relies on the three-dimensional micropolar theory. This
enables to capture the three-dimensional effect of the relative translations and rotations of the
particles constituting the discrete medium. The application to masonry columns and walls shows
how the in-plane and out-of-plane actions result coupled in the assessment of masonry strength.
The relative rotation of the blocks accentuates this effect, which consistently diminishes the
in-plane strength. Masonry walls are finally ascribed to homogenised plates with Cosserat
kinematics.

A finite element formulation for Cosserat plate models is next developed. The formulation
is first presented for elasticity and dynamics. The validation of a specific finite element is made
by means of numerical benchmarks and patch tests. The actual use of the element is presented
in an application to masonry structures. The natural frequencies of a masonry panel modelled
by discrete elements are computed and compared with those given by a homogenisation model
implemented in the element. This allows to investigate the role of the in-plane rotations of the
blocks and to show their implication towards seismic analyses of masonry structures.

The finite element formulation is next extended to the elastoplastic framework. The im-
plementation of the multisurface plasticity theory into the Cosserat finite element is presented.
The implementation of this theory is based on a projection algorithm. An important limitation
of the classical implementation of this algorithm prevents its use in the framework of multisur-
face plasticity in efficient way. This limitation is discussed and a solution strategy is proposed.
The finite element for Cosserat plate models is finally validated through numerous numerical
benchmarks.

In conclusion, three different modelling approaches for masonry are proposed and com-
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pared. A continuum model based on the Cosserat continuum is first presented. The model is
constructed by implementing the homogenised yield criteria computed based on the proposed
analytical method into the developed finite element. A homogenisation model based on Cauchy
continuum is next introduced. This model is constructed by selecting appropriate constitutive
laws and yield criteria from the literature. The performance of those homogenisation models in
representing the elastoplastic response of a masonry panel is discussed, based on the comparison
with a third analogue discrete elements model. The capability of the three models in predicting
the scale effect in the formation of failure mechanisms is investigated in a practical application
to masonry structures.

Keywords: Masonry • Cosserat continuum • Homogenisation • Limit analysis • Finite
elements • Plasticity theory • Discrete elements
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Context

With the development in the 20th century of building materials such as steel and concrete,
masonry was displaced in many important engineering applications. As a result, methods for
the design and the assessment of the structural performance of masonry remained far behind
those conceived for these newer materials (DeJong, 2009). Nonetheless, masonry remained of
great relevance for the construction of load-bearing walls in low- and medium-rise buildings.
It was also widely used for internal and infill walls in buildings where the primary structural
function was covered by steel and concrete (Hendry, 2001).

Nowadays, masonry represents the majority of the built environment in the Mediterranean
countries. These countries have the highest risk of damage from earthquakes in Europe, since
most of the buildings do not benefit from modern engineering design concepts, but result instead
from the use of empirical rules and expertise. In these countries, seismic loadings are certainly
a major risk that causes the collapse of masonry buildings.

In this thesis we refer to traditional unreinforced masonry. This typology is comprehensive
of a vast array of structures, ranging from those of historical dry-stone monuments to those
of more recent mortar-brick buildings. The use of unreinforced masonry in these structures is
almost always limited to components mainly subjected to compressive loads, that the material
have to bear in the vertical direction (in the form of walls and pillars) or to span across distances
(in the form of arches, vaults and domes) (Heyman, 1997; Como, 2013). Masonry has instead
a limited load-bearing capacity to support horizontal loads acting in the out-of-plane direction
and flexural moments (Doherty et al., 2002; Griffith et al., 2007). Therefore the design and
modelling of masonry structures still remains an open task for civil engineers.

In modern constructions, traditional masonry is rarely used for the entire structure of the
building. It is better employed in mixted structures. Unreinforced masonry panels are usually
surrounded by reinforced-concrete or steel boundary frames. The fact that the panel is laid
before or subsequently to the frame denotes two types of masonry (Hendry et al., 1997): the
confined and the infill masonry. Compared to infill masonry, confined masonry provides better
performance during earthquakes, by virtue of the effective connection established between the
material and the surrounding frame. In this configuration, masonry has an enhanced shear
strength and ductility (Tomazevic and Klemenc, 1997). Furthermore, it gains higher out-of-
plane load-bearing capacity, due to the arching mechanisms that it develops within the frame
(Tu et al., 2010). The study of the interaction between masonry and the surrounding frame
is, however, outside of the scope of the present thesis. Herein, attention is focused on single
unreinforced masonry elements and infill panels. The connection with the surrounding frame
is in general less well established in these latter (the gap between the frame and masonry is
usually poorly filled with mortar). This allows one to model the masonry separately from the
rest of the structure, provided that correct boundary conditions are applied.

Today’s Building Codes require the assessment of the seismic vulnerability of unreinforced
masonry (Eurocode 8; Eurocode 6). In addition, they demand the estimation of the damage level
and the residual load-bearing capacity after earthquake occurrence. This necessitates the use
of spatial models for modelling buildings that include masonry elements, even in cases when the
uniformity and symmetry of the building could suggest the choice of simplified two-dimensional
models for the representation of its structural behaviour (Eurocode 8, Section 4).

According to Eurocode 8, models for masonry have to represent the correct distribution of
mass and stiffness of the building. Masonry walls (confined or not) may contribute significantly
to the lateral stiffness and resistance of the building and therefore they should be taken into
account in the construction of the models. Moreover, particular attention should be given to
infill panels and single masonry elements, since they are the most vulnerable to the seismic action
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and, especially, to the out-of-plane failure. A number of uncertainties related to the behaviour
of these elements should be considered in the construction of the models. For instance: the
variability of their mechanical properties, the level of attachment to the surrounding frame, the
possible modifications occurred during the use of the building (as the presence of openings), the
non-uniform degree of damage suffered during earthquake events, the possibility of premature
out-of-plane collapse of slender panels due to brittle failure, the torsional response of the building
caused by the damage of the infill panels (Eurocode 8, Section 4, Section 9). These and further
aspects may induce possible irregularities and non-uniformities in the building and therefore
require spatial models to be captured.

In this context, the use of reliable and sophisticated models that correctly represent the
mechanical behaviour of unreinforced masonry is a fundamental task. This certainly avoids
premature decisions in masonry structural design that may prove overly conservative or, on
the contrary, catastrophic. The formulation of these models requires, however, a higher degree
of knowledge and education in the engineering practice, as well as the availability of adequate
software.

This thesis contributes to the development and the use of continuum models for unreinforced
masonry structures. Whether based on rigorous homogenisation methods (Anthoine, 1995;
Cecchi and Sab, 2002b; Milani et al., 2006a; Stefanou et al., 2008) or on more phenomenological
approaches (Casolo, 2004; Grande et al., 2011; Penna et al., 2014; Liberatore and Addessi, 2015),
continuum (or macroscopic) models carry important advantages as compared to discrete (or
microscopic) models (Lemos, 2007b; DeJong and Vibert, 2012; Simon and Bagi, 2014), in which
masonry constituents are modelled separately. First, continuum models are computationally
less demanding than the discrete ones (Lourenço et al., 2007). Second, these models are often
based on numerical procedures as the Finite Elements Method that are common in today’s
engineering practice (Addessi et al., 2014). This enables to combine models for unreinforced
masonry with existing models for concrete and steel. Finally, continuum models usually appeal
to classical notions from the Continuum and Structural Mechanics (internal actions, moments,
strains, etc.) that belong to engineering education and are recurrent in the Codes for masonry.

Research goals
As discussed in the previous Section, the assessment of the seismic performance of masonry
structures is the research ground for the present thesis. Within this context, the primary objec-
tive is the development of an equivalent continuum model for the description of the mechanical
behaviour of masonry. From a theoretical point of view the research focuses on:

• Masonry, studied at the microscopic scale as a discrete medium equipped with an apparent
periodic micro-structure. This latter is provided by the brickwork, i.e. the shape, size and
disposition of the building blocks. The bridge between the micro- and the macroscopic
scale is assured by the use of homogenisation techniques.

• The three-dimensional behaviour of masonry, i.e. the determination of the in-plane and
the out-of-plane macroscopic material response (internal actions and deformations). To
this purpose, rectilinear and planar structural configurations such as masonry columns
and walls are represented respectively by means of equivalent beam and equivalent plate
models.

• The non-linear behaviour of masonry, i.e. the formation of macroscopic failure mechanisms
as consequence of the plastic evolution of its micro-structure. In this (large) field, the
research focuses on the determination of the strength capacities of the masonry, as function
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of the mechanical and geometrical properties of the building blocks and of the mortar
joints.

• The modal response of masonry, i.e. the study of the inertial effects of the micro-structure
(blocks kinematics) and their participation to the overall structural behaviour.

Under these goals, several aspects related to the macroscopic modelling of masonry struc-
tures are more closely investigated in this thesis:

• The domain of applicability of the continuum model, i.e. the evaluation of the scale ratio
for which the efficiency of the continuum model reaches its limits in representing the actual
material response.

• The solution accuracy reached by the continuum within the limits imposed by the scale
ratio.

• The capacity of the continuum model to capture the scale effect intrinsic to masonry.

Continuum choice

The formulation of continuum models for masonry leads us to consider the use of the Cosserat (or
micropolar) continuous medium. It is well known from the literature that this particular higher
order medium allows a more detailed and efficient description of the macroscopic behaviour of
masonry as compared to the classical (or Cauchy) continuum (Mühlhaus et al., 1997; Masiani
et al., 1995; Sulem and Mühlhaus, 1997; Trovalusci and Masiani, 1999, 2003, 2005; Stefanou
et al., 2008; Salerno and de Felice, 2009; Addessi et al., 2010; de Bellis and Addessi, 2011;
Addessi and Sacco, 2012; Pau and Trovalusci, 2012). Indeed, the absence of an internal length
prevents the classical continuum to capture the scale effect, wave dispersion, and the influence
that the relative rotations of the building blocks have on the overall structural response. This
deficiency is known today (de Borst and Sluys, 1991; Lourenço, 1996; de Buhan and de Felice,
1997; de Felice et al., 2010) and motivates the development of alternative modelling approaches
for masonry, which are based on the introduction of an internal length related to its micro-
structure. It is worth noticing that all the higher order continuous media are equipped with
an internal length (Mindlin, 1964; Germain, 1973; Eringen, 1999). Some of them have already
been used for modelling masonry, see for instance the works of Stefanou et al. (2010); Stefanou
and Sulem (2012); Bacigalupo and Gambarotta (2012); Trovalusci and Pau (2014). In this
thesis, the Cosserat continuum is selected among the continuous media. As it will be shown, its
formulation is relatively simple (limited number of variables and with clear physical meaning)
and is flexible enough to accommodate pronounced micro-structural effects.

Modelling strategy

In order to achieve the research goals introduced above, a modelling strategy is followed in the
present thesis. This consists in:

(1) Formulating a continuum model for masonry, i.e. the constitutive laws and yield criteria
that are capable of reproducing (on the average sense) the actual material response. The
development and the use of homogenisation techniques is made. These techniques are
referred to the Cosserat continuum.
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(2) Developing a numerical tool in order to implement the formulated continuum model and
carry out simulations on more complex structural configurations. This new tool is based
on the Finite Elements Method, herein formulated in the framework of the micropolar
theory.

(3) Validating the continuum model for masonry incorporated into the finite element proce-
dure, by comparing its response with that of an analogue discrete model. The Discrete
Elements Method is used for the construction of the analogue model.

Outline of the thesis

The structure of the thesis reflects the outlined modelling strategy. Its content is organized as
follows:

• Chapter 1 reports the development of an analytical homogenisation method for the eval-
uation of the in-plane strength of masonry. The method is presented as the extension to
the Cosserat continuum of a procedure formulated in the literature for the Cauchy con-
tinuum. It is based on the two-dimensional micropolar continuum theory and makes use
of the kinematic approach of limit analysis in conjunction with a rigorous homogenisa-
tion technique. The method is first presented with regard to a generic periodic collection
of rigid blocks in contact. Next it is generalized to the whole class of discrete periodic
media made of particles of the same type. The case of masonry is presented as applica-
tion. The homogenised strength domains of masonry columns and walls are formulated in
terms of the deformation measures of the Cosserat continuum. They are then projected
into the space of the generalized stresses and couple stresses. This allows to retrieve the
homogenised yield criteria for masonry. The formulation of the method based on the
Cosserat continuum enables to investigate the influence of the relative rotation of the
particles on the strength of the discrete medium. This influence is highlighted by the
application to masonry, in comparison with the method based on the Cauchy continuum.

• Chapter 2 continues the development of the method presented in the previous Chapter, by
extending it to the evaluation of the coupled in-plane and out-of-plane strength of masonry.
The method is illustrated first for discrete periodic media made of particles disposed along
three directions and showing three periodicity vectors. It relies on the use of the kinematic
approach of limit analysis, developed, in this case, within the framework of the three-
dimensional micropolar theory. This enables to capture the three-dimensional effect of
both the relative translations and the relative rotations of the particles constituting the
discrete medium. The application to masonry columns and walls shows how the in-plane
and out-of-plane actions are coupled in the assessment of masonry strength. The relative
rotations of the blocks accentuate this effect, which reduces the in-plane strength and
suggests the use of three-dimensional models for masonry. Masonry walls are ascribed at
the end of this Chapter to homogenised plates with Cosserat kinematics.

• Chapter 3 describes the formulation and the validation of a specific finite element for
Cosserat plate models. The finite element formulation is given in detailed form for elas-
ticity and dynamics. The validation of the element is made by means of numerical bench-
marks and patch tests. The choice of the interpolation order and the degree of integration
of the stiffness and the mass matrices are discussed. The possibility of numerical deficien-
cies accompanying the occurrence of hourglass modes and the assembly of shell structures
is explored. The shear locking phenomenon is also investigated. The actual use of the
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element is presented in an application to masonry structures, where the natural frequen-
cies of a masonry panel modelled by discrete elements are computed and compared with
those given by a homogenisation model implemented in the element. This allows also
to investigate the role of the in-plane rotations of the blocks and its implication towards
seismic analyses of masonry structures.

• Chapter 4 reports the extension of the finite element presented in the previous Chapter
to the elastoplastic framework. The implementation of the multisurface strain-hardening
plasticity theory into the Cosserat finite element formulation is presented in extensive
manner. The implementation of this theory is based on a projection algorithm, whose
solution iterative scheme formulated for implicit time-integration procedures is described.
Attention focuses on several numerical aspects concerning the element implementation.
An important limitation of the classical implementation of the solution algorithm prevents
its use in the framework of multisurface plasticity in an efficient way. This limitation is
discussed and a solution strategy is proposed. The finite element for Cosserat plate models
is next validated. Numerous numerical benchmarks show its performance in problems
involving multiple plastic surfaces, perfect plasticity and strain localisation.

• Chapter 5 concludes the thesis, by investigating the scale effect in the formation of failure
mechanisms in masonry structures. Three different modelling strategies for masonry are
proposed and compared. A homogenisation model based on the Cosserat continuum is first
presented in the framework of the multisurface plasticity theory. The model is constructed
by implementing the homogenised yield criteria computed in the previous Chapters into
the developed Cosserat finite element. A second homogenisation model based on Cauchy
continuum is introduced. This model is constructed by selecting appropriate constitutive
laws and yield criteria from the literature. The performance of those homogenisation
models in representing the elastoplastic response of a masonry panel is discussed, based
on the comparison with a third analogue discrete elements model. The capability of the
three models in predicting the scale effect in a practical application is investigated.

It is worth remarking that the analytical part of the work accomplished in this thesis is
mainly concentrated in Chapter 1 and Chapter 2. The numerical part is principally given in
Chapter 3 and Chapter 4. Chapter 5 provides further developments to the analytical work and
contains an application to masonry structures. Further applications to masonry are found in
the final Sections of Chapter 3.

The reader may notice that different areas of research are tackled throughout the thesis
(Continuum Mechanics, Computational Mechanics, Plasticity and Limit Analysis Theory, Me-
chanics of Structures). Therefore, in order to gain clarity, a state-of-the art will be reported at
the beginning of each Chapter. On the contrary, the Appendices mentioned in the text will be
presented all together at the end of the report.
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Chapter 1

Determination of the homogenised
yield criteria for masonry: in-plane
behaviour

This Chapter reports the development of an analytical method for the evaluation of the ho-
mogenised in-plane strength of masonry. The method is based on the two-dimensional microp-
olar (or Cosserat) continuum theory and makes use of the kinematic approach of limit analysis
in conjunction with a homogenisation technique. The formulation of the method based on the
Cosserat continuum enables to investigate the influence of the relative rotation of the blocks on
the masonry strength. This influence is highlighted in view of the comparison with the method
based on the Cauchy continuum.
This Chapter is a submitted paper. Its reference is Godio et al. (2015d).
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Summary

In the frame of Cosserat continuum theory, a homogenisation procedure for the assessment
of the in-plane strength of discrete media is developed in this paper. The procedure is the
extension to the Cosserat continuum of a procedure initially formulated for the Cauchy con-
tinuum, based on the kinematic approach of limit analysis and the classical homogenisation
theory. The extension to the Cosserat continuum is made in order to take into account the
effect of particles’ rotation on the strength of the discrete medium. The procedure is illus-
trated with regard to periodic assemblies of blocks in contact, and then generalized to the
whole class of discrete periodic media with particles of the same type. The case of masonry is
considered as application. Homogenised strength criteria of columns and walls are formulated
in terms of non-symmetric stresses and in-plane couples. The procedure allows to show how
the in-plane strength of masonry is reduced, as a result of blocks’ rotation on the material.
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1.1 Introduction

In the last three decades, a renewed interest towards the Cosserat (or micropolar) continuum
has driven researchers to the development of specific models for masonry. Since the original
works of Besdo (1985); Mühlhaus (1989); Masiani et al. (1995); Dai et al. (1996); Mühlhaus et al.
(1997); Sulem and Mühlhaus (1997) up to the more recent of Stefanou et al. (2008); Addessi
et al. (2010); Addessi and Sacco (2012), the resort to the Cosserat continuum has seemed
motivated by the advantages enclosed in its enhanced kinematics and the non-symmetry of
the stress tensor. Indeed, when used for the formulation of continuum equivalent models for
masonry, Cosserat continuum allows to efficiently take into account high deformation gradients
(Trovalusci and Masiani, 2005), relative blocks’ rotation (Pau and Trovalusci, 2012) and scale
effects (Salerno and de Felice, 2009; Godio et al., 2015a). Moreover, Cosserat continuum enables
the investigation of the phenomenon of wave dispersion, which governs the dynamic response of
periodic media such as masonry (Pain, 2005; Mühlhaus et al., 1997; Sulem and Mühlhaus, 1997;
Stefanou et al., 2008). Those aspects makes Cosserat-continuum-based models particularly well
suited for the description of the mechanical behaviour of masonry structures and preferable, in
this sense, with respect to models based on the Cauchy continuum (Salerno and de Felice, 2009)
or the second gradient continuum (Trovalusci and Pau, 2014).

The aforementioned features of the Cosserat continuum are strictly related to rotations.
Contrary to the Cauchy continuum, rotations in micropolar continua are inherent to the medium,
i.e. attached to the material particle (Germain, 1973; Vardoulakis and Sulem, 1995). Many
works have shown how, aiming at representing masonry as an equivalent Cosserat continuum,
these rotations are actually representative of blocks’ rotations. They enable a continuum de-
scription of the medium which is capable to capture not only the relative rotations occurring
between the blocks, but also their relative rotations with respect to the local rigid rotation of
masonry considered as a whole (Pau and Trovalusci, 2012). The role of rotations is even more
apparent in the dynamic regime. Whether regarding the in-plane (Mühlhaus et al., 1997; Sulem
and Mühlhaus, 1997) or the out-of-plane behaviour (Stefanou et al., 2008), the mechanical
response of masonry is governed by translational and rotational waves. Only their superposi-
tion gives the complete structural response. Therefore, blocks’ rotations can have a significant
participation in the inertial response of masonry, for instance when this latter is subjected to
in-plane seismic excitations (Godio et al., 2015a).

On the other hand, the effect of blocks’ rotations on masonry behaviour is not always
apparent. In general, blocks’ rotations account for the overall deformation of masonry for
as little as their relative size with the structure (scale effect). Hence, when blocks are small
as compared to the size of the whole structure, the effect of their rotation tends to vanish
(Trovalusci and Masiani, 1999, 2005; Salerno and de Felice, 2009).

Nevertheless, the influence of blocks’ rotations on the performance of masonry can be far
more important than this proportion indicates. Indeed, the rotation of the blocks contributes
to the relative displacements across the joints, which, in many cases, are the main responsible
for the deformation of masonry. This may promote the formation of irreversible inelastic defor-
mations within masonry and lead, consequently, to the premature development of macroscopic
failure mechanisms. Even though this aspect is visible in the majority of the experimental tests
carried out on masonry structures (see the recent tests by Petry and Beyer (2014a)), it has
been seldom explored in the corresponding literature, see for instance Besdo (1985); Sulem and
Mühlhaus (1997); Trovalusci and Masiani (2003, 2005); Addessi and Sacco (2012).

By way of example, we refer to classical full-scale tests made on masonry shear walls, as those
reported and modelled by Lourenço (1996), see Figure 1.1. Regarding the test on the shear wall
without opening (Figure 1.1-left), consequent to the increasing of the horizontal displacement,
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deformation tends to concentrate within masonry in a band of finite size. As observed by
Lourenço (1996), this band goes from one corner of the wall to the other, and leads, at failure,
to the formation of two distinct regions under compression (struts). Band formation is initiated
by blocks’ slip, which is mainly due to joints’ sliding. This is formerly limited to the central
region of the wall. Upon load increase, however, the band tends to cover a larger region of wall
and to propagate progressively towards the wall corners. This is accompanied by the rotation of
groups of blocks (highlighted in Figure 1.1) that are closed to the wall corners. On the one hand,
their rotation promotes the formation of gaps between the blocks, due to joints’ opening and
blocks’ cracking, and allows the diagonal band to propagate. On the other hand, it leads to the
compression failure of the blocks positioned at the corners (toe crushing). This phenomena are
even more accentuated if one regards the shear wall with opening (Figure 1.1-right). Therein,
the same mechanisms are responsible for the deformation of the wall. Moreover, the presence
of the opening leads to a failure mechanism with two groups of blocks undergoing an apparent
rigid-body rotation (Lourenço, 1996).

Shear wall without opening Shear wall with opening

Figure 1.1: The occurrence of blocks’ rotation (in grey) in the formation of failure mechanisms
in masonry shear walls. Reference to the shear walls modelled by Lourenço (1996).

The problem of the influence of blocks’ rotations on the strength capacity of masonry is
addressed in this paper. Herein, the purpose is to determine the overall in-plane strength of
masonry, by means of a rigorous homogenisation procedure specifically developed in the frame
of Cosserat continuum theory. At the microscopic level, masonry is regarded as a discrete
medium, i.e. an assemblage of rigid blocks. The blocks interact with each other through
Coulomb interfaces, representing the masonry joints. Failure corresponds to the use of the
strength capacities of the joints only, and not of the blocks, which are considered infinitely
resistant. In particular, whether engendered by the relative blocks’ translation or by the relative
blocks’ rotation, joints’ failure is accounted for by a unique Coulomb slip criterion. At the
macroscopic level, masonry is ascribed to a 2D Cosserat continuum. The determination of
its overall strength is made with reference to the kinematic approach of limit analysis and
homogenisation. Originally developed for classical continua (Suquet, 1983) the approach is here
extended to the micropolar continua.

It is to note that a considerable amount of literature is devoted to the modelling of the in-
plane strength of masonry. For instance, one may mention the works of Baggio and Trovalusci
(1998); Pietruszczak and Ushaksaraei (2003); Mojsilović (2011). Concerning the use of ho-
mogenisation models, other than the aforementioned works, one may cite de Buhan and de Fe-
lice (1997); Sab (2003); Massart et al. (2004); Milani et al. (2006a,b); Sab et al. (2007); Chettah
et al. (2013); Stefanou et al. (2015); Milani and Taliercio (2015). However, a very limited num-
ber of works have shown the use of Cosserat medium for the evaluation of masonry strength.
Sulem and Mühlhaus (1997) proposed strength criteria for masonry in the framework of plastic-
ity theory formulated for Cosserat materials (see also Besdo (1985); Mühlhaus (1989); Dai et al.
(1996)). In their work, masonry was regarded as an assemblage of blocks. The criteria were
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constructed by considering relevant failure mechanisms at the blocks’ level, and formulated at
the macroscopic level by adopting a micropolar continuum. On the same assumption of masonry
as a discrete medium were based the works of Trovalusci and Masiani (2003, 2005). However, in
that case the strength criteria were not computed explicitly. Failure mechanisms at the joints
were formulated and integrated in a numerical procedure for the assessment of masonry overall
behaviour. The procedure was based on the identification of the contact stresses exchanged by
the blocks with the stress measures of the Cosserat continuum. Addessi et al. (2010) and Ad-
dessi and Sacco (2012) developped a sophisticated numerical homogenisation procedure, based
on the Transformation Field Analysis technique. Masonry was assumed as a composite Cauchy
material at the microscopic level. The transition to the Cosserat continuum at the macroscopic
level was made by means of a specific kinematic map (Forest and Sab, 1998). The same map
was employed in the work of de Bellis and Addessi (2011).

The present work represents somehow the extension of the homogenisation procedure pro-
posed by de Buhan and de Felice (1997) based on the Cauchy continuum, to the Cosserat
continuum. de Buhan and de Felice (1997) made use of the kinematic limit analysis approach
(Suquet, 1983) in order to derive the homogenised strength of masonry. Since the strength
properties of the joints were considered significantly lower than those of the blocks, the im-
plementation of the kinematic approach required the use of failure mechanisms involving the
relative displacements across the joints. In the frame of a Cauchy continuum, this amounted to
consider the relative blocks’ translations only, and neglect the relative blocks’ rotations. In that
case, the resulting yield criteria gave an upper bound of the researched strength domain, and
were formulated in terms of symmetric macroscopic in-plane stresses. In this paper, the work
of de Buhan and de Felice (1997) is extended and generalized in order to take into account both
relative blocks’ translation and relative blocks’ rotation. This is made by adopting a Cosserat
continuum at the macroscopic scale. Hence, the resulting yield criteria are expressed in terms of
non-symmetric in-plane stresses and couple stresses. It is worth noticing that the resort to the
micropolar theory for the assessment of masonry in-plane strength was indicated by de Buhan
and de Felice (1997) as crucial for capturing the scale effect observed in the failure mechanisms
resulted from full-scale tests. Therefore, although the yield criteria computed for the Cosserat
continuum may always give upper bounds of the researched strength domain, they are supposed
to be better estimates of the actual strength capacity of the material, as compared to those
computed for the Cauchy continuum by de Buhan and de Felice (1997). The reason may be
found, once again, in the enhanced kinematics of the adopted continuum. On the one hand,
they provide an improved estimation of the dissipated power. On the other hand, they allow
a finer reproduction of the deformation modes and failure mechanisms of the medium (see the
upper bound theorem of limit analysis).

At present, very few works have shown the use of the Cosserat medium in problems related
to limit analysis and homogenisation. Concerning reinforced soils and rocks mechanics, one can
mention de Buhan et al. (1998) and de Buhan et al. (2002). Herein, the extension of the classical
homogenisation theory to the Cosserat continuum is made in a rigorous, extensive and general
way, with regard to discrete periodic media having particles of the same type (mono-atomic
pattern). The resulting homogenisation procedure is thus general, and may apply to the whole
class of materials with periodic inner micro-structure (Eringen, 1999), to which also masonry
belongs.

The paper has the following structure. The first part is devoted to the extension of the
kinematic limit analysis homogenisation approach to the Cosserat continuum. A brief summary
of the equations governing the micropolar medium is first given in Section 1.2. The contact
model adopted for the discrete media and on which homogenisation is illustrated, is presented
next in Section 1.3. Cosserat macroscopic variables are then computed as average values of
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the discrete ones. The homogenisation procedure is presented for the contact model first and
it is then generalized for generic discrete media (Section 1.4). Further in Section 1.5 and
Section 1.6, two applications are described. In Section 1.5 homogenisation is carried on the
illustrative example of a simple masonry column. In Section 1.6, homogenisation is performed
on a masonry wall, with building blocks arranged following a generic periodic pattern and
interface joints showing different dissipative properties depending on their orientation. In each
case, the expression of the homogenised strength domain is derived, as function of the geometry
of the blocks, the distance at which blocks of alternate courses are laid, and the mobilized joints
friction angle and cohesion. Comparisons with existing works are made in Section 1.7, allowing
to show the advantages of the presented homogenisation procedure and to highlight the role of
relative blocks’ rotations in the evaluation of masonry in-plane strength.

Indicial notation is adopted throughout the paper, with Greek indices α, β, γ, . . . ranging
between 1 and 2. Einstein summation applies for repeated indices. Lower case letters denote
variables referring to the discrete medium, while upper case letters refer to the macroscopic
variables of the Cosserat continuum. Partial differentiation with respect to orthogonal coordi-
nates is denoted with [ ]α,β, while ∂Xβ [ ]α designates tensor derivative. Time derivative [ ]α,t
is indicated with ˙[ ]α.

1.2 The Cosserat continuum: 2D statics and kinematics
Cosserat (or micropolar) continuum is a special case of a micromorphic continuum of first order
(Eringen, 1999; Germain, 1973; Godio et al., 2015a). In this case, the material particle is asso-
ciated with a rigid oriented triad (Figure 1.2) which, when the medium undergoes deformation,
experiences displacement velocities Vα (or translations), and angular displacement velocities Ωc

(or rotations). The rate of the linear deformation measures of the medium, is given by two
second order tensors (Schaefer, 1967; Germain, 1973; Vardoulakis and Sulem, 1995). The first
deformation tensor, denoted by Γαβ, accounts for the relative deformation occurring between
the rate of the displacement gradient Dαβ and the Cosserat (or particle) rotation Ωc:

Γαβ = Dαβ + eαβΩc, (1.1)

with:

Dαβ = Vα,β, (1.2)

and eαβ the 2D Levi-Civita’s symbol. Γαβ is a non-symmetric tensor, and is decomposed into
its symmetric Γ(αβ) and skew-symmetric Γ[αβ] parts as follows:

Γαβ = Γ(αβ) + Γ[αβ], (1.3)

reading:

Γ(αβ) = D(αβ), Γ[αβ] = D[αβ] + eαβΩc. (1.4)

The second deformation tensor, denoted with Kβ, accounts for the rate of the rotation gradient
(or curvature) of the medium. In the two-dimensional case, where only the in-plane rotations
Ωc are considered, it reduces to:

Kβ = Ωc
,β. (1.5)

In the Cauchy continuum the rigid triad is non-oriented (Figure 1.2), and the kinematics of
the material particle, considered as a point, is described by the translations Vα only. The
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deformation measures of the medium reduce then to the symmetric tensor D(αβ) (Eq.(1.4)-1),
contrary to the Cosserat continuum, where the skew-symmetric part of the relative deformations
D[αβ] is non-null and related to the particle rotations (Eq.(1.4)-2). The microstretch continuum
is a first generalization of the Cosserat continuum (Eringen, 1999). In that case, in addition
to the translations and rotations, the material particle experiences also volume changes, i.e.
micro-contractions and expansions (Figure 1.2). In the micromorphic continuum the material
particle is considered as fully-deformable, carrying an oriented triad and undergoing any kind
of micro-deformation.

the particle as a
material point

Simple (Cauchy)

the particle as a
rigid body

Micropolar (Cosserat)

the particle as a
volume-deformable
body
Microstrecth

the particle as a
fully-deformable body

Micromorphic

Figure 1.2: Classes of continuum media according to Eringen (1999).

Three balance equations govern the in-plane (or membrane) dynamic behaviour of a Cosserat
continuum (Eringen, 1999):

Tαβ,β + ρ
(
Bα − V̇α

)
= 0

Mβ,β − eαβTαβ + ρ
(
L− IΩ̇c

)
= 0, (1.6)

where Bα and L are respectively the intensity of the external in-plane body forces and body
couples acting on the medium, ρ the mass density of the medium, and I its micro-inertia,
which represents the rotary inertia of the particle. Tαβ and Mβ denote respectively the in-plane
components of the non-symmetric stress tensor and of the couple stress tensor. The convention
used for those tensors follows Vardoulakis and Sulem (1995): the first index gives the direction
of the component and the second index the oriented face where this component is applied (see
Figure 1.3-left). With this notation, the internal power density of the Cosserat continuum reads:

P c = TαβΓαβ +MβKβ. (1.7)
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Figure 1.3: Stresses and couple stresses of a 2D Cosserat continuum (left). Its strength domain
is formulated as the convex region of the generalized space (Tαβ,Mβ) enclosed by multiple
plastic surfaces (right).
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As in the Cauchy continuum, the rate of deformation is split to an elastic and plastic part:

Γαβ = Γe
αβ + Γp

αβ, Kβ = Ke
β +Kp

β. (1.8)

A general linear constitutive law may be introduced, relating the stresses and couple stresses to
the rate of the elastic deformations (Γe

αβ,K
e
β). The definition of plastic potentials Pj allows to

derive the plastic deformations, as in the classical plastic flow theory developed for the Cauchy
continuum (Vermeer and de Borst, 1984). In the frame of Cosserat continua, those potentials
are functions of both the stress and the couple stress tensors (de Borst, 1991; de Borst and
Sluys, 1991): Pj = Pj (Tαβ,Mβ). Admitting that Pj are differentiable with respect to Tαβ and
Mβ, the expression of the plastic deformation takes the following form:

Γp
αβ =

NF∑
j=1

λj∂TαβPj , Kp
β =

NF∑
j=1

λj∂Mβ
Pj , (1.9)

with λj ≥ 0 the consistency parameters.
In this paper we focus on the formulation of a homogenised strength domain for masonry,

considered as a Cosserat equivalent continuum at the macroscopic scale. The strength domain
in a Cosserat material is defined as the convex region of the generalized stress space (Tαβ,Mβ)
which is bounded by multiple NF and intersecting plastic surfaces Fj = Fj (Tαβ,Mβ), repre-
senting the yield criteria:

Gc = {(Tαβ,Mβ) |Fj (Tαβ,Mβ) ≤ 0, ∀j = 1, . . . , NF }. (1.10)

Another definition of the strength domain alternative to the direct (Salençon, 2013) definition
(1.10) follows from the expression of the maximum dissipation principle. This principle states
that, during the deformation, the plastic dissipation, herein denoted with Πc = Πc(Γp

αβ,K
p
β),

attains its maximum for the actual stress tensor (Simo and Hughes, 1998). In a Cosserat
medium and in the case of perfect plasticity (no hardening), the principle reads:

Πc = Sup
(Tαβ ,Mβ)∈Gc

{
TαβΓp

αβ +MβK
p
β

}
. (1.11)

One recognizes in Πc the support function of Gc. Eq.(1.11) then leads to the second, referred
to as kinematic (Salençon, 2013), definition of the strength domain, which writes:

Gc = {(Tαβ,Mβ) |TαβΓp
αβ +MβK

p
β ≤ Πc,∀(Γp

αβ,K
p
β)}. (1.12)

1.3 The discrete medium: discrete variables and contact model
The structure considered for homogenisation consists of a discrete collection of rigid interacting
bodies (or blocks) that translate and rotate in space. Arranged following a periodic lattice, the
blocks form elementary cells in the form of geometrical figures, like rectangles, hexagons, etc.
All blocks share the same shape and size. Their position within the lattice is marked in a global
reference system (OY1Y2) by two periodicity vectors αi (i = 1, 2), and reads:

Y GJ = Y G0 + nα1 + mα2 (1.13)

where GJ represent the centre of mass G of the block BJ , with J = 1, . . . , N and (n,m) ∈ Z2.
This configuration is often referred to as mono-atomic lattice (Kittel, 1996).

We focus on D, the elementary cell repeated in the lattice. A straightforward way to find
D is to consider as lattice points of the structure, the centres of mass of the blocks GJ , and
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Figure 1.4: A periodic collection of discrete hexagonal blocks and the corresponding elementary
cell. The elementary cell retained (right) is the parallelogram produced by the periodicity
vectors.

as basis, the periodicity vectors αi (Figure 1.4). In this way, the lattice points are kept only
at the corners of the cell and the periodicity vectors coincide with the primitive basis of the
lattice. This cell represents for the discrete medium the structural unit with the smallest surface
(Kittel, 1996):

|D| = |α1 ×α2|. (1.14)

A local reference system (oy1y2) is attached to D, and ND denotes the number of blocks
J that compose this cell (in this case J = 1, . . . , ND). For rigid blocks, the kinematics of the
whole cell is described by piece-wise linear distributions of the displacement and the angular
displacement velocity fields vα and ω, of the form:

vJα (y) = vGJ
α − eαβωGJ

(
yβ − yGJ

β

)
ωJ (y) = ωGJ ,∀y ∈ BJ , (1.15)

with vGJ
α and ωGJ respectively the translational and the rotational velocities of the centre of

mass G of the block BJ (Figure 1.5-left):

vGJ
α = vα

(
yGJ

)
ωGJ = ω

(
yGJ

)
.

These kinematics represent the degrees of freedom of the discrete cell.

v  IJ

GJ

GI

ΣIJ
vGJ

ωGJ

Contact kinematics

rIJ
nIJ

GJ

GI

ΣIJ

Contact statics

Figure 1.5: Kinematics and statics of the contact model adopted for the discrete medium.
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Blocks may have arbitrary shape and their external surface may be in contact only with
the surface of neighbouring blocks. In particular, the block I interacts with the adjacent block
J through contact stresses rIJα , at every point of the interface ΣIJ (Figure 1.5-right). Contact
stresses are associated to the displacement velocity jumps (or relative displacements) occurring
across the interfaces shared by the blocks:

JvαKIJ = vIα (y)− vJα (y) ,∀y ∈ ΣIJ . (1.16)

The internal power density of the cell is then:

pD = 1
|D|

∑
IJ

∫
ΣIJ

rIJα JvαKIJdL

 , (1.17)

where the sum is made over all the interfaces of the cell.
The relative displacements (1.16) produce both gaps and slips between the blocks (see Fig-

ure 1.6). Those two basic mechanisms are due respectively to the opening (Figure 1.6-left)
and the sliding (Figure 1.6-right) of the interfaces. They are described by the normal [ ]σ and
tangential [ ]τ components of the relative displacements:

JvαKσ = JvβKIJnIJβ nIJα , JvαKτ = JvαKIJ − JvαKσ. (1.18)

These components are conjugate in energy to respectively the normal and tangential components
of the contact stresses, reading:

rσα = rIJβ nIJβ nIJα , rτα = rIJα − rσα, (1.19)

with nIJα the unit vector normal to the interface ΣIJ (Figure 1.5). No contact moments are
considered at each point of the common interfaces. This is a reasonable assumption for the
applications considered herein. Nevertheless, a transfert of moments is always possible between
two adjacent blocks, as the distribution of the stresses is not necessarily constant. Resultant
contact moments (or couples) are in fact those generated by first order moments of rσα (Bardet
and Vardoulakis, 2001). These are associated to the angular displacement velocity jumps:

JωKIJ = ωI − ωJ , (1.20)

which coincide with the rigid-body rotation jumps (relative blocks’ rotations):

JωGKIJ = ωGI − ωGJ . (1.21)

Resultant contact forces, in turn, are generated by rσα and rτα, and are associated to the rigid-
body displacement jumps (relative blocks’ translations):

JvG
α KIJ = vGI

α − vGJ
α . (1.22)

It is apparent how the relative rotations and relative translations are both related to interface
failure (Figure 1.6).

The strength capacity of each interface is described by gIJ , a convex domain characterised
by multiple Nf yield criteria fj = fj

(
rIJα

)
:

gIJ = {
(
rIJα

)
|fj
(
rIJα

)
≤ 0,∀j = 1, .., Nf}. (1.23)
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Figure 1.6: Relative translations JvG
α KIJ and rotations JωGKIJ producing opening and sliding of

the interface between two blocks. Both depicted mechanisms are related to interface failure.

A kinematic condition for the interface failure is then:

rIJα ∈ gIJ ⇔ rIJα JvαKIJ ≤ πIJ ,∀JvαKIJ . (1.24)

where the support function πIJ = πIJ(JvαKIJ) represents the maximum plastic dissipation at
the interface. Its definition is as follows (Salençon, 2013):

πIJ = Sup
rIJα ∈gIJ

{
rIJα JvαKIJ

}
. (1.25)

Admitting that all interfaces attain failure simultaneously and a (periodic) failure mechanism
is produced within the discrete cell, the amount of plastic dissipation in D is then:

πD
(
vGJ
α , ωGJ

)
= 1
|D|

∑
IJ

∫
ΣIJ

πIJ(JvαKIJ)dL

 . (1.26)

1.4 Homogenisation in limit analysis: average Cosserat vari-
ables and kinematic approach

The purpose of homogenisation is to replace the discrete medium by a continuum homogeneous
medium that has the same shape and shares the same mechanical properties with the discrete
ones. What is obtained from homogenisation is therefore an equivalent material, which can
be used further, for instance when implemented in appropriate finite element codes (de Felice
et al., 2010; Godio et al., 2014, 2015a), for the analysis of structures. Here the discrete medium
is replaced by the continuum at the cell level, by means of a kinematic map.

1.4.1 Kinematic map

We focus on the elementary cell D, and we define with KA(Γαβ,Kβ) the set of kinematically
admissible (or compatible, Eq.(1.1)) translations and rotations

(
vGJ
α , ωGJ

)
of the cell as follows:

KA(Γαβ,Kβ) ={(
vGJ
α , ωGJ

)
|vGJ
α = Dαβy

GJ
β + Vα, ω

GJ = Kβy
GJ
β + Ωc, ∀J = 1, . . . , ND

}
. (1.27)
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From a mechanical point of view, Eq.(1.27) gives the map between the kinematics of the dis-
crete medium that we intend to homogenize, and the macroscopic deformation measures of the
homogenised Cosserat continuum. Such map is linear and is defined on the elementary cell
of the discrete medium. It is a special case of the map proposed by Pradel and Sab (1998),
adapted for discrete media with mono-atomic pattern, i.e. composed by particles of the same
size and shape.

Using the map (1.27), the displacement and angular displacement velocity fields (1.15)
become:

vJα (y) = (Dαβ + eαβΩc) yGJ
β + Vα − eαβ

[
Kγy

GJ
γ

(
yβ − yGJ

β

)
+ Ωcyβ

]
ωJ (y) = Kβy

GJ
β + Ωc,∀y ∈ BJ . (1.28)

Eq.(1.28) constitutes an alternative definition to (1.27) of kinematically admissible displacement
and angular displacement velocity fields obeying Eq.(1.15). This definition can be used for
homogenisation, as illustrated next for the presented contact model.

1.4.2 Average Cosserat variables

In Eq.(1.28) one recognizes the rate of macroscopic relative deformation of the Cosserat contin-
uum Γαβ, as defined by Eq.(1.1), together with the macroscopic curvature Kβ, Eq.(1.5). Here
Γαβ andKβ have a precise physical meaning, as they represent the average Cosserat deformation
measures of the discrete cell. Their expression follows straightforwardly from the map (1.27),
and depends on the selected cell D. When the cell is constructed as illustrated in Section 1.3
and the local reference system is attached to the centre of mass of the cell, Γαβ and Kβ write:

Γαβ = 1
|D|

∑
IJ

∫
ΣIJ

JvαKIJnIJβ dL

 (1.29)

Kβ = 1
|D|

∑
IJ

∫
ΣIJ

JωKIJnIJβ dL

 , (1.30)

with the relative displacement and rotations from Eqs.(1.16) and (1.20). By definition, Γαβ
gather the displacement gradient Dαβ and the Cosserat rotation Ωc. The former is identified
with the average value of the relative blocks’ translations (1.22), i.e.:

Dαβ = 1
|D|

∑
IJ

∫
ΣIJ

JvG
α KIJnIJβ dL

 . (1.31)

The latter, Ωc, is the average rigid-body cell rotation:

Ωc = 1
|D|

ND∑
J=1

∫
BJ

ωJdS

 . (1.32)

Similarly, Vα is the average rigid-body cell translation:

Vα = 1
|D|

ND∑
J=1

∫
BJ

vJαdS

 . (1.33)
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For the demonstration of Eqs.(1.29)-(1.33) the reader is referred to Appendix A.1. It is also
worth pointing out that, for the Cauchy continuum, the only average deformation measure
would be (de Buhan and de Felice, 1997):

D(αβ) = 1
|D|

∑
IJ

1
2

∫
ΣIJ

(
JvG
α KIJnIJβ + JvG

β KIJnIJα
)
dL

 . (1.34)

By substituting Eq.(1.28) into the expression of the internal power density of the cell pD
(Eq.(1.17)), one retrieves:

pD = TαβΓαβ +MβKβ, (1.35)

where the non-symmetric macroscopic stresses:

Tαβ = 1
|D|

∑
IJ

∫
ΣIJ

rIJα lIJβ dL

 (1.36)

and the macroscopic couple stresses:

Mβ = 1
|D|

∑
IJ

∫
ΣIJ

−eαγrIJα
(
yγl

IJ
β − yGI

γ yGI
β + yGJ

γ yGJ
β

)
dL

 (1.37)

are found to be the average values of the contact stress distributions exchanged between the
blocks of the cell. In the above, lIJβ is the vector connecting the centre of mass of two adjacent
blocks I and J : lIJβ = yGI

β −yGJ
β . The physical meaning of the deformation and stress measures

of the Cosserat continuum with respect to those of the presented contact model is clear from
the above equations.

1.4.3 Homogenisation kinematic approach

In the present paper, homogenisation is carried out in the framework of limit analysis. In this
case, one aims at substituting the discrete by a continuum medium that has similar defor-
mation modes (Eqs.(1.29)-(1.33)) and equivalent dissipation properties. In such context, the
principle of maximum plastic dissipation expressed for the Cosserat (Eq.(1.11)) and the discrete
medium (Eq.(1.25)) plays a fundamental role. This principle has, as main implications (Simo
and Hughes, 1998): a) the condition for the plastic potentials of being associative, and b) the
convexity of the strength domain in the stress space. The same results hold true when the plas-
ticity theory is formulated in the space of the deformations, for materials with elastic-perfectly
plastic behaviour (Naghdi and Trapp, 1975). Under these assumptions the two fundamental
theorems of limit analysis are applicable.

The homogenisation procedure followed in this paper is the extension to the Cosserat contin-
uum of a procedure initially formulated for the Cauchy continua (Suquet, 1983). This procedure
is based on the upper bound theorem of limit analysis, and therefore is called kinematic ap-
proach within the framework of the yield design theory, see also Salençon (2013). Formulated for
the Cosserat continuum, the homogenisation kinematic approach consists in finding among the
established displacement and angular displacement velocity fields (in this case Eq.(1.28)), the
sets of kinematically admissible blocks’ translations and rotations (vGJ

α , ωGJ) ∈ KA (Γαβ,Kβ)
that solves the following problem:

Πc,hom
(

Γp
αβ,K

p
β

)
= πD

(
vGJ
α , ωGJ

)
. (1.38)
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The above equation equates the maximum plastic dissipation density produced by the dis-
crete cell πD (Eq.(1.26)) with Πc,hom, representing the maximum plastic dissipation of the
homogenised Cosserat continuum (Eq.(1.11)). It should be mentioned that the choice of com-
patible KA (Γαβ,Kβ) sets of translations and rotations is not arbitrary. Solution to the above
problem is found only when the kinematics of the discrete medium obey the map (1.27), and
generate on the elementary cell plastic dissipation of finite value, i.e.:

πD
(
vGJ
α , ωGJ

)
<∞. (1.39)

This condition is essential in the construction of compatible sets of kinematics, and homogeni-
sation may be carried out only when Eq.(1.38) is used in conjunction with it.

The kinematic definition of the Cosserat homogenised strength domain Gc,hom follows im-
mediately from the expression of Πc,hom. This latter is identified as the support function of
Gc,hom (Eq.(1.12)):

Gc,hom = {(Tαβ,Mβ) |TαβΓp
αβ +MβK

p
β ≤ Πc,hom, ∀(Γp

αβ,K
p
β)}. (1.40)

The resulting homogenisation procedure is illustrated in Figure 1.7. It is worth emphasizing
that, as a result of the kinematic approach, Eq.(1.40) provides upper bound estimates of the
actual strength capacity of the discrete medium.
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Figure 1.7: Homogenisation based on the Cosserat continuum is carried out in the frame of
limit analysis on a periodic collection of rigid particles. Starting from a failure criterion (left)
expressed at the interfaces of the discrete medium (in red), it is possible to retrieve the ho-
mogenised yield criterion for the macroscopic Cosserat continuum (right). The resulting ho-
mogenised strength domain is the region of the generalized stress space (Tαβ,Mβ) enclosed by
these yield criteria.

1.4.4 Extension to generic periodic media

The homogenisation procedure has been illustrated according to the contact model presented in
Section 1.3, see Figure 1.7. Such model is representative of a class of media, like soils, fractured
rock masses, masonry structures, etc. Nevertheless, the proposed procedure can cover the whole
class of discrete periodic media with mono-atomic pattern. An example of application is given
in Figure 1.8, where a grid-work is represented, based on the same mono-atomic lattice used
for the contact model (Figure 1.4). In this case, the lattice points represent the nodes of the
grid-work. It is clear that, when these latter are considered rigid, the kinematic description of
the whole medium reduces to the degrees of freedom of the nodes, and a micropolar description
of the medium can be then attempted (Kumar and McDowell, 2004).

The same considerations apply for generic discrete media, where translations and rotations
may always be attached to the distinct interacting particles. Therefore, starting from the
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kinematics
(
vGJ
α , ωGJ

)
of a pair of particles I and J , it is possible to define in a general way

the following generalized deformation measures (Florence and Sab, 2006):

dIJα = JvG
α KIJ + eαβl

IJ
β

ωGI + ωGJ

2
δIJ = JωGKIJ . (1.41)

Without the need of specifying the power-conjugate variables, the power dissipated by the pair
of particles is function of the above deformations: π̂IJ = π̂IJ(dIJα , δIJ). Hence, the amount of
plastic dissipation density on the cell writes:

πD
(
vGJ
α , ωGJ

)
= 1
|D|

(∑
IJ

π̂IJ(dIJα , δIJ)
)
. (1.42)

where, in this case, the sum is made over all the particle pairs of the cell, see Eq.(1.26). No-
tice that the particle pairs shared by adjacent cells will be accounted by half of their power.
homogenisation is made over the discrete medium as illustrated in the previous sections. The
map (1.27) allows to substitute the Cosserat continuum into the generic discrete medium, by
reproducing its kinematics and deformation modes (Eqs.(1.29)-(1.33)). Eq.(1.38) then assures
that the two media have equivalent plastic dissipation.
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Figure 1.8: A periodic collection of beams disposed following a mono-atomic lattice (left), and
the corresponding elementary cell (right).

1.5 Application to masonry columns

The method illustrated in Section 1.4 is herein applied to the case of masonry columns made
of distinct blocks of the same type. For simplicity, the superscript p will be neglected next.
The rate of plastic deformations to which the continuum undergoes, will be noted generally as
a total rate of (irreversible) deformation. Consistently, but not restrictively, we are assuming
that blocks’ interaction in masonry has a rigid-plastic behaviour.

1.5.1 Geometry

Masonry columns are quasi periodic assemblages of rectangular blocks (Figure 1.9). Here the
blocks are stacked in the vertical (y2) direction following a regular pattern. The height and the
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width of each block are denoted respectively with a and b. In such situation, a single vector
describes the period of the structure, that is:

α1 = 0e1 + ae2.

The elementary cell of Figure 1.9 is considered. It consists of two adjacent half-blocks BJ

(the block B1 and the block B2) sharing a single interface, Σ12. Denoted with B, and referred
to a specific local coordinate system (oy1y2) attached to its center, the elementary cell is defined
as:

B =
[
− b2 ,+

b

2

]
×
[
−a2 ,+

a

2

]
.

The position of the centre of mass of each block is then:

yG1 = 0e1 + a

2e2

yG2 = 0e1 −
a

2e2.

The interface between the blocks is located at:

yΣ12 = y1e1 + 0e2,∀y1 ∈
[
− b2 ,+

b

2

]
and its unit normal vector is n12 = e2.
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Figure 1.9: Periodic masonry column (left) and the corresponding elementary cell (right).

1.5.2 Average Cosserat variables

We assume that each block BJ is a rigid body. Consequently, the kinematics of the masonry
column is described by piece-wise linear distributions of the displacement and angular displace-
ment velocity fields of the form (1.15). In this case, and for the elementary cell considered, the
map (1.27) giving the kinematically admissible sets

(
vGJ
α , ωGJ

)
∈ KA(Γαβ,Kβ) yields:

KA(Γα2 ,K2) ={(
vGJ
α , ωGJ

)
|vGJ
α = Dα2y

GJ
2 + Vα, ω

GJ = K2y
GJ
2 + Ωc,∀J = 1, 2

}
, (1.43)

with α = 1, 2. Similarly, the resulting displacement and angular displacement field distributions
(Eq.(1.28)) read:

vJα (y) = Γα2y
GJ
2 + Vα − eαβ

[
K2y

GJ
2

(
yβ − yGJ

β

)
+ Ωcyβ

]
ωJ (y) = K2y

GJ
2 + Ωc, ∀y ∈ BJ . (1.44)
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The above equations consist in a limited number of terms of macroscopic deformation. With
respect to the general form (1.28), where all the Cosserat deformation measures (Γαβ,Kβ) are
present, the only available deformations measures in Eq.(1.44) are Γα2 and K2. This results
from the geometry of the discrete structure considered. Here, the blocks are arranged following
a periodic lattice that is developed along one periodicity vector α1. The orientation of the
interface is perpendicular to this vector. For such configuration, replacing the general form
(1.28) into Eqs.(1.29)-(1.30) leads to:

Γα1 = 0, K1 = 0. (1.45)

The remaining macroscopic deformation measures (Γα2,K2) presented in Eq.(1.44) are produced
by combinations of in-plane rigid-body motions (i.e. translations and rotations) of the blocks
that compose the cell (see Figure 1.10). Their expression reads from Eqs.(1.29)-(1.30) as follows:

Γα2 = Dα2 + eα2Ωc, K2 = ωG1 − ωG2

a
, (1.46)

where:

Dα2 = vG1
α − vG2

α

a
. (1.47)
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Figure 1.10: Combinations of rigid-body motions of the blocks (translations and rotations)
producing 1D Cosserat macroscopic deformation and curvature states on the elementary cell of
a masonry column. Solid lines represent the deformed state of the discrete cell. Dotted lines
represent its undeformed state. In grey: the deformed state of the elementary cell supposed as
a continuum, undergoing 1D macroscopic Cosserat deformations.

The Cosserat deformations reproduce then the deformation modes of the discrete cell. In
particular, blocks’ rotations with opposite direction induce the opening of the interface and,
consequently, generate macroscopic curvatures on the cell (Figure 1.10). On the contrary,
the terms Vα and Ωc denote rigid-body motions of B (see Eqs.(1.33)-(1.32)). As shown in
Figure 1.11, they are provided by combinations of in-plane blocks’ motions producing no average
deformation on the elementary cell. The first term (Figure 1.11-left) designates the average
rigid-body translations of the cell and is generated by uniform blocks’ translations:

Vα = vG1
α + vG2

α

2 . (1.48)

The second term (Figure 1.11-right) defines the average rigid-body rotation of the cell. It is
generated by blocks’ rotations having the same direction, which induce the sliding but not the
opening of the common interface:

Ωc = ωG1 + ωG2

2 . (1.49)
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In the framework of Cosserat continuum, Ωc has a specific physical meaning, since it represents
the average Cosserat rotation of the cell (Eq.(1.32)).

vG1

vG2=vG1

V

ωG2=ωG1

ωG1

Ωc

vG1

vG2=vG1

V

Figure 1.11: Combinations of rigid-body motions of the blocks (translations and rotations)
producing in-plane rigid-body translations Vα and Cosserat rotations Ω of the elementary cell
of a masonry column.

The conjugate Cosserat static quantities are then necessarily Tα2 and M2. These forces and
couples are provided by distributions of contact stresses rIJα along the interface Σ12. The use of
the Eqs.(1.36)-(1.37) gives directly:

Tα1 = 0, M1 = 0, (1.50)

and:

Tα2 = 1
b

∫ b
2

− b2
rIJα dL, M2 = 1

b

∫ b
2

− b2
rIJ2 y1dL. (1.51)

Eq.(1.50) is a condition for the external facets of the masonry column (for y1 = ±b/2) to be
stress- and couple stress-free. Eq.(1.51) gives then the overall forces Tα2 and the overall couple
M2 of what can be considered a Timoshenko beam model (Mühlhaus et al., 1997).

In view of the homogenisation, we compute the displacement and angular displacement
velocity jumps, Eqs.(1.16),(1.20). These jumps may occur within the elementary cell, at the
interface between the blocks, which represents a discontinuity line with respect to the velocity
field distributions (1.44). Given (1.43), these jumps read:

JvK12 = a

[
Γ12

Γ22 + y1K2

]
(1.52)

or:
JωK12 = aK2, (1.53)

and:

JvGK12 = a

[
Γ12
Γ22

]
. (1.54)

1.5.3 Homogenisation

We assume that the strength of the blocks (masonry units) that compose the column is very
large compared to that of the interfaces (masonry joints). Failure may then take place within
the elementary cell only on these latter. The effect of the finite strength of the blocks in the
frame of homogenisation of a Cauchy continuum is presented by Stefanou et al. (2015).
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For the interface we make use of a Coulomb slip failure criterion. This criterion is classically
expressed in the following form:

f
(
rIJα

)
= |rτα| − c+ rσTan [φ] ≤ 0. (1.55)

with rσ = rσαnIJα , c the joint cohesion and φ the joint friction angle. Its support function is
given in terms of the displacement velocity jumps JvαKIJ and reads (Salençon, 2013):

πIJ
(
JvαKIJ

)
= πIJ

(
JvαKIJ ; nIJα

)
= c

Tan [φ]JvαKIJnIJα , (1.56)

with πIJ <∞ if:

JvαKIJnIJα ≥
∣∣∣JvαKIJ

∣∣∣ Sin [φ] , (1.57)

and nIJα the unit vector normal to the interface considered. Eq.(1.57) is called relevance condition
(Salençon, 2013). From a physical point of view, this is a kinematic condition establishing the
impenetrability between the blocks (see Figure 1.12). From a mechanical point of view, it
assures that the plastic dissipation is finite at every point of the interface, see Eq.(1.39).
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Σ12
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Figure 1.12: Displacement jump across the interface of the periodic elementary cell of a masonry
column, falling within the Coulomb friction cone. Condition for interface failure is that the
displacement jump falls inside this cone.

With these definitions, Eqs.(1.38) and (1.40) yields:

T22Γ22 + T12Γ12 +M2K2 ≤
1
ab

∫ + b
2

− b2
π12

(
JvK12; n12

)
dy1. (1.58)

Using Eq.(1.52), we obtain:

π12
(
JvK12; n12

)
= c

Tan [φ]a (Γ22 + y1K2) . (1.59)

Integrating over the interface, Eq.(1.58) then becomes:(
T22 −

c

Tan [φ]

)
Γ22 + T12Γ12 +M2K2 ≤ 0. (1.60)

It is worth pointing out that, at this stage, no failure condition has been explicitly formulated
in terms of the angular displacement velocity jumps JωKIJ (cf. Trovalusci and Masiani (2003)).
The Coulomb slip criterion is expressed only in terms of the displacement jumps JvαKIJ . It is
the same criterion with the one originally considered by de Buhan and de Felice (1997) for the
homogenisation of masonry panels, with the important exception that now JvαKIJ is produced by
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both the relative translations and the relative rotations occurring between the blocks (Eq.(1.52)).
On the contrary, in the case of the Cauchy continuum, Eq.(1.54) would be used instead of
Eq.(1.52) (see also Section 1.4). Therefore, in the frame of the Cosserat continuum, the use of
a Coulomb slip criterion at the interfaces level leads to a form of plastic dissipation (Eq.(1.59))
that contains not only the macroscopic relative deformations Γ22, coincident with D22, but also
an additional term depending on the average curvature K2. This additional term, is related
through Eq.(1.53) to the relative blocks’ rotations, and can only be seized by the enhanced
kinematics of a Cosserat continuum.

The consequences of this change emerge in the formulation of the homogenised strength
criterion. In fact, looking at Eq.(1.60), one can state that the homogenised failure criterion is
calculated among all theKA (Γα2,K2) set of kinematics, associated to the following macroscopic
stresses and couples:

T
′
α2 =

(
Tα2 −

c

Tan [φ]δα2

)
, M

′
2 = M2

These kinematics, in order to be relevant in the formulation of the maximum plastic dissipation
(1.59), must respect condition (1.57), reading in this case:

−Γ22 + Tan [φ] |Γ12| − y1K2 ≤ 0, ∀y1 ∈
[
− b2 ,+

b

2

]
. (1.61)

As Eq.(1.61) is linear, it needs to be verified only at the extreme points of the cell’s interface,
i.e. at y1 = ±b/2. This leads to the following four distinct inequalities:

H1−4 (Γα2,K2) = −Γ22 ± Tan [φ]Γ12 ±
b
2K2 ≤ 0. (1.62)

Eq.(1.62) gives directly the researched homogenised strength domain for the masonry col-
umn, in the space of the generalized Cosserat deformations. This forms a conical region, that
is bounded by four intersecting planes of equation H1−4 = 0 and with the apex in the origin of
the axes, see Figure 1.13. Condition for failure of the cell (macroscopic failure) is then that the
macroscopic deformation state falls inside the depicted domain.

Figure 1.13: Representation of the homogenised strength domain for the masonry column in
the space of the generalized Cosserat deformations (Γα2,K2). In blue: the intersecting planes
(Eq.(1.62)). In red: the vectors normal to the planes.
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The set of stresses and couple stresses for which cell failure may occur (macroscopic yield cri-
terion), is also a cone. This cone is generated in the Cosserat generalized stress space (Tα2,M2)
by the normality rule (Naghdi and Trapp (1975); Lee (1995)) applied at the apex of (1.62) (see
also de Buhan and de Felice (1997)):

T
′
α2 =

4∑
j=1

λj∂Γα2Hj , M
′
2 =

4∑
j=1

λj∂K2Hj . (1.63)

The resulting homogenised strength domain Gc,hom is then the convex hull of the normal vectors
produced by (1.63), see Figure 1.13. In this case, it is given by the following four surfaces, which
correspond to the homogenised yield criteria:

F1,2 (Tα2,M2) = ±T12 + Tan [φ]
(
T22 −

c

Tan [φ]

)
≤ 0

F3,4 (Tα2,M2) = ±2
b
M2 +

(
T22 −

c

Tan [φ]

)
≤ 0 (1.64)

The strength domain is plotted in Figure 1.14.

Figure 1.14: Representation of the homogenised strength domain for the masonry column in
the space of the generalized Cosserat stresses (Tα2,M2). Intersecting plane (Eq.(1.67)).

1.5.4 Discussion

In this paragraph, we focus on: a) the contribution of the Cosserat model in the determination
of the homogenised strength criterion of the masonry column, and b) the effect of the choice of
the cell on the computed strength domain.

For the first purpose, it is useful to express the macroscopic couple stressM2 as an eccentric
macroscopic stress T22, situated along y1 at the normalized distance ζ1 from the center of the
column cross section:

M2 = b

2ζ1T22. (1.65)

Consequently, the homogenised strength criterion (1.67) takes the following alternative form:

F1,2 (Tα2, ζ1) = ±T12 + Tan [φ]
(
T22 −

c

Tan [φ]

)
≤ 0

F3,4 (Tα2, ζ1) = ±ζ1T22 +
(
T22 −

c

Tan [φ]

)
≤ 0, (1.66)
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with ζ1 ≤ |1| when T22 falls into the section, and ζ1 > |1| otherwise. The resulting domain
is plotted in Figure 1.15, in the (T12 − T22)-stress space and for different values of eccentricity
ζ1. It is worth emphasizing the fact that the Coulomb slip criterion (1.56) considered as failure
condition at the interfaces level (masonry joints), is retrieved at the macroscopic scale, as a
failure condition for the whole cell (masonry column). This condition is described by Eq.(1.66)-
1, and a similar expression can be recovered also when homogenisation is carried out with the
use of a simple Cauchy continuum, i.e. for ζ1 = 0 (Figure 1.15-left). The expression has the
same form, but it is expressed in terms of the macroscopic deformation D(α2) instead of Γα2. On
the contrary, the effects of considering a Cosserat continuum are visible when also the second
condition (Eq.(1.66)-2) is involved, i.e. for ζ1 6= 0. In such case (Figure 1.15-right), the presence
of momentsM2 (visible when blocks rotate) limits considerably the tensile (T22) and shear (T12)
strength. Consistently, the overall strength capacity of the column is reduced.
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Cauchy continuum
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Cosserat continuum

Figure 1.15: Condition for failure of the elementary cell (macroscopic failure) of a masonry
column. Representation of the homogenised strength criterion for ζ1 = 0 (Cauchy continuum)
and for ζ1 6= 0 (Cosserat continuum).

The elementary cell B considered for the masonry column is the cell with the smallest surface
(see Section 1.4). However, in the frame of the Cosserat continuum, the choice of the cell is not
arbitrary. Therefore, in order to justify our choice and show the effect of the cell’s size on the
computed homogenised strength, we consider elementary cells larger than B. By following the
procedure described in the previous section, homogenisation is carried out on a cell containing a
generic number of interfaces NΣ ≥ 1 (Figure 1.16-left). For this cell, the resulting homogenised
yield criteria are:

F1,2 (Tα2,M2, NΣ) = ±T12 + Tan [φ]
(
T22 −

c

Tan [φ]

)
≤ 0

F3,4 (Tα2,M2, NΣ) = ±2
b

1
1 +m Tan [φ]M2 +

(
T22 −

c

Tan [φ]

)
≤ 0, (1.67)

where m = (NΣ − 1)a/b, NΣ is the number of interfaces enclosed within the cell and a/b
is the block aspect ratio. The expressions above are the generalization of Eqs.(1.67) for the
generic cell. The yield criteria for the cell B are retrieved for NΣ = 1, whereas for NΣ > 1
the cell considered is larger than B. Figure 1.16 shows the effect of choosing a cell larger than
the minimum one, B, on the overall strength of the masonry column. In general, the fact
of considering a larger cell leads to an expansion of the homogenised domain. In the frame
of the kinematic limit analysis approach, where upper bounds of Gc,hom are researched, this
results in a worse estimation of the masonry strength capacity. This is an interesting but not
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unexpected result, if one considers the upper bound theorem of limit analysis, and the fact that
the kinematics of the Cosserat continuum capture the kinematics of the larger cells only in an
average sense (Eqs.(1.29)-(1.33)). It is also worth noticing that the increase of strength due to
the cell’s size is only related to the couple stress M2 (Eq.(1.67)-2). On the contrary, the terms
related to the tensile and shear forces are not affected by the choice of the cell. Hence the cell
with the smallest surface must always be considered, as a rule of thumb, in the frame of the
Cosserat continuum.

α1α1

Y
1

Y
2

O

N
Σ
=2 N

Σ
=4

Figure 1.16: Periodic masonry column and corresponding elementary cells larger than B (left).
Effect of the size of the cell on the computed strength (right).

1.6 Application to masonry walls

1.6.1 Geometry

We consider a masonry wall in which rectangular blocks are disposed according to a generic
running bond periodic pattern (Figure 1.17), i.e. alternate courses of blocks are laid with a
generic overlap with respect to the neighbouring courses. In such configuration, the periodicity
is described by the following vectors:

α1 = be1 + 0e2

α2 = ηbe1 + ae2,

and the resulting elementary cell, denoted with A, is defined as:

A = α1 ×α2.

The area of the cell is |A| = |α1 × α2| = ab, where a and b designate respectively the height
and the width of the blocks (see Section 1.5). The overlap between the blocks is generic and
described by ηb, with the parameter η ∈ [0, 1/2]. The stack bond and the classic (1/2) running
bond patterns are special cases of the considered pattern. They are retrieved respectively for
η = 0 and for η = 1/2 (Figure 1.18).

The cell consists of 4 blocks. The position of the centre of mass of each block is expressed
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Figure 1.17: Periodic masonry wall with generic running bond pattern (left) and the corre-
sponding elementary cell (right).

with respect to a local reference system (oy1y2), attached to the centre of the cell (Figure 1.17):

yG1 = (1 + η) b2e1 + a

2e2

yG2 = − (1− η) b2e1 + a

2e2

yG3 = − (1 + η) b2e1 −
a

2e2

yG4 = (1− η) b2e1 −
a

2e2.

The interfaces shared by the blocks are situated and oriented as follows:

yΣ14 = y1e1 + 0e2,∀y1 ∈
[
η

2b,+
b

2

]
, n14 = e2

yΣ23 = y1e1 + 0e2, ∀y1 ∈
[
− b2 ,−

η

2b
]
, n23 = e2

yΣ24 = y1e1 + 0e2, ∀y2 ∈
[
−η2b,+

η

2b
]
, n24 = e2

yΣ12 = η

2be1 + y2e2, ∀y2 ∈
[
0,+a

2

]
, n12 = e1

yΣ43 = −η2be1 + y2e2, ∀y2 ∈
[
−a2 , 0

]
, n43 = e1.

It is worth noticing that, in the limit for η → 0 (stack bond pattern), the interface between the
block 2 and the block 4 degenerates into a point: |Σ24| → 0. In this case, Σ24 must be excluded
from the computations.

1.6.2 Average Cosserat variables

The elementary cell A is periodic in both the local directions (y1− y2). Consequently, the kine-
matically admissible sets of displacement and angular displacement velocity fields

(
vGJ
α , ωGJ

)
∈

KA(Γαβ,Kβ) follow the general form (1.27), with α, β = 1, 2 and J = 1, . . . , 4. Similarly to the
previous sections, the blocks undergo rigid-body motions. The velocity field distributions are
then of the form (1.28).

The macroscopic deformations (Γαβ,Kβ) contained in Eq.(1.28) are produced by combina-
tions of translations and rotations of the blocks that compose the elementary cell. However, with
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Figure 1.18: Elementary cells for periodic masonry covered by the cell A. Left: the stack bond
pattern, for η = 0. Right: the classical (1/2) running bond pattern, for η = 1/2.

respect to the cell B of Section 1.5, on the cell A no in-plane Cosserat deformation measures
vanish. The relative deformations are, after Eq.(1.29):

Γ11 = vG1
1 − vG2

1 − vG3
1 + vG4

1
2b +

a
(
ωG1 − ωG2 + ωG3 − ωG4

)
8b

Γ12 = (1− η) vG1
1 + (1 + η) vG2

1 − (1− η) vG3
1 − (1 + η) vG4

1
2a +

−
η
(
ωG1 − ωG2 + ωG3 − ωG4

)
4 + Ωc

Γ21 = vG1
2 − vG2

2 − vG3
2 + vG4

2
2b − Ωc

Γ22 = (1− η) vG1
2 + (1 + η) vG2

2 − (1− η) vG3
2 − (1 + η) vG4

2
2a +

−

(
1− η2) b (ωG1 − ωG2 + ωG3 − ωG4

)
8a . (1.68)

The in-plane curvatures write (Eq.(1.30)):

K1 = ωG1 − ωG2 − ωG3 + ωG4

2b

K2 = (1− η)ωG1 + (1 + η)ωG2 − (1− η)ωG3 − (1 + η)ωG4

2a . (1.69)

Eqs.(1.68)-(1.69) are detailed in A.2, in the case of the stack bond and the 1/2 running bond
patterns. Regarding the stack bond pattern (η = 0), an illustration of the Cosserat deformation
measures and their connection to the discrete kinematic variables is given in Figure 1.19. It is
worth noticing that the blocks’ rotations do not appear only in the expression of the macroscopic
curvatures, but also in that of the macroscopic deformations. In fact, following simple rotations,
the blocks can be arranged to form specific geometric configurations that involve the opening
of the interfaces and induce average elongations and contractions (Γ11,Γ22) of the cell, see
Eq.(1.68)-1,4. These configurations can take the shape of an hourglass (Figure 1.19), and cannot
be represented by a simple Cauchy continuum, since in that case the macroscopic deformation
would only be generated by blocks’ translations (see Eq.(1.31)). The contribution of blocks’
rotations in the definition of the macroscopic relative deformations of the Cosserat continuum
is even more apparent when the blocks’ overlap is marked, i.e. for increasing η. In such case,
blocks’ rotations produce also shear deformations (Γ12), see Eq.(1.68)-2.
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Figure 1.19: Rigid-body motions of the blocks (translations and rotations) producing 2D
Cosserat macroscopic deformation and curvature states on the elementary cell of a periodic
masonry wall (stack bond pattern). Solid lines represent the deformed state of the discrete cell.
Dotted lines represent its undeformed state. In grey: the deformed state of the elementary cell
supposed as a continuum, undergoing 2D macroscopic Cosserat deformations.

The terms Vα and Ωc represent, as in the case of the column, the average rigid-body kine-
matics of the cell (Eqs.(1.33)-(1.32)). Vα indicates the average rigid-body cell translations
(Figure 1.20-left):

Vα = vG1
α + vG2

α + vG3
α + vG4

α

4 . (1.70)

Ωc equals the average rotation of the blocks of the cell (Figure 1.20-right):

Ωc = ωG1 + ωG2 + ωG3 + ωG4

4 . (1.71)

The macroscopic stresses Tαβ and couple stresses Mβ are computed by using Eq.(1.36) and
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Figure 1.20: Rigid-body motions of the blocks (translations and rotations) producing in-plane
rigid-body translations Vα and Cosserat rotations Ωc of the elementary cell of a masonry wall.

(1.37). They read, respectively:

Tα1 = 1
a

(∫ a
2

0
r12
α dy2 +

∫ 0

−a2
r43
α dy2

+
∫ b

2

η b2

ηr14
α dy1 +

∫ −η b2
− b2

ηr23
α dy1 −

∫ η b2

−η b2
(1− η)r24

α dy1

)

Tα2 = 1
b

(∫ b
2

η b2

r14
α dy1 +

∫ −η b2
− b2

r23
α dy1 +

∫ η b2

−η b2
r24
α dy1

)
, (1.72)

and:

M1 = 1
a

(∫ a
2

0

1
2
(
−2r12

1 y2 + ηbr12
2

)
dy2 +

∫ 0

−a2
−1

2
(
2r43

1 y2 + ηbr43
2

)
dy2

+
∫ b

2

η b2

ηr14
2 y1 dy1 +

∫ −η b2
− b2

ηr23
2 y1 dy1 −

∫ η b2

−η b2
(1− η)r24

2 y1 dy1

)

M2 = 1
b

(∫ b
2

η b2

r14
2 y1 dy1 +

∫ −η b2
− b2

r23
2 y1 dy1 +

∫ η b2

−η b2
r24

2 y1 dy1

)
. (1.73)

Their expression for the stack bond and the classical running bond patterns is given in A.3.
The displacement and angular displacement velocity jumps across all the interfaces of the

cell A read:

JvK14 =

 ηbΓ11 + a
(

Γ12 + b
2K1

)
ηb (Γ21 + (−b+ y1)K1) + a

(
Γ22 − b

2K2 + y1K2
)

JvK23 =

 ηbΓ11 + a
(

Γ12 − b
2K1

)
ηb (Γ21 + (b+ y1)K1) + a

(
Γ22 + b

2K2 + y1K2
)

JvK24 =
[

(−1 + η) bΓ11 + aΓ12
(−1 + η) b (Γ21 + y1K1) + a (Γ22 + y1K2)

]

JvK12 = 1
2b
[
2Γ11 + (a− 2y2)K1
2Γ21 − ηbK1 − aK2

]

JvK43 = 1
2b
[
2Γ11 − (a+ 2y2)K1
2Γ21 + ηbK1 + aK2

]
, (1.74)
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and:

JωK14 = ηbK1 + aK2

JωK23 = ηbK1 + aK2

JωK24 = (−1 + η) bK1 + aK2

JωK12 = bK1

JωK43 = bK1. (1.75)

It is worth noticing that Eq.(1.74) is more general and covers the expression used by Cecchi
and Sab (2002b); Sab (2003); Sab et al. (2007) in the formulation of the in-plane kinematics
of their plate models for masonry. In particular, the kinematics considered in the above works
are retrieved as special cases of Eq.(1.74), when the curvatures are neglected. The introduction
of the curvatures in the description of the in-plane kinematic jumps of the discrete cell is
legitimate only in the frame of Cosserat (Stefanou et al., 2008; Salerno and de Felice, 2009)
and micromorphic (Stefanou et al., 2010; Stefanou and Sulem, 2012) continua. In those cases
blocks’ rotations are appropriately seized by additional macroscopic deformation measures that
are absent in a simple Cauchy continuum.

1.6.3 Homogenisation

The blocks are considered infinitely resistant, whereas the account of interfaces’ failure to shear
rτα and to tension rσα is made with reference to a Coulomb slip failure criterion of the form (1.55).
To this purpose, distinction is made between the horizontal interfaces of the cell, representing
the masonry bed joints, and the vertical interfaces, representing the masonry head joints. For
those two sets of joints, failure results in the use of different values of cohesion and friction, and
the plastic dissipation at the corresponding interfaces reads (Eq.(1.56)):

πIJ
(
JvαKIJ ; nIJα

)
= c

Tan [φ]JvαKIJnIJα , with
{

(c, φ) = (ch, φh), for Σ14, Σ23, Σ24

(c, φ) = (cv, φv), for Σ12, Σ43,
(1.76)

with πIJ <∞ if: JvαKIJnIJα ≥
∣∣∣JvαKIJ

∣∣∣ Sin [φh] , for Σ14, Σ23, Σ24

JvαKIJnIJα ≥
∣∣∣JvαKIJ

∣∣∣ Sin [φv] , for Σ12, Σ43.
(1.77)

In the above the superscripts h and v refer respectively to the horizontal (bed joints) and vertical
(head joints) interfaces. The adoption of distinct interface properties between the bed and the
head joints corresponds to the use, in practical applications, of joints with different thickness
and strength. In general, the bed joints are thicker than the head joints, and, in many cases,
these latter are left unfilled (Beall, 2000). It is known that this results in an overall reduction
of the in-plane strength capacity of masonry (Barth and Marti, 1997; Mojsilović, 2011), and
therefore it must be taken into account in the computations.

The plastic dissipation on the whole cell is then:

πD
(
vGJ
α , ωGJ

)
= 1
ab

(∫ b
2

η b2

π14
(
JvK14; n14

)
dy1

+
∫ −η b2
− b2

π23
(
JvK23; n23

)
dy1 +

∫ η b2

−η b2
π24

(
JvK24; n24

)
dy1

+
∫ a

2

0
π12

(
JvK12; n12

)
dy2 +

∫ 0

−a2
π43

(
JvK43; n43

)
dy2

)
, (1.78)
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where the displacement jumps JvαKIJ follow Eq.(1.74). Equations (1.38) and (1.40) then yield:

T11Γ11 + T12Γ12 + T21Γ21 + T22Γ22 +M1K1 +M2K2 ≤ πD
(
vGJ
α , ωGJ

)
. (1.79)

Using Eq.(1.76), Eq.(1.79) reduces to:

T
′
11Γ11 + T

′
12Γ12 + T

′
21Γ21 + T

′
22Γ22 +M

′
1K1 +M

′
2K2 ≤ 0, (1.80)

where we set:

T
′
11 =

(
T11 −

cv

Tan [φv]

)
, T

′
22 =

(
T22 −

ch

Tan [φh]

)
T

′
12 = T12, T

′
21 = T21

M
′
β = Mβ.

The homogenised strength criterion is calculated among all the KA (Γαβ,Kβ) set of kine-
matics (1.28), associated to the Cosserat deformations defined above. This, under the relevance
conditions (1.77). Similarly to the case of the masonry column (Section 1.5), conditions (1.77)
need to be verified at every end point of each interface (see Figure 1.21). Notice that in absence
of blocks’ rotations, it would be sufficient to verify the relevance condition only at the extreme
points of the cell A, i.e. at points P1,. . . ,P4 (Sab, 2003; Sab et al., 2007).

y
1

y
2

P1

P2

P5P3 P6

P4

Σ23
Σ24 Σ12

Σ14

Σ43

Figure 1.21: Points of the elementary cell where the relevance condition needs to be verified.

At the points belonging to the horizontal interfaces (bed joints) the relevance condition results
in the following 12 conditions:

H1−8 (Γαβ,Kβ) = −a
(

Γ22 − ε1 (1− ε2) b2K2

)
+ηb

(
−Γ21 + ε1

(
1− ε2

2

)
bK1

)
+ ε0Tan

[
φh
] [
ηbΓ11 + a

(
Γ12 + ε1

b

2K1

)]
≤ 0 (1.81)

H9−12 (Γαβ,Kβ) = −a
(

Γ22 + ε3
ηb

2 K2

)
+(1− η)b

(
Γ21 + ε3

ηb

2 K1

)
+ ε0Tan[φh] [−(1− η)bΓ11 + aΓ12] ≤ 0. (1.82)

At the points belonging to the vertical interfaces (head joints) the relevance condition leads to
the following 8 conditions:

H13−20 (Γαβ,Kβ) = −
(

Γ11 + ε4
a

2K1

)
+ ε0Tan[φv]

[
ε5Γ21 + ηb

2 K1 + a

2K2

]
≤ 0. (1.83)

The coefficients ε0, ε1, . . . , ε5 take the value -1,0,+1,η according to Table 1.1.
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Σ14 Σ23 Σ24 Σ12 Σ43

P1 P5 P3 P6 P5 P6 P2 P5 P4 P6
ε0 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1

ε1 1 1 -1 -1

ε2 1 η 1 η

ε3 1 -1

ε4 0 1 0 -1

ε5 -1 -1 1 1

Table 1.1: Coefficients used in Eqs.(1.81)-(1.83).

The inequalities contained in Eqs.(1.81)-(1.83) give the strength domain for the masonry
wall with a generic running bond pattern. This domain is a convex cone formulated in the space
of the generalized Cosserat deformations (Γαβ,Kβ), given by the intersection of the planes of
equation H1−20 = 0, and with its apex falling at the origin of the axes. Intersections of the
resulting domain in the space of the Cosserat deformations are illustrated in Figure 1.22.

Intersection with K1 = K2 = 0 Intersection with Γ12 = Γ21 = 0

Figure 1.22: Representation of the homogenised strength domain for the masonry wall (1/2
running bond pattern) in the space of Cosserat deformations. Intersections with K1 = K2 = 0
and Γ12 = Γ21 = 0 (Γ11 = Γ22).

Based on the aforementioned domain, it is possible to retrieve the homogenised strength
domain Gc,hom. As in the case of the column, the procedure is justified by the use of the flow
rule (see Eq.(1.63)), which yields:

T
′
αβ =

10∑
j=1

λj∂ΓαβHj , M
′
β =

10∑
j=1

λj∂KβHj . (1.84)

Eq.(1.84) generates a set of normal vectors (highlighted in red in Figure 1.22). The resulting
homogenised strength domain Gc,hom is then the region of the generalized Cosserat stresses
(Tαβ,Mβ) enclosed by the convex hull formed by these vectors. Notice that the research of the
convex hull gives automatically, and for any given set of deformations, the failure mechanisms
producing the minimum plastic dissipation on the discrete cell (upper bound theorem). However,
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with respect to Section 1.5, the corresponding yield surfaces are here computed semi-analytically.
This is due to the large number of equations and variables.

1.7 Comparison with existing works
In this section, we show the contribution of the present Cosserat continuum model in the
evaluation of the homogenised in-plane strength of masonry, with respect to other existing
works. The works considered in the comparison are those of de Buhan and de Felice (1997)
and Sulem and Mühlhaus (1997). The first work is considered since, as shown in the previous
sections, it gives the theoretical basis for the formulation of the homogenised strength domain
of masonry in the frame of the Cauchy continuum. The present work represents its extension
to the Cosserat continuum. The second work is considered since it contains the first (and only)
example of strength domain for masonry formulated in the frame of Cosserat continuum.

1.7.1 Comparison with de Buhan and de Felice (1997)

First, the comparison is carried between the strength domain resulting from the present work
and the strength domain obtained within the framework of the Cauchy continuum by de Buhan
and de Felice (1997). In particular we refer to de Buhan and de Felice (1997); Sab (2003)
regarding the classical (1/2) running bond pattern, and to Sab et al. (2007) regarding the stack
bond pattern.

The aforementioned homogenised domains are represented in the space of the in-plane
stresses of the Cauchy continuum, i.e.

(
T11,T(12),T22

)
. In order to highlight the contribu-

tion of the Cosserat continuum model within the stress space considered, a parameter β is
introduced. Defined as β = T[12]/T(12), this parameter allows to control simultaneously all
the remaining stress measures contained in the Cosserat medium, namely

(
T[12],M1,M2

)
. By

means of β, the macroscopic in-plane stresses Tαβ are separated into the symmetric and the
skew-symmetric parts (Eq.(1.3)) and they are expressed as follows:

T12 = (1 + β)T(12), T21 = (1− β)T(12). (1.85)

The macroscopic couple stresses are given in the form:

M1 = M2 = ab

a+ b
βT(12). (1.86)

By using the above transformations it is possible to express the domain resulting from Eq.(1.84)
in function of the Cauchy stresses only, and to trace the Cosserat’s terms through the parameter
β. The expressions for the stack bond and the running bond patterns are then obtained by
imposing η = 0 and η = 1/2, respectively. Moreover, for η = 0 one has to neglect Eq.(1.82) in
the computation of the convex hull (see Section 1.6).

In view of the comparison, we consider the same friction angle φ and cohesion c for both
the head and the bed joints. Figure 1.23 shows the comparison between the homogenised
strength domain resulting from the present work (Cosserat continuum) and the in-plane strength
domains obtained by de Buhan and de Felice (1997); Sab (2003) and Sab et al. (2007) (Cauchy
continuum). It is worth pointing out that these letter are retrieved starting from Eqs.(1.81)-
(1.83), by computing the convex hull thought Eq.(1.84), by applying the transformations (1.85)-
(1.86), and by imposing β = 0. The so-obtained homogenised Cauchy strength domain is
then a special case of the present homogenised Cosserat strength domain. In particular, the
homogenised domain based on Cosserat continuun is contained for the greatest part into the
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Stack bond 1/2 Running bond

Figure 1.23: Representation of the homogenised strength domain for the masonry wall in the
Cauchy stress space. The strength domains for the Cauchy continuum proposed by Sab et al.
(2007) (stack bond) and de Buhan and de Felice (1997); Sab (2003) (1/2 running bond) are
for β = 0 (in light red). The strength domains for the Cosserat continuum are for β 6= 0, here
β = 3 (in dark red).

domain referred to the Cauchy continuum. Only a small portion of the Cosserat strength domain
falls outside the Cauchy strength domain, as it is visible in the case of the running bond pattern
(Figure 1.23-right). This occurs specifically for T11 > 0. The role of the terms related to the
Cosserat continuum, i.e. the in-plane couples (M1,M2) and the non-symmetric stress T[12], is
apparent from the comparison. These terms lead to an overall reduction of the masonry strength
domain. It is worth noticing that these terms are related to the relative blocks’ rotations.

1.7.2 Comparison with Sulem and Mühlhaus (1997)

Sulem and Mühlhaus (1997) gave yield criteria for masonry within the framework of a 2D
Cosserat continuum theory. Those criteria were constructed by starting from geometrical and
physical considerations made directly on the elementary cell. It resulted in two sets of conditions,
representative of both failure mechanisms discussed in Section 1.3 (Figure 1.6). The first set was
formulated for representing the interface opening mechanism, due to blocks’ tilting. Adopting
the present notation, it resulted in the following 4 conditions (Sulem and Mühlhaus, 1997):

T22 ±
2a
b
T21 −

4
b

∣∣∣∣2ab M1 ±M2

∣∣∣∣ ≤ 0. (1.87)

The second set was a cohesion-less Coulomb slip criterion, capable to capture the interface
sliding mechanism due to blocks’ slip at the bed joints only. It resulted in the following 2
conditions (Sulem and Mühlhaus, 1997):

±T12 + Tan [φ]T22 ≤ 0. (1.88)

The strength domain for masonry proposed by Sulem and Mühlhaus (1997) is then the region
of the generalized Cosserat stress space enclosed by the hyperplanes of equation (1.87)-(1.88).
In Figure 1.24 we show the comparison between this strength domain and the homogenised
domain obtained from the present work. The comparison is carried out after having imposed
zero joints’ cohesion (ch = cv = 0) and the same friction angle for the head and the bead
joints. Two intersections of the strength domains are plotted, one for M1 = M2 = 0 and one for
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T12 = T21 = 0. Moreover, for the comparison we impose T11 = 0 in the homogenised domain.
Concerning the intersection withM1 = M2 = 0 (Figure 1.24-left), the depicted Cosserat strength
domains are relatively close, with exception to the fact that the homogenised domain exhibits
a more pronounced anisotropy. Regarding the intersection with T12 = T21 = 0 (Figure 1.24-
right), the Cosserat strength domain proposed by Sulem and Mühlhaus (1997) is enclosed by
the homogenised domain obtained here. This is probably due to the limited number of variables
used for the description of the tilting mechanism and present in Eqs.(1.87)-(1.88).

Intersection with M1 = M2 = 0 Intersection with T12 = T21 = 0

Figure 1.24: Comparison between the Cosserat strength domains for running bond pattern
by Sulem and Mühlhaus (1997), Eq.(1.87)-(1.88) (in dark red), and the homogenised Cosserat
strength domains from the present work (in light red). Intersections with M1 = M2 = 0 and
T12 = T21 = 0 (T11 = 0).

1.8 Conclusions
homogenisation models based on Cosserat (or micropolar) continuum allow to model the me-
chanical behaviour of discrete media, by incorporating the dominant length scales of the micro-
structure. In other words, they permit to take into account not only the geometrical configu-
ration of the inner structure, but also its size and its detailed kinematics. The advantages of
micropolar continua are well known nowadays (Germain (1973); Mindlin (1964); Vardoulakis
and Sulem (1995); de Borst and Sluys (1991). However, determining the constitutive parameters
for a given micro-structure remains still an open research topic. Various approaches have been
proposed in the literature for modelling discrete media in the frame of micropolar elasticity, but
only few works for plasticity.

In this paper, we developed a consistent homogenisation procedure for the assessment of the
in-plane strength domain of discrete periodic media. The procedure followed was the extension
to the Cosserat continuum of the procedure initially formulated for the Cauchy continuum
(Suquet, 1983; de Buhan and de Felice, 1997; Sab, 2003). The strength domain was derived by
application of the kinematic approach of limit analysis. In this way, the relative rotation of the
particles and the non-vanishing curvatures of the medium are adequately taken into account.

The extension to the Cosserat continuum was made in a rigorous, extensive and general
way. As shown in Section 1.4, the presented homogenisation procedure is applicable to the
whole class of discrete media with periodic inner micro-structure (Eringen, 1999). To this class
belong, for instance, natural materials as rock assemblies, soils and solid crystals, but also
man-made materials as fiber composites, beam lattices, and layered structures. It is worth
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noticing that the proposed procedure was limited to 2D periodic media. However, it could be
easily extended to media with 3D periodic patterns. In that case, the resort to a 3D Cosserat
continuum could be envisaged.

The homogenisation procedure was illustrated with regard to a periodic collection of rigid
bodies (or blocks). The interaction between the blocks was established at their interfaces by
contact. As result of homogenisation, the macroscopic Cosserat relative deformations and cur-
vatures were produced by combinations of the rigid-body motion of the blocks that composed
the discrete medium (see Section 1.4). Similarly, the macroscopic stresses and couple stresses
were computed as the average values of the contact stress distributions exchanged by the blocks
along their interfaces. Due to periodicity, all the computations were made on a preselected ele-
mentary cell. It was noticed that, with respect to the Cauchy continuum, the use of a Cosserat
continuum allowed to capture a richer number of deformation modes of the cell. In particular,
the extension to the Cosserat continuum allowed to take into account the effect of blocks’ rota-
tion and blocks’ relative rotation on the discrete medium. Besides the kinematics, the difference
with the Cauchy continuum arose also in the expression of the dissipated power density of the
cell, which was better estimated by the Cosserat continuum.

The homogenisation procedure was applied to the case of masonry, which is an interesting
example due to the presence of interfaces. homogenised yield criteria were obtained by way
of the following assumptions made on masonry: a) the strength capacities of the joints were
considered far lower than those of the building blocks, regarded as infinitely resistant, and b)
masonry joints were considered as interfaces with Coulomb dissipative properties, given by the
joint cohesion and friction angle. Under these assumptions masonry was studied as a discrete
assemblage of blocks, which exchange contact stresses and experience rigid-body translations
and rotations when masonry undergoes deformation. The homogenised in-plane strength of
masonry was determined then by deriving an equivalent Cosserat continuum at the macroscopic
scale. Even though it was used the same Coulomb failure criterion than that considered for
the Cauchy continuum (de Buhan and de Felice, 1997), the expression of the dissipated power
retrieved for the Cosserat continuum was different. This change, which held true both for the
masonry column (Section 1.5) and the masonry wall (Section 1.6), was due to the different
kinematics of the two media and led to a different form of the computed strength domain.

The application to masonry allowed to highlight the role of particles’ rotations on the
strength of a discrete medium. Both the example of the column and of the wall showed that
the overall strength capacity of masonry was reduced due to the relative blocks’ rotations. The
Cosserat continuum correctly captured these effects, in contrast with the Cauchy continuum
which did not cover them (see Section 1.5 and Section 1.7). Indeed, relative blocks’ rotations
were related by means of a kinematic map of the macroscopic in-plane curvatures and the non
symmetric part of the macroscopic deformation. These deformation measures were conjugate
in energy respectively to the in-plane couples (or moments) and the non symmetric part of the
stress tensor of the Cosserat continuum. It is worth noticing that the presence of moments
acting in the plane of the walls is intrinsic in structural problems related to masonry (Petry
and Beyer, 2014b). Consequently, in view of practical applications, the use of the homogenised
strength domain obtained for the Cosserat continuum would be on the safe side with respect to
that computed for the Cauchy continuum.
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Chapter 2

Determination of the homogenised
yield criteria for masonry: in-plane
and out-of-plane coupled behaviour

This Chapter continues the development of the method presented in the previous Chapter.
The method relies on the use of the kinematic approach of limit analysis developed, in this case,
within the framework of the three-dimensional micropolar (or Cossserat) continuum theory. This
further development enables to capture the interaction between the in-plane and out-of-plane
actions in the assessment of masonry strength. The relative rotations of the blocks accentuate
this interaction, which reduces the in-plane strength and suggests the use of three-dimensional
models for masonry. At the end of this Chapter, masonry walls are ascribed to homogenised
plates with Cosserat kinematics.
This Chapter is a paper under preparation.
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Summary

Discrete media may exhibit very complex particle arrangements, that may affect the macroscopic
behaviour and place a limit to the use of two-dimensional (or plane) models for the assessment
of their strength. In this paper, a method for the evaluation of the homogenised strength
of discrete media with three-dimensional periodic micro-structure is developed. The method
relies on the use of a three-dimensional Cosserat continuum within the framework of the limit
analysis theory. The homogenised strength domain is obtained by application of the kinematic
approach. This enables to seize the three-dimensional effect of both the relative translations
and the relative rotations of the particles constituting the discrete medium. Two applications to
masonry highlight this effect. The homogenised strength of masonry columns and walls is herein
retrieved as function of the stresses and couple-stresses of the Cosserat continuum. As a result of
the proposed method, the in-plane and out-of-plane actions result coupled in the assessment of
masonry strength. It is found that blocks’ relative rotation accentuates this interaction, which
diminishes the in-plane strength of the medium and justifies the use of three-dimensional with
respect to two-dimensional models for masonry.
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2.1 Introduction

In a previous work (Godio et al., 2015d), the authors presented a procedure for the assessment
of the homogenised strength of discrete media with 2D periodic particle arrangement. In this
paper, the homogenisation procedure formulated by Godio et al. (2015d) is properly extended to
media with particles disposed along three directions and having three periodicity vectors. This
procedure is based on the kinematic approach of limit analysis. Formulated for the most general
case of a 3D Cosserat continuum, the homogenisation kinematic approach mainly consists in
two steps. First, the discrete medium is replaced by the 3D Cosserat continuum. This is
made at cell level, by means of a map that relates the kinematics of the discrete medium to
the macroscopic deformation measures of the Cosserat continuum. Second, the macroscopic
continuum is constructed by setting the same plastic dissipation with that produced by the
discrete medium. By application of the kinematic approach provided by homogenisation theory,
an upper bound of the researched strength domain is then retrieved.

The case of masonry is considered as application. The aim of the paper is not to investigate
the limits of the assumption of two-dimensional (or plane) behaviour often taken for this material
(Anthoine, 1997; Massart et al., 2005) - herein blocks are considered rigid with deformable
interfaces. It is to extend the in-plane description made by Godio et al. (2015d) in order
to capture the out-of-plane effect of blocks’ translations and rotations. Indeed, except when
building blocks are disposed following curved structural configurations (Milani et al., 2008), the
action of membrane and flexural contact stresses between the blocks, respectively related to their
in-plane and out-of-plane kinematics, are uncoupled in the elastic range of masonry (Zucchini
and Lourenço, 2002; Mistler et al., 2007; Stefanou et al., 2008). In the non-linear range, the
outset and the evolution of irreversible deformations within the material lead inevitably to
stresses redistribution. This gives rise to the interaction between the membrane and the flexural
actions and ultimately affects masonry strength. This aspect is apparent in media such as soils,
and other particulate solids, where discrete particles’ interaction is mainly controlled by friction
and expressed by laws which are pressure-dependent (Vardoulakis and Sulem, 1995).

In this paper the problem of the coupled in-plane and out-plane behaviour of masonry,
i.e. the interaction between the membrane and flexural actions in the assessment of masonry
strength, is addressed. This is made by avoiding any a priori assumptions, but is the result
of the homogenisation procedure herein developed. The procedure considers the complete 3D
kinematics of the blocks, including blocks’ rotations, and the finite thickness of the medium.
It is worth noticing that the study of masonry strength has been treated by many researchers.
However, the interaction between the in-plane and the out-of-plane actions of masonry due to
the actual geometry, kinematics and properties of the blocks are considered in few works only.
The problem was studied, for instance, by Sab (2003), who proposed a homogenisation method
for the assessment of masonry strength within the framework of the limit analysis theory. In
that work, masonry was regarded as a periodic assemblage of blocks in contact. Blocks were
disposed into a specific pattern and formed a single-leaf wall with finite thickness and two in-
plane periodicity directions. Moreover, blocks’ strength was considered much larger than that
of the interfaces. This further assumption allowed the use of the homogenisation kinematic
approach (Suquet, 1983; de Buhan and de Felice, 1997) in analytical form. The homogenised
strength of masonry was retrieved according to a Love-Kirchhoff plate model at the macroscopic
level. In the same spirit were the works of Sab et al. (2007); Cecchi et al. (2007); Cecchi and
Milani (2008). In those case, masonry was ascribed to a plate with Reissner-Mindlin kinematics,
in order to take into account the effects of moderate wall thickness. The work of Milani et al.
(2006c) was also based in the framework of homogenisation and limit analysis theory. In that
work, a numerical procedure based on Linear Programming was proposed for the estimation of
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the homogenised masonry strength. The main difference with the aforementioned works (and
the present one), was that masonry was considered as a composite material and not as a discrete
medium. The finite strength of blocks and mortar layers was taken into account by including
polynomial approximations of the stress fields in the resulting homogenisation limit analysis
problem. In that case, a plate model with Love-Kirchhoff kinematics was assigned to masonry
at the macroscopic level.

The paper is organized as follows. In Section 2.2 we briefly review the basic equations of the
3D Cosserat continuum theory. Basic notations are given in elasticity and the notion of strength
for the micropolar medium is presented in the framework of the multisurface plasticity theory.
Section 2.3 provides details and extend to 3D the contact model adopted for the description
of the discrete medium. The geometric description of its particle arrangement, the choice of
the elementary cell and the contact kinematics and statics are discussed. The homogenisation
method is presented in Section 2.4 with respect to the presented contact model and then it is
applied to the case of masonry columns (Section 2.5) and walls (Section 2.6). In the applications,
attention is focused on the out-of-plane effect of the relative translations and rotations of the
blocks and in the resulting interaction between the in-plane and out-of-plane actions in the
evaluation of masonry strength.

Indicial notation is used in this paper, with indices i, j, k = 1, 2, 3, . . .. Lower case letters
denote variables referring to the discrete medium, while upper case letters refer to the macro-
scopic variables of the 3D Cosserat continuum. Partial differentiation with respect to orthogonal
coordinates is denoted with [ ]i,j , while ∂Yj [ ]i designates tensor derivative. Time derivative is
indicated with ˙[ ]i.

2.2 The 3D Cosserat continuum

The main feature of the Cosserat (or micropolar) continuum is that not only the displacement
velocity Vi, but also the angular displacement velocity Ωc

i of the particles (or micro-elements
(Eringen, 1999)) that compose the medium contribute to its macroscopic deformation. The rate
of linear deformation of the medium is given by two tensors. The first tensor is denoted with
Γij and describes the relative deformation of the medium:

Γij = Dij + Θij , (2.1)

where:

Dij = Vi,j (2.2)

is the gradient of the displacement velocity field of the medium, and:

Θij = eijkΩc
k (2.3)

is the micro-spin tensor. The symbol eijk denotes the third-order permutation tensor. The
second tensor is denoted by Kij and contains the gradient of the angular displacement velocity
field (or curvature) of the medium:

Kij = Ωc
i,j . (2.4)

Tensors Dij ,Γij and Kij are not necessarily symmetric. Tensor Θij is, by construction for
a Cosserat continuum, skew-symmetric. In the most general case, a three-dimensional (3D)
micropolar medium is then fully described by 18 independent deformation measures.

54



The static variables associated to Γij andKij are respectively the stress and the couple stress
tensors, Tij and Mij . The notations used for these tensors are illustrated in Figure 2.1. Based
on these notations, the momentum and angular momentum balance equations are expressed in
the following form:

Tij,j + ρ
(
Bi − V̇i

)
= 0

Mij,j − eijkTjk + ρ
(
Li − IijΩ̇c

j

)
= 0, (2.5)

where Bi and Li are respectively the intensity of external actions, i.e. body forces and body
couples acting on the medium, ρ is the mass density of the medium and Iij is the micro-inertia
tensor, containing the moments of inertia of the particles. The internal power density for the
Cosserat continuum is then:

P c = TijΓij +MijKij (2.6)
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Figure 2.1: Stresses and couple stresses of a 3D Cosserat continuum. Stresses (left) are repre-
sented by polar vectors. Couple stresses (right) are represented by spin vectors.

The strength capacities of the Cosserat continuum are expressed in a fashion similar to that
used for the Cauchy continuum. The strength (or elastic) domain Gc is the convex region of
the generalized stress space (Tij ,Mij), enclosed by a set of NF plastic surfaces F β:

Gc = {(Tij ,Mij) |F β ≤ 0,∀β = 1, . . . , NF }. (2.7)

The plastic surfaces are implicit functions of the stress and couple stress tensors (Lippmann,
1969; Steinmann, 1994): F β = F β (Tij ,Mij). They are smooth functions, but according to
Eq.(2.7) they may intersect with corners. In this case, the normal to Gc is given by application
of the Koiter’s rule. For a medium with associative properties, this rule defines the rate of
plastic deformation [ ]p of the Cosserat continuum as follows:

Γp
ij =

NF∑
β=1

λβ∂TijF
β, Kp

ij =
NF∑
β=1

λβ∂MijF
β, (2.8)

where scalars λβ ≥ 0 are the consistency parameters. The plastic dissipation function (or plastic
power) is indicated with Πc, and for the 3D Cosserat continuum it writes:

Πc = Sup
(Tij ,Mij)∈Gc

{
TijΓp

ij +MijK
p
ij

}
. (2.9)

The dissipation function proves essential in the homogenisation procedure proposed in this
paper, since it defines the support function of the strength domain, and gives the kinematic
definition of Gc (Salençon, 2013):

Gc = {(Tij ,Mij) |TijΓp
ij +MijK

p
ij ≤ Πc, ∀(Γp

ij ,K
p
ij)}. (2.10)
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The plastic surfaces and the plastic dissipation are therefore dual (or conjugate) functions, in
the sense of convex analysis (Hiriart-Urruty and Lemaréchal, 1993; Salençon, 2013).

2.3 The 3D discrete medium

Three key features of the contact model described by Godio et al. (2015d) are briefly outlined in
this Section. In Godio et al. (2015d) the description was limited to discrete media with particles
arranged in 2D periodic structural configurations. Herein the description is extended to media
with particles disposed along 3 directions, and having 3 periodicity vectors.

The first feature concerns the geometric description of the discrete inner structure of the
medium. The constituent particles (or blocks) of the discrete medium repeat periodically and
regularly in space and share the same size and shape. In this structural configuration, which in
crystallographic science is referred to as mono-atomic lattice (Kittel, 1996), the relative distance
between two generic blocks BI and BJ is given by:

Y GJ − Y GI = nα1 + mα2 + kα3 (2.11)

where GJ is a specific point of the block BJ (the same for all blocks), Y GJ is its coordinate
vector in a 3D global reference system (OY1Y2Y3), and (n,m, k) ∈ Z3. Since particles are equally
spaced, its always possible to choose the periodicity vectors αi so that: |α1| = |α2| = |α3| = lc,
where lc represents the characteristic length inner to the medium (Figure 2.2).

l
c

l
c

Figure 2.2: Examples of three-dimensional discrete periodic media with particles disposed fol-
lowing a mono-atomic lattice. Left: a periodic collection of beams. Right: a periodic collection
of cubic blocks in contact. Both discrete media are based on the same elementary cell (in dotted
line).

The second feature to be considered, is the choice of the elementary (or unit) cell, herein
denoted with D̄. Of particular interest in the context of homogenisation is the primitive cell,
i.e. the cell with the smallest volume: |D̄| ∝ l3c . Indeed, studies have shown how this cell could
lead to better estimations of the homogenised properties of the medium (Godio et al., 2015d).
For this reason, homogenisation will be carried out on this specific cell.

The third feature consists in the definition of the particles’ interaction within the elementary
cell, by means of constitutive laws. Constitutive laws are usually comprehensive of: a) moduli
controlling the elastic behaviour of the medium, b) yield criteria prescribing the strength ca-
pacity of the medium, and c) evolution laws describing the non-linear material response. In the
present case, particles are rigid blocks in contact, which interact by exchanging contact stresses
rIJi at every point of the oriented interfaces ΣIJ (Figure 2.2). Contact stresses are conjugate in
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energy to the displacement velocity jumps JviKIJ across the interfaces. These latter are defined
as:

JviKIJ = vIi (y)− vJi (y) ,∀y ∈ ΣIJ , (2.12)

where y is the coordinate vector in a 3D local reference system (oy1y2y3) attached to the discrete
cell. In the assumption that cell’s deformation takes place only at the interface of the blocks,
the internal power density of the whole cell writes:

pD = 1
|D̄|

∑
IJ

∫
ΣIJ

rIJi JviKIJdS

 , (2.13)

where the sum is made over all the interfaces of the cell. In this paper we are interested in the
strength capacities of the discrete medium. Consequently, neither linear elastic nor evolution
laws of contact are here explicitly formulated. Moreover, for the assessment of the homogenised
strength of the discrete medium we make use of the kinematic approach of limit analysis.
Therefore, it is handy to introduce πIJ = πIJ(JviKIJ), the plastic dissipation function of the
interface, defined as:

πIJ = Sup
rIJi ∈gIJ

{
rIJi JviKIJ

}
, (2.14)

with gIJ the interface’s yield criterion. Provided that:

πIJ ≤ ∞, (2.15)

function πIJ gives the amount of maximum plastic dissipation for the discrete cell D̄, reading
(Godio et al., 2015d):

πD
(
vGJ
i , ωi

GJ
)

= 1
|D̄|

∑
IJ

∫
ΣIJ

πIJdL

 . (2.16)

It is worth mentioning that only a limited set of displacement velocity jumps respect Eq.(2.15).
These kinematics are those for which the relevance condition associated to the interface’s yield
criterion is respected (Salençon, 2013).

For the sequel, the local reference system is attached to the centre of the cell. The blocks
in the discrete cell will undergo 3D rigid-body kinematics of the form:

vJi (y) = vGJ
i − eijkωGJ

k

(
yj − yGJ

j

)
ωJi (y) = ωGJ

i , ∀y ∈ BJ , (2.17)

where:

vGJ
i = vi

(
yGJ

)
ωGJ
i = ωi

(
yGJ

)
, (2.18)

are the kinematics of the discrete medium (translations and rotations). In addition, it is useful
to distinguish the rigid-body displacement jumps, i.e. the relative blocks’ translations:

JvG
i KIJ = vGI

i − vGJ
i , (2.19)

from the rigid-body rotation jumps, i.e. the relative blocks’ rotations, which write:

JωG
i KIJ = ωGI

i − ωGJ
i . (2.20)

In the framework of the Cosserat continuum theory, both relative kinematics contribute to the
cell’s failure and affect the homogenised strength of the discrete medium (Godio et al., 2015d).
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2.4 From the 3D discrete medium to the 3D Cosserat contin-
uum: the homogenisation limit analysis kinematic approach

The purpose of homogenisation in limit analysis is to replace the discrete medium by an equiv-
alent continuum that has the same shape and size, and shares the same dissipation properties
with the discrete one. The homogenisation procedure followed in this paper is the extension to
3D of a procedure initially formulated for 2D Cosserat continuua (Godio et al., 2015d). This
procedure is based on the kinematic approach, i.e. the use of upper bound theorem of limit
analysis. Formulated for the most general case of a 3D Cosserat continuum, the homogenisation
kinematic approach consists in two fundamental steps. These steps are briefly described below.

2.4.1 Kinematic map

The first step of the homogenisation procedure consists in expressing the discrete medium
kinematics in terms of Cosserat deformation measures. This is made at the cell level, by
considering the following set of kinematically admissible translations and rotations

(
vGJ
i , ωGJ

i

)
∈

KA(Γij ,Kij) of the 3D discrete cell:

KA(Γij ,Kij) ={(
vGJ
i , ωGJ

i

)
|vGJ
i = Dijy

GJ
j + Vi, ω

GJ
i = Kijy

GJ
j + Ωc

i ,∀J = 1, . . . , ND̄

}
. (2.21)

This set contains virtual variations (herein reported in the form of velocities vGJ
i and micro-

spins ωGJ
i ) of the displacements and angular displacements of the discrete medium (Eq.(2.18)),

as function of the (rate of) macroscopic deformations of the 3D Cosserat continuum (Eqs.(2.1)-
(2.4)). This set is the generalization of that proposed by Godio et al. (2015d) to media with
3D mono-atomic structural configurations, i.e. composed by particles of the same type.

Eq.(2.21) may also be expressed according to the contact model presented in Section 2.3,
where blocks undergo rigid-body kinematics (Eq.(2.17)). An alternative form of Eq.(2.21) is
then:

vJi (y) = ΓijyGJ
j + Vi − eijk

[
Kkly

GJ
l

(
yj − yGJ

j

)
+ Ωc

kyj
]

ωJi (y) = Kijy
GJ
j + Ωc

i ,∀y ∈ BJ . (2.22)

This definition will be used next, in the application to masonry.

2.4.2 Homogenisation kinematic approach

The second step of the homogenisation procedure followed here consists in setting Πc,hom, i.e.
the plastic power of the homogenised Cosserat continuum (Eq.(2.9)), equal to πD, the density
of plastic dissipation produced by the cell of the discrete medium (Eq.(2.16)):

Πc,hom
(

Γp
ij ,K

p
ij

)
= πD

(
vGJ
i , ωGJ

i

)
. (2.23)

It is worth mentioning that, with respect to the homogenisation procedures followed for the
Cauchy continuum (Suquet, 1983; de Buhan and de Felice, 1997; Sab, 2003), no optimization is
involved in Eq.(2.23). The relative rotations of the discrete medium are directly related to the
macroscopic curvature of the continuum through Eq.(2.21).

An upper bound to the homogenised strength of the discrete medium is then found, based
on the kinematic definition of the strength domain, here defined as Gc,hom (Eq.(2.10)), and the
dual properties of the dissipation function Πc,hom:

Gc,hom = {(Tij ,Mij) |TijΓp
ij +MijK

p
ij ≤ Πc,hom,∀(Γp

ij ,K
p
ij)}. (2.24)
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In the kinematic approach, the choice of compatible KA (Γij ,Kij) sets of discrete kinematics(
vGJ
i , ωGJ

i

)
is crucial in order to obtain a good estimation of the homogenised strength. In

particular, an upper bound is found only when the kinematics of the discrete medium generate
on the elementary cell plastic dissipation of finite value (Eq.(2.15)). The kinematics obeying
Eq.(2.15) are said plastically admissible (Suquet, 1983), and so are the macroscopic deformations
resulting from the presented homogenisation procedure.

2.4.3 Average Cosserat variables

In light of the homogenisation procedure, the macroscopic deformations of the 3D Cosserat
continuum have a precise physical meaning, as they represent the average deformation modes
of the cell. Similar to Godio et al. (2015d), it can be shown that the average values of the
macroscopic displacement velocity gradient, relative deformation and curvature tensors are:

Dij = 1
|D̄|

∑
IJ

∫
ΣIJ

JvG
i KIJnIJj dS

 , (2.25)

Γij = 1
|D̄|

∑
IJ

∫
ΣIJ

JviKIJnIJj dS

 , (2.26)

Kij = 1
|D̄|

∑
IJ

∫
ΣIJ

JωiKIJnIJj dS

 . (2.27)

Notice that the deformation measures above can always be split in their elastic and plastic
parts. For brevity, the superscript p that distinguishes the plastic from the elastic part of the
deformation measures is omitted. Similarly, the values of Vi and Ωc

i , representing the average
rigid-body translations and rotations of the discrete cell, are:

Vi = 1
|D̄|

ND̄∑
J=1

∫
BJ

vJi dV

 . (2.28)

Ωc
i = 1
|D̄|

ND̄∑
J=1

∫
BJ

ωJi dV

 . (2.29)

The associated average static variable are retrieved by equating the power density of the
cell D̄ with that of the homogenised Cosserat continuum:

pD = TijΓij +MijKij , (2.30)

and by expressing the discrete kinematics through the kinematic map (2.21). The resultant
non-symmetric macroscopic stresses are:

Tij = 1
|D̄|

∑
IJ

∫
ΣIJ

rIJi lIJj dS

 , (2.31)

and the resultant macroscopic couple stresses are:

Mij = 1
|D̄|

∑
IJ

∫
ΣIJ

−eklirIJk
(
yll

IJ
j − yGI

l yGI
j + yGJ

l yGJ
j

)
dS

 . (2.32)
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It is worth remarking that the above expressions are the same with those found by Bardet and
Vardoulakis (2001).

2.5 Application to masonry columns

2.5.1 Geometry

We consider a simple masonry column (or pillar), with rectangular building blocks arranged
periodically in the vertical direction y2 (Figure 2.3). The dimensions of each block in the
local directions (y1, y2, y3) are denoted respectively with a, b and t. In particular, t is the
block thickness. The column has a periodic micro-structure, which is organized along a single
periodicity vector α1:

α1 = 0e1 + ae2 + 0e3.

The elementary cell chosen here consists of two adjacent half-blocks, sharing a single interface
Σ12 (Figure 2.3). It is denoted with B̄ and defined as:

B̄ =
[
− b2 ,+

b

2

]
×
[
−a2 ,+

a

2

]
×
[
− t2 ,+

t

2

]
.

The position of the centre of mass of each block in the cell is:

yG1 = 0e1 + a

2e2 + 0e3

yG2 = 0e1 −
a

2e2 + 0e3.

The interface between the blocks is located at:

yΣ12 = y1e1 + 0e2 + y3e3, ∀(y1, y3) ∈
[
− b2 ,+

b

2

]
×
[
− t2 ,+

t

2

]

and its unit normal vector is n12 = e2.
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Y
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y
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y
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o

y
3

Σ12

Figure 2.3: Periodic masonry column (left) and the corresponding 3D elementary cell B̄ (right).
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2.5.2 Average Cosserat variables

The kinematics of the column is described by piece-wise linear distributions of the displacement
and angular displacement velocity fields of the form (2.17) (rigid-body kinematics). However,
the kinematically admissible sets

(
vGJ
i , ωi

GJ
)
∈ KA(Γij ,Kij) differ from the general form (2.21)

by the absence of the terms (Γi1,Ki1), and write:

KA(Γi2,Ki2) ={(
vGJ
i , ωi

GJ
)
|vGJ
i = Di2y

GJ
2 + Vi, ωi

GJ = Ki2y
GJ
2 + Ωc

i ,∀J = 1, 2
}
, (2.33)

with i = 1, 2, 3. In similar way, the displacement and angular displacement field distributions
(Eq.(2.22)) result in the following simplified expressions:

vJi (y) = Γi2yGJ
2 + Vi − eijk

[
Ki2y

GJ
2

(
yj − yGJ

j

)
+ Ωc

kyj
]

ωJi (y) = Ki2y
GJ
2 + Ωc

i ,∀y ∈ BJ . (2.34)

In Eqs.(2.33)-(2.34), the macroscopic deformation measures (Γi2 ,Ki2) capture the 3D aver-
age deformation modes of the discrete cell. In fact, according to Eqs.(2.27)-(2.26), the macro-
scopic relative deformations and curvatures of the 3D Cosserat continuum are generated by
specific combinations of translations and rotations of the blocks that compose the cell (Fig-
ure 2.4). On the contrary, the terms Vi and Ωc

i describe the 3D rigid-body modes of the cell
(Figure 2.5). These terms are in fact provided by blocks’ motions producing, in an average
sense, zero deformation energy on the cell (Eqs.(2.29)-(2.28)). In the case of the column, the
resulting relative deformations and curvatures are:

Γi2 = Di2 + ei2kΩc
k, Ki2 = ωG1

i − ωG2
i

a
, (2.35)

with:

Di2 = vG1
i − vG2

i

a
(2.36)

the 3D average displacement gradient, and:

Ωc
k = ωG1

k + ωG2
k

2 (2.37)

the 3D average Cosserat rotations. The cell translations are:

Vi = vG1
i + vG2

i

2 . (2.38)

The static variables conjugate to (Γi2,Ki2) are (Ti2,Mi2). These quantities are computed as
the average values of the contact stress distributions exchanged between the blocks of the cell.
By application of Eqs.(2.31)-(2.32), they read:

Ti2 = 1
bt

∫ b
2

− b2

∫ t
2

− t2
rIJi dy3dy1, Mi2 = − 1

bt

∫ b
2

− b2

∫ t
2

− t2
eklir

IJ
k yldy3dy1. (2.39)

In particular, Eq.(2.39)-2 yields:

M12 = − 1
bt

∫ b
2

− b2

∫ t
2

− t2
rIJ2 y3dy3dy1

M22 = 1
bt

∫ b
2

− b2

∫ t
2

− t2

(
rIJ1 y3 − rIJ3 y1

)
dy3dy1

M32 = 1
bt

∫ b
2

− b2

∫ t
2

− t2
rIJ2 y1dy3dy1. (2.40)
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Figure 2.4: Blocks’ motions (vGJ
i , ωGJ

i ) producing 6 macroscopic Cosserat deformation modes
of the discrete cell B̄. Top: 3 displacement gradients Di2. Bottom: 3 rotation gradients Ki2.
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Figure 2.5: Blocks’ motions (vGJ
i , ωGJ

i ) producing 6 macroscopic rigid-body modes of the dis-
crete cell B̄. Top: 3 translations Vi. Bottom: 3 Cosserat rotations Ωc

i .

The remaining static variables (Ti1 ,Mi1), together with (Γi1 ,Ki1), are null (Eqs.(2.31)-(2.32)):

Ti1 = 0, Mi1 = 0. (2.41)

The external boundaries of the column are then free faces.
Therefore, at the macroscopic scale, the masonry column can be ascribed to a 3D Cosserat

(or Timoshenko) beam model, showing 3 macroscopic stresses Ti2 (or forces), 3 macroscopic
couple stresses Mi2 (or moments), together with 6 associated deformation variables. It is worth
pointing out that the reduction of the problem (from 18 deformation measures to 6, Eq.(2.33)) in
the case of the column is not an priori assumption, but is a result of the adopted homogenisation
procedure. Eqs.(2.26)-(2.27),(2.31)-(2.32) are general and apply for every periodic medium with
3D mono-atomic pattern. The average Cosserat variables resulting from these equations depend
on the periodicity of the discrete medium, and the geometry of the elementary cell. Namely,
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they depend on the disposition of the blocks within the cell and the relative orientation of the
interfaces. In many cases, this can lead to a possible reduction of the kinematic map (2.21).
Taking, for instance, the case of a platband with n12 = −e1 + e2 (Figure 2.6), Eq.(2.21) would
produce the additional macroscopic deformation measures:

Γi1 = −Γi2, Ki1 = −Ki2

but still:

Ti1 = 0, Mi1 = 0

with (Γi2,Ki2) and (Ti2,Mi2) given respectively by Eq.(2.35) and (2.39).
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Figure 2.6: Periodic masonry platband (left) and the corresponding 3D elementary cell (right).

The displacement velocity jumps across the interface Σ12 needed for homogenisation read,
according to Eq.(2.33):

JvK12 = a

 Γ12 + y3K22
Γ22 + y1K32 − y3K12

Γ32 − y1K22

 . (2.42)

2.5.3 Homogenisation

Blocks are considered infinitely resistant, while interfaces obey to a Coulomb slip failure crite-
rion. For such criterion, the dissipation function is (Salençon, 2013):

πIJ
(
JviKIJ

)
= πIJ

(
JviKIJ ; nIJi

)
= c

Tan [φ]JviK
IJnIJi , (2.43)

where c is the cohesion and φ is friction angle of the interface. The relevance condition for
which πIJ <∞ is:

JviKIJnIJi ≥
∣∣∣JviKIJ ∣∣∣ Sin [φ] . (2.44)

A geometric interpretation of condition (2.44) is given in Figure 2.7, with reference to the
present cell B̄. The 3D displacement velocity jump JviK12 is considered plastically admissible
when it falls inside the depicted cone. Displacement jumps leading the interface Σ12 to failure
(according to a Coulomb slip criterion) are then those which promote opening and sliding
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Figure 2.7: Coulomb slip criterion adopted at the interface level of the 3D cell B̄. Cone of
plastically admissible displacement jumps.

mechanisms across the interface. On the contrary, failure will not occur for kinematics that
involve compression between the blocks. In the instance of masonry columns this remains a
reasonable assumption.

Eq.(2.43) gives the plastic dissipation at every point of the interface Σ12. Using Eq.(2.42),
this can be expressed as function of the 3D macroscopic Cosserat deformation measures:

π12
(
JvK12; n12

)
= c

Tan [φ]a (Γ22 − y3K12 + y1K32) . (2.45)

Integrating the above expression over the interface Σ12, we obtain then the plastic dissipation
on the discrete cell B̄:

πD = 1
abt

∫ b
2

− b2

∫ t
2

− t2
π12

(
JvK12; n12

)
dy3dy1 = c

Tan [φ]Γ22. (2.46)

Setting then:

Πc,hom = πD,

the kinematic definition of Gc,hom (Eq. (2.24)) yields for the column :

Gc,hom = {(Ti2,Mi2) |T12Γ12 +
(
T22 −

c

Tan [φ]

)
Γ22 + T32Γ32

+M12K12 +M22K22 +M32K32 ≤ 0, ∀(Γi2 ,Ki2)}. (2.47)

According to the Coulomb criterion, the following relevance condition must be satisfied at every
point of the interface (Eq.(2.44)):

− (Γ22 − y3K12 + y1K32) + Tan [φ]
√

(Γ32 − y1K22)2 + (Γ12 + y3K22)2 ≤ 0. (2.48)

Due to the convexity of the strength domain, it is necessary to satisfy the above condition only
at the corners of the cell’s interface (Figure 2.8). This generates the following four inequalities:

H1−4 (Ti2,Mi2) = −
(

Γ22 − ε2
t

2K12 + ε1
b

2K32

)

+Tan [φ]

√(
Γ32 − ε1

b

2K22

)2
+
(

Γ12 + ε2
t

2K22

)2
≤ 0, (2.49)

with ε1, ε2 = ±1. These inequalities give the domain of plastically admissible kinematics(
vGJ
i , ωGJ

i

)
∈ KA(Γi2,Ki2) for the periodic masonry column. This domain is a conical re-

gion of the space of the generalized Cosserat deformations enclosed by multiple surfaces. Its
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Figure 2.8: Points of the 3D elementary cell where the relevance condition (Eq.(2.44)) needs to
be satisfied.

intersection in the space of different Cosserat deformations is given in Figure 2.9 for different
values of the curvature K22.

Notice that the expressions obtained by Godio et al. (2015d) for the in-plane behaviour of
the column are retrieved by imposing Γ32 = K12 = K22 = 0 in Eq.(2.49). However, with respect
to the in-plane case, the expressions herein retrieved are non-linear. This makes problematic
the computation of the homogenised strength domain in the space of the generalized Cosserat
stresses, by means of algorithms based on the convex hull research (Godio et al., 2015d).

Intersection with K12 = K32 = 0 Intersection with Γ12 = Γ32 = 0

Figure 2.9: Representations of the cone of the plastically admissible homogenised Cosserat
deformations for the masonry column.

2.6 Application to masonry walls

2.6.1 Geometry

Two periodicity vectors generate the elementary cell Ā of a single-leaf masonry wall (Fig-
ure 2.10):

α1 = be1 + 0e2 + 0e3

α2 = ηbe1 + ae2 + 0e3,

This cell has the form of a parallelogram. Its volume is |Ā| = |α1 × α2|t = abt, where a, b
and t are respectively the width, height and thickness of a each block. Following Godio et al.
(2015d), the parameter η ∈ [0, 1/2] is introduced in order to control the shape of the cell. In
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this way, computations are made on an arbitrary cell corresponding to a generic running bond
pattern. Results relative to particular patterns are then produced for different values of η. The
cells for the stack bond pattern and the classical (1/2) running bond pattern are respectively
for η = 0 and η = 1/2.
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Figure 2.10: Periodic masonry wall (left) and the corresponding 3D elementary cell Ā (right).

A 3D local coordinate system (oy1y2y3) is attached to the center of the cell, and (e1, e2, e3)
are the rectangular unit base vectors. The centres of mass of the blocks are denoted with GJ
and are situated at the boundary of the primitive cell Ā:

yG1 = (1 + η) b2e1 + a

2e2 + 0e3

yG2 = − (1− η) b2e1 + a

2e2 + 0e3

yG3 = − (1 + η) b2e1 −
a

2e2 + 0e3

yG4 = (1− η) b2e1 −
a

2e2 + 0e3.

Blocks’ interfaces are situated across the thickness of the cell and are oriented as follows:

yΣ14 = y1e1 + 0e2 + y3e3,∀(y1, y3) ∈
[
η

2b,+
b

2

]
×
[
− t2 ,

t

2

]
, n14 = e2

yΣ23 = y1e1 + 0e2 + y3e3, ∀(y1, y3) ∈
[
− b2 ,−

η

2b
]
×
[
− t2 ,

t

2

]
, n23 = e2

yΣ24 = y1e1 + 0e2 + y3e3, ∀(y2, y3) ∈
[
−η2b,+

η

2b
]
×
[
− t2 ,

t

2

]
, n24 = e2

yΣ12 = η

2be1 + y2e2 + y3e3, ∀(y2, y3) ∈
[
0,+a

2

]
×
[
− t2 ,

t

2

]
, n12 = e1

yΣ43 = −η2be1 + y2e2 + y3e3, ∀(y2, y3) ∈
[
−a2 , 0

]
×
[
− t2 ,

t

2

]
, n43 = e1.

In the limit of η → 0 (stack bond pattern), the interface Σ24 degenerates into a point. In that
case it is not considered in the homogenisation process.

2.6.2 Average Cosserat variables

Masonry walls are three-dimensional discrete media, with two in-plane (y1 − y2) periodicity
directions and finite thickness (Figure 2.10). Their geometry leads to consider the following set
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of admissible kinematics:

KA(Γiα,Kiα) =
{(
vGJ
i , ωGJ

i

)
|vGJ
α = Dαβy

GJ
β + Vα, ω

GJ
3 = K3βy

GJ
β + Ωc

3,

vGJ
3 = D3βy

GJ
β + V3, ω

GJ
α = Kαβy

GJ
β + Ωc

α,∀J = 1, . . . , 4
}
, (2.50)

with (i, j) = 1, 2, 3 and (α, β) = 1, 2. The above are reduced expressions of the general form
(2.21). As in the case of the column, this simplification is dictated by: a) the periodicity of
the discrete medium (there are 2 periodicity vectors belonging to the plane of the wall), b) the
geometry of the selected cell (wall thickness is finite), and c) the 3D kinematics of the blocks.
More particularly, Eq.(2.50) is the extension of the map proposed by Godio et al. (2015d), that
takes into account both the in-plane

(
vGJ
α , ωGJ

3

)
and the out-of-plane

(
vGJ

3 , ωGJ
α

)
translations

and rotations of the blocks, relative to the wall’s mid-plane (at y3 = 0). Indeed, the application
of Eqs.(2.26)-(2.27) gives:

Γi3 = 0, Ki3 = 0, (2.51)

whereas the remaining average deformation measures of the cell are non-null. In particular, the
in-plane components of the macroscopic relative deformations and curvatures (Γαβ,K3β) are
the same than those found by Godio et al. (2015d). For brevity, they are not reported here.
Attention is focused on the out-of-plane components (Γ3β,Kαβ), which read respectively:

Γ31 = vG1
3 − vG2

3 − vG3
3 + vG4

3
2b +

−
a
(
ωG1

3 − ωG2
3 + ωG3

3 − ωG4
3

)
8b + Ωc

2

Γ32 = (1− η) vG1
3 + (1 + η) vG2

3 − (1− η) vG3
3 − (1 + η) vG4

3
2a +(

1− η2) b (ωG1
2 − ωG2

2 + ωG3
2 − ωG4

2

)
8a +

η
(
ωG1

1 − ωG2
1 + ωG3

1 − ωG4
1

)
4 − Ωc

1, (2.52)

and:

K11 = ωG1
1 − ωG2

1 − ωG3
1 + ωG4

1
2b

K12 = (1− η)ωG1
1 + (1 + η)ωG2

1 − (1− η)ωG3
1 − (1 + η)ωG4

1
2a

K21 = ωG1
2 − ωG2

2 − ωG3
2 + ωG4

2
2b

K22 = (1− η)ωG1
2 + (1 + η)ωG2

2 − (1− η)ωG3
2 − (1 + η)ωG4

2
2a . (2.53)

For the expressions of the macroscopic Cosserat out-of-plane deformation measures in the case
of the stack bond and the 1/2 running bond patterns, the reader is referred to Appendix B.1.
Figure 2.11 gives an illustration of the deformation modes of the cell Ā for the stack bond
pattern, in relation with those of the Cosserat continuum. It is worth noticing that the small
overlaps visible along the blocks’ interface are absent in real structures, by virtue of distributed
local deformations, as blocks are not perfectly rigid.

The terms V3 and Ωc
α represent the average out-of-plane rigid-body kinematics of the cell
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Figure 2.11: Rigid-body motion of the blocks (translations and rotations) producing 6 out-of-
plane Cosserat macroscopic deformations of the elementary cell Ā of a periodic masonry wall
(stack bond pattern). Top: 3 displacement gradients. Bottom: 3 rotation gradients.

(Figure 2.12). Their expression is (Eqs.(2.29)-(2.28)):

V3 = vG1
3 + vG2

3 + vG3
3 + vG4

3
4

Ωc
α = ωG1

α + ωG2
α + ωG3

α + ωG4
α

4 . (2.54)

As far as it concerns the average Cosserat static variables, by using Eqs.(2.31)-(2.32) one
obtains:

Ti3 = 0, Mi3 = 0. (2.55)

The in-plane components (Tαβ,M3β) differ slightly from those of Godio et al. (2015d) since, in
the present case, average is computed on the volume (and not the surface) of the cell Ā, and
integration is made also over the thickness of the interfaces ΣIJ . The out-of-plane components
(T3β,Mαβ) are, referring to the contact model described in Section 2.3:

T31 = 1
at

(∫ t
2

− t2

∫ a
2

0
r12

3 dy2dy3 +
∫ t

2

− t2

∫ 0

−a2
r43

3 dy2dy3

+
∫ t

2

− t2

∫ b
2

η b2

ηr14
3 dy1dy3 +

∫ t
2

− t2

∫ −η b2
− b2

ηr23
3 dy1dy3 −

∫ t
2

− t2

∫ η b2

−η b2
(1− η)r24

3 dy1dy3

)

T32 = 1
bt

(∫ t
2

− t2

∫ b
2

η b2

r14
3 dy1dy3 +

∫ t
2

− t2

∫ −η b2
− b2

r23
3 dy1dy3 +

∫ t
2

− t2

∫ η b2

−η b2
r24

3 dy1dy3

)
, (2.56)
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Figure 2.12: Rigid-body motion of the blocks (vGJ
i , ωGJ

i ) producing 3 macroscopic out-of-plane
rigid-body modes of the discrete cell Ā of a periodic masonry wall (stack bond pattern). Top:
1 rigid translation V3. Bottom: 3 Cosserat rotations (Ωc

1,Ωc
2).

and

M11 = 1
at

(∫ a
2

0

∫ t
2

− t2

(
r12

3 y2 − r12
2 y3

)
dy3dy2 +

∫ 0

−a2

∫ t
2

− t2

(
r43

3 y2 − r43
2 y3

)
dy3dy2+

−
∫ b

2

ηb
2

∫ t
2

− t2
ηr14

2 y3dy3dy1 −
∫ − ηb2
− b2

∫ t
2

− t2
ηr23

2 y3dy3dy1 +
∫ ηb

2

− ηb2

∫ t
2

− t2
(1− η)r24

2 y3dy3dy1

)

M12 = − 1
bt

(∫ b
2

ηb
2

∫ t
2

− t2
r14

2 y3dy3dy1 +
∫ − ηb2
− b2

∫ t
2

− t2
r23

2 y3dy3dy1 +
∫ ηb

2

− ηb2

∫ t
2

− t2
r24

2 y3dy3dy1

)

M21 = 1
at

(∫ a
2

0

∫ t
2

− t2

1
2
(
2r12

1 y3 − ηbr12
3

)
dy3dy2 +

∫ 0

−a2

∫ t
2

− t2

1
2
(
2r43

1 y3 + ηbr43
3

)
dy3dy2+

∫ b
2

bη
2

∫ t
2

− t2
η
(
−r14

3 y1 + r14
1 y3

)
dy3dy1 +

∫ − bη2
− b2

∫ t
2

− t2
η
(
−r23

3 y1 + r23
1 y3

)
dy3dy1+

∫ bη
2

− bη2

∫ t
2

− t2
(1− η)

(
r24

3 y1 − r24
1 y3

)
dy3dy1

)

M22 = 1
bt

(∫ b
2

bη
2

∫ t
2

− t2

(
−r14

3 y1 + r14
1 y3

)
dy3dy1 +

∫ − bη2
− b2

∫ t
2

− t2

(
−r23

3 y1 + r23
1 y3

)
dy3dy1+

∫ bη
2

− bη2

∫ t
2

− t2

(
−r24

3 y1 + r24
1 y3

)
dy3dy1

)
. (2.57)

Their expression for the stack bond and the classical running bond patterns is given in Appendix
B.2.

The displacement jumps at the interfaces of the cell Ā write:

JvK14 =


ηb (Γ11 + y3K21) + a

(
Γ12 + y3K22 + b

2K31
)

ηb (Γ21 − y3K11 + (−b+ y1)K31) + a
(

Γ22 − y3K12 +
(
− b

2 + y1
)
K32

)
ηb(Γ31 + (b− y1)K21) + a

(
Γ32 − b

2K11 +
(
b
2 − y1

)
K22

)

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JvK23 =


ηb (Γ11 + y3K21) + a

(
Γ12 + y3K22 − b

2K31
)

ηb (Γ21 − y3K11 + (b+ y1)K31) + a
(

Γ22 − y3K12 +
(
b
2 + y1

)
K32

)
ηb (Γ31 + (−b− y1)K21) + a

(
Γ32 + b

2K11 +
(
− b

2 − y1
)
K22

)


JvK24 =

 (−1 + η) b (Γ11 + y3K21) + a (Γ12 + y3K22)
(−1 + η) b (Γ21 − y3K11 + y1K31) + a (Γ22 − y3K12 + y1K32)

(−1 + η) b (Γ31 − y1K21) + a (Γ32 − y1K22)


JvK12 = 1

2b

 2Γ11 + 2y3K21 + (a− 2y2)K31
2Γ21 − 2y3K11 − ηbK31 − aK32

2Γ31 + (−a+ 2y2)K11 + ηbK21 + aK22


JvK43 = 1

2b

 2Γ11 + 2y3K21 + (−a− 2y2)K31
2Γ21 − 2y3K11 + ηbK31 + aK32

2Γ31 + (a+ 2y2)K11 − ηbK21 − aK22

 . (2.58)

2.6.3 Justification of the homogenisation procedure

Stefanou et al. (2008) has demonstrated that, when they are made of regular rigid blocks,
single leaf masonry walls can be replaced by an equivalent Cosserat continuum model. The
resulting model is specifically a Cosserat (or micropolar) plate (Eringen, 1967; Godio et al.,
2015a), which accounts for both the in-plane and the out-of-plane interaction between the
blocks by means of macroscopic deformations and curvatures of the type presented above, i.e.
respectively (Γαβ,K3β) and (Γ3β,Kαβ). The reduction of problem dimension (from the 18
deformation measures of the 3D Cosserat continuum to the 12 of the micropolar plate model) is
inherent to the homogenisation procedure presented by Stefanou et al. (2008), and then justify
the map retrieved in this paper (Eq.(2.50)). In particular, the conditions for the blocks to
be considered rigid and to have all the same shape and size are necessary in order to obtain a
realistic description of the medium based on the Cosserat continuum. If one of these assumptions
was not respected, new terms of generalized deformations and stresses would rise. In this case,
a complete description of the masonry wall would be possible by recurring to a micromorphic
continuum (Stefanou et al., 2010; Stefanou and Sulem, 2012).

It is worth mentioning that the Reissner-Mindlin plate model is often used for modelling the
behaviour of masonry walls (Cecchi and Sab, 2004, 2007; Sab et al., 2007; Cecchi et al., 2007).
The difference with the Cosserat model of the present approach concerns both the in-plane
and the out-of-plane behaviour of the plate. Firstly, the in-plane kinematics of the micropolar
model are enhanced by the Cosserat rotations. For this reason, the micropolar model takes into
account the effect of the in-plane rotations of the blocks ωGJ

3 (Sulem and Mühlhaus, 1997; Godio
et al., 2015d), which the aforementioned Reissner-Mindlin plate models do not. Secondly, it is
clear from Eq.(2.4) how the Reissner-Mindlin model is different from the Cosserat model, since
it considers only the symmetric part of the rotation gradient. Therefore, some differences arise
when looking at the average out-of-plane curvatures (K11,K22) (Eq.(2.53)), representing, in the
terminology used for plates, the deformations to torsion. In the Cosserat model, these curvatures
are produced by distinct blocks’ kinematics, respectively ωGJ

1 and ωGJ
2 (Eq.(2.53)-1,4). In the

Reissner-Mindlin model, these curvatures are provided by the same set of rotations, but in a
non-independent way (Cecchi and Sab, 2002b, 2006). On the contrary, both models have the
same definitions for the curvatures (K12,K21) (Eq.(2.53)-2,3), representing the deformation to
bending, and depend therefore on the same set of kinematics (Cecchi and Sab, 2002b, 2006).
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2.6.4 Homogenisation

Similar to the case of the column (Section 2.5), blocks exhibit infinite strength and the interfaces
resistance to slip and opening is described by means of a Coulomb failure criterion (Eq.(2.43)).
In view of practical applications, it is useful to define different values for the cohesion and
friction angle, depending on the interface orientation. Therefore, the dissipation function on
the interfaces of the cell takes the following form (Godio et al., 2015d):

πIJ
(
JviKIJ ; nIJi

)
= c

Tan [φ]JviK
IJnIJi , with

{
(c, φ) = (ch, φh), for Σ14, Σ23, Σ24

(c, φ) = (cv, φv), for Σ12, Σ43.
(2.59)

with πIJ <∞ provided that:JviKIJnIJi ≥
∣∣∣JviKIJ ∣∣∣ Sin [φh] , for Σ14, Σ23, Σ24

JviKIJnIJi ≥
∣∣∣JviKIJ ∣∣∣ Sin [φv] , for Σ12, Σ43.

(2.60)

Superscripts h and v refer respectively to the horizontal (bed joints) and vertical (head joints)
interfaces. With these notations, the plastic dissipation on the discrete cell Ā is:

πD
(
vGJ
i , ωGJ

i

)
= 1
abt

(∫ t
2

− t2

∫ b
2

η b2

π14
(
JvK14; n14

)
dy1dy3

+
∫ t

2

− t2

∫ −η b2
− b2

π23
(
JvK23; n23

)
dy1dy3 +

∫ t
2

− t2

∫ η b2

−η b2
π24

(
JvK24; n24

)
dy1dy3

+
∫ t

2

− t2

∫ a
2

0
π12

(
JvK12; n12

)
dy2dy3 +

∫ t
2

− t2

∫ 0

−a2
π43

(
JvK43; n43

)
dy2dy3

)

= cv

Tan [φv]Γ11 + ch

Tan [φh]Γ22. (2.61)

By setting:

Πc,hom = πD,

and by using the kinematic definition of Gc,hom (Eq.(2.24)), the macroscopic strength criterion
for the masonry wall becomes:

Gc,hom = {(Tiα,Miα) |
(
T11 −

cv

Tan [φv]

)
Γ11 + T12Γ12 + T21Γ21

+
(
T22 −

ch

Tan [φh]

)
Γ22 + T31Γ31 + T32Γ32

+M11K11 +M12K12 +M21K21 +M22K22

+M31K31 +M32K32 ≤ 0,∀(Γiα,Kiα)}. (2.62)

The homogenised strength criterion is then computed by considering all the KA(Γiα,Kiα)
set of kinematics

(
vGJ
i , ωGJ

i

)
which are also plastically admissible. In the present case, this

reduces to a set of 20 inequalities. These inequalities are the expression of the relevance con-
ditions (2.60) at the extreme points of each interface of the cell (Figure 2.13). The first 12
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conditions result from the horizontal interfaces Σ14,Σ23,Σ24:

H1−8 (Γiα,Kiα) =

−a
(

Γ22 − ε6
t

2K12 − ε1 (1− ε2) b2K32

)
+ ηb

(
−Γ21 + ε6

t

2K11 + ε1

(
1− ε2

2

)
bK31

)
+Tan

[
φh
]([

ηb

(
Γ31 + ε1

(
1− ε2

2

)
bK21

)
+ a

(
Γ32 − ε1

b

2K11 + ε1 (1− ε2) b2K22

)]2

+
[
ηb

(
Γ11 + ε6

t

2K21

)
+ a

(
Γ12 + ε6

t

2K22 + ε1
b

2K31

)]2)1/2

≤ 0 (2.63)

H9−12 (Γiα,Kiα) =

−a
(

Γ22 + ε3
ηb

2 K32 − ε6
t

2K12

)
+ (1− η) b

(
Γ21 + ε3

ηb

2 K31 − ε6
t

2K11

)
+Tan[φh]

([
− (1− η) b

(
Γ31 − ε3

ηb

2 K21

)
+ a

(
Γ32 − ε3

ηb

2 K22

)]2

+
[
− (1− η) b

(
Γ11 + ε6

t

2K21

)
+ a

(
Γ12 + ε6

t

2K22

)]2
)1/2

≤ 0 (2.64)

The remaining 8 conditions result from the vertical interfaces Σ12,Σ43:

H13−20 (Γiα,Kiα) =

−
(

Γ11 + ε4
a

2K31 + ε6
t

2K21

)
+Tan[φv]

([
Γ31 − ε4

a

2K11 − ε5
ηb

2 K21 − ε5
a

2K22

]2

+
[
ε5Γ21 − ε5ε6

t

2K11 + ηb

2 K31 + a

2K32

]2)1/2

≤ 0 (2.65)

Table 2.1 shows the values taken by the coefficients ε1, ..., ε6 in the above expressions. The
conditions for the in-plane case (Godio et al., 2015d) are retrieved as special case, by imposing
the out-of-plane Cosserat deformation measures (Γαβ,K3β) to be zero. Notice that, with respect
to the in-plane case, the inequalities presented herein are non-linear, since they capture both
the in-plane and out-of-plane deformations of the cell, including their interaction. Similar to
the case of the column, this prevents the derivation of the homogenised strength domain in
terms of stresses and couple stresses following the optimization algorithm used in Godio et al.
(2015d).
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Figure 2.13: Points of the 3D elementary cell where the relevance condition (Eq.(2.44)) needs
to be satisfied.
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Σ14 Σ23 Σ24 Σ12 Σ43

P1 P5 P3 P6 P5 P6 P2 P5 P4 P6
ε1 1 1 -1 -1

ε2 1 η 1 η

ε3 1 -1

ε4 0 1 0 -1

ε5 -1 -1 1 1

ε6 1 1 1 1 1 1 1 1 1 1

Σ14 Σ23 Σ24 Σ12 Σ43

P7 P11 P9 P12 P11 P12 P8 P11 P10 P12
ε1 1 1 -1 -1

ε2 1 η 1 η

ε3 1 -1

ε4 0 1 0 -1

ε5 -1 -1 1 1

ε6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table 2.1: Coefficients used in Eqs.(2.63)-(2.65).

2.7 Conclusions

The inner structure of discrete media may be very complex. In some cases, two-dimensional
(or plane) descriptions of the medium prove inadequate and the use of three-dimensional (3D)
models is required for the full assessment of their strength.

In this paper, a method for the evaluation of the homogenised strength of 3D periodic discrete
media was developed. The presented method was the extension to the 3D case of a procedure
initially formulated for the Cosserat continuum in two dimensions (Godio et al., 2015d). The
homogenised strength domain was derived by application of the kinematic approach in the
framework of limit analysis theory. In this way, a larger class of deformation modes and failure
mechanisms involving not only the particles’ relative translation but also the particles’ relative
rotation was taken into account in the macroscopic description of the medium.

The homogenisation procedure was illustrated in general manner, with regard to a 3D peri-
odic collection of rigid blocks in contact (Section 2.3). The interaction between the blocks was
established at their interfaces, where contact stresses were exchanged. The kinematic descrip-
tion of the discrete medium was then given by displacement velocity jumps produced at the
interfaces between the blocks by their relative translations and rotations. Due to periodicity,
all the computations were made on a preselected elementary cell. As result of homogenisation,
the contact stress distributions gave rise to the macroscopic stresses and couple stresses of the
3D Cosserat continuum. Similarly, the Cosserat relative deformations and curvatures were pro-
duced by combinations of spatial rigid-body motions of the blocks that composed the discrete
medium (Section 2.4).

The homogenisation method was applied to the case of masonry (Section 2.5 and Section 2.6).
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Masonry was here considered as an assemblage of distinct blocks undergoing spatial translations
and rotations. homogenised yield criteria were obtained by admitting that failure may take place
at the joints only, the strength capacities of the joints being far lower than those of the blocks.
In particular, masonry joints were considered as interfaces with Coulomb dissipative properties,
given by the joint cohesion and friction angle.

The homogenised strength of masonry columns and walls was determined by deriving an
equivalent 3D Cosserat continuum at the macroscopic scale. As a result of the homogenisation
procedure, the number of macroscopic deformation measures was however reduced. This result
was consistent with the geometry of columns and walls. The masonry column was so ascribed
to a Cosserat (or Timoshenko) beam model. The masonry wall was assumed as a Cosserat
(or micropolar) plate model. Both models were comprehensive of complete 3D kinematics, and
shown an apparent interaction between the membrane (or in-plane) and flexural (or out-of-
plane) actions in the assessment of masonry strength.
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Chapter 3

Finite element formulation for
Cosserat plates: elasticity

This Chapter describes the formulation and the validation of a finite element for Cosserat plate
models. The element is formulated for elasticity and dynamics. It allows the implementation
of an existing homogenisation model for masonry. The model is used to compute the natural
flexural frequencies of a masonry panel modelled by discrete elements. It allows also to inves-
tigate the role of the in-plane rotations of the blocks, showing their participation to the inertial
response of the panel against seismic excitations.
This Chapter is a published paper. Its reference is Godio et al. (2015a).
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Summary

A displacement and rotation-based dynamic Finite Element formulation for Cosserat plates is
discussed in detail in this paper. Special attention is given to the validation of the element
through adequate benchmarks and patch tests. The choice of the interpolation functions and
the order of integration of the stiffness and the mass matrices are extensively argued. The
possibility of local system deficiencies is explored and a shear locking investigation specifically
elaborated for Cosserat plates is carried out. It is shown how the present formulation has
interesting computational properties, as compared to a classical continuum-based formulation,
and how it can provide suitable results despite the use of reduced integration. An example of
application of the finite element is given, in which the natural frequencies of a masonry panel
modelled by means of Discrete Elements are computed and compared with the Finite Elements
solution.
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3.1 Introduction

Cosserat (or micropolar) continuum has recently attracted the attention of researchers from
many different disciplines of Mechanics. Either facing it as an adequate mathematical framework
for the regularization of ill-posed problems in the softening plasticity regime of classical (Cauchy)
continua (Vardoulakis and Sulem, 1995), or as the starting point for the constitutive description
of systems with internal lengths, or, again, as a medium with dispersive properties, the theory
of Cosserat continuum has found numerous applications up to present.

Models based on Cosserat continuum have been employed, for instance, in the representa-
tion of granular media (Pasternak and Mühlhaus, 2005; Vardoulakis, 1989; Sulem et al., 2013),
rock masses (de Buhan et al., 2002; Sulem et al., 2011), block (Sulem and Mühlhaus, 1997;
Stefanou et al., 2008; Pau and Trovalusci, 2012) and layered structures (Forest and Sab, 1998),
polycrystals and composites materials (Forest et al., 2001; Forest and Sab, 1998), structures of
beams, nanostructures and continuous robotic systems (Dehghani and Moosavian, 2013; Robin-
son and Davies, 1999; Li and Xie, 2004). Other models have been formulated for the modelling
of porous and multiphase materials (Tekoğlu and Onck, 2008), but also particle fluids and
materials with electro- and ferromagnetic properties (Eringen, 1999, 2001). Micropolar descrip-
tions are also used in biomechanics, for the mechanical behaviour of bones (Park and Lakes,
1986; Fatemi et al., 2002; Goda et al., 2014) and other biological tissues with microstructure
(Sanchez-Molina et al., 2014; Sack et al., 2013). For a more comprehensive review of Cosserat
(or micropolar) models for solids and plates, we refer to (Altenbach et al., 2009).

Problems involving boundary layer phenomena, localization of deformations and wave dis-
persion can be properly solved using Cosserat Finite Elements (FE). Sluys and de Borst pre-
sented a comprehensive study on the advantages of Cosserat FE compared to classical formu-
lations based on Cauchy continuum, which suffer from the problem of mesh dependency when
localization of shear strains takes place, see (de Borst and Sluys, 1991; de Borst, 1991; de Borst
et al., 1993) among others. Interesting applications of Cosserat FE in modelling layered struc-
tures are given by (Riahi and Curran, 2009; Riahi et al., 2009; Dai et al., 1993). Cosserat FE for
masonry structures are also formulated in (Cerrolaza et al., 1999; Addessi et al., 2010; Addessi
and Sacco, 2012; Addessi, 2014). In modeling masonry, it is the non-symmetry of the stress
tensor that makes Cosserat-continuum-based models preferable (Trovalusci and Pau, 2014) with
respect to models based on other non-classical continua. Other more general FE formulations
for micropolar plates and shells and for solids with microstructure are those recently proposed
by (Chróścielewski and Witkowski, 2011) and (Nadler and Rubin, 2003; Jabareen and Rubin,
2014; Mtanes and Jabareen, 2014; Zervos, 2008).

However, even though many applications of Cosserat continuum using FE are found in the
literature, the details of each FE formulation are partially exposed or not presented at all.
Moreover, the performance of the element is seldom investigated, making hard to assess the
chosen FE formulation and its applicability to other problems. The purpose of this paper is to
propose a Cosserat finite element that may be used for different applications in structural and
materials engineering.

The presented element is obtained by the superposition of a quadratic small-strains Cosserat
membrane rectangle with a thick plate element with enriched kinematics. It results in a ver-
satile shell-type flat element equipped with six degrees of freedom (DOF) per node, capable of
modelling complex spatial structural configurations.

This Cosserat finite element has the advantage of providing accurate results even in the
case of reduced integration, without using any hourglass control method. In classic FE for-
mulations the hourglass control is frequently made by introducing an artificial stiffness to the
in-plane rotations (Zienkiewicz and Taylor, 2005; Hughes and Brezzi, 1989; Chinosi et al., 1997;
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Providas and Kattis, 2000; Kugler et al., 2010; Yang et al., 2000). In FE formulations based
on Cosserat continuum, this stiffness is introduced in a physical way, because of the inherent
drilling rotational DOF. The occurrence of zero-energy modes can be thus naturally avoided in
the Cosserat FE formulations, and the element stiffness matrix is never deficient.

The paper has the following structure. In Section 3.2 we outline the basic definitions and
relations of a Cosserat continuum in three dimensions that are necessary for the rest of the
paper. In Section 3.3 we present a model for micropolar plates, through reduction of the three-
dimensional problem. In Section 3.4 we propose a general Cosserat dynamic formulation for the
FE method. In Section 3.5 we present a specific finite element: the choice of the interpolation
order is discussed, the use of different integration techniques for the computation of the element
stiffness and mass matrices are argued and the possibility of system deficiencies is explored.
The validation of the element is made in Section 3.6, where we investigate the shear locking
phenomenon applied to micropolar plates. In Section 3.7 we give an illustrative example of
the use of the element in representing the modal response of a masonry structure consisted of
discrete interacting building blocks.

Throughout the paper much attention is paid to the capacity of the formulation to predict
the membrane (or in-plane) as well as the flexural (or out-of-plane) behaviour. Even though
from a theoretical point of view they will be presented separately, only their superposition give
the full, herein referred to as plate, structural response.

Common matrix notation is adopted. Upper case letters denote variables referring to the
nodes of the element, while lower case letters refer to the local variables of the continuum field
problem. It is implicitly assumed that the former are only time-dependent whereas the latter
are space and time-dependent. Partial differentiation with respect to orthogonal coordinates is
indicated by [ ]i,j = ∂xi/∂xj . Time derivative is [ ]i,t = ˙[ ]i.

3.2 3D Cosserat dynamics prerequisites
Following Germain’s terminology (Germain, 1973), Cosserat continuum is a special case of a
micromorphic continuum of first order (Figure 3.1). Therein, the particle (the material point
in the sense of Germain) is considered rigid and, consequently, its kinematical description in
the three-dimensional (3D) space is fulfilled by six DOF, i.e. three translations ui and three
rotations ωi.

It results that the deformation measures of the medium, herein expressed in Cartesian
coordinates and in the frame of a small strain theory, are given by two second order tensors,
γij and κij, representing respectively the relative strains and the curvatures:

γij = ui,j + eijkωk (3.1)
κij = ωi,j (3.2)

with eijk the permutation symbol. The symmetric part of the strain tensor, denoted with γ(ij),
coincides with the strain tensor of a classical (Cauchy) continuum, whereas its skew-symmetric
part γ[ij] accounts for the relative deformations:

γ(ij) = (ui,j + uj,i)
2 (3.3)

γ[ij] = eijk (ω̂k − ωk) (3.4)

where eijkω̂k = (uj,i − ui,j)/2 is the infinitesimal rotation tensor.
The above deformation measures are energy conjugate with the non-symmetric stresses τij

and the couple stresses µij . According to Boltzmann, the assumption of symmetry of the stress
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Second gradient
(The particle deforms 

as the continuum) 

Indeterminate couple 

stress
(The particle is restrained 

to rotate as the continuum)

Figure 3.1: Higher order continuum theories according to Germain (1973) terminology. Cosserat
continuum is a special case of a micromorphic continuum of first order.

tensor in classical continua has an axiomatic character (see Schaefer (1967); Vardoulakis (2009)).
In the Cosserat medium, the loss of symmetry is due to the rotational DOF attached to the
particle, as shown by Eq.(3.4), and the presence of the couple stresses (angular momentum).
This makes rich the number of the material parameters to be identified within the constitu-
tive relations, and makes Cosserat continuum suitable for the description of a great variety of
problems. For instance, for a centro-symmetric material, a constitutive law can be defined in a
general manner as:

τij = Cijklγkl, µij = Dijklκkl (3.5)

where Cijkl and Dijkl are fourth order tensors containing the material parameters. In this case,
an isotropic micropolar material require the definition of six parameters, whereas a classical
solid would only demand two moduli (Altenbach et al., 2009).

For a Cosserat continuum, the Cauchy tetrahedron can be generalized as follows (Germain,
1973):

T di = τijnj , Md
i = µijnj (3.6)

where T di andMd
i are the stress and the couple stress vectors applied on the boundary ∂ΩΣ of a

configuration Ω, and nj is the normal outward unit vector at ∂ΩΣ. Moreover, both translations
and rotations can be prescribed on the boundary ∂ΩU :

ui = udi , ωi = ωdi . (3.7)

In Statics, the minimum of the Total Potential Energy gives the equilibrium equations in
weak form. In Dynamics, the equations of motion can be derived by application of the Hamil-
ton’s variational Principle. For a virtual variation of the displacement δui and the rotational
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field δωi, the Principle reads, in case of a conservative holonomic continuum systems:

δ

t2∫
t1

[Kc − (Vc −Wc)] dt = 0. (3.8)

In Eq.(3.8), we recognise the kinetic energy Kc, the deformation energy Vc, and the expression
for the external works Wc. In terms of Cosserat kinematics, these quantities read:

Vc = 1
2

∫
Ω

(τijγij + µijκij) dΩ (3.9)

Wc =
∫
Ω

(fiui +miωi) dΩ +
∫

∂ΩΣ

(
T di ui +Md

i ωi
)
dA (3.10)

Kc = 1
2

∫
Ω

(ρu̇iu̇i + ρω̇iIijω̇j)dΩ. (3.11)

In the above, the body forces fi and the body couples mi represent long-range actions within
the continuum. The material mass density is ρ, and the micro-inertia tensor is ρIij . The linear
and angular momentum balance is then:

τij,j + fi − ρüj = 0
µij,j − eijkτjk +mi − ρIijω̈j = 0. (3.12)

3.3 Equations of motion for Cosserat elastic plates

The 3D Cosserat field’s problem presented in Section 3.2 is governed by six partial differential
equations (PDE) of second order, expressed in terms of the three unknown displacements and
the three unknown rotations, see Eqs.(3.12). In the case of a plate, a homogeneous planar surface
of unitary thickness h = 1 oriented in the 1-2 plane, the problem is invariant in the out-of-plane
direction x3 and so it can be consequently reduced (Figure 3.2). Regarding the curvatures, we
have κ13 = κ23 = κ33 = 0, which annihilate the conjugate couple stress measures µ13, µ23 and
µ33. Concerning the relative strains, γ33 vanishes due to the aforementioned hypothesis, and
components γ13 and γ23 result in the simplified expressions:

γ13 = −ω2, γ23 = ω1. (3.13)

A typical assumption which is often taken in the construction of classical and micropolar
plate theories and that we also adopt for our formulation, consists in neglecting the normal
stress τ33 (see Eringen (1967) for a further discussion). However Eq.(3.13) preserves the stress
components τ13 and τ23. Although such components are absent in most of the models designed
for Cosserat plates, see for instance those obtained by reduction of the 3D problem (Gevorkyan,
1967; Ambartsumian, 1996; Altenbach and Eremeyev, 2009), they are conserved in the present
formulation. This allows for the implementation of more complete plate models, as the one
proposed by Eringen (1967).

Dealing with plates, it is handy to separate the membrane (or in-plane) behaviour from
the flexural (or out-of-plane) behaviour, see Figure 3.2. The static and kinematic remaining
components are expressed in matrix notation in Table 3.1, where subscripts m and f refer
respectively to the variables associated with the membrane and flexural behaviour. Regarding
the membrane behaviour, we recognise the tractions ταβ (α = β, with α, β = 1, 2), the in-plane
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τ23
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h

Figure 3.2: Stresses, couple stresses and degrees of freedom of a Cosserat plate: membrane (left)
and flexural (right) behaviour.

shears ταβ (α 6= β), and the in-plane couples µ3α. Concerning the flexural behaviour, we identify
the torsions µαβ (α = β), the out-of-plane flexions µαβ (α 6= β), the transverse shears τ3α, and
the longitudinal shears τα3.

Following this notation, the PDE for the in- and out-of-plane motion of Cosserat plates read
respectively, in compact form:[

Lm1[2×4]
t −Lm3[2×2]

t

−Lm2[1×4]
t Lm4[1×2]

t

] [
τm
µm

]
+
[
fm
mm

]
−
[
1m[2×2] 0[2×1]

0[1×2] Im[1×1]

] [
üm
ω̈m

]
= 0 (3.14)

and [
Lf1[1×4]

t −Lf3[1×4]
t

−Lf2[2×4]
t Lf4[2×4]

t

] [
τf
µf

]
+
[
ff
mf

]
−
[
1f [1×1] 0[1×2]
0[2×1] If [2×2]

] [
üf
ω̈f

]
= 0, (3.15)

where the sub-matrices Lmi and Lfi (with i = 1, . . . , 4) are the operators giving the definition
of the deformation measures of the plate (Eqs.(3.1)-(3.2)):[

γm
κm

]
=
[
Lm1[4×2] Lm2[4×1]
Lm3[2×2] Lm4[2×1]

] [
um
ωm

]
(3.16)[

γf
κf

]
=
[
Lf1[4×1] Lf2[4×2]
Lf3[4×1] Lf4[4×2]

] [
uf
ωf

]
, (3.17)

that is:

Lm1[4×2] =


[ ],1 0

0 [ ],2
[ ],2 0

0 [ ],1

 , Lm2[4×1] =


0
0
1
−1

 , Lm3[2×2] =
[
0 0
0 0

]
, Lm4[2×1] =

[
[ ],1
[ ],2

]

Lf1[4×1] =


0

[ ],1
0

[ ],2

 , Lf2[4×2] =


0 −1
0 1
1 0
−1 0

 , Lf3[4×1] =


0
0
0
0

 , Lf4[4×2] =


[ ],1 0

0 [ ],2
[ ],2 0

0 [ ],1

 .(3.18)
In a plate, material symmetries can be defined only with respect to the normal axis x3 (Ere-

meyev and Pietraszkiewicz, 2006; Eremeyev et al., 2013). Therefore, without losing generality
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membrane behaviour flexural behaviour

statics body forces fm =
[
f1 f2

]t
ff =

[
f3
]

body couples mm =
[
m3
]

mf =
[
m1 m2

]t
stresses τm =

[
τ11 τ22 τ12 τ21

]t
τf =

[
τ13 τ31 τ23 τ32

]t
couple stresses µm =

[
µ31 µ32

]t
µf =

[
µ11 µ22 µ12 µ21

]t
kinematics displacements um =

[
u1 u2

]t
uf = [u3]

rotations ωm = [ω3] ωf =
[
ω1 ω2

]t
strains γm =

[
γ11 γ22 γ12 γ21

]t
γf =

[
γ13 γ31 γ23 γ32

]t
curvatures κm =

[
κ31 κ32

]t
κf =

[
κ11 κ22 κ12 κ21

]t
inertia terms lateral inertia 1m = ρ

[
1 0
0 1

]
1f = ρ

rotary inertia Im = ρI33 If = ρ

[
I11 0
0 I22

]

Table 3.1: Field variables of the Cosserat plate-type model in matrix notation. Membrane and
flexural behaviour. The components of the inertia tensor are represented in the principal basis.

a constitutive law is introduced in the following form:[
τm
µm

]
=
[
A[4×4] G[4×2]
H[2×4] Dm[2×2]

] [
γm
κm

]
(3.19)[

τf
µf

]
=
[
F[4×4] 0[4×4]
0[4×4] Df [4×4]

] [
γf
κf

]
. (3.20)

In the above: A governs the membrane behaviour; Df and Dm control the in- and out-of-plane
bending response; F accounts for the transversal and the longitudinal shears. Matrices G and
H are responsible for the coupling between the stress and couple stress components. Next,
we will focus on the case of Cosserat materials possessing centrosymmetric properties. In such
case, those matrices are considered zero. For a more complete FE formulation, the reader is
referred to Appendix C.1.

3.4 Element formulation

In Cosserat FE, nodes are equipped with translational and rotational DOF. The number of
nodes to which refer the translations and the rotations depends to the degree of interpolation
attended for those fields. As it will be discussed in Section 3.5.1, many choices are possible in
this sense. In order to keep the formulation general, we assume that the element translations
are defined on N nodes, whereas element rotations are attached to M nodes. Therefore, the
vectors containing the nodal variables of the element can be written as:[

Um
t Ωm

t
]

=
[
U1
m
t
. . . UN

m
t Ω1

m . . . ΩM
m

]
[
Uf

t Ωf
t
]

=
[
U1
f . . . UNf Ω1

m
t
. . . ΩM

m
t
]
. (3.21)
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The aforementioned N nodal displacements and the M nodal rotations are interpolated by
means of general shape functions N and Φ, respectively:[

um
ωm

]
=
[
Nm[2×2N ] 0[2×M ]

0[1×2N ] Φm[1×M ]

] [
Um
Ωm

]
(3.22)[

uf
ωf

]
=
[
Nf [1×N ] 0[1×2M ]

0[2×N ] Φf [2×2M ]

] [
Uf
Ωf

]
. (3.23)

In particular, Nm interpolate the in-plane displacements, Nf the out-of-plane displacements,
Φm the in-plane rotational field and Φf the out-of-plane rotational fields:

Nm[2×2N ] =
[
N1 0 NN 0

0 N1 . . . 0 NN

]
, Nf [1×N ] =

[
N1 . . . NN

]
Φm[1×M ] =

[
Φ1 . . . ΦM

]
, Φf [2×2M ] =

[
Φ1 0 ΦM 0

0 Φ1 . . . 0 ΦM

]
. (3.24)

It follows that the expressions of the deformation measures within the FE are:[
γm
κm

]
=
[
Bm1[4×2N ] Bm2[4×M ]
Bm3[2×2N ] Bm4[2×M ]

] [
Um
Ωm

]
(3.25)[

γf
κf

]
=
[
Bf1[4×N ] Bf2[4×2M ]
Bf3[4×N ] Bf4[4×2M ]

] [
Uf
Ωf

]
, (3.26)

where the definition of compliant matrices Bαi can be found by introducing Eq.(3.24) into
Eqs.(3.16)-(3.17), and obtaining, in very compact form, the following relations:{

Bαi = LαiNα, for i = 1, 3
Bαi = LαiΦα, for i = 2, 4

with α = m, f. (3.27)

Notice that matricesBm2 andBm4 are associated with the in-plane (or drilling) nodal rotations
Ω3, which are absent in the classical engineering plate theories.

3.4.1 Stiffness matrix

The substitution of the relations (3.22)-(3.23) and (3.25)-(3.26) into the expressions of the
deformation energy Vc (from Eq.(3.9)) and of the external works Wc (from Eq.(3.10)) for
the plate, leads to the definitions of the element stiffness matrix and the nodal load vectors.
Adopting the notation used by Providas and Kattis (2002) for the in-plane behaviour, it holds:

Vcm = 1
2
[
Um

t Ωm
t
] [Km

UU Km
UΩ

Km
ΩU Km

ΩΩ

] [
Um
Ωm

]

Wc
m =

[
Pm

t Qm
t
] [Um

Ωm

]
, (3.28)

with the stiffness sub-matrices:

Km
UU =

∫
Ωe

(
Bm1[2N×4]

tA[4×4]Bm1[4×2N ]
)
dA (3.29)

Km
UΩ =

∫
Ωe

(
Bm1[2N×4]

tA[4×4]Bm2[4×M ]
)
dA = Km

ΩU
t (3.30)

Km
ΩΩ =

∫
Ωe

(
Bm2[M×4]

tA[4×4]Bm2[4×M ] +Bm4[M×2]
tDm[2×2]Bm4[2×M ]

)
dA, (3.31)
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and the nodal load vectors:[
Pm
Qm

]
=
∫
Ωe

[
Nm[2N×2]

t 0[2N×1]
0[M×2] Φm[M×1]

t

] [
fm
mm

]
dA +

∫
∂ΩeΣ

[
Nm[2N×2]

t 0[2N×1]
0[M×2] Φm[M×1]

t

] [
T dm
Md
m

]
dS.(3.32)

defined on the element configuration Ωe. The vectors T dm,Md
m represent the in-plane forces and

moments prescribed on the boundary ∂Ωe
Σ of the finite element. It is worth mentioning that the

sub-matrixKm
UU represents the stiffness matrix of a classical membrane element, whereasKm

UΩ
andKm

ΩΩ are additional terms associated to the drilling rotations. This is the difference between
the present Cosserat FE formulation and a classical Cauchy-continuum-based formulation, as
far it concerns the in-plane behaviour. As it will be shown in Section 3.5.2, the first term ofKm

ΩΩ
alleviates the local stiffness matrix rank deficiency that occurs in case of reduced integration of
classical elements against membrane actions.

The out-of-plane behaviour can be separated into pure bending (b) and shear (s) components.
In this case the stiffness matrix is:

Kf =
[
Ks
UU Ks

UΩ
Ks

ΩU Ks
ΩΩ +Kb

ΩΩ

]
, (3.33)

with

Ks
UU =

∫
Ωe

(
Bf1[N×4]

tF[4×4]Bf1[4×N ]
)
dA (3.34)

Ks
UΩ =

∫
Ωe

(
Bf1[N×4]

tF[4×4]Bf2[4×2M ]
)
dA = Ks

ΩU
t (3.35)

Ks
ΩΩ =

∫
Ωe

(
Bf2[2M×4]

tF[4×4]Bf2[4×2M ]
)
dA (3.36)

Kb
ΩΩ =

∫
Ωe

(
Bf4[2M×4]

tDf [4×4]Bf4[4×2M ]
)
dA. (3.37)

The nodal load vectors are:[
Pf
Qf

]
=
∫
Ωe

[
Nf [N×1]

t 0[N×2]
0[2M×1] Φf [2M×2]

t

] [
ff
mf

]
dA +

∫
∂ΩeΣ

[
Nf [N×1]

t 0[N×2]
0[2M×1] Φf [2M×2]

t

] [
T df
Md

f

]
dS.(3.38)

In Eq.(3.38), T df and Md
f represent the vertical force and out-of-plane moments prescribed on

the boundary ∂Ωe
Σ. It is worth pointing out that, as far as it concerns the out-of-plane behaviour,

the expressions of the stiffness matrixKf and of its sub-matrices obtained for the Cosserat plate
element (Eq.(3.33)) have the same structure and form with those of a thick (Reissner-Mindlin)
plate element. Indeed, the present Cosserat FE formulation is more general and encloses the
Reissner-Mindlin FE formulation. This latter can be retrieved by a) neglecting the longitudinal
shears τ13 and τ23 in the constitutive matrix F (Eq.(3.20)) and b) by redefining of the operator
Lf4 in Eq.(3.18), in order to take into account only the symmetric part of the rotation gradient
into the definition of the out-of-plane curvatures κf (see Table 3.1). In this sense, the FE
formulation provided for Reissner-Mindlin plates is a special case of the FE formulation for
Cosserat plates presented herein. Due to this similarity, shear locking phenomenon is expected
in the limit of very thin geometries in the present Cosserat formulation. This issue will be
explored in Section 3.6.2.
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3.4.2 Mass matrix

The mass matrix can be computed by substituting Eq.(3.22)-(3.23) into the equation of the
kinetic energy Kc (Eq.(3.11)) calculated for the plate. For the in-plane behaviour this results
in the expression:

Kc
m = 1

2
[
Üm

t Ω̈m
t
] [Mm 0

0 Θm

] [
Üm

t

Ω̈m
t

]
, (3.39)

with the mass sub-matrices:[
Mm 0

0 Θm

]
=
∫
Ωe

[
Nm[2N×2]

t 0[2N×1]
0[M×2] Φm[M×1]

t

] [
1m[2×2] 0[2×1]

0[1×2] Im[1×1]

] [
Nm[2×2N ] 0[2×M ]

0[1×2N ] Φm[1×M ]

]
dA.(3.40)

For the out-of plane behaviour it holds:[
Mf 0

0 Θf

]
=
∫
Ωe

[
Nf [N×1]

t 0[N×2]
0[2M×1] Φf [2M×2]

t

] [
1f [1×1] 0[1×2]
0[2×1] If [2×2]

] [
Nf [1×N ] 0[1×2M ]

0[2×N ] Φf [2×2M ]

]
dA.(3.41)

In the present formulation the micro-inertia tensor is considered isotropic. A rigorous way
to determine the inertial terms of a Cosserat medium could be that dictated by Germain (1973)
and Eringen (1999) (see also Stefanou et al. (2010)). The mass density ρ may be defined by
identification of the rigid micro-structure with the material particle of the underlying continuum,
as the integral of the mass density distribution ρ′ over the volume of the particle V:

ρdV =
∫
V

ρ′dV′, (3.42)

where [ ]′ denotes that the variable is defined at the scale of the particle. Similarly, the micro-
inertia tensor can be defined as the second order moment with respect to the position of the
centre of the mass of the particle, i.e. (Eringen, 1999):

ρIijdV =
∫
V

ρ′x
′
ix

′
jdV′. (3.43)

3.4.3 Element motion

Following the definitions given in this Section, the PDE for a Cosserat plate FE are expressed
in matrix form as: [

Km
UU Km

UΩ
Km

ΩU Km
ΩΩ

] [
Um
Ωm

]
+
[
Mm 0

0 Θm

] [
Üm
Ω̈m

]
=
[
Pm
Qm

]
[
Ks
UU Ks

UΩ
Ks

ΩU Ks
ΩΩ +Kb

ΩΩ

] [
Uf
Ωf

]
+
[
Mf 0

0 Θf

] [
Üf
Ω̈f

]
=
[
Pf
Qf

]
. (3.44)

Eq.(3.44) governs the motion of the element and is to be solved at each step of the analysis. To
this purpose, a number of solution methods exist and some of them are exploited in the commer-
cial code Abaqus (Simulia 2010), where the presented formulation has been implemented as a
particular User ELement (UEL) and employed within an implicit time-discretisation procedure.
This makes possible to control the analysis at each step of a prescribed procedure, to compute
the stress and deformation state at every Gauss point of the element and to combine the new
element solution with that obtained by the pre-existing elements of the code.
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3.5 The COSS8R element

The implemented element is an isoparametric quadratic plane rectangle with eight nodes and
constant thickness (Figure 4.5). Reduced integration is made to avoid shear locking and there-
fore four Gauss points are used. Each node of the element is equipped with three translational
and three rotational DOF. This results in a complete six-degree-of-freedom FE formulation, al-
lowing to model shell structures as an assembly of these flat elements (Zienkiewicz and Taylor,
2005).
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Figure 3.3: The COSS8R element, with 4 Gauss points (X), 8 nodes and 6 DOF per node:
translations (square) and rotations (circle).

A similar FE formulation has been proposed in literature by Zhang et al. (2005), but, to the
author’s knowledge, its performance has not been yet explored.

3.5.1 Choice of the polynomial order of interpolation

The same quadratic shape functions N and Φ are used for the polynomial interpolation of the
translational and the rotational kinematic fields. This choice is not the only one possible.

An alternative would be to consider Lagrangian elements with linear interpolations for both
kinematic fields. However, in this case, Eqs.(3.3)-(3.4) indicate that some integral terms, as for
example the product between the symmetric tensors [τ(ij)γ(ij)] and the product between the
couple stresses and the curvatures [µijκij ], would be of zero degree (constants). On the other
hand, the product between the skew-symmetric tensors [τ[ij]γ[ij]] would be of second degree. In
that case, a selective integration technique should be attempted in order to redress the same
level of accuracy in the representation of both deformation measures, since, if only the lower
order of interpolation was respected, it would result in a decrease of accuracy for coarse element
discretisations.

Another approach could be to choose high precision Hermitian elements, as done by Un-
terreiner (1994). However, in spite of the higher accuracy reached by this approach, the plate
formulation with Hermitian elements would be not trivial and more computationally intensive.

In Providas and Kattis (2002) it is demonstrated that, in the case of an explicitly derived
formulation where no numerical integration is involved, a triangular Cosserat element for plane
elasticity that uses quadratic shape functions for both displacements and rotations produces
excellent results if compared to linear interpolations. Only marginally better would be the be-
havior of elements with quadratic (for translations) and linear (for rotations) approximations
(Providas and Kattis, 2002). Indeed, the adoption of quadratic shape functions for the displace-
ment field and of linear shape functions for the rotational field would assure the same order of

90



interpolation, as far as it concerns the in-plane strain vector γm. This as consequence of its
definition (Eq.(3.1)). Nevertheless, the adoption of linear functions for the rotations would lead,
after Eq.(3.2), to constant in-plane κm and out-of-plane κf curvatures within the element. In
view of the representation of flexural problems, this is considered as a limitation.

In order to overcome this problem, we make use of quadratic shape functions for both the
translational and the rotational fields over the FE. Such a formulation allows to cover the
interpolation order given by a linear/quadratic formulation and to increase the precision with
respect to the curvatures. Aiming at modelling both the in-plane and the out-of-plane behaviour,
this choice is expected to provide a good level of accuracy in case of coarse meshes and be still
advantageous in view of the dynamic analyses, where the use of too refined formulations would
increase excessively the computational cost.

3.5.2 Zero-energy modes investigation

Reduced integration comes with the price of introducing modes of deformation with zero energy,
i.e. modes for which the element does not exhibit any stiffness (Hughes 1987). In the case of
classical quadrilateral membrane elements such modes take the shape of an hourglass and they
have to be controlled in order to assure accurate results. One way consists, for instance, in
introducing an additional drilling rigidity into the element stiffness matrix ((Hughes and Brezzi,
1989; Chinosi et al., 1997; Zienkiewicz and Taylor, 2005). This artificial stiffness does not have
a particular physical meaning except in the framework of a Cosserat continuum, where it is
provided by the in-plane particle rotations.

HOURGLASS MODES

In a general manner we consider the following standard eigenproblem:

[K − λ1] Ū = 0. (3.45)

The solution of Eq.(3.45) gives L eigenvalues λl and L nodal eigenvectors Ū l, with l = 1, . . . , L
and L being the dimension of the considered local stiffness matrix K. It is known that every
eigenvalue is equal to twice the strain energy due to the displacement field provided by the
associated eigenvector (Hughes, 1987). As a consequence, one may expect from the solution
of the eigenproblem as many null eigenvalues as the number of rigid motions and, for each
additional null eigenvalue, an associated non-rigid motion with zero deformation energy can be
found. In computational terms, this indicates a matrix rank deficiency. In mechanical terms,
this shows that the formulation is affected by the presence of zero-energy modes.
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Figure 3.4: Elements tested for zero-energy modes investigation: (A) Cosserat element, plate
configuration; (B) Cosserat element, membrane configuration; (C) classical Cauchy element,
membrane part.

Starting from the present Cosserat formulation, we calculate the eigenvalues of the stiffness
matrix K for three different cases (Figure 3.4). First, the eigenproblem is solved for a com-
plete six-degree-of-freedom Cosserat assembly (Figure 3.4-(A)). The same investigation is made
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by considering only the membrane behaviour of the Cosserat element (Figure 3.4-(B)). Then,
only the in-plane translations are kept, reducing the present formulation to a classical Cauchy
membrane element (Figure 3.4-(C)). The stiffness matrix considered in each case is one (or an
assembly) of the sub-matrices defined in Section 3.4.1. For the case (C) we also impose symme-
try into the in-plane shear stress in order to retrieve Cauchy continuum. As shown in Appendix
C.2, this can be accounted for in the construction of the material matrix A, by respecting the
following identities:

A1212 = A2121 = A1221 = A2112 (3.46)

In Table 3.2, we give the comparison between the three aforementioned configurations, in terms
of the number of computed zero-energy modes. Despite the reduced integration, the COSS8R
element does not show any rank deficiency.

number of integration points
element formulation K 2x2 3x3

(A) Cosserat plate Eqs.(3.29)-(3.31),(3.34)-(3.37) 0 0
(B) Cosserat membrane Eqs.(3.29)-(3.31) 0 0
(C) Cauchy membrane Eq.(3.29) 1 0

Table 3.2: Computed number of zero-energy modes other than those associated with rigid body
modes.

SPURIOUS MODES

The origin of the zero-energy modes can be found in the difference between the number of local
deformation variables of the continuum model that we intend to discretise and the number of
deformation modes of the actual numerical model. Hence, given the continuum, it is sufficient to
increase the number of degrees of freedom, for example through mesh refinement or by increasing
the interpolation order, in order to alleviate the matrix deficiency and make the zero-energy
mode non-communicable (Hughes, 1987). There exist, however, certain situations in which the
problem still occurs.

(a) (b) (c)

Figure 3.5: (a) a highly rigid element resting upon a layer of flexible elements with reduced
integration; (b) propagating spurious mode in an assembly of Cauchy (S8R) elements; (c)
accurate results from a COSS8R subdivision.

Herein we consider the well-discussed plane problem of Figure 3.5 (see Zienkiewicz and
Taylor (2005)). Because of the reduced integration, an hourglass mode is activated in the rigid
element as a result of the applied force, and it gives rise to a spurious (or communicable) mode
which is able to propagate within a certain area in the elements below. In the case of the classical
S8R element (Figure 3.5-(b)), only the use of a complete integration would allow to overcome
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such problem and give accurate solutions, with the price of shear locking behaviour. On the
contrary, the COSS8R element does not have this problem, as the rotational DOF perform an
intrinsic action of hourglass control (Figure 3.5-(c)).

It is interesting to investigate how these spurious modes become manifest. To this end, we
consider a homogeneous isotropic Cosserat centrosymmetric material. Matrices A and Dm in
Eq.(3.19) are expressed as:

A =


K +G K −G 0 0
K −G K +G 0 0

0 0 G+Gc G−Gc
0 0 G−Gc G+Gc

 , Dm =
[
2Glc 0

0 2Glc

]
(3.47)

where K is the compression modulus, G is the shear modulus, Gc is the Cosserat shear modulus
and lc denotes the internal length under shear. It is useful to define α = Gc/G as the coupling
factor. As we show in Appendix C.2, this parameter allows to control the magnitude of the
skew-symmetric term of the membrane strain vector, i.e. γ[12]. For α = 0, in-plane rotations are
annihilated and the classical Cauchy element is retrieved through Eq.(3.46) (Figure 3.5-(b)).
For α = 1, the COSS8R element is recalled (Figure 3.5-(c)). Intermediate values of α allows to
control the magnitude of, say, the Cosserat’s term γ[12].

l
UA

UB

v

Figure 3.6: Definition of the distortion δ of the rigid element.

Always with reference to the above example (Figure 3.5), a parametric analysis is carried
out on α. The results are presented in Figure 3.7, in terms of the distortion δ and the displace-
ment v, which are defined in Figure 3.6 and normalized with the values calculated for α = 0.
Figure 3.7 shows an immediate decrease of distortion due to the introduction of the Cosserat’s
term (Figure 3.7-left). Moreover, the exact solution is reached rapidly by varying the coupling
factor α from 0 to 1 (Figure 3.7-right). Therefore we can defend the idea that the non-symmetry
of the stress tensor permits to avoid the rank deficiency into the element membrane stiffness in
case of reduced integration. The non-symmetry of the stress tensor is a key feature of Cosserat
continuum.

STIFFNESS MATRIX DEFICIENCIES IN MODELLING SHELL STRUCTURES

Regarding the complete plate formulation and the possibility to model shell spatial structures,
we demonstrate in Appendix C.3 that the coupling factor α enters the definition of the first
term of the stiffness sub-matrix (3.31). Such matrix, as it is indicated by Providas and Kattis
(2000), has also a stabilization effect in the modelling of shell structures by assembling flat plate
elements. We can thus conclude on the good computational performance of the present Cosserat
plate element. The non-symmetry of the stress tensor has in fact a general rank stabilization
effect versus the occurrence of hourglass modes in membrane behaviour, and matrix deficiencies
in shell structures assemblies. This is a clear advantage as compared to classical-continuum-
based FE formulations, where the use of artificial hourglass control techniques is inevitable.
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Figure 3.7: Normalised distortion factor (left) and normalised vertical displacement (right)
versus the coupling factor α. The classical Cauchy (S8R) element is retrieved for α = 0. The
COSS8R element is for α = 1.

3.5.3 Consistent mass matrix

The dynamic counterpart of Eq.(3.45) is the generalized eigenproblem:

[K − λM ] Ū = 0. (3.48)

Always employing a reduced integration for the computation of the stiffness matrix K (the
case (A) of Figure 3.4 is herein referred to), reduced and complete integration are performed
for the computation of the local mass matrix M . Generalized eigenvalue analyses are carried
on the aforementioned matrices and reveal the occurrence of infinite eigenvalues, in the case of
reduced integration of the mass matrix. From a mechanical point of view, this corresponds to
the presence of massless degrees of freedom (Bathe, 1996), for which the system exhibits infinite
stiffness. A static condensation would then be necessary on such variables in order to give
accurate results, and the element would result in lumped mass components. Therefore complete
integration is used over the mass matrix, so as to keep an effectively consistent formulation.

Through this method we also confirm the absence of zero-energy modes in the dynamic
regime.

3.6 Element validation

A number of numerical tests and examples are presented in this Section with the goal of as-
sessing the performance of the present COSS8R element both in static and dynamic regime. In
particular, a patch test specifically designed for Cosserat continua is made to prove the efficiency
of the element in representing homogeneous in-plane relative strain and curvature states. Shear
locking investigation is then carried out to attest the out-of-plane response of the element in
the limit of thin geometries. The wave dispersion functions are finally calculated with reference
to a one-dimensional problem and compared to the analytical solution.

3.6.1 Patch test

We consider the rectangular region of Figure 3.8, where an internal element is introduced within
the patch in order to induce a geometric distortion to the whole discretisation.
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Figure 3.8: Element discretisation employed for the patch test.

The patch test used here is inspired by Providas and Kattis (2002), who used it for tri-
angular elements, and it is adequately modified for rectangular FE. A homogeneous isotropic
linear elastic Cosserat material is taken into account. The material matrix given by Eq.(46).
Three tests are performed dealing with the membrane (or in-plane) behaviour (Providas and
Kattis, 2002), see Table 3.3. Test 1 verifies that the element is capable of reproducing constant
symmetric shear components, as in a classical formulation. In Test 2, a non-symmetric constant
shear is imposed through the application of external couples m3. For Test 3, the solution is
such that the in-plane couple stresses are identical and constant.

The boundary conditions which allow the situations above to be achieved are applied to
the external nodes of the patch and the solution is checked at Gauss point P1 of the internal
element (Figure 3.8). As shown in Table 3.4, good agreement with the theoretical solution is
achieved in all tests. In Test 3, the level of accuracy reached by the formulation is comparable
with that found by Providas and Kattis (2002) for their quadratic triangular element MQUAT.

In Appendix C.4 1, the presented patch test is extended and formulated for anisotropic
Cosserat materials. This patch test is introduced and used in order to test the element in case
of material anisotropy. In this case, the element satisfies the test showing the same accuracy
level than in the classical test presented above.

Test 1

u1 = 10−3 (x+ 0.5y) u2 = 10−3 (x+ y) ω3 = 0.25× 10−3 f1 = f2 = 0
τ11 = τ22 = 4 τ12 = τ21 = 1.5 µ31 = µ32 = 0 m3 = 0

Test 2

u1 = 10−3 (x+ 0.5y) u2 = 10−3 (x+ y) ω3 = 10−3
(
0.25 + (4α)−1

)
f1 = f2 = 0

τ11 = τ22 = 4 τ12 = 2τ21 = 2 µ31 = µ32 = 0 m3 = 1

Test 3

u1 = 10−3 (x+ 0.5y) u2 = 10−3 (x+ y) ω3 = 10−3
(
0.25 + (2α)−1 (x− y)

)
f1 = f2 = 1

τ11 = τ22 = 4 τ12 = 1.5 + (x− y) µ31 = −µ32 = 4. m3 = 2 (x− y)
τ21 = 1.5− (x− y)

Table 3.3: Patch test for Cosserat plane elements: boundary conditions and expected solutions.

1This is an additional Appendix that is absent from Godio et al. (2015a).
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τ11 τ22 τ12 τ21 µ31 µ32

Test 1 4.000 4.000 1.500 1.500 0.000 0.000
[4.000] [4.000] [1.500] [1.500] [0.000] [0.000]

Test 2 4.000 4.000 1.000 2.000 0.010 0.022
[4.000] [4.000] [1.000] [2.000] [0.000] [0.000]

Test 3 3.976 3.970 1.521 1.447 3.997 -4.001
[4.000] [4.000] [1.537] [1.462] [4.000] [-4.000]

Table 3.4: Results of patch tests at point P1. Exact results are reported in brackets.

3.6.2 Shear locking investigation

We consider the example of simply-supported and clamped-edge L×L square plates of constant
thickness h, subjected to uniform distributed load p (Figure 3.9). In order to investigate the
shear locking phenomenon, several analyses are carried out on these configurations by consid-
ering various FE subdivisions of increasing L/h ratios.

LL

h h

p p

Figure 3.9: Bending-plate in two configurations: simply supported (left) and clamped edges
(right).

To this purpose, we take into account the constitutive law proposed by Altenbach and Eremeyev
(2009), who, starting from a Cosserat 3D flat configuration, deduce an isotropic relation for
micropolar plates by integration in the thickness direction. Matrices F and Df in Eq.(3.20)
yield:

F =


0 0 0 0
0 α4 0 0
0 0 0 0
0 0 0 α4

 , Df =


β1 + β2 + β3 β1 0 0

β1 β1 + β2 + β3 0 0
0 0 β3 β2
0 0 β2 β3

 (3.49)

where the parameters α4, β1, β2, β3 are here retrieved from the works of Lakes made on high-
density rigid polyurethane closed-cell foams (see Table 2-PU in Altenbach and Eremeyev (2009)).

In Figure 3.10 we show the resultant deflection wc, measured at the centre of the plate.
The out-of-plane bending rigidity used for normalization is Df ≡ β3. The results are qualita-
tively similar to those found in literature for the thick (Reissner-Mindlin) plate elements (see
Zienkiewicz and Taylor (2005)). In particular, the performance of the element reduces as the
geometry of the plate becomes thin, and this phenomenon is more apparent for the plate with
clamped edges than for the simply supported one. Nevertheless, in both cases convergence
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is guaranteed upon mesh refinement. It is to note that, for high L/h ratios, the structural
response reaches the solution predicted by the thin (Love-Kirchhoff) plate theory (see Taylor
and Govindjee (2004)). This can be explained by the fact that, as for the Reissner-Mindlin
formulation, the limit of thin geometries plays the role of an internal kinematical constraint, for
which the transverse shear deformations tend to vanish. Moreover, due to the symmetry of the
problem and the constitutive law considered, the torsional response is symmetric in the plate
directions. These two conditions allow to retrieve the kinematics of a thin plate, in the limit of
L/h→∞.

9.00E-04

1.00E-03

1.10E-03

1.20E-03

1.30E-03

1.40E-03

1.50E-03

1.60E-03

10 100 1000 10000

4x4 FE
8x8 FE
16x16 FE
32x32 FE
thin plate solution

3.70E-03

3.80E-03

3.90E-03

4.00E-03

4.10E-03

4.20E-03

4.30E-03

4.40E-03

10 100 1000 10000

4x4 FE
8x8 FE
16x16 FE
32x32 FE
thin plate solution

Figure 3.10: Normalised central deflection versus length-to-thickness ratio for given meshes.
Left: simply supported plate. Right: clamped-edge plate.

In Appendix C.5 2 we perform an additional test in order to investigate the performance of
the presented element in test configurations involving its response to bending and torsion. The
test may be also found in Jabareen and Rubin (2008). It was suggested by Professor M.Rubin
(private communication) as a valuable test in the validation of plate elements (see also Babuška
and Scapolla (1989)).

3.6.3 Dispersion functions

We consider a narrow infinite strip of Cosserat material in the x2-direction, invariant in the x1
and x3 directions. The flexural problem of this one-dimensional configuration is governed by
the following PDE (Eq.(3.12)):

τ32,2 − ρü3 = 0
µ12,2 + τ32 − ρI1ω̈1 = 0. (3.50)

By using the definition of the deformation measures (Eqs.(3.1)-(3.2)) and the constitutive rela-
tions (Eq.(3.20)) one obtains:

F 3232[u3,2 − ω1],2 − ρü3 = 0

D1212
f ω1,22 + F 3232 [u3,2 − ω1]− ρI11ω̈1 = 0. (3.51)

2This is an additional Appendix that is absent from Godio et al. (2015a).
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which has indeed the same structure of that governing the free-vibrations of a Timoshenko
beam. Setting:

u3 = Aei(κx2+νt)

ω1 = Bei(κx2+νt), (3.52)

in which κ is the wave number, ν denotes the angular frequency, and A, B are imaginary
constants and by substituting Eq.(3.52) into Eq.(3.51), we obtain, in matrix notation:[

−F 3232κ2 + ρν2 −iF 3232κ
iF 3232κ −F 3232 −D1212

f κ2 + I1ρν
2

] [
A
B

]
=
[
0
0

]
(3.53)

The above system admits non-trivial solutions only when:

κ4 −
(
ρI11
D1212
f

+
ρD1212

f

F 3232

)
κ2ν2 − ρ

D1212
f

ν2 + ρ2I11
F 3232D1212

f

ν4 = 0. (3.54)

The roots of Eq.(3.54) are called dispersion relations and they can be expressed in a form similar
to de Borst and Sluys (1991) as follows:

ν1,2 (κ) =

√√√√− β (k)
2α (k) ±

√[
β (k)
2α (k)

]2
− γ (k)
α (k) (3.55)

where

α (κ) = ρ2I1

β (κ) = −
(
ρκ2I1F

3232 +D1212
f ρκ2 + F 3232ρ

)
γ (κ) = D1212

f F 3232κ4 (3.56)

Similar to the Timoshenko beam theory, the dispersion relations reveal the two basic oscillation
modes of the system. With reference to Figure 3.11 we have: mode 1, the micro-rotation mode,
describing the pure bending shape, and mode 2, the shear deformation mode, representing a
shear strain state. The superposition of such modes gives the flexural response of the beam.

The membrane problem of the aforementioned one-dimensional Cosserat configuration is
governed by the following PDE:

τ22,2 − ρü2 = 0. (3.57)

By using again Eqs.(3.1)-(3.2) and (3.19), one can rewrite the above equation as:

A2222u2,22 − ρü2 = 0. (3.58)

Looking for a solution of the form similar to Eq.(3.52), we obtain the following linear relation:

ν3 (κ) =
√
A2222

ρ
κ, (3.59)

which is associated to a mode 3 of longitudinal waves.
For validation purposes, we consider as illustrative example a simply supported beam of

length L. In such case, the resulting wave numbers are:

κn = nπ

L
, with n = 1, 2, 3, . . . (3.60)
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Figure 3.11: Dispersion relations for a one-dimensional Cosserat flexural problem: micro-
rotation mode ν1 and shear strain mode ν2.

corresponding to wave lengths:

λn = 2π
κn

= 2L
n
, with n = 1, 2, 3, . . . . (3.61)

Once the modal wave numbers are calculated, it is necessary to pass by the dispersion relations
(Figure 3.11) to obtain the corresponding natural frequencies.

The beam is discretised by a series of 20, 40, 80 and 160 FE over its length. Natural
frequencies are computed by a modal analysis based on Lanczos method and compared with
the analytical values indicated above. The relative error committed by the FE in representing
the longitudinal vibrations is zero even with the coarsest discretisation. The relative error
committed in the evaluation of the first eleven flexural oscillation modes is plotted in Figure 3.12,
versus the normalised wave length λn/L. A 9-digit precision is used for the wave lengths. The
relative error is defined as:

ελn = 100× λn − λFEn
λn

. (3.62)

In general, we may note how the convergence to the analytical values is achieved by the COSS8R
element upon mesh refinement. As expected, we observe that, for a given discretisation, the
relative error decreases for increasing wave lengths. Therefore, a quite fine mesh is needed
to extract the highest frequencies from the FE model: a 40-element subdivision is considered
acceptable.

3.7 Application to masonry structures
The purpose of this Section is to highlight the practical interest of the above Cosserat FE
formulation in view of engineering applications. The case of masonry panels is selected, due
to the apparent microstructure of such material. Through illustrative examples, we investigate
the performance of the COSS8R element for the prediction of the modal response of masonry
panels, considered as equivalent Cosserat plates. In particular, we focus on the specific role
played by the drilling rotations.

For the analyses, we adopt the homogenised constitutive law for Cosserat plates proposed
by Stefanou et al. (2008). This model is derived by identification of a periodic lattice made of
regular rigid building blocks with an equivalent 3D Cosserat continuum. The resulting model
is an equivalent micropolar plate with orthotropic properties, which accounts for both the in-
and the out-of-plane deformation of masonry in the dynamic regime. For the expression of the
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Figure 3.12: Relative error committed in the evaluation of the first eleven flexural wave lengths.

matrices for the constitutive laws and the inertial terms, the reader is referred to the original
work (Stefanou et al., 2008).
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Figure 3.13: The three simulated masonry panels modelled with DE and with equivalent
Cosserat plates by the COSS8R element: notation, boundary conditions and aspect ratios
AR = B/A.

Modal analyses are carried out on plates having 3 different aspect ratios AR = B/A (see
Figure 3.13). For each of these three configurations, several simulations are launched by in-
creasing the number of blocks Nb that compose the panels in both the horizontal and the
vertical direction. This operation is done simultaneously, so that, for every given simulation,
the panel’s aspect ratio is kept constant and equal to the blocks’ aspect ratio: B/A = b/a. The
scale ratio, that is defined herein as the ratio between the size of the blocks and the size of
the panel, decreases with the inverse of the number of blocks disposed in each direction, i.e.
a/A = b/B = 1/Nb. On the contrary, the length-to-thickness ratio (representing the slenderness
of the panel) increases as B/d = Nbb/d (the thickness of the panel is kept constant). This is
exactly equivalent with keeping fixed the overall size of the panel and reducing the size of the
blocks, without varying their shape.
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3.7.1 Comparison with Discrete Elements solution

The Cosserat homogenised constitutive law for masonry Stefanou et al. (2008) is implemented
in the COSS8R element and incorporated in Abaqus through the subroutine UEL. The results
produced by FE are compared with those obtained from the use a Discrete Elements (DE)
analogue model. This latter is created by means of the numerical package 3DEC (Itasca Con-
sulting Group 2013, Cundall (1988)). The analogue DE model consists in an assemblage of rigid
blocks, which are disposed as presented in Figure 3.13 The blocks interact with the adjacent
blocks through linear elastic interfaces, that are governed by the same coefficients used in the
homogenisation model considered in Stefanou et al. (2008). In this way, the same assumptions
are made as far as it concerns the lattice studied by Stefanou et al. (2008), and, consequently,
no calibration is needed between the DE and Cosserat FE model.

Modal analyses are carried out on the analogue DE model using the same strategy as de-
scribed above for the FE model: the number of blocks is progressively increased, while the
thickness of the assembled masonry panel is kept constant. It is worth mentioning that, ac-
cording to Lemos (2007a), a large number of contact-points are required across the thickness
of the panel in order to obtain an accurate representation of the out-of-plane behaviour with
the DE model. This remarkably increases the calculation cost of the DE model, to FE’s advan-
tage, for which a 8x8-FE discretisation is considered sufficient after having performed a mesh
convergence analysis (see Section 3.6.3).

The first in-plane and the first two out-of-plane modes, corresponding respectively to shear,
bending and torsion oscillation modes are extracted from the COSS8R (Abaqus) and the DE
analogue model (3DEC). The natural frequencies for each mode are compared in Figure 3.14-
Figure 3.16 in function of the number of bundling blocks Nb composing the panel in both
directions (Figure 3.13). We observe that the frequencies provided by FE are slightly lower
than those produced by DE, and that, for increasing number of blocks, DE and FE converge.

3.7.2 The role of drilling rotations

In Fig. 17 we present the percentage of the modal effective mass related to the first in-plane
deformation mode of the masonry panels. The modal effective mass associated to the horizon-
tal and the vertical translations u1, u2 is computed over the element in the following manner
(Simulia 2010):

M̄1 =

(
Ūm

t
Mm∆1

)2

Ūm
t
MmŪm

, M̄1 =

(
Ūm

t
Mm∆2

)2

Ūm
t
MmŪm

. (3.63)

The present Cosserat formulation also allows the calculation of the modal effective moment of
inertia over each finite element. This effective inertia is associated to the drilling rotations of
the plate ω3, through the expression:

J̄3 =

(
Ω̄m

tΘm∆3
)2

Ω̄m
tΘmΩ̄m

. (3.64)

In the above, Ūm and Ω̄m denote the in-plane nodal translations and rotations composing
the eigenvector associated to the oscillation mode considered. The element mass sub-matrices
are calculated according to Eq.(3.41). The vectors ∆i give the response of every DOF of the
element to a unitary motion applied in the i-th direction, which consists in a displacement (for
i = 1, 2,) and in an axis rotation (for i = 3). Note that the modal effective masses M̄1, M̄2
and the moment of inertia J̄3 are computed by Abaqus for the whole element discretisation. In
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Figure 3.17 we present the effective mass and inertia moment normalized, respectively, by the
total mass MTOT and the total in-plane moment of inertia JTOT of the plate:

MTOT = ρABd = ρN2
b abd

JTOT = MTOT
12 ρ

(
A2 +B2

)
d = MTOT

12 ρN2
b

(
a2 + b2

)
d.

We observe that the amount of the modal inertia that is taken by the drilling rotations
for the first in-plane mode increases remarkably with the aspect ratio of the panel and with
elongated blocks. In particular, for aspect ratios higher than the unit, this quantity amounts to
approximately 50% of the total rotary inertia (see Fig. 17, AR = 1.50). The rest of the effective
modal mass (until 100%) is covered by other higher frequency membrane modes that are not
examined herein. This suggests that the drilling rotations can have a significant participation
in the inertial response of masonry panels.

3.8 Conclusions

Nowadays Cosserat Finite Elements find numerous applications in mechanics and engineering.
However, the details of the FE formulation are partially exposed in literature or not presented
at all, and its performance is seldom investigated. Therefore, it is hard to assess the chosen
formulation and to extend its applicability to other problems.

In this paper, a Cosserat dynamic Finite Element formulation for elastic plates has been
presented and investigated in a detailed manner. In particular, a quadrilateral element with
quadratic interpolation functions for both the displacement and the rotational fields has been
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proposed and validated through adequate patch tests and benchmarks. It has been demon-
strated how, due to the non-symmetry of the stress tensor and the drilling rotation that is
inherent to the micropolar continuum, this element has advantageous computational properties
when compared to classical formulations. Local matrix deficiencies are not detected in the case
of reduced integration, without the use of hourglass control techniques. Cosserat continuum
introduces in a physical way the stiffness associated to the drilling rotations, which prevents the
hourglass modes to occur and makes the presented formulation suitable for the assemblage of
shell structures. The performance of the element in representing the bending behaviour in the
limit of thin geometries has been also studied, showing a quite good performance against the
shear locking phenomenon. The element has been then validated under dynamic conditions.
Wave dispersion has been studied with respect to a Cosserat one-dimensional configuration.
The comparison between the results of the numerical model against the theoretical solution has
demonstrated the precision of the formulation in modelling in-plane and out-of-plane modal
shapes with high frequencies.

The presented Cosserat Finite Element formulation is very general and allows various con-
stitutive laws for materials with micro-structure to be implemented. In order to highlight the
practical interest of the formulation, an application has been given, in which a masonry panel
made of rigid building blocks with deformable interfaces has been modelled through the vali-
dated finite element. The in- and out-of-plane modal response of masonry has been considered,
by focusing on the shearing, flexural and torsional oscillation modes of the panel. The role of
the micro-structure has been also studied, by modelling panels with various aspect ratios and
slenderness. The results from the homogenised Cosserat Finite Element analyses have been
juxtaposed to those obtained by the use of an analogue Discrete Elements model, and a good
agreement has been found. The role of the drilling rotations has been then assessed, showing
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Figure 3.17: Percentage of modal effective masses and moment of inertia for the first in-plane
mode of the masonry panel, versus the number of building blocks composing the panel in both
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displacements. The modal moment of inertia J̄3 is associated to the drilling rotations.

their significant participation to the inertial response of the masonry panels against in-plane
seismic excitations.
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Chapter 4

Finite element formulation for
Cosserat plates: plasticity

This Chapter reports the extension and the validation of the finite element presented in the
previous Chapter to the elastoplastic framework. The theory of the multisurface plasticity is im-
plemented for Cosserat plate models. The implementation of this theory is based on a projection
algorithm. An important limitation of the classical implementation of the algorithm prevents its
use in an efficient way. This limitation is discussed and a solution strategy is proposed. Numer-
ous benchmarks show the element performance in problems involving multiple plastic surfaces,
perfect plasticity and strain localisation.
This Chapter is a published paper. Its reference is Godio et al. (2016).
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Summary

The macroscopic behaviour of materials is affected by their inner micro-structure. Elemen-
tary considerations based on the arrangement, and the physical and mechanical features of the
micro-structure may lead to the formulation of elastoplastic constitutive laws, involving hard-
ening/softening mechanisms and non-associative properties. In order to model the non-linear
behaviour of micro-structured materials, the classical theory of time-independent multisurface
plasticity is herein extended to Cosserat continua. The account for plastic relative strains and
curvatures is made by means of a robust quadratic-convergent projection algorithm, specifically
formulated for non-associative and hardening/softening plasticity. Some important limitations
of the classical implementation of the algorithm for multisurface plasticity prevent its appli-
cation for any plastic surfaces and loading conditions. These limitations are addressed in this
paper, and a robust solution strategy based on the Singular Value Decomposition technique is
proposed. The projection algorithm is then implemented into a finite element formulation for
Cosserat continua. A specific finite element is considered, developed for micropolar plates. The
element is validated through illustrative examples and applications, showing able performance.
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4.1 Introduction

Trabecular bones, wood, soils, metals and many other materials existing in nature are provided
with an internal micro-structure which is apparent at specific observation scales. The macro-
scopic response of these materials is therefore affected by the geometrical (characteristic length)
and mechanical internal properties of their micro-structure. This holds true for man-made
materials and structures such as composites, grid-works, masonry, etc.

An efficient and elegant way to model the overall response of such materials without the
need to resort to non-local theories is represented by the Cosserat continuum. With respect
to the classical (Cauchy) continuum, the Cosserat (or micropolar) continuum has independent
rotational degrees of freedom attached to the material particle. This confers an internal length
to the medium, and makes it suitable for the description of micro-structured materials. The
additional degrees of freedom also provide a larger set of boundary conditions for the medium.
It is well known how the presence of an internal length and the use of additional boundary
conditions may affect the material response, especially in the non-linear range. Boundary
layers and regions with concentrated irreversible deformation such as shear bands are controlled
by internal material lengths (Muhlhaus and Vardoulakis, 1987; Vardoulakis and Sulem, 1995;
Sulem et al., 2011). The use of the Cosserat continuum is hence crucial to model complex test
configurations of micro-structured materials.

The use of Cosserat continua for representing the macroscopic behaviour of micro-structured
materials is well assessed nowadays, at least for what concerns the elastic behaviour (Anderson
and Lakes, 1994; Forest and Sab, 1998; Stefanou et al., 2008). Most of the models proposed
in the literature are devoted to the formulation of homogenization schemes, i.e. mathematical
or numerical procedures through which one can retrieve the micropolar properties of the ma-
terial by starting from those of its micro-structure. However, there is still a lack of knowledge
concerning the modeling of the inelastic behaviour of these materials. In the non-linear range,
irreversible, dissipative, time-dependent phenomena relative to the evolution and damage of the
material’s inner structure occur. In this context, the formulation of models based on micropolar
continua seems complicated, if not unfeasible. However, based on elementary considerations and
often motivated by micromechanical observations (such as friction and interlocking phenomena
in soils, or creep phenomena in cement materials), researchers may be led to the formulation of
extended constitutive models for inelasticity. It has been the case, for instance, for the gener-
alised J2-plasticity model for soils (Muhlhaus and Vardoulakis, 1987), which has made possible
the study and the understanding of complex phenomena such as the localisation of deformation
in micro-structured materials (Steinmann and Willam, 1991; de Borst and Sluys, 1991).

In this paper, a numerical solution procedure for the modeling of the elastoplastic behaviour
of micro-structured materials is presented in the framework of the Cosserat continuum. Notice
that problems related to the non-linear material behaviour always require the use of numerical
tools. Concerning plasticity, some have gained recent attention. For instance, one may mention
the use of mathematical programming techniques for the solution of incremental elastoplastic
problems (Krabbenhøft et al., 2007a,b). Those techniques have been also employed for the
solution of limit analysis problems (Makrodimopoulos and Martin, 2006; Bleyer and de Buhan,
2013). The numerical procedure adopted in this paper is based on a projection algorithm,
originally formulated for classical hardening-plastic materials by Simo and Taylor (1985). The
projection algorithm is a robust quadratic-convergent algorithm which is widely used in finite
elements for the solution of elastoplastic boundary value problems. The algorithm is based
on a return map, which solves the incremental elastoplastic problem at every increment of the
load-path (and point of the model), by assuring the respect of the consistency requirement.
The solution will be then found at the projection point of the given increment, falling on the
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boundary of the elastic domain of the material (Simo and Taylor, 1985). Herein, we made use
of the time-independent version of the projection algorithm. In other words, viscoplastic effects
are not considered. In this setting, the most general version of the algorithm for the multisurface
plasticity theory is adopted (Simo et al., 1988).

The theory of time-independent multisurface strain hardening plasticity is very general (Simo
and Hughes, 1998). It allows to define multiple sets of plastic surfaces, non-associated plastic
potentials, and softening/hardening laws of every kind. When interested in computing not only
the ultimate (or limit) load, but the whole material response until failure, this theory gives
great flexibility to the user in: a) prescribing failure criteria and b) choosing appropriate plastic
evolution laws for the material. Nevertheless, the numerical implementation of the multisurface
plasticity theory in finite elements suffers from important limitations, which prevent its appli-
cation for any plastic surfaces and loading conditions. These limitations are explored in this
paper, and a solution strategy based on the use of the Singular Value Decomposition (SVD)
technique is proposed. This represent an important improvement in the numerical implemen-
tation of the algorithm for multisurface plasticity that can be used not only in the framework
of the Cosserat continuum theory, but also in more classical finite element formulations.

In this paper, the theory of multisurface plasticity is adapted for Cosserat continua. The
onset and the evolution of irreversible deformations within the micro-structured material is here
detected in terms of plastic relative strains and curvatures. It is important to note that the
use of projection algorithms for plasticity has been already encountered in the frame of the
Cosserat continuum theory. Most of the existing works were devoted to the study of strain
localisation. As known, the Cosserat continuum provides a natural regularization effect versus
the pathological mesh-size-dependency intrinsic to classical numerical formulations. To this
purpose, one can see the works of de Borst and co-workers (1991; 1991; 1991; 1993), but also
Papanastasiou and Vardoulakis (1992); Li and Tang (2005); Neff et al. (2007), among others.
Always in the frame of the Cosserat continuuum theory, Addessi (2014) proposed a coupled
damage-plastic model for micro-structured materials showing brittle macroscopic behaviour. In
that case, a projection algorithm was used to integrate simultaneously the evolution of the plastic
and damage variables, see also Steinmann (1995). Another use of the projection algorithm is
found in Khoei and Karimi (2008), where an elastoplastic Cosserat model was incorporated into
an extended finite element (X-FEM) formulation for the propagation of cracks. Nevertheless, in
the aforementioned works it has always been considered a single plastic surface. In the present
paper, the novelty is to consider a set of plastic surfaces which are multiple in number, of general
form and intersecting. One example of Cosserat multisurface plasticity has been given by Godio
et al. (2014), where an application to masonry structures is proposed as an extension to more
classical approaches based on the Cauchy continuum (Stefanou et al., 2015).

The multisurface plasticity theory is here implemented into a Cosserat finite element and
therefore incorporated within an implicit time-integration scheme for the non-linear analysis of
micro-structured materials. A Newton-Raphson iterative method is employed for the solution
of the elastoplastic problem both at the local level, i.e. on the integration point of the element,
and at the global (element) level. At the local level, the Newton’s method is used in conjunction
with the SVD matrix inversion technique. This enables the projection algorithm to attain all
the features of the multisurface plasticity theory, i.e. the definition of an unlimited number of
plastic surfaces and potentials of general form. At the global level, the method requires the
implementation of the algorithmic version of the elastoplastic stiffness tangent matrix in order
to assess the full rate of convergence. The finite element that we use is a 8-node quadrilat-
eral, that accommodates small displacements and small rotations at every node (Godio et al.,
2015a). The element is formulated for a Cosserat (or micropolar) plate model (Eringen, 1967;
Green et al., 1968). Such model enables the analysis of materials and structures with an inner
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micro-structure mainly developed in two directions. Although this may certainly represent a
simplification with respect to the three-dimensional case, a plate model allows the representa-
tion of complex spatial configurations in a quite refined way, with the advantage of being much
less computational demanding. To this purpose, notice that the plate element is stress resultant,
which means that no integration over the thickness is made. Moreover, small deflections and
small angle approximations are involved in the formulation. In this sense, we are not dealing
with a geometrically exact plate formulation.

The paper is structured as follows. Section 4.2 provides basic background in Cosserat (or
micropolar) plate models. In Section 4.3 we present the multisurface plasticity theory for
micro-structured materials within the frame of the Cosserat continuum. In this case, we will
make use of general notations. In Section 4.4 the projection algorithm is described, and details
on the implementation of the plasticity theory in finite elements are provided in Section 4.5.
Finally in Section 4.6 we focus more specifically on the micropolar plate element. We present
numerical tests for the assessment of the projection algorithm accuracy and benchmarks for the
validation and the actual use of the element. These benchmarks concern both the in-plane (or
membrane) and the out-of-plane (or flexural) behaviour of the element. It is worth noticing
that numerical benchmarks for Cosserat (multisurface) plasticity are nearly absent in literature.
Those proposed in Section 4.6 prove then useful for the validation of all kind of algorithms and
finite elements formulated for micropolar plasticity. The benchmarks for the in-plane behaviour,
in particular, apply for 2D Cosserat continua.

Matrix notation is adopted throughout the paper. We use symbol d[ ] to indicate an
increment between two successive load steps, and ˙[ ] to denote time derivative. Symbol ∂V [ ]
is used for vector derivative.

4.2 The Cosserat (or micropolar) plate model
The Cosserat continuum (or micropolar) theory differs from the classical theory of the Cauchy
continuum in two aspects (Eringen, 1999). First, the couple-stress is completely absent in the
Cauchy continuum. Second, in the Cosserat continuum the stress tensor is not symmetric, as
consequence of the couple-stresses. Figure 4.1 shows the stresses and couple-stresses featuring
in a micropolar plate model (Godio et al., 2015a; Eringen, 1967). The former are assembled in
the vector τ and the latter are contained into the polar vector µ:

τ =
[
τ11 τ22 τ12 τ21 τ13 τ31 τ23 τ32

]t
µ =

[
µ11 µ22 µ12 µ21 µ31 µ32

]t
. (4.1)

As far as it concerns the membrane (or in-plane) behaviour (Figure 4.1-left), one recognizes:
the in-plane tractions (τ11, τ22), the membrane shears (τ12, τ21) and the in-plane couple-stresses
(µ31, µ32). These stress measures are those of 2D Cosserat continuum. In addition one has
the components controlling the flexural (or out-of-plane) behaviour of the plate (Figure 4.1-
right), namely: the torsions (µ11, µ22), the out-of-plane flexions (µ12, µ21), the transverse shears
(τ31, τ32), and the longitudinal shears (τ13, τ23). Due to the presence of transverse shears, the
micropolar plate model can be regarded as a thick plate theory. Its convergence towards the
thin plate solution has been numerically assessed by Godio et al. (2015a).

The associated deformation measures of the plate are denoted with γ and κ and are:

γ =
[
γ11 γ22 γ12 γ21 γ13 γ31 γ23 γ32

]t
κ =

[
κ11 κ22 κ12 κ21 κ31 κ32

]t
(4.2)
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Figure 4.1: Stresses and couple-stresses of a Cosserat plate.

In particular one has: the in-plane extensions/compressions (γ11, γ22), the membrane shear
strains (γ12, γ21) and the in-plane curvatures (κ31, κ32). Moreover, one has to take into account
the out-of-plane curvatures, as the torsion deformations (κ11, κ22) and the bending deformations
(κ12, κ21), together with the transverse and longitudinal shear strains, respectively (γ31, γ32) and
(γ13, γ23).

The deformation measures are derived from the kinematics of the plate, which consists of
3 displacements, indicated with u, and 3 rotations about the orthogonal axis, called Cosserat
rotations ωc:

u =
[
u1 u2 u3

]t
ωc =

[
ωc1 ωc2 ωc3

]t
. (4.3)

For plates under small deflections and rotations, one defines the relative strain vector γ as
(Steinmann and Willam, 1991):

γ =∇u+ e · ωc, γij = ui,j + eijkω
c
k (4.4)

and the curvature vector as:

κ =∇ωc, κij = ωci,j . (4.5)

In these expressions, ∇ is the gradient operator and e (or eijk) is the permutation symbol.
Dealing with finite elements, it is useful to express the balance equations in weak form.

Herein, we make use of the virtual work principle on a region of the plate A and its boundary
∂A. Following the vector form introduced above and indicating a virtual variation by δ[ ], the
principle reads:

R− P −Q = 0, (4.6)

where:

R =
∫
A

(
τ tδγ + µtδκ

)
dA (4.7)

is the work of the stresses and couple-stresses,

P =
∫
A

(
btδu+ ltδωc

)
dA+

∫
∂A

(
T tδu+M tδωc

)
dA (4.8)

114



is the work done respectively by the body forces b and couples l and the traction T and moment
M on the boundary, and

Q =
∫
A

(
ρütδu+ ρω̈ctIδωc

)
dA (4.9)

is the work due to the inertial mass ρ and second order moment I.

4.3 Multisurface plasticity theory for Cosserat materials
The time-independent theory of non-smooth multisurface hardening plasticity is presented in
this section. This theory, which was formerly formulated for simple (or Cauchy) materials in its
original version (Vermeer and de Borst, 1984) and then extended for the computation of multiple
yield surfaces (Simo et al., 1988; Simo and Hughes, 1998), is here used in the framework of the
Cosserat continuum theory.

Proceeding in general fashion and adopting incremental notation, relative strains (4.4) and
curvatures (4.5) can be assembled into a general total strain vector dε, defined as follows:

dε =
[
dγ dκ

]t
. (4.10)

Similarly, the stresses and the couple-stresses can be assembled into a general stress vector dσ:

dσ =
[
dτ dµ

]t
. (4.11)

The formulation (and the implementation) of the plasticity theory for Cosserat materials is
obtained in a way similar to that followed for Cauchy materials (de Borst, 1991). By means of
the additive decomposition, the vector of the total (small) strains is divided into the elastic [ ]e
and plastic [ ]p parts:

dε = dεe + dεp. (4.12)

The elastic response of the material is governed by the general linear constitutive law, relating
stresses and couple-stresses to the elastic strain increment:

dσ = C [dε− dεp] , (4.13)

where C is the matrix of the elastic moduli. Dealing with an incremental problem, it is also
useful to express the stresses as a function of the total strains:

dσ = Cepdε (4.14)

where Cep is now the matrix of the elastoplastic tangent moduli.
The hardening/softening variables are introduced in similar way. These are defined by α,

and its dual q. The former may be considered as a deformation measure, while the latter as
a stress measure. Their relation is based on the definition of D, the matrix of the hardening
moduli:

dq = −Ddα. (4.15)

It follows the definition of generalised strains and stresses, useful for the sequel, respectively
given by the couples (ε;α) and (σ; q).
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The salient feature of the multisurface plasticity theory lies on the definition of the elastic
domain. Denoted with Eσ, the elastic domain is defined as the convex region of the generalised
stress space bounded by multiple NF plastic surfaces F β (σ; q) (Simo et al., 1988):

Eσ =
{

(σ; q) |F β (σ; q) ≤ 0, ∀β ∈ [1, . . . , NF ]
}

(4.16)

These surfaces represent the prescribed material yield loci (or yield criteria). They are smooth,
but intersect in non-smooth manner (Figure 4.2). The boundary of Eσ is:

∂Eσ =
{

(σ; q) |F β (σ; q) = 0, ∀β ∈ [1, . . . , NF ]
}
. (4.17)

τ

μ

Fβ

 
(τ,μ;q) ≤ 0

Figure 4.2: Schematic representation of the elastic domain of a Cosserat continuum. According
to the multisurface plasticity theory, it is a convex region in the generalised stress space (τ ,µ; q)
defined by multiple yield criteria.

Non-associative plasticity requires the definition of plastic potentials Gβ (σ; q), and hard-
ening/softening functions Hβ (σ; q). Through these, one formulates the equations of evolution.
On one hand, the flow rule defines the plastic strain increment:

dεp =
NF∑
β=1

λ̇β∂σG
β (σ; q) . (4.18)

On the other hand, the hardening law controls the increment of the hardening variables:

dα =
NF∑
β=1

λ̇β∂qH
β (σ; q) . (4.19)

The plastic multipliers λ̇β give the magnitude of the plastic strain increment and, by exten-
sion, that of the hardening variables. They must respect the following restrictions, namely a)
the complementary conditions:

F β (σ; q) ≤ 0, λ̇β ≥ 0, λ̇βF β (σ; q) = 0, (4.20)

and b) the consistency requirement:

λ̇βdF β (σ; q) = 0. (4.21)

The above restrictions are written for the Nact activated surfaces, with Nact ≤ NF . They allow
one to determine whether the material response to loading will be elastic or elastoplastic. In
the presence of multiple surfaces, this is a central task in the formulation of the algorithm for
plasticity. The unloading response is considered elastic, and not affected by damage (cf. Addessi
(2014)).
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4.3.1 Further notations

The multisurface plasticity theory requires, especially in its algorithmic version, a large number
of variables and indices. When used in conjunction with the Cosserat continuum theory, notation
may become quite complicated. Vector notation has already been introduced. From now on, it
is convenient to introduce the following additional notations.

The set of plastic surfaces, plastic potential and hardening/softening functions will be indi-
cated in the following vector form:

F =

 F 1

...
FNF

 , G =

 G1

...
GNF

 , H =

 H1

...
HNF

 . (4.22)

In turn, functions F ,G and H will have gradients given by:

∇σF =
[
∂σF

1 . . . ∂σF
NF
]

=

∂τ11F
1 . . . ∂τ11F

NF

...
...

∂µ32F
1 . . . ∂µ32F

NF

 (4.23)

∇σG =
[
∂σG

1 . . . ∂σG
NF
]

=

∂τ11G
1 . . . ∂τ11G

NF

...
...

∂µ32G
1 . . . ∂µ32G

NF

 , (4.24)

and:

∇qF =
[
∂qF

1 . . . ∂qF
NF
]

=


∂q1F

1 . . . ∂q1F
NF

...
...

∂qNqF
1 . . . ∂qNqF

NF

 (4.25)

∇qH =
[
∂qH

1 . . . ∂qH
NF
]

=


∂q1H

1 . . . ∂q1H
NF

...
...

∂qNqH
1 . . . ∂qNqH

NF

 . (4.26)

Second derivatives of G and H will be the third-order tensors:

∇2
σσG =

[
∇2
σσG

1 . . . ∇2
σσG

NF
]

∇2
qqH =

[
∇2
qqH

1 . . . ∇2
qqH

NF
]
. (4.27)

Similarly, the plastic multipliers will be assembled into the following vector:

Λ̇ =


λ̇1

...
λ̇NF

 . (4.28)

With a notation of this type, expressions for multisurfaces plasticity can be recast in a simplified
form. For example, the flow rule (Eq.(4.18)) reads:

dεp =∇σG · Λ̇.
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4.4 Solution algorithm
4.4.1 Solution algorithm for multisurface plasticity

The elastoplastic problem is incremental, since the elastoplastic solution is in general stress-path
dependent. Therefore an iterative solution scheme must be introduced. Herein, an implicit
(backward-Euler) Closest-Point-Projection (CPP) solution algorithm is adopted.

The CPP algorithm (Simo and Taylor, 1985) is probably the most employed method in
elastoplasticity. Its use for the multisurface plasticity (Simo et al., 1988) is based on a return
map, which solves the incremental elastoplastic problem (given by Eqs.(4.12),(4.13),(4.15),(4.18)
and (4.19)) and fulfills the restrictions (4.20)-(4.21). In this algorithm, the plastic multipliers
play an essential role, since they control the loading/unloading conditions and allow to determine
the set of activated plastic surfaces by means of a backward procedure. According to Simo
et al. (1988), two procedures may be used for the determination of the set of active surfaces (see
also Simo and Hughes (1998), Ch.V, p.212). Procedure 1 consists in solving the incremental
elastoplastic problem by holding fixed the set of active surfaces during the iterative process
and checking Eq.(4.20) then. In Procedure 2, the set of active surfaces is updated during the
iterative process, by enforcing Eq.(4.20) at every iteration. Herein we make use of the Procedure
1. It is in fact more robust than the Procedure 2, even though it is slightly more demanding
from a computational point of view (Simo and Kennedy, 1992; Dujc and Brank, 2012).

The algorithm consists of the following steps (Figure 4.3):

(1) Increments of the displacement dun+1 and Cosserat rotation fields dωcn+1 are given for
the generic load step (n + 1). These fields are contained in a single vector dsn+1.

(2) Total strain increments dεn+1 (relative strains and curvatures) are computed through
Eq.(4.4)-(4.5).

(3) An elastic solution is predicted as trial [ ]T solution:

εe Tn+1 = εen + dεn+1

εp Tn+1 = εpn
αTn+1 = αn

σTn+1 = Cεe Tn+1
qTn+1 = −DαTn+1

F T
n+1 = F

(
σTn+1; qTn+1

)
.

(4.29)

In this phase all the NF plastic surfaces F β can be potentially activated (Nact = NF ).

(4) Plastic surfaces are checked (yield criteria).

(5) If the trial state
(
σTn+1; qTn+1

)
falls inside the elastic domain Eσ, i.e.:

F β ≤ 0,∀β ∈ [1, . . . , NF ] , (4.30)

then the trial solution is retained as the solution for the step (elastic increment).

(6) If at least one of the surfaces is activated, i.e.:

F β > 0, ∀β ∈ [1, . . . , Nact] , (4.31)

then an elastoplastic increment occurs, and the trial state needs to be corrected. A
notable feature of the multisurface plasticity theory is that, when several surfaces are
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activated, condition (4.31) does not necessarily imply that λ̇β > 0 for all the activated
surfaces (Eq.(4.20)-2). Procedure 1 consists then in a) solving the incremental elastoplastic
problem, here reported as:

σn+1 = C
[
εn+1 − εpn+1

]
qn+1 = −Dαn+1

εpn+1 = εpn +∇σGn+1 · Λ̇n+1

αn+1 = αn +∇qHn+1 · Λ̇n+1

F n+1 = 0,

(4.32)

by holding fixed the set of the activated surfaces, and b) checking the solution by testing
condition (4.20)-2.

(7) Surfaces for which condition (4.20)-2 is not satisfied (non-positive plastic multiplier) are
dropped from the set of the activated plastic surfaces and a new trial solution is demanded:
(3)← (7), with Nact ≤ NF .

(8) If condition (4.20)-2 is satisfied for all the surfaces, the algorithm has converged to the
elastoplastic solution.

4.4.2 Implementation of the Newton-Raphson method in the CPP algorithm

The elastoplastic problem (4.32) is solved at every increment (n) by employing a classical (or
full) Newton-Raphson iterative method. Generally speaking, the method consists in, given a
set of equations of the type r (ζ) − p = 0, solving the equations iteratively, by replacing them
at every increment with the linear approximation:

r(k+1) − p ≈ r(k) + ∂ζr(k)
(
ζ(k+1) − ζ(k)

)
− p = 0. (4.33)

In the above, r(k) = r(ζ(k)) is the residual vector and ∂ζr(k) is the Jacobian matrix of r(k).
Both quantities are known at the increment (k) and, since p is constant, the solution for the
increment (k + 1) is simply given by:

ζ(k+1) = ζ(k) −
[
∂ζr

(k)
]−1 [

r(k) − p
]
. (4.34)

Solution of the starting equations is then found when the norm of the updated residual becomes
sufficiently small: ‖r(k+1) − p‖ < TOLNR. In general, the method converges after a number of
iterations which depends on the type of equations being considered.

Referring to the CPP algorithm presented in Section 4.4.1, the residual vector for the incre-
mental elastoplastic problem (4.32) writes:

r(k) =

C
−1σ

(k)
n+1 +∇σG(k)

n+1 · Λ̇
(k)
n+1

F
(k)
n+1

D−1q
(k)
n+1 +∇qH(k)

n+1 · Λ̇
(k)
n+1

 , (4.35)

where G(k)
n+1 = G

(
σ

(k)
n+1; q(k)

n+1

)
, while the constant vector p is given by:

p =

C−1σTn+1
0

D−1qTn+1

 . (4.36)
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Figure 4.3: Illustration of the Closest-Point-Projection (CPP) algorithm adopted within the
multisurface plasticity theory for Cosserat materials.

Notice that the equation r(k)−p = 0 corresponds exactly with Eqs.(4.32). In particular, the first
and the third term of Eq.(4.35)-(4.36) are obtained by replacing the set of generalised deforma-
tions (εn+1;αn+1) in the Eqs.(4.32) with the trial state of the generalised stresses

(
σTn+1; qTn+1

)
(Eq.(4.29)). The Jacobian matrix for the incremental elastoplastic problem then writes:

∂ζr
(k) =


C−1 +∇2

σσG
(k)
n+1 · Λ̇

(k)
n+1 ∇σG

(k)
n+1 ∇2

σqG
(k)
n+1 · Λ̇

(k)
n+1

∇σF (k)t
n+1 0 ∇qF (k)t

n+1

∇2
qσH

(k)
n+1 · Λ̇

(k)
n+1 ∇qH(k)

n+1 D−1 +∇2
qqH

(k)
n+1 · Λ̇

(k)
n+1

 . (4.37)

It is important to note that in case of perfect plasticity one can to consider the submatrix
formed by taking the block of the first two entries of the matrix (4.37). Similarly, the vectors
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r(k) and p are reduced to their first two terms. The solution for the (k)-th iteration is given by:

ζ(k+1) =


σ

(k+1)
n+1

Λ̇(k+1)
n+1
q

(k+1)
n+1

 . (4.38)

The Newton-Raphson method is the core of the CPP algorithm: it assures the existence
and the accuracy of the elastoplastic solution at each increment (n). The Newton’s scheme is
initialized at k = 0 by injecting the trial state (4.29) into the linearized system (4.33), namely:

ζ(0) =

σTn+1
0
qTn+1

 , (4.39)

and:

[
r(0) − p

]
=

 0
F

(0)
n+1
0

 , (4.40)

with F (0)
n+1 > 0 the vector of the activated surfaces. After this first iteration, the iterative

process starts. At each iteration (k), the solution vector for the (k+ 1)-th iteration is computed
according to Eq.(4.34). The residual vector (4.35) is next updated, and its norm is finally
checked. Usual conditions for assessing method’s convergence towards the elastoplastic solution
are (Simo et al., 1988):

‖F (k+1)
n+1 ‖ < TOL1

‖r(k+1) − p‖ < TOL2. (4.41)

At that point, the solution of the elastoplastic problem (4.32) at the increment (n) is presumably
found. According to the Procedure 1 (Figure 4.3), the CPP algorithm requires the plastic
multipliers to be all positive. If this condition is respected, the elastoplastic solution given by
the Newton’s method is retained and the iterative scheme is updated for the (n+1)-th successive
increment. If not, the procedure is reinitialized within the same increment, but with a new,
updated trial state (Figure 4.3).

It is to note that, generally, the convergence of this method to the solution is not always
assured but if the first-iteration (or trial) vector ζ(0)

n+1 does not differ in norm from the expected
solution. This could suggests the user to subdivide the analysis in a number of sufficiently small
steps.

LIMITATIONS OF THE NEWTON-RAPHSON METHOD IN THE CPP ALGO-
RITHM

When used within the CPP algorithm, the Newton-Rapshon method has some limitations. The
limitations derive from the definition of the elastic domain (Eq.(4.16)). According to Simo and
Hughes (1998), this domain has finite dimension:

dim {Eσ} = Nσ +Nq <∞. (4.42)

It follows that each point of the generalised stress space (σ; q) belonging to the boundary of
the elastic domain ∂Eσ can be intercepted by at most (Nσ +Nq) independent plastic surfaces,
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i.e. surfaces leading to non-redundant constraints (Simo and Hughes, 1998). In fact, if one of
these surfaces was not independent with the others, the normal vectors ∂σF β and ∂qF β would
become linearly dependent. The consequence thereof is that matrices ∇σF and ∇qF and the
Jacobian matrix (4.37) would become singular. In this case, the use of standard matrix inversion
techniques in Eq.(4.34) would be ineffective and convergence of the Newton’s iterative process
would not be achieved.

Figure 4.4 shows two distinct configurations leading to singular Jacobian matrix. For illus-
tration purposes, perfect plasticity is chosen and only two components of the stress tensor are
kept, i.e. (σ11, σ22). In this case, Nσ = 2, Nq = 0. In the first example (Figure 4.4-left), 3 sur-
faces enclose the elastic domain. Therefore NF > (Nσ +Nq). Consequently, the projection of
the trial stress dσT at the point of intersection would cause Jacobian matrix singularity at the
first Newton’s iteration. In the second example (Figure 4.4-right), only 2 surfaces are defined
(NF = 2), but the normals to the surfaces are pointwise coincident. In this case the criteria
are clearly redundant. The Jacobian matrix would be then rank deficient, and the Newton’s
process would newly stop.

σ
11

σ
22 F1

F2

F3

dσT

Redundant plastic surfaces

F1

 
= F2

 

dσT

σ
11

σ
22

Coincident plastic surfaces

Figure 4.4: Two possible configurations for which Jacobian matrix is singular for perfect plas-
ticity.

Both examples are admissible from a physical point of view, and the CPP algorithm should
not fail in cases like these. In order to overcome this numerical inefficiency intrinsic to the
Newton-Raphson method, and to enable the projection algorithm to fully attain all the features
of the multisurface plasticity theory, the Singular Value Decomposition (SVD) technique is
adopted in the present formulation for the inversion of the Jacobian matrix in Eq.(4.34). This
technique is general and robust. In this context, it allows the definition of a theoretically
unmlimited number of yield criteria, plastic potentials and hardening/softening laws of every
form. The next Section briefly outlines the SVD technique.

IMPLEMENTATION OF THE SINGULAR VALUE DECOMPOSITION TECH-
NIQUE IN THE NETWTON-RAPHSON METHOD FOR THE CCP ALGO-
RITHM

The Singular Value Decomposition (or SVD) is a technique allowing to compute the pseudo-
inverse of a rectangular matrix. Here we use the algorithm based on this technique, presented
in Press et al. (1992).

The method consists in factorizing a generic rectangular [M ×N ] matrix A as the inner
product between three matrices, namely U ,V and Λ, as follows:

A = UΛV t. (4.43)
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U and V are two orthogonal [M ×M ] and [N ×N ] square matrices, respectively. The columns
of U are computed as the eigenvectors of the inner product AAt, whereas the columns of V are
computed as the eigenvectors of the product AtA. Λ is a [M ×N ] diagonal, positive definite
matrix containing ai, the non-negative singular values of A (the singular values are the square
root of the eigenvalues). Under this form, the computation of the inverse of A reduces to:

A−1 = V Λ−1U t. (4.44)

When A is non singular, i.e. its singular values are all positive, the SVD technique allows to
compute the inverse matrix A−1 as other methods do (notice however that A is rectangular).
When A is singular (or badly conditioned), some of its singular values a0

i are null (or very
close to zero). This would make the inversion of Λ (and A) impossible. In that case, the SVD
technique consists in constructing the inverse matrix Λ̂−1, by imposing the following condition:

if a0
i < TOLSV D, then

(
1/a0

i

)
= 0. (4.45)

The resultant matrixA+, indicated as the pseudo-inverse ofA, represents the the closest matrix
approximation of A−1:

A+ = V Λ̂−1
U t. (4.46)

The SVD technique has been implemented within the Newton’s iterative process for the
inversion of the Jacobian matrix (Eq.(4.34)). Cases as those depicted in Figure 4.4 can be
properly treated through this method. When the Jacobian matrix is singular, the SVD gives
its pseudo-inverse. When no singularity occurs, the SVD technique always provides an accurate
alternative to other classical inversion methods. The effect of the application of the SVD
technique on elastoplastic problems is shown in Section 4.6, by means of specific benchmarks.

4.5 Finite Element formulation
4.5.1 Element implementation

The theory of multisurface plasticity for Cosserat materials is herein incorporated into a dis-
placement and rotation-based finite element formulation. For further details on the formulation
of Cosserat finite elements of this type, the reader is referred to Providas and Kattis (2002); Zer-
vos (2008); Godio et al. (2015a). The account for plastic strains is made through the adoption
of the implicit (backward-Euler) Closest-Point-Projection algorithm and the related solution
strategies presented in Section 4.4.

Dealing with irreducible finite elements, approximations of the kinematic fields are first
needed. In the case of Cosserat element, displacement and rotational fields are interpolated
with respect to nodal translations U and Cosserat nodal rotations Ωc. This can be made,
for instance, by means of specific shape functions N and Φ, associated respectively to the
displacements and the rotations (Godio et al., 2015a). However, in order to keep the formulation
simple and general, and being in analogy to other more conventional theories, here we express
the element interpolation as:

ds = NdS, (4.47)

where s contains both the displacement u and the rotational fields ωc, and S is the vector of
the nodal degrees-of-freedom. Its increment writes:

dS =
[
dU dΩc

]t
. (4.48)
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Similarly, the increment of the total strain vector ε (Eq.(4.11)) of the element is:

dε = BdS, (4.49)

with B the element compliant matrix. With this notation, the principle of virtual work
(Eq.(4.6)) on the element of area Ae holds at the increment (n + 1):

[R (Sn+1)− P n+1]t δS = 0, (4.50)

where:

R (Sn+1) =
∫
Ae

Btσ (Sn+1) dA, P n+1 =
∫
Ae

N tfn+1dA (4.51)

are respectively the resultant vectors of the internal and the external forces f =
[
b l

]t
acting

on the element. The dynamic part of Eq.(4.6) and the work done by the tractions and moments
on the boundary are omitted.

Solution to Eq.(4.50) can be obtained for every δS and at every increment (n) through an
iterative solution procedure. This procedure is controlled at the global level, i.e. for the whole
element discretisation, and encloses that adopted for the material (Section 4.4.2), which is now
solved at the local level, i.e. at the quadrature points of the element. The majority of the
commercial codes implementing the finite element method employ for this purpose a classical
Newton-Rapshon scheme. Therefore, from the knowledge of the iteration (h), by using Eq.(4.34)
one obtains the solution vector S(h+1)

n+1 at the iteration (h + 1):

S
(h+1)
n+1 = S

(h)
n+1 −

[
∂SR

(h)
n+1

]−1 [
R

(h)
n+1 − P n+1

]
. (4.52)

Once the solution vector S(h+1)
n+1 is known, the residual vector R(h)

n+1 is also updated to (h+1)-th
iteration, and (after the assembly operation) convergence is checked at the global level. In
order to avoid confusion, in Eq.(4.52) the index (h) is used to distinguish the global Newton’s
iteration from the local one, denoted with (k) (Section 4.4.2), made at the quadrature point.

By using the chain rule along with Eqs.(4.14),(4.49) and (4.51), the Jacobian matrix in
Eq.(4.52) takes the following form:

∂SR
(h)
n+1 =

[
∂σn+1R

(h)
n+1

]
·
[
∂εn+1σ

(h)
n+1

]
·
[
∂Sn+1ε

(h)
n+1

]
=
∫
Ae

(
BtC

(h)
n+1B

)
dA = K

(h)
n+1, (4.53)

where C(h)
n+1 is the matrix of the elastoplastic tangent moduli (Eq.(4.14)), computed at the time

step (n + 1) and updated at the h-th global iteration. K(h)
n+1 is the corresponding element’s

elastoplastic tangent stiffness matrix . Its expression proves crucial in preserving the rate of
quadratic convergence that distinguishes the full Newton-Raphson method from its modified
version (Hughes, 1987; Simo and Hughes, 1998). The explicit expression of the elastoplas-
tic element stiffness matrix is derived in the next Section, in the framework of the Cosserat
multisurface plasticity theory.

4.5.2 Derivation of the elastoplastic tangent stiffness matrix for multisurface
plasticity

The peculiar aspect of finite elements based on Cosserat continuum is that both the terms
associated with the nodal translations and the nodal rotations confer rigidity to the element.
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However, in order to avoid further complexity in notation, here the derivation of the stiffness
matrix K(h)

n+1 is carried out in general form. This can make the derivation similar to that made
in other elastoplastic theories, as in the classical continuum theory (Simo and Hughes, 1998)
or in the generalised theories of beams and plates (Zienkiewicz and Taylor, 2005). However,
one must have in mind the complex structure of the Cosserat continuum in the context of the
multisurface plasticity theory. For instance, due to plasticity, coupling between the terms related
to the stresses and the couple-stresses may occur, even when dealing with centro-symmetric
materials.

For completeness, we derive below two versions of the tangent moduliC(h)
n+1 entering Eq.(4.53):

the continuum and the algorithmic. The continuum version refers directly to the theory of mul-
tisurface plasticity developped in Section 4.3. The algorithmic version refers specifically to the
iterative solution scheme presented in Section 4.4. It is important to note that only the use of
the algorithmic moduli in the expression of the element stiffness matrix (4.53) preserves, what-
ever the increment size, the quadratic convergence of the Newton’s method. The continuum
moduli reaches this rate only in the limit of very small step increments (Hughes, 1987; Simo
and Hughes, 1998).

CONTINUUM TANGENT MODULUS

Eqs.(4.12),(4.13),(4.15),(4.18),(4.19) and (4.21) are recast in the following system of matrix
equations: 

dσ = C [dε− dεp]
dq = −Ddα
dεp =∇σG · Λ̇
dα =∇qH · Λ̇
∇σF t · dσ +∇qF t · dq = 0.

(4.54)

Combining Eqs.(4.54)-1 and (4.54)-3 one obtains:

dσ = C
[
dε−∇σG · Λ̇

]
. (4.55)

The above equation, substituted into Eq.(4.54)-5 together with Eq.(4.54)-2,4, yields:

Λ̇ = M−1 ·∇σF t ·C · dε (4.56)

with:

M =∇σF t ·C ·∇σG+∇qF t ·D ·∇qH (4.57)

The substitution of Eq.(4.56) into Eq.(4.55) leads to the expression for the matrix of the elasto-
plastic tangent moduli Cep:

dσ = Cepdε
Cep =

[
C −C ·∇σG ·M−1 ·∇σF t ·C

]
. (4.58)

It is important to note that theM matrix and the matrix of the elastoplastic tangent modulus
Cep are not necessarily symmetric. Both matrices would become symmetric only in the case of
associative plasticity, namely:

∇σG ≡∇σF , ∇qH ≡∇qF . (4.59)
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ALGORITHMIC TANGENT MODULUS

The algorithmic, or consistent (Simo and Hughes, 1998; Zienkiewicz and Taylor, 2005), version
of the elastoplastic tangent matrix, namely C(h)

n+1, is retrieved in similar way with its continuum
version Cep (Eq.(4.58)). For clarity we omit the index (h). One can rewrite system (4.32) in
the following algorithmic form:

dσn+1 = C [dεn+1 − dεpn+1]
dqn+1 = −Ddαn+1

dεpn+1 =∇2
σσGn+1 · Λ̇n+1 · dσn+1 +∇σGn+1 · dΛ̇n+1

dαn+1 =∇2
qqHn+1 · Λ̇n+1 · dqn+1 +∇qHn+1 · dΛ̇n+1

∇σF t
n+1 · dσn+1 +∇qF t

n+1 · dqn+1 = 0

, (4.60)

where the increment dΛ̇n+1 is introduced. Eqs.(4.60)-1,3 are then combined, in order to give:

dσn+1 = Θn+1
[
dεn+1 −∇σGn+1 · dΛ̇n+1

]
, (4.61)

where Θn+1 is the matrix of the elastic algorithmic moduli (Simo and Hughes, 1998). Its
definition is (cf. Eq.(4.37)):

Θn+1 =
[
C−1 +∇2

σσGn+1 · Λ̇n+1
]−1

. (4.62)

In addition, Eqs.(4.60)-2,4 give:

dqn+1 = Ψn+1
[
−∇qHn+1 · dΛ̇n+1

]
, (4.63)

where Ψn+1 writes:

Ψn+1 =
[
D−1 +∇2

qqHn+1 · Λ̇n+1
]−1

. (4.64)

Due to the similarity with Θn+1, matrix Ψn+1 could be defined as the matrix of the hardening
algorithmic moduli. Substituted into Eq.(4.60)-5, Eqs.(4.61) and (4.63) hold:

dΛ̇n+1 = M̃
−1
n+1 ·∇σF t

n+1 ·Θn+1 · dεn+1, (4.65)

and consequently Eq.(4.61) becomes:

dσn+1 = Cn+1dεn+1

Cn+1 =
[
Θn+1 −Θn+1 ·∇σGn+1 · M̃

−1
n+1 ·∇σF t

n+1 ·Θn+1
]
. (4.66)

In Eq.(4.58), matrix M̃n+1 is defined as in Eq.(4.57), with the exception that matrices C and
D must be replaced here with their algorithmic versions Θn+1 and Ψn+1. Notice, in conclusion,
how the matrix of the algorithmic moduli (4.66) reduces to that of the continuum moduli (4.58),
as the step increment is small. This shows that problem (4.60) is consistent with problem (4.54).

4.6 Element validation
In Section 4.4 and 4.5, the theory, the solution algorithm and the element implementation of
multisurface plasticity for Cosserat materials have been presented in general manner. In this
Section attention is focused on a specific finite element, formulated for micropolar plate models.
The element is briefly introduced and its validation in the framework of multisurface plasticity
is then carried out in two steps. Firstly, the accuracy of the CPP algorithm is tested locally,
i.e. at the integration point level, through simple element tests. Secondly, the efficiency of the
algorithm is assessed at the global (or element) level, based on more complex discretisations
related to structural problems.
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4.6.1 The micropolar plate element COSS8R
The element called COSS8R (Godio et al., 2015a) is a quadratic micropolar plate element
(Figure 4.5). It possesses 8 nodes, all situated on the element sides. Each node is equipped
with 6 degrees-of-freedom, i.e. 3 translations and 3 Cosserat rotations. In this element, the
shape functions N and Φ, used respectively for the interpolation of the displacement and the
rotational fields, are the same. The integration of the element stiffness matrix is made on 4
quadrature points (reduced integration), whereas the integration of the element mass matrix
requires 9 quadrature points (full integration). This avoids the shear locking phenomenon (in
statics) and the occurrence of massless degrees-of-freedom (in dynamics). For further details,
the reader is referred to Godio et al. (2015a). It is important to note that, in the extension to
plasticity, the presence of multiple quadrature points requires the independent solution of the
elastoplastic problem at each of these points 1.

Ω
2

Ω
1

Ω
3

U
1

U
2

U
3

Figure 4.5: The quadratic micropolar plate element COSS8R (Godio et al., 2015a).

membrane behaviour flexural behaviour

um =
[
u1 u2

]t
uf = [u3]

ωcm = [ω3] ωcf =
[
ω1 ω2

]t
γm =

[
γ11 γ22 γ12 γ21

]t
γf =

[
γ13 γ31 γ23 γ32

]t
κm =

[
κ31 κ32

]t
κf =

[
κ11 κ22 κ12 κ21

]t
bm =

[
b1 b2

]t
bf =

[
b3
]

lm =
[
l3
]

lf =
[
l1 l2

]t
τm =

[
τ11 τ22 τ12 τ21

]t
τf =

[
τ13 τ31 τ23 τ32

]t
µm =

[
µ31 µ32

]t
µf =

[
µ11 µ22 µ12 µ21

]t
Table 4.1: Membrane and flexural static and kinematics of a Cosserat plate element.

For the sequel of this Section, it is useful to distinguish the variables describing the membrane
response from the variables describing the flexural response of the plate element (Table 4.1).
Accordingly, the membrane elastic response is controlled by matrices A and Dm, expressed as
(Papanastasiou and Vardoulakis, 1992; Godio et al., 2015a):

τm = Aγm, µm = Dmκm

A =


K +G K −G 0 0
K −G K +G 0 0

0 0 G+Gc G−Gc
0 0 G−Gc G+Gc

 , Dm =
[
2Glc 0

0 2Glc

]
(4.67)

1Appendix D.1 provides further details on the implementation of the COSS8R element as Abaqus User Ele-
ment. This Appendix is absent from Godio et al. (2016).
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with K the compression modulus, G the shear modulus, Gc the Cosserat shear modulus and
lc the characteristic length of the micro-structured material. The flexural elastic response is
controlled by matricesQ andDf , reading (Altenbach and Eremeyev, 2009; Godio et al., 2015a):

τf = Qγf , µf = Dfκf

Q =


0 0 0 0
0 α4 0 0
0 0 0 0
0 0 0 α4

 , Df =


β1 + β2 + β3 β1 0 0

β1 β1 + β2 + β3 0 0
0 0 β3 β2
0 0 β2 β3

 (4.68)

with α4 the material parameter related to the transverse shears, and β1, β2, β3 those related to
the torsions and the out-of-plane flexions of the plate.

4.6.2 Single element tests for multisurface plane plasticity
The scope of single element tests is twofold. On one hand, the algorithm accuracy is assessed
not only pointwise, but also at the element level, i.e. after integration of the element’s stiffness
matrix. This guarantees the good response of the element and the convergence of the iterative
scheme at the global level. On the other hand, with tests of this kind the performance of the
element can be shown in special configurations, as for states of non-homogeneous deformation
or in presence of multiple plastic surfaces. In this setting, the use of the SVD technique within
the Newton-Raphson process is investigated.

Herein we carry out two series of tests based on two basic configurations (Figure 4.6):
one involving uni-axial loading/unloading cycles, and one involving the use of multiple plastic
surfaces for bi-axial stress states. All tests are displacement-controlled.

u
1

Uni-axial test

u
1

u
2

Bi-axial test

Figure 4.6: Configurations used for the single element tests in multisurface plasticity.

UNI-AXIAL LOADING/UNLOANDING CYCLES

The application of the displacement increment ∆u1 leads to a homogeneous state of ten-
sion/compression/tension on the element (Figure 4.6-left). The uni-axial constitutive law is
given by:

τ11 = Eγ11, (4.69)
with E the elastic modulus. The plastic surface with linear isotropic hardening is given in the
form:

|τ11| − τy + q1 ≤ 0
q1 = hα1 (4.70)

with τy the uni-axial limit stress. Figure 4.7 illustrates the stress path followed during the test
and the stress-strain relation curves. The evolution of the elastic domain during the elastoplastic
loading phases (a-b) and (c-d) is apparent.
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Figure 4.7: Element response to uni-axial cyclic loading. Elastic modulus E = 10MPa, harden-
ing modulus h = 10MPa, yield stress τy = 5MPa.

BI-AXIAL LOAD TESTS FOR MULTISURFACE PLASTICITY

Five tests, indicated with B1 to B5, are carried out. In these tests, displacement increments are
applied in x1 and x2 directions (Figure 4.6-right), leading the element to homogeneous bi-axial
stress states. Different sets of plastic surfaces are considered for each test. In particular, we
consider five plastic surfaces together with a linear isotropic hardening/softening function:

F 1 = τ22/τy − 1 + q1

F 2 = τ11/τy − 1 + q1

F 3 = (τ11 + τ22)/(2τy)− 1 + q1

F 4 = (τ11/τy)2 + (τ22/τy)2 − 1 + q1

F 5 = (τ11/(1.4 τy))2 + (τ22/(0.6 τy))2 − 1 + q1

q1 = hα1. (4.71)

Moreover, we consider a material with isotropic elastic constitutive law, given by Eq.(4.67). All
tests except Test B5 are carried out by using the same elastic properties (Figure 4.8), and the
same number of equally spaced increments (30). This allows the convergence to be reached
in Tests B1, B2 and to provide high level of accuracy in Test B3, B4. For Test B5, the total
number of increments is doubled and the hardening modulus is 0.1h.

In Test B1 (Figure 4.8) surfaces F 1, F 2 are used. These two intersecting plastic surfaces
are activated during the monotonic bi-axial loading. For perfect plasticity (Figure 4.8-left), the
stress path is limited by the boundary of the elastic domain. In case of isotropic hardening
(Figure 4.8-right), both surfaces evolve towards the new stress state of the element. Notice that
the symmetry of the problem is reflected in the symmetry of the solution, which is the same in
x1- and x2-directions. Moreover, the same solution is reached at all integration points of the
element. For brevity, only τ11 as function of the total γ11, elastic γe11 and plastic deformation
γp11, and of the hardening parameter α is presented.

In Test B2 (Figure 4.9) surface F 3 is added to F 1, F 2 and in Test B3 (Figure 4.10) surface
F 4 and an identical surface denoted F 6 are employed. These two tests follow the examples of
Figure 4.4, since they allow to consider redundant and coincident plastic surfaces respectively.
If the SVD technique was not employed for the solution of the incremental elastoplastic problem
(Section 4.4.2), the inversion of the Jacobian matrix would not be possible in these cases and
the test would fail once the surfaces reached. This would hold for Test B2 in the case of perfect

129



plasticity (NF = Nσ) and for Test B3 in both cases, since the same hardening variable is used
for the two surfaces F 4, F 6. Nevertheless, these tests are handled by the element, thanks to
the proposed solution strategy that involves the SVD technique. On one hand (Figure 4.9), the
element is able to activate all the necessary surfaces. Since surface F 3 is redundant with F 1

and F 2, the resulting deformations are actually the same with those of Test B1. On the other
hand (Figure 4.10), both surfaces evolve in identical manner.

Test B4 (Figure 4.11) makes use of F 4 and F 6. It consists of two successive monotonic load
steps. First ∆u1 > 0 and then ∆u2 > 0 are applied. As a result of the form of the elastic
domain, the second load step results in a loading step in direction x2 and an unloading step in
direction x1. This occurs both in case of hardening and of perfect plasticity, where the stress
state is constrained to move along the boundary of the elastic domain. Also in this test, the
SVD technique enables the element to follow exactly the stress path imposed, F 4 and F 6 being
coincident.

In Test B5 (Figure 4.12) surfaces F 4 and F 5 are used. The test consists in five successive
load steps, namely: a) ∆u1 > 0,∆u2 = 0; b) ∆u1 = 0,∆u2 > 0; c) ∆u1 < 0,∆u2 = 0;
d) ∆u1 = 0,∆u2 < 0; e) ∆u1 > 0,∆u2 = 0. Following these steps, the element carries out
a complete loading/unloading cycle in x1 and x2 directions simultaneously. Accordingly, the
stress path activates different plastic surfaces at each load step. Notice how the activation of
the surfaces occurs precisely at their points of intersection. Moreover, in case of hardening
plasticity the accumulated plastic strains induces the general expansion of the elastic domain.

4.6.3 Structural benchmarks for micropolar plates

Structural benchmarks are made to test (and suggest) the use of the algorithm of multisurface
plasticity for Cosserat materials and the developed plate element in cases of practical interest.
Herein we carry out three benchmarks. In all the examples we consider 3D structural problems.
The first benchmark is concerned with the development of in-plane strain localisation in hollow
cylinders with micropolar properties. With the second benchmark we model the behaviour of
micropolar square plates undergoing out-of-plane macroscopic plastic curvatures. The third
benchmark aims at studying the load-bearing capacity of a shallow foundation resting upon a
micropolar soil under plane strain conditions.

STRAIN LOCALISATION IN HOLLOW CYLINDERS

We consider a hollow cylinder of height H = 60mm, radius R = 15mm and constant thickness
t = 1mm. The cylinder is subjected to torsion (Figure 4.13). In particular, the top and the
bottom sides of the cylinder have all the degrees-of-freedom prevented except the axial rotation,
denoted with Ω3, which is controlled. The lateral surface of the cylinder is free of stresses and
couple-stresses.

The cylinder is made of a micro-structured material. Its macroscopic behaviour is de-
scribed by a Cosserat continuum with homogeneous isotropic centro-symmetric elastic prop-
erties (Eq.(4.67)-(4.68)). The in-plane response of the material follows here the tangential
(θ) and longitudinal (z) directions of the cylinder. The out-of-plane direction is on the ra-
dial (r) direction (Figure 4.13). The elastic parameters of the material are: K = 4000MPa,
G = 4000MPa, Gc = 2000MPa, and α4 = 1500MPa, β1 = 2000MPa×mm, β2 = 0MPa×mm,
β3 = 4000MPa ×mm. The characteristic (or inner) length of the micro-structured material is
lc = 2.5mm (Eq.(4.67)).

The elastoplastic response of the material is described by means of the J2 (or Von-Mises)
plasticity model formulated for Cosserat continua. The yield criterion for the generalised J2-
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Figure 4.8: Element response to bi-axial test B1. Top: stress path in the (τ11 − τ22)-plane.
Bottom: stress-strain curve. In-plane elastic properties: K = 5MPa, G = 5MPa, Gc = 0MPa,
lc = 0. Hardening modulus h = 10MPa, yield stress τy = 5MPa.

hardening-plasticity relies on the following single plastic surface (de Borst, 1991):

F =
√

3J2 − σ (γp2) (4.72)

where σ represents the equivalent yield stress, J2 is the second invariant of the deviatoric stress
tensor and γp2 is the second invariant of the deviatoric plastic strain tensor. For the Cosserat
continuum, J2 and γp2 write respectively:

J2 = 1
2
[
τ tm µtm

]
P

[
τm
µm

]
, (4.73)

and:

γp2 =

√√√√2
3
[
γtm κtm

]
P̃

[
γm
κm

]
, (4.74)
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Figure 4.9: Element response to bi-axial test B2. Top: stress path in the (τ11 − τ22)-plane.
Bottom: stress-strain curve.

with matrices P and P̃ defined as:

P =



4
3(a1 + a2) −2

3(a1 + a2) 0 0 0 0
−2

3(a1 + a2) 4
3(a1 + a2) 0 0 0 0

0 0 2a1 2a2 0 0
0 0 2a2 2a1 0 0
0 0 0 0 2a3/l

2
c 0

0 0 0 0 0 2a3/l
2
c



P̃ =



4
3(b1 + b2) −2

3(b1 + b2) 0 0 0 0
−2

3(b1 + b2) 4
3(b1 + b2) 0 0 0 0

0 0 2b1 2b2 0 0
0 0 2b2 2b1 0 0
0 0 0 0 2l2cb3 0
0 0 0 0 0 2l2cb3


. (4.75)

Scalars a1, a2, a3 and b1, b2, b3 are the plastic parameters of the material. Following de Borst
(1991), we use a1 = 1/4, a2 = 1/4, a3 = 1/2 and b1 = 1/3, b2 = 1/3, b3 = 2/3. Herein,
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Figure 4.10: Element response to bi-axial test B3. Top: stress path in the (τ11 − τ22)-plane.
Bottom: stress-strain curve.

strain-softening plasticity is simulated through a linear softening rule, with hardening modulus
h = −400MPa and yield stress σ = 100MPa.

Simulations are carried out with three different finite element discretisations. The COSS8R
being a flat element, it is suitable to choose a larger number along the tangential direction of
the cylinder. Therefore, assemblies of 16× 8, 24× 16 and 32× 24 elements are used. Analyses
are run by updating the reference system at every load step. In this way large axial rotations
are avoided. Moreover, an automatic step increment control technique is used throughout the
analyses.

The resulting macroscopic behaviour of the cylinders is shown in Figure 4.14-left, in terms
of normalized reaction moment Mz and differential axial rotation ∆Ωz = Ωt

z−Ωb
z. The onset of

plastic deformations (on the first branch) rapidly culminates with a softening branch, which is
accompanied by strain localisation (Figure 4.14-right). The deformation pattern of the cylinders
beyond the moment peak value is shown in Figure 4.15 for the different discretisations adopted.
This result is expected since, due to the axial symmetry of the problem, the deformation is
the same with that of other 2D structural problems (de Borst, 1991; Sharbati and Naghdabadi,
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2006). Accordingly, the linear elastic branch is well captured even by the coarsest discretisation,
and the softening branch is reached by adopting slightly finer discretisations. Strain localisation
occurs exactly as in the shear layers studied by de Borst (1991). The strain localisation shows
then an apparent mesh-independency (Figure 4.14-right), i.e. the width of the localisation region
does not depend on the number of elements falling inside this region. This is a fundamental
feature of finite elements based on the Cosserat continuum (de Borst et al., 1993; Papanastasiou
and Vardoulakis, 1992; Neff et al., 2007).

TORSION OF SQUARE PLATES

As second example we consider a square plate, of span L = 10mm and thickness t = 1mm
(Figure 4.16). The plate has two opposite free edges and two opposite clamped edges, with all
the degrees-of-freedom prevented. A rotation Ω2 is imposed at one of the clamped edges. The
rotation produces a macroscopic deformation that involves the out-of-plane behaviour of the
plate. We are here interested in the assessment of the ultimate (or limit) resulting moment M2
supported by the plate, under multiple intersecting plastic surfaces.

The plate is made of a micro-structured material which has the same elastic micropolar
properties with that composing the hollow cylinders considered in Section 4.6.3. However,
criteria for the out-of-plane behaviour of a Cosserat plate are absent in the literature. One
criterion which is often used in practice is the Nielsen’s criterion, formulated for reinforced
concrete plates (Makrodimopoulos and Martin, 2006; Krabbenhøft et al., 2007a). This criterion
is usually expressed for conventional (or engineering) plate theories. Herein, it is formulated in
order to take into account the out-of-plane statics of the micropolar plate model (Figure 4.1).
It consists of six distinct and intersecting plastic surfaces:

F 1 = (µ11 − µ22)2/4− (M+
21 − µ21)(M+

12 − µ12)
F 2 = (µ11 − µ22)2/4− (M−21 + µ21)(M−12 + µ12)

F 3 = µ21 −M+
21

F 4 = µ12 −M+
12

F 5 = −µ21 −M−21
F 6 = −µ12 −M−12. (4.76)

ParametersM+
21,M

−
21,M

+
12,M

−
12 are the (non-negative) out-of-plane yield flexions µ12 and µ21 of

the reinforced concrete plate. M+ and M− represent the ultimate moment leading respectively
the upper and the lower side fiber of the plate to failure. For simplicity, these parameters are
all considered equal to m = 5MPa×mm. For illustration purposes, simulations are carried out
in the frame of perfect and associative plasticity. It is worth mentioning that the conventional
torsional moment of the engineering theory of plates, Mt, is here expressed in terms of the
Cosserat torsions µ11 and µ22 by imposing: Mt = (µ11 − µ22) /2. In this way the Nielsen’s
criterion may be extended to Cosserat plate models.

The plate is modeled by means of three different finite element discretisations. Figure 4.17
shows that, even with the coarsest 2× 2 discretisation, the macroscopic response of the plate is
captured accurately by the COSS8R element. At the beginning the plate behaves elastically, but
as far as some of the plastic surfaces are activated (Eq.(4.76)), plastic curvatures are developed
until the formation of a macroscopic failure mechanism. This corresponds to the ultimate
resulting moment M2. Figure 4.18 displays the number of activated surfaces once the limit
moment is reached. It is found that, for the problem considered, only the first two plastic
surfaces F 1, F 2 are activated throughout the analyses. It is apparent how the algorithm of
multisurface plasticity is able to select different sets of plastic surfaces at each integration point
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of the finite element. This confers high flexibility to the element and may increase the accuracy
in problems characterised by states of non-homogeneous deformations.

SHALLOW FOUNDATION ON MICROPOLAR SOIL

In the third benchmark we consider a shallow foundation supported by a homogeneous layer of
soil (Figure 4.19). The foundation has a width B = 33.34m and is subjected to a distributed
pressure T2. The layer of soil has dimensions L×H = 200m×50m. Classical smooth conditions
are applied to the boundaries of the layer. The geometry of the problem allows then to consider
only half of the model. This is made by preventing the horizontal translations U2 and the in-
plane rotations Ω3 along the symmetry plane. It is worth noting that plane strain conditions,
for which the out-of-plane component τ33 is non-null (de Borst et al., 1993), are formulated for
this benchmark.

The foundation is considered as rigid and the interface with the soil perfectly cohesive.
The soil is an isotropic material with micropolar elastic properties given by K = 34000kPa,
G = 18000kPa and Gc = 0.7G (Eq.(4.67)). The elastoplastic response of the soil is described
by means of the following set of plastic surfaces (Figure 4.20):

F 1 =
√

3J2 +Ap− σ
F 2 =

√
3J2 − Cp− Cpc. (4.77)

The first surface is the generalisation of the Drucker-Prager plasticity model for Cosserat con-
tinua (de Borst et al., 1993; Papanastasiou and Vardoulakis, 1992; Li and Tang, 2005), for which
p is the mean pressure and A = 0.39. The second surface introduces a generalised compression
cap to the model, with pc = 2496kPa = 3σ the yield stress in compression and C = 0.81. No
hardening is considered.

The aim of the benchmark is twofold. On one hand, the variation of the load-bearing
capacity of the foundation is assessed for soils with different internal lengths lc (scale effect).
The effect of different yield criteria is also studied (Eq.(4.77)). On the other hand, the ultimate
load is computed in the limit of small lengths in order to obtain the solution for the Cauchy
continuum.

Figure 4.21 shows the macroscopic response of the foundation in terms of normalized pressure
T2 and vertical displacement δ2. The scale effect is apparent on Figure 4.21-left: a larger internal
length yields to a stiffer elastoplastic response and a higher load-bearing capacity. On the
contrary, the activation of a compression cap leads to a consistent reduction of the ultimate load.
The macroscopic response for the Cauchy continuum (Figure 4.21-right) is obtained by imposing
an internal length which is very small as compared to the size of the foundation. Moreover,
the conditions Gc = 0 and a3 = 0 allow respectively to retrieve the symmetry of the elastic
response (Eq.(4.67)) and the classical J2-plasticity model (Eq.(4.72)). For validation purposes,
the macroscopic response given by the COSS8R element is compared with that obtained by
a finite element formulated for classical continua. To this end, a 6-noded Gauss-type mixed
triangular element (Krabbenhøft et al., 2007a,b) contained in the commercial code OptumG2 is
used. The solution algorithm used in OptumG2 differs from that presented herein, since based
on optimization methods (Krabbenhøft et al., 2007b). The comparison shows how the COSS8R
element is able to cover the solution for the Cauchy continuum, with an error less then 1%.

4.7 Conclusions
The development of robust and efficient numerical procedures is a principal task prior to mod-
eling materials with complex micro-structure. In the attempt of describing the macroscopic
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behaviour of such materials, this aspect is even more pronounced. Particularly important is in
fact the determination of the overall response of the material, as function of the properties and
the spatial arrangement of its micro-structure. Especially in the inelastic range, this is not a
trivial task, since even when the macroscopic properties are established, one needs to resort to
numerical tools for the assessment of the material response.

The use of the Cosserat continuum has gained much interest in this field, by virtue of its
relatively simple formulation (limited number of variables and clear physical meaning) which
yet allows to handle quite complex configurations of materials with pronounced micro-structure
(masonry, soils, rocks, grid-works, etc.).

This paper was devoted to the development and validation of a numerical procedure for the
analysis of micro-structured materials with macroscopic non-linear behaviour. For this purpose,
the time-independent multisurface plasticity theory was extended to the Cosserat continuum.
Multisurface plasticity theory allows the description of a large class of mechanisms, such as
strain hardening and softening mechanisms, and the definition of both associative and non-
associative properties for the material. Moreover, through this theory the elastic domain may
be constructed by using a set of multiple plastic, intersecting surfaces of general form. When
referred to the macroscopic description of the material, this may prove particularly useful, as
each plastic surface may be related to distinct failure mechanisms at the micro-structure level.

The implementation of the multisurface plasticity theory into a Cosserat finite element
formulation was presented in general manner. The implementation of the theory was based on
a projection algorithm formulated for implicit time-integration schemes. The same algorithm
may be encountered in more classical formulations, as the theory of classical (Cauchy) continua
and the generalised theories of beams and shells. The paper focused on several numerical
aspects concerning the element implementation, in relation with the iterative solution schemes
used at the local (integration point) and global (element) level. A full Newton-Raphson method
was used at both levels. At the local level, the projection algorithm required the use of a non
conventional matrix-inversion technique (SVD). This technique was introduced in order to fully
exploit all the salient features of the multisurface plasticity theory and to avoid some important
limitations that were explored in details. It allowed the definition of plastic surfaces which are
(hypothetically) unlimited in number and of the most general form. At the global level, the
full rate of convergence was assured by the use of the elastoplastic stiffness tangent matrix of
the Cosserat element. This matrix was herein derived explicitly in algorithmic form and for the
very general multisurface and non-associative case.

A specific Cosserat finite element developed for micropolar plate models was finally pre-
sented. The element considered was already developed and tested in elasticity and dynamics.
This paper was concerned with its extension and validation to the multisurface plasticity. Nu-
merical tests assessed the (high) level of accuracy reached by the projection algorithm in case
of multisurface Cosserat plasticity. Several benchmarks showed that the element provides accu-
rate results under non-conventional loading and boundary conditions, involving strain softening,
multiple plastic surfaces and strain localisation.
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Figure 4.11: Element response to bi-axial test B4. Top: stress path in the (τ11 − τ22)-plane.
Center and bottom: stress-strain curve.
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Figure 4.12: Element response to bi-axial test B5. Top: stress path in the (τ11 − τ22)-plane.
Center and bottom: stress-strain curve.
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Figure 4.13: Hollow cylinder under axial rotation. Notations and boundary conditions.
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Chapter 5

Scale effect in masonry failure: a
numerical investigation by finite and
discrete elements

This conclusive Chapter investigates the scale effect in the formation of failure mechanisms in
masonry structures. Three different modelling strategies for masonry are proposed and com-
pared. 1) A homogenisation model based on the Cosserat continuum; this model is constructed
by implementing the homogenised yield criteria formulated in the previous Chapters into the
developed Cosserat finite element. 2) A homogenisation model based on the Cauchy continuum;
this model is constructed by selecting constitutive laws and yield criteria from the literature. 3)
A discrete elements model. The performance of the three models in representing the elastoplas-
tic response of a masonry panel is discussed. The capability of the homogenisation models in
predicting the scale effect is investigated.
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Summary

Homogenisation models based on Cosserat continuum allow to model the mechanical behaviour
of discrete media, with the account of their inner micro-structure. This applies both for the
elastic and the inelastic properties of the medium, as for for example its strength. As shown in
the previous Chapters, masonry can be considered as a discrete medium, due to its apparent
periodic micro-structure.

In this short conclusive Chapter, three different modelling strategies for masonry are com-
pared. A homogenisation model based on Cosserat continuum is first presented. The model
is constructed by taking into account an existing homogenised constitutive law for elasticity
and dynamics, and a set of homogenised yield criteria computed by following the procedure
presented in Chapter 2. Such constitutive laws and yield criteria are introduced into the finite
element formulation for Cosserat media presented in Chapter 4 and 5, allowing to carry out
the analysis of masonry structures. Another homogenisation model based on Cauchy contin-
uum is then presented. This model is constructed by introducing appropriate homogenised
constitutive laws and yield criteria selected from the literature into a classical finite element
formulation. The performance of the Cosserat continuum model is compared to that of the
Cauchy continuum model, and the applicability of both models in representing masonry is dis-
cussed based on the comparison with a third analogue discrete elements model. The comparison
is carried out in the elastoplastic static regime. With respect to the homogenisation models,
the discrete elements model allows to represent masonry by respecting the actual arrangement,
shape and size of the blocks. The relative size of the blocks with respect that of the struc-
ture determines then the scale ratio of masonry. The comparison between the three models
reveals that the characteristic length inherent to the Cosserat medium enables to capture this
scale ratio in the formation of failure mechanisms in masonry, in which the model based on the
Cauchy medium does not succeed. The homogenisation model based on the Cosserat continum
proves therefore to be an appropriate and relevant modelling strategy for masonry structures.
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5.1 Modelling strategies for masonry
Discrete elements and finite elements methods are two of the most widespread employed numer-
ical procedures in mechanics for the analysis of materials and structures. Applied to masonry
structures, these methods are used mainly to provide a fine and a coarse description of the
structural behaviour (Trovalusci and Masiani, 1999), through the formulation of respectively
discrete and continuum models. Discrete models are idealizations in which material particles
are modelled separately and their interaction is represented explicitly. In continuum models, the
particles constituting the material are smeared into an equivalent medium. Their interaction is
described on the average sense only, by means of equivalent constitutive laws.

The finite element formulation presented in Chapter 3 and Chapter 4 allows the implemen-
tation of Cosserat continuum models of the type of a plate. Herein, it is in our purpose to
evaluate the applicability (and demonstrate the advantages) of such continuum models against
the use of more refined descriptions. A Cosserat continuum model is constructed by selecting
as constitutive law for elasticity and dynamics, a homogenisation model already existing in the
literature. The homogenised strength domains computed in Chapter 1 are then introduced as
yield criteria, determining the elastoplastic response of masonry. The solution obtained by the
continuum model is so compared to that given by the use of an analogue discrete elements
model. Especially regarding masonry structures, such a comparison is of great importance,
since some of the requisites demanded by practitioners can be tested in this way. In particular,
it is our intent to investigate: a) the representation of the in-plane behaviour of masonry in
the static elastoplastic regime, b) the evaluation of the scale ratio for which the applicability of
the continuum model reaches its limits with respect to the discrete model and c) the solution
accuracy provided by the two adopted modelling strategies. For further investigations on the
in-plane response of masonry between linear and non-linear homogenised Cosserat continuum
and discrete models, we refer respectively to Stefanou et al. (2008); Baraldi et al. (2015) and
Cerrolaza et al. (1999); Trovalusci and Masiani (2003, 2005), among others.

A continuum model based on the classical (or Cauchy) medium is also considered in the
comparison. This model is constructed by choosing both the elastic constitutive law and the
yield criteria from those available in the literature. Its comparison with the continuum model
based on the Cosserat medium and the discrete model has clearly a twofold character. On one
hand, the performance of the Cauchy continuum model are explored with respect to the discrete
model, in terms of solution accuracy. On the other hand, the definition of more appropriate yield
criteria lead the Cosserat continuum model to prevail on the Cauchy model in the prediction of
the scale effect associated to masonry failure.

A brief description of the continuum and the discrete models is given in the next three
Sections. Notice that only basic notations will be provided for the continuum models and
details on their numerical implementation will be skipped. For further details, the reader is
referred to the previous Chapters.

5.2 The elastoplastic Cosserat continuum model

5.2.1 The Cosserat medium

In the Cosserat continuum, the material particle experiences displacements Vα (or translations)
and angular displacements Ωc (or rotations). The tensor Γαβ accounts for the relative deforma-
tion occurring between the displacement gradient Dαβ and the Cosserat (or particle) rotation
Ωc:

Γαβ = Dαβ + eαβ3Ωc
3, (5.1)
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with Dαβ = Vα,β and eαβ3 the Levi-Civita’s symbol. Γαβ is a non-symmetric tensor, and is
decomposed into its symmetric Γ(αβ) and skew-symmetric Γ[αβ] parts reading:

Γ(αβ) = D(αβ), Γ[αβ] = D[αβ] + eαβ3Ωc
3. (5.2)

The tensor K3β accounts for the rotation gradient (or curvature) of the medium, which writes:

K3β = Ωc
3,β. (5.3)

The equations governing the in-plane dynamic behaviour of a Cosserat medium are:

Tαβ,β + ρ
(
Bα − V̈α

)
= 0

M3β,β + eαβ3Tαβ + ρ
(
L3 − I3Ω̈c

3

)
= 0, (5.4)

where Bα and L3 are respectively the intensity of the external in-plane body forces and body
couples acting on the medium, ρ the mass density of the medium, and I3 its micro-inertia,
which represents the rotary inertia of the particle. Tαβ andM3β denote respectively the in-plane
components of the non-symmetric stress tensor and of the couple stress tensor (Figure 5.1-left).

The deformation measures are split into an elastic [ ]e and plastic [ ]p part. The elastic
constitutive law is:

Tαβ = AαβγδΓe
γδ, M3β = D3β3δK

e
3δ. (5.5)

According to the multisurface plasticity theory (Chapter 4), the increments of plastic deforma-
tion are derived from the plastic potentials P j = P j (Tαβ,Mβ) as:

dΓp
αβ =

NF∑
j=1

λj∂TαβP
j , dKp

β =
NF∑
j=1

λj∂Mβ
P j , (5.6)

with λj ≥ 0 the consistency parameters. The elastic domain of the Cosserat medium Ecσ is
herein denoted with Gc and is defined as:

Gc = {(Tαβ,Mβ) |F j (Tαβ,Mβ) ≤ 0, ∀j = 1, .., NF }, (5.7)

where the plastic surfaces F j = F j (Tαβ,Mβ) represent the yield criteria (Figure 5.1-right).
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Figure 5.1: Notations used for the Cosserat medium (in-plane behaviour). Shear stresses and
couple stresses (left) and elastic domain (right).
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5.2.2 A Cosserat model for masonry

In view of the comparison between the Cosserat continuum and the discrete model, some existing
homogenisation models can be selected from the literature. Concerning elasticity we have the
works of Mühlhaus et al. (1997), Stefanou et al. (2008) and Salerno and de Felice (2009).
Concerning plasticity we recall the yield criteria proposed by Mühlhaus et al. (1997) and those
presented in Chapter 1 of the present thesis.

As far as it concerns the elastic and dynamic behaviour of masonry, we implement the con-
tinuum model proposed by Stefanou et al. (2008). This homogenisation model has been derived
by identification of a running-bond masonry wall made of rigid blocks with an equivalent 3D
Cosserat elastic continuum. The resulting model is an orthotropic Cosserat plate that is com-
prehensive of in- and out-of-plane elastic constitutive laws and inertial terms. The parameters
entering the continuum model are the dimensions of the building blocks a,b and t (Figure 5.2),
the normal and shear joint stiffness CN , CQ, and the mass density of the blocks ρ.

The elastoplastic behaviour of masonry is described thought a set of multiple yield crite-
ria. These criteria correspond to the strength domains computed through the homogenisation
method presented in Chapter 1 and Chapter 2, by application of the kinematic approach of limit
analysis. It is worth remarking that, based on this method, yield criteria may be computed for a
running-bond masonry pattern with generic blocks overlap η and interfaces obeying a Coulomb
slip criterion with properties c and φ that depend on their orientation. However, in order to
be consistent with the elastic counterpart of the continuum model, the aforementioned criteria
are computed with respect to the same diamond-shaped elementary cell considered by Stefanou
et al. (2008) of a classical (1/2) running-bond pattern (Figure 5.2-right).

a

b (1/2)b

2a

b

t

t

Figure 5.2: Two different elementary cells of a classical 1/2 running-bond masonry wall. Left:
the cell with the form of a parallelogram considered for homogenisation in Chapter 1. Right:
the diamond-shaped cell considered by Stefanou et al. (2008); de Buhan and de Felice (1997)
and in the present Chapter.

5.3 The elastoplastic Cauchy continuum model

5.3.1 The Cauchy medium

In the Cauchy medium the kinematics of the material particle is described by the translations
Vα only. The deformation measures of the medium reduce then to the symmetric tensor D(αβ)
(Eq.(5.2)-1). The associated stress tensor is the symmetric tensor T(αβ) (Figure 5.3-left). The
equations of motion are then given by Eq.(5.4)-1. Furthermore, in this case, the elastic domain
is denoted with Eσ (or G) and is defined as:

G = {(T(αβ))|F j(T(αβ)) ≤ 0,∀j = 1, .., NF }, (5.8)

where the plastic surfaces F j = F j(T(αβ)) prescribe the NF yield criteria for the Cauchy medium
(Figure 5.3-right).
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Figure 5.3: Notations used for the Cauchy medium (in-plane behaviour). Shear stresses (left)
and elastic domain (right).

5.3.2 A Cauchy model for masonry

Many models existing in the literature are devoted to the description of masonry by means
of homogenisation methods based on the Cauchy continuum. The number of models is far
larger than those based on the Cosserat continuum. However, only few of them provide the
expressions of the obtained constitutive laws in analytical form, making hard their use in further
practical applications. Among those studying the elastic behaviour of masonry, one may cite
Cecchi and Di Marco (2000); Cecchi and Sab (2002a); Zucchini and Lourenço (2002); Salerno
and de Felice (2009). Among those studying the elastoplastic behaviour, we cite the works of
Alpa and Monetto (1994); de Buhan and de Felice (1997).

Following the procedure depicted by Salerno and de Felice (2009), the homogenised elastic
coefficients for masonry entering in the Cauchy continuum model can be derived as function of
the coefficients of the Cosserat model, i.e.:

A1111
Cauchy = A1111, A2222

Cauchy = A2222, A1212
Cauchy = 2 A1212A2121

A1212 +A2121 . (5.9)

When based on the above relations, the Cauchy continuum model stocks the same amount of
elastic strain energy density than the Cosserat one. This is satisfied under states of periodic
deformation and provided that the Cosserat model is constructed by kinematic identification
(Salerno and de Felice, 2009), as actually done by Stefanou et al. (2008). This legitimate the
use of the above relations for the determination of the elastic coefficients of the present Cauchy
model.

As far as it concerns the elastoplastic behaviour of masonry, we implement the homogenised
yield criteria provided by de Buhan and de Felice (1997). These criteria are referred to the
Cauchy continuum. As shown in Chapter 1, they are a special case of the yield criteria computed
for the Cosserat continuum model. They do not consider the effect of the relative rotations of
the blocks in the formation of failure mechanisms. For this reason, they provide a coarser
estimation of the plastic dissipation produced by masonry during the deformation process.

5.4 The discrete elements model

For the construction of the discrete elements model, we employ the commercial code 3DEC
(Itasca Consulting Group, 2013). This program falls within the class of the discontinuous
analysis procedures. Each block, that in our specific case is considered rigid, possesses 6 degrees-
of-freedom and interacts with the adjacent blocks through a number of contact-points detected
at the interfaces by means of an automatic detection algorithm (Cundall, 1988; Hart et al.,
1988). Contact forces are exchanged at these points. The code makes use of an explicit (or
forward-Euler) time-integration scheme and takes into account large strains by updating at
every load step the contact pairs detected at the interface of the blocks. Furthermore, the
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occurrence of plastic deformations is computed within 3DEC by a classical projection algorithm
similar to that discussed in Chapter 4.

5.4.1 A discrete elements model for masonry

The discrete elements model allows to represent masonry by reflecting the actual blocks’ ar-
rangement, shape and size, and the actual interface properties. Consequently, the contact
models on which the homogenisation models studied in elasticity and dynamics by Stefanou
et al. (2008) and in elastoplasticity by de Buhan and de Felice (1997) and in Chapter 1 and
Chapter 2 of the present work can be properly reproduced by 3DEC. Indeed, in all the afore-
mentioned works masonry is regarded at the microscopic level as a discrete medium, in which
blocks undergo rigid-body motions and with deformable interfaces. No calibration of the elastic
stiffness parameters CN and CQ is thus necessary between the contact models considered in
the homogenisation procedures and the discrete elements model. Moreover, the elastoplastic
behaviour of the interfaces is accounted for by considering a Coulomb slip criterion with co-
hesion c, friction angle φ and associative properties. The fact that all geometric and material
parameters of the discrete model are in agreement with those on which the continuum model is
based, leads to (and justifies) the comparison between the three modelling approaches proposed
in this Chapter.

5.5 Modelling of a simple shear wall

5.5.1 Geometry, material properties and boundary conditions

We consider a single-leaf masonry wall with height H, width L and thickness t (Figure 5.4). The
wall is made of regular rigid blocks, disposed following a classical (1/2) running-bond pattern.
The geometric and material properties used for the construction of the continuum (Section 5.2,
Section 5.3) and discrete (Section 5.4) models are given in Table 5.1. In particular, the block
aspect ratio is denoted with m = 2a/b.
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Figure 5.4: Masonry shear wall. Illustration of the geometry and boundary conditions adopted
for the discrete and the continuum models.

Figure 5.5 shows the resulting set of homogenised yield criteria for the Cosserat and the
Cauchy continuum models. These criteria are plotted in the space of the Cauchy stress space,
namely

(
T11, T22, T(12)

)
. For illustration purposes, the remaining stress components of the

Cosserat continuum model have been fixed to M31 = M32 = 0 and T[12] = (1/3)T(12) (Fig-
ure 5.5-left). It is worth emphasizing how, due to the non symmetry of the stress tensor, the
homogenised elastic domain of the Cosserat continuum model is reduced with respect to that of

153



blocks

m 0.4952 (a = 52mm, b = 210mm)
t 100mm
ρ 1.5kg/dm3

joints

CN 80N/mm3

CQ 60N/mm3

φ 30◦
c 1.2N/mm2

Table 5.1: Geometric and material properties of discrete and continuum models adopted for the
masonry shear wall.

the Cauchy model. The domains are equivalent only when the stress state becomes symmetric
(Figure 5.5-right).

The numerical benchmark carried out in this Section consists in modelling the behaviour of
a shear wall. This consists of two steps: in step 1 a vertical load q = 0.6N/mm2 is applied at
the top side of the wall; in step 2, the vertical displacement and in-plane rotation are prevented
and the horizontal displacement d1 is controlled at the blocks belonging to the top side of the
wall. This configuration is representative of infill masonry. Throughout the simulations, the
following set of boundary conditions is applied (Figure 5.4): in the discrete elements model,
blocks belonging to the lower course of the wall have their translations vGJ

1 , vGJ
2 and rotations

ωGJ
3 prevented. The same conditions, but in terms of continuous kinematics V1, V2,Ω3, are

applied to the Cosserat continuum model. The Cauchy continuum model allows then boundary
conditions on the translations V1, V2 only.
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Figure 5.5: Set of homogenised yield criteria for 1/2 running-bond masonry, enclosing the elastic
domains of the Cosserat (dark red) and the Cauchy (light red) elastoplastic continuum models
(Table 5.1). Domains for non-symmetric (left) and symmetric (right) stress states.

5.5.2 Scale effect

The comparison between the discrete and the homogenised continuum models is carried out on
walls with increasing number of blocks. In particular, we consider walls composed by 2× 5, 4×
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10, 8× 20, 12× 30 and 16× 40 blocks (Figure 5.6). The thickness of the wall t is kept constant
and the wall aspect ratio is L/H = 0.619. Based on this strategy, elastoplastic analyses are
carried out with the intent of comparing the response of masonry when the relative size of the
blocks yo the size of the structure becomes smaller and smaller.

2X5

4X10

8X20

12X30

16X40

Figure 5.6: Walls made up of different number of blocks considered for the study of the scale
effect in masonry.

Figure 5.7 shows the response of the wall captured by the three models in terms of normalized
force-displacement diagrams. In these curves, F1 is the horizontal reaction force computed at
the base of the wall and δ1 is the normalized displacement (or drift) controlled at the top of
the wall: δ1 = (d1/H)× 100. Normalization enables to investigate the scale effect. The curves
are in fact equivalent to those obtained if wall’s dimensions were kept constant and blocks’ size
decreased. A considerable scale effect is observed from the discrete model. When walls are
composed by a smaller number of blocks, the wall response shows clearly a steeper slope in the
elastic and the elastoplastic branch. The Cosserat continuum model also captures this scale
effect (even if in a less marked manner), while the Cauchy model does not.

5.5.3 Prediction of the wall response

Figure 5.8 compares the solution provided by the continuum models versus the discrete elements
solution, the number of blocks being fixed. We notice how, for walls composed by few blocks
(5 × 2), the difference between the three models is large. In this case, boundary conditions
play a fundamental role, which have not been taken into account in the formulation of the
homogenisation models considered (Stefanou et al., 2008; Salerno and de Felice, 2009; de Buhan
and de Felice, 1997, and Chapter 1). However, as far as the number of blocks increases, this
difference between the discrete and the Cosserat continuum models tends to vanish, disclosing
an expected trend towards a unique homogenised response. The Cauchy continuum model is,
on the contrary, less representative of response of the wall than the Cosserat continuum model,
even in the limit of small scale ratios (large number of blocks).

5.5.4 Failure mechanisms and local deformations

The force-displacement diagrams discussed above are representative of the overall response of the
walls. In order to investigate the validity of the continuum models with respect to the discrete
one, it is also interesting to compare the finite and discrete elements solutions in terms of a)
the formation of failure mechanisms, and b) the development of local irreversible deformations.

Figure 5.9-Figure 5.11 show how the regions of the wall in which the stress state activates
the homogenised yield criteria in the continuum models correspond to the regions the discrete
elements model where plastic deformations (in terms of slips between the blocks) are initiated
into. The Figures are referred to the wall made of 12× 30 but similar patterns are observed in
walls made of fewer blocks. This makes evident that the failure mechanisms described by the

155



three modelling approaches are, at least qualitatively, in accordance. However, the Cosserat
continuum model seems to better capture the failure pattern in its final configuration.

5X2 blocks

10X4 blocks

20X8 blocks

30X12 blocks

40X16 blocks

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4
0.0 0.1 0.2 0.3 0.4

0

1

2

3

4

[%]δ1

F
1
/(
c
tL
)

Discrete elements model

5X2 blocks

10X4 blocks

20X8 blocks

30X12 blocks

40X16 blocks

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4
0.0 0.1 0.2 0.3 0.4

0

1

2

3

4

[%] δ1

F
1
/(
c
tL
)

Cauchy continuum model

5X2 blocks

10X4 blocks

20X8 blocks

30X12 blocks

40X16 blocks

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4
0.0 0.1 0.2 0.3 0.4

0

1

2

3

4

[%]δ1

F
1
/(
c
tL
)

Cosserat continuum model

Figure 5.7: Scale effect in a confined masonry wall under shear. Normalized force-displacement
diagrams from the discrete (top) and the homogenised continuum models (bottom), for walls
composed by different number of blocks. The response given by the Cauchy model is invariant
of the number of blocks.

5.6 Conclusions

In this conclusive Chapter, a homogenisation model based on Cosserat continuum was proposed
as modelling strategy for masonry structures. The model was constructed by selecting from the
literature an already existing constitutive law for masonry in elasticity. Besides, a set of multiple
homogenised yield criteria were computed in rigorous manner, based on the analytical approach
presented in Chapter 1 and Chapter 2. The homogenised elastic coefficients and plastic surfaces
were next implemented into the finite element formulation for Cosserat plate models developed
in Chapter 3 and Chapter 4, making possible to carry out the analysis of structural elements.

A homogenisation model based on the Cauchy medium was also considered. In this case,
the elastoplastic behaviour was controlled by elastic constitutive laws and yield criteria entirely
taken from the literature and consistent with those used for the construction of the Cosserat
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continuum model. The response of the Cosserat and Cauchy continuum models was compared
to that of an analogue discrete elements model, in which blocks were modelled as rigid bodies
and their interaction was represented explicitly by means of contact laws.

A masonry wall under shear loading was taken as example for the numerical simulations and
the comparisons between the three models. The results obtained demonstrated the efficiency of
the homogenisation models in modelling the formation of failure mechanisms within masonry.
However, only the Cosserat continuum model proved capable to predict the scale effect in
masonry failure, which was illustrated by the discrete elements model.

This short conclusive Chapter made possible to show an application of the modelling ap-
proach presented in this thesis to masonry structures. At first approach, the presented elasto-
plastic Cosserat continuum model shows able performance in the prediction of the overall re-
sponse of masonry, both considering its elastic and inelastic behaviour. Moreover, a phenomenon
rarely considered in the technical literature as the scale effect (Salerno and de Felice, 2009;
Trovalusci and Masiani, 2003, 2005) is efficiently taken into account by the Cosserat model,
unlike the classical approaches based on the Cauchy medium.

Of course, at this stage many other examples should be provided in order to gain a deeper
insight on the subject. For instance, the scale effect can be even more pronounced when openings
such as doors and windows are present into the wall. The presented model constitutes, however,
the basis for the creation of a more sophisticated numerical tool for the seismic analysis of
masonry structures. In this perspective, the implementation of a complete set of yield criteria
as those presented in Chapter 2 for the coupled in-plane and out-of-plane behaviour of masonry
must be considered in future works. The model should then be extended to block crushing
(Stefanou et al., 2015). The introduction of specific evolutions laws for the softening and
damage behaviour of masonry is then a task to be envisaged.
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Figure 5.8: Comparison between the discrete elements (DE) and the homogenised continuum
finite element (FE) models in modelling a masonry shear wall, in terms of normalized force-
displacement diagrams. Results are presented from the top to the bottom for walls composed
by an increasing number of blocks.
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Figure 5.9: Development of the inter-block slip in the discrete elements model when δ1 ≈ 0.05
(top - red dots) versus activation of the multiple homogenised yield criteria in the Cauchy (red
region - centre) and Cosserat continuum model (bottom). Wall made of 12× 30 blocks.
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Figure 5.10: Development of the inter-block slip in the discrete elements model when δ1 ≈ 0.1
(top - red dots) versus activation of the multiple homogenised yield criteria in the Cauchy (red
region - centre) and Cosserat continuum model (bottom). Wall made of 12× 30 blocks.
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Figure 5.11: Development of the inter-block slip in the discrete elements model when δ1 ≈ 0.2
(top - red dots) versus activation of the multiple homogenised yield criteria in the Cauchy (red
region - centre) and Cosserat continuum model (bottom). Wall made of 12× 30 blocks.
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Summary of the main contributions

Analytical work

The analytical work carried out in this thesis is mainly found in Chapter 1 and Chapter 2. In
these Chapters, the development of an analytical method for the estimation of the homogenised
in-plane and out-of-plane strength of masonry was carried out.

• In Chapter 1 the method was formulated for the assessment of the in-plane strength of
masonry. In particular, the question of the influence of the relative rotation of the blocks
on the strength capacity of masonry was addressed. It is clear that the relative rotation
of the blocks contribute to the relative displacement across the joints and consequently
promote the formation of irreversible deformations and failure mechanisms within ma-
sonry. This aspect is visible from the majority of the experimental tests carried out on
masonry walls, either in the form of local rotations or of veritable flexural modes. How-
ever, it was seldom explored in the literature. The homogenisation method introduced in
Chapter 1 provided further development to the current state-of-the-art methodology for
calculating the strength of masonry, by introducing in rigorous manner the influence of
blocks’ rotations.
The homogenisation method was based on the Cosserat continuum theory. The enhanced
kinematics of the Cosserat continuum allowed a more efficient description of masonry with
respect to that already given in the literature by the use of the Cauchy continuum. The
improvements referred, first, to a finer reproduction of the deformation modes of masonry.
Relative blocks’ rotations were in fact related to the macroscopic in-plane curvatures
and the non-symmetric strains of the Cosserat medium, which are absent in the classical
continuum theory. Furthermore, the Cosserat continuum provided an improved estimation
of the power dissipated during failure. For these reasons, the yield criteria computed for
the Cosserat continuum are better estimates of the actual strength capacity of masonry,
as compared to those computed for the Cauchy continuum.
The use of the Cosserat continuum in the evaluation of masonry strength has already been
encountered in the literature. The novelty of the presented analytical method was given by
the fact that no a priori assumptions were made on the most relevant failure mechanisms
that may occur within masonry. On the contrary, failure mechanisms were researched
among all the possible mechanisms involving the relative translations and rotations of the
blocks. The examples of the masonry column and wall showed that, whatever the blocks
disposition and joints properties, their overall strength capacity were reduced due to the
relative rotation of the blocks. It was shown how this effect was correctly captured by the
Cosserat continuum, which, unlike the Cauchy continuum, admits in-plane moments and
non-symmetric shear forces.
It is worth mentioning that the presence of moments acting in the plane of the walls is
intrinsic in structural problems related to masonry, especially in those related to seismic
analyses. Aiming at formulating a modelling strategy for masonry in this field, the con-
tribution given by the Cosserat continuum in modelling its strength is therefore of great
importance.

• The homogenisation method presented in Chapter 1 focused on the in-plane strength of
masonry. In Chapter 2 the method was extended for the assessment of the coupled in-
plane and out-of-plane strength of masonry. In that case, the overall strength of masonry
columns and walls was determined by deriving an equivalent Cosserat continuum with
complete three-dimensional kinematics. As a result of the homogenisation procedure, the
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number of macroscopic deformation measures was reduced. This result was consistent
with the geometry of the column and wall. The masonry column was so ascribed to a
Cosserat beam model. The masonry wall was then assumed as a Cosserat (or micropolar)
plate model. Both models were comprehensive of complete three-dimensional kinematics,
and showed an apparent interaction between the in-plane and the out-of-plane actions in
the assessment of masonry strength. The relative rotation of the blocks accentuated this
effect and diminished the in-plane strength. The use of three-dimensional with respect to
two-dimensional models for masonry was therefore encouraged.

Numerical work

The numerical work carried out in this thesis is mainly found in Chapter 3 and Chapter 4.
In these Chapters, the development of an elastoplastic finite element formulation for Cosserat
plate models was carried out.

• In Chapter 3, a specific quadratic element with reduced integration was presented. The
interesting aspect emerging from the formulation of the element was that the terms of the
stiffness matrix associated with the displacement and the rotational fields both conferred
rigidity to the element. On one hand, this enabled the element to control in direct manner
the occurrence of spurious and hourglass modes versus forces and moments acting on its
plane. On the other hand, it made the element suitable for the assemblage of spatial shell
structures. This aspect represents an important (and yet not well known) advantage that
should encourage and privilege the use of finite elements based on the Cosserat continuum
theory versus more classical formulations based on the Cauchy continuum, for which the
use of artificial hourglass-control techniques is always needed.
The presented element was tested in predicting the in-plane and the out-of-plane static
and modal response of various structural configurations. The choice of a quadratic inter-
polation order allowed the element to attain a good level of accuracy in representing the
out-of-plane behaviour of the plate, even in the limit of thin geometries. Moreover, the
element showed high precision in representing the modal frequencies in simple structural
configurations. The use of the presented element in dynamic simulations based on di-
rect integration techniques is therefore expected to be advantageous. Its relatively simple
formulation makes it preferable to other elements based on higher order or selective inter-
polations. The limited computational cost due to the reduced integration of the stiffness
matrix makes it still competitive in non-linear problems as compared to elements based
on linear interpolation orders.

• The finite element formulation for Cosserat plate models was developed in Chapter 3 in
elasticity and dynamics. In Chapter 4, the formulation was extended to the elastoplastic
framework. Material non-linearities were taken into account in the formulation through
the implementation of the multisurface plasticity theory. The implementation of this the-
ory for the Cosserat medium was based on a projection algorithm formulated for implicit
(backward-Euler) time-integration schemes. The same algorithm may be found in more
classical formulations, as those of the classical (Cauchy) continua or those for the gener-
alized theories of beams and shells. In this case, an important correction was made in
the implementation of the algorithm. The correction consisted in the use of a non con-
ventional matrix-inversion technique, based on the singular value decomposition (SVD)
method. The introduction of this technique allowed the presented finite element formula-
tion to attain all the salient features of the multisurface plasticity theory and to overcome
some important limitations that are present in its classical implementation. In particular,
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it enabled the definition of plastic surfaces and evolution laws that are unlimited in num-
ber and of the most general form. It was found that many (basic) configurations limiting
the use of the projection algorithm for multisurface plasticity can be avoided through this
method. Its use in more classical theories and models is therefore recommended.
The finite element presented in Chapter 3 was also tested in the framework of multisur-
face plasticity in Chapter 4, by means of several numerical benchmarks. In general, the
element showed high level of accuracy and able performance in the solution of elastoplas-
tic problems involving multiple plastic surfaces, strain-hardening mechanisms and strain
localisation phenomena. The full rate of convergence was preserved in the simulations by
the use of the actual elastoplastic tangent stiffness matrix of the element. This matrix
was derived explicitly in its algorithmic form, for the most general multisurface, strain-
hardening and non-associative case. This form is hardly found in the literature. Herein
it was given in matrix notation, making straightforward its further implementation in
numerical codes using the Newton-Raphson and the arc-length methods.

Modelling of masonry structures

The analytical and the numerical parts of the thesis contributed to the development of a ho-
mogenisation continuum model for masonry, which is the primary objective of the present
research work. The formulation and the use of this continuum model are found in Chapter 3
and the conclusive Chapter 5.

• In Chapter 3, a homogenisation model for masonry existing in the literature was imple-
mented into the developed finite element formulation, with the aim of reproducing the
three-dimensional behaviour of masonry in elasticity and dynamics. The model was based
on the Cosserat continuum and was tested in reproducing the modal response of a ma-
sonry panel made of rigid blocks and deformable interfaces. Its validity was discussed
based on the comparison with an analogue discrete elements model. The convergence of
the homogenisation and the discrete elements model in the limit of small blocks was as-
sessed. This was made by regarding the principal deformation modes of the panel, related
to the in-plane shear, out-of-plane flexion and torsion of the panel. The role of the in-
plane blocks rotations in the inertial response of the panels was also investigated. In this
case, the in-plane shear deformation mode of the panel was selected. The modal effective
mass associated to in-plane rotations of the blocks was computed by the Cosserat ho-
mogenisation model. This quantity is representative of the modal inertia related to those
specific kinematics. Therefore, it cannot be represented by models based on the Cauchy
continuum. Simulations revealed an important participation of the in-plane rotations of
the blocks to the inertial response of the panel, encouraging the use of models based on
the Cosserat continuum for the seismic analysis of masonry structures.

• In Chapter 5, the elastoplastic behaviour of a masonry panel acting as shear wall was
modelled. This was made possible by enriching the homogenisation model for elasticity
considered in Chapter 3 with the homogenised yield criteria computed based on the pro-
cedure developed in Chapter 1 and Chapter 2. The comparison with the analogue discrete
elements model was made by modelling explicitly, in this latter, the elastoplastic behaviour
of the joints. The results obtained from the comparison demonstrated the efficiency of
the homogenisation model in representing the discrete elements response in the limit of
small blocks. In this case, attention was focused on the capacity of the continuum model
in representing the formation of failure mechanisms within masonry and in predicting its
overall non-linear response.
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The comparison with a homogenisation model based on the Cauchy continuum illustrated
then how the Cosserat continuum model is capable to predict the apparent scale effect
observed in masonry failure, while the model based on the Cauchy medium did not. In
conclusion, the internal length inherent to the Cosserat medium enables to introduce the
characteristic length related to masonry micro-structure. In this way, the scale effect and
the influence of the relative rotation of the blocks are efficiently taken into account by
the continuum model. This concerns the elastic, modal and the elastoplastic behaviour of
masonry. Its implication in the seismic analysis of masonry structures proves then crucial.

Perspectives
This thesis contributed to the development of a robust continuum model for masonry structures.
The model was based on rigorous homogenisation methods and was formulated in the framework
of the Cosserat continuum theory. Homogenisation yields a limited number of parameters in
the model. Cosserat continuum is the first of the enhanced continuous media, for which the
internal length related to masonry micro-structure can be properly introduced and modelled.

In the formulation of continuum models for masonry, the study of the following topics by
means of homogenization methods still remains challenging:

• the effect of boundary conditions, as the presence of boundary layers and the interaction
with other building materials such as reinforced-concrete, steel, wood, etc.

• the effect of large deformations and large deflections

• the modelling of damage and softening behaviour (post-peak response)

• the modelling of the finite strength of the blocks

• the response to creep

• the modelling of more complex masonry patterns, i.e. brickworks made of two or multiple
types of blocks, or voids.
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Appendix A

A.1 Average Cosserat deformations of the discrete cell

The expression of the average cell translation Vα can be demonstrated by introducing Eq.(1.28)-1
into the form:

1
|D|

ND∑
J=1

∫
BJ

vJαdS

 =

= 1
|D|

ND∑
J=1

∫
BJ

(
ΓαβyGJ

β + Vα − eαβ
[
Kγy

GJ
γ

(
yβ − yGJ

β

)
+ Ωcyβ

])
dS


= Vα + 1

|D|
Γαβ

ND∑
J=1

yGJ
β

∣∣∣BJ
∣∣∣
− 1

|D|
eαβKγ

ND∑
J=1

yGJ
γ

∫
BJ

(
yβ − yGJ

β

)
dS


− 1
|D|

eαβΩc

ND∑
J=1

∫
BJ

yβdS


= Vα + ΓαβyG0

β − eαβΩcyG0
β . (A.1)

When the local reference system is taken at the centre of mass of the elementary cell, the
expression reduces to Vα (Eq.(1.33)). Note that one could obtain the same result also by
considering:

1
|D|

ND∑
J=1

∫
BJ

vGJ
α dS

 = Vα (A.2)

A proof similar to that shown above for Vα applies for the expression of Ωc (Eq.(1.32)). The
only difference is that, in this case, Eq.(1.28)-2 must be considered instead of Eq.(1.28)-1.

For the demonstration of Dαβ (Eq.(1.31)) one can write:

1
|D|

∑
IJ

∫
ΣIJ

JvG
α KIJnIJβ dL

 =

= 1
|D|

∑
IJ

∫
ΣIJ

(
vGI
α nIJβ + vGJ

α nJIβ
)
dL

 ,
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= 1
|D|

ND∑
J=1

∫
∂BJ,i

vGJ
α nJβdL


= 1
|D|

ND∑
J=1

∫
∂BJ

vGJ
α nJβdL

− 1
|D|

ND∑
J=1

∫
∂BJ,e

vGJ
α nJβdL

 , (A.3)

where the boundary of every block ∂BJ is split into the part belonging to the cell interfaces

∂BJ,i and the part belonging to the external boundary of the cell: ∂D =
ND⋃
J=1

∂BJ,e and ∂BJ =

∂BJ,i⋃ ∂BJ,e. After the divergence theorem and by using Eq.(1.28)-1, the first term gives:

1
|D|

ND∑
J=1

∫
∂BJ

vGJ
α nJβdL

 =

= 1
|D|

ND∑
J=1

∫
BJ

vGJ
α,βdL

 = 0, (A.4)

while the second term yields:

− 1
|D|

ND∑
J=1

∫
∂BJ,e

vGJ
α nJβdL

 =

= − 1
|D|

ND∑
J=1

∫
∂BJ,e

(
Dαγy

GJ
γ + Vα

)
nJβdL


= − 1
|D|

Dαγ

ND∑
J=1

yGJ
γ

∫
∂BJ,e

nJβdL

− 1
|D|

ND∑
J=1

Vα

∫
∂BJ,e

nJβdL

 = Dαβ. (A.5)

The last passage in Eq.(A.5) is proved by the fact that the elementary the cell is enclosed by
the periodicity vectors α1,α2. Therefore, the two outward unit normal vectors of the boundary
of the cell ∂D are the covariant vectors of α1,α2. The same considerations apply for the
demonstration of Kβ (Eq.(1.30)), which is not reported here. The demonstration of Eq.(1.29)
for the marcoscopic relative deformation Γαβ is also similar, and leads to long expressions. For
brevity, it will be avoided in the text.
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A.2 Macroscopic relative deformations and curvatures on the
elementary cell A

By making use of Eqs.(1.29)-(1.30), and taking into account the rigid-body kinematics of the
blocks (Eq.(1.15)), it is possible to compute the macroscopic Cosserat deformations and curva-
tures of the cell A in terms of the translational and rotational kinematics of the blocks. As the
stack bond and the running bond are common in applications, we give here their expressions.

For the stack bond pattern (η = 0), the average relative deformations hold:

Γ11 = vG1
1 − vG2

1 − vG3
1 + vG4

1
2b +

a
(
ωG1 − ωG2 + ωG3 − ωG4

)
8b

Γ12 = vG1
1 + vG2

1 − vG3
1 − vG4

1
2a + Ωc

Γ21 = vG1
2 − vG2

2 − vG3
2 + vG4

2
2b − Ωc

Γ22 = vG1
2 + vG2

2 − vG3
2 − vG4

2
2a −

b
(
ωG1 − ωG2 + ωG3 − ωG4

)
8a , (A.6)

and the average curvatures read:

K1 = ωG1 − ωG2 − ωG3 + ωG4

2b

K2 = ωG1 + ωG2 − ωG3 − ωG4

2a . (A.7)

For the running bond pattern (η = 1/2), Eqs.(1.29)-(1.30) become:

Γ11 = vG1
1 − vG2

1 − vG3
1 + vG4

1
2b +

a
(
ωG1 − ωG2 + ωG3 − ωG4

)
8b

Γ12 = vG1
1 + 3vG2

1 − vG3
1 − 3vG4

1
4a − ωG1 − ωG2 + ωG3 − ωG4

8 + Ωc

Γ21 = vG1
2 − vG2

2 − vG3
2 + vG4

2
2b − Ωc

Γ22 = vG1
2 + 3vG2

2 − vG3
2 − 3vG4

2
4a −

3b
(
ωG1 − ωG2 + ωG3 − ωG4

)
32a , (A.8)

and

K1 = ωG1 − ωG2 − ωG3 + ωG4

2b

K2 = ωG1 + 3ωG2 − ωG3 − 3ωG4

4a . (A.9)

The various deformation modes for the stack bond pattern (Eqs.(A.6)-(A.7)) are illustrated in
Figure 1.19. For both block patterns, the contribution of the blocks’ rotations in the average
curvatures (A.7) and (A.9), and in the average deformations (A.6) and (A.8) is apparent. In
each case it depends on the aspect ratio of the blocks, a/b.
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A.3 Macroscopic stresses and couple stresses on the elementary
cell A

The expression for the macroscopic stesses and couples stresses as functions of the contact stress
distributions on the elementary cell A (Section 1.6), are retrieved through Eqs.(1.36)-(1.37). The
equations for the generic running bond pattern are presented in the text (Eqs.(1.72)-(1.73)).

For the stack bond pattern (η = 0) the macroscopic stresses are:

Tα1 = 1
a

(∫ a
2

0
r12
α dy2 +

∫ 0

−a2
r43
α dy2

)

Tα2 = 1
a

(∫ b
2

0
r14
α dy1 +

∫ 0

− b2
r23
α dy1

)
, (A.10)

and the macroscopic couple stresses are:

M1 = 1
a

(∫ a
2

0
−r12

1 y2 dy2 +
∫ 0

−a2
−r43

1 y2 dy2

)

M2 = 1
b

(∫ b
2

0
r14

2 y1 dy1 +
∫ 0

− b2
r23

2 y1 dy1

)
. (A.11)

For the classical classical running bond pattern (η = 1/2) they are:

Tα1 = 1
a

(∫ a
2

0
r12
α dy2 +

∫ 0

−a2
r43
α dy2

+
∫ b

2

b
4

1
2r

14
α dy1 +

∫ − b4
− b2

1
2r

23
α dy1 +

∫ b
4

− b4
−1

2r
24
α dy1

)

Tα2 = 1
b

(∫ b
2

b
4

r14
α dy1 +

∫ − b4
− b2

r23
α dy1 +

∫ b
4

− b4
r24
α dy1

)
, (A.12)

and:

M1 = 1
ab

(∫ a
2

0

1
4
(
−4r12

1 y2 + br12
2

)
dy2 +

∫ 0

−a2
−1

4
(
4r43

1 y2 + br43
2

)
dy2

+
∫ b

2

b
4

1
2r

14
2 y1 dy1 +

∫ − b4
− b2

1
2r

23
2 y1 dy1 +

∫ b
4

− b4
−1

2r
24
2 y1 dy1

)

M2 = 1
b

(∫ b
2

b
4

r14
2 y1 dy1 +

∫ − b4
− b2

r23
2 y1 dy1 +

∫ b
4

− b4
r24

2 y1 dy1

)
. (A.13)
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Appendix B

B.1 Out-of-plane components of the macroscopic Cosserat de-
formation measures of the cell Ā

For the stack bond pattern (η = 0), the average out-of-plane relative deformations of the cell A
are, after Eq.(2.52):

Γ31 = vG1
3 − vG2

3 − vG3
3 + vG4

3
2b −

a
(
ωG1

3 − ωG2
3 + ωG3

3 − ωG4
3

)
8b + Ωc

2

Γ32 = vG1
3 + vG2

3 − vG3
3 − vG4

3
2a +

b
(
ωG1

2 − ωG2
2 + ωG3

2 − ωG4
2

)
8a − Ωc

1, (B.1)

and the average out-of-plane curvature hold (Eq.(2.53)):

K11 = ωG1
1 − ωG2

1 − ωG3
1 + ωG4

1
2b

K12 = ωG1
1 + ωG2

1 − ωG3
1 − ωG4

1
2a

K21 = ωG1
2 − ωG2

2 − ωG3
2 + ωG4

2
2b

K22 = ωG1
2 + ωG2

2 − ωG3
2 − ωG4

2
2a . (B.2)

For the classical running bond pattern (η = 1/2), the above quantities read, respectively:

Γ31 = vG1
3 − vG2

3 − vG3
3 + vG4

3
2b −

a
(
ωG1

3 − ωG2
3 + ωG3

3 − ωG4
3

)
8b + Ωc

2

Γ32 = vG1
3 + 3vG2

3 − vG3
3 − 3vG4

3
4a +

3b
(
ωG1

2 − ωG2
2 + ωG3

2 − ωG4
2

)
32a +

(
ωG1

1 − ωG2
1 + ωG3

1 − ωG4
1

)
8 − Ωc

1. (B.3)

and:

K11 = ωG1
1 − ωG2

1 − ωG3
1 + ωG4

1
2b

K12 = ωG1
1 + 3ωG2

1 − ωG3
1 − 3ωG4

1
4a

K21 = ωG1
2 − ωG2

2 − ωG3
2 + ωG4

2
2b

K22 = ωG1
2 + 3ωG2

2 − ωG3
2 − 3ωG4

2
4a . (B.4)
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An illustration of the Cosserat deformation measures when the cell A shows a stack bond pattern
(Eqs.(B.5)-(B.2)) is given in Figure 2.11.
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B.2 Out-of-plane components of the macroscopic Cosserat stresses
and couple stresses of the cell Ā

The macroscopic Cosserat stresses and couple stresses (Eqs.(2.56)-(2.57)) corresponding to the
stack bond pattern (η = 0) of the cell A are:

T31 = 1
at

(∫ t
2

− t2

∫ a
2

0
r12

3 dy2dy3 +
∫ t

2

− t2

∫ 0

−a2
r43

3 dy2dy3

)

T32 = 1
bt

(∫ t
2

− t2

∫ b
2

0
r14

3 dy1dy3 +
∫ t

2

− t2

∫ 0

− b2
r23

3 dy1dy3

)
, (B.5)

and:

M11 = 1
at

(∫ a
2

0

∫ t
2

− t2

(
r12

3 y2 − r12
2 y3

)
dy3dy2 +

∫ 0

−a2

∫ t
2

− t2

(
r43

3 y2 − r43
2 y3

)
dy3dy2

)

M12 = − 1
bt

(∫ b
2

0

∫ t
2

− t2
r14

2 y3dy3dy1 +
∫ 0

− b2

∫ t
2

− t2
r23

2 y3dy3dy1

)

M21 = 1
at

(∫ a
2

0

∫ t
2

− t2
r12

1 y3dy3dy2 +
∫ 0

−a2

∫ t
2

− t2
r43

1 y3 + dy3dy2

)

M22 = 1
bt

(∫ b
2

0

∫ t
2

− t2

(
−r14

3 y1 + r14
1 y3

)
dy3dy1 +

∫ 0

− b2

∫ t
2

− t2

(
−r23

3 y1 + r23
1 y3

)
dy3dy1

)
. (B.6)

For the 1/2 running bond pattern they become:

T31 = 1
at

(∫ t
2

− t2

∫ a
2

0
r12

3 dy2dy3 +
∫ t

2

− t2

∫ 0

−a2
r43

3 dy2dy3

+
∫ t

2

− t2

∫ b
2

b
4

1
2r

14
3 dy1dy3 +

∫ t
2

− t2

∫ − b4
− b2

1
2r

23
3 dy1dy3 −

∫ t
2

− t2

∫ b
4

− b4

1
2r

24
3 dy1dy3

)

T32 = 1
bt

(∫ t
2

− t2

∫ b
2

b
4

r14
3 dy1dy3 +

∫ t
2

− t2

∫ − b4
− b2

r23
3 dy1dy3 +

∫ t
2

− t2

∫ b
4

− b4
r24

3 dy1dy3

)
, (B.7)

and:

M11 = 1
at

(∫ a
2

0

∫ t
2

− t2

(
r12

3 y2 − r12
2 y3

)
dy3dy2 +

∫ 0

−a2

∫ t
2

− t2

(
r43

3 y2 − r43
2 y3

)
dy3dy2+

−
∫ b

2

b
4

∫ t
2

− t2

1
2r

14
2 y3dy3dy1 −

∫ − b4
− b2

∫ t
2

− t2

1
2r

23
2 y3dy3dy1 +

∫ b
4

− b4

∫ t
2

− t2

1
2r

24
2 y3dy3dy1

)

M12 = − 1
bt

(∫ b
2

b
4

∫ t
2

− t2
r14

2 y3dy3dy1 +
∫ − b4
− b2

∫ t
2

− t2
r23

2 y3dy3dy1 +
∫ b

4

− b4

∫ t
2

− t2
r24

2 y3dy3dy1

)

M21 = 1
at

(∫ a
2

0

∫ t
2

− t2

1
2

(
2r12

1 y3 −
1
2br

12
3

)
dy3dy2 +

∫ 0

−a2

∫ t
2

− t2

1
2

(
2r43

1 y3 + 1
2br

43
3

)
dy3dy2+

∫ b
2

b
4

∫ t
2

− t2

1
2
(
−r14

3 y1 + r14
1 y3

)
dy3dy1 +

∫ − b4
− b2

∫ t
2

− t2

1
2
(
−r23

3 y1 + r23
1 y3

)
dy3dy1+

∫ b
4

− b4

∫ t
2

− t2

1
2
(
r24

3 y1 − r24
1 y3

)
dy3dy1

)
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M22 = 1
bt

(∫ b
2

b
4

∫ t
2

− t2

(
−r14

3 y1 + r14
1 y3

)
dy3dy1 +

∫ − b4
− b2

∫ t
2

− t2

(
−r23

3 y1 + r23
1 y3

)
dy3dy1+

∫ b
4

− b4

∫ t
2

− t2

(
−r24

3 y1 + r24
1 y3

)
dy3dy1

)
. (B.8)

178



Appendix C

C.1 Stiffness matrix for materials with in-plane centro-symmetry
Considering a Cosserat material without specific centrosymmetric properties and always sup-
posing uncoupled in-plane and out-of-plane behavior, Eq.(3.9) reads:

Vcm = 1
2
[
Um

t Ωm
t
] [ Km

UU Km
UΩ + K̃m

UΩ
Km

ΩU + K̃m
ΩU Km

ΩΩ + K̃m
ΩΩ

] [
Um
Ωm

]
. (C.1)

The additional terms are indicated with ˜[ ] and are:

K̃m
UΩ =

∫
Ωe

[
Bm1[2N×4]

tG[4×2]Bm4[2×M ]
]
dA

K̃m
ΩU =

∫
Ωe

[
Bm4[M×2]

tH[2×4]Bm1[4×2N ]
]
dA

K̃m
ΩΩ =

∫
Ωe

[
Bm4[M×2]

tH[2×4]Bm2[4×M ] +Bm2[M×4]
tG[4×2]Bm4[2×M ]

]
dA. (C.2)
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C.2 Coupling factor
Let us consider the elastic deformation energy associated to the present Cosserat plate model
due to the in-plane deformations:

Vc
m = 1

2

∫
Ωe

[
τm

tγm + µmtκm
]
dA. (C.3)

Taking into account the constitutive law (18), we obtain:

Vc
m = 1

2

∫
Ωe

[
γm

tAγm + κmtDmκm
]
dA. (C.4)

The derivation of the skew-symmetric part from the element formulation is made possible by
separating every term of the strain vector into its symmetric and skew-symmetric part and by
reordering the resulting components in a new vectorial form:

γ̃m =
[
γ11 γ22 γ(12) γ[12]

]t
, κ̃m =

[
κ31 κ32

]t
= κm. (C.5)

The stress components can be also separated into their symmetric and skew-symmetric parts:

τ̃m =
[
τ11 τ22 τ(12) τ[12]

]t
, µ̃m =

[[
µ31 µ32

]]t
= µm. (C.6)

A new constitutive law between (C.5) and (C.6) can be expressed through the basic linear
relation

Ã = ∂2Ṽc
m

∂γ̃m∂γ̃m
, (C.7)

where Ṽc
m takes the form:

Ṽc
m = 1

2

∫
Ωe

[
γ̃m

tÃγ̃m + κmtDmκm
]
dA. (C.8)

Thus, starting from matrix

A =


A1111 A1122

A2211 A2222

A1212 A1221

A2112 A2121

 , (C.9)

we obtain:

Ã =


A1111 A1122

A2211 A2222

A(12)(12) A(12)[12]

A[12](12) A[12][12]

 , (C.10)

with

A(12)(12) =
[
A1212 +A1221 +A2121 +A2112

]
/2

A(12)[12] =
[
A1212 −A1221 −A2121 +A2112

]
/2

A[12](12) =
[
A1212 +A1221 −A2121 −A2112

]
/2

A[12][12] =
[
A1212 −A1221 +A2121 −A2112

]
/2. (C.11)
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Cauchy continuum can be retrieved by annihilating the skew-symmetric terms contained in
Eqs.(C.11), which automatically guarantees the self-satisfaction of the balance equations, with-
out the necessity of any couple stress addition. In the case thatA is given by the first sub-matrix
of Eq.(3.47), we have:

A[12][12] = 2Gc = 2Gα = 2A(12)(12)α, A(12)[12] = A[12](12) = 0. (C.12)

Therefore the term α controls in magnitude the skew-symmetric part of the shear stress within
the constitutive law.
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C.3 Drilling rigidity
Given A by Eq.(C.9) and Bm2 by Eq.(3.27), the first term of the stiffness matrix in Eq.(3.31)
reads:

Km
ΩΩ

(1) =
∫
Ωe


0 0
0 0

Φ1 ΦN

−Φ1 . . . −ΦN


t 
A1111 A1122

A2211 A2222

A1212 A1221

A2112 A2121




0 0
0 0

Φ1 ΦN

−Φ1 . . . −ΦN

dA.(C.13)
Recalling the definitions (3.18) and (C.11)-4, the above matrix is:

Km
ΩΩ

(1) =
∫
Ωe

2A[12][12]Φm ⊗ΦmdA =
∫
Ωe

2A[12][12]Φm
tΦmdA, (C.14)

where the outer product ⊗ has been expressed as a scalar product, with Φm from Eq.(3.24).
We note that only the matrix Km

ΩΩ
(1) contains the elastic modulus A[12][12] associated to the

Cosserat’s term responsible for the hourglass control, i.e. γ[12]. Writing the elastic potential
associated to that matrix as:

Vcm,ΩΩ
(1) = 1

2Ωm
tKm

ΩΩ
(1)Ωm (C.15)

and by introducing Eq.(C.14), we have:

Vcm,ΩΩ
(1) = 1

2

∫
Ωe

[ΦmΩm]t2A[12][12] [ΦmΩm] dA. (C.16)

In the above we recognize the second expression of Eq.(3.22). It results in:

Vcm,ΩΩ
(1) = 1

2

∫
Ωe

2A[12][12]ω2
3dA. (C.17)

So Km
ΩΩ

(1) depends on the drilling rotations ω3 and if A[12][12] = 2Gα (Eq. (C.12)), then α
gives a weight to the drilling rotations in the assemblage of the element membrane stiffness
matrix.

The above potential is similar to that generally proposed by Providas and Kattis (2000) for
the construction of shell structures by assemblage of flat FE. This latter can be expressed as:

VPKm,ΩΩ
(1) = βγ

∫
Ωe

(ω̂30 − ω3)2dA ≈ βγ
∫
Ωe
γ[12]

2dA, (C.18)

where ω̂30 the average infinitesimal rotation (Eq.(3.4)) of the element, β depends on the material
and γ is an arbitrary parameter through which one makes the stiffness matrix non-singular,
against possible membrane actions.
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C.4 Patch test for anisotropic Cosserat materials
For anisotropic Cosserat material, matricesA andDm governing the in-plane behaviour (Eq.(3.47))
take the following form (Sulem and Mühlhaus, 1997):

A =


K +G K −G 0 0
K −G K +G 0 0

0 0 G+ α(1− β)G G− αG
0 0 G− αG G+ α(1 + β)G

 , Dm =
[
2Glc 0

0 2Glc

]
(C.19)

where β is a coefficient controlling the anisotropy of the material to shear.
The generalization of the patch test formulated by Providas and Kattis (2002) for anisotropic

Cosserat materials is given in general form in Table C.2. Notice that the patch test of Providas
and Kattis (2002) is retrieved by imposing β = 0 (isotropic material). On the contrary, due to
the anisotropy of the material (for β 6= 0), symmetry of the in-plane shear stress τm is lost in
Test 1. Therefore, the application of the body couple m3 is needed. In this case Test 1 becomes
redundant with respect to Test 2 and can be avoided.

The present formulation satisfy the patch test for anisotropic materials. Table C.1 shows
that the error committed by the formulation in predicting the stresses and couple stresses in
case of anisotropy is of the same order than the error committed for an isotropic material. In
this example, we have used β = 0.5. The other material parameters are contained in Figure 3.8.

τ11 τ22 τ12 τ21 µ31 µ32

Test 1 4.000 4.000 1.3125 1.6875 0.000 0.000
[4.000] [4.000] [1.3125] [1.6875] [0.000] [0.000]

Test 2 4.000 4.000 1.6875 1.0625 0.000 0.000
[4.000] [4.000] [1.6875] [1.0625] [0.000] [0.000]

Test 3 3.986 3.996 1.330 1.631 4.001 -3.991
[4.000] [4.000] [1.341] [1.641] [4.000] [-4.000]

Table C.1: Results of patch tests for anisotropic Cosserat material. Stresses and couple stresses
at point P1. Exact results are reported in brackets.
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C.5 Advanced test to torsion for Cosserat plates
The test is performed on a rhombic plate. Depending on the configuration considered (Fig-
ure C.1-left), the plate has one or two adjacent clamped edges, where all the degrees-of-freedom
are prevented. The free-end of the plate is subjected to a local (nodal) out-of-plane force F3.
The plate has an orthotropic behaviour to bending, for which the material matrix Df takes the
following form (Eq.(3.49)):

Df =


β1 + β2 + β3 β1 0 0

β1 β1 + β2 + β3 0 0
0 0 β3(1− δ) β2
0 0 β2 β3(1 + δ)

 , (C.20)

where δ controls the anisotropy of the plate to bending.
The aim of the test is to assess the numerical convergence of the formulation upon mesh

refinement. This is made for: a) increasing element distortion θ, b) increasing degree of
anisotropy δ and c) different boundary conditions. For the simulations, regular discretisations
of 2× 2, 4× 4, 8× 8 up to 64× 64 elements are used. It is worth remarking that the orthotropy
directions are always kept coincident with the x1, x2 axis, whereas the element discretisation
follows the shape of the plate (Figure C.1-right).
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F
3
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P

Plate with one clamped edge

x
3

x
1

x
2

F
3

P

Plate with two clamped edges

Figure C.1: Rhombic plate subjected to local out-of-plane force F3. Notations, boundary con-
ditions and element discretisation.

Figure C.2 shows the relative error ε committed by the element in predicting the out-of-plane
displacement at point P of the plate versus the number of finite elements NFE used per side.
To this purpose, the numerical solution Uh

3 is compared with the exact solution U ex
3 , obtained

with the finest 64× 64-element discretisation:

ε = 100× Uh
3 − U ex

3
U ex

3
. (C.21)

It is shown how the geometrical distortion of the elements, the application of additional con-
straints and the introduction of an orthotropic behaviour with respect to bending lead, in
general, to a reduction of the performance of the element. It is apparent how this latter is
highly affected when considering highly distorted elements, i.e. for θ = 60◦. On the contrary,
the effect of additional boundary conditions and material anisotropy is much less pronounced.
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Figure C.2: Relative error committed in the evaluation of the out-of-plane displacement of
point P of the plate. Top: response for isotropic plates. Bottom: comparison with anisotropic
plates. Geometry: A = 50mm, B = 45mm, F3 = 1N. Out-of-plane properties: α4 = 1500MPa,
β1 = 2000MPa×mm, β2 = 0MPa×mm, β3 = 4000MPa×mm. Anisotropic plates are for
δ = 0.5.
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Appendix D

D.1 Implementation of the COSS8R element in Abaqus

Abaqus (Simulia, 2010) is one of the main commercial software packages that implement the
finite element method. As in the majority of the commercial software packages dedicated to
finite elements, in Abaqus the user defines an analysis (or load case) history. This mainly
consists in (Simulia, 2010):

• Dividing the job into different steps. A step is a convenient phase of the analysis history. In
its simplest form, a step can be just a static analysis of a load change from one magnitude
to another.

• Defining the analysis procedure to be followed for each step. Choosing the type of analysis
to be performed during each step results in good flexibility when programming complex
load case histories. In the present case, static and modal analyses can be performed by
the implemented finite element formulation.

• Prescribing loads, boundary conditions and output requests for the step. The loads and
the boundary conditions can be changed, together with the analysis procedures, from
step to step. Since the state variables of the model (in this case the stresses, the elastic
and plastic deformations, the hardening variables) are updated throughout the load case
history, the effects of a step can be included in each new subsequent step.

During the execution of the analysis history, each step is divided into multiple increments,
corresponding to load (or time) increments. Step increments can be explicitly demanded by
the user (for example for output request) or automatically required by the program in order to
respect convergence conditions on the expected step solution.

The COSS8R element described in Chapter 3 and Chapter 4 is introduced in Abaqus as
user-defined element. The subroutine provided by Abaqus allowing to define a user-defined
element is called UEL (Simulia, 2010). The user subroutine UEL operates in Abaqus at the
increment level. It performs all the calculations assigned to the finite element, and is called by
Abaqus each time element calculations are required. This subroutine is very general and can
result very efficient in solving equations in terms of non-standard degrees of freedom. In the
present case, it allows to consider the nodal rotations Ω as the Cosserat rotations Ωc (including
the drilling rotations Ωc

3) in the finite element formulation. Figure D.1 illustrates how Abaqus
calls the user subroutine UEL and operates on the user-defined elements. Notice that the user-
defined elements are invoked by Abaqus in the same manner as the native Abaqus elements.
The layout is as follows (Figure D.1):

(1) A generic step is executed, as prescribed by the analysis history defined by the user.
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(2) The step is first initialized throughout all the elements of the model, which corresponds
to step increment n = 0. The user subroutine UEL is called for the first time in the step,
but no calculations are required on the user-defined elements at this stage.

(3) Starting from the first increment (n = 1) and until convergence is reached (stage (6)), a
step increment n + 1 is predicted by Abaqus and given to the user-defined elements in
terms of nodal degrees of freedom dSn+1. In the present case, nodal displacements dUn+1
and nodal rotations dΩc

n+1 are assigned to the COSS8R elements.

(4) Given the increment, the UEL subroutine solves for every finite element the partial dif-
ferential equations governing the prescribed incremental problem. In this case, solution
to the elasto-plastic problem described in Chapter 4 is computed at every Gauss point
of the COSS8R elements. The solution is given in terms of generalized deformation and
stress increments dεn+1,dσn+1 and hardening variables dαn+1, dqn+1. The Closest Point
Projection (CPP) algorithm is applied at this stage.

(5) Within the same increment, the internal and external residual vectors, respectively Rn+1
and P n+1 (Chapter 4), the tangent stiffness matrix Kn+1 and the mass matrix Mn+1
(Chapter 3) are also integrated over the finite elements. Notice that only these quantities
are returned to Abaqus.

(6) The assembly of the global residual vectors R̄n+1 and P̄ n+1 and the global tangent stiffness
and mass matrices K̄n+1 and M̄n+1 is made by Abaqus, starting from the local quantities
computed in (5). Solution convergence is checked by Abaqus at this stage. If convergence
is not reached, a new (and smaller) step increment is predicted and the UEL subroutine
is recalled (stage (3)).

(7) If convergence is reached, Abaqus updates the global solution with that for the given
increment dSn+1, and recalls the UEL subroutine for the next step: (3)← (7).

As it is apparent from the above layout, the assembly of the global matrices and the com-
putation of the global solution are entirely carried out by Abaqus during the job processing.
Moreover, the pre-processing and post-processing are also provided by Abaqus. They can be
controlled through the tools that Abaqus classically places at user’s disposal, i.e. the Abaqus
graphical interface (Abaqus/CAE), the submission of input files, and the use of specific scripts
written in Python language (Simulia, 2010). To this purpose notice that, in general, plotting of
user-defined elements is not supported by Abaqus/CAE. However, if these elements contain, as
in the present case, translational and rotational degrees of freedom, they can be overlaid with
the native Abaqus elements. This is made by tying the nodes of the user-defined elements with
the nodes of the standard elements. Moreover, the nodal degrees of freedom of both elements
must correspond (Simulia, 2010). If one follows this strategy, model plots of the user-defined
elements are displayed in the post-processing. This allows the user to see the undeformed and
deformed shape of the structure. User-defined variables (like the generalized stress and deforma-
tion measures, the labels of the activated criteria, etc.) can also be visualized on the structure
in the form of plot contours. In this case, the use of another specific user subroutine called
UVARM (Simulia, 2010) is necessary.
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Figure D.1: The algorithm through which Abaqus calls the user subroutine UEL and operates
on the user-defined elements. CPP indicates the Closest-Point-Projection algorithm used for
the solution of the elastoplastic problem (Chapter 4).
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