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2 CHAPTER 1. INTRODUCTION

1.1 Context: composite materials

Composite materials are increasingly used in a wide range of engineering applica-
tions including aerospace, aeronautics, automotive, sport equipments and offshore
structures to take advantage of their good mechanical properties and weight sav-
ing ability. They have played an important role in the development of lightweight
structures. Composite materials progressively replace traditional metallic materi-
als due to their high strength-to-weight and high stiffness-to-weight ratios as well
as improved corrosion resistance, superior fatigue life, design flexibility, durability,
and potential reduction of life cycle cost. During the manufacturing process, com-
posite materials may be formed into a variety of complex shapes.

Despite all their advantages, composites have certain disadvantages as well. The
limitations include material degradation due to environmental factors such as tem-
perature and humidity. The temperature resistance of composites is dependent on
the matrix material used for binding the fibers. Composites absorb moisture which
affects the way they behave.

Composite materials are made by combining two materials, a reinforcement ma-
terial called fiber and a matrix material. They are connected with each other by
means of interfacial bonding. In general, the fibers have very high tensile strength
and modulus, but depend on the matrix to provide the transverse and compressive
strength contributions. They are responsible for composite’s high structural prop-
erties. The matrix, which are often a thermoset resins, thermoplastic polymers
or metallic, binds together a cluster of fibers having a preferred orientation. The
matrix acts as a load transfer medium between fibers and also protects fibers from
environmental degradation. It is capable of absorbing energy by deforming under
stress. The fibers are generally brittle. Reinforcement materials often used in
composite applications are carbon, kevlar, glass and aramids. They can be in the
form of long fibers, short fibers or particles. By combining different matrix mater-
ials with different reinforcement materials it is possible to obtain a wide range of
composites having different mechanical properties.

Laminated composites are widely used because of the familiar manufacturing and
mechanical characteristics. The laminates are built up by stacking layers of vary-
ing fibre orientations. The stacking sequence is generally given with respect to
the primary loading axis of the material. The effective mechanical properties of
the laminate vary with the orientations, thicknesses and stacking sequence of the
individual layers. This grants the designer some flexibility to tailor the stiffness
and strength of the laminate in order to satisfy the structural requirements. The
unidirectional laminate exhibit excellent in-plane properties, but poor out-of-plane
properties. To reduce the anisotropy of the laminate and provide strength in mul-
tiple directions, the fibers are generally laid up in varying configurations of 0°, 90°
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and +/ — 45° orientations.

With this material design methodology, the material anisotropy and heterogen-
eity are greatly increased. As a result, various damage modes can occur and these
modes often interact. The damaging process in composite structures is of great
complexity especially under dynamic solicitations. Organic matrix composites are
generally composed of three characteristic scales. The microscopic scale is related
to the fibers arrangement in the matrix, the mesoscopic scale is related to the plies
and the macroscopic scale is related to the structures. Damages can occur at these
three scales:

e Fibers breakage, fibers/matrix debonding and matrix cracking at microscopic
scale;

e Delamination at mesoscopic scale;
e Full failure of the laminate at macroscopic scale.

Among these damage modes, delamination, the separation of two adjacent plies
in composite laminates, represents one of the most predominant and most severe
damage mechanisms.

Experimental tests is an efficient way to assess composite laminates behavior. How-
ever, the complex response of composite laminates together with the high costs
and limited reproducibility of mechanical tests render experimental approaches
expensive and time consuming. The associated costs of these mechanical tests
increase rapidly as the complexity level increases. Due to the fact that testing is
expensive in terms of both material and time, various numerical methods have been
developed in order to replace a part of the physical tests with “virtual mechanical
testing”.

1.2 Scientific locks and solutions

The development of efficient simulations for composite structures is a very chal-
lenging issue. There are many scientific locks:

e Multiscale simulations require a lot of computational resources and the man-
agement of big data. New numerical strategies have to be investigated to
improve the performance of multiscale simulations;

e The modeling of damages can also lead to numerical difficulties. For example,
the use of cohesive elements is an appealing choice. This kind of elements is
particularly well adapted to treat delamination and fibers/matrix decohesion.
However, cohesive elements needs very fined meshes to ensure the numerical
stability;



4 CHAPTER 1. INTRODUCTION

e Composite structures have often a small dimension compared to the others
(shell or plate structures). When using 3D elements, a fine mesh is required
to keep a good precision in the thickness which results in a very high number
of elements to cover the entire surface;

e Explicit dynamic calculations lead to a restrictive time step condition and
introduce a numerical viscosity. In other hand, the use of implicit scheme
causes solving some non linear problems many times. It is a problem, espe-
cially when considering the strong non linearity related to damage modeling.

In addition, models and numerical tools must be robust, efficient, and carefully
validated against test data to ensure that they are capable of predicting consist-
ently the response of structures in service.

Numerical methods for example, the so called classical methods like finite element
method (FEM), can provide an approximate solutions for governing equations of
the concerned problem. They convert partial differential equations into a system
of algebraic equations, by the discretization of the problem geometry, which are
then more easily solved. The number of these algebraic equations is limited by
availability of computer storage.

1.3 Objective

The main objective is to develop efficient numerical solvers able to simu-
late the complex behavior of composite laminates (related with the lock
mentioned above) with reasonable computational time and accuracy. To
reach this objective, an approach based on reduced modeling is proposed in this
work. This approach can reduce by several orders of magnitude the computational
time and the memory requirement. The technique proposed is based on a separ-
ated representation of the solution. A few solvers exist to compute this kind of
solution. Here, the Proper Generalized Decomposition (PGD) will be considered.
This numerical method builds the separated representation of the solution using a
greedy algorithm with no a priori knowledge of any reduced basis. It enables the
reduction in size of multidimensional and parametric problems.

Two main problems are treated in this thesis:
e The modeling of damages and especially delamination;

e The development of a multiscale solver able to account for the interaction
between scales.
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Delamination modeling

Delamination, also referred to as interfacial cracking, is important because it can
significantly reduce the capacity of the laminate to carry loads. Delamination
cracks may propagate without being detected under the action of static or dy-
namic loads. The resistance to delamination, known as the interlaminar fracture
toughness, is generally low. It is an important composite property. Delamination
may arise under various circumstances, such as mechanical loading, low velocity
impacts, temperature fluctuations that induce normal and/or shear stresses at the
interfaces. It may cause local buckling, drastic reduction of the bending stiffness,
catastrophic loss of compressive strength, excessive vibrations and reduction of
fatigue life. This makes delamination a major obstacle in achieving the full weight
saving potential of composite materials. It is than crucial to develop a better un-
derstanding of delamination.

When classical computational methods are used to study delamination initiation
and propagation in composite laminates, very fine discretization is needed to in-
crease accuracy, with volumic discretization of each ply and use of cohesive inter-
faces. Therefore, the computational cost and time associated with such modeling
for large structures would be prohibitively high. To overcome this limitation, a
solver is developed in this thesis based on the Proper Genearlized Decomposition
under static loading and impact loading.

Multiscale modeling

A simplified model of the composite laminates is used when only the macroscale
is considered. In this case, the composite laminates are modeled as a stack of
homogeneous orthotropic layers. In reality, each layer of the laminate consist of
fiber reinforcement embedded in a matrix material. The fiber reinforcement can
be unidirectional (UD), bidirectional (weaves) or randomly oriented (mat). The
use of macroscale modeling leads to loss of microscopic informations. In addition,
a coupling between scales is often observed (the fiber scale, the ply scale and the
laminate scale), generating a real need for multiscale models in many applications.

The main difficulty related to multiscale modeling is the need of multiscale solvers
that require a lot of computational resources. In order to account for microscopic
informations and to reduce significantly the cost of a multiscale approach, a new
modeling method will be proposed. The main idea is to use the periodicity of the
microstructure to separate two scales: the scale of the periodic pattern and the
macroscopic scale. This is done using a separated representation of the solution in
the context of the proper generalized decomposition.
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1.4 Outline of thesis

In order to accomplish the above aim, the work is organised as follows:

In chapter 2, we outline the limits of classical discretization methods when deal-
ing with multidimensional and parametric problems. After presenting the proper
generalized decomposition method, we detail the different steps necessary to the
construction of a solution under a separated form.

In chapter 3, the description of the phenomena of delamination under quasi-
static loading and the different approaches used in the literature to deal with the
problem are addressed. A short review of the the most commonly used delamina-
tion tests is given. Various aspects of the cohesive zone modelling technique from
basic parameters to its implementation are explained. Finally, all the numerical
details of the proposed numerical approach, combining the cohesive zone model
(CZM) with proper generalized decomposition (PGD), are presented. The PGD
simulations is compared to the classical FEM simulations as well as to analytical
solutions.

In chapter 4, the same approach described in the previous chapter is adopted
to simulate delamination under low velocity impact. A brief literature review on
impact and the related damage types is given.

In chapter 5, a generic review of multiscale methods in computational mech-
anics is presented, followed by the description of the numerical implementation
of the multiscale separated representation. A comparison is made between the
simulations performed with a macroscopically modeled structure and simulations
performed with multiscale method.

In chapter 6, conclusions and prospects closes the manuscript with an overall
summary of the work and a list of potential future developments.
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2.1 Separated representations and PGD

Composite laminates are generally thin structures like plates or shells. In this
kind of domains, a 3D finite element simulation can be very costly if we want
to have a sufficient number of nodes in the thickness to get the complex stress
distributions accurately (shear stress in particular). In a mechanical simulation
based on a displacement approach, the unknown field is the displacement vector
u(z,y, z). To reduce the cost of shell simulations a reduced basis may be defined
over the thickness in order to approximate the solution:

N
u(z,y,z) =Y _ Fi(z,y) x Gi(2) (2.1)

i=1
The function G; for ¢ = 1,.., N are some predefined basis functions. For ho-

mogeneous materials, these functions can be derived from the Kirchhoff-Love or
Mindlin-Reissner theories of plate. Some sophisticated plate elements can be built
from this assumption. If N is small enough, the total number of degrees of freedom
is cut down. Only a 2D mesh is required and the problem is greatly simplified in
comparison to the full 3D approach. If we want to reduce even more the cost
of a 3D computation in plate domain, we can extend the approximation given

previously by:
N

u(e,y,2) = 3 i) x Gily) x Hil2) (22)
i=1
With this new approximation the number of degrees of freedom can be reduced
even more. This kind of separated representations is the basis of model reduction
techniques.

Let us describe in a general framework the model reduction techniques. If we
are looking for a field (u) that depends on D coordinates (21, ..., xp), a separated

representation of (u) is built as a finite sum of N functional products (F") involving
D functions of each coordinate. This can be written as:

w(xy, ..., xp) & Z Fi(x1) X ... x F(xp) (2.3)

In transient space/time problems a simple separated representation is:

u(z, ..., t) ~ ZFf(x) X ... x Fi(t) (2.4)

Assume that some values of F{(z) can be determined for i = 1,2,..., N. These
values may be used instead of the classical finite element basis functions (the form
functions) when solving the transient problem. In this case, the number of DOF
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to solve at each time step becomes N and is no more related to the number of
nodes. If N is very small compared to number of nodes, the model is reduced and
the computational resources required to solve the problem is significantly lower.
The functions Fi(t) can simply be deduced from the solution of the reduced tran-
sient problem. This kind of technique required previously to determine some basis
functions Fj(x). The reduction is made “a posteriori” ie after an estimation of the
basis functions.

To determine the basis functions, an useful tool is the Proper Orthogonal Decom-
position (POD), also called the Karhunen-Loéve decomposition | . A
full non-reduced simulation may be used to compute a sample of discret values
(nodal values) of u for different times. This sample is assumed to be represent-
atives of the solution. The Proper Orthogonal Decomposition will extract some
orthogonal vectors that are able to approximate the sample of u up to a chosen
precision. The so obtained vectors are an excellent choice to form a reduced basis.
This basis is optimal: it is the most reduced basis in the sense of the euclidean
norm when we want to represent the solution with a given precision. This a pos-
teriori strategy can be used for real time computation or for extrapolation of the
results, for instance when the solution is known for some boundary conditions and
we want to determine it for some slightly different conditions. To treat parametric
problems, some non-incremental Reduced Basis methods have also been developed.
The idea is the same as the former POD but the time coordinate is replaced by a
parametric coordinate.

Some a priori reduction methods have also been developed in order to avoid the
prior need of a sample of the solution. The A Priori Hyper Reduction method
(APHR) originally developed by Ryckelynck | ; |
is an efficient method able to solve the problem and build the reduced basis at the
same time. The reduced basis is updated during the simulation when the norm
of the residual exceeds a given tolerance. A finite element calculation is generally
used to enrich the basis. The Hyper Reduction consists in the definition of reduced
integration domain in which the equations are integrated. This is interesting for
materials with complex non linear behaviours. As the POD, the APHR is an incre-
mental method with a space/time representation. This method isn’t well adapted
to treat multi-dimensional problems.

Another recent a priori model reduction technique is more adapted to treat multi-
dimensional problems. It is called Proper Generalized Decomposition (PGD) and
is also based on the separated representation of the unknown field. The advantage
of the PGD is that it isn’t an incremental method and thus is not restricted to
space/time separated representation. The aim of this method is to build directly
the separated representation.
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The PGD with a space-time separated representation was originally proposed by
P. Ladeveze under the name “radial loading decomposition” in the context of the
LATIN method. The idea was to develop a non-incremental solver |
; |. A. Ammar et al. | ;
| devised the first version of the PGD strategy for multi-dimensional
problems. It was originally applied to the high-dimensional kinetic models of com-
plex fluids. After that, the PGD was successfully applied to a wide variety of
problems. For instance, the PGD procedure was applied by A. Ammar et al. |
| to model the degradation of a plastic material which is a complex
transient problem. A separated representation was also used by F. Chinesta et al.
for solving the chemical master equation | | and stochastic
equations within the brownian configuration field framework | |.
The PGD was applied in other studies for thermal problems in composite materials
| |. A. Nouy used the PGD to study stochastic problems |
; |. The PGD approach constitute a new paradigm in
scientific computing, allows the reduction in size of the multidimensional and para-
metric problems | : | and makes possible
to solve models never until now solved.

This approach also allows for a fast computation of problems defined in plate or
shell domains with significant computing time saving with respect to a standard
mesh-based discretization technique. The advantage is that 3D solutions can be
obtained with a computational cost characteristic of standard 2D solutions |

|]. The idea is to compute full 3D solutions (instead of shell models)
using in-plane/out-of-plane separated representation. This approach has been ap-
plied to composites shell structures | | and have been improved using
high order interpolation in the thickness | ; .

To solve a problem using the PGD, the functions FJZ defined in the separated
representation Eq. 2.3 have to be determined. These functions are computed by
introducing the separated representation into the weak form of the problem and
then the resulting nonlinear equations are solved. The PGD method often yields
accurate solutions with a small number of terms N. For problems defined in a
space of dimension D, if M nodes are used to discretize each coordinate, the total
number of unknowns involved in the solution is M.D instead of the M” degrees of
freedom involved in standard mesh-based discretizations. The key of the method
is its ability to reduce the number of degrees of freedom: the complexity of the
model scales linearly when D increases.
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2.2 Illustration of the PGD method

In what follows we are illustrating the construction of the Proper Generalized
Decomposition of a generic model defined in a 2D domain.

/ Fd

Q <

1\\ rt /
bmn

<\/ f \4

n

Figure 2.1 — Problem definition.

2.2.1 Mechanical model

We consider the displacement field u of an elastic body defined in a domain {2 € R2.
It is subject to prescribed displacements Ug on part of its boundary I',, to loads
Fg4 on another part of its boundary I'; and to a body force f, as shown in Figure
2.1. The strong form of the static equilibrium equation can then be formulated as

follows:
V.o(u(x,y)) +f=0, V(z,y) € 12

(2.5)
a’(u(aj,y))n(aj,y) :Fd7 V(C’fay) € Ft
u(xvy) :Ud7 V(%?J) € Fu
where n is the unit normal direction pointing outward at the boundary 3.
For linear elastic homogeneous materials, the stress tensor o is connected with the
strain tensor € by the standard fourth-order elasticity tensor H (Hooke’s law).

oc=H:e (2.6)

This relation can be written using matrix notations:

O-.Z’Z' 81'33
o | =H .| gy (2.7)
Oy 2.€4y

By multiplying the strong form (Eq. 2.5) by a test function (or virtual displace-
ments) u* and integrating over the domain {2, we get the weak form of the equi-
librium equation:

//Q(s(u*). H. e(u))dQ://Qu*.f d(2+/ﬂ(u*.Fd)dF Vu € v? 28)

Yu* e v’
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Using the 2D plane strain comportment law, we obtain:

o Hy Hip O Exx
Oyy | = H12 H22 0 Eyy (29)
Oy 0 0 H66 2'€xy

For an orthotropic material, H is defined by:

1 _ Vay 0
L*;x By

H'=|-% =% ? (2.10)
0 0

Gy

Where E,, E,, v,y and G, are the material parameters (elastic modulus, Poisson
ratio, and shear modulus).
In this present case, the weak form writes:

// Hllgxcp + H12€yy dQ—l— // H125:):x + H22€yy dQ+ // 4€IyH66€xde
:// u".f d9+/ u"F,dr
2 I

(2.11)

The strain-displacement relation, with small strain assumption, is given by:

1
= 5(Vu + (Vu)™) (2.12)
Where V is the gradient operator:
0 0

V=(=)" 2.13
G5 (213)

Then the weak form becomes:
// Hﬂ@u*@u // 22 // 8u*8v (%*&u)
N Or Ox oy 0y 6 ay oy Or
+// H66<@+8”*)<—+—)_// w f d!2+/ W, dl
[e) oy Or "0y O N I

2.2.2 Separation of space variables

(2.14)

The original two-dimensional rectangular domain (2 of dimension (2, x {2, =
(0,L) x (0, H) has been transformed within the PGD framework into a two de-
coupled one-dimensional problems formulated in (2, and (2, (Figure 2.2). If the
unknown field is the displacement u, we can approximate it by a sum of product
of functions, as follows:

= ZFi(ﬂf) 0 Gi(y) V(r,y) e (2.15)
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where o denotes the Hadamard product.
Eq. 2.15 is equivalent to:

w_ ((wa(zy) \ N~ ([ FiGL
w= (i )= 2 (Fe: (216)
Then, the separated representation of the strain tensor gives:
n F; .G,
e(z,y) =Y |  FG, (2.17)
=1\ F,G, ,+F G,

f« denotes the derivative of a function f with respect to z.

[T T T T 77T ] 7] 7]

/I

= —

———t—t————
2D (x,y) 1D (x) 1D (y)

Figure 2.2 — 2D problem separated into two decoupled 1D problems.

2.2.3 Enriching the approximation basis

It is assumed that the first n terms of the approximation (Eq. 2.15) have been
determined at previous iterations. At the first iteration, nothing is known a priori.
In order to enrich the separated approximation, some new functions F*™! G7*1
F™1 and G™! have to be determined. The new approximation is then:

Fn+1Gn+1 )

u"t(z,y) =u"(z,y) + ( Friget (2.18)

That can also be written as:
wie) =wlea) + (o )o (i ) 210
=u"(z,y) + F* o G"*!
The strain derived from Eq. 2.17 is:
S (2,y) = (0 (2,9)) + £(F"H 0 G (2.20)
And test function u* is defined from the separated representation:

vy~ ((FET @G ) + Fr (2)G ()
m{ey) = (F:H*(m)Gwy)+F5+1<x>Gz+1*<y>)

= F oGt 4 Frtlo Gt (2.21)
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2.2.4 Alternating direction strategy

Finding the couple of functions (F"*1 G"*!) is a highly non-linear problem. For
that purpose, an alternating directions strategy is used. It proceeds as follows: At
each iteration, a single function F** and G"*! is computed alternately assuming
the other is known. This procedure continues until reaching convergence. So there
are two steps:

1. Step 1: finding F**! assuming G™*!
2. Step 2: finding G™*! assuming F"*!

At the beginning of the procedure, the functions F** and G™*! are initialized
with some arbitrary functions. In practice, the initialization values have a weak
impact on the convergence.

Step 1 In step 1, G""! is assumed known and F"*! is being searched for. As
G"*! is known, only the test function F"*'" is considered. Then the test function
becomes:

* F1:L+1* Z GZ+1 n+1%* n
wen) = (pho()giagy ) e )

Implying the strain tensor,

Fn+1*Gn+1
e(u(z,y)) = (F"(2) 0 G"(y)) = Gy (2.23)
F5+1*GZJ;1 +F5Lj;1*G;L+1
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Substituting of Eqgs. 2.18 and 2.22 into Eq. 2.14, we define the function A such

as:
/ |, G
G dGY |
/ 2, dy dy

dG?
— @G
/ 0, dy

A(F" FI G' GY) = Hy, UQ

+H22/ Fi*Fj‘|X
2,
dFJ
+H12/ F* }
2,
dF’L*
+H12/ }
0, dx ,
i v ]
—|—H66/ F’*F]} / dG, A,
2, 0, dy dy_
i AFY dG“
el [, |, (50)
Qz
FZ* d j
el [, G | ()
0, dx
[ dF* dFJ
H v &% el
+ Heg \/Qz . dm}xl/{zszG]]

With this function, the weak form using the separated representation reads:

ary ary) |
dr dx

Yy

yea
Gl
/(2, dy |

(2.24)

A(Fn+1*’Fn+l,Gn+1,Gn+l) — //Qu*f dQ—l—/[’ u*.Fd dl—v_z A(Fn+1*,Fi’Gn+l,Gi)

(2.25)
In the right part of this equation, every terms are known. In Eq. 2.24 the integrals
over {2, can be approximated numerically because the functions G; are known Vz. It
remains only a problem defined over (2,. This reduces significantly the complexity
of the problem.

Step 2 In step 2, F*™! is assumed known and G™*! is being searched for. Then
the test function becomes:

* _ Frt(z)Gut (y) _ ntl nA1*
u(z,y) = ( ()G (y) ) = F'" oG (2.26)
implying the following strain tensor,
Fn+1Gn+1*
(™ () = e(F™(z) 0 G (y)) = PG (2.27)

Fn+1Gn+1* + Fn+1Gn+1*

U,y
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Now, the weak form using the separated representation becomes:

A(Fn+1,Fn+1,Gn+1*’ Gn+1) — //Q u* f dQ—"/F u*.Fd dF—Z A(Fn—&-l’Fi’Gn—i—l*’Gi)
t i=1

(2.28)
The integrals over (2, can be approximated numerically because the functions F;
are known Vi. It remains only a problem defined over {2, which can be solved
using any suitable discretization technique (finite elements, finite volumes, ...).
The PGD solution involve a series of decoupled one-dimensional problems formu-
lated in each subdomain. In this work, a finite element discretization is considered.
Therefore, the solving of high-dimensional problems with the PGD is reduced to
the solving of a series of simple 1D problems.

2.2.5 Convergence criteria

Starting with an arbitrary tentative functions G"*!, step 1 is performed and then
step 2, and again both steps until reaching convergence of the alternate directions
strategy. The convergence is obtained when the norm of the difference between
the two last values of F"*! and G™! are sufficiently small:

ffg (Fn-i-l(i)(I) o Qi) (y) — Fn-l—l(i—l)(x) o Gn+1(i—1)(y))2d9
[ (Fr1@(z) 0 Gr+16)(y))®

S Efixed point
(2.29)
If the new term (n-+1) is converged, it is added to the solution:

u" ! (.T, y) _ un(x’ y) + Frii) o GnJrl(i) (230>

The enrichment procedure must continue until reaching the global convergence
(that must be differentiated from the convergence of the alternating direction
strategy). The convergence criterion is based on the norm of the residual.

The residual is computed from the finite element operators on each subspace.

ffg (diV(H. €(un+1(x,y))) - f)Qd_Q
[l (£)%de

The PGD strategy is shown as a flow chart algorithm in Figure 2.3.

S Eresidual (2 3 1)
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n = 0
Initialize u(x, y)
v
Initialize G (y) 1
g ) |
l
; [ Compute F™1(0) (g) J
v
( Compute Grti() (v) J

Check Iteration Convergence

T (F" 1@ (2)0Gn 1) (y) - Fr 1= (g)oGn 101 ()%
IS (F 410 (2)0Gn+10) (y))?

< Efixed point

...............................................

( Enrichment procedure j

Add new node
Frti() o @ntl() n=n+1 )

l

Test on global residual

o (aiv(E. et (2))—£)?af2
T (02af?

S Eresidual

Solution
& [ Fi(z).Gi(y)
u(z,y) = 3 ( Fi(z).Gi(y) )

1=1

Figure 2.3 — Algorithm of solution by PGD strategy.

2.3 PGD: an efficient solution for parametric mod-
els

A major problem in the use of computer models to predict the mechanical behavior
of structures is that the problem parameters are fraught with uncertainties, which
generate dispersed mechanical behaviors. Accounting for these uncertainties and
variability appears today as a crucial point in numerous branches of science and
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engineering.

In order to illustrate this idea, let us have a look at the morphology of com-
posite materials. These materials present some different sources of variability at
different scales. The manufacturing process and the properties of the elementary
constituents are in fact the principal cause of variability. The uncertainty sources
can be modeled with a finite set of random variables. Several techniques, like
neural networks (NN) and Monte Carlo simulations (MCS), have been proposed

in order to propagate these uncertainties and to estimate their impact on the re-
sponse of the model.

However, these techniques requires a huge number of calculations, which leads
to high computational costs. Therefore, the PGD method is more promising when
parametric models are addressed. The main idea consists in incorporating the
random parameters into the coordinates of the model. The model parameters
(materials properties, geometrical parameters, boundary conditions ...) could be
considered as extra coordinates. This method drastically reduces computational
costs and memory requirements of classical resolution techniques. The increase of
the dimensionality of the resulting model does not significantly affect the possibil-
ity of computing the solution thanks to the PGD solver. By solving the resulting
multidimensional model, we can have access to the model solution for any value of
the model parameters. Thus, one may for example consider the Young’s modulus
of the fibers and the matrix (Ey and E,,) as extra-coordinates allowing the predic-

tion of the displacement field u for any value of £ and £, through the solution
of a single problem.

To illustrate this approach, we are considering a virtual microstructure (unit cell)
of unidirectional carbon/epoxy material composed of 9 fibers (Figure 2.4). We
apply the PGD method to simulate of the linear elastic behavior of this virtual

unit cell. The virtual unit cell was presumed representative of the microstructure
of the analyzed material.
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Figure 2.4 — Problem geometry and boundary conditions.

We are assuming that the Young’s modulus of the matrix takes values in the inter-
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val Z,,, = [3000 MPa, 5000 MPa|, whereas the Young’s modulus Ey; of each fiber
J (with j =1,...,9) takes values in the interval Z; = [220 GPa, 250 GPa].

In order to introduce another type of variability, which is the variation of the
number of fibers in the virtual unit cell, two values were added to the interval
Z¢j. These values are the minimum and maximum values of the given interval Z,,
(Em™ = 3000 MPa and Em** = 5000 MPa). For example, if the Young’s modulus
of one of fibers will be equal to the Young’s modulus of the matrix, the simulations
will then be performed with a virtual cell composed of 8 fibers, as shown in Figure
2.6.

The unknown field u depends on the physical coordinates (x,y), but also on the
properties of the elementary constituents (£, and Ey;). In the context of the
PGD, u is approximated it by a sum of product of functions, as follows:

u(@,y, Bm, Egy) = ) (Fi(w>y)Gi(Em) II H}(Efj)) (2.32)

i=1 j=1

This parametric solution is defined in a space of dimension 12. The different func-
tions involved in the separated representation are calculated by applying the PGD
strategy previously described.

The applied load consists of a uniform displacement U, applied on the right face
of the virtual cell, as shown in Figure 2.4. When the parametric solution (2.32)
has been computed, the displacement field u can be obtained for any configuration
E,, € I, and Ey; € Zy; by simple postprocessing. The PGD solution is depicted
for two configurations in Figures 2.5 and 2.6.

In Figure 2.5, the displacements u, and u,, the stress o,, and the strain ., are
depicted for 9 fibers with some random values of the parameters. The same results
are shown in Figure 2.6 with only 8 fibers. The property of the 9 fiber (central
fiber) is set to be the same as the matrix (3 GPa). This corresponds to a case
where this fiber is replaced by the matrix.
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Figure 2.5 — PGD parametric solution for E,, = 3.8, EFy = 228.92, Eyy = 221.48, Ey3 =

246.9, Epy = 237.6, Eps = 223.65, Epg = 242.25, Ep; = 225.51, Eps = 234.5,Epy =
250 (GPa).
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Figure 2.6 — PGD parametric solution for FE,, = 3, Ey = 220.554, Eyo = 225.89, Fy3 =
240.7, By = 228.61, Eys = 249.07, Eyg = 236.05, Ey7 = 246.59, By = 232.95,Ep9 =
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Delamination failure is one of the predominant forms of failure in composite
laminates, that should be investigated deeply. The aim of this chapter is to develop
and investigate a new approach based on reduced order modeling, in order to
simulate this kind of failure. Before describing the proposed method, a literature
review of the fracture process, the principles of the delamination mechanics and
the different models available will be addressed.

3.1 Failure Modes of composite materials

There are many kinds of failure and damage modes in composite structures. This
is due to the heterogeneous structure of composites. The fracture process is quite
complex and it involves intralaminar damage mechanisms, like matrix cracking or
fiber fracture, and interlaminar damage, which is the delamination. Damage is a
multi-scale phenomenon that occurs from the microscopic scale (um) to structural
scale (m), as shown in Figure 3.1. All failure modes have a scale of action [[<ur-

Fiber break N\adoscale

Matrix cracking

o‘éca\e

e

Debonding

&0%0

g

Delamination

Transverse cracking

Figure 3.1 — Hlustration of the major failure modes in composite laminates.

natowski and Matzenmiller, 2012]. The damage process in laminated composites
has a progressive nature [Ochoa and Engblom, 1987; Chen et al., 2014|. This pro-
cess involves the accumulation of several types of damage. This accumulation has
a direct impact on the response of the material [Lec, 1982; Joffe, 1999]. However,
it is important to understand the factors influencing damage development under
various loading and environmental conditions.

Static damage evolution in unidirectional composites

Under quasi-static loading, the extent of each failure mode may vary from ply
to ply depending on the stacking sequence and loading directions. For in-plane
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tension loading, the first type of damage to appear is the matrix failure in regions of
high stress gradients. In transverse loading direction, especially in 90°, transverse
matrix cracking can occur [McCartney, 1998]. On the other hand for 0° plies, the
matrix shear crack develop between fiber pairs. As matrix damage accumulates,
the loads are transferred to the plies with fiber orientation aligned close to the
direction of applied loads [Zubillaga et al., 2015]. The fiber /matrix interfaces are
fractured in these plies. This is accompanied by the fracture of the fibers. For
out-of-plane tension loading, delamination failure occured which can be defined as
separation of two adjacent plies [Lorriot et al.. 2003; Lagunegrand et al., 2006], as
shown in Figure 3.2.

Iransverse matrix cracking

Delamination

Figure 3.2 — Damage modes in unidirectional carbon/epoxy composite.

3.2 Delamination in composite laminates

Interlaminar failure also referred to as delamination is frequently encountered in
composite structures. It is considered to be the most critical mode of failure in
composite laminates due to their weak interlaminar properties (strength, energy
release rate). Delamination can appear at any moment of the life of the structure
[Pagano and Schoeppner, 2000]:

e During the manufacturing stage, due to the shrinkage of the matrix during
cooling, or formation of resin-rich areas due to poor quality in laying-up the
plies [Bolotin, 1996; Bolotin, 2001];

e During service, internal damage in the interface between plies may arise
under various circumstances, such as in the case of low velocity impacts due
to the drop of a tool during maintenance.

Delamination can be also caused by the residual stresses due to the differential
contractions between plies during the curing process [Tay and Shen, 2002]. These
differential contractions are generated by the difference between the thermal coef-
ficients of matrix and reinforcement. The presence of delamination, initiated by
transverse matrix cracking leads to stress redistribution between adjacent laminae.
Thus, it usually results in a significant loss of stiffness and strength. Delamination
may develop under in-plane tensile loads without being detected because it does
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not influence the tensile strength performance. However, it can significantly reduce
the compressive strength, when compression loads are applied. This characteristic
makes the delamination insidious.

Owing to this uncertainty associated with delamination, it is apparent that this
failure mode should be identified. As the use of composites increased, it was found
that more research was needed on delamination. Understanding the delamination
behavior and its internal micro events is therefore of fundamental importance in
the development of composite materials, because it is difficult to detect during
inspection. Insufficient adhesion at the interface, which is often brittle, is likely to
prevent such structures from supporting the expected loadings.

Fracture modes

Generally speaking, the growth or propagation of delamination may develop in any
one of or any combination of three basic modes of interlaminar fracture. These
modes are mode I, the opening mode, mode II, the in-plane shear mode, and mode
ITI, the out-of-plane shear mode, as shown in Figure 3.3.

e The opening mode (I): fracture mode in which the delamination faces open
away from each other and no relative crack face sliding occurs;

e The in plane shear mode (II): fracture mode in which the delamination faces
slide over each other in the direction normal to the leading edge and no
relative crack face opening occurs;

e The out of plane shear mode (III): fracture mode in which the delamination
faces slide over each other in the direction parallel to the leading edge.

Mode I : Mode 1T : Mode I1I :
Opening In-plane shear Out-of-plane shear

Figure 3.3 — Fracture crack separation modes.

The case where more than one mode of fracture is present is known as mixed
mode. The fracture toughness (G.) is a measure of the total energy necessary for
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crack initiation. Thus, there are three G, values: Gy., Grr. and Gy for mode
I, mode IT and mode III respectively. Therefore, delamination is prone to appear
and propagate if the enregy release rate applied to the system equals the fracture
toughness (G > G.). To understand the nature of delamination fracture and to
develop appropriate models to predict this kind of failure, the G, values must be
measured. To measure the interlaminar fracture toughness of composite materials
different kinds of experimental methods are available. Generally, delamination are
mostly studied under pures modes(I and II) and mixed mode (I/II) | |.
Mode III contribution can be neglected for delamination growth in composite
structures | ; |. The fracture
toughness associated to this mode is higher than for the other modes |

).

3.3 Overview of fracture mechanics tests for delamin-
ation

Similarly to the metals, the failure process in composite materials is investigated by
using different type of interlaminar fracture toughness (IFT) testing. The aims for
any IFT testing are to obtain a fracture toughness value, that can reliably charac-
terize tested materials for structural applications. A large number of publications
address experimental techniques that can be used for each fracture mode. Some
of the fracture testing were standardized by three major standardization organ-
izations: the American Society for Testing and Materials (ASTM), the European
Structural Integrity Society (ESIS) and the Japanese Industrial Standards group
(JIS). The main feature is that they exhibit an artificial defect, which is called the
pre-crack.

However, obtaining consistent values for the fracture toughness is not always a
straightforward task. The problem lies in the fact that after initiation of the
crack in unidirectional composites, the fiber bridging phenomenon may appear at
the crack surfaces. This is a phenomenon where fibers are pulled out from the
matrix during the crack propagation, as shown in Figure 3.4. The fiber bridging
form bundles which can bridge the crack, slow-down its propagation and absorb

vast amounts of fracture energy | |. This phenomenon can over
estimate fracture toughness | |. This is the major cause of res-
istance to delamination | |. In this section, the widely-used

interlaminar fracture toughness testing are briefly described.

3.3.1 The mode I DCB specimen

For mode I delamination, the double cantilever beam (DCB) specimen is the most
commonly used test to measure the mode I fracture properties |
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= R

Figure 3.4 — Schematic of fiber bridging.

: ; |. The simplicity of the DCB test have
made it a natural candidate for characterizing mode I delamination in composite
materials. The initial crack (ag) is introduced in the mid-plane of the beam |

|. The initial delamination is forced to grow by applying two opposite
forces (P) or displacements (W) that pull the upper and lower parts of the speci-
men. Several researchers investigated the methods of load applications in the DCB
test | ; ; ; |-
A schematic illustration of the DCB test with loading and unloading conditions is
given below in Figure 3.5.

The force-displacement response are generated for each crack length during the
test. The strain energy release rate G, is basically a function of the force, the
displacement, the crack length and other material and structural parameters of
the specimen. The value of GG; can be calculated from these recorded data using
the beam theory. The analytical solutions based on the beam theory approach for
the compliance (C) | | and on the fracture mechanics for the
propagation of delamination are:

) 8a’
C=5=15m (3:1)
1 dC 12.P%q2
G =_—pr& = ¢ (3.2)

20 da  B2E,h3
Where E, is the longitudinal modulus of the material, h is the half-thickness, b
the specimen width, a the instantaneous crack length and P the reaction force.
The energy G can also be expressed as a function of the relatives separation ()
according to:

3E,h36>

G = 16a* (3:3)

3.3.2 The mode II ELS specimen

The geometry of the end load split (ELS) specimens was the same as that for DCB
test. The specimen is loaded applying an external loads or displacements to one
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Figure 3.5 — Double cantilever beam specimen.

of the specimen beams [Blackman et al., 2006; de Moura and de Morais, 2008].
Although, only one beam is loaded as shown in Figure 3.6. The pure mode II
loading is favored by the relative sliding of the upper surface of the lower beam
with respect to the lower surface of the upper beam.

The ELS test allows stable propagation provided that ag/L > 0.55. The relat-
ive friction between the two fracture surfaces occurs due to the rotation of the
upper and lower beams of the specimen. According to the beam theory approach,
the compliance (C') and the analytical energy release rate for the ELS test can be

determined as:
o 3a3 + L3

9P?a?
G = 2B (3.5)
Combining both equations gives:
952 E,h3a?
G = m (3.6)

3.3.3 The mixed mode I/II MMELS specimen

The mixed mode end load split test (MMELS) test, is also known as asymmetrical
double cantilever beam (ADCB) [Davies. 1992]. Simple to use, it only provides
a single ratio of 3/4 of mode II component to mode I component. In this case,
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Figure 3.6 — End load split specimen.

the force is applied on the upper beam in the direction of the thickness, while the
lower beam remains unloaded [Harper and Hallett, 2008]. Figure 3.7 shows the
MMELS specimen and how it is loaded. The initial crack is forced to propagate

o

Figure 3.7 — Mixed mode end load split specimen.

by both opening and shearing actions. To ensure the mixed mode, the length of
the pre-crack must respect the condition ag/L > 0.41. The analytical expressions
for the compliance and for the mode I and mode II energy release rates related to
the MMELS test can be given as:

Ta + L3

C = SR (3.7)
P2 2

S17a (3.8)

L= W2E b3
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_ 9P%a?
~ AVE,h3
If the thickness of the two layers are equal, the analytical total energy release rate
is given by:

G (3.9)

21 E, h3a262
(Ta® + L3)?

Using the power law interaction between the energies of pure modes (Eq. 3.11),
the critical value of the total energy release rate G/, under mixed mode loading

can be expressed as follows:
o 2 o 2
I 1
+ =1 3.11
( Glc ) ( GIIC > ( )

a _ (14 8*)G1.Grre
I/1lc [(Guc)2 I (52(;16)2]1/2

Gr=G;+ Gy = (310)

(3.12)

With:
_ Gn

B = ren (3.13)

3.4 Delamination analysis methods

In addition to experimental methods, numerical methods, such as finite element
method, are valuable tools for prediction of fracture in composite materials using
fracture mechanics principles. Fracture mechanics was invented by Griffith |

| to explain the failure of brittle materials. Griffith was focusing on the
prediction of crack propagation in deformable body. The use of fracture mechan-
ics for describing and solving crack problems in homogeneous materials is almost
mature. However, in heterogeneous materials such as composites, there are inter-
face fracture problems. Conventional fracture mechanics analysis for homogeneous
fracture is not sufficient for studying delamination in composite materials. The
extension of fracture mechanics to heterogeneous materials interface crack has be-
come of interests. There are two approaches in fracture analysis: the linear elastic
fracture mechanics (LEFM) and damage mechanics approach. In this section, a
brief background and some basic theory of fracture mechanics for interfaces are
given.

3.4.1 Linear elastic fracture mechanics (LEFM)

Linear elastic fracture mechanics was introduced to study and analyse the rela-
tionship between crack, stresses and fracture toughness. It has been proven to be
reliable in predicting the crack propagation when the nonlinearities are negligible.
These nonlinearities are confined to a small zone around the crack tip compared
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to the size of the crack.

LEFM assumes that the material is isotropic and linear elastic. Based on this
assumption, the stress field and the energy near the crack tip are calculated by
means of the theory of elasticity. This theory applies when assuming an initial
crack with given size, shape, location and orientation. In reality, location and size
of the initial crack is not known a priori. In the LEFM approach, crack growth is
predicted when the loading criterion exceed the failure criterion. In general, stress
intensity factor (SIF) and energy release rate are used to evaluate failure criteria
around the crack tip.

In an energy based fracture criterion, the initial crack will propagate if the en-
ergy release rate () is equals or exceeds the surface energy required to create new
crack surfaces:

G>G, (3.14)
According to the Griffith energy balance | |, G is defined by:
dIl
G=—— 3.15
T (3.15)

Where I1 is the potential energy per unit width and a is the crack length.

Irwin extended Griffith’s work and showed that for a mode I crack, G; varies
directly with the stress intensity factor K; according to the following equation

[ I

Kt
- plane stress
Gr = { (3.16)
2 2
% plane strain

Where FE is the Young’s modulus, v is Poisson’s ratio. Irwin also showed that G
can be expressed in terms of mode II and mode III stress intensity factors. How-
ever, Griffith’s approach, based on the energy balance, was not relevant in many
fields of engineering because it is restricted to quasi brittle materials.

In the case of ductile materials, the characteristic size of the plastic zone at the
crack tip is not negligible in comparison with the crack length. It is referred to
as fracture process zone. In this case the stress intensity factor loses any physical
sense because of the limited validity of the asymptotic formulae. To overcome this
limitation, other techniques will be discussed.

J-Integral technique

The J-integral was proposed by Rice as a way to calculate the energy release rate
in a cracked nonlinear elastic material | |. It was introduced as a path-
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independent integral, which can be drawn around the crack tip. For the elastic
case, J-integral is identical to the energy release rate for a plane crack |
|. For a 2D case and with reference to Figure 3.8, it can be written as:

aU;
J = /F (Ydy — T, "ds) (3.17)

Where Y is the strain energy density, T; = o0;;n; are the components of the traction
vector, U; are the displacement vector components and ds is an incremental length

along the contour I". The strain energy density Y is given by | |:
Y = fogij Uijdgij 1= 1, 2 (318)
y
crack n
e

Figure 3.8 — J-integral contour path enclosing the crack tip.

Virtual crack closure technique (VCCT)

The virtual crack closure technique (VCCT) is one of the most widely used tech-
niques for modeling crack propagation in composite materials. It was first proposed
by Rybicki and Kanninen for two-dimensional problems |

|, and later extended to three-dimensional problems by Shivakumar et al.
| |. The VCCT approach is based on Irwin’s assumptions

[ I

e The energy released when the crack has been extended from a to a + Aa is
equal to the work required to close the crack to its original length;

e The crack progression from length a to a + Aa does not significantly alter
the state at the crack tip.

This technique has gained great popularity for the study of delamination in com-
posite materials. It is used to compute not only the energy release rate along a
crack front, but also the contributions of the three fracture modes | |.
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The mode I, mode II and mode III energy release rate, G;, G;; and Gy respect-
ively, can be computed from the nodal forces and relative displacements obtained
with a finite element simulation | |. The crack tip geometry is shown
in Figure 3.9.

Auc
Ay A

Aa a+ Aa

(a) Crack tip relative displacements. (b) Crack tip forces.

Figure 3.9 — VCCT for 2D 4-node element.

The crack tip is modeled by leaving nodes uncoupled along a crack length a.

In two-dimensional plane stress or plane strain model, the mode I an mode II
components of the energy release rate, Gy and Gy, for a 2D 4-node element are
calculated by Eq 3.19 and Eq. 3.20, respectively.

1
=— 7~ A 1
G[ 2Ma C We (3 9)
G = —— Xo A (3.20)
H_2Aa c QAuc .

Where Z- and X are the magnitudes of nodal forces at nodes C; and Cs in the
Z and X directions, respectively. Awe and Aug are the relative displacements
before nodes C; and C5 are pulled together.

ch = Wc2 — W1 (3.21)

AUC = Uc2 — Uc1 (322)

When crack growth occurs under mixed mode I/II fracture condition:
Gr=G;+Gyy (323)

Crack propagation is predicted when the computed energy is equal to the critical

value G.:
Gr =G, (3.24)
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3.4.2 Damage mechanics approach: cohesive zone model
(CZM)

The main drawback of the LEFM is that it cannot be applied without knowledge
of initial crack shape, location and geometry. Only crack propagation could be
predicted. In this situation, approaches combining a stress criterion to predict the
crack initiation, with an energy criterion to model the crack growth have been ap-
plied. One of these approaches is the cohesive zone model (CZM). Compared with
the VCCT method, the CZM has the capability to predict both onset and propaga-
tion of the delamination, in conjunction with a finite element model |

; |. With a small nonlinear zone (called
the process zone), the linear elastic fracture mechanics has been proven to be re-
liable to predict crack growth. If this is not the case, the cohesive forces acting
in the process zone along the crack path must be considered in the damage model
analysis | ]. A candidate to achieve this is offered by the damage
mechanics approach.

Cohesive zone model (CZM)

The cohesive zone model was introduced by Barenblatt an Dugdale |

; |. The main difference between LEFM and CZM is that the
CZM uses an explicit representation of the process zone, while in LEFM is as-
signed to a point process located at the crack tip | |, as shown
in Figure 3.10. The introduction of cohesive forces acting ahead of the crack allows
removal of the crack tip singularity given by LEFM. This singular crack leads to
infinite stresses at the crack tip, which is physically not possible.

Damaged ¢ Process i  Undamaged
zone E zone E zone
| |
I I
I I
I I
| |
I I
process zone (LEFM) process zone (CZM)

Figure 3.10 — Schematic illustration of fracture process zone.

The CZM is based on the use of interfacial finite elements between two adjacent
layers of the laminated composite. These cohesive elements are delimited by two
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cohesive surfaces, linked together by cohesive forces. The degradation mechanism
in the process zone of a cohesive crack is described by a constitutive law, which
links the relative separation (0) of the cohesive surfaces to the cohesive traction
(T), as shown in Figure 3.11.

Traction T

Separation &

Figure 3.11 — Principle of cohesive crack models.

The separation components of ¢ are the normal separation J,, and tangential
separation ¢d,. The nominal traction vector 7', consists of two components in
two-dimensional problems: the normal stress ¢ and the shear stress 7. This con-
stitutive equation is based on the assumption that when the separation between
the interfaces increases, the cohesive stresses reach the maximum stresses and then
decrease progressively to become equal to zero up to complete fracture. The area
under the traction-separation law should be equal to the fracture toughness G..
The thickness of a cohesive element can be as small as zero before loading is applied.

Several shapes of cohesive zone law, proposed by different authors, are available
for describing interfacial behaviors that cannot be captured with fracture mech-
anics, as shown in Table 3.1. The Dugdale model, introduced in 1960, was for
ductile materials | |. In this model, the maximal normal stress in the
cohesive zone is constant and equal to the material yield stress. The Barenblatt
model, introduced in 1962, investigated the fracture of brittle materials |

|. Barenblatt assumes a nonlinear cohesive forces to be distributed over
a sufficiently large zone along the crack plane. The Needleman model (introduced
in 1987) was the first, who used polynomial shape of the traction-separation curve
to simulate particle/metal matrix decohesion | |, using the finite
element method for the first time | |.

Tvergaard and Hutchinson in 1992, proposed a trapezoidal type of cohesive zone
model to determine crack growth resistance in elasto-plastic materials |

|. Camacho and Ortiz (1996) utilized a linear softening co-
hesive model to simulate multiple cracking along arbitrary paths during impact
damage in brittle materials | |. A bilinear cohesive model,
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Author and Year

Proposed Model

Cohesive shape

Problem Solved

Crisfield (1999)

Bilinear softening

oA
3
Dugdale (1960) Elasto-perfectly- Yielding of thin ideal
plastic elastic—plastic steel
sheets containing slits
oA
d
Barenblatt (1962) Exponential Perfectly brittle
materials
oA
3
Needleman (1987) Polynomial Particle-matrix
decohesion
G A
S
Tvergaard and Trapezoidal Crack growth in
Hutchinson (1992) elasto-plastic material,
peeling of adhesive
joint
\G
3
Camacho and Ortiz Linear softening Impact damage in
(1996) brittle materials
\0'
S
Delamination in

composite materials

Table 3.1 — Various traction-separation relationships.
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was developed by Crisfield (1999) | | and later modified by Alfano
and Crisfield (2001) | | to simulate initiation and propaga-
tion of delamination in composite plates. Some researchers have investigated the
effect of the cohesive law shape on numerical results of fracture simulation |

; ; ].

It was found that the shape of the traction-separation curve makes no vital differ-
ence concerning the numerical results. The effect of the cohesive law was found
on the degree of accuracy achieved and on the algorithmic numerical perform-
ance. It is worth mentioning that in | | the trapezoidal law has turned
out to give the worst results both in terms of numerical stability and in terms of
convergence of the finite element solution. The exponential law was found to be
optimal in terms of accuracy while the bilinear law represented the best comprom-
ise between computational cost and accuracy.

However, cohesive laws with initial slope, as shown in Figure 3.12, are usually
used in numerical simulations. It is interesting to note that an initial slope is
appropriate, when the cohesive zone represents an adhesive layer or a resin rich in-
terface between two adjacent layers. In all cohesive models, the traction-separation

Traction T
Traction T

Y
/

Separation & Separation &

(a) (b)

Figure 3.12 — Linear softening: (a) with initial slope, (b) without initial slope.

law can be defined by cohesive parameters. The key cohesive parameters consist
of the cohesive strength, defined by the peak cohesive traction and the fracture
toughness, represented by the area under the traction-separation curve. The initial
stiffness is also a crucial parameter that affects the compliance of the structure.
The formulation of the cohesive zone model used in this work is the Crisfield
cohesive law | | for its robustness and accuracy.

Bilinear traction-separation law

The bilinear cohesive law is well-suited to be implemented in finite element codes.
It is widely used for delamination problems in mode I, mode II and mixed mode
problems. It involves three stages, initial elastic loading, damage initiation and
damage evolution.
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Constitutive cohesive law under single mode delamination The Cris-
field law is used to describe the behaviour of the interface, which presents linear
elastic and linear softening behaviour. The process of degradation begins when
the stresses satisfy one imposed damage initiation criterion. The Crisfield law
supposes that, under strain reversal, the material unloads toward the origin. A
two-parameter bilinear linear cohesive law was defined, for each pure mode.

("/I('

(1—d)K; ; © (1 —drr)Krr

(5][
>
- - ; N7
()(’, 6! ()(I,’ Oy

Mode I Mode II

Figure 3.13 — Cohesive law for the mode I and mode II.

These two parameters are the maximum stress (o, and 7.) and the energy re-
lease rate (G. and Gyj.) for respectively mode I and mode II. The critical value
of the energy release rate of the interface is equal to the area under the interfacial
stress-separation curve. K and K are the interface element stiffness. The critical
separations (6! and §!7) are defined when the interfacial stress reaches maximum,
and the maximum separations (6! and 6!/) are defined when the stress becomes
zero. These separations can be evaluated by the following expressions:

g T
ol = £, o = = 3.25
TR % T K, (3.25)
2G . 2G 11
oL = e I e (3.26)
Oc Te

The relation between local separation and interface stress, shown in Figure 3.13,
can be expressed as:

0 5 > 8

5 (8, — &)
= mt o =I,1I; d;€0,1 2
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Constitutive cohesive law under mixed mode delamination The descrip-
tion of the delamination under mixed-mode loading requires | |:

e The definition of the interfacial stress and the critical energy release rate for
each pure mode and;

e The proposition of criteria or laws relating these parameters for mixed load-
ing.

From these laws, the critical and maximum separations (67" and ¢) under mixed
mode loading can be determined, as illustrated in Figure 3.14. Each failure mech-
anism consists of two parts: a damage initiation criterion and a damage evolution
law. The damage initiation can be predicted using the quadratic failure criterion,

defined as: ) )
02z
<g> i (@) —1 (3.29)
O, T,

Where <> N denotes the positive value. This mixed-mode criterion assumes the
coupling between the failure modes and considers that compressive normal stress
has no influence on the delamination onset. The "power law criterion" appears
to be the most advisable in order to predict delamination propagation in car-
bone/epoxy composite laminates under mixed-mode loading. It states that the
damage under mixed loading is governed by a power law interaction between the
energies of pure modes, that is:

2 2
GI GII
" —1 3.30
(Glc) (GIIC> ( )

Where G and G are the energy release rates respectively in mode I and mode II,
G1. and Gyj. are the critical energy release rates. The total mixed mode relative
displacement 0™ can be defined as the norm of the two normal and tangential

relative displacements:
0 =)0} + (61) (3.31)

Numerical aspects of cohesive zone model

When cohesive zone model are used to simulate fracture problems, the predicted

response may be affected by the parameters of the cohesive law. As the size of the

process zone increases relative to others geometric lengths, different parameters

and features of the cohesive formulation influence the results | ;
: |. In references | ;

|, the authors suggest that all aspects of the cohesive formulation should
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o, T Damage initiation

A o0 = floc,7c)

Damage propagation

omas = f(Gre,Gric)

o
. .
.......

drr (mode I1)

Figure 3.14 — Cohesive law for the mixed mode.

be carefully chosen and some details that seems unimportant significantly affect
the global response.

However, to obtain a successful numerical simulation of delamination, an appro-
priate implementation of CZM is required. For this purpose, the effect of some
features of the cohesive law are discussed: the process zone length, the mesh sens-
itivity, the interfacial strength and the initial stiffness.

Process zone length The use of CZM in a quasi-static finite element framework
suffers from an intrinsic mesh sensitivity. It is necessary to have a sufficiently fine
discretization within the process zone to capture the stress fields. The required
cohesive element size can be precisely determined by evaluating the length of the
process zone [, and the number of elements N, that are needed in the zone [Song
et al., 2008]. The length of the process zone is defined as the distance from the
crack tip to the point where the maximum cohesive stress is reached [Turon et al..,
2005].

There are different models available in the literature intended to estimate the
length of the process zone. For infinite body, [.. is a material property, and can
be evaluated by the following expression:

G
le, = MET—62 (3.32)
where F is the Young’s modulus of the material, G. is the fracture toughness, 7.
is the critical interfacial strength, and M is a parameter that depends on cohesive
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zone formulation used to derive the expression for the process zone length. For
the case of orthotropic materials, the value of the Young’s modulus in Eq. 3.32 is
the transverse modulus of the material, Fss.

lez M
Hui et al. | ] ZESs 0.21
Irwin | | 1p& 0.31
Dugdale [ 1,
Barenblatt | | sE % 0.4
Rice | |, Falk et al.
[ ] 2 ESs 0.88
Hillerborg et al. |

] ES 1

Table 3.2 — Length of the process zone and equivalent value of the parameter M.

A general review of various models commonly used in the literature, and the
equivalent parameter M for plane stress are presented by Turon et al. |
| and summarized in Table 3.2. Hillerborg’s model |
| and Rice’s model | | are the most commonly used models in the
literature. In these models, the parameter M is either close or exactly equal to
unity.

Mesh sensitivity The main drawback of the CZM is that very fine meshes are
needed to obtain accurate results using FEM. In case of a coarse mesh, softening
of the local behavior in an interfacial element will result in a sudden release of the
elastic strain energy stored in the surrounding bulk material, which in turn leads
to instantaneous failure of the element. In such a case, a non-physical oscillations
arises in the numerical solution, which is also known as a solution jump. This leads
to convergence problems, numerical instabilities and major difficulties in solving
the global system. To overcome these issues, a minimum number of elements /N,
is needed in the process zone. The number of elements in this zone is obtained
using the following equation | |:

lCZ
N, =2 (3.33)

Where [ is the mesh size in the direction of crack propagation. However, this min-
imum number is not well established. A summary of different authors’ suggestions
is shown in Table 3.3. Turon et al. | | proposed a novel procedure that
allows the use of coarser meshes of cohesive elements in large-scale computations.
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Moés and Belytschko |

] N, > 10
Turon | ] N, >3
Falk et al. | ] 2<N.<5h
Mi et al. | | N >2

Table 3.3 — The minimum number of required cohesive elements within the process zone.

Initial interface stiffness The effective elastic properties of the composite de-
pend on the properties of both the cohesive surfaces and the bulk constitutive
relations. The elasticity modulus in the direction normal to the interface can be
expressed by:

1
Eepp = E

L 3.34
1+ £ (3:34)

Where FE, is the through-the-thickness Young’s modulus of the material, h is the
thickness of an adjacent sublaminate, and K is the interface stiffness. It is sug-
gested that if the inequality F, << Kh is being accomplished, the effective elastic

properties of the composite will not be affected by the cohesive surface |

|:
K=ol (3.35)
h

Where « is a parameter much larger than 1 (aw >> 1). However, as demonstrated
in | |, large values of the interface stiffness may result in spurious stress
oscillations that precludes solution convergence. Thus, the authors | ;
| suggest that K should be large enough to provide a reasonable
stiffness but small enough to avoid numerical problems. It is suggested that a
minimum value of @ > 50 that results in a global stiffness loss less than 2%.
Different guidelines have been proposed for selecting the stiffness of the interface

for a carbon/epoxy composite | |.

Interfacial strength Alfano and Crisfield | | high-
lighted that the lowering of interfacial strength can improve the convergence rate
of the solution. Harper and Hallet | | showed that excess-

ively low interfacial strength would affect the global response of the structure. An
explanation is that, with decreasing interfacial strength, the length of the process
zone and the number of elements in the cohesive zone increase. A higher interfacial
strength would result in a smaller process zone and hence a more brittle interfa-
cial behavior. Therefore, the authors emphasize that the lowering of interfacial
strength should be carefully done.

The interfacial normal and shear strengths (0¢ and 7¢) required for a needed num-
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ber of elements (N,) in the process zone | | can be expressed by:

E,Gipe E,Ge
ae:,/—]y\glfef and 7= Kﬁf (3.36)

Therefore, the interfacial strengths are chosen as:

o =min{c% 0.} and T=min{r% 7.} (3.37)

The enlargement of the process zone, when the interfacial strength is reduced, is of
significance in correctly capturing the distribution of tractions ahead of the crack

tip.

3.5 Numerical implementation

This section is focused on PGD implementation of the cohesive zone model. It
presents some computational aspects and details of the implementation.

3.5.1 Kinematics of the interface element

Two approaches are compared in this chapter: the PGD-CZM and the FEM-CZM.
These two approaches use different interface elements. The cohesive surface of a
laminate denoted I, is illustrated in Figure 3.15. In FEM, the cohesive surface
is modeled using zero-thickness linear quadrilateral cohesive elements with four
nodes. The zero-thickness linear one-dimensional (1D) cohesive element shown
in Figure 3.15 is used to simulate delamination problems in conjunction with the
PGD. The constitutive equations of these elements are mentioned in the previous
sections in the case of single or mixed mode delamination.

The displacement discontinuity 0 across the interface [.,, can be expressed in
terms of the displacement vector u computed on the two sides of the discontinuity
(u™ for the upper side and u~ for the lower side):

) ut —u”
ot - 11 _
ow e ()= .
In the case of the finite element approach, the number of cohesive elements is
related to the number of nodes in the mid-plane surface and to the number of

layers. In the PGD approach, the number of cohesive elements in the thickness is
only equal to the number of interfaces between layers.

3.5.2 Mathematical formulation for cohesive problem with
the PGD

This subsection focuses on the development of the PGD formulation in conjunction
with a bilinear CZM in a two-dimensional (2D) domain (2 = (2, x 2,. The
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Figure 3.15 — Definition of cohesive surfaces.
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boundary of {2 is noted I". For the sake of simplicity and without loss of generality,
only two layers with the same thickness h are considered. There is then only one
interface between layers, which is assumed being normal to the mid-plane surface
as represented 3.15. Furthermore, the problem is treated in 2D using plane strain
hypothesis. The weak form of the equilibrium equation for linear elastic materials
with a cohesive surface I',,, and a cohesive stress vector T, without body force,

o //Qe(u*).(Ha(u))dQ—i-/F

Teond dl= / T u*dl (3.39)
coh F
Where u* and 6* are the virtual displacement and virtual separation, respectively.

¢ is the strain tensor using the matrix form:

6$IE
€= €z (3.40)
24,
T..: is the external force on the boundary I H is a matrix related to the con-

stitutive equation in each layer. For an orthotropic material with plane strain
hypothesis, H is defined by:

1 Vyz
N IR
S O (3.41)
0 0 1

GCL‘Z

Where E,, E,, v,, and G, are the material parameters (elastic modulus, Poisson
ratio, and shear modulus). The displacement field u(z, z) is approximated using
the following separated form:

u~ru'(z,z) = ZFZ(x) 0Gi(z) Y(x,z2) € (3.42)
i=1
F;(x) = ( ?j(é)) > are functions of the in-plane coordinate.

Gi(2) = ( G?(é)) ) are functions involving the thickness coordinate.
o denotes the Hadamard product.
Eq. 3.42 is then equivalent to:

. > G,
o > F.G,
=1

Then, the separated representation of the strain tensor in Lagrangian description
gives:
e(u’(z,2)) =Y FiGi, . (3.44)
=1\ F,G, . + Fy LG,
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f« denotes the derivative of a function f with respect to x. It is assumed that
the first n modes have been determined at previous iterations. In order to enrich
the separated approximation, some new functions R, (z), S,(x), R,(x) and S, (z)
have to be determined. The new approximation is then:

u"t(z, 2) =u"(z,2) + ( g;g;g:)(é)) ) (3.45)

That can also be written as:

v (R L (Su(e)
"z, 2) (z,2) + R, (z) (Sw(z)) (3.46)
=u"(z,z) + R(x) o S(z)

S

The strain derived from Eq. 3.46 is:
e(u"t(z, 2)) = e(u"(x, 2)) + e(R(z) 0 S(2)) (3.47)
And test function u* is defined from the separated representation:

( R (2)Su(2) + Ru(2)5;(2) >
Ry, (2)50(2) + Ru(2)5,(2)

= R*(z)oS(z) + R(z) 0 S*(2) (3.48)

u'(z, z)

The interlaminar normal stress o,, and shear stress 7., on the interface are com-
puted from the relative displacement vector defined in Eq. 3.38 using the bilinear

cohesive law. \ 5
Ozz 1Kror

Toon = = 3.49

" ( Txz ) ( Arr K01 > ( )

In pure modes, the values of \; with j = I, I are computed from Eq. 3.27.

1 (Sj<5£
/\j:{ (1—dj) (5£<(5j<(53;1, g=1,1I (3.50)
0 6 =04,

In mixed mode, the damage of the interface is described by A = A\j = A;y.

A is computed from the relations given by the cohesive law under mixed mode
delamination. Introducing Eq. 3.46 and Eq. 3.49 into the weak form (Eq. 3.39)
it results:

[ Joe(u*). He(R o S)]dS2
+ o MK (wh = wy ) () — wi)dD
(3.51)

+ wah ArrKrr (g — ) (uy =ty )dl

=— [ [pe(u*). [H(u")]d2+ [pTeu*dl
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The cohesive surface is normal to the thickness so that I, = (2,. The initial
position of the two faces of the cohesive zone is defined by their coordinates on
2, denoted z* and 2z~ for all x € £2,. After discretization, 2™ and 2z~ define the
coordinates of two nodes on (2, that may be initially at the same position.

Unyr = Upyy = Ru(2) (Su(27) = Su(z7)) + anl Fu(2) (G (%) = Gu(27))

Wiy = Wy = Ry (@) (Suw(2¥) = Suwlz7)) + éﬂi(ﬂf) (G (") = Gl(27))

(3.52)
Finding the couple of functions (R,S) is a highly non-linear problem. For that
purpose, an alternating directions strategy is used. It proceeds as follows: At each
iteration, a single function R and S is computed alternately assuming the other is
known. This procedure continues until convergence. So there are two steps:

1. finding R assuming S
2. finding S assuming R

At the beginning of the procedure, the functions R and S are initialized with some
arbitrary functions. In practice, the initialization values have a weak impact on
the convergence. Random functions coherent with boundary conditions are used
in this work. Only the first step is described in the following because the second
step is very similar. From now on, R(z) is assumed known and the solution of
S(z) has to be determined. The test function then becomes:

: _( Bu(®)S5(2) 1 _ :
u(z,z) = ( Ru(@)S-(2) ) = R(z) o S*(z) (3.53)
Implying the strain tensor,
n R, +S;
e(u™(x,2)) = e(R(z) 0 S*(2)) = Y _ RSk . (3.54)
i=1 R,S; 2T Ry 255,
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The weak form becomes:

[ [oeRoS%). [He(R o S)|df2
i M [( 5 P0G + Rule)Sa()
(S @G+ Rul@)Sule) )| Ra(@)S361) ~ Rul)Si 1T
i ko |((5 P0G + Rule)5u(0)

~(E F@CLE) + RS )| (RS~ Ru@si ] ar

= — [ [pe(RoS"). [He(u")]d2+ [pTear(RoS*)dI
(3.55)
The following coefficients are defined:

o = [1,, MK Ri(x) 3 Fi(2)Gi(z7) dl

B =p N (Ria))2dT G=(11); k= (uw) (3.56)

n

v = I, N R() ; Fi(z)Gi(z7)dI

These coefficients can be calculated numerically with I, = (2,. Using the previ-
ous notations, Eq. 3.55 becomes:

J Joe(RoS*). [He(R o S)]df2
+af .Sy (27) + BF Sy (27)Sw(27) = 4795 (27) = BY.S(27)Sw(27)
—ap.Sy(27) = B7.Su(27)Sw(2) + 9785 (27) + BF.S5(27)Sw(27)

(3.57)
+air S (27) + B8 (27)Su(2™) = vi-Su(27) = BiSi(27)Su(27)
—af.Su(27) = BY1.Si(27)Su(2h) +1r-Su(27) + Br-S5(27)Su(27)

=— [ Jpe(RoS*). He(u")]d2+ [pTem(RoS*)dl’

At this point, a classical PGD solver can be used.

The terms [ [e(R o S*). [He(Ro S)]df2 and [ [He(R o S*).[He(u")]df2 can

be developed as a sum of simple integrals using the expression of £ and H. These
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integrals on {2 can be separated as a product of integrals on 2, and on (2,. The
integrals on (2, can be calculated numerically because all functions defined on (2,
are known. It remains a problem on (2, that can be solved using the finite element
method.

3.6 Numerical simulations

Three fracture mechanic tests were selected to validate the proposed modeling for
2D fracture problems. Each test is related to a particular mode of propagation of
the crack. The first test carried out was the DCB test, in which the delamination
happens mainly in mode I. The second was the ELS test, related to the failure in
mode II. The last one was the MMELS test for mixed mode damage.

Results of numerical simulations performed using the PGD are compared with
results of classical FEM implementation with the same set of parameters. The
aims are to validate the PGD approach and to evaluate its response with respect
to damage formulations and cohesive zone key parameters. In the two cases, a
static simulation is performed. In the FEM, a fixed point algorithm is used to
treat the non-linearity related to the behavior of the cohesive law (Eq. 3.49).

The PGD is by nature a non-linear solver. The linearization of the operators
required can be performed at each iteration of the PGD. There are many ways to
do this. The following strategy is chosen:

1. The operators related to the cohesive zones are linearized using a fixed value
of A (A =1 at the first iteration).

2. A new term of the PGD expansion defined in Eq. 3.42 is computed with the
linearized operators.

3. The partial PGD solution is used to determine the values of the displacement
discontinuity ¢ along the cohesive zone. Then, the cohesive law gives new
values for \.

4. The PGD residual error is computed. If the convergence is not reached,
return to 1.

Material and cohesive properties

The specimen geometries used in this work are shown in Figure 3.16. The proper-
ties of the material (a unidirectional carbon/epoxy composite) and the ones of the
cohesive interface are listed in Table 3.4. The upper and lower layers (unidirec-
tional layers) of the specimen are modeled with a transverse isotropic constitutive
law. The element size for the solid and the cohesive elements is the same for
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all models and is equal 0.2mm. The interface element stiffnesses (K; and Kjj)

TP. W

2h=4mm

40 =20mm
L=60mm

Ypr,w

2h=4mm

ag =2 .
L=60mm 0 =35mm ‘\ P, W

a0 =25mm
L=60mm

Figure 3.16 — Specimen dimensions.

are chosen to obtain a good compromise between convergence calculation, com-
putation time, and elastic properties of the laminate [Turon et al., 2005]. The
computational cost strongly depends on the initial stiffness values. As a matter
of fact, the CPU time increases when K; and Kj; are raised. For a high value
of the failure stresses (0. and 7.), convergence problems may occur. Those prob-
lems are due to a significant drop in the slope of the interface stiffness after the
failure stresses are reached. As 7. has a large influence on the interface behavior,
we chose to link it to o, according to the following dependence, already noted in
[Turon et al., 2010]:

GIIC
Glc

Te = O¢

(3.58)

The % ratio (¢ = 1,11) is also an important factor to validate the Crisfield law

St
[Vandellos et al., 2009]. We found that, for certain values of this ratio, the critical
energy release rate required to propagate the crack was less than imposed in our

calculation. This observation was already made by Vandellos et al. [Vandellos
et al.. 2009] who varied the ;Té ratio in order to obtain the correct rate. We
applied the same method, which enabled us to assume a consistent value for Gj.

and Gyp.. It is those values that are presented in Table 3.4.
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Material properties Interfacial properties

E.(MPa) 11873 | Gr.(N/mm) 0.3; Grie(N/mm) 1.6

E,(MPa) 157380 o.(MPa) 60 ; 7.(MPa) 139

G..(MPa) 5051 | K;(N/mm?) 1.10*; K;(N/mm?3) 5.10%
Vgs 0.31

Table 3.4 — Material properties for carbon/epoxy.

Definition of mixed boundary conditions with the PGD

PGD does not enable direct introduction of mixed boundary conditions as required
in the MMELS test. Although several methods have been proposed to incorporate
such boundary conditions like penalization method and Lagrangian method |

|. In our case, these two methods lead to convergence problems.
Therefore, a third method more efficient was designed in this work. It consists
in the addition of some elements that are located at the place where the mixed
boundary conditions are imposed. Figure 3.17 represents the introduction of such
virtual elements.

The added elements that undergo imposed displacement (the ones situated in
the upper part of the specimen) are defined with an elastic modulus E, equal to
E, or higher. The other elements corresponding to a free surface (situated in the
lower part of the specimen) are defined with an elastic modulus E, equal to zero.
In that way, a uniform displacement can be enforce on the right side. The load is
transmitted only on the elements situated in the upper part. There is no numerical
difficulties with Ej, &~ 0 because the problem is solved in the context of the PGD.
Only 1D problems are treated in practice with no numerical error.

w

NN

‘Eg

- Ep

L=60mm | | 0.2mm
=1

Figure 3.17 — Implementation of mixed boundary conditions in PGD. E, is the longitud-
inal elastic modulus, the new elements (in colors) are incorporated at the surface where
mixed boundary conditions are imposed.

3.6.1 Tests results

The solution obtained with the PGD gives the functions F; and G; from which
the displacement field is built (using Eq. 3.42). These functions are depicted for
the DCB test in Figure 3.18. In all the test cases, the global force-displacement
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Figure 3.18 — Functions F; and G; in the separated representation of the displacement
field.

curves are shown in Figure 3.19. Theses curves can be divided in two parts: (7)
linear elastic response before damage is initiated and (i7) crack propagation. In
the linear part, when the opening displacement increases, the load increases as
well. On the contrary, the load decreases during the crack propagation. A slight
nonlinear behavior may be observed before the maximum load point, especially
in the MMELS test. A very good agreement is observed between PGD and finite
element simulations. The analytical model is based on beam theory and underes-
timates the compliance and the strain energy release rate.

For these simulations, Figure 3.20 shows the damage variable along the crack path
for an imposed displacement. The process zone was defined as the zone in which
the damage variable is strictly between 0 and 1, as shown in Figure 3.21. The
length of the process zone is given in Table 3.5, for a common mesh size of 0.2mm.
In these simulations, it is mandatory to obtain a number of element in the process
zone, which is larger than a critical number (three or five elements according to
Turon et al. | |). In our simulations, we found sufficient number
of elements in the process zone, as mentioned in Table 3.5.

The evolution of the local interface separations along the crack path for each test
cases are shown in Figure 3.22. The relative separation decreased from the edge on
which the displacement is applied, and tends toward zero in the undamaged zone
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Figure 3.19 — Force vs. displacement curves.

DCB test | ELS test | MMELS test
Length (mm) 4.6 2.2 1.8
Number of Elements 23 11 9

Table 3.5 — Quantification of the simulated process zone length using PGD method.

after the process zone. This figure shows that for an imposed displacement equal
to 1.5, 5, and 4mm in the case of DCB, ELS, and MMELS tests, respectively, the
pre-existing crack was propagated by 22, 20.2 and 26.8mm. In all cases, a good
accordance between the PGD and FEM is obtained at the interface. The o,, and
0., stress distributions are plotted for the three fracture tests in Figures 3.23, 3.24
and 3.25. The PGD approach and the classical FEM approach give here again
very similar results. The mean relative errors of the stress between the PGD
and the FEM for each tests are mentioned in Table 3.6. A tension zone and a
compressive zone are observed near the crack tip in the stress distributions of the
DCB test. The compression is generated by the bending moment applied by the
upper and lower beams of the specimen | |. Four stages were
isolated in Figure 3.19: (i) A the elastic region, (ii) B damage initiation, (iii) C
crack growth, and (iv) D advanced growth of the crack. The cohesive stresses at
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Figure 3.20 — Damage variable evolution along the crack path for an imposed displace-
ment: (a) DCB test, (b) ELS test and (c) MMELS test.
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Figure 3.21 — Crack tip in the case of DCB test.
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Figure 3.22 — Interface separations evolution along the crack path: (a) DCB test, (b)
ELS test and (c) MMELS test.

Mean relative errors (%) | DCB test | ELS test | MMELS test
Oy Stresses 0.3 0.2 0.3
0., stresses 1.6 - 2
0., Stresses - 3 3

Table 3.6 — Mean relative error.

the different stages are depicted in Figures 3.26 and 3.27 for the DCB and ELS
test. In the DCB test, the tension and compressive zones mentioned above are
present at all stages. The cohesive stress behind the crack tip (tensile stress) fol-
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Figure 3.23 — The normal stress distributions in the longitudinal and thickness direction
for the DCB specimen: (a) Stress o4, (b) Stress o,.
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Figure 3.24 — The distribution of normal and shear stresses for the ELS specimen: (a)
Stress 044, (b) Stress 0y..

lows the evolution of Figure 3.19 (case of DCB test). The compressive stresses
increase continuously when the load increase. In 2D the computational time using
the PGD was decreased by a factor of 4 in comparison with the finite element
simulation with very similar results.

3.6.2 3D simulation of a DCB test using the PGD

The main advantage of the PGD approach in comparison with the FEM approach
is the reduction of the computational time. Previous 2D simulations showed that



58 CHAPTER 3. DELAMINATION UNDER STATIC LOADING

729 729
525, 526,
322, : 322,
118, — 118, —
-85,5 -853
-289, -289,
-493, -493,
.-696, .-696,
(a)
w52 0.5
489 44,6
325 28,6
162 _— 12,7 -
0,137 y -3,26
-16,5 -19.2
-32,8 -35,1
. -49,2 . 51,1

(b)

Figure 3.25 — The distribution of normal and shear stresses for the MMELS specimen:
(a) Stress 044, (b) Stress o, and (c) Stress 0.
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Figure 3.26 — Normal cohesive stresses vs. Figure 3.27 — Tangential cohesive stresses
position for different load stages of DCB vs. position for different load stages of
test. ELS test.

PGD is about four times faster than FEM, and the agreement between FEM and
PGD is very good. Another asset is the easy insertion of the cohesive elements. In
FEM-CZM, a whole mesh refinement is required when inserting cohesive elements.
Whereas in PGD-CZM the cohesive elements are only required in the subspace
corresponding to the z axis. A 3D DCB test case is realized to focus on the
efficiency of PGD when increasing the number of nodes in the mesh. To do that,
the same specimen geometry as shown in Figure 3.16 is used, together with the
same precrack length as in the one shown in previous 2D DCB test. The specimen
width is equal to 20mm. The properties of the material are described in Table 5.1.
The 3D mesh is separated into 2D and 1D meshes as represented in Figure 3.28.
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In this case, the displacement field denoted u(x,y, z) is approximated using the
separated form:

uxu(z,y,z ZF z,y)oG;i(z) Y(z,y,z) € 2 (3.59)
Fy(z,y) . . .
where F;(z,y) = | Fi(z,y) | are functions of the mid-plane coordinate,
F(z,y)
Giu(2)
and G;(z) = [ Gi() | are functions involving the thickness coordinate.
Gi(2)
T *
Layer + :
1 28,
® | Al
Layer - E
| .
2D(x,y)/1D(z) PGD discretization A linear 1D interface

cohesive element

Figure 3.28 — 2D /1D PGD discretization.

After solving the problem, the functions F! and G%, for i = [1,2] are depicted in
Figure 3.29. The deformed shape and the longitudinal stress distribution (o) for
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Figure 3.29 — Functions F!, and G?, in the separated representation of the displacement
field: (a) i=1, (b) i=2.

an imposed displacement equal to 8mm are shown in Figure 3.30. The cohesive
surface at several iterations is shown in Figure 3.31. In this figure, blue indicates
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Figure 3.30 — The o, stress distribution for the 3D DCB specimen.

the undamaged zone, red indicates the damaged zone, and the process zone is the
small part between them. The initial precrack front shape is straight. It is possible
to see that the crack initiates at the center of the specimen width. As the crack
propagates, the crack front shape becomes slightly convex.

This simulation was performed with 20000 nodes in the 2D mesh and with 30
nodes in the 1D mesh (thickness). In 3D, that represents a total of 1.8 x 10°
degrees of freedom. The PGD algorithm enabled running the simulation on a
simple laptop in less than 15 min. This represents an enormous gain of time when
compared with classical 3D FEM simulations with comparable mesh refinement.
With our code, the full 3D simulation can’t be achieved on our laptop.
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Figure 3.31 — Crack surfaces of 3D DCB test: (a) iteration 3, (b) iteration 5, (c) iteration
40 and (d) final iteration.
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Chapter

Delamination in composite laminates
under dynamic loading

“ Science, my lad, is made up of
mistakes, but they are mistakes
which it is useful to make, because
they lead little by little to the truth.

7

Jules Verne
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The method described in the previous chapter has prooved its efficiency to
simulate delamination evolution under quasi-static loading, especially in the case
of standard fracture tests. In the present chapter, this strategy will be enhanced
to simulate the low-velocity impact response of laminated composites.

The ever growing demand for lighter structures resulted in the increasing replace-
ment of metallic materials by composite materials. While composite materials offer
a number of superior design characteristics, composite structures are much more
susceptible to impact damage than similar metallic structures. Impact can res-
ult in numerous damage mechanisms, ranging from barely visible impact damage
(BVID) to complete penetration, which nevertheless severely reduces the stiffness
and the residual strength of the composite structures. Impacts caused by foreign
objects may arise during the life span of a structure including manufacturing, ser-
vice, and maintenance operations. In the present work only low velocity impact
events will be considered.

4.1 Why composites are vulnerable to impact dam-
age 7

Damage in composites are different from those in metals because composite failure
is a progressive accumulation of damages. Impact damages in metallic structures
appears on the impacted surface, which makes them easy to detect. Due to the
ductile nature of the metallic material, large amounts of energy may be absorbed,
making it much less susceptible to impact damage. In contrast, impact damage in
composites is often undetected or underestimated by visual inspection, beginning
on the non-impacted surface or in the form of an internal hidden damage. Owing
to the brittle nature of most composite materials, energy is absorbed in elastic de-
formation and through damage creation/propagation |
|, and not via plastic deformation.

The majority of impacts on composite plates occurs in the transverse direction.
In addition, lack of through-thickness reinforcement leads to a low delamination
resistance and poor impact damage tolerance. Even when the impact event creates
non-visible damage in the material, its effect on the mechanical properties of the
composite has to be taken into account. The resulting damage modes are a func-
tion of the type of loading, the stacking sequence, the properties of the impacting
object and of the structure, and the boundary conditions.



4.2. LOW AND HIGH VELOCITY IMPACT 65

4.2 Low and high velocity impact

Generally, impacts are classified into two main categories: (a) low velocity impact
and (b) high velocity impact. Both categories produce different types of damages
in the composite structure. Low velocity impact may be caused by accidentally
dropped tools on the structure during manufacturing, service, or maintenance.
High velocity impact may include situations such as a ballistic impact, bird strike,
hail or foreign object debris (FOD). There are a number of different definitions
by various researchers to distinguish a low velocity impact from a high velocity
impact, but there is no universal agreement.

According to Sjoblom et al. | | and Shivakumar et al. |

|, low velocity impact is associated with an impact event which
can be treated as quasi-static. The upper velocity limit of the impactor can vary
from 1 to 10 m/s depending on the target stiffness, material properties and the

impactor’s mass and stiffness. Cantwell and Morton | |
classify low velocity impact as up to 10 m/s. However, Abrate | |
suggested that low velocity impacts could occur at speeds less than 100 m/s. Liu
and Malvern | | and Joshi and Sun | |

stated that the type of impact can be classed according to the damage incurred.

Low velocity impact damages are initiated by matrix cracks which induce delamin-
ations at interfaces between plies of different orientations. These failure mechan-
isms dissipate the majority of the energy. In contrast, high velocity impact leads
to very localized damage. High velocity impact is characterized by penetration in-
duced fiber breakage. It should be noted that the energy level of the impacts can
be separated into two types: low energy (low velocity/low mass) and high energy
(low velocity /high mass, high velocity /low mass or high velocity /high mass).

4.3 Failure mechanisms in low velocity impact

Low velocity impact damage in composites is especially insidious due to the in-
visible damages (BVID) they cause. These damages can drastically decrease the
residual strength of composite structure. It has been shown that, for unidirec-
tional (UD) laminates under low velocity impact, significant amount of permanent
damage in the form of matrix cracking, delaminations and fiber breakage may be
present without being detectable by visual inspection. The failure mechanisms
generally occur in the listed order with increasing impact energy. Matrix cracking
has been widely reported as the first type of failure induced by transverse low
velocity impact | : : |. It
acts as a starting point for the propagation of delamination. Figure 4.1 shows
the typical matrix cracking and delamination damage found in an impacted com-
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posite specimen. Matrix cracks appear parallel to the fibers due to tension or shear.

The initiation and propagation of matrix cracks are strongly dependent on the
stacking sequence | : : |. Two
types of matrix cracking can be observed: tensile matrix cracks and shear matrix
cracks. Tensile matrix cracks are formed by the flexural deformations due to the
tensile bending stresses. These cracks are generally located at the lower plies.
Shear matrix cracks form in the upper plies directly under the impact zone and
are induced by the high transverse shear stress through the material, and are in-
clined at approximately 45°. The matrix cracks first appear in the lowest ply |

|. Due to the coupling between delamination and matrix cracking,
the initiation of delamination will occur at the locations of the initial matrix cracks.

Delamination is often considered to be the most energy consuming damage mech-
anism during the impact event. The majority of the energy absorbed in the lamin-
ate during impact dissipates into delamination propagation. Delaminations always
occur at the interfaces between plies with different fiber orientations and tend to
initiate at the bottom interface and progressively becomes smaller towards the im-
pact face. The shape of the delaminated area changes with the orientation of plies
and is generally a peanut with its major axis oriented in the fiber direction of the
lowermost layer at the interface, as depicted in Figure 4.2. The peanut shape is a
result of the shear stress distribution around the impactor, the interlamina shear
strength along the fiber direction and the matrix cracking. Most of the available
literature on impact behavior of composite laminates refer to impact damage in
terms of its delamination size. The delamination length is defined as the size of
the delaminated area along the fiber direction of the the lowermost layer. The
delamination width is defined as the size of the delamination along a direction
normal to the fiber direction. Fiber failure mostly appears after matrix cracking
and delamination. This failure mode may occur at the zone under the impactor
due to locally high stresses and indentation effects.

The type of damage resulting from impact on composites depends on the energy
level of the impact | |:

e At low impact energie, minor damage in the form of a small plastic indent-
ation is formed on the impact surface;

e At low to moderate impact energie, damage is initiated by matrix cracks in
the lowest ply of the laminate as previously described. It creates delamin-
ations at interfaces between plies with different fiber orientations. Damage
propagates upward through the laminate to give the conical shape;

e At higher impact energies, fiber breakage and matrix cracking occurs on the
back face of the laminate. Fiber microbuckling may occur on the impacted
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face near the contact zone. As the impact energy increases, a complete
penetration of the specimen occurs.

z z
L)X Y Shear matrix crack

S .,[° N

Delamination Shear matrix crack Delamination Tensile matrix crack

Figure 4.1 — Typical matrix cracking and delamination damage in a [0/90/0] UD lamin-
ated composite (longitudinal and transverse views).
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Figure 4.2 — Shape of the delamination.

The shape of impact damage through the section of the specimen appears to be
approximately conical (Figure 4.3). The problem of impact damage analysis may

Matrix crack Delamination

Figure 4.3 — Conical shape of impact damage.
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be divided into two sub-problems | |:

e Impact damage resistance, which deals with the response and damage caused
by an impact;

e Impact damage tolerance, which deals with the reduced strength and stability
of the structure due to the presence of damage.

4.4 Types of impact response

In literature one can find that the impact response of a composite plate is differ-
ent between the case of large mass impact and small mass impact | ;
: : |. Olsson | :

| has demonstrated that the mass ratio between the impactor and the plate
has a significant influence on the impact response (Figure 4.4). For small mass
impactors (high velocity impact), the response is dominated by the flexural waves
propagation and the impact time is short. The load and deflection are out of phase
and independent on boundary conditions and plate size | |. Whereas,
large mass impactors (low velocity impacts) with the same impact energy involves
long contact time between impactor and target, and produces deformation of the
entire structure with internal damage at points far from the contact region. Low
velocity impact response is equivalent to a quasi-static response and the plate es-
sentially deforms in the same way as under static loading.

As indicated by Trousset | |, during finite element simulation of low
velocity impact, about 90% of the total computation time is spent in the contact
algorithm, regardless of the complexity of the composite plies behavior. For these
reasons, low velocity impact tests are often simulated by simple static indenta-
tion tests, neglecting the influence of dynamic effects on the structural response.
To avoid contact management during the impact simulation, the Hertzian contact
law is commonly employed to deal with the contact between the impactor and the
laminate. Various researchers have developed finite element models in conjunction

Low velocity impact

High velocity impact

Figure 4.4 — Response types during impact on plates.
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with the Hertzian contact law to study the impact response of laminated compos-
ite plates. Some important works on this subject can be found in references |

Y ? Y

; ; |-

4.5 Problem statement

4.5.1 Governing equation of motion

According to principle of virtual work, and by assembling all mass and stiffness
matrices with respect to the global coordinates, the discretized motion equations
of the laminate by neglecting the damping take the following form:

[M[{a} + [K[{u} = {F} (4.1)

Here [M] and [K] are the mass and stiffness matrices of the composite laminate,
{@} and {u} are respectively the nodal displacement and acceleration vectors.

In order to develop the PGD formulation, the displacement field denoted as u(z, y, 2)
is approximated using the separated form:

Un(2, Y, 2) n
u~ lln(.l’,y?Z) - Un(xvya Z) = ZFZ(I',y)OGZ(Z) \V/([L’,y,Z) €2 (42)
wy(x,y, 2)
Fi(z,y)
where F;(z,y) = | F'(x,y) | are functions of the mid-plane coordinate,
\ Fu(z,9)
G, (2)
and G;(z) = [ G'(z) | are functions involving the thickness coordinate.
Gu(2)

The acceleration and velocity vectors are also approximated using the separated
form:

i(z,y, 2 ZF z,y) 0 Gy(2) (4.3)

w(z,y, 2 ZF ,y) 0 Gy(2) (4.4)

{F} is the external force vector Wthh 1ncludes the contact force (impact force)
between impactor and the plate. Under low velocity impact, {F'} is given by:

{F}={000...F....000}" (4.5)

where F is the contact force. The magnitude of contact force is not known a priori
and needs to be calculated using a contact law. We note that {F'} depends on the
displacements and time.
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4.5.2 Time integration

There are many methods to increment the solution of 4.1 in time. In the present
work the solution of the problem is determined by applying the implicit Newmark’s
integration scheme. The Newmark method, originally introduced by Newmark
| |, is quite popular for the numerical integration of the equations
of motion, especially for nonlinear systems. It has been applied in numerical
evaluation of the dynamic response of many engineering structures. The time
dimension is represented by a set of discrete points, where At is the time increment.
The system is solved at each of these points in time using the data of the solution
at a previous time.

The Eq. 4.1 can be written at time ¢ + At as:

[M]{ut—i-At} + [K]{ut-‘rAt} = {Ft+At} (4.6)

The acceleration and velocity vectors at time ¢t + At are written as:

. 1 . 11 .
{it A} = s (ot — {ud = (@A0G] - 56 - o)} (47)
{ig, A} = {i} + (A0 (1 = )i} + 7l 4.} (4.8)

The variables § and + are numerical parameters that control both the stability
of the method and the amount of numerical damping introduced into the system
by the method. For v = % there is no numerical damping, for v > % numerical
damping is introduced.

Newmark method is unconditionally stable when % < v < 20 and it is unstable
when v < %

To avoid numerical instability, high frequency dissipation is required. It is achieved
when: 8= 1(v+ 1)~

In this work, the constant average acceleration version of Newmark method is
used, which is implicit and unconditionally stable. For this method v is % and
is }l. Substituting Eq. 4.7 into Eq. 4.6, we obtain a set of nonlinear equations
in which the unknowns are {u,, A,} and {F,, A,}. The terms at time () are all

known. The new system can then be formulated as:

K v A = F, A0 (4.9)

where [K*| is the effective stiffness matrix, and {Ft*+ A, is the force vector, which
are defined as:

{ ;At} ={F.A)+ [M]{B(it)2{ut} + %At){ut} + (% — 1){ut}}
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4.5.3 Calculation of the contact force

In the present work, the contact force is calculated using a modified nonlinear
Hertzian contact law proposed by Tan and Sun | |. The im-
pactor is modelled as a rigid body with isotropic properties and of higher stiffness
compared to the composite plate in the direction of impact. The impactor has ra-
dius R;, mass m;, Young’s modulus E; and Poisson’s ratio v;. The initial velocity
and displacement of the impactor are w; = V;, and w; = 0. The contact is located
at the center of the plate as shown in Figure 4.5. The dynamic equation of the
impactor is obtained through Newton’s second law, with ; is the acceleration of
the impactor:

m;w; = —F, (4.10)

The contact force F. is related to the local indentation « according the contact
law, where « is defined as the difference between the displacement of the impactor
w;(t) and the deflection of the plate at the contact point w,(t):

a(t) = w;(t) — wy(t) (4.11)
During the loading and unloading, the contact force is expressed as follows:

kas/? loading
F, = 5/2
F, <ﬂ> unloading

am—QQ

(4.12)

where F},, is the maximum contact force at the beginning of unloading, «,, is the
indentation corresponding to F;,. For laminated plate with orthotropic layers, the
modified Hertz constant stiffness k can be calculated by:

J— 4 VR;

T3 (12, 1
(F+ %)

Where E, is the transverse modulus normal to the fiber direction in the upper-

most composite layer. The permanent indentation «g is zero when the maximum
indentation «,, is less than a critical value a.,, otherwise ay is expressed as:

(4.13)

0 Ay < Qe
— 2/5

o { o [1 - (3—m> ] e (4.14)

The velocity @} and displacement w]"** of the impactor at the time step n + 1

are determined by applying implicit Newmark’s integration scheme (y = % and
5=1)

At At
ot =g (S0) - Bt (o) 4.15
ap =y () - F (g (4.15)
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2 2

Wit = Wl 4 WAL + (A—t> _ pr (A—t) (4.16)
Hert’z law is applied at each time step to calculate the contact force. The contact
force at time step n + 1 is calculated from the impactor and plate displacements
of the previous time step n. Substituting Eq. 4.16 into Eq. 4.12, we obtain the
contact force at time step n + 1:

3/2
c = 5 5/2 :
(e [q —wy ™ —ap — (%)Fc’”l] unloading

Where ¢ = w] + w]' At + @} (%)

To seek the solution of the nonlinear problem defined in Eq. 4.17, the Newton-
Raphson iteration technique is adopted. Using the initial conditions (w; = Vj
and w; = w, = 0) and a root finding algorithm (Newton-Raphson method), an
approximate value of the impact force F, is obtained from the implicit expressions
of the modified nonlinear Hertzian contact law (the first equation of Eq. 4.17).
This force is now applied as external load at the contact point of the plate. The
nodal displacement w, of the laminated plate is next found from Eq. 4.9. Using
this value of w,, the impact force F. is recomputed from Eq. 4.17. The process is
repeated until the required accuracy is achieved. The convergence criteria for the
satisfaction of the local equilibrium related to the contact force is:

|FP Y — |F? < 1.0x 1076

The contact force is then used to calculate acceleration, velocity, and displacement
of the impactor for the next time step.

wi(t) wy(x,y,t)

FFY L a(t)

Figure 4.5 — Schematic Illustration of the impact procedure.
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4.5.4 Geometrical modelling and Boundary conditions

We have demonstrated in previous chapters that PGD can be used as an alternat-
ive to overcome the computational drawbacks of FEM such as the rapid increase in
the number of degrees of freedom, the large computational time, and the storage
limitation. Now, the predictive capabilities of the PGD approach are evaluated by
simulating the low velocity impact response of cross-ply laminates. The impact
response analysis is also performed using FE approach.

We considere a rectangular plate 60 x 40 x 3 mm made of unidirectional car-
bon/epoxy material, with stacking sequence [903/03]s. The cross-ply laminate is
assumed to be clamped along all the four edges and impacted at the center by
a 12.7 mm diameter aluminum sphere. An initial velocity Vy is applied to the
impactor. All the nodes of the plate edge are fixed in all directions (x, y, z) to
simulate the experimental clamped conditions. Figure 4.6 shows the mesh config-
uration of the finite element model and the PGD model. The boundary conditions
are also shown in the same figure. The main advantage of the PGD approach in
comparison with the basic FEM approach is the reduction of the computational
time. To do that, the 3D mesh is separated into 2D and 1D meshes as represented
in Figure 4.6b. The material properties used in the simulations are listed in Table
4.2.

Cohesive properties | K; = 1.10* N/mm?; K;; = K77 = 5.10* N/mm?
o. = 60 MPa; 7. = 139 MPa
Gr. = 0.3 N/mm; Grr. = 1.6 N/mm

Table 4.1 — Cohesive properties.

4.5.5 Numerical simulations

The modeling of damages is integrated into the impact simulation previously de-
scribed. The damages due to the low velocity impact is modeled by using a cohesive
zone model. The bilinear cohesive law is used to describe both crack initiation and
crack propagation. The implementation details and the parameters calibration of
the cohesive zone model have already been presented in the previous chapter. The
mathematical formulation for a PGD-Cohesive crack problem has also been de-
veloped in the previous chapter. Only the practical details are provided in this
section. In the PGD model, the smallest element size in the impact zone is 0.3
mm X 0.3 mm. The size of the elements was selected by sensitivity analysis in
terms of convergence, structural response and damage propagation. The sensitiv-
ity analysis showed that the PGD model is less sensitive to mesh size than the FE
model. The fine mesh region on the laminate plane is 40 mm x 20 mm, as shown
in Figure 4.6. Each element layer represents one lamina ply.
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Fixed edges
Uy Uy = u, =0

(a) FE model.

® j]—,

—0g

]'—903

(b) PGD model.

Figure 4.6 — Numerical models used for impact analysis.

A refined mesh at the center of the plate where the impact load is applied is
used as shown in Figure 4.7. As discussed previously, under low-velocity impact,
damage is initiated by matrix cracks in the lowest ply of the laminate, which create
delaminations at interfaces between plies with different fiber orientations. Based
on this analysis and as done in [Aymerich et al., 2009], two rows of vertical cohesive
elements are placed on the symmetry plane parallel to the 90° direction to simulate
the initiation and growth of the major intralaminar matrix crack (bending crack),
typically developing along the fibre direction in the lower block of layers (Figure
4.7). To simulate the initiation and propagation of the delamination, cohesive
elements are also inserted at the interfaces between layers with different fiber ori-
entations (0°/90° and 90°/0° interfaces). The properties of the cohesive elements
are presented in the Table 4.1. The cohesive elements share nodes with the solid
elements and have zero thickness.

The PGD-CZM discretization allows a reduction of the number of interface ele-
ments in comparison with the FEM discretization, which minimizes modeling com-
plexity. Another asset of the PGD discretization is the easy insertion of the co-
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hesive elements. The impact simulation described in the previous section were

esive elements on the Cohesive elements on

symmetry plane (90 * plies) 90 “ /0 * and 0 ° /90 * interfaces

f/Y

(a) FE model.

® 1w

Cohesive interface 90 ° /0 ——

Cohesive interface 0 ° /90 ——
F]—o0,

(b) PGD model.

Figure 4.7 — Location of cohesive elements.

performed with two different initial impact velocities: 1 m.s~! and 3 m.s~!. The
mass of the impactor is equal to 2.3 kg. The time step used for the implicit new-
mark algorithm is 10~* ms. The evolution of the impact force for the two initial
impact velocities obtained with the PGD and the FEM are depicted in Figure 4.8.
The PGD and the FEM gives very similar results. Figure 4.9 shows the velocity
of the impactor-time history. In Figures 4.10 and 4.11 the deflexion of the plate at
the contact point and the displacement of the impactor versus time are shown. All
the results shows a good agreement between FEM and PGD. The PGD is adap-
ted to perform impact simulation using an incremental implicit newmark scheme.
Delamination shape obtained from the PGD simulation at the upper and lower
interfaces is shown in Figure 4.12. The simulated results were found coherent with
the ones from [Aymerich et al.. 2009)].
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Laminated plate E, = 157380 MPa ; E, = E, = 11873 MPa
Gay = Gy — Gy — 5051 MPa
Vgy = Vyz = Vg = 0.31
Impactor E; =207 GPa ; v; = 0.30
pi = 7800 kg/m? ; R; = 12.7 mm
Table 4.2 — Material properties of the laminate and impactor properties.
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Figure 4.9 — Velocity of the impactor.
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Chapter

A multiscale modelling of composite
materials with periodic structures

“ The important thing in science is
not so much to obtain new facts as
to discover new ways of thinking
about them. ”

Sir William Bragg
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One of the main challenges in mechanics and engineering is to account for
physical phenomena that occur at different scales. A coupling between scales is
often observed, generating a real need for multiscale models in many applications.
A major difficulty related to multiscale modeling is the need of multiscale solvers
that require a lot of computational resources. Therefore, there is a real need for
computational methods able to reduce the cost of such simulations. To reduce
significantly the cost of a multiscale approach, additional hypotheses have to be
introduced. In this work, materials with periodic structures are considered with
an obvious application in composite materials. The key idea in this work is to use
the periodicity of a microstructure to separate two scales: the scale of the periodic
pattern and the macroscopic scale. This is done using a separated representation
of the solution in the context of the PGD.

5.1 What are multiscale methods, and why do we
need them 7

Multiscale phenomena are part of our daily lives. We organize our time in days,
months and years, as a result of the multiscale dynamics of the solar system. Our
society is organized in a hierarchical structure, from towns to states, countries and
continents. Such a structure has its historical and political origin, but it is also
a reflection of the multiscale geographical structure of the earth | |.
From the viewpoint of physics (as is the case in materials science, mechanical,
civil, chemistry, electrical and other engineering disciplines), many problems in-
volve several coupled phenomena that occur over a range of time and length scales,
which are difficult to capture in a single simulation. These problems are often mul-
tiphysics by nature. The simpliest approach to model multiscale phenomena is to
focus on the macroscopic scale using mathematical models to describe the beha-
vior of the structure. The effect of the microscopic mechanism is modeled by some
physical laws. The physical laws, which play a key role in modeling, are often
obtained empirically, by fitting a small set of experimental data.

However, extending these simple empirical approaches to more complex systems
have had limited success. This is why mathematical models for complex phys-
ical systems are sometimes restricted to macroscale quantities, whereas microscale
parameters do not explicitly enter into the model. In order to handle this prob-
lem, the mathematical models have to be adapted. The mathematical models
for a physical system that account for macro and micro scale are generally very
complicated (larger number of evolution variables, coupled interacting fields) and
sometimes even virtually impossible to solve. It requires a high degree of refine-
ment in the finite element mesh making the simulations extensive and complicated.
It may be necessary to increase computational resources and develop powerful nu-
merical methods. This is where multiscale modeling comes in. The term multiscale
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modeling is widely used to describe some approaches based on a hierarchy of sim-
ulation to simulate systems across different scales. It is widely recognized that
multiscale techniques will become an essential part of computational science and
engineering. The multiscale approach opens up unprecedented opportunities for
modeling, by focusing on the different levels of physical laws and the relations
between them. It influences the way we view the relation between mathematics
and science, by considering simultaneously models at different scales.

Many branches of science and engineering today have adopted materials made from
two or more constituent materials with significantly different physical or chemical
properties. These are composite materials, combining two or more constituents in
order to optimize some physical properties of the material. A special case of para-
mount importance among composite materials is formed by those having a periodic
microstructure. Composite materials have mainly periodic or nearly periodic mi-
crostructures (woven composites, unidirectional composites). Let us consider a
periodic composite material. Two scales are distinguished: the macroscopic one
is the length scale on which the system interacts with its environment, and the
microscopic one, where the distance of recurrence is much smaller than the dimen-
sions defining the macroscale. The resulting microscale pattern is referred to as
the physical system’s microstructure. The microscale pattern can also be called
representative volume element (RVE), which must be small enough to allow us to
distinguish the microscopic heterogeneities and sufficiently large to be represent-
ative of the overall behavior | |.

The multiscale techniques have been remarkably successful in studying relation-
ships between microscopic and macroscopic mechanical quantities of composite
materials. These approaches have also been used to get a deeper understanding of
the internal physical phenomena. The effective (average) characteristics of a com-
posite material can also be determined by doing experimental testing, but doing
that is very time expensive. Some of the most widely used multiscale approaches
will be briefly described below.

5.2 Heterogeneous materials with a periodic struc-
ture

Our interest focuses on composites materials which have been playing an increas-
ingly significant role in engineering design. Many composite materials often have
periodic or nearly periodic microstructures, resulting in inhomogeneous properties
in microscale. The structure of periodic heterogeneous materials can be viewed as
the disjoint union of a recurrent element (unit cell) of fixed size, which is repeated
periodically in space. Periodicity not only simplifies the microstructure represent-
ation, but aims at describing the effective (macroscopic) properties of composite
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materials by means of the characteristics of their microstructures. A typical uni-
directionally reinforced fibrous composite material is shown below in the Figure
5.1a. It is constituted by a succession of fibers arranged in parallel and impreg-
nated with a resin matrix. Another example would be the textile composite, which
have complex microstructures in a periodic order. These two examples of periodic
composite materials and the corresponding unit cells are illustrated in Figure 5.1.
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(a) UD composite. (b) Plain weave composite .

Figure 5.1 — Periodic composite materials and corresponding unit cells.

5.3 Multiscale methods in computational mechan-
ics

This section is an introduction to multiscale methods in computational mechanics.
We are going to have a brief survey of the general ideas behind the homogeniz-
ation theory, domain decomposition methods and multigrid methods. Available
homogenization processes are numerous. They can be classified according to the
material structure either periodic or random. Our interest focuses on the method
of homogenization for periodic structures.

5.3.1 Periodic homogenization theory

The certainly most common method to treat multiscale problems is to use the ho-
mogenization theory. In mathematical terms, the periodic homogenization theory
describes the mathematical techniques for the asymptotic study of physical system
with a periodic or nearly periodic microstructure. The homogenization procedure
usually contains two scales (macroscale and microscale). The microscale refers to
a representative volume element (RVE). We need to pay attention to the proper
selection of RVE and boundary conditions. The overall aim of homogenization is
to describe the relationship between the local structure of a heterogenous system
and its macroscopic behavior. Homogenization is widely used to predict the effect-
ive elastic properties of composite material. This is achieved through averaging
the microscopic information. The effective properties can then be used to treat
the macrostructure. The composite structure is then replaced by an equivalent
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Figure 5.2 — Homogenization of UD composite material.

homogeneous material having the calculated effective properties. The material is
said to be homogenized, see Figure 5.2. Generally, there are two principle steps in
homogenization procedures [Yang, 1999]:

e Compute microscopic problems with RVE to get local stress and strain;

e Use homogenization method to link microscopic problem to macroscopic
problem, and get the global stress and strain.

It is to be noticed that homogenization was one of the first multiscale methods.
This theory was developed by various researchers [Bensoussan et al., 1978; Pavli-
otis and Stuart, 2008; Tartar, 2009], when Ivo Babuska introduced this term to
the mathematical literature [Babuska, 1976]. The basic modeling principles have
not changed since then. Identification of the effective material properties for com-
posite materials dates back to the 19th century. Especially in the absence of
computers, analytical and semi-analytical approximations based on homogeniza-
tion were developed [Eshelby, 1957; Hashin, 1962; Hill, 1965; Mori and Tanaka,
1973]. Homogenization methods were first developed in the framework of linear
elasticity. Nevertheless, the analytical homogenization theories have certain limit-
ations and inconvenient assumptions, like assumptions in the link between micro
and macro behavior, and restriction to small strain.

Nevertheless, a variety of interesting numerical homogenization methods have been
proposed for problems with periodic microstructure |[Christman et al., 1989; Sluis
et al., 1999; Tvergaard, 1990]. They offer the possibility of computing the macro-
scopic response by solving a series of numerical tests on a representative volume
element (RVE). These approaches offer also the possibility to get informations
about the local solution. The homogenization techniques have been applied to
treat the variability using non periodic macroscopic cells at dimensions far below
the REV [Pineau and Dau, 2012]. It has been also extended for nonlinear materi-
als in the context of the multiscale finite element method [Fevel, 1999; Fevel and
Chaboche, 2000].
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The concept of periodic homogenization theory Let us now consider a
periodic material as depicted in Figure 5.3, a material occupying a domain (2 and
which exhibits a periodic microstructure. Because of the periodicity, we can devide
{2 into periodic cubic cells of side length e, which we call Y. This kind of material is
called €Y -periodic. Suppose that the phenomenon we are interested in is modeled

5 [4 18688 e
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Figure 5.3 — Hlustration of the periodicity cell concept.

by the equation:
Au = f, m §2 (5.1)

Where A is a differential operator describing the physics of the phenomenon and
the properties of the material, v is the unknown function, and f a given source
function. There are also the required initial and boundary conditions. We note
h a macroscopic characteristic dimension. Even though the material is strongly
heterogeneous, in a macroscopic scale it appears to behave like a homogeneous
material for large values of h. In other words, the microstructure becomes finer
and finer as ¢ tends to zero. Let us now describe the main idea behind the
homogenization theory. If A defines a medium with fine structured heterogeneities,
Eq. 5.1 may be replaced by a sequence of equations:

{Ahuh = f}, in {2 (52)

Each equation of this sequence corresponds to one cubic cell. Having still the
same source function f in the domain {2 and the same kind of boundary conditions
(periodic conditions), we desire to find a macroscopic equation representative of
Eq. 5.2:

AnomUhom = f, mn {2 (5.3)

With Ay, the homogenized operator and wy,,, the homogenized solution. The
homogenized operator Ay, describes the effective properties of the material. The
equation 5.3 is a good approximation of the physical equation 5.1.

5.3.2 Domain decomposition methods

Though homogenization approaches are attractive, they present some drawbacks.
A first restriction is that homogenization involves choosing some representative
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microscopic boundary conditions. Another point to consider is that the homogen-
ization theory postulates a well separated definition of scales. For example, the
modeling of a crack can be achieved at microscopic scale, or at macroscopic scale,
but is not possible if a crack begins at microscopic scale and propagates until it
becomes macroscopic. The averaging required by homogenization may be too re-
strictive in some applications. To overcome these limitations of the homogenization
theory, other approaches based on domain decomposition methods have been pro-
posed. Domain decomposition methods are a family of methods developed to solve
partial differential equations (PDEs). The basic idea is to decompose the compu-
tational domain into smaller, less complicated, subdomains and to add interface
conditions on the boundary between subdomains that are iteratively modified to
reach the global convergence.

Finding the global solution requires that:

e The equation is satisfied in each subdomain;
e The local solutions match on the interfaces between the subdomains.

The equations in the subdomains are solved by a direct method whereas the match-
ing of the solutions is enforced iteratively. The convergence rate is very sensitive
on the interface conditions. Contrary to direct methods, they are naturally par-
allel and adapted to multiprocessing technology. But such methods are also very
useful when used on monoprocessor computers. These techniques are mainly used
in the context of high performance computing. One other advantage of the domain
decomposition methods is that it permits the use of different numerical techniques
in each subdomain. This increases considerably the flexibility of these methods.
It provides simpler and less complicated problems and geometries.

Domain decomposition methods can be categorized into two major classes, namely
overlapping methods and non-overlapping methods. Just as the naming of the two
categories implies, there are two ways of subdividing the original domain:

e With disjoint subdomains;
e With overlapping subdomains.

Figure 5.4 depicts an overlapping decomposition and a non-overlapping decompos-
ition of the initial domain 2.

Overlapping domain decomposition methods

Here we describe the family of Schwarz iterative algorithms. It consists of the
classical alternating Schwarz method and several of its parallel extensions, such as
the additive and multiplicative Schwarz methods.
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Figure 5.4 — Example of overlapping and non-overlapping decomposition of an initial
domain f2.

Schwarz methods The main idea behind the overlapping domain decompos-
ition methods can be described by the first domain decomposition method: the
classical alternating Schwarz method [Schwarz, 1870]. This method was intro-
duced by the mathematician Hermann Andarouse Schwarz in 1870 as an iterative
method to prove the existence of solutions to Poisson’s equation, which consists in
finding u: 2 — R such that:

—Au=f mn {2

u=20 on 012 (5.4)

His idea was to study the case of a domain {2 that is the union of two subdomains,
a circle £2; and a rectangle {2, with interfaces I7 = 0y N 25 and [5 = 02, N (2,
as depicted in Figure 5.5. I is the artificial internal boundary of subdomain (2,
and [ is the artificial internal boundary of subdomain 2.

Figure 5.5 — Original geometry used to introduce the alternating Schwarz method.

u? is the solution on (2, and w4 is the solution on (2. This method starts by se-
lecting an initial guess u3 and then updates uf and u} iteratively for n = 0,1,2, ....
The better approximate solutions u}*" and u3™" are determined by solving altern-

atingly the two following problems:

—Auptt = f in (2 —Auptt = f in (2
utt =0 on 92, N0  and uy™ =0 on 982, N OS2

ntl  _ . n n+l _ _n+l
Uy = uj on I Us = uy on [5
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Note also that this algorithm is sequential, the problem has to be solved first in
(21 then in (2. From u%, one can obtain some boundary condition on the internal
boundary I of subdomain 2; and use it to find for «7"™, and vice versa. The
boundary conditions can either be Dirichlet or Neumann type, or other bound-
ary conditions. If the boundary conditions are chosen properly, the solution will
eventually converge. Parallel computing has become the dominant paradigm in
computer architecture. In order to benefit from the possibility of using parallel

computing to speed up the computation, the original sequential algorithm has been

modified by Lions | |. This can be done by using an iterative method
which solves concurrently problems in all subdomains. This method is called the
additive Schwarz method. Given a first couple of iterates (u?, u3), solve:
—Autt = f in £ —Auptt = f in (25
utt =0 on 02, N0Of2  and upt =0 on 0f2, N Of2
utt =l on I uptt = ur on I

The benefit of this algorithm is the saving in memory requirements. The Schwarz
alternating method can readily be extended to the case when there are more than
two subdomains, this is called multiplicative Schwarz method. Lions proved the
convergence of the algorithm by variational approach | | and also by the
maximum principle | |.

Non-overlapping domain decomposition methods

The overlapping methods described previously have some drawbacks. Because of
the duplication of unknowns on the overlap, increasing the number of subdomains
means that the number of unknowns increases also and routines for manipulating
meshes are needed. The second limitation is that, when studying the mechanical
behavior of heterogeneous materials made of different constituents with different
elastic properties, a natural way to partition the computational domain would be
to split each part into a subdomain, but that is not possible with overlapping
subdomains. This limitation also appears when solving a coupled multiphysics
problem. In order to remedy the drawbacks of the overlapping methods, non-
overlapping methods have been developed.

Schur complement methods The Schur complement method is the earliest
version of non-overlapping domain decomposition methods in which coupling is
performed through common interfaces | |. Tt is also called
iterative substructuring method, the subdomains intersect only on their interface.
This method is obviously well suited for large-scale parallel computation. Its
main feature is to compute the solution on the interface between the subdomains
by eliminating the unknowns in the interiors of the subdomains. The remaining
Schur complement system on the unknowns associated with subdomain interfaces
is solved by the conjugate gradient method. The solution on the interface is then
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used to compute the solution for each subdomain. The domain (2 in which the
differential equation is defined is partitioned into two non-overlapping subdomains
sand s’:

Q:sUs/, sNs =0

We define the interface between subdomains (Figure 5.6):
I'=0sN0ds

Schur complement methods can furthermore be distinguished in primal and dual
methods:

e In primal methods, like the Balancing Domain Decomposition (BDD) and its
variants [Mandel, 1993; Tallec, 1994], the continuity of the solution between
each subdomain is insured by introducing a unique displacement field on
the interface between subdomains, and looking for the equilibrium of the
reaction forces;

e In dual methods, such as Finite Element Tearing and Interconnecting (FETT),
the continuity is enforced by the use of Lagrange multipliers [Farhat and
Roux, 1991].

Hybrid methods, such as Dual-Primal Finite Element Tearing and Interconnecting
(FETI-DP), have also been introduced [Farhat et al.. 2000]. Balancing Domain
Decomposition by Constraints (BDDC) was introduced by Dohrmann [Dohrmann,
2003] as a simpler primal alternative to the FETI-DP method. Now FETI-DP and
BDDC are considered as efficient as original FETI and BDD.

Figure 5.6 — Non-overlapping domain decomposition.

We suppose that the linear equation system to solve is:
Ku=f (5.5)

where K is the assembled matrix of a finite element model (example: a stiffness
matrix), u is the corresponding set of degrees of freedom and f is the generalized
force vector. The local equilibrium of each subdomain can be written as:

Vs, K®qyu® — f(S) 4\ (5.6)
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M) is the reaction imposed by neighboring subdomains on subdomain (s), while
it is non-zero only on its interface 0f2;. The global equilibrium of the interface
reactions is then given by:

ZA(S)t(S))\(S) =0 (5.7)
The global continuity of the displacement field through the interface can be written

as:
S BOHO) = 0 (5.8)

We will use subscript b for interface data and subscript ¢ for internal data.
t(®) is the local trace boolean operator defined by ul(,s) =ty

A®) is the primal assembly boolean operator (such as ul()s) = A(S)Tub) and B® is
the dual assembly signed boolean operator, that verify:

Z BOAG®T — (5.9)

Schur complement methods consist in solving a condensed problem on the interface
between the subdomains. The local condensed operators are operators that rep-
resent how neighboring subdomains see one subdomain | .

Primal Schur complement The principle of method based on the primal Schur
complement is to write the interface problem in terms of one unique unknown
interface displacement field ul(,s) = A(S)Tub, automatically ensures the verification
of Eq. 5.8. If we renumber the local degrees of freedom of subdomain (s) in order
to separate internal and boundary degrees of freedom, system 5.6 then becomes:

KO K () (g i
KO g\ ,0) =0\ (5.10)
bi /) \U L+ A

The condensed form of the local equilibrium of subdomains expressed in terms of
interface field can be written as follow:

Sp ) = A+ £ (5.11)

( Sp(s)is the local primal Schur complement
g () — KO _gORE )
P bb bi i ib

K43
where:

fc(s)is the condensed effort imposed on the substructure

\ fc(S) fb f K(S) fz( 5)
The computation of Kzf ™ for all (s) can be treated with separated processors.
The global equilibrium of the decomposed structure is then given by:

pub fc (512)
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This system can be solved using a direct solver or an iterative method, for example
the conjugate gradient algorithm.

where:

Dual Schur complement The principle of dual Schur complement methods
(like FETI method) is to write the interface problem in terms of one unique un-

known interface effort field A\, = B(S)T/\,()S), that automatically ensures the verifica-

tion of Eq. 5.7. So, if K®™" is the generalized inverse of matrix K® and R(®) the
kernel of matrix K®, from Eqs. 5.10 and 5.11 we have:

() — KOO 4 £6)) 4+ RO
{“ ( ™ “ (5.13)

REOTAES + £y =0

where vector a(®) denotes the magnitude of rigid body motions. The local equilib-
rium 5.13 of the subdomain (s) is condensed on the interface 0f2; by introducing
the local dual Schur complement S4‘®

D = Sq@AY 4 ul® 4 RY (5.14)

S4®) = tOK® T
with: ¢ 408 = t(s>K<s> £
R,ﬁ = tORE)
From Egs. 5.14 and 5.8, and recalling the condition given by the second equation
of 5.13, the global interface problem can be written as:

3 90)-()

T

Sq = S BWS, /B

, G=(..B®R .)
with: f= ZB(S)UES) (516)

ST S T
L e= (... fb) 1()))

A complete overview of various domain decomposition methods may be found in
a few books or in the proceedlngs of various conferences on domain decomposition
methods |

|. Figure 5.7 show the two major groups of domain decomposition
methods and its sub-groups. The domain decomposition methods have two major
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disadvantages. First, the local problems may need high number of iterations to
converge. Second, the convergence of iterative solvers depends on the number of
processors. The ideal situation occurs when each processor deals with only one
subdomain. The algorithm needs to interchange data across the boundaries, which
leads to communication between the processors. Each communication involves
additional cost for the data transmitted. Periodic domain decomposition uses a
distributed-memory parallel technique for finite periodic geometries. It distributes
unit cell mesh subdomains to a network of processors. Though very successful when
applied to finite periodic geometries, the communication between the processors
is often the limiting factor.

__Dormain decompaticn methods (D) |

y
Overlapping DDM: Non-overlapping DDM:
Schwarz Methods Schur complement methods

—>“ Alternating Schwarz method ” —»‘ Primal methods (BDD and its variants) ‘
—’“ Additive Schwarz Method ” —>‘ Dual methods (FETI and its variants) ‘
—>“ Multiplicative Schwarz Method ” —»‘ Hybrid methods (BDDC, FETI-DP) ‘

Figure 5.7 — Families of domain decomposition solvers.

5.3.3 Multigrid methods

Multigrid methods have proved to be the fastest numerical methods for solving
elliptic and hyperbolic partial differential equations (PDEs) and can be applied
in combination with any of the common discretization techniques. They have op-
timal complexity, are very flexible and can be used for a wide variety of problems.
Multigrid algorithm iterates over a hierarchy of successively coarser grids until the
convergence is reached. The main characteristic of the multigrid iteration is its
fast convergence. The idea of systematically using sets of coarser grids to accel-
erate the convergence of iterative schemes that arise from the numerical solution
of partial differential equations was made popular by the work of Brandt |

]. The convergence speed does not deteriorate when the discretisation is re-
fined, whereas classical iterative methods slow down for decreasing grid size.
The multigrid methods can yield a solution with computational cost proportional
to the size of the problems. The CPU time and storage space are of order O(N),
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where N is the size of the problem | |. Basic iterative
methods like Jacobi and Gauss-Seidel methods are characterized by global poor
convergence rates. That is because these methods remove high frequency errors
efficiently, but are inefficient for low frequency errors. High frequency errors are
rough errors and low frequency errors are smooth errors. These smooth compon-
ents are responsible for the slow global convergence. In order to speed up the
convergence when the error becomes smooth after a few iterations, the error can
be projected to a coarse grid as it becomes rough on a coarse scale grid. On the
other hand, the high-frequency components of the error are reduced by applying
basic iterative methods like Jacobi or Gauss-Seidel schemes. For this reason these
methods are called smoothers.

There are two approaches for solving discretized nonlinear PDEs by multigrid
methods:

e The first is based on the Newton method and uses the multigrid scheme as
inner solver of the linearized equations;

e The second uses a variant of multigrid method directly to the nonlinear
problem, this is known as the Full Approximation Scheme (FAS)|

|-
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Figure 5.8 — Graphical illustration of the hierarchical grid levels.

To illustrate the FAS method, consider the nonlinear problem A(u) = f. The f
subscript is related to the fine grid and ¢ subscript is related to the coarse grid.
We summarise the basic steps of the two-level FAS algorithm as follows |
|.

Step 8 of the above algorithm is solved using two-level multigrid algorithm. This
idea can be generalized to any number of multigrid levels (see Figure 5.8). v is the
number of times the multigrid procedure is applied to the coarse level problem.
This procedure converges very fast, v = 1 or v = 2 are the typical values used. For
v = 1 the multigrid scheme is called V-cycle, whereas v = 2 is named W-cycle.
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Algorithm 1 Two-level FAS algorithm.

Choose initial fine grid solution u/

Update u/ applying o' iterations of the nonlinear smoother
Find the residual: r/ = Af(u/) — f/

Restrict the residual to the coarse grid: r/ — r¢

Restrict the solution to the coarse grid: uf — u°

Calculate the coarse grid right-hand side: f¢= A°(u®) — r¢
Save the initial coarse grid solution: uf,,, = u°

Call 7 times the multigrid scheme to solve the system A°(u¢) = f¢
Calculate the coarse grid correction: e = u® — s,

Interpolate the correction: e® — ef

. Correct the fine grid solution: uf = u/ + e/

. Update u/ by applying a? iterations of the nonlinear smoother.

— = =

5.4 A multiscale separated representation for peri-
odic 1D domains

5.4.1 Separated description of the 1D problem

For the sake of simplicity, the method will be described firstly for a simple 1D
problem. The 2D and 3D cases will be addressed in the next section. Then, an 1D
problem with a periodic geometry and materials properties is considered in this
section. The weak formulation of the static equilibrium equation for a beam in
traction /compression with an elastic homogeneous material is:

L qu*du du1*
AE———dX = |AEU*— 1
/0 dX dX { v dx}0 (5.17)

E is the elastic modulus, A is the area of the beam, U is the longitudinal dis-
placement, X is the coordinate along the beam axis and U* is a trial function. L
denotes the length of the beam. The right hand term is related to the boundary
conditions on the left (z = 0) and on the right (z = L) of the domain. To enforce
the boundary conditions, a penalty method will be used. This method will be
described in the subsection 5.4.4. For now, the method will be presented without
accounting for boundary conditions. The weak formulation is then becomes :

L *
dU* dU
AE— " dX = 1
/0 dX dX 0 (5.18)

In the finite element method, this weak form is approximated using some shape
functions over each element. The proposed strategy takes advantage of the period-
icity of the mesh. The domain is sliced into identical elementary parts assuming a
periodic geometry and material properties for the truss. The loading and boundary
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Figure 5.9 — 1D mesh and decomposition in elementary parts.

conditions may differ from one part to another. Each occurrence of the periodic
pattern is associated to an integer denoted k as shown in Figure 5.9. k is an integer
such as k € [1, Ng], and Nj denotes the number of patterns. The coordinate X
defining the horizontal position in the beam is written using k:

X=(k—-1)AL+z (5.19)

x € [0, AL] is the position in each part and AL is the total length of each part. The
continuous form of the displacement field found using the separated approximation
of the solution is given by :

UX)=U((k—1) AL+ z) =Y F(z)Gi(k) (5.20)
i=1
The discrete form of the Eq. 5.20 can be written as:
UX)=) F,®G (5.21)
i=1

where ® is the tensor product. In the following, the notation U(k,z) = U((k —
1) AL + z) will be used. Using k and z instead of X leads to a double definition
of the position at the edge of the elementary parts: U(k, AL) = U(k+ 1,0). This
is problematic from a numerical point of view because it leads to a multiplication
of degrees of freedom on these points. There are two possibilities to treat the edge
of the elementary part:

1. Solving the problem using more degrees of freedom than necessary and as
well as using boundary conditions to enforce the continuity: U(k, AL) =
U(k+1,0).

2. Deleting some nodes when discretizing the domain in order to suppress the
non-necessary degrees of freedom.
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The first method is not well-adapted to the classical PGD solver. For instance, if
the beam is clamped in z = 0, the boundary condition is:

U(1,0) =0 (5.22)

In general, the separated representation is built term by term. Therefore, each
term of the series must satisfy the boundary condition. In most cases, that leads
to verify:

Fi(zx=0)=0 Viell,n] (5.23)

But this will also enforce some unwanted conditions:
Uk,0)=U((k—1)AL)=0 VEk € [1, Ni] (5.24)

Even if some solutions exist to enforce the boundary condition, such as using a
penalty method and computing many terms of the separated approximation at
the same time, the convergence of the PGD remains slow and unsatisfactory. The
second strategy is clearly more efficient. In the following, only the second strategy
is described. Let us consider a finite element discretization of the domain with
equally distributed nodes as shown in Figure 5.9. This distribution of nodes is
only for sake of clarity without loss of generality. The size of an element is denoted
Azx. Then, the weak formulation Eq. 5.18 can be rewritten:

kAL Az * Ny -1 kAL *
dU™ dU dU™ dU
AE————dX § : AES Y ax
J endr o dX dX ) ! (/ ArA X X )

(]
B (5.25)

The first sum contains integrals defined on the elements that are inside the element-
ary parts. The second sum contains integrals defined over the interface elements.
There is only Ny —1 terms on the second sum because there is no interface element
on the right. The right boundary condition needs a special treatment that will be
detailed later. With a change of variable between X and x it comes:

Ng AL—Az Ni—1 AL *
AU AU, dvFdu, |\
;1: (/0 APEE dx) Y (/ ABRSE Ok g ) —0 (5.26)

—~ \JAL-Ax dz dz

g g

I Ip)

5.4.2 First iteration

The approximation defined by Eq. 5.20 is built term by term. For now, we focus
on the first iteration. The displacement is then approximated by:

U(X) = Fi(2)Gy(k) = R(x)S(k) (5.27)

To avoid the redundant use of subscripts, we denote R = F; and S = G;. The
determination of R and S involves a non-linear problem that is solved using the
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classical alternate direction strategy | |. At the beginning, R is
computed assuming a random value for S. Then S is computed knowing R. And
again R is computed knowing S and so on until the convergence of R and S are
reached. Then, two different problems must be treated:

1. Computing R knowing S
2. Computing S knowing R

The trial function is U* = R*S for the first problem and U* = RS™ for the second
problem. The first problem is considered in the following. The first integral of Eq.
5.26 can be simply rewritten using the separated approximation:

AL-Az *
dR*dR
I, = AE———5%(k)d
! ;/0 dr dx (k) dz

ALfAz * Ny
B dR* dR s

After a finite element discretization it remains:

I ~ (R"TKR) x (STIy,S) (5.29)
R is the column matrix containing the nodal values of R:

R=[R Ry, -~ Ry, ]" (5.30)
S is the column matrix containing the values of S:

S=[S S5 - Sn " (5.31)

K is the stiffness matrix related to the periodic pattern and Iy, is the N, x N
identity matrix. The second integral in Eq. 5.26 requires a little more development
since the degree of freedom corresponding to Ux(AL) = Uy41(0) is defined only
on the part k£ + 1. This integral is defined on the interface elements between
two parts. For 1D linear elements the shape functions over the interface element
are: N = [ Ny, (z) Ni(z) ] (see Figure 5.9). For quadratic elements, N =
[ Nn,_,(z) Nn,(x) Ni(x) ]. The matrix of DOF are for linear elements:

RN Sk
— v 5.32
Q- | | (5.3
or for quadratic elements:
Ry, 15k
Qr=| RN, Sk (5.33)

R1Sk+1
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Using this finite element approximation, I5 can be written as:

Njp—1 Nj—1

AL * AL T
dUX du, T ANT AN
[:E:/ AE—* % a::E:Q* / AE— —dzQ (5.34
2 £ AL- Az dz dz p AL- A dr dr ( >

Defining o;; = fAALL_ A F deZ" % dx and developing the previous equation in the

case of linear elements, Iy becomes:

Nj—1 Nj—1

I = RN an,n, Ry, Z S + Ry, c1n, By Z SkSki1
k=1 =1

Ne—1 Ne—1
+ RYoun, Ry, Z Sk41Sk + R an Ry Z St (5.35)
=1 =1

In general, four operators may be defined as follows:

I, = (R*"My, v, R) x (S™DyxS) + (R*™My,1R) x (STDj4419)
+ (R*™, 5, R) x (S™Dy1148) + (R*™ 1 R) x (S™Djy141S)  (5.36)

where Dy, Dyt k41, Ditax and Dy yq are the following Ny, x Ny, square matrix:

1 0 0 --- 0 o 0 0o --- 0
o 1 0 --- 0 o 1 0 --- 0
Digp =11 " o0 Divigrn=| o . - . (5.37)
O --- 0 1 0 O --- 0 1 O
0 0 0 0] 0 -~ 0 0 1|
[0 1 O 07 0 0 O 0
1 0 O 0
0 0 1 ‘
Dk,k+1 = : . . . 0 DkJrng = 0 1 0 e (538)
0O --- 0 0 1 S T 0
(0 -~ 0 0 0] 0 - 0 1 0]

and My, n,, M1, My, 1 and M, y, are some N, x NN, square matrix coming
from the development of Eq. 5.34. In the case of linear elements, these matrix are
identified from Eq 5.35:

00 -~ 0 a0 - 0

My, N, = | - : M, = . ] . (5.39)
0o --- 0 0 : R
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0 0 --- 0 0 - 0 oy,
) ) L 0O --- 0 0

Mya=| = = | Min=|. . . (5.40)
O 0 --- 0 Lo :
an, 0 -+ 0 0O --- 0 0

The stiffness matrix K is symmetric. With the separated formulation some
operators are non symmetric. However the global problem remains symmetric be-
cause: Dyy1 = Df, ) and My y, = MY, .

The weak formulation Eq. 5.26 gives eventually the system to solve after elimin-
ating R*:
(KR) x (S™Iy,S) + (My, v, R) X (STDy4S) + (M, 1R) x (S™Dj,s41S)
+ (M1 n,R) X (STDi114S) + (M1 1R) X (STDyy1641S) =0 (5.41)
And the system for the second problem, that is to compute S knowing R writes:
(RKR) x (Iy,S) + (R™My, n,R) x (Di4S) + (R"™My,1R) X (D 441S)
+ (R™ 5, R) x (Dj414S) + (R"M 1 R) x (Dyp14411S) =0 (5.42)

5.4.3 Other iterations

For other iterations, the assumption is assumed known until the iteration n.
Now, we are looking for R = F,,;; and S = G,,1; such as:

Z Fi(x ) + R(x)S (k) (5.43)

The trial function is the same as in the first iteration:
e U* = R*S if the unknown is R.

e U* = RS*™ if the unknown is S.

Introducing this expression in the weak form, and using a finite elements discret-
ization as described for the first iteration, if the unknown is R then :

(KR) x (STL,S) + (M, n,R) X (STDyxS) + (My,1R) x (S™Djs41S)
+ Min,R) X (STDiy14S) + (M1 1R) X (STDyy16418) =

—Z [(KF;) x (STL,,G;) + My, 5,F) x (STD;4G;) + (Mp,1Fi) x (STDy441Gy)

+ (M N, Fi) % (STDkJrl,kGi) + (M, F;) x (STDkH,kHGiﬂ (5.44)

where F; and G; contain the nodal values of Fj(x) and the values of G;(k).
Since the right part of this equation is known, it defines a vector that is the second
member of the system to solve. A very similar system can be easily written when
the unknown is S.

The global PGD algorithm is summed up in algorithm 2.
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Algorithm 2 General PGD algorithm used to make the link between the element-
ary cell and the global mesh

1:n=20
initialize F, .1 and G4, to random values
Fﬁfl = Fnsr G(ﬁ% = Gn1
Compute F,, 41 knowing G,1 (update the function related to the elementary
cell)
Compute G, ;1 knowing F, 1 (update the function related to the global mesh)
if maz(||Fos — F&4 | [|Goit — G944]|) > €1 then go to 3
n=ntl
Uz, k) =1, Fi(z)G;(k) (no need to compute explicitly U)
If the residual norm of the system > ¢, then go to 2 (see | |
for more details)

)

5.4.4 Boundary conditions

For now, the method has been described without accounting for boundary condi-
tions. As the method is based on a finite element discretization, stress conditions
can naturally be introduced by adding a second member to the system to be solved.
This second member represents the loadings. The only difference with the clas-
sical finite element method is that it must be written on a separated form. To use
Dirichlet boundary conditions, a penalty method is recommended. It consists in
adding some new operators that describe the boundary conditions. For instance,
to enforce a unitary displacement on the left the operators related to boundary
conditions are:

1 0 0 1 0 0
0 O 0 0 O 0
Mbc:B Dbc: :
0 0 O 0 - 0 O
1 1
0 0
Bi.=0| . By, =
0 0

where [ is the purely numerical penalty parameter. My, is a N, x N, matrix,
Dy is a Nj, x Ny matrix, Bf, is a N, X 1 matrix and BI{)C is a N X 1 matrix. The
system given in Eq. 5.41 becomes with this boundary condition:

(KR) x (STL,S) + (M, n,R) % (STDyxS) + (M, 1R) % (STDj,141S)
+ (M n,R) X (S™Dis14S) + (M11R) x (S™Djs1441S) + (MpcR) x (STDpeS)
=B}, x (STBy.) (5.45)
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Another problem has to be discussed relating to boundary conditions. On

the right side, there is obviously no interface element. In comparison to other
elementary parts, the right part has one node less on the right. This may be
a problem. A simple solution to overcome this difficulty is to add a “virtual”
elementary part on the right that is only used for one node. The other nodes are
only virtual and the element inside this virtual part have to be ignored.
In operators Dy, Dy i1, Dit1r and Dyyq pq1, the lines corresponding to the
virtual part (the line N;) must be filled with 0 in order to prevent the effect of
virtual element. There is no undesirable numerical error related to the presence of
virtual element because the PGD solver is iterative and then there is convergence
even if there is no unique solution.

5.5 A multiscale separated representation for peri-
odic 2D /3D domains

5.5.1 Mechanical model

In this section, a 2D or 3D static problem is considered. U denotes the displace-
ment vector expressed in the canonical basis:

UX) = | U,(X) (5.46)

where X = (X, Y, Z)T is the coordinate vector. € denotes the strain tensor under
matrix form:

gIIE

Eyy
6ZZ

€= 2. (5.47)
2ez;

| 2eqy

and H is the matrix describing the constitutive equation. The stress tensor under
matrix form is written:

i O‘xfﬂ ] i ECC$ 1
Oyy Eyy
P2 | —H| S | —He (5.48)
Oy= 2ey,

| Ouy | | 264y |

In small displacements, € is the symmetric gradient of the displacement. With
these notations, the weak formulation of the equilibrium equation without dynamic
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Nodes belonging to
/ the neighboring cell

on the right

Interface elements

Global mesh Elementary cell
(a)

Nodes belonging to the neighbor cell on top
Nodes belonging to the

~ neighboring cell on the
top-right corner

Nodes belonging to
— the neighboring cell
on the right

Interface elements

Global mesh Elementary cell

(b)

Figure 5.10 — Examples of 2D meshes and decomposition in elementary parts.

effect and volume forces is expressed as :

/Qf:‘(Q*)T(HE(Q))dQ - /ma*«a.m ar (5.49)

(2 is the domain taken by the structure and 02 is the boundary of the domain.
The right part of this weak formulation is only used for boundary conditions. It
is not included in the following for the sake of readability.

5.5.2 Separated description of 2D problems

As for the 1D case, the domain {2 is decomposed into Ny periodic elementary cells
(2. §2; denotes the set of elements inside the elementary cell and (2. is the set of
interface elements. (2, depends on k because it varies according to the presence
of neighboring cells. To avoid the double definition of degrees of freedom at the
interface between cells, some nodes need to be deleted at the interface. We choose
to delete the nodes on the right and up faces for the 2D case as shown in Figure
5.10.

The local coordinates in the elementary cells are noted z. The separated approx-
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imation associated to a 2D or a 3D problem is then:

=Y E(@)Gi(k) (5.50)

Here, G is a scalar function and F; is a vector function:

Eg={ @ (5.51)
Fi(z)
;/ﬁ WU (Fell) d!ijL; /Qe(k) e(U")" (He(U)) dfi =0

5.5.3 First iteration and operators assembly

The integral I; is treated as for the 1D case.
For the first iteration with U(z) = R(z)S(k), I; writes:

n=( [ st mem)a) 3 s
~ (R*TKR) x (ST1y,S) :

K is the stiffness matrix related to (2; and I, is the Nj X N} identity matrix. R
is the column matrix containing the nodal values of R*, RY and R* and S is the
column matrix containing the values of S.

The second integral I needs an assembly of new matrices that are representative
of interactions between neighboring cells. The element stiffness matrices of each
interface elements must be assembled in many adequate global matrices.

For instance, in the first 2D problem depicted in Figure 5.10, I can be written as:

4
Z (R*™M,R) x (S™D’,S)

D] are the matrices defined by:

- 1 if 7+ = j and the cell ¢ has a right neighboring cell
(D)), = .
0 otherwise

, 1 if 2+ = 7 and the cell 7 has a left neighboring cell
(D3);; = :
0 otherwise
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Cell ¢4 : Cell ¢3
_Node 4 'Node 3
Node 1 ' Node 2

Cellcmk | Celle:

Figure 5.11 — Corner element: nodes and neighboring cells definition

(D). — 1 if the cell j is at the right of the cell ¢
3743 7| 0 otherwise

(Dr), = 1 if the cell 7 is at the right of the cell 5
4755 7| 0 otherwise

and the matrices M are matrices that result from the assembly. It is interesting
to notice that D = (D})" and M = (M})".

The second problem depicted in Figure 5.10 is more complicated. There are now
3 types of interface elements:

e clements between the cell and its right neighbor (subscript r),
e clements between the cell and its top neighbor (subscript ¢),

e an element in the top-right corner that is at the interface of 4 different cells
(subscript c).

The assembly results in the following sum:

Iy = 3 (R*TMIR) x (STDLs) + 30 (RFTMLR) x (STDYS) + 3 (RATME,R) x (STDS,S)

m=1

right interface elements top interface elements corner interface element

The right interface elements brings the same operators as in the first case. The
operators related to the top interface elements are also very similar.

The element on the corner is assembled with 16 operators because it is at the
interface of 4 different cells. The assembly of the corner element is detailed as
follows.

We assume for illustration that the corner element is the 4 nodes quadrilateral
element as shown in Figure 5.11. The nodes belonging to the corner element are
numbered from 1 to 4. Each one of these nodes belong to a different cell. The cells
around the corner element are noted using some functions of k: ¢y, ¢o, c3 and ¢4.
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c1 = k, co is the cell on the right of k, c3 is on the top-right of £ and ¢4 is on the
top of k. Using these notations, the element degrees of freedom matrix are:

RYS.,
R5Se,
R3S,
e __ RZ S C4
Qk - R?{ Sq
R3S,
R3S,
RySe,

(5.52)

The element stiffness matrix of the corner element is noted K°. The weak formu-
lation restricted to the corner elements is: >, . (Qz*TKCQi), where C denotes
the set of cells having an interface element on the top-right corner.

This sum is then decomposed as follow:

4 4

C
1+4,j i+4,j+4 J

Z( Z*TKCQZ> — ZZ <[ Rg;* RZ;* i| [ Klff,z KK;':,j+4 :| [ Z‘g :| X Z (Scz(k)Sc

keC i=1 j=1 keC

(5.53)

There are then 16 separated operators. It remains only to assemble these element
operators into global operators in order to get M¢, and D¢, (withm = 1,2,--- | 16).

Remark: This method requires a lot of separated operators. There are 25 oper-
ators for the 2D case treated here and 129 operators for the full 3D case. Though
this is a high number, all the matrices are very sparse (some matrices have a few
non-zero elements) and finally, the computational cost remains quite acceptable.

5.6 Numerical simulations

In this section, the method described in the previous sections will be considered
for solving a variety of test cases in order to evaluate its performance in terms of
results precision and computational cost.

5.6.1 Numerical results of 2D problem

Consider an elastic structure subjected to flexion. This structure is composed
of a large number of periodic and heterogeneous microstructure which can be
represented by a unit cell, as shown in Figure 5.12.

In the following example of simulation, two modeling scales are considered. The
microscopic scale is assumed to be the scale at which the microstructure is defined,
the unit cell is defined at the microscopic scale. A morphological analysis of the

(k)))
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Microstructure

CC000
0000

|ny o

Unit cell

Figure 5.12 — Heterogeneous elastic structure with periodic microstructure.

microstructure was carried out on a section of a carbon fiber reinforced polymer.
The micrograph was presumed representative of the microstructure of the analyzed
material. This was in order to generate a representative virtual cell. This cell will
be used in the following example. The virtual unit cell, as shown in Figure 5.13,
is described by the following geometric parameters: the fibers diameters D; and
D, the distance d. between the center of the central fiber and the centers of the
surrounding fibers, the length L and width [ of the cell. The material properties
and the geometric parameters are summarized in Table 5.1.

I 1 I
I I

D]

i ol

Figure 5.13 — The representative unit cell at the microscale.

Material properties
E; (GPa) E,, (GPa) vy Um Vi (%)
390 4,5 0,35 0,40 34

Geometric parameters

Dy (pm) Dy(pm)  de(pm) 1 (pm) L (pm)
3 5 6 16 19

Table 5.1 — Material properties and geometric parameters of the virtual cell.

In this subsection, the numerical simulations performed using the PGD are
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compared with results of classical FEM implementation using the same set of
parameters. The aim is to validate the PGD approach. Here, the finite element
method serves as a reference solution. The PGD problem was divided into 20 sub-
structures, each substructure corresponding to one cell. The loads and boundary
conditions applied to the microstructure are shown in Figure 5.14.

EEEE R EEE

Figure 5.14 — Domain decomposed into subdomains and boundary conditions.

The unit cell mesh is composed of 986 nodes. The finite element mesh was
constructed by assembling the meshes of 20 unit cells. A total of 19283 nodes
involving 38566 degrees of freedom are used. A 2D triangular element with 3-nodes
is used for both models. The displacements of the microstructure are depicted in
Figure 5.15. The PGD approach gives quite similar results for the displacements.

IJ 00128 D 00128
IJ 000915 D 000915
0,000181 0,000181
O 000186 D 000186

O 000920 D 000920

000129 DDET?Q

(a) u,
0,00 DW
-0,00143 000'43
-0,00287 -0,00287 3
-0,00430 -0,00430
000573 ! -0,00573
DW7I6 - -0,00716
-0,00860 000860
-0,0100 00'00

(b) u,

Figure 5.15 — Displacement fields (mm) : FEM solution (left) - PGD solution (right).

The stresses distributions are ploted in Figure 5.16. The results of the PGD
are in excellent agreement with the 2D FEM solution. The PGD approach is able
to fully capture the stress concentration in the microstructure.

Figures 5.17 and 5.18 give the distribution of the displacements and the stresses
through the thickness (coordinate z) for different values of the y coordinate chosen
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Figure 5.16 — Stresses distributions : FEM solution (left) - PGD solution (right).
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Figure 5.17 — Convergence study on the distribution of the displacements along the
thickness: (a) u, for y=0.04 mm, (b) u, for y=0.072 mm.

to be the most critical for each displacement and stress component. Referring to
these figures, the PGD solution performs very well with respect to the 2D reference
solution. These figures show also that the errors on the displacement and the stress
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between both approaches are negligible.
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Figure 5.18 — Convergence study on the distribution of the stresses along the thickness:
(a) oyy for y=0.072 mm, (b) o, for y=0.072 mm, (c) o, for y=0.04 mm.

In this example of simulation, the computational time using python did not
exceed 3 minutes on a personal laptop. To check its dependence on the subdomains
number, we depict in Figures 5.19 and 5.20 the evolution of the computational time
associated to each model versus the subdomains number and the number of degrees
of freedom (DOF). As the number of subdomains increases, the computational time
required for convergence of PGD solution increases slightly, as shown in Figure
5.19. The slope proves that the computational time increases in a similar way with
the subdomains number and with the number of degrees of freedom (DOF). It is
obvious that the PGD drastically reduce the calculation cost for a large number
of subdomains, while the resolution of a full 2D problem by FEM has involved
millions degrees of freedom and a much higher computational and memory cost as
shown in Figure 5.20. We can conclude on the efficiency of the proposed strategy
that proceeds with impressive computing time savings without compromising the
solution accuracy.

For estimating the convergence of PGD, we compute the normalized norm of
residue. Figure 5.21 depicts the evolution of the error with the number of terms n
in the separated representation of U(z, k). As one can see, the error decreases as
the number of terms in the decompositions increases. At this point, it is interesting
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Figure 5.19 — Computing time against number of subdomains.
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Figure 5.20 — Computing time against number of degrees of freedom (DOF).

to note that the number of couples does not depend on the number of unit cells.
As can be noticed, 90 iterations seem to be sufficient to reach convergence in the
alternating directions fixed point algorithm described in algorithm 2.

100 Error Evolution

0 30 60 90 120 150 180
lteration

Figure 5.21 — Convergence of PGD solution.

5.6.2 Numerical results of 3D problem

To validate the efficiency of the proposed technique, a multiscale 3D model is used
to simulate the mechanical behaviour of woven composite materials. This model
is difficult to treat using a classical finite element solver with 3D solid elements.
It consists in a two-ply composite made from woven carbon fibers (taffeta) and
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epoxy resin.

Figure 5.22 — Woven carbon fiber.

(a) Yarns. (b) Matrix. (¢) Unit cell mesh.

Figure 5.23 — Periodic tetrahedral mesh of unit cell model.

Woven reinforcements are generally periodic media: in fact, they consist of a
repeating pattern or a unit cell to reconstruct the complete composite fabric, as
shown in Figure 5.22. Due to the geometrical complexity of woven composites
architecture, the 3D geometric model was built using TexGen software as shown
in Figure 5.23(a). TexGen is a very powerful tool to generate geometric models
for composite textiles. The TexGen model is transferred to ABAQUS. As could be
seen in figure Figure 5.23(b), the matrix volume is then created by substracting the
yarns volume. The next step is to construct the finite element mesh of the unit cell.
In order to do the simulations, the mesh of the unit cell must be periodic. Figure
5.23(c) shown the 3D 4 nodes periodic tetrahedral mesh of unit cell model. The
unit cell dimension is 2x2x0.42 (mm). PGD simulations were carried out using
linear elastic behaviours, the matrix and the yarns were assumed to be respectively
isotropic and orthotropic. Material properties of the matrix and the effective
properties of the yarns are given in Table 5.2. The unit cell mesh is composed of

Matrix Effective properties of yarn
E,, (GPa) vy, | E; (GPa) E, (GPa) vyy/vVe. vy, Gay/Ga. (GPa) Gy, (GPa)
3500 0.3 | 234.345 45.743 0.327  0.375 20.056 16.628

Table 5.2 — Material property.

28934 nodes. The PGD problem was divided into 25 substructures which gives
a total of 706390 nodes involving 2119170 degrees of freedom. The displacement
along z of the composite plate is zero on both ends (for z = 0 and © = x,,4,). A
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constant pressure is applied on the top face of the unit cell positioned at the center
of the plate. A visualization of the deformed configuration is presented in Figure
5.24 and puts emphasis on the displacements. The maximum displacement value
in the z direction logically appears at the middle of the plate where the load is
applied. The stress values for the plate are analyzed and presented in the Figure
5.25. These stress fields are complex because of the heterogeneity of the model
and of the orthotropic behavior of the yarn. With the proposed reduced strategy,
these stress fields are accessible with a relatively low computational cost.

T
- -

-1.25e-01 -6.23e-02  8.79e-04 6.41e-02 1.27e-01

[ .
(a) Ug
-2.56e+00 -1.92e+00 -1.28e+00 -6.40e-01 0.00e+00 -2.56e+00 -1.92e+00 -1.28e+00 -6.40e-01 0.00e+00
[ ] [ ]
(b) u,

Figure 5.24 — Displacement fields and deformation of a plain weave based composite: full
model is shown (left) - only yarn type materials are shown (right).
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(b) 0z

Figure 5.25 — Stress distributions of a plain weave based composite: only yarn type
materials are shown. Upper surface (left) - lower surface (right).
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6.1 Conclusions

The first chapter of this work is dedicated to the presentation of the PGD. To
demonstrate the capacity of this method for reducing the complexity of the model,
the PGD have been applied to treat the variability of the composite microstruc-
ture. Some uncertain parameters have been added to the problem coordinates:
the Young’s modulus of each fiber and matrix. With one sole calculation we can
get the solution for variable Young’s modulus and different number of fibers.

In the second chapters, an approach based on the proper generalized decompos-
ition (PGD) have been proposed to simulate the interfacial delamination under
quasi-static loading. This technique coupled with a cohesive zone model (CZM)
allows a significant reduction of the computational costs. Three classical failure
tests (DCB, ELS, and MMF) have been modeled using PGD and FEM as refer-
ences. These two methods have been implemented in conjunction with CZM to
represent delamination in different fracture modes (two pure modes and a mixed
mode). Both two and three dimensional models were developed and analysed. For
all failure modes, a close agreement is found between PGD, FEM, and analytical
solutions with a proper choice of the main model parameters (mesh density, inter-
face stiffness and fracture toughness). The two methods have been compared with
regard to the force versus displacement curves, the damage variable evolution, the
interface separation evolution and the stress distributions. It shows that PGD can
be used as an alternative to overcome the computational drawbacks of FEM such
as the rapid increase in the number of degrees of freedom, the large computational
time, and the storage limitation. PGD was found appropriate to capture physical
phenomena, which occurs at the interface between layers. Finally, reduction of the
number of interface elements was achieved owing to the new PGD-CZM discretiz-
ation strategy, which minimizes modeling complexity.

This strategy is used in the third chapter for dynamical transient applications.
Other types of damages, such as matrix cracking, have been considered. A com-
putationally efficient approach is presented for predicting the impact response of
[903/03]s cross-ply laminates under a low velocity impact. This was achieved using
an implicit Newmark’s integration scheme. A bilinear cohesive law was used to
model the delamination and crack growth.

In the fourth chapter, we have presented a new multiscale separated represent-
ation method to compute the mechanical behavior of composites materials with
periodic microstructure. This separated representation involves both the space
coordinates of the microscopic scale as well as the space coordinates of the macro-
scopic scale. For coupling each subdomain, an efficient algorithm is proposed and
validated in order to address the numerical challenges mentioned earlier. The per-
formance of the proposed technique has been demonstrated by comparison with a
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classical FEM approach. The agreement between the PGD and FEM is excellent.
The computational time of the PGD is considerably reduced in comparison to the
classical FEM especially when the number of periodic patterns is high.

6.2

Perspectives

There are many perspectives to this work:

The model described in chapters 2 and 3 accounts only for delamination
and localized matrix crack. This is not always sufficient to study complex
damage in industrial structures. Therefore, the model should be improved
to consider the different damage types and the interaction between them.

The proposed approach developed in plate structures could be extended to
study damage process in shell structures.

The multiscale approach detailed in chapter 4 could be coupled with dam-
aging models (as for example cohesive zone models) to simulate the failure
of composite structures under dynamic loading.

The convergence of the greedy algorithm used to built the separated repres-
entation is not always efficient. The method may be improved by adapting
the building strategy to the considered problem. For instance, many terms
of the separated representation can be computed at the same time.

The PGD is well adapted to perform parametric studies as shown in chapter
1. The PGD is then a good candidate to treat variability in composite
materials. An approach based on the multiscale model presented in chapter
4 coupled with the parametric model detailed in chapter 1 can be investigated
for that purpose.






Résumé substantiel

Représentations séparées pour la simulation multi-échelle du
comportement mécanique et de ’endommagement des matériaux
composites.

Contexte: matériaux composites

Les matériaux composites sont de plus en plus utilisés dans de nombreuses applic-
ations d’ingénierie, notamment 1’aérospatiale, ’aéronautique, ’automobile et les
équipements de sport pour profiter de leurs bonnes propriétés mécaniques et leur
capacité d’économie de poids. Ils ont joué un role important dans le développe-
ment de structures légeres. Les matériaux composites remplacent progressivement
les matériaux métalliques traditionnels en raison de leurs propriétés mécaniques
spécifiques exceptionnelles ainsi que I'amélioration de la résistance a la corrosion,
a la fatigue et de leur prédisposition & une conception sur mesure. Au cours du
processus de fabrication, les matériaux composites peuvent étre réalisés suivant
des formes complexes.

Malgré leurs nombreux avantages, les composites présentent aussi certains incon-
vénients. Les facteurs environnementaux tels que la température et I’humidité
peuvent tous entrainer la dégradation des matériaux. Le comportement des com-
posites est souvent modifié par I’absorption d’humidité. Par ailleurs, la résistance
a la température des matériaux composites est trés dépendante du choix de la
matrice.

Les matériaux composites sont réalisés en associant au moins deux matériaux
chimiquement différents (matrice + renfort) dont les propriétés se complétent.
Généralement, la tenue en traction d’un composite est assurée par les renforts.
Ces derniers ayant une faible résistance en compression, la tenue en compres-
sion des composites provient aussi de la matrice. Les matrices les plus employées
actuellement dans les matériaux composites sont les résines thermodurcissables,
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thermoplastiques ou métalliques. La matrice maintient les fibres dans leur pos-
ition et leur orientation et assure ainsi le transfert de charges vers les renforts.
Elle protége également les fibres contre les agressions extérieures (thermiques,
chimiques, chocs,...). Les matériaux de renfort apportent aux composites la tenue
mécanique (rigidité et résistance) tout en offrant un gain de masse important vis
a vis des matériaux métalliques. Par conséquence, les propriétés mécaniques du
composite dépendent principalement du type et de la fraction volumique des fibres.
Les différents types de renforts peuvent étre classés suivant la nature du matériau
qui les constitue (carbone, kevlar, verre, aramide,...) ou leur architecture (unidirec-
tionnels (UD), bidirectionnels (tissés) et multidirectionnels (mat, tissages 3D),...).

Les composites stratifiés sont aujourd’hui largement utilisés dans les applications
a hautes performances en raison de leur architecture spécifique. Ils sont constitués
d’un empilement de plis unidirectionnels ou tissés en optimisant les directions des
renforts en fonction des charges extérieures. Les propriétés mécaniques du strat-
ifié varient en fonction de la séquence d’empilement et I’épaisseur de chaque pli.
L’orientation privilégiée de chaque pli permet de maximiser certaines propriétés
dans les directions voulues, et donc une conception spécifique pour chaque cas
de chargement. Ceci donne au concepteur une certaine souplesse pour adapter
la rigidité et la résistance du stratifié afin de satisfaire les exigences structurelles.
Les matériaux composites, en particulier les stratifiés unidirectionnels, présentent
d’excellentes propriétés mécaniques dans le plan des plis. Cependant, les stratifiés
présentent également une faiblesse naturelle dans la direction de I’épaisseur, qui
augmente fortement leur sensibilité aux chargements hors-plan, comme l'impact a
basse vitesse.

Avec cette méthodologie de conception, ’anisotropie et I’hétérogénéité du matériau
sont fortement augmentées. Par conséquence, divers modes d’endommagement
peuvent se produire et ont tendance & interagir entre eux. Le processus de ru-
ine dans les structures composites est d’'une grande complexité en particulier sous
sollicitations dynamiques. La structure particuliére d’un stratifié est constituée
de trois échelles caractéristiques. On peut en effet distinguer 1’échelle microsco-
pique (fibre/matrice), I’échelle mésoscopique (un pli) et 1’échelle macroscopique (la
structure).

Les endommagements peuvent se produire a ces trois échelles :

e Rupture de fibres, décohésion & I'interface fibre/matrice et microfissuration
matricielle a I’échelle microscopique;

e Délaminage a 1’échelle mésoscopique;
e Ruine du stratifié a 1’échelle macroscopique.

Cette composante multi-échelle est un aspect particuliérement important pour le
dimensionnement de structures composites, pour la prédiction et la compréhension
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de la cinétique de dégradation. Parmi les différents mécanismes d’endommagement,
le délaminage (le décollement ou la décohésion entre les plis du stratifié) est le mode
d’endommagement le plus critique pour la structure en terme de tenue mécanique.

Les essais expérimentaux sont un moyen efficace pour évaluer le comportement
des composites stratifiés. Cependant, la réponse complexe des stratifiés, le cotit
élevé des essais mécaniques, ainsi que la difficulté pour obtenir des résultats re-
productibles, rendent I’approche expérimentale cotiteuse et fastidieuse. Différentes
méthodes numériques ont donc été développées afin de remplacer une partie des
essais expérimentaux par des “essais virtuels”.

Verrous scientifiques et solutions

Le développement de méthodes numériques performantes pour simuler les struc-
tures composites est un défi dont les verrous scientifiques sont :

e Les simulations multi-échelles sont trés cotiteuses en termes de ressources in-
formatiques et de temps de calcul et nécessitent la gestion de grands volumes
de données. De nouvelles stratégies numériques doivent étre développées afin
d’améliorer la performance des simulations multi-échelles;

e La modélisation des phénoménes d’endommagement peut aussi conduire a
des difficultés numériques. Le modeéle de zone cohésive (MZC) est par-
ticuliéerement adapté pour étudier le délaminage et la décohésion interface
fibre/matrice. Cependant, ce modeéle nécessite des discrétisations spatiales
et temporelles fines pour garantir la stabilité numérique du modéle;

e Les structures composites ont souvent des géométries de faible épaisseur
(plaque ou coque). Dans le cas d’une simulation 3D, un nombre minimum
d’éléments est nécessaire dans I’épaisseur pour obtenir une bonne précision,
ce qui implique un grand nombre de noeuds;

e Lors de simulations dynamiques, les schémas explicites nécessitent
I'utilisation de pas de temps relativement petits. L’intérét des schémas im-
plicites par rapport aux schémas explicites est qu’il n’y a pas de condition
restrictive sur la valeur du pas de temps. Cependant, 'intégration impli-
cite nécessite une opération cotiteuse d’inversion de matrice. En utilisant
les méthodes implicites, le cotit d'un pas de temps est plus important que
le cotit d'un pas de temps explicite, surtout quand on prend en compte la
non-linéarité.

De plus, les outils numériques doivent étre robustes, efficaces et validés par
I’expérience.
Les simulations des composites sont généralement effectuée dans le cadre de
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la méthode des éléments finis (MEF). Il s’agit d’'une méthode d’approximation
numérique permettant de rechercher une solution approchée d’une équation aux
dérivées partielles sur un domaine compact avec certaines conditions imposées. Le
principe de base consiste a discrétiser le domaine de résolution en N sous-domaines
élémentaires. L’écriture de ’équation différentielle en chaque sous-domaine conduit
a un systéme linéaire qui peut étre de tres grande dimension suivant la complexité
du probléme. En pratique, le nombre d’équations algébriques est limité par les
ressources informatiques.

Objectifs

Cette thése a pour objectif de développer des solveurs numériques efficaces per-
mettant de simuler le comportement complexe des composites stratifiés (en lien
avec les verrous scientifiques cités ci-dessus), avec une bonne précision tout en con-
servant des temps de calcul raisonnables. Pour atteindre cet objectif, une nouvelle
approche de simulation basée sur une méthode de réduction du modéle appelée
PGD (Proper Generalized Decomposition) a été développée. La PGD permet de
réduire considérablement le temps de calcul et ’espace mémoire associé a la résolu-
tion d'un probléme, en particulier lorsque le maillage obtenu implique un grand
nombre de degrés de liberté. Cette méthode est basée sur une représentation sé-
parée de la solution. La méthode PGD consiste a construire par enrichissement
successif une approximation de la solution sous la forme d’une somme finie de
N produits de fonctions ou chaque fonction dépend d’une seule variable ou d’'un
nombre réduit de variables. Ces fonctions ne sont pas connues a priori mais con-
struites a l’aide d’une procédure itérative. La PGD a montré son efficacité dans
la résolution de problémes multidimensionnels et paramétriques.

Deux problémes principaux sont traités dans cette thése :

e La modélisation de 'endommagement des composites stratifiés, en particulier
le phénomeéne de délaminage;

e Le développement d’une approche multi-échelle permettant de prendre en
compte l'interaction entre les échelles.

Modélisation du délaminage

Le délaminage, qualifié souvent de rupture interlaminaire, est considéré comme un
mode d’endommagement critique, puisqu’il réduit considérablement la capacité
de la structure a supporter les charges. La rupture interlaminaire des compos-
ites stratifiés est due principalement & leur faible résistance interfaciale. Différents
types de sollicitations peuvent conduire a I’apparition des délaminages (flexion, im-
pact, ...). Le délaminage favorise 'apparition de flambement local, ce qui entraine
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une réduction de la résistance en compression. Il réduit également la résistance en
flexion. C’est pourquoi la bonne prévision des délaminages est souvent nécessaire.

L’implémentation numérique du modeéle de zone cohésive dans le cadre de la
méthode des éléments finis présente de nombreux problémes numériques, comme
par exemple les problémes de taille du maillage, pouvant engendrer des problémes
de convergence importants. La nécessité d’une finesse de maillage importante pour
la description de I'amorgage et de la propagation de la fissure entraine trés souvent
des temps de calcul prohibitifs. Afin de pallier ces différents problémes numériques,
un solveur basé sur la méthode PGD est développé dans le cadre de cette thése pour
modéliser le délaminage dans les composites stratifiés sous sollicitations statiques
et dynamiques.

Modélisation Multi-échelle

Pour les approches purement macroscopiques, un modeéle simplifié basé sur la
théorie des stratifiés peut étre utilisé. Dans ce cas, le stratifié est modélisé
par un empilement de couches homogénes orthotropes. En réalité, chaque
couche n’est pas homogéne mais consiste en un renfort fibreux imprégné de
résine. Le renfort peut étre sous forme unidirectionnel, bidirectionnel (tissu) ou
avec une orientation aléatoire (mat). L’utilisation de modéles macroscopiques
conduit a une perte d’informations microscopiques. De plus, un couplage
entre les échelles est souvent observé (I’échelle de la fibre, du pli ou du strat-
ifié). Pour prendre en compte ces couplages un modéle multi-échelle est nécessaire.

La difficulté principale des approches multi-échelles est le développement de
méthodes numériques adaptées qui nécessitent souvent de grandes ressources de
calcul. Pour prendre en compte les informations microscopiques et pour réduire
significativement le cotit des approches multi-échelles une nouvelle méthode est
proposée. L’idée principale est d’utiliser la périodicité de la microstructure pour
séparer deux échelles : I’échelle de la cellule périodique (échelle des fibres ou des
torons) de l'échelle macroscopique (échelle de la structure). Cette séparation
d’échelles est basée sur une représentation séparée de la solution rendant possible
I'utilisation de la PGD.

Déroulement de la thése

Cette these est organisée comme suit :

e Dans le chapitre 2, on présente tout d’abord les limites des techniques
d’approximation classiquement utilisées pour approcher la solution des
problémes multidimensionnels et paramétriques. Apreés cela, le principe de la
méthode Proper Generalized Decomposition (PGD) pour la construction de
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la solution sous forme séparée est introduit briévement. Enfin, la méthode
PGD est détaillée pour des problémes 2D.

e Dans le chapitre 3, nous présenterons de maniére non exhaustive un état
de l'art sur les approches numériques pour la prédiction des endommage-
ments dans les matériaux composites. Dans un premier temps, 1'état de
I’art permettra de déterminer parmi les différentes approches numériques
existantes, celle qui répond le plus efficacement a notre objectif : la descrip-
tion de I'amorcage et de la propagation du délaminage dans les structures
stratifiées. Dans ce contexte, les modeéles de zone cohésive (MZC) semblent
étre a priori 'approche la plus adaptée. Dans un second temps, les différents
aspects numériques pour les modéles de zone cohésive et les points essentiels
au bon usage de ce type de modéles seront présentés. Les essais de méca-
nique de la rupture permettant de caractériser la résistance au délaminage
sous chargement statique sont rapidement présentés. Une nouvelle approche
couplant la PGD et la MZC sera ensuite développée. Pour évaluer lefficacité
d’une telle approche en terme de gain en temps de calcul, une comparaison
avec une approche couplée éléments finis (EF)/MZC sera effectuée.

e Dans le chapitre 4, Le couplage entre la méthode PGD et le modéle de zone
cohésive (MZC) est étendu pour la résolution de ’équation de la dynamique.
Ce chapitre s’intéresse particuliérement a la réponse des plaques composites
a I'impact faible énergie. Un modéle numérique sera proposé pour prendre en
compte la fissuration matricielle et le délaminage par 1'utilisation de surfaces
cohésives.

e Dans le chapitre 5, une revue des principales stratégies de calcul multi-
échelle est proposée. Ce chapitre est dédié au développement d’une nouvelle
formulation séparée basée sur la méthode PGD en vue de I'appliquer a la
résolution des problémes multi-échelles. L’origine de cette réflexion consiste
a utiliser la périodicité de la microstructure pour séparer 1’échelle microsco-
pique et ’échelle macroscopique. Enfin, le gain et la robustesse de la méthode
proposée par rapport a la méthode des éléments finis sont illustrés au travers
d’exemples numériques.

Introduction a la méthode PGD

La simulation numérique des phénomeénes non-linéaires, multi-échelles et multi-
physiques est un défi qui n’a bien souvent pas encore de solution. Parmi les
principales difficultés, ces modéles souffrent de la malédiction de la dimension-
nalité (géométries complexes définis dans des espaces de grande dimension,
paramétriques & grand nombre de paramétres, ...). En particulier, si on a besoin
de multiplier les simulations (cas des problémes paramétriques, stochastiques
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ou d’optimisation), 'utilisation de techniques numériques classiques est limitée
par la puissance et le temps de calcul ainsi que par la mémoire des ordinateurs.
Pour repousser ces limites et réduire le coiit de calcul (temps de calcul, espace de
stockage, ...), de nouvelles approches de résolutions sont nécessaires.

Les méthodes de réduction de modéle (“Reduced Order Modeling” ou
ROM) semblent étre des solutions prometteuses pour réduire les coiits de calcul.
Elles ont permis la simulation de phénoménes complexes de grande taille jusqu’a
présent jamais résolus avec les moyens de calcul classiques.

Ces méthodes de réduction consistent a chercher la solution dans un espace en-
gendré par une base adaptée au probléme plutét que dans 'espace des fonctions de
forme éléments finis. Le principe de ces méthodes est donc de remplacer I'espace
des fonctions de forme par un sous-espace de plus petite dimension (espace réduit).

Ces méthodes de réduction de modéele sont classées en deux catégories :

e Les méthodes de réduction “a posteriori” : ol une connaissance préalable
sur la solution du probléme est nécessaire. La réponse d’un modéle peut étre
approchée avec une précision raisonnable par la réponse d’'un modeéle réduit.
Ce dernier est obtenu par projection du modéle initial sur une base réduite
de fonctions de dimension (n) inférieure a la dimension (N) des modeles
numériques fins. Cela revient & résoudre un systéme d’équations différenti-
elles couplées de taille n (avec n < N), dont la résolution est trés rapide.
Parmi les stratégies les plus utilisées actuellement pour la construction de ces
bases réduites, nous trouvons la Proper Orthogonal Decomposition (POD)

[ B

e Les méthodes de réduction “a priori” : qui ne nécessitent aucune inform-
ation préalable sur le probleme que l'on souhaite simuler. Contrairement
aux méthodes a posteriori, les fonctions de base ne sont pas connues a priori
mais calculées a 'aide d’une procédure itérative. Ces méthodes permettent
d’éviter des calculs préliminaires, assez coliteux en temps. Nous pouvons
citer comme méthodes : la méthode PGD (Proper Generalized Decomposi-
tion) et la méthode APHR (A Priori Hyper Reduction) | |.

La méthode APHR | | a montré une grande précision dans la
simulation des problémes complexes, accompagnée d’une réduction importante
en terme de colit de calcul. Cette méthode n’est pas capable de procéder a une
réduction dimensionnelle sur plus de deux sous-espaces ce qui reste une forte
contrainte quand le nombre de dimensions est important.

Dans le cadre de ces travaux de thése, nous nous intéressons a la méthode
PGD. La PGD a été développée initialement par P. Ladeveze pour des problémes
espace/temps dans le contexte de la méthode LATIN | :
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|. A. Ammar et al. ont généralisé cette méthode pour des
problémes multidimensionnels | ; |. LaPGD
est basée sur une représentation séparée de la solution qui permet de réduire
de facon potentiellement importante la taille des problémes paramétriques et
multidimensionnels.

La représentation séparée d’une fonction u quelconque (déplacement, tem-
pérature, vitesse, ..) qui dépend d'un nombre D de coordonnées et/ou
paramétres (xy, ..., xp) s’écrit :

N
~ 1 D
w(zy,...,xp) ~ g F'(z1) X ... x F”(zp) (1)
i=1

Toutes les fonctions (F}) sont inconnues a priori et donc a déterminer.
Cette représentation de la solution est injectée dans la forme faible de I’équation
a résoudre. Cette solution est déterminée itérativement avec un algorithme
glouton qui consiste & enrichir plusieurs fois I'approximation existante. L’étape
d’enrichissement consiste a ajouter un nouveau produit de fonctions a la solution
existante. Il s’agit d’'un probléme non linéaire. Une méthode des directions
alternées est généralement utilisée pour linéariser les équations a résoudre.

La séparation des variables d’espace est particulierement intéressante dans
le cas de géométries de type plaque. La PGD est utilisée pour chercher la solution
sur la plaque sous la forme d’une somme de produits de fonctions du plan et de
fonctions de I’épaisseur. La solution recherchée peut alors s’écrire :

ll([L‘,y,Z) ~ ZFZ(m7y)OGI(Z) (2)

ou F;(x,y) est une fonction vectorielle définie dans le plan et G;(z2) est une fonction
vectorielle définie dans 1’épaisseur (Figure 1). Le symbole o représente le produit
d’Hadamard ou produit composante par composante.

=

Probléme 2D en (x,y)

Probléme 3D en (x,y,z) Probléme 1D en (z)

Figure 1 — Séparation d'un probléme 3D en 2D/1D.

Avec cette séparation, la solution 3D est obtenue en résolvant uniquement des
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problémes 2D et 1D. Bien que la PGD ait été utilisée avec succés dans un
grand nombre de domaines, de nouveaux développements de la méthode restent
d’actualité afin de mieux cerner son potentiel mais aussi ses limites.

Simulation du délaminage en statique

Différents modeéles ont été développés pour modéliser I'endommagement de com-
posites stratifiés. Certains s’intéressent a I’étude du comportement a une échelle
assez fine (fibre/matrice) afin de comprendre les interactions entre les modes de
dégradation et leurs influences sur le comportement de la structure. D’autres
se concentrent sur le comportement & une échelle intermédiaire et assez grossiére
(mésomodeéle), afin de garder un bon compromis entre la prise en compte des inter-
actions et un cotit de calcul raisonnable. Mais le cotit de calcul reste généralement
¢élevé dans le cas de problémes non-linéaires de trés grande taille. Pour réduire
considérablement le cotit de ces techniques, une nouvelle approche basée sur la
méthode PGD est développé dans cette these.

Un modéle de zone cohésive (MZC) a été choisi pour modéliser 'amorgage des
fissures jusqu’a leur propagation. On s’intéresse plus particuliérement a la loi
cohésive linéaire par morceaux de Crisfield | |. Ce mod-
éle a été choisi pour décrire et simuler le phénoméne de délaminage. I permet de
représenter le comportement d’interface a ’aide d’une loi liant I'effort d’interface
a son ouverture, comme le montre la Figure 2.

oe b

(1 —dp)K ;
: (1~ dr)K; i orr

Y

5L o

m

Mode I

Mode I

Figure 2 — Loi de comportement linéaire par morceaux pour le modéle cohésif. Trac-
tion/compression a gauche, cisaillement a droite.

Dans ces travaux de thése, on utilise la méthode PGD pour calculer la solution d’'un
probléme 3D complet, tout en gardant un cotit de calcul proche de celui d’un calcul
2D. Pour cela, on utilise la capacité de la PGD a calculer des solutions de problémes
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définis sur des géométries de type plaques via une séparation des variables. On
choisit donc de séparer les variables d’espace en deux sous espaces : un espace 2D
représentant le plan moyen, et un espace 1D représentant 1’épaisseur. Ceci conduit
a utiliser un maillage 2D et un maillage 1D pour représenter la géométrie, tout en
intégrant la possibilité de prendre en compte 'endommagement et en particulier
le délaminage. Le couplage entre PGD et MZC se fait a travers l'insertion d'un
élément cohésif 1D a l'interface entre deux plis (voir Figure 3). Le probléme a

Layer +
® T Ie:(l

*
1
1
Layer - 1
1
é

2D(x,y)/1D(z) PGD discretization A linear 1D interface
cohesive element

Figure 3 — Maillages 1D et 2D pour la simulation du délaminage.

résoudre est modélisé par ’équation d’équilibre suivante :

V.o(u(z,y,z)) +f=0 (3)
La loi de comportement élastique s’écrit comme suit :
o(u(z,y,z)) =H(z,y,2) . e(u(z,y,2)) (4)

ou H(z,y, 2) est le tenseur d’élasticité, et e(u(x,y, z)) est le tenseur de déformation
défini par :

e(u(r,y,2)) = %(Vu(x, y,2) + (Vu(z,y,2))") ()

La formulation faible associée a I’équation d’équilibre 3 s’écrit sous la forme suivante

/// (. el d”*//thmh- §'dl = // T . w'dl  (6)

zone coheswe

On cherchera alors la solution du probléme 3D en 'exprimant ainsi :
u(z,y, 2 ZmeoG() (7)
(7, y)

Yy
(z, y) est une fonction vectorielle définie dans le plan,
Y)

(T,

avec F;(z,y) =

53 33

G ()
et Gi(2) = z) est une fonction vectorielle définie dans 1’épaisseur.
w(2)
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Le probléme 3D est représenté comme le produit tensoriel des problémes 2D et 1D.
L’ensemble des quantités du modéle doivent étre exprimées sous formes séparées.

Le saut de déplacement a l'interface entre deux plis s’écrit en fonction des com-
posantes du déplacement sous forme séparée :

or S FP (2 y) (G (zF) = GP (7))
S=| du | =| L F )G - Gi=T)) (8)
Orir >y FY () (G (=7) = GY(=7))

L’expression de l'effort cohésif T, pour le modéle de zone cohésive est :

0. (1 —d)K;dr
Ton=| 7 | = (1=d) K161 9)
Tye (1 —d)Kqr1011r

ou d; (respectivement d;; et d;77) est le saut de déplacement en mode I (respective-
ment mode II et mode III). K (respectivement Ky et Kj;r) est la raideur initiale
de l'interface en mode I (respectivement mode II et mode III) et d est la variable
d’endommagement locale de 'interface.

Pour évaluer I'apport du modéle proposé dans ce travail, la modélisation 3D d’un
essai DCB (Double Cantilever Beam) a été mise en place. Les dimensions de la
plaque et les conditions aux limites de ’essai sont représentées sur la Figure 4.

X

Figure 4 — Représentation schématique des dimensions de ’éprouvette DCB et des con-
ditions aux limites imposées.

L’essai DCB correspond & un essai de traction sur deux bras d’une éprouvette



130 RESUME SUBSTANTIEL

symétrique pré-fissurée. La pré-fissure permet d’amorcer le délaminage dans des
conditions stables. Le matériau étudié est un carbone époxy unidirectionnel. Pour
cette modélisation, le comportement du stratifié et le comportement de 'interface
sont résumés dans le Tableau 1. La sollicitation en mode I est considérée comme

Propriétés mécaniques du pli Propriétés de l'interface

E.(MPa) 11873 Gre(N/mm) 0.3; Grre(N/mm) 1.6

E.(MPa) 157380 o.(MPa) 60 ; T.(MPa) 139

Go.(MPa) 5051 Ki(N/mm3) 1.10%; K;(N/mm3) 5.10*
Vg, 0.31

Table 1 — Propriétés mécaniques du pli et propriétés de l'interface.

la plus critique car elle nécessite moins d’énergie pour amorcer une fissure. La
Figure 5 présente la distribution du champ de contraintes o,,. Dans 'objectif

- 1,96e+03

1,40e+03
842,
281

H -280,

-841,

. -1,40e+03
-1,96e+03

Figure 5 — Représentation du champ de contrainte o,

de connaitre 'apport du modéle en termes de temps de calcul, 'essai DCB a été
modélisé avec au total 1.8 x 10° degrés de liberté. Dans le cas présenté ici, le
temps de calcul est moins de 20 minutes sur un ordinateur portable ce qui n’est
pas concevable avec la méthode des éléments finis. Les gains en temps de calcul
sont donc intéressants et le sont d’autant plus que le probléme est grand.
L’endommagement surfacique a l'interface entre les deux plis est donnée sur la
Figure 6.
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| 1,00
0,857

0,714
0,571
0,429
0,286

.0, 143
0,00

Figure 6 — La variable d’endommagement “d” a I'interface.

Simulation du délaminage en dynamique

Les stratifiés présentent également une faiblesse naturelle dans la direction de
I’épaisseur, qui augmente fortement leur sensibilité aux chargements hors-plan,
comme l'impact a basse vitesse. Ces impacts peuvent créer des dommages in-
ternes sans laisser de marque visible (fissuration de la matrice, délaminage, ...), et
par conséquence diminuer leur résistance résiduelle.

L’approche présentée précédemment a été étendue pour modéliser le délaminage
des composites stratifiés sous un chargement de type impact. Le probléme a ré-
soudre consiste a trouver u(z, y, z) vérifiant I’équation locale d’équilibre mécanique
suivante :

V.O’(U(.CL', Y, Z)) +f= P u(£7 Y, Z) (1())

avec p est la masse volumique.
La forme globale, ou forme faible, s’écrit donc comme suit :

///QE(U*> - (H . e(u(?)))d2+ //F Toon - 8" (t)dD

zone cohésive ( 1 ]‘)

= [ ity waes [[ g wir

Pour la résolution numérique a chaque pas de temps, une approximation sous
forme séparée des champs cinématiques (déplacement, vitesse et accélération) est
utilisée :

e Champ de déplacement

u(z,y,z) = ZF1<£L‘,Z/) o Gy(2) (12)
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e Champ d’accélération

N
’&(il?,y, Z) = ZFl(xay) OGi(Z) (13)
=1
e Champ de vitesse
N . .
=1

L’intégration en temps est assurée par un schéma implicite de type Newmark qui
est couplé a la PGD. Ce schéma permet d’utiliser un pas de temps indépendant de
la taille du plus petit élément du maillage. Afin de valider ce modéle numérique,
on considére une plaque constituée de 12 plis de composite carbone/époxy, de di-
mension 60 mm x 40 mm x 3 mm. Le drapage du stratifié considéré est [903/03]s.
L’impacteur est de type hémisphérique de 12.7 mm de diamétre. La vitesse de
I'impacteur est de 5 m/s. Le matériau est considéré comme orthotrope avec les
propriétés élastiques présentées au Tableau 1.

y/

T/Y

¥ 1

Cohesive interface 90 * /0 —— ]

903

06

Cohesive interface 0 * /90 ——

]—o0,

Figure 7 — Localisation des éléments cohésifs.

Chaque pli est représenté séparément avec un élément dans 1’épaisseur. Des élé-
ments cohésifs sont disposés aux interfaces entre les plis d’orientations différentes
permettant de représenter le délaminage (voir Figure 7). La fissuration de la
matrice est la premiére étape du processus d’endommagement dans les structures
composites stratifiées. Sous chargement de type impact, la fissuration matrici-
elle s’amorce assez tot au cours du chargement dans les plis inférieurs. Avec
Iaugmentation de la charge, les fissures se multiplient et traversent le pli. Une
fois que les fissures transverses atteignent 'interface, le délaminage apparait et se
propage dans l'interface entre deux plis. Les éléments cohésifs pour la fissuration
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matricielle sont disposés le long de I'axe de symétrie de la poutre dans la direction
des fibres. Ces fissures entrainent ’apparition du délaminage localisé a l'interface
inférieure 0°/90°. Le comportement associé a ces éléments cohésifs est donné par
la loi cohésive linéaire par morceaux de Crisfield décrite précédemment. Dans le
modeéle présenté, la force d’impact est calculée avec la loi non-linéaire de Hertz
[Tan and Sun, 1985]. La Figure 8 montre des réesultats de calculs utilisant ce
modeéle. Les résultats numériques du modéle PGD sont comparés a des résultats
expérimentaux disponibles dans la littérature [Avmerich et al., 2009]. La PGD
donne des résultats en accord avec les résultats expérimentaux, au moins d’un
point de vu qualitatif. La PGD a aussi 'avantage d’étre un outil de simulation
relativement simple peu cotiteux a utiliser.

Matrix crack

(a) Interface en bas 0°/90°.

(b) Interface en haut 90°/0°.

Figure 8 — La variable d’endommagement “d” & 'interface.
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Simulation multi-échelle du comportement mécanique
des composites a microstructure périodique

La méthode la plus classique pour traiter les problémes multi-échelles est de passer
par des techniques d’homogénéisation numériques. Ces techniques nécessitent de
définir un volume élémentaire représentatif (VER). Le comportement «moyen» du
VER est alors estimé et peut étre utilisé dans des calculs macroscopiques. Les tech-
niques d’homogénéisation ont été étendues pour des comportements non linéaires
dans le cadre de la méthode des éléments finis au carré | |. Bien que
les méthodes d’homogénéisation soient intéressantes, elles présentent un certain
nombre de limites. La premiére limite est qu’il faut définir des conditions aux
limites sur la microstructure. Suivant le choix de ces conditions aux limites, les
résultats ne seront pas exactement les mémes. Une autre limite est que la théorie
de ’homogénéisation suppose que les deux échelles (micro et macro) sont bien
séparées. Par exemple, une fissure qui apparait a 1’échelle microscopique pour se
propager et devenir une fissure macroscopique peut difficilement étre représentée
par les méthodes d’homogénéisation.

D’autres approches sont basées sur les techniques de décomposition de domaine.
L’idée générale est de séparer le domaine d’étude en plusieurs sous-domaines puis
d’ajouter des conditions d’interface qui sont modifiées itérativement jusqu’a at-
teindre la convergence globale. Ces techniques peuvent étre utilisées pour des
problémes multi-échelles ou simplement pour réduire le cotit des calculs éléments
finis classiques. Mais les cotits de calcul restent relativement importants. Pour
avoir des calculs plus efficaces, il est nécessaire d’introduire des hypothéses sup-
plémentaires.

Nous nous limitons dans ces travaux de thése aux matériaux dont la microstructure
peut étre considérée comme périodique. C’est généralement le cas des matériaux
composites. Une représentation séparée de la solution est alors calculée en utilisant
une décomposition propre généralisée (PGD : Proper Generalized Decomposition).
La démarche proposée nécessite de connaitre au préalable une cellule périodique
de la structure considérée. Un exemple de cellule périodique pour un composite
tissé (taffetas) & deux plis est représenté dans Figure 9. Le maillage de la cellule
doit étre périodique ce qui peut nécessiter des traitements particuliers pour les
bords du maillage.

La position dans la cellule périodique est définie par des coordonnées locales
z = (x,y,2z). La structure globale étudiée est un assemblage de plusieurs cel-
lules. Un identifiant est associée a chacune de ces cellules. On définit alors une
variable k£ qui décrit ’ensemble des identifiants des cellules. Une représentation
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(a) Yarns. (b) Unit cell mesh.

Figure 9 — Cellule périodique pour un composite tissé & deux plis dans la méme direction
: représentation des fibres (gauche) et représentation de la matrice (droite).

séparée du déplacement u = (uy, u,, u,) peut alors s’écrire :

n

u(z, k) = Fi(x)® Gi(k) (15)

i=1

Ici les fonctions £, sont des fonctions vectorielles c¢’est-a-dire qu’elles comportent
trois composantes relatives a u,, u, et u,. Elles sont définies uniquement sur
la cellule périodique. Les fonctions G; sont des fonctions scalaires définies sur
I’ensemble des cellules périodiques. Les fonctions F'; contiennent les informations
liées au comportement mécanique de la microstructure et les fonctions G; per-
mettent de faire le couplage multi-échelle.

Pour utiliser la méthode PGD, il faut pouvoir construire les opérateurs sous forme
séparée. Pour le faire, on effectue un assemblage des opérateurs tel qu’il est fait
dans la méthode des éléments finis. On distingue deux types d’éléments :

e Les éléments internes a la cellule. Ce sont les éléments pour lesquels ’ensemble
des noeuds appartient & la méme cellule microscopique. Pour ces éléments,
on construit un opérateur éléments finis classiques pour le maillage local.
L’opérateur correspondant au maillage global (décrit par k) est alors une
simple matrice identité. Cet opérateur traduit le fait que toutes les cellules
contiennent les mémes éléments internes.

e Les éléments d’interfaces. Ce sont ces éléments qui permettent le couplage
entre les différents sous domaines périodiques. Il faut alors construire les
opérateurs qui vont faire le couplage entre les cellules et leurs cellules voisines.

Il reste finalement & appliquer des conditions aux limites. Cela peut se faire sim-
plement en utilisant une méthode de pénalisation qui s’aveére efficace en pratique.

On considére un probléme 2D en déformations planes. Il s’agit d’une plaque
encastrée a ses deux extrémités et chargée au centre. Elle est constituée d'un
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um

F=10N

0% .:o .:o .:o .:o .:o .:o .:o .:o .:o
pm 0,°(0,°(0,°(0,°(@,°(@,°|@,°(®, (@, °]@®,°
° ° ° ° ° ° ° ° ° °
..o ..o ..o ..o ..o ..o ..o ..o ..o @ o
z 0,°(0,°(0,°(0,0(0,°/0,°(@®,°[|@,°(®, (@@

L,y

Figure 10 — Géométrie et conditions aux limites du probléme considéré.

assemblage de cellules périodiques (voir Figure 10). Le calcul est effectué avec la
démarche proposée ci-dessus ainsi qu’avec la méthode des éléments finis en 2D.
Lorsque la PGD a convergé, les deux méthodes donnent des résultats rigoureuse-
ment identiques. Par exemple, la Figure 11 montre les profils des contraintes oy,
et 0,. au centre de la plaque en fonction de la position dans I'épaisseur (suivant
z) et pour les deux méthodes.

0.030 0.030

0.025 0.025
0.020 0.020
0.015 0.015

0.010 0.010

z (mm)
z (mm)

0.005 0.005

0.000 0.000

(
(
— FEM2D — FEM2D
(
(

~0.003f | pgp —0.003 | pgp

—0.010 —0.010,
LQZGUU —2000  —1500  —1000 =500 0 500 1000 L27)() —200 —150 —100 =50 0
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(a) oyy (b) oy=

Figure 11 — Profils des contraintes dans I’épaisseur au centre de la plaques.

Un exemple de résultat pour la cellule de la Figure 9 est présenté dans la Figure
12. 1l s’agit des contraintes normales o,, dans une plaque composites simplement
appuyée sur ses deux cotés (x = 0 et & = Zy,4,) €t chargée en son centre. Seuls les
torons sont représentés pour voir les contraintes reprises par les fibres.

Pour un faible nombre de cellules périodiques (inférieur a 20 en 2D), les deux
méthodes donnent des temps de calcul assez proches. Par contre, lorsque le nombre
de cellules augmente, la démarche proposée devient beaucoup plus performante.
Par exemple, pour le cas présenté dans la Figure 10 avec 200 cellules, le temps
de calcul est divisé par 10 par rapport aux éléments finis. Et cet écart augmente
exponentiellement lorsque le nombre de cellules augmente. Il est ainsi possible de
réaliser des calculs multi-échelles en considérant plusieurs dizaines de milliers de
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-6.44e+03 -3.23e+03 -6.51e+00 3.21e+03 6.43e+0 -6.44e+03 -3.23e+03 -6.51e+00 3.21e+03 6.43e+03
I L

Figure 12 — Contraintes 0,, dans une plaque composite en flexion (vue de dessus et de
dessous).

cellules périodiques sur un simple ordinateur portable ce qui n’est absolument pas
concevable avec la méthode des éléments finis classiques.
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Représentations séparées pour la simulation multi-échelle du comportement
mécanique et de 'endommagement des matériaux composites.

Résumé: Le développement de méthodes numériques performantes pour simuler les struc-
tures composites est un défi en raison de la nature multi-échelle et de la complexité des mécan-
isme d’endommagement de ce type de matériaux. Les techniques classiques de discrétisation
volumique conduisent a des colts de calcul importants et sont restreintes en pratique a des
petites structures.

Dans cette these, un nouvelle stratégie basée sur une représentation séparée de la solution est
explorée. Lobjectif est de proposer un cadre numérique efficace et fiable pour analyser les en-
dommagements dans les composites stratifiés sous chargements statiques et dynamiques. La
décomposition propre généralisée (PGD) est utilisée pour construire la solution.

Pour traiter 'endommagement, et plus particuliére le délaminage, un modele de zone cohésive
a été implémenté dans la PGD. Une approches multi-échelle innovante est également proposée
pour simuler le comportement mécanique des composites a microstructure périodique. Lidée
principale est de séparer deux échelles : I'échelle du motif périodique (microstructure) et I'échelle
macroscopique. Les résultats de la PGD sont tres proches des résultats obtenus par la méthode
éléments fini classique. Finalement, la PGD permet de réduire significativement la complexité
des modeéles tout en gardant une précision satisfaisante.

Mots clés: Matériaux composites, Réduction de modéle, Décomposition généralisée propre,
Modélisation multi-échelle, Impact, Endommagement

Separated representations for the multiscale simulation of the mechanical
behavior and damages of composite materials.

Abstract: The development of efficient simulations for composite structures is very challen-
ging due to the multiscale nature and the complex damage process of this materials. When using
standard 3D discretization techniques with advanced models for large structures, the computa-
tional costs are generally prohibitive.

In this thesis, a new strategy based on a separated represenation of the solution is explored to
develop a computationally efficient and reliable numerical framework for the analysis of damages
in laminated composites subjected to quasi-static and dynamic loading. The PGD (Proper Gen-
eralized Decomposition) is used to build the solution.

To treat damage, and especially delamination, a cohesive zone model has been implemented in
the PGD solver. A novel multiscale approach is also proposed to compute the mechanical be-
havior of composites with periodic microstructure. The idea is to separate two scales: the scale
of periodic pattern and the macroscopic scale. The PGD results have been compared with the
results obtained with the classcial finite element method. A close agreement is found between the
two approach and the PGD has significantly reduced the model complexity.

Keywords: Composite materials, Model reduction, Proper Generalized Decomposition, Multi-
scale modeling, Impact, Damage
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