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Résumé : Cette these s'inscrit dans I'étude des
sous-variétés minimales et a courbure moyenne
constante et de l'influence de la géométrie de la
variété ambiante sur les solutions de ce
probléme.

Dans le premier chapitre, en suivant les idées de
F. Almgren, on propose une généralisation de la
notion d'hypersurface a courbure moyenne
constante a  toutes codimensions. En
codimension m-k, on définit les sous-variétés a
courbure moyenne constant comme points
critiques de la fonctionnelle de k-volume des
bords des sous-variétés minimales de dimension
k+1. On prouve l'existence dans les variétés
riemanniennes compactes de sous-variétés a
courbure moyenne constante de codimension
quelconque qui sont des perturbations des
sphéres géodésiques de petit volume.

Dans le deuxiéme chapitre on s'intéresse aux
surfaces minimales & bords libres dans la boule
unité de l'espace euclidien de dimension 3,

c'est-a-dire aux surfaces minimales plongées
dans laboule unit¢ dont le bord rencontre la
sphére unité orthogonalement. On démontre
l'existence de deux famille géométriquement
distinctes de telles surfaces qui sont indexées
par un entier n assez grand, qui représente le
nombre de composantes connexes du bord de
ces surfaces. ous donnons en particulier une
deuxiéme preuve d'un résultat de A. Fraser et R.
Schoen concernant l'existence de telles surfaces.
Un des résultats fondamentaux de la théorie des
surfaces a courbure moyenne constante est le
théoréme de Hopf qui affirme que les seules
spheéres topologiques a courbure moyenne
constante dans l'espace euclidien de dimension
3 sont les sphéres rondes. Dans le troisiéme
chapitre, on propose une construction dans une
variété riemannienne de dimension 3 d'une
famille de sphéres topologiques a courbure
moyenne constante qui ne sont pas convexes et
dont la courbure moyenne est trés grande.

Title : (en anglais) Construction of constant mean curvature and minimal surfaces by perturbation

methods

Keywords : Constant mean curvature, minimal surface, perturbation

Abstract : In the first chapter, following the
ideas of F. Almgren, we propose a
generalization of the notion of hypersurface
with constant mean curvature to all
codimensions. In codimension m-k we define
constant mean curvature submanifolds as the
critical points of the functional of the k-
dimensional volume of the boundaries of k+1-
dimensional minimal submanifolds. We prove
the existence in compact Riemannian
manifolds of constant mean curvature
submanifolds of arbitrary codimension which
are perturbations of geodesic spheres of small
volume.

In the second chapter, we consider free
boundary minimal surfaces in the unit ball of
the three dimensional Euclidean space, i.e.
minimal surfaces embedded in the unit ball
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and which meet the unit sphere orthogonally.
We prove the existence of two geometrically
distinct families of such surfaces parametrized
by an integer n large enough, which represents
the number of the boundary components. In
particular, we give an independent proof of the
result of A. Fraser and R. Schoen concerning
the existence of such surfaces.

One of the fundamental results of the theory of
constant mean curvature surfaces is the Hopf's
theorem which asserts that the only topological
spheres with constant mean curvature in the
Euclidean 3-space are the round spheres. In the
third chapter, we propose a construction in a
three dimensional Riemannian manifold of a
family of nonconvex topological spheres with
large constant mean curvature.
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Introduction

0.1 Brief overview

My Ph.D. research has been focused in 3 main areas: the existence of constant mean curvature
higher codimensional submanifolds (in the sense of F. Almgren), the construction of free
boundary minimal surfaces in the Euclidean 3-ball and the construction of surfaces with large
constant mean curvature in generic Riemannian manifolds. Most of my work techniques come
from Riemannian geometry and PDEs analysis: the theory of elliptic operators, perturbation
techniques, analysis in weighted function spaces.

The study of minimal and constant mean curvature surfaces has a rich mathematical
history. Various approaches and techniques from different branches of mathematics have been
used in the investigation of these geometrical objects: calculus of variations, complex analysis,
nonlinear PDEs, geometric measure theory, integrable systems, etc. This domain has known
quite remarkable developments in the last three decades. A survey of the classical theory of
minimal and constant mean curvature surfaces can be found for example in [12], [24], [78§],
[81], [88], [91]. Even though it would be difficult to mention all the important achievements
of this theory, the following section proposes a brief overview of some old and more recent
results that are related to the subject of this thesis.

0.1.1 Mean curvature

The mean curvature (function) of a surface in the Euclidean 3-space is a geometric quantity
which was first introduced in the 18th century by S. Germain in her study on elasticity,
following the works of L. Euler. It is defined as the sum of the principal curvatures of the
surface at a point, i.e. the maximum and the minimum values of the curvature of curves on
the surface which are obtained as the intersection of the surface with a plane containing the
normal to the surface at a given point, as the plane varies. This definition can be generalized
to submanifolds of any dimension and codimension in any Riemannian manifold. The mean
curvature (vector) of a submanifold ¥ is then defined as the trace of the second fundamental
form of ¥, i.e. the symmetric bilinear form hy on T3 taking values in the normal bundle of
>, which is defined by
hs(X,Y) :=VxY —V¥Y € NY,

for all X,Y € T3, where V is the Levi-Civita connection associated to the ambient metric
and V¥ is the Levi-Civita connection on ¥ (endowed with the induced metric). Then the



mean curvature vector is given by
HE =Tr hz.

In codimension 1, the mean curvature vector is given by the mean curvature (function) times
the unit normal.

0.1.2 Minimal surfaces

A hypersurface (or more generally a submanifold) in a Riemannian manifold is said to be
minimal if its mean curvature vector vanishes. Let ¥ be a compact submanifold (with or
without boundary) and = a vector field in the ambient Riemannian manifold (M™*!, g). Let
us denote by £ the flow associated to =, namely

> 0.0) = =),

for all p € M and t close to 0, and £(p,0) = p. For ¢t € R close to 0, we define ¥; to be the
image of ¥ by £(-,t). Then the first variation formula of the volume yields

d
aVOlm (Et)

— [ otttz By avol + [ glvos.=) don (1)
t=0 by %
where vpy, is the conormal to the boundary of ¥ (i.e. the unit normal to 0¥ in ¥). In
particular, a compact surface is minimal if and only if it is a critical point of the volume
functional with respect to variations preserving its boundary.

First examples and minimal graph equation

The first example (other than the plane) of a minimal surface in the Euclidean 3-space was
the catenoid described by L. Euler [32] in 1744. It is a surface of revolution whose generating
curve is (up to scaling) the graph of cosh function and it turns out to be the only minimal
surface of revolution in R3.

Another famous minimal surface in R3 is the helicoid which was also described by L. Euler
but proved to be minimal by J.B. Meusnier [85] in 1776. It is the only ruled minimal surface
other than the plane.

In the same work, J.B. Meusnier [85] showed that the mean curvature of a graph of the
function u over a domain Q C R? is identically equal to zero if and only if v satisfies the
following quasilinear elliptic partial differential equation, formulated by J.L. Lagrange in 1762
in his work on the calculus of variations:

: Vu B
div (m) =0. (2)

Minimal graphs have the property to be area minimizing, they constitute an important class
of minimal surfaces. For example, in 1915, S.N. Bernstein [7] proved that the only entire
minimal graph in the Euclidean 3-space is the plane.



Weierstrass representation and Plateau’s problem

In the 19th century, new increasingly complicated examples of minimal surfaces were provided
by A. Enneper [30], H. Scherk [105], H. Schwarz [110], B. Riemann [I00] and K. Weierstrass
[114]. Many of these minimal surfaces are periodic.

A fundamental contribution to the theory of minimal surfaces was made by the discovery
by A. Enneper and K. Weierstrass in 1866 [114], [30] of representation formulas that establish
a correspondence between the minimal immersions in R? and the so called “Weierstrass data”
given by a meromorphic function and a holomorphic 1-form. An important corollary obtained
by this approach is the fact that there exist no compact minimal surfaces in R?. Even though,
normally, it is hard to conclude from the Weierstrass data what is the shape of the resulting
surface as well as whether the surface is embedded or not, combined with other techniques,
Weierstrass representation remains one the most powerful tools in providing examples and
classification of minimal surfaces.

One of the most important achievements in the theory of minimal surfaces is the resolution
in the beginning of the 20th century of the Plateau’s problem named after the mathematician
J. Plateau who studied the behavior of soap films. The problem is to show the existence of a
least area surface with a given boundary curve. It was solved in 1930 separately by J. Douglas
[28] and T. Rado [98] using techniques coming from the calculus of variations.

Topological classification of minimal surfaces

Many aspects of the modern theory of minimal surfaces in R3 originate from the pioneering
work of R. Osserman [91] in 1960s, where questions concerning the analytic and the topological
properties of minimal surfaces were stated and for which partial answers have been obtained
only recently. A major challenge of this theory has been the classification of the complete
embedded minimal surfaces according to their topological type (genus and the number of
ends).

For many years it had been conjectured that the only complete minimal surfaces of of finite
topological type in R3 are the catenoid, the helicoid, and the plane. But in 1982, J. Costa
[15] discovered a minimal surface that has genus one and two ends asymptotic to catenoids,
and one end asymptotic to a plane. A year later, D. Hoffman and W. Meeks [49] proved that
this surface is actually embedded. Since then, many other examples have been constructed.
D. Hoffman and H. Karcher [46] found a family of minimal deformations of the Costa surface
where the planar end becomes catenoidal. A generalization to the case of arbitrary genus was
also given by D. Hoffman and W. Meeks [50]. A minimal surface whose end is asymptotic to
the end of the helicoid but whose genus is equal to 1 was found by D. Hoffman, H. Karcher
and F. Wei [47], [48], while D. Hoffman, M. Weber and M. Wolf [53] proved that it was
embedded, which provided an example, different from the helicoid, of a complete embedded
minimal surface of finite topology and infinite total curvature. A generalization to the case
of arbitrary genus was recently obtained by D. Hoffman, M. Traizet and B. White [52]. A
complete minimal topological Mdbius strip was discovered by W. Meeks [80].



An important class of minimal surfaces is constituted by complete minimal surfaces with
finite total curvature. In 1964, R. Osserman [91] showed that such surfaces have the conformal
structure of compact Riemann surfaces with a finite number of points removed and have total
curvature equal to an integer multiple of —4x. R. Schoen showed [107] that complete minimal
surfaces with finite total curvature can only have planar or catenoidal ends. In particular,
when the number of ends is equal to two, the surface must be the catenoid. P. Collin’s [13]
theorem asserts that if ¥ has finite topology and more than one end, then ¥ has finite total
curvature. F.J. Lépez and A. Ros [71] proved that the only genus zero complete embedded
minimal surfaces of finite total curvature are the catenoid and the plane. On the other hand,
W. Meeks and H. Rosenberg [82] showed that the only properly embedded minimal surface
with only one end is asymptotic to the helicoid. In particular, when the genus is zero, the
only possible example is the helicoid.

0.1.3 Constant mean curvature surfaces

In codimension 1, we say that a hypersurface ¥ in a Riemannian manifold (M, g) has constant
mean curvature (CMC) if the mean curvature function Hy is a constant .

Recall that the classical isoperimetric problem in (M™*! g) consists in finding the hy-
persurface of least m-dimensional volume among all compact hypersurfaces enclosing a given
m + 1-dimensional volume. Solutions to the isoperimetric problem, when they are regular
enough, provide examples of constant mean curvature surfaces, unfortunately, the only solu-
tion (up to translations) to this problem in R™*! is the round sphere S™. More generally,
a closed embedded surface has constant mean curvature if and only if its volume is critical
among all variations that preserve the volume of the region bounded by the surface.

Indeed, let ¥ be an embedded hypersurface that is the boundary of a region €2 in M. We
consider the compact hypersurface ¥; that is the image of ¥ under the flow £(-,¢) associated
to a vector field = and let €2; be the region in M bounded by ¥;. Then, given A > 0, consider
the function

Ex(t) := Vol (9%) — A Vol ().

The first variation of the volume formulae yield

£,(0) = - /E (Hs — ) (Ns, 5. (3)

where Ny, is a unit normal to 2. Therefore, ¥ = 0f) has constant mean curvature equal to A
if and only if Q2 is a critical point of the functional

Q — Vol (99) — A Vol 41 (). (4)

Role of the round sphere: Hopf’s and Alexandrov’s theorems

In 1853, H.J. Jellet [57] proved that the only closed star-shaped constant mean curvature
surface in R3 is the round sphere. In 1956, Hopf [54] showed that the only immersed constant
mean curvature topological spheres in the Euclidean 3-space are round spheres and he con-
jectured that the same is true for any compact immersed orientable constant mean curvature
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surface in R™. Two years later A.D. Alexandrov proved [3] that the only compact connected
embedded constant mean curvature surface in R3 is the round sphere.

The proofs of Hopf’s and Alexandrov’s theorems introduced two powerful tools of inves-
tigation of constant mean curvature surfaces. Hopf’s proof involves the study of a quadratic
differential form, referred to as the Hopf’s differential, which is defined for any conformal im-
mersion and which is holomorphic if and only if the immersion has constant mean curvature.
Alexandrov’s method is referred to as the method of moving planes and uses the maximum
principle for elliptic partial differential equations .

Further examples of CMC surfaces

Hopf’s conjecture was disproven in dimension greater than 3 in 1982 by W.Y. Hsiang [55].
In 1984, immersed constant mean curvature topological tori were constructed by H.C. Wente
[115] using some doubly periodic solution to the Sinh-Gordon equation. In 1989 U. Pinkall
and 1. Sterling [97] classified all constant mean curvature tori immersed in R? and A. Bobenko
[9] gave an explicit description of the corresponding metrics.

In 1970s H.B. Lawson [69] showed that for each complete constant mean curvature surface
in the Euclidean 3-space there is an associated complete minimal ”cousin® in the 3-sphere.
He introduced a procedure of explicit construction of complete minimal surfaces in S and
described two new examples of complete embedded doubly periodic constant mean curvature
surfaces in R3. Lawson’s idea was developed by H. Karcher [64] and K. Grofie-Brauckmann
[41] who constructed a large number of new examples.

Noncompact CMC surfaces

For a long time, the only known examples of noncompact CMC surfaces in R? have been
the cylinder and the one parameter family of Delaunay surfaces [23] discovered in 1841. The
latter are the only complete, noncompact constant mean curvature surfaces of revolution in
R3 and are generated by rotating roulettes of conics. A roulette of an ellipse gives rise to
an embedded constant mean curvature surface referred to as an unduloid, while a roulette
of a hyperbola (which is a bit harder to visualize), gives rise to an immersed constant mean
curvature surface which is referred to as a nodoid. In the case where the conic is a parabola,
one obtains a catenoid whose mean curvature is equal to zero.

The asymptotic behavior of constant mean curvature surfaces was first studied by W.
Meeks [79], who proved that any annular end of a complete noncompact Alexandrov-embedded
constant mean curvature surface in R? is contained in a solid half-cylinder of finite radius. As
a byproduct he has proven that there exist no constant mean curvature surfaces with only one
end. N. Korevaar, R. Kusner and B. Solomon [65] have proven that an Alexandrov-embedded
constant mean curvature surface in R? can only have ends asymptotic to Delaunay surfaces.
Thanks to this result, R. Kusner, R. Mazzeo and D. Pollack [66] described the structure of
the moduli space of complete Alexandrov-embedded noncompact constant mean curvature
surfaces with finite topology.

11



0.1.4 Constant mean curvature surfaces obtained via perturbation tech-
niques

The general idea of perturbation methods is to produce new examples of geometric objects
of interest using existing ones as summands and often lead to construction of new non-trivial
solutions which would be hard to obtain by different methods. Since 1980s these techniques
have played an important role in many areas of geometry and found remarkable applications
for example in the study of the topology of smooth 4-manifolds by S. Donaldson [26] and C.
Taubes [I113] and the study of singular solutions to Yamabe equation by R. Schoen [106].

The first constructions of constant mean curvature surfaces via perturbation methods were
obtained in late 1980s in the pioneering work of N. Kapouleas. In [60], the author produces
genus 2, compact, constant mean curvature surfaces in R3 by fusing Wente tori and compact
surfaces of higher genus and noncompact surfaces of arbitrary genus and the number of ends
great than 3 [58], [59], by gluing together round spheres with pieces of Delaunay surfaces.

Since then, many other examples of compact and noncompact constant mean curvature
surfaces were constructed by perturbation methods, including the gluing constructions of R.
Mazzeo, F. Pacard and D. Pollack [77], R. Mazzeo and F. Pacard [74], [75], F. Pacard and H.
Rosenberg [93], etc.

General scheme of a gluing construction

The results described in chapters 2 and 3 of this thesis rely on perturbation techniques intro-
duced by N. Kapouleas and R. Mazzeo, F. Pacard and D. Pollack. In this paragraph I would
like to point out the main ingredients of the constructions described in the works of these
authors. In the following example we assume that the ambient space is the Euclidean 3-space,
but the ideas described below can be generalized to higher dimensions as well as to the case
of a generic Riemannian manifold.

Normal perturbations and the Jacobi operator

Let ¥ be a smooth embedded surface with or without boundary in R3. One way to describe
the surfaces nearby X is to parametrize them as normal graphs over Y. More precisely, let Ny
be a unit normal vector field to ¥ and take a C? function w on . We denote by ¥ (w) the
surface parametrized by

X3 pr—p+w(p) Nu(p) € E(w).

When the norm of w is small enough, the Taylor expansion of the mean curvature of ¥ (w) in
the powers of w and the partial derivatives of w up to the second order has the form:

H(X(w)) = Hy 4+ Jx w + Qs (w, Vw, Vw),

where Hy, is the mean curvature of ¥, Jy = D, H|,_, is the linearized mean curvature, or
the Jacobi operator about X, and @)y, is a nonlinear function of w and the components of the
gradient and the Hessian of w, which satisfies:

Q5(0,0,0) = DQx(0,0,0) = 0.
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Moreover, the second variation of the area formula gives an explicit expression of the Jacobi
operator which reads:
Jg = Ax + |hsf,

where Ay is the Laplace-Beltrami operator on ¥ and |hg|? is the squared norm of the second
fundamental form of X.

By definition, a compact surface ¥ is nondegenerate, if any solution to the problem:
Jyw=0 in ¥ and w=0 on 0%, (5)

is trivial. We say that a noncompact surface ¥ is nondegenerate if there are no nontrivial
solutions w € L%(X) of (f).

Connected sum construction

From the topological point of view, to perform a connected sum of two surfaces £ and X~
amounts to remove a small disk around a point on each surface, and then to identify the
two boundaries of the disks. From the geometric point of view, it amounts to first move the
surfaces % in R3, so that they are tangent at a common point p (which can be assumed to be
the origin), then to remove a small disk centered at p on each surface, to translate the surfaces
away from each other in the direction orthogonal to their common tangent plane at p (which
is assumed to be the horizontal plane), and then to perform a connected sum identifying the
two circle boundaries with the two boundaries of a ”small neck* given by a catenoid scaled
down by a small factor € > 0, and which has been truncated, namely the surface parametrized
by
C:(s,¢) =€ (cosh s cos ¢, cosh s sin g, s),

for (s,¢) € [~se,s:] x St for some s. > 1 carefully chosen.

As it has been remarked in the works of R. Mazzeo, F. Pacard and D. Pollack, from the
analytical point of view it turns out to be better to deform X% using the Green’s functions
associated to the Jacobi operators Jy+ to get a better matching with the asymptotic shape of
the catenoid. Assume that ¥F are nondegenerate surfaces with boundary and let p € St N X~
be the point where % are tangent. By the Green’s function associated to the operator Js+
with a pole at p, we mean the solution to the problem:

Jy:TE =274, in % and T*=0 on 9%*,
where 6, is the Dirac mass at the point p.

In the neighborhood of p the surfaces £* can be seen as graphs over their common tangent
plane, which we assume to be the horizontal coordinate plane with p being the origin. In
Euclidean coordinates in the horizontal plane the functions I't have the following expansions:

% (z) = ¢ +log|z| + O(|z|).

On the other hand, the catenoid C. can be seen as a bi-graph over {z € R? : |z| > &} of
the function -
G:(x) = —¢ log 2 + log|z| + O(3|z| 7).
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The idea is to translate & away from each other by a distance +d/2 — 503[ respectively
and to choose d > 0 and a real number r. in such a way, that the graph

x> (z, £d/2 - ect +eT*(2) + O(|z|*)), |z| >r. =€ coshs,,

is “as close as possible” to the graph of the function G, in the neighborhood |z| ~ r.. Com-
paring the constant terms, one can see, that we should take:

2
d = 2¢ log —,
€
and comparing the rest of the expansions, we choose r. for which the remaining terms (that

are of the form O(|z|?) + O(e |z|) + O(e3 |#|72)) are minimal, which is the case when

re ~ g3/4,

We will denote the resulting connected sum by A.. This surface is called the approximate
solution and its construction can be done in such a way that it depends smoothly on e.
Perturbation of the approximate solution

The next step consists in perturbing 4. into a constant mean curvature surface, or in other
words, this amounts to solve an equation of the form:

H(A) + Jq, w+ Qu. (w) =c¢, forsome w € CQ(Aa), (6)

and some constant ¢ (which corresponds to the mean curvature of the surface we are interested
in). Remark, that (6]) can be written in the form:

Ja.w=c—H(A:) = Qu.(w),

which we will try to solve using a fixed point argument. One checks that, as € tends to 0,
the function ¢ — H(A;) tends to 0 in a suitable topology. If the Jacobi operator J4_ were
invertible with inverse uniformly bounded as ¢ tends to 0, the problem would amount to find
a fixed point of the operator

w = J 3 (H(A) + Qa.(w)),

in a small closed ball of an appropriate Banach space.

Obstructions

An obstruction to a gluing construction arises when the linearized mean curvature operator
J 4. about the approximate solution has small eigenvalues (eigenvalues that tend to 0 as fast
as ¢ tends to 0 or non trivial kernel), which prevents from applying directly the perturbation
argument. Small eigenvalues are always expected since the Euclidean catenoid is degenerate
in the sense that there are Jacobi fields (solutions to Jo. w = 0) which are defined on the
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catenoid and tend to O fast at the two ends of the catenoid (these arise as the Jacobi fields
associated to horizontal translations of the catenoid). The space of eigenfunctions associated
to the small eigenvalues of J 4, is usually referred to as the approzimate kernel of the operator
J 4., and will be denoted here by ..

Remark that one can construct a family of approximate solutions which depends on a cer-
tain number of geometric parameters: for example, one can vary the “size” ¢ of the “catenoidal
neck” and change the points where the connected sum is performed (vary slightly the angle
between the axis of the “neck” and the normals to the summands X%). In some cases, one
can get rid of small eigenvalues by imposing symmetries on the surface one wants to con-
struct, which also, in general, imposes a unique choice of the free parameters. Many examples
of constant mean curvature and minimal surfaces obtained by gluing methods make use of
symmetries and therefore are highly symmetric.

In the general case, one can use what is usually referred to as a Lyapunov-Schmidt re-
duction argument, applying Banach fixed point theorem in the space of functions orthogonal
to the approximate kernel K.. As a result, one obtains a surface whose mean curvature is
constant up to an element of K.. The goal is then to analyze the degrees of freedom in the
construction of the family of approximate solutions, and to prove that there is a clever choice
of the parameters for which the corresponding term in the approximate kernel vanishes.

Constant mean curvature surfaces in Riemannian manifolds

During the last decades the attention of many researchers was attached to the extension
of the classical results stated above to hypersurfaces of higher dimension or to geometries
different from the Euclidean space. A lot of progress has been made in the study of constant
mean curvature surfaces in simply connected homogeneous 3-manifolds, classified by Thurston
according to the dimension of their isometry group. These manifolds include the space forms
S3 and H3, the products H? x R or S? x R, the Lie group Sol(3) and many other examples.
Techniques coming from complex analysis, harmonic maps, integrable systems, maximum
principle and etc. lead to construction of a large number of examples and allowed to obtain
important classification results. U. Abresch and H. Rosenberg [1], [2] introduced an analogue
of the Hopf’s differential, which allowed them to solve the Hopf’s problem (classification of
constant mean curvature surfaces spheres) in some of these geometries, while Alezandrov’s
problem (classification of compact constant mean curvature surfaces surfaces) was studied
by B. Daniel and P. Mira [22]. An important progress has been made in the classification
of entire minimal graphs (Bernstein’s problem) in the works of P. Collin and H. Rosenberg
[14], B. Daniel and L. Hauswirth [2I], I. Fernandez and P. Mira [33], [34]. Solutions of
the isoperimetric problem were studied for example in the works of W.T. Hsiang and W.Y.
Hsiang [45]. B. Daniel extended the classical Lawson’s correspondence to the homogeneous
3-manifolds [19], [20].

Even though a lot of problems remain open, there is by now a rather good understanding
of the space of constant mean curvature surfaces in special geometries. In contrast, there exist
few results in the case when the ambient manifold is endowed with a “generic” Riemannian
metric. In this general setting, even seemingly simple problems have no answer. The existence
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of closed embedded curve with given constant geodesic curvature remained open for a long
time and partial positive answers were given recently in [112] and [109].

Solutions to the isoperimetric problem

Constant mean curvature hypersurfaces in a Riemannian manifold M can be obtained as solu-
tions, when they are regular enough, to the isoperimetric problem. The following fundamental
existence theorem results from the works of F. Almgren [4], M. Griiter [42], E. Gonzalez, U.
Massari, I. Tamanini [40] and F. Morgan [86]: in an m + 1-dimensional compact Riemannian
manifold M and for all ¢, 0 < ¢t < Vol(M), there exists a compact region Q@ C M whose
boundary ¥ = Jf) minimizes the m-volume among the regions of m + 1-volume equal to t.
Moreover, except for a closed singular set of Hausdorff dimension at most m — 7, the boundary
> of any minimizing region is a smooth embedded hypersurface with constant mean curvature.
In particular, if m < 6, then X is smooth.

Techniques used in [4], [42], [40] and [86] to investigate the properties of the isoperimetric
surfaces come from the geometric measure theory. Another powerful tool is studying the
isoperimetric profile of the ambient manifold, more precisely the function

Ing: (0, VOl(M)) — R, Ip(t) =inf {Voly, (0Q) : Q C M region, Voly4+1(Q2) =t}.

The properties of I, were analyzed in the works of C. Bavard and P. Pansu [6], [96], S. Gallot
[38], W.Y. Hsiang [56] and others and were used for example to prove the fact that if ¥, is
a sequence of isoperimetric surfaces in M enclosing volumes t,, — ¢, then 3, converges to an
isoperimetric surface enclosing a volume t.

The study of the solutions of the isoperimetric problem remains a very active area of
research and a profound description of this theory can be found in works of A. Ros [102]. A
drawback of this approach is that one does not control the value of the mean curvature of
the surface obtained by this method and very little information is in general available on the
geometry of the solution. However, in the case when the volume constraint is small, it has
been shown in the works of P. Berard, D. Meyer [§], O. Druet [29] and A. Ros [102] that the
solutions are close to geodesic spheres of small radii and concentrate at critical points of the
scalar curvature R of the ambient manifold M.

0.1.5 Constant mean curvature perturbations of geodesic spheres

The proof of Hopf’s theorem works in the space forms R?, §3, and H?3, while uniqueness Hopf
type results were obtained in other special geometries [I], [2], [22]. It is natural to consider
the problem of classification of constant mean curvature topological spheres immersed in a
generic Riemannian manifold.

In 1990, R. Ye showed [I18] that every nondegenerate critical point o of the scalar curvature
function R of a Riemannian manifold (M, g) has a neighborhood that can be foliated by
constant mean curvature hypersurfaces which are close to small geodesic spheres centered at
o and converge to o when their mean curvature tends to infinity.
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I propose the reader to give a closer look to R. Ye’s construction. Let S.(p) denote a
geodesic sphere in (M™% g), of radius e > 0 centered at the point p. For e small enough
S:(p) can be seen as the image by the exponential map of the Euclidean sphere:

© € S CTpM — exp,(c ©) € S:(p).

The mean curvature of S;(p) then satisfies:

H(S.(p) = = — < Ricy(©,0) + O(e?),

where Ric,, is the Ricci tensor of M evaluated at p. Hence, in some sense, H(S:(p)) is close to
being constant and it is reasonable to expect that S;(p) can be deformed into some constant
mean curvature surface, at least for € small enough. Unfortunately, as observed by R. Ye in
[118], this is not the case. When ¢ is small enough, the Jacobi operator about S:(p) is close
to the Jacobi operator of the Euclidean sphere of radius ¢ which reads e 2 (Agm + m). This
operator has a non trivial (m + 1)-dimensional kernel consisting of the restrictions to S™ of
the coordinate functions:

Ker(Agm +m) = span{@©°, i =1,...,m + 1}.

This prevents one from directly applying a perturbation argument. Let H(w) denote the
mean curvature of the normal graph of the function w over S.(p) and let II be the L2-
orthogonal projection to the space Ker(Agm +m) and IT+ the projection to the corresponding
orthogonal complement. Then using Banach fixed point theorem, one can find a function

w, € I+ (C%%(S?)) such that
I (H(w,)) = g

On the other hand, it turns out that the equation II (H(w,)) = 0 can be written in the form
(VIR(p),0) = O(e%), (7)

where VIR (p) is the gradient of the scalar curvature, calculated with respect to the metric
g and evaluated at p. Thus, if o is a nondegenerate critical point of the scalar curvature, for
every ¢ small enough one can find a point p. such that holds. In this way, one obtains
a constant mean curvature hypersurface which is a normal geodesic graph over the geodesic
sphere S:(p.), where disty(0, p:) = O(?).

Later, F. Pacard and X. Xu showed [95] that constant mean curvature topological spheres
can also be constructed when the scalar curvature is not a Morse function, which for example
covers the case of Einstein or constant scalar curvature manifolds. As a first step, similarly
to R. Ye, the authors show that for all p € M, and all ¢ > 0 small enough, the geodesic
sphere S:(p) can be perturbed to a surface Y. (p) whose mean curvature is close in a particular
sense to being constant. More precisely, the mean curvature of ¥.(p) (when the surface is
parameterized by the unit sphere S™) satisfies:

H(Z:(p) - = = (A4,6), ©cs™,
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for some vector A € R™*! where by (,-) we denote the scalar product in R™*!,

Remark that the functions of the form (A, ©) are exactly the elements of space Ker (Agm + m).
The surfaces Y. (p) are called “pseudo constant mean curvature spheres” by F. Pacard and X.
Xu and were also studied by S. Nardulli, [90], who refers to them as “pseudo bubbles”.

To understand the idea of the construction of F. Pacard and X. Xu, let us consider first
the following simple example. Let ¥ be a compact surface in R”™*! whose mean curvature
satisfies:

Hy, = A+ (A, Ny), for some fixed vector A € R™H

where Ny is the unit normal vector field to ¥ and ) is a constant. Take B € R™*!, and

consider the one parameter family of surfaces ¥; obtained by translation of ¥ in the direction
B:
pEX—p+tB e,

Let © and € be the regions in R™*! bounded by ¥ and %, and consider the functional
Ex(t) = Area(0€) — A Vol(€),

which appears in the variational characterization of the compact constant mean curvature
surfaces. Since translations are isometries in the Euclidean space, we have

E(t) =0,

which implies that
/Z (Hs, — A) (B, Ng) dvols, =0, forall BeR™™
Finally, taking B = A, we find:
/E\<A,Nz>\2dvozz =0 = A=0

and conclude that X is a constant mean curvature surface.

In the Riemannian manifold (M, g) we no longer have isometries given by translations.
However, in a small neighborhood of a given point, the expansion of the metric g in geodesic
normal coordinates can be seen as a perturbation of the Euclidean metric. Then for € small
enough, one can apply an idea similar to the one described above to the pseudo CMC spheres
Y-(p) whose mean curvature satisfies:

H(Z:(p) =~ +{4.6).

Let Q.(p) denote the region in M bounded by ¥.(p). F. Pacard and X. Xu show that if p is
a critical point of the functional

E-(p) = Volua (09:(p)) — = Vol 1(2=(p)). ®)

18



then the mean curvature of Y. (p) is constant.

Finally, remark that the scalar curvature R of the ambient manifold M appears in the
expression of the volume of the geodesic spheres, more precisely, we have:

£2

Vol (Se(p)) = €™ Vol(5™) (1 S 2(m+1)

R(p) + (’)(54)) .
Using the fact that 3. (p) are constructed as small perturbations of geodesic spheres, F. Pacard
and X. Xu obtain that

eTME(p) = co+ c1 2 R(p) + O(e?),

for some constants ¢y and ¢; independent of €.

The results of R. Ye and F. Pacard and X. Xu outlined above play a key role in the
constructions described in the chapters 1 and 3 of this thesis.

Other examples of surfaces with large constant mean curvature

H. Rosenberg [103] has shown that if ¥ is a closed surface with sufficiently large constant mean
curvature H in a compact Riemannian 3-manifold M, then X separates M into two connected
components and the distance between 3 and a point of the component of M \ ¥ towards which
the mean curvature vector is pointed is bounded above by a constant times 1/H.

The result of H. Rosenberg implies that a constant mean curvature surface should look like
a small tube around some set and classification of such sets has been a challenging problem. R.
Mazzeo and F. Pacard [76] showed the existence of constant mean curvature surfaces obtained
by perturbation of geodesic tubes about nondegenerate closed geodesics. A. Butscher and R.
Mazzeo [10] proposed a construction (under some symmetry assumptions on the metric) of
a family of compact constant mean curvature surfaces condensing along a geodesic segment,
passing through a nondegenerate critical point of the scalar curvature, obtained by gluing
together a large number of geodesic spheres. For some special noncompact 3-manifolds they
also prove the existence of one-ended constant mean curvature surfaces condensing to geodesic
rays. F. Mahmoudi, R. Mazzeo and F. Pacard proved in [72] the existence of constant mean
curvature surfaces with large mean curvature which are close to small geodesic tubes around
embedded minimal submanifolds.

0.1.6 Constant mean curvature surfaces via doubling constructions

Examples of surfaces with small constant mean curvature in Riemannian manifolds have been
obtained via perturbation techniques, which are referred to, following N. Kapouleas, as “dou-
bling constructions”. In this paragraph, I would like to explain the main ideas behind this
method, since similar techniques will be applied in the results described in the chapter 2 of
this thesis.

The idea is to construct a constant mean curvature surface by performing a connected
sum of two copies of a given oriented, embedded compact minimal surface A. More precisely,
assuming that A is nondegenerate, one can apply the implicit function theorem to obtain, for
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any € close to 0, a constant mean curvature surface A; with mean curvature €. It is easy to
check that At are normal graphs over A for some functions of the form 41 + O(g?), where
1 € C*(X) solves Jayp = 1. In a recent unpublished paper F. Pacard and T. Sun [94] show
that one can perform a connected sum between A, and A_. at any nondegenerate point of the
function v to produce new constant mean curvature surfaces with H = ¢.

In the case where there is a group of isometries acting on M and the Jacobi operator
of A has a nontrivial kernel, the fact whether it is possible or not to carry out a doubling
construction depends on what is called the “neck configuration”, more precisely the set of

points p1,...,pr € A where the connected sum is performed and the “size of the necks”. To
understand this, it is convenient to use the Green’s function method, namely, to understand
for which choice of p1, ..., pg, there exists a solution to the problem:

IAT = =27 (0p, + -+ 0p,.) » (9)

and then to glue the graph of the function I' together with k& “necks” given by catenoids
centered at p; and scaled by a small factor.

For example, consider the case where the initial minimal surface A is the equatorial sphere
S? in the 3-sphere S3. The corresponding Jacobi operator Agz + 2 has a nontrivial kernel
given by restrictions to S? of the coordinate functions. This prevents from solving @ for the
number of points £ = 1. On the other hand, introducing symmetry with respect to one of the
coordinate axis and taking k = 2 and p1, pp antipodal points on S2, one can find a solution
to @D

A. Butscher and F. Pacard [I1] showed that when A is the minimal Clifford torus in S°
and the Jacobi operator is given by 2 (A + 2), surfaces with small constant mean curvature

can be produced by performing connected sums at the points of a lattice which contains 2772
and which is not included in {(z,y) € R? : z £y = 0 mod [27]}.

Remark that the constructions described in [94] and [II] produce for all € small enough
constant mean curvature surfaces of mean curvature H = ¢, and the number of "necks“ in
the construction is bounded independently of e, while the size of the "necks* is given by a
constant times €.

On the other hand, N. Kapouleas and S.D. Yang [63] showed that the doubling construction
technique can be applied to produce new examples of minimal surfaces, but this time a certain
relation has to be satisfied between the number of points where the connected sum is performed
and the size of the “necks”. The authors prove the existence of minimal surfaces in S® obtained
by doubling the minimal Clifford torus performing the connected sum at the points of the
square lattice 1, := 27” Z? for n large enough, where the Clifford torus 7?2 is identified with
R?/277Z2. To understand why the construction works only for large numbers n, consider the
Green’s function I';, with poles at the vertices of [,,:

(A+2)Tp=-21 Y _ 6, (10)

Dpi €ln
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where the non-trivial kernel of the operator A + 2 is eliminated using the symmetry of the
lattice. Next, one can introduce a function G, such that I'y(z) = G(nz). Then is
equivalent to

2 .
AG—FEG: 273, in T2

The solution can be found by induction, putting G = ¢+ Z?io (%)] G, where the functions
G solve

1
AGy = 27 (51,0 + — and AG] = —Gj_l, with Gj =0.
2T T2
A direct calculation then shows that ¢ = —% and in local coordinates in the neighborhood of

p; € 1, the function I';, has the expansion

2

Fn(x):—;—W—logn—log]ﬂ—k..., (11)

where by ... we denote some function bounded independently of n in some neighborhood of
the origin. On the other hand, as it has been observed in the subsection [0.1.4] a catenoid
centered at p; and scaled by the factor € can be seen as a bi-graph over T2 of the function

Ge = —¢ logg + ¢ log |z| + O3 |2|72). (12)

In order to perform connected sums of the graphs of the functions FI',, and +G,, one needs the
largest terms in the expansions and to match exactly. We can make the logarithmic
terms match by multiplying I', by the factor €. On the other hand, the constant terms

coincide, when
2

n
log2/e = — +1
og2/e 27r+ ogn +

which defines the relation between the “neck size” € and the number of “necks” given by the
integer n. Finally, as in the case of constructions described in the subsection[0.1.4] one applies
a perturbation argument to deform the constructed connected sum into a minimal surface.
Other examples of minimal surfaces in S3 were constructed by N. Kapouleas by doubling the
equatorial sphere [61] and by D. Wiygul by stacking (tripling, quadrupling, etc.) Clifford tori.

0.2 Chapter 1: Higher codimension isoperimetric problems

In the first chapter, which is a work in collaboration with R. Mazzeo and F. Pacard, we
propose a generalization of the classical notion of a constant mean curvature hypersurface to
submanifolds of arbitrary codimension. We also prove the existence in compact Riemannian
manifolds of constant mean curvature (in the sense that we introduce) submanifolds which
are small perturbations of geodesic spheres of small volume.

Let K be an embedded submanifold of a compact Riemannian manifold (M™*!, g). Recall,
that by definition (given in the subsection [0.1.1)) the mean curvature vector of K is defined as
the trace of its second fundamental form:

hg(X,Y)=nanygVxY, for XYe€TK, and Hg =Trhg,
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where V is the Levi-Civita connection on M associated to the metric ¢ and wyg is the
fibrewise orthogonal projection Tx M — NK on the normal bundle of K. In codimension
1, when dim(NK) = 1, we say that K has constant mean curvature if the mean curvature
function g(Hg, N ) is constant. There are many possible extensions of the notion of constant
mean curvature to higher codimensions, for example, asking that Hy is parallel, or Hy is
harmonic. We propose a different, strictly variational definition, building on the ideas of F.
Almgren [5].

Critical points of the area functional subject to the volume constraint produce constant
mean curvature surfaces. F. Almgren [5] generalized the classical isoperimetric problem to
higher codimensional submanifolds, which amounts to solve the following minmax problem:

max < min VolkH(Q)).

K : Vol (K)=c \Q:0Q=K

where ¢ is a constant. Moreover, F. Almgren proves that the solutions in the Euclidean space
R™*+1 are round spheres. The existence result in an arbitrary Riemannian manifold as well
as regularity properties of the solutions were obtained in the work of F. Morgan and M.C.
Salavessa [87].

Recall that constant mean curvature hypersurfaces can also be understood as boundaries
of the critical points of the functional

Q — Vol(92) — A Vol(Q2), (13)

where A is a constant which corresponds to the value of the mean curvature.

In arbitrary codimension, we will say that a k-dimensional submanifold K has constant
mean curvature if it is a boundary of a smooth (k+1)-dimensional submanifold ¢ which is a
critical point of the functional

Q — Vol(0Q) — AVol(Q).

These critical points are characterized by the fact that @ is a minimal submanifold such
that the mean curvature vector of the boundary K = 0@ satisfies:

Hyg = An,

where n is a unit vector field normal to K and tangent to @), in other words, if K has constant
mean curvature in @ and Hg has no components orthogonal to (). A k-dimensional sphere
Sk = S* x {0}, which is the boundary of a (k+1)-dimensional ball B**! in the Euclidean space
R™+ k < m, is an example of a constant mean curvature (in the given sense) submanifold
of codimension m + 1 — k.

We have proved the existence of constant mean curvature submanifolds of arbitrary codi-
mension in generic Riemannian manifolds in the above sense. Our result is a generalization
of the works of R. Ye [I1§] and F. Pacard and X. Xu [95] on constant mean curvature spheres
described in the subsection We construct constant mean curvature spheres of arbitrary
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codimension near nondegenerate critical points of the partial scalar curvature function which
is defined on the Grassmannian bundle of the ambient manifold. For any (k + 1)-dimensional
subspace II, C T,,M, we define the partial scalar curvature:

k+1
R () = — S (R(Ei, E))E;, Ej),

ij=1
where Ey, ..., Ex4q is any orthonormal basis for II,. Note that R,,4+1(7,M) is the standard

scalar curvature at p, while Ro(II,) is twice the sectional curvature of the 2-plane II,,.

We define a k-dimensional geodesic sphere Sf(Hp) in M as the image by the exponential
map of a sphere of radius ¢ in T),M:

k+1
Sk(IL,) = {expp <g > o E> ,0¢ Sk}.
i=1
We prove the following result:

Theorem 0.2.1. IfII, is a nondegenerate critical point of Ry11, then for all € sufficiently
small, there exists a constant mean curvature submanifold K.(Il,) which is a normal graph
over S¥(Il;) by some section with C** norm bounded by c=3, and dist (115, 11,) < ce?.

Let me give some details of our construction.

Study of the Jacobi operator in arbitrary codimension

Let ¥ be an embedded submanifold of M, either closed or with boundary. By definition, the
Jacobi operator Jx; about Y is the differential of the mean curvature with respect to normal
perturbations of ¥. Let ® € C2(3, NX) be a normal vector field to ¥ with ||®||co sufficiently
small. If 9% # ), we require also ® = 0 on 0%. Then

Se = { expy(®(q)), ¢ € X}
is an embedded submanifold. We define:
JE((I)) = V%H(Em)

s=0

Let wnyy and 7y, be the orthogonal projections to the normal and the tangent bundles of
>.. We denote the operators myy o Js; and nry o Js; by Jg and Jg respectively. The expression
of the operator J& is given by a standard formula [68]:

JY = AN + RicY + 6, (14)

where AY is the (positive definite) connection Laplacian on sections of N, and the other
two terms are the following symmetric endomorphisms of NY: the orthogonal projection
Ricg = mny o Ricy of the partial Ricci curvature Ricy, defined by
dim ¥
gRics X,Y) = Y g(R(E, X)E;,Y), forall XY €TuM,
i=1
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(note that the curvature tensor appearing on the right is the one on all of M, and is not the
curvature tensor for ¥); the square of the shape operator defined by

dim X
H(X) = > (hs(Ei, Ey), X)hs(E;, E;), forall X € ToM.
i,j=1

In general, Jx;(®) has a nontrivial component Jg (®) which is parallel to ¥. However, when
>’ is a minimal submanifold, we have Jg = (0. We will see that in the linearized problem that
we consider in our work this term is also canceled, so we do not need to make it explicit.

Linearized problem

Now, let K*, k < m be a constant mean curvature submanifold in M™*!. By definition, there
exists a minimal submanifold @) such that

K=0Q and Hgkg = An,

where n is a unit normal to K in . We would like now to perturb K into another CMC
submanifold with the same value of the mean curvature. Take a vector field ® € NK and
consider the submanifold K¢ = {expp(q)), peK } By definition, K¢ has constant mean
curvature if and only if

Kq> = aQq) and H(K@) = )\ng,

where Q¢ is a minimal submanifold, and ng is a unit normal to K¢ in Q¢. We see that Qg
and ng depend on the extension of the vector field ® defined on K = 0@ to the interior of
Q. Therefore, unlike the case of codimension 1, the problem is no longer local, which a priori
gives rise to supplementary difficulties. First of all, we prove the following result:

Lemma 0.2.1. If QQ is a nondegenerate minimal submanifold, there is a smooth mapping
® — Qo from a neighborhood of 0 in C>*(K,NK) into the space of (k + 1)-dimensional
minimal submanifolds of M with C>* boundary, such that Qo = Q and 0Qs = K. Moreover,
Qo 1is a geodesic graph over Q for some vector field Uy € TogM such that Ug|, = ®.

Secondly, we consider the functional
H(S) = H(KSCD) — Anse,

where nggp is a unit normal to Ky in the minimal submanifold ()s¢ and consider the linear

operator
Lo:=V .
Q 2H(s)|

Notice that mrx o Lo = 0. Indeed, let T" be a tangent vector field to Ksp. Then since
H(s)LKsqp and H(0) = 0, we find

g(H'(0),T) 4 g(#(0),T'(0)) = 0.
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Notation 0.2.1. We introduce the operator

Dg := tnk oV ong
ds sS=

Let Ug be the extension in @ of the vector field ® € NK defined in Lemma and Usg
the part of Ug linear in ®. We denote by [-]*- the orthogonal projection Tx M — NK N NgQ.
We have the following result:

Proposition 0.2.1. The operator D¢ satisfies

D = [Vals "

9

while the operator Lg s given by
Lo(®) =Nk o Jg(P) — ADg(®).

Linearization for K = Sk ¢ rm+!

As a next step, we apply the analysis described above to the case where K = S* = 9B**! in
the Euclidean space R™*1 k < m. Take ® € C?>(S*, NS¥) and decompose

® =[P —¢O, where ©€S* [0t c NS*NNBL

Then the operator 7y gk 0Jgr acts separately on these components. Using ((14) and Proposition

we find:
Tangk © Jgr (®) = Agr [B]F — (Agr + k) 6O,

while the operator Dgit1 acts only the component [®]+ of ® and is given by the Dirichlet-to-
Neumann operator, more precisely by,

0
_DBch,-l (‘I)) = % Uq>, where ABch,-l UcI) =0 and U@’Sk = [(I)]J‘,
where n = —0 is the unit normal to S* in B¥*+1,

Kernel of the linearized operator

Analyzing the properties of the operators given above, we find that the linear operator L gr+1
has a non-trivial kernel. More precisely, we have:

(Age +k) p=0= ¢ €span{®’, j=1,...,k+1} and
(Agi — k Dpgrir) []F = 0= [®]" € span {(c},©® +d,) Ey, j=1,...,k+1},

where E,,, =k +2,...,m+ 1 is an orthonormal basis of NBF+1,
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Construction of constant mean curvature submanifolds

Let II, be a (k + 1)-dimensional plane in 7, M and consider the k-dimensional geodesic sphere
SF(I,) defined in ([14), which is the boundary of a (k + 1)-dimensional geodesic ball which we
denote by BETL(I1,). We find:

H(BE () = () and H(SKIL,) ~ 2 n = 0()

where n is a unit normal to S¥(II,,) in BE+1(IL,). So, in some sense, S¥(I1,) is close to being
a constant mean curvature submanifold when ¢ is small enough. Unfortunately, similarly
to the case of codimension 1 described in the subsection [0.1.5] we cannot directly apply a
perturbation argument to deform S¥(IT,,) into a CMC submanifold, since for & small enough
the operator LB?“(H,,) is close to €72 Lgi+1 which, according to the previous paragraph, has
a nontrivial kernel.

We show then that for ¢ small enough, S¥(II,) can be deformed into a submanifold which
is a generalization to higher codimensions of a “pseudo constant mean curvature sphere”, or
a “pseudo bubble” described in [95] and [90] and which we discuss in the subsection
We prove that for all I, and all € small enough, there exists a minimal submanifold Q. (II,),
which is a small perturbation of B¥*1(Il,), whose boundary K.(II,) is a normal graph over
Sk(I1,) such that

m+1
H(KAT) ~ Sn=(@,6)n+ 3. ((60) +d) Ny
pn=k+2

for some @, ¢, € R¥! and d, € R. Here by n we denote a unit normal to K.(I,) in Q-(TI,)
and by Ny, p=k+2,...,m+ 1 an orthonormal basis of NQ.(II,).

Choice of the parameters

We consider the functional

£.(11,) = Voly (9Qu(11,)) — Vol (Q:(11,)),

defined on the Grassmannian bundle of T'M, which is a generalization to higher codimension
of the functional defined by F. Pacard and X. Xu [95]. We show that if II, is a critical
point of &, then K.(II,) is a constant mean curvature submanifold. Remark, that in the
construction of K.(II,) we have m + 1 degrees of freedom which correspond to infinitesimal
translations of the plane II,, and (k + 1) x (m — k) degrees of freedom which correspond to
rotations of II,, in T, M which transform II, to a plane orthogonal to II,. Thus, the number
of degrees of freedom matches exactly the number of equations in the system

i=0, & =0, dy=0, p=k+2... m+1

Finally, we obtain:
e R E(M)) = co + c1 62 Ry 1 (IT,) + O(eh),
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for some constants ¢y and ¢; independent of €, where Ry is the partial scalar curvature of
the manifold M. Thus, if II, is a nondegenerate critical point of Ry, then there exists a

plane IT; which is a critical point of & and such that dist (Hp, 1:[1;) < ce?

0.3 Chapter 2 : Free boundary minimal surfaces in the unit
3-ball

In the second chapter, which is a work in collaboration with A. Folha and F. Pacard, we
are interested in the existence of minimal surfaces embedded in the Euclidean unit 3-ball B3
which meet the unit sphere S?, the boundary of B3, orthogonally. Such surfaces arise as critical
points of the area functional among the surfaces embedded in B? whose boundaries lie on S2,
and, following [36], are referred to as free boundary minimal surfaces. We prove the existence
of two geometrically distinct families of free boundary minimal surfaces in B3, parametrized
by an integer n large enough which represents the number of boundary components.

Obviously, horizontal unit disks obtained by the intersection of the planes passing through
the origin with the unit 3-ball are examples of such free boundary minimal surfaces. J.C.
Nitsche [88] showed that these are the only free boundary solutions of topological disk type.

A. Fraser, M. Li [35] have formulated the conjecture that the only free boundary minimal
surface of topological type of an annulus which is properly embedded in B3 is the critical
catenoid:

1
(s,¢) € Rx S* =+ ———(coshs cos ¢, cosh ssin ¢, s), where s, tanhs, = 1.
s, cosh s,

In a recent paper, A. Fraser and R. Schoen [37] proved the existence of free boundary min-
imal surfaces 3, in B3 which have genus 0 and n boundary components for all n > 3. These
surfaces emerge in the study of maximizing metrics for the first eigenvalue of the Dirichlet-
to-Neumann operator on compact 2-manifolds. Let (M2 g) be a compact 2-dimensional
Riemannian manifold with nonempty boundary. Then the Dirichlet-to-Neumann operator
Dy : C>®(0M) — C*(0OM) is defined by:

_ da

D= 22
g4 oy’

where Agu=0 in M, |y, =u,

v being a unit normal to M in M. D, is a non-negative self-adjoint operator with discrete
spectrum, referred to as Steklov eigenvalues. Let o1(g) denote the first Stekloff eigenvalue
associated to a metric g. The authors prove that when M has genus 0 and n boundary com-
ponents, there exists a metric gyq, for which the maximum of oy (g) length,(0M) is achieved.
Moreover, the corresponding eigenfunctions define a minimal free boundary embedding of M
in B3. They remark that when n tends to infinity, the corresponding free boundary minimal
surface ¥, converges on compact sets of B3 to a double copy of the equatorial disk.

In our work, give an independent construction of ¥, for n large enough using perturbation
techniques. We also prove for all n large enough the existence of free boundary minimal
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surfaces 3, in B3 which have genus 1 and n boundary components, which is a new result that
doesn’t follow from [37].

To state our main theorem, let us identify R? with C x R and denote by &,, the group of
isometries generated by

(2,8) = (5,0), (2,t) > (z,—t), and (z,0) > (z-e 1)

Theorem 0.3.1. There exists ng > 0 such that for each n > ng there exists a genus 0 free
boundary minimal surface X, and a genus 1 free boundary minimal surface ¥, which are both
embedded in B> and meet S? orthogonally along n closed curves.

Both surfaces are invariant under the action of the group &, and, as n tends to infinity,
the sequence %, converges to a double copy of the unit horizontal (open) disk, uniformly on
compacts of B3, while the sequence 3,, converges to a double copy of the unit horizontal (open)
punctured disk, uniformly on compacts of B3\ {0}.

Our proof is in the spirit of the proof of existence of minimal surfaces in S® by doubling
by N. Kapouleas [61], N. Kapouleas and S.D. Yang [63], and D. Wiygul [I17]. Similarly to
[63], our constructions work only for a large number n of boundary components. The resulting
surfaces have the structure of two nearby parallel horizontal disks joined by n boundary bridges
which are close to scaled down copies of half-catenoids arranged periodically along the unit
horizontal great circle of S?, and a “neck” which is close to a scaled down catenoid with
vertical axis centered at the origin.

Let me give here a brief description of our construction of the family of genus 1 free
boundary minimal surfaces ¥,,. We will see that an analogous proof with several simplifications
gives the existence of a family of genus 0 free boundary minimal surfaces ¥,,.

Parametrization of the unit ball

First of all, we parametrize a neighborhood of the horizontal disk D? x {0} in the unit ball
B3 by a region in the unit cylinder D? x R in the following way:

X : D*xR— B X(z,t) = A(z,t) (2, B(2) sinht),
where

IREaE 1

B(z) and A=) = T B comnt = 1)
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In this parametrization, the boundary |z| = 1 of the unit cylinder corresponds to the boundary
5?2 of the unit ball. Moreover, each leaf t = ¢( is a constant mean curvature spherical cap with
H = 2 sinhtp which meets the boundary of the ball orthogonally (when ¢t = 0 we obtain the
unit disk D? x {0}).

Moreover, we find that the pull-back metric X*geuq in D? x R has the form

X*Gouet = A%(2,1) (|dz|2 + B*(z) dtg) . (15)

Vertical graphs in B3

An important role in our construction is played by vertical graphs over the horizontal disk
D? x {0} in B3 parametrized by

z€ D* = X(z,w(z)) € B> for w e C*D?). (16)

We find that the Taylor expansion of the mean curvature of such graphs in powers of w and
derivatives of w has the form:

Hyr(w) = Lygr w + Qgr(w, Vw, V2w), (17)
where )
Ly =AB)=A <1+2|Z|>

is the linearized mean curvature operator and @, is a smooth nonlinear function which
satisfies Qg(0,0,0) = DQy,(0,0,0) = D?Q,(0,0,0) = 0. Moreover, the graph meets
the boundary of the ball orthogonally if w satisfies the homogeneous Neumann boundary
condition:

orw|,_, = 0.

219
14227

and corresponds to tilting the unit disk D? x {0} in B3. The kernel can be eliminated by
imposing invariance under the action of a group of rotations around the vertical axis.

Remark that L, has a non-trivial kernel which consists of the functions 1—2sz1|2 and

Green’s Function

According to A. Fraser and R. Schoen, the surfaces that we would like to construct should
have the structure of connected sums of two nearby copies of the unit disk with small “bridges”
that are close to half-catenoids located symmetrically on the unit circle S' and a small “neck”
close to a catenoid centered at the origin.

As before, to get a better matching with the asymptotics of the catenoid, we first deform
D? x {0} using a suitable Green’s function and then perform the connected sum. We place the

2mmsi

poles of the Green’s function at z = 0 and at the n-th roots of unity z,, = e » ,m=1,...,n,
and look for the solution of the problem:
A(BF ) =C 50 in l)Q7
' (18)
oLy =3 ¢y, on S
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for some constants cg, c1, . . ., ¢,. If we assume that I';, is invariant under rotations by the angle
2T then solving is equivalent to finding a function G such that I',,(z) = G(2")/B(z) and:

AG =& by in D2,
(19)

arG—%G=51(51 on Sl.

for some constants ¢y, ¢1. A solution to can be found explicitly. We decompose G as a
sum of two functions, one of which has a singularity at z = 0, and the other a singularity at
z = 1. More precisely, we find that

Go(z) := —loglz| — n

satisfies AGo = 0 in D?\ {0} and 0,Go — %Go =0 on S'. On the other hand, the function

n ZOO 1
k=0

j=1

is harmonic in D?, and, since
HO(Z) = - log(l - Z)?

and
Or (ReHy) =ReHp_; on S', VkeN,

G satisfies: .
0,G1 — ﬁGl =0 on S'\{1}.

Finally, we put:
1

B(z)
where the coefficients 79,71 € R are carefully chosen when we “glue” the graph of I';, with a

“catenoidal neck” and “half-catenoidal bridges”. We find that I',, has the following expansion
in the neighborhoods of z = 0 and z = zy,:

(z):= (10 Go(2") + 11 G1(2")) ,

—n (20 + ) —2nmlog|z| + O(|z|* log |z|), as|z| =0

Ly(z) = —n (270 + 5 ) + 71 logn — 71 log |z — 2| (20)

+0(|z = zm| log |z — zm|), as |z — zm| = 0.

“Half-catenoidal bridges” and “catenoidal neck”

The role of boundary “bridges” connecting two “copies” of the unit disk could be played by
minimal stripes obtained by the intersection of Euclidean catenoids centered at the n-th roots
of unity with the unit sphere S?. The difficulty of this approach is the fact that those stripes
do not meet S? orthogonally. We prefer to embed “catenoidal bridges” in B? orthogonally to
S? but loosing the minimality condition.
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Let C_ :={( € C : Re(¢) < 0} be a half-plane and consider the conformal mappings

Tim 1 —
A (eC_»—>e2n LgeDQ
1-¢
which provide local diffeomorphisms from a neighborhood of ¢ = 0 in C_ to neighborhoods of
Z = z;, in the unit disk. Then we introduce the mappings

Ap 2 (C,7) €C xR (An(€),27) € D? x R,
and for € € (0, 1) parametrize the m-th “catenoidal bridge” Cem in B3 by

T 37T

(0,0) € [—0c,0¢] X [2, 2} — X oA, (% coshaew,ga) € Cem,

for some 0. > 1. Since the restriction of X o A,, to horizontal planes is conformal, C¢ ,
meets the boundary of the unit ball orthogonally and is close to the truncated Euclidean
half-catenoid scaled by the factor £ and centered at z = z,.

On the other hand, in the neighborhood of z = 0, the metric X™* g, given by , is close
to the metric |dz|2 + dt>. For £ € (0,1) we define the surface

X% 2 (s,0) € (—sz,82) x St (écoshsem,Qés) e R3, for some s:>> 1,
that is minimal with respect to |dz|? + %dt2. Then the surface Czy parametrized by
(5,0) € (—s2,52) x S' =+ X 0 XE%(s,9) € Ce,

is close to a truncated catenoid scaled by the factor é.

Matching

Taking the change of variables z = A, (% cosh o ew) away from o = 0, we can see the “half-
catenoidal bridge” C. , as a bi-graph over {z € D? : |z — z,,| > ¢} for the function

5
Gem = —¢ log§+5log|z—zm|+(’)(€3]z—zm\_2). (21)

On the other hand, taking the change of variables z = & cosh s e’ away from s = 0, we can
see the “catenoidal neck” Czg as a bi-graph over {z € D? : |z| > £} of the function

Geo=—¢ log% + & loglz] + OE |272). (22)
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Comparing and with the expansions of the function I';, in the neighborhoods of
2z = 2z, and z = 0 given by , we find that e, &, as well as the coeflicients 7 and 79, can be
expressed as functions of the number n of boundary components. Comparing the logarithmic
terms, we find:

Tm=¢ and nTy=E¢,

while the comparison of the constant terms gives:
E~e and n~log(l/e).

Finally, we shall effectuate the “gluing” in the regions where the resting terms are mini-
mized, that is when

|z| = €cosh sz ~ ez and |z — zm| ~ ecosh o, ~ £s.

Remark 0.3.1. These computations, together with the fact that constant functions are not
in the kernel of the linearized mean curvature operator Ly, give an idea why our construction
works only for n large enough.

Perturbation argument

At this stage, using the connected sum construction, we obtain for all n large enough a genus
1 surface that is embedded in B3 and meets B> orthogonally along n boundary components.
We will denote this surface by A, and refer to it as approximate solution. The next step is
to perturb A, into a minimal surface. Take a vector field Z in B? transverse to A, and let
¢ : B3 x (0,1) — B3 be the associated flow:

s _

dt - E(é(vt))a 5(]97 0) =D for pe B3'

We shall choose = in such a way that the surfaces A, ; := &(.A,) are embedded in B3 for all
t small enough and meet S? orthogonally along d.A,, ;. Finally, for w € C>%(A,), we consider
the surface A, (w) parametrized by

p € Ay = E(p,w(p)) € An(w).

Then A, (w) meets the boundary of the unit ball orthogonally when w satisfies the homoge-
neous Neumann boundary condition on 0A,:

gn(vgnw7 Na.An) = 07

where g, is the metric induced on A,, from the Euclidean metric and Ng4, is a unit normal

to 0A, in A,.

As in the construction described in the subsection the Taylor expansion of the mean
curvature of A, (w) in powers of w and derivatives of w has the form:

H(Ay(w)) = H(A,) + Ly w + Qp(w, Vw, Viw),
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where H (Ay,) is the mean curvature of the approximate solution, £,, is the linearized mean cur-
vature operator about A, and Q,, is a smooth non-linear function, which satisfies Q,,(0,0,0) =
DQ,(0,0,0) = 0. Our goal then is to solve the equation:

Low=—-H(A,) — Qn(w).

Working in appropriate functional spaces, we show that the norm of H(A,) tends to 0 when
n tends to infinity as e™"* for some a > 1. Then choosing an appropriate transverse vector
field =, we show that the operator £, has a right inverse which is not uniformly bounded in
n, but explodes as €™, for v < 1 that we choose. The result follows from Banach fixed point
theorem for contracting mappings applied to w + —£, ' (H(A,) + Qn(w)).

Linear analysis

In conclusion, let me say a few words about the properties of the linear operator £,,. We
show that the problem of small eigenvalues (eigenvalues that tend to 0 as fast as n tends to
infinity) can be solved by imposing symmetries to the constructed surface. More precisely,
in the regions of the “half-catenoidal bridges”, £, is close to the Jacobi operator about the
half-catenoid. Then the small eigenvalues generated by rotations and translations of the
catenoid are eliminated by imposing the symmetries w(o, ) = w(—o,0) = w(o, 27 —0) and the
homogeneous Neumann boundary condition dpw|,. (z8my = 0. All the other small eigenvalues
are eliminated by imposing invariance under rotations by the angle 2% Finally, in the region

where A,, is parametrized by a domain of the unit disk, £,, is close to the operator L, defined
in . So, we are interested in the solutions of the linear problem:

{ A(Bw) = f in D?\{0}

(23)
Orw =0 on S\ {z1,...,z.}.

After the change of variables z — 2", we find that is equivalent to a Poisson’s equation
with homogeneous Robin boundary data:

_ in 2
{AW_F D?\ {0} 24)

OW—-L1w=0 on S'\{1}.

A solution to can be found using the fact that for n > 2 the associated operator has no
bounded kernel. On the other hand, when n tends to infinity, (24)) converges to the Poisson’s
equation with homogeneous Neumann boundary data, which, in its turn, has a nontrivial
kernel. This (together with the presence of the eigenvalues generated by the dilation of the
catenoid) explains why the inverse operator “slightly” explodes when n tends to infinity.
However, this does not prevent us from applying Banach fixed point theorem in a ball the
radius of which tends to 0 when n tends to infinity much faster than the norm of £ ! explodes.
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0.4 Chapter 3: Nonconvex constant mean curvature surfaces
in Riemannian manifolds

In the third chapter, we propose a construction in a Riemannian 3-manifold (M, g) of a family
of nonconvex topological spheres with large constant mean curvature.

These surfaces are obtained as connected sums of two geodesic spheres of equal small radii
tangent at one point. Our construction is possible when the scalar curvature function R of
the ambient manifold has a critical point o, such that the Hessian of R at o.. has a simple
nonzero eigenvalue.

More precisely, let (M, g) be a smooth 3-dimensional Riemannian manifold. Let o, € M
be a critical point of the scalar curvature function R, A # 0 a simple non-zero eigenvalue
of Hess,., R, and vy € T, M the associated unit eigenvector. Take ¢ € Ry small enough
and consider the union G (e, 0c,v)) of two geodesic spheres of radius e tangent at o, with
centers located symmetrically with respect to o.. on the geodesic passing through o with
velocity vy. Our result reads:

Theorem 0.4.1. There exist e« € (0,1) and for every € € (0,e4) a surface S, of constant
mean curvature equal to % such that the Hausdorff distance between &, and Sy(e, 0cr,vy) is
bounded by a constant times 2. The surface S, is embedded if X\ < 0 and immersed if X > 0.

Let me give a short description of our construction.

Pseudo constant mean curvature spheres

Our goal is to construct a constant mean curvature surface which is close to a connected sum
of two geodesic spheres in M. The first difficulty then is the fact that the summands in our
construction do not have constant mean curvature. Let S:(p) be a geodesic sphere of radius ¢.
The first step would be to perturb S:(p) into some CMC surface. Unfortunately, as observed
R. Ye [118], F. Pacard and X. Xu [95] and S. Nardulli [90], in general, this is not possible, since
the Jacobi operator about S (p) is close to the operator =2 (Ag + 2) which has a nontrivial
kernel. As it is explained in the subsection in some sense, the best we can do is to
perturb S.(p) into a pseudo constant mean curvature sphere 3.(p) whose mean curvature is
constant up to an element of Ker(Ag2 + 2):

2
H(Ze(p))—g: <A7®>> 66‘927
for some vector A € R3. Here and below we denote by (-, -) the scalar product in R3. Moreover,

one can explicitly calculate [I18]:

27 e?
15

A=—"TZ UIR(p) + O(eY).
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“Catenoidal neck”

The next step is to describe surfaces that can play the role of the “neck” in the connected
sum construction. As it is pointed out in the subsection in the Euclidean space this role
is usually played by an element of the family catenoids:

Cyy ¢ (5,¢) € [=8p, 8y] x ST+ (1) cosh s cos ¢, n cosh s sing,ns),

where the parameter n € (0, 1) is referred to as the “neck size”. In the Riemannian case, one
can use geometric properties of the catenoid, given an embedding of C;, in M which, at least
for 1 small enough, is close to the identity in some chosen coordinates.

Consider A a smooth embedded surface in M, and let Ny denote a unit normal to A.
Given ¢ € A, then the mapping

Fi(q',2) = expy (2 Na(d'))

defines a diffeomorphism from a neighborhood of (¢,0) in A X R to a neighborhood of g in M.
Now let (y!,4%) — ((y',4?) be local coordinates on A with the origin at g. The mapping

FA,q(ylu y27 Z) = FA(C(Z/l?yQ)? Z)

defines a local diffeomorphism from a neighborhood of 0 in R? to a neighborhood of ¢ in M
and is referred to as Fermi coordinates. We call the surface &, ,:

(5,0) € [y, 59 x S+ Fp 4 (1 coshs cos ¢,n cosh s sing,ns) € €, ,

a “catenoidal neck”.

In our case, it is convenient to take A to be a geodesic disk of small radius. More precisely,
first we fix the “axis” of the “neck”, i.e. a minimizing geodesic v in M and a point gy € 7,
and then consider the geodesic disk A centered at gy and orthogonal to . For all ¢ € A we
have a “catenoidal neck” &, ,, with its “axis” “parallel” to .

Connected sum construction in M

Because of the absence of isometries in a generic Riemannian manifold M (namely the ab-
sence of translations and rotations), we cannot apply directly the procedure described for the
euclidean space in the paragraph [0.1.4] to perform a connected sum of two surfaces in M.
We could imagine an analogous procedure, if for a given family of surfaces, parametrized, for
example, by their location in M, we could assign to all d > 0 small enough, a pair of elements
the distance between which (in the sense of the distance between closed disjoint sets in the
metric space M) is equal to d.

Take d < e. It is easy to choose a pair of geodesic spheres of radius € the distance between
which is equal to d. For this it is sufficient to fix a point o € M, a vector v € T,M with
|v]l¢ =1 and to place the centers of the spheres at exp, (£ (¢ + ).
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In the next result we show that an analogous procedure also works for a family of pseudo
CMC spheres since the last ones are small perturbations of geodesic spheres. More precisely,
consider the family

ngt = Y (exp,(£tv)).

Then we have

Lemma 0.4.1. For all d € (0,1/2¢) there exists a unique t € (g,2¢) such that the distance
between the surfaces YT = ngt s equal to d and is realized by a unique geodesic 7y, a priori
different from t — exp,(tv).

X2 4 ZF
/d
(0]
exp,(tv)

Remark 0.4.1. We will see that we also need to perform a connected sum of a pair of in-
tersecting “pseudo bubbles”. In this case, we cannot talk about the “distance” between the
surfaces, but prove that there exist two intersecting pseudo constant mean curvature spheres
YE, such that the interior of T N X< is crossed by a unique minimizing geodesic ~y of length
d which intersects Zgﬁ orthogonally.

In what follows, we will have two connected sums, one embedded and one immersed, and
we will see in the final argument that, depending on the sign of the eigenvalue X # 0 of the
Hessian of the scalar curvature R, one of these connected sums can be perturbed into a constant
mean curvature surface.

Next, we describe the “gluing procedure” between two pseudo CMC spheres and a “catenoidal
neck”. Let v : [0,1] — M be the geodesic that realizes the distance between ¥* and consider
a small geodesic disc A orthogonal to v at go = y(1/2). For all n > 0 small enough and all
q € A there is a “catenoidal neck” C, , which is an embedding of the euclidean catenoid via
Fermi coordinates. Notice that when ¢ = qg, the “axis” of the “neck” is orthogonal to Eai,
and otherwise we create a small angle between the normals to ¥F and the “axis”.

X A ¥

-
o R
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Using the ideas of R. Mazzeo, F. Pacard and D. Pollack [77], to get a better matching with
the asymptotics of the catenoid, first we deform ¥ with Green’s functions associated to their
Jacobi operators and then perform the connected sum.

Green’s functions

Let JE} be the Jacobi operators about the pseudo CMC spheres fo. We would like to define
and to study the Green’s functions I'* associated to ngi with poles at pt € Egc, namely, the

solutions to the problem:
JyeTF = —2w6,e in 57 (25)

where d,+ are the Dirac masses at pT. On the other hand, parametrizing ¥+ by the Euclidean
sphere S?, and we find that ng[ satisfy:

Jyx = e ?(Ag+2)+ L, where |L ullco.as2y < cllulleza(s2)-

Unfortunately, the fact that the operator Ag2 + 2 has a nontrivial kernel prevents us from
finding directly I'* and getting reasonable estimates which would be uniform in ¢ when &
tends to 0. However, instead of , we can solve the problem:

Jyx TF = =216, + (B*, 0), (26)

for some vectors BT € R3. Moreover, an explicit computation gives

Bt = ; O(p*) + O(1).

Approximate solution

Let the poles of the Green’s functions p* be the points of intersection of the geodesic v with
the pseudo bubbles. We can parametrize ¥F in the neighborhood of p* as normal graphs over
the geodesic disc A. In geodesic normal coordinates in A centered at ¢ we have:

I'*(y) = ¢* £log|y| + O(ly|log |y|). (27)

On the other hand, the “catenoidal neck” &€, , can be seen as a bi-graph over A of the
function G;:

n _
Gy = —n log +nlogly| + O (n* |y ~2) . (28)

Finally, comparing and , we show that for all o € M, v € T,M with |jv[|y = 1,
n > 0, and ¢ € A with n and dist(q, gp) small enough, one can choose the “distance” d(o, v, 7, q)
between X in such a way that the constant terms in the expansions of nT'* and G, , match
exactly. This distance satisfies |d — 2nlog(2/n)| < ¢n. Next, we “glue” the graphs together

with the help of a cut-off function at |y| ~ r]%.
At this stage, for € small enough, the resulting surface, which we will denote by A., depends
on 8 geometric parameters: the point o € M (3 degrees of freedom), the unit vector v € T, M

(2 degrees of freedom), the “neck size” 7 (1 degree of freedom), and the “location” ¢ of the
“axis” of the “neck” in the geodesic disk A (2 degrees of freedom).
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Perturbation argument

As a next step, we shall perturb A. into a constant mean curvature surface provided ¢ is
chosen small enough. Let = be a smooth vector field defined in a neighborhood of A, in M
and transverse to A, and let £ : M x (0,1) — M be the associated flow:

s _

dt—E(ﬁ(-,t)), £(p,0)=p, Vpe M.

Take a function w € C?(A.) small enough and let us denote by A.(w) the surfaces parametrized
by p € A: — &(p,w(p)) € A:(w). Then, the expansion of the mean curvature of A.(w) in
powers of w and derivatives of w can be written in the form:

H(A.(w)) = H(A.) + Lo w + Q- (w, Vw, V2w),

where H(A.) is the mean curvature of the approximate solution, L. is the linearized mean
curvature operator about A, and Q. is a non-linear function which satisfies:

Q8(07 07 0) = DQ5(07 0, 0) - 0

Our goal is to solve the equation:
2
Low= - H(A.) — Q.(w, Vw, V?w).

If £. were an invertible linear operator with its inverse uniformly bounded in £ when ¢ tends

to 0, we could apply Banach fixed point theorem to w + £! (% — H(A:;) — Q-(w)) in a ball
of an appropriate Banach space, where the radius of the ball would be determined by the

norm of H(A:) — 2.

First, we study the mean curvature of A.. We will assume that n and dist(q,qo) are
bounded by a suitable power of €. Using the minimality of the catenoid in the Euclidean
space, we show that in the “neck region” the L norm of H(A.) tends to 0 when ¢ tends to
0. On the other hand, will make H(A.) — % very small in a suitable topology which will take
in the account the fact that the area of “neck region” tends to 0 much faster than the area of
the rest of A, when ¢ tends to 0.

Let x* € C®(A.) be some cut-off functions supported in the regions parametrized by
the pseudo CMC spheres. Then, using the expression for the mean curvature of ¥ and the
equation satisfied by the Green’s functions, we find:

H(A) — § (O, 0) £ X (C,0) + e,

where C*F € R3 satisfy:

-2

2T UR(0) + L 0%) + O, (29

15

ct =—

and H. tends very fast to 0 when ¢ tends to 0 in the appropriate topology. Here ot are the
“centers” of the pseudo bubbles ¥F and p* are the poles of the Green’s functions.
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Next, we study the properties of the linear operator £.. We remark the presence of small
eigenvalues of L. (eigenvalues that tend to 0 as fast as ¢ tends to 0) which can be identified
knowing the structure of L..

We find that in the regions parametrized by pseudo CMC spheres, L. is close to the
operator Ag2 + 2 which has a 3 - dimensional kernel consisting of the coordinate functions
0!, 02 63

On the other hand, in the “catenoidal neck” region, L. is close to the Jacobi operator about
the Euclidean catenoid. Recall, that the Euclidean catenoid is degenerate and in particular
has 2 nontrivial Jacobi fields given by the functions CC(;)SSh‘bs and ngghd)s which decay at infinity
and correspond to the horizontal translations of the catenoid.

We denote by K. the space of eigenfunctions of L. corresponding to small eigenvalues, and
following N. Kapouleas, we refer to it as approximate kernel of L.. Using the ideas described
above, we find that the dimension of K. is equal to 8, matching exactly the number of free
parameters in our construction.

We will use a Lyapunov-Schmidt reduction argument, applying Banach fixed point theorem
in the space of functions orthogonal to K¢, to perturb A, into a surface whose mean curvature
H satisfies:

2 =
H—--= ZA’ ®,, where R =span{®;, i=1,...,8}, (30)
R
provided ¢ is chosen small enough.
Choice of the parameters

In the final argument, we will explain how to choose the 8 geometric parameters appropriately
to ensure that H = % The coefficients A" in depend continuously on o € M, v € T,M,
n € (0,1) and a € R?. We show that for ¢ small enough the system of equations

At=0,i=1,...,8, (31)

can be written in the form (Id + F')(-) = 0 for a function F' bounded uniformly on o,v,7, a,
and apply the Schauder’s fixed point theorem in a ball of R® in order to find a solution.

First 6 equations. We define the basis {®;} of the approximate kernel &. in such a way
that its first 6 elements are close to the elements of

Ker(Ag2 + 2) = span{0', 02, 03},

defined in the regions parametrized by the pseudo bubbles. So, using the structure of the
mean curvature of A, given by , we write the first 6 equations in (31]) in the form:

27 e?
15

1
VIR(0%) + 31 e20(p*) +e*F(o,v,1m,a) = 0. (32)
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With a slight abuse of notations, we can write:

pT = Fv + O(e?), when A. is embedded

of =otev+ O(?),
pT =40+ O(?), when A, is immersed.

First, let us assume first that A, is embedded and take o.. a critical point of the scalar
curvature: VIR (o.-) = 0. Then is equivalent to the following 6 equations:

{ _27{§2 Hessoch(O — O¢r — 62}) - %775_2 v+ 64 F(07 v, n, a) = 07 (33)

—212° Hess,, R(0 — 0 +£0) + 21720 + €4 F(0,0,n,a) = 0.
This gives
0 — Opp +52F(o,v,17,a) =0.

Next, let vy be the unit eigenvector corresponding to a simple eigenvalue A # 0 of Hess,_, R.
If we write
V=0 + 0,

then the projection of to vy gives:

4w \e®
15

"+ +e% F(o,v,m,a) = 0.

In particular we see that since n > 0, the solution exists only if A < 0. In the case where
A > 0, we should choose the immersed approximate solution.

Finally, projecting on the subspace of R3 orthogonal to vy, gives the equation:
(Hess,,, — A1d) 0 + ¢ F(o,v,n,a) =0,
which can be rewritten in the form:
v+¢e F(o,u,m,a) =0.
Thus if the solution of exists, it satisfies:

disty(0,00r) < ce?, Z(v,v)) < ce, ‘n — sign(A) )\55‘ < ceb.

Last 2 equations. To understand the structure of the last two equations, we project
on the functions ®; and ®g supported in the neck region and close to Cccf’ssh‘i and ngghd)s.
Taking the change of coordinates

y = n cosh s(cos ¢, sin ¢),
we find that away from s = 0, we have ®¢g4; ~ %, 1=1,2.

To explain why these equations can be written in the form (Id 4+ F')(-) = 0, we propose to
consider the following example.
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Let Py be the horizontal plane in R? and C, the catenoid scaled by the factor n with vertical
axis centered at the origin. Recall, that C,, can be written as a bi-graph over {y € Fy : |y| > n}
of the function

2 _
Gy(y) =log  +n logly| + O’ |y ~?).
On the other hand, let P* be two planes parametrized as graphs over Py of the affine functions
+ 2 11, 42

u™(y) ::tlogﬁ—i—c1 Yyt yl.
Take p > 0 and let D?(p) be a unit disk in Py of radius p centered at the origin. We denote
by x a cut-of function which satisfies

x=0 in D?*p/2) and x=1 in P\ D?*(p).

Finally, we remark that the mean curvature of the surface parametrized by

(v, x(9) u*(y) £ (1 = x(v)) Gy (»))

is equal to 0 everywhere but D?(p) \ D?(p/2). On the other hand, for 17 small enough, in this
region the largest terms in the projection of the mean curvature to ﬁ are given by

i

Ay (uh —u)) Lo = o, (x (ut —u~ Y d 34
/ N U /BW (0 =)y, fpde (30

Fin @ =0 2 5)

L
—p(C C).

do

r=2p

7 i

In particular, we see that the largest terms in this projection are determined by the slopes of
the planes P*.

Let us go back to our construction. We can see the regions of the approximate solution
where we effectuate the gluing, as graphs over the geodesic disc A of the functions

u(y) = u*(q) + Vu(q)y + O(|y[*), (ui(qo) - igy Vu*(g) = 0) :
In particular, the role of the slopes will be played by Vu™(q) which are nontrivial when ¢ # qo,
or in other words, when we vary the angle between the “axis” of the “neck” and the normals
to the pseudo bubbles in the connected sum construction. A calculation similar to gives
the equations:
Vu'(q) — Vu~(q)

p

+F(07U7777a) 207
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which, using the fact that 4™ has a local maximum and v~ a local minimum at ¢g, can be
written in the form:

Hessq, (u™ —u™) (¢ — qo0) + pF(0,v,1,a) = 0.

In our construction, we take p = e* and roughly speaking we obtain dist(q, o) < ce?.

Finally, by Schauder’s fixed point theorem, there exists a set of parameters (o,v,n,a)
for which A%(0,v,7n,a) = 0. The corresponding surface, which we denote by &, has constant
mean curvature and is embedded when A < 0 and immersed with self-intersections when A > 0.
Finally, let &4(e,0cr,vy) be the union of two geodesic spheres S:(exp,,, (£evy)) tangent at
0cr- Then the Hausdorff distance between &, and S4(e, 0, vy) is bounded by a constant

times 2.

0.5 Perspectives of future work

In conclusion, I would like to say a few words about further possible developments of our
results.

The proposed definition of constant mean curvature submanifolds of arbitrary codimension
introduces a whole new class of geometrical objects which are worth studying, even in R3. A
curve in R? has constant mean curvature according to the above definition, if it is the boundary
of a minimal surface and if its extrinsic curvature is equal to the geodesic curvature and is
constant. Following the work of J.C.C. Nitsche on free boundary minimal surfaces [88], one
can prove that the only compact constant mean curvature curve that bounds a topological
disk, is a circle S bounding a flat disk D?. Unfortunately, further topological classification
appears to be a difficult task. It is likely that there exist no constant mean curvature compact
curves bounding a minimal surfaces of topological type of an annulus, but we have no proof
of this fact. There are many examples of noncompact minimal surfaces bounded by constant
mean curvature curves: minimal surfaces bounded by straight lines (the examples of Riemann
in R? and B. Daniel [I8] in H?), a portion of the plane contained between two parallel lines
or a portion of the helicoid contained between two parallel helices. To give further evidence
that this notion of constant mean curvature surfaces is the right one for codim > 1, we would
like to prove the existence of singly periodic examples paralleling the construction of Delaunay
surfaces (which can be obtained by gluing infinitely many spheres arranged along an axis using
small ”catenoidal necks*), which could be obtained by gluing techniques from flat disks and
pieces of helicoids contained between two straight lines.

We hope that the second construction can be generalized to prove the existence of higher
genus free boundary minimal surfaces in B3.

Finally, the third construction should generalize to the case of any finite number of spheres
which would give examples of constant mean curvature surfaces of arbitrary genus in Rieman-
nian manifolds.
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0.6 Introduction aux résultats de these en francais

Chapitre 1: Problemes isopérimétriques en codimension quel-
conque

Dans le premier chapitre, qui est un travail en collaboration avec R. Mazzeo et F. Pacard, on
propose une généralisation de la notion classique d’hypersurface a courbure moyenne constante
a des sous-variétés de codimension quelconque. On prouve également l’existence dans des
variétés riemanniennes compactes de sous-variétés & courbure moyenne constante (dans le
sens introduit) qui sont des perturbations des spheres géodésiques de petit volume.

Soit K une sous-variété plongée d’une variété riemannienne compacte (M™*1 g). Par
définition, le vecteur courbure moyenne de K est défini comme la trace de la seconde forme
fondamentale de K:

hK(X,Y) =7nnyxVxY, pour XYeTK, et Hg=Trhg,

ou V est la connexion de Levi-Civita sur M associée a la métrique g et Ty est la projection
orthogonale Tx M — NK sur le fibré normale de K. En codimension 1, lorsque dim(NK) =
1, on dit que K est a courbure moyenne constante quand la fonction courbure moyenne
g(Hp, Nk ) est constante. Il existe déja plusieurs extensions de la notion de courbure moyenne
constante en codimension supérieure, parmi lesquelles, celles qui demandent que le champ de
vecteurs Hp soit parallele ot harmonique. En s’appuyant sur les idées de Almgren [5], on
propose d’adapter une définition directement variationnelle.

F. Almgren [5] a généralisé le probleme isopérimétrique classique aux sous-variétés de
codimension quelconque, ce qui consiste a résoudre le probleme minmax suivant :

max < min Volk+1(Q)>,

K : Vol (K)=c \Q:0Q=K

ol ¢ est une constante. Almgren prouve que les solutions dans 'espace euclidien R™*! sont
les spheres rondes, tandis que les questions d’existence et de régularité des solutions dans des
variétés riemanniennes ont été étudiées dans le travail de F. Morgan et M.C. Salavessa [87].

Les hypersurfaces a courbure moyenne constante peuvent étre vues comme bords des points

critiques de la fonctionnelle
Q — Vol(9Q2) — A Vol(Q2), (35)

ol A est une constante qui correspond a la valeur de la courbure moyenne.

En codimension supérieure, on dit qu'une sous-variété K de dimension k < m est a cour-
bure moyenne constante si K est un bord d’une sous-variété () qui est point critique de la
fonctionnelle

Q — Vol(8Q) — AVol(Q).

Ces points critiques sont caractérisés par le fait que ) est une sous-variété minimale telle
que la courbure moyenne du bord K = 9@ vérifie :

HK:)\TL,
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ou n est une normale unitaire de K dans ), autrement dit si K est a courbure moyenne
constante dans @) et si Hx n’a pas de composantes orthogonales a (). Dans I’espace euclidien
R™+1 1a sphere S* = S* x {0} de dimension k¥ < m (le bord de la boule B**! de dimension
k+1), est un exemple de sous-variété a courbure moyenne constante de codimension m+1—k.

Dans notre travail, on propose une généralisation du théoreme de R. Ye [I18] qui prouve
I'existence de familles d’hypersurfaces a CMC qui sont des petites perturbations des spheres
géodésiques centrées aux points critiques non-dégénérés de la fonction courbure scalaire, et
du résultat plus récent de F. Pacard et X. Xu [95] qui construisent de telles familles dans
le cas ou la courbure scalaire n’est pas une fonction de Morse. Par analogie, on obtient des
familles de sous-variétés a CMC associées aux points critiques non-dégénérés d’un invariant
géométrique qu’on appelle courbure scalaire partielle, défini sur le fibré grassmannien de la
variété ambiante. Pour tout sous-espace II, C T, M de dimension (k + 1), on définit :

k+1
Ri () = — S (R(Ei, E))E;, Ej),
ij=1
ou E, ..., By est une base orthonormée de II,,. On remarque que Rp,41(7,M) est égale a la

courbure moyenne standard en p, tandis que R2(IL,) est le double de la courbure sectionnelle
du plan II,,.

On définit la sphere géodésique S¥ (IL,) associée au plan IT,, comme I'image par I’application
exponentielle de la sphere de rayon ¢ centrée en 0 dans I, :

k+1
Sk(IL,) = {expp <g dY o E> , 0¢ S’f}.
i=1
On prouve le résultat suivant :

Théoréme 0.6.1. Soit II, un point critique non-dégénéré de Ryy1, alors pour tout € suff-
isamment petit, il existe une sous-variété a courbure moyenne constante K.(II,) qui est un
graphe normal sur la sphére géodésique Sf(ﬁﬁ) d’une section de norme C>® bornée par ce3,
et dist (I1;,11,) < ce?.

Voici une courte description de notre construction.

L’étude de l'opérateur de Jacobi en codimension quelconque

Soit 3 une sous-variété plongée dans M, fermée ou a bord. L’opérateur de Jacobi Jy, de ¥ est
défini comme différentielle de la fonctionnelle courbure moyenne par rapport aux perturbations
normales de . Soit ® € C2(X, N¥) un champ de vecteurs normal & ¥ avec la norme ||®||co
suffisamment petite. Si O # (), on demande également ® = 0 sur 9X. Alors,

Sg = { exp,(®(q)), ¢ € T}

est une sous-variété plongée. On définit :

Is(®) = V%H(qu))

s=0 '
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Soient myy et 7wy les projections orthogonales sur les fibrés normal et tangent de 3.
On utilise les notations Jg et Jg pour les opérateurs myy o Jx; et mpy o Jx respectivement.
L’expression explicite de J& est donnée par la formule standard [68] :

JY = AN + Ric¥ + 5%, (36)

ou Ag est le Laplacien (défini positif) qui agit sur les sections de N, et les deux autres
termes sont des endomorphismes symétriques suivants de NY : la projection orthogonale
Ricg = 7y o Ricy de la courbure partielle de Ricci de X définie par

dim %
g(Ricy X, Y) = Z g(R(E;, X)E;,Y), pourtous X,Y €TxM,
i=1
(ici le tenseur de courbure R est celui associé a la variété ambiante M); le carré de 'opérateur
de forme défini par

dim ¥
9 (X) = (hs(EBi, Ey), X)hs(E, Ej),  pour tous X € Te M.
ij=1

En générale, Jy(®) a une composante non-triviale JZ& (®) parallele a . Néanmoins, quand
3. est une sous-variété minimale, on a Jg = 0. On verra que dans le probleme linéarisé qu’on
étudie ce terme parallele disparait également, et pour cette raison, on n’a pas besoin de le
rendre explicite.

Probléme linéarisé

Soit K*, k < m une sous-variété fermée & courbure moyenne constante plongée dans M™*1,
Par définition, il existe une sous-variété minimale @) telle que

K=0Q et Hg=An,

ou n est une normale unitaire de K dans ). On aimerait perturber K en une autre sous-
variété dont la courbure moyenne est a nouveau égale a A\. Plus précisément, on cherche un
champ de vecteurs ® € NK tel que la sous-variété K¢ = {expp(fﬁ(p)), pe K } vérifie

Ko =0Qs et H(K«p):/\nq),

ol Q¢ est une sous-variété minimale, et ng est une normale unitaire de K¢ dans )g. On voit
que la construction de Q¢ et ne dépend de 'extension a I'intérieur de (Q du champ de vecteurs
® défini sur K = dQ. En conséquence, contrairement au cas de codimension 1, le probleme
n’est plus locale, ce qui a priori engendre des difficultés supplémentaires. En premier lieu, on
prouve le résultat suivant :

Lemme 0.6.1. Soit () une sous-variété minimale non-dégénérée. Alors il existe une appli-
cation lisse ® — Qg d’un voisinage de 0 dans C>*(K, NK) sur l’espace des sous-variétés
minimales de M, telle que Qg = Q et 0Qs = Ko. De plus, Qo est un graphe géodésique sur
Q d’un champ de vecteurs Uy € ToM tel que Ug|; = P.
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L’étape suivante est de considérer la fonctionnelle
seR— H(s) = H(Ksp) — Anso,

ol nsp est une normale unitaire de Kgp dans la sous-variété minimale Q.3, et I'opérateur
linéarisé

LQ =V 9 H(S) .

ds s=0

On remarque que 77 o Lo = 0. En effet, soit 7' un champ de vecteurs tangent a Kp. Or
H(s)LKsp et H(0) =0, donc

g(H'(0),T) + g(#(0),T'(0)) = 0.
Notation 0.6.1. On introduit l'opérateur

Dg :=7mnKk o Vong
ds

s=0

Soient Ug 'extension dans @ du champ de vecteurs ® définie par Lemme (0.6.1)) et Ugp sa
partie linéaire en ®. On note par [-]* la projection orthogonale Tx M — NK N Nig@Q. On
obtient le résultat suivant :

Proposition 0.6.1. L’opérateur Dg vérifie
= I
Dq = [an‘I”K}

tandis que l'opérateur Lg est donné par
Lo(®) =nmnk o Jg(®) — ADg(®).

Linéarisation pour K = S* ¢ R™t!

On applique 'analyse décrite ci-dessus au cas particulier o K = S¥ = 9B**! dans l'espace
euclidien R+ k < m. Soit ® € C*>*(S*, NS¥). On décompose

d=[0t-¢0, ou O©cSk [Pt e NS NNguBL
Alors, un calcul explicite montre que 'opérateur mygr o Jgr vérifie
sk 0 Jgi (D) = Agr [P — (Age + k) 66,
tandis que Dpr+1 est donné par 'opérateur Dirichlet-to-Neumann :
U,
D (®) = aTZD’

ou U@ENQ, Apri1 U@ZO et ﬁ@ Sk:[q)]l.
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Noyau de ’opérateur linéarisé

Une analyse simple des propriétés de Lgr+1 montre que cet opérateur a un noyau non-trivial,
plus précisément, on trouve que :

(Agr +k) ¢ =0= ¢ €span{©’, j=1,...,k+1} et
(Age — kD) [0]F = 0= [®]* € span {(c],©7 +d,) Ey, j=1,...,k+1},
ou E,, p=Fk+2,...,m+ 1 une base orthonormée de NBF+1,

Argument perturbatif

Soit II, C T, M un plan de dimension k + 1 et S¥(I1,) = OBXT1(I1,,) la sphere géodésique, le
bord de la boule géodésique, associées a II,. On trouve :

H(BE () = 0) et H(SHT,) ~ “n=0)

oll n est une normale unitaire de S¥(II,) dans B¥*1(I,). C’est donc naturel, au moins pour
e suffisamment petit, de s’attendre & pouvoir perturber S¥(II,) en une sous-variété & cour-
bure moyenne constante. Malheureusement, 1’opérateur LB?“ (IL,) est proche de l'opérateur
£72 Lgi+1 qui, selon le paragraphe précédent, a un noyau non-trivial, ce qui nous empéche de
directement appliquer un argument perturbatif.

Néanmoins, on peut utiliser la méthode de réduction de Lyapunov-Schmidt et perturber
SF(I1,) en une sous-variété qui est & courbure moyenne constante a un terme de Ker(Lg) prés.
Plus précisément, on prouve que pour tout I, € Gi41(T'M) et tout € assez petit, il existe une
sous-variété minimale Q. (II,) qui est une petite perturbation de BE+1(IL,), et dont le bord
K_.(T1,) est un graphe normal sur S¥(I,) tel que

k . m—+1 _
H(K(Ily)) — = (@,©)n+ Z ((Cus ©) + dp) Ny,
pn=k+2
avec d, Gy, € REHL et d, € R. Ici, les champs de vecteurs n, Niyo, ..., Np41 forment une base

orthonormée de NK_(II,) et n désigne une normale unitaire de K. (II,) dans Q:(II,).

Choix des parameéetres

On considere la fonctionnelle

£:(11,) := Vol (9Q-(T1,)) ~ = Vol (Q-(1T,)).

définie sur le fibré grassmannien de T'M et introduite dans le cas de codimension 1 par F.
Pacard et X. Xu [95]. On montre que si II, est point critique de &, alors K (II,) est une
sous-variété a courbure moyenne constante. On remarque que dans la construction de K. (II,)
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on a m + 1 degrés de liberté qui correspondent aux translations infinitésimales du plan II,,
et (k+1) x (m — k) degrés de liberté qui correspondent aux rotations de II, dans T,M qui
transforment II,, en plans orthogonales a II,,. Ainsi, le nombre de degrés de liberté correspond
au nombre d’équations dans le systeme

a=0, ¢,=0, d,=0, p=k+2,...,m+1.

Enfin, on obtient
€_k 5E(Hp) =cy+C1 2 Rk+1(Hp) + 0(54),

ol Ry1 est la fonction courbure scalaire partielle de M et ou les constantes cg, ¢; ne dépendent
pas de . En particulier, pour tout point critique non-dégénéré II,, de Ry 1, il existe un point

critique ﬁﬁ de & tel que dist <Hp, fIﬁ) < ce?, d’ou suit notre résultat.

Chapitre 2 : Surfaces a bords libres dans la boule unité eucli-
dienne B3

Dans le deuxieme chapitre, qui est un travail en collaboration avec A. Folha et F. Pacard,
on s’intéresse a l’existence des surfaces minimales plongées proprement dans la boule unité
euclidienne B3 qui rencontrent la sphére unité S2, le bord de B3, de maniére orthogonale.
Ces surfaces apparaissent comme des points critiques de la fonctionnelle d’aire parmi les
surfaces plongées dans B3 dont les bords varient sur S2, et, d’apres [36], sont appelées surfaces
minimales a bords libres. On prouve 'existence de deux familles géométriquement distinctes
de telles surfaces, paramétrées par un entier n suffisamment grand qui représente le nombre
de composantes connexes du bord.

Les disques équatoriaux obtenus par 'intersection des plans passants par ’origine avec la
boule unité, sont des exemples de surfaces minimales a bords libres. J.C. Nitsche [88] a montré
que ce sont les seules solutions du type topologique disque.

A. Fraser, M. Li [35] ont formulé la conjecture selon laquelle modulo les isométries, la seule
surface minimale & bords libres du type topologique anneau plongée proprement dans B® est
le caténoid critique :

(s,0) e R x St (cosh s cos ¢, cosh ssing, s), ol s, tanhs, = 1.

Sy cosh s,

Dans un travail récent, A. Fraser and R. Schoen [37] ont prouvé I'existence pour tous n > 3
de surfaces minimales & bords libres dans B3 qui ont un genre 0 et n composantes connexes
de bord. Ces surfaces émergent dans ’étude des métriques maximisantes pour la premiere
valeur propre de 'opérateur Dirichlet-to-Neumann sur les variétés compactes de dimension 2.
Plus précisément, soit (M?,g) une variété riemannienne & bord. Pour u € C*(9M), soit
Pextension harmonique (calculée par rapport a la métrique g) de u dans M. Alors 'opérateur
Dirichlet-to-Neumann est défini par :

_ od

Dg(u)_ aaM’
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ol v est une normale unitaire de M dans M. D, est un opérateur auto-adjoint a spectre
discret, appelé valeurs propres de Steklov. Soit o1(g) la premiere valeur propre de Steklov
associée a la métrique g. A Fraser et R. Schoen montrent que si M a un genre 0 et n
composantes connexes de bord, il existe une métrique gmq, pour laquelle le maximum de
o1(g) length, (OM) est atteint. De plus, les fonctions propres correspondantes définissent un
plongement minimal & bords libres ¥,, de M dans B3. Ils remarquent que quand n tend
vers 'infinie, la suite ¥, converge sur les compacts de B> vers une copie double d'un disque
équatorial.

Dans notre travail, on propose une construction indépendante de ¥, pour n assez grand
utilisant des techniques perturbatives. On prouve également ’existence de surfaces minimales
A bords libres ,, dans B3 qui ont un genre 1 et n composantes connexes de bord pour n assez
grand, ce qui un nouveau résultat qui ne découle pas de [37].

Avant d’énoncer notre théoreme, on identifie R? avec C x R et introduit un groupe
d’isométries &,, généré par

(2,8) = (Z,0), (2,t) = (z,—t), et (z,8) (z-en,t).

Théoreme 0.6.2. Il existe ng > 0 tel que pour tout n > ng il existent une surface minimale
a bords libres ¥, de genre 0 et une surface minimale a bords libres 3, de genre 1 plongées
dans B3 qui rencontrent S? de maniére orthogonale le long de n courbes fermées.

Les deux surfaces sont invariantes par Uaction du groupe &, et, quand n tend vers linfinie,
la suite ¥, converge vers une copie double du disque horizontal (owvert), uniformément sur
les compacts de B®, tandis que la suite 3, converge vers une copie double du disque épointé,
uniformément sur les compacts de B3\ {0}.

Notre preuve est dans l'esprit des preuves d’existence de surfaces minimales dans S par
dédoublement proposées par N. Kapouleas [61], N. Kapouleas et S.D. Yang [63], et D. Wiygul
[117]. Comme dans [63], notre construction marche quand le nombre n de composantes con-
nexes du bord est assez grand. Les surfaces qu’on obtient ont la structure de deux disques
horizontaux paralleles connectés par n “demi-ponts” caténoidaux arrangés le long du cercle
horizontal de S? de maniere périodique et par un “cou” caténoidal & axe vertical centré a
I’origine.

Voici une courte description de notre construction d’une famille de surfaces minimales a
bords libres de genre 1, et on verra qu’une preuve analogue avec quelques simplifications donne
Pexistence d’une famille de surfaces minimales a bords libres de genre 0.
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Paramétrisation de la boule unité

Premiérement, on parametre un voisinage du disque horizontal D? x {0} dans la boule B3 par
une région du cylindre D? x R de maniere suivante :

X : D*xR— B X(z,t) = A(z,t) (2, B(2) sinht),

ou

1+ z)? 1
B = t Az, t) = .
(2) 2 ¢ (1) 1+ B(z)(cosht — 1)
Dans cette paramétrisation, le bord |z| = 1 du cylindre correspond au bord S? de la boule

unité. De plus, chaque feuille t = ty est une calotte sphérique a courbure moyenne constante
H = 2 sinhty qui rencontre le bord de la boule de maniére orthogonale (quand ¢t = 0 on
obtient le disque unité D? x {0}).

On trouve que la métrique X*geue dans D? x R est de forme
X*Gewar = A%(2,1) (|dz|* + B%(z) dt?) . (37)

Graphes verticaux dans B®

Un réle important dans notre construction est joué par les graphes verticaux sur le disque
D? x {0} C B? paramétrés par

ze€D?— X(z,w(z)) € B> pour w e C3D?). (38)

Le développement limité de la courbure moyenne d’un tel graphe en puissances de w et de
dérivées de w jusqu’au deuxieme ordre s’écrit sous la forme :

Hyr(w) = Lygr w + Qgr(w, Vw, V2w), (39)
ou )
Ly =A(B-)=A <1+2|””|)

est 'opérateur de courbure moyenne linéarisé et Q)4 est une fonction non-linéaire lisse qui
vérifie Q4r(0,0,0) = DQ,(0,0,0) = D?Qy,(0,0,0) = 0. De plus, le graphe (38)) rencontre le
bord de la boule de maniére orthogonale si w vérifie la condition homogene de Neumann au
bord :

Orw|,_, = 0.

5 , T ‘ . 2z, 2x9
On remarque que I'opérateur Lg, a un noyau non-trivial composé des fonctions == e et 7717z p

ce qui correspond & pencher le disque D? x {0} dans B3. Ce noyau peut étre éliminé en
imposant l'invariance par ’action d’un groupe de rotations autours de ’axe verticale.
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Fonction de Green

D’apres A. Fraser et R. Schoen, les surfaces qu’on aimerait construire devraient étre proches
de sommes connexes de deux copies du disque horizontal avec des petits “demi-ponts” proches
de demi-caténoides placés de maniere periodique sur le cercle unité horizontal et un petit
“cou” proche du caténoide centré a l'origine.

En utilisant les idées R. Mazzeo, F. Pacard et D. Pollack [77], pour obtenir une meilleure
correspondance avec le comportement (logarithmique) du caténoide a l'infinie, on perturbe
d’abord le disque D? x {0} & l'aide d’ une fonction de Green associée a l'opérateur L, puis

mi

effectue la somme connexe. Soit z,, = e ,m=1,...,n les n°racines de 'unité. On cherche
une solution du probleme :

A(BT),) = ¢y do dans D2, (40)
Ol =3 _cnd, sur Sh
avec des constantes cg,cy,...,c,. Si on suppose que la fonction I'), est invariante par les

rotations d’angle 27”, alors résoudre est équivalent a trouver une fonction G telle que

I'n(2) = G(2")/B(2),

AG = 5() 50 dans D2,
(41)

orG — %Gzélél sur ST,

avec des constantes ¢y et ¢;. Une solution de (41) peut étre trouvée explicitement. On
décompose G en somme de deux fonctions, dont une a une singularité en z = 0, et 'autre a
une singularité en z = 1. Plus précisément, la fonction

Go(z) = —log|z| — n

vérifie AGg = 0 dans D?\ {0} et 0,Go — %GO =0 sur S'. D’un autre coté, la fonction

Gi(z Z Re Hy(z), ot Hg(z):=> =,
k=0 J=1 J

est harmonique dans D?, et, puisque
Ho(z) = —log(1 — 2),

et
Or (ReHy) =ReHyp_; on S', VkeN,

G4 vérifie : .
6TG1 — *Gl =0 on Sl \ {O}
n

Enfin, on écrit notre fonction de Green sous la forme :

(10 Go(2") + 11 G1(2")) ,
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ol les coefficients 19,71 € R sont soigneusement choisis a 1’étape ot on “recolle” le graphe
de T'), avec le “cou” et les “demi-ponts” caténoidaux. Le développement limité de I',, aux
voisinages de z = 0 et z = z,,, s’écrit sous la forme :

—n (210 + 3) — 2nmlog|z| + O(|2|* log|z]), quand |z| =0

In(z) = —n (270 + 5 ) + 11 logn — 11 log |z — 2| (42)

+0(|z — zm| log |z — zm|), quand |z — z,| — 0.

“Demi-ponts” et “cou” catenoidaux

Le role des “demi-ponts” caténoidaux qui vont dans notre construction joindre les deux
“copies” du disque unité, pourrait étre joué par des bandes obtenus par l'intersection des
caténoides euclidiens centrés aux n° racines de 1'unité avec la sphere S2. La difficulté de
cette approche est que ces bandes ne sont pas orthogonales & S%. On préfere de plonger les
demi-caténoides dans B> orthogonalement & S?, en perdant la propriété de minimalité.
Soit C_ :={¢ € C : Re(¢) <0} un demi-plan. On considere les applications
A 1 CEC. B2 1HC  pp
1-¢

qui définissent des difféomorphismes locales entre le voisinage de ¢ = 0 dans C_ et les voisi-
nages de z = z,, dans le disque unité. Puis, on introduit les applications

A 2 (¢,7) €C_ xR (An(€),27) € D* x R.

Pour ¢ € (0,1) on parametre le m® “demi-pont” caténoidal C. ,, dans B3 par

T 3T € 0 €
5 2} — X oA, (5 cosho e'?, 50) € Cem,

pour 0. > 1 choisi plus tard. Alors, C; ,, est proche d’'un demi-caténoide centré en z = 2y,
dilaté par € > 0, et tronqué a la hauteur o.. De plus, puisque la restriction de X o A,, aux

plans horizontaux est conforme, C. ,, rencontre 0B3 de maniere orthogonale.

(0,0) € [0, 0] % {

D’en autre coté, dans le voisinage de z = 0, la métrique X*gq, donnée par es proche
de la métrique |dz|? + %dt? Pour € € (0,1) et sz > 1 choisis plus tard, on considere la surface
paramétrée par

X (s,0) € (—sz,82) x St <§coshsei¢,2§s) € R3,
minimale par rapport & la métrique |dz|? + 1 dt?. Alors, la surface Csz :
(57¢) € (_55755) X Sl — X o Xagat(sa ¢) € 05,07

est proche d’un caténoide dilaté par € et tronqué a la hauteur sz.
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“Matching”

Avec le changement de variables z = A, (% coshaew) dans des régions ou ¢ # 0, on peut
considérer le “demi-pont” caténoidal Ct,, comme bi-graphe sur {z € D? : |z — z,,| > ¢} de
la fonction -

Ge = —¢ log§+5log|z—zm|—|—(9(e3|z—zm|_2). (43)

D’un autre coté, avec le changement de variables z = & cosh s €’ dans des régions ot s # 0,
on peut considérer le “cou” caténoidal Czo comme bi-graphe sur {z € D? : |z| > £} de la
fonction

Geo=—¢ log% + & log|z] + O |2]72). (44)

En comparant les expressions et avec le développement limité de la fonction de
Green I, aux voisinages de z = 2, et z =0 , on trouve que ¢, €, ainsi que les coefficients 7
et 79, sont exprimés en fonction du nombre n de composantes connexes du bord de la surface
qu’on construit. En comparant les termes logarithmiques, on trouve :

Tm=¢ and nTy=_¢E,
tandis que en comparant les termes constants on trouve :
E~e and n~log(l/e).

Enfin, en comparant les termes restants on conclut que le “recollement” devrait étre ef-
fectué dans des régions ou

|z| = Ecosh sz ~ e et |z — zm| ~ ecosho, ~ 53

Remark 0.6.1. Ces calculs, avec le fait que les fonctions constantes n’appartiennent pas
au noyau de l'opérateur linéarisé Ly, donnent une idée pourquoi notre construction marche
uniquement pour n assez grand.

Perturbation

A cette stade, pour tout n assez grand, on obtient via la somme connexe une surface de genre
1 plongée dans B? et orthogonale & B> le long de n composantes connexes de bord. On
notera cette surface par A,, et Pappellera solution approchée. La prochaine étape est alors de
perturber A,, en une surface minimale & bords libres.

Soient = un champ de vecteurs dans B? transverse & A, et £ : B3 x (0,1) — B3 le flot
associé :

_ = . _ n3
%—u(é(,t)), £(p,0)=p, pe DB

On choisi = de telle facon que pour tout ¢ suffisamment petit, la surface A, ; = &(A;,) soit
plongée dans B? et rencontre S? orthogonalement le long de 0.Aj, .

Enfin, pour w € C**(A,), on introduit la surface A, (w) dans B? paramétrée par

p €Ay = E(p,w(p)) € An(w).
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Alors, A, (w) rencontre S? de maniere orthogonale quand w vérifie sur 94, la condition
homogene de Neumann au bord :

gn(vgnwa Na.An) = 07

ol g, est la métrique induite sur A, de la métrique euclidienne et Np4, est une normale
unitaire de 0A, dans A,.

Le développement limité de la courbure moyenne de A, (w) en puissances de w et des
dérivées de w s’écrit sous la forme :

H(An(w)) = H(A,) + Ly w + Qp(w, Vw, V2w),

ou H(A,) est la courbure moyenne de la solution approchée, £,, est 'opérateur de courbure
moyenne linéarisé défini sur A, et Q,, une fonction non-linéaire lisse, qui vérifie Q,(0,0,0) =
DQ,(0,0,0) = 0. Notre but alors est de résoudre 1’équation :

Lyw=—H(A,) — Qn(w).

On montre que dans une topologie adaptée, la norme de H(A,) tend vers 0 quand n tend
vers 'infinie comme e™"% pour une constante a > 1. De plus, on montre que pour un choix
convenable du champ de vecteur =, I'opérateur L, est inversible. Son inverse ne sera pas
uniformément borné en n, mais explosera comme e, pour v < 1 qu’on choisit. Alors, le
résultat découlera du théoreme de point fixe de Banach pour les applications contractantes,

appliqué & I'application w +— —L 1 (H(Ay) + Qn(w)).

Analyse linéaire

En conclusion, disons quelques mots sur les propriétés de l'opérateur linéaire £,,. On montre
que le probleme de petites valeurs propres (de valeurs propres qui tendent vers 0 aussi vite
que n tend vers l'infinie) peut étre résolu en imposant l'invariance par rapport a un groupe
d’isométries de la surface qu’on construit. Plus précisément, dans les régions de “demi-ponts”,
Popérateur L, est proche de I'opérateur de Jacobi du demi-caténoide. Les petites valeurs
propres qui correspondent aux rotations et translations du catenoid sont éliminées en imposant
les symétries w(o, ) = w(—o0,0) = w(o, 2w — ) ainsi que la condition homogene de Neumann
au bord Jpw|ye (z,3my = 0. Les autres petites valeurs propres sont éliminées en imposant
272
I'invariance par la rotation d’angle %’r Enfin dans la région de A,, paramétrée par un domaine
du disque unité, 'opérateur L£,, est proche de I'opérateur L, (39)). On s’intéresse alors aux
solutions du probleme :
A(Bw) = f dans D?\ {0} (45)
45
Orw =10 sur  SU\ {z1,..., 2.}

qui est équivalent, apres le changement de variables z +— 2™, & 1’équation de Poisson avec la
condition de Robin au bord :

{ AW =F dans D2\ {0}

1 1 (46)
oW — W =0 sur S\ {1}.
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Une solution de peut étre trouvée en utilisant que pour tout n > 2 le noyau 'opérateur
associé est trivial. D’un autre coté, quand n tend vers 'infinie, converge vers I’équation
de Poisson avec la condition homogene de Neumann au bord, qui, & son tour, a un noyau non-
trivial. Ca explique (ainsi que la présence des valeurs propores engendrées par les dilations
du caténoide) pourquoi la solution de , et en conséquence, la norme de £}, explosent
“légerement” quand n tend vers l'infinie. Cependant, on obtient le résultat en appliquant le
théoreme de point fixe de Banach dans une boule d’un espace fonctionnel dont le rayon tend

vers 0 beaucoup plus vite que la norme de £, explose.

Chapitre 3: Surfaces non-convexes a courbure moyenne con-
stante dans des variétés riemanniennes de dimension 3

Dans le troisieme chapitre, on prouve I'existence dans une variété riemannienne générique de
dimension 3 d’une famille de spheres topologiques non-convexes dont la courbure moyenne est
grande.

Ces surfaces sont obtenues comme sommes connexes de deux spheres géodésiques de rayons
identiques tangentes en un point. Notre construction est possible quand la fonction courbure
scalaire R de la variété ambiante a un point critique o, tel que la hessienne de R en o, a
une valeur propre simple non-nulle.

Plus précisément, soit (M, g) une variété riemannienne lisse de dimension 3. Soient o.. € M
un point critique de la courbure scalaire R, A # 0 une valeur propre simple de Hess, R et
vy € Ty, M le vecteur propre associé. Pour ¢ € R suffisamment petit, on considere I'union
S4(e, 0cr,vy) de deux spheres géodésiques de rayon e tangentes en o, dont les centres sont
placés de maniere symétrique par rapport a o, sur la géodésique qui passe par o, avec la
vitesse égale a vy. On prouve le résultat suivant :

Théoréeme 0.6.3. Il existe €, € (0,1) tel que pour tous € € (0,¢e4) il existe une surface
S. a courbure moyenne constante égale a % telle que la distance de Hausdorff entre G, et
S4(e, 0cr,vy) est bornée par une constante fois e2. La surface S, est plongée si A < 0 et
immergée si A > 0.

Voici une courte description de notre construction.

Pseudo bulles

Rappelons, que dans Iespace euclidien d’effectuer la somme connexe de deux surfaces £, de
point de vue topologique, signifie de faire ¥ tangentes en un point, les translater légérement
dans la direction de leur normale commune, puis enlever des petits disques autours des points
ou on aimerait effectuer la somme connexe, et identifier les bords de ces disques avec les bords
d’un petit “cou”. R. Mazzeo, F. Pacard et D. Pollack [77] ont montré que si les surfaces r+
sont & courbure moyenne constante, alors leurs somme connexe peut étre perturbée, quand la
taille du “cou” est assez petite, en une surface qui a la méme valeur de la courbure moyenne.
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Dans notre cas, on aimerait effectuer la somme connexe de deux spheres géodésiques dont
la courbure moyenne n’est pas constante, mais proche d’étre constante quand le rayon des
spheres est petit. Soit S:(p) une sphere géodésique de rayon € centrée en p € M. La courbure
moyenne de S:(p) étant donnée par :

HS-() = = +0(e),

la premiére étape serait de perturber S.(p) en une surface & CMC. Malheureusement, d’apres
Pobservation de R. Ye [I18], en générale, ce n’est pas possible a cause de la présence de
petites valeurs propres (de valeurs propres qui tendent vers 0 aussi vite que ¢ tend vers 0)
de 'opérateur de Jacobi de S.(p). En effet, ce dernier est proche de 'opérateur de Jacobi de
la sphere euclidienne de rayon e qui s’écrit sous la forme : €72 (Ag + 2) et admet un noyau
composé des restrictions sur S? des fonctions coordonnées :

Ker(Ag 4 2) = {6',07%, 03},

Alors, dans un certain sens, le mieux qu’on puisse faire est de perturber S.(p) en une sur-
face ¥.(p) dont la courbure moyenne est constante modulo un élément de Ker(Ag2 + 2).
Plus précisément, soit (-,-) le produit scalaire dans R3. Alors la courbure moyenne de ¥.(p)

vérifiera : 5
HE(p)©) - = (4,0), 08,

pour un vecteur A € R3. Un calcul explicite [T18] montre que

272
15

D’apres Naridulli [90], on appelle les surfaces . (p) pseudo bulles.

A=-— VIR(p) + O(e?).

“Cou” caténoidal

La prochaine étape est de trouver une surface qui jouerait le réle du “cou” dans la construction
de la somme connexe. Dans ’espace euclidien ce role est la plus part de temps joué par un
élément de la famille de caténoides :

Cy = (8,0) € [—8n, 8y] x ST+ (1) cosh s cos ¢, 1 cosh s sin ¢, s),

ou le parametre n € (0,1) est appelé “la taille du cou”. Dans le cas riemannien, on peut
utiliser les propriétés géométriques du caténoide étant donné, au moins pour 7 suffisamment
petit, un plongement de C;, dans M qui est proche de I'identité dans les coordonnées choisies.

Soient A une surface lisse plongée dans M et Nj une normale unitaire de A. Pour g € A
I’application
Falq',z) = expy (2 Na(q'))
définit un difféomorphisme d’un voisinage de (¢,0) dans A x R sur un voisinage de ¢ dans M.
Soient (y',y?) — ((y',y?) des coordonnées locales sur A & I'origine en g. Alors I’application

Faqy',y?2) = Fa(C(y', v7), 2)
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définit un difféomorphisme d’un voisinage de 0 dans R? sur un voisinage de ¢ dans M, qu’on
appelle coordonnées de Fermi. On parametre le “cou” caténoidal €, , par

(5,0) € [—8p,sn] x S' = Fp 4 (n coshs cos¢,n coshs sing,ns) € &,

Dans notre cas, il sera pertinent de prendre pour A un disque géodésique de rayon suff-
isamment petit. Plus précisément, on fixe un point gy € M et une géodésique minimisante
qui passe par qp et qu’on appelle “I’axe du cou”, puis on plonge un caténoide de “taille du
cou” 1 dans M via coordonnées de Fermi associées au disque géodésique A de rayon e centré
en qo et orthogonale a .

On verra dans ’argument finale qu’on doit introduire dans notre construction des degrés
de liberté supplémentaires et pour cette raison, on considere une famille de “cous” caténoidaux
¢, paramétrés par la position ¢ € A de leurs “axes” paralleles a .

Somme connexe dans une variété riemannienne

Dans une variété riemannienne, a cause de I’absence d’isométries (notamment, ’absence de
translations et de rotations), on ne peut pas effectuer la somme connexe entre deux surfaces
de la méme fagon que dans ’espace euclidien. Néanmoins, on pourrait imaginer une procédure
analogue si, étant donné une famille de surfaces, paramétrées par exemple par leur positions
dans M, on pouvait choisir, pour tout d > 0 suffisamment petit, une unique paire d’éléments la
distance entre lesquelles (dans le sens de distance entre deux ensembles disjoints dans ’espace
métrique M) est égale & d.

Soit d € (0,1/2¢). Un exercice simple est de choisir deux spheres géodésiques de rayon e
a distance d. Pour ga, il suffit de fixer un point 0 € M et un vecteur v € T,M, et de placer
les centres des spheres en exp, (i (5 + g) v).

On montre qu’une procédure analogue existe pour une famille de pseudo bulles, en util-
isant le fait que ces derniéres sont des petites perturbations des spheres géodésiques. Plus
précisément, on considere la famille

SE, = 5. (exp,(+ tv))
et obtient le résultat suivant

Lemme 0.6.2. Pour tout d € (0,1/2¢) il existe unique t € (e,2¢), tel que la distance entre
les surfaces Zgi = ngt est €gale a d, réalisée par une unique géodésique v, a priori différente
de t — exp,(tv).



Remark 0.6.2. On aura également besoin d’effectuer une somme connexe d’une paire de
pseudo bulles qui ont une intersection non-vide. Dans ce cas la, on ne peut pas parler de la
“distance” entre les surfaces, mais on montre que pour tout d € (0, ), il existe une unique paire
de pseudo bulles Eai, dont l'intersection est traversée par une unique géodésique minimisante
v de longueur d qui intersecte Esi orthogonalement.

2 E;r

A partir de maintenant, on aura deux sommes connezes, une plongée et l’autre immergée,
et on verra dans l'argument finale que, en fonction du signe de la valeur propre X\ # 0 de la
hessienne de la fonction courbure scalaire R, une de ces sommes connexes peut étre perturbée
en une surface a courbure moyenne constante.

L’étape suivante est de décrire une procédure de “recollement” entre une paire de pseudo
bulles Zgﬁ et un “cou” caténoidal a “axe” parallele a la géodésique v qui réalise la “distance”
entre les pseudo bulles. Plus précisément, soit A le disque géodésique centré en ¢y = ~y (%)
et orthogonale a ~. Alors, on considere la famille de “cous” &, , paramétrée par la “taille du
cou” n et la position ¢ € A de “I’axe” dans A. On remarque que par construction, quand
q = qo, ‘Taxe du cou” est orthogonale a ch, tandis qu’en variant ¢, on varie ’angle entre
“axe” et les normales & YT

-

5

N

=
R

-
e

Fonctions de Green

Selon R. Mazzeo, F. Pacard et D. Pollack [77], de point de vue analytique, pour obtenir une
meilleure correspondance avec le comportement asymptotique (logarithmique) d’une caténoide,
c’est mieux de d’abord perturber les surfaces ¥F & ’aide des fonctions de Green associées &
leurs opérateurs de Jacobi, puis effectuer la somme connexe.

Soient ngi les opérateurs de Jacobi des pseudo bulles Egi. On aimerait définir et étudier
les solutions du probleme :

Jye TF = =216, (47)

oll d,+ sont les masses de Dirac en pT € ¥F. D’un autre coté, en paramétrant L par la
sphere euclidienne S2, on trouve que les opérateurs Js+ s’écrivent sous la forme :
>

JES: = 672 (ASQ + 2) + L, 01\1 HL u"co,a(52) S C HUHCza(SQ).
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Malheureusement, le fait que 'opérateur Ag2 + 2 admet un noyau non-trivial nous empéche
de trouver directement I't et d’obtenir des estimations raisonnables qui seraient uniformes en
e quand ¢ tend vers 0. Néanmoins, au lieu de résoudre (47)) on peut trouver une solution du
probleme :

Jye TF = =27 6,2 + (BT, 0), (48)
pour des vecteurs BT € R3. Un calcul explicite donne :
2
B* = - O(p*) +0(1)

Solution approchée

On choisit les poles p* des fonctions I'* comme les points les de l'intersection de “I’axe du
cou” v avec ¥. Alors, aux voisinages de p*, les surfaces ¥ peuvent étre paramétrées comme
graphes normaux sur le disque A. Dans les coordonnées normales géodésiques centrés en g € A,
on trouve :

I'*(y) = ¢* £log|y| + O(ly|log |y|). (49)

D’un autre coté, le “cou” caténoidal €, , peut étre vu comme bi-graphe sur le disque
géodésique A d’une fonction G, qui vérifie au voisinage de g :

n _
Gy = —1 log 5 +1 log|y| + O (n®y|72). (50)

On montre que pour tous o € M, v € ToM avec |jv||; =1, 7 € (0,1), et ¢ € A avec 7 et
dist(q, qo) suffisamment petits, on peut choisir la distance d entre les pseudo bulles de telle
facon que les termes constants dans les développements limités de nT'* et +G, coincident
exactement, ce qui permet de “recoller” les graphes de nI'* et le “cou” ¢,,q a l'aide d'une
fonction troncature.

A cette stade, pour tout e suffisamment petit, on obtient une surface, qu’on notera A,
et qu’on appellera solution approchée, qui dépend de huit parametres géométriques : le point
o € M (trois degrés de liberté), le vecteur unitaire v € T, M (deux degrés de liberté), la “taille”
du cou n (un degré de liberté), et la position g de “I’axe du cou” dans le disque géodésique A
(deux degrés de liberté).

Argument perturbatif

Le prochaine étape est de perturber pour e suffisamment petit la solution approchée A. en
une surface a courbure moyenne constante. Soient = un champ de vecteurs lisse défini dans
un voisinage de A. dans M et transverse a A., et £ : M x (0,1) — M le flot associé :

¢
dt
Pour w € C?(A.) suffisamment petit, soit A.(w) la surface paramétrée par p € A.

E(p,w(p)) € A-(w). Alors, le développement limité de la courbure moyenne de A.(w) en
puissances de w et les dérivées de w s’écrit sous la forme :

H(A:(w)) = H(A:) + Lo w + Q- (w, Vw, Vw),

E((,1), &p0)=p, VpeM.
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ou H(A.) est la courbure moyenne de la solution approchée, L. est 'opérateur de courbure
moyenne linéarisé et Q. est une fonction non-linéaire lisse qui vérifie :

Q€(07 07 0) = DQE(Oa 07 O) =0.

Notre but est de trouver une solution de 1’équation :

Low= g — H(A.) — Q.(w, Vw, Vw).

Si L. était inversible avec I'inverse uniformément borné en € quand ¢ tend vers 0, alors on pour-

rait appliquer le théoréme de point fixe de Banach & 'application w + £! (% — H(A:) — Q:(w))
dans une boule d’un espace de Banach adapté, a condition que la norme de H(A.) — % tend

vers 0 quand ¢ tend vers 0.

On étudie d’abord la courbure moyenne de A.. On suppose que 1 et dist(q, gp) soient
bornés par une puissance de € adapté. En utilisant le fait que le caténoid est minimal dans
Pespace euclidien, on trouve que dans la région du “cou”, la norme L* de H(A.) tend vers
0 quand ¢ tend vers 0. D’un autre coté, on rend la norme de H(A.) — 2 trés petite dans une
topologie adaptée qui prend en compte que 'aire de la région caténoidale tend vers 0 beaucoup
plus vite que laire du reste de A..

D’un autre coté, en dehors du “cou”, A, est paramétrée comme graphe sur Zai des fonctions
de Green. Soient x* des fonctions troncatures a support dans les régions paramétrées par les
pseudo bulles. Alors, en utilisant ’expression de la courbure moyenne de Zf ainsi que les
équations vérifiées par les fonctions de Green, on obtient :

2
H(AE) - g = H- +X+ <C+7@> +X_<C_7@>a

ou la norme de H, tend tres vite vers 0 quand € tend vers 0 dans un espace fonctionnel adapté
et (C*,0) € Ker(Ag2 +2). Plus précisément, on trouve :

2 2 —2
C* = T VR(oY) + 1 00) + 0", (51)
ol oF sont les “centres” des pseudo bulles E? et p* sont les poles des fonctions de Green.

Ensuite, on s’intéresse aux propriétés de 'opérateur linéaire L£.. On constate la présence
de petites valeurs propres de L. (de valeurs propres qui tendent vers 0 aussi vite que ¢ tend
vers 0) qui peuvent étre identifiées en utilisant la structure de L..

Plus précisément, dans les régions de A, paramétrées par les pseudo bulles, 'opérateur L.
est proche de l'opérateur €2 (Ag2 + 2) qui admet un noyau de dimension trois composé des
fonctions coordonnées O, ©2, ©3.

D’un autre coté, dans la région du “cou”, L. est proche de 'opérateur de Jacobi du
ceténoide euclidien. Ce dernier est une surface dégénérée, et en particulier admet deux champs
de Jacobi engendrés par les translations horizontales du caténoide et donnés par les fonctions

cos ¢ sin ¢ s 12 . N . T .
oan s et o qui décroissent tres vite a I'infinie.
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On note par K. 'espace des fonctions propres de L. associées aux petites valeurs propres.
D’apres N. Kapouleas, on appelle K. noyau approché. En utilisant les idées décrites ci-dessus,
on montre que la dimension de K. est égale a huit, ce qui correspond au nombre de parametres
libres dans notre construction.

Dans I’étape suivante, on utilise la méthode de réduction de Lyapunov-Schmidt, qui con-
siste a appliquer, pour € est suffisamment petit, le théoréme de point fixe de Banach dans un
espace des fonctions orthogonales & K. pour perturber la solution approchée A, en une surface
dont la courbure moyenne vérifie :

8
2 .
H--= E A, (52)
R
ou & =span{®;, i =1,...,8}.

Choix des parameétres

Dans l'argument finale, on explique comment choisir les huit parametres géométriques pour
avoir H = % Les coefficients A* dans dépendent de maniere continue de o € M, v € T, M,
n € (0,1) et ¢ € A. On montre que pour ¢ suffisamment petit, le systéme d’équations

Al=0, i=1,...,8, (53)

peut s’écrire sous la forme (Id + F)(-) = 0 pour une fonction F' bornée uniformément en
0,v,1,q, et trouve une solution dans une boule de R® grace au théoréme de point fixe de
Schauder.

Six premiéres équations On définit la base {®;} du noyau approché K. de telle fagon
que les six premieres fonctions soient proches aux éléments de

Ker(Ag2 + 2) = span{0©', 62, 03},

définis dans les régions paramétrées par les pseudo bulles. On projette la courbure moyenne
de notre surface perturbée sur ces six premiéres fonctions et remarque que, I'impact de la
perturbation étant négligeable, les plus grands termes dans cette projection viennent de la
courbure moyenne de la solution approchée A.. D’apres , les premieres six équations de
(53) vont s’écrire sous la forme :

27 e?
15

1
VIR(0F) + 3" e20(pF) + ' F(o,v,1m,a) = 0. (54)

Avec un léger abus de notation, on peut écrire :

+ 2 . .
pT =Fv+ O(e?), si.A. est plongée
ot =o+ecv+ O(?), )
pT = +v+ O(e?), si A est immergée.
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D’abord, supposons que la surface A. est plongée. Soit o, un point critique de la courbure
scalaire : VIR (o) = 0. Alors, est équivalent A :

b2 ) (55)
— 27 Hess,,, R(0 — 0cr +€v) + 50 2v+e* F(o,v,m,a) = 0.

{ _271r§2 Hess,,, R(0 — 0 —€v) — gne ?v+e* Flo,v,n,a) =0,

Ca implique
0— 0er + €2 F(o,v,m,a) = 0.

Maintenant, soit vy le vecteur propre associé a une valeur propre simple A # 0 de Hess,_, R.
On écrit
v =v)+ 0,

et trouve que la projection de sur vy, donne :
4m\ed
15

En particulier, on voit que puisque n > 0, la solution existe si et seulement si A < 0. D’un
autre coté, si A > 0, on obtient une solution en supposant que A, est immergée.

n+ +56F(0>U,777a):0-

Enfin, en projetant sur le sous-espace de R3 orthogonale & vy, on trouve le systeme :
(Hess,,, — A1d) © + ¢ F(o,v,n,a) =0,
qu’on peut écrire sous la forme :
0+ e F(o,v,m,a) = 0.
On conclut, qu’une solution de doit vérifier :

disty(0,00r) < ce?,  Z(v,v)) < ce, | — sign()) >\55‘ < ce’.

Deux derniéres équations. Pour comprendre la structure des deux dernieres équations,
on projette (H3) sur les éléments ®; et $g de K. définis dans la région du “cou” et proches

des fonctions Cc(fsshql et CS;:h(bS. En effectuant le changement de variables

y = n cosh s(cos ¢, sin ¢),

LI
dans une région ou s # 0, on trouve $gy; ~ "7;"2, 1=1,2.

Pour expliquer pourquoi ces deux derniéres équations s’écrivent sous la forme (Id+F)(-) =
0, on propose de considérer ’exemple suivant.

Soient P, le plan horizontal dans R3, C), le caténoide vertical dilaté par n < 1, et P, P~
deux plans obtenus comme copies de Py légerement écartées et légerement penchées. Soient
p € Ret D*(p) :== {z € R? : |z| < p} le disque de rayon p dans Py. Soit y une fonction
troncature, telle que

x=0 dans D?*(p/2) et x=1 dans R?\ D?*(p).

62



Soit 3!, 4% des coordonnées dans Py. On peut voir le caténoide comme bi-graphe sur {y € Py :
ly| > n} de la fonction

2 _
Gy = log 4 log ly] + O’ [yl ™)
et paramétrer PT comme graphes sur Py des fonctions affines
+ 2 11, +02
ut = 4n log%+c1 Y 4y Y
Enfin, on considere la surface “recollée”, paramétrée par

Yy (y, (1 —=x)) Gyly) +x(v) ui(y))-

On trouve que la courbure moyenne de cette surface est nulle partout, sauf dans ’anneau
D?%(p) \ D? (g) D’un autre coté, pour n suffisamment petit et P suffisamment proches de
Py, la courbure moyenne sera proche de +A (y u®). Le calcul

Aly (i —u)) Y :/ 8, F) Y d 56
/132<p>\D2(g> <X( ‘ ))W D2 (p) <X et~ ))lyl2 r=p ’ 0

i 0= 4 (55)

Am
p

de

r=p

)
montre que les plus grands termes dans la projection de la courbure moyenne sur ﬁ;ﬁ sont
déterminés par les pentes cli des plans P*.

Revenons maintenant a notre probleme. Par construction, dans les régions ou on effectue

le recollement, on peut voir notre surface comme un graphe normale sur le disque A d'une
fonction

W) =)+ V@ + O, () =25 Ve =0).

On voit que la “pente” Vu*(q) apparait quand on varie la position ¢ de “I’axe du cou” dans
A. Alors, les plus grands termes dans la projection de la courbure moyen sur ®7g sont donnés

. . — —_ T . . . N
par la projection de A(xt u™ —x~ u™) sur ﬁjﬁ Un calcul similaire & (56|) montre que les deux
derniéres équations s’écrivent sous la forme :

Vu*t(q) = Vu~(q)
p

+ F(O7 ,U7 ,’7’ a) = 0?

ou, puisque gg est un maximum locale pour u™ et un minimum locale pour u~, sous la forme

Hessq, (u™ —u™) (¢ — qo0) + pF(0,v,1,a) = 0.

63



Dans notre construction on prend p = €* et obtient que la solution doit vérifier dist(q, o) <

C€4.

Enfin, le théoreme de point fixe de Schauder nous donne 'existence pour tout ¢ suffisam-
ment petit, de (0,v,n,a) tels que A*(o,v,7n,a) = 0. La surface correspondante, qu’on note &,
(plongée quand A\ < 0 et immergée quand A > 0) est & courbure moyenne constante. Enfin, si
S (e, 0cr,vy) désigne I'union de deux spheres géodésiques S, (exp,, (£evy)) tangentes en o,

alors, la distance de Hausdorff entre &, et G4(¢, 0cr, vy) est bornée par une constante fois g2,
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Chapter 1

Higher codimension isoperimetric
problems

1.1 Introduction and statement of the result

Constant mean curvature (CMC) hypersurfaces are critical points of the area functional sub-
ject to a volume constraint. Examples include sufficiently smooth solutions to the isoperimetric
problem. If K is an embedded submanifold in a Riemannian manifold (M™% g), then its
mean curvature vector Hy is the trace of its second fundamental form. When K is a hy-
persurface, then we say that K has CMC if this vector has constant length, and this is the
only sensible definition in this case. However, when codim K > 1, it is less obvious how to
formulate the CMC condition, since there is more than one way one might regard the mean
curvature vector as being constant. One definition that has perhaps received the most atten-
tion is to require that Hx be parallel. This is quite restrictive, and for that reason, not very
satisfactory.

We propose a different, and directly variational definition building on the ideas of F.
Almgren [5]. The classical isoperimetric problem amounts to find hypersurfaces K of least
m-dimensional volume enclosing a region of prescribed m + 1 dimensional volume. F. Almgren
generalized the isoperimetric problem in higher codimension by defining the volume enclosed
by S as the infimum of volumes of (m + 1)-dimensional submanifolds ¢ with 0Q = S.

In this chapter, which is a work in collaboration with R. Mazzeo and F. Pacard, extending
the standard characterization of CMC hypersurfaces, we propose to define constant mean
curvature submanifolds to be boundaries of submanifolds which are critical for a certain energy
functional. Roughly speaking, we say that K has constant mean curvature if K = 0Q) where
@ is minimal, K has CMC in @, and Hgx has no component orthogonal to Q.

Our goal is to show that generic metrics on any compact manifold admit “small” CMC
submanifolds in this sense. The result proved here is a generalization of the theorem by R.
Ye [118] described in the subsection which proves the existence of families of CMC
hypersurfaces that are small perturbations of geodesic spheres centered at nondegenerate
critical points of the scalar curvature function R of the ambient manifold M. The more recent
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paper [95] by F. Pacard and X. Xu obtains such families of CMC hypersurfaces when the
scalar curvature is not a Morse function; in that case, these hypersurfaces are centered near
critical points of a different curvature invariant.

Let us now introduce the relevant curvature function. For any (k+1)-dimensional subspace
I, C T,M, define the partial scalar curvature

k+1

Rk+1(Hp) = Z g(R(El)E])E’HE]))
i,7=1

where E1, ..., Epy; is any orthonormal basis for II,. Note that R,11(7,M) is the standard
scalar curvature at p, while Ro(Il,) is twice the sectional curvature of the 2-plane II,. The
Grassmannian bundle Gy11(T'M) is the fiber bundle over M with fiber at p € M the Grass-
mannian of all (k4 1)-planes in T,,M. We regard Ry as a smooth function on Gyy1(TM).

We denote by S¥(I1,) and BE+1(I1,) the images of the sphere and ball of radius ¢ in II,,
under the exponential map exp,, p € M. We can now state our main result.

Theorem 1.1.1. If II, is a nondegenerate critical point of Ryy1, then for all e sufficiently
small, there exists a CMC submanifold K¢(I1p) which is a normal graph over Sk(115) by some
section with C>* norm bounded by ce® and dist (Il;,I1,) < ce.

Our construction of CMC submanifolds generalizes the method introduced in [95], and can
also be carried out in certain cases when the partial scalar curvature has degenerate critical
points, for example when (M, g) has constant partial scalar curvature.

Theorem 1.1.2. There exists eg > 0 and a smooth function
v . Gk+1(TM) X (0,80) — R,

defined in below, such that if € € (0,e0), and I, is a critical point of ¥(-,€), then there
exists an embedded k-dimensional submanifold K.(IL,) with constant mean curvature equal to
k/e. This submanifold is a normal graph over the geodesic sphere SE(I1,) with respect to a
section with C*® bounded by ce®.

The function W is essentially just the associated energy functional restricted to a particular
finite dimensional set of approximately CMC submanifolds.

Existence of CMC submanifolds also follows from the work of F. Morgan and M.C.
Salavessa [87] as smooth solutions to the higher codimension isoperimetric problem defined
by F. Almgren. Observe that these solutions should correspond to points where Ryy1 has a
local maximum as in [90].

1.2 Outline of the chapter

The outline of this chapter is as follows. We first give a more careful description of our proposed
definition of constant mean curvature and its relationship to the associated energy functional.
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We introduce the linearization and the second variation of this energy, then compute these
operators in detail for the round sphere S¥ ¢ R™*1 k < m. The construction of “small”
solutions of the CMC problem concentrating around critical points of the function ¥ proceeds
in stages. We construct a family of approximate solutions, then solve the problem up to
a finite dimensional defect. This defect depends on certain parameters in the approximate
solution, and in the last step we employ a variational argument to choose the parameters
appropriately to solve the exact problem. Certain long technical calculations are relegated to
the appendices.

1.3 Preliminaries

In this section we begin by setting notations and recalling some standard formulse. This is
followed by the introduction of a variational notion of constant mean curvature for closed
submanifolds of arbitrary codimension. We compute the first and the second variations of
the associated energy functional, and then explain what these look like for round spheres (of
arbitrary codimension) in R™*1.

1.3.1 Mean curvature vector

Let (M™*! g) be a compact smooth Riemannian manifold. We write V> for the induced
connection on any embedded submanifold ¥, and reserve V for the full Levi-Civita connection
on M.

The second fundamental form of ¥ is the symmetric bilinear form on TY taking values in
the normal bundle N3 defined by

he(X,Y):=VxY —VYY =ayx Vx Y, XY €T3,

here 7wy is the fibrewise orthogonal projection Ty M — NX. The trace of hy, is a section of
N7, and is called the mean curvature vector field

dim X
HZ = trghg = Z hE(EiaEi)7
=1

where {E;} is any orthonormal basis for 7. By definition, ¥ is minimal provided Hy, = 0.

1.3.2 Constant mean curvature in higher codimension

Let us now specialize to the case where Q*t! C M is a smooth, compact submanifold with
boundary, and Q@ =: K. The normal bundle N K decomposes as an orthogonal direct sum

NK = NK+a NKl,

where NK = NK NTQ has rank 1, and NK+ = NK N NQ has rank m — k. We shall write
n for the inward pointing unit normal to K in Q. Thus if ® € NK, then

& = [®] + [@] = [®]* + ¢n

for some scalar function ¢.
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Definition 1.3.1. The closed submanifold K C M is said to have constant mean curvature if
K = 0Q where Q is minimal in M, K has constant mean curvature in @), and the QQ-normal
component [Hg|* € NK* vanishes.

A key motivation is that this definition is variational, where the relevant energy is given
by
Eny (@) = Vol (9Q) — ho Volg41(Q), (1.1)

where hg is a constant.

Proposition 1.3.1. The submanifold K = 0Q has constant mean curvature hy (in the sense

of Definition if and only if
D5h0|Q — 0.

The meaning of the differential here is the usual one. Let = be a smooth vector field on M
and denote by & its associated flow. For ¢ small, write Q; = £(Q,t) and K; := 0Q; = (K, t).
The requirement in the Proposition is then that for any smooth vector field =,

d

—Eny (Q1)

=0.
dt

t=0

The proof is standard. The classical first variation formula (see Appendix 1) states that

d
%VOI(Kt)

:—/ g(Hg, =) dvolg,
t=0 K

and

d
— Vol(Qy) = / g(Hg, =) dvolg / g(n, =) dvolg .
dt t=0 Q K

It follows directly from this that

d

dt gho(Qt) = Oa

t=0

for all vector fields Z if and only if Hx = hgon and Hg = 0, as claimed.

The definition above coincides with the standard meaning of CMC when K is a hyper-
surface in M which is the boundary of a region Q. Notice that K* ¢ R¥! ¢ R™*! and K
has CMC as a hypersurface in R¥*1, then it has CMC in the sense of Definition In
particular, round sphere S* ¢ R™*! has CMC in this sense.

A similar result has been obtained in [87] for stationary submanifolds for the isoperimetric
problem in higher codimension.
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1.3.3 Jacobi operator in higher codimension

Let us now study the differential of the mean curvature operator, which is known as the
Jacobi operator. For this subsection, we revert to considering an arbitrary submanifold 3,
either closed or with boundary, and shall now recall the expression for this operator.

The Jacobi operator Jy, is the differential of the mean curvature vector field with respect
to normal perturbations of Y. To describe this more carefully, consider the exponential map
exp from an e-neighborhood of the zero section in Ty M into M. Since exp*\{vzo} = Id, if

® € C%(3; NY) has ||®]|co sufficiently small, then

Yg := {exp,(®(q)) : ¢ € X}

is an embedded submanifold. We shall denote the family of submanifolds Y44 by X5, and their
mean curvature vector fields by H,. We also write F : ¥ — X for the map g +— exp,(s®(q)).
By definition,

J5(®) = VojasHs|,_,

When 0% # (), we also require that ® = 0 on 9%. The operator 7yy o Jy will be denoted
Jg . We recall in Appendix 1 the proof of the standard formula
JY = —AY 4 RicY + 52, (1.2)

where AY is the (positive definite) connection Laplacian on sections of N¥,

dim(X)
N N N
Ve ENS, AY®= ) Vi Vyo- vng
=1

where V%Y = TNy, oV xY and the other two terms are the following symmetric endomorphisms
of NX:

(i) The orthogonal projection RicJEV = TNy, © Ricy on the normal bundle of ¥ of the partial
Ricci curvature Ricy, defined by

g (Ricy X,Y) == -tr9¢g(R(-, X)-,Y))

dim ¥ (13)
=_ Z R(E;, X)E;,Y), forall X,Y € TM,

(note that the curvature tensor appearing on the right is the one on all of M, and is not
the curvature tensor for X);

(ii) the square of the shape operator, defined by

dim ¥
H9(X) = Y g(h(Ei Ej), X) h(E, E;), forall X eTM. (1.4)
ij=1
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In general, Jx(®) # JY(®) since Jx(®) has a nontrivial component J& (®) which is parallel
to X; as we show later, that part is canceled in our final formula so we do not need to make
it explicit. Note, however, that J& (®) vanishes when ¥ is minimal. Indeed, writing the mean
curvature vector field to Y,¢ in the form

Hs = Zg (HstV(s)) NZ/(S)a
where N,(s), v =dim¥X 4+ 1,...,m + 1 is a local orthonormal frame for N4 we find

@) =3 (9 (Vo] g No(0) + g (Hs, Vojan| g Nu(s)) ) No(0)

9 (s No0) oo g o] = D20 (s NoO) [Foyn )] ]

and if Hy, = 0, we have J& = 0.

1.3.4 Linearization about a constant mean curvature submanifold
Let @ be a smooth compact minimal submanifold with a boundary K such that
Hig = hon
where n is a unit normal to K in () and hg is a constant. We set
CoM(NQ) = {V € C**(NQ) : V] )c = 0}.
With this notation in mind, we have the:

Definition 1.3.2. The minimal submanifold Q) is nondegenerate if
Jo : G (NQ) — C*(NQ),
1s tnvertible.

Lemma 1.3.1. If Q) is nondegenerate, then there is a smooth mapping ® — Q¢ from a
neighborhood of 0 in C>*(NK) into the space of (k + 1)-dimensional minimal submanifolds of
M with C** boundary, such that Qg is the initial submanifold Q and 0Q¢ = Kg.

Proof. Fix a continuous linear extension operator
C**(NK) 2> ® = Vg € C2(ToM).

Thus Vs is a vector field along @ which restricts to ® on K. Without loss of generality, we
can assume that Vp € TQ if [®]- = 0 and Vp € NQ when [®]l = 0. Next, let W be a C>*
section of N@Q which vanishes on K. If both ||®||2, and [|[W||2,, are sufficiently small, then
expg (Ve + W) is an embedded C?® submanifold Qy with U = Vg + W, and Ko := 0Qy.
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Denoting the mean curvature vector of Qu by H(®, W), we find
Dw H| g0 (W) = JoW.

Since ) is minimal, DWH’(O,O) (W) takes values in NQ, whereas H(®, W) € NQu C
T, M, so we cannot directly apply the implicit function theorem. To remedy this, first let
H(®,W) be the parallel transport of H(®, W) along the geodesic s — exp,(sU(q)), from
s =1 to s = 0. Parallel transport preserves regularity (this reduces to the standard result on
smooth dependence on initial conditions for the solutions of a family of ODE’s), so H(®, W)
is a C%* section of ToM. Now define

H(®,W) := 7ng o H(®, W),

where mng : ToM — NQ is the orthogonal projection. Since H(®,W) € Ng,M and since
[|U||c1 is small, fI((I), W) lies in the nullspace of myg at any ¢ € @ if and only if it actually
vanishes. Thus it is enough to look for solutions of ﬁ(@, W) = 0. Notice that Dwﬁ\(o,o) = Jg.
We can now apply the implicit function theorem to conclude the existence of a C>® map

~

® — W(®) such that H(®, W (®)) = H(®,W(®)) = 0 for all small ®.
O

We henceforth denote by Q¢ the minimal submanifold expg (Vo + W (®)). Observe that
when [®]+ = 0, the submanifold parametrized by expg (Vig)1) is O(||®||2..) close to Qg; this is
easy to check when ® := ¢ n where ¢ is small. Therefore, in this ‘tangential’ case, we conclude
that

Us = Vig)i + O([| @] Z2.0)-

Next, when [®]Il =0, we define Zig)+ as the solution of
JQ Zigyr =0 Z = ot
Q4] = (@] | ’

and it is easy to check that the submanifold parametrized by expg(Zg)1) is also O(||®]122.0)
close to Q. We summarize all this in the

Lemma 1.3.2. When ||®||c2.a is small, we have the decomposition

Us = Vigi + Zagr + O([|2]Z2.0)-

Now consider the energy &, along a one-parameter family s — Q) = (Qs¢ of minimal
submanifolds with boundaries K := 0Qs = K 3. By the formulea of the last subsection,
d

7(€ho(QS) = _/ g(Hs — hons, 8/85) dVOlKS7
ds K.

where H; is the mean curvature of K and ng is the inward pointing unit normal to K in Q).
Note that this first variation of energy is localized to the boundary; the interior terms vanish
because of the minimality of the Q5. Our task is to compute

d2

@&10 (QS)

)

s=0
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when @ is critical for &,.

Parametrize both K and Qs by y = Fs(y) := exp,(Usa(y)) (with y € K or y € Q,
respectively). As before, choose a smooth local orthonormal frame FE, for TK, so that
(Fs)«Eq = E,u(s) is a local (non-orthonormal) frame for TK,3. We then include ng, the
unit inward normal to K in @J;. Moreover, we extend ns to a vector ngs € T'QQs so that it
satisfies V%ﬁs = 0. We supplement this to a complete local frame for To, M (at least near
points of K) by adding a local orthonormal frame N,(s) € NQ,. Here we let the indexes
a,f,...run from 1 to k while g, v,... run from k+2tom +1 .

Notation 1.3.1. Set Hs = H(K;) — hons. We also write
Lg = VoosHs|,_,-

Note that we can decompose H'(0) into H'(0)V% +H'(0)7%, its components perpendicular
and parallel to K. Since H(s) L K, we have that (H(s), Ea(s)) =0, so

(H'(0), Ea) + (H(0), E4,(0)) = 0.
Since H(0) = 0, we obtain w7k o Lo = 0.

Next decompose & = [@]L + ¢n into parts perpendicular and parallel to @ (along K).
Note that we can choose the vector field Ug extending ® and defined in Lemma [1.3.1] so that
its component tangent to () lies in the span of n. More precisely, we have a decomposition
Up = [Us|* + uy 7 locally near Kg, where [UqD]HK = [®]* and uyl, = ¢.

To see that E! (0) = Vg, ®, choose a curve ¢(t) in K with ¢(0) = p, ¢/(0) = E, and define
G(t,s) = expg)(s®(c(t))); we then obtain that

VososBal,_g = VososVaaG(t,s)| _,_o = Vasar®(c(t)|,_, = VE.2,

as claimed. To compute n/(0), observe that (Fs).(n(0)) is always tangent to Qs and transverse,
but not necessarily a unit normal, to K. We can adjust it, using the Gram-Schmidt process,
to get that

i

ne = ((F:((0) = - caBa(s)) / |(F)(n(0) = Y caFa(s)

where
ca(s) = (Ba(s), (Fs)«n(0))/|Ea(s) .
Arguing as before, take a curve d(t) in @ such that d(0) = p and d'(0) = n and define

G(t,s) = expg(y) (Uso(d(t))). Note that Usp = s(Vigp + Zjg)+) + O(s%(|®||25.0.). We get

Vayos(Fs)n(0)| _, = VosasVaaG(t, S)L:S:O = Va(Vig)i + Zjg)+)

and since ¢4 (0) = 0, we obtain

O = [FaViay + VZiaps ][ = [ViZar +0Via]|

Finally, the component [n/(0)]l = 0. Combining these calculations gives the
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Proposition 1.3.2. If Q) is critical for &, then
Lo® = (rnk o Jxk —hoDg) @,

where
Do® = |V:Zg + ¢>v¢ﬁ} ‘K

1.3.5 Linearization about the Euclidean sphere of higher codimension

We conclude this section by discussing the precise form of this linearization, and its nullspace,
when

K =58*x {0} c Q = B*! x {0} c R™!,
since this is our basic model later. It is easy to see that B*+1 is critical for &.

The unit inward normal to S* in B¥*! is nge(©) = —O. If ® € C>*(NS¥), then
= [2]" - ¢6,

where the first term on the right is perpendicular to B*T!. The operator Jg; acts on these

two components separately, via J ;ﬂ and J! respectively.

Sk 9
The first of these operators acts on sections of the trivial bundle of rank m — k. Obviously,
Ricg,C =0, cf. (1.3), and (55?,3)L =0 as well, so

Jé?k — Ask

acting on (m — k)-tuples of functions. Its eigenvalues are ¢(k+¢—1). The operator Dgr+1 also
acts on sections of the trivial bundle N B*+1 ‘Sk‘ In fact, since Jgr+1 = Apgk+1, this operator is
simply the standard Dirichlet-to-Neumann operator for the Laplacian (acting on R™*-valued
functions). Its eigenfunctions are the restrictions to r = 1 of the homogeneous harmonic
polynomials P(z), z = r©, © € S*. If P is homogeneous of order ¢, then P(z) = r‘!P(0),
s0 Dgr+1P(0©) = —(P(0) (recall we are using the inward-pointing normal). Combining these
two operators, we see that Agr —kDpgr+1 has eigenvalues —€(k+/¢—1)+ k¢ = —¢(¢—1), hence

(J§k - kDBkH) (@] =0
= [®)F espan{(a, +b,0)E,, j=1,....k+1, p=k+2,...,m+1},
where E,,, p = k+2,...,m+ 1 is an orthonormal basis for N Bk = Rm—k,

The remaining part is
Tl = Age +k,

since Ricgr = 0 and ) = k1d. Thus
Jgk(¢@) = J“S‘vk(ﬁb) =0 = gb S span{@l, .. .,@k+1}.

We have now shown that the nullspace K of Lgui1 splits as K+ @ Kl The first of these
summands is comprised by infinitesimal translations in R™~* and rotations in the ju planes
(now j < k +1); the second summand corresponds to infinitesimal translations in R¥*1,
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1.4 Construction of constant mean curvature submanifolds

We now turn to the main task of this paper, which is to construct small constant mean
curvature submanifolds concentrated near the critical points of Ry4+1. The first step is to
define a family of approximate solutions, i.e. a family of pairs (Q., K.) where Q. is minimal
and has nearly CMC boundary. We then use a variational argument to perturb this to a
minimal submanifold with exactly CMC boundary.

1.4.1 Approximate solutions

We adopt all the notations used earlier. Thus we fix II, € G41(T'M) and an orthonormal
basis E;, 1 <i <m+1of T,M, where E;, 1 < j < k+1spanll, and E,, 4 > k+2, span HIJ;.

This induces a Riemann normal coordinate system (z!,...,2™*!) near p, and it is standard
that
1
9ij(x) = 9(Opi, 0p5) = 6ij + 3 Z(Rp)ikjf 22t + O(|z)), (1.5)
k0

where § is the Euclidean metric.

Rescaling

In terms of the map F. : T,M — M, F.(v) = exp,(ev), used earlier, define the metric
9- =€ *Flyg
on T, M, or equivalently, work in the rescaled coordinates y/ = 27 /. In either case,
9 = ldy|* + e2he(y. dy), (1.6)

where h. is family of smooth symmetric two-tensors depending smoothly on & € [0,eq]. The
mean curvature vectors H9 and HY with respect to g and g, satisfy

e HY = (F), H%, and [H%|lg. =€ [ H|lg-

Let B*1 = BE+1(IL,) C 11, be the unit ball and S* = S¥(II,,) = OB*!, and denote their
images under F. by B*1(II,) and S¥+1(II,). These have parametrizations

k+1 k+1

Ska@»—ﬂaxpg €Z@jEj ) Bk+19y'—>exp]gg EZ?JjEj
j=1 Jj=1

In the lemmas (1.4.1)) and (1.4.2]) below we give the expansion of the mean curvature of
BE+1L(11,) and S¥(I1,) in terms of . To this end we introduce two supplementary curvature
invariants which are restrictions of the Ricci curvature of the ambient manifold M:
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Notation 1.4.1.

K+l
Ricy41(I1p) (vi, v2) ng (Ei,v1)E;,v2), vy, vz €11,
k+1
Riciy (T ng (Ei,v)E;, N), v e, N eIl,.

Note that
Rici%*l (Hp) - |:RiCl];7§+1 (Hp):| »

Moreover, here and below, we write O(e¥) for a function with C®* norm bounded by Ce*.

Lemma 1.4.1. The mean curvature of the geodesic ball BET1(I1,)

m+1

BB = Y (5 Ricka)0.5,) +0E)) Ny ye B

p=k+2
where N, k+2 < < m+ 1 is an orthonormal basis of NBET1(IL,).

Proof. Recall that

HO(BE(IL)) = — (Fo). 1O (B

We denote N u» k+1<p <m+1 the orthonormal basis of the normal bundle of B*t1 with
respect to the metric g. obtained by applying the Gram-Schmidt process to the vectors E;(p),
1 <i<m+1. Remark that

9eW5 E)) =6+ O(E%), p=k+1,...,m+1

Remark, that the vector fields N, = 1 (F;).(N) form an orthonormal basis of NBET(IL,)
with respect to the metric g.
The Christoffel symbols corresponding to the metric g. are:
1
(T (y) = 3 92(0y3(9e)iq + 0y (9-)jq — Dya(9)ij)

2
lg €
=0 G Y (Rijop + Ripgj + Rjigp + Ripgi — Rigjp — Ripjq) + O(%)

2

€
=—3 (Ripje + Rigjp) v° + O(?),
whence
(ng By, Ni) = (T9)2 + O(e*)

Taking the trace in the indexes 4,5 = 1,...,k 4+ 1 with respect to g. gives the result.
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Lemma 1.4.2. The mean curvature of the geodesic sphere Sf(ﬂp) satisfies

o(541,) = (£ = 5 Ricesn(1,)(0,0) + 06 s

m+1

+ > (Erickam)©.8)+0EH) N 0€ S,

p=k+2
where ng is a unit normal vector field to SF(I1,) in BET1(I1,) with respect to the metric g.

Proof. The proof is similar to that of the previous lemma, but with several changes. Let
ul, ... uf = O(u, ..., uF) be alocal parametrization of S¥ C IT,. The tangent bundle TSk
is spanned by the vector fields ©, = 0,00, a =1, ..., k. We remark that

HO(SH(I,) = 55 (), HY(SY).

By Gauss’s lemma,
9 ((F2)«Oa;, (F£)«0) (F=(0©)) = gp(Oa, ©) =0,

for a =1,...,k, hence, we put ng := —% (F:)©. We have
V04 = Oua 0,50 + (19)[5(04)"(05) E,

oa,B=1,...,k i,5,£=1,...,m+ 1. Since he vector field 0, 9,50 is tangent to B¥T1(0),
we find
9 (V.00 N5 ) = ()4, (00)" (05)" + O(%).

Taking trace in the indexes a, 3 with respect to the metric induced on S* from g, we get

2¢2 .
9: (HY (S¥), N}) = == Ricy1 (IL,)(0, B,) + O(%).

In order to find [H9% (S*(T1,))]!l, recall the standard fact that if ¥ C M is an oriented
hypersurface with unit inward pointing normal Ny, and if X, is the family of hypersurfaces
defined by

¥ x R(q, z) = exp,(zNx(q)) € Xz,

with induced metric g, then

d
|Hx| = 5 log v/det g.

In our case, considering S* = 9B**! with metric g., let g.. be the induced metrics on the
Euclidean sphere of radius 1 — z. Then,

e2(1 — 2)?

detgec = (1= 5% detg® (1 Ric(I1,(,6) + 0" )
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where g° is the standard spherical metric on S*(II,). From this we deduce that

82
ge (ng(s’f), —e) = k= 5 Ricri (IL,)(6,0) + O().

this completes the proof.
O

Proposition 1.4.1. Fiz II, € Gpy1(T'M). Then for € > 0 small enough, there exists a
minimal submanifold Q.(I1,) which is a small perturbation of B¥(IL,), whose boundary
K.(II,) = 0Q:(11,) is a normal graph over S¥(Il,) and whose mean curvature vector field

satisfies
m—+1

k
HY(K<(I1,))(0) — ~ nic = (@, 0) nc + > (6,0) +dy) Ny, (1.7)
pn=k+2
for some constant vectors @ = d(e, 1), €, = ¢,(e,11,) € R*! and constants d,, = d,,(¢,11,) €

R and where by (-,-) we denote the scalar product in R™*L. Here ny is a normal vector field
to K:(II,) in Q:(1I,) and N, p = k+2,...,m+1 form an orthonormal basis of [NKE(Hp)]J‘.

Proof. Take a vector field ® € C?%(T,,M) defined along the unit sphere S*(I1,,), such that

m+1
B(O) = —¢(0)0+ > (O)E,
pu=k+2

and write

sk — {@+c1>(@), 0c S"“}.

Then there exists a submanifold Bkgl such that angl = Sk and which is mlmmal with
respect to g.. The proof of this fact is almost the same as the proof of the Lemma (1.3.1)); the
only difference is that we use a “perturbed” metric and the starting submanifold is no longer
minimal. Let Vg be a linear extension of ® in Bt and take

m+1
W e (T,M), W= Y WF'E, W|g=0.
pn=k+2

We put U(y) := Va(y) + W(y) and let H(e,®, W) denote the mean curvature with respect to
the metric g. of the submanifold

Bk+1 {y—I—U( ), yeBk—H}.

Note that H(0,0,0) = 0 and

— JBk+1 == ABk+1.
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We can then apply the implicit function theorem to f[(e, O W) =moH(e,®, W), where 7 is
the orthogonal projection onto the subspace of T),M spanned by E,,, k+2 < u < m+1. Then
for € and ||®||c2,« small enough, there exists a mapping (¢, ®) — W (e, ®) such that

H(e,® W(e,®) =0 and H(e,® W(e, ®)) = 0.
Moreover, we can write
Ueo = Vo + W(e,®) = Vi + Zo + We + O(||°|]) + O(?[| @) + O([| @),

where V,(y) = —é(y/||yll) y, the vector field Zg is the harmonic extension of ® in B**! and

W, satisfies
2¢?

Apia W = —Tchml(Hp)(y,Eﬂ), W.=0 on S*
Remark 1.4.1. A simple calculation shows that
82 1 m+1
We(y) = 3 r (1— 1y Z Ricji (1T Eu) E,.
p=k+2

As a next step, we calculate the mean curvature of S’g with respect to the metric g.. First
note that the vector fields

m+1
Toa=(1-0)O4 = 0y, 0O+ Y 04, P"E,
pn=k+2

locally frame T S(’f,, while

1 1
Op =0 + 14 Vgrp, and (Eu)q> =k, - V gx O

¢ 1-¢
are a local basis for the normal bundle of S{{“, with respect to the Euclidean metric. Applying

the Gram-Schmidt process with respect to the metric g. to these local frames yields the unit
normal to S% in kagl, which we denote ng, and the orthonormal frame (Ng)f, for the normal

bundle of Bfgl along Sk with respect to g.. It is clear that

<n(81>7 _@¢/’@¢‘geucl>g5 - 1 + 0(62)7 and <(NH)%7 (EH‘><I>/‘(EIJ‘)<I>’9eucl>gE - 1 + 0(82)7
and n§ = —0 and (NV,)§ = N;. We can then write

HO=(55) — kg = (g (H%(55),n5) — k) n§ + mil g (H%(55), (Na)3) (M)
=k-+2

n=

Notation 1.4.2. We let L1, (®) denote any second order linear differential operator acting
on ®. The coefficients of L11,(®) may depend on 11, € Giy1(T'M) and € € (0,1), but for all
J € N there exists a constant C; > 0 independent of 11, and € such that

1L, () llcse(sry < C [ ®|it2.avswy-
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Similarly, for £ € N, Q%p(q)) denotes some nonlinear operator in ®, depending also on 11,
and €, such that Qﬁp(O) = 0 and which has the following properties. The coefficients of the

Taylor expansion of Qﬁp (®) in powers of the components of ® and its derivatives satisfy that
for any j > 0, there exists a constant Cj > 0, independent of I, € Gj41(T'M) and € € (0,1),

-1
1Qf, (1)~ Qh, (@) leseqsty < Gy (I@1llesaosy + 1 @2llernasny)  I121=Palleronnnsey
provided || ®illc1ngry < 1,1 =1,2.

Using the fact that the Christoffel symbols associated to the metric g. are of order O(g?),
we obtain

2
9 .
g (H(S5).5) — b = =5 Ricei (IL,)(0,0) + JLo

+O(e%) + & L, (®) + Ofy (D),

2e2

9. (H(85). Wa)) = =

+O(e%) + & L, (®) + Of (®).

Ricé_—kl(ﬂp)(@v E,)+ LJékH o

As before, we let Kl and K1 be the null-spaces of the operators
Tl = Agi+k and Lbe, = Agi — Dpis,

and write Pl and P for the L? orthogonal complements of Kl and K1 in €>*(S*). Define
the space
¢ .= RM x (RFH g R)™F x Pl x (PLy™—F, (1.8)

There exists an operator
G: (CO’O‘(Sk))m*’C — €,

such that
G(for fro s fn) = (@, 1), Gy, £), Ty, ), 61Ty, £), D (1, £))

is the solution to
Jh ¢ = (@,0) + fo,
LékJrl OH = <5ua 0) + du + f#—k'

Applying a standard fixed point theorem for contraction mappings, we find that there exist
¢ > 0 and g9 € (0,1) such that for every € € (0,e0) and II,, € Gy4+1(T'M) there is a unique
element

(@2 1), Gl L), du(e, Thy), 66, Thy), @ (2, 1) )
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in a closed ball of radius ce? centered at 0 in & (for some constant ¢ > 0) such that

m+1
HY%(S§) = —kn§ + (@, 0) ng + Z (G ©) + du) (Na)y,-
pn=k+2

Finally, to finish the proof we put

1 1
ng = - (F.)«ng and N, = - (F2)« (Nu)fb

and K (I1,) := Fz(S§ (e,t1,))r Qe(llp) = (Bfg%enp))

Remark 1.4.2. Using the fact that
Ricks1(I1,)(0,0) € Pl and  Rick,(1,)(0, E,) € K+,

and decomposing

k+1 k+1
R’ick+1 Z Rlck+1 aa @a Z Rlck+1 ab o° @b
a#b=1

one can easily verify that the vector field ®. 11, obtained in Proposition satisfies
2

oo, = 5 (i) Renly) = g Riewa (1)(©.0)) + 0,

@1, = O(%).

1.4.2 Variational argument

We now employ a variational argument to prove that one can choose II, € Gi(M) in such
a way that the submanifold K, (II,) obtained in the previous Proposition has constant mean
curvature.

To state our result, we introduce the following restrictions of the Riemann tensor of M:
Notation 1.4.3.
Ry (Ip) (01, v2, 03, v4) = gp(Rp(v1,v2)v3, v4), v1, V2,03, 04 € 11,
Rk+1( p)(v1,v2,v3, N) = gp(Rp(v1, v2)v3, N), vi,v9,v3 €I,, N € Hé,

Finally, introduce the function r on Giy1(TM):

k+1

r(0) = 35055 [8 IRicy41(IT,)]|* — 18 i]%:—l VEVE g(R(E;, E)Ej, Ey)l,

=3[ Rua ()12 + 5 R (1) + 24 B2 [Rict, ()12 + 12 | RE,  (11,) ]

4

18

S k1 2)(k+3) R

21 (I) — 2 |Ricy1 (11,)] 2
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Now consider the energy &, restricted to this finite dimensional space of submanifolds,

£:(11,) = Voly ((IL,)) — = Vol (Q-(1T,)),

which is a function on Gj11(T'M). Tracing through the construction of K.(II,) one obtains
the relationship of this function to the curvature functions defined above.

Lemma 1.4.3. There is an expansion

(k+1)E(ITp) _ ( g2 et

ek Vol (S*) 1- 20k +3) Rir1(Tp) + 13 r(IL,) + (’)(55)) .

Proof. The proof is a technical calculation, contained in the Appendix.

The main result of this section is the following proposition
Proposition 1.4.2. IfIl, is a critical point of &, then K (Il,) has constant mean curvature.

Remark 1.4.3. Theorems (1.1.1) and (1.1.2)) are Corollaries of Proposition (1.4.2). Indeed,
if we define

(e, I0,) = 262 (k + 3) (1— (k+1)m>; (1.9)

then for any j > 0, there exists a constant C; which is independent of € such that
W (e, ) = Rpsa(-) + 52f(')|\cj(ck+1(TM)) < Cjé’.

Proof of the Proposition. Let II, be a critical point of £&. We show that the parameters @, ¢

and d must then necessarily vanish. We do this by considering various types of perturbations
of II,,.

First consider the perturbations in G1(M) which correspond to parallel translations of
IL,. In other words, we suppose that the family of planes Hexpp(t@ in Gi11(M) are parallel
translates of II,, along the geodesic expp(t§).

The submanifold KE(Hepr(tg)) is a normal graph over K.(II,) by a vector field .1, ¢
which depends smoothly on ¢. This defines a vector field on K, (II,) by

Z€7Hp7£ = 8t\I]57HP’£7t‘t:O °

The first variation of the volume formula yields

k
= /}(E(Hp) (g(H(KE(Hp))v Zs,Hp,ﬁ) - g g(n7 Z51Hp75)> deZKE(Hp) (110)

k

—= / 9(H(Q:(I1p)), Ze 11,.¢) dvolg,(i1,),
€ E(HP)
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and then the construction of Q.(II,) and K (II,) gives that

m+1

/ <<5a@>9(n7za,np,g)+ > (64, ©) +dy) g( Enpg,N)):o.

K- (I1,) p=ht2

Let = be the vector field obtained by parallel transport of ¢ along geodesics issuing from
p, and suppose that c is a constant independent of € and &. Then

1Zem,.6 — Ellg < ce?l€]l.
By construction of K.(II,), we have

1 1
[+ 2 (F).Ollg < e, and [Ny — - (F)uBully < cé®.

Now take ¢ € II,, C T'M,,, so that

1 1 _ —
g(n, ZS,HP,E) =g <_E (Fa)*@ + <n + g (F>*@) , =+ (ZE,HP,E - :)> )
and ) )
Q(N/u Zf—:,Hp,ﬁ) =g (5 (FE)*EM + <Nu Tz (FE)*Eua =+ (Zs,Hp,g - E))) .
We conclude that

|9(n, Ze ) + 9p(€, ©) < €€l and  |g(Nyu, Zem, ¢)| < ce?[€ll,

hence
| @ergeer<| [ @ece)
KE(Hp) Ks(np)
+ (@,0) 9(Zem,.e,n)
(1)
m+1
+ > [ (60) + d) 9(Zem,e Ny
m+1
<elel( [ 1@+ 3 / 5.0) +d|).
Now taking & = ZkH a’ E; we obtain
m—+1
[ @ersctial| [ laei+ > [ i@.e)+d
K. (T1y) <(I1y) H=R 2 ()
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In Euclidean space, we have the equality
Vol (S)|[v]| = (k + 1)/Sk<v,@>2, for all v € RFFL
By the expansion of the induced metric, we obtain for € small enough
3 VoS ol < (b +1) [ (w @)
(Tp)

Also, since Voli,(K.(I1,)) = O(¢¥), we deduce

m+1

lall < ce(lal+ > (gl + 1) ). (1.11)

u=k+2
Now move p in the direction of a vector £ € Hj to get

|9(Zem,6: N) = 9p(& E)| < ce?[€ll, and |g(n, Zem, )| < c€|I€]l.

We can write

m+1 m+1
Z / C,w +d )gp 57 Z / C,LM +d ) ( EHP,& )
n=h+2p Ty n=k+2p
m+1
=Y [ (@8 +d) a6 B
pn=k+2 Ke(Ilp)

+ [ (@6 (Zn,em)
K (p)
m+1

<eelel [ (1@ 3 10 +d)

pn=k+2

Taking £ = d, E, gives

d, (,,0)+d,? <ce?|d, a,o
/m(np) 1) H’ (S, 163 ©)

5 e+ dl).
p=k+2 J K. (11,)

Next consider a perturbation of II, by a one-parameter family of rotations of II, in T}, M
generated by an (m + 1) x (m + 1) skew matrix A. Then

(1.12)

E((I+tA+O(*)IL,) = 4

D& | (A) = —
eI, —0 T

dt

E(A(K-(11p))),

t=0
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where, in geodesic normal coordinates
Ay(x) = x + tAz 4+ O(t?).

The coordinates of the vector field associated to this flow are

d
Z€7HP7§(.%') =% Ay(z) = Ax.
t=0

Considering only matrices A € o(m) such that A : I, — Hj, we obtain
9(Zem, e,m)| < ce?|A0],  and  [g(Zom, e, Nu) — (A, E,)| < ce?||A8).

This gives the

m—+1

/ (@, ©) + d,) (A6, E,)
p=k+2 K (IIp)

m+1
<|

/ (<8M7@> +du) g(Z€>Hp:5’N“)
p=k+2 J K (IIp)

m—+1

.S / (7 ©) + dy) (A6, )
p=k+2 J Kc(Ilp)

b (@.8)g(Zan,em)
K (Ip)

m+1

<cet [ (Jae] @)+ 3. [46]1(6.©)+d,
=y p=k+2

Let C, be the (m — k) x (k + 1) matrix with column v equal to the vector ¢, € R¥*1, and
all other columns equal to 0. Then if

0 —c7T
a=(e 0 )

we get
[ @+ @end <c( [ (@) ls(@o)
) k(1)
A - (113)
+ 5[ aeilE.e) )
pn=k+2
K (p)

Adding (1.12)) and (|1.13]) now gives

L ) ) .
/Kg(np) |dy + (¢,,0)]" < ce (/ (Idy| + (2., ©)]) |(@, O)]

K (Ip)
m+1
+ D (ld| + (6, 0))) (G, ©) + | )
p=k+2
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In Euclidean space, if v € R¥! and o € R are arbitrary, then

2 9 1 2 k
= + — Vol .
/Sk la + (v, ©)| <o< k—l—lHUH ol (S™)

Using once again the decomposition of the induced metric on K.(II,) we find for & small
enough

k kY (2 2 2
————" Vol (S7%) (o + ||v §/ a+ (v,0)|". 1.14
ST VS (@ el < [ ek ) (114
which gives
1 m+1
Gl + P < eqgdal vl ([ @el+ Y [ (6. + ).
< =(T1p) k2 Ke(Tlp)
Since Vol (K. (11,)) = O(e¥), we get
m+1
e+ 1du] < e (Nl + Y (Il + Idal)- (1.15)
u=k+2
Adding ([1.11)) and (|1.15]) gives
m+1 m+1
lall + > (W&l +1dul) | < ece? {al+ Y el +Idal) | -
n=k+2 n=k+2

which implies finally that ||@|| =0, ||¢,]| =0 and |d,| =0, k+1 < p.

We conclude that if II, is a critical point of the functional &, then the manifold K. (II,)
is a constant mean curvature submanifold of M. O

1.5 Appendix 1

Mean curvature of submanifolds: Let ¥ ¢ M™*! be an embedded submanifold. Let

z', ..., 2" be local coordinates on ¥ and

Ea: T

the corresponding coordinate vector fields. Suppose that Exi1,..., Enyr is a local frame for
NX. This gives local coordinates transverse to > by

m+1

p €Y exp, Za:jEj
j=k+1

We make the convention that Greek indexes run from 1 to k, while Latin indexes run from
k+1 to m+ 1. The induced metric on X has coefficients g,g, while

hig =Ths = 9(VE,Es, E;)

85



are the coefficients of the second fundamental form. We also record the Christoffel symbols
I = 9(Ve. Ei, Ej).

The following result is standard, cf. [72] for a proof.

m+1 .
Lemma 1.5.1. If X = ) a/ Ej, then
j=k+1

9a8 = Gap = 29(hag, X) + 9(R(Ea, X)Ep, X) + g(VE, X, Vi, X) + O(|2])

= Jap — 2hjg 2’ + (Q(R(Ea, E\)Eg, Ej) + g hiy, b 5 + Ty Fiig) 2’2l + O(|z[*)
9aj = —To; 2" + O(|a]?)
gij = 0ij + ég(R(Ei, E()E;j, Ep)a* 2"+ O(|z).

Let ® be a smooth section of NX and consider the normal graph ¥g = {exp,(®(p)) : p €
¥}. Now let us use the previous lemma to expand the metric and volume form on Y. To
state this result properly, introduce V¥, the induced connection on N,

VN® = 1y 0 VO.
Using the definitions of §2, we find that

Lemma 1.5.2.

Voly(Se) = Volg() — /Z g(H(%), ®) dvols

+ ;/2(|VN<I>|§—9((R102 +H3) @, ®)) dvoly
1
+ 2/(g(H(E),<I>))2dvolg—|—...
b))

Proof. First of all we expand the induced metric on ¥g. Using the result of the previous
Lemma, we find

(90)ap = Gap — 29(hag, ®) + g(R(Ea, ®) Eg, @) + g(VE, P, VE,®) + ...
= Jap — 29(hag, ®) + g(R(Ea, ®) Eg, ©)
+ 37 g(har, ®) gy, ®) + g(Vi, &, VY @) + ..
Next we use the well known expansion

det(I+ A) =1+ %TrA - é (TrA)? — % (Tr(A?)) + ...

86



to find
Vdetge = (1 - g(H(2),®) + 5 (IVV@[; — g((Rics + (9)3) @, @)

+ (9(H(D),®))?) +...) V/detg.

This completes the proof.

From this we obtain the first and second variations of the volume functional,

D@Volk(zq>)|q>‘lf = / g(H(Zcp),\I/) dVOlEq), (1.16)
P

and
D2 Vol (2¢)|o—o(¥,¥) = / (IVNU? - g((Rics + H%) U, ¥)) dvoly,
b

+ /E(g(H(E), T))? dvols.

On the other hand, differentiating ([1.16)) once more gives

D%Volk(Eq)ﬂq):O(\I/,\I/) = —/g(Dq,H(Zq>)|¢_0\I/,\P)dvolg
b

+ /E(g(H(E), )2 dvolg.

Comparing the two formulee implies that the orthogonal projection of the Jacobi operator to
NY equals
JY = DoH(%g)|o—o = AY + Ricd + 93,

1.6 Appendix 2

We give here the proof of Lemma namely the proof of the formula

(k+1)&(1L)
ek Vol(S*)

4

62 9
= (1= gy Ren M) + 5

2(k + 3) (k+3) r(Ily) +O(65))

and find the expression of the function r. Let K.(II,) be the constant mean curvature sub-
manifold constructed in Proposition and denote by F': T,M — M the exponential
map. Recall that

KE(HP) = F(Sf,{l')?

where S§¢ is a submanifold of T),M parametrized by {5 1-¢)0+cdt, O¢ Sk}. It follows
from the proof of that proposition that

2
00) = 5 (g Ren ) - 15Rie)(©.0)) + )
ot = 0(?)
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Also consider the minimal submanifold
Qa(Hp) = F(Bf,};l)a
where BI“Jrl {ey+eUs(y), y € B*"} and recall that

Us(y) = ¢ (y/lyll) + We(y) + O(e%),

22 m+1 k+1
Wely) = Z ZRW pin (lyP = 1)y Eu
( +3 p=k+2 i=1

We shall calculate the volume forms of S§,¢ and Bfgl with respect to F*g. First of all,
recall that in the neighborhood of x = 0 we have

) 1
(F79)ij = 0ij + 3

1
3 gp(Rp(‘T’ Ei)xv Ej) + 6 gp(vIRp($’ Ei).’L‘, Ej)

1
+ = 509 9p(VeVaRy(x, Ey)x, Ej)

m+1
+ Z 45 gp 1' Ez)x7E€) gp(Rp(l‘an)l'aEﬁ) + Op(|x|5)>

where R, is the curvature tensor of M at the point p, cf. [10g].

Volume of the CMC sphere

We first find the expansion of the metric induced on Sf,q). To this end we express the tangent

vector fields to Sbe in terms of the vector fields ©,, o = 1,...,k tangent to the unit sphere
Sk 7
m+41
Ta=c(1—¢(0)Os —€0spO+ Y 059" E,, a=1,...k
pn=k+2

The metric coefficients then satisfy

4
£
Gap = (1= 0)" 935 + £ 0ad 00 + o (1= 0)" gp(Ry(©,04)0, O5)

5 6

£ 5
+ 5 9p(VeR,(0,0,)0,03) + 209

k+1
+Z 5 g,, 1(0,04)0, Ey) gp(Ry(0,04)0, E))

9(VeVeR,(0,0,)0,0p)

m—+1
+ Z 2(0,04)0, E,) g,(R,(0,04)0, E,) + O(e7).
n= k+2
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Using
Vdet(I +A) =1+ %trA + é(trA)2 - itr(AZ) + O(|AP),

we get

det g& k(k—1 1
—k@ :1—k¢+g¢2+—|vsk¢|2
V/det g% 2 2
g2 ] g3
— E(1— (k +2)¢) Ricg1(11,)(0,0) — EV@chkH( I1,)(©,0)
o4 o4 )
40Ve Rick+1(11,)(0,0) + 5 (Ricky1(11,)(©, ©))
4 k+1
T 180 > (R 6. E;)’
3,j=1
4 k+1 m+1
Z > 9p(Rp(©, E)O, Eu)* + Op().
i=1 p=k+2

Volume of the minimal ball

Now let us calculate the volume element of Q. (II,). The tangent vectors to Bfgl are given by

m+1
Ti(y) =c(1—u() Ei + €0y uly)y+c Y 0, WE(y) Ep+ Op(e?),
pn=k+2

where u(y) = ¢(y/|y|). The corresponding metric coefficients have then the expansion
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m—+1
g2 gg (1—u)? 8ij + (1 —u) (8yiuyj + ayjuyz) + \y|28y¢u8yju + Z 0y, Wt 0, Wt

pn=k+2
82 2 m+1
+ 5 =0 g Ry, BNy Ep) + 5 Y [WE gpl(Byl(Eys i)y, )
p=k+42

+ WE gp(Rp(y, Ei)Ew Ej) + 8in€”gp(Rp(y, Eu)y’ Ej) + 8ijs“ 9p(Rp(y, Ei)y, Eu)

3 84
gp(vpr(% Ey)y, Ej) + 20 gp(vyvpr(% Ey)y, Ej)

254 k+1
+ o5 2 9(Baly, Ei)y. B) gp(Ry(y, Ei)y, Ei)
=1
2¢ 4 m+l1 ;
T > 9(Ry(y, ED)y, Eu) 9p(Ro(y, Ed)y, E) + O(E0).
pn=k+2
Using the fact (Vu,y) = 0 and the fact that for the matrix A;; = y* 9 i+ y’ Jyiu we have
$tr(A?) = L |y|? |Vu|?, we calculate the volume element of Q. (II,):
k(k+ 1 W™
e+ /det gQ =1 — (k+ Du+ (2+)u2 + ) 5|vskwg\2
pn=k+2
g2 .
S (1 (k4 8) ) Ricken (T,)(0,9)
2 k+1 m-+1
+ = Z Z |:W gp EivE,UnEi) + ayZWéu gP(RP(ya El)ya EM)
i=1 p=k+2
3 ‘ o4
~ Iz Vy Rick1(Ilp) (y,y) — ZO Vi Ricg1 () (y, )
54 4 k+1
2
+ oy (Rick () (4,9))" — 155 ;lgp y, Ej)
e
Z Z gp(R Eu)2 +Op(55)-
i=1 p=k+2

Expansion of the energy functional

Collecting the results obtained above, we find
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=~ (Vol(K.(11,)) — £ Vol(Q. (1))

2

2
—Vol(S* c e (11 6/ e (11
k—i—lVO (S%) — 2513 Ja Rick+1(11,)(©,0) do + 3 o Rick+1(11,)(0,0) pdo
554 1 1 2
el ~ (Ri I
w s [ [ 5 TR R [,)(0.0) + 75 (i (1,)(0.0))
k+1 k+1 m41
18029p (0, E;)0, E;) Zzgp 2(0, )0, E,)? | do
,j=1 i=1 pu=k+2
m41 22 kel
+ Y / W“ Apis W”} . Z (W‘“gp (0, E;, E,, E;) + 0, WP Rp(@,Ei,@,EM)> dy
k+1
p=k+2

1 k

5 [ easo-g [ ddrs 0@,
2 Sk 2 Sk
We now recall some identities. First,

do = —— Vol(S*
Sk(@) o k+1Vo(S)

/Sk(@ )4da—3/5k(9 O o = G s Vol(SP):

and second, if a;jpg € R 4,7,p,q=1,...,k+ 1, then

k+1 k+1

3
a zn@p@q@l@”da_—vol a
pq§ 1/ - (k+1)(k+3) Z PPPP

1 k+1

+—————Vol(S* T 4

(k+1)(k+3) ol(57) q;p;l (@ppag + Apgpg + Apgqp)

1 k+1

T VS 2 ot )

and develop each term:
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k—i—l
/ Ricg+1(I1,)(0,0) do = / Ricy1(11,)(Es, Ej )Gk 0l do
t,j=1

k+1 '
= chkﬂ )(Ei, E;) (09)% do

= m VOl(Sk) Rk+1(Hp);

k+1
Vol(s%) (2 3 (Ricks1 (1L, (B:, E))?)
i,j=1

1

[ Riceame. o) = g

ket

+ Y Ricka (1) (Bi, ) Ricya (1) (Bj, E))
ij=1

1

B m%l(sk) (2 IRick 1 (L) [|* + Rk+1(Hp)2) ;

k+1
> / 9p(Ry(0, E))O, E;)? do
i,j=1
1 k+1
- (k+1)(k+3) VOl(Sk) Z (R?qu + Ripjp Rigjq + Ripjq Riqu)
0,J,p:q=1
1

: 3
= G V) (IRieks I+ S 1 IR

(we use here that Rfjm (Ripjq — Rigjp)? prjq + qujp 2 Ripjq Rigjp);

k+1 m+1

ZZ/gp (0, E;)0, E,)? do

i=1 p=k+2

~ i niy O ([Ricta@)| + 5 R )

92



Skvg Ricy1(0,0)do

k+1

1 , .
UES ()] '-21 (V%i Rick1(p)(Ej, Ej) +2 Vg, Vg, Rick (Ei, Ej))
1,)=

k+1
2

= = VoI(5" Ve, Veg(R(Ey, ) Ey, )|, ;
(k+1)(k + 3) ol( %;1 5. Ve 9(R(Ey, E1)Ey, E1)],

m+1

> /B W A W dy
p=k+2

2 54 1 m+1 k+1

e S /BM ; (732'.;¢+1(1njj,Eﬂ))2 ()2 (1 - |y[?) dy

p=k+2

2¢4 1 1 1
:_7—\/1516 R-J_ 2 _
5 oD o) IRickl <k:+3 k+5>

el 4
=—3 Vol(S*) || Ricpy ||
9 (k+1)(k+3)%(k+5) ol(S™) IRich s

m+1 k+1 m+1 k+1

e 1 2
© P e — P . IN2(1 — [4]2
> /Bk+1 WE Y Riipy” dy = —— ) /BW > Z(chkH(EJ,EM)) (7)2(1 = |y|?) dy

u=k+2 i,p=1 u=k+2 j=1
g2 2

=-= Vol(S*) | Riciy |1
3 (k+1)(k+3)2(k+5) ol(S") [ Ricgyall™

and
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m—+1
Z / Oy WHRpigu y? y? dy
B+

n=k+2
22 m+1 k+1
§k+ Z/BJFZ Rlc W pzquyy(l_w‘)
=k+2
k41
—22ch Rpigny’ y'y y)dy
g2 2
= Vol Sk [_ Ri 1 2
3 (k+1)(k+3)%(k+5) ol(5%) | — [[Ricy||
k+1 m+1
-y (ch - Rypape + Ric(I1,) %, Rypay + Ric(TT,) 2, qupu)}
P,q=1 p=k+2
2¢? 1

- 1 k -1 2.
3 (k+1)(k+3)%(k+5) Vol(S¥) [ Ricjy4 |l

This gives finally

(k+1)&(1L,) e 1
E Vol (SF) 5 k—i—SRk“( »)

4 1 ' k+1
8| Rick (L) > =18 Y V&,V 9(R(E), E0)Ej, B,
i,j,6=1

e

t e GG

k+1

= 3| Ryt (L) |1” + 5 R (1) + 24 - —— 3 HRlckH( IL,) || + 12 HRIi_+1(Hp)H2}

4
" %3 (k+2)1(k;+3) {k—]:ﬁRkJrl( p) — 2!]Rick+1(1'[p)||2] +O()
—1_ g2 Resr (1) 4 o4 o
= m k+1(ILp) 20k +3) r(IL,) (%).
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Chapter 2

Free boundary minimal surfaces in
the unit 3-ball

2.1 Introduction and statement of the result

In this chapter, which is a work in collaboration with A. Folha and F. Pacard, we are interested
in minimal surfaces which are embedded in the Euclidean 3-dimensional unit open ball B® and
which meet S2, the boundary of B3, orthogonally. Following [36], we refer to such minimal
surfaces as free boundary minimal surfaces.

Obviously, unit disks obtained as the intersection of B3 with planes passing through the
origin, are examples of free boundary minimal surfaces. Moreover, these are the only free
boundary minimal surfaces in B? of topological disk type [89].

The so called critical catenoid parametrized by

(s,0) — (cosh s cosf,cosh s sinf,s), where s, tanhs, =1,

s, cosh s,

is another example of a free boundary minimal surface. A. Fraser and M. Li conjectured that
up to congruences this it is the only free boundary minimal annulus embedded in B3 [35].

Free boundary minimal surfaces arise as critical points of the area among surfaces embed-
ded in B? whose boundaries lie on S? but are free to vary on S2. The fact that the area is
critical for variations of the boundary of the surface which are tangent to S? translates into
the fact that the minimal surface meets S? orthogonally.

In a recent paper [37], A. Fraser and R. Schoen have proved the existence of free boundary
minimal surfaces ¥,, in B3 which have genus 0 and n boundary components, for all n > 3. For
large n, these surfaces can be understood as connected sums of two nearby parallel horizontal
disks joined by n boundary “bridges” which are close to scaled down copies of half catenoids
arranged periodically along the unit horizontal great circle of S2. Furthermore, as n tends
to infinity, these free boundary minimal surfaces converge on compact subsets of B3 to the
horizontal unit disk taken with multiplicity two.

We give in this chapter another independent construction of 3, for n large enough. Our
proof is very different from the proof of A. Fraser and R. Schoen and is more in the spirit of the
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proof of the existence of minimal surfaces in S% by doubling constructions by N. Kapouleas [61]
and N. Kapouleas and S.D. Yang [63]. We also prove the existence of free boundary minimal
surfaces in B3 which have genus 1 and n boundary components for all n large enough.

To state our result precisely, we define P,, to be the regular polygon with n-sides, which is
included in the horizontal plane R? x {0} and whose vertices are given by

2 2
(cos <7rm> , sin (m) , O> e R3, for m=1,...,n.
n n

We define &,, € O(3) to be the subgroup of isometries of R3 which is generated by the
orthogonal symmetry with respect to the horizontal plane, the orthogonal symmetry with
respect to the horizontal coordinate axis Oz and the rotations around the vertical axis which
leave P, globally invariant.

Our result reads:

Theorem 2.1.1. There exists ng > 0 such that, for each n > ng, there exists a genus 0 free
boundary minimal surface ¥, and a genus 1 free boundary minimal surface X, which are both
embedded in B® and meet S? orthogonally along n closed curves.

Both surfaces are invariant under the action of the elements of &,, and, as n tends to in-
finity, the sequence %, converges to a double copy of the unit horizontal (open) disk, uniformly
on compacts of B3 while the sequence ¥, converges to a double copy of the unit horizontal
(open) punctured disk, uniformly on compacts of B3\ {0}.

Even though we do not have a proof of this fact, it is very likely that (up to the action
of an isometry of R3) the surfaces ¥,, coincide with the surfaces already constructed by R.
Schoen and A. Fraser. In contrast, the existence of %, is new and does not follow from the
results in [37]. The parametrization of the free boundary minimal surfaces we construct is
not explicit, nevertheless our construction being based on small perturbations of explicitly
designed surfaces, it has the advantage to give a rather precise description of the surfaces ¥,
and X,. Naturally, the main drawback is that the existence of the free boundary minimal
surfaces is only guaranteed when n, the number of boundary curves, is large enough.

2.2  Outline of the chapter

Remark 2.2.1. Through out the chapter we explain in details the construction of the genus 1
free boundary minimal surfaces ¥, with n boundary components for n large enough. One will
see that the same proof (with several simplifications) gives the existence of the genus 0 free
boundary surfaces 3, with n boundary components.

In section we study the mean curvature of surfaces embedded in B? which are graphs
over the horizontal disk D? x {0}. In section we analyze harmonic functions which are
defined on the unit punctured disk in the Euclidean 2-plane and have log-type singularities at
the punctures. In sections[2.5] and [2.7] for every n € N large enough, we construct a genus 1
surface A,, embedded in B3 which meets S? = 9B orthogonally along n boundary curves, and
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such that the mean curvature of A,, tends to 0 in a suitable topology when n tends to infinity.
We refer to A, as approzimate solution. In section we consider the surfaces embedded
in B? with genus 1 and n boundary components which are obtained as perturbations of A,
and meet the sphere S? orthogonally. In section we study the properties of the linearized
mean curvature operator about the approximate solution A, and finally, in the section
we explain a fixed point argument that allows us for n large enough to perturb A, into a free
boundary minimal surface ¥,, satisfying Theorem

2.3 Mean curvature operator for graphs in the unit 3-ball

We are interested in surfaces embedded in B? which are graphs over the horizontal disk
D? x {0}. To define these precisely, we identify R? x {0} with the complex plane C, and
introduce the following parametrization of the unit 3-ball:

1
cosh x3 + cos

X, P, x3) = (sin¢ei¢,sinhx3) )
where ¢ € (0,7/2), ¢ € S! and x3 € R. The horizontal disk D? x {0} corresponds to x3 = 0
in this parametrization and the unit sphere S? corresponds to v = 7/2. Also, the leaf 3 = $g
is a constant mean curvature surface (in fact it is a spherical cap) with mean curvature given
by

H = 2 sinhz,

(we agree that the mean curvature is the sum of the principal curvatures, not the average)
moreover, this leaf meets S? orthogonally.

In these coordinates, the expression of the Euclidean metric is given by

1
X* Geuet = dp? + (sin)? dg? + dx3) .
Jeucl (cosh z3 + cos1))? (d)” + (sin ) d¢” + du)
We introduce the coordinate )
siny) 4,
z=—-—"—¢"%,
1+ cos )

which belongs to the unit disk D? € C. We then define X’ by the identity

X (Z,ZEg) = X(¢7 Qb, CL‘3),

where z and (1, ¢) are related as above. Then
X(z,23) = A(2,23)(z, B(2) sinhxs),

where the functions B and A are explicitly given by

B(z) =

1
(L4217, Az 23) = 1+ B(z)(coshzs — 1)

N | =
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Let |dz|?> = dz dZ be the Euclidean metric on D?, then the pull-black metric in D? x R is given
by
X Gouel = A2(zja:3) (\dz|2 + BQ(z) da:%) . (2.1)

Take a function u € C?(D?). In the next result, we compute the mean curvature of the
graphs:
z€ D?* — X(z,u(2)) € B> (2.2)

We have:

Lemma 2.3.1. The mean curvature of the surface parametrized by (2.2)) is given by

1 A%(u) B2Vu
Hyp(u) = ————div | ———2———_ | +2/1+ B?|Vul? sinhu, 2.3
gr(u) X(u) B ( I V| (2.3)

where by definition A(u) = A(-,u). In this expression, the gradient of u, the divergence and
the norm of Vu are computed with respect to the metric |dz|? on D?.

Proof. The area form of the vertical graph z = x; + ize — (z,u(z)) with respect to the
pull-back metric X* gy is given by

da := A*(u) /1 + B2 |Vu|?2dz dzs.

The differential of the area functional at u is given by

2 2
DAreal, ( / / <A w B Vu vv—|—2A(u)8z3A(u)\/1+B2|Vu‘2v> dz1 dzs.
D2

J1+ B2 [Vul?

Since
Opy A = —A? B sinh 3,

we conclude that

DAreal, (v) =

B2
// ) Vu +2A3(u) B\/1+ B2|Vu|? sinhu | vdz des.
D2 1 + B2 |Vu\2

Observe that the unit normal vector with respect to X'™* ey is given by

1 1
N r = Bvu"‘ ax ) )
7 A(u) /1 + B2 [Vul? ( ’
and hence Alu) B
U
X* EeUci N’I"7a$ - T 7

geuel NorsOns) = = e

so that

X*geucl (Ngm 8xg) da = A3 (u) B
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and the result follows from the first variation of the area formula

DArea‘u(v) = — // ng (u) geucl(Na am) vda.
D2
O]

Let us denote by A the (flat) Laplacian on D? and by Vu and V?u the gradient and the
Hessian of u with respect to the Euclidean metric |dz|? on D2. Finally, consider the polar
coordinates (r, ¢) in D?.

Corollary 2.3.1. The graph of the function u meets the sphere S?> = B3 orthogonally at the
boundary when u satisfies homogeneous Neumann boundary condition:

Orul,_; = 0.
Moreover, we can rewrite (2.3|) in the form
Hy(u) = Loy u + Qg (u, Vu, V2u),

where L, is the linearized mean curvature operator which reads

Lgru = A(Bu) = A <1+2|ZQ u) , (2.4)

and Qgr(-,-,-) is a smooth nonlinear function that satisfies

Qgr(0,0,0) =0, DQy(0,0,0) =0, D?Q,(0,0,0)=0
and whose Taylor expansion is affine in V2w and at least quadratic in Vw.
Proof. 1t is easy to verify that if O,u|,_, = 0, then the tangent vector 8%/\,’(7" e u(r ei‘lﬁ))’T:1
is collinear to X (e, u(e?)), which implies that the graph of u meets the boundary of B3
orthogonally. The expression for the mean curvature follows from a careful analysis of .

O
Remark 2.3.1. The operator Lg, in D? with homogeneous Neumann boundary data has a
kernel which consists of the functions 13:‘”21'2, % and corresponds to tilting the unit disk

D? x {0} in B3. The kernel can be eliminated by imposing invariance under the action of a
group of rotations around the vertical azxis.

2.4 Harmonic functions with singularities defined on the unit
disk

According to A. Fraser and R. Schoen, the surfaces that we would like to construct should
have the structure of connected sums of two “nearby copies” of the unit disk D? x {0} with
small “bridges” which are close to truncated scaled down half-catenoids centered at the n-th
roots of unity z,, = ezwrtm, and a small “neck” which is close to a truncated scaled down
catenoid centered at the origin.
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Recall that the catenoid has logarithmic behavior at infinity. According to the ideas of R.
Mazzeo, F. Pacard, and D. Pollack [77], it turns out that from the analytical point of view, to
get a better matching with the asymptotics of the catenoid, it is better first to deform the unit
disk using a Green’s function associated to the operator Ly, with poles at z = 0 and z = z,,
m =1,...,n, and then perform the connected sum. We use the notation D? for the unit open
punctured disk D? \ {0}. Our goal now is to understand the solutions of the problem

LyTp=0 in D2
(2.5)
0L, =0 on OD*\{z,...,2,}
which have log-type singularities at z = z,,, and z = 0. Let G, be a solution of
AG, =0 in D2
(2.6)
0,Gn—1G, =0 on 0D?\ {1}

which has logarithmic growth at z = 1 and z = 0. Then I',,(2) = G,,(2")/B(z) is a solution
to (2.5)) invariant under rotations by the angle 27” A solution of (2.6) can be constructed
explicitly. We define in D? \ {1} the function

. 4
1 n nz’
=—— . 2.
Gl(2) 5 +Re an_l (2.7)
Writing
I i 1
s - . k+1 9y
nj—1 &= (nj)
we see that we also have the expression
oo
1y.. 1 Hy(2)
Gn(2) = =5 +Re (Z - ) ,
k=0
where, for all k£ € N, the function Hy is given by
Hy(2) =Y 5 (2.8)
—
J
Observe, that
Hy(z) = —In(1 — 2). (2.9)
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Obviously, G is harmonic in the open unit disk. Making use of (2.8)) we see that for all & > 1
87« (Re Hk) = Re Hk,1

on dD?, while it follows from (2.9) that

& (Re Ho) = —%

again on dD? \ {1}. Therefore, we conclude from ({2.4) that
1
oG} — - Gl =0 on aD*\{1}.

We also define in D2, the function GO by
G2(2) := —n —log |2|. (2.10)

Again GY is harmonic in D? and we have
1
0,GY — - G2=0 on 0D%

To complete this paragraph, we define
1 0

Liz)i= —— 2" an O(2):= 2.
I7(2) Gn(z") d  Th(z) B(2) G (2")

(2.11)

By construction, L, 'L =0in D? and §,I'} = 0 on 9D? away from the n-th roots of unity;
while Ly, I'? = 0 in D? and 0,T9 = 0 on 9D

2.5 “Half-catenoidal bridges”

One of the options could be to construct the “bridges” in B? as minimal stripes obtained by
the intersection of Euclidean catenoids centered at z = z,,, with the unit sphere. The difficulty
of this approach is that those stripes do not meet S? orthogonally. We prefer to find a free
boundary embedding of the half-catenoids in B3, but loosing the minimality condition.

We use the notation C_ for the half-plane {¢ € C|Re(¢) < 0}. For m = 1,...,n consider
the conformal mappings
2imm 1 + C 2iTm

)\m:Cch’—>€" ﬁ€D2\{—€n}, (212)
which transform a half-disk in C_ centered at ¢ = 0 and of radius p < 1 to a domain obtained
by the intersection of the unit disk D? with the disk of radius 13’/’) > centered at }J_rzz T Let
(¢ =& +1i&2,&3) be coordinates in C_ x R. We define the mapping

2imm

) xR (2.13)

Ap i (¢,€3) € Co xR — (Am((),283) € D*\ {—e
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Take ¢ € (0,1) and consider the half-catenoid C,/, in C_ x R, parametrized by

3 )
Xf% : (0,0) € R x [g, ;] — (g cosho e, ga) e C_ xR. (2.14)

Then we parametrize the m-th “catenoidal bridge” €. ,, by

3 _
(0,) € [~02,0.] x [g ﬂ —+ X 0 A 0 X9(0,60) C B,
where the value of o, will be made precise in the subsection Using the facts that the half-
catenoid meets the boundary of the half-space orthogonally and that the restriction of the
mapping X o A,, to horizontal planes is conformal, one can check that €., meets S? = B3

orthogonally at the boundary.

2.6 “Catenoidal neck”

Again, one of the possibilities could be to use as the “catenoidal neck” the standard Euclidean
catenoid embedded in B? and centered at the origin. We choose an alternative construction,
changing slightly the value of the mean curvature but simplifying the perturbation argument.
Remark that in a neighborhood of (z,x3) = 0 the metric X*geuq = A%(dz? + B? dac%) is close
t0 Geyel 1= dz? + idazg. Fixing & € (0,1) we introduce the surface Cz parametrized by

X (s,0) € [—sz, 58] x ST = (Ecoshse® 28s) € D? x R, (2.15)

where the value of sz will be made precise in the subsection Then C: is minimal with
respect t0 Geyer- Finally, we parametrize the “catenoidal neck” €z by

Xngat : [*55,55] x 81— B3.

2.7 Approximate solution

In this section we describe the “gluing procedure” between a graph over the horizontal disk
of a suitable Green’s function and the catenoidal “bridges” and “neck”. Let the functions I')
and T’} be defined as in . As a fist step, for some 79,71 € R, we find the expansion of
the function

Gn(2) =112 + 7 T'L

in the neighborhood of z = 2y and z = z,.
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Notation 2.7.1. We denote by ¢ any positive constant independent of the choice of 71,79, 1, €
and €. Let u and v be two functions, then we write v = O(u) when z — Z, if there exists ¢ > 0
(independent of 19, T1,n,e and €) such that |v| < ¢é|u| in some neighborhood of Z.

Consider the functions GY and G} defined in (2.10) and (2.7). We introduce the function

o0 1 oo

fn(z) ::Zﬂk( = nk

n
k=0 k=0 j=1

where G}, (2™) = —2 + Re f,(2). It is easy to verify that

8@]21( ) _ _% ]Og<1 — Zn) + %fn(z)7

fn __nzn—2
dz oan— 17

A straightforward calculation shows that the function

which yields

nz"2 1

hy, = —
21 ha(2) z"—1+zm(z—zm)

is continuous in a small enough neighborhood of z = z,, and that
| (zm)] < én.

Thus, in a neighborhood of z = z,, we have:

fn(2)

+ = log(z — zm) = L lim (fn(2) +log(z — zm)) + /Zm hn(z)dz,

Zm Zm, Z—Zm

where the integral is taken along the segment of the straight line passing from z to z,, and
by log we mean the principal value of complex logarithm defined in the unit disk deprived of
a segment of a straight line which doesn’t pass through any of the n-th roots of unity. We

obtain: o )
s
ZﬁHk Zznk k+1— n—l)'

k=1 k=1 j=1

Moreover,
Re lim (—log(l — 2™) +log(z — z,)) = —log|n 2% !

Z—2Zm

= —logn.
In a small enough neighborhood of z = z,,, and we obtain:
n . .
Gl(z") = -5+ cgr(n) —log |z — zm| + O(|z — zm|log |2 — zm|) + O(n|z — 2zm]),

where |cgr(n)| < ¢ logn. This yields
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—n (704 Z) + 71 cgr(n) — 71 log |2 — 2| + @((\my + | nlz — sz

Gu(2) = 1 +O((mol +1miDlz = zmll0g |2 = zm| ), a5 |2 = 2| = 0; (2.16)
—2n (ro + %) = 27on log 2| + O((Iro] + [ma])|2%), as |2] = 0.

On the other hand, let the mappings A\,, : C_ — D? and A,,, : C_ xR — D? x R be
defined as in (2.12)) and (2.13)). In a neighborhood of z = z,, taking the change of coordinates

3 ) _
T W} =z = Am (% coshcre’e) e D?,

(0.0) € oo x | 2.2

we can see the image by the mapping A, of the truncated half-catenoid (parametrized in
C_ x R by (2.14))) as bi-graph over D*\ \,,, ({¢ € C_ : [¢| > £/2}) of the function

Gl.(z):= —5log§ +elogl|z — zm| + O (e |2 — zm| 7?) . (2.17)
Similarly, in a neighborhood of z = 0, taking the change of coordinates
(5,0) € [~sz,8:] x St 2 = Ecoshse™® € D?,

we can see the surface embedded in the unit cylinder and parametrized by (2.15]) as a bi-graph
over {z € D? : |z| > &} of the function

G&Az)::—2€bggJ+2ékg|4%—@(53VY2). (2.18)

The next step is to choose the parameters 7, 79, €, and € in such a way that the leading

terms in (2.16)) match exactly the leading terms in (2.17)) and (2.18]). More precisely, comparing
the logarithmic terms, we take m = ¢ and n7g = £. On the other hand, the constant terms

match if

and —¢&— %14—80“(71) zslog%.

This gives us the relation
E € mne n
g2+ 1 1
Bzt gz gL
which yields
€ n
= =gt (=5 +ep(n) +1) = d(n) € [1/2,1],
where gn(t) : t € (0,400) > logt — 2t + 1 € (—00,00). This gives a unique correspondence
between ¢, € and n, which satisfy

e~é mn~loge.

Finally, comparing the remaining terms we see that we should truncate the summands and
effectuate the connected sum in the regions where

2/3

|z — zm| ~ € and  |z| ~ /2.
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Remark 2.7.1. These estimates together with the fact that constant functions are not in the
kernel of the operator Ly, give an idea why our construction works only for large numbers n.

Finally, we perform a connected sum in such a way that the resulting genus 1 surface is
embedded in B? and meets S? orthogonally at the boundary. Moreover, since all the parame-
ters in our constructions are expressed as functions of the number of boundary components n,
we denote our surface by A,, and refer to it as approximate solution. Here is a more detailed
description of A,,.

Notation 2.7.2. We introduce the cut-off functions n,n € C* (0, 1) defined by
qt)=1 for t< %52/3, i(t) =0 for t>2e%3
n(t)=1 for t<%€1/2, n=0 for t>2e1/2
and the functions 0y, N, € C*°(D?) defined by
(=) = (D), mm(2) =7 (NA(2)]) (2.19)
1) We parametrize the graph regions Q;E of A, as vertical graphs:
2 € Dgy — X (2,FGn),

where G, is defined in (2.16) and Dy, is a subdomain of D? defined by
Dgri=142€D?: |2 >2e2L (YA (¢ €C 1 [¢] >2%3 ). (2.20)
{ Japc )

2) As in the subsection we parametrize the “catenoidal neck” region Q° . by:

cat

(5,0) € [—se,82] x ST — X o XE%(s,¢) = X <§COSh86i¢,2§S> ,

. N 1
where sz satisfies £ cosh sz = %52.

3) The “half-catenoidal bridges” regions L, are parametrized as the images by the map-

pings X o A, of the truncated half-catenoid C, /5 C C_ x R:

T 3m
27 2

] — X oAy, oXE"%(J, 0) =X oAy, (g coshaei9,§s> ,

(0,0) € [—0e, 0¢] X [

. 2

where o, satisfies € cosho, = €3.
i+

4) Finally, in the gluing regions Q ol

and parametrize A, by:

we interpolate between Q;Er and the catenoidal regions

zZ € Dglu — X (2, £vi(2)),

where the functions v; are defined by

Vi 1= (771 Géat_ (1_772) gn) ) i:O717"'7n7 (221)
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and D?

giu A€ the subdomains of the unit disk defined by

1
DY, = {z e D?: 551/2 <zl < 251/2} c D?, (2.22)

1
= Am <{ce@_ : 552/3< lq <252/3}> cD? m=1,...,n.

2.8 Perturbation argument

The next step is to show that the approximate solution A, can be perturbed, at least for n
large enough, into some free boundary minimal surface. To this end, we describe all genus 1
surfaces embedded in B? which are close to A, and meet S? orthogonally at the boundary.
Let Z be a vector field in B3 transverse to A, and £ be the associated flow:

s _

5 = =€) and £(p,0) =p Vp € B®.

We shall choose = in such a way that that for all ¢ small enough the surface A, ; := £(Ap, 1)
is embedded in B3 and meets S? orthogonally along 0An: =& (0Ay). Take w € C%(A,) and
let A, (w) be the surface parametrized by

p €Ay E(p,w(p)) € An(w).

Then A, (w) meets S? orthogonally at the boundary if w satisfies the homogeneous Neumann
condition on 0A,,:
gn(vgnwa Na.An) = 07

where g, is the metric induced on A4,, from the Euclidean metric, V9 is the gradient calculated
with respect to g,, and Ng4, is a unit normal to 0.4, in A,,.

The expansion of the mean curvature of A, (w) in powers of w and derivatives of w up to
the second order has the form:

H(A,(w))=H(A,) + L,w+ Qpn(w, Vw, Vzw),

where H(A,) is the mean curvature of the approximate solution, £,, is the linearized mean
curvature operator about A,,, and Q,, is a smooth nonlinear function of w and the components
of the gradient and the Hessian of w. Below, we explain an appropriate choice of the vector
field £ and study the properties of the function H(A,) and the operators £, and Q, in
appropriate function spaces.

2.8.1 Choice of the transverse vector field

In this paragraph we describe explicitly the parametrization of the perturbed surfaces A, (w),
which implicitly explains the choice of the transverse vector field Z=.
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1) In the graph reglons Q - we parametrize A, (w) as a vertical bi-graph over the subdomain

Dy, C D?, defined as in .
2 € Dgr = X (2, F[Gn(2) + w(z)]).

2) In the “catenoidal neck” region, we parametrize A, (w) as an image in B3 of a normal
graph over the surface C: defined in the section more precisely we put

(5,8) € [=5e, 82 x S! = X (Xgat(s, 6) + 2 Noar(s, ¢)> C An(w)

2

where (s, ¢) are cylindrical coordinates in Q0,, and

Nwt(s,qﬁ) = (— ', 2 tanh s) , (2.23)

cosh s

is a unit normal to C: C D? x R with respect to the metric e, = dz? + %d:c%.

3) In the same manner, in the “half-catenoidal bridges” regions, we parametrize A, (w) as
an image in B3 of a normal graph over the half-catenoid:

T 3T w
(0,0) € [—0e,0¢] X [2, 2] — X oA, (Xf%(a, 0) + 3 Neat (o, 0)) e A, (w)

where (o, 0) are half-cylindrical coordinates in Q7}, and

Neat(0,0) = <— ¢ tanh 0> , (2.24)

cosho

is a unit normal to the Euclidean half-catenoid C, /5.

4) Finally, in the gluing regions Q> l we interpolate smoothly between the parametrizations
described above. Consider the functlons v; defined in We introduce the function ©
in C_ defined by 0(¢) := vm(AMn(C)), m = 1,...,n. Fmally, let n, 7 € C*°(R) be the cut-off
functions defined in (2.19)). Then in ng’lj,: we parametrize A (w) by

seD? L2 <) <262 o X((z, vp(2)) +wV0(Z))

cec, %62/3<|<|<2e-:2/3 = o An( (6 0(0) + 5 V(0),

| 8

where the vector fields Vg and V are defined in D? x R and C_ x R by

Neat £ (1—=1) (0,0,1) and V:= 7 Neat £ (1 — 7)) (0,0,1). (2.25)

Remark 2.8.1. The surface A, (w) is invariant under the action of the group &,, and meets
the unit sphere S? = B3 orthogonally at the boundary.

107



2.8.2 Function spaces

In this paragraph we define the function spaces we will work in.

Definition 2.8.1 (Weight function). We introduce the weight function

2mrm . 2mm >

n
y:p€eA, — .l_IO]p —pil, where py=0, py= <cos ,sin ——, 0
= n

where by | - | we denote the Buclidean distance in R3.

Definition 2.8.2 (Weighted Holder spaces). Let g, be the metric induced on A, from the
Euclidean metric and take v € R. We denote by Efﬁ the subspace of functions w € CH*(A,)

1) endowed with the norm

k
lollggg = sup|y™"w| + > sup [V g, (2.26)
N P (p) VEw(p) — M (@) VEw()
sup Na N
p,p'€AR dg,, (p, ')

2) invariant under the action of the group &,

3) and for k = 2 satisfying homogeneous Neumann boundary condition
gn(Vgnw, N@An) = 0.

Remark 2.8.2. Recall that in different regions of A, we work with different coordinate sys-
tems. For r,p € (0,1] consider the following subdomains of the unit disk

DY:={zeD?:|z|<r} and D= A ({C€eC_ : [2| <p})
AV:i={zeD?:r<lz|<2r} and AT = A ({CeCl: p<Cl<2p})
and finally

Dy, = (A QlA;”) e QID;”)

We introduce the function
) n
Yp iz € D — |z| Hl\z — zm| = |2]]2" = 1.
m=
Then the norm (2.26)) is equivalent to the norm defined by

sup H (Ecoshs)™

v
wl|

koo ([s,5+1]x 1
SE[—se,8:—1] ([s,5+1]xS1)

I —V
+ Sup || (5 COShU) w”Ck’o‘([O’,OJrl]X[%,?ﬂr])

o€[—0e,0:—1] 2

+ sup 17p” wll .o 2|02
pelpert/a, relreyz D O (Proap’ ldal)’
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where p. = 1/2€*3 andr. = 1/2e'/2. Observe that, in the last term we use the singular metric
752 |dz|? to calculate the gradient and the Hessian of the function. Finally, the homogeneous
Neumann boundary condition on the function w on the boundaries of the “half-catenoidal
bridges” reads:

Oovlys ) =0

2.8.3 Mean curvature of the approximate solutions

In this section, we show that in a suitable topology H(.A,,) tends to 0, when n tends to infinity.
To this end, we obtain L estimates for H(.A,,) in different regions of A4,,. In the graph and
gluing regions we use the result of Lemma for the mean curvature of vertical graphs. On
the other hand, in the catenoidal regions, our task amounts to calculate the mean curvature
of the catenoid embedded in B? via a diffeomorphism which can be seen as a perturbation of
the identity. More precisely, we have the following result:

Proposition 2.8.1. For all § € (0,1) and for all k € NU {0} there exist constants ¢ > 0
and ¢ > 0 independent of n such that the mean curvature of the surface A, satisfies

n

e B=F 41 ip forUQi’jE

=0
VVRH(AR| <& =m0 4 () o (2.27)
e—n(1-6) mn 32:;
IH (Ao | < ce (52, (2.28)

Proof. Graph and gluing regions:

According to Lemma and Corollary the mean curvature of the graph X (z,u(z)))
for u € C?(D?) with C! norm small enough satisfies:

Hy(u) = A (Bu) + Qgr(u, Vu, V2u).

In the regions Q;ﬁ we take u = FG,,. Then (2.27) follows from the fact that A (B G,) = 0, the
properties of the operator @4, described in Corollary and the estimates

|Gn(2)] < éoe (Ilogél + [log |2 + ) [log |= — Zm|!> ;

m=1

for ¢; > 0 independent of €.
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In the gluing regions Q;i we take
u = +tu; ::I:(mGiat—(l—m)gn), i=0,...,n.
For k € NU {0} and for all 3 € (0,1) we have V¥7; = O(|z — z| %), and
VG ~ VEGe = O(elz — il 7F), V¥ (Gn — Gly) = O |z = z|' ™),

2mim

where zg =0, 2z, = e » . A direct calculation gives

|H(Ay)| < e3P |z — 274

The estimates for the derivatives of H(A,,) follow from structure of the smooth function
(u, Vu, V2u) = Qgr(u) and the estimates for V*G,, and V.

“Half-catenoidal” regions:

In Q;, the proof amounts to calculate the mean curvature of C,/, C C_ x R with respect to
the ambient pull-back metric

41dg?
1

= - (ldcP + (41 agd)
(11 = ¢+ (1 + [¢[?) (cosh (265) — 1) )

= a?(¢, &) (Jd¢|* + b*(¢) d€3) ,

2
where a(¢,&3) = T CE T (1 [0 (cosh(26) — 1) and b(¢) = 14 |¢|%.

Using the notations [2.7.1, we can express the metric induced on C, 5 in the form:

(X 0 Am) Gt (€, €) = A2(An((, €3)) + 4B (A ((, &) d€3 )

9:(0,0) = €2 cosh? o(do? + d¢?) + O(e3 cosh® ).

Let V be the Levi-Civita connection associated to the metric (X o Ap,)*geuc- We have the
following estimates for the Christoffel symbols in a neighborhood of (¢,&3) = 0:

F%l = *Féz = F%2 = %@ =0(1), F%l = *ng = *F%z = *%% =0(1),

F%:s = Fgg = F§3 = %@ = O(|€s]), lesl = F%z = —#5% = O(I&)),

2 9 E) 29 0
Tl = (222 +b2) =0(1), T} =—(L2 +b2)=0(1),

3 _1da 10 _ 3 _1da | 10b _
s =26 +3oe, = O(), Tos= .56 + 508 = O1),
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Using that Vi, = 0, 9 X% + |0y Xg%} [akxgg] I 9, we find:

Hvakag o 00 X1 (a,e)'geg%osh%, i=1,2

“vakag akagxg;g} (0,9)'§652c08ha,

for a constant ¢ independent of &, where Ji, 0y denote either 9, or 0y and 7,j,g =1,...,3. On
the other hand, the unit outward normal to C,/, with respect to the metric (X o Ay,)*geuel
reads

1 b 0 1
N(o,0) = (— A e, 3 tanh a> .
a \/ 4y anh? o cosh o

Thus, the second fundamental form (he)rr = (X 0 Ap)* geuct(Va, 0, M) satisfies

be(o,0) = 8(—d02 + d¢2) + @(82 cosh o).

This yields: |H (Ay)(0,6)| = |tr (97'bc) (0,6)| < for a constant ¢ independent of ¢.

cosh o

“Catenoidal neck” region:

In order to calculate the mean curvature in the “catenoidal neck” region, we need to calculate
the mean curvature of the surface C. C D? x R with respect to the ambient pull-back metric

X*geucl(zaxfﬂ) = A2(Z,$3) (|dz|2 + B2(Z)d1:§) :

The proof repeats the one given above for the mean curvature of the “half-catenoidal
bridges” up to changing several estimates. The first fundamental form in this region satisfies:

3:(s, ¢) = &2 cosh? s(ds® + d¢?) + O(e*” cosh? s),

while the Christoffel symbols satisfy:

- - . N - - .
F%l = _F%Q = F%2 = %3871 = 0(|Z||$3|2)7 F% = _F%2 = —Fb = —%% = O(|Z||l‘3|2)a
- - - 19 - - DA

P%3:F§3:F§3 ZT = O(|zg]), T% :ngz_ﬁ% = O(|z3]),

- B2 9A B - B2 9A B

F%?):—(jaTl‘i‘BaTl) =0(|2]), T33= —(T 52, + Bas,) = O(|=]),

2 9A OB 2 1 94 OB
=g+ 552 =0(z]), Th=%5a+ 552 = O(l2)),

F%SZF%SZF?ZZQ

111



which yields for all 5 € (0,1)
‘ [6%3@ — Ok Oy Xgaty (s, qb)‘ <éed Peoshds, i=1,2

} [@@83 — O O Xg‘“} ’ (s, qﬁ)‘ < ¢e3 P cosh? s,

for a constant ¢ independent of ¢, where V is the Levi-Civita connection associated to the
metric X*geue- The second fundamental form then satisfies

be(s, @) = & (—ds® + d¢?) + O(37P cosh? s).
Finally, we obtain for all 8 € (0,1)
[H(A)] = Jor (825 )

The estimates for the derivatives of the mean curvature in the catenoidal regions follow
from the estimates for the mappings X%, X% X and A,,.

< eel=P,

O

2.8.4 Mean curvature of the perturbed surfaces

Take a function w € 5,%:3 and let A, (w) be the perturbed surface defined in the beginning of
the section. Recall that the Taylor expansion of the mean curvature of A,,(w) in powers of w
and its derivatives has the form:

H(A,(w)) =H(A,) + L, w+ Qp(w).
In this subsection, we analyze the properties of the linear operator £, and the nonlinear
function Q,(w) := Q,(w, Vw, V?w) separately in different regions of A,,.

We start by studying the properties of £, and Q,, in the regions where A,, is parametrized
as a vertical graph over a subdomain of the unit disk. We obtain the following result. Let the
domain D, , C D? and the function vp € C*°(D?) be defined as in Remark

Proposition 2.8.2. For all § € (0, 1) the linearized mean curvature operator Ly, in the regions
n

Q;tr U Q;lj; can be expressed in the form:

1=0
Ly = Ly + e "B AT

where Ly, = A (B-) and L is a linear partial differential of second order which satisfies

L wllgoa(p, ,nz2as2) < C llezap, ,nm2aszy: Y70 € (0.1), (2.29)

1

for a constant C' is independent of r,p and €. If in addition ||y~  w|[c1.« < 1, the non-linear

function Q,, satisfies

Qn(w) = e "I 41 Q% (w) + P 41 Q3 (w),
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k—
Q1) = Qo (p, 5 ase) < € 1 (il sy}

x lwr = walleza(p, , 752 d212)
for a constant C' > 0 independent of €, r and p.

Proof. In the graph region Q;t,, the surface A, (w) is parametrized as a vertical bi-graph over
Dy, C D? x {0} of the function (G, + w) and, by Corollary we have

H (A, (w)) = Hyg (Gn + w),

where

Hor(Gn +w) = H(A,) + A(Bw) + Qgr (Gn +w) — Qgr(Gn)- (2.30)

Developing this expression and using the structure of the operator @), described in Corollary
we obtain the desired properties of £,, and Q,,.

In the gluing regions Q;i the result is a consequence of the following lemma which is a
simple generalization of a classical result already used for example in [77] and [93].

Lemma 2.8.1. Let ¥ be a smooth surface in R3. Take w € C} (X) and Vi and Vs two smooth
vector fields on X. Let H'(w) be the mean curvature of the surfaces parametrized by

Y3p = ptwlp)Vilp) R, i=1,2.
Then the following relation holds:
DH?|,_,(v)=DH'| _ (tv)+VH-T

where T = ||V I/IIVE| and T = Vi — 7 VL, and where VN and VI are the orthogonal
projections of V; on the normal and the tangent bundles of 3.

Proof of Lemma [2.8.1. The proof consists of applying the implicit function theorem to the
equation
p—i—t‘/l(p):q—FSVQ(Q), paqeza taSGR-

Expressing locally p and ¢ as functions of ¢ and s:
p=2=2(¢;s) and t=V(qg,s),
with ®(¢,0) = ¢ and ¥(g,0) = 0, one obtains
AU (-, 0)[Vi]N = Vo]V and  9,®(-,0) = [Va]T — 8,9(-, s)[V1]7.
On the other hand, differentiating the identity
H (U (g, w(9)(@(g, w(q)) = H*(w)(q)
with respect to w at w = 0 yields

DH'|,_, (0s¥(-,0)v) + VH - 8;®v = DH?| _, (v).
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In order to calculate the mean curvature in the regions Qgi, we apply the result of Lemma

to the surface C: embedded in D? x R and parametrized by
(Ecoshse® 2¢ ),
where & cosh s ~ €2 and ¢ € S'. We take

1 ~
V1 = (0, 0, 1) and V2 = V() = 5 o Ncat + (1 — T]o) (0, 0, 1),

where the vector field N is a unit normal to C’g with respect to Geyer- Finally, we calculate
the mean curvature and the orthonormal projections with respect to the metric X*geyq =

|dz|? + 1 daz3 + O(e). We find |[VH(A,)| = O(¢'/?) and

00,0,1)]N = % +0®), 100,01 =), [Nwt}N — 14 0(e), [Ncatr — O(e)

which yields 7 = 14+ O(e), T = O(e'/?) and the desired properties of the operator L,,.

m,+

glu 371']

Similarly, in the regions (2 =3

and parametrized by

we apply Lemma 2.8.1|to the surface embedded in R x [g,
(E coshoe®, < 0) ,
2 2
where ¢ cosho ~ 3 and 0 € [%, 37”] We take

1 1- 1
V1:§(0,0,1) and ng5]2:i(ﬁNcat:I:(l—ﬁ)(O,O,l)),

and calculate the mean curvature and the orthogonal projections with respect to the metric
(X o Am)*geucl == 4geucl + O<€2/3).
O

In the following two results, we show that in the “catenoidal regions” the properties of
H(A,(w)) can be obtained using the properties of the normal graphs over the catenoid in
R3 scaled by a small factor. We start by analyzing of the mean curvature in the “catenoidal
neck” region Q.

Proposition 2.8.3. For all 5 € (0,1) the linearized mean curvature operator Ly in the
“catenoidal neck” region Q0,, can be expressed in the form

1 2 .
Ln=——— (02402 + )—i—e”ﬁL,
" &2cosh?s ( s ¢ " cosh?s

where L is the second order partial differential operator which satisfies

Hf’wHCOvO‘((s,s—i—l)Xsl) <C HwHCZO‘((s,s—I—I)XSl)a Vs € (_867 Se — 1)
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1

for a constant C' independent of s and €. If in addition ||y~ wl|c1.« < 1, the nonlinear term

Qn(w) can be expressed in the form

1
ant(w) + 84 COSh4 Qcat( ), where

n(w) =

3 cosh? s

| @kar 1) = Qo)

<

COe((s,54+1)xS1) ¢ méllx { sz”cz’ (s, sH)XSl)}
X w1 — wallez.a((s,s41)x51)5

for a constant C' independent of s and ¢.

Proof. Recall that the region Q, C A, can be seen as the image by the mapping X' of the
normal (with respect to the metric Geye = dz? + %dm%) graph over the surface C: C D? x R:

w(s; ¢)

(5,¢) € (—5¢,5:) x ST — )N(gat(s,qb) + 5

~ ~ (W

Net(s,0) € Ce () -

On the other hand, we notice that calculating the mean curvature of C: (%) with respect to
the metric ey is equivalent to calculating the mean curvature of a normal graph about the
Euclidean catenoid scaled by the factor €. Then, a standard computation which we postpone
to the appendix, gives

w 1 2 w 1 1
Ho (2) = o (02 22+ IR N S NS
“at\2 g2 coshzs( ¢ cosh?s/) 2 ' &3 cosh4chat( ) o cosh4chat( )

Secondly, we use the fact the pull-back metric X*g.,. can be seen as a perturbation of the
metric Geyel:
X*geucl(za .%'3) = (1 + (9(953)) geucl + O(’Z‘Q) dl’g.

Calculating the mean curvature with respect to X*geye corresponds to adding to Heq:(w) an
initial mean curvature term equal to H(A,) and some smaller linear and nonlinear terms.
Since the nonlinear part has the same properties as when we calculation the mean curvature
with respect to Geyer, we only have to understand the behavior of the additional linear terms.
This can be achieved by a direction computation which can be also found in the Appendix.
O

Finally, the same ideas can be applied to analyze the properties of the operators £, and
O, in the “half-catenoidal bridge” regions.

Proposition 2.8.4. The linearized mean curvature operator L,, in the “half-catenoidal bridge”
region 0%, can be expressed in the form:

1 2 1 R
=———5|0:+0; L
2 cosh? o ( ot €+COSh20') +€cosha ’
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where L is the second order partial differential operator which satisfies:

||LwHCO’a((U,o‘Jrl)X[%,%r]) < C ||w||C2104((U,cr+1)><[%,37”])7 Vo € [_06708 - 1]

-1

for a constant C' independent of o and €. If in addition ||y~ w|[c1,. < 1, the nonlinear term

Qn(w) can be expressed in the form

Qp(w) = ! Q2 (w) + ! Q3. (w), where

g3 cosh? o g4 cosh? o

| @kaetwn) = @staen)|

k-1
< O {0l e

e

con (<[ 3]
X [Jwy — wzl\cz,a((ayaﬂ)x[g%w]),

for a constant C' independent of o and €.

Proof. The proof follows from the same argument as the proof of Proposition if one
remarks that A, (w) is obtained as the image by the mapping X o A,, of a normal (with
respect t0 geyer) graph about the Euclidean catenoid C. o scaled by the factor § and that the
metric (X o Ap,)” geuer can be seen as a small perturbation of the Euclidean metric scaled by
the factor 4:

(X 0 Am)*geuct (¢, €3) = (4 + O(IC]) geua + OICI?) d&3.

2.9 Linear analysis

Recall, that our goal is to solve
H(A,(w))=0 (2.31)

for some w € 57%:3. Using the notations introduced in the previous section, we can write this
equation in the form

Ly,w=—H(A,) — Qn(w).

Since H(A,) tends to 0 in a suitable topology when n tends to infinity, we hope for n large
enough to find a solution using a fixed point argument. To this end, we need to show that
the operator £, has a right inverse in suitable function spaces and study its norm when n
tends to infinity. In this section, we show that the properties of £, can be deduced from
the properties of the operator L, defied in the noncompact domain D? with homogeneous
Neumann boundary condition on S*\ {z1,...,2,} together with the properties of the Jacobi
operator about the FEuclidean catenoid defined in the infinite unit cylinder.
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2.9.1 Linear analysis on the punctured disk

We now analyze the operator Ly in the unit punctured disk D? subject to homogeneous
Neumann boundary data on S\ {z1,..., 2, }:

A(Bw)=f i D\ {0},
(2.32)
Ow=0 on S'\{z1,...,2,}.
Since 0,B|,_; = 1, this is equivalent to studying the problem:
Aw=f in D?\ {0},
(2.33)
Ow—w=0 on S'\{z,..., 2.},

where f is a given function whose regularity and properties will be stated shortly. We assume
that the functions f and w are invariant under rotations by the angle 27” With this assumption,
the operator associated to does not have any bounded kernel for n > 2 and hence, the
solvability of follows from classical arguments [67]. For example, if f € C%*(D?) we get
the existence of a solution w € C>*(D?) to (2.33). Moreover,

lwllezaqoy < € (Iwlleoge + 1 Fleoaoe)) -

We need to understand what happens if we allow f to have singularities at 0 and/or z,,
m=1,...,n.

Definition 2.9.1 (Weighted Hoélder spaces in the punctured disk). Take the function
vp &z 2|2 = 1]

and v € R. The space Cl’f’a(Df) 1s defined to be the space of functions u € CZZ?(DE) for which
the following norm is finite

lallgtopey = 175" Ullgha(p, Az? app) < -
Notation 2.9.1. Let x € C®°(C_) be a cut-off function, which is radial and satisfies
_ 1 _ 2
X(O)=0 for (< R and X() =1 for |(]> 5

Then we consider the conformal mapping A : C_ — D?,

and introduce the functions x, xn € C*(D?), defined by

X(2) =X(AH2)), xal2) = x(2").

Notice, that x = 1 in a neighborhood of 1 and x, = 1 in neighborhoods z = zy,, m=1,...,n.
Moreover, we have
OrXl,—1 =0 and Orxn|,_; = 0.
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Definition 2.9.2 (Deficiency space). We define the deficiency space
D = span{l, xn},

Proposition 2.9.1. Assume that v € (0,1). Then there exists a constant C > 0 and for all
n large enough and all f € CBf‘Q(Df) such that f(z) = f(Z) = f(z - zm), there exist a unique

function ¢ € CE’Q(DE) and unique constants ¢y and ¢ such that
w =1+ Co + €1 Xn
is a solution to
Aw=f in D2,
Ow—w=0 on S'\{z,...,2.},

that satisfies w(z) = w(z) = w(z - zp,) and
lwllezep2yeo, < ClIfllco, (p2)- (2.34)

Before starting the proof of Proposition we notice that instead of the problem ((2.33)),
we can consider an equivalent problem defined in D? \ {0,1}. Since we assume that f(z) =
f(2) = f(z - zpm), there exists a function F such that

F(") = 2272 4(2),

n

and if W is a solution to

{AW:FinD%mL
(2.35)

W —Lw =0 on S'\({1},

then
w(z) = W(z")

satisfies and w(z) = w(z) = w(z - zpy).

We proceed as follows. First, we analyze the existence and the properties of the solution
of in weighted L*° spaces. In Lemma given below, we consider the case where the
function F' only has a singularity at z = 0. Next, in Lemma we consider the general
case where F' has singularities at z = 0 and z = 1. In order to finish the proof of Proposition
we go back to the problem and obtain regularity properties for the solution in

D?\ {0, z1,...,2,} using the Schauder’s elliptic regularity theory in Holder weighted spaces.
Finally, this provides us the solution to the problem ([2.32]).

First, let us assume that the function F in (2.35)) only has a singularity at z = 0. We have
the following result.

118



Lemma 2.9.1. Assume vy € (0,1). There exists a constant Cop > 0 (which depends on vyp)
and for all n > 2 and all functions F, such that |z|7"°"2 F € L>(D?), there exist a unique
function ¥ and a unique constant ciy such that

W :=U+nc
18 a solution to and
21700 || o (p2) + |cp] < Co | 2] 7% F || o (p2),- (2.36)

Proof of Lemma[2.9.1]. First, let us assume that F is radial. In this case, ([2.35) reduces to a
second order ordinary differential equation which can be solved explicitly:

T 1 S
xygad(r):/ S/ tF(t)dtds, Wit = Wpod 4 pcf,
0 0

1 1 r 1 S
CS__/ sF(s) ds+/ / tF(t)dtds. (2.37)
0 n Jo SJo

With little work, one checks that the result is indeed correct in this special case.

Furthermore, we claim that, if we restrict our attention to the space of functions for which
/S1 F(re®)rdp =0, Yre(0,1),
then there exists a function W{**" such that
121770 W5 | Lo (p2) < Co [[|2] ™2 F | oo (2.

We construct " as a uniform limit of solutions to the Poisson’s equation in annuli with
mixed boundary data. More precisely, for any R € (0,1) we put Ag = {z € D? : |z| > R}
and remark that for n > 2 the operator associated to the problem:

A\I/R =F in AR7
(2.38)
(0-%r = 5¥R)|,_, =0, Wrl,_p=0

has no kernel. This yields (cf. [67]) the existence of a solution Vg to ([2.38]) which satisfies:

VR Lo (ag) < c(R) 1F]|Loo(an)

for some constant ¢(R) which depends on R. Next, we show that this inequality can be
rewritten in the form:

12|70 W Rl oo (ag) < Colllzl T2 F || 1o (ap)s (2.39)

for a constant Cy > 0, which, this time, is independent of R. The last fact is proven by
contradiction, using the following classical argument (cf. [93]). Assume that Cy = Cy(R)
depends on R and that there exists a sequence R; — 0 such that Cy(R;) — co. We put:

1 1

UV, :=———Vgr, F:=—-—F A =Ag.
T Go(Ry) T T Go(Ry) T YT
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Then

—00

AV =Fj, |20 Fjll oo a,) P 0.
Next, by linearity we can assume that H |z| 7o +2 FHLOO(AR) =1, then we have
21770 Wl Looay) < 1.
Furthermore, by assumption there exists a sequence of points z; € A; such that
U;(z5) = |2

Several situations can occur:

1. If the sequence (z;) C A; admits a subsequence converging to a point z., € D2, then by
Schauder’s elliptic estimates on the gradient of ¥; and by Arzela-Ascoli theorem, the sequence
(¥;) admits a subsequence converging uniformly on compact sets to a solution ¥, of

AV, =0 in D2
(2.40)

OV — %‘Iloo =0 on S,

such that |¥(2)| < |2z]|*0. This implies o, = 0 and contradicts the fact that Vo, (200) =
2scl?® £ 0.
R

2. If the sequence (zj) admits a subsequence converging to 0, while £

P 0, we put
7 =00

®;i(z) =V, (2]zj]) |zj|7"° and verify that
[12]770®) [[peoayy <1, @5 (25/]2]) = 1.

Then the sequence (®;) admits a subsequence converging uniformly on compact sets to a
solution @, of the problem
Ad, =0, in R?\{0},

which satisfies |®o(z)| < |2]|*0. This yields ®o, = 0 and gives a contradiction with the fact

S FE) — 1
that ®; <|z]~\> 1 for all j.
3. If the sequence (z;) admits a subsequence converging to 0, while f:—ﬂ — a < 1, then
Jl j—=00
the sequence (®;) admits a subsequence converging on compact sets to a solution ®, of the

problem

Ady, =0 in {z€R?: 2| >a},
q)00||z|:azo’

such that |[®o| < |2|*. On the other hand, decomposing @, in Fourier series, we see that for
n > 2 the problem has no non-trivial solution. This once again implies $, = 0 and gives a
contradiction.
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4. Finally, the case when sequences (z;) admits a subsequence converging to 0, while
R—?' — 1 doesn’t happen. Indeed, for every j we have
"Z]l j—)OO
‘{AWj:Ejhl{ZEDzi&%ﬂﬂ<2Rﬁ,
Uil R, = 0.

Moreover, |F;| < R}’O_2 and |¥;| < R°. By elliptic regularity, we have [V¥;] < éR}’O_l in the
subsets of {z € D? : R;j < |z| < 2R;}. This implies that in a neighborhood of |z| = R;, we
have

U] <eRPTH (|2 — Ry),

for a constant ¢ independent of €. At z = z; this yields 1 — fj—ﬂ > ¢, which is not possible for
J
J large enough.
Therefore, (2.39) implies that by the elliptic regularity theory we have a uniform bound
on the gradient of ¥ on compact sets of D2, and by Arzela-Ascoli theorem, there exists a

subsequence of (V) converging uniformly on compact sets to a solution of (2.35]).

Finally, let as prove that the constant in (2.36) does not depend on n. By construction,
for all n > 2 the solution W can be written in the form:

W = \I,rad + pmean + CS n,
where U7 is radial and [g, U™ (re'®)rdp = 0, Vr € (0,1). The fact that
2172 @7 || oo (p2y + I < Coll 12177 F 1 (p2)

for a constant Cy independent of n follows from the explicit expression given by (2.37]). We
use once again an argument by contradiction to prove the inequality for U¢%" Assume by

linearity that || |z|>="0 F'[|, _(p2z) = 1 and that there exists a sequence (n;) € N and a sequence
of functions (¥},) which satisfy (2.35) and a sequence of points (z;) € D? such that

[ 121"k [|Loo(p2) < Co(ng)  and Wi(zg) = Colng) |25

Put ¥, .= m V. and assume that (z;) admits a subsequence converging to a point zo, €
D2?. Then, by the Elliptic estimates for the gradient and by Arzela-Ascoli theorem, the
sequence (¥},) admits a subsequence converging uniformly on compact sets of D? to a solution
U, of the problem:
AV, =0 in D? 9¥ye=0 on S

which satisfies |V (2)| < |2]*0. Considering the expansion of ¥, in Fourier series and using
the fact that W, has no radial part, we find U, = 0, which contradicts the fact Voo (z00) =
|200["0. In the case where zj converges to 0, we put

(IJk(z) = \I!k(|zk|z)]zk]*”0.

Then ®p(zx/|2k|) = 1 and (Pf) admits a subsequence converging uniformly on compact sets
to a function ®., which is harmonic in R? \ {0}. Using that ®, has no radial part and that

|Poo(2)] < |2]"°, we obtain a contradiction.
O
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Corollary 2.9.1. For all vy € (0,1), can write (2.36|) in the form:
[ VRO | 2y < Co(0) 1|27 Fll e (p2), k= 0,1,2,
5] < Co(v0) | 2177 F [l o (p2),

where
CS(V[)) < CV(’)CiQ

for a constant C' independent of vy.

Proof. The inequality for the radial part ¥"%¢ and the constant ¢, follows directly from (2.37).
On the other hand, ¥™¢*" is bounded by a constant does not depend on 1. The estimates
for the derivatives follow from the the Schauder’s elliptic estimates in weighted spaces. To see
this, it is sufficient to apply in the neighborhood of z = 0 the classical Schauder’s estimates
in the annuli of inner radius R and exterior radius 2R to the function U(R-). O

As a next step, we assume that F' can have singularities at z = 0 and z = 1. Let
X € C*®(D?) be the cut-off function defined in Notation We have the following result.

Lemma 2.9.2. Assume vy,v1 € (0,1). There exists a constant C; > 0 (which depends on
vo and v1) and for all n large enough and all functions F, such that |z|7"0%2|z — 1|71 +2 F ¢
L>®(D?) there exist a unique function ¥ and unique constants ¢}, and ¢} such that

W=V +ncy+c)x
is a solution to and satisfies
27"z = 17 || poo(p2) + gl + lei| < Cull 12702 |2 = 1T F2F || oo 2).

Proof of Lemma[2.9.3. Let the mapping A : C_ — D? be defined as in Notation We
decompose
F:F0+F1 = (1—X)F—|—XF,

and define the function A

Fi:Cm WFl(/\(C))
Notice that |¢|7*1*2 F; € L*°(C_) and

IS F 1 | ooy S C 270F2 2 = 1T 2 F | L ey -

Let W be solution of

AW =Fi(¢) in {¢eC_:[¢ <3},
=0,
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then the function

satisfies:
AWy =F; in supp(x) \ {1} and 0,Wi],_, =0.

Moreover, we have:

[z =117 W, SO ™2 2 = 1772 F || oo (p2).

[P

The existence and the properties of W; follow from Lemma More precisely, we
extend F'; by symmetry with respect to the coordinate axis £, =0 to {¢ € C: (] < %} and

consider the problem L
AW, =TF; in {¢eC:[¢ <2},
(2.41)

If F is radial, the solution of ([2.41) is found explicitly and can be written in the form

—rad —rad

Wi =V (p) +c, (2.42)
where

—rad pl S . al S o
v, (p):/ / tF1i(t)dtds and CT:—/ / t F1(t)dtds.
0o $Jo 0o SJo

Moreover, there exists a constant C' > 0 such that

—rad

HE 0 [l poe p2g2y) + el < € ¢~ Fy oo (p2(2))-

On the other hand, if
/ Fi(p,0)pdd =0, forall pe(0,2/5),
S1

we prove, using the same argument as in Lemma the existence of ¥ " which is a
solution to (2.41)) and satisfies:

T, mean

0 e (p22)) < C| G172 F (| oo (2)-

Finally, we put

—rad = —=mean

Wi=W + U,

The function o
X Wi =xWi(A7'(")

can be extended by zero to the entire open unit disk D?. We have:
A(X Wl) =F +2Vx VW + W, AX in l)Z7
O-(xW1) =0 on S\ {1}.
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The function Vy VWi + W; A x has compact support in D2, so according to Lemma,
we can find a function W which satisfies:

AWy =Fy—2Vx VW — Wi Ax in D2
{ OWo—2Wy=0 on S\ {1}.
By the elliptic regularity, we have:
VX VW1 || o2y < C ||z = 1772 Fi| poe(p2),
for some positive constant C'. This yields:
[2770%2 (Fy = 2V VW1 = W1 AX) [leo(p2) < Cl2]70F2 |2 = 172 F || Lo 2y
So, we can write Wy = Wo + ¢ n, where
21770 Do [l + 65| < C 11217072z = 175 2F | o .
The function W, := Wy + x W1 satisfies:
AWopp=F in D2
{ O Wapp — %Wapp = *%le on S'\{1}.

Notice, that we can write
Wapp =¥ +cgn+ci x

(changing if necessary the values of the constants ¢ and ¢}), and for example writing
Wapp = [(1 = x) Yo + x U1 + x (Yo — Yo(1))] + x Yo(1) + x €] + i n.
In order to find the exact solution, we define the function

2> -1
2n

hn(2) :== x Wi(2),
which satisfies:

227 r
Ahy = EEL A (W) + 220, (x W) + 2 x W,

Oy~ hal,_, = 2x Wi

Then, we introduce the function
Wy = Weapp + i,

and verify that

<& e e = 1

M 02y

{ |12+ |2 172142 (AW, — F b

arWn - % Wn'r:l = 0’
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for a constant ¢ independent of n. Next, consider the operator
Ry Felz[2 |z - 1|2 L®(D?) = AW, (F) —1d(F) € 2|2 |z — 1|"* "2 L>°(D?).

Then ||R,]| < % for a constant ¢ independent of n, and thus, for n large enough, the operator
Id + R, is invertible. Finally, the function

W =W, ((Id +R,)"1(F))
satisfies and can be written in the form:
W =V+cin+cix,
where
12770 2 = 117 oo o2y + Il + Ief] < Cu 112270 |2 = 1271 F || o ).

Finally, we prove that the constant C; does not depend on n. Again, for the radial part of
W and the deficiency terms the inequality follows from the explicit expressions given by
and (2.42). For the remaining part ¥", such that [g U™ (r¢)rd¢ =0, Vr € (0,1) the
proof follows from an argument by contradiction analogous to the one described in Lemma

291
O

Now we go back to the problem (2.33)) and analyze the solutions for f € CSf‘Q (D?).
Proof of Proposition|2.9.1. Consider the function F' defined by the relation
f(z) = n? 22 F ("),

If f € CY%(D?), then
F(z) € |2"/" 72 |z = 11" Lo(D?),
and
™72l = 1742 F | o) < € 3 1957 £ 1wy

for a constant C independent of n. Furthermore, by Lemma for all n large enough,
there exits a function W which satisfies

AW =F in D%\ {0},
oW —-LWw=0 on S'\{1},

and can be decomposed as
W =V+cin+clx,

where

=777 |2 = 17 Wl g2y < Cn® 277" |2 = 127 Fllpoe(p2y < C 1752 £ ll oo (p2)
* —v —v 1 —
5l < Cn |27 |2 = 1P Fll o2y < € — 17577 f |02

il < O nP|l[=*7/" |z = 1277 Fllpeop2) < C 19" f 02
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for a constant C' > 0 independent of n. Then the function w(z) := W (2") satisfies (2.33)) and
can be decomposed as

w(z) = Y(2) + o + &1 Xn, (2.43)

with
175" Yl (p2) + léo] + [é1] < C g™ fllLoe(p2)- (2.44)
Finally, in (2.43)) we have ¢ € CE’O‘(D2) which follows from the Schauder’s elliptic esti-
mates in weighted spaces. To see this, it is sufficient to apply in the neighborhood of z = 0
the classical Schauder’s estimates to the functions ¥(R,-) and ¥ (A, (R-)) in the domains

{zeD?: R<|z| <2R} and A, ({¢ € C- : R< (| <2R}) for all R € (0, 3).
O

Corollary 2.9.2. From Proposition (2.9.1 we deduce the properties of the solutions to the

problem (2.32)).

2.9.2 Linear analysis on the half-catenoid

Consider the problem:

2 2 2 _ : T 3T
(30 + ae + COSh20'> w = f in Rx [5, 7] s (245)
dw=0 on Rx{Z 3T}

Lemma 2.9.3. Assume that § € (—1,0). The subspace of (coshc)°C>* (R x [3,3X]) which
is invariant by (0,0) — (0,27 —0) and (0,0) — (—0,0) and solves

{(§+82 - )w:o in R x [Z,3],
P

T 37
on Rx{Z, 5},

1s trivial.

Proof. We decompose w in Fourier series

§ :w 136'

JEZ

then the functions w; are solutions of the ordinary equations

2
92 — '2+> ;= 0.
( o—J cosh? o s

These solutions are asymptotic either to (cosh o)? or to (cosh ) ~7. By hypothesis, the solution
is bounded by a constant times (cosho)? and |§| < 1, so the solution has to be asymptotic to

< 0, so the

(cosh o)™/, and then the solution is bounded. On the other hand, —j2 + 2
cosh” o
maximum principle assures that w; = 0, for all j > 2.
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Observe that the imposed symmetry (o,6) +— (o, —6) and the boundary condition imply
wy; = 0. When j = 0, wq is the solution of the ordinary equation

2
92+ > = 0.
( 7 cosh?o o

By direct computations, we can see that tanh o and o tanho—1 are two independent solutions

neither of which belongs (cosh 0)°C**(R x [Z, 3X]).

O]

The next step is to prove that, under some assumptions, there exists a right inverse of the
problem (2.45)) and it is bounded.

Proposition 2.9.2. Assume that 6 € (—1,0). Then there exists a constant C and for all

f e (Cosha)‘SCO"f(R x [Z,32]) such that f(o,0) = f(—0,0) = f(o,21 — 6) there ezists a

unique constant di and a unique function v € (cosha)’C>*(R x [, 3X]) such that
w =7+ (21
solves (2.45)), w(o,0) = w(—0,0) = w(o,2m — ), and

sx]) + 1] < Ol (cosh o)™ flgn.a(zx

Icosh ) vl a5, 5 s (240

LI (N
272

Proof. Let us extend the function f by symmetry with respect to the coordinate axis & = 0
to the entire unit cylinder R x S'. Then there exists a function w which satisfies:

<8§+6§+ >w:f in Rx S

cosh? o
where w = v + dl and
[(cosh o) v||e2.a(mysty + |di] < C[[(cosha) ™ fllco.amxst)-

The proof of this fact is classic, and can be found for instance in [77], but, for the sake of
completeness, we give here the details. Decompose f in Fourier series in 6:

f(o,0) = Zf](a) eijé’

JEZ

then for all t € R and [j| > 2, let U§ be a solution to

<d02_‘7 +cosh2a> vi=f; in o] <t, wj(+t) =0, j=2

obtained by the maximum principal and the method of sub- and supersolutions, taking

1
FEpp (cosh @)% as a barrier function (using that (6% —52) cosh? s+2+6—6% < —j2+2446).
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Taking a sum over [j| > 2, we obtain a function v; which by the Schauder’s elliptic theory
satisfies

[(cosh o) " vyl|cza((—ta)xs1) < Cll(cosh o) ™ flleo.a((—t.0)x51)s

for a constant C independent of ¢. Finally, the sequence v; admits a subsequence which
converges uniformly on compact sets of R x [” 3”] as t tends to infinity to a solution v of

272
(2.45)), such that ([2.46) is satisfied.

Notice that, by construction, f(c,0) = f(o,—60) = f(o, 7 — 6), so f has no Fourier mode
1 and we only need to treat the case when f = fy(s). We construct a solution explicitly:

g g
wp(o) = tanh o /0 (1 — ¢ tanht)dt — (1 — atanha)/o tanh ¢ dt.

Remark that for |f;(0)| < (cosho)? there exist constants ¢, d and d; such that
wo+d(1—stanhs) =vg+d; and
[(cosh o) ~° wollez.a(rxsty + ldi| < [[(cosh o) ™ fllco.amxsty-
The estimates for derivatives of wg are obtained by Schauder’s theory. Finally, we put
v=v9+0 and w:U—i-cfl,

and, by symmetry, 0y w]{ﬂ sy = 0.
272

O
2.9.3 Linear analysis on the catenoid
In this subsection we consider the equation
2 2 2 . 1
(88+8¢+2) ’U):f mn RXS . (247)
cosh” s

Proposition 2.9.3. Assume that § € (—1,0). Then given f € (cosh s)°C(R X SY), such that
f(s,0) = f(=s,0) = f(s,—@) = f(s, 0+ %’T), there exists a unique constant dyg and a unique
function v € (cosh s)°C>*(R x S') such that

w="v-+ CZO
solves @A7), w(s, 9) = w(—s,0) = w(s,—¢) = w(s, ¢ + Z) and
| (coshs) 2 vllean sty + ldo] < C |l (coshs)™* flleoa(rrst): (2.48)
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Proof of Proposition[2.9.5. Consider the function F' : (s,¢) +— #f(%, %) and let W be a
solution of

2
FP+o?+ —— W =F, 2.49
( s ¢ p2 coshQ% ( )
then the function
w(s, ) = W(ns,ne)

satisfies (2-47) and w(s, ¢) = w(—s,¢) = w(s,—¢) = w(s,$ + 2&). The existence of W with
desired properties is a consequence of the following two lemmas.

Lemma 2.9.4. Assume that § € (—1,0). The subspace of (cosh £)° L> (R x S) which is
invariant by (s,$) — (s,—¢) and (s,¢) — (—s,¢) and solves

2
2 2 _ . 1
<85—j +n2cosh22) W=0 in RxS",

18 trivial.

Proof. The proof is analogous to the proof of the lemma (2.9.3) and uses the maximum
principal for the Fourier modes j > 1 and treats explicitly the case j = 0.
O

Lemma 2.9.5. Assume that 6 € (—1,0). Then there exists a constant C' and for all functions
F e (cosh%)éL‘X’ (R x SY) such that F(s,¢) = F(—s,¢) = F(s,—@), there exists a unique
constant dy and a unique function V € (cosh %)5 L>®(R x S1) such that

W =V +d
solves (2.49) and

’ (cosh f) B %4

s\ —0
(cosh —) F
n n
Proof of Lemma[2.9.5, We decompose both F' and W in Fourier series

+|CZO|§C’

(2.50)

Lo (RxST) Lo (RxST)

F = ZF]'(S) €9 and W = ZWj(s) e?,
jez jez

For all t € R and |j| > 1, there exists a function V} that satisfies
o2 — 42 2z Vi=F;, Vi +tt)=0
s J +n2008h2§ A -
n

This follows from the maximum principle if we take (cosh %)5 as a barrier func-

1
j2n2 —2-—9§
tion. When ¢ tends to infinity, we can choose a subsequence of functions converging uniformly
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on compact sets of R x S! to a solution of (2.49) which satisfies (2.50). For j = 0 we find the
solution explicitly

Wo(s) = tanh 2 /n (1 — ttanht) F(nt)dt — (1 — % tanh f) /n tanh ¢ F'(nt) dt.
nJo n n 0
. oy . . s 1 0o 1 7
As in Proposition there exists a function Vg € (cosh 5) L>*(R x S*) and a constant dy,

such that the function Wy = V + dp satisfies (12.50)).
O

Finally, we put v(s, ¢) = V(ns,n¢). By the Schauder’s theory, v € (cosh s)™% C>*(R x S')
and
[[(cosh 8) 0| cz.a(rxs1) < C'||(cosh s) ™ f[lco.a(rxs1)-

2.9.4 Gluing the parametrices together

In this subsection we construct a solution of the linear problem
Lrw=]f

by gluing together solutions to linear problems in the punctured disk D?\ {0, z1, ..., 2, }, the

cylinder R x S' and the half-cylinder R x [g, 37”] obtained in the subsections and
2.9.3l The main result of this subsection reads

Proposition 2.9.4. There exist constants C > 0 and £ € N and for all f € 52’0‘72 and all n

vV

large enough, there exists a function w € 5,2133 which satisfies
E - d [eY < cetvn a .
nw=f and |wlgze < | fllgoa

Proof. The proof consists of 6 steps. Let us use the decomposition of A,, in graph, catenoidal
and gluing regions as it is described in the subsection In Step 1, we show that a function
fe 52:372 can be written as a sum f = f + f~, where
n n
— : — by — - . i+
ff=0 in Qg U nglu and f~ =0 in Q;‘T U Q;lu.
i=0 i=0

Then we show that there exist diffeomorphisms 2)* from a subdomain of D?\ {0, z1, ..., z,}
to some regions in A,, such that the function

froQt=f o9 :=f
can be extended to the entire D2\ {0, z1,...,2,} in such a way that f € CBf‘Q(Df).
In Step 2, using the results of Proposition we find a solution g, to the problem

A(Bibg) =f in D2\ {0},
Orwgr =0 in S'\ {z1,...,2.},
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and show that truncating g, o 2)~! in the neighborhood of the punctures, we obtain an
approximate solution to the equation £, w = f in the graph and gluing regions.

In Step 3, we show that in the “catenoidal neck” and “half-catenoidal bridge” regions, the
error has a specific form and can be compensated using linear analysis in the cylinder R x S*

and the half-cylinder R x [%, 37”] described in Propositions and

In Step 4, we combine the solutions obtained in Steps 2 and 3 to obtain an approximate
solution to our problem in A, by truncating the terms that decay at infinity and gluing
together the deficiency terms.

Finally, in Step 5, we find an exact solution using a perturbation argument.

Step 1 : Decomposition of the function f
Take a function f € 53:372 and consider the cut-off function ¥ € C*°(R) which satisfies
J9(t)=1 for t>1 and J(t)=0 for t<—1.
Let (s, ¢) be the cylindrical coordinates in the “catenoidal neck”. We write
f=rr+r,
where while in the half-cylindrical coordinates (¢, #) in regions of the “catenoidal bridges” we
put

fT(s,0) =10(s) f(s,0) and f7(s,0) = (1-9(s)) f(s,9).
In the same manner, let (0,6) be half-cylindrical coordinates in region of one of the “half-
catenoidal” bridges. We put

F*(0.6) = 0(0) f(0,6) and f~(0,0) = (1—9(0)) f(o).

Next, let us explain the construction of diffeomorphisms % from some neighborhoods of
A, to a subdomain of D?\ {0, z1,...,2,}.

Take real numbers s, > 0 and o, > 0 that satisfy

1 € 1
€ coshs, = — and = cosho, =—.
on 4dn . 2 on 4dn
Let us denote by 1o the map that corresponds to the parametrization of the “catenoidal region”
in A, by cylindrical coordinates. We also put A% := 1o ([—sn, Sp] X S 1).

In the same manner, we denote by r,, the map which corresponds to the parametrization of

T 37

the “half-catenoidal bridge” by half-cylindrical coordinates, and put A} := t, ([—an, on) X [5, o5

On the other hand, we introduce cylindrical coordinates in a neighborhood of z = 0 in
D?\ {0} via the one of the mappings

3201 1 (5,0) € (—00,8,) x ST %es ¢'? € D?,

327 0 (5,¢) € (—sp, +00) ge_s e e D2,
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In the same manner, we introduce half-cylindrical coordinates in a neighborhood of z = z,,
in D?\ {2,,} via one of the mappings

37T (0,0) € (—00,00) > A (i e’ Z0) € D? or

37 (0,0) € (—0m, +00) 5 Am (Ze,(, %9) e D2
Finally, we introduce the mappings
32 0 (5,0) € (—5n,8n) X ST & coshs e € D?,

T 37T

30 (0,0) € (—on, 00) X [

e .
2,2] = Am (5 cosher‘)) e D2

Consider the following regions of the unit disk:

5 € €
e <z < 268"} and Dy, = {z e D? . Ze_a” < Am(2)] < *60"},

Doy = {z € D*: T

5
2
and remark that the mappings

i\ ~1
o (3:7)

provide diffeomorphisms from D;,, to A? . On the other hand, let
pt o QF Uleu Cc A, — D?

denote the vertical projections of the graph and to the unit disk. By construction, we have

pE oro(s,d) = 32(s,¢) = £ coshse® in Qi U Q%=

glu>

m € i m
pE o tm(0,0) = 37(0,0) = A, (5 coshoe 9) in Qi U leui.

We can write

2

-1
pfoxgo (3g’i) —Id+ o2 Dy, — Doy, where ‘@g’i(z)‘ <ct

[EK

~1
pE o, o <5?’i) =1d+ d™F . Dy — Dy, where ‘@Em’i( )‘ <c

Tz2—zm]| zm|'
for a constant ¢ independent of €. Consider the domain

D% = D2\ ({z€D2 Dz < ge_s"} LnJ {Z€D2 s A (2)] < Ze_‘f”}>

m=1
of the unit disk and the cut-off functions y;,, € C*°(D?), i =0,...,n, such that
pon(2) =1 for |2/ <& and pon=0 for |z]> 4;

fmp(z) =1 for [ ANz)| <& and ppa=0 for  [ANz)| > &

m
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Then we define the diffeomorphism 2)* from Di to its image in A, by
-1
wo (327)  (2), for |2| < g

—1
tmo (3F) (), for  [1(2)] < &

(p“‘)_1 o (Id + lin @é’Jr) (2), for zesupp(Viin),

D (z) =

L ()7 (2) elsewhere.
Finally, we check that the function
f=fTo9t=f"09,
defined in Di can be extended by 0 to the entire punctured disk D?\ {0,z21,...,2,} and

moreover, we have f € C0:%(D?).

Step 2: Contribution of the linear analysis on the punctured disk

The function f € CBf‘Q(Df) satisfies f(z) = f(2) = f(z - zm), so, by Corollary there
exists a function w,, € Co*(D2) ® D,,, which is a solution to

A(Bwg)=f in D?\{0}, 251)
B = 0 in ST\ {z1,..., 20}, '

where w,, = ﬂgr + ¢ + €1 xn with
H@Z’grncgva(p*) +éof + e < C HfHCSfE(DE)‘
Next, we show that the functions
wﬁ = Wgy O (Q‘ji)71 ,
(defined locally in A4,,) are approximate solutions to £, w = f in the regions Q;t,, U Qz’i,
0,1,...,n. Indeed, by Proposition for all v € 5}%:3 we have in Q; U Q;lj;
‘VZ_V (Lnu— Lg, U)l <C¢? 7_2 ||u||gg‘;
Moreover, by construction,
[V (Lgrwge = £)] < C 7" (Lgr 0 9™ = Lgr) wip| < Ce¥ 57| f [l g0 -
This yields
| Lnwk — chg,_aQ(QgiTUQ;,li) <ces Ifllgoa o i=0,1,...m,
where for Q C A, we denote by CSfQ(Q) the restriction of 52:3‘72 to Q.

On the other hand, since the function 1[197« in the decomposition of w,, decays in the

neighborhood of the punctures in D? \ {0,z21,...,2,}, we can extend J)gq« o (S.ijt)_1 to the
entire surface A, in a natural way using a suitable cut-off function which we define below.
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Notation 2.9.2. Let us choose real numbers s, and Sy, such that the gluing region Q;rlu of
Ay, is parametrized by [sq, Sg] x ST C Rx St. By symmetry, the region Q;lu s parametrized by
[—Sy, —s4] x ST. We introduce the cut-off function & € C* (DQ) which is radial and satisfies

() =1 for |z| > ge_sg and &(z) =0 for |z| < ge_sg.

In the same manner, let the gluing region QZL’;F be parametrized by (o4, 34] X [g, 37”] Then
we introduce the cut-off function &, € C* (DQ) which satisfies

Em(z) =1 when ‘)\fnl(z)‘ > 267‘79 and &y,(2) =0 when |)\;nl(z)‘ <Se T,

n
Finally, we define the function £ := i[lofi.

We put
U= (60) 0 ()" e s,
and since
| <ce’y™ i QL uUQUIUQL,,
we find

V2 Lo (U + )| S’y in A, (2.52)

Step 3 : Contribution of the linear analysis on the catenoids

Notation 2.9.3. Let n; € C*(A,,) be the cut-off functions, which are invariant under the
action of the group &,, and satisfy

m=1 in Q, and 7, =0 in A\ <Qiat U Qz]’lz U Q;’ﬁ) .

Next, consider the functions
hi =" mi (Lo (U +0g) = f) € Enye

Taking the cylindrical coordinates (s, ®), we can extend the function hg(s,®) by 0 to the
entire cylinder R x S'. In the same manner, we can extend the function h,,(s, o) to the entire
T 3T

half-cylinder R x [5, 7} . By the invariance by the action of the group &,,, in half-cylindrical

coordinates all the functions h,, coincide and we can omit the index m in what follows.

By (2.52)), we have

3
ho € (coshs)™ CO’O‘(R X Sl) and h € (cosho)™” o« (R X [;r, ;}) .
Moreover, there exists a constant C' > 0 independent of € such that

[(cosh s)” holco.e(mxsty < Ce”[[ fllgoa

I (cosh o) Bllgoagaxz 2]y < C " Il

Jrusgy i
272
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Using the results of the subsection [2.9.2] u n we find functions w?,, and w.,,, such that

cat’

cosh2

(02 + 02+
80wcat’{%7377r} =0,

ity =h in Rx[3,%],

2
<8§+8£+Cosh25> cat—h(] in RXSI.

N | =

We can write
w0 _ ~0 7 vl vl 7
Weat = Veqr + do, and Weqt = Veqp + di,

where

[(cosh s)” 80l c2.amxsty + |do] < C'|l(cosh s)” holleoa(mxsty,

Icosh o) Bhllezn a3 2y + Il < Cll(cosh o) Bl o

37
2

BE 55

and
i}(c)at(sv ¢) = ’bgat(_sa ¢) = ?\jcoat(S, —¢> = U(c)at ( + 27T/7’L)

cat(U 9) cat( g, 0) cat(av 27 — 6)

Notice that since the functions #0, and ¥.,, have exponential decay at infinity, we can
extend them in a natural way to the entire surface A,, with the help of suitable cut-off functions.
We put

0 ._ ., 0 d 7L
Ucat = M0 VUeqr AN vcat = Tim Ucat»

where 7; are defined as in Notation [2.9.3

Step 4: Approximate solution to the linear equation

First of all, we show that we can extend the deficiency terms égn + ¢é; xn coming from the
linear analysis in the punctured disk, and the deficiency terms do and dy coming from the
linear analysis about the caten01d and the half-catenoids, to the entire surface A,, by gluing
them together in the regions Qi g 1 =0,1,...,m. Consider the functions

ug(s) :=1— s tanhs, wi(0):=1—o0 tanho,

that can be locally considered as functions on A,, in some small neighborhoods including the
“catenoidal neck” and the “half-catenoidal bridges” respectively. Also, let T? and '} be the
Green’s functions defined in (2.11). We introduce on A4,, the function

k=m0 (a0 uo + do) + Y 1 (a1 w1 + i) (2.53)
m=1
+ (L= m) (boTS + b1 Ty, + o+ é1 xn)
=0
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where 17; are the cut-off functions defined in Notation and show that one can choose the
constants ag, a1, bp and b; in such a way that

HH —bg F% — b F}L — ¢ — €1 X”HC&’“(Q;’%) < HngE«37

(2.54)
First, remark that, by construction, given in Notation we have x, = 0 in leu and
Xn =1 in Qg’}u, m =1,...,n. Moreover, Qgﬁf, we obtain
‘ —2n+2n logé —2ns + O(e), s >0,
IV (¢ cosh s ') =

—2n —2nlogé+2n s+ O(e), s <0,
where the meaning of the symbol O is explained in On the other hand, we have

1—s+0(), s>0

uo(s)

1+s+0(), s <0,
and

. n ~
I'L(Ecoshse™®) = —— 4 O(e).
Comparing linear terms in the the first and the third terms in (2.53)), we find the first
equation on ag, ai, by, b1:

ao = 2n by, —17” — 2nby + 2nbg log & + é = ag + do.

(2.55)
Similarly, in QZ};}, using the notations of the subsection H we obtain
c . —§+cgr(n)—log%—a—i—@(az/?’*ﬂ), o >0,
rk ()\m (5 cosho e’ )) n .
5 +cgr(n) —log 5 + o + O3, 6<0
1—0+ 023, 0>0,
u(0) = .
14+0+0E*3) <0,
and
I9% (s, ¢) = —n + O(e*?).
This gives us the second equation:
n € A 5
a1 =by, b (cgr(n) — 3 — log 5) —bon+ ¢y + €1 = a1 + dp. (2.56)

Then the system ([2.55)) and (2.56) has a unique solution.
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Next, let the functions v, v, and k be defined as above. We introduce the function
n
Wapp 1= 1/}3; + g + Z Vegt + K-
i=0

Then wqypy, € 8,%;3‘ and it follows from the previous estimates that

2w
1L Wapp — nggvg_Q < ces Hnggvs_Qv

for a constant ¢ independent of . Moreover, there exist constants C' > 0 and £ € N, such that
for all n > 2 and all f € 5233_2

—L
||wapp”5721:§ S CE v ||f”€2:372

Step 5: Exact solution to the linear equation

Consider the operator

Rapp + [ € Enir_y > Lnwapp(f) —1d(f) € &y,

n

Then ||Rapp|l < 1 and the operator Id + Rgpp is an invertible. Finally, we put

w(f) == Wapp ((Id +Rapp)_1 f) .

and verify that
Low(f)=f, and [w(f)llgze <Ce™||f]oa .

2.10 Nonlinear argument

Proposition 2.10.1. There ezists ng € N, such that for all n > ng, there exist v,a € (0,1)

and a function w, € 6’2;3 such that A, (wy,) is a free boundary minimal surface in B3.

Proof. Our goal is to solve the equation
Lo,w=—H,— Qu(w) forsome w € 5,%:,‘}.

By Propositions [2.8.1] and 2.8.2], 2.8.4], [2.8.3] and [2.9.4], there exist constants C' > 0 and £ € N
independent of n, such that

£ Ml < OO oy,

125" Qulw)lgzn, < Ce™™ A ] gz,

lwr — wal|g2.q,

N |

125" (Qu(wr) = Qu(wa)) gz <
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for ||w|| < r, and «a,v, 8 and n large enough. Theorem then follows from Banach fixed
point theorem for contracting mappings applied to the mapping

w e ENS — =L (Hn + Qn(w)) € 2

in the ball of radius 2 r,.

2.11 Appendix

Let C: be the surface in R® parametrized as in (2.15). Then

Lemma 2.11.1. The mean curvature of ég(w) with respect to the metric Jeye = dz° + idx%
satisfies

1 2 w 1 1
Hep(w) = ———— 02+ 0% + —t —— Q% (W) + —— @3 (w),
cat (W) £2 cosh? s < 7 cosh?s/) 2 e3cosh?s cat () et cosh? s Qear(10)

where Qcat( ) are a nonlinear functions of w and the components of the gradient and the
Hessian of w calculated with respect to the metric ds®> 4+ d¢®. Moreover, for all s € R

| @kaetw) = @hsta)

00 (fs,541] x 51) < CméliX { leHCz a([s 5+1]X51)} (2.57)

X w1 — wallez.a((s,s+1]x51)s

for a constant C' independent of s and & and H ) < 1.

w;
ooz leramxst

Proof. Let us denote by Q¥ ,(w) any nonlinear function satisfying the property (2.57). The
tangent vectors to Cs(w) are given by

Ts(w) = Ts + 05w N 4w ds N, Ty(w) = Ty + dpw N + w Gy N,
where T = (5 sinh s €%, 5) , Ty = (z’écoshs e'?, O). Let
g° = &% cosh? s(ds? + d¢?), h = &(—ds® + d¢?)

be the first and the second fundamental forms of the standard Euclidean catenoid scaled by a
factor €. The induced metric on Cz(w) can be written in the form
gcat(w) = g hcat + Qcat( )

We look for a normal (with respect to geyer) vector field to C’g(w) in the form

N¥(w) = N 4 a4(w) Ty 4 ag(w) Ty.
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Then the equations
geucl(Nti(w)a Ts(w)) = 07 geucl(ﬁﬂ:t (’UJ), T¢(’LU)) =0

. Opw 1
yield: ap(w) = T P cosiZ s + . Q2. (w). We find
- . - - 0w Opw
N(w) := N¥(w)/|N¥(w)||; , =Nt - 2 p 207 7
1 2 \rcat 2
cat(w) N + 62 COSh3 s cat(w) Ta

_|_ -
£2 cosh? s @

where 7' is a unit tangent vector. Since ge,; is a scalar metric, the second fundamental form
satisfies )
h‘cat(w)kf = Jeucl <3k3£X§at, N(w)) ,

. 1 s . . s
8;68@X§“t(w) = akc‘)ng“t + 3 <8kw c%NC“t + Opw 8@Ncat + OLOpw Nt 4 8kachat) ,

(o S ) QRut)

w 1
Id + —tanhs
Opw  Osw e cosh? s

~ w
R (w) = h? 4 Hess — — —————
(w) c 2 2 cosh? s 2
Finally, the result of the lemma follows by taking trace with respect to the metric g°*(w).
O

Now, let give the details of the proof of Proposition m By L we denote any bounded
linear operator from C*%(R x S!) in CO%(R x S1).
The metric induced on Sy, (w) from X*geye can be written in the form

g

(w) = g°(w) + (8- gcat) + e3P cosh? s L w 4 small nonlinear terms.
We look for a normal (with respect to he metric X*ge,q) vector field to S, (w) in the form

N (w) = N(w) + ds(w) Ts(w) + ag(w) Ty(w).

Then it follows from the equations
X*geucl(mﬁ (’LU), Ts(w)) = 07 ')(*geucl(snﬁ (’LU), T¢(w)) = 07

that d(w) and Gg(w) satisfy
(&) =0 (or-5) s (R R )

We obtain
N(w) == N (w)/||NH(w) | =g,

= N(w) + (‘ﬁ(O) - N) + e cosh s L w 4 small nonlinear terms.
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Let @(w) be the Levi-Civita connection corresponding to the metric A* g, and taken along
Sp(w), then we have

Vo, 00(w) = 9,0, X (w) + (%k By — akagfcgat) +e2cosh?s Lw

+ small nonlinear terms.
The second fundamental form hro(w) = X*geyel (%kag(w), ‘ﬁ(w)) satisfies

h(w) = Bmt(w) + (h - hcat) +e2 P cosh?s Lw + small nonlinear terms,

and, finally, taking the trace with respect to the metric g(w) and using the results of Propo-
sition 2.8.1] we obtain

H(w) = Hp + Hegr(w) + =P L w + nonlinear terms.
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Chapter 3

Nonconvex constant mean curvature
spheres in Riemannian 3-manifolds

3.1 Introduction and the statement of the result

In Euclidean 3-space, Hopf’s Theorem (1950s) asserts that round spheres are the only topo-
logical spheres whose mean curvature is constant.

In 1990, R. Ye [I1§] proved the existence of embedded constant mean curvature spheres in
any Riemannian manifold whose scalar curvature function has nondegenerate critical points.
More precisely, let (M, g) be a Riemannian manifold and let S;(p) denote the geodesic sphere
of radius € > 0 centered at p € M. Given a nondegenerate critical point o, € M of the
scalar curvature function R on M, there exists a neighborhood of o, which is foliated by
constant mean curvature topological spheres 3. for € € (0, ¢e,). Each leaf ¥ of this foliation is
a normal geodesic graph for some function w = O(e?) over the geodesic sphere S.(0.) centered
at a point p. € M that satisfies disty(oz, 0cr) = O(£2).

In [95] F. Pacard and X. Xu generalized the result of R. Ye to the case where the scalar
curvature of the ambient compact manifold is not a Morse function (which includes the case of
manifolds endowed with constant scalar curvature metrics), constructing topological spheres
with large constant mean curvature but loosing the foliation property.

In this chapter, we prove the existence in “generic” Riemannian 3-manifolds of families of
topological spheres that have large constant mean curvature but are not convex. Such surface
can be obtained by perturbing a connected sum of two tangent geodesic spheres of small radii
whose centers are lined up along a geodesic that passes through a critical point o of the
scalar curvature function R with velocity equal to a unit eigenvector associated to a simple
nonzero eigenvalue of the Hessian of R at og.

More precisely, let (M, g) be a Riemannian 3-dimensional manifold. We assume that we
are given o, € M, a critical point of the scalar curvature function R, for which HessR at
ocr has a simple nonzero eigenvalue A. Let vy be a unit eigenvector of associated to A. Take
€ > 0 small enough and consider the union S4(e, 0., vy) of two geodesic spheres of radius €
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tangent at o.., with centers located symmetrically with respect to o. on the geodesic passing
through o., with velocity vy. With these notations, our result reads:

Theorem 3.1.1. There exists e, > 0 and, for all ¢ € (0,e4), a surface S. of constant
mean curvature equal to 2/¢ such that the Hausdorff distance between S, and &4 (e, 0cr,vy) is
bounded by a constant times 2. The surface &, is embedded if X\ < 0 and immersed if X > 0.

The existence of nonconvex topological spheres of large constant mean curvature in Rie-
mannian manifolds has already been considered by A. Butcher and R. Mazzeo [10] under
some symmetry assumption on the metric g. These authors prove the existence of families of
constant mean curvature topological spheres obtained by gluing together a large number of
geodesic spheres of small radius which are tangent and arranged along a geodesic segment
passing through a nondegenerate critical point of the scalar curvature function R, provided
the metric is rotationally symmetric in a tubular neighborhood of v (i.e. only depends on the
distance to 7).

Our result is reminiscent of a result of N. Kapouleas [62], where the existence of “slowly
rotating drops” or “gyrostatic equilibria” (equilibria of rotating liquid masses) is proven. In
this work, the problem amounts to find embedded surfaces in R? whose mean curvature is
given by

H=1+cd* (3.1)

where d is the distance to the axis of rotation (say the vertical axis). From the point of view
of physics, one can consider two drops of liquid of small radii arranged symmetrically with
respect to the origin along an horizontal straight line passing through the origin. One can
imagine that these two drops are connected together by a small liquid bridge near the origin.
If there is no rotation, the two drops will merge under the action of capillarity while, if some
small rotation is imposed to the system, the centrifugal force induced by the rotation will
counterbalance the capillarity force and somehow prevent the drops to merge.

In our construction, it is the gradient of the scalar curvature that plays the role of the
centrifugal force in [62]. However, the fact that we are working in a setting without any
symmetry induces a lot of technical complications which we will explain.

3.2 Outline of the chapter

In Section [3.3] we provide some classical results in differential geometry which we use in this
work. For example, we recall the expansion of the metric in some special coordinate systems
and the expression of the mean curvature of normal graphs over a given surface.

In Section we explain the construction of a family of surfaces, which we refer to as
approximate solutions, whose mean curvature is close to 2/¢ (in a sense to be made precise)
and which depend on 8 geometric parameters. Let us briefly describe this construction here in
the case where one tries to construct embedded constant mean curvature topological spheres
that are mentioned in the above Theorem.
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We start with p € M and e small enough. We will see that the mean curvature of S.(p),
the geodesic sphere of radius e centered at p, is given by

H(S:(p)) = 2 +0(),

and hence it is, in some sense, close to being constant. It is reasonable to expect that S.(p)
can be perturbed into some constant mean curvature surface, at least for ¢ small enough.
Unfortunately, as observed by R. Ye in [118§], this is not the case. Indeed, when ¢ is small
enough, the Jacobi operator about S.(p) is close to the Jacobi operator about the Euclidean
sphere of radius ¢ which reads e72 (Ag2 + 2). This operator has a non trivial 3-dimensional
kernel £y which prevents one from applying directly a perturbation argument to deform S (p)
into a constant mean curvature surface. The best one can do is to perturb S.(p) into a surface
Y.(p) whose mean curvature is constant up to an element of £y and, with slight abuse of
notations, we can write

H(S-(p)) - - € So.

These surfaces are called pseudo CMC spheres by F. Pacard and X. Xu [95] or pseudo bubbles
by S. Nardulli [90]. They are, in some sense, the closer we can approach a constant mean
curvature surface when we start from a geodesic sphere of small radius.

We now fix a point 0 € M, a unit vector v € T,M, € > 0 small enough and a parameter
d € (0,1) also very small (say d < ¢). We consider a pair of “pseudo CMC spheres” ©F :=
Y. (exp,(£tv)), where the parameter ¢ > 0 is chosen in such a way that the distance between
Eéﬁ is exactly equal to d. We let v be the geodesic of length d which realizes the distance
between the two surfaces.

In the next step, we perform a connected sum of 1 and ¥ using a “catenoidal neck”
that looks like a Euclidean catenoid which has been scaled down by a factor n <« 1 and
whose “axis” is “parallel” to v (we hope that the rough picture is clear and we will make
these notions precise later on). Observe that we have two degrees of freedom in choosing the
axis of the catenoidal neck “parallel” to «v. We will see that a certain relation needs to be
satisfied between the distance d and the size of the catenoidal neck 7. At this stage, for all e
small enough, the resulting surface which will be denoted by .A. depends on the choice of 8
parameters: the point o € M (3 degrees of freedom), the unit vector v € T,M (two degrees of
freedom), the size of the neck 1 (one degree of freedom) and the location of the neck parallel
to v (two degrees of freedom).

In sections and we prove that it is possible to perturb A into a constant mean
curvature surface provided ¢ is chosen small enough. This goes through a careful study of the
Jacobi operator about A, and the identification of its “small” eigenvalues (i.e. eigenvalues
which tend to 0 fast as € tends to 0). It turns out that &, the space of eigenfunctions of the
Jacobi operator about A. associated to these small eigenvalues, is 8 dimensional, matching
exactly the number of free parameters in our construction. Following N. Kapouleas, this space
will be called approximate kernel.

In the last section, we will use a Lyapunov-Schmidt reduction argument, applying Banach
fixed point theorem in the space of functions orthogonal to K., to perturb A, into a surface
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whose mean curvature H satisfies 5
H-—-€ R,
€

provided € is chosen small enough. Observe that the surface we have constructed still depends
on 8 parameters. In the final argument, we will explain how to choose the 8 parameters
appropriately to ensure that H = % The corresponding surface G, will be the constant mean
curvature surface we are looking for and we will see that it is at Hausdorff distance at most
ce? from S4(e, 0cr, vy) for some constant ¢ > 0.

3.3 Preliminaries

In this section, we collect some classical results in differential geometry and introduce the
main notations and geometric objects that we use in the chapter. We refer to [12], [68] and
[108] for further details.

Remark 3.3.1.

1. Throughout this chapter, we will assume that the manifold M is compact. In reality,
when M is not compact, given oo, € M a critical point of the scalar curvature R, we
will only work in a geodesic disk in M of some bounded radius centered at ocp.

2. By e, € (0,1) we will denote a constant which will vary from result to result but can be
chosen uniformly for all results.
3.3.1 Normal Geodesic Coordinates

For p € M, we denote by exp,, the exponential map defined on T, M and associated to the
metric g. We fix an orthonormal frame F1, Fs, F3 of the tangent bundle T'M and consider in
a neighborhood of p € M normal geodesic coordinates centered at p. The mapping

3
(p(x) = exp, (Z x! Ei(P)) :
=1
1 .,.2

where z = (2!, 22, 2%) € R3 gives us a local diffeomorphism between a neighborhood of 0 in R?
and a neighborhood of p in M. In these coordinates, the metric g has the following expansion
in powers of x, [10§]:

1
g(ax“ axﬂ)(x) = 5ij + g Q(Rp(Ela Ek)Ej, EZ) mk :L,Z (32)

1
+ 6 Q(VEme(Ei, Ek)Ej,El) :L‘k :L‘l ZL’m + O(|IL‘|4),

where R, is the Riemann curvature tensor of (M, g) evaluated at the point p.

Notation 3.3.1. In the following, O(|z|*) denotes a smooth function whose i-th partial deriva-
tives are bounded by a constant times |x|*~" in a fived neighborhood of p € M, the bounds being
uniform in p.
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3.3.2 Change of coordinates

It will be necessary in some of our computations to compare coordinates of a point in normal
geodesic coordinate systems centered at two different points. Assume that o € M is fixed and
take p € M in a small neighborhood of 0. We fix an orthonormal basis Ej(0), E2(0), E5(0) of
T, M and denote by x the geodesic normal coordinates centered at o.

Let E1(p), E2(p), E3(p) be an orthonormal basis of T, M obtained by the Gram-Schmidt
orthogonalization process starting from the basis 0,1(p), 0,2(p), 0,3(p) of T, M. Given g close
enough to p, we denote by vp4(s) the minimizing geodesic starting at time s = 0 at p and
ending at ¢ at time s = 1. We set v := ~,,,(0) € T, M. The coordinates of y,,(s) in the normal
coordinate system centered at p are given by

2R (s) = vFs, k=1,2,3,

while, in the normal coordinate system centered at o, its coordinates can be expanded in

powers of s as
o0
¥ (s) = g ak s,
=0

where

alg = xk(p) and a'f =oF 4 O(|U||$(p)’2)

Putting this information into the geodesics equation

R
ds?

dr' da’
" (3.3)

T~
1] (x) dS ds Y

evaluated at p and using the fact that Ffj (z(p)) = O(|z(p)|), we conclude that a§ = O (|z(p)| |v]?).
Finally, differentiating (3.3)) ¢ times and evaluating it at p gives the expression of the coeffi-
cients a’2‘7+£ for all £. Using that x¥(p) = 2¥(0) and v* = 2¥(¢), we obtain the expansion

2*(q) = 2(q) — 2(0) + O (|2(0) P|2(a)| + |2(0)[|2(a) ) -

3.3.3 Fermi coordinates

Let S be an oriented surface in M and Ng a unit normal vector field to S. Take g9 € 5, then
the mapping Fg given by
Fs(q,z) := exp,(z Ns(q))

defines a local diffeomorphism from a neighborhood of (go,0) in S x R into a neighborhood of
qo in M. The coordinates associated to Fg are called Fermi coordinates.

Given z — Cq% (7) local coordinates on S, for x in a neighborhood of 0 in R?, we define

Fs 4 (x,2) :=Fg ({50 (z),2). (3.4)
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Lemma 3.3.1 (Expansion of the metric in Fermi coordinates). There exists a tubular neigh-
borhood of the surface S in which the metric g can be written as

2

9= Z (92)ij daxs daj + d2?,
ij=1

where g, is the induced metric on the surface S, = {Fs(q,z) € M : q € S} parallel to S and
has the following expansion in powers of z:

g :gs—QZhS-i-z:2k:s-i-(’)(23)7

where gs and hg denote respectively the first and the second fundamental forms of S and where
kg is defined by
ks =hs @ hs + g(R(Ns,)Ng, ).

Proof. The coordinate vector fields corresponding to Fs 4, are denoted by
Xo = (Fs,40)4(0:) and X := (Fs,4)(04i), i =1,2.

The curve z — Fg 4, (x, 2) is a geodesic and Xo(x,0) = Ng(z). This implies g(Xo, Xo) = 1 and
Vx,Xo = 0. Furthermore, using that Xy and X; are coordinate vector fields and therefore
commute, we get

0.9(Xo, Xi) = 9(Vx, X0, Xi) + 9(Vx,Xi, Xo)

1
= 9(Vx,Xi, Xo0) = 9(Vx, X0, X0) = 5 0,19(Xo, Xo) = 0.

Therefore, g(Xo, X;)(z) = g(Xo,X;)(0) = 0. This yields the decomposition of the ambient
metric g.

Notice that, by definition, g.(z,0) = gs(z). Let us calculate the next terms in the expan-
sion of g, in powers of z. We have

9:9(Xi, Xj)(x,0) = g(Vx, Xo, X;)(2,0) + 9(Vx,; X0, Xi)(z,0) = =2 (hs)ij(x).
Furthermore, using the fact that [X;, X;] = 0 we get Vx,Vx, = R(Xo,X;) + Vx,Vx, and
929(Xi, X;) = 9(Vx, Vx, X0, X;) + 9(Vx, Vx, X0, X;) + 29(Vx, Xo, Vi, Xo)
— 2 9(R(Xo, X;) X0, X;) + 29(V x, X0, V x, Xo)-
This yields 92g(z,0) = 2g(R(Ns,-)Ns,)(z,0) + 29(V.Ng, V.Ng)(z,0) = kg(x) and finishes

the proof.
O
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3.3.4 Mean curvature of normal graphs

We keep the notations of the previous subsection and we recall here the proof proposed in [93]
(see also [94]) of a formula for the mean curvature of normal graphs about a given surface in
a Riemannian manifold.

Proposition 3.3.1. Assume that we are given a function u € C*(S) which is small enough
and has compact support. Then the mean curvature of the S(u), the normal graph of u over
S, namely

S(u) == {equ(u(q) Ns(q)) : g€ S},
18 given by

st =i, | o ) I T T T
\/W 2 gu \/m
where g, := 0,9..
Proof. The induced metric ggs(u) on S(u) reads
gs(u) = gy + du ® du,

and hence we get
det gs(u) = (1 + |V7u|?) det gy,
and the volume of S(u) is given by

Vol (S / V14 |V9uul? dvolg,

Computing the differential of this functional with respect to u, we obtain

o=
14 |V9uul2,

/ W1+ \V9uu|2
1 .
+3 / \/ 1+ [V9uulZ Trg, gy v dvoly,
S

Integrating by parts the first term gives

D, Vol(S (VI u, VIuv) dvoly,

w (V9" u, VIu) v dvolg,

Ju
D, Vol(S(u))| v:—/divgu L Vi vdvolg,
S

“ 1+ | Vouul2,

/ w (V9 u, VIu) v dvolg,
W14+ |V9uu|2

1 2 .
+3 i \/ 1+ [VIuul2 Trg, gy v dvolg,
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Next, observe that the unit normal to S(u) can be written in the form

1
Ns(u) = —=——== (X0 = V¥"u),

\/ 1+ [VouulZ

dvolg, = g(Ns(u), Xo) dvoly.

The result than follows from the first variation formula, when S is deformed using the vector
field v Xg

and hence

D, Vol(S(u))|, v= _/SHS(U) g(Ns(u), Xo) vdvoly,.

As a consequence, we get the:

Corollary 3.3.1. The expression (3.5)) can be expanded in powers of u and the derivatives of
u up to the second order as

Hg(u) = Hs + Jsu + Qs(u, Vu, V>u), (3.6)
where Hg is the mean curvature of S, Jg is the Jacobi operator about S given explicitly by
Jg = Ag + Tl“gs (hs &® hs) + RiC(NS, NS), (37)

where Ag is the Laplace-Beltrami operator on S and Ric is the Ricci tensor of (M, g). Finally,
Qs is a smooth function of w, Vu and V?u, which satisfies

QS(OaOaO) = 07 DQS(07070) =0.
Observe that the Taylor expansion of Qg is affine in Vu and at least quadratic in Vu.

Proof. The result follows directly from a careful examination of the terms in (3.5). The
expression for the Jacobi operator can be obtained from

1 ) ) ..
DuHS(U)|u:0 = Agu + ) (Trgu (Gu @ Gu) — TrquU) )

and the expansion g, = gg — 2z hg + 22 ks + O(2%) given by Lemma 2.1.

3.3.5 Mean curvature of transverse graphs

Assume that we are given Ng, a smooth vector field transverse (but not necessarily normal
nor unitary) to the surface S. Given a function u € C?(S) which is small enough and which
has compact support, we define, as above, S(u) to be the normal graph over S for the function
u and we also consider the surface S(u) parametrized by

p = exp, (u(p) Ns(p))

for p € S. The following result [77], [93] gives the relation between the mean curvature function
Hg(u) of S(u) and the mean curvature function Hg(u) of S(u).
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Proposition 3.3.2. The mean curvature of S(u) can be written in the form

I:IS(U) = HS + JS <g(NS, NS> u) + g(VHS, NS) u+ QS(U,),
where Jg is the Jacobi operator about the surface S and Qg is a nonlinear operator which
enjoys the same properties as the operator QQg described in Corollary|3.5. 1)

Proof. For s € R close to 0 and ¢ € S one can apply the implicit function theorem to

epr(t NS(p)) = equ(s NS(q»’

to express p € S and ¢t € R as functions of ¢ and s:

p=V(g,s) and t=1(qs),
with W(q,0) = ¢q and 1 (q,0) = 0. Using the fact that (exp),|,_, = Id, one checks that

- o -
(,0) = N, and a—f(~,0):g(Ns,Ns),

87\11
0s

where NST is the projection of Ng on the tangent bundle of S. On the other hand, differenti-
ating the identity

with respect to u at u = 0 yields

DHs(u)|,—o @2’(-,0) v) +g <VH5, 2’(-,0)) v=DHs(u)| (v),

which completes half of the result. The fact that the structure of nonlinear terms is preserved
follows from the fact that U and v are local diffeomorphisms with ¥(-,0) = 0.
O

3.4 Construction of the approximate solution

3.4.1 Blowing up the metric

Throughout the chapter it will be easier for us to work with a rescaled metric on M. To this
aim, given € € (0, 1), we define

1
9= 5 9- (3.8)

Notation 3.4.1. The symbol O(e*) will denote a smooth function whose derivatives are
bounded by a constant (depending on the number of derivatives) times €* in a fized neigh-
borhood of a given point p € M, the bounds being uniform in p.
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In normal coordinates (x!, 22, 2%) (associated to the metric g.), we have the expansion

2

g
(9e)ij(x) := b5 + ) 9(Ry(E;, Ex)Ej, Ey) 2 2* (3.9)

3
g
+ g g(VEme(EZ-, Ek)Ej, El) xk :El ™ + 0(54),

where Fy, Ep, E3 is an orthonormal (with respect to g) frame of TM. Now let Ef := ¢ E; be
a frame orthonormal with respect to g.. We introduce the mapping

3
Gep(T) := exp, (Z z’ Ef) , (3.10)
=1

where z € R3, |z| < 1. Then there exists e, € (0,1) such that for all € € (0,¢.), (. is a
diffeomorphism and the mapping (&, p) — (., depends smoothly on € € (0,¢e,) and p € M.

With these definitions, the geodesic sphere S:(p) in (M, g) of radius & centered at p can
be seen as the image by (., of the Euclidean unit sphere S2.

Jacobi operator in the blown up metric

Again, assume that S C M is an orientable surface and let Ng and Ng = € Ng be unit
normal (with respect to the metrics g and g. respectively) vector fields on S. Given a function
u € C%%(S) small enough, we define the surfaces S(u) and S.(u) by

p € S expy(u(p) Ns(p)) € S(u) and p€ S exp, (u(p) Ns(p)) € Se(u).

Let J9 and J gﬁ denote the Jacobi operators about S calculated with respect to the metrics ¢
and g. respectively. Then we have

e HY (S(u)) = H% (S(u)) = HY% (55 (9)) , (3.11)

3

which yields
J gE u=ce2J g Uu.

3.4.2 Pseudo CMC spheres
Jacobi operator about the Euclidean sphere

The Jacobi operator about the Euclidean unit sphere S? reads
Jg2 = Ag2 + 2.

This operator has a nontrivial kernel spanned by the restrictions to S? of the coordinate
functions:

Ker(Jg2) = span{0', 02,03},
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where © € R3, Z?:1 © = 1. Let IT and I+ denote the L? orthogonal projections onto
Ker(Jg2) and the orthogonal complement of Ker(Jg2) respectively. Then the operator

Age +2 1 TIH (C32(5?)) — It (% (S5?))

is invertible. So, for every function f € C%*(S?) we can find unique function u € IT*+(C%%(S5?))
and vector A € R? such that
(AS2 + 2) u = f - <A7®>7

where

A= / f©dvolge
SQ

and where by (-,-) we denote the scalar product in R3.

Construction of pseudo CMC spheres

A key ingredient in our construction is the following result which is already available in the
works of S. Nardulli [90] and F. Pacard and X. Xu [95].

Let Sc(0) be the geodesic sphere in (M, g) of radius € small enough centered at o € M. We
identify the metric g. = E% g with the pull-back metric ((:0)* g = Geuet + O(e%) in R3. Then
the mean curvature of S.(0) satisfies

H9(S.(0)) = H%(S2) = 2+ O(&?).

We would like to perturb S:(0) into a constant mean curvature surface with mean curvature
equal to 2. To this end, we take a function u € C>*(S?) and let S?(u) be the normal (with
respect to the Euclidean metric) graph over S2:

S%(u) :={(1—-u)O, O c S?}.
We consider the function K (e,u) := H9%(S(u)) — 2. Obviously, we have
K(0,0) =0 and D,K(0,0)=Ag2+ 2.

We would like to apply the Implicit Function Theorem to the equation K(e,u) = 0, unfortu-
nately, as we have seen, the operator Jg2 = Ag2 + 2 has a nontrivial kernel Ker(Jg2) which
prevents us from doing so. However, one can certainly invert the operator Jg2 in the space
of functions orthogonal to Ker(Jg2). This implies that it is possible to apply the implicit
function theorem to solve

H%(S?(u)) — 2 € Ker(Jg2),

for all € > 0 close enough to 0.

Proposition 3.4.1. There exists e, > 0 such that for all ¢ € (0,e4) and all 0 € M there
exists a surface X.(0) parametrized by

O €5 = Leo((l+uc0)O) € (0), (3.12)
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with u. , € C>%(S?), [te 0llc2.0(s52) < C €%, and such that the mean curvature of ¥.(o0) satisfies
e HY(X:(0)) = H%(3:(0)) =2+ (Ac0,0), (3.13)

where A; , € R3 and
27 3

15

for a constant C' independent of ¢ € (0,e4) and o € M. Moreover, us, and A., depend
smoothly on € € (0,e4) and o € M.

Ao+ VIR(0)| < C &,

Proof. First, let z!, 22, 23 be geodesic normal coordinates at o associated to the metric g.. We
have the expansion:

2

g
(92)ij = 6i5 + 3 Rigjix

where R;ij; and R;pji,m are the components of the Riemann curvature tensor R and the tensor
VR in an orthonormal (with respect to g) basis of T,M. Then we calculate

3
€
kgl 4 ERikﬂ,mxk ol + (’)(54),

52

HY(S?) =2 — = Ric; 067 - % Ric;;, ©'070F + O(eY), (3.14)

where Ric;; and Ric;;; are the components of the Ricci tensor Ric and the tensor VRic in
an orthonormal (with respect to g) basis of T,M. We postpone the proof of this claim to the
Appendix.

Next, take a function u € C>*(S?) and consider the surface S?(u) which is a normal (with
respect to the Euclidean metric) graph about S?. Remark that this is equivalent to take a
normal geodesic graph about S-(0) since by Gauss lemma (exp,).(0) is a normal vector field
to Se(0). Take A € R3 and consider the function

K(87U7A) = Hgs(SQ(u)) —-2- <A7@>a
defined for € € [0,1). Then K is linear in A and we have
K(0,0,0)=0 and DyK|ggg) = Agz +2.

By the Implicit Function theorem, for  small enough there exists a function u. , € II*+ (C**(5?))
and a vector A, € R3 such that

K (e, teo,Aco) = H7(S(teo)) —2 — (Ac,0) = 0.

A straightforward calculation gives u., = O(g?). Moreover, we have

Aa,o — / (HgE (SQ(U&O)) — 2) @dUOlSQ.
S2
Using Bianchi identity (see Appendix for the proof), we find

3 o 9 &3
I (2 Ric; 1 @Z@J@’“) = % VIR (o). (3.15)
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This, together with the identities

m(0'e)) =1 (e'e/6"e') =0, T (0'0/0F) =0 ijki=123,

I ((Ag2 + 2)“6,0) =0,

yields
o2 ed

15

for a constant C' independent of ¢ and o. Finally, the surface Y. (0) := (. ,(S?(uc,)) satisfies
the claim in the proposition.

‘AE,O + VIR(0)| < C &,

O]

Jacobi operator about pseudo CMC spheres

In what follows, we will often omit the index g., when it is clear that the computations are
done with respect to this metric. Since geodesic spheres S:(0) and pseudo CMC spheres ¥.(0)
constructed in the previous paragraph are parametrized by the Euclidean unit sphere S?, we
identify from now on the function spaces C**(S.(0)) and C*(X.(0)) with C**(S?).

According to the proof of Proposition [3.4.1] using a perturbation argument together with
we express the Jacobi operator (calculated with respect to the metric g.) about S:(0)
in the form:
JSg(o) = ASQ + 2+ g2 Lg,o,

where by L., we will denote any linear operator on S? whose coefficients depend smoothly
on ¢ and o and that satisfies the property

||L6’O UH(jO,a(Sa) < C HuucQ,a(sﬁ). (316)
We show that an analogous result also holds for the Jacobi operator about X, (o).

Notation 3.4.2. We denote by J. , the Jacobi operator (calculated with respect to the metric
g:) about ¥.(0).

Notice that the geodesics in M issued from o can be extended in a unique manner until their
intersection with ¥.(0). The unit (with respect to g.) tangent vectors to these geodesics form
a C>% vector field on ¥.(0) which we denote by T.,. Remark that the mapping (¢,0) — Y,
is smooth in € € (0,e,) and 0 € M. Let JA&O be the linearized mean curvature operator which
arises when Y. (o) is perturbed in the direction Y. ,. Clearly,

jE,O = ASQ + 2+ 82 La7o-

On the other hand, let N¢, be a unit normal (with respect to g:) to 3.(0), then
’gs (Ts,m N&,o) - 1| < C e

for a constant C' > 0 independent of € and 0. Thus, by Proposition [3.3.2] we obtain
J€7o = A52 + 2+ €2L570.
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Lemma 3.4.1. For allo € M, ¢ € (0,e.) and all f € C%¥(S?) there exist unique function
u € I+ (C%%(S?)) and vector A € R? such that

Jeou=f—(A,0).
Moreover,

[ullez.a(s2) < C | fllcoa(s2),

’A— © f dvolgz| < C&*||fllco.a(s2),

SQ

where the constant C' > 0 is independent of € € (0,e4) and o € M, and the mapping f +— (u, A)
depends smoothly on € and o.

Proof. According to the results stated in the subsection there exist uqp, € I+ (C>(5?))
and Ay € R? such that
(Ag2 + 2) ugpp = f — (Aapp, O).

Consider the mapping
RN : feCP(S?) = JeoUapp(f) + (Aapp(f), 0) — f € CO(S?).

Then ||R|| < ce? for a constant ¢ independent of e. Thus, for £ small enough, there exists an
inverse operator (Id 4+ 91) " and we put

u(f) = tapp ((Id o) f) and  A(f) == Agpp ((Id o) f) ,

which satisfy

O]

3.4.3 Green’s function for the Jacobi operator about a pseudo CMC sphere

Given 0o € M and ¢ € (0,e4), let £.(0) be the pseudo CMC sphere defined in the subsection
and take p € ¥.(0). We would like to define and study the Green’s function I'z,,
associated to the operator J., with a pole at p. In principle, we should be looking for the
solution of the problem

Jeolcop = =206y, (3.17)

where §, is the Dirac mass on 3.(o0) supported at p. Unfortunately, the presence of small
eigenvalues (and potentially the presence of a nontrivial kernel) for the operator J. , prevents
us from finding directly I'. ,, and getting reasonable estimates which would be uniform in e
as this parameter tends to 0. Therefore, in view of the properties of the operator J. , that are
described in the previous paragraph, instead of , we can consider the problem

JeoTeop=—270,+ (B,0), forsome B eR>.

Let gc, and d., be the metric and the intrinsic geodesic distance induced on ¥, (o) by the
metric g.. We have the following result:
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Proposition 3.4.2. There exist a function -, defined on $.(0)\{p} and a vector B ,, € R?

which satisfy
Jeoleop=—2m0p + (Beop, O). (3.18)

Moreowver,
1
Beop = 5 O(p) + O(e?),
and for £ =0,1,2 there exists a constant Cy > 0 such that

(ds,o(pa ))Z vf (Fs,o,p + log ds,o(p7 ) - 'Yz-:,o,p) <Cy (ds,o(p7 ))2 |10g de,o(pa )’ s

€,0

(the estimate being uniform in €, o and p) where Ve o i a function which is affine in normal
geodesic coordinates in ¥.(0) defined in the neighborhood of p and the mapping (€,0,p) —
(Tz0ps Ye,0,ps Be,op) s smooth in €, o and p.
Proof. First of all, notice that according to Corollary the Jacobi operator about ¥, (o)
satisfies

Ja,o = AEg(o) + trgg,o (hs,o ® hs,o) + Ricg(Ns,m Na,o)a

where h, , is the second fundamental form on X, (o) and N, is a unit normal to 3. , calculated
with respect to the metric g.. So, the potential in this expression is a C*® function on ¥. (o),
bounded by a constant independent of e.

Secondly, we work in geodesic normal coordinates on Y.(0) centered at the point p. In
these coordinates, we have

2 2 2
AEe(o) = Zagl + Z O(|$’2) aac’ a:cj + ZOUxDax’a
=1

ij=1 i=1
where the functions O(|x|¥) are defined as in Notation Remark that
Jz—:,o (_ IOg ds,o(pv )) =27 51) + F,
where F' = Fy + Fy logd. o(p, ) with F1 € C>%(X.(0)) and |VFFy| < (deo(p,-)) ™", k =0,1,2.

Let fic0,p € C3%(3:(0)) be a cut-off function that is identically equal to 1 in the exterior

of the geodesic disk in ¥.(0) of radius % centered at p and to 0 in the geodesic disk of radius

% centered at p. Now put

f(@) = (1= peop(x)) F(2). (3.19)
For rp > 0 we use the notations DZ(rg) = {z € R* : 0 < |z| <o} and S'(ro) = 0DZ(r).
Finally, let r ¢’ be complex polar coordinates in D2(rq). We prove the following lemma:

Lemma 3.4.2. Let f be the function defined in (3.19). Then there exist unique function ©
such that V0| < cr®=* and constants ¢y, ¢;, i = 0,1,2 such that

v="04cy+cr? logr—i—clrei‘b + cor? logr62i¢
satisfies

{ Aeyav=f in Dz(%)v (320)

V= on Sl(%).



Proof of Lemma 3.1. We decompose the functions v and f in Fourier series:
v = Zvj(r) e f= Z fi(r) e
JEZL JEZL

For all 0 < p < % let v; , be the solution of the ordinary differential equation

2 10 42 1
(5 2= 1) 5l =500 gl = s (5) =0

For |j| > 2 we find v; , using ]{—:1 |fj| as a supersolution. Putting

L 1
= , 9] d A,=2zeR?: p<|z|< =
vp |%:311]7p(r)e an o {x p < |x| 5 ("

jI>

we find

1720yl < C || 30 £y €| (3:21)

31=3 L>=(D(3))

for a constant C' independent of p. By elliptic regularity theory, (3.21]) implies the existence
of a uniform bound on the gradient of v, and thus, by the Arzela-Ascoli theorem, there exists
a subsequence of functions converging uniformly on compact sets to a solution ¢ of (3.20)).

Solutions in Fourier modes |j| < 2 can be constructed explicitly. We obtained

7"1 z
// t fo(t) dt + do;
0 % Jo

vy (r) == —r1 /07’ L h(t) dt +r /07" f12(t) dt +dyr;

vo(r) :

2
1783 fa(t) " fa(t)
va(r) == 2/ 1 dt+r2/1 m dt + dy 2.

A direct calculation then shows that for a suitable choice of the constants d;, i = 0,1, 2
the function v := ¥ 4+ vy + v1 + v has the right properties.
O

~Now we put w := (1 — peop)v and F := J.ou— F. Then F € C"*(¥.(0)) and
||| Lo (s.(0)) < C for a constant C' independent of ¢, 0 and p. By Lemma there exist
a function @ € C?>%(X.(0)) and a vector B.,, € R?, such that

Je,tﬂ1 = F - (BE,OJN 6>7
where

Beop = . Q' F dvolg> + O(£?).
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Finally, we put
Feuovp = log d&,O(p, ) —Uu -+ ﬂ/

Next, applying (in the sense of distributions) both sides of the expression (3.18]) to ©, we
obtain

/EE(O) (JeoTcop)© dvolgzi(o) = 27 O(p) + /EE(O) O (Bzop, O) dvol%i(o).
Integrating the first term by parts and using the fact that J;, is a self-adjoint operator, we
obtain

/25(0) (Je,o Fe,o,p) @l dUOl%EE(o) - /EE(O) (JE,O @’l) 1—\67071) d'l}Ol%EE(O)

:/(ﬁ@m@ﬁ;wu+o@»mmy:ogﬁ
S2

On the other hand,

Awﬁ@mm@@:a+a&)y@@wmyzm%+ow)

This yields Bz o, = 1 O(p) + O(£?).

3.4.4 Pseudo CMC spheres as summands in a gluing construction

In the Euclidean space to perform a connected sum of two surfaces ¥ amounts to make %+
tangent at a common point, then to translate the surfaces slightly away from each other in
the direction orthogonal to their common tangent plane, remove small disks around the points
where the surfaces are tangent and “replace” these disks by a small neck. In particular, it was
shown in [77]), that if ¥ have CMC, one can perturb a connected sum of % into a surface
with the same value of the mean curvature.

Unfortunately, we cannot apply this construction directly in a generic Riemannian manifold
M because of the absence of isometries (namely, the absence of translations and rotations).
Instead, we given family of surfaces parametrized by their location in M, we should define
a procedure that allows to associate to a number d > 0 small enough, a pair of surfaces the
distance between which is equal to d.

Take d € (0,1/2¢). It is easy to choose a pair of geodesic spheres of radius ¢ the distance
between which is equal to d. For this it is sufficient to fix a point o € M, a vector v € T, M
with [|v]l; = 1 and to place the centers of the spheres at exp, (£ (¢ + %) v).

In the next result we show that an analogous procedure also works for a family of pseudo
CMC spheres since the last ones are small perturbations of geodesic spheres. More precisely,
consider the family

Esi,t = X. (exp, (£ tv)).

We prove
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Lemma 3.4.3. For all d € (0,1/2¢) there exists a unique t € (g,2¢) such that the distance
(calculated with respect to the metric g) between the surfaces T = Eit s equal to d and is
realized by a unique geodesic vy, a priori different from t — exp,(tv).

Y¥o 4 Xf
/d
0]
exp, (tv)

Moreover, the mapping (g,0,v,d) + 7 is Ct ine € (0,e4),0€ M, v € T,M andd € (0,1/2¢).

Proof. For the sake of convenience we work with the rescaled metric g.. Take an orthonormal

(with respect to g.) basis Ef, E5, E§ of T,M, such that E§ = cv and let xb 22, 2% be the

corresponding normal geodesic coordinates. We denote by Z the 2-vector (z!, 22).

Notation 3.4.3. In what follows we denote by T + F. 5, +(Z) any C>® function which depends
in a C* manner on €,0,v,t and whose derivatives are bounded independently of €, 0, v,t.

Take a pair of points p™ € £ .t and p~ € ¥, of coordinates x4 and z_ in the neighbor-
hoods the intersection of Es,t with the geodesic ¢t — exp,(tv). Using the information about
the structure of the surfaces Eit given in Proposition the formula for the change of
coordinates given in the subsection and the fact that the Christoffel symbols associated
to the metric g. = geye + O(e?) satisfy (Fg)fj = O(e?), we can write

t
xi =+ (5 — /1— \xP) +&2 Fr00t(T+).

Let v(p*,p") be the minimizing geodesic connecting p™ and p~. The unit outward normals
to ngt at p* can be written in the form

2
7)== k0 + /1 - |22 05 + & Fr o ().
i=1
On the other hand, the unit tangent vectors to y(p*,p~) at p* can be written in the form

_py o)

Ok +5 FEO’Ut(‘r-i-a )
|95+—l‘ |

k=1
Then the system of equations N+ = T can be written in the form
Go,vﬂ:(é} Ty, Ii‘_) = G(f.t,_, fi_) + 52 Fg7o7fu7t(j+, Lf_) =0,
where G : R* — R* is defined by

Gi(‘f-‘r)f—) = 561-‘[- %ii:i:‘)a i=1,2,
GPi(E,) = of + e, =12



We have G, 4+(0,0,0) =0 and D(m,@)Go’U’t‘(o 0,0) is invertible. So, by the Implicit Function
Theorem, there exists £, € (0,1) and for all £ € (0,¢,) there exist C! functions (e, 0,v,t)
x4 (e,0,v,t) such that

Gowt(z4(g,0,0,t),2_(g,0,v,t),e) = 0.

Moreover, the solution satisfies
_ 2 _
;U:t(ga 0,0, t) =€ F€,O,U,t($+7 x*)a

which yields the uniqueness of Z(g,0,v,t). We denote the points of coordinates (74, x3) by
p(jf and put
d(t) := dist,(pg,py ) = 2(t — ) + O(e?).

Since d'(t) > 0, we can express t as a C! function of d.
O

Remark 3.4.1. We will see in the final argument developed in the section that we also
need to perform a connected sum of two intersecting pseudo CMC spheres. In this case we
cannot talk about the distance between the surfaces, but we prove (the proof is exactly the same
as the proof of Lemma that for all d € (0,1/2¢) there exists t € (0,e) such that the
interior of E;t N X, is crossed by a unique minimizing geodesic y of length d that intersects
Z;ft orthogonally. Moreover, the mapping (¢, 0,v,d) — v is C'.

In what follows we will construct two connected sums (and two approximate solutions),
one embedded and one immersed with self-intersections, and we will see that depending on the
sign of the eigenvalue X # 0 of the Hessian of the scalar curvature, we will show that one of
these connected sums can be deformed into a constant mean curvature surface.

3.4.5 “Catenoidal neck”

Now that we can construct a pair of pseudo CMC spheres at a fixed “distance” we would like
to insert a small neck between them. In R3 the role of the neck is usually played by a catenoid
scaled by a small factor n > 0 referred to as the “neck size”:

Cy i (8,0) € [=8y,89] x ST+ (ncosh s cos @, n cosh s sinp,ns), (3.22)

for some s, > 1 carefully chosen in the gluing argument [77]. In a Riemannian manifold
(M, g), in order to use the geometric properties of the catenoid, we shall embed of C, in M
taking coordinates that are close to cylindrical coordinates in R3.
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Using the results of the subsection let us fix € € (0,e4), 0 € M, v € T,M with
|vllg = 1, and d € (0,1/2¢) and consider a pair of pseudo CMC spheres (o, v,d) (either
disjoint or intersecting) the “distance” between which is equal to d. Let v be the minimizing
geodesic with 7(0) = p; € X7 and v(1) = p§ € XF, where dist,(p{,py) = d.

Next, take qp := v (%) and consider the geodesic disk A centered at gy and orthogonal to ~.
Remark, that we can choose an orthonormal (with respect to the metric g.) basis E, E5, E5
of T, M that depends in a C! manner on ¢,0,v,d and such that E3 = ~v'(1/2)/[]7/(1/2)|l,.-
For this it is sufficient to fix an orthonormal frame tangent of S? (which will provide an
orthonormal frame tangent of X that is C! in €, 0,v,d) and to take the parallel transport of
this frame along v from p; to go. The geodesic disc A is then parametrized by

z € D? expy, (ml ES 42 E3) € A.

Consider the mapping (z!, 22, 2) — FX (x', 22, 2) from a neighborhood of 0 in R? to a
neighborhood of gp in M which defines Fermi coordinates associated to the surface A (see
where the normal to A is unit with respect to the metric g.). We refer to the surface

€0 = Fi g0 (C)
as the initial position of the “catenoidal neck” with “axis” ~.

Remark 3.4.2 (Varying the position of the “axis”).

For the reasons that will be explained in the section we need to introduce extra freedom
and to this end consider a 2-parameter family of “catenoidal necks” with their “axis” parallel
to . More precisely, take a point ¢ € A of coordinates (z*,2?) = (a',a?). Then, let (y*,y?)
be normal geodesic coordinates centered at q (as before, we work with the metric g. and choose
an orthonormal frame tangent to A which is C* in €,0,v,d), and (y',y?,2) fo?q(ylij,z)

the corresponding Fermi coordinates.

Then, we have a two parameter family of “catenoidal necks” given by

Cpa = FR 4 (Cp).

3.4.6 Gluing the summands together

In this subsection, we explain how we can “glue together” a pair of pseudo CMC surfaces ©F
with a “catenoidal neck” &, ,, where the construction these surfaces depends in C! manner on
e € (0,e4),0 € M,v € T,M,a € R? and d € R. Using the ideas introduced in [77], in order to
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get a better matching with the asymptotics of the catenoid, we first deform ¥ using Green’s
functions associated to their Jacobi operators, and then perform the connected sum.

We notice also, that a certain relation between the parameters should be satisfied. More
precisely, we leave €,0,v,7, a as free parameters and express d as a function of ¢, 0,v,7, a.
Assumptions on the parameters

For the reasons explained in the section we need a certain restriction on the choice of
the parameters o € M, v € T,M, with [jv|;, = 1, n € (0,1) and |a| € R?. Let o, € M be a
critical point of the scalar curvature function R of the ambient manifold M and vy the unit
eigenvector associated to a simple eigenvalue \ # 0 of the Hessian of R at oc.

Assumption 3.4.1. We assume that there exists a (possibly large) constant Cy independent
of €,0,v,n,a such that

distg (0, 0¢r) < Cy €2, ZL(v,v)) < Che, n<Cie? and |a| < C’>‘<773/47

where by £ (v,vy) we mean the angle between vy and the result of the parallel transport of v
along the minimizing geodesic from o to o¢p.

¥+ as normal graphs over A

With the notations introduced in the previous subsections the pseudo CMC spheres Eai can
be seen in the neighborhood of pojE as normal geodesic graphs over the geodesic disk A. Let
N§ be a unit normal (with respect to the metric g.) on A. In what follows let us assume that
the “distance” d between E? is computed using the metric g.. Then:

Lemma 3.4.4. In the neighborhood ofpaE € ©F the surfaces ©F can be parametrized by
ff ¢ €A exp, (ui(q’) Nf\) , (3.23)

where u™ € C>*(A) are conver functions such that

d
ut(qo) = :|:§ and  Vu®(go) = 0.

Take a point ¢ € A, such that disty, (q,q0) = |a|. Then in normal geodesic coordinates on A
centered at q we have the expansions:

ut(y) = u(q) + Vur(q) -y + Olyl?), (3.24)
where u*(q) = :I:% + O(|al?) and |Vu*(q)| = O(|al).

Proof. The proof follows from the construction of surfaces Zéﬁ and A.
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Transverse vector fields on ©F

Remark that in the neighborhood of ¢y € A, normal geodesic graphs over A can be seen as
transverse geodesic graphs over ¥F. Indeed, the geodesics issued from A with velocity vectors
orthogonal to A can be extended until their intersection with £F. The unit (with respect to
ge) tangent vectors to theses geodesics then form C>® vector fields on ¥ which we denote by
K+. (By construction K+ are C! in ¢, o, v, and d).

Let N1 be unit normals (with respect to g.) on ¥, which we take outward when the

surfaces ¥F are disjoint, and inward when ¥F intersect. We use the notation pqi = }"/j\c(q) for
q € A. Then for all p* € L>°(XF) small enough defined in the neighborhood of pf in ©F, the
transverse geodesic graph over ©F parametrized by

p € TF > exp, (¥F(p) K+(p))

coincides with the normal geodesic graph over A parametrized by
qd €N exp,y ( (ui —yto ff) (q") NA(q’)),
where N, is a unit normal to A with respect to ge.

Lemma 3.4.5. In a neighborhood of p;t € ©F of radius cla| for some ¢ > 0 independent of
€,0,v,1n,a, we have

|9e (K=, Ni)| = 1+ O (|al?)
Proof. First of all, when ¢ = ¢g, then pg = p(jf and the result follows from the fact that
Ki(py) = Nx(py) and
Onige (K4, N1) (0y) = 9:(Vo,, K, K1) (po) + 9-(Vo,, N, N1)(po) = 0.

When g # qo, the result follows from the fact that the distance in ¥ between p(jf and p;t is
bounded by a constant (independent of ¢, 0,v,7,a) times |a|.
O

Notation 3.4.4. We denote by Egi(p) the region in Esi obtained as the image by fi of
geodesic disc in A of radius p centered at q. We denote by E?(pl,pg) the image by Fy of

the geodesic annulus of inner radius p1 and outer radius ps centered at q. Finally, we use the
notation (X2 (p))" = 3 \ B (p)-

Let pu* € C?%(XF) be cut-off functions such that y* = 0 in ¥F(1/4) and = = 1 in
($3(1/2))°. We introduce the vector fields

Ni:=pF" Ne+ (1 —pF) Ky (3.25)
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Graphs of Green’s functions

Notation 3.4.5. We denote by J+ the Jacobi operators about Zei calculated with respect to
the metric ge. We also denote by Jy the linearized mean curvature operators which arise when
Egﬁ are perturbed in the direction of the vector fields Ny defined in (3.25|).

Let dz} be the geodesic distances induced by the metric g on the surfaces Zf. We use the
notation d4 := dzgc (pflt, )
We study the Green’s functions associated to the operators J* with poles at p;t. More

precisely, we have the following result:

Proposition 3.4.3. There exist functions T* defined on ¥\ {pflt}, vectors B¥ € R® and
constants s > 0 such that 3
JeTH = =54, + (B, 0). (3.26)

Moreover,
1
BF = 5© (pF) + O(?),
and there exist constants ¢c* € R and Cy >0, £ =0,1,2 such that

|(42) 9" (1% 4 log (d) — )| < C (ds) Jlog (d)]

where the mapping (¢,0,v,n,a) — (I'T, B¥ ¢*) is CL.

Proof. By Proposition the operators J4 and J4 are conjugate, more precisely
Jr = Js (95(NiaNﬂ:) ) +VE

where V* € C**(2F) is a potential bounded by a constant independent of €, 0,v,7,a. The
result follows then from Proposition and the estimates on the scalar product g.(K+, N1)

obtained in Lemma B.4.5]
O

Let the mappings f/j\[ : A — ©F be defined as in ([3.23)) and consider the functions

rf.=1*o Ff. (3.27)

In the following result we compare the behavior of I‘f in a neighborhood of ¢ in A\ {¢} and
the asymptotic behavior of the “catenoidal neck” &, ,.

Lemma 3.4.6. In the geodesic normal coordinates on A centered at q the functions I’/j\E have
the expansions

I (y) = ¢ +log |y + O (|y| log|y]) - (3.28)

On the other hand, the “catenoidal neck” &, , can be seen as a normal geodesic bi-graph over
A of the function

2 _
Gy =1 10g;+77 log |y| + O (n* |y|7?), (3.29)

where the mapping (€,0,v,d,n,a) — (Ff, G,) is Ch.
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Proof. Using Lemma and the fact that the second fundamental form of A is bounded by

a constant times €2, in Fermi coordinates in M given by the mapping F A4 We have

(92)i = 8ij + O(?).

Let dzg[ and dp be intrinsic geodesic distances on ¥ and A associated to g.. The result then
follows from Proposition [3.4.3 and the fact that in a neighborhood of ¢ € A small enough

ar(4,q) = dyz (o p5) + O (2 dys (pF . p3))
The expansion of the function G, follows from the change of coordinates

(y',4?) = ncosh s(cos ¢, sin ¢).

Matching

Using the results of the previous paragraph, we see that in order to “glue” together the graphs
of the Green’s functions I't over ¥F with a “catenoidal neck” €, , we need the expansions of
the functions u® — nff and £ G, to be close in some neighborhood of ¢ € A.

1) Adjusting the “distance”: Let us first assume that ¥ are disjoint. In order to match the
constant terms in the expansions obtained in Lemma we first “translate” the “catenoid”
in the direction orthogonal to A by the constant

0
n log o +ut(q) = neg.

More precisely, this means that we parametrize the upper and the lower parts of the neck as
graphs of the functions

Gy (y) = u"(q) = ncg +nloglyl + O (n’ly|~*) . (3.30)
Gy (y) =20 log J +u* (@) = neg —n loglyl + O (n'lyl ). (3.31)
Next, in order to match the constant terms in the expansions of I'y and G, we need to have
2nlogg+u+(Q)—n63=u_(Q)—7706- (3.32)
We can rewrite this equation in the form D(d, 0,v,n,a) = 0, where
D(d,0,v,n,a) =d+2n logg +n(cy —csr) +0 (773/2) .

Take 0og € M, vg € T,M, with |lvg|ly = 1, o > 0 and ag € R? satisfying the assumption
Then we can find dy € (0,1), such that

D(d07 00, V0o, 70, a/()) =0.
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By the Implicit Function theorem, there exists a neighborhood of og, vg, 70, ag, where (0, v,7n,a) —
d(o,v,n,a) is a C* function and D(d(o,v,n,a),0,v,n,a) = 0. Remark, that we have

|d —2n log(2/n)| < Cn,

for a constant C independent of ¢, 7, a,0,v when ¢ is small enough.

2) Choosing the gluing region: The difference between u* —n I‘f and th is now a function
of the form

O (nly| log y| + |ally| +n* [y~ + [y[?) -

We perform the “gluing” in the region where this difference is minimized, namely, when
3
lyl =n1 =171y (3.33)

Parametrization of the resulting surface

In this paragraph we summarize the results given above and describe the parametrization of
the resulting connected sum, which we denote by A, and refer to as approximate solution. We
divide A into 5 regions:

— Ot + - -
Ae = Q5,007 UQeq UQ,, UQ,.

glu
Qcat QJF
N glu
Q—I—

sp

1) The “spherical regions” Q;,tp are parametrized as transverse transverse graphs over the
pseudo CMC spheres XF of functions the n '+ given by Proposition when the surfaces
are perturbed in the direction of the vector fields Ny defined in ({3.25)).

2) The “catenoidal region” Qeq is parametrized as a Euclidean catenoid scaled by the factor
7, truncated and embedded in M via Fermi coordinates, as it is explained in the subsection
9.4.0
(s,¢) € [=sp, sy X St F , (ncoshs cos¢,ncoshs sing, ns +1nec),

where 7 cosh s, = %Tn and the constant c¢ is defined in the paragraph “Matching” and depends
on €,0,v,1,a but is bounded independently of €, 0,v,7, a.

3) Finally, in the “gluing regions” Q;tlu we interpolate smoothly between Qsip and Qcqt.

Notation 3.4.6. We introduce a cut-off function x € C>*(A) which is radial in geodesic
normal coordinates in A centered at q and is identically equal to 1 when r >, and to 0 when
r <ry/2. (By construction, x depends continuously on €,0,v,1,a).
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We parametrize the regions Qgilu as normal graphs over the geodesic annulus in A of inner
radius r,/2 and outer radius 7, of the functions

Gt = x(ut — 771“?\:) +(1—x) Gﬁ, when ¥F are disjoint, (3.34)

GF = x(ut =T+ (1 —x) G?, when ©F intersect. (3.35)

Remark 3.4.3. The surface A. is either embedded or immersed with self-intersections and
depends on € € (0,e,) and on 8 geometric parameters: the point o € M, the unit vector
v € T,M, the “neck size” n > 0 and the “location” of the neck a € R? that satisfy the

assumptions|3.4.1. We write A, = A:(o,v,1m,a).

3.5 Perturbation of the approximate solution

We would like to show that the surface A. can be perturbed at least for € small enough into
some CMC surface. To this end, we describe in this section the surfaces in M obtained as
small deformations of A.. Let = be a vector field in M defined in the neighborhood of A, and
transverse to A¢, and let £ be the associated flow:

s _

dt E(f('vt))a and g(pa 0) =D

Take a function w € C>*(A.) and consider the surface A.(w) parametrized by:

pe A= E(p,w(p) € Ac(w).

The expansion of the mean curvature of A.(w) in the powers of w and derivatives of w up to
the second order has the form:

H% (Ac(w)) = H (A:) + Low + Qe (w), (3.36)

where H(A.) is the mean curvature of the approximate solution A., L. is a linearized mean
curvature operator about A., and Q. is a nonlinear function in w and the components of the
gradient and the Hessian of w. In the results described below we explain an appropriate choice
of the vector field = and study the properties of the function H(.A;) and the operators £, and
Q. in appropriate function spaces.

3.5.1 Choice of the transverse vector field

In this subsection we describe explicitly the parametrization of the perturbed surfaces A.(w)
which will explain implicitly the choice of the transverse vector field =.

1) First, we describe the region of A.(w) parametrized by the “spherical regions” Q;Fp of

A.. Let N4 be the vector fields defined on ©F by (8.25)). By construction, in (X% (1/2))° these

vectors coincide with unit normals to Esi, while in ¥2(1/4), the parallel transport of Ny to

A coincides with a unit normal to A. We parametrize A.(w) by
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pE (5Z(ry))" > exp, ( (nT* +w) (p) Nﬂ:(?)) € A-(w).

2) In the “catenoidal region” we parametrize A.(w) as an image in M of a normal (with
respect to the Euclidean metric) graph over the Euclidean catenoid:

(5,0) € [~y 8] x S* > F§, (cn + wNmt) e A (w),

where
1

- c
cosh s

Ncat(57¢) = < 03(257—&

is a unit normal (with respect to the Euclidean metric) to the catenoid C), and the mapping
fx, q defines, as in (3.4)), Fermi coordinates centered at ¢ € A.

sin ¢, tanh s)

3) Finally, we have the region parametrized by the “gluing regions” Q;tlu where we inter-
polate smoothly between N, and a unit normal to A. We parametrize A.(w) by

y R my/2 < Jyl <7y o> Fio( (1,65 W) +w(y) TE@),
where the functions G* are defined in (3.34) and the vector fields Y* are defined in R? by
1% = (1 - x)Neaw £ x(0,0,1). (3.37)

3.5.2 Function spaces

Notation 3.5.1. Let x € C**(A) be the cut-off function defined as in Notation |3.4.6. We

define the function x* € C>*(A.), such that x* =1 in QL xT =xin Q;rlu, and xT =0 in

A\ (Qj}a U Qs_p) In the same manner, we define the function x~ € C>*(A.).

Notation 3.5.2 (Weight function). We introduce a weight function v € C*°(.A;) that interpo-
lates smoothly between the distance to points p;t in ©F and the function s v+ 1 cosh s defined
in the “catenoidal neck” region. More precisely, we put

9 :=xTdy +x d_+(1—x"—x")ncoshs
where d+ is the distance to pflt mn Zgi associated to the metric g..

Definition 3.5.1 (Weighted Holder spaces). Take v € R. We say that a function w belongs
to the space C’;’a(Ag), k=0,1,2 if the following norm is finite

Kk
[wll ok = S}iplﬁ”’wl +) " sup|[9r V|, (3.38)
£ €:1 £
ng-i—oz—u k 719k+o¢—y / k /
+ sup (p)V w(f) = (') Vi) |
p,p'€A: dAg (p,P')
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For a region  C A., we denote the restriction of Ci** to € by CE*(€2).

Remark 3.5.1. Let us adopt the notations m Then the norm (3.38) is equivalent to

[wllgka = sup  [|(ncoshs)™ w]]

k, 1 2 2
5€[= 8,5 —1] C a([s,s+1]><S , ds2+dg )

+ ”w||ck,a((22'(1/2))p) + Hw||ck7a((2‘;(1/2))c)

+ sup [[di"wl|

)+ swp [ld-"w]
pElrn,1/4

k, — —2 9
pE[Tn,l/ll] ¢ a(za (p,2p), d_ g—)

ke (2 (p,20), d7 %94

where g+ are the metrics induced on Zgﬁ from g.. Notice, that in the last two terms we use
singular metrics df g+ to calculate the gradient and the Hessian of the function.
3.5.3 Mean curvature of the approximate solutions

In this subsection we analyze the mean curvature of the approximate solution A..

First of all, using the fact that the catenoid is minimal with respect to the Euclidean metric
and that g = geyer + (’)(52), we show that in the “catenoidal region” the mean curvature of
A tends to 0 in L*™ norm as € tends to 0. More precisely, we have the following result:

Proposition 3.5.1. For all ¢ € (0,e4) and all o,v,n,a satisfying the assumptions the
mean curvature of the surface Az(o,v,n,q) in the catenoidal region Qcq satisfies for k =0,1,2

VFH9(A:)(s, )| < Cye?,

for a constant Cj, > 0 independent of €,0,v,n,a and where the derivatives V* are calculated
with respect to the metric ds®> + d¢>.

Proof. In Q.4 the surface A. is parametrized as the image of the Euclidean catenoid
Cy: (s,¢) € R x S* — (1 cosh s cos ¢,n cosh s sing,ns+1nec),

where 7 cosh s, = % ry by the mapping F , which defines Fermi coordinates at ¢ associated to
the geodesic disk A. Our task is to find the mean curvature of C;, with respect to the ambient

pull-back metric (F qu) Jeucl- We have

[(Fi,q)* geucl]ij (yv Z) = 5ij + @ (82 (|y’2 + ’2‘)) )

which follows from Lemma[3.3.Tand the fact that the second fundamental form of the geodesic
disk A calculated with respect to the metric g. satisfies

Then the induced metric on the catenoid can be written in the form

gc% = n? cosh? s(ds® + d¢?) + O(e% > cosh? s).
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Let Nt be a unit normal to €, with respect to geycs, then the unit normal with respect to
the pullback metric satisfies

NE,; = Near + O(%n cosh s).
Next, since the Christoffel symbols corresponding to the Levi-Civita connection associated to
the metric (F f\ q>* Geuel Satisfy Ffj = O(e?), we calculate the second fundamental form:
he = p(—ds® + dp?) + O(e*n? cosh? s).
Finally, we deduce the estimates for the mean curvature:
H(A2) = tr ((g2) ™ (hE)) = O(e2).
O

Next, we estimate the mean curvature of A. in the “spherical regions”, applying the
formula for the mean curvature of transverse geodesic graphs given by Proposition [3.3.2
Parametrizing £ by the Euclidean unit sphere S2, we obtain an expression for H9% (A.) — 2
where we distinguish two types of terms: terms controlled by n? (di)_4 and terms which
belong to Ker (Ag2 + 2).

As before, let R be the scalar curvature function of M and assume that ot € M are the
“centers” of the pseudo CMC spheres ¥ = ¥.(0%). Then, we have:

Proposition 3.5.2. For all ¢ € (0,e4) and all 0,v,n,q satisfying the assumption the
mean curvature of Ac(o,v,1,q) in Q;tp can be written in the form

H%(A;) — 2 =Ho + (C*,0)
where

27 3
15

n

c* = — VgR(Oi) + 5 @(pf]t) + 0(55) € Rs’ (3.39)

and

IVE Ho| < Crn® (de) ™47,

for a constant Cj, > 0 independent of €,0,v,m,a and where the derivatives V* are calculated
with respect to the metric g+ induced on X from g..

Proof. For simplicity we will omit the index g. in the expression for the mean curvature,
keeping in mind that all the calculations are done with respect to this rescaled metric. By
construction, in pr the surface A, can be seen as a transverse graph over the pseudo CMC
spheres ¥F of the functions nI'*. Hence, by Proposition m

H(A) = HES) + 9 Je T+ Qs (nTF),

169



where Jy are linearized mean curvature operators and Q.+ are non-linear, smooth, quadrati-
cally vanishing functions. By Proposition [3.4.3

~ 1
nJiT* =n(B* 0), where BT = 3 @(péc) + O(e%).

On the other hand, by Proposition we have

2 &3
15
On the other hand, using the structure of the nonlinear terms given by Corollary we
find that the leading terms in Q+ (nT'*) are controlled by 73 ‘VgFi ]VFiﬂ <Cn? (dflt)_4.
The estimates for the derivatives of the mean curvature follow from the estimates for the

derivatives of IT'F and the fact that (u, Vu, V2u) — Q4 (u) is a smooth function.

H(XF) =2+ (A, ,+,0), where A, ,«=— (VIR(0%)) + O(P).

O

Finally, we find that the mean curvature of A, in the “gluing regions” is bounded in L*°
norm. However, we distinguish two types of terms: terms bounded independently of €, 0, v, n, a
and terms for which the estimates depend on the constant C, appearing in the assumption
We have the following result:

Proposition 3.5.3. For all € € (0,e4) and all 0,v,n,a satisfying the assumptions the

. + . .
mean curvature of Ac(e,0,v,1n,a) in leu can be written in the form

H9%(A.) = Ho + Ha,

u

where supp(Hi) C Q;lu uQ,, and

IVFHo| < Cry)”, IVFHy| < CrCury) ¥,
or a constant C), > 0 independent of €,0,v,1n,a.
f p ;0,0,1),

Proof. In the gluing regions, the surface A; is parametrized as normal graphs over the geodesic
disc A of the functions GF, defined in (3.34]).

Let us denote by Hj(u) the mean curvature of the normal graph over A of the function w,
calculated with respect to the metric g.. On the other hand, we denote by H(v) the mean
curvature of the transverse graphs over Ef of the function v, when the surfaces are perturbed
in the direction of the vector fields Ny. By Corollary m

HA(G®) = H(A) + JaG* + Qa(GY),
where Jy is the Jacobi operator about A, which by Corollary satisfies
Jr = Ap + Vy,

where Ay is the Laplace-Beltrami operator on A, calculated with respect to the metric induced
from g, Vi is a potential bounded by a constant times €2, and QA is a smooth nonlinear
quadratically vanishing function. On the other hand, by results of the subsection [3.4.6

Hp (v = nT%) = He (nTF),
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thus, we can write

H(A.) = xT He (nTF) + (1= x7) HA(Gy)
+2(Vax) Va (ui —nlp — Gf][)
+ (Arx) (ujE — nff — G,j)[)

+Qa(GF) = x Qa(u™ = nTy) = (1-x) Qa(Gy),
where V, is the gradient associated to the metric g.. By Lemma in Q;klu, we can have:
ut — T — fo = VuT -y +0F, where |VFoE| <Oy ly*7F,
for a constant C; > 0 independent of ¢,0,v,n,a. This yields the desired expression for the
mean curvature in Qil , Where we put
glu
Hi = Aoyal (XV (u+ — u*) . y) , (3.40)

and combining all the other terms in Hy we verify that

IVFHo| < Cory®, VR HL < ChCury®

for a constant Cj independent of €, 0, v, 7, a for € small enough.
O

Remark 3.5.2. By product of this proof is the presence of the term H; (3.40) in the expression
of the mean curvature of the approximate solution A., which plays an important role in the
fized point argument developed in the section [3.7

Corollary 3.5.1. For alle € (0,e4) and all 0,v,n, a satisfying the assumption|3.4.1], the mean
curvature of the approximate solution A: can be written in the form

H(A) —2=H+x{CT,0)+x (C7,0),

where
3/2—1
HHHCBfQ(AS) <Cn Y

for constants C > 0 and ¢ € N independent of €,0,v,1, a.

3.5.4 Mean curvature of the perturbed surfaces

Let A.(w) be the surface obtained as a perturbation of the approximate solution A. for
w € C**(A.) as it is described in the beginning of the section. Recall that we can express the
mean curvature of A.(w) in the form

H (Ac(w)) = H% (A) + Low + Oc(w).

In this subsection we analyze the properties of the operators £, and Q. in appropriate func-
tion spaces. We start by studying these properties in the “spherical” and “gluing” regions,
parametrized as transverse graphs over subdomains in the pseudo CMC spheres Y.
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Proposition 3.5.4. For all § € (0,1) and € small enough, the linearized mean curvature
operator L. restricted to Qg@ U Q;tlu can be expressed in the form

Lo=Je+n* 707" Ly,

where Jy are the linearized mean curvature operators about Y+ defined in (3.4.5), are Ly are
linear partial differential operators that satisfy (with the notations :

1L+ wl| < Cllw]

coa((2£(1/2))°, gx) c2e((52(1/2),)°, 9z)

Lt w]

) <Cllul ¥p € (. 1/4)

Coe (Esi(m 2p), 972 g+ C2e (E?(p, 2p), 972 gi) ’

for a constant C > 0 independent of €,0,v,n,a and p. If in addition |9~} U)Hcl,a(Aa) < 1, then
the nonlinear function Q- (w) for all B € (0,1) can be expressed in the form
1-8 -8
n n
Qe (w) = ot Qi (w) + T Qi (w),

where

@) - @k ()|

<C o
e (/) ge) T i1 {”w leze (52012 gi)}

% le — wQHCz,Q((Egt(l/g))c7 gi)

<C || Bt
o (S (p,2p), 9-2g+) fﬁ% {le, c2o(sE(p, 2p), 1929:!:)}

| @) - Q)]

x JJwr — wQHCQ»“(E?(pﬂp), 9291 )
for a constant C > 0 independent of €,0,v,1,a and p.

Proof. Again, for simplicity we will omit the index g.. First, consider the regions of A, (w)
parametrized as transverse graphs over Zéﬁ of the functions I'* + w. By Proposition m

H(A(w)) = HED) + Je (0T +w) + Qe (nT* +w).

Then the properties of £, and Q. in this region follow from the properties of the nonlinear
function @+ described in Corollary

Recall that in the “gluing regions”, the surface A.(w) is parametrized by some subdomains
of the geodesic disc A. Let y!, y? be normal geodesic coordinates in A centered at the point g.
By construction, we obtain A.(w) by first taking normal graphs over A of the functions GF,
and then perturbing them in the direction of some vector fields T* which satisfy

VF g (YE, NA)| < Cpn? [y 727k
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for a constant C, independent of €, 0,v,7,a. We check that the corresponding linearized mean
curvature operator can be written in the form

Agz + 72 |y L.

Moreover, the same is true for the operators Jy defined on E?, when we parametrize the
last surfaces as transverse graphs over A. This, together with the properties of the nonlinear
terms, yield the properties of L. and Q. in Q;tlu.

O

In the next result, we show that the properties of the operators L. and Q. in the “catenoidal
region” can be deduced from the properties of the mean curvature of normal graphs about the
Euclidean catenoid.

Proposition 3.5.5. For € small enough, the linearized mean curvature operator about Ag
restricted to the region Qcqt can be expressed in the form

1 g2 A
Lo=— (82407 L ,
° p2cosh®s ( s T 0 cosh? s + ncoshs v
where Jeqr = ?FTlsh% (83 + 8; + ﬁ) is the Jacobi operator about the Euclidean catenoid

scaled by the factor n and Leat is a linear partial differential operator such that

| Leat wllco.a((s,s41)x51) < Cllwlleza((s,s41)x51)s

for all s € [—sy,sy, — 1] and a constant C' independent of €,0,v,m,q and s. If in addition
|91 w”(jl’a(.Ag) < 1, then the nonlinear function Q.(w) can be written in the form

1 2 1 3

w) = ca w + ca w’
Q(w) n3 cosh? s Qeat () n* cosh? s Cear
where
k k k—1
@) = @t < Cma il o gesn } 34D

X [lw1 — walle2.a((s,s41)x51)
for a constant C' independent of €,0,v,n,a and s.

Proof. The proof is based on the fact that by construction, the region Q.4 of the surface A.(w)
can be seen as the image by the mapping F§ g of the normal (with respect to the Euclidean
metric) graph:

Cy(w) = (s,0) € [=sp, sy X St Cy(s,0) + w Near(s, 9) € R3

over the Euclidean catenoid Cy. The computation of the mean curvature of C (w) with respect
t0 geuel is classic and we postpone it to appendix. On the other hand, we use the fact that

the pull-back metric (F f&’q> Jeuel Can be seen as a perturbation of the euclidean metric:
(F5.0)" Geuct(4, 2) = Geuat + O (2 (Jy* +121)) -
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*
To calculate the mean curvature of Cy(w) with respect to (F I q) GJeuel @mounts to add an

initial mean curvature term which is equal to H% (A.) and some smaller linear and nonlinear
terms. Since the nonlinear terms have the same properties as the ones that appear from the
computations in the Euclidean space, we only need to understand how changes the linearized
mean curvature operator. This is a straight forward computation which can be also found in
the Appendix.

0
3.6 Linear analysis
Ideally, our goal is to solve the equation
H% (Ac(w)) = 2,
for some w € Co*(A.), or equivalently
— Low = H%(A) — 2+ Oc(w). (3.42)

We hope to find a solution using a fixed point argument and to this end we would like to
find a right inverse of the linear operator L. and study its properties when & tends to 0.
Unfortunately, it turns out that we do not get estimates uniformly bounded in €, namely
because of the presence of small eigenvalues of L. (eigenvalues that tend to 0 as fast as € tends
to 0), which can be identified knowing the structure of this operator.

By Proposition [3.5.4] and the results of the section [3.4.2] in the “spherical regions” of A,
parametrized by a region of the Euclidean unit 2-sphere, L. is close to the operator Ag2 + 2,
which has a 3-dimensional kernel that consists of the coordinate functions ©¢, i = 1,2, 3.

On the other hand, by Proposition [3.5.5] in the “catenoidal region” of A, the operator L.
is close to the Jacobi operator about the Euclidean catenoid. Recall that due to the isometries
in the Fuclidean space and the dilation, the catenoid is degenerate. In particular, its Jacobi
fields corresponding to horizontal translations are given by the functions

cos sin
6 . sing

&= an
cosh s cosh s

which decay very fast at infinity, and hence generate small eigenvalues of L..

The idea is instead of solving
Lew = f,

to solve the problem
Low—f€ R, (3.43)

where K. is a finite (actually 8) dimensional space, which we will define in the subsection m
and will refer to as approximate kernel. For & small enough, we find a solution to using
linear analysis about 2 noncompact domains, namely the punctured sphere Zai \ {p;t} and the
infinite catenoid.
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3.6.1 Linear analysis on a punctured CMC sphere

Let ¥ be a pseudo CMC sphere in M. For p € ¥, we use the notation ¥, := X\ {p}. In this
subsection, we analyze the properties of the Jacobi operator Jy. about X..

Definition 3.6.1. We adopt the notations taking ¥ instead of ¥ and p instead oqui.
Then, let psp € C2*(X) be a function such that s, = 0 in X(1/4) and p =1 in (X(1/2))°.

We introduce the deficiency space
Dsp = Span{la MSp}‘
We have the following result:

Proposition 3.6.1. Assume that v € (0,1). Then there exists a constant C' and for all

fe Cgf‘2(2*) there exist unique 1, € cZ’“(E*), cip, cgp € R, and By, € R3 such that

_ 1 2
Wsp = ¢SP + Csp Hsp + Csp

satisfies
Jewsp = f = (Bsp, O). (3.44)
Moreover,
HwSpHcf’a(E*)@psp <C ||f||cgft2(g*)a (3.45)
|BS;D| <C Hf||c§f‘2(z*)' (3.46)

Before we proceed to the proof of Proposition [3.6.1} let us recall the proof of the following
classical result [72]:

Lemma 3.6.1. Assume that v € (0,1). Then there exists a constant C > 0 and for all
f e C%(D2) there exist unique 1 € Co*(D?) and ¢, € R such that w = ¢, + ¢ satisfies

Aw=f in D2
w=0 in St. (3.47)

and

Proof of Lemma [3.6.1. We construct the solution as a limit of the solutions w), to the Poisson’s
equation with homogeneous Dirichlet boundary data in A, := {y € R? : p < |y| < 1}.

Let (r,¢) be polar coordinates in D?. We decompose the functions w, and f in Fourier
series in the angular variable ¢:

w, = ij7p(r) e and f= Z fi(r) 'l

JEZ JEZ
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By linearity, we may assume that |f| < 7“2 and therefore |f;(r)| < r*=2. The function w;
then satisfies

1 52 .
(#4205 ) wa=b i (01, wip(1) = wil) =0,

Notice that for |j| > 1 the function ]2’%2 is a supersolution to our problem and hence

,,,.I/

|wjp(r)| < 2

We put w, = 3151 wj,p, and obtain

[P~ wpl peoa,y < C Hr2_VfHL°°(Ap)a

for a constant C independent of p. By the Schauder’s estimates, this yields a uniform bound
on the gradient of w, and hence, by the Arzela-Ascoli theorem, w, converges uniformly on
compact sets to a solution of (3.47)). Moreover, we have

lwllezepz) = Cliflleos,pz)

which follows from the Schauder’s estimates in weighted Holder spaces obtained from the
standard Schauder’s estimates [39] on concentric annuli of inner radius R and outer radius 2R
applied to w(R-).

For j = 0 we find the solution explicitly:
1 z 1 1 z
wo = — tfo(t) dtdZ+C*, Cy = - tfo(t) dtdz.
0 % Jo 0o % Jo

Proof of Proposition|3.6.1. In geodesic normal coordinates in ¥ centered at p, we have
Js = A+ Ly,

where

3
i’E = O(|$|2) Z 041 0y5 + O(|z|)0,i + O(1),

1,7=1

and A is the flat Laplacian in R?. First, let w; be the solution of the problem

{Awlz(l—usp)f in D¥(3),

wyp =0 on St (%) ,
given by Lemma (3.6.1)). Then we can write w; = cl,p + 11, where

”wl”cgva(pg) + ’C;p| <C ||f||cgf2(pg)-
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Consider the function

f = Usp f+ 2v;uspvwl + AF‘SP w1 — I:E ((1 - IUSP)wl) € CO@(E)a

which has compact support in ¥ and satisfies
||f”co’a(2) <C Hf”cgg(z*)-

According to Proposition there exist a function wy € C>%(X) and a vector By, € R?
such that

JE Wy = f — <Bsp, @),
where
lwalleza(sy < C Nl fllcoe(s),

‘Bsp — / fOdvolg:| < C&? Hf|]co,a(z)~
SQ

We can write wo = 12 + cgp, where

2
"¢2Hc§7a(g*) + ’CSp| <C ||f||cgf2(2*)-

Finally, the function wg), := (1 — pep)w1 + wo satisfies the claim of the theorem.
O

Remark 3.6.1. In what follows we apply the result of Proposition to the punctured
pseudo CMC spheres Zai \ {pqi}, but instead of the Jacobi operator we will take the linearized

mean curvature operator Jy that arises when the surfaces are perturbed in the direction of the
vector field N1 defined z'n using that these two operators are conjugate.

3.6.2 Linear analysis on the Euclidean catenoid

Lemma 3.6.2. Assume that § € (—1,0). The subspace of (coshs)°C** (R x S*) which solves

2
(a§+a§+ o )sz

cosh” s
is 2 dimensional and is spanned by the functions

cos ¢

§1= and & =

cosh s

sin ¢

coshs’

Proof. We decompose w in Fourier series

w(s, @) =) _wj(s)e?,

JEZ
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then the functions w; are solutions of the ordinary equations

2
92 — %+ >w-:0.
(S J cosh? s I

These solutions are asymptotic either to (cosh s)7 or to (cosh s)~7. By hypothesis, the solution
is bounded by a constant times (cosh s)? and |§| < 1, so the solution has to be asymptotic to

(cosh s)™7, and then the solution is bounded. On the other hand, —j2 + < 0, so the

cosh? s

maximum principle assures that w; = 0, for all |j| > 2.
By a direct computation we find that for |j| = 1 the space of solutions is spanned by
the functions Coslhs and sinh s + 35— while the functions tanhs and 1 — s tanhs are two

independent solutions when 7 = 0. Among these four functions only the first one belongs to
(cosh s)0 C%*(R x S1).

O]

Definition 3.6.2. Let picqr € C°(R x S1) be a cut-off function which is identically equal to 0
in (—oo,1) x St and to 1 in (2,+00) x S1. We introduce the deficiency space

Deat 1= Span{ﬂcaty S Ncat}-

Proposition 3.6.2. Assume that 6 € (—1,0). Then there exists a constant C' such that for
all h € (coshs)’CO*(R x S') there exist unique function veq € (coshs)OC>*(R x S') and

constants ct,,, Bt ,, i =1,2 such that

i
cat’
1 2
Weat = Veat T Meat (Ccat + Ceat 8)
satisfies

2
(83 + 83) + 2) Weat = h — Bclat 51 - Bc2at €2-
cosh” s

Moreover, we have

Biy = / h&dsdg and / wé =0, i=12, (3.48)
RxS1t RxS1
and
[(cosh 8) ™% veat |c2.omxesty + |cat] + [c2ae] < Cll(cosh s) 7 hlleo.m (st (3.49)

Proof. We borrow the techniques of the proof from [77] and [93], but for the sake of complete-
ness we give here the details. Decompose h in Fourier series in ¢:

h(s,@) =Y hj(s)e'®.

JEZ.

Then for every ¢t € R and |j| > 2, let v;f be a solution of

d2 ) 2 t : t
<d32 _2y Cosh28> dh=h; in |s|<t, vi(£t)=0,
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which can be obtained by the maximum principal and the method of sub- and supersolutions,

1
taking ———
ing Ep
obtain a function v; which by Schauder’s elliptic theory, satisfies

l[(cosh 8) vt le2.a((—tryxs1) < Cll(cosh s) ™ Rllgoa((—trxs1):

(coshs)? as a barrier function. Taking a sum over |j| > 2 of vl eI, we

(3.50)

for a constant C' independent of . When ¢ tends to infinity, by the Arzela-Ascoli theorem the

sequence v; admits a subsequence that converges on compact sets to a function v such that

(82+8¢+ )v—Zh ) el
cosh

|7]>2

For j =1 and j = 0 we construct the solutions explicitly. We use the notation

~ 2 hit(t
htt = hyr — T / jEl()dt

coshs Jr cosht

Then by the variation of the constant method we obtain

I t o\ : s * haa(t)
— ht Bt (t) dt — (sinh ) dt.
VEL T Coshs /0 (sm * cosht) +1(1) sths cosh s / cosht

—00

+1(?)
osht

hay
A simple verification, using / dt =0, gives

oo ., < s

Loo ]R><S1)

Finally, we take
wp(s) = tanhs/ (1 — ¢ tanht) ho(t) dt — (1 — s tanh s) / tanht ho(t) dt
0 0

and notice that there exist constants ¢, & and cl,, and c2,; such that
wo + ¢1 (1 — stanh s) + & tanh s = vy + fieat (c,ljat +c2ys),

where
[[(cosh s) ™ vole2a(rxst) + |Char| + |c2ar] < |(cosh s)"hl|co.(rx.s1)-

The estimates for derivatives of wg are obtained by the Schauder’s theory. Finally, we put

Veat = U + Vo + v1 € +v_1 7.
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3.6.3 Gluing the parametrices together

In this subsection we construct a right inverse of the operator L. in some appropriate function
spaces.

Notation 3.6.1. Let us adopt the notations and introduce a cut-off function xo €
C%(A.) such that xo = 0 in regions parametrized by (XF(1/2))° and xo = 1 in the union of
Qcar and the regions parametrized by X (r,,/2,1/4).

Let x* be the cut-off functions defined in Notation [3.5.1}

Definition 3.6.3 (Approximate kernel). Let us introduce the functions

j -0 X0 X0
=yt O, Byyii=x 0, j=1,23, D= —20 g Dgi= 20
j =X 345 = X J T eosh?s &1 5 eosh?s o
We define the space
A = span{cbj, j=1,... 8} (3.51)

to be the approximate kernel of the operator L..

Proposition 3.6.3. Assume that v € (0,1). Then for all ¢ € (0,¢e4), all 0,v,n,a satisfying
the assumptions and for all f € CO%(A:) there exists a function w € Co*(A:) and a
vector A € R® such that

8
Low=f-) A, (3.52)
i=1
Moreover, we have
—Lv
HwHCE’C“(Aa) <Cn ||f||c2f2(Ae) and [A| <C Hf”CBfQ(AE)

for constants C > 0 and ¢ € N independent of €,0,v,7, a.

Proof. The proof consists of constructing an an approximate solution of (3.52)) by gluing
together solutions of linear problems on the punctured CMC spheres ¥ \ {p;t} and the Eu-
clidean catenoid C;, obtained by Propositions and and then applying a perturbation
argument to find an exact solution. We do this in 5 steps.

In Step 1, we show that a function f € CSfQ(AE) can be decomposed as asum f = fT4+f~,
where

T=0 in Qg_luUQ;p and f- =0 in QF UQ;rp.

glu

Then we find diffeomorphisms U* from some regions in ¥F \ {pqi} to a region in A, such
that the functions f + .= f* o U* can be extended up to the punctures in such a way that

Free)s (55 ).
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In Step 2, using the results of the subsection we find solutions to the linear problems
Ty, = [+ = (B3, 0),

and show that the functions 711;‘; o (\Ili)_l provide an approximate solution to (3.52)) in the

regions Q;‘;} U Q;—Llu of A..

In Step 3, we explain that in the catenoidal region 2.4 the error is of special form and can
be corrected using the linear analysis on the Euclidean catenoid described in the subsection
Here again, we solve a linear problem in a noncompact domain, namely, in R x S?.

In Step 4, we combine the solutions obtained in Steps 2 and 3 to obtain an approximate
solution to (3.52)) in A., truncating the terms that decay at infinity and gluing together the
deficiency terms.

Finally, in Step 5, we find an exact solution by applying a perturbation argument.

Step 1: Decomposition of the function f

We introduce the cut-off function X € C*>°(A.) such that in the region Q. endowed with
cylindrical coordinates (s, ¢) we have

X=0 for s<—-1 and X=1 for s>1
and extend X to the entire surface A. by 0 and by 1. Then for f € CSfQ (A:), we can write
f=Xf+0-X)f=f"+[".

Next, we explain now the construction of U+,

Notation 3.6.2. Let us use Notation|3.4.4 and also denote by AL (p) the parts of A. parametrized

by (X2 (p))" and put
A%p) == A\ (AT (p) UAZ(p)) -

Next, consider the mapping that provides cylindrical coordinates (s, ¢) in AO(%) :
ngl : (37¢)€ [_éaé] XSl'_)C((:)yl(‘g?(b) €A0(1/4)7 UCOSh§:1/4-
On the other hand, one can define cylindrical coordinates in 1 (1/4) via the mapping

toi(s,¢) €[~ 00,8 x St FY (ges (cos¢,sin¢)> eXt(1/4).

cyl

In the same manner, one defines cylindrical coordinates in ¥ (1/4) via the mapping
Cogl (5,0) € [— 5, +o0] x ST Fy (g e * (cos ¢, sin ¢)> .
Remark that the mappings
0,0 (gj;l)_l L 3E (e75,1/4) — A0 (1/4)
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locally provide the diffeomorphisms we are looking for.

On the other hand, by construction, the regions Qi U Qgilu

transverse graphs over some regions in Zéﬁ and we denote the corresponding mappings by

C A. are parametrized as

o (=Fa/2m) — ot uas, C A,

glu

where 7, describes the size of the gluing region (3.33]).
By construction, in $(1/27,,1/4)

cyl {Sp o ]:A (n cosh s (cos ¢,sin @)) .

Thus, the mappings

1
= (G5) oo (¢B) 5 TEQ/2r,1/4) — BE (127, 1/4),
satisfy
|(@* —1d) (s,0)| <cme™™ for s€(sy,8), [(P7—1d)(s,0)| <cne® for se (=5 —sy),

where s, > 0 is defined by n cosh s, = % ry. With the help of some cut-off functions supported
in ¥F (1/5,2/5) we glue ®* with the identity, extending it to:

OF ¢ (XE(1/27))" — (ZF (1/27))" .

Finally, we define the mappings ¥£ : (S%(e™%)) — A. \ AT(3) b

gr_ ) (Gu) i 2 (e 0 v
(o d* in (37 (1/4))°
and verify that the functions fi = fto \Ili can be extended by 0 to the entire punctured
CMC spheres ¥ \ {pqi} and satisfy f* € C (Zi \ {pqi})

Step 2 : Contribution of the linear analysis about the pseudo CMC spheres

Making use of Proposition we find functions w;&, e (B {pf}) @ Dy, and vectors
Bsip € R? which satisfy

= [ — (B, 0).

+

Moreover, wg,

can be decomposed as
=P + b+ Al (3.53)
where

stpH@a (SE\pED + |C ‘ + ‘C ’ <C |’f”c£f‘2(,48) and }B ‘ <C HchOa
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Next, we show that in Q;';; U Q;[lu, the functions

wfg'; = w;tp o (\Ili)_l

provide approximate solutions to (3.52). This follows from the fact that in these regions the
operator L. is close to the linearized mean curvature operator J+ about 2;5 and the fact that
the mapping &+ = ((s:;)_l o ¥*, defined in Step 1, is close to identity.

Indeed, according to Propositions and there exists a constant C' > 0, such that
for all u € Co™(A.), we have

Lou—Jy u’ <Cn?o1 HUHCE*“(AE)'

Moreover, by the definition of the diffeomorphisms ¥+ and ®*, in Q;tp U Q;tlu, we find

‘J; w;tp — f+xT (B;tp,@>‘ <C ‘ (ji o dF — ji) (wfp)‘ <Cnot ||f|’cgf2(,4€)-

This yields
1
Hﬁe wsj} —f=x* <Bsip’®>Hch2(Q§7uQ$u) =z ”f”c;’f;(Ag)' (3.54)

Next, we remark that the functions 1[1;'; e (2N {péc}) in the decomposition (3.53)
decay in the neighborhood of péﬁ as a power of the distance to p;t. For the moment, we leave
the deficiency terms aside and show that we can naturally extend

v =0k o (¥F) 7

to the entire surface A, by truncating them in the “opposite” gluing region Q;Flu with the help
of an appropriate cut-off function. More precisely, we introduce the function

Y= (1—x7) vh+ (1 —x)Ty, €CA). (3.55)
Then the estimates
‘Vk w;é(s, gb)’ < cn” (coshs)™ Hf”cﬁfg(Aa) in QF, UQeca,
together with the fact, that by Proposition |3.5.5| we have
‘772 cosh? s (L',e - ji) u‘ < ¢ (coshs)™2 HUHCZ"”(AE) in Qeat

yield
[0 cosh? s (Lo thgp = f = xF (B )| < e (coshs) ¥ I o gy (3:56)
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Step 3: Contribution of the linear analysis about the catenoid

Let the function xo € C*°(A) be given as in Notation and consider the function
h := xon? cosh? (EE Vsp — F—xT <B;;,,
which, by (3.56)), satisfies

||(cosh s)”tho,a(RX51) <Cn” ||f||cgf2(A5)‘

©) — X~ (B, ©))

sp?

By Proposition [3.6.2] (where we take § = —v), there exists a function
Weat € (cosh s)_”CQ"" D Deat

and constants B}, and B2, such that

2 .
(83 + 02+ 2) eat = h — Bly &1 — B2y 6o, and Bl = / hésds dg.
cosh” s RxS1

Moreover, we have Weqt = Vcat + feat (Ctlzat + 2 s) and
I(cosh 8)* Buallonerxsty + leharl + Il < €0 [ flgnis aye | Blaal < O fllgoe

Once again, since 7.4 has exponential decay at +oo, we can naturally extend it to the
entire surface A, by truncating for s large enough with the help of some cut-off function. We
introduce:

Veat = X0 Ucat (3'57)

where ¢ is defined as in Notation [3.6.1

Step 4: Approximate solution to

Now we need to understand how to extend to A. the deficiency terms cé;,i + ci,gi /@; coming

from the linear analysis about the punctured CMC spheres %F \ {p;t}, and the deficiency

terms fieqt(Cly + c2, 8) coming from the linear analysis about the Euclidean catenoid.

Let I'* be the Green’s functions associated to the operators Ji with poles at p;t defined
in Lemma and consider the functions

s—1—stanhs and s+~ tanhs

which are the Jacobi fields corresponding to dilation and vertical translation of the Fuclidean
catenoid. We introduce the function

ki=x" (c;; + cgj,u;; + k4 F+) +x~ (c;}; + ci}; Pop + k- F7> (3.58)

+(1- N X)) (ucat (ciat + cgat s) + ko (1 — stanh s) 4+ k1 tanh s>,
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where kg, k1 and k+ are constants which we would like to choose in such a way that x is close
to ciz’;i + c?}, ,u,sip + ky TF in Q;tlu. In this region we have

l—stanhs=1Fs+ (’)(77%), tanhs = +1 4 (’)(n%).
Moreover, with the change of coordinates 7 cosh s = |y|, we find
(s, ¢) = — logg T 54 ¢ +O0n?).
Finally, we choose kg, k1 and k4 and k_ to be the unique solution of the system

ky = —ko+ 2, ko+ki+cly,= csp —i—csp + ky log 3 + kg of;
k_ = ko ko — ki +cly = cop + ey 4+ ko logl+k_cp;

and since |c’ ;| and \c@i! are bounded by || f{| 0.0 (4.)» We obtain
v—2\V€

cat
2,4+  + +t 1/2
Next, consider the function

Wapp = wsp + Veat + K,

where )5, and v are given by (3.55)) and (3.57) and the vector Ay, € R® defined by

N . 12
A{zpp (B+) ) AZL;J_S = (Bsp)]> J=12,3, AZpgp = cat'

By results described in Step 2, Step 3 and Step 4, (Wapp, Aqpp) satisfies

E wapp + Z Aapp f

=1

v/4
i <cn / ”fHCBf‘Q(AE)’ (3.59)
C, %5 (Ae)

for a constant ¢ independent of 7. Moreover, there exist constants £ € N and C' > 0 indepen-
dent of n and ¢, such that

—/
HwappHcg!a <Cn VHchSf‘Q(_AE) and  [Agpy| < C Hf”cgf2(,4€)-

Step 5: Exact solution
Consider the mappings

Ie CSfZ(A€> = (wapp(f)7 Aapp(f)) € CB’OC(AE) S3] st and
R O (A) = Co(As), R(f) = Lewapp(f) + ZAW —1d(f).
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Then ||R]| < ¢ni, so Id + R is invertible for 7 small enough. Finally, we put

W(f) = wapp (1 +R) () and A(f) = AL, (1d+R)7(£)) (3.60)
which yields
8
Low(f)+ > A(f) D= f. (3.61)

i=1
Moreover,

Hw(f)Hcﬁva(AE) < CW_ZVHchng(AE) and |A(f)[<C Hf”(jgf‘2(,45)a

for C > 0 and | € N independent of €, 0,v,n, a. This finishes the proof of Proposition [3.6.3]
O

3.7 Nonlinear argument

Using the notations introduced in the section (3.5} ideally our goal is to solve the equation
Lew=2—H% (A;) — Qc(w).

If the linear operator L. : Co%(A.) — CBf‘Q(.Ag) were invertible with inverse uniformly
bounded when ¢ tends to 0, we could use Banach fixed point theorem for contracting map-
pings in a ball of CE’“(Ag), where the radius of the ball would be defined by a constant times
12 (A — 2o o).

However, this is not the case and according to Proposition for all f € Cng (Ag), we
only can solve the problem
‘CE w — f G ﬁg,

where R, = span{®;,i=1,...,8} is an 8-dimensional space which we refer to as the ap-
proximate kernel of L.. In the subsection [3.7.1] we explain the Lyapunov-Schmidt reduction
argument, which consists in applying Banach fixed point theorem in the space nearly orthogo-
nal to K.. Then, we obtain a surface the mean curvature of which is constant up to a element
of the form Z?:l A" ®;. Finally, in the subsection we show that we can choose the
parameters o,v,7, a in our construction in such a way that A°=0,4i=1,...,8.

3.7.1 Lyapunov-Schmidt reduction argument

Our goal is to solve the problem
H9%(A) — 2+ Low+ Qe (w) € Re. (3.62)

As we have mentioned above, the radius of the ball in which we hope to carry out a fixed
point argument depends on the norm of the function H(A.) — 2. By Corollary we have

H%(A) =2+ H+xHCH,0)+x (C,0)
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where 3
xT(CE,0) e &, and ”HHCBfE(AE) <Cnpztv

for constants C' > 0 and £ € R independent of €, 0,v,n,a and C appearing in the assumption
So, (3.62)) can be reformulated as
H+ Lew+ Q(w) € Re.

Proposition 3.7.1. For alle € (0,e.) and all 0,v,n,a satisfying the assumptions there
exists a function w, € Co®(Ae) and a vector A, € R® such that the mean curvature of A (w,)
is constant up to an element of the approrimate kernel of the operator L.. More precisely,

8
H(A(w,) =2+ ALd;, &€, i=1,...,8 (3.63)
=1
Moreover,
3w
lwlczea,y < €z~

for C >0 and ¢ € N independent of €,0,v,n,a.
Proof. Consider the mapping
& : €)% (A:) = € (A)
defined in (3.60)), which to a function f € CBf‘Q(Ag) associate the solution w(f) of the equation

8

Low(f)=f=Y A(f)di, @<k

i=1

Next, consider the mapping
w e C3Y(A) = B(—H — Q. (w)).
According to Corollary there exist £ € N and C' > 0 independent of 7, such that
16 (F)llezaay < Oz~ =1
On the other hand, by Propositions [3.5.4] and [3.5.5] with the assumptions [3.4.1] we obtain
16(Q=(w))]|; < Cn2™" [[w]lgze 4y

. 1
|18 (Qe(wr)) = &' (Qe(w))[|; < 5 llwr = wall gz,

for v and 7 small enough and HwHCQ,a(Ag) < 7y, ”wiHCQ*“(AE) < r,.. By Banach fixed point
theorem for contracting mappings, there exists a function w, and a vector A, € R® in the ball
of C2*(A.) x R® of radius 2r,, which satisfy

8
H(A:(w,)) —2-> AL®; =0. (3.64)

i=1
O
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3.7.2 Choice of the parameters

We have now constructed a family A.(w)(o,v,n,a) of surfaces in M whose mean curvature
is constant up to an element of an 8 dimensional space K.. To summarize, these surfaces are
obtained as small perturbations of connected sums of two pseudo CMC spheres Eéﬁ whose
“centers” are located symmetrically on the geodesic passing through the point 0 € M with
velocity vector v € T, M, ||v||; = 1 and a small neck parametrized by the “neck size” n and

the “location” a = (a',a?) € R? of its axis in a 2-dimensional geodesic disk A.

Next, let o be a critical point of the scalar curvature function R, A # 0 a simple eigenvalue
of Hess,,., R, and v) the corresponding unit eigenvector. According to the results of the section
we have two families of surfaces which satisfy , the first family embedded and
the second immersed with self intersections. In the following result we show that for all
small enough we can find a set of parameters (0, v,7, a) in a neighborhood of (0., vy, 0, 0) for
which A, (ws)(0,v,7n,a) has constant mean curvature and is embedded or immersed with self
intersections depending on the sign of A.

Proposition 3.7.2. There exists e, > 0 such that for all € € (0,e4) there exist o, € M,
ve € ToM with ||velly = 1, . € Ry and a. € R?, such that

HY (Ae(w*)(057 Ve, Ne, as)) - g

and

4dr )\ et
15

distg(0g, 0cr) < Ci g2, L(ve,vy) < Cie, |ne — sign(A) < C,& and las| < C,e’

for a constant C, independent of ¢.

Proof. We would like to use the Schauder’s Fixed point Theorem in a ball of R® to solve the
system of equations ‘
A(o,v,m,a) =0, i=1,...,8. (3.65)

To this end, we would like to show that the system (3.65) can be written in the form
(Id+F)(-)=0 (3.66)

where by F' we denote any continuous function bounded uniformly in ¢ and o,v,n,a for €
small enough.

Step 1

Let us consider the first 6 equations. By Corollary and Proposition the constants
Al i=1,...,6 are given by the components of the vectors C* € R? plus some terms bounded
by a constant times 773/ 2=tv_ Thus, the equations can be written in the form

27 3
15

1
VIR(0%) + 51 O(py) + & Flo,v,m,0) =0 (3.67)
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where o correspond to the “centers” of the pseudo CMC spheres Zgﬁ and pgt to the poles of
the Green’s functions that we used in construction of the approximate solution.

Since o € M is a critical point of the scalar curvature R, we have VIR (o.-) = 0. Take
an orthonormal (with respect to the metric g) basis E1, Fs, E3 of T, M, such that E; = vy
is the unit eigenvector associated to the eigenvalue A\. Let mé, m%, a:g be the coordinates of the
point o in corresponding geodesic normal coordinates centered at o;.

By construction, the points oF lie on the geodesic passing through the point o € M with
velocity vector v € T,M, |[v]|; = 1. By the assumption the coordinates z+ of 0T satisfy

T =x9tev+ O(E).
We also have
@(p;t) = Tv+ O(c?) when A, is embedded;
@(p;t) = +v+ O(¢?) when A, has self-intersections.

Assume first, that A. is embedded. Putting expressions found above into (3.67)) and projecting
the equations to the direction vy, we obtain

4

(—51—”)\— %n) \/1— (v2)2 — (v3)2 — %)\xé+55F1(x0,v,n,a) =0,

4 3
<81757r)‘+%77> \/1 — (v?)? — (v3)? - 8Tgr/\ac[l)—i—f:“r’f‘ﬂo(avo,v,77,a) =0.

This can be written in the form
4
_6175” _%n+55F1(5U07077]a‘1):O7
z} + &2 Fy(wo,v,m,a) = 0,

and in particular, we see that since n > 0, a solution exists only when A < 0. When A > 0,
we need to take the immersed version of the approximate solution A..

On the other hand, projecting (3.67) on the subspace of R? orthogonal to vy, we obtain

( 0
% (Hesso,, R —AId) [ 23 +ev? | + &5 Fy4(20,v,m,a) =0
zy+cev?
0
513—5” (HessOR — )\Id) z3 — e v? + &% F5 6(w0,v,m,a) =0
3 —cev?

We can rewrite this in the form
zb = €% Fi(zo,v,n, a), i=1,2,3,
vl = e P34 (zo,v,1m,a), j=1,2, (3.68)
n= sign()\)% + &° Fg(o, v, 1, a),

where F; are continuous functions bounded by a constant independent of ¢, o, v, n and a.
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Step 2

The last two equations can be obtained by taking the L? orthogonal projection of
8 .
H(Ac(w,) —2= AL ®;
i=1
to ®7 and ®g. To explain why these equation can be written in the form (3.66)), we propose
to consider the following example. Taking the change of coordinates
y = n cosh s(cos ¢, sin @),

we find that away from s = 0, we have ®gy; ~ %, i =1,2. Let Py be the horizontal plane in

R3 and (), the catenoid scaled by the factor n with vertical axis centered at the origin. Recall,
that C;, can be written as a bi-graph over {y € Py : |y| > n} of the function

2 ol
Gy (y) = log -+ log|y| + O(* [y ™).
On the other hand, let P* be two planes parametrized as graphs over Py of the affine functions
+ 2 11, +09
u™(y) :ilogﬁ—i—cl y +cyyt.

Take p > 0 and let D?(p) be a unit disk in Py of radius p centered at the origin. We denote
by x a cut-of function which satisfies

x=0 in D?%*p/2) and x=1 in P\ D?*(p).
Finally, we remark that the mean curvature of the surface parametrized by

(v, x()u™(y) £ (1 = x(»)) Gy(v))

is equal to 0 everywhere but D?(p) \ D?(p/2). On the other hand, for 1 small enough, in this
region the largest terms in the projection of the mean curvature to ‘?% are given by

i

/ Ax (u —u)) 2 :/ or (x (" —u))|,_, ‘%m (3.69)
D2(p)\D2(%) oD2(p) Y

ly[?
ut —u7)) o, ( y > d
/8D2(p) (X ( )) ’y‘Q r=2p i
=T -

In particular, we see that the largest terms in this projection are determined by the slopes of
the planes P*.
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Let us go back to our construction. The influence of the perturbation being negligible, the
“slopes” in our case will be determined by Vu®*(gq), where u* are the function which appear
when we parametrize of the pseudo CMC spheres Zf as normal graphs over A. More precisely,
we proceed as follows. The equation

b
H(A(w) =2+ AL®
i=1

can be written in the form

cos ¢ sin ¢
H+ Lows + Qc(w,) ALd; = AT + A
‘ Z * 12 cosh® s * 12 cosh? s

We multiply this expression by 7 cosh25<1>7g and integrate in [—s,s.] x S! for s, large
enough. By Propositions [3.5.4 and [3.5.5, we have
ﬁ??

n? cosh? s L. —(32+8¢+ >+E L+

osh? s osh2 s

where Ly and Lo linear partial differential operators with coefficients bounded independently
of €,0,v,1m, a, with support in Qg and A; \ Qeq¢ respectively. Integrating by parts and using
the estimates for w, and Q.(w,) given in Proposition we find

/ (ﬁ ws + Qe (wy) ZAZ > cos ¢ n2 cosh?sdsdp < Cn?~*,
[—8x,84) xSt

for some C' > 0 and ¢ € N independent of the choice of €, 0,v,7,a. On the other hand, making
use of the results of Propositions and we obtain

/ Ho cos ¢ n? cosh?sdsdg| < Cn,
[—5x,84] xSt

cosh s

for some C' > 0 independent of €, 0,v,7,a. Finally, we find

/ Hi cos n? cosh? s ds d¢
[—54,84]%x 51

cosh s

o\ Y 1o
= Alx (Vut(q) = Vu (q))" v') 255 dy' dy
/D2<rn>\D2<rn/z> ( (V'@ @) ) lyl?

AT (Gt () - Va (@)

Tn
Thus, the system of equations A7 g = 0 can be written in the form

V(ut —u")(q) +n¥/* Frg(xo,v,m,a) = 0. (3.70)
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Furthermore, (a!,a?) are the coordinates of the point ¢ in the normal geodesic coordinates

(associated to the metric g.) centered at the point gy, where go is a local minimum of the
function u™ and a local maximum of u~. We can write (3.70) in the form

1
Hessg, (u+ — u_) < Zz > + 173/4 Frg(xg,v,m,a) =0, (3.71)

and since, by construction, Hessy, (ut — ™) is invertible, we find the equations

< @ ) +€3 F7,8(x0,v,77,a) =0.
az

Step 3

By the Schauder’s Fixed Point Theorem for every e small enough there exists a solution
0: € M, ve € T,.M with ||ve|, =1, . € Ry and a. € R? of (3.65) in a ball of R®, such that

4 et

distg(0z, 0cr) < Cy 2, L(ve,vy) < Cye,  ag| < Cy £3, ne — sign(\) M\ < O, &0

Put &, = A.(oz, vz, e, ac) and let G4 (e, 0o, vy) be the union of two geodesic spheres of radius
e, with their centeres located symmetrically from o, on the geodesic passing through the point
oqr With velocity vector given by vy. Then we have

2
HI(S,) = > dist 7 (Se, G4 (e, 0er,v))) < €2,

where by disty we denote the Hausdorff distance. Finally, &, is embedded when A < 0 and
immersed when A\ > 0.
O

3.8 Appendix 1

First, let us find the mean curvature of the unit Euclidean sphere S? with respect to the metric

62

3

e3

: (Rp)ikji,m 2Pl 4 (’)p(ss).

(9e)ij = 0ij + = (Rp)aj a* 2 +

Recall the standard fact that if 3 C M is an oriented hypersurface with unit inward pointing
normal Ny, and if X, is the family of hypersurfaces defined by

E xR > (g, 2) = expy(2Ns(q)) € E.

with induced metric g, then

d
|Hy| = 5 log /det g .
z=0
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In our case, considering S? with metric g., let g.. be the induced metrics on the Euclidean
sphere of radius 1 — 2. Then if g, denote the metric induced on S? from the euclidean metric,
then it follows from (3.2) that

H%(S%) = Tr (95,' 9:],0)

2 3
= 2— < Riey(6,0) — 5 VeRic,(6,0) + O,(e")

Next, let us prove, that if IT is the L?-orthogonal projection to the space of the restrictions
to the unit sphere S? C R? of coordinate functions. Then

1 : 27
I <4 VeRic,(0, @)> =1 VR(p).

Let 2!, 22, 23 be geodesic normal coordinates centered at the point p € M. Then Vy,:0,,| =
0, s0 Vg Ricy(0pi, Opr) = Vg, (Ricp(0,s, Opr)). We use the notation R;j = ViRic;;(0) and
let do be the volume element of S2. Then

IT (VoRic,(0,0)) = <Rij,k / o'e’ ek e’ da) e
S2
On the other hand,

<Rij,k/ @i @j @k @£d0> ZRM’@/ (@Z)4d0—|— Z Rf]}k‘/ (@5)2 @j @k do
52 5 j kAL 2

02 ot ok AV aY =Y
+ZRM’]€/SQ(@) 0'0 dU+ZRZJ7£/92(®) O'e! do

i kAL i,j 720

= Ree,e/ (©")'do + ) (Rejj + Riri + Riig) / (0% (8%)*do
S2 S2

,J
1 2
~3Ras [ (O (0920 = 22w R0,
" Js2 15
where we used
1 ~ Vol(S?)

: /52(@1)4610:/32(@1)2 (072 do = O

Finally, the second Bianchi identity
Vi Rijer + VieRijkm + ViRijme = 0

at the point p contracted twice with respect to the indexes m, j and i, £ yields

ViR=2) Ry,
J
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3.9 Appendix 2

Let C), denote the Euclidean catenoid scaled by the factor . Take w € C**(R) x S with

| cosis Hcl o < 1. And consider the normal (with respect to the Euclidean metric) graph

Cp(w) : (s,0) € R x St = Cp(s,0) +w Near(s, ¢).

Lemma 3.9.1. The mean curvature of Cy(w) with respect to the Euclidean metric satisfies

1 2 1
Hew(w) = ———5— 62+82+> b Q?
(W) n? cosh? s < s ¢ " cosh?s v Qear(w)

n3 cosh? s
1 3
w
774 COSh4 s Qcat( )

where Q¥ (w) are a non-linear functions of w Vw and V2w, such that for all s € [—5n, 5y — 1]

| @kaetw) = @hstaee)

k—1
< . .
Co’a([s,sﬂ]xsl) - 01122117)5 { (HwZH@ “([s s+1]xsl)> } (3 72)

X |lwy — w2‘|cz,a([8,s+1}xs1)

for a constant C' independent of s, n and € and H < 1.

ECOShS Hcl 2 (RxS1)

Proof of Lemma[3.9.1 Let us denote by Q% ,(w) any non-linear function satisfying the prop-
erty (3.72). The tangent vectors to Cy(w) are given by

Ts(w) = Ts + Osw N 4y 9N, Ty(w) = Ty + Opw Neat gy 8¢Ncat
where T = (77 sinh s e*?, n) , Ty = (incoshs e, 0). Let
g° = n? cosh? s(ds® + dp?), h = n(—ds® + d¢?)

be the first and the second fundamental forms of the standard Euclidean catenoid scaled by a
factor . The induced metric on Cy(w) can be written in the form

g (w) = g = 5 B 4 Q2 (w).
We look for a normal vector field to Cy(w) in the form
N¥(w) = N 4 a5(w) Ts + ag(w) Ty.
Then the equations
Genel (N*(w), To(w)) = 0, Geuet(N*(w), Ty(w)) = 0
yield

0 1
R Q% (w).

ap(w) = — +
k() 2n2cosh?s  n3cosh?s
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We find
Osw Opw

N(w) := N¥(w)/|| N*(w) oot Ty

”g 1 - s
cue 272 cosh? s 212 cosh? s

1

1
m@g(w) Net 4 —— Q2 (w) T,

t
n2cosh®s

where T is a unit tangent vector. Since
~ 1
0k 0 Cr(w) = Os0sCr + 5 (Okw BN + Opw N + O Oyw N + w OOy N™)

we find that the second fundamental form satisfy

1 —0sw  Oypw 1
heat(w) = he® + Hess = — ———1d + - tanh ( W% >+ 2 (w).
(w) 2 2 cosh? s g S dpw  Osw n cosh? SQ ()

Finally, the result of the lemma follows by taking trace with respect to the metric g*(w).
O

Now, let us give more details on the proof of Proposition We need to calculate the
mean curvature of Cy(w) with respect to the metric

(Fliq)* geucl(yla y27 Z) = Geucl + @ (52 (‘y|2 + |z’)) .

Let us denote by L any bounded linear operator from C>*(R x S') in CO*(R x S1).

The metric induced on A.(w) can be written in the form
g(w) = g (w) + (g(0) — g°**) + % n? cosh? s L w + small nonlinear terms.
Again, we look for a normal vector field in A, (w) written in the form
N (w) = N(w) 4 as(w) Ts(w) + ag(w) Ty(w).
It follows from the equations
(FRa)" geuct (M (w), To(w)) = 0, (Fig)" Geuet(M(w), Ty(w)) = 0
that

N(w) := mﬁ(w)/nmﬁ(w)n(FX’Q)*geucl

= N(w) 4+ (M(0) = Neat) + €2 L w + small non-linear terms.
Let V¢(w) be the Levi-Civita connection corresponding to the metric (F/{ q> Jeuct and taken
along A(w), then we have

5,00 (w) = 00, Cpy(w) + (V(%kag(()) — O0Cy) +em cosh? s Lw

+ small nonlinear terms.
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The second fundamental form bhye(w) = (F§’q>* Jeuel (ngf)g(w), ‘)"((w)) satisfies
b(w) =~ (w) + (H(0) — A°) +en cosh? s Lw + small non-linear terms.

*
and, finally, the result follows when we take the trace with respect to the metric (F/i’q) Jeucl -
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