L. Nazarenko, G. A. Schmidt, R. L. Miller, N. Tausnev, M. Kelley et al., Future climate change under RCP emission scenarios with GISS ModelE2, Journal of Advances in Modeling Earth Systems, vol.105, issue.7, pp.244-267, 2015.
DOI : 10.1002/2014MS000403

H. J. Veringa, Advanced techniques for generation of energy from biomass and waste

J. Syrota, « Perspectives énergétiques de la France à l'horizon 2020-2050 ». Centre d'analyse stratégique, 2008.

L. Zhang, C. Xu, and E. P. Champagne, « Overview of recent advances in thermo-chemical conversion of biomass », Energy Convers, Manag, vol.51, issue.5, pp.969-982, 2010.

Z. Xingang, T. Zhongfu, and E. L. Pingkuo, Development goal of 30GW for China???s biomass power generation: Will it be achieved?, Renewable and Sustainable Energy Reviews, vol.25, pp.310-317, 2013.
DOI : 10.1016/j.rser.2013.04.008

G. Maschio, C. Koufopanos, and E. A. Lucchesi, Pyrolysis, a promising route for biomass utilization, Bioresource Technology, vol.42, issue.3, pp.219-231, 1992.
DOI : 10.1016/0960-8524(92)90025-S

Z. Zhou, X. Yin, J. Xu, and E. L. Ma, The development situation of biomass gasification power generation in China, Energy Policy, vol.51, pp.52-57
DOI : 10.1016/j.enpol.2012.05.085

F. Fabry, C. Rehmet, V. Rohani, and E. L. Fulcheri, Waste Gasification by Thermal Plasma: A Review, Waste Gasification by Thermal Plasma: A Review, pp.421-439
DOI : 10.1007/s12649-013-9201-7

URL : https://hal.archives-ouvertes.fr/hal-00786123

A. Y. Khodakov, W. Chu, and E. P. Fongarland, Advances in the Development of Novel Cobalt Fischer???Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chemical Reviews, vol.107, issue.5, pp.1692-1744, 2007.
DOI : 10.1021/cr050972v

B. M. Jenkins, L. L. Baxter, T. R. Miles-jr, T. R. Et, and . Miles, Combustion properties of biomass, Combustion properties of biomass, pp.17-46, 1998.
DOI : 10.1016/S0378-3820(97)00059-3

. Sjaak-van-loo, Biomass Combustion and Co-firing -an overview », IEA Bioenergy, 2002.

L. Zheng, Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture. Canada: CanmetENERGY Ottawa Research Centre, 2011.

A. Skorek-osikowska, L. Bartela, J. Kotowicz, and E. M. Job, Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology », Energy Convers, Manag, vol.76, pp.109-120

A. Green, H. Van-ravenswaay, J. Wagner, B. Green, and T. Cherry, Co-feeding and co-firing biomass with non-hazardous waste and natural gas, Bioresource Technology, vol.36, issue.3, pp.215-221, 1991.
DOI : 10.1016/0960-8524(91)90226-A

M. Tsai, K. Wu, C. Huang, and H. Lee, Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler, Waste Management, vol.22, issue.4, pp.439-442, 2002.
DOI : 10.1016/S0956-053X(02)00027-2

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and E. P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.61, issue.1
DOI : 10.1016/j.sab.2005.10.003

Y. Ju and W. Sun, Plasma assisted combustion: Dynamics and chemistry, Progress in Energy and Combustion Science, vol.48, pp.21-83, 2015.
DOI : 10.1016/j.pecs.2014.12.002

Y. Ju and W. Sun, Plasma assisted combustion: Progress, challenges, and opportunities, Combustion and Flame, vol.162, issue.3, pp.529-532, 2015.
DOI : 10.1016/j.combustflame.2015.01.017

J. M. Bergthorson and M. J. Thomson, A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines, Renewable and Sustainable Energy Reviews, vol.42, pp.1393-1417
DOI : 10.1016/j.rser.2014.10.034

S. S. Merola, L. Marchitto, C. Tornatore, and G. Valentino, Optical characterization of combustion processes in a DISI engine equipped with plasma-assisted ignition system, Applied Thermal Engineering, vol.69, issue.1-2, pp.177-187, 2014.
DOI : 10.1016/j.applthermaleng.2014.04.046

A. Starikovskiy, N. Aleksandrov, and . Plasma, Plasma-assisted ignition and combustion, Progress in Energy and Combustion Science, vol.39, issue.1, pp.61-110, 2013.
DOI : 10.1016/j.pecs.2012.05.003

A. Warris and F. Weinberg, Ignition and flame stabilization by plasma jets in fast gas streams, Symposium (International) on Combustion, vol.20, issue.1, pp.1825-1831, 1985.
DOI : 10.1016/S0082-0784(85)80680-9

A. Askarova, E. Karpenko, Y. Lavrishcheva, V. E. Messerle, and E. A. Ustimenko, Plasma-Supported Coal Combustion in Boiler Furnace, Plasma-Supported Coal Combustion in Boiler Furnace, pp.1607-1616, 2007.
DOI : 10.1109/TPS.2007.910142

I. B. Matveev and L. A. Rosocha, Guest Editorial Classification of Plasma Systems for Plasma-Assisted Combustion, IEEE Transactions on Plasma Science, vol.38, issue.12, pp.38-3257, 2010.
DOI : 10.1109/TPS.2010.2091153

F. Wang, J. B. Liu, J. Sinibaldi, C. Brophy, A. Kuthi et al., Transient plasma ignition of quiescent and flowing air/fuel mixtures, IEEE Transactions on Plasma Science, vol.33, issue.2, pp.844-849, 2005.
DOI : 10.1109/TPS.2005.845251

V. E. Messerle, E. I. Karpenko, and A. B. , Plasma assisted power coal combustion in the furnace of utility boiler: Numerical modeling and full-scale test, Fuel, vol.126, pp.294-300, 2014.
DOI : 10.1016/j.fuel.2014.02.047

«. Nfpa, Boiler and Combustion Systems Hazards Code ». [En ligne]

V. E. Messerle, A. B. Ustimenko, and O. A. , Lavrichshev, « Plasma-assisted ignition and combustion of pulverized coal at thermal power plants of Kazakhstan, Proceedings of the 2014 International Conference on Power Systems, 2014.

P. Bukowski, P. Kobel, W. Kordylewski, and E. T. M?czka, Use of cavity plasmatron in pulverized coal muffle burner for start-up of a boiler, Rynek Energii, issue.1, pp.132-136, 2010.

T. Wild and H. Brüggemann, « Burner for burning a pulverulent fuel for a boiler having a plasma ignition torch, pp.27-2013

G. Gerard and «. Pasma, Assisted Combustion: review and evaluation, 2014.

M. A. Gorokhovski, Z. Jankoski, F. C. Lockwood, E. I. Karpenko, V. E. Messerle et al., ENHANCEMENT OF PULVERIZED COAL COMBUSTION BY PLASMA TECHNOLOGY, Enhancement of Pulverized Coal Combustion by Plasma Technology », pp.2065-2090, 2007.
DOI : 10.1016/0016-2361(74)90067-2

S. Xiaoming and «. A. , Study of Plasma Ignition and Combustion System (PICS) ». Post- Master in International Energy management -Alternatives pour l'Energie du Future (ALEF)-Mines ParisTech, 2010.

P. Fauchais and A. Vardelle, Pending problems in thermal plasmas and actual development, Plasma Physics and Controlled Fusion, vol.42, issue.12B, p.365, 2000.
DOI : 10.1088/0741-3335/42/12B/327

M. I. Boulos, Thermal plasma processing, Thermal plasma processing, pp.1078-1089, 1991.
DOI : 10.1109/27.125032

J. D. Chase, Theoretical and Experimental Investigation of Pressure and Flow in Induction Plasmas, Theoretical and Experimental Investigation of Pressure and Flow in Induction Plasmas, pp.4870-4879, 1971.
DOI : 10.1063/1.1659867

H. S. Uhm, Y. C. Hong, and D. H. Shin, A microwave plasma torch and its applications, Plasma Sources Science and Technology, vol.15, issue.2, p.26, 2006.
DOI : 10.1088/0963-0252/15/2/S04

A. I. Al-shamma-'a, S. R. Wylie, J. Lucas, and C. F. Pau, Design and construction of a 2.45 GHz waveguide-based microwave plasma jet at atmospheric pressure for material processing, Journal of Physics D: Applied Physics, vol.34, issue.18, pp.18-2734, 2001.
DOI : 10.1088/0022-3727/34/18/304

S. A. Gower, Development of a high power microwave plasma beam applicator, Review of Scientific Instruments, vol.72, issue.11, pp.4273-2001
DOI : 10.1063/1.1406920

M. I. Boulos, P. Fauchais, and E. E. Pfender, Thermal Plasmas: Fundamentals and Applications, 2013.
DOI : 10.1007/978-1-4899-1337-1

D. E. Geister, A high pressure AC arc heater system, 4th Aerodynamic Testing Conference
DOI : 10.2514/6.1969-348

D. E. Geister, Analysis and design of a high pressure A.C. arc heater, 1967.

. Larsen-hilde-loken, « AC electric arc models for a laboratory set-up and a silicon metal furnace, 1996.

P. Rutberg, Physics and Technology of High Current Discharges in Dense Gas Media and Flows, 2009.

P. G. Rutberg, Plasma pyrolysis of toxic waste, Plasma Physics and Controlled Fusion, vol.45, issue.6, p.957, 2003.
DOI : 10.1088/0741-3335/45/6/309

P. G. Rutberg, A. N. Bratsev, V. A. Kuznetsov, V. E. Popov, A. A. Ufimtsev et al., On efficiency of plasma gasification of wood residues, Biomass and Bioenergy, vol.35, issue.1, pp.495-504
DOI : 10.1016/j.biombioe.2010.09.010

P. G. Rutberg, A. A. Safronov, S. D. Popov, A. V. Surov, and G. V. Nakonechny, Multiphase stationary plasma generators working on oxidizing media, Multiphase stationary plasma generators working on oxidizing media, p.1681, 2005.
DOI : 10.1088/0741-3335/47/10/006

H. J. Bebber and K. H. Heinen, Neuschutz, « krupp 3-phase a.c. plasma technology for melting scrap and heating molten steel, 1987.

H. J. Bebber, « Scaling-up of plasma processes, Journal of high temperature chemical processes, pp.665-676, 1994.

J. Hackmann and H. Bebber, Electrode erosion in high power thermal arcs, Pure and Applied Chemistry, vol.64, issue.5, pp.653-656, 1992.
DOI : 10.1351/pac199264050653

D. Neuschütz, Plasma processing of dusts and residues, Pure and Applied Chemistry, vol.68, issue.5, pp.1159-1165, 1996.
DOI : 10.1351/pac199668051159

C. Bonet, Contribution à l'étude théorique de l'évaporation d'une particule sphérique d'un matériau réfractaire dans un plasma thermique: application à l'étude du traitement thermique de réfractaires dans un lit fluidisé par un écoulement de plasma, 1973.

C. Bonet, Thermal plasma technology for processing of refractory materials, Pure and Applied Chemistry, vol.52, issue.7, pp.1707-1720, 1980.
DOI : 10.1351/pac198052071707

C. Bonet, M. Foex, and E. R. Munz, « Behavior of various metals used as electrodes in 3- phase ac plasma generator, pp.141-147, 1976.

L. Fulcheri and Y. Schwob, From methane to hydrogen, carbon black and water, International Journal of Hydrogen Energy, vol.20, issue.3, pp.197-202, 1995.
DOI : 10.1016/0360-3199(94)E0022-Q

URL : https://hal.archives-ouvertes.fr/hal-01425269

L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei et al., Plasma processing: a step towards the production of new grades of carbon black, Carbon, vol.40, issue.2, pp.169-176, 2002.
DOI : 10.1016/S0008-6223(01)00169-5

URL : https://hal.archives-ouvertes.fr/hal-00542345

F. Fabry, « Etude d'un procédé plasma pour la synthèse de noirs de carbone structures par pyrolyse d'hydrocarbures à haute température et caractérisation des produits, 1999.

T. Gruenberger, J. Gonzalez-aguilar, F. Fabry, L. Fulcheri, E. Grivei et al., Production of Carbon Nanotubes and Other Nanostructures Via Continuous 3???Phase AC Plasma Processing, Fullerenes, Nanotubes and Carbon Nanostructures, vol.12, issue.3, pp.571-581, 2004.
DOI : 10.1016/0022-0248(93)90020-W

URL : https://hal.archives-ouvertes.fr/hal-00528743

H. Okuno, E. Grivei, F. Fabry, T. M. Gruenberger, J. Gonzalez-aguilar et al., Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process, Carbon, vol.42, issue.12-13, pp.2543-2549, 2004.
DOI : 10.1016/j.carbon.2004.05.037

URL : https://hal.archives-ouvertes.fr/hal-00528754

P. Fauchais, Understanding plasma spraying, Journal of Physics D: Applied Physics, vol.37, issue.9, p.86, 2004.
DOI : 10.1088/0022-3727/37/9/R02

URL : https://hal.archives-ouvertes.fr/hal-00944489

X. Jiang and M. Boulos, Induction plasma spheroidization of tungsten and molybdenum powders, Transactions of Nonferrous Metals Society of China, vol.16, issue.1, pp.13-17, 2006.
DOI : 10.1016/S1003-6326(06)60003-4

N. Boudesocque, « Contribution à l'étude de plasmas d'arc immergé : applications à la décontamination et à la gazéification d'effluents organiques acqueux, Thèse, 2007.

M. Mabrouk, Contribution au développement d'un procédé d'incinération de déchets organiques liquides par plasma d'arc immergé, Thèse, 2012.

«. Monolith and ». , En ligne]. Disponible sur: http://monolithmaterials.com

S. D. Smith, H. R. Hardaway, and J. G. Crowder, « Recent developments in the applications of mid-infrared lasers, LEDs, and other solid state sources to gas detection », présenté à Novel In-Plane Semiconductor Lasers, pp.157-172, 2002.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2??m in a compact and optically efficient sensor, Sensors and Actuators B: Chemical, vol.186, pp.580-588, 2013.
DOI : 10.1016/j.snb.2013.06.006

J. Goma and M. Oberlin, Graphitization of thin carbon films, Thin Solid Films, vol.65, issue.2, pp.221-232, 1980.
DOI : 10.1016/0040-6090(80)90256-4

L. F. Mal-'tseva and É. N. , Determination of the electrical properties of graphite at high temperatures, Soviet Powder Metallurgy and Metal Ceramics, vol.1, issue.1, pp.34-38, 1962.
DOI : 10.1007/BF01135029

R. A. Langley and I. A. Agency, Data Compendium for Plasma-Surface Interactions, Nuclear Fusion, vol.24, issue.S1, 1984.
DOI : 10.1088/0029-5515/24/S1/001

C. Rehmet, « Étude théorique et expérimentale d'une torche plasma triphasée à arcs libres associée à un procédé de gazéification de matière organique, 2013.

E. D. Club, . F-/-arc-electrique, and . Éd, Arc électrique et ses applications, 1984.

J. E. Daalder, Components of cathode erosion in vacuum arcs, Journal of Physics D: Applied Physics, vol.9, issue.16, p.2379, 1976.
DOI : 10.1088/0022-3727/9/16/009

C. W. Kimblin, Erosion and ionization in the cathode spot regions of vacuum arcs, Journal of Applied Physics, vol.44, issue.7, pp.3074-3081, 1973.
DOI : 10.1063/1.1662710

A. E. Guile and B. Juttner, Basic Erosion Processes of Oxidized and Clean Metal Cathodes by Electric Arcs, IEEE Transactions on Plasma Science, vol.8, issue.3, pp.259-269, 1980.
DOI : 10.1109/TPS.1980.4317315

E. Hantzsche, Mysteries of the arc cathode spot: a retrospective glance, IEEE Transactions on Plasma Science, vol.31, issue.5, pp.799-808, 2003.
DOI : 10.1109/TPS.2003.818412

L. Holland and S. M. Ojha, The chemical sputtering of graphite in an oxygen plasma, Vacuum, vol.26, issue.2, pp.53-60, 1976.
DOI : 10.1016/S0042-207X(76)80624-0

M. Ilbas, The effect of thermal radiation and radiation models on hydrogen???hydrocarbon combustion modelling, International Journal of Hydrogen Energy, vol.30, issue.10, pp.1113-1126, 2005.
DOI : 10.1016/j.ijhydene.2004.10.009

P. L. Walker, R. L. Taylor, and J. M. Ranish, An update on the carbon-oxygen reaction, Carbon, vol.29, issue.3, pp.411-421, 1991.
DOI : 10.1016/0008-6223(91)90210-A

V. V. Terzija and H. Koglin, On the Modeling of Long Arc in Still Air and Arc Resistance Calculation, IEEE Transactions on Power Delivery, vol.19, issue.3, pp.1012-1017, 2004.
DOI : 10.1109/TPWRD.2004.829912

B. Ravary, « Modelisation thermique et hydrodynamique d'un reacteur plasma triphase. Contribution a la mise au point d'un procede industriel pour la fabrication de noir de carbone, Thèse, ENSM PARIS, 1998.

S. Megy, S. Bousrih, J. Baronnet, E. A. Ershov-pavlov, J. K. Williams et al., Characterization of a twin-torch transferred dc arc, Plasma Chemistry and Plasma Processing, vol.8, issue.Suppl. No. 3, pp.309-331, 1995.
DOI : 10.1007/BF01459701

A. Kaddani, S. Zahrai, and C. Delalondre, Three-dimensional modelling of unsteady high-pressure arcs in argon, Journal of Physics D: Applied Physics, vol.28, issue.11, p.2294, 1995.
DOI : 10.1088/0022-3727/28/11/010

A. Douce, « Modélisation 3-D du chauffage d'un bain métallique par plasma d'arc transféré : application à un réacteur axisymétrique, Thèse, 1999.

M. Gonzales, « Simulations tridimentionnelles instantionnaires de l'interaction entre un arc electrique et un ecoulement environnant, 1999.

P. Freton, J. J. Gonzalez, and E. A. Gleizes, Comparison between a two- and a three-dimensional arc plasma configuration, Journal of Physics D: Applied Physics, vol.33, issue.19, pp.2442-2452, 2000.
DOI : 10.1088/0022-3727/33/19/315

B. Barthelemy, Combustion-Vitrification de déchets radioactifs par plasma d'arc : modélisation de la thermique et de la dynamique, Thèse, 2003.

A. Blais, P. Proulx, and M. I. Boulos, Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon, Journal of Physics D: Applied Physics, vol.36, issue.5, p.488, 2003.
DOI : 10.1088/0022-3727/36/5/311

H. Li and X. Chen, Three-dimensional modelling of a dc non-transferred arc plasma torch, Journal of Physics D: Applied Physics, vol.34, issue.17, pp.17-99, 2001.
DOI : 10.1088/0022-3727/34/17/102

H. Li, E. Pfender, and E. X. Chen, Application of Steenbeck's minimum principle for three-dimensional modelling of DC arc plasma torches, Journal of Physics D: Applied Physics, vol.36, issue.9, p.1084, 2003.
DOI : 10.1088/0022-3727/36/9/306

V. Colombo, E. Ghedini, M. Boselli, and P. Sanibondi, 3D static and time-dependent modelling of a dc transferred arc twin torch system, Journal of Physics D: Applied Physics, vol.44, issue.19, p.194005, 2011.
DOI : 10.1088/0022-3727/44/19/194005

URL : https://hal.archives-ouvertes.fr/hal-00615137

J. Mougenot, J. Gonzalez, and P. Freton, Plasma???weld pool interaction in tungsten inert-gas configuration, Journal of Physics D: Applied Physics, vol.46, issue.13, pp.135206-2013
DOI : 10.1088/0022-3727/46/13/135206

B. Ravary, L. Fulcheri, J. A. Bakken, G. Flamant, and E. F. Fabry, Influence of the Electromagnetic Forces on Momentum and Heat Transfer in a 3-Phase ac Plasma Reactor, Plasma Chemistry and Plasma Processing, vol.19, issue.1, pp.69-89, 1999.
DOI : 10.1023/A:1021855916566

URL : https://hal.archives-ouvertes.fr/hal-00542379

B. Ravary, Modelisation thermique et hydrodynamique d'un reacteur plasma triphase. Contribution a la mise au point d'un procede industriel pour la fabrication de noir de carbone, ENSM PARIS, 1998.
URL : https://hal.archives-ouvertes.fr/tel-01138155

I. Deme, « Contribution à la modélisation de l'écoulement dans un réacteur plasma pour la fabrication de noirs de carbone : Influence du rayonnement des particules de carbone, Thèse, 2002.

M. K. Choudhary, R. Venuturumilli, and M. R. Hyre, Mathematical Modeling of Flow and Heat Transfer Phenomena in Glass Melting, Delivery, and Forming Processes, Mathematical Modeling of Flow and Heat Transfer Phenomena in Glass Melting, Delivery, and Forming Processes, pp.188-214, 2010.
DOI : 10.1111/j.2041-1294.2010.00018.x

B. Dussoubs, « Modélisation tri-dimensionnelle du procédé de projection plasma : influence des conditions d'injection de la poudre et des paramètres de projection sur le traitement et la répartition des particules dans l'écoulement, Thèse, 1998.

L. Klinger and J. B. Vos, A simplified gradient evaluation on non-orthogonal meshes; application to a plasma torch simulation method, Computers & Fluids, vol.33, issue.4, pp.643-654, 2004.
DOI : 10.1016/j.compfluid.2003.07.005

C. Baudry, A. Vardelle, G. Mariaux, M. Abbaoui, and E. A. Lefort, NUMERICAL MODELING OF A DC NON-TRANSFERRED PLASMA TORCH: MOVEMENT OF THE ARC ANODE ATTACHMENT AND RESULTING ANODE EROSION, High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes), vol.9, issue.1, pp.1-15, 2005.
DOI : 10.1615/HighTempMatProc.v9.i1.10

URL : https://hal.archives-ouvertes.fr/hal-00019717

A. Kiyoumarsi, A. Nazari, M. Ataei, H. K. Beheshti, and E. H. Karimi, Three dimensional analysis of an AC electric arc furnace, 2009 35th Annual Conference of IEEE Industrial Electronics, pp.3697-3702, 2009.
DOI : 10.1109/IECON.2009.5415134

K. M. Tang, J. D. Yan, C. Chapman, and M. T. , Fang, « Three-dimensional modelling of a dc arc plasma in a twin-torch system, J. Phys. Appl. Phys, vol.43, pp.34-345201, 2010.

J. R. Dwyer and M. A. Uman, The physics of lightning, Physics Reports, vol.534, issue.4, pp.147-241, 2014.
DOI : 10.1016/j.physrep.2013.09.004

E. Izquierdo, « Étude théorique et expérimentale de décharges électriques à haute pression et faible courant en milieu non-réactif et réactif appliqué à la synthèse d'hydrocarbures, Thèse, École Nationale Supérieure des Mines de Paris, 2008.

C. Rehmet, V. Rohani, F. Cauneau, and E. L. Fulcheri, 3D Unsteady State MHD Modeling of a 3-Phase AC Hot Graphite Electrodes Plasma Torch, Plasma Chemistry and Plasma Processing, vol.28, issue.2, pp.491-515
DOI : 10.1007/s11090-013-9438-8

URL : https://hal.archives-ouvertes.fr/hal-00783778

C. Rehmet, F. Fabry, V. Rohani, F. Cauneau, and E. L. Fulcheri, Unsteady state analysis of free-burning arcs in a 3-Phase AC plasma torch: comparison between parallel and coplanar electrode configurations, Plasma Sources Science and Technology, vol.23, issue.6, p.65011, 2014.
DOI : 10.1088/0963-0252/23/6/065011

URL : https://hal.archives-ouvertes.fr/hal-01086921

S. Takali, L. Fulcheri, F. Fabry, and E. F. Cauneau, Analyse statistique du mouvement des arcs dans une torche plasma triphasée à électrodes en graphite par camera rapide », présenté à CAE XI -Colloque sur les Arcs Electriques, p.4, 2013.

N. C. Markatos, The mathematical modelling of turbulent flows, Applied Mathematical Modelling, vol.10, issue.3, pp.190-220, 1986.
DOI : 10.1016/0307-904X(86)90045-4

C. D. Argyropoulos and N. C. Markatos, Recent advances on the numerical modelling of turbulent flows, Applied Mathematical Modelling, vol.39, issue.2, pp.693-732, 2014.
DOI : 10.1016/j.apm.2014.07.001

F. R. Menter, Review of the shear-stress transport turbulence model experience from an industrial perspective, International Journal of Computational Fluid Dynamics, vol.1, issue.4, pp.305-316, 2009.
DOI : 10.1007/s00162-006-0015-0

R. L. Williamson, J. R. Fincke, D. M. Crawford, S. C. Snyder, W. D. Swank et al., Entrainment in high-velocity, high-temperature plasma jets., International Journal of Heat and Mass Transfer, vol.46, issue.22, pp.22-4215, 2003.
DOI : 10.1016/S0017-9310(03)00271-0

J. P. Trelles, C. Chazelas, A. Vardelle, and J. V. Heberlein, Arc Plasma Torch Modeling, Arc Plasma Torch Modeling, pp.728-752, 2009.
DOI : 10.1007/s11666-009-9342-1

URL : https://hal.archives-ouvertes.fr/hal-00450921

Q. Hou and Z. Zou, Comparison between Standard and Renormalization Group k-.EPSILON. Models in Numerical Simulation of Swirling Flow Tundish, ISIJ International, vol.45, issue.3, pp.325-330, 2005.
DOI : 10.2355/isijinternational.45.325

T. M. Shen, C. Y. Chen, and Y. S. Wang, Calculation of photon angular distribution and polarization for radiative recombination for highly charged helium-like ions, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.107, issue.2, pp.323-330, 2007.
DOI : 10.1016/j.jqsrt.2007.02.007

R. A. Allen, A. Textoris, and E. J. Wilson, Measurements of the free-bound and free-free continua of nitrogen, oxygen and air, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.5, issue.1, pp.95-97, 1965.
DOI : 10.1016/0022-4073(65)90035-X

M. F. Modest, Radiative Heat Transfer, 2013.

T. Iwao, H. Miyazaki, T. Hayashi, and T. Hirano, Inaba, « Radiation power emitted from Ar torch short plasma as a function of in-put power in several kW, pp.88-97, 2000.

B. H. Armstrong, J. Sokoloff, R. W. Nicholls, D. H. Holland, and R. E. Meyerott, Radiative properties of high temperature air, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.1, issue.2, pp.143-162, 1961.
DOI : 10.1016/0022-4073(61)90020-6

D. R. Churchill, B. H. Armstrong, and K. G. Mueller, « Absorption Coefficient of Heated Air: A Compilation to 24, 1965.

P. Rivière, A. Soufiani, M. Y. Perrin, and H. Riad, Gleizes, « Air mixture radiative property modelling in the temperature range, J. Quant. Spectrosc. Radiat. Transf, vol.10, issue.56 1, pp.0-40, 1996.

B. Peyrou, L. Chemartin, P. Lalande, B. G. Chéron, P. Rivière et al., Soufiani, « Radiative properties and radiative transfer in high pressure thermal air plasmas, J. Phys. Appl. Phys, vol.45, pp.45-455203, 2012.

N. Bogatyreva and M. Bartlova, Mean absorption coefficients of air plasmas, Journal of Physics: Conference Series, vol.275, issue.1, p.12009, 2011.
DOI : 10.1088/1742-6596/275/1/012009

B. D. Ganapol and G. C. , On the use of the Rosseland and Planck mean absorption coefficients in the non-equilibrium radiative transfer equation, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.37, issue.3, pp.297-309, 1987.
DOI : 10.1016/0022-4073(87)90050-1

T. Billoux, Y. Cressault, and P. Teulet, Calculation of the net emission coefficient of an air thermal plasma at very high pressure, Journal of Physics: Conference Series, vol.406, issue.1, p.12010, 2012.
DOI : 10.1088/1742-6596/406/1/012010

J. Cooper, Plasma spectroscopy, Plasma spectroscopy, pp.35-130, 1966.
DOI : 10.1088/0034-4885/29/1/302

R. Siegel, Thermal Radiation Heat Transfer, Fourth Edition, 2001.

X. Lu and T. Wang, Investigation of radiation models in entrained-flow coal gasification simulation, International Journal of Heat and Mass Transfer, vol.67, pp.377-392
DOI : 10.1016/j.ijheatmasstransfer.2013.08.011

G. D. Bernard-pateyron, T&Twinner, calculation and data bases of thermodynamics and transportation properties, Direction des bibliothèques, des Musées et de l'Information Scientifique et technique, 1999.

B. Ravary, L. Fulcheri, G. Flamant, and E. F. Fabry, Analysis of a 3-Phase AC Plasma system, High Temp. Mater. Process, vol.2, issue.2, pp.245-260, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00545990

T. Iwao, K. Iwase, S. Tashiro, M. Tanaka, and E. M. Yumoto, Numerical simulation of argon twin torch plasma arc for high heating efficiency, Vacuum, vol.83, issue.1, pp.34-38, 2008.
DOI : 10.1016/j.vacuum.2008.03.095

J. Mostaghimi and M. I. Boulos, Thermal Plasma Sources: How Well are They Adopted to Process Needs?, Plasma Chemistry and Plasma Processing, vol.19, issue.065024, pp.421-436
DOI : 10.1007/s11090-015-9616-y

T. Lu and C. K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Progress in Energy and Combustion Science, vol.35, issue.2, pp.192-215, 2009.
DOI : 10.1016/j.pecs.2008.10.002

M. Rein, « The partial?equilibrium approximation in reacting flows », Phys. Fluids Fluid Dyn, pp.873-886, 1989.

T. Løvås, F. Mauss, C. Hasse, and E. N. Peters, Development of adaptive kinetics for application in combustion systems, Proceedings of the Combustion Institute, vol.29, issue.1, pp.1403-1410, 2002.
DOI : 10.1016/S1540-7489(02)80172-9

S. H. Lam and D. A. , The CSP method for simplifying kinetics, International Journal of Chemical Kinetics, vol.79, issue.4, pp.461-486, 1994.
DOI : 10.1002/kin.550260408

C. K. Westbrook and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Progress in Energy and Combustion Science, vol.10, issue.1, pp.1-57, 1984.
DOI : 10.1016/0360-1285(84)90118-7

F. L. Dryer and I. Glassman, High-temperature oxidation of CO and CH4, Symposium (International) on Combustion, vol.14, issue.1, pp.987-1003, 1973.
DOI : 10.1016/S0082-0784(73)80090-6

C. K. Westbrook and F. L. Dryer, Chemical kinetics and modeling of combustion processes, Symposium (International) on Combustion, vol.18, issue.1, pp.749-767, 1981.
DOI : 10.1016/S0082-0784(81)80079-3

C. K. Westbrook and F. L. Dryer, Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames, Combustion Science and Technology, vol.12, issue.1-2, pp.31-43, 1981.
DOI : 10.1080/00102208108946970

J. Andersen, C. L. Rasmussen, T. Giselsson, and E. P. Glarborg, Global Combustion Mechanisms for Use in CFD Modeling under Oxy-Fuel Conditions, Energy & Fuels, vol.23, issue.3, pp.1379-1389, 2009.
DOI : 10.1021/ef8003619

W. P. Jones and R. P. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combustion and Flame, vol.73, issue.3, pp.233-249, 1988.
DOI : 10.1016/0010-2180(88)90021-1

A. Cuoci, A. Frassoldati, T. Faravelli, and E. E. Ranzi, Accuracy and Flexibility of Simplified Kinetic Models for CFD applications », 32nd meeting on combustion, Italian section of the Combustion Institute, 2009.

H. Wang and M. Frenklach, Detailed reduction of reaction mechanisms for flame modeling, Combustion and Flame, vol.87, issue.3-4, pp.365-370, 1991.
DOI : 10.1016/0010-2180(91)90120-Z

N. Peters and R. J. Kee, The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism, Combustion and Flame, vol.68, issue.1, 1987.
DOI : 10.1016/0010-2180(87)90062-9

R. W. Bilger, S. H. Stårner, and R. J. Kee, On reduced mechanisms for methane???air combustion in nonpremixed flames, Combustion and Flame, vol.80, issue.2, pp.135-149, 1990.
DOI : 10.1016/0010-2180(90)90122-8

J. ?. Chen, « Development of Reduced Mechanisms for Numerical Modelling of Turbulent », in Combustion, Numerical Aspects of Reduction in Chemical Kinetics » CERMICS-ENPC Cite Descartes -Champus sur, 1997.

C. J. Sung, C. K. Law, and J. Chen, Augmented reduced mechanisms for NO emission in methane oxidation, 1?2, p. 906?919, avr, 2001.
DOI : 10.1016/S0010-2180(00)00248-0