D. Patrizio, N. Cushing, B. L. Kolesnichenko, V. L. O-'connor, C. J. Rodríguez-gattorno et al., De la solution à l'oxyde: condensation des cations en solution aqueuse, chimie de surface des oxydes; InterEditions: Paris Recent Advances in the Liquid- Phase Syntheses of Inorganic Nanoparticles Metal Oxide Nanoparticles: Synthesis, Characterization and Application, Thermohydrolyse Micro-Onde, Des Nanoparticules Aux Films Minces: Application à SnO 2 et TiO 2 Rutile et Anatase Synthèse de Nanoparticules Photocatalytiques Activables Par Rayons X Pour La Mise Au Point D'une Nouvelle Thérapie Anticancéreuse Par Voie Physique Phase-Pure TiO 2 Nanoparticles: Anatase, Brookite and Rutile. [9] Pacary, V. Étude Des Procédés de Décontamination Des Effluents Liquides Radioactifs Par Coprécipitation : De La Modélisation à La Conception de Nouveaux Procédés, pp.3893-3946, 1994.

C. M. Pina, M. Enders, and A. Putnis, The composition of solid solutions crystallising from aqueous solutions: the influence of supersaturation and growth mechanisms, Chemical Geology, vol.168, issue.3-4, pp.195-210, 2000.
DOI : 10.1016/S0009-2541(00)00227-8

S. A. Galema, Microwave chemistry, Chemical Society Reviews, vol.26, issue.3, 1997.
DOI : 10.1039/cs9972600233

Y. Zhu and F. Chen, Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase, Chemical Reviews, vol.114, issue.12, pp.6462-6555, 2014.
DOI : 10.1021/cr400366s

D. M. Mingos, D. R. Baghurst, and . Tilden-lecture, Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry, Chem. Soc. Rev, vol.20, issue.1, 1991.

K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan, Synthesis of Inorganic Solids Using Microwaves, Chemistry of Materials, vol.11, issue.4, pp.882-895, 1999.
DOI : 10.1021/cm9803859

M. Choi and K. Yong, nanoarrays and their photoelectrochemical properties, Nanoscale, vol.49, issue.22, pp.13900-13909, 2014.
DOI : 10.1039/C4NR04735D

D. A. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science, vol.5, issue.335, pp.855-874, 2011.
DOI : 10.1007/s10853-010-5113-0

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, pp.47-154, 2005.
DOI : 10.1016/j.progsurf.2005.09.002

S. Cassaignon, M. Koelsch, and J. Jolivet, Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid, Journal of Materials Science, vol.7, issue.404, pp.6689-6695, 2007.
DOI : 10.1007/s10853-007-1496-y

URL : https://hal.archives-ouvertes.fr/hal-00334743

C. Charbonneau, R. Gauvin, and G. P. Demopoulos, Nucleation and Growth of Self- Assembled Nanofibre-Structured Rutile (TiO 2 ) Particles via Controlled Forced Hydrolysis of Titanium Tetrachloride Solution, J. Cryst. Growth, pp.312-86, 2009.

K. Ding, Z. Miao, Z. Liu, Z. Zhang, B. Han et al., Nanocrystals in Ionic Liquid via a Microwave-Assisted Process, Journal of the American Chemical Society, vol.129, issue.20, pp.6362-6363, 2007.
DOI : 10.1021/ja070809c

S. Komarneni, R. K. Rajha, and H. Katsuki, Microwave-hydrothermal processing of titanium dioxide, Materials Chemistry and Physics, vol.61, issue.1, pp.61-50, 1999.
DOI : 10.1016/S0254-0584(99)00113-3

A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, and J. Jolivet, Synthesis of Brookite TiO2 Nanoparticles by Thermolysis of TiCl 4 in Strongly Acidic Aqueous Media, J. Mater. Chem, issue.11, pp.1116-1121, 2001.

V. A. Yasir, P. Mohandas, and K. K. Yusuff, Preparation of high surface area TiO2 (anatase) by thermal hydrolysis of titanyl sulphate solution, International Journal of Inorganic Materials, vol.3, issue.7, pp.593-596, 2001.
DOI : 10.1016/S1466-6049(01)00171-4

R. Anatase, Brookite: Mechanism of Formation and Electrochemical Properties, Chem. Mater, vol.22, pp.1173-1179, 2010.

H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa et al., Hydrothermal Synthesis of Nanosized Anatase and Rutile TiO 2 Using Amorphous Phase TiO 2, J. Mater. Chem, issue.11, pp.1694-1703, 2001.

K. Yanagisawa and J. Ovenstone, Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique:?? Effects of Starting Material and Temperature, The Journal of Physical Chemistry B, vol.103, issue.37, pp.7781-7787, 1999.
DOI : 10.1021/jp990521c

F. Dufour, S. Cassaignon, O. Durupthy, C. Colbeau-justin, and C. Chanéac, Do TiO 2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven?, Eur. J. Inorg. Chem, pp.2707-2715, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01468420

L. Broussous, C. V. Santilli, S. H. Pulcinelli, and A. Craievich, SAXS Study of Formation and Growth of Tin Oxide Nanoparticles in the Presence of Complexing Ligands, The Journal of Physical Chemistry B, vol.106, issue.11, pp.2855-2860, 2002.
DOI : 10.1021/jp012700b

E. Michel, D. Stuerga, and D. Chaumont, Microwave Flash Synthesis of Tin Dioxide Sols from Tin Chloride Aqueous Solutions, Journal of Materials Science Letters, vol.20, issue.17, pp.1593-1595, 2001.
DOI : 10.1023/A:1017968903999

J. Jouhannaud, J. Rossignol, and D. Stuerga, Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis, Journal of Solid State Chemistry, vol.181, issue.6, pp.181-1439, 2008.
DOI : 10.1016/j.jssc.2008.02.040

Y. Yang, C. Hu, and C. Hua, Preparation and Characterization of Nanocrystalline Ti x Sn 1?x O 2 Solid Solutions via a Microwave-Assisted Hydrothermal Synthesis Process, CrystEngComm, pp.13-5638, 2011.

J. Yu, S. Liu, and M. Zhou, Incorporation, The Journal of Physical Chemistry C, vol.112, issue.6, pp.2050-2057, 2008.
DOI : 10.1021/jp0770007

URL : https://hal.archives-ouvertes.fr/hal-01230709

L. Trotochaud and S. W. Boettcher, Core/Shell Nanoparticles with Tunable Lattice Constants and Controlled Morphologies, Chemistry of Materials, vol.23, issue.22, pp.4920-4930, 2011.
DOI : 10.1021/cm201737x

C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, 1976.

A. Liberti, V. Chiantella, and F. Corigliano, Mononuclear hydrolysis of titanium (IV) from partition equilibria, Journal of Inorganic and Nuclear Chemistry, vol.25, issue.4, pp.415-427, 1963.
DOI : 10.1016/0022-1902(63)80192-X

F. I. Lobanov, V. M. Savostina, L. V. Serzhenko, and V. M. Peshkova, Distribution Study of Complex Formation by Titanium (IV) with Thenoyltrifluoroacetonate and Hydroxide Ions, Russ. J. Inorg. Chem, vol.14, pp.562-565, 1969.

V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, Spectrophotometric Determination of the Constants for the Mononuclear Hydrolysis of Titanium (IV) Ions. Russ, J. Inorg. Chem, vol.16, pp.530-533, 1971.

J. Schmidt and W. Vogelsberger, Aqueous Long-Term Solubility of Titania Nanoparticles and Titanium(IV) Hydrolysis in a Sodium Chloride System Studied by??Adsorptive Stripping Voltammetry, Journal of Solution Chemistry, vol.5, issue.10, pp.1267-1282, 2009.
DOI : 10.1007/s10953-009-9445-9

T. Sugimoto, X. Zhou, and A. Muramatsu, Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel???Sol Method, Journal of Colloid and Interface Science, vol.252, issue.2, pp.339-346, 2002.
DOI : 10.1006/jcis.2002.8454

S. E. Ziemniak, M. E. Jones, and K. E. Combs, Solubility behavior of titanium(IV) oxide in alkaline media at elevated temperatures, Journal of Solution Chemistry, vol.60, issue.7, pp.601-623, 1993.
DOI : 10.1007/BF00646781

A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. Arienzo et al., by the Control of Phase Composition and Particle Morphology. A Systematic Approach, Journal of the American Chemical Society, vol.129, issue.12, pp.3564-3575, 2007.
DOI : 10.1021/ja067050+

K. G. Knauss, M. J. Dibley, W. L. Bourcier, and H. F. Shaw, Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300??C, Applied Geochemistry, vol.16, issue.9-10, pp.1115-1128, 2001.
DOI : 10.1016/S0883-2927(00)00081-0

S. E. Ziemniak, Metal oxide solubility behavior in high temperature aqueous solutions, Journal of Solution Chemistry, vol.276, issue.8, pp.745-760, 1992.
DOI : 10.1007/BF00651507

H. C. Helgeson, Thermodynamics of complex dissociation in aqueous solution at elevated temperatures, The Journal of Physical Chemistry, vol.71, issue.10, pp.71-3121, 1967.
DOI : 10.1021/j100869a002

B. I. Nabivanets, Determination of the Composition and Stability of Sulphato- Complexes of the Titanyl Ion by Ion-Exchange Chromatography, Russ. J. Inorg. Chem, vol.7, pp.352-354, 1962.

A. K. Babko and E. Mazurenko, A.; Nabivanets, B.I. The Sulphato-Complexes of Titanium (IV) in Solution, Russ J Inorg Chem, vol.14, pp.1091-1093, 1969.

K. C. Sole, Recovery of titanium from the leach liquors of titaniferous magnetites by solvent extraction, Hydrometallurgy, vol.51, issue.2, pp.239-253, 1999.
DOI : 10.1016/S0304-386X(98)00081-4

J. Beukenkamp and K. D. Herrington, Ion-Exchange Investigation of the Nature of Titanium(IV) in Sulfuric Acid and Perchloric Acid, Journal of the American Chemical Society, vol.82, issue.12, pp.3025-3031, 1960.
DOI : 10.1021/ja01497a014

F. Baillon, E. Provost, and W. Fürst, Study of titanium(IV) speciation in sulphuric acid solutions by FT-Raman spectrometry, Journal of Molecular Liquids, vol.143, issue.1, pp.8-12, 2008.
DOI : 10.1016/j.molliq.2008.04.010

URL : https://hal.archives-ouvertes.fr/hal-00848767

I. Szilágyi, E. Königsberger, and P. M. May, Characterization of Chemical Speciation of Titanyl Sulfate Solutions for Production of Titanium Dioxide Precipitates, Inorganic Chemistry, vol.48, issue.5, pp.2200-2204, 2009.
DOI : 10.1021/ic801722r

K. J. Jackson and H. C. Helgeson, Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I. Calculation of the solubility of cassiterite at high pressures and temperatures, Geochimica et Cosmochimica Acta, vol.49, issue.1, pp.1-22, 1985.
DOI : 10.1016/0016-7037(85)90187-5

G. H. Kelsall and D. J. Robbins, Thermodynamics of Ti-H2O-F(-Fe) systems at 298 K, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.283, issue.1-2, pp.135-157, 1990.
DOI : 10.1016/0022-0728(90)87385-W

I. Szilágyi, E. Königsberger, and P. M. May, Spectroscopic characterisation of weak interactions in acidic titanyl sulfate???iron(ii) sulfate solutions, Dalton Transactions, vol.14, issue.37, p.7717, 2009.
DOI : 10.1039/b906803a

D. Rai, M. Yui, H. T. Schaef, and A. Kitamura, Thermodynamic Model for SnO2(cr) and SnO2(am) Solubility in the Aqueous Na+???H+???OH??????Cl??????H2O System, Journal of Solution Chemistry, vol.88, issue.2, pp.1155-1172, 2011.
DOI : 10.1007/s10953-011-9723-1

V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, Spectrophotometric Determination of the Hydrolysis Constants of tin(IV) Ions, Russ J Inorg Chem, vol.15, pp.980-982, 1971.

L. Duro, M. Grivé, E. Cera, C. Domènech, and J. Bruno, Update of a Thermodynamic Database for Radionuclides to Assist Solubility Limits Calculation for Performance Assessment; TR-06-17, 2006.

N. Fatouros, F. Rouelle, and M. Chemla, Influence de La Formation de Complexes Chlorures Sur La Réduction électrochimique de Sn IV En Milieu Perchlorique Acide, J Chim Phys Phys-Chim Biol, pp.75-477, 1978.

T. Gajda, P. Sipos, and H. Gamsjäger, The standard electrode potential of the Sn4+/Sn2+ couple revisited, Monatshefte f??r Chemie - Chemical Monthly, vol.40, issue.11, pp.1293-1303, 2009.
DOI : 10.1007/s00706-009-0188-5

L. V. Benson and L. S. Teague, Tabulation of Thermodynamic Data for Chemical Reactions Involving 58 Elements Common to Radioactive Waste Package Systems; LBL-11448, 1980.

M. P. Finnegan, H. Zhang, and J. F. Banfield, Phase Stability and Transformation in Titania Nanoparticles in Aqueous Solutions Dominated by Surface Energy, The Journal of Physical Chemistry C, vol.111, issue.5, pp.1962-1968, 2007.
DOI : 10.1021/jp063822c

D. A. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science, vol.5, issue.335, pp.855-874, 2011.
DOI : 10.1007/s10853-010-5113-0

P. A. Bhatt, S. Mishra, P. K. Jha, and A. Pratap, Size-Dependent Surface Energy and Tolman Length of TiO 2 and SnO 2 Nanoparticles, Phys. B Condens. Matter, pp.461-101, 2015.

J. Jolivet, C. Froidefond, A. Pottier, C. Chanéac, S. Cassaignon et al., Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling, J. Mater. Chem., vol.152, issue.21, pp.14-3281, 2004.
DOI : 10.1039/B407086K

C. Noguera, B. Fritz, A. Clément, and Y. Amal, Simulation of the nucleation and growth of binary solid solutions in aqueous solutions, Chemical Geology, vol.269, issue.1-2, pp.89-99, 2010.
DOI : 10.1016/j.chemgeo.2009.05.025

URL : https://hal.archives-ouvertes.fr/insu-00556508

J. Hochepied, M. Berger, F. Dynys, A. Dessombz, and A. Sayir, Aqueous Co-precipitated Ti0.5Sn0.5O2 Nanopowders as Precursors for Dense Spinodally Decomposed Ceramics, Journal of the American Ceramic Society, vol.12, issue.6, pp.4226-4230, 2011.
DOI : 10.1111/j.1551-2916.2011.04797.x

URL : https://hal.archives-ouvertes.fr/hal-00662263

Y. Zhao, J. Liu, L. Shi, S. Yuan, J. Fang et al., Surfactant-free synthesis uniform Ti1???xSnxO2 nanocrystal colloids and their photocatalytic performance, Applied Catalysis B: Environmental, vol.100, issue.1-2, pp.68-76, 2010.
DOI : 10.1016/j.apcatb.2010.07.013

K. Nakata and A. Fujishima, TiO2 photocatalysis: Design and applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.13, issue.3, pp.169-189, 2012.
DOI : 10.1016/j.jphotochemrev.2012.06.001

C. Wu and J. Chern, Kinetics of Photocatalytic Decomposition of Methylene Blue, Industrial & Engineering Chemistry Research, vol.45, issue.19, pp.45-6450, 2006.
DOI : 10.1021/ie0602759

E. Grabowska, J. Reszczy?ska, and A. Zaleska, Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review, Water Research, vol.46, issue.17, pp.5453-5471, 2012.
DOI : 10.1016/j.watres.2012.07.048

V. Etacheri, M. K. Seery, S. J. Hinder, and S. C. Pillai, Heterojunctions for Efficient Visible-Light-Induced Photocatalysis, Inorganic Chemistry, vol.51, issue.13, pp.7164-7173, 2012.
DOI : 10.1021/ic3001653

D. Chen, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Applied Catalysis B: Environmental, vol.23, issue.2-3, pp.143-157, 1999.
DOI : 10.1016/S0926-3373(99)00068-5

I. Sopyan, N. Hafizah, and P. Jamal, Immobilization of TiO 2 with Cement: Photocatalytic Degradation of Phenol and Its Kinetic Studies, Indian J. Chem. Technol, vol.18, pp.263-270, 2011.

A. Sobczy?ski, ?. Duczmal, and W. Zmudzi?ski, Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism, Journal of Molecular Catalysis A: Chemical, vol.213, issue.2, pp.225-230, 2004.
DOI : 10.1016/j.molcata.2003.12.006

Y. Zhao, J. Liu, L. Shi, S. Yuan, J. Fang et al., Solvothermal preparation of Sn4+ doped anatase TiO2 nanocrystals from peroxo-metal-complex and their photocatalytic activity, Solvothermal Preparation of Sn 4+ Doped Anatase TiO 2 Nanocrystals from Peroxo-Metal-Complex and Their Photocatalytic Activity, pp.436-443, 2011.
DOI : 10.1016/j.apcatb.2011.02.007

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, vol.125, pp.331-349, 2012.
DOI : 10.1016/j.apcatb.2012.05.036

D. Chen, H. Zhang, S. Hu, and J. Li, Nanocomposites, The Journal of Physical Chemistry C, vol.112, issue.1, pp.117-122, 2008.
DOI : 10.1021/jp077236a

URL : https://hal.archives-ouvertes.fr/hal-00511756

M. Agrawal, S. Gupta, A. Pich, N. E. Zafeiropoulos, and M. Stamm, Hollow Spheres, Chemistry of Materials, vol.21, issue.21, pp.5343-5348, 2009.
DOI : 10.1021/cm9028098

J. Zhu, D. Yang, J. Geng, D. Chen, and Z. Jiang, Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity, Journal of Nanoparticle Research, vol.13, issue.5, pp.729-736, 2008.
DOI : 10.1007/s11051-007-9301-z

Y. Bessekhouad, D. Robert, and J. Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, Journal of Photochemistry and Photobiology A: Chemistry, vol.163, issue.3, pp.569-580, 2004.
DOI : 10.1016/j.jphotochem.2004.02.006

J. Lu, Z. Wang, Y. Zhang, and X. Zhou, Hydrothermal Synthesis of Bi 2 S 3 Nanorods from a Single-Source Precursor and Their Promotional Effect on the Photocatalysis of TiO 2, J. Nanomater, pp.1-6, 2013.

S. Li, Y. Lin, B. Zhang, J. Li, and C. Nan, BiFeO 3 /TiO 2 Core-Shell Structured Nanocomposites as Visible-Active Photocatalysts and Their Optical Response Mechanism, J. Appl. Phys, pp.105-054310, 2009.

A. Zhu, Q. Zhao, X. Li, and Y. Shi, Nanotube Arrays Composite Electrode: Construction, Characterization, and Enhanced Photoelectrochemical Properties, ACS Applied Materials & Interfaces, vol.6, issue.1, pp.671-679, 2014.
DOI : 10.1021/am404774z

S. G. Kumar and L. G. Devi, Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics, The Journal of Physical Chemistry A, vol.115, issue.46, pp.13211-13241, 2011.
DOI : 10.1021/jp204364a

A. Zachariah, K. V. Baiju, S. Shukla, K. S. Deepa, J. James et al., Synergistic Effect in Photocatalysis As Observed for Mixed-Phase Nanocrystalline Titania Processed via Sol???Gel Solvent Mixing and Calcination, The Journal of Physical Chemistry C, vol.112, issue.30, pp.11345-11356, 2008.
DOI : 10.1021/jp712174y

D. Paola, A. Bellardita, M. Ceccato, R. Palmisano, L. Parrino et al., in Water, The Journal of Physical Chemistry C, vol.113, issue.34, pp.15166-15174, 2009.
DOI : 10.1021/jp904673e

F. Fresno, J. M. Coronado, D. Tudela, and J. Soria, Influence of the structural characteristics of Ti1???xSnxO2 nanoparticles on their photocatalytic activity for the elimination of methylcyclohexane vapors, Applied Catalysis B: Environmental, vol.55, issue.3, pp.159-167, 2005.
DOI : 10.1016/j.apcatb.2004.07.012

F. Fresno, D. Tudela, J. M. Coronado, and J. Soria, Synthesis of Ti1???xSnxO2 nanosized photocatalysts in reverse microemulsions, Catalysis Today, vol.143, issue.3-4, pp.230-236, 2009.
DOI : 10.1016/j.cattod.2008.10.024

M. Sirajuddin-;-bhanger, A. Niaz, A. Shah, and A. Rauf, Ultra-trace level determination of hydroquinone in waste photographic solutions by UV???vis spectrophotometry, Talanta, vol.72, issue.2, pp.72-546, 2007.
DOI : 10.1016/j.talanta.2006.11.021

A. K. Brisdon, Inorganic Spectroscopic Methods; Oxford chemistry primers, 1998.

O. Sullivan, D. W. Tyree, and M. , The kinetics of complex formation between Ti(IV) and hydrogen peroxide, International Journal of Chemical Kinetics, vol.15, issue.8, pp.457-461, 2007.
DOI : 10.1002/kin.20259

F. Baillon, Procédé de Synthèse Du Dioxyde de Titane : Analyse et Modélisation Des Solutions Titane-Sulfate, 2002.

P. Gallez, Absorption Atomique & émission de Flamme, Cours Techniques Spectroscopiques d'analyse; IUT d'Annecy, 2011.

L. 'vov and B. , The Analytical Use of Atomic Absorption Spectra, Spectrochim. Acta, vol.17, pp.761-770, 1961.

A. Walsh, The application of atomic absorption spectra to chemical analysis, Spectrochimica Acta, vol.7, pp.108-117, 1955.
DOI : 10.1016/0371-1951(55)80013-6

B. J. Russell, J. P. Shelton, and A. Walsh, An atomic-absorption spectrophotometer and its application to the analysis of solutions, Spectrochimica Acta, vol.8, issue.6, pp.317-328, 1957.
DOI : 10.1016/0371-1951(57)80193-3