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A B S T R A C T

Nowadays, computer generated images can be found everywhere, through a wide range
of applications such as video games, cinema, architecture, publicity, artistic design, virtual
reality, scienti�c visualization, lighting engineering, etc. Consequently, the need for visual
realism and fast rendering is increasingly growing. Realistic rendering involves the estima-
tion of global illumination through light transport simulation, a time consuming process
for which the convergence rate generally decreases as the complexity of the input virtual
3D scene increases. In particular, occlusions and strong indirect illumination are global fea-
tures of the scene that are dif�cult to handle ef�ciently with existing techniques. This thesis
addresses this problem through the application of discrete shape analysis to rendering.

Our main tool is a curvilinear skeleton of the empty space of the scene, a sparse graph con-
taining important geometric and topological information about the structure of the scene.
By taking advantage of this skeleton, we propose new methods to improve both real-time
and off-line rendering methods. Concerning real-time rendering, we exploit geometric in-
formation carried by the skeleton for the approximation of shadows casted by a large set of
virtual point lights representing the indirect illumination of the 3D scene. Regarding off-line
rendering, our works focus on algorithms based on path sampling, that constitute the main
paradigm of state-of-the-art methods addressing physically based rendering. Our skeleton
leads to new ef�cient path sampling strategies guided by topological and geometric features.
Addressing the same problem, we also propose a sampling strategy based on a second tool
from discrete shape analysis: the opening function of the empty space of the scene, describ-
ing the local thickness of that space at each point.

Our contributions demonstrate improvements over existing approaches and clearly indicate
that discrete shape analysis offers many opportunities for the development of new rendering
techniques.

keywords computer graphics, realistic rendering, global illumination, path tracing, dis-
crete shape analysis, skeletonization
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R É S U M É

Les images de synthèse sont présentes à travers un grand nombre d’applications tel que les
jeux vidéo, le cinéma, l’architecture, la publicité, l’art, la réalité virtuelle, la visualisation
scienti�que, l’ingénierie en éclairage, etc. En conséquence, la demande en photoréalisme et
techniques de rendu rapide ne cesse d’augmenter. Le rendu réaliste d’une scène virtuelle
nécessite l’estimation de son illumination globale grâce à une simulation du transport de
lumière, un processus coûteux en temps de calcul dont la vitesse de convergence diminue
généralement lorsque la complexité de la scène augmente. En particulier, une forte illumi-
nation indirecte combinée à de nombreuses occlusions constitue une caractéristique globale
de la scène que les techniques existantes ont du mal à gérer. Cette thèse s’intéresse à ce
problème à travers l’application de techniques d’analyse de formes pour le rendu 3D.

Notre principal outil est un squelette curviligne du vide de la scène, représenté par un graphe
contenant des informations sur la topologie et la géométrie de la scène. Ce squelette nous
permet de proposer de nouvelles méthodes pour améliorer des techniques de rendu temps
réel et non temps réel. Concernant le rendu temps réel, nous utilisons les informations
géométriques du squelette a�n d’approximer le rendu des ombres projetés par un grand
nombre de points virtuels de lumière représentant l’illumination indirecte de la scène 3D.
Pour ce qui est du rendu non temps réel, nos travaux se concentrent sur des algorithmes basés
sur l’échantillonnage de chemins, constituant actuellement le principal paradigme en rendu
physiquement plausible. Notre squelette mène au développement de nouvelles stratégies
d’échantillonnage de chemins, guidés par des caractéristiques topologiques et géométriques.
Nous adressons également ce problème à l’aide d’un second outil d’analyse de formes: la
fonction d’ouverture du vide de la scène, décrivant l’épaisseur locale du vide en chacun de
ses points.

Nos contributions offrent une amélioration des méthodes existantes and indiquent claire-
ment que l’analyse de formes offre de nombreuses opportunités pour le développement de
nouvelles techniques de rendu 3D.

mots clefs synthèse d’images, rendu réaliste, illumination globale, lancer de rayons,
analyse de formes discrètes, squelettisation
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1
I N T R O D U C T I O N

Nowadays, computer generated images can be seen everywhere, both in entertainment ap-
plications (video games, cinema, VFX) and professional applications (lighting engineering,
scienti�c visualization, computer aided design, digital art, product design). This can be ex-
plained by the strong ability of images to convey information, compared to other forms of
medias such as text or sound. As the adage goes,“A picture is worth a thousand words”.

1.1 realistic rendering

One of the most challenging problem faced by computer graphics is realistic 3D rendering,
aiming at a precise simulation of light transport in a virtual scene to produce photo-realistic
images or accurate measurements. Demands for realistic rendering have increased over the
past decades, even for applications that require real-time rendering such as video games or
virtual reality simulators. This has been made possible thanks to new hardware like GPUs
or many-core CPUs, that deliver the necessary power to perform massive parallel computa-
tions, that are common in rendering. However, even with more computational power, light
transport simulation implies mathematical challenges that need to be solved algorithmically
in order to produce photo-realistic images in a decent amount of time. Light transport
simulation involves the costly computation of global illumination, that models all possible
interactions of light with the virtual scene that is to be rendered. Most of current algorithmic
approaches attack this problem with stochastic sampling, to explore the space of light paths
that connect light sources with the camera, and Monte Carlo integration, to estimate the in-
tensity of each pixel. The challenge faced by these methods is to deliver a solution that works
well for any kind of scenes. Recent works have mainly be focused on solving the problem
of rendering scenes containing heterogeneous mixtures of rich materials, that are now com-
mon in industry. Moreover, the complexity of a scene can also come from its geometry and
topology. When many occlusions are present, stochastic sampling of contributing paths can
become inef�cient, if the sampling strategy does not take into account global information
about visibility. This thesis explores new solutions to take advantage of such information,
thanks to techniques from the framework of discrete shape analysis.

1.2 discrete shape analysis for rendering

This thesis is focused on the rendering of complex scenes exposing many occlusions. Such
con�gurations are generally dif�cult to render ef�ciently because occlusions produce discon-
tinuities in the distribution of lighting energy in the scene. Extracting usable information

1



2 introduction

from the scene geometry, in order to adapt rendering algorithms to the visibility con�gura-
tion, can be hard, given that input scenes are generally represented by soups of triangles.
Most of existing approaches only use local information at each point to compute its illumi-
nation, ignoring possible occlusions around the point.

The major trend in research on global illumination is Monte Carlo estimation based on
stochastic local path sampling. In this framework, a path carrying light energy is obtained by
connecting two random sub-path, one starting at a light source and the other starting at the
camera. For Monte Carlo estimation to be ef�cient, paths having a high contribution on the
image must be sampled more frequently. To sample a sub-path, the main procedure involved
is ray sampling, that selects a random outgoing direction at the last vertex of a sub-path in
order to extend it. Ideally, rays must be sampled to reach important parts of the scene more
often (bright parts of the scene or parts visible from the camera). The second procedure for
path sampling is vertex connection, performing a visibility test between the last vertices of
two different sub-paths in order to construct a complete path connecting a light source with
the camera. These two procedures can become highly inef�cient in complex scenes since
occlusions are unpredictable from a local sampling point of view.

Discrete shape analysis (DSA) offers many tools to extract geometric or topological informa-
tion from a volumetric 3D object, such as the empty space of a scene, the medium where
light travels. In this thesis, we propose new methods to take advantage of such tools in
order to improve existing rendering algorithms. We focused our work on two main tools
from the DSA framework: topological skeletons (from digital topology) and opening maps
(from mathematical morphology). Our idea of using a topological skeleton comes from the
fact that visibility in a scene is related to the topological structure of its empty space. Each
surface creates holes or tunnels in the empty space, forcing the light to travel through more
complex paths. The extraction of a skeleton of the empty space of the scene offers a sparse
representation of its geometry and topology, that can be bene�cial to rendering algorithms.
An opening map of a digital object describes the local thickness of this object at each point.
This information is valuable for rendering algorithm since narrow regions of the empty space
are usually hard to explore without any prior knowledge. Given these tools, we address the
following questions in this thesis:

— How can we use a topological skeleton to make rendering algorithms based on path
sampling more robust in occluded scenes ?

— Is it possible to take advantage of the same kind of skeleton to also improve real-time
rendering of global illumination ?

— How to take advantage of the information stored by an opening map to guide path
sampling on regions of empty space that are usually hard to explore ?

To provide answers to these questions, this thesis offers new rendering methods, both for
off-line and interactive/real-time rendering, that are inscribed in the following themes:

skeleton for monte carlo rendering algorithms. We introduce new methods
to exploit a curvilinear skeleton of the empty space of the scene to improve path sampling
for Monte Carlo rendering algorithms such as path tracing and bidirectional path tracing.
This skeleton is used to improve both ray sampling and vertex connection, the two key
components of path sampling.
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skeleton for interactive many-light rendering. Many-light rendering approx-
imates the illumination of a scene with a high number of virtual point lights, involving a high
cost in the evaluation of shadows. We propose two new methods to approximate these shad-
ows in the context of interactive/real-time rendering, using segmentations extracted from a
curvilinear skeleton of the empty space of the scene.

opening maps for ray sampling. Using an opening map of the empty space, we are
able to partition it in regions of variable thickness. With this partitioning, we can extract por-
tals separating regions to ef�ciently sample rays from one region to the other, independently
from their relative thickness.

1.3 thesis organization

This thesis is divided in 12 chapters, distributed across 2 parts.

Light transport simulation is presented in Part I, comprising three chapters. Chapter 2
presents the mathematical and physical background forming the basis of light transport
simulation. Monte Carlo integration, the stochastic estimation strategy favored by most ren-
dering algorithms nowadays, is exposed in Chapter 3. Chapter 4 gives an overview of the
main rendering solutions based on path sampling, from which most state-of-the-art methods
are derived.

The Part II of this thesis is dedicated to the use of our tools from DSA to the global illumi-
nation problem. We give in Chapter 5 an overview of thinning algorithms, which are used
to compute discrete skeletons. Chapter 6 details the thinning algorithm we developed to
compute a topological curvilinear skeleton of the empty space of the scene.

Chapter 7 and Chapter 8 both present new methods to approximate, in real-time, the ren-
dering of indirect illumination. The former proposes an approach based on the concept
of visibility gates extracted from the skeleton, while the latter presents an approach based
on shadow mapping performed at skeleton points, providing an ef�cient approximation of
shadows casted from many virtual light sources.

Subsequent chapters are dedicated to sampling strategies for realistic off-line rendering. The
problem of ray sampling guided by shape analysis is addressed by Chapter 9 and Chapter 10.
Chapter 9 proposes a method based on the skeleton topology and geometry to sample rays in
preferred directions that lead to important parts of the scene. We use an opening map of the
empty space for the same purpose, in the sampling strategy presented in Chapter 10. This
opening map helps us for the extraction portals of the empty space that separate thick regions
from narrow ones, such that rays can be guided through these portals ef�ciently. While this
work is still in progress, we present �rst rendering results and discuss problems that have to
be solved in order to obtain a robust rendering solution. The problem of vertex connection
for path sampling is addressed by our resampling strategy presented in Chapter 11. For that,
we use a segmentation of the scene obtained from our skeleton, and drive the resampling
based on visibility and geometric information extracted from this segmentation.
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Finally, Chapter 12 concludes the works presented in this thesis and discusses perspectives
for future works regarding the application of discrete shape analysis to rendering problems.
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2
M AT H E M AT I C A L F O R M U L AT I O N O F L I G H T T R A N S P O RT

To visually perceive the real world, our eyes are sensitive to incident light by the mean of
biological sensors (rods and cones), that perform measurements from incident light energy.
These measurements are then interpreted by our brain as an image of what stands in front
of us. Electronic cameras work similarly, with a set of sensors to measure incident light, fol-
lowed by a conversion to a digital image. Since light plays a major role for the sense of sight,
a good understanding of its physical properties is required to develop robust rendering al-
gorithms. Over the history, light has been described by several physical theories, such as the
particle theory and the wave theory, before it was recognized that light exhibits the properties
of both particles and waves. Visible light is an electromagnetic radiation, with wavelengths
varying approximately in the range 380 to 750 nm. Optics is the �eld of research that studies
the propagation of light and its interactions with matter. The most complete physical model
is quantum optics, describing lighting phenomena at submicroscopic levels. Yet, the goal of
rendering algorithms is to ef�ciently produce realistic and convincing images, which does
not require to simulate all kinds of phenomena. Consequently, realistic rendering is princi-
pally based on geometric optics, describing the propagation of light in terms of rays, and
radiometry, which assumes that the distribution of light energy in a scene can be completely
characterized by a density function. This simple model is able to describe the most important
visible phenomena, but is limited since it cannot de�ne diffraction, interference or �uores-
cence, for example. Nevertheless, the model is suf�cient to compute realistic images and
accurate measurements in a decent amount of time for applications such as cinema, video
games, architecture, lighting engineering or scienti�c visualization.

In this chapter, we present a mathematical formulation of geometric optics and radiometry.
We �rst introduce, in Section 2.1, geometric quantities involved in light transport simula-
tions, such as the mathematical representation of the 3D scene given as input of a rendering
algorithm. Next, we describe radiometric quantities in Section 2.2, de�ned as functions over
various geometric spaces. In Section2.3, we present a scattering model often used in render-
ing. We limit our discussion to scattering at surfaces since the works presented in this thesis
do not deal with participating media. Finally, we give a description of light transport equa-
tions in Section 2.4, that provide practical expressions for measuring incident light energy at
a virtual sensor or at any point of the scene.
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2.1 geometric quantit ies

2.1.1 Surfaces

The geometry of the scene is represented by a sequence of NM surfaces (M i )i�[[ 1,NM ]] such
that each surfaceM i � R3 is a bounded 2-dimensional manifold and the intersection of two
surfaces is at most a negligible set for the area measureA :

� i �= j, A(M i � M j) = 0 (1)

The sceneM is de�ned by the union of all surfaces (Figure 1):

M :=
NM�

i= 1

M i (2)

=

Figure 1 – The scene is de�ned as the union of individual surfaces.

2.1.2 Directions

The sphere of unit vectors, referred as directions, is denoted byS2:

S2 := { � � R3 | � � � = 1} (3)

The dot product between two directions � 1, � 2 � S 2 is noted � 1 · � 2 = cos �� 1,� 2, where
� � 1,� 2 is the angle separating the two vectors (Figure 2).

Figure 2 – Illustration of our notation for the angle between two directions.
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Each surface point x � M has an associated normal nx � S 2, orthogonal to its tangent plane.
We denote by S+

x the positive hemisphere of x and S�
x its negative hemisphere (Figure 3):

S+
x := { � � S 2 | nx · � > 0} (4)

S�
x := { � � S 2 | nx · � < 0} (5)

Given two points x, y � M , the unit direction from x to y is denoted by � x,y (Figure 3):

� x,y :=
y � x

� y � x�
(6)

We also use the notation � x,y for the angle between directions n x and � x,y, such that nx · � x,y =
cos �x,y (Figure 3).

Figure 3 – Illustration of our notation positive and negative hemisphere, as well as directions between
two points.

2.1.3 Ray casting

A ray r is a pair (xr , � r ) � R3 × S 2 where xr is the origin of the ray and � r is its direction. The
set of rays is noted R := R3 × S 2 and is referred as the ray space.

The set of surface rays, having their origin on the scene surfaces, is notedR M := M × S 2 and
is referred as the surface ray space.

The boundary distance function [Arv95 ] dM : R 	 ( 0,+ � ] is de�ned by (Figure 4):

dM (x, � ) := inf { � > 0 | x + �.� � M} (7)

Let x � R3, we de�ne x M : { � � S 2 | dM (x, � ) < + � } 	 M , the ray casting function at x,
by (Figure 4):

xM (� ) := x + dM (x, � ).� (8)
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Figure 4 – Boundary distance function and ray casting function.

2.1.4 Visibility

The visibility function V : R3 	 { 0, 1} is de�ned by:

V(x, y) :=

�
1, if ||x � y|| 
 dM (x, � x,y)

0, otherwise.
(9)

2.1.5 Integration

Quantities related to light energy are mostly de�ned by integrals over the ray space. An
integral over the ray space can be expressed according to several measures. This section
reviews the main integration measures used in rendering.

2.1.5.1 Solid angle measure

The solid angle measure �(D) of a set of directions D � S 2 is de�ned by the area on the unit
sphere covered by D:

� (D) =
�

� � D
d� (� ) (10)

If S2 is parameterized by the standard spherical mapping � = ( sin � cos �, sin � sin �, cos � ),
� � [ 0, � ), � � [ 0, 2� ), then we have (Figure 5):

d� (� ) = | sin � |d�d� (11)

The solid angle of the sphere of directions S2 is � (S2) = 4�.
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Figure 5 – Illustration of the differential solid angle measure.

2.1.5.2 Projected solid angle measure

Let x � M and f : S2 	 R a function de�ned on directions. A common form of integral
involved in light transport simulation is:

F =
�

� �S 2
f (� )|nx · � |d� (� ) (12)

In this expression, |nx · � |d� (� ) is the differential solid angle around direction � projected
on the tangent plane of x. The projected solid angle measure ��

x at x for a set of directions
D � S 2 is de�ned by (Figure 6):

� �
x (D) =

�

� � D
|nx · � |d� (� )

=
�

� � D
d� �

x (� )
(13)

The integral can then be rewritten more concisely with respect to projected solid angle
measure:

F =
�

� �S 2
f (� )d� �

x (� ) (14)

2.1.5.3 Area measure

Let x � M and f : R M 	 R be a function de�ned on the surface ray space and consider the
integral:

F =
�

� �S 2
f (xM (� ), � � )|nx · � |d� (� ) (15)
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Figure 6 – Differential projected solid angle measure and differential area measure.

This integral can be expressed directly on surfaces of the scene using the change of variables
y = xM (� x,y) and:

d� (� x,y) =
| cos �y,x|
� x � y� 2 V(x, y)dA( y) (16)

The integral can then be expressed with respect to area measure (Figure6):

F =
�

y�M
f (y, � y,x)

| cos �x,y|| cos �y,x|
� x � y� 2 V(x, y)dA( y)

=
�

y�M
f (y, � y,x)G(x, y)dA( y)

(17)

In this equation, G (x, y) is the geometric factor between the points x and y and we have:

d� �
x (� x,y) = G(x, y)dA( y) (18)

2.2 radiometric quantit ies

Radiometry is the branch of physics that de�nes quantities related to electromagnetic radi-
ation by integration of a density function called radiance, which represents the distribution
of radiation’s energy in a scene. Radiance has to be estimated by rendering algorithms to
produce digital images of a virtual scene.

2.2.1 Radiance

Radiance describes the density of visible light energy leaving a surface point x � M in a
direction � o � S 2 at a particular instant of time t � R and for a visible wavelength w �
[380, 750].
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Radiance can then be described by the spectral radiance function L� : M × S 2 × R × [ 380, 750] 	
R, a density function that can be integrated in order to express other radiometric quantities
such as radiant power. The human visual system is preferentially sensitive to red, green and
blue, thus any visible color can be represented by a vector of three scalar values. Conse-
quently, the wavelength dependency of radiance is generally ignored and the spectral radi-
ance function is replaced by three radiance functions LR, LG and LB. Each of these functions is
obtained by integration of the product between spectral radiance and the CIE RGB spectral
sensitivity functions R, G and B, such that:

� C � { R, G, B} , LC(x, � o, t) :=
� 750

380
C(w)L� (x, � o, t, w)dw (19)

With this de�nition, rendering a color image is equivalent to rendering three monochromatic
images corresponding to the red, green and blue channel of the image.

Radiometry assumes that the speed of light is in�nite. Consequently, we consider that the
radiance �eld reaches its equilibrium instantly in a static scene. An animated scene can be
seen as a sequence of static scenes, each one having its own radiance �eld at a time ti � R,
i � N. Thus, for conciseness, the time dependency of radiance is often made implicit and
the parameter t is dropped from the notation. Note, however, that to formally de�ne time
dependent effects, such as motion blur, time must be taken into account and reintroduced in
the notation.

We now consider a single radiance function L : R M 	 R. The quantity L (x, � o) � R is the
radiance leaving point x � M in direction � o � S 2 and is expressed in watt per steradian
per square metre per second [ W · m� 2 · sr� 1 · s� 1 ]. For simplicity, we also use the notation
L(x, y) referring to L (x, � x,y) with x, y � M .

Radiance is assumed to be constant along straight lines in a vacuum, such that we can de�ne
the radiance Li (x, � i ) received by a point x from an incident direction � i as:

Li (x, � i ) :=

�
L(xM (� i ), � � i ) if dM (x, � i ) < + �

0 otherwise.
(20)

Li is referred as the incident radiance function (Figure7).

Figure 7 – Incident radiance function.
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2.2.2 Radiant power

By integration of radiance, we can express the amount of light energy leaving a surface M i

per unit of time. This quantity � (M i ) is referred as exitant radiant power and de�ned by:

� (M i ) :=
�

x�M i

�

� o�S 2
L(x, � o)d� �

x (� o)dA( x) (21)

Similarly, the incident radiant power � i (M i ), reaching the surface is de�ned by:

� i (M i ) :=
�

x�M i

�

� i �S 2
Li (x, � i )d� �

x (� i )dA( x) (22)

These de�nitions lead to an expression of radiance as the derivative of exitant radiant power:

L(x, � o) =
� 2� (x, � o)

�� �
x (� o)� A( x)

(23)

and similarly for incident radiance:

Li (x, � i ) =
� 2� i (x, � i )

�� �
x (� o)� A( x)

(24)

2.2.3 Irradiance and radiosity

Irradiance E describes the amount of radiant power per square meter received by a surface
point:

E(x) :=
�

� i �S 2
Li (x, � i )d� �

x (� i ) (25)

=
�� i (x, � i )

� A( x)
(26)

The corresponding quantity for radiant power per square meter leaving the surface point is
radiosity B:

B(x) :=
�

� o�S 2
L(x, � o)d� �

x (� o) (27)

=
�� (x, � o)

� A( x)
(28)

These two quantities are mostly manipulated by light transport simulation involving lamber-
tian materials (see Section2.3), for which the amount of re�ected light is independent on the
incident or exitant direction.

2.2.4 Emission

Emission of radiant power in the scene is represented by the emitted radiance function Le :
R M 	 R. In practice, this function is given with the input scene. Each surface M i is



16 mathematical formulation of light transport

associated to a partial emitted radiance function L (i)
e : R M 	 R which is null at rays having

their origin outside M i. We de�ne the emitted radiance function as:

Le(x, � o) :=
NM

�
i= 1

L(i)
e (x, � o) (29)

A light source is a surfaceM i such that the partial emitted radiance function L (i)
e is not null

everywhere. We denote by M L � M the union of all light sources.

To simplify the mathematical formulation presented in this thesis, this de�nition of emitted
radiance does not take into account non physical light sources such as point sources, direc-
tional sources and environment sources, that are often included in rendering engines. These
kind of light sources can be de�ned by expending the domain of the emitted radiance func-
tion to R (for point sources) and S2 (for directional and environment sources) . The emitted
radiance function of point and directional light sources must include a Dirac distribution to
account for the geometric singularity. The change of integration measure between the light
source domain and projected solid angle must account for the geometric structure of the light
source.

2.3 surface scattering

Scattering describes how light interacts with matter, i.e. how photons deviate from their
trajectory and how their energy is transformed. In this section, we present a surface scattering
model mostly used in computer graphics to describe and simulate material appearance. This
model is based on the bidirectional scattering distribution function (BSDF) [Vea97, p. 85] that
describes how each material scatters incident light. Material appearance is a very active
area of research, aiming at representing more realistic materials through the development of
advanced BSDF models.

2.3.1 The bidirectional scattering distribution function

For light transport simulation without participating medium, it is suf�cient to describe how
light is re�ected or refracted at surfaces of the scene. This interaction is modeled by the
bidirectional scattering distribution function (BSDF) fs : M × S 2 × S 2 	 R. For a surface point
x � M , an incident direction � i � S 2 and an outgoing direction � o � S 2, fs(x, � i , � o) is the
proportion of radiance incident from � i that is scattered toward � o at the point x:

fs(x, � i , � o) :=
dLs(x, � o)

Li (x, � i )d� �
x (� i )

(30)

where Ls = L � Le is the scattered radiance function.

In practice, the BSDF is given with the scene as an input of the rendering algorithm. Each
surface has an associated material which de�nes the BSDF at each point of the surface.
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For physically based scattering, the BSDF must respect the following properties:

Helmotz reciprocity states that the behavior of an homogeneous material is the same when
directions are exchanged:

fs(x, � i , � o) = fs(x, � o, � i ) (31)

Energy conservation ensures that a material does not scatter more energy than it receives:

� � i � S 2,
�

� o�S 2
fs(x, � i , � o)d� �

x (� o) 
 1 (32)

Given three points x 1, x2, x3 � M , we also employ the notation:

fs(x1, x2, x3) := fs(x2, � x2,x1, � x2,x3) (33)

2.3.2 Scattered radiance

From Equation (30), we obtain an integral expression for the radiance L s(x, � o) scattered by
a surface point x in a direction � o:

Ls(x, � o) =
�

� i �S 2
fs(x, � i , � o)Li (x, � i )d� �

x (� i ) (34)

This expression is involved in the rendering equation (37) de�ned in Section 2.4.3.

2.3.3 BSDF models

Three types of scattering phenomena are generally simulated by BSDFs (Figure 8):
— diffuse scattering does not depend on the incident direction.
— glossy scattering scatters light in preferred directions that depend on the incident direc-

tion.
— specular scattering scatters light in only two directions: the perfect re�exion direction

and the perfect transmission direction.

(a) Diffuse re�ection (b) Glossy re�ection (c) Specular re�ection

Figure 8 – Illustration of the BSDF for diffuse, glossy and specular re�ections. The length of the
arrows represent the magnitude of the BSDF for different outgoing directions. For specular
re�ection, this magnitude cannot be represented by a real number, but involves a Dirac
distribution.
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Many BSDF models have been developed to approximate surface scattering with various
degrees of realism. The most simple ones are empirical models, such as the Lambert BSDF,
for ideal diffuse materials, or the Phong BSDF [ LW94], for glossy materials. These BSDFs
are expressed by simple expressions that are fast to evaluate and easy to sample analyti-
cally. However, they are not physically based and introduce a non-negligible error in the
appearance of materials compared to real materials. Measured models [MPBM03] are based
on a complete tabulation of the BSDF for each material, obtained from measurements of real
materials. These kind of BSDF are accurate since they are based on real data, but involve
high memory requirement due to the storage of measurements. Physically based models, such
as microfacet BSDFs [Hei14], are derived mathematically and provide better accuracy for the
simulation of complex materials. They are generally more dif�cult to sample than empirical
models. Specular scattering is simply derived from Snell’s law of refraction and re�ection
and lead to a Dirac distribution in the BSDF expression for proper integration in the BSDF
framework.

2.4 light transport equations

Rendering an image requires to compute measurements on radiance incident to the virtual
camera. These measurements are expressed by the measurement equation (Section2.4.1) that
relates the intensity of each pixel to the incident radiance �eld. The rendering equation (Sec-
tion 2.4.3) gives an expression for the radiance at each ray. Unfortunately, these two equations
can not be solved analytically and numerical estimation methods must be used (see Chap-
ter 3).

2.4.1 The measurement equation

To render an image, each pixel, identi�ed by an index i, is associated to a sensor response

function W(i)
e : R M 	 R such that the following equation expresses the intensity of the pixel:

Ii =
�

(x,� i )�R M

W(i)
e (x, � i )Li (x, � i )d� �

x (� i )dA x

=
�

(x1,x2)�M 2
W(i)

e (x1, x2)G(x1, x2)L(x2, x1)dA( x1)dA( x2)
(35)

This equation is referred as the measurement equation.
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camera lens

pixel

Figure 9 – Domain of the sensor response function for a perspective camera and a pixel.

2.4.2 Sensor response

Most often, the virtual camera is represented by a lens L � M and the function W (i)
e is not

null only for rays starting at L and pointing to the image plane (Figure 9). More speci�cally,

W(i)
e (x, � i ) takes the form:

W(i)
e (x, � i ) = hi (u, v)We(x, � i ) (36)

where (u, v) are the image plane coordinates of the ray (x, � i ), hi is an image �lter function
(for example a box �lter or a gaussian �lter), and W e(x, � i ) is a sensor response function that
only depends on the camera geometry. This decomposition is useful when the pixel �lter
function is such that a ray can contribute to several pixel intensities, in order to share the
computation between pixels.

The measurement equation (35) is quite general and can be used to express measurements
other than pixel intensities. For example, the irradiance at a surface point x 0 � M can
be expressed by the measurement equation with the sensor response function We(x, � i ) =
	 A (x � x0), where 	 A is the Dirac distribution with respect to area measure.

The sensor response function is also called the emitted importance function and W(i)
e (x, � ) is the

importance emitted at the ray (x, � ) by sensor i. We note M (i)
W � M the union of all surface

points corresponding to the sensor i, that is � x � M (i)
W , � � � S 2 such that W(i)

e (x, � ) > 0.

The union of all surfaces corresponding to sensors is denoted by M W :=
� NM W

i= 1 M (i)
W , where

NM W is the number of sensors de�ned for the simulation.
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2.4.3 The rendering equation

The main dif�culty for the evaluation of the measurement equation ( 35) is the radiance factor
in the integrand. The radiance function is the solution of the rendering equation [Kaj86],
de�ned by:

L(x, � o) = Le(x, � o) + Ls(x, � o)

= Le(x, � o) +
�

� i �S 2
Li (x, � i ) fs(x, � i , � o)d� �

x (� i )
(37)

It is not possible to solve this equation analytically for general scenes. Therefore, radiance
can only be estimated using numerical integration.

2.4.4 Path integral formulation of light transport

The path integral framework, introduced by Veach [ Vea97], expresses the measurement equa-
tion by an integral over the path spaceP:

Ii =
�

x̄�P
f (i) ( x̄)dµ(x̄) (38)

where f (i) is the path contribution function for the sensor i. This formulation is well suited to
express rendering algorithms based on path sampling (Chapter 4).

A path x̄ = x1...xk � P (Figure 10) is a sequence of surface points xi � M referred as vertices.
The length k  2 is the number of vertices of the path. The space of paths of length k is
denoted by Pk and we have:

P :=
�

k 2

Pk (39)

Light Sour ce

Sensor

Figure 10 – Illustration of a path x̄ = x1..x5 from P5.

The differential measure dµ(x̄) of a path is de�ned as the product of differential area mea-
sures:

dµ(x1...xk) :=
k

�
i= 1

dA(xi ) (40)
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The contribution of an individual path can be derived by expending recursively the de�nition
of L(x2, x1) in the measurement equation (35) using the rendering equation ( 37), to obtain:

f (i) (x1...xk) = Le(x1, x2)T(x1...xk)W
(i)
e (xk, xk� 1)

T(x1...xk) =

�
k� 1

�
i= 1

G(xi , xi+ 1)
k� 1

�
i= 2

fs(xi� 1, xi , xi+ 1)

�
(41)

The contributions of paths of length k is noted I i,k, such that:

Ii,k =
�

x̄�P k

fi ( x̄)dµ(x̄) (42)

Ii = �
k 2

Ii,k (43)





3
M O N T E C A R L O I N T E G R AT I O N

As described in Chapter 2, a rendering algorithm has to solve the measurement equation
for each pixel of an image to render. This equation is expressed by an integral that involves
the radiance function, which is itself the solution of the rendering equation. The rendering
equation is an integral equation that cannot be solved analytically for general scenes. Conse-
quently, rendering algorithms have to estimate the solution of the measurement equation for
each pixel using numerical methods. To be viable for light transport simulation, an estimator
has to be consistent, meaning that it must converge to the estimated value over time. Monte
Carlo (MC) integration [ MU49] satis�es that criterion and is the most widely used estima-
tion method for global illumination. The reason for this is that the convergence rate of MC
integration does not depend on the dimension of the integration domain, which is in�nite in
the case of the path space. MC integration is a stochastic estimation strategy that relies on
probability theory and more particularly on the law of large numbers. This chapter gives an
overview of MC integration as well as common strategies to improve the convergence speed
of the estimation.

Section 3.1 reviews material related to probability theory and random sampling required
to de�ne a practical MC estimator. The basic shape of MC estimators is presented in Sec-
tion 3.2. In Section 3.3, we introduce several common methods to reduce the variance of MC
estimation, since the error produced by a MC estimator is directly related to its variance.
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3.1 probabil ity review

3.1.1 Random variables

A random variable X, taking values in a sample space �, represents a process producing random
outcomes in � with some probability measure P X de�ned on events. An event is a subset of
� and the set of events, noted EX, must de�ne a sigma-algebra on �, that is:

— � � E X: the whole sample space is an event
— � A � E X, Ā = � \ A � E X: every event has a complementary event
— For any countable sequence (Ai )i� N of events, � i � N Ai � E X: a countable union of

events is also an event
An event A is said to be observed if the random realization of X belongs to A. The impossible
event is � = � c, the certain event is �. For two events A, B � E X, A � B represents the event
“A is observed or B is observed” and similarly A � B represents the event “A is observed and
B is observed”. Two events A, B are said to be incompatible if A� B = �.

The probability measure PX : E 	 [ 0, 1] associates a probability PX (E) of being observed
to each event E, also noted P(X � E). The probability measure must satisfy the following
conditions:

— PX (� ) = 1: there is a 100% chance of observing an outcome in �.
— For any sequence (Ai )i� N of mutually incompatible events we have P X (� i� N Ai ) =

� i� N PX (Ai )
Note that, since A � Ā = �, we have P X ( Ā) = 1 � PX (A).

For numerical simulations, random numbers are generated on [0, 1] by a pseudo-random
number generator (PRNG) with uniform probability. Even if a computer is not able to gen-
erate every possible real number in [0, 1], we consider that the outcomes of a PNRG are
distributed according to a random variable U, with the set of events being represented as
the smallest sigma-algebra containing all the intervals of [0, 1], referred as the borelian sigma-
algebra. The probability measure PU is uniform, that is:

� a, b� [ 0, 1], a 
 b =� PU([a, b]) = b � a (44)

We note 
 � U([ 0, 1]) if 
 is a realization distributed uniformly on [0, 1].

3.1.2 Continuous random variables

Continuous random variables take their values in uncountable sample spaces, such as the real
numbers R or the n-dimensional vectors R n. In rendering, we are interested in geometric
sample spaces, like the sphere of directionsS2, the surfaces of a sceneM or the path space
P, on which we can de�ne random variables by transforming random variables of R n.



3.1 probabil ity review 25

3.1.2.1 Real-valued random variables

A real-valued random variable X takes values in the real numbers R. The cumulative distri-
bution function (cdf) F X of a real-valued random variable X is de�ned by:

FX (a) := PX ((� �, a ])

:= P(X 
 a)
(45)

Under certain conditions, the distribution of X can be described by the probability density
function (pdf) p X such that:

FX (a) =
� a

� �
pX (x)dx � pX =

dFX

dx
(46)

For the remaining of this thesis, we only consider continuous random variables that can be
described by a pdf.

Example 3.1. The cdf of a uniform random variableU on [0, 1] is given by (Figure11):

FU(x) =

�
��	

��


0 if x < 0

x if x � [ 0, 1]

1 if x > 1

(47)

and its pdf:

pU(x) =

�
1 if x � [ 0, 1]

0 otherwise.
(48)

0 1

1

(a) uniform cdf

0 1

1

(b) uniform pdf

Figure 11 – Illustration of the curves associated to the uniform distribution U([0, 1]).

3.1.2.2 Real-valued random vectors

A random vector X = ( X1, ..., Xn) takes values in Rn. The joint cdf FX of X is de�ned by:

FX (a1, ..., an) := PX ((� �, a 1] × ...× (� �, a n])

:= P(X1 
 a1, ..., Xn 
 an)
(49)

and the corresponding joint pdf pX is such that:

FX (a1, ..., an) =
� a1

� �
...

� an

� �
pX (x1, ..., xn)dx1...dxn � pX =

dnFX

dx1...dxn
(50)
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The marginal pdf pXi of a single variable X i from the vector X is obtained by integrating out
the remaining variables:

pXi (xi ) :=
� + �

� �
...

� + �

� �
pX (x1, ..., xn)dx1...dxi� 1dxi+ 1...dxn (51)

More generally, the marginal pdf p Xi1
,...,Xik

of any sub-vector (Xi1, ..., Xik) of (X1, ..., Xn) is
obtained by integrating out the n � k random variables not included in the sub-vector.

The conditional pdf pX1,...,Xk|Xk+ 1,...,Xn
of the sub-vector (X1, ..., Xk) given that X k+ 1 = xk+ 1, ..., Xn =

xn is de�ned by:

pX1,...,Xk|Xk+ 1,...,Xn
(x1, ..., xk|xk+ 1, ..., xn) :=

pX (x1, ..., xn)
pXk+ 1,...,Xn (xk+ 1, ..., xn)

(52)

Note that this de�nition can be generalized for any sub-vector (Xi1, ..., Xik), given the value
of the remaining n � k random variables.

The de�nition of the conditional pdf leads to the following relationship between the joint,
marginal and conditional pdfs:

pX (x1, ..., xn) = pX1(x1)pX2|X1
(x2|x1)...pXn|X1,...,Xn� 1

(xn|x1, ..., xn� 1) (53)

This relation can be used to sample random vectors according to some speci�ed joint pdf, as
described in Section 3.1.4.2.

When the random variables X 1, ..., Xn are independent, Equation (53) simpli�es to:

pX (x1, ..., xn) =
n

�
i= 1

pXi (xi ) (54)

The probability of any event A � Rn can be expressed by integrating the pdf over A:

P(X � A) =
�

x� A
pX (x)dx (55)

We note X � F or X � p when a random variable X is distributed according to a given cdf F
or pdf p.

3.1.3 Transformation of continuous random variables

We saw on Chapter 2 that light transport integrals are expressed over geometric domains.
To distribute random elements on such domains, we sample [0, 1]n and we apply a bijective
transformation Y : [0, 1]n 	 � where � is the integration domain of interest. If X is a
random vector from [0, 1]n, then Y(X) is a new random variable with pdf p Y satisfying:

� A � �, P Y(A) =
�

y� A
pY(y)dµ(y) (56)

where µ is a measure on �.
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To obtain an expression for pY(y), we apply the change of variable x = Y� 1(y):

PY(A) =
�

x� Y� 1(A)
pY(Y(x))| JY(x)|dx (57)

where JY(x) is the jacobian of transformation Y evaluated at x.

By de�nition of P Y(A), we also have:

PY(A) = P(Y � A) = P(X � Y� 1(A)) = PX (Y� 1(A)) =
�

x� Y� 1(A)
pX (x)dx (58)

Since the equality must hold for any subset of �, we have:

pY(Y(x)) .|JY(x)| = pX (x) � pY(Y(x)) =
pX (x)
|JY(x)|

(59)

Example 3.2. We want to sample the unit sphereS2. For that, we can sample(u, v) � U([ 0, 1]2)
and apply the transformation � = Y(u, v) = ( sin(�u ) cos(2�v ), sin(�u ) sin(2�v ), cos(�u )) .
The jacobian of this transformation is JY(u, v) = 2� 2 sin(�u ). Consequently, the pdf of Y is:

pY(� ) =
pU(u, v)

|2� 2 sin(�u )|
=

1
2� 2| sin(�u )|

(60)

We observe that this pdf is not the uniform pdf p(� ) = 1
4� on S2. The next section details how to

sample random variables distributed according to a speci�ed pdf.

3.1.4 Sampling continuous random variables

Most often, we need to sample random elements from � distributed according to an im-
portance function f : � 	 R. The associated pdf p is the normalization of f de�ned by
p(x) = f (x)/

�
� f (x)dµ(x), such that p is proportional to f and integrate to one over the

whole domain. A comprehensive reference for the generation of non-uniform random vari-
ables is provided by the book “Non-Uniform Random Variate Generation” [ Dev86]. In this
section, we describe inverse transform sampling, a method allowing to sample the domain
when the pdf can be integrated to obtain the cdf, and when this cdf can be analytically in-
verted. When this requirements are satis�ed, we can sample uniformly [0, 1]n and apply the
inverted cdf to the result in order to obtain elements distributed according to the pdf.

3.1.4.1 Dimension 1.

We want to sample random real values according to a cdf F X : R 	 [ 0, 1]. For a uniform
random variable U � U([ 0, 1]), we set X := F� 1

X (U) and we have X � FX. Indeed:

P(X 
 a) = P(F� 1
X (U) 
 a) = P(U 
 FX (a)) = FU(FX (a)) = FX (a) (61)
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3.1.4.2 Dimension n.

We want to sample random real vectors according to a joint cdf F X1,...,Xn . For that, we sample
iteratively each component of the vector according to the marginal/conditional pdfs which
are all 1-dimensional. More speci�cally, given n independent uniform random variables
U1, ..., Un � U([ 0, 1]n), we set:

X1 = F� 1
X1

(U1)

X2 = F� 1
X2|X1

(U2|X1)

...

Xn = F� 1
Xn|X1,...,Xn� 1

(Un|X1, ..., Xn� 1)

(62)

From Equation (53) we have (X1, ..., Xn) � FX1,...,Xn

3.1.4.3 General domains.

For a general continuous domain �, we sample a random vector X � [ 0, 1]n according to the
pdf p X (x) = p( � (x))| J� (x)| where � is an arbitrary bijective transformation from [0, 1]n to �.
From Equation (59), we have � (X) � p.

3.1.5 Discrete random variables

The notion of discrete random variables is useful to select an element from a �nite set. For
example, choosing a light source according to the emitted power of each one.

The probability distribution of a discrete random variable X � �, where � is a countable set
of elements (�nite or not), is characterized by its probability mass function (pmf) p X : � 	
[0, 1]:

pX (an) = P(X = an)

with the condition �
an� �

pX (an) = 1 (63)

The probability mass function is the discrete analog of the probability density function for
continuous random variables. It is possible to de�ne a pmf of a discrete random variable as
a pdf on R using Dirac distributions:

pX (x) = �
an� �

P(X = an)	 (x � an) (64)

The cumulative distribution function F X of a discrete random variable X is de�ned similarly
than the continuous case, but the integral is transformed into a sum due to Dirac distribu-
tions:

FX (a) = P(X 
 a) =
� a

� �

�
�

an� �

P(X = an)	 (x � an)


dx = �
an
 a

P(X = an) (65)



3.1 probabil ity review 29

3.1.6 Sampling discrete random variables

Sampling random variables according to a discrete distribution can be done by tabulating
the cdf, drawing a uniformly distributed random number 
 � [ 0, 1) and searching in the
tabulated cdf the �rst index i such that 
 
 FX (i). Since the cdf is monotonically increasing,
the tabulated cdf is sorted and the search can be done in O(log2 n) time using binary search.
This procedure is the discrete equivalent of inverse transform sampling.

3.1.7 Expected value and variance

The expected value (also denoted by mean or expectation) of a random variable X� � is de�ned
by:

E[X] :=
�

x� �
xpX (x)dx (66)

If f : � 	 � � is a function from � to � �, then Y = f (X) is random variable with expected
value:

E[Y] :=
�

x� �
f (x)pX (x)dx (67)

A useful property of the expected value is linearity.

E[X1 + X2] := E[X1] + E[X2]

� a � R, E [aX] = aE[X]
(68)

When X1 and X2 are independent, we also have:

E[X1X2] := E[X1]E[X2] (69)

The variance of Y is de�ned by:

V [Y] := E[(E[Y] � Y)2] =
�

x� �
(E[Y] � f (x)) 2pX (x)dx (70)

Another expression for the variance is given by:

V [Y] = E[Y2] � E[Y]2 (71)

which can be obtained by applying the linearity property of the expected value.

If X 1 and X2 are independent, we have the linearity of the variance:

V [X1 + X2] := V [X1] + V [X2] (72)

For a � R, we have:

V [aY] = a2V [Y] (73)
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3.1.8 Laws of large numbers

Let (Xi )i� N be an in�nite sequence of independent and identically distributed (i.i.d) random
variables with expected value µ = E[Xi ]. The sample average sXn of the sequence is de�ned
by:

sXn =
X1 + ...+ Xn

n
(74)

The weak law of large numbers states that for high values of n, the sample average is close to µ
with high probability:

� � > 0, lim
n	 �

P(| sXn � µ| 
 � ) = 1 (75)

We say that X̄n converges in probability to µ.

The strong law of large numbers is a stronger convergence property, in the sense that it implies
the weak law, given by:

P( lim
n	 �

sXn = µ) = 1 (76)

We say that sXn converges almost surely to µ.

These two laws state that we can use the sample average as a consistent and unbiased esti-
mator of µ, which is the purpose of MC estimation.

3.2 monte carlo estimation

3.2.1 Estimation of an integral

Given a function f : � 	 R, we want to estimate the following integral:

I :=
�

x� �
f (x)dx (77)

Let X be a random variable on � distributed according to a probability density function
p : � 	 R such that f (x) �= 0 � p(x) �= 0 (every element contributing to the integral can be
sampled according to p). The integral can then be rewritten as:

I =
�

x� �

f (x)
p(x)

p(x)dx (78)

showing that I = E[ f (X)
p(X) ]. Given x � � a sample distributed according to p, the following

expression is a primary estimator for I:

Î :=
f (x)
p(x)

(79)
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A secondary estimator is obtained by averaging several primary estimators:

ÎN :=
1
N

N

�
i= 1

f (xi )
p(xi )

(80)

where (xi )i�{ 1,...N} is a sequence of independent samples distributed according to p. The laws
of large numbers states that ÎN converges almost surely to I as N 	 �.

3.2.2 Estimation of a sum

MC estimation can also be used to estimate a sum using a discrete probability distribution.
Let S be the sum of terms (ai )i�[[ 1,k]]:

S =
k

�
i= 1

ai (81)

Let X be a discrete random variable on [[1, k]] distributed according to a pmf p. The sum can
be rewritten:

S =
k

�
i= 1

ai

p(i)
p(i) (82)

showing that I = E[ aX
p(X) ]. If (ni ) i�{ 1,...N} is a sequence of independent samples distributed

according to p, the secondary estimator for S is given by:

ŜN :=
1
N

N

�
i= 1

ani

p(ni )
(83)

Note that this estimation can also be applied on in�nite sums using a well de�ned pmf.

3.3 variance reduction techniques

In this section, we derive an expression for the variance of a MC estimator, which is in
relation with the error produced by the estimation. We then describe variance reduction
techniques we employed for the works presented in this thesis. We refer the reader to Veach’s
PhD thesis [Vea97, Chapter 2] and the book “Physically based Rendering” from Pharr and
Humphreys [ PH10, Chapter 14] for a more comprehensive overview of variance reduction
methods often used in MC rendering.

3.3.1 Variance of a Monte Carlo estimator

A MC estimator ÎN is said to be unbiased, meaning that its expected value is equal to the
quantity to estimate, in our case the value of the integral. An interesting property of unbiased
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estimators is that the expected mean squared error MSE( ÎN ) := E[( ÎN � I )2] is equal to the
variance V [ÎN ] of the estimator.

The variance of the estimator is:

V [ÎN ] = V [
1
N

N

�
i= 1

f (xi )
p(xi )

] =
1

N2V [
N

�
i= 1

f (xi )
p(xi )

] (84)

Since the samples are independent, the variance is linear over the sum. Moreover, the samples

are identically distributed, thus we have � i � [[ 1, N]], V [ f (xi )
p(xi )

] = V [ f (X)
p(X) ]. We obtain:

V [ÎN ] =
1

N2V [
N

�
i= 1

f (xi )
p(xi )

] =
N
N2V [

f (X)
p(X)

] =
1
N

V [
f (X)
p(X)

] (85)

If the variance V [ f (X)
p(X) ] is �nite, it decreases at a rate O(N) and the absolute error decreases

at a rate O(
�

N). MC estimators have a low convergence rate since four more samples are
needed to divide the error by two. In order to decrease the error without increasing the

number of samples, the variance V [ f (X)
p(X) ] needs to be reduced as much as possible. This

factor is expressed by:

V [
f (X)
p(X)

] = E[(
f (X)
p(X)

)2] � E[
f (X)
p(X)

]2 =
�

x� �
(

f (x)
p(x)

)2p(x)dx � I2 =
�

x� �

f (x)2

p(x)
dx � I2

(86)

We observe that the higher is the ratio f (X)2

p(X) , the higher is the variance of the estimator. To

obtain V [ f (X)
p(X) ] = 0, the optimal pdf is p o(x) = f (x)/

�
� f = f (x)/I. Indeed:

V [
f (X)

po(X)
] =

�

x� �

f (x)2

f (x)
I

dx � I 2 = I.
�

x� �
f (x)dx � I2 = I2 � I 2 = 0 (87)

Unfortunately, computing this pdf requires the knowledge of I, the value we are estimating.

3.3.2 Importance sampling

As mentioned previously, the optimal pdf p o to use for MC integration is the normalization
of f (po(x) = f (x)/

�
� f ), but this pdf requires the knowledge of the integral we want to

estimate. Importance sampling consists in choosing a pdf p that mimics the shape of f (high
probability density when f is high and the opposite when f is low) in order to reduce the
variance of MC estimation. Indeed, the variance of a MC estimator is:

V [ÎN ] =
1
N

(
�

x� �

f (x)2

p(x)
dx � I2) (88)

For a �xed number of samples N, this expression varies like
�

x� �
f (x)2

p(x) dx. If the integrand
f (x)2

p(x) is high at many points, the variance is high too. To compensate for high values of f (x)2,

a high probability density p (x) must be assigned to x. In rendering, the variance introduced
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by a bad choice of p often appears as “speckles” (also know as “�re�ies”), which are bright
spots on the image that traduce samples chosen with low probability density but having high
contribution.

Choosing an adapted pdf requires some prior information about the function to integrate. A
simple example is the integral expressing the re�ected radiance at a point:

Ls(x, � o) =
�

� i �S 2
Li (x, � i ) fs(x, � i , � o)( nx · � i )d� (� i ) (89)

The integrand is a product of the incident radiance, the BSDF and the cosine factor (expressed
as a dot product). The BSDF and the cosine factor are local components while the incident
radiance is a global component that has no analytical expression and must also be estimated.
When the BSDF has a simple form, it is generally possible to sample directions according to a
pdf proportional to the product of the BSDF and the cosine, so that this factor is importance
sampled. This strategy works well as long as the incident radiance does not expose high
variations, which is the case for most outdoor scenes. However, for indoor scenes containing
many occlusions, avoiding importance sampling of the incident radiance can lead to high
variance traduced by strong noise in rendered images.

3.3.3 Multiple importance sampling

Multiple importance sampling (MIS) [ VG95] is a general method to combine multiple sam-
pling strategies to estimate an integral. The motivation behind MIS is that we are often able
to importance sample individually each factor f i of a function f = � k

i= 1 fi , but not the whole
product. By combining in an optimal way all the sampling strategies, we can obtain a low
variance estimator.

Let (pi )i�[[ 1,k]] be a sequence of pdfs de�ned over a domain � on which we want to integrate
f . The multi-sample MIS estimator is de�ned by:

ÎMIS
N :=

k

�
i= 1

1
Ni

Ni

�
j= 1

wi (xi,j )
f (xi,j )
pi (xi,j )

(90)

where (xi,j ) j�[[ 1,Ni ]] is a sequence of samples distributed according to Xi � pi , such that N =

� k
i= 1 Ni . A weighting function w j is associated to each sampling strategy pj to ensure that

the estimator is unbiased. Indeed, the contribution of an element x � � must be weighted
to take into account that it can be sampled by multiple sampling strategies. The weighting
functions must respect two conditions:

� x � �,
k

�
i= 1

wi (x) = 1 (91)

pi (y) = 0 � wi (y) = 0 (92)
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Under these conditions, it is easy to prove that the estimator is unbiased:

E[ÎN ] = E[
k

�
i= 1

1
Ni

Ni

�
j= 1

wi (xi,j )
f (xi,j )
pi (xi,j )

]

=
k

�
i= 1

1
Ni

Ni

�
j= 1

E[wi (xi,j )
f (xi,j )
pi (xi,j )

]

=
k

�
i= 1

Ni

Ni
E[wi (Xi )

f (Xi )
pi (Xi )

]

=
k

�
i= 1

�

x� �
wi (x)

f (x)
pi (x)

pi (x)dx

=
�

x� �
(

k

�
i= 1

wi (x)) f (x)dx

=
�

x� �
f (x)dx

(93)

The standard MC estimator can be seen as a special case of the multi-sample MIS MC esti-
mator where k = 1.

To compute a multi-sample MIS estimate, at least one sample must be drawn from each
strategy, which is sometimes not practical. The one-sample MIS estimator can be used to take
advantage of MIS with only one sample, obtained from a randomly chosen strategy:

ÎMIS := wi (xi )
f (xi )

pI (i).pi (xi )
(94)

where i � [[ 1, k]] is a realization of a discrete random variable I distributed according to the
pmf p I (pI (i) is the probability of using the strategy p i) and xi is a realization of the random
variable X i � pi .

The weighting functions have to be chosen to reduce the variance of the estimator. Veach and
Guibas [VG95] proposed the power heuristic, a family of weighting functions that depend on
a parameter �:

� x � �, w i (x) =
(ci .pi (x)) �

� k
j= 1(cj .pj (x)) �

(95)

where ci = pI (i) for the one-sample model and ci = Ni for the multi-sample model.

The choice � = 1 is referred as the balance heuristic and Veach and Guibas shown that it is
optimal for the one-sample estimator and nearly optimal for the multi-sample estimator. The
choice � = 0 corresponds to a constant weight 1/k given to each sample. The choice � = + �
is referred as the max heuristic and gives a weight wi (x) > 0 if and only if p i is the strategy
that gives the highest probability density to x.

Multiple importance sampling is an essential component of the bidirectional path tracing
algorithm that allows to combine many sampling strategies for each sampled path while
reducing dramatically the variance of the estimator when the balance heuristic is used.
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3.3.4 Resampling

Suppose given the following MC estimator:

ÎN :=
1
N

N

�
i= 1

f (xi )
p(xi )

(96)

such that each term f(xi )/p (xi ) is expensive to evaluate (if a ray has to be traced, for example)
and p does not importance sample well enough the function f (the variance of the estimator
is high). In that case, avoiding the evaluation of all the terms can increase the ef�ciency
of the algorithm. Usually, new information can be extracted from the sequence of samples
(xi )i�[[ 1,N]] in order to de�ne a resampling pmf p R : [[1, N]] 	 [ 0, 1] that gives to each sample a
probability of being selected according to an approximation of its contribution. Resampling
applies MC estimation to the sum ÎN using the pmf p R:

ÎR
N,M :=

1
M

M

�
j= 1

f (xi j )

N.p(xi j ).pR(i j )
(97)

where (i j ) j�[[ 1,M]] is a sequence of index distributed according to the pmf p R. This estimator
is unbiased as long as f(xi j ) �= 0 � pR(i j ) > 0.

Note that this estimator is equivalent to the resampled importance sampling (RIS) estimator
proposed by Talbot et al.[ TCE05] and de�ned by:

ÎRIS
N,M :=

1
M

� M

�
j= 1

f (xi j )

q̃(xi j )

� 1
N

N

�
k= 1

w(xk)


(98)

where q̃ represents an unormalized pdf from which we want to sample elements, w is a
weighting function de�ned by w (x) = q̃(x)/p (x) and (i j ) j�[[ 1,M]] is a sequence of index dis-
tributed according to the pmf p R de�ned by p R(i) = w(xi )/ � N

k= 1 w(xk). Replacing pR(i j )
with this de�nition in Equation ( 97), we obtain:

ÎR
N,M =

1
M

M

�
j= 1

f (xi j )

N.p(xi j ).
w(xi j

)

� N
k= 1 w(xk)

=
1
M

M

�
j= 1

� f (xi j )

p(xi j ).w(xi j )

� 1
N

N

�
k= 1

w(xk)


=
1
M

� M

�
j= 1

f (xi j )

q̃(xi j )

� 1
N

N

�
k= 1

w(xk)


= ÎRIS
N,M

(99)

Resampling is well adapted when q̃ cannot be sampled directly but importance samples the
contribution function f better than the sampling pdf p.

3.3.5 Russian roulette

Russian roulette, introduced by Arvo et al. [AK90] in light transport simulation, is a method to
avoid evaluating an estimator based on a stopping probability p stop � [ 0, 1). It is mostly used
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to stop the iterative sampling of a path without biasing the estimator. Let Q̂ be an unbiased
estimator for some quantity Q. The Russian roulette estimator Q̂RR(pstop) is de�ned by:

Q̂RR(pstop) =

�
	



0 with probability p stop
Q̂

1� pstop
with probability 1 � pstop

(100)

This estimator is unbiased since:

E[Q̂RR(pstop)] = pstop.0+ ( 1 � pstop).
E[Q̂]

1 � pstop
= E[Q̂] = Q (101)
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PAT H S A M P L I N G R E N D E R I N G A L G O R I T H M S

Nowadays, most of the state-of-the-art methods to estimate light transport equations are
based on path sampling solutions. This chapter provides an overview of standard algorithms
of the path sampling framework. We �rst describe local path sampling in Section 4.1, that
is used by all algorithms presented in this chapter. Path tracing, bidirectional path tracing
and many-light rendering rely on Monte-Carlo integration and are respectively detailed in
Section 4.2, 4.3, 4.4. Photon mapping, described in Section 4.5, uses density estimation on
path vertices to estimate radiance. Finally, Section 4.6gives a brief overview of Markov chain
Monte Carlo rendering, another common alternative that samples paths according to their
contribution on the image, using random mutations.
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4.1 local path sampling

In order to estimate the measurement equation in the path space framework (Equation ( 38))
with Monte Carlo integration, path sampling strategies must be de�ned. Recall that the
contribution of a path to a measurement I i is given by:

f (i) (x1...xk) = Le(x1, x2)T(x1...xk)W
(i)
e (xk, xk� 1)

T(x1...xk) =

�
k� 1

�
i= 1

G(xi , xi+ 1)
k� 1

�
i= 2

fs(xi� 1, xi , xi+ 1)

�

Ii =
�

x̄�P
f (i) ( x̄)dµ(x̄)

(102)

For maximal ef�ciency, path sampling strategies must importance sample all factors of the
path contribution function while being computationally cheap to evaluate. This problem is
hard to solve due to the in�nite dimensionality of the path space and the discontinuities in the
contribution function introduced by visibility factors and specular scattering. In this section,
we �rst introduce the concepts of eye sub-paths and light sub-paths. Then we review two
important path sampling strategies based on these concepts: unidirectional path sampling
and bidirectional path sampling.

4.1.1 Light sub-paths and eye-sub paths

A light sub-path ȳs = y1...ys, with s  0, is a path starting at a light source for which any
vertex is visible from its successor:

y1 � M L

� i � [[ 1, s� 1]], V(yi , yi+ 1) = 1
(103)

When s = 0, the light sub-path is the empty light sub-path ȳ0. We denote P L the space of light
sub-paths. We refer to vertices from a light sub-path as light vertices. Figure 12 illustrates a
light sub-path.

Figure 12 – Illustration of a light sub-path.
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Similarly, an eye-sub path z̄t = z1...zt , with t  0, is a path starting at a sensor, satisfying the
conditions:

z1 � M W

� i � [[ 1, t � 1]], V(zi , zi+ 1) = 1
(104)

When t = 0, the eye sub-path is the empty eye sub-path z̄0. We denote P E the space of eye
sub-paths. We refer to vertices from an eye sub-path as eye vertices. Figure13 illustrates an
eye sub-path.

Figure 13 – Illustration of an eye sub-path.

4.1.2 Unidirectional path sampling

Unidirectional path sampling performs a random walk in the scene, starting either at a sensor

i by sampling a vertex distributed proportionally to the sensor response W (i)
e , or at a light

source by sampling a vertex distributed proportionally to the emitted radiance L e. Supposing
a sub-path x1...xk as already been obtained, the next vertex xk+ 1 is sampled conditionally to
the current vertex x k, distributed proportionally to the BSDF and the geometric factor. To
achieve this, we suppose that the following pdfs are available and can be sampled with
numerical methods (see Figure 14 for an illustration):

— p
W(i)

e
samples surface points proportionally to their sensor response, with respect to

area measure.
— p

� � ,W(i)
e

samples directions � proportionally to W (i)
e (x, � ) for a surface point x. Given

y � M , we note p
� � ,W(i)

e
(x 	 y) the probability density of � x,y with respect to pro-

jected solid angle measure at x.
— pLe samples surface points proportionally to their emitted radiance, with respect to

area measure.
— p� � ,Le

samples directions � proportionally to L e(x, � ) for a surface point x. Given
y � M , we note p� � ,Le

(x 	 y) the probability density of � x,y with respect to projected
solid angle measure at x.

— p� � , fs samples directions � proportionally to f s(y, � y,x, � ) for surface points x, y.
Given z � M , we note p� � , fs(x 	 y 	 z) the probability density of � y,z with re-
spect to projected solid angle measure at y.
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(a) light source sampling (b) BSDF sampling (c) sensor sampling

Figure 14 – Illustration of pdfs to sample directions, and surface points on light and sensor surfaces.
Surface sampling pdfs are illustrated as probability histograms. Note that these ones are
just �ctive examples, as they are most often just set to a uniform probability with respect
to area, or computed from illumination textures in the case of light sources.

A probability density p � � ( � ) expressed with respect to projected solid angle at a point x can
be converted to a probability density expressed with respect to area, using the identity:

pA (y) = G(x, y)p� � ( � x,y) (105)

This pdf naturally importance samples the geometric factor, so if p � � ( � ) importance samples
the directional factor at x (L e on light sources, We on sensors and f s on surfaces), then pA
importance samples the product of the two factors. We note p

A ,W(i)
e

, pA ,Le and pA , fs the pdfs
expressed with respect to area corresponding to p

� � ,W(i)
e

, p� � ,Le
and p� � , fs, respectively.

An eye sub-path z̄ t = z1...zt , z1 � M (i)
W of length t starting at sensor i can then be sampled

iteratively according to the path pdf p (i)
E,t de�ned by:

p(i)
E,t(z1...zt ) = p

W(i)
e

(z1)p
A ,W(i)

e
(z1 	 z2)

t� 1

�
i= 2

pA , fs(zi� 1 	 zi 	 zi+ 1) (106)

The path z̄t contributes to the measurement I i,t (Equation (43)) only if L e(zt , zt� 1) > 0. Con-

sequently, the pdf p(i)
E,t importance samples all factors of the contribution function except

the emitted radiance at the last vertex, making it inef�cient for small light sources or light
sources accessible by narrow openings, such as small windows in an house.

The strategy p(i)
E,t does not sample the whole path spaceP but only paths of length t. However,

each path of length t can be seen as t� 1 paths of lengths t, t � 1, ..., 2 that can be used to
estimates the terms Ii,t , Ii,t � 1, ..., Ii,2 of the measurement equation. Estimating only a �xed
number of terms gives a biased estimator. Russian roulette can be used to decide when to
stop the random walk instead of setting a maximal path length. At each vertex z i , i  2 of
a path, we de�ne a probability p rr (zi ) of extending the path. This probability is generally
computed from the material properties of the vertex given its incident direction (the more
the vertex absorbs energy, the lower is the probability of extending the path).
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For an eye path z̄t , we de�ne:

pz̄t (zi ) :=

�
��	

��


p
W(i)

e
(z1) if i = 1

p
A ,W(i)

e
(z1 	 z2) if i = 2

prr (zi ).pA , fs(zi� 2 	 zi� 1 	 zi ) otherwise.

(107)

and we set:

p(i)
E (z̄t ) : =

t

�
i= 1

pz̄t (zi )

= p(i)
E (z̄t� 1) pz̄t (zt )

(108)

Similarly, a light sub-path ȳ s = y1...ys, can be sampled with the path pdf p L,s de�ned by:

pL,s(y1...ys) = pLe(y1)pA ,Le(y1 	 y2)
s� 1

�
i= 2

pA , fs(yi� 1 	 yi 	 yi+ 1) (109)

The only factor not importance sampled by p L,s is the emitted importance W (i)
e (ys, ys� 1),

which is more problematic than not importance sampling L e since the sensor surface is gen-
erally represented by a unique and small camera lens, thus the probability of reaching it is
extremely low.

For a light path ȳ s, we de�ne:

pȳs(yi ) :=

�
��	

��


pLe(y1) if i = 1

pA ,Le(y1 	 y2) if i = 2

prr (yi ).pA , fs(yi� 2 	 yi� 1 	 yi ) otherwise.

(110)

and we set:

pL(ȳs) : =
s

�
i= 1

pȳs(yi )

= pL(ȳs� 1) pȳs(ys)

(111)

4.1.3 Bidirectional path sampling

The sampling strategy p(i)
E (resp. pL) does not importance sample the emitted radiance (resp.

emitted importance) factor. When this factor dominates the contribution of a path, and the
probability of sampling that path is low, the associated Monte Carlo estimator has a high
variance and, therefore, slow convergence.

Bidirectional path sampling exploits the strengths of both strategies p (i)
E and pL by creating a

collection of path sampling strategies p s,t for each path length k. Each strategy ps,t connects
an eye sub-path of length t with a light sub-path of length s such that s + t = k. The number
of strategies created that way is k + 1, the number of pairs (s, t) � N 2 such that s+ t = k.
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(a) All connections (b) Unoccluded connections

Figure 15 – Illustration of a sequence of complete paths sampled by bidirectional sampling strategies.
Only few of these paths actually contribute to the image because of occlusions.

Let ȳS = y1...yS be a light sub-path obtained with sampling strategy p L and z̄T = z1...yT

be an eye sub-path obtained with sampling strategy p (i)
E . A sequence of correlated paths

(x̄s,t = y1...yszt ...z1)2
 s+ t
 S+ T is obtained by connecting each eye vertex with each light vertex.
Each path x̄s,t is distributed according to the sampling strategy p s,t de�ned by:

ps,t(x̄s,t) =

�
��	

��


pL(ȳs) if t = 0

p(i)
E (z̄t ) if s = 0

pL(ȳs).p
(i)
E (z̄t ) otherwise.

(112)

The contribution f (i) (x̄s,t) of a complete path can be expressed as the product of a partial
contribution f E(z̄t ) from the eye sub-path, with a partial contribution f L(ȳs) from the light
sub-path, with an additional connection factor C (x̄s,t):

f (i) ( x̄s,t) = fL(ȳs).C(x̄s,t). f (i)
E (z̄t ) (113)

fL(ȳs) =

�
1 if s 
 1

Le(y1, y2)T(y1...ys) otherwise.
(114)

fE(z̄t ) =

�
1 if t 
 1

W(i)
e (z1, z2)T(z1...zt ) otherwise.

(115)

The connection factor C(x̄s,t) contains the missing factors from the contribution:

C(x̄s,t) =

�
�������	

�������


Le(zt , zt� 1) if s = 0

Le(y1, zt )G(y1, zt ) if s = 1

W(i)
e (ys, ys� 1) if t = 0

W(i)
e (z1, ys)G(z1, ys) if t = 1

fs(ys� 1, ys, zt )G(ys, zt ) fs(ys, zt , zt� 1) otherwise.

(116)

Similarly to p (i)
E and pL, the sampling strategy ps,t importance samples all factors of the con-

tribution function except C (x̄s,t). When this factor is low (potentially null when an occlusion
occurs between the connection vertices) for most paths sampled with high probability by
the strategy, the variance of the estimator associated with ps,t is high (Figure 15). All of
these strategies works well for a subset of paths and choosing the best strategy depending
on the current local con�guration is still unresolved. Nevertheless, it remains possible to
combine all the strategies with multiple importance sampling in the context of bidirectional
path tracing (detailed in Section 4.3).



4.1 local path sampling 43

4.1.4 Improving ray sampling with density estimation

Ray sampling can be improved by working on the probability density function used to sam-
ple a new ray at each vertex. Indeed, only sampling according to the BSDF can result in a
poor estimator in scenes where the illumination is highly indirect. To improve that sampling,
global information must be used concerning the distribution of radiance or importance in
the scene. A common solution is to trace particles from the light sources or from the sensors
and to guide the sampling of rays according to the distribution of these particles. This strat-
egy of reconstructing a sampling pdf from a distribution of particles is a density estimation
problem.

One of the �rst method built on this approach was introduced by Jensen [ Jen95] in order to
sample rays according to incident radiance. For that, a ray sampling pdf is reconstructed
at each surface point x of a path using histogram density estimation from a distribution of
photons stored in a precomputed photon map. The hemisphere S+ (x) of the point is parti-
tioned into bins of constant size, and each bins gets assigned a probability that depends on
the number of nearest photons having their incident direction falling in the bin. A outgoing
direction is then sampled according to this histogram, using standard sampling of piecewise
constant 2D distributions. Peter and Pietrek [ PPI98] extended this idea to the sampling of
rays according to sensor response, by pre-computing an importon map instead of a photon
map (an importon is a particle emitted from a sensor).

This approach has three major problems: the cost associated to the construction and sampling
of the estimated pdfs, the dependency between the density of photons available and the
estimated pdf, and the constant size of bins that do not adapt to details in the incident
radiance function. While the method could be made progressive, by caching the estimated
pdfs and reusing them at nearest points, this does not solve the �rst and third problem.

Addressing the third problem, Hey and Purgathofer [ HP02] replace the constant size bins
with cones of adaptive width centered at gathered photons. While this strategy allows a
more robust estimation of the sampling pdfs, it also induces a substantial overhead.

More recently, Vorba et al. [ VKŠ+ 14] introduced an approach to learn pdfs at a sparse set
of surface points from streams of particles, in a progressive manner. Instead of histogram
density estimation, they adopt parametric mixture model estimation, where each sampling
pdf is represented by a gaussian mixture model for which parameters are estimated from the
distribution of particles. Reconstructed pdfs are cached in the scene adaptively in order to
reuse them for nearby points. While the pdfs are re�ned over time, thanks to the progressive
learning approach, a initial training phase is required to start the rendering from pdfs that
represent well enough the distribution of radiance/importance. This training phase can
take a substantial amount of time for large and complex scenes. Also, querying the cache
for nearest estimated pdfs incurs a high overhead, from 26% (on path tracing) to 45% (on
bidirectional path tracing) according to their experiments.

In this thesis, we propose alternative ray sampling strategies, based on geometric and topo-
logic information extracted from a discrete representation of the empty space of the scene
(see Chapter9 and Chapter 10).
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4.2 path tracing

Introduced by Kajiya [ Kaj86], together with the rendering equation, path tracing is a simple
and elegant Monte Carlo method to estimate the measurement equation for each pixel of an
image.

Even though this algorithm is quite old, movie industry has recently shift from rasterization
solutions to path tracing [ KFF+ 15] as demonstrated by new production renderers (addition
of path tracing to RenderMan from Pixar, Arnold from Solid Angle, Hyperion from Disney,
Shining from Ubisoft, Maxwell Renderer, etc.). This can be explained by the fact that com-
puters have become powerful enough to compute path tracing in a reasonable amount of
time on large and complex scenes designed for movies. Path tracing provides more realis-
tic and physically-based images by simulating lighting effects that are hard to obtain with
rasterization, such as color bleeding, caustics or soft shadows. The shift also introduces
new interesting challenges, such as artistic control over the light transport simulation and
addition of non physically based effects in the Monte Carlo path tracing framework.

In this section, we present the algorithm in its most basic form as well as common optimiza-
tions to reduce its variance.

4.2.1 Basic algorithm

Path tracing traces paths reversely from physical light propagation: from the camera to the
light sources of the scene. The reason for this is that only paths arriving at the camera lens
and passing through the image have a chance to contribute to the intensity of the pixels.
Basically, path tracing samples the path space according the sampling strategies (p0,t) t> 1

introduced in Section 4.1.3and estimates the measurement equation with Monte Carlo inte-
gration (Figure 16).

Algorithm 1 : Path Tracing Algorithm
Data : A scene M , a camera C, an image resolution W× H
Result : An image I : [[1, W]] × [[ 1, H]] 	 R

1 for i = 1 	 W × H do
2 Ii � 0

3 sample z1...zt � p(i)
E ; // Sample an eye path, the length t is random

4 for k = 2 	 t do

5 Ii � Ii + f (i) (zk...z1)
p0,k(zk...z1) ; // Estimate Ii,k

6 return I;
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Algorithm 1 illustrates a single iteration of path tracing, where one path x̄ = zt ...z1 � p0,t is
sampled and used to compute the following estimation of the measurement equation ( 35):

ÎPT
i =

f (i) (z2z1)
p0,2(z2z1)
� �� �
estimates Ii,2

+
f (i) (z3z2z1)
p0,3(z3z2z1)
� �� �

estimates Ii,3

+ ...+
f (i) (zt ...z1)
p0,t(zt ...z1)
� �� �

estimates Ii,t

(117)

The other terms ( Ii,k)k> t are canceled by Russian roulette, thus their sum is estimated by zero.
An estimation with N samples per pixel can be obtained by running N times the algorithm
and averaging the resulting images. This technique is known as progressive rendering and is
often used for interactive rendering when each iteration can be computed in real-time.

Figure 16 – Illustration of two paths sampled with path tracing. The path drawn in red does not
reach the light source before termination, and thus has a null contribution.

4.2.2 Variance

With path tracing, variance of the Monte Carlo estimator appears as white noise in rendered
images, due to independent random sampling for neighbor pixels. There is generally two
kind of noise in path traced images:

— dark pixels, appearing when the path sampling strategy does not reach often enough
the light source.

— bright pixels, referred as speckles or �re�ies, appearing when the path sampling strategy
exceptionally draws a high contributing path with low probability.

The �rst kind of noise generally implies the second, since it traduces a high probability given
to low contribution paths, and a low probability given to high contribution paths. The second
can also occurs in presence of highly directional materials, such as specular ones, since the
probability of reaching the area of a specular material that bounce to a bright area of the
scene is generally low when tracing paths from the eye.

4.2.3 Next-event estimation

As discussed in Section 4.1.3, using the strategies (p0,t) t> 1 can be quite inef�cient in scenes
containing small light sources. Even worse, the contribution of point and directional light
sources cannot be simulated with this strategy since the probability of sampling the last
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vertex of an eye path on such arti�cial light sources is null. Such light sources are not
physically based but are often used to approximate distant or small sources. A solution to
this problem is to sample explicitly the last vertex of the path on a light source, that is, using
the sampling strategies (p1,t) t> 0 (Figure 17). In the context of path tracing, this optimization
is referred as next-event estimation.

Figure 17 – Illustration of next-event estimation. Since surfaces are glossy in this example, the direc-
tion to the light source at vertices z 1 and z2 is very unlikely to be sampled using the BSDF
pdf (represented by red arrows). Sampling a vertex on the light source and connecting it
to each eye vertex gives a higher probability of generating a contributing path.

4.2.4 Multiple importance sampling

The best sampling strategy to select the �rst vertex x 1 � M L of a a contributing path x 1...xk

depends on the lighting con�guration and the BSDF at vertex x 2. Figure 18 illustrates the
strength of each sampling strategy on a simple scene. The scene is a reproduction, provided
with the Mitsuba Renderer [ Jak10], of the famous one introduced by Veach to illustrate MIS.

The strategy p0,k, which sample the BSDF at x2 to obtain x 1, works best if the edge x2x1 has
a high contribution for the BSDF and the light source is quite large. On the opposite, if the
BSDF does not give a high contribution to the edge and the light source is small, the strategy
p1,t� 1 is better.

Without any prior information on the scene geometry around x 2, we cannot guess the most
adapted strategy without actually sampling the path. In order to improve the estimation in
the case of a bad choice for the strategy, we can use multiple importance sampling, described
in Section 3.3.3.

Let x̄0,k = zk...z1 be a path sampled with strategy p 0,k. Let y1 be a vertex sampled according
to pLe and x̄1,k� 1 = y1zk� 1...zk be the path obtained by connecting the light vertex y 1 with the
eye vertex zk� 1, i.e. a path sampled with strategy p 1,k� 1. These two paths belongs to the sub
path space Pk and can be used to estimate Ii,k with MIS:

ÎPT, MIS
i,k = w0,k(x̄0,k)

f (i) ( x̄0,k)
p0,k(x̄0,k)

+ w1,k� 1(x̄1,k� 1)
f (i) ( x̄1,k� 1)

p1,k� 1(x̄1,k� 1)
(118)
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Figure 18 – A comparison of the strategy p0,3 (left image) and the strategy p1,2 (right image) after 30
seconds of rendering. The closest plate to the viewer is the roughest and the farthest plate
is the most shiny.

Figure 19 – Multiple importance sampling between strategies p 0,3 and p1,2 (30 seconds of rendering).
The strength of each sampling strategy is conserved such that the resulting estimator has
low variance at every point.

With the balance heuristic, the weight w 0,k(x̄0,k) is expressed by:

w0,k(x̄0,k) =
p0,k(x̄0,k)

p0,k(x̄0,k) + p1,k� 1(x̄0,k)

=
pz̄(zk).p0,k� 1(x̄0,k� 1)

pz̄(zk).p0,k� 1(x̄0,k� 1) + pLe(zk).p0,k� 1(x̄0,k� 1)

=
pz̄(zk)

pz̄(zk) + pLe(zk)

(119)

Similarly, the weight w 1,k� 1(x̄1,k� 1) is expressed by:

w1,k� 1(x̄1,k� 1) =
pLe(y1)

pA , fs(zk� 1 	 y1) + pLe(y1)
(120)

These expressions demonstrate that MIS weights can be computed ef�ciently using local
information available at vertices x 1 and x2 of a path x̄. Figure 19 demonstrates the result of
MIS applied to path tracing.
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4.2.5 Light tracing

Path tracing can also be performed in the direction of light propagation and is referred as
light tracing [DLW93]. Light tracing samples paths according to strategies (ps,0)s> 1, starting
at a vertex on a light source and extending the path until it intersects the camera lens. Next-
event estimation can be used by projecting path vertices directly on the camera lens, i.e. with
sampling strategies (ps� 1,1)s> 0. Light tracing with next-event estimation simulates caustics
more ef�ciently than path tracing because vertices resulting from specular scattering are
directly projected on the image. However, light tracing also incurs high variance since virtual
cameras generally have a small lens (eventually no lens for pinhole camera models), which is
rare to reach by tracing random paths from light sources. Moreover, the closer path vertices
are from the camera, the lower is their density after projection and many pixels are not �lled
with color, producing holes in the rendered image. A better alternative is to combine path
tracing and light tracing with bidirectional path tracing, that takes advantage of all local path
sampling strategies to build a low variance estimator.

4.3 bidirectional path tracing

Bidirectional path tracing (BPT) was introduced by Lafortune et al. [ LW93] and improved
by Veach et al. [Vea97] with MIS. The basic idea of this method is to combine path tracing
and light tracing in order to sample more ef�ciently the path space, taking advantage of all
sampling strategies (ps,t)s+ t> 1 de�ned in Section 4.1.3. Figure 20 demonstrates the ef�ciency
of bidirectional path tracing on a complex con�guration through a comparison with path
tracing after the same rendering time.

4.3.1 The bidirectional estimator

A sequence of paths x̄s,t, obtained with strategies (ps,t)s+ t= k, can be used to estimate the term
Ii,k of the measurement equation. MIS must be used to account for the fact that multiple
sampling strategies are used to generate these paths, as illustrated by Figure21. Moreover,

(a) Reference (b) Path tracing (c) Bidirectional path tracing

Figure 20 – Comparison between path tracing and bidirectional path tracing after 90 seconds.
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Figure 21 – Illustration of the 5 sampling strategies to obtain a path of length 4.

choosing a good heuristic for computing MIS weights, such as the balance heuristic, results
in a low variance estimator. The bidirectional MIS estimator is:

ÎBPT
i,k = �

s+ t= k

ws,t(x̄s,t)
f (i) ( x̄s,t)
ps,t(x̄s,t)

(121)

The balance heuristic de�nes the weight w s,t(x̄s,t) by:

ws,t(x̄s,t) =
ps,t(x̄s,t)

� s�+ t�= k ps� ,t� ( x̄s,t)
(122)

To ef�ciently evaluates these weights, Veach [ Vea97, p. 305] introduced an iterative method
that evaluate the weight of a path in O(k) time. More recently, Antwerpen [ Ant11] proposed
a recursive solution in O(1) time that only need information stored at the connection vertices
ys and zt.

4.3.2 Limitations of BPT

BPT is one of the most robust rendering algorithm thanks to the use of MIS with a large
number of sampling strategies, as demonstrated by Figure 22. Nevertheless, BPT is subject
to two main limitations: rendering of caustics caused by specular materials and ef�ciency in
highly occluded environment.

4.3.2.1 Caustics.

The strength of BPT comes from its ability of sampling a path with many strategies that are
blended with multiple importance sampling, to exploit the strength of each one. However, a
path containing a specular event can only be sampled by a limited number of strategies since
one edge is deterministic.
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(a) Unweighted contributions (b) Weighted contributions

Figure 22 – Illustration of unweighted and weighted contributions of individual sampling strategies
of BPT. The noise generated by each strategy is ef�ciently reduced using multiple impor-
tance sampling.

To solve this problem, Georgiev et al. [ GKDS12] recently introduced the Vertex Connection
and Merging algorithm, simultaneously with Hachisuka et al. [ HPJ12] with their Uni�ed
Path Sampling method. These two solutions are equivalent in terms of implementation and
combine BPT with progressive photon mapping (PPM) in a common sampling framework.
PPM is a biased algorithm that is ef�cient for caustics, but not for diffuse or glossy scattering.
Combining BPT with PM results in a robust rendering method, able to deal with all the most
common surface scattering effects.

4.3.2.2 Occlusions.

The most expensive operation involved in BPT is the connection between a large number of
pairs of surface points, which require many visibility tests. BPT does not importance sample
the factors of the contribution function that results from the connection of two vertices. In
particular, the visibility factor is likely to be null for many paths in highly occluded scenes,
thus BPT is subject to high variance in this case.

Resampling (Section3.3.4) is often used to address this problem, in order to choose randomly
the terms of the estimator that have the best chance to give a high contribution.

Lafortune et al. [ LW95] proposed to reduce the number of shadow rays traced to evaluate the
bidirectional estimator ( 121). For that, they compute for each complete path x̄ s,t a probability
P(x̄s,t) proportional to the unoccluded contribution of the path. Then a pair (s�, t�) is chosen
based on these probability and only one shadow ray between ȳ s� and z̄t� is traced. If the
shadow ray is unoccluded, the sum of unoccluded contributions is used to estimate the pixel
intensity. Otherwise, the pixel intensity is estimated by zero. This estimator is unbiased and
can be used to improve the ef�ciency of BPT by tracing few shadow rays. However, ignoring
visibility to compute the probabilities can introduce too much variance in highly occluded
scenes since many pixel intensities would be estimated by zero in that case.

More recently, Popov et al. [ PRDD15] introduced probabilistic connections for BPT. This
method traces a high number of light sub-paths at the beginning of each iteration. Probability
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mass functions over the light sub-paths are then built, based on their contribution to a sparse
set of eye vertices, referred as importance records. When tracing an eye sub-path through a
pixel, the importance record closest to each eye vertex is gathered and a single light path
is resampled from the PMF computed for the importance record. This light path is used to
estimate the complete sum of contributions. While this method has the advantage of taking
into account visibility, parameters may be dif�cult to set (number of light paths and number
of importance records) to achieve maximal ef�ciency.

In Chapter 11, we introduce a new method to resample connections in order to improve
convergence rate of BPT, based on geometrical and topological information offered by a
curvilinear skeleton of the empty space of the scene.

4.4 many-light rendering

Many-light methods approximate the radiance �eld with a �nite distribution of points called
virtual point lights (VPLs), obtained from the vertices of light paths. These VPLs are used
to illuminate points seen by the camera. Therefore, global illumination is reduced to direct
illumination, that can be ef�ciently performed on GPU.

Many-light rendering was introduced by Keller [ Kel97] with the instant radiosity algorithm.
This method renders the image progressively by sampling a small number of VPLs at each
iteration. Their contribution is accumulated using the GPU, with shadow mapping to test
for visibility.

In this section we describe instant global illumination, which generalizes instant radiosity.
For more details about recent works on many-light rendering, we refer the reader to the
recent state-of-the-art report by Dachsbacher et al. [DKH + 14].

4.4.1 Instant global illumination

Instant global illumination (IGI) samples the path space with strategies (ps,2)s 0. The second
vertex of each eye path is connected to light paths of various length to approximate the
measurement equation. Furthermore, the set of light paths is shared by all pixels and pixel
measurements are highly correlated. This correlation induces a replacement of noise, usually
present in Monte Carlo methods, by structural artifacts like hard shadows or bright spots of
illumination when the number of light paths is not high enough (see Figure 23).

Let (ȳ j
s) j�[[ 1,N]] be N light paths sampled according to strategy p L,s, z̄2 an eye path sampled

with strategy p E,2 through pixel i and (x̄j
s,2) j�[[ 1,N]] the sequence of complete paths obtained

by connecting z2 with the last vertex of each light path.
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(a) Bidirectional path tracing (b) Instant global illumination

Figure 23 – Comparison between bidirectional path tracing and instant global illumination after 90
seconds. While the error introduced by BPT estimation is expressed as noise, the error
introduced by IGI appears as small plot of illuminations or hard shadows at some parts
of the image.

The term Ii,2+ s from the measurement equation is estimated by:

Î IGI
i,2+ s =

1
N

N

�
j= 1

f (i) (x̄j
s,2)

ps,2(x̄j
s,2)

(123)

In the context of many-light rendering, light vertices are named virtual point lights (VPLs)
since they acts as virtual light sources illuminating every eye vertex y 2 directly visible from
the camera. The estimator is often rewritten with the following equivalent expression:

Î IGI
i,2+ s =

N

�
j= 1

I (y j
s)M (y j

s, z2)G(y j
s, z2)W(z2) (124)

where the factors of the inner expression can be derived from the decomposition of the
contribution function, detailed in Section 4.1.3:

— I(y j
s) is the intensity of the VPL y j

s, expressed as:

I (y j
s) =

fL(ȳ j
s)

N.pL(ȳs)
(125)

— M(yj
s, z2) is the material factor, accounting for BSDF factors at z2 and at y j

s (or emitted
radiance when the VPL is on a light source). Thus, this factor is such that:

C(x̄j
s,2) = M(y j

s, z2)G(y j
s, z2) (126)

— W(z2) is the sensor response intensity of the eye vertex z2, expressed as:

W(z2) =
f (i)
E (z̄2)
pE(z̄2)

(127)

The term Ii,2 is generally not estimated with virtual point lights but with rays leaving the
camera that intersect a light source.
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4.4.2 Limitations of many-light rendering

Many-light rendering is know to produce noticeable artifacts when the number of VPLs is
not suf�ciently high to represent the distribution of radiance all over the scene. These arti-
facts are the result of variance introduced by the strategies ps,2 that are not ef�cient enough
to represent robustly all kinds of lighting effects, such as short range illumination, glossy
re�ections and caustics. The fact that all pixel intensity measurements are highly correlated
also involve that artifacts are not “hidden” by noise.

A major problem of strategies p s,2 is the geometric factor between the measurement point and
the VPL, which is not importance sampled by the strategy. This factor contains a division by
the squared distance between the two points that can goes to zero at some speci�c geometric
con�gurations such as the intersection of two perpendicular walls. Consequently, estimates
are not bounded as well as their variance, producing small bright spots on rendered images.
This problem is known as weak singularity and is often solved by clamping the geometric
factor. This solution is simple but introduce some bias in the estimator, that does not cancel as
more VPLs are sampled. Visually, this bias appears as images darker than their ground truth.
Kollig et al. [ KK04] propose to compensate the bias with path tracing when the geometric
factor has to be clamped, in order to reintroduce the missing contribution in the estimate
with a better sampling strategy. This approach effectively solves the bias problem but make
the computation time unpredictable and introduce noise in images.

A related problem is glossy BSDFs, since material factors between the measurement point and
the VPL are also not importance sampled by strategies ps,2. Some methods attacked this prob-
lem by changing the virtual light source representation. Virtual spherical lights [ HKWB09]
(VSLs) have been proposed to replace VPLs. Such light sources allows to evaluate the solid
angle they span at a given measurement point and to evaluate more ef�ciently the BSDF
over a range of directions instead of a single one. Rich VPLs [SHD15] goes a step further,
storing at each VPL a complete estimation of their incident radiance function on a texture.
This texture allows to ef�ciently evaluate the complete glossy re�ection at the VPL location
and to get better estimates.

4.4.3 Scalable many-light rendering

To obtain a robust representation of the radiance �eld in complex scenes, a high number
of VPLs need to be sampled (hundreds of thousands). In that case, the evaluation of their
contribution becomes a real problem in terms of performances. Scalable evaluations solutions
have been developed in order to reduce the number of VPLs needed to produce a realistic
image.

Lightcut solutions [ WFA+ 05, WABG06] build a tree of VPLs, effectively clustering them based
on geometric and contribution properties. The evaluation of the radiance at an eye vertex
corresponds to the computation of a cut in the tree that determine the VPLs to evaluate. This
cut is obtained from thresholds given on the error produced by the approximation.
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Matrix based solutions [ HPB07, OP11] interprets the evaluation of VPLs contribution as a
matrix where each column represents a VPL and each line a pixel. The cell (i, j ) of the
matrix is then the contribution of the j-th VPL to the i-th pixel’s intensity. By studying
the properties of this matrix and noticing that it usually has low rank, these methods are
able to cluster VPLs and pixels such that few evaluations need to be computed in order to
reconstruct a good approximation of the whole matrix.

For a given view con�guration, all VPLs does not hold the same importance. In occluded
scenes, most of them can even bring no contribution to the �nal image. Georgiev et al. [ GS10]
propose to discard VPLs using Russian roulette based on an approximation of their contri-
bution to the image. This methods allows to keep the more meaningful VPLs only for the
full evaluation and to produce a better image for the same amount of time. Importance
caching [GKPS12] is a recent method based on resampling to reduce the number of VPL
evaluations by computing their contribution at a few number of surface points visible from
the camera, referred as importance records. From these contributions, a probability mass
function is built at each importance record. The nearest importance records from a measure-
ment point are gathered and their pmf are mixed in order to select few VPLs to perform the
evaluation.

Bidirectional instant radiosity [ SIMP06a] and Metropolis instant radiosity [ SIP07] offer good
sampling strategies to obtain the set of VPLs, according to their contribution to the �nal
image.

4.4.4 Real-time and interactive many-light rendering

Rasterization pipelines implemented on graphical processing units (GPUs) are especially
ef�cient to render direct illumination. Since many-light rendering transforms global illu-
mination problem into direct illumination from multiple light sources, it can be ef�ciently
implemented using specialized APIs such as OpenGL or Direct3D to reach real-time or inter-
active frame rates.

The generation of VPLs can be performed by rendering the scene in a texture from primary
lights point of view, a technique called re�ective shadow maps (RSM) [DS05]. This texture
stores geometric and material information required to extract VPLs. This solution can only
generate VPLs resulting from light paths on length 2, but it is generally considered enough
to compute meaningful indirect illumination in real-time.

Once VPLs are obtained, the main bottleneck to compute their contribution is the computa-
tion of shadows. A robust and artifact-free rendering of global illumination requires a high
number of VPLs, and the cost associated with shadows scales with the number of VPLs.
Ignoring shadows can be a solution for indirect illumination as long as the scene does not
present to much occlusions. When it is not the case, shadow maps related strategies are
generally used. For thousands of VPLs, computing one full shadow map per VPL is not a
option since each shadow map requires the rendering of the scene multiple times (up to 5
for cube shadow maps at surface VPLs).
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To reduce the number of shadow maps that need to be computed, Dong et al. [ DGR+ 09]
compute clusters of VPLs using k-means and compute only one shadow map for each cluster,
which is shared by VPLs of the cluster.

Another strategy is to compute an imperfect shadow map (ISM) [RGK+ 08, REH+ 11, BBH13]
for each VPL. Such shadow map is a low resolution paraboloid shadow map computed by
rasterizing an approximation of the scene obtained from a point cloud. This rasterization
produces holes in the shadow map that are �lled with a reconstruction process. This method
produces artifacts that compensate each others as the number of VPL increases. However,
the cost of computing ISMs remains dependent on the number of VPLs and the parameters
involved in the method are not easy to set up for a given scene.

A related method is ManyLOD [ HREB11], for many level-of-details, that renders paraboloid
shadow maps for each VPL using a hierarchical representation of the point cloud represent-
ing the scene. This hierarchy is used to raster points of various size to the shadow map,
depending on the distance from the VPL to the geometry. The drawbacks are similar to ISMs
but the shadow maps generally have a better quality.

Recently, Olsson et al. [OSK+ 14] take advantage of new hardware capabilities to compute
virtual shadow maps for each VPL. Their method is able to generate high quality shadows
but only for hundreds of VPLs.

For real time rendering of glossy re�exion, Tokuyoshi proposed to replace the VPL represen-
tation with virtual spherical gaussian lights (VSGL) [Tok14]. A VSGL approximates the exitant
radiance distribution of many VPLs using a gaussian mixture decomposition and allow bet-
ter time coherency in the rendering of highly directional effects, such as glossy and specular
scattering.

In Chapter 7 and Chapter 8, we present two methods we developed for real-time/interactive
rendering of global illumination with VPLs, by approximating shadows casted by VPLs using
a curvilinear skeleton of the empty space of the scene.

4.5 photon mapping

Photon Mapping (PM), introduced by Jensen et al. [JC95, Jen96, Jen01], is a rendering algorithm
that estimate re�ected radiance using density estimation instead of Monte Carlo integration.
PM is known to be particularly ef�cient for the rendering of caustics, but also to produce
blurry estimates. In fact, the original method proposed by Jensen is biased and not consistent
(it does not converge to the correct result). Progressive photon mapping is a reformulation
of photon mapping that remain biased but offers a consistent estimator.
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4.5.1 Basic photon mapping

To derive the PM estimator, we �rst rewrite the incident radiance at a point as the second-
order derivative of the incident radiant power:

Li (x, � i ) =
d2� i (x, � i )

d� �
x (� i )dA( x)

(128)

The expression of the re�ected radiance can then be rewritten:

Ls(x, � o) =
�

� i �S 2
Li (x, � i ) fs(x, � i , � o)d� �

x (� i )

=
�

� i �S 2

d2� i (x, � i )
d� �

x (� i )dA( x)
fs(x, � i , � o)d� �

x (� i )

=
�

� i �S 2

d2� i (x, � i )
dA( x)

fs(x, � i , � o)

(129)

This new expression can then be estimated using N random light vertices (referred as photons)
located in a disk of radius R centered in x:

LPM
s (x, � o) =

1
�R 2

N

�
i= 1

fs(x, � i , � o)�� i (130)

Where �� i is the incident power carried by the i-th photon. In practice, photons are just
non-specular vertices from a total of N L light paths sampled before the rendering is actually
performed, similarly to VPLs in many-light rendering. Given a light vertex y s from a light
path ȳs, its incident power is estimated by:

�� i (ys) =
1
N

fL(ȳs)
pL(ȳs)

(131)

Where fL is the light sub-path partial contribution function and p L the light sub-path sam-
pling strategy (both de�ned in Section 4.1).

All photons are stored in a photon map, which is generally implemented as a Kd-tree or a hash
grid, to allow fast range queries for the gathering of nearest photons during the rendering
pass.

The PM estimate (130) is biased, and, as a consequence, gives a blurry estimation of the
re�ected radiance. However, we have the following convergence property:

Ls(x, � o) = lim
NL	 �

1
�R 2

� N�
L �

�
i= 1

fs(x, � i , � o)�� i (132)

In this equation, � � ( 0, 1) is a constant number that ensures that the number of photons
gathered around each point goes to in�nity at a rate in�nitely slower than N L. This property
is exploited by progressive photon mapping, an extension of PM which is also biased, but
consistent.
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Figure 24 – Illustration of progressive photon mapping.

4.5.2 Progressive photon mapping

Progressive photon mapping [ HOJ08] (PPM) is a reformulation of photon mapping that ex-
ploit the convergence property expressed by Equation ( 132). Even if storing an in�nite num-
ber of photons in the photon map is not possible, we can still approximate the re�ected
radiance expression in a consistent way using a progressive algorithm. Instead of storing
photons, PPM stores eye vertices (referred as hit points) obtained from eye paths that are
stopped at the �rst non specular vertex. Each hit point H i is associated to a disk of radius
Ri that is used to gather photons. During photon tracing, each time a photon fall in the
disk of a hit point H i , its contribution is accumulated to the estimate associated to the hit
point. Moreover, the radius R i of the disk is reduced by a factor that depends on the total
number of photons that have contributed to the re�ected radiance of H i , and the accumu-
lated re�ected radiance is rescaled to account for the radius reduction. After all passes, the
contribution accumulated to each hit point is divided by the total number of photons and
reported to the corresponding pixel. Figure 24 illustrates the computation of progressive
photon mapping and Figure 25 shows a comparison between PPM, PM and several other
rendering algorithms.

4.6 markov chain monte carlo methods

Markov Chain Monte Carlo (MCMC) generates random samples for Monte Carlo integration
based on a Markov chain. The �rst MCMC algorithm introduced in rendering is Metropolis
light transport (MLT) [VG97].



58 path sampling rendering algorithms

(a) PT (b) BPT (c) MLT (d) PM (e) PPM

Figure 25 – Comparison of photon mapping and progressive photon mapping against several render-
ing solutions. While PM offers a blurry estimation, PPM provides a consistent strategy
that converges to the real image.

4.6.1 Metropolis sampling

The idea behind Metropolis sampling [MRR+ 53] is to simulate a Markov chain whose distri-
bution is proportional to a function f : � 	 R+ . More speci�cally, we want to generate a
sequence of samples X0, ..., Xn such that Xi+ 1 only depends on X i and lim

i	 �
pi = p, where pi is

the PDF of Xi and p = f /
�

� f is the PDF proportional to f . To sample X i+ 1 from X i, we use
a conditional PDF K such that K (y|x) is the probability density of having X i+ 1 = y knowing
that X i = x. Each PDF pi satis�es:

pi (y) =
�

x� �
K(y|x)pi� 1(x)dx (133)

K is referred as the transition function. The goal is to construct K such that lim
i	 �

pi = p. To

achieve that goal, we use a tentative transition function T, where T(y|x) gives the probability
density of having X i+ 1 = y given that X i = x. Given a proposal Y � T(·, Xi ), we let:

Xi+ 1 =

�
Y with probability a (Y|Xi )

Xi with probability 1 � a(Y|Xi )
(134)

where a is an acceptance probability function. To ensure that pi 	 p as i 	 �, a must respect a
condition named detailed balance:

f (x)T(y|x)a(y|x) = f (y)T(x|y)a(x|y) (135)

To reach equilibrium as fast as possible [VG97], the acceptance probability must be de�ned
by:

a(y|x) = min
�

1,
f (y)T(x|y)
f (x)T(y|x)

�
(136)
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4.6.2 Metropolis Light Transport

Veach et al. [VG97] applied Metropolis sampling to light transport simulation, resulting in
the Metropolis light transport (MLT) algorithm. For this, the contribution function must be
rewritten:

fi (x̄) = hi (x̄) f (x̄) (137)

where hi is the pixel �lter function at pixel i and f is the image contribution function, which is
not null only for paths that contribute to at least one pixel. A Monte Carlo estimator for the
measurement Ii is then:

ĪMLT
i =

1
N

N

�
j= 1

hi (x̄j ) f (x̄j )
p(x̄j )

(138)

If we suppose that p = f /I with I =
�

P f (x̄)dx̄ (the total image brightness), we have:

ĪMLT
i =

I
N

N

�
j= 1

hi (x̄j ) (139)

Sampling according to p is a dif�cult problem, but Metropolis sampling can be used to
generate a Markov chain whose distribution converges to p. A tentative transition function
on paths is de�ned by Veach et al. [ VG97] as a mixture of several mutation strategies. Each
strategy is tailored for a particular type of lighting effect.

Since the distribution of samples from the Markov chain only approaches p as their number
grows to in�nity, a form of bias named startup bias is introduced in the estimation process.
To eliminate it, contributions must be weighted according to the initial path x̄ 0 of the Markov
chain. This path is obtained by sampling a strategy p 0 (for example bidirectional path sam-
pling) and its contribution h i (x̄0) is weighted by the factor W 0 = f (x̄0)/p 0(x̄0) (note that this
weight is an unbiased estimate of I). The weight for subsequent samples x̄ j of the chain is
simply set to W j = W0 The complete MLT estimator is:

ĪMLT
i =

1
N

N

�
j= 1

Wjhi (x̄j ) =
W0

N

N

�
j= 1

hi (x̄j ) (140)

A proof that this estimator is unbiased is given by Veach et al. [ VG97]. However, the unbi-
asedness of the estimator does not guarantee its consistency. Indeed, given an initial sample
x̄0, Īi does not converge to Ii since W0 is not equal to I except if p0 = p, which is not the
case (otherwise Metropolis sampling is not required). In order to make the estimator consis-
tent, we can average the estimates computed for M independent Markov chains. This new
estimator is de�ned by:

ĪMLT
i =

1
M

M

�
j= 1

Ī ( j)
i

Ī ( j)
i =

W(j)
0

N

N

�
k= 1

hi (x̄( j)
k )

(141)
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As M 	 � and N 	 �, this estimator converges to I i . Another possibility is to resample

the estimator with one path x̄ ( J)
0 chosen among the sequence of initial paths according to the

discrete probabilities Pj = W(j)
0 / � M

k= 1 W(k)
0 . The resampled estimator is:

ĪMLT
i =

1
PJ.M

Ī ( J)
i

=
� M

k= 1 W(k)
0

W( J)
0 .M

W( J)
0

N

N

�
k= 1

hi (x̄( J)
k )

=
1
M

M

�
k= 1

W(k)
0

1
N

N

�
k= 1

hi (x̄( J)
k )

(142)

In this equation, the �rst factor 1
M � M

k= 1 W(k)
0 is an unbiased estimate of I with M samples

obtained according to p0. Note that this last version of MLT can be seen as a two-stage
algorithm: initially, M paths are sampled according to p 0 in order to estimate I. Then one
is randomly chosen based on their image contribution to start the Markov chain and to
complete the estimation.

Despite the fact that MLT samples paths distributed according to the path contribution func-
tion (after enough iterations of the Markov chain), it is known to be dif�cult to implement
due to the mutation strategies on path space. To ease the implementation of MLT, Kele-
men et al. [KSK01] proposed to apply path mutations on the primary sample space, which is
the unit hypercube of random numbers sampled to generate random paths.

Also, while MLT ef�ciently renders bright parts of the image, it generally neglects dark parts
since the exploration of the path space is focused on contributing paths. Obtaining an error
uniformly distributed over the image is therefore dif�cult with MLT.
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O V E RV I E W O F S K E L E T O N I Z AT I O N

Most of our contributions use a topological curvilinear skeleton of the empty space of the scene,
represented by a 3D graph embedded in empty space.

The concept of skeleton was introduced by Blum [ Blu67] through an intuitive analogy to �re
propagation. Suppose an object made up of grass; if we set �re to the border of the object,
the skeleton would be constituted of the meeting points of the �ame fronts. This de�nition
corresponds in the continuous framework R n to the medial axis of the object, de�ned as the
set of points which are centers of maximal balls (balls included in the object and not strictly
included in any other such ball). An important topological property of the medial axis in
Rn is that it is homotopic to the original object [Lie03]. More generally, the medial axis in
continuous framework satis�es the four requirements, expressed by Hilditch [ Hil69 ], that a
skeleton should met for the purpose of shape analysis:

— It should be homotopic to the original object.
— It should have a lower dimension than the original object.
— It should be centered in the original object.
— It should be stable: skeletonizing a skeleton should give this same skeleton.

The �rst condition expresses that it should be possible to deform continuously the original
object to its skeleton, that is, without cutting or merging any part of the object. This prop-
erty ensures, in any dimension, that the number of connected components of the object is
conserved. In 3D, it also guarantee that cavities and holes of the object are still present in the
skeleton. This requirement is important to study topological properties of the object from its
skeleton.

In the digital framework Z n, the medial axis does not always satisfy the �rst and second
properties. To overcome this problem, various methods have been proposed to perform
skeletonization of digital objects.

This chapter offers a brief overview of skeletonization methods based on thinning, the process
of removing points from a discrete objects in order to obtain a skeleton. The result is a subset
of the original object that should satisfy the four mentioned requirements.
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Figure 26 – Illustration of digital objects in 3D. Each voxel is represented by a cube.

5.1 thinning in the digital framework

5.1.1 Digital objects

Digital objects are the basic entities studied by digital geometry and digital topology [AK04], two
important �elds of discrete shape analysis. A n-dimensional digital object X is a subset of Z n,
the digital grid. A digital object X is bounded if |X| � N. The complementary of X is denoted
X̄ := Z n \ X. In 3D, points of Z 3 are called voxels. Figure26 illustrates digital objects of Z 3.

A point x � Z n is de�ned by its coordinates (x1, ..., xn) with x i � Z, � i � [[ 1, n]].

5.1.2 Neighborhood

The topology of a digital object is strongly related to an adjacency relation, de�ned between
points of Z n. Such relation is equivalent to the de�nition of a k-neighborhood N k(x) � Z n

for each point x � Z n.

In 2D, neighborhoods generally considered for the digital grid are:
— the 4 neighborhood of x is the set N4(x) = { y � Z 2 | deuc(x, y) 
 1}
— the 8 neighborhood of x is the set N8(x) = { y � Z 2 | deuc(x, y) 


�
2}

In 3D, neighborhoods generally considered for the digital grid are:
— the 6-neighborhood of x � Z 3 is the set N6(x) = { y � Z 3 | deuc(x, y) 
 1}
— the 18-neighborhood of x � Z 3 is the set N18(x) = { y � Z 3 | deuc(x, y) 


�
2}

— the 26-neighborhood of x � Z 3 is the set N26(x) = { y � Z 3 | deuc(x, y) 

�

3}

where deuc(x, y) refers to the euclidean distance between two points. Figure27 illustrates the
3D neighborhoods.

For a k-neighborhood, we de�ne N �
k (x) := N k(x) \ { x} . For X � Z k, we de�ne N X,k(x) :=

N k(x) � X and N �
X,k(x) := N �

k (x) � X.
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(a) 6-neighborhood (b) 18-neighborhood (c) 26-neighborhood

Figure 27 – Illustration of standard 3D neighborhoods in the digital framework.

5.1.3 Connectivity

The notion of k-connected components of a digital object can be de�ned from the notion of
neighborhood.

De�nition 5.1. Let X � Z n and x, y � X. A k-path from x to y in X is a sequence of voxels
(p1, ...., pn) such that:

— p1 = x and pn = y
— � i � [[ 1, n]], pi � X
— � i � [[ 1, n � 1]], pi+ 1 � N k(pi )

When such a sequence exists, we note x
X,k

�	 y.

De�nition 5.2. We de�ne C k,X(x), the k-connected component of X containing x, as the maximal
subset of X such that:

— x � Ck,X(x)

— � y � Ck,X(x), x
X,k

�	 y

Figure 28 illustrates connected components of a two dimensional digital object.

Figure 28 – A digital object of Z 2. This object has six connected components for the 4-adjacency, but
only three for the 8-adjacency. Indeed, the rightmost shape is not 4-connected. A 4-path
is illustrated between two points of the leftmost shape.
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Figure 29 – The points x, y, z � X are all 4-simple and 8-simple since removing them (top images)
does not change the topology of the object for these two adjacencies. The pair { x, y} can
be removed in parallel while still maintaining the 4 and 8-topology. However, removing
the pair { x, z} does not conserve the 4-topology of the object since it produces a new
connected component for the 4-adjacency. Deletion of the pair { y, z} does not conserve
either the 4 or 8-topology.

5.1.4 Thinning algorithms

In the digital framework, thinning algorithms remove simple points from the original object
in order to compute a skeleton. Intuitively, a point is k-simple if it can be removed from an
object without changing its topology for the k-adjacency relation. In 3D, this is equivalent to
the conservation of the number of connected components, cavities and tunnels. 2D simple
points are illustrated in Figure 29.

Various characterizations of simple points have been proposed, and it has been shown that
2D, 3D and 4D k-simple points can be locally characterized in constant time [ Kon97, CB08,
BC09, CB09].

We give here a local criterion to identify 6-simple and 26-simple points in 3D, by the mean
of topological numbers [BM94].

De�nition 5.3. Let X � Z 3, x � X and k � { 6, 26} . The geodesic neighborhood Gk(x, X) is
de�ned as follow:

— G6(x, X) := N �
X,26(x)

� �
y�N �

X,6(x) N6(y)
— G26(x, X) := N �

X,26(x)

De�nition 5.4. Let X � Z 3, x � X and k � { 6, 26} . The topological number Tk(x, X) is de�ned
as the number of connected components of Gk(x, X).

Proposition 5.5. Let X � Z 3 and x � X.
— The point x is 26-simple for X iff T26(x, X) = 1 and T6(x, X̄) = 1.
— The point x is 6-simple for X iff T6(x, X) = 1 and T26(x, X̄) = 1.

With the possibility of identifying ef�ciently simple points of an object, a thinning algorithm
removes them until no more can be found. In order to preserve interesting visual features of
the original object, a constraint set can be given to the algorithm. All points contained in this
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set are constrained to be kept in the resulting skeleton. This set can also be updated during
the algorithm, as new features of the object get detected.

Two main strategies exist for removing simple points: sequential strategies and parallel strate-
gies.

5.1.4.1 Sequential removal

A sequential thinning algorithm removes simple points one at a time, until no more can be
found. Obtaining a centered skeleton with a sequential algorithm can be dif�cult since, in
order to do so, points must be removed from the object one layer at a time, starting at the
border. Figure 30 demonstrates the difference between a centered skeleton and a skeleton
obtained by removing random simple points at each step.

A widely used strategy to obtain a centered skeleton with a sequential thinning algorithm
is to compute a priority function on the object and to remove simple points according to
this function, taking the point with lowest priority at each step. The euclidean distance map
can be used as priority function, by removing at each step the simple point with the lowest
possible value. Since this map gives high values to points located at the center of the object,
the resulting skeleton is centered.

5.1.4.2 Parallel removal

Parallel thinning algorithms remove multiple simple points at the same time. This strategy
allows to obtain a centered skeleton without relying on a priority function since points are
naturally removed “layer by layer”. Another advantage of parallel thinning algorithms is the
possibility of implementing the algorithm on a parallel processor such as a GPU, in order to
achieve maximal ef�ciency.

Figure 30 – Obtaining a centered skeleton (left image) with a sequential thinning algorithm requires
to use a priority function. Otherwise, the order of removal is random and the skeleton may
not keep the visual shape of the original object (right image), while still being homotopic
to the object.
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However, removing simple points simultaneously can change the topology of the original
object, as illustrated in Figure 29. Indeed, when a simple point is removed, three situations
can occur:

— Simple points may become non-simple.
— Non-simple points may become simple.
— Nothing changes.

Identifying in 3D a large set of simple voxels that can be removed simultaneously is a dif�cult
problem and several theories have been developed to check if a parallel thinning algorithm
effectively preserve topology and to help designing new correct algorithms. Among them,
the critical kernel framework transposes results from the cubical complex framework to the
digital framework and provide new characterizations of simple points as well as ef�cient
parallel thinning algorithms of digital objects.

5.2 thinning in the cubical complex framework

Analyzing discrete objects in the digital framework actually involves several problems related
to geometry and topology [ Cha10, page. 122].

The notion of dimensionality of a set of voxel is hard to de�ne properly since a voxel is, by
de�nition, a volume. Consequently, the only way of de�ning a digital surface is to identify lo-
cal con�gurations that traduce more or less the digitalization of a continuous surface [ CB14].
With such kind of de�nition, important properties of the continuous framework may not be
conserved and the analysis of a shape through its digital representation can lead to incoher-
ences. For example, the intersection of two digital surfaces might not always de�ne a digital
curve. More generally, de�ning and identifying digital manifold in Z n, with the same proper-
ties as their continuous equivalent, is an extremely hard problem that leads to the intuition
that the digital framework is not well suited to analyze geometric features of discrete objects.

Another problem, related to topology, is the fact that the adjacency relation chosen for a
digital object must not be the same than the adjacency relation used on the complementary
of this object [KMW91, ML00, Loh01]. Indeed, using the same adjacency for both sets invali-
dates the fundamental Jordan theorem, stating that a closed simple curve always separates the
continuous plane R 2 in two connected components, an interior and an exterior. Figure 31
illustrates that this is not always the case for a digital curve when the adjacency relation is
the same for the curve and its complementary. This paradox constraints the use of a valid
adjacency pair (k, k̄) - where the k-adjacency is used for the object and thek̄-adjacency is used
for complementary - in order to de�ne topological features when it is important to consider
an object and its interior/exterior components. In 2D, the valid pairs are (4, 8) and (8, 4). In
3D, they are (6, 26), (26, 6), (6, 18) and (18, 6). A possible way to avoid this paradox is to
change the partitioning of the plane in order to introduce adjacency relations that maintain
the Jordan theorem without the use of a pair. The hexagonal grid is an example, but does
not generalize well to higher dimension and is less practical than the square grid in terms of
implementation.

The cubical complex framework constitutes an interesting alternative since it represents discrete
objects by �nite sets of continuous elements of various dimensions, with a structure de�ning
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Figure 31 – A two dimensional digital object, represented by green squares. If we consider the 8-
adjacency for this object, then it forms a closed simple curve that should separate the
complementary of the object (white squares) in two connected components. However, the
orange lines demonstrates that the complementary is still 8-connected. If we consider the
4-adjacency for this object, then it is constituted of four connected components and is not a
closed simple curve anymore. But in this case, the complementary becomes disconnected
in 4-adjacency. The only correct way of having the Jordan theorem (and its reciprocal) in
this grid is to choose a different adjacency relation for the object and its complementary.

a unique adjacency relation that matches the continuous case. While thinning can directly be
applied to cubical complexes [ CC09, Cha10, Cou11], the framework is also useful to derive
results and algorithms on the digital topology framework [ Ber07, CB09, BC09, BC14, BC14].

5.2.1 Basic de�nitions

In the voxel framework, discrete objects are made of voxels. In the cubical complex frame-
work, discrete objects are made of cubes, squares, lines and vertices. Such representation
allows to characterize precisely the dimension of an object: a surface does not contain any
cube, and a curve does not contain any cube or square.

To de�ne properly these notions, we consider the family of sets F 1
0 and F1

1 de�ned by:

F1
0 := {{ a} | a � Z } (143)

F1
1 := {{ a, a+ 1} | a � Z } (144)

De�nition 5.6. (face) Any subset f � Z n such that f is the Cartesian product of m elements
of F 1

1 and (n � m) elements of F1
0 is called a face or, more precisely, a m-face of Zn, with m the

dimension of f . We write dim ( f ) = m.

A 0-face is called a vertex, a 1-face is an edge, a 2-face is a square, and a 3-face is a cube. Given
m � [[ 0, n]], we denote by F n

m the set composed of all m-faces in Zn. We denote by Fn the set
composed of all faces in Z n :

Fn :=
n�

m= 0

Fn
m (145)
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Figure 32 – Illustrations of some faces and a cell of Z2.

Contrary to the digital framework, the adjacency relation between faces is de�ned uniquely.
The neighborhood N( f ) of a face f � Fn is:

N( f ) := { g � Fn | f � g �= � } (146)

De�nition 5.7. Let f � Fn. We set:

f̂ := { g � Fn | g � f }

f̂ � := f̂ \ { f }
(147)

Any element of f̂ (resp. f̂ � ) is a face of f (resp. a proper face of f ). A set of faces X� Fn is a
cell, or m-cell, if there exists f � Fn such that X = f̂ .

Figure 32 illustrates faces and a cell of Z 2.

Example 5.1. If f = { 0, 1} × { 2} = {( 0, 2), (1, 2)} ( f is an edge of Z2), then f̂ = {{ 0} ×
{ 2} , { 1} × { 2} , { 0, 1} × { 2}} = {{( 0, 2)} , {( 1, 2)} , {( 0, 2), (1, 2)}}

The closure of a set of faces X is the set:

�X := �{ f̂ | f � X} (148)

De�nition 5.8. A �nite set X of faces in F n is a cubical complex if X= �X, and we write
X � Fn.

Intuitively, a set of faces X is a complex if for each face f � X, X also contains all the sub-faces
contained in f , i.e. the faces g� f̂ .

A face f � X is a facet of X if f is not a proper face of any face of X. The dimension of X is
dim (X) = max{ dim ( f ) | f � X} . If dim (X) = d, then we say that X is a d-complex.

5.2.2 From digital objects to cubical complexes

To transpose a digital object X � Z n to the cubical complex framework, we associate to each
point x = ( x1, ..., xn) � Z n an n-face � (x) � Fn de�ned by:

� (x) = { x1, x1 + 1} × . . .× { xn, xn + 1} (149)

We extend the map � to sets to obtain a set of n-faces associated to X: � (X) = { � (x) | x � X} .

The cubical complex associated to X is then de�ned as the closure �� (X) of � (X).
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5.2.3 The collapse operation

The collapse operation is the basic operation for performing homotopic thinning of a complex,
and consists of removing free pairs of faces:

De�nition 5.9. Let X � Fn, and let f , g be two faces of X. The face g is free for X, and the
pair ( f , g) is a free pair for X if f is the only face of X which strictly contains g.

It can be easily seen that if ( f , g) is a free pair for a complex X, then f is a facet of X and
dim (g) = dim ( f ) � 1.

De�nition 5.10. Let X � Fn, and let ( f , g) be a free pair for X. The complex X \ { f , g} is an
elementary collapse of X.

Let Y � Fn. The complex X collapses onto Y if there exists a sequence of complexes(X0, ..., X� )
of F n such that X = X0, Y = X� and for all i � { 1, . . . ,�} , Xi is an elementary collapse of
Xi� 1. We also say, in this case, that Y is a collapse of X.

5.2.4 Parallel directional thinning

In the cubical complex framework, parallel removal of free pairs can be easily achieved by
following simple rules that we give now. First, we need to de�ne the direction and the
orientation of a free face. Let( f , g) be a free pair for X � Fn : we have dim (g) = dim ( f ) � 1,
and it can be seen that g = f � f �, where f � is the translate of f by one of the 2n vectors of
Z n which have all their coordinates equal to 0 except one, which is either equal to +1 or -1.
Let v be this vector, and c its non-null coordinate. We de�ne Dir ( f , g), called the direction of
the free pair ( f , g), as the index of c in v. The orientation of the free pair ( f , g) is de�ned as
Orient( f , g) = 1 if c = 1, and Orient( f , g) = 0 else.

The following proposition, proven by Chaussard and Couprie [ CC09], gives a necessary and
suf�cient condition for removing two free pairs of faces in parallel from a complex, while
preserving topology.

Proposition 5.11. Let X � Fn, and let( f , g) and(k, �) be two distinct free pairs for X. The complex
X collapses onto X\ { f , g, k,�} if and only if f �= k.

So we can remove two free pairs from X in parallel without changing the topology as long
as their facets are different.

From Proposition 5.11, the following corollary is immediate.

Corollary 5.12. Let X � Fn, and let( f1, g1) . . . ( fm, gm) be m distinct free pairs for X such that, for
all a, b� { 1, . . . , m} (with a �= b), fa �= fb. The complex X collapses onto X\ { f1, g1 . . . fm, gm} .

Considering two distinct free pairs ( f , g) and (i, j ) for X � Fn such that Dir ( f , g) = Dir (i, j )
and Orient( f , g) = Orient(i, j ), we have f �= i. From this observation and Corollary 5.12, we
deduce the following property.
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Algorithm 2 : [ CC09]. ParDirCollapse(X, W, �)
Data : A cubical complex X � Fn, a subcomplex W � X which represents faces of X

which should not be removed, and � � N, the number of layers of free faces
which should be removed from X

Result : A cubical complex
1 while there exists free faces in X\ W and� > 0 do

2 L = �Border(X);
3 for t = 1 	 n do
4 for s = 0 	 1 do
5 for d = n 	 1 do
6 E = {( f , g) free for X | g /� W, Dir ( f , g) = t, Orient( f , g) = s, dim( f ) = d} ;
7 G = {( f , g) � E | f � L and g � L} ;
8 X = X \ G;

9 l = l � 1;

10 return X;

Corollary 5.13. Let X � Fn, and let( f1, g1) . . . ( fm, gm) be m distinct free pairs for X having all
the same direction and the same orientation. The complex X collapses onto X\ { f1, g1 . . . fm, gm} .

Intuitively, we want our thinning algorithm to remove free faces of a complex “layer by
layer” to avoid unequal thinning of the input complex. Therefore, we want each execution
of the algorithm to remove free faces located on the border of the input complex. We de�ne
Border(X) as the set all faces belonging to a free pair for X. We now introduce Alg. 2, a
directional parallel thinning algorithm.

On a single execution of the main loop of Alg. 2, only faces located on the border of the
complex are removed (l. 7). Thanks to corollary 5.13, we can remove faces with same direction
and orientation in parallel (l. 8), while guaranteeing topology preservation. Figure 33 depicts
the �rst steps of the algorithm.

Figure 33 – Four �rst iterations of Alg. 2 running on the left-most shape.

Different de�nitions of orientation and direction can be given, each corresponding to a differ-
ent order of free faces removal in the complex and leading to different results. Algorithm 2
can be implemented to run in linear time complexity (proportionally to the number of faces
in the complex). Indeed, checking if a face is free or not may be easily done in constant time
and when a free pair ( f , g) is removed from the input complex, it is suf�cient to scan the
faces contained in f in order to �nd new free faces.
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5.3 skeletons

5.3.1 Ultimate skeletons

An ultimate skeleton is obtained when no constraint set is de�ned while applying the thin-
ning procedure. At the end the the process, the skeleton is minimal and cannot be thinned
anymore since it contains no more simple point (in the digital framework) or no more simple
pair (in the cubical complex framework). An ultimate skeleton has the advantage of being
minimal while still encoding the topology of the original object. However, the global ap-
pearance of the object might be lost. For example, an elongated corridor with an S shape is
reduced to a point (see Figure 34).

5.3.2 Aspect preservation, surface and curvilinear skeletons

The aspect preservation of the object is generally mandatory for most applications. Other-
wise, the analysis of geometric features of the original object from its skeleton might be not
possible. In our case, we want to extract a skeleton of the empty space of the scene. Regard-
ing its application to rendering and visibility problems, it is essential to preserve the aspect
of the empty space in order to get meaningful information at each point of the scene.

To obtain a skeleton that mimics the visual shape of a digital object, a constraint set has to be
speci�ed in order to keep some simple points safe from deletion. Generally, two strategies
are possible to achieve this goal: �nd, during the skeletonization process, points whose
neighborhood con�guration seems interesting and keep them in the result [ CCZ07, HR08,
CCT10a], or choose, before skeletonization, interesting points of the object which should
remain untouched, based on a function on these points and a �ltering parameter [ BC06,
Pal07]. A possible constraint set is the digital medial axis, since this object is well centered
in the object and had a similar visual appearance. A problem with this approach is that

Figure 34 – An ultimate skeleton does not provide much information about the shape of the original
object (left image). For geometric analysis purpose, a curvilinear skeleton is better (right
image).
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the medial axis is known to be very sensitive to noise, and thus generally contains many
“spurious branches” that need to be �ltered [ Loh01, Chapter. 11]. The discrete �-medial axis
is a �ltered medial axis that was proved to remain stable under small perturbations [ CCT09]
and which can be used as constraint set instead of the medial axis [CCT10b].

For aspect preservation of cubical complexes, Chaussard proposed in its PhD thesis [Cha10]
a parameter-free method to obtain a robust skeleton that mimics the shape of the original
object. This strategy evaluates a measure of the lifespan of each face and compares it to a
measure of its centering in order to decide if the face represents an important feature of the
original object. We present in Chapter 6 a variation of this method that we use to compute
our skeleton of the empty space of the scene.

It is generally interesting to keep an information about the dimensionality of the object at
different parts of its skeleton. Some volumetric regions of a 3D object may be more elon-
gated in some directions than others, a feature that can be represented by a surface skeleton.
Symmetric regions can be completely reduced to a curve, elongated enough to traduce the
length of the object. In the digital framework, characterizing surfaces and curves is dif�cult,
as discussed in Section5.2. In 1998, Palágyi and Kuba [PK98] proposed a directional thinning
algorithm to extract a curvilinear skeleton by performing 6 sub-iterations in each direction of
the digital grid. The concept of “isthmuses”, derived from the cubical complex framework,
allows to detect parts of an object that are locally like a curve or a surface [ RC11, CB14, BC15].

In the cubical complex framework, Chaussard and Couprie [ CC09] proposed a solution to
identify surfaces created during the execution of the basic thinning algorithm 2. Faces from
these surfaces are put in the constraint set dynamically and kept safe from future deletion.
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T H I N N I N G T H E E M P T Y S PA C E I N T H E C U B I C A L C O M P L E X
F R A M E W O R K

Most of the rendering algorithms proposed in this thesis are based on a curvilinear skeleton
of the empty space of the 3D scene. This chapter presents the algorithm we developed to
compute this skeleton, as well as details concerning the way we associate any surface point
of the scene to a point of the skeleton. Section6.1 gives some motivations regarding the use
of a skeleton for light transport simulation. The thinning algorithm is detailed in Section 6.2,
that computes a curvilinear skeleton in the cubical complex framework. This algorithm
was presented at the DGCI 2013 conference [CNBC13], together with an application to path
tracing detailed in Chapter 9. We propose in Section6.3a simple solution to �lter the skeleton
in order to reduce the number of its nodes, according to the geometry of the empty space.
This �ltering is required for some of our contributions for which the time complexity and
memory requirement depends strongly on the number of nodes of the skeleton. Finally, we
explain how we map any surface point to a skeleton’s node in Section 6.4.
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6.1 skeletons for light transport simulation

Skeletons are mainly applied on �elds that rely on shape analysis, such as text recognition.
By computing the skeleton of each letter of a text, it becomes easier to recognize it based on
topological and geometrical properties. Another application of skeletons is segmentation and
labeling, in order to partition an object in regions based on certain criteria, such as curvilinear
or surface parts. Skeletonization is also widely used in medical imaging applications, as
detailed by the recent survey published by Saha et al. [SSB15]

The contributions presented in this thesis employ a skeleton for an unusual purpose: light
transport simulation. This section explains the motivation behind our works and how we
extract a discrete representation of the empty space of the scene.

6.1.1 Motivation

Few methods explicitly use geometric or topological information about the scene to drive
rendering algorithms. This can be explained by the fact that, most often, 3D scenes are
represented by soup of triangles from which it is hard to extract any useful information.
For light transport simulation, we are interested in the empty space of the scene, since light
propagates in this object. As a volumetric object, implicitly de�ned by its boundaries (the
surfaces of the scene), the empty space is dense and hard to describe precisely. A skeleton
provides a sparse representation of the empty space as well as topological and geometric
features describing its shape. The topology of the skeleton indicates what holes light paths
can travel in the empty space, as well as connected components that are useful to identify
light sources not accessible from the camera. In terms of geometry, the skeleton tells us which
parts of the empty space are curved. Such regions generally require more re�ections for a
path to connect the camera with a light source. By storing information at skeleton points,
such as the radius of the maximal ball centered in each node and inscribed in empty space,
we can quickly extract an information about the thickness of the empty space at a speci�c
point of the scene. This information is useful since narrow regions are usually dif�cult to
explore with local path sampling solutions. The skeleton can also be used as a lightweight
data structure to store information about the lighting distribution in the scene, or about the
visibility between points. Our contributions aim at providing practical solutions to use this
skeleton in the context of rendering.

To the best of our knowledge, our works constitute the �rst application of skeletonization to
rendering problems.

6.1.2 Digital empty space

We are interested in thinning a digital empty space ED � Z 3, since light propagates in the
empty space of the scene. To compute this object, the 3D sceneM is �rst voxelized [ SS10]
to obtain the digital sceneM D. This voxelization process is controlled by the choice of a
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resolution (w, h, d), that de�nes the size of an axis-aligned grid G w,h,d := [[ 1, w]] × [[ 1, h]] ×
[[1, d]] � Z 3 containing the digital scene.

The digital empty space is then de�ned as:

ED := Gw,h,d \ M D (150)

Note that we do not de�ne the digital empty space as the complementary of the digital scene
because we want to obtain a bounded object.

6.1.3 What kind of skeleton and thinning algorithm ?

A explained in Chapter 5, different kinds of skeleton can be computed depending on the
information we want to extract from the original object. In our case, the empty space is a
volume and we we basically have a choice between a pure curvilinear skeleton or a surface
skeleton. For the works presented in this thesis, we decided to limit ourselves to a curvilinear
skeleton of the empty space for its simplicity. While losing substantial geometric information
about the empty space, a curvilinear skeleton has the advantage of being sparser and being ef-
�ciently representable with a graph (an array of nodes and edges). We acknowledge however,
that a surface skeleton could provide more information about the empty space’s geometry,
and thus lead to more robust rendering methods. Consequently, we let the application of
surface skeletons to rendering for future works.

Regarding the thinning algorithm, we decided to work in the cubical complex framework to
obtain the skeleton. As previously said, this framework is well suited to represent discrete
objects without loosing information about their dimensionality. This is required to guarantee
that the skeleton produced by our method is curvilinear, whenever it is possible (some objects
are not topologically equivalent to a curve, we discuss this potential issue in Section 6.2.4).
Another advantage of the cubical complex framework is the existence of parameter-free thin-
ning algorithms [ Cha10], such as the one presented in this chapter. 3D scenes used in ren-
dering can be quite complex, and having the thinning process depends on parameters could
eventually make our algorithms not usable in practice without �ne of tuning of parameters,
which could be discouraging. Consequently, the only parameter controlling the production
of our skeleton is the voxelization resolution, which can be easily determined based on the
level of details we want to include in the digital representation of the empty space.

In order to apply the thinning algorithm presented in this section to the digital empty space
ED, we convert it using the function presented in Section 5.2.2, obtaining the cubical complex
empty space �(ED).

6.2 aspect preservation during thinning

For rendering, the skeleton of the empty space needs to capture the main geometric features
of the original scene. For example, if the scene is a corridor, the skeleton should be a line
following the main direction of the corridor and centered in its empty space.



80 thinning the empty space in the cubical complex framework

The simple thinning scheme (Algorithm 2) presented in Section 5.2.4 does not necessarily
preserve geometrical features of the input object in the resulting skeleton (for example, the
skeleton of a corridor could be reduced to a single vertex). In the following, we introduce
a new method in the cubical complex framework, requiring no user input, for obtaining a
curvilinear skeleton yielding satisfactory geometrical properties. Our method �nds, during
thinning, elements with a speci�c neighborhood con�guration, and uses a function on these
elements to decide whether to preserve them, or not, in the result. This thinning algorithm
is based on the parameter-free method proposed by Chaussard in its PhD thesis [Cha10], but
with improvements regarding the production of a curvilinear skeleton in 3D presenting few
spurious branches.

6.2.1 The lifespan of a face

In the following, we de�ne additional functions in the cubical complex, related to the thin-
ning process (Section 5.2.4, Algorithm 2), which are essential for the de�nition of the con-
straint set to provide to the thinning algorithm. The �rst one we present is the death date of a
face.

De�nition 6.1. Let f � X � Fn. The death date of f in X, denoted by DeathX ( f ), is the smallest
integer 	 such that f /� ParDirCollapse(X, �, 	 ).

Intuitively, the death date of a face indicates how many layers of free faces should be removed
from a complex X, using Algorithm 2, before removing completely the face from X. We now
de�ne the birth date of a face:

De�nition 6.2. Let f � X � Fn. The birth date of f in X, denoted by BirthX ( f ), is the smallest
integer b such that either f is a facet of ParDirCollapse(X, �, b ), or f /� ParDirCollapse(X, �, b ).

The birth date indicates how many layers of free faces must be removed from X with Algo-
rithm 2 before transforming f into a facet of X (we consider that a face “lives” when it is a
facet). Finally, we de�ne the lifespan of a face :

De�nition 6.3. Let f � X � Fn. The lifespan of f in X is the integer

LifespanX ( f ) :=

�
+ � if Death X ( f ) = + �

DeathX ( f ) � BirthX ( f ) otherwise

These three values depend on the order of direction and orientation chosen for Algorithm 2.

The lifespan of a face f of X indicates how many iterations this face “survives” as a facet in
X, when removing free pairs with Algorithm 2, and is a good indicator of how important a
face can be in an object. Typically, the higher the lifespan is, and the more representative of
an object’s geometrical feature the face is. The lifespan, sometimes called saliency, was used
in [ LCLJ10] (with the name “medial persistence”) in order to propose a thinning algorithm
in cubical complexes based on two parameters.
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6.2.2 Distance map, opening function and decenterness map

In addition to the lifespan of a face, the proposed homotopic thinning method uses informa-
tion on distance between faces in order to decide if a face should be kept safe from deletion.
We de�ne hereafter various notions based on distances in the voxel framework.

We set d1(x, y) as the L1 distance between x and y (Manhattan distance). Let S� Z n, for all
x � Z n, the map D1(S) : Z n 	 N is such that D 1(S)( x) = min

y� S̄
d1(x, y).

The maximal 1-ball in S centered on x is the set MB1S(x) = { y � Z n | d1(x, y) < D1(S)( x)} . We
set, for all x � S, the map � 1(S) : Z n 	 N such that � 1(S)( x) = max

x� MB 1
S(y)

D1(S)( y): this

value indicates the radius of a largest maximal 1-ball contained in S and containing x. If x � S̄,
we set � 1(S)( x) = 0. The map � 1(S) is known as the opening function of S based on the
1-distance (also called the granulometry function) [ Mat67]: it allows to compute ef�ciently
results of morphological openings by balls of various radius, and gives information on the
local thickness of an object.

Given S � Z n, the value of � 1(S)( x) of every x � S can be naively computed by perform-
ing successive morphological dilations of values of the map D 1(S). A linear algorithm for
computing the map � 1(S) (with regard to the size of the input image) was proposed in
[Cha10].

Finally, we de�ne the decenterness map:

De�nition 6.4. Given S � Z n, the decenterness map of S is the mapDC1(S) = � 1(S) � D1(S).

An example of these maps is shown on Figure 35.

In order to extend all these previous maps de�ned in Z n to the cubical complex framework,
we use the map � � 1, inverse of the bijective map � : Z n 	 Fn

n de�ned in Section 5.2.2. It
is used to project any n-face of Fn into Z n. This map induces a map from P(Fn

n) to P(Z n),
that we also denote by � � 1.

Given Y � Fn, we set S= � � 1(Y � Fn
n). We de�ne the map D cc

1 (Y) : Fn 	 N as follows: for
all f � Fn,

Dcc
1 (Y)( f ) =

�
	




D1(S)( � � 1( f )) if f is an n-face

max
f � ĝ� � Fn

n

Dcc
1 (Y)( g) otherwise

Informally, if f is a 3-face, then D cc
1 (Y)( f ) is the length of the shortest 1-path between the

voxel “corresponding” to f and the set of voxels corresponding to Ȳ. In the same way, we
de�ne � cc

1 (Y) and DCcc
1 (Y).
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Figure 35 – Examples of opening and decenterness map - From left to right: a shape S � Z 2 (in
gray), D1(S), � 1(S) and DC1(S) (low values have dark colour).

6.2.3 Parameter-free �ltered thinning

As previously said, we add edges to the constraint set W of Algorithm 2 in order to retain, in
the resulting curvilinear skeleton, important edges from the original object. Given a cubical
complex X, if an edge of X has a high decenterness value for X, then it is probably located
too close to the border of X and does not represent an interesting geometrical feature to
preserve. On the other hand, if an edge has a high lifespan for X, then it means it was not
removed quickly, after becoming a facet, by the thinning algorithm and might represent some
precious geometrical information on the original object. An idea would be to keep, during
thinning, all edges whose lifespan is superior to the decenterness value. Unfortunately, this
strategy produces skeletons with many spurious branches in surfacic areas of the original
object.

We can identify surfacic areas of a complex as zones where squares have a high lifespan.
Therefore, in order to avoid spurious branches in surfacic areas, we need to make it harder
for edges to be preserved in these zones. It can be achieved by deciding that an edge will
be kept safe from deletion by the thinning algorithm if its lifespan is superior to the decen-
terness value plus the lifespan of squares “around” this edge. This leads us to proposing
Algorithm 3.

In order to understand what was realised on line 1 of Algorithm 3, we might point out that
the birth date of an edge corresponds to the highest death date of the squares containing this
edge. Moreover, the map Dcc

1 (X) gives, for all 3-faces of X, their death date (as the thinning
algorithm naturally follows this map to eliminate cubes from a 3-complex). Therefore, for
an edge f of X, Dcc

1 (X)( f ) informs us on the highest death date of cubes containing f , also
equal to the highest birth date of squares containing f . In conclusion, Birth X ( f ) � Dcc

1 (X)( f )
is an approximation of the lifespan of the squares containing f .

Algorithm 3 : CurvilinearSkeleton(X)

Data : A cubical complex X � F3

Result : A cubical complex Y � F3

1 W = { f � X|LifespanX ( f ) > DC cc
1 (X)( f ) + BirthX ( f ) � Dcc

1 (X)( f ) and dim ( f ) = 1} ;
2 return ParDirCollapse(X, W, + � );
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(a) a light source �oating (b) surface skeleton (c) curvilinear skeleton after piercing

Figure 36 – Illustration of a surface skeleton resulting from a cavity in the empty space (b), produced
by a light source �oating in the air (a). Piercing the surface part and reapplying the
thinning algorithm on the pierced skeleton allows to obtain a curvilinear skeleton (c).

6.2.4 Handling non-curvilinear skeletons

Although the output of Algorithm 3 may contain 2-faces, the algorithm is said to be a curvi-
linear skeletonization algorithm because it only adds 1-faces (edges) in the constraint set W.
However, for our rendering applications, we require a curvilinear skeleton even when the
original object is not homotopic to a curve. This situation occurs even in simple situations,
for example by putting a triangle �oating in the empty space in order to de�ne a light source.
In that case, a cavity is created is the empty space, producing a surface enclosing the triangle
in the skeleton (Figure 36b).

The only way of getting rid of surface parts of the skeleton is to make a compromise and
to “break” the topology of the skeleton. However, instead of just removing 2-faces from the
cubical complex skeleton before converting it to a graph, we pierce each connected surface
part (by removing only one 2-face), and we reapply the thinning procedure. This choice
allows to keep a connection between curves connected to given a surface part and thus to
keep encoded in the curvilinear skeleton the information of accessibility between different
regions of empty space (Figure 36c).

6.2.5 Results

Algorithm 3 allows to obtain a curvilinear skeleton from a three dimensional complex. The
results presented in Figure 37 show that the skeletons contain the main geometrical informa-
tion from the input shapes, and no spurious branches.

thinning of the empty space The result of the thinning algorithm applied to the
empty space of various scenes are demonstrated in Figures 38, 39, 40 and 41. For these
scenes, the skeleton is directly shown as its graph representation embedded in the 3D scene.
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Figure 37 – Results of algorithm 3 for two shapes: a hand (left) and a statue (right). In each pair, the
rightmost image represents the skeleton.

skeleton computation time. The skeleton computation time is an important factor
for its viability regarding applications to rendering. Fortunately, the method has a linear
O(n) time complexity, with n being the number of faces of the cubical complex [ Cha10].
Table 1 records time required to compute the skeleton of the empty space of various scenes,
for several voxelization resolution. These measures, computed an Intel Core i7-3770K CPU
3.50GHz (8 cores), include both the voxelization time and thinning time.

While these times does not allow real-time thinning (and thus prevent dynamic geometry
for real-time rendering algorithms based on the skeleton), they are negligible for off-line
rendering algorithms, that are usually meant to run for hours in order to compute visually
pleasing images (noise-free for path traced based algorithms). Also note that our imple-
mentation is not completely optimized and parallelized. A GPU version of the algorithm
could potentially allows real-time thinning to be possible for reasonable voxelization reso-
lutions. However, the basic implementation is not very cache-friendly, thus implementing
the algorithm on the GPU would require a reformulation and some adaptation to really take
advantage of the massively parallel computational power of the GPU.
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Figure 38 – Result of the thinning algorithm on the sponza scene, for a (119, 51, 73) resolution for
the digital empty space. In order to cover the small apertures on top of the scene, the
resolution of the voxelization grid must be increased to (234, 98, 144) (bottom-right image).

(a) resolution (72, 118, 28) (b) resolution (144, 234, 54)

Figure 39 – Skeleton of the veach door scene.

(a) resolution (234, 128, 152) (b) resolution (364, 200, 238)

Figure 40 – Skeleton of the apartment scene.



86 thinning the empty space in the cubical complex framework

(a) resolution (118, 16, 68) (b) resolution (234, 32, 134)

(c) resolution (118, 16, 68) (d) resolution (234, 32, 134)

Figure 41 – Skeleton of the plants scene.

scene resolut ion time (seconds)

Door (72, 118, 28) 0.17

Door (144, 234, 54) 1.28

Sponza (118, 50, 72) 0.92

Sponza (234, 98, 144) 6.81

Plants (118, 16, 68) 1.17

Plants (234, 32, 134) 4.57

Apartment (234, 128, 152) 11

Apartment (364, 200, 238) 45

Table 1 – Time required to compute the skeleton.

6.3 skeleton fi ltering

For some of our method (see Chapters 8 and 11), the number of nodes of the skeleton may
be too high since we store and pre-compute a high number of information for each node. By
construction, the number of nodes directly depends on the chosen grid resolution (w, h, d).
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To obtain a sparser skeleton, we developed a �ltering algorithm to adapt the number of
nodes to the scene geometry: less nodes in large regions of empty space and more nodes
in narrow regions. For that, we use the radius r i of the maximal ball centered in each node
ni , by iteratively removing nodes contained in the maximal ball of a larger one, following
the topology of the original skeleton graph. The radii can be obtained by computing an
euclidean distance map of the digital empty space E and taking the value stored at each
node coordinate in this map. Algorithm 4 details the procedure to compute the �ltered
skeleton. In this algorithm, Nskel(ni ) refers to the neighbors of n i in the skeleton’s graph.
Figures 42 and 43 demonstrate the result of our �ltering algorithm and compare the number
of nodes before and after �ltering.

Algorithm 4 : ComputeFilteredSkeleton((nl ) l �[[ 1,Nskel]])

Data : A sequence of skeleton nodes(nl ) l �[[ 1,Nskel]] with their maximal ball radius and
neighbors.

Result : The �ltered skeleton
1 foreach n i � ( nl ) l �[[ 1,Nskel]] do
2 P(ni ) � ni

3 (n�
l ) l �[[ 1,Nskel]] � sort_largest_radius_�rst( (nl ) l �[[ 1,Nskel]]);

4 foreach n i � ( n�
l ) l �[[ 1,Nskel]] do

5 if P (ni ) = ni then
6 foreach n j � ( nl ) l �[[ 1,Nskel]] such that nj accessible from ni do
7 if P (n j ) = n j and ||n j � ni || 
 r i then
8 P(n j ) � ni ;

9 N � �;
10 foreach n i � ( nl ) l �[[ 1,Nskel]] do
11 if P (ni ) = ni then
12 N � N � { ni } ;
13 N �lteredskel (ni ) � { n j � N skel(ni ) | P(n j ) = n j }

14 foreach n i � ( nl ) l �[[ 1,Nskel]] do
15 if P (ni ) �= ni then
16 foreach n j � N skel(ni ) do
17 if P (n j ) �= P(ni ) then
18 N�lteredskel (P(ni )) � N �lteredskel (P(ni )) � { P(n j )} ;

19 return (N, N�lteredskel );

6.4 skeleton mapping

In order to use the skeleton of the empty space in rendering algorithms, we must be able to
map each surface point x � M to a skeleton node, denoted nx.
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(a) #nodes = 9463 (b) #nodes = 3899

(c) #nodes = 9463 (d) #nodes = 3899

Figure 42 – Skeleton (left) and �ltered skeleton (right) of the plants scene for a (234, 32, 134) resolu-
tion.

(a) #nodes = 66486 (b) #nodes = 7701

(c) #nodes = 66486 (d) #nodes = 7701

Figure 43 – Skeleton (left) and �ltered skeleton (right) of the apartment scene for a (364, 200, 238)
resolution.
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Let (nl ) l �[[ 1,Nskel]] be the indexed sequence of nodes of the skeleton (either the original skeleton
or the �ltered skeleton). In order to perform the mapping ef�ciently (in constant time) and
with respect to geodesic distance, we pre-compute a node mapping grid Gskel that contains a
node index at each empty space voxel. This grid is obtained by propagating the index of each
node in the digital empty space E � Gw,h,d using the 6-adjacency, as detailed by Algorithm 5.
The algorithm simply performs a parallel breadth �rst search in the grid G w,h,d, constrained
by voxels covered by the digital empty space E and starting at the grid coordinates (i l , j l , k l )
of each node nl .

Algorithm 5 : ComputeNodeMappingGrid(E,(nl ) l �[[ 1,Nskel]])

Data : The digital empty space ED � Gw,h,d. A sequence of nodes(nl ) l �[[ 1,Nskel]]
characterized by their grid coordinates and their index.

Result : A grid G skel : [[1, w]] × [[ 1, h]] × [[ 1, d]] 	 [[ 0, Nskel]]
1 foreach (i, j, k) � [[ 1, w]] × [[ 1, h]] × [[ 1, d]] do
2 Gskel(i, j, k) � 0;

3 Q � FIFOQueue;
4 foreach l � [[ 1, Nskel]] do
5 Gskel( i l , j l , k l ) � l;
6 Q.push(i l , j l , k l );

7 while Q not empty do
8 (i, j, k) � Q.pop();
9 foreach (i � , j� , k�) � N 6(i, j, k) do

10 if (i � , j� , k�) � E and Gskel(i � , j� , k�) = 0 then
11 Gskel(i � , j� , k�) � Gskel(i, j, k);
12 Q.push(i’,j’,k’);

13 return G skel;

To associate a surface point x � M with a node n x, we �rst compute the grid coordinates
vx of x, obtained from an homogeneous af�ne transform T M	 Gskel

(this transformation is
usually a combination between a translation and a scaling, but may also contains a rotation
if the scene is rotated before voxelization):

vx := TM	 Gskel
(x) (151)

Since the scene voxelization is the complementary of the digital empty space ED in the grid
Gw,h,d, we have vx �� ED and thus Gskel(vx) = 0. Consequently, we have to choose a neigh-
boring cell of v x to obtain a skeleton node index stored in the node mapping grid G skel. For
that, we use the normal n x of the point and an incident direction � i to select the correct hemi-
sphere from which the point is viewed. For example, during path sampling (see Section 4.1),
the incident direction at a vertex x i is the unit vector � xi ,xi � 1 pointing toward the previous
vertex of the path. We de�ne n +

x as:

n+
x :=

�
nx if n x · � i  0

� nx otherwise.
(152)
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The direction n +
x points toward the same hemisphere as � i and we de�ne the normal n G

x in
grid space as:

nG
x :=

TM	 Gskel
(n+

x )
� TM	 Gskel

(n+
x )�

(153)

The empty space voxel vE,x associated to x is then de�ned as:

vE,x := arg max
v�N 26(vx)� E

(v � vx) · nG
x (154)

The idea behind this association is to maximize the similarity between the normal direction
and the direction pointing toward the neighbor empty space voxel. Finally, the node n x

mapped to x is de�ned by:

nx := Gskel(vE,x) (155)

Figure 44 illustrates how a surface point is mapped to a skeleton node, using the described
solution. Figures 45 and 46 illustrates skeleton mapping, both for the original skeleton and
the �ltered skeleton. Every two points with the same color are mapped to the same node of
the (�ltered) skeleton.

Figure 44 – Illustration, in 2D, of skeleton mapping.



6.4 skeleton mapping 91

(a) apartment view

(b) skeleton mapping on voxels (c) skeleton mapping on surface points

(d) �ltered skeleton mapping on voxels (e) �ltered skeleton mapping on surface points

Figure 45 – Skeleton mapping of a view of the apartment scene for a (364, 200, 238) resolution.
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(a) door view

(b) skeleton mapping on voxels (c) skeleton mapping on surface points

(d) �ltered skeleton mapping on voxels (e) �ltered skeleton mapping on surface points

Figure 46 – Skeleton mapping of a view of the door scene for a (144, 234, 54) resolution.



7
R E A L - T I M E M A N Y L I G H T R E N D E R I N G U S I N G S K E L E T O N
V I S I B I L I T Y G AT E S

Interactive 3D applications such as video games have become a lot more realistic this last
decade due to the introduction of programmable hardware and the possibility to implement
new kinds of algorithms based on global illumination techniques. However, rendering indi-
rect illumination in real-time remains challenging since visibility information between each
couple of points (i.e. knowing if they are mutually visible) of the scene must be available.
In some con�gurations, like occluded indoor scenes, indirect illumination becomes the only
way to light some regions of the scene (see Figure 47). Many methods have attempted to
achieve real time global illumination, but recently a regain of interest has been noticed for
methods based on Virtual Point Lights (VPLs) [ DKH + 14, OPB15], detailed in Section 4.4.
Unfortunately, interactive evaluation of the illumination coming from a large set of VPLs
remains dif�cult, especially when the application needs to include shadow computations.

In this chapter, we introduce a new method, presented at the CGAT 2014 conference [NB14a,
NB14b], to render a scene illuminated by a large set of VPLs in real-time. Even if our method
provides an acceptable frame rate (real-time for up to 512 VPLs), it also produces discontinu-
ity artifacts that are dif�cult to correct with existing solutions.

Our idea is to approximate visibility using almost convex regions of the empty space of the
scene, computed exclusively from the curvilinear skeleton of the empty space. In a given
region, we consider all points to be mutually visible, avoiding the need of visibility testing.
For visibility between different neighboring regions, we compute visibility gates, represented
by disks separating regions. These disks are used to convert VPLs of a region into virtual
light cones emitting light toward a neighbor region. Shadows are therefore rendered without
any explicit visibility test, by just associating VPL to fragments according to their respective
regions. The association also allows to reduce drastically the number of VPL evaluation per
pixel.

Figure 47 – The left image is a rendering showing only direct illumination. The right image adds
indirect illumination, approximated with our method. A large part of this con�guration
is only illuminated by indirect light, such as the left wall or the back of the pillars.

93
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The discontinuity artifacts we mentioned are actually produced by the segmentation of the
scene into discrete regions, illuminated by different sets of VPLs. Despite these artifacts,
the illumination computed by the method in each region is coherent when compared to
reference images, making it promising for future research. We address and discuss possible
future works to solve the discontinuity problem in Section 7.5 of this chapter.
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7.1 overview

We begin by a global overview of our method before detailing each step.

The scene is �rst preprocessed in order to extract a curvilinear skeleton of its empty space.
From this skeleton, we compute topological data structures, visibility clusters and visibility
gates, required for rendering. The construction of these structures is detailed in Section 7.2.

The second part of our technique is the rendering loop, that takes advantage of the pre-
computed data structure to achieve real-time approximate global illumination. We use a
deferred shading rendering pipeline to separate the processing of geometry and lights, and
to avoid the illumination of hidden fragments. The steps of the rendering loop are detailed
in section 7.3.

Figure 48 illustrates the different steps of our method.

Figure 48 – Overview of our method.

7.2 topological constructions

Our method is based on a scene clustering computed from a curvilinear skeleton of the empty
space of the scene (obtained with the algorithm described in Chapter 6). In this section we
detail the preprocessing steps to compute these data. The goal is to extract visibility clusters
and visibility gates from the skeleton.

A visibility cluster is a connected sub-graph of the skeleton’s graph such that the union of
their maximal balls represents an almost convex region of the empty space. Each visibility
cluster is extended to surfaces, using the node mapping grid (described in Section 6.4). Thus,
the visibility cluster of a surface point x is the visibility cluster computed for the node n x.
These structures allow to avoid visibility test between points of a same cluster, since in a
convex set any straight line connecting two points is unoccluded. We developed an ad-hoc
method to compute such clusters based on the radius of maximal balls and the curvature
along the graph of the skeleton. This computation of the visibility clusters is divided in two
steps: a simpli�cation of the skeleton to keep few nodes that contains the essential geometri-
cal and topological information; then the clustering applied to the simpli�ed skeleton.

To handle visibility between points belonging to different visibility clusters, we construct
visibility gates, represented by disks separating neighbor clusters. These disks are used during
rendering to build cones of light by combining each VPL of a visibility cluster with each
visibility gate associated to the cluster.
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7.2.1 Simpli�cation of the skeleton

The goal of the simpli�cation is to extract nodes from the original skeleton that represent
most of the geometric and topological information. This simpli�cation is similar to the skele-
ton �ltering method described in Section 6.3, but keeps more nodes and classify them accord-
ing to our needs for the visibility clusters computation.

To simplify the skeleton, we classify each node either as topology node, curvature node, coverage
node or unclassi�ed. At the end, nodes that are unclassi�ed are removed.

A node n is marked as topology node if its degree deg(n) (i.e. its number of neighbors)
is different than two (see Figure 49a). Such nodes encode connections in the graph and
suppressing them can alter the topology of the graph, so we classify them to ensure they are
kept in the simpli�ed skeleton.

After this �rst classi�cation, we regroup nodes of degree two in skeleton lines. A skeleton line
is a sequence L= ( n1, ..., nk) of nodes such that ni is a neighbor of n i+ 1, deg(ni ) = 2 and n1,
nk both have a topology node as neighbor, respectively noted L 1 and L2 and called extrema of
the line L. Such a sequence can be replaced by an edge between L1 and L2 without changing
the topology of the graph. However, doing so can remove too much geometric information:
some edges will pass through walls and important variations in the radius of maximal balls
can be lost. Let ni be a node of a line L. We de�ne the curvature of n i by:

curv (ni ) =
d(ni , L1, L2)

ri
(156)

where d(ni , L1, L2) is the shortest-distance from ni to the straight-line (L1, L2) and r i is the
radius of the maximal ball centered in n i and inscribed in the empty space. Intuitively, the
higher curv (ni ), the farther n i is from the straight line (L1, L2) in comparison to its distance
to the scene. If curv(ni ) > 1, then the straight-line (L1, L2) does not intersect the maximal ball
of r i and, in that case, replacing L by an edge means replacing a curve by a straight-line, thus
inducing a high probability of producing an edge passing through a wall. Consequently,

(a) Topology node (b) Curvature node (c) Coverage node

Figure 49 – Illustration of node classi�cation.
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Figure 50 – Simpli�cation of the original skeleton and computation of visibility clusters.

we classify each node with curvature greater than one as a curvature node (illustrated by
Figure 49b). We build two new lines by setting this node as an new extremum and apply
recursively the process until no curvature node can be found on the skeleton lines.

At the end of the process, we obtain a new set of lines such that each extremum is either a
curvature node or a topology node. At this point replacing lines with edges can still remove
too much geometric information. Indeed, some lines are relatively straight but may contain
nodes with many small maximal balls. We want to keep a good coverage of edges of the
segmented skeleton by maximal balls. To respect that criterion we check if the nodes of each
line are contained in at least one maximal ball centered in the extrema of the line. If a node
does not respect that criterion, we classify it as a coverage node (Figure49c). Again we build
two new lines by setting this node as an new extremum and apply recursively the process
until no coverage node can be found.

Finally we obtain the simpli�ed skeleton by removing all unclassi�ed nodes. The simpli�ed
skeleton has a set of nodes that is a subset of the nodes of the original skeleton and each node
n of the original skeleton can be associated with a node s(n) of the segmented simpli�ed by
taking the nearest extrema on the line containing that node.

Figure 49 illustrates the process of node classi�cation and Figure 50 illustrates the whole
process of skeleton simpli�cation.

7.2.2 Construction of visibility clusters

Giving the simpli�ed skeleton, we build visibility clusters above it using a greedy ad-hoc
algorithm. We developed the algorithm such that the union of maximal balls represented by
a cluster is almost convex.

First we sort the nodes of the simpli�ed skeleton according to the radius of their maximal
balls, in decreasing order. For each unclustered node n in that order, we build a new empty
visibility cluster C n and put n in a queue. While this queue is not empty we pop a node n k

from it and add it to the cluster C n . We add to the queue all unclustered neighbors of n k that
are not classi�ed as curvature nodes and for which the radius of the maximal ball does not
differ more than � % of the maximal radius contained in the cluster. The parameter � controls
how similar two maximal balls must be to cluster together their corresponding nodes. We
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used � = 20 for our tests, which provide good results in term of convexity. Stopping the
propagation at curvature nodes guarantee not to break the convexity of a cluster along a
curve of the skeleton (for example at corners of a corridor). We also add to the stack all
nodes contained in the maximal ball of n k that are accessible from it (by applying a traversal
algorithm starting at n k).

At the end of the process, all nodes are clustered. By construction, each visibility cluster is
a connected component of the segmented skeleton. We extend visibility clusters to surface
points by associating to x � M the visibility cluster containing s (nx), where nx is the node
associated to x by skeleton mapping and s(nx) is the node from the simpli�ed skeleton
associated to nx.

7.2.3 Visibility gates

Visibility clusters can be used to avoid visibility testing: if a viewed sample is in the same
cluster than a VPL, it is likely that they are mutually visible since clusters are built to approx-
imate convex regions of empty space.

However, a VPL from a cluster generally also illuminate points in other clusters. To approxi-
mate ef�ciently this illumination, we developed the concept of visibility gates, illustrated by
Figure 51. For each edge(ni , nj ) of the simpli�ed skeleton such that n i and n j are in different
visibility clusters, we build a disk referred as the visibility gate separating the two clusters.
We place the center of that disk at the middle of the edge (ni , nj ), the disk being orthogonal
to it and with radius min (ri , r j ). A subset of light rays leaving each VPLs of the cluster con-
taining n i intersect that virtual disk to illuminate points of other clusters. Consequently, we
use these visibility gates during the rendering pass by creating for each VPL of a cluster and
each visibility gate leaving that cluster, a virtual light cone illuminating points from all other
clusters (see Figure52). Note that by doing so, we completely ignore occlusions that could
occur in the cone, which is a reasonable approximation in the context of fast rendering.

7.3 rendering

The structures presented in Section 7.2 are used to approximate visibility for indirect illumi-
nation, represented by a �nite set of VPLs.

VPLs can be computed using path tracing [ Kel97, SIMP06a, SIP07] or with rasterization [ DS05].
The second method can achieve real-time frame rates for the generation step but limits the
number of bounces. Considering the number of VPLs that can be handled in real-time for
the illumination step, generating them on the CPU with path tracing is ef�cient enough and
provide more �exibility. Therefore, we chose this solution for our implementation in order
to set freely the number of bounces of each light sub-path.
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To compute the color C(z) of a view sample z illuminated by N VPLs y 1, ..., yN , we apply
the following equation, already described in Section 4.4.1, Equation (124):

C(z) =
N

�
i= 1

I (yi )M (yi , z)G(yi , z)W(z) (157)

The view sample z and its sensor response intensity W(z) (often set to one for real-time
rendering) is obtained as a fragment generated by rasterization. The intensity I (yi ) of the
VPL and its materials properties are stored while sampling light sub-paths.

The goal of our method is to use the precomputed topological information to quickly approx-
imate the visibility factor V (yi , z) that is part of the geometric factor G (yi , z). As described
in the previous section, we consider two possible cases:

— yi and z are part of the same visibility cluster. In that case we set V (yi , z) = 1.
— Otherwise, we consider the Ngate visibility gates leaving the cluster containing the

VPL y i and create Ngate virtual light cones with apex y i and enclosing the disk of each
gate (each cone has in�nite extent and can be assimilated to a “spot light”). If z is
outside that cone, we set V(yi , z) = 0. Otherwise, we compute a �ltered visibility
factor V (yi , z) � [ 0, 1] that depends on the proximity of the view sample to the border
of the cone.

All virtual light cones are created during the generation of VPLs and stored in GPU memory.
Testing each view sample against all cones is too costly to be performed in real time. There-
fore, we implemented the clustered shading technique [ OBA12] that groups view samples in
geometric clusters, based on their geometric similarity. These clusters allow to quickly test if a
group of view samples are outside a virtual light cone.

In this section, we detail each step of the rendering loop. It implements a deferred rendering
scheme, but can also be implemented with forward rendering and early depth testing to
avoid processing occluded fragments.

Figure 51 – Illustration of some gates of the sponza scene.
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Figure 52 – In this �gure, two VPLs are combined with a visibility gate to produce a cone (in 3D)
These cones are used to illuminate visibility clusters that do not contain the two VPLs.

7.3.1 Geometry pass (GP)

Our geometry pass compute a GBuffer composed of textures storing the following data for
each view sample:

— Normal
— Depth, to reconstruct the position of the view sample
— Diffuse color
— Glossy color and exponent
— Index of the visibility cluster
— Index of the geometry cluster needed for clustered shading

Each pixel of the GBuffer represents a view sample for which Equation ( 157) has to be eval-
uated.

To retrieve the index of the visibility cluster of each view sample, we store the node mapping
grid in GPU memory and a buffer containing the index of the visibility cluster of each node.

The index of the geometry cluster is obtained according to the clustered shading algorithm
[OBA12]: 3D positions inside the view frustum, as well as normal directions are quantized
over a �nite number of values and the geometry cluster index is obtained from this quanti-
zation. Compared to the original method, we add an additional constraint for the geometry
clusters: all view samples from a geometry cluster share the same visibility cluster. It makes
easier the association of VPLs to geometry clusters, detailed in Section7.3.3.

Figure 53a shows the index of visibility and geometry cluster of each view sample, repre-
sented by false colors.
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(a) Visibility clusters (second row) and geometry clusters
(third row), represented by false colors.

(b) Bounding spheres of geometry clusters.

Figure 53 – Illustration of geometric and topological data computed during the rendering iteration at
each pixel.

7.3.2 Identi�cation of unique geometry clusters and bounding volumes (IUGC)

After the computation of the GBuffer, each geometry cluster index is between 0 and the total
number of possible index allowed by the quantization. In order to address the geometry clus-
ters ef�ciently and store their information in a linear buffer, a re-indexing step is necessary
(between 0 and the total number of geometry clusters identi�ed in the GBuffer). This compu-
tation can be ef�ciently performed in parallel directly on the GPU, using compute shaders
and a local sorting algorithm. For more details about this step, we refer the reader to the
article from Olsson et al. [ OBA12] describing the original method. Additionally, we compute
the bounding box of each geometry cluster, using a parallel reduce min-max on view sample
positions of the cluster. These bounding boxes are converted to bounding spheres and used
to test ef�ciently the intersection with virtual light cones during the VPL assignment pass.
Figure 53b illustrates the bounding spheres of each geometry cluster for a given view.

7.3.3 VPL assignement pass (LA)

For each geometry cluster, this step computes a list containing the index of the VPLs that
potentially affects its view samples. Since all view samples stored in a geometry cluster
belongs to the same visibility cluster, we add the VPL to the list if it is contained in the same
visibility cluster than the geometry cluster (this is the �rst case of the visibility approximation
described earlier). Otherwise, we add the VPL to the list if the bounding sphere of the
geometry cluster intersect one of the virtual light cones having the VPL as apex. We also
store the index of the visibility gate corresponding to the virtual light cone in order to re-
perform the test for individual view samples of the geometry cluster. The VPL assignment
pass is implemented with a compute shader, processing all geometry clusters in parallel.
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7.3.4 Indirect lighting (IL)

We compute the indirect illumination of each view sample using the list of VPLs computed
for its geometry cluster. At this point, all VPLs not associated with a visibility gate in the list
are considered to be visible from the view sample. For other VPLs, associated with a visibility
gate and representing a virtual light cone, we test if the view sample belongs to that cone
before adding the contribution. If the VPL is accepted, we multiply the contribution by an
attenuation factor based on the cosine between the direction from the VPL to the view sample
and the center direction of the cone. This factor is required to attenuate the spot produced
by the approximation of the VPL visibility volume with a cone.

7.3.5 Direct lighting

This simple step uses primary light sources with shadow maps to add direct illumination in
the �nal image.

7.4 results and discussion

We evaluated the performance of our method on the scene Sponza (Crytek version, 262,267
triangles). All measurements were performed on an NVIDIA GTX 670 Ti GPU. We also
exhibit a result computed from the scene Sibenik (75,284 triangles) to discuss the rendering
of glossy re�ections. The resolution of the frame buffer is set to 1024x512 for all views.

We �rst present results on view con�gurations exposing few artifacts in Section 7.4.1. Then
in Section 7.4.2we show and discuss con�gurations on which discontinuity artifacts are too
much important for the algorithm to be usable in its current form.

7.4.1 Rendering results

Figures 47, 54, 55 and 56 show results of our method on the Sponza scene from multiple
points of view and for different light con�gurations. All reference images were computed
on the CPU using the same set of VPLs and with shadow rays for visibility tests. For each
con�guration we compare the result of our method with two kind of rendering:

— direct illumination only, to show how indirect illumination improves the realism of
the images

— direct illumination + indirect illumination, but without taking into account shadows
for VPLs.

Ignoring shadows for indirect illumination is a well-known solution to approximate real-
time global illumination. However, as demonstrated by Figure 55, this strategy can strongly
overestimate the overall illumination. Our method produces results closer to the reference in
terms of illumination. Color bleeding is an effect resulting from the re�ection of light coming
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Figure 54 – Color bleeding, rendered with our method.

Figure 55 – We compare the result of our method with a rendering that ignore shadows for the
virtual point lights. When illumination is mostly indirect, like in this case, doing such
an approximation can drastically affects the �nal image. Our method gives a result close
to the reference thanks to the subset of VPLs well-chosen by our algorithm to illuminate
each view sample.
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Figure 56 – Here we show how visibility gates can affect the indirect illumination. Most of the light
on the �oor is produced by virtual point lights that are not in the same cluster. By using
visibility gates, we can �nd for each view sample a subset of these virtual points lights that
certainly illuminate it. Since gates are only disks, we still miss a lot of VPLs, producing
darker results than the reference in some part of the result. Other parts are over evaluated
due to shadow tests that are ignored inside visibility clusters. Still, our result is a better
match of the reference image than when we totally ignore shadows for virtual point lights.

Figure 57 – This view of Sibenik church demonstrates glossy re�ections on the stained glass. A high
number of VPLs must be used to get correct glossy re�ections (here 4192 VPLs were used).
There exists other methods which are more appropriated to compute that kind of effect.
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vpl # gp iugc la il total

512 6.1 4.3 12.3 10.9 33.6

1024 6.1 4.3 24.5 22.1 57

2048 6.1 4.3 49.0 44.2 103.6

Table 2 – Rendering Times (ms)

from close colored textures. It can be observed rendered by our method in Figures 54 and in
the indirect illumination snapshot of Figure 56.

Glossy re�ections are generally badly estimated by methods based on VPLs. Indeed, using
a discrete set of points to approximate incident indirect illumination does not permit the
evaluation of incident radiance along directions having a high importance for the glossy
BSDF. Figure57 shows a view of the Sibenik scene where glossy re�ections can be observed
on the stained glass, with 4192 sampled VPLs. With that number of VPLs, our method is
no longer real-time but remains interactive (3.7 frames per second in that case). A more
appropriate method to render glossy re�ections in real-time is [ CNS+ 11] but is limited to
two bounces of light.

Table 2 gives times in milliseconds of each step of the rendering pass for different numbers of
VPLs. We achieve real-time frame rate for a number of VPLs less than 512 and stay interactive
for few thousands of VPLs.

Table 3 presents mean square errors (MSE) computed for two different con�gurations. These
MSE have been computed on color values in the range [0, 255]. The table shows a lower
error for our method than for direct lighting or indirect lighting without indirect shadows.
Con�guration 1 is the one illustrated in Figure 56 and Con�guration 2 is the one shown in
Figure 55. Since there is few indirect illumination on this con�guration (compared to direct
lighting), the error produced by computing direct lighting only is closed to the one produced
by our result.

We implemented the light assignment pass using a brute force algorithm on GPU (each geom-
etry cluster is tested in parallel against each virtual cone light). This pass can be optimized
using a acceleration data structures on lights.

The performance of our algorithm depends on the lighting and viewing con�guration: if
all VPLs are in the same visibility cluster, then rendering takes much longer if the camera
look at a many points from that cluster. The rendering times given in the table are obtained
with the view point and primary light source position of Figure 56. Finally, it can also be
a good solution to remove lighting using visibility gates. That way, we just keep indirect
illumination that occur inside visibility clusters. This solution loses some long range lighting
but also improve the performances of the algorithm by removing small contributions.
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config. direct l ight no shadows on indirect our method

1 111.96 69.1091 33.1041

2 39.7544 170.121 39.6128

Table 3 – Mean Square Error

7.4.2 Limitations

7.4.2.1 Discontinuity artifacts

As discussed in the introduction of this chapter, our method is subject to the presence of
discontinuity artifacts in the rendering of indirect illumination (Figure 58a). These artifacts
are caused by two possible sources:

— A view sample is associated to a bad visibility cluster because of the node mapping
grid.

— The discrete segmentation of view samples in visibility clusters produces fast change
in the indirect illumination at places where this variation should be smooth.

The �rst source of artifacts is due to the way we compute the node mapping grid. While
being correct, most of the time, in term of distance, visibility and orientation, the geodesic
propagation of node indices produces some incoherences at some voxels, for which the asso-
ciated node differs strongly from neighbor voxels. While the impact of this problem is limited
for off-line rendering algorithms based on random sampling, thanks to multiple importance
sampling (see Chapter 9 and Chapter ??), it is hard to correct for real-time algorithms where
a decision is made based on the node associated to each view sample. A possible solution
to address this problem is to te replace the associated node of a surface point “on the �y”
with a neighbor node in the graph, using a similarity measure well de�ned between surface
points and nodes. We tried various similarity measures, using surface orientation, distance
and maximal ball radii, but failed to �nd one that �xes all bad associations without introduc-
ing new ones. We think that the correct way of �xing this issue is to take the problem at its
source: the construction of the node mapping grid. All contributions presented in this thesis
would bene�t from a good propagation algorithm that associate nodes to voxels according
to geometric properties of surfaces and visibility in the scene.

The second source of artifacts is related to the method itself, that partition view samples in
discrete regions according to their associated nodes. Applying such kind of partitioning on
view samples and computing their illumination according to it is actually quite dangerous
since they are directly seen by the viewer. While it is easy to detect where discontinuities
occur in the �nal image (by analyzing the visibility cluster image), smoothing correctly the
computed illumination is a hard task since the size and geometry of visibility clusters vary
in a non predictable way (as well as the illumination variation).

These discontinuity issues led us to develop another real-time rendering algorithm address-
ing the same problem, but avoiding any kind of partitioning on the view samples. This
second method is presented in Chapter 8 and renders a convincing approximation of shad-
ows from a large set of VPLs with no discontinuity artifacts.
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(a) Discontinuities produced by our method. (b) Insuf�ciency of disks to render the indirect illumina-
tion between visibility clusters.

Figure 58 – Illustration of rendering artifacts generated by our method.

7.4.2.2 Visibility gates limitations

Our visibility gates are represented by disks, which is a coarse approximation of the empty
space interface between two visibility clusters. While the idea of replacing visibility testing
by geometrical proxies is interesting and has already been used in production rendering
application (these proxies are usually positioned manually and not automatically extracted),
they must adapt well to the geometry of the scene. Using our skeleton to extract visibility
gates is not enough to achieve that goal since every node only stores the radius of its maximal
ball, which correspond to its distance to the scene. Therefore, no information about the main
orientation and extent of the empty space is available at each node and we are limited to
disks to represent the interface (Figure 58b).

To address this limitation, Chapter 10 presents a more robust method to extract portals from
empty space, using an opening map instead of a skeleton. While we developed this other
method for an application to ray sampling, these portals can be used to replace visibility
gates and to provide better accuracy in the estimation of visibility.

7.5 conclusion and perspectives

We presented a new real-time rendering algorithm that approximate visibility on indirect
illumination using a clustering strategy combined with geometrical proxies in the form of
disks. While this method produces a coherent illumination in each cluster, the presence of
discontinuity artifacts between clusters and the disk representation of visibility gates make
the result too coarse to be used in practice for production rendering.

Despite the time spent on this method without providing, at the end, artifacts-free images,
we believe that facing these issues allowed us to better understand the limitations brought by
the skeleton and how to deal with them. While the skeleton is a powerful tool, bringing many
information about the scene and its visibility, the discrete segmentation of the surfaces of the
scene according to nodes has to be carefully exploited in order to avoid artifacts in rendered
images. We must also remain aware that the geometric information carried by the skeleton
is somewhat limited, at least for a curvilinear one. The maximal balls centered in each node
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gives us a lower bound on the local volume of empty space occupied at each node but cannot
describe its orientation and extent in directions orthogonal to its graph. Consequently, either
we have to use another structure to retrieve that information, either we have to use it in a
conservative way, that is without taking the risk of reducing the rendering quality of images.

Possible future works related to the ideas developed for this method would address the
following points:

— Improving the robustness of visibility clusters in terms of convexity to reduce errors
made by approximating the visibility inside of them. Also, to avoid discontinuity
artifacts, de�ning the belonging of a view sample to a visibility cluster as a function
taking values in the interval [0, 1] instead of a binary value. We already developed
some experiments toward that goal that seem promising.

— As mentioned previously, replacing the representation of visibility gates by meshs
more adapted to the local geometry of the empty space. However, an issue that could
arise in the context of real-time rendering would be the cost associated to the evalua-
tion of the visibility between a VPL and a view sample. The advantage of disks is that
a VPL combined with a disk forms a virtual cone, that is a simple geometrical shape
to test for intersection with bounding volumes of view samples.



8
S K E L E T O N S H A D O W M A P P I N G

This chapter presents a second real time method for many-light rendering, with the same
purpose as Chapter 7, the approximation of shadows using the skeleton. This new approach
is based on shadow mapping and we do not partition view samples according to the skele-
ton, in order to avoid any discontinuity artifact. Our results demonstrate that the method
effectively renders a smooth and convincing indirect illumination, with better frame rates
than our previous one.

However, the work presented in this chapter is still in progress and presents some limita-
tions. For example, our current implementation is limited to diffuse scattering, while the
method in itself can also be applied to glossy re�exions. Some optimizations also need to
be implemented, such as interleaved shading, to compare our method to concurrent recent
works dealing with real-time indirect illumination from many-lights.

Our goal is not to provide a correct physical approximation of indirect illumination, but an
ef�cient and plausible rendering of indirect shadows that can be used to trick the viewer
in believing that they are real. For that purpose, the approximated indirect illumination
intensity must match the real one, and approximated shadows must appear at locations that
make sense geometrically. Our rendering technique targets applications that require fast and
convincing rendering, such as video games or virtual reality applications.

We give an overview of the method in Section 8.1, as well as some motivations regarding
our idea. A mathematical formulation of our approximation is provided in Section 8.2.
Section 8.3 details the preprocessing of data required by the method, a shadow map for
each node. Each important step of the rendering loop is then explained in Section 8.4. We
demonstrate and discuss our results in Section 8.5. Finally, we conclude and discuss some
perspectives for the works presented in this chapter in Section 8.6.
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(a) Standard shadow mapping (b) Skeleton shadow mapping

Figure 59 – Illustration of the visibility factorization performed by our method. We observe in this
simple example that our strategy gives correct results for VPLs y 1, y2 and y4, but fails for
VPL y3.

8.1 overview and motivation

We observed in Chapter 7 that partitioning view samples according to the skeleton mapping
function produces discontinuity artifacts that need to be �ltered. A good �ltering strategy is
however dif�cult to develop since surface regions created by the skeleton mapping are quite
extended in space. Consequently, we decided to avoid clustering of view samples for the
method presented in this chapter.

Our idea is to factor visibility between VPLs associated to the same node. To achieve that
goal, we pre-compute a shadow map for each node, centered at its position, before the
rendering loop. During rendering, for a VPL located at position y � M , we use the shadow
map computed for the node n y. This strategy is illustrated by Figure 59. There is two main
advantages of using such visibility factorization:

— Since a large number of VPLs are likely to be assigned to a given node n, we can
avoid their processing for each view sample not visible from n and thus achieve high
performance.

— The shadow maps do not have to be re-computed each frame even if the VPLs are
dynamic. The drawback behind this is that the geometry of the scene have to remain
static. Indirect shadows produced by our method also remains static, in terms of posi-
tioning.

The purpose of the work presented in this chapter is to evaluate experimentally the viability
of this approximation for rendering non realistic but plausible indirect shadows. Targeted
applications are those that do not require precise physical results but convincing rendering,
such as video games or virtual reality simulations. While our approximation might seems too
coarse at �rst glance, since skeleton nodes are centered in the empty space and not located
on surfaces, our results demonstrate that it works well in practice and does not produce
visible artifacts when combined with standard rendering techniques, such as percentage closest
�ltering (PCF) to obtain soft shadows.
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8.2 mathematical formulation

Recall the equation to compute the color C(z) of a view sample z illuminated by a set Y =
{ y1, ..., yN } of VPLs (given in Section 4.4):

C(z) =
N

�
i= 1

I (yi )M (yi , z)V(yi , z)G� (yi , z)W(z) (158)

where we extracted the visibility factor from the geometry factor, such that the identity
G(yi , z) = V(yi , z)G� (yi , z) holds. Our method approximates Equation ( 158) with the fol-
lowing expression:

�C(z) =
N

�
i= 1

I (yi )M (yi , z)Vf (nyi , z)G� (yi , z)W(z) (159)

where the visibility V (yi , z) between the VPL and the view sample has been replaced with
a �ltered visibility factor V f (nyi , z) � [ 0, 1], between the node associated to the VPL and the
view sample. The �ltering of visibility is essential here to obtain soft shadows, that provide
a better approximation of indirect shadows.

Let Yni be the set of VPLs associated to the i-th node ni of skeleton, de�ned as:

Yni := { y � Y | ny = ni } (160)

Equation (159) can be rewritten by summing over the M nodes of the skeleton, and factoring
the visibility factor:

�C(z) =
M

�
i= 1

Vf (ni , z) �
y� Yni

I (y)M(y, z)G� (y, z)W(z)

=
M

�
i= 1

Vf (ni , z)CYni
(z)

(161)

The computation of the inner sum, expressed as CYni
(z), requires to loop over all VPLs

associated to the node ni . This computation can be immediately discarded if the node does
not see the view sample, that is if V f (ni , z) = 0. Consequently, our approximation allows to
avoid many computations for each view sample.

8.3 shadow maps computation

Our method approximates the visibility function of many VPLs using a shadow map pre-
computed for each node. Since the storage of these shadow maps can be expensive, we
apply the method on the �ltered skeleton, detailed in Section 6.3, which contains less nodes
than the original skeleton and adapts the node density to the local geometry of the empty
space.

For each node n of the �ltered skeleton, we pre-compute a cube shadow map. All shadow maps
are stored in several cubemap array textures, such that many shadow maps can be computed
in a single draw call using instanced rendering and geometry shaders.



112 skeleton shadow mapping

We discuss the resolution we use for the cubemaps in the result section, as well as possible
optimizations to reduce memory consumption when the �ltered skeleton still contains too
many nodes.

8.4 rendering

Our method implements a deferred rendering loop. The geometry pass computes a GBuffer
containing for each pixel its normal, its depth and its material properties.

The set of VPLs approximating indirect illumination is sampled with standard solutions [ Kel97,
DS05] at the beginning of the rendering loop. Each VPL is then associated to a node using
skeleton mapping.

The following sections detail the speci�c steps of our method to approximate indirect illu-
mination, by computing Equation ( 161) for each pixel of the image, in parallel thanks to the
GPU implementation. For that, we iterate over each skeleton node n i associated to at least
one VPL (|Yni | �= 0), in order to accumulate each term Vf (ni , z)CYni

(z) of Equation (161).

The complete rendering loop is summarized as follows:
— Compute GBuffer
— Sample a set Y= { y1, ..., yN } of N VPLs
— For each VPL yi :

— Ynyi
� Ynyi

� { yi }
— For each node ni such that |Yni | �= 0:

— Compute shadow framebuffer of n i (SFC)
— Accumulate contributions of VPLs from Y ni (CA)

— Accumulate direct illumination
The two steps highlighted in red are the one speci�c for our method and are described in the
two next sections.

8.4.1 Shadow framebuffer computation (SFC)

We �rst compute a shadow framebuffer for the node ni of the current iteration. The purpose of
this framebuffer is to contain, for each pixel j, the �ltered visibility factor V f (ni , zj ), where zj

is the view sample of the pixel. This factor is obtained from the shadow map precomputed
for the node n i , using percentage closer �ltering (PCF) [RSC87] to handle the �ltering of the
visibility function of the node. This technique provides both anti-aliased shadows (aliasing
being a well know problem of shadow mapping) and soft shadows approximation.

8.4.2 Contribution accumulation (CA)

The second step accumulates the contribution coming from VPLs of the set Yni . The fragment
shader reads the value Vf (ni , zj ) stored in the shadow framebuffer and skip the computation
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if V f (ni , zj ) = 0. Otherwise, the sum of individual contributions of VPLs from Y ni is accumu-
lated and scaled by Vf (ni , zj ).

8.5 results and discussion

We compare our indirect shadows approximation against a computation of exact shadows,
obtained with CPU rendering using the same set of VPLs. We also show, for each result, a
rendering for which shadows on indirect lighting are ignored, in order to demonstrate that
they are essential for visual realism when indirect lighting constitute the main contribution
for the illumination of the image. For now, we are mainly interested in visual comparisons
rather that statistical ones (with error measurement), since our method provides a coarse
approximation of indirect shadows. We compare and discuss differences between illumina-
tion intensity and shadow positioning, and we keep for future works the development of an
adapted and systematic comparison approach to validate our results.

All presented images where rendered with a NVidia GeForce GTX 670 GPU for real-time
rendering, and an Intel Core i7-3770K CPU 3.5GHz for of�ine CPU rendering. Rendering
times, for indirect illumination only, are given by Table 4 for various number of VPLs, cor-
responding to 500 light paths, 1000 light paths and 2000 light paths, each light path being
limited to one edge (one bounce indirect illumination).

All displayed images are the one obtained with the highest number of VPLs recorded by
the table, for each con�guration. In rendered images, some surfaces are black because of a
specular material assigned to the surface (either re�ective or transmissive), and our imple-
mentation has not been adapted to these kind of materials.

8.5.1 Visual comparisons

Figure 60 to Figure 66 illustrate visual comparisons between an exact rendering of shadows,
computed on the CPU, our method and a rendering featuring no shadows on indirect light-
ing, both computed on the GPU. Overall, our results demonstrate a good approximation
of indirect illumination, which is more close visually to the exact rendering than ignoring
shadows. Globally, our method either overestimate or underestimate a little bit the illumi-
nation, depending on the distribution of VPLs among skeleton nodes that are visible from
view samples. For the viewpoint illustrated by Figure 62, our result does not match well
the CPU image because of many fake shadows produced at the ground. Nevertheless, these
shadows are coherent with the scene geometry and they do not harm the plausibility of the
result since the viewer is not aware that they do not exist in a physical rendering. An impor-
tant problem, however, is the coherency between direct and indirect shadows, especially for
dynamic lighting. By construction, our method renders static shadows, since skeleton nodes
are static in the scene. In a dynamic setting for light sources, it results in moving shadows
for direct lighting and static for indirect lighting, which can break the feeling of immersion
of the user. This problem can also be noticed on static images, such as Figure63, when the
direct illumination part on the image does not correctly align with indirect shadows.
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8.5.2 Rendering times

Table 4 records rendering times for our method, expressed in milliseconds. We achieve real
time frame rate is achieved for about 1000 VPLs, and remain interactive for approximately
2000 VPLs. The performance of our method depends on the viewpoint, since the accumu-
lation of VPL contributions depends on the visibility between view samples and skeleton
nodes. The number of shadow framebuffer computation (SFC) pass depends on the distri-
bution of VPLs. If VPLs are scattered on many skeleton nodes, more SFC passes have to be
performed and the performance can drop. Overall, the most costly part is the contribution
accumulation (CA), since it depends on the number of VPLs. Recent works on many-light
real time rendering [ BBH13, Tok14] report real-time frame rate for approximately 1024 VPLs,
with shadows computed with the imperfect shadow map (ISM) technique [ RGK+ 08, BBH13].
However, these methods make use of the interleaved shading solution [ KH01, SIMP06b], that
distribute the number of VPL contribution computation on tiles, and reconstruct an approxi-
mation of the complete sum of contributions through �ltering at each pixel. For example, the
method presented in [ Tok14] uses 8× 8 tiles, and then actually process 1024/(8× 8) = 16 vir-
tual lights per pixel. Our method provides real-time frame rate for approximately the same
number of VPLs, without using interleaved shading, which make it promising to handle
thousands of VPLs in real-time after the implementation of this strategy.

8.5.3 Memory consumption and shadow maps resolution

In our implementation, we used cubemaps with a resolution of 6 × 1282 pixels, containing
depth values represented as �oats. With this setting, each shadow map consumes approxi-
matively 400kB, allowing about 2500 shadow maps to be stored in a 1GB GPU memory.

If the �ltered skeleton still contains too many nodes for storing all shadow maps on GPU,
they can be converted to 2D shadow maps using spherical mapping or dual paraboloid
mapping [ BApS02].

8.6 conclusion and perspectives

We proposed a new method for the approximation of indirect illumination using VPLs and
the �ltered skeleton of the empty space of the scene. While this work is in progress, our
results are promising for real-time rendering of convincing shadows, in order to provide fast
approximation of indirect illumination for entertainment applications.

Future works will be focused on the implementation of missing features, such as glossy scat-
tering and interleaved shading. Regarding glossy scattering, a recent method from Tokuyoshi
[Tok14] proposed to use Virtual Gaussian Spherical Lights (VGSLs) instead of VPLs. VGSLs
gives a better approximation of glossy re�ections, and we plan to adapt our method for the
use of such many-light representation.
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config. # vpls sfc ca total noshadows cpu (sec.)

Sponza1
484 4 8.7 12.7 19 67

961 6.5 17.6 24.1 40 128

1936 9.2 34.6 43.8 77.3 232

Sponza2
464 10.5 11.5 22 20 67

924 17.1 22.5 39.6 40 154

1867 24.3 42.8 67.1 78 300

Sponza3
484 4.5 9.5 14 19.7 91

961 5.9 18.5 24.4 38 169

1936 8.5 36.9 45.4 77 328

Sponza4
481 4 3.1 7.1 19.3 50

954 6 6 12 38.5 103

1921 7.1 10.3 17.4 76.3 200

Door
484 5 10.3 15.3 20 50

961 5.6 20 25.6 38.7 107

1936 5.6 39 76.4 76.4 203

Apartment1
484 12 11.7 23.7 22.4 82

961 18 20 38 40 152

1936 19.1 36 55.1 77.5 291

Apartment2
484 9.8 12.4 22.2 22.4 82

961 11.5 22.5 34 40 152

1936 17.8 42.6 60.4 77.5 291

Table 4 – Rendering times, all expressed in milliseconds except the CPU image computation time
expressed in seconds. Timings for the column “total” correspond to our method. The
column “noshadows” records timings for the computation of indirect illumination without
shadows.
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Figure 60 – Con�guration Sponza1. Our method overestimates the illumination in that con�guration,
and produces some light leak near the lion head due to the low resolution of our skeleton
node shadow maps. The indirect shadow on the ground is shifted, compared to the exact
shadow, and less soft.
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Figure 61 – Con�guration Sponza2. A non existent shadow is produced on the right wall by our
method.
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Figure 62 – Con�guration Sponza3. Many non existent light rays are produces on the ground by our
method, due to the factorization of visibility for VPLs located on the left corridor.
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Figure 63 – Con�guration Sponza4. While our method is able to produce indirect shadows for pillars,
the illumination is overestimated and the shadows are shifted compared to the CPU image.
For this viewpoint, it breaks the feeling of realism because the direct illumination part
does not align with indirect shadows. Also, the shadows are a little bit aliased because of
the low resolution used for our skeleton node shadow maps.
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Figure 64 – Con�guration Door. In this case, the illumination is underestimated by our method.
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Figure 65 – Con�guration Apartment1. The illumination is again a little bit overestimated by our
method in that con�guration.
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Figure 66 – Con�guration Apartment2. This con�guration features color bleeding, produced by the
re�ection of light on the table and chairs. Our method overestimates the bleeding on the
ground, but underestimate it on the back wall.
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Our method is currently limited to static geometry, as opposed to other more costly solu-
tions for shadow approximations, such as ISMs [ RGK+ 08, REH+ 11, BBH13] or ManyLODs
[HREB11]. A possibility to offset this limitation is to identify node shadow maps that are
used at a given frame, and to update them with dynamic objects. A future work is to evalu-
ate the cost and viability of this solution, and to evaluate how it scales with the number of
dynamic objects of a given scene.

Finally, we plan to compare our method with the mentioned concurrent ones, in terms of
performance and rendering quality.
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S K E L E T O N B A S E D R AY I M P O RTA N C E S A M P L I N G

This chapter is dedicated to a ray sampling strategy based on topological and geometric
information brought by the curvilinear skeleton of the empty space of the scene. The overall
goal is to guide ray samples towards important parts of the scene, such as regions containing
light sources or the region enclosing the camera. The work exposed in this chapter was
initiated by the method presented at the Eurographic 2012 conference [BC12] and partially
presented at the DGCI 2013 conference [CNBC13], together with the thinning algorithm of
Chapter 6. Section 9.2 presents our sampling strategy to guide rays to a speci�c region
of the scene, where an importance node from the skeleton is de�ned. Extension to multiple
importance nodes is detailed in Section 9.3. To obtain an unbiased and robust estimator
for Monte Carlo rendering, we explain in Section 9.4how we combine our sampling strategy
with standard BSDF sampling using multiple importance sampling. Section 9.5explains how
we apply our strategy to path tracing and discuss our results. We conclude on this sampling
strategy in Section 9.6 and discuss some perspectives for future works.
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9.1 context and goal

The sampling strategy presented in this chapter aims at improving importance sampling
of rays for local path sampling, detailed in Section 4.1. In the case of highly indirect illu-
mination, resulting from occlusions and strong light sources, local sampling of directions
according to the BSDF might not be the best strategy on regions distant from light sources.
Indeed, BSDF sampling induces high chances of generating long paths, carrying low contri-
butions or even no contribution due to Russian roulette stopping the sampling. Figure 67
illustrates such dif�cult situation, where the BSDF sampling strategy gives low probability
to directions leading to illuminated parts of the scene.

Figure 67 – In that case, sampling directions according to the BSDF contribution gives poor results
since few of them would reach the light source.

We propose to take advantage of the skeleton to guide rays towards important parts of the
scene, such as light sources for eye sub-path sampling or sensors for light sub-path sampling.
Our method is based on a simple assumption: the shorter a path, the higher its contribution.
By trying to follow shortest paths along the skeleton graph during ray sampling, we are able
to generate short paths connecting the light sources with the camera and then achieve better
importance sampling.

9.2 skeleton based ray sampling strategy

Let n be a node from the skeleton representing a source of importance. For example, n may
be the nearest node from a light source or from the camera. Our goal is to guide ray sampling
toward n. To achieve that goal, we de�ne the concept of skeleton importance points, computed
from shortest paths to n along the skeleton’s graph. These points allow to de�ne a skeleton
importance direction at each surface point, leading the sampling of rays near n in few steps.
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9.2.1 Skeleton importance points

The �rst step of our algorithm is to compute the shortest path on the skeleton’s graph from
each node nk to n, using Dijkstra’s algorithm [ Dij71] for example. The distance between two
neighbor nodes ni , nj from the skeleton graph is simply set to the euclidean distance between
their 3D positions.

Let µk = ( n1
k = nk, ..., nn

k = n) denotes the shortest path from a node nk to n and n � � [[ 1, n]]
the largest index such that � j
 n� V (nk, nj

k) = 1 (i.e. the largest sequence of nodes from µk
visible from n k is (n1

k, ..., nn�

k )). We de�ne the skeleton importance point Ink of the node nk as
the center of mass of the nodes n1

k, ..., nn�

k :

Ink =
1
n�

n�

�
i= 1

Pni
k

(162)

where Pni
k

is the 3D position of the node n i
k. Figure 68 illustrates the computation of the

skeleton importance point of a node.

Figure 68 – Illustration of the skeleton importance point I nk associated to a node nk.

9.2.2 Ray sampling using skeleton importance points

Let x � M be a surface point of the scene at which we want to sample a direction � toward
n. Let n x be the skeleton’s node associated to x, obtained from the node mapping grid (see
Section 6.4). The direction � x,Inx

, pointing from x to the skeleton importance point I nx is
referred as the skeleton importance direction of x.

We de�ne the skeleton sampling pdf pskel,n,x associated to n at x by:

pskel,n,x(� ) :=
s+ 1
2�

max(0, � x,Inx
· � )s (163)

This pdf de�nes a cosine lobe centered around the skeleton importance direction. The pa-
rameter s is the skeleton strength, controlling the focus of the sampling around the importance
direction. Figure 69 illustrates the shape of the skeleton sampling pdf.
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Figure 69 – Illustration of the shape of the sampling strategy p skel,n,x at a surface point x.

9.3 sampling toward multiple nodes

Sampling toward multiple importance nodes n 1, ..., nk can be achieved with multiple impor-
tance sampling (detailed in Section 3.3.3). These nodes can represent the nearest nodes from
each light source, or from hit points obtained by sampling exitant rays from an environment
light source for example (see Section 9.5.1 for details about this strategy). We suppose that
each importance node ni is associated to a importance value fi � R, representing its global
importance for the sampling. In the case of sampling toward light sources, this importance
can be set to the light source power.

Let x � M , our goal is to sample a direction � at x according to the pdfs p skel,n1,x, ..., pskel,nk,x,
using MIS. For that, we use the one-sample MIS estimator by de�ning the selection probabil-
ity c i associated to a pdf pskel,ni ,x as:

c�
i :=

fi
dskel(nx, ni )2 (164)

ci :=
c�

i

� k
j= 1 c�

j

(165)

where dskel(nx, ni ) is the shortest distance along the skeleton’s graph from the node n x, as-
sociated to the surface point x, to the importance n i . This distance is computed at the same
time as the shortest path computation, described in the previous section. These selection
probabilities mimics the attenuation of power according to the inverse-square law.

We use the balance heuristic to de�ne MIS weights:

wi (� ) :=
ci .pskel,ni ,x(� )

� k
j= 1 cj .pskel,nj ,x(� )

(166)

The �nal sampling strategy, combining each importance node individual strategy, is referred
as pskel and we have:

pskel(� ) =
k

�
j= 1

cj .pskel,nj ,x(� ) (167)
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9.4 combination with bsdf sampling

The sampling strategy pskel is biased by construction since it cannot sample all contributing
directions at a given point. Even if it could, ignoring importance sampling of the BSDF can
lead to high variance in the estimation at shiny materials. To overcome these issues, we add
another step of MIS, combining our skeleton sampling strategy p skel with the BSDF sampling
strategy p� � , fs introduced in Section 4.1.2. We introduce a parameter cskel � [ 0, 1] to control
the probability of using the skeleton sampling strategy p skel, thus cbsdf = 1 � cskel is the
probability of using the BSDF sampling strategy p � � , fs.

With the balance heuristic, the MIS weights are expressed as:

wskel(� ) :=
cskel.pskel� ( � )

cskel.pskel� ( � ) + cbsdf.p� � , fs( � )
(168)

wbsdf(� ) :=
cbsdf.p� � , fs( � )

cskel.pskel� ( � ) + cbsdf.p� � , fs( � )
(169)

where pskel� ( � ) is the probability density with respect to projected solid angle associated to
� by the skeleton sampling strategy, expressed by (see Section 3.1.3):

pskel� ( � ) =
pskel(� )
|� · nx|

(170)

9.5 application to path tracing

This section presents an extended version of the original algorithm we proposed in [ CNBC13],
with the goal of improving its robustness and its generality regarding the types of light
sources used to illuminate the scene. While the original method was limited to positional
light sources (area lights and point lights), this new version is also able to deal with direc-
tional and environment light sources.

9.5.1 Computation of importance nodes

To apply our sampling strategy to path tracing, we just have to de�ne a set of importance
nodes with their importance values and then proceed as detailed in previous sections. Our
goal is to sample rays towards bright parts of the scene, i.e directly illuminated, since this
is where next event estimation creates paths with non-null contribution (as explained in
Section 4.2.3). To achieve that goal, we associate to each node n an importance value that
estimates the incident emitted power on the set of surface points M n that are mapped to
the node. Each node for which this estimation results in a non-null value is used as an
importance node.

The set of points M n is not accessible directly: we can know if a point belongs to M n , using
the node mapping grid, but not sample ef�ciently points from that set. Consequently, we
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derive an expression of this importance value such that it can be estimated with Monte Carlo
integration by sampling rays from light sources.

Let M n denotes the set of surface points that are mapped to n by the node mapping grid:

M n := { x � M | nx = n} (171)

The incident emitted power on that set is expressed by:

� e,i(M n ) :=
�

x�M n

�

� i �S 2
Le,i(x, � i )dA( x)d� �

x (� i ) (172)

where Le,i is the incident emitted radiance, de�ned as L e,i(x, � i ) := Le(xM (� i ), � � i ).

Equation (172) can be rewritten with respect to area measure, by integrating over surfaces of
light sources M L only:

� e,i(M n ) =
�

x�M n

�

y�M L

Le(y, x)G(x, y)dA( x)dA( y) (173)

We now rewrite the equation by replacing the outer integral, expressed over M n , by an
integral expressed over the whole scene M with the indicator function 1 M n as an extra
factor in order to force the integrand to be null outside M n :

� e,i(M n ) =
�

x�M

�

y�M L

Le(y, x)G(x, y)1M n (x)dA( x)dA( y) (174)

Finally, we apply another change of measure for the outer integral, from surfaces to projected
solid angle at light sources:

� e,i(M n ) =
�

y�M L

�

� o�S 2
Le(y, � o)1M n (yM (� o)) d� �

y (� o)dA( y) (175)

This value can be estimated by tracing N random rays (( yi , � i )) i �[[ 1,N]], leaving lights sources
and distributed according to the joint pdf p := pLe.p� � ,Le

, with Monte Carlo integration:

�� e,i(M n ) :=
1
N

N

�
i= 1

Le(yi , � i )1M n (yi M (� i ))
p(yi , � i )

(176)

Since skeleton mapping de�nes a partitioning of the surfaces of the scene, this value can be
computed for all nodes at the same time. �� e,i(M n ) is initialized to zero for all nodes. Then

for each sampled ray (yi , � i ), the contribution Le(yi ,� i )
p(yi ,� i )

is added to the value �� e,i(M n ) for
which n = nyi M (� i ) .

Each node n such that �� e,i(M n ) �= 0 is then used as an importance node to drive skeleton
importance sampling, with the importance value f := �� e,i(M n ).

Note that even if Equation ( 175) is expressed over light source surfaces (for derivation of the
formula only), the formula is general and can be also used for non-physically based light
sources, such as point lights, directional lights and environment lights, by extending the
domain of integration M L.
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(a) Corridor layout (b) left: BSDF sampling, right: skeleton sampling

Figure 70 – Corridor scene.

9.5.2 Results and discussion

We compare our sampling strategy against BSDF sampling, applied to the path tracing al-
gorithm. We demonstrate results for various values of the skeleton strength parameter, and
discuss in the conclusion some perspectives regarding its automatic computation. All results
were computed with two CPUs Intel Xeon E5-2650 hexa-core at 2.0 Ghz. Reference images
have been rendered with bidirectional path tracing, for various rendering times depending
on the con�guration. For our most complicated settings, reference images still present some
noise, despite several days of computation.

For each comparison, the number of rendering iterations is indicated in parenthesis in the
image, as well as the mean absolute error with the reference. Convergence curves are shown
in Figure 77 and gives a lower error for our method for all presented con�gurations.

corridor Corridor is a diffuse scene that we designed to illustrate, in a simple setting,
the dif�culty of reaching a distant light source with BSDF sampling. Figure 70a illustrates
the scene layout and Figure 70b compares the ray distribution generated by BSDF sampling
and by our skeleton sampling strategy. While BSDF sampling have dif�culties to connect the
eye with the light source, our sampling easily guide rays in the good direction. Figure 71
shows a result produced by our algorithm after 20 minutes rendering in which we observe
a good noise reduction, compared to standard path tracing. An important observation is
the low number of rendering iterations (4513) for our method, compared to path tracing
(10694). This is due to the cost of sampling a power cosine distribution, which increases for
high values of the exponent. Rendering the scene with a skeleton strength set to 1 allows to
compute 8307 iterations but also present more noise in the result.

sponza pluging Sponza pluging is a diffuse con�guration for the famous Sponza scene,
remodeled by Crytek. The scene is illuminated by two small area light, located far from
the view point and directly illuminating a small part of the surface, making it dif�cult for
standard path tracing. For this setting, our skeleton sampling strategy slightly improve
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Figure 71 – Corridor scene rendering, after 20 min rendering. Skeleton strength set to 16 for skelPT.

the error compared to BSDF sampling, but the noise reduction is visible in the result image
(Figure 72). The skeleton strength has been set to 8. Overall, our experiments tend to indicate
that a high skeleton strength is required for diffuse materials, when the source of importance
is located far from the point at which a ray is sampled.

sponza glossy For this con�guration, we increased the glossyness of the ground of
Sponza. The light source has a high power and is located in the opposite corridor. The view
point presented in Figure 73 is quite dif�cult to render ef�ciently using only BSDF sampling
since the glossiness of the ground lead the sampling of rays in the wrong global direction:
toward the end of the corridor. Our strategy allows to sample rays towards the openings that
lead to bright parts of the scene. For glossy materials, the skeleton strength has to be lower
than for diffuse ones, in order to slightly change the orientation of sampled rays without
completely ignoring the glossy component.

plants This scene contains many occlusions and small light sources, modeled as light
bulbs. While next event estimation is mandatory in this kind of con�guration, it is not
enough to sample many contributing paths and BSDF sampling results in a dark image
after one hour rendering, compared to the reference (Figure 74). Our strategy produces an
image closer to the reference in terms of illumination, by successfully sampling paths leaving
narrow parts of the empty space, such as regions under tables or chairs.

apartment This scene is lit by a large but distant area light source, located two �oors
above from the view point. The ground is glossy and standard path tracing renders it almost
completely black after one hour. While our sampling strategy also produces a noisy result,
the rendering of the ground offers a closer match to the reference (Figure 75).
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Figure 72 – 30 min comparison.
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Figure 73 – 30 min comparison
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Figure 74 – 1 hour comparison
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Figure 75 – 1 hour comparison
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Figure 76 – 15 min comparison

sponza dark On this con�guration for Sponza, we illustrate three results computed
with our method for different values of the skeleton strength parameter (Figure 76). As we
increase the value of the parameter, the noise in the blue frame is reduced but the noise
in the red frame is increased. These results clearly demonstrate that, to take the best from
the skeleton, the value of the skeleton strength parameter cannot be set globally and should
be automatically computed from prior information about the scene geometry, material and
illumination at each surface point.

9.6 conclusion and perspectives

We proposed a new ray sampling strategy based on topological and geometric informa-
tion through the use of our curvilinear skeleton of the empty space of the scene. This
strategy is simple to implement, ef�cient and provides an alternative and original solu-
tion to address the problem of importance ray sampling. As opposed to previous ap-
proaches [Jen95, PPI98, HP02, SL06, VKŠ+ 14] described in Section 4.1.4, our method is not
based on particle density estimation, but purely on information extracted from the empty
space of the scene. A comparison of our technique against these concurrent methods is
planned for future works, as well as the adaptation of the strategy to other path sampling
rendering algorithms presented in Chapter 4.

Our skeleton based strategy is particularly good for glossy materials, when the BSDF sam-
pling strategy is focused around directions that lead to dark parts of the scene instead of
bright ones. Overall, our results demonstrate good improvements over BSDF sampling, but
the rendering quality is highly dependent on the skeleton strength parameter. As discussed
in the result section, setting globally this parameter does not provide an optimal use of the
sampling strategy. For example, on the apartment scene, the skeleton strength should be set
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Figure 77 – Convergence curves for the presented results. The value of the skeleton strength param-
eter s is indicated for each con�guration.
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higher at diffuse materials in order to get a better noise reduction at these points. Optimally,
this parameter should also vary with the position in the scene: higher far from importance
nodes and lower near them. We plan on future works to further investigate optimal values
for this parameter and its relation to the local geometric con�guration, in order to provide an
automatic computation of its value and therefore a parameter-free sampling strategy. Finally,
we experimented energy diffusion heuristics along the skeleton graph [ NCB12], in order to
replace the shortest paths solution with a more robust one for the identi�cation of main light
streams, and we plan to extend further these research to apply them to the works presented
in this chapter.





10
P O RTA L E X T R A C T I O N B A S E D O N A N O P E N I N G L A B E L I N G F O R R AY
S A M P L I N G

This chapter addresses the same problem as Chapter9: ray sampling toward important
regions of the scene in presence of complex occlusions. Instead of a curvilinear skeleton,
we take advantage of an opening map [ Vin94, Coe12] of the empty space to extract useful
information for driving ray sampling. An opening map measures at each voxel the local
thickness of the empty space and can be used to extract portals separating regions that are
usually hard to connect with local ray sampling. Note that we already use an opening map to
compute the skeleton of the scene (as explained in Section6.2.2) since it can also be exploited
to preserve the shape of the empty space in the skeleton. The portal extraction method
detailed in this chapter was presented at the ISMM 2015 conference [NB15a].

Section 10.1explains more in depth the motivation for using an opening map to extract por-
tals of the empty space. To compute these portals, we propose in Section 10.3 to construct
a labeling of the digital empty space according to the opening map, such that two neigh-
boring regions are characterized by a high difference in their thickness. Our �rst rendering
experiments, applied to path tracing, are presented in Section 10.4. While our �rst results are
promising, discontinuity problems between neighbor sampling strategies at surfaces of the
scene arise in this application. We discuss ideas to improve the labeling and the mixture be-
tween sampling strategies that will drive our future works to solve these issues. We conclude
this chapter in Section 10.5and discuss some perspectives.
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10.1 motivation

We begin by explaining why the opening map can be interesting for ray sampling, through a
discussion over a scene commonly used in computer graphics.

The Ajar Door scene (Figure 78) is composed of two large rooms separated by a door slightly
opened. For a con�guration where a light source is located in one room and the camera in
the other room, the illumination becomes hard to sample ef�ciently. Indeed, blindly tracing
random paths starting at the camera will end up with many paths not reaching the room
containing the light source.

Figure 78 – Ajar Door scene. The center image is a cut along the vertical axis of a voxelization of the
scene (black pixels are from surfaces and white pixels are from the empty space). The red
circle encloses the small aperture that rays must traverse to go from one room to the other.

The opening map of the digital empty space E D tells us for each voxel x the radius of the max-
imal ball inscribed in E D that contains x (Figure 79). We observe that the aperture highlighted
in red is characterized by lower values for this opening map than the two large rooms.

Figure 79 – By dilating the distance map (left), we obtain the opening map (right) of the empty space.
This map enhances narrow regions which are dif�cult to explore by tracing random rays.
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From this observation, we present a new labeling method that partitions the empty space
in regions based on the opening map. More importantly we extract opening portals that are
surfaces separating a region from its neighbor regions. Sampling these portals offers the
possibility of tracing rays immediately leaving a region, and thus to ef�ciently explore the
empty space, searching for important regions regarding light transport simulation.

10.2 related works

The extraction of portals separating regions of a 3D scene is a dif�cult problem that has been
addressed by several authors over the past years. Cohen-Or et al. [COCSD03] provide a
rich overview of various methods to speed-up visibility computations on highly occluded
scenes. In particular, rendering algorithms driven by cells-and-portals acceleration structures
were initiated by the works of Airey et al. [ ARB90] and Teller et al. [ TS91, Tel92, TFFH94].
The goal of these works is to split the scene into 3D cells, separated by portals, in order to
ef�ciently propagate illumination from cell to cell. This strategy allows to handle large 3D
models that cannot �t in main memory since the computation can be performed iteratively
and involve, at each step, only few cells. However, these methods are mainly focused on large
architectural buildings that are composed of axis aligned polygons. Indeed, these works rely
on a binary space partitioning scheme to separate the scene in cells, which is known to have
a high complexity for non axial scenes. To address this issue, Meneveaux et al. [MMB98]
proposed a model-based partitioning solution that can be applied to non axial buildings,
but limited to walls perpendicular to the ground. By applying geometric rules driven by
the model, their method is able to construct cells that make sense regarding the topology
of the input scene, such as the set of rooms and corridors of a building. Together with
the partitioning strategy, they propose a solution to extract portals that separate cells. A
cells-and-portals structure has been used by Fradin et al. [FMH05] to ef�ciently compute
photon mapping on buildings composed of billions of polygon, where individual cells are
loaded from disk and processed iteratively. In their case, the cells-and-portals structure is
optimal, but constructed manually using a dedicated topological modeller, which is a tedious
and time consuming task. More recently, Maria et al. [ MHA14 ] proposed a fast ray tracing
approach for cells-and-portals models, which take advantage of all topological properties of
the model to perform a very ef�cient traversal. They also exploit the structure to compute
potentially visible lights for each cell in order to speed up direct illumination computation.

Despite good performance, these approaches are mainly limited to architectural scenes, com-
posed of vertical planar walls, which is not the case for general 3D scenes (even buildings
can be composed of non vertical architectural elements, such as an hemispherical roof). As
opposed to these methods, our strategy makes no assumption on the scene’s geometry. Parti-
tioning of the scene and portals extraction are entirely computed on a digital representation
of the empty space of the input scene. This representation allows to obtain portals as sets
of 2D faces of voxels, and thus to avoid dealing with the complexity of arbitrary polygons
constituting the scene.



144 portal extraction based on an opening labeling for ray sampling

(a) 26-distance map (b) 26-maximal balls (c) 26-opening

Figure 80 – Illustration of the discrete quantities de�ned in Section 10.3.1.

10.3 opening based labeling

We �rst present the mathematical background related to the de�nition of opening maps ac-
cording to the 26-distance. Then we study a simple labeling obtained from connected �at
regions of the opening map and demonstrate that too many false positive regions are pro-
duced regarding our problem of ray sampling. Consequently, we de�ne a new labeling based
on a deeper analysis of the structure of the opening map and the way it is computed by a stan-
dard algorithm. Our results illustrates that this labeling allows to extract meaningful portals
for ray sampling, de�ned as two dimensional surfaces separating regions of the labeling.

10.3.1 Mathematical background

First recall the de�nitions, introduced in Section 6.1.2, related to the digital empty space ED:

— The set of voxels composing the digital scene is referred asM D � Z 3.
— The digital scene is included in the digital grid G w,h,d := [[ 1, w]] × [[ 1, h]] × [[ 1, d]] � Z 3

of resolution (w, h, d), that depends on the voxelization resolution.
— The digital empty space is de�ned as E D := Gw,h,d \ M D.

We now de�ne quantities related to the 26-opening map. Figure 80 provides an illustration of
these quantities, in 2D for clarity.

De�nition 10.1. If x = ( x1, x2, x3), y = ( y1, y2, y3) � Z 3 are two voxels, we denote by
d� (x, y) := max(|x1 � y1|, |x2 � y2|, |x3 � y3|) the 26-distance (also known as chessboard distance
or Chebyshev distance) between x and y.
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De�nition 10.2. The 26-distance map to M D, D� : Gw,h,d 	 Z + , is the function de�ned by:

D� (x) := min
y�M D

d� (x, y) (177)

Note that we have x � M D � D � (x) = 0.

De�nition 10.3. The 26-maximal ball B� (x) centered in x is the set:

B� (x) := { y � Gw,h,d | d� (x, y) < D � (x)} (178)

De�nition 10.4. The 26-opening map � � : Gw,h,d 	 Z + is the function de�ned by:

� � (x) := max{D � (y) | y � Gw,h,d and x � B � (y)} (179)

� � (x) is the opening of the voxel x.

For x � ED, � � (x) is the radius of the largest maximal ball inscribed in E D and containing the
voxel x. Consequently, it gives us the size of the maximal ball that can be put in empty space
while still covering x, an information that describes the local thickness of empty space around
x. Looking at variations in the opening map, we can identify narrow regions connecting
large ones. Such regions are generally dif�cult to traverse using local ray sampling and the
following sections aim at building an ef�cient way of doing so.

10.3.2 The opening labeling

We �rst de�ne a simple labeling based on �at regions of the opening map and illustrate its
limitations for our problem.

10.3.2.1 De�nitions

De�nition 10.5. The opening region R( x) � ED of the voxel x � ED is de�ned as the maximal
6-connected set of voxels containing x such that � y � R( x), � � (x) = � � (y).

The region R( x) is a connected subset of ED of constant opening. We denote by R� the set
of all opening regions of E D.

De�nition 10.6. Let L : R � 	 { 1, ...,|R� |} be a function mapping each opening region to a
label. The opening labeling of ED with respect to L is the map L � : ED 	 { 1, ...,|R� |} de�ned
by:

L� (x) := L(R( x)) (180)
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10.3.2.2 Limitations

We aim at tracing rays that travel the scene to reach regions containing a light source or the
camera. More speci�cally, we want to be able to traverse ef�ciently narrow regions, such that
sampled paths do not remain stuck in a region containing no feature. As shown in Figure 81,
the labeling L � produces false positive regions for our purpose. Regions like A are a problem
because they lead directly on a wall. Ideally we want region A to be part of region B. Our
experiments show that all voxels of A are contained in maximal balls of region B. We use
this information in section 10.3.3to de�ne our new labeling.

Figure 81 – The opening labeling of a scene. Region A is a false positive because going from B to A
does not grant access to other regions of the scene and leads directly on a wall. Region C
is interesting because it represents a passage to enter a corridor. It traduces a hole in the
3D scene.

Finding a good merging criterion that meets our expectation would be dif�cult and would
likely depend on parameters that vary from scene to scene. Instead of merging regions,
we decided to develop another labeling method based on maximal balls used to obtain the
opening map.

10.3.3 The opening forest labeling

As mentioned in section 10.3.2, maximal balls give us an information on the similarity be-
tween two neighbor regions. When the union of maximal balls of a region A covers entirely
a neighbor region B, it means that it is probably easy to access B from A by local sampling
of rays.

The opening of a voxel x is assigned as the radius of a maximal ball B� (y) containing it.
Therefore, the center y of the ball can be seen as the parent of x in a forest that can be
computed together with the opening map. The roots of such a forest are voxels perfectly
centered in the empty space, i.e. voxels z such that � � (z) = D � (z). By descending on a tree
of the forest, we are able to detect voxels with slightly lower opening but easily accessible
from the region containing the root of the tree.

Figure 82 illustrates a branch of such forest. The red voxel belongs to a false positive regions
because its opening is lower than the opening of its parent. The goal of our new labeling
procedure is to use the structure the forest, implicitly de�ned by the computation of the
opening map, to extract better regions.
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Figure 82 – Illustration of a branch of an opening forest.

De�nition 10.7. An opening forest of ED is a map � f : ED 	 ED satisfying the following
properties:

� x � ED, � f (x) = x �� � � (x) = D � (x) (181)

� x � ED, x � B � (� f (x)) and D� (� f (x)) = � � (x) (182)

The second properties means that � f (x) is the center of a maximal ball of radius � � (x)
containing x.

There exists several opening forests for a given opening map since a voxel x can be contained
in several maximal balls of radius � � (x). An opening forest can be seen as a structure
encoding a possible propagation in ED to compute the associated opening map. Our goal is
to build the regions of our new labeling from the trees of an opening forest. Since we want
our regions to be 6-connected, we need to use at least an opening forest such that each tree
is 6-connected.

Algorithm 6 computes both the opening map and an opening forest � f that meets this
criterion. The 26-distance allows to compute ef�ciently the opening map by performing six
scans over the distance map in each of the six directions (north, south, est, west, top and
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bottom) [ Vin94]. Each scan performs an independent dilation of each line of the 26-distance
map and can be easily implemented in parallel.

Algorithm 6 : Computes the opening map and the opening forest
Data : The distance map D�

Result : The opening map � � and the opening forest � f

1 � � � D �

2 for (i, j, k) � [[ 1, w]] × [[ 1, h]] × [[ 1, d]] do
3 � f (i, j, k) � ( i, j, k)

4 for ( j, k) � [[ 1, h]] × [[ 1, d]] do
5 dilateLine(� � ([1...w], j, k), � f ([1...w], j, k))
6 dilateLine(� � ([w...1], j, k), � f ([w...1], j, k))

7 for (i, k) � [[ 1, w]] × [[ 1, d]] do
8 dilateLine(� � (i, [w...h], k), � f (i, [w...h], k))
9 dilateLine(� � (i, [h...1], k), � f (i, [h...1], k))

10 for (i, j ) � [[ 1, w]] × [[ 1, h]] do
11 dilateLine(� � (i, j, [1...k]), � f (i, j, [1...k]))
12 dilateLine(� � (i, j, [k...1]), � f (i, j, [k...1]))

Algorithm 7 : dilateLine(R[N], C[N])
Data : R: a line of N radius values, C: a line of N voxel centers
Result : R and C are dilated according to the radius values of R

1 maxballQueue � EmptyQueue
2 for i � 0 to N � 1 do
3 currentBall � { index: i, radius: R[i], center: C[i], end: i + R[i] }
4 if currentBall.radius = 0 then
5 maxballQueue � EmptyQueue

6 else if maxBallQueue not empty and i = maxballQueue.front().end then
7 maxballQueue.pop_front()

8 if maxBallQueue is empty then
9 maxballQueue.push_back(currentBall)

10 else
11 if currentBall.radius  maxballQueue.front().radius then
12 maxballQueue � EmptyQueue
13 maxballQueue.push_back(currentBall)

14 else
15 while currentBall.radius  maxballQueue.back().radius do
16 maxballQueue.pop_back()

17 if maxballQueue.back().end< currentBall.end then
18 maxballQueue.push_back(currentBall)

19 R[i] � maxballQueue.front().radius
20 C[i] � maxballQueue.front().center
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Figure 83 – Some region roots of a scene. Each region is a connected set of centered voxels of the
same opening.

We use the opening forest to build a new labeling of the empty space E D. First we de�ne the
notion of region root.

De�nition 10.8. Let x � ED such that � f (x) = x. The region rootR root(x) � ED is the
maximal 6-connected set of voxels containing x such that � y � R root(x) we have � f (y) = y
and � � (x) = � � (y).

All voxels of a region root have the same opening and are roots of the opening forest. Fig-
ure 83 illustrates this concept.

Let Rroot denotes the set of all region roots of ED. The opening forest labeling is built from the
opening forest and region roots.

De�nition 10.9. Let L : R root 	 { 1, ...,|Rroot|} be a function mapping each region root to a
label. The opening forest label L f (x) with respect to L of the voxel x is de�ned recursively
by:

�
L f (x) = L(R root(x)) if � f (x) = x

L f (x) = L f (� f (x)) otherwise.
(183)

The opening forest labeling is a propagation of the label of a region root to the trees rooted
in that region (illustrated in Figure 84).

De�nition 10.10. The opening forest region R f (x) of a voxel x is the maximal set of voxels
such that � y � R f (x), Lf (x) = L f (y). If each tree of the opening forest is 6-connected, then
this set is 6-connected.

We denote by Rf the set of all opening forest regions of ED.
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(a) Regions roots and union
of their maximal balls

(b) Propagation (c) Maxballs spanning unla-
beled voxels

(d) Final labeling

Figure 84 – Computation of the opening forest labeling.

10.3.4 Opening portals

We now introduce opening portals, de�ned as 2D-surfaces separating opening forest regions.
Since opening portals are not composed of voxels, we must de�ne them as sets of 2-faces,
already introduced in Section 5.2.1covering the cubical complex framework.

Let X, Y � Rf be two opening forest regions of ED. We say that X and Y are neighbor regions
if � x � X, � y � Y such that x and y are 6-neighbors.

Recall that the 3-face associated to a voxel x� Z 3 is � (x) := { x1, x1 + 1} × { x2, x2 + 1} ×
{ x3, x3 + 1} and corresponds to its eight corners. This notion allows to de�ne the two dimen-
sional face separating two neighbor voxels.

De�nition 10.11. Let x, y be two 6-adjacent voxels. The set F s(x, y) = � (x) � � (y) is the
2-face that separates x and y. It is composed of four points.

De�nition 10.12. Let X, Y � Rf be two neighbor opening forest regions of E D. The opening
portal PX,Y separating X and Y is the set de�ned by:

f � PX,Y � � x � X, � y � Y such that f = Fs(x, y) (184)

We can build rays going from X to Y by sampling points on the 2-faces of P X,Y.

10.3.5 Results

We present the result of our opening forest labeling on different scenes and for different resolu-
tions of the voxelization. To illustrate regions, we display the voxelization of the scene such
that the color of a face f of each voxel x � S identi�es the label of the empty-space voxel
y � E which is adjacent to x for the face f ( f = Fs(x, y)). We also show opening portals sepa-
rating different regions and we compare a local ray sampling strategy (uniform sampling of
directions on the hemisphere of the origin point) to the a strategy that samples rays passing
through our opening portals.
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10.3.5.1 Ajar door scene

Figure 85 illustrates the opening forest labeling of the Ajar door scene presented in Section
10.1. Figure 86 shows opening portals and demonstrate that our sampling strategy ef�ciently
samples rays traversing the door’s aperture or leaving the region located under the table.

Figure 85 – Our opening forest labeling for the Ajar Door scene and a grid resolution of (72, 118, 28).
We observe that the back room is composed of one large region (right) separated from the
main room by the narrow door’s aperture, as expected. The main room (left) is split in
several regions allowing to travel the scene ef�ciently by sampling portals (see Figure 86).

Figure 86 – Top-left: the green portal separates the back room from the main room. Top-center: 128
rays are sampled through the portal, starting at a point of the back room. Top-right: we
observe that all rays reach the main room. Bottom-left: portals separating the region under
the table from neighbor regions. Bottom-center: rays sampled with the local strategy. Many
of them hit the back of the table. Bottom-right: with our strategy, all sampled rays leave
the region.

10.3.5.2 Sibenik scene

Figure 87 and 88 illustrate our method on the Sibenik scene, which represents a church. This
scene features less occlusions than the two others. Nevertheless, we demonstrate that we
can use our sampling strategy to pass through a speci�c portal in order to reach a particular
area of the scene. Being able to do this is useful to reach a speci�c light source after few
re�ections.
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Figure 87 – Top row shows the labeling of the Sibenik scene for a grid resolution of (138, 104, 58). The
top-right image is the labeling shown directly on the surfaces of the scene. The bottom-left
image demonstrates three major portals of a region. The bottom-right image illustrates
the sampling of rays leaving that region by selecting portals based on their area (more
rays are sampled on large portals).

Figure 88 – Left image shows the local sampling of rays which is not ef�cient to pass through the left
and right portal. Using our method, it is straightforward to sample rays through a speci�c
portal as pointed out in the middle and right image.

10.3.5.3 Sponza scene

Figure 89 and 90 show results of our method on the Sponza scene. This scene is composed of
several corridors occluded from the main part of the scene by drapes. Starting from a corridor,
reaching the main part is hard due to narrow exits. Our sampling strategy enables to do it
ef�ciently. Figure 90 demonstrates the robustness of our method regarding the resolution of
the voxel grid. Opening portals remain stable and �t better to the scene as we increase the
resolution.

10.3.5.4 Limitations

Our new labeling still produces neighbor regions with close opening and highly connected by
their maximal balls. Such regions are separated because their region roots are not connected.
However, these regions exposes better coherency with their opening: a region having a region
root with high opening has a high volume and allows to access all of its narrow neighbors
using small portals.
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Figure 89 – Top row: portals and labeling of a corridor of the Sponza scene for a resolution of (118,
50, 72). Bottom row: comparison of local sampling (left) and sampling through a chosen
portal (right), allowing to leave ef�ciently the corridor.

Figure 90 – Illustration of portals as the resolution of the voxel grid increases. We observe that the
separation between regions becomes more precise as we increase the resolution of the
voxel grid.

A more important issue regarding the sampling of rays is the presence of some concave
regions. In such a region and without more information, we could sample a portal which is
not visible from the origin of the ray. To apply our method to light transport algorithms, it
might be unavoidable to use a convex decomposition algorithm or to improve our algorithm
to guaranty convexity of regions.

10.4 first experiments

In this section, we present and discuss our �rst experiments regarding the usage of our
opening portals for path tracing. These experiments are, for now, limited to the Door scene,
since it presents the main kind of visibility feature that our strategy targets: a narrow opening
that links two large rooms. The illumination setting is the one shown in Figure 78.



154 portal extraction based on an opening labeling for ray sampling

We implemented two sampling strategies, and both produce discontinuities in rendered im-
ages, due to a fast change between sampling pdfs at neighbor surface points. We discuss the
bene�ts and problems of each strategy, as well as future works to avoid discontinuities.

Since our implementations are not optimized and quite expensive in their current state, we
compare them against standard path tracing for the same number of rendering iterations
instead of the same rendering time.

10.4.1 Shortest paths strategy

Our �rst strategy is inspired by our ray sampling strategy based on the skeleton, introduced
in Chapter 9. Before rendering, we build a shortest path tree on the graph of opening forest
regions. Each shortest path lead to the region containing the light source.

Let x � M be a surface point and R f its opening forest region. We want to sample a ray
going toward bright parts of the scene. For that, we sample a point y uniformly on the portal
separating the region R f from the next region in its shortest path. The sampled direction at
x is then set to � x,y.

Figure 91 shows rendering results for different maximal path lengths and 4096 rendering
iterations. On each column, the �rst image is a rendering with standard path tracing, using
BSDF sampling. The second image (SIS1) shows a biased rendering, using only our strategy.
The third image (SIS2) shows an unbiased rendering, where we combine our portal sampling
with BSDF sampling using MIS, with the balance heuristic. For the last two images (SIS3,
SIS4), we force the use of the portal located at the door opening for all surfaces points,
effectively ignoring the opening forest labeling and considering the most interesting portal
of the scene only (illustrated in Figure 93a).

For images using all portals (SIS1, SIS2), we clearly see the discontinuity produced by the fast
change between sampling strategies at the portal perpendicular to the wall. This portal is
illustrated by Figure 92, together with the opening forest labeling. Using MIS is not suf�cient
to attenuate the discontinuity since it appears at surface points for which neither the portal
sampling strategy, nor the BSDF sampling strategy are good to importance sample incident
illumination. Nevertheless, we also observe a good reduction of noise at parts of the image
where the sampling strategy remains coherent between surface points.

Forcing the use of the portal at the door’s opening (illustrated in Figure 93a) allows to keep
the same sampling strategy for all surface points. While the discontinuity still appears when
not using MIS (SIS3), because many points are not able to see the portal, the use of MIS
allows to make it disappear.

The bene�ts of our sampling strategy are its simplicity and ef�ciency. Sampling an outgoing
ray is fast since it only require uniform sampling of a portal surface, represented by a mesh.

However, this strategy cannot handle illumination details since a portal can be quite large
and all points on its surface are treated equally. Only using portals from the opening forest
region containing the surface point produces discontinuity, especially at the boundaries of
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Figure 91 – Shortest paths strategy for 4096 rendering iterations.
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Figure 92 – Opening portals and opening forest labeling. The portals perpendicular to walls are
susceptible to produce discontinuities in the sampling of outgoing rays.

(a) Door’s opening portal. (b) Door’s adjacent opening border

Figure 93 – Comparison between opening portals and opening border. The opening border contains
all the portals leaving a region, but also faces connected to the scene voxelization. Con-
sequently, it is more robust to sample outgoing directions, without missing those that do
not intersect a portal.

the region since portals tend to be perpendicular to walls. A possible solution to this problem
would be to also use portals from neighbor regions, based on a similarity criterion. Finally, a
portal does not always �t the complete interface where rays can pass, as illustrated by Figure
93a. This is actually a huge problem regarding the use of MIS to combine our strategy with
BSDF sampling, since such rays, missing the portal, cannot be generated by our method and
do not bene�t from MIS weighting. The contributions of paths containing these kind of rays
is estimated only with the BSDF sampling strategy and appear as �re�ies in images rendered
with few iterations.

10.4.2 Face irradiance strategy

Our second sampling strategy aims at solving two problems of the previous one: handling
illumination details and avoiding missing some high contribution rays. For that, we do not
treat portals, but individual 2D faces separating an opening forest region from its neighbors.
We also consider faces separating a region from the scene voxelization, in order to give a
chance of being sampled to each direction leaving a region. The set of all faces separating
a region from neighbors is referred as the opening border of that region (illustrated in Figure
93b).
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Before each rendering iteration, we estimate the irradiance at each face with one path, ob-
tained with standard BSDF sampling. From these estimations, a discrete probability distri-
bution is built on all faces of the opening border of each region (each region has its own
distribution).

Let x � M be a surface point and R f its opening forest region. To sample an outgoing ray at
x, we randomly chose a face on the opening border of R f , according to the precomputed dis-
crete probability distribution, and we sample uniformly a point y on that face. The sampled
direction at x is then � x,y.

In order to attempt the removal of discontinuities, we also introduce two parameters: a
distance threshold dt and an orientation threshold o t. If the distance between x and the
center of the chosen face is larger that dt , we cancel the selection and randomly chose a
face on the opening border of the neighbor opening forest region that is connected to the
originally selected face. We do the same if the cosine between the normal of the face and
the direction between the center of the face and x is greater than ot. This strategy gives an
opportunity of using a better opening border if the one of the region of the point is not well
adapted (the point is too close, or located at a grazing angle).

Figure 94 shows rendering results for different maximal path lengths and 4096 rendering
iterations. While this sampling strategy still produces discontinuities (FIS1, FIS2), they are
better smoothed than the shortest paths strategy because we allow using faces from neighbor
regions. For these results, we use the values dt = 0.01× d, where d is the diagonal of the
bounding box of the scene, and ot = 0.5. The last two results (FIS3, FIS4) are limited to
sampling faces from the opening border of the region adjacent to the door (illustrated in
Figure 93b).

This second strategy has several advantages over our previous one:
— It is general and does not depends on the type or number of light sources.
— It handles details in spatial illumination (but depends on the voxelization resolution).
— Any direction leaving a region can be sampled, assuming the irradiance estimation

give it a contribution at some point.
— The irradiance estimation of each face can be done while rendering the image, by

accumulating contributions of paths intersecting a face.
Our current implementation of this strategy is not optimized and too much expensive, which
may offset its advantages. We also suspect a bug in our implementation because our results
are slightly brighter than a reference image (it might be due to the use of unormalized pdfs).
The sampling strategy is also unable to capture details in the directional distribution of
illumination, since it is based on irradiance at each face. Finally, discontinuities are still too
important to be ignored, and further work is required to make the sampling strategy reliable.

10.5 conclusion and perspectives

We presented a new labeling method to partition the empty space of a 3D scene according
to opening and maximal balls. This labeling is used to extract portals between 3D regions



158 portal extraction based on an opening labeling for ray sampling

path length = 4 path length = 7
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Figure 94 – Face irradiance strategy for 4096 rendering iterations.
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PT SPS1 SPS2 SPS3 SPS4 FIS1 FIS2 FIS3 FIS4

p.l. 4

p.l. 7

Figure 95 – Zoom on the presented results, presenting a discontinuity (red frame) and noise reduction
(blue frame). While the discontinuity is too important to be ignored, our strategies are
able to reduce noise at parts of the image where the sampling is smooth.
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that can be ef�ciently sampled to go from one region to another when tracing rays in the 3D
scene.

labeling On future works, we would want to explore other labeling methods in order to
compare them with our on the application to ray sampling. For example, our region roots
can be used as seeds for a watershed propagation on the opening map instead of using the
opening forest to de�ne the labeling. Comparing the resulting labeling to our opening forest
labeling could be interesting to take advantage of the strengths of each one. More importantly,
we aim at enhancing our method to obtain approximately convex regions. As mentioned in
section 10.3.5, not dealing with convex regions can be a problem because sampling points on
a portal does not guaranty their visibility from inside the region.

We also plan a theoretical analysis of the properties of our labeling and how they guaranty
that portals are well placed regarding the partitioning of the scene in narrow versus large
regions. Some portals generated by our method remain useless for ray sampling since the
local sampling strategy based on the BSDF is already able to traverse them ef�ciently. Study-
ing more deeply mathematical properties of the labeling could exhibit a way of getting rid
of these portals automatically, by changing the opening forest labeling de�nition.

rendering The two presented sampling strategies produce discontinuities in rendered
images, which have to be resolved in order to develop a robust rendering algorithm. These
discontinuities are mainly generated because of portals that separate opening forest regions
of similar thickness. Consequently, it would be worth working on the labeling method in
order to avoid the generation of these portals. Another possibility is to address the MIS
weighting strategy, at rendering time, by punishing with a low weight directions that are
sampled but not well adapted to the illumination. We observed that discontinuities occur
at the separation between two regions. By pre-computing information on the proximity of
voxels to the border of the region, it would be possible to combine the ray sampling strategy
of the current region with neighbor’s ones. We tried that with our thresholding parameters,
but a solution based on �xed parameters is clearly unreliable for general scene. Overall, our
opening based path tracing offers good noise reduction on the presented con�guration but
requires further improvement to provide robust and ef�cient rendering on any scene

The method presented in this chapter shares many similarities with our real-time rendering
algorithm detailed in Chapter 7. Both methods aims at de�ning a partitioning of the scene
and portals separating regions in order to improve rendering algorithms. In this chapter, we
used the opening map instead of the skeleton to achieve such goal, giving more robust portals
and regions. One future work is to adapt the method of Chapter 7 to use the structures
de�ned in this chapter and to evaluate how much they can improve real-time rendering with
many-lights.
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S K E L E T O N B A S E D V E RT E X C O N N E C T I O N R E S A M P L I N G F O R
B I D I R E C T I O N A L PAT H T R A C I N G

Figure 96 – A comparison between standard BPT and BPT improved with our connection resampling
strategy (after 60 seconds of rendering). In this setting, the draperies occlude most of the
light vertices from the eye vertices, resulting in many null contributions. Our resampling
favors connections that are more likely to produce a high contribution.

As mentioned in Section 4.3.2.2, the most expensive operation performed by BPT is the con-
nection between a large number of pairs of vertices, requiring many visibility tests. In
highly occluded scenes, most tests fail and present no contribution for the visibility tests
cost. For such con�gurations, a caching and resampling scheme similar to the one proposed
by Georgiev et al. [GKPS12] can signi�cantly improve the performance of BPT by favoring
connections that are likely to produce a high contribution to the �nal image. These kinds
of strategies generally use surface points as importance caches. For robust resampling, a
high cache density is required, inducing a high overhead, both in terms of computation and
memory.

In this chapter, we propose a new solution for resampling connections, based on the �ltered
skeleton of the empty space of the scene introduced in Section 6.3. We use this skeleton
to quickly pre-compute discrete probability distributions of light subpaths based on their
contribution around the different parts of the skeleton. These distributions are then used
while tracing eye subpaths to resample ef�ciently the connections with light subpaths. Our
method can be implemented on top of any bidirectional path tracer, potentially improving
any other method based on BPT for sampling paths [ GKDS12, VG97, VKŠ+ 14]. This work
has been presented at the PG 2015 conference [NB15] and the source code is freely available
on Github [ Noë15]. The main contributions presented in this chapter are:

— A new unbiased strategy for vertex connection resampling, based on a pre-computed
skeleton of the empty space of the scene.

— A comparison between our method, standard BPT and an adaptation of the method
from Georgiev et al. [ GKPS12] to BPT. While the latter algorithm performs better for
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the same number of rendering iterations, our method gives better results for the same
rendering time thanks to a smaller overhead.
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11.1 motivation and overview

Connecting two vertices is an expensive operation because it involves a visibility test. For
scenes with complex visibility, it can be very inef�cient since many such tests result in no
contribution. Indeed, blindly connecting random vertices does not importance sample the
visibility function and can introduce high variance in the estimation. Resampling is a general
method that applies Monte Carlo estimation to the sum of contributions already sampled
for Monte Carlo integration (see Section 3.3.4). It can be used to reduce the number of
connections that must be evaluated and to increase the probability of connecting vertices
that are likely to produce a high contribution.

Talbot et al. [TCE05] investigate the use of resampling for Monte Carlo rendering. Their
method can be applied to the connection problem in BPT and many-light methods by build-
ing a discrete probability distribution over the light vertices for each eye vertex. This distri-
bution is built using the contribution of each light vertex without the visibility factor. This
operation is expensive when the number of light vertices is high. Moreover, ignoring visi-
bility reduces the robustness of the method in highly occluded scenes since arbitrary high
contributions can be reduced to zero when multiplied by the visibility factor.

Georgiev et al. [GKPS12] introduce the importance caching (IC) method and apply the same
idea to many-light rendering. However, they build discrete resampling distributions that
include the visibility factor on a sparse set of surface points called importance records. For
each point to illuminate, they gather nearest importance records using a Kd-tree and resam-
ple VPLs according to the pre-computed distributions for these records. By combining these
distributions with more conservative ones, they propose a robust estimator that is able to
deal with complex scenes. However, gathering nearest importance records is expensive and
increases the rendering time dramatically when applied to BPT. Indeed, the number of eye
vertices is higher for BPT due to multiple re�ections along eye subpaths, and thus increases
the number of nearest neighbor queries. Moreover, more resampling distributions have to be
pre-computed before each rendering iteration since importance records must be spread on
more surfaces than only those visible from the camera. Finally, BPT already importance sam-
ples ef�ciently the directional component of the BSDF through local eye subpath sampling,
which reduces the interest of introducing it in resampling distributions.

As opposed to established methods, our algorithm caches resampling distributions on a
sparse set of points centered in the empty space of the scene, obtained from a curvilin-
ear skeleton. This approach signi�cantly reduces the number of distributions that must be
pre-computed for each rendering iteration, while still exploiting visibility and geometric in-
formation for ef�cient resampling.

In its standard shape, BPT samples an eye sub-path and a light sub-path for each pixel and
compute all possible connections between them to obtain its primary estimate. To apply
resampling on BPT, many light sub-paths have to be computed before resampling few of
them. For ef�ciency, all these sub-paths are shared between pixels, a strategy similar to
many-light rendering that has been used by Pajot et al. [ PBPP11] for ef�cient implementation
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of BPT on the GPU. Given a sequence of N light subpaths (ȳ j
S = y j

1...yj
S) j= 1,...,N and a single

eye subpath z̄T, the many-path bidirectional estimator can be written as:

Î :=
T

�
t= 0

S

�
s= 0

s+ t> 1

1
N

N

�
j= 1

ws,t(x̄j
s,t)

f (i) ( x̄j
s,t)

ps,t(x̄j
s,t)

:=
T

�
t= 0

S

�
s= 0

s+ t> 1

1
N

N

�
j= 1

C(x̄j
s,t)

(185)

where x̄ j
s,t := y j

1...yj
szt ...z1, ws,t is the MIS weighting function, f (i) is the contribution func-

tion and p s,t the bidirectional path sampling strategies (all these quantities are de�ned in
Section 4.1.3).

Connections are performed for s, t �= 0, thus the inner sum can be resampled to give the new
estimator:

ÎR :=
T

�
t= 1

S

�
s= 1

1
N

C(X̄s,t)
pR

s,t(Ȳs,t)
(186)

Where X̄s,t is formed by connecting a resampled light subpath Ȳs,t with the eye subpath
z̄t . The light subpath Ȳs,t is obtained according to a discrete probability distribution p R

s,t
associated to the eye vertex zt .

Finding good resampling distributions is challenging because a tradeoff must be made be-
tween resampling quality and computation speed. Contrary to previous resampling ap-
proaches, our distributions are not cached at surface points but at skeleton nodes, which
are points centered in the empty space of the scene. We build our distributions from visi-
bility between nodes and light vertices, but also distance and partial contribution associated
to each light vertex. Caching this kind of information at points of empty space instead of
surface points is motivated by several arguments:

— Our skeleton sparsely covers the entire scene, therefore few resampling distributions
must be pre-computed compared to the number of vertices involved in the estimation.

— The similarity between the visibility function of a node and the visibility function of
eye vertices mapped to the node is enough for coarse but cheap resampling.

— Each resampling distribution is shared by a high number of eye vertices, inducing
more coherent resampling between these vertices.

— Thanks to our node mapping grid, we obtain in constant time the distributions stored
at the nearest node of each eye vertex.

As shown in Section 11.5, our method improves the convergence speed of bidirectional path
tracing at a negligible cost. Moreover, the algorithm is simple to implement on top of any
BPT implementation.

Our algorithm progressively renders the image by performing the following steps at each
iteration:

1. Sample N light subpaths, resulting in N × S light vertices where S is the maximal
length of a light subpath.
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2. Build the resampling distributions of light vertices for each node of the skeleton.

3. Sample an eye subpath for each pixel and estimate the measurement integral by re-
sampling light vertices according to the resampling distributions.

The �rst step is identical to light subpath tracing performed for bidirectional path tracing,
but we store light vertices to resample them later. We detail the second and third step in
Section 11.2and Section 11.3respectively.

11.2 skeleton node resampling distributions

Each node stores 3× S discrete cumulative distribution functions (CDFs) of size N to perform
robust and unbiased resampling. Each CDF is restricted to light subpaths having the same
length, in order to connect each eye vertex to one light subpath of each length. The three
distributions for a given length are combined using multiple importance sampling at the
next step. This approach is similar to importance caching [ GKPS12] in which they use four
distributions at each importance record.

Our �rst and second distributions both depend on a common weighting function. Let n be
a node of the skeleton, with position P n. For each light vertex y i

s, we de�ne the following
weight:

wn(yi
s) :=

L(yi
s)

||Pn � yi
s||2

(187)

where L(yi
s) is the partial contribution of the subpath ȳ i

s, that is, the product of emitted radi-
ance, geometric factors and scattering factors divided by the probability density of sampling
the subpath.

Our weights are proportional to the inverse squared distance between the node and light
vertices to favor those located close to the node. This choice is driven by the fact that such
light vertices are also located close to eye vertices mapped to the node. Since the geometric
factor between vertices also depends on the inverse squared distance, our weights tend to
favor light vertices that give a high geometric factor when connected with an eye vertex.

Our �rst distribution combines the weighting function ( 187) with the visibility function of
the node:

pV,n (yi
s) =

V(yi
s, Pn).wn(yi

s)

� N
j= 1 V(y j

s, Pn).wn(y j
s)

(188)

By favoring light vertices visible from the node, we ensure a good resampling for all eye
vertices that share many visible points with their associated node, which is the case for most
of them. However, this distribution is biased since it gives zero probability to some light
vertices that actually contribute to eye vertices mapped to the node.

Our second distribution is similar to the �rst but does not take into account visibility:

pU,n (yi
s) =

wn(yi
s)

� N
j= 1 wn(y j

s)
(189)
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Figure 97 – An illustration of the node weighting function w n and the three resampling probability
distributions p X,n , X � { V, U, C} for a node n and four light vertices y i . For simplicity,
we suppose here that L(yi ) = 1, i = 1...4, thus we have wn(yi ) = 1

||Pn � yi ||2 . Distances from

the node to light vertices are shown on the scene illustration.

This one is important for eye vertices mapped to a node that does not approximate well their
visibility function. It also ensures that our estimator is unbiased.

Sampling a distant light vertex with distribution p U,n would give it low probability and
possibly introduce additional variance if the light vertex contributes to the illumination of
some eye vertices mapped to the node. To avoid this, we use a third resampling distribution,
uniform among light subpaths of the same length:

pC,n(yi
s) =

1
N

(190)

Figure 97 illustrates both the weighting function and the three resampling probability distri-
butions on a simple example scene.

11.3 eye subpath sampling

For this last step we sample an eye subpath z̄T = z1...zT through each pixel to estimate the
measurement integral using our resampling distributions. We note n t the node associated to
the eye vertex zt . It is obtained by looking at the voxel containing z t in the 3D-grid that map
each voxel to a skeleton node.

The estimator is then:

ÎSkel :=
T

�
t= 1

S

�
s= 1

1
N

wX,nt (ȲX,s,t)
C(X̄X,s,t)

pX × pX,nt (ȲX,s,t)
(191)

where X is sampled from { V, U, C} with uniform probability p X = 1
3 and ȲX,s,t is the light

subpath resampled from the discrete distribution p X,nt . Since we use multiple discrete dis-
tributions per eye vertex, we must weight the samples using MIS, which is expressed by the
factor wX,nt (ȲX,s,t) weighting the contribution.

In our implementation, we use the max heuristic [ VG95], which assigns a weight of one to
a light subpath only if it is resampled with the distribution giving it the highest probabil-
ity, and zero otherwise. We optimize our distributions by pre-multiplying every light vertex
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config. number of nodes per iteration

Door 74 9

Sponza 666 45

Sibenik 1420 85

Table 5 – Number of nodes used per rendering iteration for � accept= 1.

probability by its weight and we re-normalize the distributions according to the new proba-
bilities. Thus, we obtain a reduction of variance of the estimator and weights do not need to
be evaluated anymore during eye subpath sampling.

11.4 reducing the number of distributions.

A given view con�guration does not require the usage of all nodes of the skeleton. Indeed,
many nodes can be located in a part of the scene that is not reachable by eye subpaths. The
importance of a node n i can be described by the number Nmapped(ni ) of eye vertices mapped
to it during the rendering simulation. When this value is small compared to the mean N̄mapped

over all nodes, computing the distributions for the node n i is not worth the pre-computation
time. On our test scenes, more than 50% of the nodes map to less than 1% of the eye vertices.

Based on this observation, we introduce the node acceptance parameter �accept � [ 0, 1]
that is used to ignore nodes that are not mapped to enough eye vertices. The values�

Nmapped(ni )


i= 1...N
are accumulated at each iteration and for each node. Before pre-computing

the resampling distributions for a given iteration, all nodes n i such that Nmapped(ni ) 

� accept.N̄mappedare discarded for this iteration. We fall back to a uniform resampling distribu-
tion for eye vertices that are mapped to these nodes. This optimization increases signi�cantly
pre-computation time while keeping the same rendering quality. For our results, we simply
set � accept= 1, so every node mapping to fewer eye vertices than the mean among all nodes is
discarded for the iteration. Table 5 records the number of nodes used per iteration compared
to the number of nodes of the �ltered skeleton.

11.5 results

All of our results were rendered on a PC with two CPUs Intel Xeon E5-2650 hexa-core at 2.0
Ghz.

rendering configurations. We compare our algorithm (SkelBPT) against standard
BPT and importance caching [GKPS12] adapted to BPT (ICBPT) on three scenes with different
view points, lighting con�gurations and materials. All algorithms sample complete paths
having a maximal length of 7 and trace one eye subpath per pixel per iteration. We use the
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balance heuristic to compute multiple importance sampling weights for BPT path weights.
The max heuristic is used for combining resampling strategies for both our method and
ICBPT. The images have a resolution of 1024 x 512 pixels but were cropped to �t in the article.
We sample a number of light subpaths equal to the number of pixels at each iteration but
we perform connection resampling only on a subset of N = 1024 light subpaths randomly
chosen in order to keep the overhead of resampling reasonable (both for SkelBPT and ICBPT).
We do not apply resampling on paths sampled with the camera projection strategy (t = 1)
since this strategy requires many light subpaths to be effective. Our implementation of the
balance heuristic takes into account the number of paths sampled by each strategy. Our
reference images were computed using standard BPT.

icbpt. We adapted importance caching [ GKPS12] to BPT in order to compare our algo-
rithm to a recent similar method. At each iteration, we sample a sparse set of eye subpaths
and we use their vertices as importance records (IR) for resampling. The number of IR is
controlled by a density parameter d � [ 0, 1] such that d× the number of pixels is the number
of eye subpaths traced to position importance records. We set d = 0.001 for the presented
results, resulting in 524 paths for about 3000 importance records. We use a Kd-tree to store
and access to the nearest IRs at each eye vertex.

comparisons. Figures 98, 99 and 100 illustrate visual comparisons of the results pro-
duced with our method against standard BPT and ICBPT. For these �gures, the rendering
time is 300 seconds and the number of iterations performed by each method is indicated as
well as the L1 error (MAE). Both SkelBPT and ICBPT increase rendering quality after a �x
number of rendering iterations, as demonstrated by Figure 105. However, ICBPT has a higher
cost than our method and the quality gain is not enough to compensate the slower render-
ing time. Indeed, pre-computing the high number of resampling distributions of ICBPT and
accessing them through the Kd-tree is too expensive and the results are worse than expected.
Figure 103shows the convergence curves for the L1 error. We observe that our method gives
a lower error than BPT except for the sibenik scene for which the curves overlap. Table 6
records the time required to reach a given error and the speedup relative to BPT.

In addition to our original publication [ NB15], we provide new results in Figures 101and 101
on two scenes recently acquired. These two scenes presents many occlusions and favor ICBPT
over BPT, but our SkelBPT still gives better results than ICBPT. The difference is however less
visible than for our three other scenes, especially for the Plants scene for which the error
curves almost overlap (Figure 104).

The Door scene (Figure 98) features dif�cult visibility due to the narrow opening of the door.
In that case, many light vertices are located behind the door and are connected by BPT with
eye vertices of the main room, resulting in many null contributions. Figure 106illustrates the
individual contribution of each of our resampling distributions for this con�guration. The
scene is provided by Miika Aittala, Samuli Laine, and Jaakko Lehtinen.

The Sponza scene (Figure99) is illuminated by a strong directional light source and lighting
is only indirect in this con�guration. Our strategy reduces signi�cantly the noise generated
by standard BPT by choosing light vertices that are likely to contribute to the �nal image.
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configuration L 1 error method time (sec) speedup

Door 0.01
BPT 3677.44 × 1

ICBPT 7095.64 × 0.51

SkelBPT 2341.36 × 1.57

Sponza 0.15
BPT 1910.39 × 1

ICBPT 4731.15 × 0.40

SkelBPT 675.98 × 2.82

Sibenik 0.025
BPT 1334.48 × 1

ICBPT 3114.65 × 0.42

SkelBPT 1298.69 × 1.02

Table 6 – Rendering time required to achieve a given error value and speed up relative to BPT.

Despite signi�cant noise reduction on the ground performed by ICBPT, variance is still high
as demonstrated by bright spots, especially on the ceiling and draperies. Our reference image
has been rendered for 85 hours and still exposes small bright spots on the ground.

The Sibenik scene (Figure 100) has less occlusions than the previous ones. The scene is lit
by two small area light sources located in corners of the scene. In that con�guration, our
strategy produces similar results compared to BPT, but additionally slightly reducing visible
noise on some parts of the image.

The Apartment scene (Figure 101) features a light source located far from the view point
(the lighting con�guration is the same than the one from Chapter 9). ICBPT performs better
than BPT in this con�guration, but the result is slightly dark compared to the reference. Our
SkelBPT provides a better match, as demonstrated both visually and statistically, from the L1
error.

The Plants scene (Figure102) contains many occlusions, but a simpler lighting con�guration
(small light bulbs, but located a several places of the scene and close to visible points). In
this con�guration, ICBPT and SkelBPT renders similar results and the convergence curves
almost overlap. This can be explained by the simpler lighting con�guration and the fact that
the scene is not too large. A good density of importance records can be obtained for ICBPT
in that con�guration and thus the algorithm gives good performance.

11.6 conclusion and perspectives

We presented a new method to improve the ef�ciency of bidirectional path tracing by using
a skeleton of the empty parts of the scene. We demonstrated experimentally that taking
advantage of this skeleton leads to a simple and ef�cient resampling strategy for algorithms
based on vertex connection. We discuss here some limitations and future works.
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combining our method with icbpt. Importance caching is extremely ef�cient when
applied to many-light rendering. Our �rst experiments were actually performed on MLR
and demonstrated that IC outperforms our method on this algorithm. The reason for this
is that MLR only connects points visible from the camera to light vertices (VPLs). This set
of visible points can be covered with a limited number of importance records for achieving
precise resampling. For BPT, it would be interesting to use IC at eye vertices visible from
the camera and our skeleton based resampling at remaining eye vertices. The method would
then bene�t from a costly but robust resampling for the directly visible eye vertex of each
path and a cheaper but coarse resampling for others.

gpu implementation. Our method can take advantage of a GPU implementation since
our skeleton is static and sparse. A shadow map can be pre-computed for each node and
used to compute our resampling distributions that require many visibility tests. Using this
strategy would be more ef�cient than tracing shadow rays since the visibility test could thus
be performed in constant time.

comparison with “probabil istic connections for bidirectional path trac-
ing” A future work is to compare our method to the recent technique addressing the same
problem, introduced by Popov et al. [ PRDD15]. This method follows the same idea than Im-
portance Caching, but provides a new MIS strategy to handle correlated paths with better
ef�ciency.
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Figure 98 – Visual comparison of BPT, SkelBPT and ICBPT on the Door scene for a rendering time of
300 seconds.
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Figure 99 – Visual comparison of BPT, SkelBPT and ICBPT on the Sponza scene for a rendering time
of 300 seconds.
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Figure 100 – Visual comparison of BPT, SkelBPT and ICBPT on the Sibenik scene for a rendering time
of 300 seconds.
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Figure 101 – Visual comparison of BPT, SkelBPT and ICBPT on the Apartment scene for a rendering
time of 900 seconds.
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Figure 102 – Visual comparison of BPT, SkelBPT and ICBPT on the Plants scene for a rendering time
of 900 seconds.
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Figure 103 – L1-error curves for a rendering time of 300 seconds.
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Figure 104 – L1-error curves for a rendering time of 900 seconds.
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Figure 105 – Comparison of the three methods after 64 rendering iterations. Given the same number
of rendering iterations, ICBPT gives a better result on this con�guration. However, the
time required by ICBPT is approximately twice the rendering time of BPT. The quality
gain is not enough to compensate the overhead introduced by ICBPT, as opposed to our
SkelBPT.



11.6 conclusion and perspectives 179

Figure 106 – Individual contribution of each of our distributions on the Door scene after two hours
of rendering. Leftmost image illustrates the segmentation of the scene according to our
skeleton node mapping. Rightmost image is the contribution associated to the default
uniform resampling distribution, used when the node mapped to a surface point has
been discarded by our optimization at a given iteration. Multiple importance sampling
blends the contributions such that the discontinuities produced by node mapping are
not visible in the �nal result.
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C O N C L U S I O N A N D P E R S P E C T I V E S

This thesis presented new contributions in the �eld of physically based rendering, with the
particularity of using tools from the discrete shape analysis framework to improve the ef-
�ciency of existing rendering approaches. Despite the relationship between rendering and
geometric/topological con�gurations, few existing works have effectively considered using a
discrete skeleton, or distance-based maps to address rendering problems. Our works consti-
tute �rst attempts to take advantage of these features, and we demonstrated experimentally
that they can bring useful information about visibility in order to address the rendering of
highly occluded scenes.

12.1 summary of contributions

In the introduction, we stated the following questions that have driven our works, and we
believe our contributions helped to provide answers:

12.1.1 How can we use a topological skeleton to make rendering algorithms based on path sampling
more robust in occluded scenes ?

Occluded scenes, lit by strong light sources, generally present highly indirect illumination
at each surface point. Not taking this illumination into account for path sampling lead to
inef�cient sampling strategies, that do not distribute paths according to their contribution
and thus induce low convergence rate for rendering algorithms. Existing approaches to ad-
dress this problem are mostly based on particle tracing and density estimation to reconstruct
pdfs that mimic incident illumination. These methods are often costly in terms of memory,
and their ef�ciency depend on the quality of the particle distribution. While progressive
strategies can help to offset these issues, the analysis of the geometry and topology of the
scene remained ignored, loosing the opportunity of using additional information to drive
ray sampling or vertex connection. Our works presented in Chapters 9 and Chapters 11 take
advantage of a topological curvilinear skeleton of the empty space of the scene to improve
rendering algorithms based on path sampling. This skeleton offers and sparse representation
of the geometry and topology of the empty space, which can be ef�ciently manipulated to
pre-compute information on the main global light �ow, to guide ray sampling, and on the
local visibility at different regions of the empty space, to improve vertex connections.
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12.1.2 Is it possible to take advantage of the same kind of skeleton to also improve real-time rendering
of global illumination ?

We took the decision to use the skeleton for fast approximation of indirect illumination for
real-time rendering algorithms, based on VPLs. Real-time rendering algorithms are more
sensitive to bad decisions that can be made at some surface points, due to some false or
incomplete information stored at the skeleton. The method presented in Chapter 7 directly
suffers from these decisions, by demonstrating discontinuity artifacts or bad approximations
at some parts of the scene. The lessons learnt from the development of this method led us to
our “Skeleton Shadow Mapping” method, presented in Chapter 8, which is based on more
conventional rendering methods and use the skeleton as a coarse visibility proxy, to alleviate
the costly computation of shadow maps for many virtual light sources. While this work is
still in progress, our results are promising regarding the real-time processing of thousands
of VPLs, which is required for smooth rendering of highly directional materials.

12.1.3 How to take advantage of the information stored by an opening map to guide path sampling
on regions of empty space that are usually hard to explore ?

An opening map describes, at each 3D point, the local thickness of the object under analysis,
the empty space in our case. Narrow regions of the empty space are usually hard to explore
using local path sampling and the opening map offers a practical way of identifying these
regions and tracing rays directly through them, as demonstrated by our portal extraction
method presented in Chapter 10. While these portals effectively give a solution to explore
the empty space more ef�ciently, our application to path tracing suffers from discontinuities
because of fast changes between sampling strategies at neighbor surface points. Future works
will be devoted to a good use of portals for rendering, with correct combination with stan-
dard BSDF sampling, using better weighting functions for multiple importance sampling.

12.2 future works

Overall, we acknowledge that our works lack comparisons with concurrent recent works. Re-
garding real-time rendering, since we addressed the problem of indirect shadows approxima-
tion, we plan to compare our methods to imperfect shadow maps [ RGK+ 08, REH+ 11, BBH13]
and ManyLODs [ HREB11], that constitute the main existing solutions for rendering shadows
from a large set of VPLs. For ray sampling according to incident illumination or impor-
tance, the state-of-the-art solution is the method from Vorbal et al. [ VKŠ+ 14], so we plan
to compare our skeleton ray sampling method and portal based sampling method to it. We
compared our vertex connection resampling algorithm based on the skeleton to an adapta-
tion of the importance caching method [ GKPS12] to BPT. A recent solution, introduced by
Popov et al. [PRDD15], addresses the same problem directly for BPT. Therefore, we want
to provide a comparison with our method and eventually combine the two algorithms for
better ef�ciency.
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Some of our works are still in progress (Chapter 8, Chapter 10) and will be completed in
future works to be submitted for publication.

We limit ourselves to the use of a curvilinear skeleton for our methods based on this tool.
Some scenes are not well described by a curvilinear skeleton, because of regions of empty
spaces less elongated in one particular direction. The next step is to take advantage of
a surface skeleton, in order to ensure a better representation of the dimensionality of the
empty space along different axis. We used the opening map alone for the method presented
in Chapter 10. Combining it with the skeleton could give further information to develop a
robust rendering algorithm, but further research is required regarding that goal.

Finally, our works need more theoretical analysis regarding their ef�ciency. This analysis is
quite hard to develop, since our tools are computed in discrete spaces. However, it could
be possible to perform variance and error analysis directly in the discrete framework, and to
extend it to the continuous one. We plan to work in that direction for future works, in order
to demonstrate formally that our discrete tools are well adapted to light transport simulation.
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pmf Probability Mass Function

193





B I B L I O G R A P H Y

[AK90] James Arvo and David Kirk. Particle transport and image synthesis. In Proceed-
ings of the 17th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’90, pages 63–66, 1990.

[AK04] Rosenfeld Azriel and Reinhard Klette. Digital Geometry: Geometric Methods for
Digital Picture Analysis. The Morgan Kaufmann Series in Computer Graphics.
Morgan Kaufmann, 2004.

[Ant11] Dietger Van Antwerpen. Recursive mis computation for streaming bdpt on the
gpu, 2011.

[ARB90] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards image re-
alism with interactive update rates in complex virtual building environments.
SIGGRAPH Comput. Graph., 24(2):41–50, February 1990.

[Arv95] James Richard Arvo. Analytic Methods for Simulated Light Transport. PhD thesis,
New Haven, CT, USA, 1995. AAI9619140.

[BApS02] Stefan Brabec, Thomas Annen, and Hans peter Seidel. Shadow mapping for
hemispherical and omnidirectional light sources. In In Proc. of Computer Graphics
International, pages 397–408, 2002.

[BBH13] Tomas Barák, Jiri Bittner, and Vlastimil Havran. Temporally Coherent Adaptive
Sampling for Imperfect Shadow Maps. Computer Graphics Forum, 2013.

[BC06] Gilles Bertrand and Michel Couprie. A new 3D parallel thinning scheme based
on critical kernels. In Discrete Geometry for Computer Imagery, pages 580–591.
Springer, 2006.

[BC09] Gilles Bertrand and Michel Couprie. On parallel thinning algorithms: Minimal
non-simple sets, p-simple points and critical kernels. Journal of Mathematical
Imaging and Vision, 35(1):23–35, 2009.

[BC12] Venceslas Biri and John Chaussard. Skeleton based importance sampling for
path tracing. In proceedings of Eurographics 2012, pages 1–4, mar 2012. short
papers.

[BC14] Gilles Bertrand and Michel Couprie. Powerful parallel and symmetric 3d thin-
ning schemes based on critical kernels. Journal of Mathematical Imaging and Vision,
48(1):134–148, 2014.

[BC15] Gilles Bertrand and Michel Couprie. Isthmus based parallel and symmetric 3d
thinning algorithms. Graphical Models, 80:1–15, 2015.

[Ber07] Gilles Bertrand. On critical kernels. Comptes Rendus de l’Académie des Sciences,
Série Mathématiques, I(345):363–367, 2007.

[Blu67] Harry Blum. A transformation for extracting new descriptors of shape. In
Weiant Wathen-Dunn, editor, Proc. Models for the Perception of Speech and Visual
Form, pages 362–380, Cambridge, MA, November 1967. MIT Press.

195



196 bibliography

[BM94] Gilles Bertrand and Grégoire Malandain. A new characterization of three-
dimensional simple points. Pattern Recogn. Lett., 15(2):169–175, February 1994.

[CB08] Michel Couprie and Gilles Bertrand. New characterizations of simple points,
minimal non-simple sets and p-simple points in 2d, 3d and 4d discrete spaces. In
Discrete Geometry for Computer Imagery, 14th IAPR International Conference, DGCI
2008, Lyon, France, April 16-18, 2008. Proceedings, pages 105–116, 2008.

[CB09] Michel Couprie and Gilles Bertrand. New characterizations of simple points in
2D, 3D and 4D discrete spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(4):637–648, April 2009.

[CB14] Michel Couprie and Gilles Bertrand. Isthmus-based parallel and asymmetric
3d thinning algorithms. In Discrete Geometry for Computer Imagery - 18th IAPR
International Conference, DGCI 2014, Siena, Italy, September 10-12, 2014. Proceedings,
pages 51–62, 2014.

[CC09] John Chaussard and Michel Couprie. Surface thinning in 3d cubical complexes.
In Proceedings of the 13th International Workshop on Combinatorial Image Analysis,
IWCIA ’09, pages 135–148, Berlin, Heidelberg, 2009. Springer-Verlag.

[CCT09] John Chaussard, Michel Couprie, and Hugues Talbot. A discrete lambda-medial
axis. In Srecko Brlek, Christophe Reutenauer, and Xavier Provençal, editors,
Discrete Geometry for Computer Imagery, volume 5810 of Lecture Notes in Computer
Science, pages 421–433. Springer, 2009.

[CCT10a] John Chaussard, Michel Couprie, and Hugues Talbot. Robust skeletonization
using the discrete lambda-medial axis. Pattern Recognition Letters, In Press„ 2010.

[CCT10b] John Chaussard, Michel Couprie, and Hugues Talbot. Robust skeletonization
using the discrete lambda-medial axis. Pattern Recognition Letters, In Press, Cor-
rected Proof:–, 2010.

[CCZ07] Michel Couprie, David Coeurjolly, and Rita Zrour. Discrete bisector function
and euclidean skeleton in 2d and 3d. Image and Vision Computing, 25(10):1543–
1556, 2007.

[Cha10] John Chaussard. Topological tools for discrete shape analysis. PhD thesis, Université
Paris-Est, December 2010.

[CNBC13] John Chaussard, Laurent Noël, Venceslas Biri, and Michel Couprie. A 3d curvi-
linear skeletonization algorithm with application to path tracing. In Discrete
Geometry for Computer Imagery, volume 7749 of Lecture Notes in Computer Science,
pages 119–130. Springer Berlin Heidelberg, 2013.

[CNS+ 11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann.
Interactive indirect illumination using voxel cone tracing. In Computer Graphics
Forum, volume 30, pages 1921–1930. Wiley Online Library, 2011.

[COCSD03] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility
for walkthrough applications. IEEE Transactions on Visualization and Computer
Graphics, 9(3):412–431, July 2003.

[Coe12] David Coeurjolly. Fast and accurate approximation of digital shape thickness
distribution in arbitrary dimension. Comput. Vis. Image Underst., 116(12):1159–
1167, December 2012.



bibliography 197

[Cou11] Michel Couprie. Hierarchic euclidean skeletons in cubical complexes. In Discrete
Geometry for Computer Imagery - 16th IAPR International Conference, DGCI 2011,
Nancy, France, April 6-8, 2011. Proceedings, pages 141–152, 2011.

[Dev86] Luc Devroye. Non-uniform random variate generation, 1986.

[DGR+ 09] Zhao Dong, Thorsten Grosch, Tobias Ritschel, Jan Kautz, and Hans-Peter Seidel.
Real-time indirect illumination with clustered visibility. In VMV, pages 187–196,
2009.

[Dij71] E.W. Dijkstra. EWD316: A Short Introduction to the Art of Programming. Technische
Hogeschool, 1971.

[DKH + 14] Carsten Dachsbacher, Jaroslav K�rivánek, Miloš Hašan, Adam Arbree, Bruce Wal-
ter, and Jan Novák. Scalable realistic rendering with many-light methods. Com-
puter Graphics Forum, 33(1):88–104, 2014.

[DLW93] Philip Dutré, Eric P. Lafortune, and Yves D. Willems. Monte carlo light tracing
with direct computation of pixel intensities. In 3rd International Conference on
Computational Graphics and Visualisation Techniques, pages 128–137, Alvor, Portu-
gal, December 1993.

[DS05] Carsten Dachsbacher and Marc Stamminger. Re�ective shadow maps. In Proceed-
ings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D ’05, pages
203–231, New York, NY, USA, 2005. ACM.

[FMH05] David Fradin, Daniel Meneveaux, and Sebastien Horna. Out of core photon-
mapping for large buildings. In Proceedings of the Sixteenth Eurographics Confer-
ence on Rendering Techniques, EGSR ’05, pages 65–72, Aire-la-Ville, Switzerland,
Switzerland, 2005. Eurographics Association.

[GKDS12] Iliyan Georgiev, Jaroslav Krivánek, Tomáš Davidovi�c, and Philipp Slusallek.
Light transport simulation with vertex connection and merging. ACM Trans.
Graph., 31:192:1–192:10, November 2012.

[GKPS12] Iliyan Georgiev, Jaroslav K�rivánek, Stefan Popov, and Philipp Slusallek. Impor-
tance caching for complex illumination. In Computer Graphics Forum, volume 31,
pages 701–710, 2012.

[GS10] Iliyan Georgiev and Philipp Slusallek. Simple and robust iterative importance
sampling of virtual point lights. In H. P. A. Lensch and S. Seipel, editors, Proceed-
ings of Eurographics 2010 (short papers), pages 57–60, Norrkoping, Sweden, 2010.
Eurographics Association.

[Hei14] Eric Heitz. Understanding the masking-shadowing function in microfacet-based
brdfs. Journal of Computer Graphics Techniques (JCGT), 3(2):48–107, June 2014.

[Hil69] C. J. Hilditch. Linear skeletons from square cupboards. In Machine Intelligence,
1969.

[HKWB09] Miloš Hašan, Jaroslav K�rivánek, Bruce Walter, and Kavita Bala. Virtual spherical
lights for many-light rendering of glossy scenes. In ACM Transactions on Graphics
(TOG), volume 28, page 143. ACM, 2009.

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon
mapping. In ACM Transactions on Graphics (TOG), volume 27, page 130, 2008.

[HP02] Heinrich Hey and Peter Purgathofer. Importance sampling with hemispherical
particle footprints. In Spring Conference on Computer Graphics 2002, pages



198 bibliography

[HPB07] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Matrix row-column sampling for
the many-light problem. ACM Trans. Graph., 26(3), July 2007.

[HPJ12] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A path space
extension for robust light transport simulation. ACM Transactions on Graphics
(TOG), 31(6):191, 2012.

[HR08] Wim H. Hesselink and Jos B. T. M. Roerdink. Euclidean skeletons of digital
image and volume data in linear time by the integer medial axis transform.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12):2204–2217,
2008.

[HREB11] Matthias Hollander, Tobias Ritschel, Elmar Eisemann, and Tamy Boubekeur.
Manylods: Parallel many-view level-of-detail selection for real-time global il-
lumination. In Computer Graphics Forum, volume 30, pages 1233–1240. Wiley
Online Library, 2011.

[Jak10] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

[JC95] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bidirectional
monte carlo ray tracing of complex objects. Computers & Graphics, 19(2):215–224,
1995.

[Jen95] Henrik Wann Jensen. Importance driven path tracing using the photon map. In
Eurographics Rendering Workshop, pages 326–335, 1995.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Rendering
Techniques’ 96, pages 21–30. Springer, 1996.

[Jen01] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. Natick,
MA, USA, 2001.

[Kaj86] James T. Kajiya. The rendering equation. In ACM Siggraph Computer Graphics,
volume 20, pages 143–150, 1986.

[Kel97] Alexander Keller. Instant radiosity. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 49–56, 1997.

[KFF+ 15] A. Keller, L. Fascione, M. Fajardo, I. Georgiev, P. Christensen, J. Hanika, C. Eise-
nacher, and G. Nichols. The path tracing revolution in the movie industry. In
ACM SIGGRAPH 2015 Courses, SIGGRAPH ’15, pages 24:1–24:7, New York, NY,
USA, 2015. ACM.

[KH01] Alexander Keller and Wolfgang Heidrich. Interleaved sampling. In Proceedings
of the 12th Eurographics Workshop on Rendering Techniques, pages 269–276, London,
UK, UK, 2001. Springer-Verlag.

[KK04] Thomas Kollig and Alexander Keller. Illumination in the Presence of Weak
Singularities. In MCQMC Methods, 2004.

[KMW91] Ralph Kopperman, PaulR. Meyer, and RichardG. Wilson. A jordan surface the-
orem for three-dimensional digital spaces. Discrete & Computational Geometry,
6(2):155–161, 1991.

[Kon97] T. Yung Kong. Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional
binary images. In Proceedings of the 7th International Workshop on Discrete Geometry
for Computer Imagery, DGCI ’97, pages 3–18, London, UK, UK, 1997. Springer-
Verlag.



bibliography 199

[KSK01] Csaba Kelemen and L’aszl’o Szirmay-Kalos. Simple and robust mutation strat-
egy for metropolis light transport algorithm. Technical Report TR-186-2-01-18,
July 2001.

[LCLJ10] Lu Liu, Erin Wolf Chambers, David Letscher, and Tao Ju. A simple and robust
thinning algorithm on cell complexes. In Computer Graphics Forum (Proceedings
of Paci�c Graphics 2010), 2010.

[Lie03] André Lieutier. Any open bounded subset of rn has the same homotopy type
than its medial axis. In Proceedings of the Eighth ACM Symposium on Solid Modeling
and Applications, SM ’03, pages 65–75, New York, NY, USA, 2003. ACM.

[Loh01] Christophe Lohou. Contribution à l’analyse topologique des images: étude
d’algorithmes de squelettisation pour images 2D et 3D, selon une approche topologie
digitale ou topologie discrète. PhD thesis, Université de Marne-La-Vallée, 2001.

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In Proceed-
ings of the 3rd international conference on computational graphics and visualization
techniques, pages 145–153, 1993.

[LW94] Eric P. Lafortune and Yves D. Willems. Using the modi�ed phong re�ectance
model for physically based rendering. Technical report, 1994.

[LW95] Eric P Lafortune and Yves D. Willems. Reducing the number of shadow rays in
bidirectional path tracing. In Proceedings of The Winter School of Computer Graphics
and Visualisation ’95, volume 95, pages 384–392, February 1995.

[Mat67] Georges Matheron. Eléments pour une Théorie des Milieux Poreux. 1967.

[MHA14] Maxime Maria, Sébastien Horna, and Lilian Aveneau. Topological Space Parti-
tion for Fast Ray Tracing in Architectural Models. In GRAPP 2014 - 9th Interna-
tional Joint Conference on Computer Graphics Theory and Applications, pages 225 –
235, Lisbon, Portugal, January 2014.

[ML00] Rémy Malgouyres and Alexandre Lenoir. Topology preservation within digital
surfaces. Graph. Models, 62(2):71–84, March 2000.

[MMB98] D. Meneveaux, E. Maisel, and K. Bouatouch. A new partitioning method for
architectural environments. Novembre 1998. Journal of Vizualisation and Com-
puter Animation, Volume 9 (1998), Issue 4, Wiley Publishers, pp 195-213.

[MPBM03] Wojciech Matusik, Hanspeter P�ster, Matt Brand, and Leonard McMillan. A
data-driven re�ectance model. ACM Transactions on Graphics, 22(3):759–769, July
2003.

[MRR+ 53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculations by fast com-
puting machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[MU49] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of
the American statistical Association, 44(247):335–341, 1949.

[NB15] Laurent Noël and Venceslas Biri. Skeleton based vertex connection resampling
for bidirectional path tracing. In 23rd Paci�c Conference on Computer Graphics and
Applications, Paci�c Graphics, 2015.

[Noë15] Laurent Noël. Skeleton based vertex connection resampling for bidirectional
path tracing - code, 2015. https://github.com/Celeborn2BeAlive/pg2015-code.



200 bibliography

[OBA12] Ola Olsson, Markus Billeter, and Ulf Assarsson. Clustered deferred and forward
shading. In HPG ’12: Proceedings of the Conference on High Performance Graphics
2012, 2012.

[OP11] Jiawei Ou and Fabio Pellacini. Lightslice: Matrix slice sampling for the many-
lights problem. ACM Trans. Graph., 30(6):179:1–179:8, December 2011.

[OPB15] Ola Olsson, Emil Persson, and Markus Billeter. Real-time many-light manage-
ment and shadows with clustered shading. In ACM SIGGRAPH 2015 Courses,
SIGGRAPH ’15, pages 12:1–12:398, New York, NY, USA, 2015. ACM.

[OSK+ 14] Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus Billeter, and Ulf Assarsson.
Ef�cient virtual shadow maps for many lights. In Proceedings of the 18th meeting
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages
87–96. ACM, 2014.

[Pal07] Kálmán Palágyi. A Subiteration-Based Surface-Thinning Algorithm with a Pe-
riod of Three. In Pattern Recognition, volume 4713 of Lecture Notes in Computer
Science, pages 294–303. Springer Berlin / Heidelberg, 2007.

[PBPP11] Anthony Pajot, Loïc Barthe, Mathias Paulin, and Pierre Poulin. Combinato-
rial bidirectional path-tracing for ef�cient hybrid cpu/gpu rendering. Computer
Graphics Forum, 30(2):315–324, 2011.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition:
From Theory To Implementation. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2nd edition, 2010.

[PK98] Kálmán Palágyi and Attila Kuba. A 3d 6-subiteration thinning algorithm for
extracting medial lines. Pattern Recogn. Lett., 19(7):613–627, May 1998.

[PPI98] Ingmar Peter, Georg Pietrek, and Fachbereich Informatik. Importance driven
construction of photon maps. In In Rendering Techniques ’98 (Proceedings of the
9th Eurographics Workshop on Rendering, pages 269–280. Springer-Verlag, 1998.

[PRDD15] Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. Prob-
abilistic connections for bidirectional path tracing. In Computer Graphics Forum,
volume 34, page 12, 2015.

[RC11] Benjamin Raynal and Michel Couprie. Isthmus-based 6-directional parallel thin-
ning algorithms. In Discrete Geometry for Computer Imagery - 16th IAPR Interna-
tional Conference, DGCI 2011, Nancy, France, April 6-8, 2011. Proceedings, pages
175–186, 2011.

[REH+ 11] Tobias Ritschel, Elmar Eisemann, Inwoo Ha, James DK Kim, and Hans-Peter
Seidel. Making imperfect shadow maps view-adaptive: High-quality global
illumination in large dynamic scenes. In Computer Graphics Forum, volume 30,
pages 2258–2269. Wiley Online Library, 2011.

[RGK+ 08] Tobias Ritschel, Thorsten Grosch, Min H. Kim, H.-P. Seidel, Carsten Dachs-
bacher, and Jan Kautz. Imperfect shadow maps for ef�cient computation of
indirect illumination. 27(5):129, 2008.

[RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased
shadows with depth maps. SIGGRAPH Comput. Graph., 21(4):283–291, August
1987.



bibliography 201

[SHD15] Florian Simon, Johannes Hanika, and Carsten Dachsbacher. Rich-vpls for im-
proving the versatility of many-light methods. Computer Graphics Forum (Pro-
ceedings of Eurographics), 34(2):575–584, May 2015.

[SIMP06a] B. Segovia, J. C. Iehl, R. Mitanchey, and B. Péroche. Bidirectional instant ra-
diosity. In Proceedings of the 17th Eurographics Conference on Rendering Techniques,
EGSR ’06, pages 389–397, Aire-la-Ville, Switzerland, Switzerland, 2006. Euro-
graphics Association.

[SIMP06b] B. Segovia, J. C. Iehl, R. Mitanchey, and B. Péroche. Non-interleaved deferred
shading of interleaved sample patterns. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH ’06, pages 53–
60, New York, NY, USA, 2006. ACM.

[SIP07] B. Segovia, J.C. Iehl, and B. Péroche. Metropolis instant radiosity. Computer
Graphics Forum, 26(3):425–434, 2007.

[SL06] J. Steinhurst and A. Lastra. Global Importance Sampling of Glossy Surfaces
Using the Photon Map. Symposium on Interactive Ray Tracing, 0:133–138, 2006.

[SS10] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid voxeliza-
tion on gpus. ACM Trans. Graph., 29(6):179:1–179:10, December 2010.

[SSB15] Punam Saha, Robin Strand, and Gunilla Borgefors. Digital topology and geom-
etry in medical imaging: a survey. 2015.

[TCE05] Justin F. Talbot, David Cline, and Parris Egbert. Importance resampling for
global illumination. In Proceedings of the Sixteenth Eurographics conference on Ren-
dering Techniques, pages 139–146, 2005.

[Tel92] Seth Jared Teller. Visibility Computations in Densely Occluded Polyhedral Environ-
ments. PhD thesis, Berkeley, CA, USA, 1992. UMI Order No. GAX93-30757.

[TFFH94] Seth Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning
and ordering large radiosity computations. In Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pages
443–450, New York, NY, USA, 1994. ACM.

[Tok14] Yusuke Tokuyoshi. Virtual spherical gaussian lights for real-time glossy indirect
illumination. In SIGGRAPH Asia 2014 Technical Briefs, SA ’14, pages 17:1–17:4,
New York, NY, USA, 2014. ACM.

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walk-
throughs. SIGGRAPH Comput. Graph., 25(4):61–70, July 1991.

[Vea97] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,
1997.

[VG95] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques
for monte carlo rendering. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 419–428, 1995.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Proceedings
of the 24th annual conference on Computer graphics and interactive techniques, pages
65–76, 1997.

[Vin94] Luc Vincent. Fast opening functions and morphological granulometries. In
Proc. SPIE 2300, Image Algebra and Morphological Image Processing V, volume 2300,
pages 253–267, July 1994.



202 bibliography

[VKŠ+ 14] Ji�rí Vorba, Ond�rej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav K�rivánek. On-
line learning of parametric mixture models for light transport simulation. ACM
Transactions on Graphics, 33(4):1–11, July 2014.

[WABG06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. Multidi-
mensional lightcuts. In ACM Transactions on Graphics (TOG), volume 25, pages
1081–1088, 2006.

[WFA + 05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael
Donikian, and Donald P. Greenberg. Lightcuts: a scalable approach to illumina-
tion. In ACM Transactions on Graphics (TOG), volume 24, pages 1098–1107. ACM,
2005.



bibliography 203


