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Cylindric plane partitions, Lambda determinants, Commutant s in
semicircular systems

Resum�e

Cette th�ese se compose de trois parties. La premi�ere partie est consacr�ee aux partitions
planes cylindriques, la deuxi�eme aux lambda-d�eterminants et en�n la troisi�eme aux
commutateurs dans les syst�eemes semi-circulaires.

La classe des partitions planes cylindriques est une g�en�eralisation naturelle de celle
des partitions planes inverses. Borodin a donn�e r�ecemment une s�erie g�en�eratrice pour
les partitions planes cylindriques. Notre premier r�esultat est une preuve bijective de
cette identit�e utilisant les diagrammes de croissance de Fomin for la correspondance
RSK g�en�eralis�ee. Le deuxi�eme r�esultat est un ( q; t)-analogue de la formule de Borodin,
qui g�en�eralise un r�eultat d'Okada. En�n le trois�eme r�e sultat de la premi�ere partie est
une description combinatoire explicite du poids de Macdonald intervenant dans cette
formule, qui utilise un mod�ele de chemins non-intersectant pour les partitions planes
cylindriques.

Les matrices �a signes alternants ont �et�e d�ecouvertes par Robbins et Rumsey alors
qu'ils �etudiaient les � -d�eterminants . Dans la deuxi�eme partie de cette th�ese nous
d�emontrons une g�en�eralisation �a plusieurs param�etre s de ce� -d�eterminant, general-
isant un r�esultat r�ecent de di Francesco. Comme le � -d�eterminant, notre formule est un
exemple duph�enom�ene de Laurent.

Les syst�emes semi-circulaires ont �et�e introduits par Vo iculescu a�n d'�etudier les
alg�ebres de von Neumann des groupes libres. Dans la trois�eme partie de la th�ese, nous
�etudions les commutateurs dans l'alg�ebre engendr�ee par un syst�eme semi-circuliare.
Nous avons mis en �evidence une matrice poss�edant une structure auto-silimaire int�eressante,
qui nous permet de donner une formule explicite pour la projection sur l'epace des com-
mutateurs de degr�e donn�e. En utilisant cette expression, nous donnons une preuve
simple du fait que les syst�eme semi-circulaires engendrent des facteurs.

Keywords:

Cylindric partitions, Borodin's identity, growth diagram s, local rules, Schur functions,
Pieri rules, Cauchy identity, Macdonald polynomials, commutation relations, RSK cor-
respondence, non-intersecting lattice paths on the cylinder, alternating sign matrices,
domino tilings of Aztec diamond, Bruhat order, lambda determinants, Laurent phe-
nomenon, semicircular systems, von Neumann algebras, freeprobability theory, Cheby-
shev polynomials.



vi Rsum

Abstract

This thesis is divided into three parts. The �rst part deals w ith cylindric plane parti-
tions. The second with lambda-determinants and the third with commutators in semi-
circular systems.

Cylindric plane partitions may be thought of as a natural generalization of reverse
plane partitions. A generating series for the enumeration of cylindric plane partitions
was recently given by Borodin. The �rst result of section one is a new bijective proof
of Borodin's identity which makes use of Fomin's growth diagram framework for gener-
alized RSK correspondences. The second result is a (q; t)-analog of Borodin's identity
which extends previous work by Okada in the reverse plane partition case. The third re-
sult is an explicit combinatorial interpretation of the Mac donald weight occurring in the
(q; t)-analog using the non-intersecting lattice path model forcylindric plane partitions.

Alternating sign matrices were discovered by Robbins and Rumsey whilst studying � -
determinants. In the second part of this thesis we prove a multi-parametergeneralization
of the � -determinant, generalizing a recent result by di Francesco. Like the original � -
determinant, our formula exhibits the Laurent phenomenon.

Semicircular systems were �rst introduced by Voiculescu asa part of his study of
von Neumann algebras. In the third part of this thesis we study certain commutator
subalgebras of the semicircular system. We �nd a projectionmatrix with an interesting
self-similar structure. Making use of our projection formula we given an alternative,
elementary proof that the semicircular system is a factor.

Keywords:

Cylindric partitions, Borodin's identity, growth diagram s, local rules, Schur functions,
Pieri rules, Cauchy identity, Macdonald polynomials, commutation relations, RSK cor-
respondence, non-intersecting lattice paths on the cylinder, alternating sign matrices,
domino tilings of Aztec diamond, Bruhat order, lambda determinants, Laurent phe-
nomenon, semicircular systems, von Neumann algebras, freeprobability theory, Cheby-
shev polynomials.
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Introduction

This thesis is divided into three parts. The three parts are entirely independent and
may be read in any order. The �rst part is signi�cantly longer than the other two.

Part I deals with cylindric plane partitions . The main tools used are the theory of
symmetric functions and Macdonald polynomials [Mac95] and Fomin's theory of growth
diagrams [Fom88, Fom95]. The results of this section are entirely my own. They were
presented as a poster at FPSAC 2012 and will appear in the Electronic Journal of
combinatorics.

Part II deals with a multi-parameter generalization of the � -determinant of Rob-
bins and Rumsey [RR86] which was originally conjectured by Alain Lascoux. Our
formula exhibits the Laurent phenomenon[FZ02]. It also generalizes a recent result by
di Franceso [DiF12]. Our approach is completely di�erent from that of di France sco. We
follow the original proof of Robbins and Rumsey closely, analyzing carefully the Bruhat
order structure on pairs of interlacing alternating sign matrices (or equivalently, domino
tilings of the Aztec Diamond [EKLP92]). The idea for the proof was suggested by my
advisor, Philippe Biane. This work is not yet published.

Part III is a study of commutators in semicircular systems [Voi90]. This section is
somewhat of a work in progress. Although we have some preliminary results, we have
not yet had the chance to apply them seriously. This is joint work with Philippe Biane.

Cylindric Plane Partitions

Summary of results

There are three main results in this section. The �rst is a bijective proof of Borodin's
identity. The second is a Macdonald polynomial analog. The third is a combinatorial
interpretation of the weight function which appears in the Macdonald polynomial analog
of Borodin's identity.

Our bijection actually proves a re�ned version of Borodin's identity. The re�ned
version of the reverse plane partition case is due to Gasner [GE81]. A bijective proof
using Fomin's growth diagram framework was previously given in the reverse plane
partition case by Krattenthaler [ Kra06]. I was inspired to attempt the cylindric case
after reading a well-written paper by Adachi [Ada08].

The Macdonald polynomial analog is also proved in the full generality of the re�ned
case. The Macdonald analog of the reverse plane partition case is due to Okada [Oka10].

1



2 Introduction

The Hall{Littlewood case of cylindric identity is due to Cor teel and Savelief, Cyrille and
Vuleti�c [ CSV11]. The commutation relations which are key to the whole approach are
due to Haiman, Garcia and Tesler [GHT99]. When q = 0 our combinatorial formula for
the weight function reduces to the Hall{Littlewood version given in [CSV11].

Bijective proof of Borodin's identity

Cylindric plane partitions were �rst introduced by Gessel and Krattenthaler [ GK97].
For any binary string � of length T, a cylindric plane partition with pro�le � may be
de�ned as a sequence of integer partitions:

(� 0; � 1; : : : � T ) � 0 = � T

such that if � k = 1 then � k=� k� 1 is a horizontal strip. Otherwise if � k = 0 then � k� 1=� k

is a horizontal strip (see Section8.1.4).
The weight of a cylindric partition is given by jcj = j� 1j+ j� 2j+ � � � j � T j. In the special

case where� 0 = � T = ; we recover the usual de�nition of a reverse plane partition. If,
in addition to this there are no inversions in the pro�le, we have aregular plane partition
(see Section8.2).

For those readers who are more familiar with the de�nition of a plane partition as an
array of integers which is weakly decreasing along both rowsand columns, the bijection
with the \interlacing sequence" model is obtained by reading from right to left along
the NW ! SE diagonals. For example, the plane partition:

4 3 2 2 0
3 2 1 1 0
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0

corresponds to the following sequence of partitions:

c = ( ; ; (2); (2; 1); (3; 1); (4; 2; 1); (3; 1); (1); (1); ; )

A regular plane partition may also be thought of as a pair ofsemi-standard Young
tableaux of the same shape. In the case of our example, the two tableauxare:

4
4 2

4 3 1 1

4
4 3

4 3 3 1

We are using neither the French nor the English notation for Young diagrams. The �rst
tableau in the pair corresponds to the �rst half of the sequence read o� the NW ! SE
diagonals, from right to left:

; * (2) * (2; 1) * (3; 1) * (4; 2; 1)

while the second tableau in the pair corresponds to the second half of the sequence read
o� the NW ! SE diagonals, from right to left:

; * (1) * (1) * (3; 1) * (4; 2; 1))



Introduction 3

The RSK correspondence gives a bijection between pairs of standardYoung tableau
of the same shape, and integer matrices with non-negative integers. This is essentially
the Cauchy identity for symmetric functions:

Y

i;j � 1

1
1 � x i ; yj

=
X

�

S� (X )S� (Y )

In 2007 Borodin [Bor07] gave a symmetric function theoretic proof of the following
hook-product formula for the enumeration of cylindric plane partitions of given pro�le
� of length T . In 2008, a very di�erent proof involving the representation theory of
bsl(n) was given by Tingley [Tin08]:

X

c2 CPP( � )

zjcj =
Y

n� 0

0

B
B
@

1
1 � z(n+1) nT

Y

i<j
� i >� j

1
1 � zj � i + nT

Y

i>j
� i >� j

1
1 � zj � i +( n+1) T

1

C
C
A

This identity generalizes, not only MacMahon's identity for regular plane partitions:

X

c2 PP

zjcj =
�

1
1 � zn

� n

but also Stanley's identity for reverse plane partitions:

X

c2 RPP( � )

zjcj =
Y

i<j
� i >� j

1
1 � zj � i

The Robinson correspondence[Rob38] gives a bijection between permutations and
pairs of standard tableaux of the same shape. Fomin's growth diagram framework
[Fom88] gives a particularly elegant way of understanding this bijection. Fomin's growth
diagram framework is strictly equivalent to Viennot's geometric construction [Vie77] (see
Section 9.1).

Underlying Fomin's approach is an action of theWeyl algebraon integer partitions
(see Section10.5.4). The creation operator c adds a box to a partition in every way
possible. The annihilation operator c� removes a box from a partition in every way
possible. Thecanonical commutation relations:

[c� ; c] = 1

can be understood as saying that each integer partition always has one more outside
corner than inside corner.

Fomin also showed [Fom95] that his abstract framework can be applied in the context
of a wide class of commutation relations, including those commutation relations between
vertex operators used to study plane partitions by OkounkovReshetikhin [OR03]. The
speci�c local rules which are needed in this case were described explicitly by vanLeeuwen
[vL05]. Interestingly, the local rules which are needed for the full RSK correspondence
can be derived directly from those which apply in the specialcase of the Robinson
correspondence (see Section9.2).
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The commutation relations which we are interested in are those between thePieri
operator 
[ Xz ] and the dual Pieri operator 
 � [Xz ]. These operators act on Schur
functions as follows:


[ Xz ]S� [X ] =
X

r

S� [X ]hr [X ]zr =
X

� 2 Ur (� )

S� [X ]zr


 � [Xz ]S� = S� [X + z] =
X

� 2 D r (� )

S� [X ]zr

Here Ur (� ) denotes the set of all partitions which can be obtained from� by adding
a horizontal r -strip and D r (� ) denotes the set of all partitions which can be obtained
from � by removing a horizontal r -strip.

The Pieri operators satisfy the following commutation relations (see Section10.4.2):


 � [Xu ]
[ Xv ] =
1

1 � uv

[ Xv ]
 � [Xu ]

In section 11.1 we give a slightly simpli�ed algebraic proof of Borodin's identity
using only the above commutation relation and a certain \traciality property". The
de�nitions in Section 8.3 are necessary to understand the framework of the bijective
proof which is contained in Section11.2. The bijection itself is described in Section
11.3. The proof that the bijection is weight preserving is given in Section 11.4.

Macdonald Polynomial analog

Macdonald polynomials f P� (X )g [Mac95] are a family of symmetric polynomials over
the ring Q(q; t) of rational functions in q and t. The Macdonald polynomials bear a
number of remarkable similarities with the Schur functions. In particular the Macdonald
polynomials satisfy the following (q; t)-analog of the Cauchy identity (see Section10.6.3):

Y

i;j � 1

(tx i yj ; q)1

(x i yj ; q)1
=

X

�

Y

s2 �

(1 � qa� (s) t ` � (s)+1 )
(1 � qa� (s)+1 t ` � (s) )

P� (X ; q; t)P� (Y ; q; t)

The Macdonald polynomials also satisfy a (q; t)-analog of the Pieri rules:


[ Xz ]q;t P� (X ; q; t) =
X

� 2 U(� )

 �=� (q; t) P� (X ; q; t)zj � j�j � j


 � [Xz ]q;t P� (X ; q; t) =
X

� 2 D (� )

' �=� (q; t) P� (X ; q; t)zj � j�j � j

The Pieri coe�cients ([ Mac95] page 341) are given by:

' �=� (q; t) =
Y

s2 C�=�

1 � qa� (s) t ` � (s)+1

1 � qa� (s)+1 t ` � (s)

Y

s2 C�=�

1 � qa� (s)+1 t ` � (s)

1 � qa� (s) t ` � (s)+1

 �=� (q; t) =
Y

s62C�=�

1 � qa� (s)+1 t ` � (s)

1 � qa� (s) t ` � (s)+1

Y

s62C�=�

1 � qa� (s) t ` � (s)+1

1 � qa� (s)+1 t ` � (s)

Here C�=� denotes the set of columns of� which are longer than the corresponding
columns of � . In Section 12.1 we prove the following (q; t)-analog of Borodin's identity:
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Theorem 0.0.1.

X

c2 CP P (� )

Wc(q; t)zjcj =
Y

n� 0

0

B
B
@

1
1 � z(n+1) T

Y

i<j
� i >� j

(tz j � i + nT ; q)1

(zj � i + nT ; q)1

Y

i>j
� i >� j

(tz j � i +( n+1) T ; q)1

(zj � i +( n+1) T ; q)1

1

C
C
A

(1)

where the weight function is given by:

Wc(q; t) =
TY

k=0
� k =1

' � k =� k � 1 (q; t)
TY

k=0
� k =0

 � k � 1=� k (q; t) (2)

Our proof relies on the following (q; t)-analog of the commutation relation which is due
to Haiman, Garcia and Tesler [GHT99]:


 �
q;t[Xu ] 
 q;t[Xv ] =

(tuv ; q)1

(uv; q)1

 q;t[Xv ] 
 �

q;t[Xu ] (3)

Simpli�cation of weight function

Although we have de�ned cylindric plane partitions as certain sequences of integer
partitions which di�er by a horizontal strip, it is also poss ible to de�ne them families
of non-intersecting lattice paths on a cylinder (see Section 12.2.1). Using this latter
de�nition, the weight function Wc(q; t) may be greatly simpli�ed.

Recall that in the plethystic notation [ GHT99] if:

a(q; t) =
X

n;m

an;m qn tm

with an;m 2 Z and a0;0 = 0, then we have:


 [ a(q; t)] =
Y

n;m

1
(1 � qn tm )an;m

In section 12.3 we make use of the plethystic notation to give the cylindric weight
function the following explicit combinatorial descriptio n:

Theorem 0.0.2.
Wc(q; t) = 
 [( q � t)Dc(q; t)] (4)

where the alphabetDc(q; t) is given by:

Dc(q; t) =
X

s2 peak(c)

qac(s) t `c(s) �
X

s2 valley (c)

qac(s) t `c(s) (5)

The precise de�nition of \valley" and \peak" cubes depend on the lattice path
picture. They are de�ned in section 12.2.2.
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Outline

For the impatient reader, here is a quick road map. Page linksto important de�nitions
can be found in the index.

The most important part of Chapter 1 is the section pertaining to cylindric diagrams,
cylindric inversion co-ordinates and cylindric hook lengths, as well as the rotation oper-
ator. The purpose of section8.2 is to act as a motivator for the de�nition or arbitrary
cylindric diagrams in section 8.3.5. The de�nition of arms and legs in 8.1.2 will be
needed for the de�nition of the Macdonald polynomial weight de�ned in section 10.6.3.

Chapter 2 does not contain original work, and with the exception of Section 9.2.10
is not strictly speaking needed in order to construct the cylindric bijection. It does
nevertheless provide motivation and intuition for understanding Section11.2.

The introduction to the theory of symmetric functions in cha pter 3 is very brief.
The key point is the Pieri formula and the commutation relati ons in both the Schur and
Macdonald cases. Sections10.4 and 10.5 attempt to clarify the relation between the
algebra and the combinatorics.

Section 11.1 contains all the algebra that is needed to understand section 12.1. It
is not strictly needed to understand the bijection, since the bijection can be formulated
in a purely combinatorial manner. Section 11.2 sets up notation required for working
with local rules and encoding the recursive structure of thebijection. Section 11.3
de�nes cylindric growth diagrams and veri�es that they act a s an \interpolation" object
between the two sides of the identity to be proved. Finally in section 11.4 we verify
that the bijection which has been constructed in the previous two sections is weight
preserving.

In section 12.1 we prove Theorem7.5.1. In Section 12.2.1we describe how cylindric
plane partitions may be interpreted as non-intersecting lattice paths on a cylinder. It is
here that we de�ne peak and valley cubes, amongst other things. The diagonal reading
of a family of non-intersecting lattice paths together with Proposition 12.2.1 is crucial
for understanding the combinatorial reformulation of the weight function. The rest can
be safely ignored.

In section 12.3 we prove Theorem7.5.2. The key point to understand is that in
the \interlacing sequence" model the cubes are grouped according to which partition in
the sequence they belong to. In the lattice path model, cubesfrom the same column
number but di�erent partitions are grouped together. To get from one de�nition of the
weight function to the other, we simply switch between thesetwo models.

Lambda determinants

Main result

An alternating sign matrix is a square matrix of 0's 1's and� 1's such that the sum of
each row and column is 1 and the non-zero entries in each row and column alternate in
sign. For example:

A =

0

B
B
@

0 0 1 0
0 1 � 1 1
1 0 0 0
0 0 1 0

1

C
C
A
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A permutation matrix is an special case of an alternating sign matrix with no ( � 1)'s.
The total number of alternating sign matrices of sizen is given by:

An =
n� 1Y

k=0

(3k + 1)!
(n + k)!

1; 1; 2; 7; 42; 429; 7436; : : :

The �rst proof of this result was given by Zeilberger [Zei96]. A much simpli�ed proof
was given by Kuperberg [Kup96]. Kuperberg's proof made use of ideas from the theory
of integrable systems, the Yang-Baxter equation and the sixvertex model with domain
wall boundary conditions. It also made use of a recurrence relation due to Izergin and
Korepin [KBI93].

The theory of alternating sign matrices is currently an active area of research. One
long standing open problem is to �nd an explicit bijection between the set of alternating
sign matrices andtotally symmetric self-complementary plane partitions[MRR86]. Al-
ternating sign matrices also played a key role in the recently proven Razumov-Strogano�
conjecture [CS11].

The �rst time which alternating sign matrices appeared in th e literature was in the
famous paper by Robbins and Rumsey [RR86] on the lambda-determinant. The lambda
determinant may be de�ned as follows:

For eachk = 0 : : : n let us denote byxn [k] the doubly indexed collection of variables
xn [k]i;j with indices running from i; j = 1 ::(n � k +1). One should think of the variables
as forming a square pyramid with basen + 1 by n + 1. The index k determines the
\height" of the variable in the pyramid.

The variables are initialized as follows:

xn [0]i;j = 1 for all i; j = 1 ::(n + 1)

xn [1]i;j = M i;j for all i; j = 1 ::n

The value of the remaining variables is calculated via the following recurrence:

xn [k + 1] i;j =
xn [k]i;j xn [k]i +1 ;j +1 + � x n [k]i;j +1 xn [k]i +1 ;j

xn [k � 1]i +1 ;j +1
(6)

The end result [RR86] is that:

xn [n]1;1 =
X

B 2 An

� inv( B ) (1 + � )N (B )
nY

i;j =1

M B i;j
i;j

Here An denotes the set of all alternating sign matrices of sizen, inv(B ) denotes the
inversion number of B and N (B ) denotes the number of negative ones inB .

Note that the � -determinant exhibits the Laurent phenomenon [FZ02]. From the
recursive de�nition we expect the value of xn [n]1;1 to be a rational function. The fact
that it is a Laurent polynomial is very surprising.

When � = � 1 the � -determinant reduces to the regular determinant, and the recur-
sive method for calculating the determinant above reduces to the algorithm known as
Dodgson condensation[Bre99].
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Our main result is to replace the recurrence given in equation 7.51 by the following
recurrence:

xn [k + 1] i;j =
� i;n � k+1 � j xn [k]i;j xn [k]i +1 ;j +1 + � i;j xn [k]i;j +1 xn [k]i +1 ;j

xn [k � 1]i +1 ;j +1
(7)

This is a more general case of the recurrence considered by diFrancesco [DiF12]. The
closed form expression which we �ne forxn [n]1;1 is the following:

xn [n]1;1 =
X

jB j= n

M B

0

@
Y

(i;j )2 inv( B )

� i;j

Y

(i;j )2 dinv( B )

� i;n +1 � j

Y

B i;j = � 1

(� i;n +1 � j + � i;j )

1

A

where inv(B ) denotes the set ofinversions of B and dinv(B ) denotes the set ofdual
inversions of B . Note that our formula also exhibits the Laurent phenomenon.

It is also possible to consider more general initial conditions:

xn [0]i;j = N i;j for all i; j = 1 ::(n + 1)

xn [1]i;j = M i;j for all i; j = 1 ::n

and give a closed form expression forxn [k + 1] 1;1. In order to do this we must �rst
introduce the idea of interlacing matrices, which are closely related todomino tilings of
the Aztec diamond [EKLP92]. We may state the formula here, however the reader will
have to wait until sections 13.3.1and 13.4.1for the de�nitions of F� (B ) and Gn

� (B ).

xn [k + 1] 1;1 =
X

(A;B )
jB j= k;jA j= k� 1

F� (B )
s(F� (A))

Gn
� (B )

t(Gn
� (A))

M B s(N ) � A (8)

The sum is over all pairs of interlacing matrices.

Outline

In Section 13.1 we de�ne the Bruhat order. We show how a permutation can be rep-
resented by a monotone triangle, and look at the inversions and dual inversion of a
permutation.

In Section 13.2we de�ne alternating sign matrices, and show that they complete the
Bruhat order as a lattice. We extend the de�nition of monotone triangle to alternating
sign matrices, as well as the de�nition of inversion and dualinversion.

In Section 13.3 we de�ne left corner sum matrices and left interlacing matrices, We
show that pairs of left interlacing matrices are in bijection with domino tilings of the
Aztec diamond. It is here that we de�ne the notation for F (B ).

In Section 13.4 we de�ne right corner sum matrices and right interlacing matrices
We study the duality between left and right interlacing matr ices. It is here that we
de�ne the notation for G(B ).

In Section 13.5 we prove our main theorem. The proof is by recurrence and makes
use of results established in Section13.4.
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Semicircular systems

For any Hilbert space H we may de�ne its Fock spaceF to be the metric closure of the
tensor algebra ofH . That is:

F = T(H )

where:
T(H ) = � n� 0H 
 n

Let us �x 
 to be some element of H 
 0 of norm 1. For any v 2 H one can construct
the creation operator:

cv [x] = v 
 x

as well as theannihilation operator

c�
v [
] = 0

c�
v [x 
 y] = hvjxi y

An operator of the form Av = cv + c�
v may be thought of as asemi-circular random

variable [Voi90]. Let A denote the von Neumann algebra generated by the semi-circular
random variables of the formAv . The map:

A 7! A[
]

gives an embedding ofA into F (as a vector space). We are interested in subspaces of
F of the form:

VA = f [A; y]; y 2 Ag

where A is some �xed element ofA.
In Section 14.4.5 we study the Gramm-matrix of a natural, non-orthogonal basis

of VA . We �nd that this matrix has a curious self-similar structur e. In Section 14.4.1
we �nd an explicit projection formula for the projection of a ny B which is not in the
subalgebra of A generated by A onto the subspaceVA . This allows us to prove, in
particular, that the center of A is trivial. Although this is already well known [ Voi90],
our proof is particularly simple and elementary.
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Cylindric Plane Partitions
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1. Partitions

1.1 Integer Partitions

An integer partition is simply a weakly decreasing list of non-negative integers.It is
often convenient to represent an integer partition visually as a Young diagram, which
is a collection of \boxes" in the Cartesian plane which are \stacked up" in the bottom
right hand corner.

� = (5 ; 3; 3; 2)

Note that our convention di�ers from both the standard frenc h and English conven-
tions. If the sum of the parts of � is equal to n, then we say that � is a partition of n
and write j� j = n. If � has exactly k distinct non-zero parts, then we say that � has
length k and write `(� ) = k. The generating series for integer partitions is given by:

X

�

zj � j t ` (� ) =
Y

n� 1

1
1 � tzn (1.1)

The conjugate of the integer partition � = ( � 1; � 2; : : : ; � k ) is de�ned to be � 0 =
(� 0

1; � 0
2; : : : � 0

r ) where � 0
j = # f i j � i � j g. For example the conjugate of the partition

� = (5 ; 3; 3; 2) is � 0 = (4 ; 4; 3; 1; 1). In terms of Young diagrams, conjugating a partition
is equivalent to re
ecting about the main diagonal.

� 0 = (4 ; 4; 3; 1; 1)

1.1.1 Inversions

The minimum pro�le of an integer partition is the binary string which traces out the
\jagged boundary" of the associated Young diagram. Readingfrom the top right hand

13
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corner to the bottom left hand corner, a zero is recorded for every vertical step and a
one for every horizontal step. For example the minimum pro�le of our example partition
� = (5 ; 3; 3; 2) is 110100110:

1 1
1 0
0

1 1 0
0

The minimum pro�le of an integer partition necessarily star ts with a one and ends
with a zero. An integer partition is uniquely determined by i ts minimum pro�le.

An inversion in a binary string � is a pair of indices (i; j ) such that i < j and
� i > � j . There is a natural bijection between the \boxes" of an integer partition � and
the inversions in the minimum pro�le � of the partition � . The box marked with a star
below has inversion co-ordinates (2; 6) because the one lying above it is position 2 in
the pro�le, while the zero lying to the left of it is position 6 in the pro�le.

1 1
1 0
0

1 1 0 �
0

� = 110100110

1.1.2 Arms, legs and hooks

Let s be a box of the partition � with pro�le � . Suppose thats has \inversion coordi-
nates" (i; j ). The arm length of s is given by:

a� (s) = # f i < k < j j � k = 1g (1.2)

The leg lengthof s is given by:

` � (s) = # f i < k < j j � k = 0g (1.3)

The hook lengthof s is given by:

h� (s) = a� (s) + b� (s) + 1 = j � i (1.4)

The arm length of the box s counts the number of boxes in the same row ass lying
to the left, while the leg length of s counts the number of boxes in the same column as
s but above. The arm length of our example box, marked with a star in the diagram
above, is equal to 1 while the leg length is equal to 2.

A box with arm length zero and leg length zero is said to be anoutside corner.
Equivalently an outside corner corresponds to a subword of the pro�le of the form 10.
An inside corner is de�ned to be a subword of the pro�le of the form 01. The outside
corners of our example pro�le are the following:
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110100110 110100110 110100110

The inside corners of our example pro�le are the following:

110100110 110100110

The number of outside corners is always equal to one more thanthe number of inside
corners. An integer partition always has exactly one more outside corner than inside
corner.

1.1.3 Partial orders

Generalized pro�les

A generalized pro�le is an arbitrary string of zeros and ones. A generalized pro�le
may be thought of as an integer partition pre-conceived as sitting inside some larger
rectangle. For example the generalized pro�le of our example partition � = (5 ; 3; 3; 2)
thought of as sitting inside an 8 by 8 box is 0000110100110111:

0
0
0

1 1 0
1 0
0

1 1 0
1 1 1 0

Let Bin( n; m) denote the set of all binary strings with n zeros andm ones. This set
is in bijection with the set of all integer partitions whose Young diagrams �t inside an
n by m box. For any pair of integer partitions � and � we may �nd some (n; m) such
that both � and � admit generalized pro�les lying in Bin( n; m).

Young lattice

It is possible to de�ne a partial order on the set of all integer partitions. For any two
partitions � and � we say that � � � if the Young diagram of � �ts inside the Young
diagram of � . For any pair of partitions � and � there is a unique smallest partition
containing both � and � which we denote by� [ � . Similarly there is a unique largest
partition contained in both � and � which we denote by � \ � . In other words, our
partial order forms a lattice which is known as theYoung lattice

(3; 3; 1) � (5; 3; 3; 2)
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Partial order on binary strings

It is also possible to de�ne a partial order on Bin(n; m) whose covering relations are
given by � � � 0 if and only if there is somei such that � i = 0 = � 0

i +1 and � i +1 = 1 = � 0
i

and for all other k we have� 0
k = � k . In other words � 0 is obtained from � by adding an

inversion.
If � is the partition with generalized pro�le � and � 0 is the partition with generalized

pro�le � 0 with �; � 0 2 Bin( n; m) then � � � 0 if and only if � 0 can be obtained from� by
adding a single box.

We shall denote by� min the binary string with n zeros follows bym ones and� max

the binary string with m ones follows byn zeros. Note that � min corresponds to the
empty partition, while � max = ( m; m; : : : ; m).

Dominance and lexicographic order

Finally, the dominance order on integer partitions is de�ned by � E � if and only if:

� 1 � � 1

� 1 + � 2 � � 1 + � 2

� � �

� 1 + � 2 + � � � � k � � 1 + � 2 + � � � + � k

The lexicographical order is a total order de�ned on integer partitions by � � � if
and only if there exists somem such that � m > � m and � i = � i for all i � m. Note
that � E � implies � � � but the converse is false.

1.1.4 Horizontal and vertical strips

For any pair of partitions � and � satisfying � � � we say that �=� is a horizontal strip
and write � * � if and only if

� 1 � � 1 � � 2 � � 2 � : : :

Equivalently, � * � if and only if each column of � contains at most one more box
than the corresponding column of� .

(3; 3; 3) * (5; 3; 3; 2)

In terms of pro�les, �=� is a horizontal strip if and only if the generalized pro�le
of � can be obtained from the generalized pro�le of� by \hopping" some of the ones,
which may be thought of as \particles", a single step to the left.
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0 0 0 1 1 1 0 0 0 1 1 1

0 0 1 1 0 1 0 0 1 1 0 1

Similarly, for any pair of partitions � and � satisfying � � � we say that �=� is a
vertical strip and write � + � if and only if

� 0
1 � � 0

1 � � 0
2 � � 0

2 � : : :

Equivalently, � + � if and only if each column of � contains at most one more box
than the correspondingrow of � .

(4; 2; 2; 2) + (5; 3; 3; 2)

In terms of pro�les, �=� is a vertical strip if and only if the generalized pro�le of �
can be obtained from the generalized pro�le of� by \hopping" some of the zeros, which
may be thought of as \holes", a single step to the right.

110110001100

101100101100

If �=� is a horizontal strip, then the conjugate � 0=� 0 is a vertical strip. The pro�le
of � 0 is obtained from the pro�le of � by reversing the string and interchanging the role
of zeros and ones.

1.2 Plane partitions

Throughout this section, all labels are assumed to be non-negative integers.

1.2.1 Regular plane partitions

A regular plane partition is a labelled rectangle whose labels are weakly decreasing from
north to south, and from east to west. The weight of a regular partition is the sum of
the labels. For example, the following regular plane partition has weight 22:

4 3 2 2 0
3 2 1 1 0
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0
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In general we may think of the rectangle as extending in�nitely in both the eastern
and southern directions. We require that only a �nite number of labels are non-zero.

Reading from right to left along the NW ! SE diagonals we obtain a sequence of
integer partitions which di�er each by a horizontal strip. T he sequence increases �rst,
and then decreases:

c = ( ; ; (2); (2; 1); (3; 1); (4; 2; 1); (3; 1); (1); (1); ; )

The generating series for regular plane partitions is givenby MacMahon's famous
formula:

X

c2 PP

zjcj =
Y

n� 1

�
1

1 � zn

� n

(1.5)

The right hand side of MacMahon's identity can be expressed in terms of hook lengths
as follows:

Y

n� 1

�
1

1 � zn

� n

=
Y

i;j � 1

1
1 � zi + j � 1 =

Y

s2 �

1
1 � zh� (s)

The third product is over all boxes of the in�nite rectangle w hich we denote by the
symbol � .

Let us de�ne an arbitrarily labelled rectangle to be a labelled rectangle with no
conditions whatsoever on the labels. For example:

0 1 0 0
0 2 2 0
3 0 0 0
0 0 0 1

The weight of an arbitrarily labelled rectangle is given by a sum over the boxes of
the diagram of [the label of the box] times [the hook length ofthe box]. In our example
above the weight is given by:

1 � 2 + 2 � 3 + 2 � 4 + 3 � 3 + 1 � 7 = 32

The right hand side of MacMahon's identity may be interpreted as a weighted sum
over all arbitrarily labelled rectangles.

1.2.2 Reverse plane partitions

A reverse plane partition is a labelled Young diagram with the property that the labels
are weakly decreasing in both the eastern and southern directions. For example:

3 3
4 3 3
4 2 1

4 4 3 1 1

Reading from right to left along the NW ! SE diagonals we have the following
sequence of integer partitions:

; * (3) * (3; 3) ( (3; 1) * (4; 2; 1) ( (4; 1) ( (3) * (4) * (4) ( ;
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Let � be the shape of the Young diagram, and let� be its pro�le. An equivalent
de�nition for a reverse plane partition of shape � is the following:

De�nition 1.2.1. For any binary string � of length T, a reverse plane partition with
pro�le � is a sequence of integer partitions:

(; ; � 1; � 2; : : : � T ; ; )

such that if � k = 1 then � k=� k� 1 is a horizontal strip , otherwise if � k = 0 then � k� 1=� k

is a horizontal strip.

The following formula for the enumeration of reverse plane partitions with arbitrary
pro�le � is due to Stanley [Sta72]:

X

c2 RPP( � )

zjcj =
Y

i<j
� i >� j

1
1 � zj � i (1.6)

Note that the right hand side could have been written in the form:

Y

i<j
� i >� j

1
1 � zj � i =

Y

s2 �

1
1 � zh� (s)

Let us de�ne an arbitrarily labelled diagrams of shape� to be a labelled Young
diagram of shape� with no conditions whatsoever on the labels. For example:

0 3
0 1 0
2 0 1

0 0 0 1 0

The weight of an arbitrarily labelled diagram of shape � is given by a sum over the
boxes of the diagram of [the label of the box] times [the hook length of the box]. In our
example above the weight is given by:

3 � 2 + 1 � 3 + 2 � 2 + 1 � 5 + 1 � 7 = 25

The right hand side of Stanley's identity may be interpreted as a weighted sum over
all arbitrarily labelled diagrams of shape � .

1.3 Cylindric Plane Partitions

1.3.1 De�nition

Cylindric plane partitions were �rst introduced by Gessel and Krattenthaler [ GK97].
We shall work with a modi�ed, though equivalent, de�nition.
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De�nition 1.3.1. For any binary string � of length T, a cylindric plane partition with
pro�le � may be de�ned as a sequence of integer partitions:

(� 0; � 1; : : : � T ) � 0 = � T (1.7)

such that if � k = 1 then � k=� k� 1 is a horizontal strip , otherwise if � k = 0 then � k� 1=� k

is a horizontal strip.

In the special case where� 0 = � T = ; we recover the usual de�nition of a reverse
plane partition.

De�nition 1.3.2. A cube of a cylindric plane partition is de�ned to be a box of one
of the underlying integer partitions.

De�nition 1.3.3. The weight of the cylindric partition c = ( � 0; � 1; : : : � T ) is given by
jcj = j� 1j + j� 2j + � � � j � T j.

In other words, the weight of a cylindric plane partition is t he number of cubes.
Note that to avoid double counting, we do not include the boxes of the partition � 0 in
the de�nition of the weight of c.

1.3.2 Cylindric diagrams

A cylindric diagram may be thought of as an in�nite partition with periodic pro�l e,
which has been wrapped around a cylinder. Here is an example of a cylindric diagram
with pro�le � = 10100 and period T = 5. The \fundamental domain" is coloured in
yellow.

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0
0
0

Note that the pro�le is read from top to bottom, right to left. The 1's represent hori-
zontal steps while the 0's represent vertical steps. Although we have not drawn all of it,
the diagram above is to be understood to extend in�nitely in the Eastern and Southern
directions.

Cylindric plane partitions are often represented as labelled cylindric diagrams. For
example, the cylindric plane partition

c = ((3 ; 2; 2); (4; 3; 2; 1); (4; 3; 2); (6; 4; 3; 2); (5; 3; 2); (3; 2; 2))
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with pro�le 10100 may be represented as:

4 3
6 4 3 2
5 4 3 2 2
3 3 3 2 1

2 2 2 0
2 0 0

The individual partitions in the interlacing sequence picture are read o� the NW ! SE
diagonals in order from right to left.

Lemma 1.3.1. The labels of the cylindric diagram associated to a cylindric plane par-
tition are weakly decreasing along both \cylindric rows" and \cylindric columns".

Proof. This is an immediate consequence of the horizontal strip condition on diagonals

The following hook-product formula for the enumeration of cylindric plane partitions
of given pro�le was �rst given by Borodin [ Bor07]. A very di�erent proof involving the
representation theory of bsl(n) was later given by Tingley [Tin08]:

X

c2 CPP( � )

zjcj =
Y

n� 0

0

B
B
@

1
1 � z(n+1) T

Y

i<j
� i >� j

1
1 � zj � i + nT

Y

i>j
� i >� j

1
1 � zj � i +( n+1) T

1

C
C
A (1.8)

Here T denotes the length of the pro�le � .

1.3.3 Cylindric inversion coordinates

It is natural to index the boxes of the cylindric diagram via \ cylindric inversion coordi-
nates" (i; j; k ) where � i = 1, � j = 0 and if j < i then k � 1 otherwisek � 0. Consider
the box labelled � below:

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0 �
0
0

It corresponds to the following inversion in the in�nite pro �le:

� � � j 10100j10100j10100j10100j � � �
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The inversion coordinates of the box marked� are (1; 2; 2). The 1 of the inversion
occurs in position 1 of the pro�le. The 0 of the inversion occurs in position 2 of the
pro�les. There are two \bars" j between the 1 and the 0, hence thek coordinate is 2.

Here are the cylindric inversion coordinates of each box of our example cylindric
diagram:

i coordinate j coordinate k coordinate

2 2
4 4 4 4
5 5 5 5 5
2 2 2 2 2

4 4 4 4
5 5 5

1 3
3 1 3 1
3 1 3 1 3
3 1 3 1 3

1 3 1 3
3 1 3

0 1
0 0 1 1
0 0 1 1 2
1 1 2 2 3

1 2 2 3
2 2 3

Two boxes lie in the same \cylindric row" if they have the same i -coordinate, and
in the same \cylindric column" if they have the same j -coordinate.

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0
0
0

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0
0
0

The k-coordinate may be thought of as a sort of \depth" or \winding number".

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0
0
0
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1.3.4 Cylindric hook length

The cylindric hook length of a box is the hook length of the box relative to the larger
partition.

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0 11
0
0

We shall use the notation h�̂ ( � ) (b) to denote the cylindric hook length of the box b

relative to the cylindric diagram �̂ (� )

Lemma 1.3.2. The cylindric hook length of a box with cylindric inversion coordinates
(i; j; k ) is given byj � i + kT .

Here are the hook lengths of the boxes in our example partition:

1 4
1 3 6 8
2 4 7 9 12
4 6 9 11 14

8 11 13 16
12 14 17

As a consequence of Lemma8.3.2Borodin's identity (equation 8.8) may be rewritten
in the form:

X

c2 CPP( � )

zjcj =

 
X




zT j
 j

! 0

@
X

s2 b� (� )

1

1 � zhb� ( � ) (s)

1

A (1.9)

1.3.5 Arbitrarily labelled cylindric diagrams

An arbitrarily labelled cylindric diagram d with pro�le � is simply an assignment of
non-negative integers to the boxes of the associated cylindrical diagram in such a way
that only �nitely many of the labels are non-zero. We shall use the notation ALCD( � )
to denote the set of all arbitrarily labelled cylindric diagrams with pro�le � .

De�nition 1.3.4. The depth of an arbitrarily labelled cylindric diagram d is the small-
est k such that all boxes with cylindric inversion coordinates(i; j; k 0) with k0 � k have
label zero.
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The weight of an arbitrarily labelled cylindric diagram is g iven by the sum over
boxes in the cylindric diagram of the label of the box times the hook length of the box:

jdj =
X

b2 �̂ (� )

label(b) j hook(b)j (1.10)

For example, the following arbitrarily labelled cylindric diagram has depth 2 and
weight 26.

1 0
5 0 0 0
0 1 1 1 0
0 0 0 0 0

0 0 0 0
0 0 0

The right hand side of Borodin's identity may be interpreted combinatorially as a
weighted sum over pairs (
; d) where 
 is an integer partition and d is an arbitrarily
labelled cylindric diagram with pro�le � . The weight of the pair (
; d) is given by
Tj
 j + jdj. where 
 is an integer partition and d is an arbitrarily labelled cylindric
diagrams

1.3.6 Rotation operator

De�nition 1.3.5. The rotation operator on binary strings is de�ned by:

� (� ) i = � (i +1) mod T (1.11)

where T is the length of � .

There is a natural bijection between the cylindric diagram with pro�le � and the
cylindric diagram with pro�le � (� ). Nevertheless since the same box will have di�erent
cylindric inversion coordinates, depending on the choice of rotation of the pro�le, we
prefer to consider two cylindric diagrams which di�er by a rotation to be two distinct
objects. Likewise for arbitrarily labelled cylindric diagrams.

Lemma 1.3.3. The rotation operator � naturally induces well-de�ned weight preserving
maps:

� : ALCD( � ) ! ALCD( � (� ))

� : CPP(� ) ! CPP(� (� ))



2. Correspondences

Throughout this section, all labels are assumed to be non-negative integers.

2.1 Robinson correspondence

2.1.1 Standard Young Tableau

A standard tableau is a labelled Young diagram with n boxes for which the labels are
strictly decreasing along both columns and rows, and for which each number from 1 to
n occurs exactly once. For example:

13 10
11 9 7
8 6 3

12 5 4 2 1

A Yamanouchi word is a word with the property that for any initial subword, and
for any k, the number of times that k appears in that initial subword is greater than or
equal to the number of times that k + 1 appears in that subword.

Standard tableau are naturally in bijection with Yamanouchi words. For example,
the tableau above corresponds to the word:

1121123234314

The k-th number in the Yamanouchi word tells you on which row you will �nd the label
k. Note that we are counting the rows from bottom to top.

2.1.2 Viennot's shadow method

A permutation is a f 0; 1g matrix with exactly one 1 in each row and each column.
A partial permutation is a f 0; 1g matrix with at most one 1 in each row and each
column. Note that a partial permutation matrix need not be square. The Robinson
correspondence[Rob38] gives a bijection between permutations and pairs of standard
Young tableau of the same shape.

Instead of de�ning the algorithm rigorously, we shall just give an example using
Viennot's shadow technique[Vie77]. We begin with the matrix of our permutation, but
transformed into the grid. In our case, we have chosen:

� =
�
1 2 3 4 5 6 7
5 3 6 1 4 7 2

�

25
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Here is the grid. The large black dots correspond to ones in the permutation matrix,
while the small black dots correspond to zeros.

Next imagine that the sun is shining down from the top left hand corner, and that
it casts a shadow:

We have essentially regrouped the permutation by decreasing sequences:

�
1 2 4
5 3 1

� �
3 5 7
6 4 2

� �
6
7

�

Remove the �rst number from the top row and the last letter fro m the bottom row
of each block then shift everything across to obtain a partial permutation:

�
: 2 4
5 3 :

� �
: 5 7
6 4 :

� �
:
:

�
7!

�
2 4
5 3

� �
5 7
6 4

�
7!

�
1 2 3 4 5 6 7
� 5 � 3 6 � 4

�

Now we repeat the process, beginning by drawing the partial permutation onto the
grid:
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The sun shines down from the top left hand corner and causes shadows:

Regrouping the partial permutation into decreasing sequences:
�
2 4
5 3

� �
5 7
6 4

�

Extracting the partial permutation:
�

: 4
5 :

� �
: 7
6 :

�
7!

�
4
5

� �
7
6

�
7!

�
1 2 3 4 5 6 7
� � � 5 � � 6

�

And once more we draw the partial permutation:
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The sun shines down from the top left hand corner, casting shadows:

Here is where the algorithm terminates, since the next partial permutation in the
sequence is empty:

�
4
5

� �
7
6

�
7!

�
:
:

� �
:
:

�
7!

�
1 2 3 4 5 6 7
� � � � � � �

�

Putting all this information together, we obtain the follow ing Viennot shadow dia-
gram:

1 2 1 3 2 1 3

1

1

2

2

3

3

1

The pair of standard tableau which we are searching for can now be read, as Ya-
manouchi words from the right most column and the bottom most row. The black path
is labelled 1, the blue path is labelled 2 and the red path is labelled 3. Reading down
the �nal column we have:

1122331

while reading along the bottom row we have:

1213213
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Thus, under the Robinson correspondence, we have:

�
1 2 3 4 5 6 7
5 3 6 1 4 7 2

�
7!

0

B
B
B
@

6 5
4 3

7 2 1

; 7 4
5 2

6 3 1

1

C
C
C
A

2.1.3 Reverse Viennot shadow method

To reverse the algorithm, we begin with the two Yamanouchi words, and the empty
permutation:

((1; 1; 2; 2; 3; 3; 1); (1; 2; 1; 3; 2; 1; 3))

The largest number, the threes, occur in positions5 and 6 on the left, and positions 4
and 7 on the right. This gives us:

((1; 1; 2; 2; :; :; 1); (1; 2; 1; :; 2; 1; :))
�
4
5

� �
7
6

�

Next we note that the twos occur at positions 3 and 4 on the left, and positions 2 and
5 on the right:

�
4
5

� �
7
6

�
7!

�
: 4
5 :

� �
: 7
6 :

�
7!

�
2 4
5 3

� �
5 7
6 4

�

We are left with:

((1; 1; :; :; :; :; 1); (1; :; 1; :; :; 1; :))

The ones on the left occur at position1,2 and 7 while the ones on the right occur at
positions 1, 3 and 6. This gives us:

�
2 4
5 3

� �
5 7
6 4

�
7!

�
: 2 4
5 3 :

� �
: 5 7
6 4 :

� �
:
:

�
7!

�
1 2 4
5 3 1

� �
3 5 7
6 4 2

� �
6
7

�

The �nal result is the permutation:

� =
�
1 2 3 4 5 6 7
5 3 6 1 4 7 2

�

2.1.4 Fomin growth diagrams

Viennot's shadow method is strictly equivalent to Fomin growth diagram technique
[Fom88].

We begin by labelling the faces of the �rst and last rows of ourshadow diagram with
the empty partition:
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()

()

()

()

()

()

()

() () () () () () () ()

Next we continue �lling in the faces of the diagram in such a way that a new box is
added to the �rst row every time that one crosses one of the black shadows:

()

()

()

()

()

()

()

() () () () () () () ()

() () () (1) (1) (1) (1)

() () () (1) (1) (1) (2)

() (1) (1)

() (1) (1)

(1)

(1)

(1)

Keep \growing" the diagram in such a way that every time you cross a blue line,
you add a box to the second row:
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()

()

()

()

()

()

()

() () () () () () () ()

() () () (1) (1) (1) (1)

() () () (1) (1) (1) (2)

() (1) (1) (1 ; 1) (1; 1) (1; 1) (2; 1)

() (1) (1) (1 ; 1) (2; 1) (2; 1) (2; 2)

(1) (1; 1) (1; 1)

(1) (1; 1) (2; 1)

(1) (1; 1) (2; 1)

When you cross a red line, you add a box to the third row:

()

()

()

()

()

()

()

() () () () () () () ()

() () () (1) (1) (1) (1)

() () () (1) (1) (1) (2)

() (1) (1) (1 ; 1) (1; 1) (1; 1) (2; 1)

() (1) (1) (1 ; 1) (2; 1) (2; 1) (2; 2)

(1) (1; 1) (1; 1) (1; 1; 1) (2; 1; 1) (2; 1; 1) (2; 2; 1)

(1) (1; 1) (2; 1) (2; 1; 1) (2; 2; 1) (2; 2; 1) (2; 2; 2)

(1) (1; 1) (2; 1) (2; 1; 1) (2; 2; 1) (3; 2; 1) (3; 2; 2)

The pair of standard partitions may be read of the bottom row and the �nal column
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as a sequence of integer partitions, each of which may be obtained from the previous by
adding a single box.

2.1.5 Skew standard tableau

A standard skew tableaumay be de�ned as a sequence of partitions:

S = ( � 1; � 2; : : : � n )

such that if i > j then � j � � i and such that each partition in the sequence di�ers by
at most one box. We say thatS is of shape� n=� 1.

It is often convenient to represent a skew standard tableau as alabelled skew diagram.
For example, the skew standard tableau:

S = ((2 ; 1); (2; 2); (2; 2); (2; 2; 1); (2; 2; 2); (3; 2; 2))

may be represented by the diagram:

4 2
1

5

The box s is labelled k if it �rst appears in the k-th partition of S.
A regular standard Young tableau is a special case of a skew standard tableau in

which � 1 = () and for which each partition in the sequence di�ers by exactly one box.

2.1.6 Fomin's local rules

Fomin's local rules [Fom88] tell us how to �nd the partition � given the partitions � , �
and � and a value ofx which may be either 0 or 1, corresponding to a small dot and a
large dot respectively.

x

�

�

�

�

The blue data is input, and the red data is output. The rules are as follows:

1. If x = 1 and � = � = � then � is the partition obtained from � by adding a box
to the �rst row.

2. If x = 0 and � = � = � then � = � .

3. If x = 0 and � = � 6= � then � = � (this corresponds to the case of a shadow
passing through the face vertically).

4. If x = 0 and � = � 6= � then � = � (this corresponds to the case of a shadow
passing through the face horizontally).
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5. If x = 0 and � , � and � are pairwise distinct then � = � [ � (this corresponds to
the case of two shadows passing through each other).

6. If x = 0 and � = � 6= � and � di�ers from � on the k-th row, then � is the partition
which is obtained from � by adding a box to row k + 1 (this corresponds to the
case of two shadows \bouncing o�" each other).

In the diagram below we have highlighted an example of rule 1 in yellow, rule 2 in
blue, rule 3 in red, rule 4 in pink, rule 5 in orange and rule 6 inpurple.

()

()

()

()

()

()

()

() () () () () () () ()

() () () (1) (1) (1) (1)

() () () (1) (1) (1) (2)

() (1) (1) (1; 1) (1; 1) (1; 1) (2; 1)

() (1) (1) (1; 1) (2; 1) (2; 1) (2; 2)

(1) (1; 1) (1; 1) (1; 1; 1) (2; 1; 1) (2; 1; 1) (2; 2; 1)

(1) (1; 1) (2; 1) (2; 1; 1) (2; 2; 1) (2; 2; 1) (2; 2; 2)

(1) (1; 1) (2; 1) (2; 1; 1) (2; 2; 1) (3; 2; 1) (3; 2; 2)

Although it is not immediately obvious that Fomin's local ru les are exhaustive as
given, one can prove by recurrence that they cover every possible case which can arise,
given suitable initial conditions.

2.1.7 Skew Robinson correspondence

It is now possible to forget about Viennot's shadows, and perform the Robinson corre-
spondence using only Fomin's local rules. In fact, we shall do something slightly more
general.

The input to algorithm is a pair ( A; B ) of skew standard tableau of shape�=� and
�=� respectively, together with a partial permutation � . The partial permutation must
be compatible with the pair (A; B ) in the sense that if there is a 1 in columnk then
Ak = Ak+1 , similarly, if there is a 1 in row k then Bk = Bk+1 . For example:
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(1) (1) (1; 1) (1; 1) (1; 1) (2; 1)

(1)

(1; 1)

(1; 1)

(2; 1)

(2; 1)

Another way of expressing the compatibility condition between (A; B ) and � is that
if the partial permutation matrix � is n by m then each of the labels from 1 tom must
occur at most once once either in the labelled diagram forA or in the top row of the
two line notation for � . Similarly each of the labels from 1 to n must occur at most
once either in the labelled diagram forB or in the bottom row of the two line notation
for � .

A = 2
5

B = 2
4

� =
�
: : 3 4 :
: : 1 5 :

�

Starting from these initial conditions, we may make use of Fomin's local rules to �ll
out the rest of the data in the diagram:

(1) (1) (1; 1) (1; 1) (1; 1) (2; 1)

(1) (1; 1) (1; 1) (2; 1) (2; 1) (2; 2)

(1; 1) (1; 1) (1; 1; 1) (2; 1; 1) (2; 2; 1) (2; 2; 1)

(1; 1) (1; 1) (1; 1; 1) (2; 1; 1) (2; 2; 1) (2; 2; 1)

(2; 1) (2; 1) (2; 1; 1) (2; 2; 1) (2; 2; 1) (2; 2; 2)

(2; 1) (2; 1) (2; 1; 1) (2; 2; 1) (3; 2; 1) (3; 2; 2)

The output of the algorithm, may be read o� the right-most col umn and the bottom-
most row:
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(2; 1)

(2; 2)

(2; 2; 1)

(2; 2; 1)

(2; 2; 2)

(2; 1) (2; 1) (2; 1; 1) (2; 2; 1) (3; 2; 1) (3; 2; 2)

The output is a pair of standard skew tableaux (A0; B 0) of shape �=� and �=�
respectively.

A0 = 5 2
3

4

B 0 = 4 2
1

5

Note that the label k is missing fromA0 if and only if it is missing from both A and
the top row of � . Similarly the label k is missing from B 0 if and only if it is missing
from both B and the bottom row of � .

We shall say that a growth diagram isstandard if it has no repeated rows or columns.
The output pair ( A0; B 0) of a growth diagram will have the property that each and every
label occurs exactly once if and only if the corresponding growth diagram is standard.
The standardization of a growth diagram is the diagram obtained from the original by
removing any repeated rows or columns.

2.1.8 Fomin's reverse local rules

Fomin's reverse local rules tell us how to �nd the pair ( �; x ) given the partitions � , �
and � .

x

�

�

�

�

The value of x may be either 0 or 1, corresponding to a small dot and a large dot
respectively. The blue data is input, and the red data is output. Fomin's reverse local
rule may be described as follows:

1. If � = � 6= � and if � di�ers from � on the �rst row then � = � and x = 1.
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2. If � = � = � then � = � and x = 0.

3. If � = � 6= � then � = � and x = 0.

4. If � = � 6= � then � = � and x = 0.

5. If � , � and � are pairwise distinct, then � = � \ � and x = 0.

6. If � = � 6= � and if � di�ers from � on the k-th row for k > 1 then � is the
partition obtained from � by removing a box on the (k � 1)-th row and x = 0.

Staring with the output con�guration from the previous sect ion, one may use Fomin's
reverse local rules to \grow" the diagram backwards and recover the initial conditions.

This algorithm is slightly more general than we need. It corresponds, in fact, to
the skew Robinson correspondence[Sea90]. We recover the special case of the Robinson
correspondence when (A0; B 0) are regular standard Young tableau.

2.2 RSK and Burge correspondences

The RSK correspondence and the Burge correspondence both give a bijection between
non-negative integer matrices and pairs of semi-standard Young tableaux of the same
shape.

2.2.1 Semi-standard tableau

A semi-standard Young tableauis a labelled Young diagram which is weakly decreasing
along rows and strictly decreasing along columns. For example:

5 4
4 4 3
3 2 2

2 2 1 1 1

A semistandard Young tableau may also be represented by a sequence of integer
partitions which di�er successively by a horizontal strip. The k-th integer partition in
this sequence is given by the subtableau covered by the �rstk labels:

; * (3) * (5; 2) * (5; 3; 1) * (5; 3; 3; 1) * (5; 3; 3; 2)

The content c(T) of a semi-standard Young tableau is the vector:

(c1(T); c2(T); c3(T); : : :)

where ck (T) denotes the number of times the labelk occurs in the tableau T. The
content of our example tableau is (3; 4; 2; 3; 1).

We remark that a regular plane partition may be thought of as a pair of semi-
standard tableau of the same shape. For example, the regularplane partition from
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section 8.2:
4 3 2 2 0
3 2 1 1 0
1 1 1 0 0
1 0 0 0 0
0 0 0 0 0

is in bijection with the following two tableaux:

4
4 2

4 3 1 1

4
4 3

4 3 3 1

The �rst tableau in the pair corresponds to the �rst half of th e sequence read o� the
NW ! SE diagonals, from right to left:

; * (2) * (2; 1) * (3; 1) * (4; 2; 1)

while the second tableau in the pair corresponds to the second half of the sequence read
o� the NW ! SE diagonals, from right to left:

; * (1) * (1) * (3; 1) * (4; 2; 1))

The standardization of a semi-standard Young tableau is the unique standard Young
tableau with the following properties:

1. The labels 1; 2; : : : c1(T) lie on the �rst row (read from the bottom).

2. The set of labelsi satisfying: ck (T) < i � ck+1 (T) forms a horizontal strip.

3. If ck (T) < i; j � ck+1 (T) and i < j then i lies to the right of j .

4. when you replace the �rst c1(T) labels with 1, the next c2(T) labels with 2, the
next c3(T) labels with 3 and so on, you recover the original semi-standard Young
tableau.

The standardization of our example semi-standard Young tableau is the following:

13 10
12 11 8
9 5 4

7 6 3 2 1

2.2.2 Horizontal and vertical strips

A partial permutation matrix � is said to form anincreasing chain if there exists k; ` � 0
such that after removing the �rst k rows and the �rst ` columns, the remaining matrix
is that of the identity permutation. Similarly, a partial pe rmutation matrix � is said to
form an decreasing chainif there exists k; ` � 0 such that after removing the �nal k rows
and the �nal ` columns, the remaining permutation is that of the maximal permutation.

Let us de�ne a properly labelled horizontal strip to be a standard skew tableau with
the property that if i > j then the label i always occurs to the left of label j . The
following important lemma is due to vanLeeuwen [vL05].
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Lemma 2.2.1. Suppose that the skew Robinson correspondence sends(A; B; � ) to (A0; B 0).
The pair of skew standard tableauA0 and B 0 are properly labelled horizontal strips if and
only if the pair of skew tableauA and B are also properly labelled horizontal strips and
if after the growth diagram has been standardized the partial permutation � form a de-
creasing chain.

An example:

2 21 22 22 22

21 211 221 221 221

22 221 222 222 222

22 221 222 322 322

22 221 222 322 422

� =
�
1 2 3 4
� � 3 4

�
A = B = 2 1 A0 = B 0 = 2 1

4 3

We shall say that a growth diagram is of horizontal type if the output tableaux
(A0; B 0) are both properly labelled horizontal strips.

Similarly, let us de�ne a properly labelled vertical strip to be a skew standard tableau
with the property that if i > j then the label i always occurs to theright of label j .
The following lemma is also due to vanLeeuwen [vL05]:

Lemma 2.2.2. Suppose that the skew Robinson correspondence sends(A; B; � ) to (A0; B 0).
The pair of skew standard tableauA0 and B 0 are properly labelled vertical strips if and
only if the pair of skew tableauA and B are also properly labelled vertical strips and, after
the growth diagram has been standardized, the partial permutation � form an increasing
chain.

For example:
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11 11 11 21 22

11 11 21 22 221

11 21 22 221 2211

21 22 221 2211 22111

22 221 2211 22111 221111

� =
�
1 2 3 4
2 1 � �

�
A = B = 2

1
A0 = B 0 = 4

3
2
1

We shall say that a growth diagram is ofvertical type if the output tableau ( A0; B 0)
are both properly labelled vertical strips.

In both the horizontal strip and the vertical strip case case the following weight
condition is satis�ed. Suppose that A0 is of shape�=� and B 0 is of shape�=� while A
is of shape�=� and B is of shape�=� . If the partial permutation � contains exactly m
ones then:

j� j + j� j = j� j + j� j + m (2.1)

2.2.3 Block permutation matrices

Suppose thatM is a non-negative integer matrix. Let ck denote the sum of the entries
on the k-th row of M and let c0

k denote the sum of the entries in thek-th column of M .
If the total sum of all the entries of M is equal to n, then there are two canonical ways
in which we may associate ann by n permutation matrix P to the matrix M .

In both cases we begin by dividing up our matrix P into \block rows" and \block
columns". The k-th \block row" of P contains ck normal rows of P, while the k-th
\block column" of P contains c0

k columns of P. A \block" of P is an intersection of a
\block row" and a \block column".

The �rst way of associating a permutation matrix P to a non-negative integer matrix
M is to place ones into the block matrix P in such a way that:

� The number of ones in the block (i; j ) of P is equal to M i;j .

� The ones are strictly decreasing from left to right as you move along any block
row.
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� The ones are strictly decreasing from top to bottom as you move along any block
column.

For example:

�
1 3
2 1

�
7!

2

6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

3

7
7
7
7
7
7
7
7
5

In this case we shall refer toP as the RSK permutation associated toM . If the row
sums and column sums are known, then this operation is invertible

The second way of associating a permutation matrixP to a non-negative integer
matrix M is to place ones into the block matrix P in such a way that:

� The number of ones in the block (i; j ) of P is equal to M i;j .

� The ones are strictly increasing from left to right as you move along any block
row.

� The ones are strictly increasing from bottom to top as you move along any block
column.

For example:

�
1 3
2 1

�
7!

2

6
6
6
6
6
6
6
6
4

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
5

In this case we shall refer toP as the Burge permutation associated toM . Again, if the
row sums and column sums are known, then this operation is invertible.

2.2.4 Growth diagram patches

Its not hard to see that any subdiagram of a growth diagram is again a growth dia-
gram. In particular, given a block permutation matrix P we may apply the Robinson
correspondence, and then consider each of the blocks as separate, individual growth
diagrams.

Lemma 2.2.3 (vanLeeuwen). If P is an RSK permutation, then each block ofP is
of horizontal type. Similarly, if P is a Burge permutation, then each block ofP is of
vertical type.
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2.2.5 Reverse algorithm (RSK)

The RSK correspondence may be realized with the aid of the Robinson correspondence.
The reverse algorithm is as follows:

Suppose that your two semi-standard Young tableau are (T; T0) with content vectors
c = ( c1; : : : ; cr ) and c0 = ( c0

1; : : : ; c0
s) respectively. For example:

T = 3 3
2 2

3 1 1

T0 = 4 3
3 2

3 2 1

We have c = (2 ; 2; 3) and c0 = (1 ; 2; 3; 1).
The �rst step is to standardize both T and T0 to obtain a pair of standard tableau

(S; S0). In our case we have:

0

B
B
B
@

6 5
4 3

7 2 1

; 7 4
5 2

6 3 1

1

C
C
C
A

Note that this is the same pair of tableau which appeared in our example in section
9.1.2

The next step is to apply the reverse Robinson correspondence to get some permu-
tation matrix. In our case we have:

P =

2

6
6
6
6
6
6
6
6
4

0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

3

7
7
7
7
7
7
7
7
5

Finally we use the content vectors ofT and T0 to �nd the matrix M for which P is
the associated RSK permutation:

2

6
6
6
6
6
6
6
6
4

0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

3

7
7
7
7
7
7
7
7
5

7!

2

4
0 0 1 1
0 1 1 0
1 1 1 0

3

5

Although in our example the resulting matrix only contains zeros and ones, in general
the entries of M may be any non-negative integer.
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2.2.6 Forward algorithm (RSK)

Given a non-negative integer matrix M , begin by recording the row and column sums
of M into the vectors c and c0. Next, let P be the RSK permutation associated toM ,
and apply the Robinson correspondence toP. Suppose that (S; S0) is the resulting pair
of standard tableau. The content vectors (c; c0) may now be used tode-standardizeS
and S0 into a pair of semi-standard Young tableau (T; T0)

2.2.7 Forward algorithm (Burge)

Given a non-negative integer matrix M , the forward algorithm is as follows:

1. Record the content vectorsc and c0 by reading of the row sums and column sums
of M respectively.

2. Find the Burge permutation P associated toM .

3. Apply the Robinson correspondence to the permutation matrix P to obtain a pair
of standard Young tableau (S; S0).

4. Conjugate the pair of standard Young tableau (S; S0) to obtain a new pair of
standard Young tableau (R; R0)

5. De-standardize the tableau (R; R0) using the content vectors (c; c0) to obtain the
�nal pair of standard Young tableau ( T; T0).

2.2.8 Reverse algorithm (Burge)

Given a pair (T; T0) of semi-standard Young tableau of the same shape, the reverse
algorithm is as follows:

1. Record the content vectors (c; c0) of (T; T0).

2. Standardize the semi-standard Young tableaux (T; T0) to obtain a pair of standard
Young tableau (R; R0).

3. Conjugate the pair of standard Young tableau (R; R0) to obtain a new pair of
standard Young tableau (S; S0)

4. Apply the reverse Robinson correspondence to (S; S0) to obtain the permutation
P.

5. Use the content vectors (c; c0) to �nd the matrix M for which P is the associated
Burge permutation.

2.2.9 Local rules

As a consequence of lemma9.2.3, both the RSK and the Burge correspondence can be
performed directly, without passing through the standardization and de-standardization
procedure.

The growth diagram for the RSK correspondence looks very similar to that for the
Robinson correspondence, the main di�erence being that neighboring partitions di�er
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by a horizontal strip, rather than a single box. In the case ofthe Burge correspondence,
neighboring partitions di�er by a vertical strip - but the �n al result is conjugated.

For any partition � let U(� ) denote the set of integer partitions which can be obtained
from � by adding a horizontal strip, and let D (� ) denote the set of integer partitions
which can be obtained from� by removing a horizontal strip. A forward local rule is a
map with type signature:

U�;� : (Z � 0; D (� ) \ D (� )) ! U(� ) \ U(� ) (2.2)

such that if � = U�;� (m; � ) then the following weight conditions are satis�ed:

j� j + j� j = j� j + j� j + m (2.3)

A reverse local rules is a map with type signature:

D �;� : U(� ) \ U(� ) ! (Z � 0; D (� ) \ D (� )) (2.4)

As a consequence of lemma9.2.1 and 9.2.2, the local rules for both the RSK cor-
respondence and the Burge correspondence may be derived directly from Fomin's local
rules.

We shall describe here only the local rule associated to the Burge correspondence.
The reader is referred to [vL05] for the RSK version of the local rule.

2.2.10 Burge local rule

In the case of the Burge correspondence, the operatorD �;� is de�ned as follows. Suppose
that ( m; � ) = D �;� (� ). Let A denote the set of columns of� which are longer than the
corresponding columns of� and let B denote the set of columns of� which are longer
than the corresponding columns of� .

Next, for each i 2 A \ B let � (i ) 62A [ B denote the largest integer such that� (i ) < i
and � (i ) 6= � (j ) for any j 2 A \ B such that j > i . Let:

C = f � (i ) > 0 j i 2 A \ B g

Finally let � be the partition obtained from � by removing a box from the end of each
of the columns indexed byA [ B [ C and let

m = # f � (i ) � 0 j i 2 A \ B g

Here is an example:

D (6;5;5;3);(6;6;5;2)(7; 6; 5; 3; 1) = (1 ; (6; 5; 4; 2))

The calculation proceeds as follows:

� 0 = (5 ; 4; 4; 3; 3; 2; 1)

A = columns(�=� ) = f 1; 6; 7g

B = columns(�=� ) = f 1; 3; 7g
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1 2 3 4 5 6 7 8 9

C = f 5g

� 0 = (4 ; 4; 3; 3; 2; 1)

m = 1

The inverse operator U�;� is de�ned similarly. Suppose that � = U�;� (m; � ). Let
A denote the set of columns of� which are longer than the corresponding columns of
� and let B denote the set of columns of� which are longer than the corresponding
columns of � .

Next, for each i 2 A \ B let � (i ) 62A [ B be the smallest integer such that� (i ) > i
and � (i ) 6= � (j ) for any j 2 A \ B with j < i . Let

C = f � (i ) j i 2 A \ B g

Finally let D denote the �rst m elements of the complement of the setA [ B [ C and let
� be the partition obtained from � by adding a box to the end of each of the columns
in A [ B [ C [ D .

Here is the inverse of our example:

U(6;5;5;3);(6;6;5;2)(1; (6; 5; 4; 2)) = (7 ; 6; 5; 3; 1)

The calculation is straightforward:

� 0 = (4 ; 4; 3; 3; 2; 1)

A = columns(�=� ) = f 3; 5g

B = columns(�=� ) = f 5; 6g

m = 1

1 2 3 4 5 6 7 8 9

C = f 7g

� 0 = (5 ; 4; 4; 3; 3; 2; 1)



3. Symmetric functions and
Macdonald polynomials

In this chapter we recall some of the theory of symmetric functions.

3.1 Symmetric functions

3.1.1 Compositions

A composition is simply a list of non-negative integers. For example:

c = (2 ; 0; 1; 2)

The symmetric group Sm acts naturally on the set of compositions with m parts.
Each orbit of Sm contains a unique partition. For example, the partition corresponding
to our example composition above is:

� = (2 ; 2; 1; 0)

Note that we allow for the possibility of trailing zeros. For any composition � let
r (�; i ) denote the number of parts of � equal to i . and let:

r � =
Y

i � 0

r (�; i )!

Then r � is the order of the subgroup ofSm that stabilizes the composition � . The
number of distinct elements in the order of � is equal to m!=r� . In our example r � = 2
and the number of distinct compositions is equal to 12.

3.1.2 Multivariable polynomials

Consider the multivariate polynomial ring Q[x1; : : : ; xm ]. Each monomial inQ[x1; : : : ; xm ]
corresponds to a composition. For example, the monomialx2

1x3x2
4 in Q[x1; x2; x3; x4]

corresponds to our example composition (2; 0; 1; 2).
For notational convenience, if � = ( � 1; � 2; : : : ; � m ) is a composition, then by X � we

mean the monomialx � 1
1 x � 2

2 : : : x � m
m . There is a natural addition on the space of compo-

sitions which corresponds to multiplication in the polynomial ring. if � = ( � 1; : : : ; � m )
and 
 = ( 
 1; : : : ; 
 m ) then � + 
 = ( � 1 + 
 1; : : : ; � m + 
 m ), and X (� + 
 ) = X � X 
 .

45
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3.1.3 Monomial symmetric functions

For each partition � we de�ne the monomial symmetric function to be:

m� (X ) =
1
r �

X

� 2 Sn

X � (� )

In other words the monomial symmetric function m� (X ) is the sum of all distinct
permutations of the monomial X � . An example:

m(2;2;1;0)(X ) = x2
1x2

2x3 + x2
1x2x2

3 + x1x2
2x2

3 + x2
1x2

2x4 + x2
1x2x2

4 + x1x2
2x2

4

+ x2
1x2

3x4 + x2
1x3x2

4 + x1x2
3x2

4 + x2
2x2

3x4 + x2
2x3x2

4 + x2x2
3x2

4

The monomial symmetric functions have the property that they are invariant under
the action of the symmetric group on the set of variables. Furthermore, any function
which is symmetric under the action of the symmetric group onthe variables may be
expressed as a linear combination of monomial symmetric functions.

3.1.4 In�nitely many variables

If there are m variables, then we only need to consider integer partitionswith at most
m parts. Sometimes it will be necessary to work with an in�nite number of variables
f x1; x2; x3; : : :g. In this case we take any partition which is padded at the end with an
in�nite number of zeros.

3.2 Plethystic notation

3.2.1 Alphabets

We shall use the notation � to denote the ring of symmetric fun ctions, in in�nitely
many variables, over the �eld of rational numbers [Mac95]. In what follows we shall
make extensive use of theplethystic notation [GHT99, Las03].

In the plethystic notation addition corresponds to the union of two sets and multi-
plication corresponds to the Cartesian product. For example, we write:

X = x1 + x2 + � � � (3.1)

to denote the set of variablesf x1; x2; : : :g. We also write:

XY = ( x1 + x2 + � � � )(y1 + y2 + : : :) (3.2)

to denote the set of variablesf x1y1; x1y2; : : : ; x2y1; : : : x2y2 : : :g.

3.2.2 Complete and elementary symmetric functions

The complete symmetric functionsmay be de�ned by their generating series:


[ Xz ] =
Y

i � 1

1
1 � x i z

=
X

n� 0

hn (X )zn (3.3)
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The generating series for theelementary symmetric functions may be expressed
using the plethystic negation of an alphabet [Las03, GHT99]:


[ � Xz ] =
Y

i � 1

(1 � x i z) =
X

n� 0

(� 1)nen (X )zn (3.4)

It helps to think of the generating function for the complete symmetric functions as
a sort of exponential function:


[ X + Y ] = 
[ X ]
[ Y ] (3.5)


[ � X ] = 
 � 1[X ] (3.6)

For any integer partition � we de�ne:

h� (X ) = h� 1 (X )h� 2 (X )h� 3 (X ) � � � (3.7)

e� (X ) = e� 1 (X )e� 2 (X )e� 3 (X ) � � � (3.8)

One can show that, just like the monomial symmetric functions f m� (X )g both
f h� (X )g and f e� (X )g are bases for the ring of symmetric functions.

3.2.3 Hall inner production

It is a straightforward exercise to verify that:


[ XY ] =
Y

i;j � 1

1
1 � x i yj

=
X

�

h� (X )m� (Y ) (3.9)

The Hall inner product h�j�i may be characterized by th property that:

hm� (X ); h� (X )i = � �;� (3.10)

Equivalently, the Hall inner product is characterized by the fact that for any pair of
basesf f � (X )g and f g� (X )g such that:

hf � (X ); g� (X )i = � �;�

we have:

[ XY ] =

Y

i;j � 1

1
1 � x i yj

=
X

�

f � (X )g� (Y ) (3.11)

3.3 Schur functions

3.3.1 De�nition in terms of semistandard Young tableau

The most important basis for the ring of symmetric functions is the Schur basis. There
are many di�erent ways in which the Schur functions may be de�ned. Each has its
advantages and its disadvantages. For now we shall make use of the following de�nition.

For any integer partition � , the Schur function is given by:

S� (X ) =
X

T 2 sh(� )

xc1 (T )
1 xc2 (T )

2 xc3 (T )
3 � � � (3.12)
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where the sum is over all semistandard Young tableau of shape� and:

(c1(T); c2(T); : : :)

denotes thecontent vector of T. Note that it is not immediately clear that the Schur
function as de�ned above is symmetric, See [KB95] for a proof.

3.3.2 Cauchy identity and RSK

The Cauchy identity is an immediate consequence of the de�nition of Schur functions
in terms of semi-standard Young tableau:


[ XY ] =
Y

i;j � 1

1
1 � x i yj

=
X

�

S� (X )S� (Y ) (3.13)

The left hand side may be interpreted as a weighted sum over non-negative integer
matrices. The re�ned weight of a matrix M is given by:

(xd1
1 xd2

2 � � � )(yd0
1

1 yd0
2

2 � � � )

where dk is the sum of all the entries in thek-th row of M and d0
k is the sum of all the

entries in the k-th column of M .
The right hand side may be interpreted as a weighted sum over pairs of semi-standard

Young tableau of the same shape. The re�ned weight of a pair ofsemi-standard Young
tableau (T; T) is given by:

(xc1
1 xc2

2 � � � )(yc0
1

1 yc0
2

2 � � � )

where (c1; c2; : : :) is the content vector of T while (c0
1; c0

2; : : :) is the content vector of
T0. This is none other than the RSK correspondence (see Section9.2.5). We remark
that MacMahon's identity may be obtained from Cauchy's identity by specializing the
variables to:

xk = yk = zk� 1
2

3.3.3 Pieri rules

The following recurrence is an immediate consequence of thede�nition of the Schur
function given in equation 10.12:

S� [X + z] =
X

� 2 D (� )

S� [X ]zj � j�j � j (3.14)

Here D(� ) denotes the set of partitions which can be obtained from� by removing a
horizontal strip. This is known as the dual Pieri rule.

Assuming that we have proved the symmetry of the Schur function, we may write:

S� (X ) =
X

�

K �;� m� (X ) (3.15)

where K �;� is the Kostka number which counts the number of semi-standard Young
tableau of shape� and content � (see Section9.2.1). Note that K �;� = 0 unless � is
greater than � in the dominance order (see Section8.1.3).
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Since Cauchy's identity tells us that the Schur-functions form an orthonormal basis
with respect to the Hall inner product, we have by duality tha t:

S� (X ) =
X

�

K �;� h� (X ) (3.16)

The following recurrence is an immediate consequence of equation 10.16:


[ Xz ]S� [X ] =
X

� 2 U(� )

S� [X ]zj � j�j � j (3.17)

where U(� ) denotes the set of partitions which can be obtained from� by adding a
horizontal strip. This is known as the Pieri rule.

Combining equation 10.17and equation 10.15and using another duality argument,
we discover that:


 � [Xz ]S� [X ] = S� [X + z] (3.18)

where 
 � [Xz ] is de�ned to be adjoint to the operator 
[ Xz ] with respect to the Hall
inner product.

hf (X ) j 
 � [Xz ]g(X )i = h
[ Xz ]f (X ) j g(X )i (3.19)

3.4 Local rules

To show how these ideas are connected, let us assume that the Pieri rule and the dual
Pieri rule are true and attempt to deduce Cauchy's identity as a consequence. We will
then prove an important commutation relation between the Pieri operator and the dual
Pieri operator

3.4.1 Alternative proof of Cauchy identity

Proposition 3.4.1. If X n is the alphabetX n = x1 + x2 + � � � + xn and Yn is the alphabet
Yn = y1 + y2 + � � � + yn then:

X

�

S� [X n ]S� [Yn ] =
nY

i;j =1

1
1 � x i yj

Proof. The casen = 1 is trivial. We assume that the result is true for all k < n . By
the Pieri formula (equation 10.17), and the induction assumption, we have on the right
hand side:

RHS (n) =

 
X

r

hr [X n� 1]xr
n

!  
X

s

hs[Yn� 1]ys
n

!  
X

�

S� [X n� 1]S� [Yn� 1]

!
1

1 � xnyn

=
X

�;�

S� [X n� 1]S� [Yn� 1]

0

@ 1
1 � xnyn

X

� 2 D (� )\ D (� )

x j �=� j
n yj �=� j

n

1

A

while by the dual Pieri formula (equation 10.18), we have on the left hand side:
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LHS (n) =
X

�

S� [X n� 1 + xn ]S� [X n� 1 + yn ]

=
X

�;�

S� [X n� 1]S� [Yn� 1]

0

@
X

� 2 U(� )\ U(� )

x j �=� j
n yj �=� j

n

1

A

In order to complete this proof, we need, for any given� and � a bijection between
the set of pairs (m; � ) with � 2 D(� ) [ D (� ) and m a non-negative integer and the set
of partitions � 2 U(� ) [ U(� ) in such a way that:

j� j = j� j + j� j � j � j + m

A local rule is just such a bijection (see section9.2.9).

U�;� : (Z � 0; D (� ) [ D (� )) ! U(� ) [ U(� ) (3.20)

3.4.2 Commutation Relations

Proposition 3.4.2. The operators
[ Xv ] and 
 � [Xu ] satisfy the following commutation
relations:


 � [Xu ] 
[ Xv ] =
1

1 � uv

[ Xv ] 
 � [Xu ] (3.21)

Proof. For any integer partition � we have:


 � [Xu ] 
[ Xv ]S� (X ) = 
[( X + u)v]S� (X + u)

= 
[ uv]
[ Xv ]
 � [Xu ]S� (X )

=
1

1 � uv

[ Xv ]
 � [Xu ]S� (X )

A local rule may be thought of as a bijective proof of proposition 10.4.2, which may
be expressed in the form:

hS� j 
 � [Xu ] 
[ Xv ] S� i =
1

1 � uv
hS� j 
[ Xv ] 
 � [Xu ] S� i (3.22)

for all integer partitions � and � . In other words, a local rule is a map with type
signature:

D �;� : U(� ) \ U(� ) ! (Z � 0; D (� ) \ D (� )) (3.23)

Such that if (m; � ) = D �;� (� ) then the following weight conditions are satis�ed:
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j�=� j = j�=� j + m (3.24)

j�=� j = j�=� j + m (3.25)

By adding these two weight conditions together and dividingby 2 we obtain:

j� j = j� j + j� j � j � j + m (3.26)

This is precisely the inverse of the local rule described at the end of proposition
10.4.1. Again see section9.2.9.

3.5 Robinson correspondence revisited

3.5.1 Representation Theory

Permutations

Any permutation may be expressed as the product of disjoint cycles. For example, the
permutation:

� =
�
1 2 3 4 5 6 7 8 9
4 8 3 6 5 7 9 2 1

�

may be expressed indisjoint cycle notation as� = (1 ; 4; 6; 7; 9)(2; 8)(3)(5). Since disjoint
cycles commute with one another, they can always be ordered from longest to shortest.
The cycle type of a permutation is the integer partition which determines the length of
the cycles. The cycle type of our example partition is (5; 2; 1; 1).

A pair of permutations � 1 and � 2 are said to beconjugate if there exists some third
permutation � such that � 1 = � � 2� � 1. Two permutations are conjugate if and only if
they have the same cycle type.

Characters

A representation of the symmetric group S n is a homomorphism from theS n to GL( V )
for some complex vector spaceV . A representation is said to beirreducible if there is
no non-trivial subspaceU � V with the property that �:u 2 U for all u 2 U and for all
� 2 S n .

One can show that the irreducible representations of the symmetric group are natu-
rally indexed by integer partitions [Sag01]. Furthermore the dimension of the irreducible
representation indexed by� , which we denote byf � , is given by the number of standard
tableau of shape� . [Sag01].

Suppose that � : S n ! GL(V ) is a representation of the symmetric group. The
character associated to� is the map � : S n ! C given by � (� ) = tr( � ). Since the trace
is invariant on conjugacy classes, it makes sense to write� (� ) where � is a partition of
n.

Note that for the identity permutation we have:

� � (1n ) = f � (3.27)
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3.5.2 Newton power sums

De�nition

The Newton power sums are de�ned by:

pn (X ) = xn
1 + xn

2 + � � � (3.28)

As in the case of the complete symmetric functions and the elementary symmetric
functions, if we de�ne:

p� (X ) = p� 1 (X )p� 2 (X ) � � � (3.29)

then f p� (X )g is a basis for the ring of symmetric functions.

Relation to complete symmetric functions

For any integer partition � let us de�ne:

z� =
Y

i

mi (� )!i m i (� ) (3.30)

where mi (� ) denotes the number of parts of� of length i . As a consequence of the fact
that:

log
�

1
1 � x

�
=

X

n

xn

n
(3.31)

we have that:


( Xz ) = exp

0

@
X

n� 1

pn (X )
n

zn

1

A (3.32)

In particular:

hn (X ) =
X

� ` n

p� (X )
z�

(3.33)

Dual basis

Using the notation from Section 10.2 we have:

pn (X )pn (Y ) = pn (XY ) (3.34)

Now:


( XY ) = exp

0

@
X

n� 1

pn (XY )
n

zn

1

A (3.35)

= exp

0

@
X

n� 1

pn (X )pn (Y )
n

zn

1

A (3.36)

=
X

�

p� (X )
z�

P� (Y ) (3.37)
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It follows that the dual basis to the f P� (X )g is given by:

�
p� (X )

z�

�

3.5.3 Algebraic proof of Robinson correspondence

An alternative de�nition for the Schur functions is the foll owing:

S� (X ) =
X

�

� � (� )
z�

p� (X ) (3.38)

where � � (� ) denotes thecharacter of the representation ofS n indexed by � evaluated
on the conjugacy class of type� .

The Robinson correspondence (section9.1) tells us that:

n! =
X

�

(f � )2 (3.39)

This identity may be derived from Cauchy's formula (equation 10.13) as follows. On
the left hand side we have:


( XY ) =
X

n

hn (XY ) =
X

�

p� (XY )
z�

(3.40)

and so:

h
( XY )jp(1n ) (XY )i XY =
1

z(1) n
=

1
n!

(3.41)

While on the right hand side we have:

*
X

�

S� (X )S� (Y ) j p(1n ) (X )p(1n ) (Y )

+

XY

(3.42)

=
X

�



S� (X )jp(1n ) (X )i X hS� (Y )jp(1n ) (Y )

�
Y

(3.43)

=
X

�

�
� � ((1n ))

n!

� 2

(3.44)

=
X

�

�
f �

n!

� 2

(3.45)

Putting the two sides together we recover equation10.39.
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3.5.4 Canonical commutation relations

Let p�
1 denote the adjoint of the operator \multiplication by p1" with respect to the Hall

inner product. The pair ( p1; p�
1) satisfy the canonical commutation relations:

[p�
1; p1] = 1 (3.46)

Noting that p1(X ) = h1(X ) this can be understood by the fact that an integer partition
always has one more outside corner box than inside corner box. Fomin's original local
rule can be understood as a bijective proof of the identity:

hS� j p�
1p1S� i = 1 + hS� j p1p�

1 S� i (3.47)

Equation 10.39can be proved algebraically by remarking that:

X

�

f � f � =
X

�

h1pn
1 jS� ihS� jpn

11i (3.48)

= h1pn
1 jpn

11i (3.49)

= h1j(p�
1)n (p1)n1i (3.50)

= n! (3.51)

The last step makes use of the commutation relations in equation 10.47 together with
the fact that p�

11 = 0. Each term of the form p�
1 must \annihilate" with some term of

the form p1. There are exactly n! ways in which this can happen.

3.6 Macdonald Polynomials

3.6.1 Plethystic notation

In this section we recall some of the theory of Macdonald polynomials. Let � q;t de-
note the ring of symmetric functions over the �eld Q(q; t) of rational functions in the
indeterminants q and t. Making use of the plethystic notation, the expression:

1 � t
1 � q

may be interpreted as the alphabet:

f 1; q; q2; q3; � � � ; � t; � tq; � tq2; � tq3: � � � g

So that, for example:



�

1 � t
1 � q

z
�

=
(tz; q)1

(z; q)1
(3.52)

where the Pochhammer symbolis de�ned by:

(a; q)1 =
Y

n� 0

(1 � aqn ) (3.53)
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3.6.2 (q; t)-Pieri operators

We shall de�ne:


 q;t[Xz ] = 

�

1 � t
1 � q

Xz
�

=
Y

i � 1

(tx i z; q)1

(x i z; q)1
(3.54)

Note that when q = t this reduces to the generating series for complete symmet-
ric function (see equation 10.3). Let h� j �i q;t denote the Macdonald inner product
associated to the (q; t)-deformed Cauchy Kernel:


 q;t[XY ] = 

�
XY

1 � t
1 � q

�
=

Y

i;j � 1

(tx i yj ; q)1

(x i yj ; q)1
(3.55)

When q = t this reduces to the usual Cauchy kernel (see equation10.13). The operator

 �

q;t[Xz ] is de�ned to be adjoint to the operator 
 q;t[Xz ] with respect to the Macdonald
inner product.

hf (X ) j 
 �
q;t[Xz ]g(X )i q;t = h
 q;t[Xz ]f (X ) j g(X )i q;t

When q = t the Macdonald inner product reduces to the Hall inner product (see
equation 10.10).

3.6.3 De�nition

The Macdonald polynomials f P� (X ; q; t)g may be de�ned as the unique basis for �q;t

which is both orthogonal with respect to the Macdonald inner product:

hP� (X ; q; t); P� (X ; q; t)i q;t = 0 if � 6= � (3.56)

and which admits a triangular change of basis with respect tothe monomial symmetric
functions:

P� (X ) = m� (X ) +
X

�<�

2 �� m� (X ) (3.57)

Here we are using thelexicographical order on integer partitions. The dual basis is
denoted by f Q� (X ; q; t)g. When q = t the Macdonald polynomials reduce to the Schur
functions.

Curious properties

It is a surprising fact [Mac95] (page 338 { 340) that, just like the Schur functions,
the Macdonald polynomials admit an expansion in terms of themonomial symmetric
functions of the form:

P� (X ) = m� (X ) +
X

�/�

2 �� m� (X ) (3.58)

Here we are using thedominance order on integer partition.
Another surprising fact about the Macdonald polynomials is that, when expanded

in terms of the Schur functions, the coe�cients K �;� (q; t) are polynomials in q and t
with non-negative integer co-e�cients.

P� (X ) =
X

�

K �;� (q; t)S� (X ) (3.59)
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This was known asMacdonald's positivity conjecture until it was eventually proved
by Haiman using di�cult ideas from algebraic geometry [Hai01]. It remains an open
problem to �nd a combinatorial proof.

There is a simple closed form expression for the inner product of a Macdonald
polynomial with itself:

hP� (X ; q; t); P� (X ; q; t)i q;t =
Y

s2 �

(1 � qa� (s)+1 t ` � (s) )
(1 � qa� (s) t ` � (s)+1 )

(3.60)

see Section8.1.2 for the de�nition of arms and legs. This is not at all obvious from
the de�nition which we have given. To prove it requires an alternative de�nition of
the Macdonald polynomials as eigenvectors of a certain family of commuting operators
[Mac95].

Pieri formulae

Like the Schur functions, there is a Macdonald Pieri formula, and a Macdonald dual
Pieri formula:


[ Xz ]q;t P� (X ; q; t) =
X

� 2 U(� )

 �=� (q; t) P� (X ; q; t)zj � j�j � j (3.61)


 � [Xz ]q;t P� (X ; q; t) =
X

� 2 D (� )

' �=� (q; t) P� (X ; q; t)zj � j�j � j (3.62)

The Macdonald Pieri coe�cients are given ([Mac95] page 341) by:

' �=� (q; t) =
Y

s2 C�=�

1 � qa� (s) t ` � (s)+1

1 � qa� (s)+1 t ` � (s)

Y

s2 C�=�

1 � qa� (s)+1 t ` � (s)

1 � qa� (s) t ` � (s)+1
(3.63)

 �=� (q; t) =
Y

s62C�=�

1 � qa� (s)+1 t ` � (s)

1 � qa� (s) t ` � (s)+1

Y

s62C�=�

1 � qa� (s) t ` � (s)+1

1 � qa� (s)+1 t ` � (s)
(3.64)

Here C�=� denotes the set of columns of� which are longer than the corresponding
columns of � . When q = t the Pieri coe�cients are equal to 1.

Key lemmas

The following two lemmas are essentially due to Garcia, Haiman and Tesler [GHT99].
They constitute a (q; t)-analog of the commutation relations for \vertex operators" to
be found in Jimbo and Miwa [JM83]

Lemma 3.6.1.


 �
q;t[Xz ] P� (X ; q; t) = P� (X + z; q; t) (3.65)



x 3.6 | Macdonald Polynomials 57

Proof. Let f Q� (X ; q; t)g denote the dual basis to thef P� (X ; q; t)g with respect to the
Macdonald inner product. We have:


 �
q;t[Xz ] P� (X ; q; t) = h
 �

q;t[Y z] Q� (Y ; q; t) j 
 q;t[XY ]i q;t

= hQ� (Y ; q; t) j 
 q;t[Y z] 
 q;t[XY ]i q;t

= hQ� (Y ; q; t) j 
 q;t[(X + z)Y ]i q;t

= P� (X + z; q; t)

Lemma 3.6.2.


 �
q;t[Xu ] 
 q;t[Xv ] =

(tuv ; q)1

(uv; q)1

 q;t[Xv ] 
 �

q;t[Xu ] (3.66)

Proof.


 �
q;t[Xu ] 
 q;t[Xv ] P� (X ; q; t) = 
 q;t[(X + u)z] P� (X + u; q; t)

= 
 q;t[uz] 
 q;t[Xz ] 
 �
q;t[Xz ] P� (X ; q; t)

=
Y

n� 0

(tuv ; q)1

(uv; q)1

 q;t[Xz ] 
 �

q;t[Xz ] P� (X ; q; t)

3.6.4 Hall{Littlewood polynomials

As a �nal remark, when q = 0 the Macdonald polynomials reduce to theHall{Littlewood
polynomials.
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4. Bijective proof of Borodin's
identity

4.1 Symmetric function proof of Borodin's identity

We shall begin by sketching an algebraic proof of Borodin's identity.

X

c2 CPP( � )

zjcj =
Y

n� 0

0

B
B
@

1
1 � z(n+1) T

Y

i<j
� i >� j

1
1 � zj � i + nT

Y

i>j
� i >� j

1
1 � zj � i +( n+1) T

1

C
C
A (4.1)

We shall actually be proving a re�ned version of equation11.1 in which on the left
hand side we replace:

zjcj 7! zj � 0 j
0 zj � 1 j

1 � � � zj � T � 1 j
T � 1 (4.2)

while on the right hand side we replace:

znT 7! zn
0 zn

1 � � � zn
T � 1 (4.3)

zj � i + nT 7! zn
0 zn

1 � � � zn
i zn+1

i +1 � � � zn+1
j zn

j +1 � � � zn
T � 1 when i < j (4.4)

zj � i +( n+1) T 7! zn+1
0 zn+1

1 � � � zn+1
j zn

j +1 + � � � zn
i zn+1

i +1 � � � zn+1
T � 1 when i > j (4.5)

The re�ned version of the reverse plane partition case is dueto Gasner [GE81]. We
would like to emphasize the fact that the structure of the bijective proof follows very
closely the structure of the algebraic proof.

4.1.1 Notation

Let Dz denote the \degree" operator:

DzS� [X ] = zj � jS� [X ] (4.6)

The degree operator satis�es the following commutation relations:

Lemma 4.1.1.

Dz 
[ Xu ] = 
[ Xuz ] Dz (4.7)

Dz 
 � [Xu ] = 
 � [Xuz � 1] Dz (4.8)

Proof. This fact follows immediately from equations 10.17and 10.18.

59
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For notational convenience we shall de�ne:

G0(z) = 
[ Xz ] (4.9)

G1(z) = 
 � [Xz ] (4.10)

4.1.2 Algebraic interpretation of cylindric plane partiti on

Lemma 4.1.2. The left hand side of the re�ned version of equation11.1 may be ex-
pressed in the form:

lhs(� ) =
X

�

hS� j G� 0 (u0)G� 1 (u1) � � � G� T (uT )Dw S� i (4.11)

where:

w = z0z1 � � � zT � 1 (4.12)

uk =

(
z0z1 � � � zk� 1 if � k = 1

z� 1
0 z� 1

1 � � � z� 1
k� 1 if � k = 0

(4.13)

Proof. From the \interlacing sequence" de�nition of a cylindric pl ane partitions 8.3.1
it is clear that a cylindric plane partition is constructed b y successively adding and
removing horizontal strips. The degree operatorDz is used to keep track of the number
of cubes in the resulting cylindric plane partition.

Using the fact that the Schur functions are orthonormal with respect to the hall
inner product we may write:

lhs(� ) =
X

�

hS� j Dz0 G� 0 (1) Dz1 G� 1 (1) � � � DzT � 1 G� T (1) S� i (4.14)

It remains to commute all the shift operators to the right hand side using Lemma
11.1.1.

Note that the above expression for lhs(� ) can also be thought of as thetrace of the
operator:

G� 0 (u0)G� 1 (u1) � � � G� T (uT )Dw

acting on symmetric functions.

4.1.3 Some lemmas

Let us de�ne:

De�nition 4.1.1.

M � (m) =
X

�

hS� j
TY

k=1
� k =0


[ Xu kwm ]
TY

k=1
� k =1


 � [Xu k ] Dw S� i (4.15)

We have:
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Lemma 4.1.3.

M � (m) =
Y

(i;j )
� i 6= � j

1
1 � ui uj wm+1 M � (m + 1) (4.16)

Proof. This is a straightforward calculation. Using the fact that t he Schur functions are
orthogonal with respect to the Hall inner product, as well asthe fact that:

tr( AB ) = tr( BA )

We may write:

M � (m) =
X

�;�

hS� j
TY

k=1
� k =0


[ Xu kwm ] S� ihS� j
TY

k=1
� k =1


 � [Xu k ] Dw S� i (4.17)

=
X

�;�

hS� j
TY

k=1
� k =1


 � [Xu k ] Dw S� ihS� j
TY

k=1
� k =0


[ Xu kwm ] S� i (4.18)

=
X

�

hS� j
TY

k=1
� k =1


 � [Xu k ] Dw

TY

k=1
� k =0


[ Xu kwm ] S� i (4.19)

Next applying the commutation relations of Lemma 11.1.1 and Proposition 10.4.2 we
have:

M � (m) =
X

�

hS� j
TY

k=1
� k =1


 � [Xu k ] Dw

TY

k=1
� k =0


[ Xu kwm ] S� i (4.20)

=
X

�

hS� j
TY

k=1
� k =1


 � [Xu k ]
TY

k=1
� k =0


[ Xu kwm+1 ] Dw S� i (4.21)

=
Y

(i;j )
� i 6= � j

1
1 � ui uj wm+1

X

�

hS� j
TY

k=1
� k =0


[ Xu kwm+1 ]
TY

k=1
� k =1


 � [Xu k ] Dw S� i (4.22)

=
Y

(i;j )
� i 6= � j

1
1 � ui uj wm+1 M � (m + 1) (4.23)

In the limit we have:

Lemma 4.1.4.

M � (1 ) =
Y

n� 1

1
1 � wn (4.24)



62 Chapitre 4 | Bijective proof of Borodin's identity

Proof. In order for this limit to even make sense, we must havejzi j < 1 for all i , in
which case:

lim
m!1


[ Xu k ! m ] = 1 (4.25)

Since 
 � [Xu k ] is a degree lowering operator, it follows that:

lim
m!1

M � (m) =
X

�

hS� j
TY

k=1
� k =1


 � [Xu k ] Dw S� i (4.26)

=
X

�

hS� jDw S� i (4.27)

=
X

�

wj � j (4.28)

=
Y

n� 1

1
1 � wn (4.29)

4.1.4 The proof

The proof of the re�ned version of Theorem11.1 now proceeds as follows. We begin by
applying Lemma 13.36

X

c2 CPP( � )

zjcj =
X

�

hS� j G� 0 (u0)G� 1 (u1) � � � G� T (uT )Dw S� i (4.30)

(4.31)

Next we repeatedly applies the commutation relations of Lemma 11.6, followed by def-
inition 11.1.1.

=
Y

i<j
� i >� j

1
1 � ui uj

X

�

hS� j
TY

k=1
� k =0


[ Xu k ]
TY

k=1
� k =1


 � [Xu k ] Dw S� i

=
Y

i<j
� i >� j

1
1 � ui uj

M � (0)

We then repeatedly apply Lemma11.1.3.

=
Y

i<j
� i >� j

1
1 � ui uj

Y

m� 0

0

B
B
@

Y

(i;j )
� i 6= � j

1
1 � ui uj wm+1

1

C
C
A M � (1 )

Splitting the second product into two, and combining it with the �rst we have:
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=
Y

m� 1

0

B
B
@

Y

i<j
� i >� j

1
1 � ui uj wm� 1

1

C
C
A

0

B
B
@

Y

i>j
� i >� j

1
1 � ui uj wm

1

C
C
A M � (1 )

Finally, applying Lemma 11.1.4we have:

=
Y

m� 1

1
1 � wm

0

B
B
@

Y

i<j
� i >� j

1
1 � ui uj wm� 1

1

C
C
A

0

B
B
@

Y

i>j
� i >� j

1
1 � ui uj wm

1

C
C
A

To obtain the non-re�ned version of the Theorem, it su�ces to take the following
specialization of variables on both sides:

w = zjT j (4.32)

uk =

(
zk if � k = 1

z� k if � k = 0
(4.33)

4.2 Local rule as higher order function

4.2.1 Combinatorial formulation

We saw in section8.3.5 that Borodin's identity (equation 11.1) may be expressed in the
form:

X

c2 CPP( � )

zjcj =

 
X




zT j
 j

! 0

@
X

s2 b� (� )

1

1 � zhb� ( � ) (s)

1

A (4.34)

where b� (� ) denotes thecylindric diagram with pro�le � and hb� (� ) (s) denotes thecylin-
dric hook length of the box s.

The right hand side may be interpreted combinatorially as a weighted sum over pairs
(
; d) where 
 is an integer partition and d is an arbitrarily labelled cylindric diagram.
In other words, we may write Borodin's identity as:

X

c2 CPP( � )

zjcj =
X

(
; d)2 (P ;ALCD( � ))

zjdj+ T j
 j (4.35)

Here P denotes the set of all integer partitions and ALCD(� ) denotes the set of all
arbitrarily labelled cylindric diagrams with pro�le � .

Our goal is thus to �nd, for each possible pro�le � , a weight-preserving bijection
between the sets CPP(� ) and the tuple (P; ALCD( � )).

 � : (P; ALCD( � )) ! CPP(� ) (4.36)

Our bijection will be such that it actually proves the follow ing re�ned identity:



64 Chapitre 4 | Bijective proof of Borodin's identity

X

c2 CPP( � )

zj � 1 j
1 zj � 2 j

2 � � � zj � T j
T =

X

(
; d)2 (P ;ALCD( � ))

zj 
 j+ j diag(1) jd
1 zj 
 j+ j diag(2) jd

2 � � � zj 
 j+ j diag(T )jd
T (4.37)

See section11.4.1for the de�nition of diag.

4.2.2 De�nition of local rule

In section 9.2.9 we de�ned the local rule to be a map with type signature:

U�;� : U(� ) \ U(� ) ! (Z � 0; D (� ) \ D (� )) (4.38)

which satis�es the following weight condition. If � = D �;� (m; � ) then

j� j = j� j + j� j � j � j + m (4.39)

The inverse local rule has type signature:

D �;� : (Z � 0; D (� ) \ D (� )) ! U(� ) \ U(� ) (4.40)

An explicit map satisfying the conditions of the local rule was given in section9.2.10.
Sometimes the local rule is represented graphically as follows:

�

�

�

�

m

See for example, the diagram in section11.3.3.

Local rule as higher order function

At slight risk of confusion, we shall also use the term \localrule" to refer to a certain
higher order function, in the sense of functional programming [Tho99]. In functional
programming, a higher order function is a function which takes as input a function, and
returns as output a di�erent function.

Referring back to section 8.1.3, for any � � � 0 such that � 0 is obtained from �
by adding an inversion at position i , the input function for our local rule L i will be a
weight-preserving bijection of the form:

 � : (P; ALCD( � )) ! CPP(� ) (4.41)

while the output function is a weight preserving bijection of the form:

 � 0 : (P; ALCD( � 0)) ! CPP(� 0) (4.42)
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That is to say, the local rule L i will have type signature:

L i : ((P ; ALCD( � )) ! CPP(� )) ! ((P ; ALCD( � 0)) ! CPP(� 0)) (4.43)

In other words:
L i [ � ] =  � 0 (4.44)

Let ' � and ' � 0 denote the inverse of � and  � 0 respectively. The \inverse local
rule" M i is the higher order function with type signature:

M i : (CPP( � ) ! (P; ALCD( � ))) ! (CPP( � 0) ! (P; ALCD( � 0))) (4.45)

That is:
M i [' � ] = ' � 0 (4.46)

Note that M i is only \inverse" to L i in the sense that:

L i [ � ] � M i [' � ] = 1CPP( � 0)

M i [' � ] � L i [ � ] = 1(P ;ALCD( � 0))

It is not possible to composeL i and M i directly due to incompatible type signatures.

Adding and removing boxes

An inside corner of an arbitrarily labelled cylindric diagram is an inversion in the pro�le
of the form (i; i + 1) or ( T; 1). An outside corner of an arbitrarily labelled cylindric
diagram is a co-inversion in the pro�le of the form ( i; i + 1) or ( T; 1). A cylindric
diagram always has the same number of inside corners as outside corners.

An inside corner at position i of an arbitrarily labelled cylindric diagram d0 with
pro�le � 0 can always be removed to obtain an arbitrarily labelled cylindric diagram
with pro�le � where � � � 0 (see Section8.1.3).

Keeping track of the label of the box which we have removed, weshall denote this
operator by:

l i : ALCD( � 0) ! (Z � 0; ALCD( � )) (4.47)

Conversely, if d is an arbitrarily labelled cylindric diagram with pro�le � , then given
an integer m we may create a new arbitrarily labelled cylindric diagram d0 with pro�le
� 0 � � by adding an outside corner at positioni and giving it the label m.

We shall denote this operator by:

r i : (Z � 0; ALCD( � )) ! ALCD( � 0) (4.48)

De�nition of Local Rule

Choose any (
; d0) 2 (P; ALCD( � 0)) and let

(m; d) = l i [d0] (4.49)

Suppose that:
 � (
; d) = c = ( � 0; � 1; : : : ; � T ) (4.50)
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Let:

� = � i � 1


 = � i

� = � i +1

and let
� = U�;� (
; m ) (4.51)

We de�ne:
L i [ � ](
; d0) = c0 = ( � 0; : : : ; � i � 1; �; � i +1 ; : : : � T ) (4.52)

Note that the horizontal strip condition in the de�nition of U�;� ensures that this
de�nition is well-de�ned.

De�nition of inverse Local Rule

The inverse local rule is de�ned similarly. Choose any cylindrical plane partition c0 =
(� 0; � 1; : : : ; � T ) with pro�le � 0. Let us de�ne:

� = � i � 1

� = � i

� = � i +1

Next let
(m; � ) = D �;� (� )

and let cbe the cylindric plane partition with pro�le � given by c = ( � 0; : : : ; � i � 1; �; � i +1 ; : : : � T ).
If ' � (c) = ( 
; d) then we de�ne

M i [' � ](c0) = ( 
; d0)

where d0 = r i [(m; d)]

4.3 The bijection

4.3.1 Idea of bijection

In the special case when the arbitrarily labelled cylindricdiagram d has depth zero (see
de�nition 8.3.4), the strongly weight-preserving bijection is particularly simple:

 � (
; ; ) = ( 
; 
; : : : 
 ) (4.53)

The idea is to recursively construct bijections, starting from this base case, by re-
peated application of the local rule (section11.2.2) and the rotation operator (de�nition
8.3.5).
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Each application of the local rule corresponds to an application of the commutation
relation (equation 10.4.2) in the algebraic proof of Borodin's identity while each appli-
cation of the rotation operator corresponds to an application of the cylindric invariance
of the trace.

The recursion is not only over the number of inversions in thepro�le, but also over
the depth of the arbitrarily labelled cylindric diagram upon which th e bijection is acting.

Although the precise structure of the recursion is a little complicated to describe in
words, it may be neatly encoded in a geometric object called acylindric growth diagram.

4.3.2 Cylindric growth diagrams

Cylindric diagram

The idea of a growth diagram was �rst introduced by Fomin [ Fom95, Fom88]. Krat-
tenthaler [Kra06] made use of this framework to give a new bijective proof of Stanley's
identity (equation 8.6). In the cylindric case we change the underlying poset, but the
essential idea remains the same.

De�nition 4.3.1. For any n; m � 1, the cylindric poset G(n; m) is the quotient of Z2

via the equivalence relation:

(x; y) � (x + n; y � m) (4.54)

We shall write v � w to indicate that the vertex w covers the vertexv in the cylindric
poset.

One need to check that this de�nition is well-de�ned. The equivalence classes are
given by:

[(x; y)] = f (x + kn; x � km); k 2 Zg

Re
exivity and transitivity are obvious, we shall just prov e antisymmetry. Suppose that
[(x; y)] � [(x0; y0)]. This implies that there exists a k0 2 Z such that:

x � x0+ k0n

y � y0� k0m

If we have also that [(x0; y0)] � [(x; y)] then there exists k 2 Z such that:

x0 � x + kn

y0 � y � km

Putting these together we havex � x + ( k + k0)n which implies (k + k0) � 0. Similarly
we havey � y � (k + k0)m which implies that ( k + k0) � 0. The only way that this is
possible is ifk + k0 = 0, or k = � k0.

Now:
x + kn � x0+ k0n + kn = x0

which implies that x � x0+ k0n. But:

x0+ k0n � x + kn + k0n = x

So x = x0+ k0n. Similarly y = y + km. It follows that [( x; y)] = [( x0; y0)].
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Bijection with cylindric diagrams

De�nition 4.3.2. A face in the cylindric poset is a set of four vertices(u; v1; v2;w)
satisfying u � v1 � w and u � v2 � w.

We say that the face (u; v1; v2;w) lies abovethe vertex u and below the vertex w

De�nition 4.3.3. For any binary string � containing n zeros andm ones, a path in a
cylindric growth diagram G(� ) with pro�le � is a sequence of vertices:

p = ( v0; v1; : : : ; vn+ m� 1; vn+ m ) with v0 = vn+ m (4.55)

satisfying vk� 1 � vk if � k = 0 , otherwise vk� 1 � vk .

Lemma 4.3.1. There is a natural bijection between the cylindric diagram with pro�le
� 2 Bin( n; m), and the subposet of the cylindric posetG(� ) which lies below any given
path with pro�le � .

This bijection maps the boxesof the cylindric diagram (section 8.3.2) to the faces
of the cylindric poset.

Cylindric growth diagram

De�nition 4.3.4. A cylindric growth diagram with pro�le � 2 Bin( n; m) is the subset
of the cylindric diagram G(� ) which lies below a path with pro�le� (referred to as the
upper boundary), whose vertices are labelled by integer partitions, and whose faces are
labelled by non-negative integers, in such a way that the following three conditions are
satis�ed:

1. If v � w, and if � is the integer partition labelling the vertexv and � is the integer
partition labelling the vertex w, then �=� is a horizontal strip.

2. All but �nitely many of the vertices are labelled with the same integer partition 
 .

3. If (u; v1; v2;w) is a face with labelm, and if the labels ofu, v1, v2 and w are � ,
� , � and � respectively then:

U�;� (m; � ) = �

The invertibility of the local rule implies that condition ( 3) could be equivalently
formulated as follows:

Lemma 4.3.2. If (u; v1; v2;w) is a face of a cylindric diagram G(� ) with label m, and
if the labels ofu, v1, v2 and w are � , � , � and � respectively then:

D �;� (� ) = ( m; � )

Observe that the weight condition of the local rule 11.2.2we have:

Lemma 4.3.3. D 
;
 (
 ) = (0 ; 
 )

It follows that below a certain point in a cylindric growth di agram, all the vertices
will have the same label, and all the faces will be labelled byzero.
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4.3.3 The bijection

Here is an example of a growth diagram with� = 00101. Note that the pro�le is read
from right to left. Zero corresponds to a SW step and one corresponds to aNW step:

(3; 2)

(3; 2)

(3; 2)

(3; 2)

(3; 2)

(3; 2)

(4; 3; 2)

(3; 2; 2)

(3; 2; 1)

(3; 2; 1)

(3; 2; 1)

(4; 3; 2)

(6; 4; 3; 2)

(4; 3; 2)

(3; 2; 2)

(3; 2; 2)

(5; 3; 2)

(6; 4; 3; 2)

(4; 3; 2; 1)

1

1

1

0

0

1

5

0

0

0

0

5

1

Note that we have truncated the diagram below the lower boundary, where all ver-
tices have the same label.

Lemma 4.3.4. For any path p in a cylindric growth diagram G(� ) with pro�le � , the
sequence of pro�les associated to the vertices of the path form a cylindric plane partition.

In particular, the sequence of partitions labelling the vertices along the upper bound-
ary form an element of CPP(� ).

(6; 4; 3; 2)

(4; 3; 2) (3; 2; 2)

(5; 3; 2)

(6; 4; 3; 2)

(4; 3; 2; 1)
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Note that this is just a rotation of the example cylindric pla ne partition given in
section 8.3.2.

Lemma 4.3.5. If the labels of the vertices of a cylindric growth diagramG(� ) with
pro�le � are forgotten, then we obtain an arbitrarily labelled cylindric diagram.

1

1

1

0

0

1

5

0

0

0

0

5

1

Note that the arbitrarily labelled cylindric diagram is a ro tation of the example given
in section 8.3.5.

A growth diagram should be thought of as an object which interpolates between the
LHS and the RHS of the bijection which we wish to establish.

Proposition 4.3.1. To every cylindric plane partition, there is a uniquely associated
cylindric growth diagram.

Proof. Once the labels on the upper boundary have been speci�ed, property (3) of
de�nition 11.3.4 ensures that there is a unique way in which to label the remaining
faces and vertices.

Proposition 4.3.2. To every pair (
; d) where 
 is an integer partition and d is an
arbitrarily labelled cylindric diagram, there exists a uniquely de�ned cylindric growth
diagram.

Proof. Let d denote the depth of d. To every face with depth greater than d assign
the label 0. To every vertex lying below a face with depth greater than d, assign the
label 
 . Property (3) of de�nition 11.3.4ensures that there is a unique way to label the
remaining faces and vertices. Lemma11.3.3ensures that the resulting growth diagram
is well-de�ned.

4.3.4 Remarks

The following lemma guarantees that, when there are multiple inversions in the pro�le
string, the order in which the local rules are applied is of noimportance.

Lemma 4.3.6. If � has inversions at both positionsi and j then:

L i � L j [ � ] = L j � L i [ � ] (4.56)
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Proof. Without loss of generality we may assume thatj > i . If � has inversions at both
positions i and j then � i = 0 = � j and � i +1 = 1 = � j +1 thus j � i � 2. Application
of the local rule L i does not e�ect the (j � 1)th diagonal. Similarly, application of the
local rule L j does not e�ect the (i +1)th diagonal, thus the two operators commute.

Given a path p with pro�le � max it is not possible to apply the local rule M i for any
i . It is however possible to rotate the cylinder, and thus obtain a new path � (p) with
pro�le � min (see Section8.3.5).

If d is an arbitrarily labelled cylindric diagram with pro�le � and depth d > 0 then
in order to construct the bijection  � (
; d) the cylindric shift operator will have to be
applied d � 1 times.

It remains to prove that our bijection is weight preserving.

4.4 The weight

4.4.1 Alternative de�nition of weight

Let us de�ne the cohook of a boxb in an arbitrarily labelled cylindric diagram d to be:

cohook(b) = f b0jb 2 hook(b0)g (4.57)

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0
0
0

Although the number of boxes in the cohook of a given box is always in�nite, since
only a �nite number of the labels are zero it still makes senseto de�ne the weight of a
cohook:

j cohook(b)jd =
X

b02 cohook(b)

label(b0) (4.58)

Let diag(k) denote the set of all boxes on thek-th diagonal. Furthermore let us
de�ne the weight of the diagonal of an arbitrarily labelled cylindric diagram d to be:

j diag(k)jd =
X

b2 diag(k)

j cohook(b)jd (4.59)
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Note that if b is taken to be the box of diag(k) lying furthest to the \north-west"
then j diag(k)jd is none other than the sum of all the labels of boxes lying \south-east"
of b.

With these de�nitions we may give an alternative de�nition o f the weight of d:

jdj =
X

b02 �

label(b0) hook(b) (4.60)

=
X

b02 �

label(b0)
X

b2 hook(b0)

1 (4.61)

=
X

b2 �

X

b02 cohook(b)

label(b0) (4.62)

=
X

b2 �

j cohook(b)jd (4.63)

=
TX

k=1

j diag(k)jd (4.64)

(4.65)

The re�ned weight of a cylindric plane partition is given by:

zj diag(1) jd
1 zj diag(2) jd

2 � � � zj diag(T )jd
T (4.66)

De�nition 4.4.1. We shall say that a bijection:

 � : (P; ALCD( � )) ! CPP(� )

is strongly weight preserving if whenever:

 � (�; d) = c = ( � 0; � 1; : : : ; � T )

we have for all1 � k � T that:

j� k j = j
 j + j diag(k)jd (4.67)

Lemma 4.4.1. Strongly weight preserving implies weight preserving.

4.4.2 Proof that the bijection is strongly weight preservin g

In this section we prove that our bijection is strongly weight preserving.

Proposition 4.4.1. If (m; d) = l i [d0] then:

j diag(i )jd0 = m + j diag(i � 1)jd + j diag(i + 1) jd � j diag(i )jd (4.68)

Proof. Let b denote the box ofd0 with cylindric inversion coordinates (i; i + 1 ; 0). The
sum of all the labels in boxes in the same cylindric column asb is given by:

j diag(i + 1) jd � j diag(i )jd (4.69)
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while the sum of all the labels in boxes lying in the same cylindric row as b is given by:

j diag(i � 1)jd � j diag(i )jd (4.70)

In other words:

cohook(i; i + 1 ; 0)d0 = m + j diag(i � 1)jd + j diag(i + 1) jd � 2j diag(i )jd (4.71)

Now:

j diag(i )jd0 = j diag(i )jd + cohook(i; i + 1 ; 0)d0 (4.72)

= m + j diag(i � 1)jd + j diag(i + 1) jd � j diag(i )jd (4.73)

Proposition 4.4.2. If  � is strongly weight preserving, then so isL i ( � ).

Proof. Let:
(m; d) = l i [d0] (4.74)

and let:
 � (
; d) = c = ( � 0; : : : ; �; �; �; : : : � T ) (4.75)

Then:
L i [ � ](
; d0) = c0 = ( � 0; : : : ; �; �; �; : : : � T ) (4.76)

where:
� = U�;� (m; � ) (4.77)

The weight condition for the local rule assures us that:

j� j = m + j� j + j� j � j � j (4.78)

For all j 6= i we have

j diag(j )jd = j diag(j )jd0 = j� j j � j 
 j (4.79)

We must show that:
j diag(i )jd0 = j� j � j 
 j (4.80)

Now, by proposition 11.4.1and the assumption that  � is strongly weight-preserving,
we have:

j diag(i )jd0 = m + j diag(i � 1)jd + j diag(i + 1) jd � j diag(i )jd (4.81)

= m + ( j� j � j 
 j) + ( j� j � j 
 j) � (j� j � j 
 j) (4.82)

= j� j � j 
 j (4.83)

The result follows.
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4.5 Conclusion

We have made use of Fomin's growth diagram framework [Fom95, Fom88] to give a
bijective proof of a re�ned version of Borodin's identity (equation 8.8). Our proof
generalizes known proofs for Stanley's identity (equation8.6) and MacMahon's identity
(equation 8.5).

Due to the fact that there are two equally natural extensions of Fomin's local rule to
the horizontal strip case (see section9.2.9) we have actually given two distinct bijective
proofs of Borodin's identity, one corresponding to the RSK correspondence, and the
other corresponding to the Burge correspondence:

 R ;  B : (P; ALCD( � )) ! CPP(� ) (4.84)

These two maps are closely related by the Sch•utzenberger involution [ vL05]. Observe
that we have:

 R �  � 1
B : CPP(� ) ! CPP(� ) (4.85)

What can we say about this map?
Tingley [Tin08] showed that cylindric plane partitions can be understood as crystal

bases for bsln . Does the map in equation11.85 have any interpretation at the level of
representation theory?

It is known [JM83] that the tensor product of the highest weight representation of
bsln associated to the pro�le � by the evaluation representation of bsln associated to the
natural representation of sln decomposes as a direct sum of highest weight represen-
tations, where those highest weight representations occurring in the sum are precisely
those associated to the pro�le� 0 where � � � 0 in the partial order described in section
8.1.3. Is it possible to make use of the local rule formalism to better understand this
decomposition on the crystal basis level?



5. Macdonald polynomial analog

5.1 (q; t)-Borodin identity

5.1.1 Statement

Theorem 5.1.1. For any binary string � we have:

X

c2 CP P (� )

Wc(q; t)zjcj =
Y

n� 0

0

B
B
@

1
1 � z(n+1) T

Y

i<j
� i >� j

(tz j � i + nT ; q)1

(zj � i + nT ; q)1

Y

i>j
� i >� j

(tz j � i +( n+1) T ; q)1

(zj � i +( n+1) T ; q)1

1

C
C
A

(5.1)

where if c = ( � 0; � 1; : : : � T ) then the weight function is given by:

Wc(q; t) =
TY

k=1
� k =1

' � k =� k � 1 (q; t)
TY

k=1
� k =0

 � k � 1=� k (q; t) (5.2)

See equations10.63and 10.64for the de�nition of the Macdonald Pieri coe�cients.
Note that when q = t the weight function reduces to one, and equation12.1.1reduces

to equation 11.1. The proof of the Hall{Littlewood case of this identity is du e to Corteel
and Savelief, Cyrille and Vuleti�c [ CSV11] while the proof of the Macdonald version of
the reverse plane partition case is due to Okada [Oka10].

As in the Schur case, the nature of the proof is such that the identity remains true
if on the left hand side we replace:

zjcj 7! zj � 0 j
0 zj � 1 j

1 � � � zj � T � 1 j
T � 1

while on the right hand side we replace:

znT 7! zn
0 zn

1 � � � zn
T � 1

zj � i + nT 7! zn
0 zn

1 � � � zn
i zn+1

i +1 � � � zn+1
j zn

j +1 � � � zn
T � 1 when i < j

zj � i +( n+1) T 7! zn+1
0 zn+1

1 � � � zn+1
j zn

j +1 + � � � zn
i zn+1

i +1 � � � zn+1
T � 1 when i > j

5.1.2 Proof

Our proof is almost identical to that given in section 11.1. The only di�erence is that
instead of using the Hall inner producth� ; �i and the operators 
[ Xu ] and 
 � [Xv ] from
section 10.3, we use the Macdonald inner producth� ; �i q;t and the operators 
 q;t[Xu ]
and 
 �

q;t[Xv ] from section 10.6.3.

75
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Notation

Using the same \degree" operator as in section11.1.1:

DzP� [X ] = zj � jP� [X ] (5.3)

We have:

Lemma 5.1.1.

Dz 
 q;t[Xu ] = 
 q;t[Xuz ] Dz (5.4)

Dz 
 �
q;t[Xu ] = 
 �

q;t[Xuz � 1] Dz (5.5)

Proof. This fact follows immediately from the action of 
 q;t[Xu ] and 
 q;t[Xv ] on Mac-
donald polynomials (equations10.61and 10.62).

For notational convenience we shall de�ne:

H 0(z) = 
 q;t[Xz ] (5.6)

H 1(z) = 
 �
q;t[Xz ] (5.7)

These shall play an analogous role to the operatorsG0(z) and G1(z) de�ned in section
11.1.1.

Algebraic interpretation of left hand side

Lemma 5.1.2. The left hand side of the re�ned version of equation12.1 may be ex-
pressed in the form:

lhs(� ) =
X

�

hQ� j H � 0 (u0)H � 1 (u1) � � � H � T (uT )Dw P� i q;t (5.8)

where:

w = z0z1 � � � zT � 1 (5.9)

uk =

(
z0z1 � � � zk� 1 if � k = 1

z� 1
0 z� 1

1 � � � z� 1
k� 1 if � k = 0

(5.10)

Proof. From the \interlacing sequence" de�nition of a cylindric pl ane partitions 8.3.1
it is clear that a cylindric plane partition is constructed b y successively adding and
removing horizontal strips. As in the Schur case, the degreeoperator Dz is used to keep
track of the number of cubes in the resulting cylindric planepartition.

The new feature in the Macdonald case is presence of the (q; t)-Pieri coe�cients in
the de�nition of the weight function (equation 12.2). This comes directly from the action
of the operators 
 q;t(Xu ) and 
 �

q;t(Xu ) on Macdonald polynomials given in equations
10.61and 10.62.

Using the fact that the Macdonald P-functions are orthogonal to the Macdonald
Q-functions with respect to the Macdonald inner product we may write:

lhs(� ) =
X

�

hQ� j Dz0 H � 0 (1) Dz1 H � 1 (1) � � � DzT � 1 H � T (1) P� i q;t (5.11)

It remains to commute all the shift operators to the right hand side using Lemma
12.1.1.
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Note that the above expression can also be understood as thetrace of the operator:

H � 0 (u0)H � 1 (u1) � � � H � T (uT )Dw

acting on symmetric functions overQ(q; t).

Some lemmas

Let us de�ne:

De�nition 5.1.1.

N � (m) =
X

�

hQ� j
TY

k=1
� k =0


 q;t[Xu kwm ]
TY

k=1
� k =1


 �
q;t[Xu k ] Dw P� i q;t (5.12)

Lemma 5.1.3.

N � (m) =
Y

(i;j )
� i 6= � j

(tu i uj wm+1 ; q)1

(ui uj wm+1 ; q)1
N � (m + 1)

Proof. This is the same calculation as in Lemma11.1.3, only using the Macdonald com-
mutation relation (lemma 10.6.2) rather than the Schur commutation relation (propo-
sition 10.4.2).

Since the f P� g are orthogonal to the f Q� g with respect to the Macdonald inner
product, and since:

tr( AB ) = tr( BA )

We may write:

N � (m) =
X

�;�

hQ� j
TY

k=1
� k =0


 q;t[Xu kwm ] P� i q;thQ� j
TY

k=1
� k =1


 �
q;t[Xu k ] Dw P� i q;t (5.13)

=
X

�;�

hQ� j
TY

k=1
� k =1


 �
q;t[Xu k ] Dw P� i q;thQ� j

TY

k=1
� k =0


 q;t[Xu kwm ] P� i q;t (5.14)

=
X

�

hQ� j
TY

k=1
� k =1


 �
q;t[Xu k ] Dw

TY

k=1
� k =0


 q;t[Xu kwm ] P� i q;t (5.15)
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Next applying the commutation relations of Lemma 12.1.1and Lemma 10.6.2we have:

N � (m) =
X

�

hQ� j
TY

k=1
� k =1


 �
q;t[Xu k ] Dw

TY

k=1
� k =0


 q;t[Xu kwm ] P� i q;t (5.16)

=
X

�

hQ� j
TY

k=1
� k =1


 �
q;t[Xu k ]

TY

k=1
� k =0


 q;t[Xu kwm+1 ] Dw P� i q;t (5.17)

=
Y

(i;j )
� i 6= � j

(tu i uj wm+1 ; q)1

(ui uj wm+1 ; q)1

X

�

hQ� j
TY

k=1
� k =0


 q;t[Xu kwm+1 ]
TY

k=1
� k =1


 �
q;t[Xu k ] Dw P� i q;t

(5.18)

=
Y

(i;j )
� i 6= � j

(tu i uj wm+1 ; q)1

(ui uj wm+1 ; q)1
N � (m + 1) (5.19)

As in the Schur case, we have in the limit:

Lemma 5.1.4.
N � (1 ) =

Y

n� 1

1
1 � wn (5.20)

Proof. In order for this limit to even make sense, we must havejzi j < 1 for all i , in
which case:

lim
m!1


 q;t[Xu k ! m ] = 1

Since 
 �
q;t[Xu k ] is a degree lowering operator, it follows that:

lim
m!1

N � (m) =
X

�

hQ� j
TY

k=1
� k =1


 �
q;t[Xu k ] Dw P� i q;t

=
X

�

hQ� jDw P� i q;t

=
X

�

wj � j

=
Y

n� 1

1
1 � wn

The proof

The proof of the re�ned version of Theorem12.1.1now proceeds in the same manner as
in section 11.1.4. We begin by applying Lemma12.1.2
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X

c2 CPP( � )

Wc(q; t)zjpj =
X

�

hQ� j H � 0 (u0)H � 1 (u1) � � � H � T (uT )Dw P� i q;t

Next we repeatedly applies the commutation relations of Lemma 10.6.2, followed by
de�nition 12.1.1.

=
Y

i<j
� i >� j

(tu i uj ; q)1

(ui uj ; q)1

X

�

hQ� j
TY

k=1
� k =0


 q;t[Xu k ]
TY

k=1
� k =1


 �
q;t[Xu k ] Dw P� i q;t

=
Y

i<j
� i >� j

(tu i uj ; q)1

(ui uj ; q)1
N � (0)

We then repeatedly apply Lemma11.1.3.

=
Y

i<j
� i >� j

(tu i uj ; q)1

(ui uj ; q)1

Y

m� 0

0

B
B
@

Y

(i;j )
� i 6= � j

(tu i uj wm+1 ; q)1

(ui uj wm+1 ; q)1

1

C
C
A N � (1 )

Splitting the second product into two, and combining it with the �rst we have:

=
Y

m� 1

0

B
B
@

Y

i<j
� i >� j

(tu i uj wm� 1; q)1

(ui uj wm� 1; q)1

1

C
C
A

0

B
B
@

Y

i>j
� i >� j

(tu i uj wm ; q)1

(ui uj wm ; q)1

1

C
C
A N � (1 )

Finally, applying Lemma 12.1.4we have:

=
Y

m� 1

1
1 � wm

0

B
B
@

Y

i<j
� i >� j

(tu i uj wm� 1; q)1

(ui uj wm� 1; q)1

1

C
C
A

0

B
B
@

Y

i>j
� i >� j

(tu i uj wm ; q)1

(ui uj wm ; q)1

1

C
C
A

As in the Schur case, to obtained the non-re�ned version of the Theorem, it su�ces
to take the following specialization of variables on both sides:

w = zjT j (5.21)

uk =

(
zk if � k = 1

z� k if � k = 0
(5.22)

5.2 The Macdonald weight

Recall that in the plethystic notation [ GHT99, Las03], if

a(q; t) =
X

n;m

an;m qn tm



80 Chapitre 5 | Macdonald polynomial analog

with an;m 2 Z and a0;0 = 0, then we have:


 [ a(q; t)] =
Y

n;m

1
(1 � qn tm )an;m

Making use of this notation, the cylindric weight function ( equation 12.2) may be
given an explicit combinatorial description:

Theorem 5.2.1.

Wc(q; t) = 
 [( q � t)Dc(q; t)] (5.23)

where the alphabetDc(q; t) is given by:

Dc(q; t) =
X

s2 peak(c)

qac(s) t `c(s) �
X

s2 valley (c)

qac(s) t `c(s) (5.24)

The arm length of a cube in a cylindric plane partition is equal to the arm length
of the corresponding box with respect to the partition in which it lies. Likewise, the
leg length of a cube in a cylindric plane partition is equal to the leg length of the
corresponding box with respect to the partition in which it l ies (see Section8.1.2).

The precise de�nition of \valley" and \peak" cubes will be gi ven in subsection12.2.2.
A proof of theorem 12.2.1will be given in subsection12.3. In section 12.2.3we remark
that Theorem 12.2.1reduces to the combinatorial formula for the Hall{Littlewo od weight
function given in [Vul09] and [CSV11].

5.2.1 Lattice paths on the cylinder

The goal of this section is to give a bijection between cylindric plane partitions, de�ned
as periodic interlacing sequences, and certain families ofnon-intersecting lattice paths
on the cylinder - or equivalently rhombus tilings on the cylinder. In particular we need
to understand what the meaning of acubeis in the non-intersecting lattice path picture
(see De�nition 8.3.2)

Our construction is \dual" to the construction given in Krat tenthaler's original paper
[GK97]. Before proceeding any further, here is an example:
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valley: q2t
peak: � qt

c = ((3 ; 2; 2); (4; 3; 2; 1); (4; 3; 2); (6; 4; 3; 2); (5; 3; 2); (3; 2; 2))

The bijection between the path model and the tiling model is clear. The white
vertices correspond to the yellow tiles. Each upstep of a path corresponds to a red tile.
Each downstep of a path corresponds to a blue tile. Note that,due to cylindricity, the
�rst column corresponds to the last column, only shifted onestep.

5.2.2 Cubes in lattice path picture

De�nition 5.2.1. We say that a vertex of the lattice isoccupied or black if there is
a path passing through that vertex, otherwise we say that thevertex is unoccupied or
white

De�nition 5.2.2. A \cube" in the non-intersecting lattice path model corresponds to a
pair of vertices u = ( x; y1) and v = ( x; y2) with u coloured black,v coloured white and
y1 < y 2.

De�nition 5.2.3. The path associated to the cube (u; v) is the path which passes
through the black vertexv.

De�nition 5.2.4. A valley cube is a cube(u; v) for which the associated path takes a
down step just before passing throughv, followed immediately by an upstep.

De�nition 5.2.5. A peak cube is a cube(u; v) for which the associated path takes an
up step just before passing throughv, followed immediately by a downstep.
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We have marked one peak cube and one valley cube on the diagram, together with
their contribution to the alphabet Dc(q; t) in equation 12.2.1. Since we are working on
a cylinder, the �rst vertical is identi�ed with the last vert ical in such a way that each
path forms a closed loop.

5.2.3 Hall{Littlewood case

De�nition 5.2.6. A surface cubeis a cube(u; v) such that if u = ( x; y1) and v = ( x; y2)
then for all w = ( x; y0) with y1 < y 0 < y 2 the vertex w is coloured white.

De�nition 5.2.7. The level of a surface cube(u; v) is y2 � y1 where u = ( x; y1) and
v = ( x; y2).

Surface cubes are naturally in bijection with the yellow tiles in the rhombus tiling
model. In the Hall{Littlewood case we haveq = 0, thus the only boxes which contribute
to the alphabet Dc(q; t) are those with arm-length zero. Since there is a bijection between
such cubes and the \yellow" tiles of the rhombus tiling model, and since the leg length
of the cube is precisely thelevel, as de�ned in [Vul09] and [CSV11], it follows that
Theorem 12.2.1reduces the combinatorial formula for the Hall{Littlewood weight case
in [Vul09] and [CSV11].

5.2.4 Bijection

We shall now describe explicitly the bijection between cylindric plane partitions and
families of non-intersecting lattice paths on the cylinder. The impatient reader may
wish to skip the technical details in the section, and simplyremark that the parts of the
individual partitions in the interlacing sequence model may be read, from right to left,
from the \heights" of the corresponding surface cubes in therhombus tiling model.

Equivalently, interpreting the black vertices as ones and the white vertices as zeros,
the binary strings obtained from reading upwards along a given vertical gives the pro�le
of the corresponding partition in the \interlacing sequence model".

De�nition 5.2.8. The cylinder of period T is the triangular lattice with vertices (x; y)
where either bothx and y are even or bothx and y are odd, and for which0 � x � T.

In our example we haveT = 5. We have drawn a segment of the cylinder corre-
sponding to 0� y � 22.

Encoding of paths

De�nition 5.2.9. A path on the cylinder of periodT is a sequence of integers(y0; y1; : : : ; yT )
with y0 even such that for eachk we have eitheryk+1 = yk + 1 or yk+1 = yk � 1.

Lemma 5.2.1. Each path on the cylinder of periodT may be uniquely encoded by its
starting position y0 and the binary string p given bypk = 1 if yk+1 = yk + 1 and pk = 0
otherwise.
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De�nition 5.2.10. A family of non-intersecting lattice paths on the cylinder of period
T is a collection of paths:

p1 = ( y1
0; y1

1; : : : y1
T )

p2 = ( y2
0; y2

1; : : : y2
T )

� � �

pm = ( ym
0 ; ym

1 ; : : : ym
T )

satisfying yi +1
k > y i

k for all k and i as well asyi +1
0 � yi

0 = yi +1
T � yi

T for all i .

Note that the second condition is necessary in order to ensure that it is possible to
take the cylindric quotient identifying the vertices (0 ; y) with the vertices (T; y + d) for
d = m � n where m is the number of ones in the pro�le, and n is the number of zeros.

The paths in our example may be encoded using Lemma12.2.1as follows:

p1 = (1 ; 0; 1; 0; 1); y1
0 = 2

p2 = (1 ; 0; 1; 1; 0); y2
0 = 4

p3 = (0 ; 0; 1; 1; 1); y3
0 = 10

p4 = (0 ; 0; 1; 1; 1); y4
0 = 14

p5 = (0 ; 1; 1; 1; 0); y5
0 = 16

p6 = (1 ; 0; 1; 1; 0); y6
0 = 18

p7 = (1 ; 1; 0; 1; 0); y7
0 = 20

Extra conditions at boundary

De�nition 5.2.11. A family of non-intersecting lattice paths on the cylinder of period
T is said to be minimal with m paths if there is somei such that yi

m � yi
m� 1 > 2.

De�nition 5.2.12. The pro�le of a minimal family of m non-intersecting lattice paths
is the binary string associated to themth path.

Our example family of non-intersecting lattice paths is minimal with 7 paths. Its
pro�le is � = 11010.

Vertical reading of lattice paths

The reader is referred back to section8.1.1 for the bijection between integer partitions
and the binary string encoding their pro�les.

De�nition 5.2.13. The vertical reading of a minimal family of m non-intersecting
lattice paths is the sequence of binary strings� 0; � 1; : : : � T obtained by reading, for each
k, vertically upwards from the vertex(k; y1

k ) to the vertex(k; ym
k ), and recording a 0 each

time the vertex is occupied and a1 each time the vertex is unoccupied.
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The vertical reading of our example family of non-intersecting lattice paths is the
following:

� 0 = 110010111 � 3 = 110101011

� 1 = 110101101 � 4 = 1010101011

� 2 = 110101011 � 5 = 110010111

Observe that � 0 = � T .

Horizontal strips

Proposition 5.2.1. Let (� 0; � 1; : : : ; � T ) be a sequence of binary strings arising from
the vertical reading of a minimal family of non-intersecting lattice paths on a cylinder
of period T and pro�le � . For each k 2 f 1; 2; : : : Tg let � k denote the partition whose
pro�le is given by � k . If � k = 1 then � k=� k� 1 is a horizontal strip, otherwise if � k = 0
then � k� 1=� k is a horizontal strip.

Proof. Follows immediately from the characterization of horizontal strips in terms of
pro�les in section 8.1.4

Length of i -th column

Let c = ( � 0; � 1; : : : ; � T ) be an arbitrary cylindric plane partition with pro�le � . For
eachi let us de�ne:

pi (c) = (( � 0)0
i � (� 1)0

i + � 0; : : : ; (� T )0
i � (� T � 1)0

i + � T � 1) (5.25)

Note that pi (c) encodes information about the length of the i -th column of the
successive partitions in the interlacing sequence ofc. This fact will be very important
in section 12.3.4.

Proposition 5.2.2. For each i we have thatpi (c) as de�ned in Equation (12.25) is a
binary string.

Proof. If � k = 1 then from de�nition 8.3.1 it follows that � k=� k� 1 is a horizontal strip
and thus we have that (� k� 1)0� (� k )0 2 f� 1; 0g. Similarly, if � k = 0 then � k� 1=� k is a
horizontal strip and ( � k� 1)0� (� k )0 2 f 1; 0g

Bijection

Theorem 5.2.2. For any binary string � of length T there is a bijection between mini-
mal families of non-intersecting lattice paths on the cylinder of period T with pro�le � ,
and cylindric plane partitions of pro�le � .

Proof. The map from families of non-intersecting lattice paths on the cylinder to inter-
lacing sequences is given by taking vertical readings, and then translating from pro�les
to partitions. Conversely, the family of non-intersecting lattice paths associated to a
given interlacing sequencec is given by

f (p1(c); � 1); (p2(c); � 2); : : : (pm (c); � m )g
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where � i is the position of i -th one in the pro�le of � 0 and pi (c) is de�ned in Equation
12.25.

5.3 Proof of Theorem 12.2.1

Making use of the plethystic notation is just like taking the logarithm in order to turn
multiplication and addition and division into subtraction . The terms which arise in the
alphabet of the weight function must be regrouped appropriately before cancellations
can take place between contributions of the same cube to two di�erent Pieri co-e�cients.

After the cancellation, a second regrouping of terms takes place. This regrouping
involves putting together contributions of boxes which come from the came column
number, but a di�erent partition in the \interlacing sequen ce" model.

Equivalently, we put together cubes which lie on the same vertical of the interlacing
sequence model. Proposition12.2.1 is used extensively in this step.

5.3.1 Plethystic notation

We begin by making use of theplethystic notation [GHT99, Las03] to rewrite the ( q; t)-
Pieri coe�cients (equations 10.63and 10.64) in the following form:

' �=� (q; t) = 

�
(q � t)(A �=� (q; t) � B �=� (q; t))

�
(5.26)

 �=� (q; t) = 

h
(q � t)(B0

�=� (q; t) � A 0
�=� (q; t))

i
(5.27)

where:

A �=� (q; t) =
X

s2 C�=�

qa� (s) t ` � (s) (5.28)

B�=� (q; t) =
X

s2 C �=�

qa� (s) t ` � (s) (5.29)

A 0
�=� (q; t) =

X

s62C�=�

qa� (s) t ` � (s) (5.30)

B0
�=� (q; t) =

X

s62C �=�

qa� (s) t ` � (s) (5.31)

Here we have changed our notation slightly from that used in Macdonald [Mac95],
so that now C�=� denotes the set of boxess = ( i; j ) 2 � such that � 0

j > � 0
j while C �=�

denotes the set of boxess = ( i; j ) 2 � such that � 0
j > � 0

j .
Making use of this notation we may rewrite equation12.2 as:

Wc(q; t) = 

�
(q � t)Dc(q; t)

�
(5.32)

where:

Dc(q; t) =
TX

k=1
� k =1

(A k=k� 1 � B k=k� 1) +
TX

k=1
� k =0

(B0
k� 1=k � A 0

k� 1=k) (5.33)
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To avoid unnecessary indices, we use the convention that:

Xk=k� 1 = X� k =� k � 1 (q; t) (5.34)

Our goal is to �nd a simpli�ed expression for Dc(q; t).

5.3.2 Regrouping terms

Recall from section8.3.1that in the \interlacing sequence" model, a cubeof the cylindric
plane partition c corresponds to abox of one of the underlying partitions � k .

Observe now that eachbox s 2 � k contributes to at most two terms in equation
12.33, one involving the pair of partitions � k and � k� 1, the other involving the pair of
partitions � k and � k+1 .

Regrouping terms, and setting� T +1 = � 1 as well as� T +1 = � 1 we may write:

Dc(q; t) =
TX

k=1
� k =1

� k +1 =1

Ek
11(c) +

TX

k=1
� k =0

� k +1 =0

Ek
00(c) +

TX

k=1
� k =0

� k +1 =1

Ek
01(c) +

TX

k=1
� k =1

� k +1 =0

Ek
10(c) (5.35)

where:

Ek
11(c) = A k=k� 1 � B k+1 =k (5.36)

Ek
00(c) = B0

k� 1=k � A 0
k=k+1 (5.37)

Ek
01(c) = B0

k� 1=k � B k+1 =k (5.38)

Ek
10(c) = A k=k� 1 � A 0

k=k+1 (5.39)

For eachk, there is only one term of the formEk
rs (c) appearing in the expression for

Dc(q; t), and this term groups together all contributions from the boxess 2 � k .

5.3.3 Cancellations

The next step is to observe that we have a large number of cancellations. For example:

Ek
11(c) = ( A k=k� 1 � B k+1 =k)

=
X

s2 Ck=k � 1

qak (s) t `k (s) �
X

s2 Ck +1 =k

qak (s) t `k (s)

=
X

s2 � k

sign11(s) qak (s) t `k (s)

where:

sign11(s) =

8
>>>><

>>>>:

1 if s 2 Ck=k� 1 and s 62Ck+1 =k

0 if s 2 Ck=k� 1 and s 2 Ck+1 =k

0 if s 62Ck=k� 1 and s 62Ck+1 =k

� 1 if s 62Ck=k� 1 and s 2 Ck+1 =k

(5.40)
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Again we are using a simpli�ed notation:

ak (s) = a� k (s)

`k (s) = ` � k (s)

Similarly:

Ek
00 = ( B0

k� 1=k � A 0
k=k+1 )

=
X

s62Ck � 1=k

qak (s) t `k (s) �
X

s62Ck=k +1

qak (s) t `k (s)

=
X

s2 � k

sign00(s) qak (s) t `k (s)

where:

sign00(s) =

8
>>>><

>>>>:

� 1 if s 2 Ck� 1=k and s 62Ck=k+1

0 if s 2 Ck� 1=k and s 2 Ck=k+1

0 if s 62Ck� 1=k and s 62Ck=k+1

1 if s 62Ck� 1=k and s 2 Ck=k+1

(5.41)

Next:

Ek
01 = ( B0

k� 1=k � B k+1 =k)

=
X

s62Ck � 1=k

qak (s) t `k (s) �
X

s2 Ck +1 =k

qak (s) t `k (s)

=
X

s2 � k

sign01(s) qak (s) t `k (s)

where:

sign01(s) =

8
>>>><

>>>>:

0 if s 2 Ck� 1=k and s 62Ck+1 =k

� 1 if s 2 Ck� 1=k and s 2 Ck+1 =k

1 if s 62Ck� 1=k and s 62Ck+1 =k

0 if s 62Ck� 1=k and s 2 Ck+1 =k(

(5.42)

And:

Ek
10(c) = ( A k=k� 1 � A 0

k=k+1 )

=
X

s2 Ck=k � 1

qak (s) t `k (s) �
X

s62Ck=k +1

qak (s) t `k (s)

=
X

s2 � k

sign10(s) qak (s) t `k (s)

where:

sign10(s) =

8
>>>><

>>>>:

0 if s 2 Ck=k� 1 and s 62Ck=k+1

1 if s 2 Ck=k� 1 and s 2 Ck=k+1

� 1 if s 62Ck=k� 1 and s 62Ck=k+1

0 if s 62Ck=k� 1 and s 2 Ck=k+1

(5.43)
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5.3.4 Switching models

The �nal step in the proof is to switch from the \interlacing s equence" model of cylindric
plane partitions (section 8.3.1) to the \non-intersecting lattice path model" (section
12.2.1). This entails a grouping together of all the cubesof the cylindric plane partition
which belong to the same column of possibly di�erent partitions in the sequence.

Recall that a cubein the non-intersecting path model corresponds to a pair of vertices
v1 = ( x; y1) and v2 = ( x; y2) with y1 < y 2 where v1 is coloured black andv2 is coloured
white.

Recall also that the i -th path in the non-intersecting path model encodes the length
of the i -th column in each succeeding partition of the interlacing sequence (see equation
(12.25) in section 12.2.1).

We shall say that the cubec = ( v1; v2) is of type i if the black vertex y1 lies on the
i th path. This is equivalent to saying that the cube c lies in the i th column of � k for
somek.

Four cases to check

If � k = 0 and � k = � k� 1 then at the kth step, all the paths move downwards. More
generally if � k = 0 then � k � � k� 1 and the i th path moves upwards if and only if the
i th column of � k is shorter than the corresponding column of� k� 1.

That is to say, at the kth step, the i th path moves upwards if and only if c 2 Ck� 1=k

for all c 2 � k of type i .
If � k = 1 and � k = � k� 1 then at the kth step, all the paths move upwards. More

generally if � k = 1 then � k� 1 � � k and the i th path moves downwards if and only if the
i th column of � k is longer than the corresponding column of� k� 1.

That is to say, at the kth step, the i th path moves downwards if and only ifc 2 Ck=k� 1

for all c 2 � k of type i .
In a similar spirit, � k+1 = 0 and � k+1 = � k then at the (k + 1)th step, all the paths

move downwards. More generally if� k+1 = 0 then � k+1 � � k and the i th path moves
up if and only if the i th column of � k+1 is shorter than the corresponding column of� k .

That is to say, at the ( k + 1)th step, the i th path moves upwards if and only if
c 2 Ck=k+1 for all c 2 � k of type i .

Finally, if � k+1 = 0 and � k+1 = � k then at the (k + 1)th step, all the paths move
upwards. More generally if � k = 1 then � k � � k+1 and the i th path moves downwards
if and only if the i th column of � k+1 is longer than the corresponding column of� k .

That is to say, at the ( k + 1)th step, the i th path moves downwards if and only if
c 2 Ck+1 =k for all c 2 � k of type i .

Last but not least, one may check that the signs agree in all 16possible cases.

5.4 Conclusion

We have proved a Macdonald polynomial analog of Borodin's identity. This simultane-
ously generalizes results of Okada [Oka10] and Corteel and Savelief, Cyrille and Vuleti�c
[CSV11]. We have also given a combinatorial interpretation of the weight function which
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is new even in the reverse plane partition case. Our proof relies heavily on the (q; t)-
analog of the classical commutation relations originally given by Haiman, Garcia and
Tesler [GHT99].

Is it possible to give a bijective proof of these commutationrelations, and thus
recover a bijective proof of the Macdonald polynomial analog of Borodin's identity? Is
it possible to �nd a Macdonald polynomial analog of equation 10.39?

n! =
X

�

f 2
�
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Lambda determinants
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6. Lambda determinants

Introduction

For those readers in a hurry, the most important de�nitions are 13.3.1and 13.4.1. The
key lemmas are proposition13.3.1and proposition 13.4.4. The later relies on proposition
13.4.1. Remark 13.2.1and Lemma 13.4.1are trivial but important.

The main theorem is stated in section13.5. The proof is by recurrence. The key
step depends on a certain duality betweenleft interlacing matrices (section 13.3.2) and
right interlacing matrices (section 13.4.2) which allows us to factorize a certain sum.
This duality is stated in propositions 13.4.2and 13.4.3.

6.1 Permutations

A permutation of n is simply a bijection from the set f 1; 2; : : : ng to itself. The number
of permutations of n is equal to n!. It is often convenient to represent a permutation as
matrix. We put a 1 in position ( i; j ) if � (j ) = i . In all other positions we place a 0. For
example, the permutation: � = 24153 is represented by the matrix:

� =

2

6
6
6
6
4

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

3

7
7
7
7
5

We shall denote by I the identity permutation which maps i to i for all i , and we
shall denote byJ the maximum permutation which maps i to n � i for all i :

J =

2

6
6
6
6
4

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

3

7
7
7
7
5

Observe that the inversions of� correspond to the dual inversions ofJ � � .

6.1.1 Inversions and dual inversions

An inversion in a permutation � is a pair (i; j ) with i < j and � (i ) > � (j ).

93
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The inversions of permutation correspond to the zeros of thematrix which lie in the
same row but to the left of a 1 and the same column but above a 1.

2

6
6
6
6
4

� � 1 0 0
1 0 0 0 0
0 � 0 � 1
0 1 0 0 0
0 0 0 1 0

3

7
7
7
7
5

A dual inversion in a permutation � is a pair (i; j ) with i > j and � (i ) > � (j ). The
dual inversions of permutation correspond to the zeros of the matrix which lie in the
same row but to the right of a 1 and the same column but above a 1.

2

6
6
6
6
4

0 0 1 � �
1 � 0 � �
0 0 0 0 1
0 1 0 � 0
0 0 0 1 0

3

7
7
7
7
5

6.1.2 Determinants

Our interest in permutations comes from the well-known formula for the determinant
of a matrix:

det A =
X

�

(� 1)inv( � )A � (6.1)

where the sum is over all permutations ofn and we are using the notation:

A � =
Y

i;j

a� i;j
i;j (6.2)

There is a curious method for calculating determinants, known as Dodgson conden-
sation, which is originally due to Charles Dodgson (aka Lewis Caroll) [Bre99]. One
proceeds as follows:

For eachk = 0 : : : n let us denote byxn [k] the doubly indexed collection of variables
xn [k]i;j with indices running from i; j = 1 ::(n � k +1). One should think of the variables
as forming a square pyramid with basen + 1 by n + 1. The index k determines the
\height" of the variable in the pyramid.

The variables are initialized as follows:

xn [0]i;j = 1 for all i; j = 1 ::(n + 1)

xn [1]i;j = M i;j for all i; j = 1 ::n

The value of the remaining variables is calculated via the following recurrence:

xn [k + 1] i;j =
xn [k]i;j xn [k]i +1 ;j +1 � xn [k]i;j +1 xn [k]i +1 ;j

xn [k � 1]i +1 ;j +1
(6.3)

The end result is that:

xn [n]1;1 =
X

�

(� 1)inv( � )x[1]� = det( M ) (6.4)



x 6.1 | Permutations 95

6.1.3 Posets and lattices

A partial order is a setP equipped with a binary relation � satisfying:

� a � a for all a 2 P (re
exivity)

� a � b and b � c implies a � c (transitivity)

� a � b and b � a implies a = b (antisymmetry)

We say that the elementb covers the element a 6= b if a � b and if there is no a 6= c 6= b
such that a � c � b.

A poset is said to begraded if their exists some function:

w : P ! Z � 0

with the property that w(b) = w(a) + 1 whenever a coversb.
A lattice is a partial order P with the property that for every every a; b 2 P there

exists unique elementa^ b(meet) and a_b(join) with the property that a^ b � a; b � a_b
and for all c such that a; b � c we havea_ b � c and for all d such that d � a; b we have
d � a ^ b.

Not every poset is a lattice, but very poset can be completed in a unique way to
form a lattice.

6.1.4 Bruhat order

A transposition is a permutation � with the property that there exists some i; j such
that � (i ) = j and � (j ) = i while for all other k one has� (k) = k.

The Bruhat order may be de�ned as follows. The permutationa coversb if and only
if there exists some transposition� such that b = � � a with inv( b) = inv( a) + 1.

The strong Bruhat order is graded by the involution number. The largest element
in the Bruhat order is the maximum permutation J . One can show that for any per-
mutations � and � we have� � � if and only if J � � � J � � � .

The Bruhat order does not form a lattice, since the permutations 132 and 213 have
no join, while 312 and 231 have no meet.

6.1.5 Monotone triangles

A monotone triangle is a triangle of integers:

a1;1 a1;2 a1;3 a1;4 a1;5

a2;1 a2;2 a2;3 a2;4

a3;1 a3;2 a3;3

a4;1 a4;2

a5;1

with the following properties:

� a1;k = k for all k.

� ai;j +1 > a i;j for all i; j .
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� ai;j � ai +1 ;j � ai +1 ;j +1 .

A monotone triangle is a special case of a Gelfand-Tsetlin triangle [KB95]. It is
sometimes also referred to as aGog triangle [Zei96].

There is a way to associate a unique monotone triangle to every permutation. The
rule is as follows. Thekth row from the bottom of the monotone triangle associated to
� contains a list, in increasing order, of those columns of thematrix of � which contain
a 1 in the �nal k rows of the matrix.

Here is the monotone triangle for our example permutation at the beginning of
section 13.1:

1 2 3 4 5
1 2 4 5

2 4 5
2 4

4

The inversions in the monotone triangle picture corresponds to pairs of equal num-
bers, one immediately above and to the left of the other. Hereare the four inversions
of our example:

1 2 : : :
1 2 : :

2 4 :
2 4

:

The dual inversions in the monotone triangle picture correspond to pairs of equal
numbers, one immediately above and to the right of the other. Here are the six dual
inversions of our example:

: : : 4 5
: 2 4 5

2 4 5
: 4

4

The e�ect on the monotone triangle of a permutation � of multiplying the left by
the maximum permutation J is to send eachi to n + 1 � i , and then re
ect around the
main horizontal.

Not every monotone triangle is associated to a permutation.For example:

1 2 3
1 3

2

We shall see in section13.2 that the above monotone triangle corresponds to the fol-
lowing alternating sign matrix : 2

4
0 1 0
1 � 1 1
0 1 0

3

5
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6.2 Alternating Sign matrices

An alternating sign matrix is a square matrix of 0's 1's and� 1's such that the sum of
each row and column is 1 and the non-zero entries in each row and column alternate in
sign. For example:

A =

0

B
B
@

0 0 1 0
0 1 � 1 1
1 0 0 0
0 0 1 0

1

C
C
A

A permutation matrix is an alternating sign matrix with no ( � 1)'s.
The total number of alternating sign matrices of sizen is given by:

An =
n� 1Y

k=0

(3k + 1)!
(n + k)!

1; 1; 2; 7; 42; 429; 7436; : : :

This result was a conjecture for a long time. The �rst proof was given by Zeilberger
[Zei96]. Zeilberger's proof was long and complicated and eventually a simpli�ed proof
given by Kuperberg [Kup96]. Kuperberg's proof made use of ideas from the theory of
integrable systems, the Yang-Baxter equation and the six vertex model with domain
wall boundary conditions. It also made use of a recurrence relation due to Izergin and
Korepin [KBI93].

6.2.1 Inversions and dual inversions

As with permutations, an inversion of an alternating sign matrix is a zeros in the matrix
with the property that the sum of the entries in the same row lying to the right is equal
to one, and the sum of the entries in the same column lying below is equal to one. Our
example alternating matrix A has three 3 inversions.

0

B
B
@

� � 1 0
� 1 � 1 1
1 0 0 0
0 0 1 0

1

C
C
A

A dual inversion of an alternating sign matrix is a zero in the matrix with the
property that the sum of the entries in the same row lying to the left is equal to one,
and the sum of the entries in the same column lying below is equal to one. Our example
alternating matrix A has 2 dual inversions.

0

B
B
@

0 0 1 �
0 1 � 1 1
1 0 � 0
0 0 1 0

1

C
C
A

Remark 6.2.1. The alternating sign matrix M has a dual inversion at position(i; j )
if and only if the alternating sign matrix JM has an inversion at position(i; n + 1 � j ).
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6.2.2 Monotone triangles

Just like permutation matrices, alternating sign matrices may be associated with mono-
tone triangles.

The rule for constructing the monotone triangle from the alternating sign matrix
is that the kth row from the bottom contains, in increasing order, a list of all those
columns of the matrix whose �nal k entries sum to 1. Again this process is reversible.

Here is the monotone triangle of our example alternating sign matrix from section
13.2:

1 2 3 4
1 2 4

1 3
3

Every monotone triangle corresponds to an alternating signmatrix. The de�nition
of inversions and dual inversions in the monotone triangle picture is exactly the same
as for permutations.

6.2.3 Completion of Bruhat order

One can show that the set of all monotone triangles of sizen, under the partial order
a � b if and only if each element ofa is greater than or equal to the corresponding
element of b, forms a lattice which completes the Bruhat order [LS96]. One monotone
triangle covers another in the completion of the Bruhat order if and only if they di�er
by exactly 1 at a single position.

Here is the Hasse diagramfor the Bruhat order on permutations for n = 3:
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1 2 3
2 3

3

1 2 3
2 3

2

1 2 3
1 3

3

1 2 3
1 3

1

1 2 3
1 2

2

1 2 3
1 2

1

The completion of this diagram involves adding an extra element in the center, where
the two lines cross. This element is the monotone triangle:

1 2 3
1 3

2

corresponding to the alternating sign matrix:

2

4
0 1 0
1 � 1 1
0 1 0

3

5

6.2.4 Lambda determinant

Alternating sign matrices �rst appeared in the literature i n the context of the so called
lambda determinant of Robbins and Rumsey [RR86]. We shall now de�ne the � -
determinant.

As in the case of Dodgson condensation (see Section13.1.2), for each k = 0 : : : n
let us denote by xn [k] the doubly indexed collection of variablesxn [k]i;j with indices
running from i; j = 1 ::(n � k + 1). Again one should think of the variables as forming a
square pyramid with basen + 1 by n + 1. The index k determines the \height" of the
variable in the pyramid.
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The variables are initialized in the same way:

xn [0]i;j = 1 for all i; j = 1 ::(n + 1)

xn [1]i;j = M i;j for all i; j = 1 ::n

However the value of the remaining variables is calculated via the following modi�ed
recurrence:

xn [k + 1] i;j =
xn [k]i;j xn [k]i +1 ;j +1 + � x n [k]i;j +1 xn [k]i +1 ;j

xn [k � 1]i +1 ;j +1
(6.5)

The end result [RR86] is that:

xn [n]1;1 =
X

B 2 An

� inv( B ) (1 + � )N (B )M B (6.6)

Here An denotes the set of all alternating sign matrices of sizen, inv(B ) denotes the
inversion number of B and N (B ) denotes the number of negative ones inB .

The � -determinant reduces to the regular determinant when� = � 1. The � deter-
minant exhibits what is known as the Laurent phenomenon[FZ02]. From the recursive
de�nition we expect x[n]1;1 to be a rational function. The fact that it turns out to be a
Laurent polynomial is very surprising.

Our goal is to generalize equation13.6 by adding additional parameters.

6.3 Interlacing matrices

6.3.1 Left corner sum matrices

For each n by n alternating sign matrix X let X be the matrix whose (i; j )-th entry is
equal to the sum of the entries lying above and to the left of the (i; j )-th entry of X .
For example:

X =

0

B
B
@

0 1 0 0
1 � 1 1 0
0 1 � 1 1
0 0 1 0

1

C
C
A X =

0

B
B
@

0 1 1 1
1 1 2 2
1 2 2 3
1 2 3 4

1

C
C
A

We shall refer to X as the left corner sum matrix of X . The original alternating
sign matrix may be recovered by the formula:

X ij = X ij + X i � 1;j � 1 � X i;j � 1 � X i � 1;j (6.7)

If the indices are out of range, then the value ofX ij is taken to be zero.
The left corner sum matrices of alternating sign matrices have the following proper-

ties:

� The last row contains the integers from 1 ton in increasing order.

� The last column contains the integers from 1 ton in increasing order.
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� Neighboring entries di�er by at most one.

� Each row and each column is non-decreasing.

Any non-negative integer matrix satisfying these properties is the left corner sum matrix
of some alternating sign matrix [RR86].

De�nition 6.3.1. For any alternating sign matrix X we de�ne:

F (X ) = I � X (6.8)

In other words:
F (X ) i;j = min( i; j ) � X i;j (6.9)

There is a natural order on the set ofn by n left corner sum matrices given bya � b
if each entry of a is greater than or equal to the corresponding entry ofb. The order
corresponds precisely to the lattice closure of the Bruhat order discussed in the section
13.2.3.

Remark 6.3.1. Adding 1 to position (i; j ) of X (where this is allowed) has the e�ect
on X of adding the2 by 2 matrix:

�
1 � 1

� 1 1

�

to the 2 by 2 submatrix of X whose upper left hand corner is at position(i; j ).

6.3.2 Left interlacing matrices

A pair of left corner sum matrices (A; B ) with A of dimensionsn by n and B of dimension
n + 1 by n + 1 are said to be left interlacing if the following conditions are satis�ed:

0

B
B
B
B
B
B
B
B
@

B 1;1 B 1;2 B 1;3 B 1;4

A1;1 A1;2 A1;3

B 2;1 B 2;2 B 2;3 B 2;4

A2;1 A2;2 A2;3

B 3;1 B 3;2 B 3;3 B 3;4

A3;1 A3;2 A3;3

B 4;1 B 4;2 B 4;3 B 4;4

1

C
C
C
C
C
C
C
C
A

For all elements x; y; z; w of B and and all elementsa of A which are arranged in
the following con�guration:

0

@
x y

a
z w

1

A

We must have:
x; w � 1 � a � y; z (6.10)
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An example:

0

B
B
B
B
B
B
B
B
@

0 1 1 1
f 0; 1g 1 1

1 1 2 2
1 f 1; 2g 2

1 2 2 3
1 2 3

1 2 3 4

1

C
C
C
C
C
C
C
C
A

Remark 6.3.2. Above and to the left of a� 1 in the alternating sign matrix B there
are two possible choices for the corresponding value of the left corner sum matrix A. At
all other positions there is a single choice [RR86].

Let us now consider the case of all (n + 1) by ( n + 1) left corner sum matrices C
which are left interlacing with a given left corner sum matrix B :

0

B
B
B
B
@

C1;1 C1;2 C1;3

B 1;1 B 1;2

C2;1 C2;2 C2;3

B 2;1 B 2;2

C3;1 C3;2 C3;3

1

C
C
C
C
A

The rule for constructing all possible n + 1 by n + 1 left corner sum matrices C
which are interlacing with given n by n left corner sum matrix B is the last row and
last column must be strictly increasing from 1 to n + 1 as well as that for all elements
x; y; z; w of B and and all remaining elementsc of C which are arranged in the following
con�guration:

0

@
x y

c
z w

1

A

We must have:
y; z � c � w; x + 1 (6.11)

If the element c lies in the �rst row or column, then we take the out of range indices to
be equal to zero.

Here is an example: 0

B
B
B
B
@

0 f 0; 1g 1
0 1

f 0; 1g 1 2
1 2

1 2 3

1

C
C
C
C
A

Remark 6.3.3. Above and to the left of a1 in the alternating sign matrix B there are
two possible choices for the corresponding value ofC. At all other positions there is a
single choice [RR86].
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6.3.3 Inversions

Lemma 6.3.1. Let B be an alternating sign matrix. If B i;j is an inversion then B i;j =
B i � 1;j � 1 otherwise B i;j > B i � 1;j � 1.

The \smallest" alternating sign matrix A which is left interlacing with a given alter-
nating sign matrix B is denoted by Amin . By equation 13.10 ts left corner sum matrix
satis�es:

A
min
i;j = max( B i;j ; B i +1 ;j +1 � 1) (6.12)

Proposition 6.3.1. If the alternating sign matrix B has an inversion at position (i; j )
then:

F (B ) i;j � F (Amin ) i � 1;j � 1 = 1

Otherwise:

F (B ) i;j � F (Amin ) i � 1;j � 1 = 0

Proof.

F (B ) i;j � F (Amin ) i � 1;j � 1 = 1 + max( B i � 1;j � 1; B i;j � 1) � B i;j (6.13)

The result follows from Lemma 13.3.1.

6.3.4 Domino tiling of Aztec diamond

An Aztec diamond of sizen is the region of the lattice Z2 satisfying jxj + jyj � n + 1.
For example, here is an Aztec diamond of size 3:

A domino tiling is a complete covering of an Aztec diamond by either 2 by 1 or 1
by 2 rectangles. For example:
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The total number of domino tilings of the Aztec diamond of size n is equal to
2n(n+1) =2 [EKLP92]. There is a bijection between domino tilings of the Aztec diamond
and pairs of left interlacing alternating sign matrices [EKLP92].

An example

We wish to �nd the pair of interlacing matrices ( A; B ) which are in bijection with the
domino tiling above.

If n is even, then we begin by marking all the vertices (i; j ) on the interior of the
diamond such that i + j is even, otherwise we begin by marking all the vertices (i; j ) on
the interior of the diamond such that i + j is odd.

Next we record the degree of each vertex. Note that the \rows"go up and to the
right, while the \columns" go down and to the right:

2

4
3 2 3
2 4 2
3 2 3

3

5

Finally we replace each 3 with a zero, each 2 with a one, and each 4 with a negative
one to get the matrix A.

2

4
0 1 0
1 � 1 1
0 1 0

3

5
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Next, if n is even we mark all the vertices (i; j ) such that i + j is odd, including
vertices on the boundary of the diamond. Otherwise we mark all the vertices (i; j ) such
that i + j is even, including vertices on the boundary of the diamond. We imagine that
the original tiling has been extended to in�nity with horizo ntal tiles.

Again we record the degree of each vertex:

2

6
6
4

3 3 4 3
3 4 2 4
4 2 4 3
3 4 3 3

3

7
7
5

This time we replace 3 with a zero, each 4 with a one and each 2 with a negative
one, to obtain the matrix B .

2

6
6
4

0 0 1 0
0 1 � 1 1
1 � 1 1 0
0 1 0 0

3

7
7
5

One may verify that in our example the two matrices are interlacing.

Flips

For the general case there are several things to check:

� That the two matrices obtained are always alternating sign matrices

� That the two matrices obtained are always interlacing.

� That the process is invertible.

The reader is referred to the paper [EKLP92] for a complete proof. Nevertheless we
shall make several remarks.

An elementary 
ip involves changing two adjacent horizontal dominos into twoad-
jacent vertical dominos, or vice versa.
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One can show [EKLP92] that every domino tiling of the Aztec diamond may be
obtained from the \minimal" tiling, with only vertical tile s, by some sequence of ele-
mentary 
ips. For example, for n = 3 we have:

The pair of interlacing matrices (A; B ) for the \minimal" tiling are a pair of maximal
permutations, while for the \maximal" tiling, with all vert ical tiles, they are a pair of
identity permutations.

The midpoint ( i; j ) of big square involved in an elementary 
ip is always of degree
2 both before and after the 
ip.

There are two cases to consider. Either the midpoint belongsto the matrix A and
corresponds to a 1. In this case the four vertices around the edge of the square being

ipped all belong to B .
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The e�ect of of 
ipping from the vertical con�guration to the horizontal con�guration
is to add the matrix: �

� 1 1
1 � 1

�

to these four vertices ofB , or equivalently move up the Bruhat order by one step (see
remark 13.3.1)

The second case to consider is when the midpoint of the squarebeing 
ipped belongs
to B and corresponds to a� 1. The four vertices around the edge of the square all belong
to A. In this case the e�ect of 
ipping from the horizontal con�guration to the vertical
con�guration is to add the matrix:

�
� 1 1
1 � 1

�

to these four vertices ofA, or equivalently move up one step in the Bruhat order (see
remark 13.4.1).

One may conclude that since the bijection works in the base case, and since the
elementary 
ips preserve both the alternating sign matrix condition and the interlacing
condition, the bijection works in all cases.

6.4 Duality

6.4.1 Right corner sum matrices

For each n by n alternating sign matrix X let X be the matrix whose (i; j )-th entry is
equal to the sum of the entries lying above and to theright of the (i; j )-th entry of X .
For example:

X =

0

B
B
@

0 1 0 0
1 � 1 1 0
0 1 � 1 1
0 0 1 0

1

C
C
A X =

0

B
B
@

1 1 0 0
2 1 1 0
3 2 1 1
4 3 2 1

1

C
C
A

We shall refer to X as the right corner matrix of X . The original alternating sign
matrix may be recovered by the formula:

X ij = X ij + X i � 1;j +1 � X i;j +1 � X i � 1;j (6.14)

If the indices are out of range, then the value ofX ij is taken to be zero.

Remark 6.4.1. Adding one at position (i; j ) in the right corner sum matrix X is

equivalent to adding the matrix
�

� 1 1
1 � 1

�
with upper right hand corner at position

(i; j ) to the alternating sign matrix X .

De�nition 6.4.1. For any alternating sign matrix X we de�ne:

G(X ) = J � X (6.15)

In other words:
G(X ) i;j = min( i; n + 1 � j ) � X i;j (6.16)
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Lemma 6.4.1. If B 0 = BJ then B 0 = BJ

Remark 6.4.2. The Bruhat order on right corner sum matrices is given bya � b if
each entry of a is less than or equal to the corresponding entry ofb.

6.4.2 Right interlacing matrices

A pair of matrices (A; B ) of dimensionsn by n and n + 1 by n + 1 respectively are said
to be right interlacing if their right corner sum matrices satisfy the following conditions:

0

B
B
B
B
B
B
B
B
@

B 1;1 B 1;2 B 1;3 B 1;4
A1;1 A1;2 A1;3

B 2;1 B 2;2 B 2;3 B 2;4
A2;1 A2;2 A2;3

B 3;1 B 3;2 B 3;3 B 3;4
A3;1 A3;2 A3;3

B 4;1 B 4;2 B 4;3 B 4;4

1

C
C
C
C
C
C
C
C
A

For all elements x; y; z; w of B and and all elementsa of A which are arranged in
the following con�guration:

0

@
x y

a
z w

1

A

We must have:
y; z � 1 � a � x; w (6.17)

Continuing with our example:

0

B
B
B
B
B
B
B
B
@

1 1 0 0
1 f 0; 1g 0

2 1 1 0
2 1 f 0; 1g

3 2 1 1
3 2 1

4 3 2 1

1

C
C
C
C
C
C
C
C
A

Remark 6.4.3. Above and to theright of a � 1 in the alternating sign matrix B there
are two possible choices for the corresponding value of the right corner sum matrix A.
At all other positions there is a unique choice.

Let us now consider the case of all (n + 1) by ( n + 1) left corner sum matrices C
which are right interlacing with a given right corner sum mat rix B :

0

B
B
B
B
@

C1;1 C1;2 C1;3
B 1;1 B 1;2

C2;1 C2;2 C2;3
B 2;1 B 2;2

C3;1 C3;2 C3;3

1

C
C
C
C
A
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The rule for constructing all possible n + 1 by n + 1 right corner matrices C which
are interlacing with a given n by n right corner sum matrix B is the �rst column must
be strictly increasing from 1 to n +1, the last row must be strictly decreasing from n +1
to 1, and for all elementsx; y; z; w of B and and all elementsc of C which are arranged
in the following con�guration:

0

@
x y

c
z w

1

A

we must have:
w; x � c � y + 1 ; z (6.18)

Here is an example: 0

B
B
B
B
@

1 1 f 0; 1g
1 1

2 f 1; 2g 1
2 1

3 2 1

1

C
C
C
C
A

Remark 6.4.4. Above and to theright of a 1 in the alternating sign matrix B there
are two possible choices for the corresponding value ofC. At all other positions there is
a single choice.

6.4.3 Duality between left and right interlacing pairs

Left corner matrices and right corner matrices are related by the following lemma:

Lemma 6.4.2. For all i; j we have:

B i;j + B i;j +1 = i

Proof. The left hand side is equal to the sum of all the entries of the alternating sign
matrix B in the �rst i rows. Since the sum of entries in each row ofB is equal to 1, the
�nal result is equal to i as claimed.

For any binary string � , let ~� denote the binary string in which all the zeros have
been replaced by ones, and all the ones have been replaced by zeros. For example:

� = 0010110100

~� = 1101001011

Suppose that we �x an n + 1 by n + 1 alternating sign matrix. In keeping with our
previous examples, let us choose:

B =

0

B
B
@

0 1 0 0
1 � 1 1 0
0 1 � 1 1
0 0 1 0

1

C
C
A
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If our alternating sign matrix B has exactly k negative ones then it followed that
the number of n by n corner sum matrices which are interlacing withB is 2k .

Let us �x now an order on the negative ones, say top to bottom, left to right. We
can now index all the n by n matrices which are right interlacing with B by a binary
string. Continuing with the example from section 13.4.2, we have:

A00 =

0

@
1 0 0
2 1 0
3 2 1

1

A

A01 =

0

@
1 0 0
2 1 1
3 2 1

1

A A10 =

0

@
1 1 0
2 1 0
3 2 1

1

A

A11 =

0

@
1 1 0
2 1 1
3 2 1

1

A

A zero means that we chose the smaller of the two possibilities for A. A one means
that we chose the larger. Here are the corresponding alternating sign matrices:

A00 =

0

@
1 0 0
0 1 0
0 0 1

1

A

A01 =

0

@
1 0 0
0 0 1
0 1 0

1

A A10 =

0

@
0 1 0
1 0 0
0 0 1

1

A

A11 =

0

@
0 1 0
1 � 1 1
0 1 0

1

A

Note that we use subscripts to indicate alternating sign matrices which are right
interlacing with B . No underscore means the interlacing matrix itself, ratherthan the
associated right corner sum matrix. We shall denote byAmin the alternating sign matrix
right interlacing with B which is indexed by the binary string with all zeros and Amax

the alternating sign matrix right interlacing with B which is indexed by the binary
string with all ones.

Let us now do the same with theleft corner sum matrix X from section 13.3.2.
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A
00

=

0

@
0 1 1
1 1 2
1 2 3

1

A

A
01

=

0

@
0 1 1
1 2 2
1 2 3

1

A A
10

=

0

@
1 1 1
1 1 2
1 2 3

1

A

A
11

=

0

@
1 1 1
1 2 2
1 2 3

1

A

Here are the corresponding alternating sign matrices:

A00 =

0

@
0 1 0
1 � 1 1
0 1 0

1

A

A01 =

0

@
0 1 0
1 0 0
0 0 1

1

A A10 =

0

@
1 0 0
0 0 1
0 1 0

1

A

A11 =

0

@
1 0 0
0 1 0
0 0 1

1

A

Note that we use superscripts to indication alternating sign matrices which are left
interlacing with B . No overline indicates the alternating sign matrix itself, rather than
the associated left corner sum matrix. We shall denote byAmin the alternating sign
matrix left interlacing with B which indexed by the binary string with all zeros and
Amax the alternating sign matrix left interlacing with B which is indexed by the binary
string with all ones.

Proposition 6.4.1.
Amin = Amax (6.19)

Proof. Consider the following segments of left and right interlacing matrices respectively:

0

B
B
B
B
B
B
B
B
@

a b c d
x y z

e f g h
w u v

i j k `
t s r

m n o p

1

C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
@

a� b� c� d�

x � y� z�

e� f � g� h�

w� u� v�

i � j � k� ` �

t � s� r �

m� n� o� p�

1

C
C
C
C
C
C
C
C
A
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The elementsa,b,c, etc... belong to the left corner sum matrix B while the elements
x,y,z etc... belong to the left-interlacing matrix A

max
.

Similarly the elements a� ,b� ,c� , etc... belong to the right corner sum matrix B while
the elementsx � ,y� ,z� etc... belong to the right-interlacing matrix Amin .

We wish to show that the value of the alternating sign matrix Amax at position u
is equal to the value of the alternating sign matrix Amin at position u� . That is, by
equations (13.7) and (13.14) we want to show that:

x + u � w � y = u� + z� � y� � v�

As a consequence of lemma13.4.2there is some
 such that:

a + b� = b+ c� = c + d� = 


e+ f � = f + g� = g + h� = 
 + 1

i + j � = j + k� = k + ` � = 
 + 2

m + n� = n + o� = o + p� = 
 + 3

Now, by equations13.10and 13.17, we have:

x + u � w � y

= min( a; f � 1) + min( f; k � 1) � min(e; j � 1) � min(b; g� 1)

= min( 
 � b� ; 
 � g� ) + min( 
 + 1 � g� ; 
 + 1 � ` � )

� min( 
 + 1 � f � ; 
 + 1 � k� ) � min( 
 � c� ; 
 � h� )

= � max(b� ; g� ) � max(g� ; ` � ) + max( f � ; k� ) + max( c� ; h� )

= � y� � v� + u� + z�

The result follows.

Proposition 6.4.2. If � is a binary string, and ~� is its complement, thenA � = A ~�

Proof. This follows immediately from remarks 13.3.1and 13.4.1. It is possible to remove
a 1 from position (i; j ) of A

�
if and only if it is possible to add a 1 at position (i; j + 1)

of A ~� .

Corollary 6.4.1.
Amin = Amax (6.20)

Suppose now that we �x an n by n alternating sign matrix B containing exactly s
ones. It follows that the number of n + 1 by n + 1 right corner sum matrices which are
right interlacing with B is equal to 2s.

If we �x an order on the ones, then each of these right corner sum matrices may be
indexed by a binary string. Let C� denote the n + 1 by n + 1 alternating sign matrix
associated withC �

Similarly the number of n + 1 by n + 1 left corner sum matrices which are left
interlacing with B is equal to 2s. Again we may index these by binary strings. LetC �

denote the n + 1 by n + 1 alternating sign matrix associated to C
�
.
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Proposition 6.4.3. We have:
Cmax = Cmin

and more generally, if ~� is the complement of� then

C � = C~� (6.21)

Proof. The proof is essentially identical to proposition13.4.1and proposition 13.4.2

Proposition 6.4.4. If the n +1 by n +1 alternating sign matrix B has a dual inversion
at position (i; n + 1 � j ) then:

G(B ) i;n +1 � j � G(Amax ) i � 1;n+1 � j = 1

Otherwise:
G(B ) i;n 1 � j � G(Amax ) i � 1;n+1 � j = 0

Proof. By Lemma 13.4.1we have:

G(B ) i;n +1 � j � G(Amax ) i � 1;n+1 � j = F (B 0) i;j � F ((Amax )0) i � 1;j � 1 (6.22)

= F (B 0) i;j � F ((Amin )0) i � 1;j � 1 (6.23)

But by remark 13.4.1B has a dual inversion at position (i; n + 1 � j ) if and only if B 0

has an inversion at position (i; j ). The result now follows from proposition 13.3.1.

6.5 Main Theorem

6.5.1 Notation

Before we can state our formula, we need a few more de�nitions. Let us de�ne the
lambda weightof a k by k alternating sign matrix B to be:

F� (B ) = � F (B ) =
kY

i;j =1

� min( i;j )� B i;j
i;j (6.24)

(see Section13.3.1)
Similarly, let us de�ne the mu weight of an k by k alternating sign matrix A to be:

Gn
� (B ) =

kY

i;j =1

�
min( i;k +1 � j )� B i;j
i;n +1 � j (6.25)

(see Section13.4.1).
Let Inv( B ) denote the matrix with the property that Inv( B ) i;j = 1 if B i;j is an

inversion, otherwise Inv(B ) i;j = 0. Similarly, let Dinv( B ) denote the matrix with the
property that Dinv( B ) i;j = 1 if B i;j is a dual inversion, otherwise Dinv(B ) i;j = 0.

Finally, two more pieces of notation. We shall de�ne the following two operators on
laurent polynomials in the variables f � i;j g and f � i;j g:

s(� i;j ) = � i +1 ;j +1 (6.26)

t(� i;j ) = � i +1 ;j (6.27)
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6.5.2 Statement of theorem

For each k = 0 : : : n let us denote by xn [k] the doubly indexed collection of variables
xn [k]i;j with indices running from i; j = 1 ::(n � k +1). One should think of the variables
as forming a square pyramid with basen + 1 by n + 1. The index k determines the
\height" of the variable in the pyramid.

The variables are initialized as follows::

xn [0]i;j = Yi;j for all i; j = 1 ::(n + 1)

xn [1]i;j = X i;j for all i; j = 1 ::n

The remaining variables are de�ned by the following recurrence:

xn [k + 1] i;j =
� i;n � k+1 � j xn [k]i;j xn [k]i +1 ;j +1 + � i;j xn [k]i;j +1 xn [k]i +1 ;j

xn [k � 1]i +1 ;j +1
(6.28)

Theorem 6.5.1.

xn [k + 1] 1;1 =
X

(A;B )
jB j= k;jA j= k� 1

F� (B )
s(F� (A))

Gn
� (B )

t(Gn
� (A))

xn [1]B s(xn [0])� A (6.29)

The sum is over all pairs of left interlacing matrices.

If instead we initialize the variables as:

xn [0]i;j = 1 for all i; j = 1 ::(n + 1)

xn [1]i;j = M i;j for all i; j = 1 ::n

then we obtain the following corollary:

Corollary 6.5.1.

xn [n]1;1 =
X

jB j= n

M B

0

@� Inv( B ) � Dinv( B )0 Y

B i;j = � 1

(� i;n +1 � j + � i;j )

1

A (6.30)

6.5.3 Proof of Theorem 13.5.1

This proof follows closely the original proof of Robbins andRumsey [RR86] for the
� -determinant [RR86].

Base case

In the casek = 1 we have from the recurrence (equation13.28) that:

xn [2]1;1 =
� 1;n� 1X 1;1X 2;2 � � 1;1X 1;2X 2;1

Y2;2
(6.31)

while the closed form expression in equation13.29 tells us that we must take the sum
over all interlacing pairs (A; B ) where A is 1 by 1 andB is 2 by 2. There are exactly two
such pairs of interlacing matrices, corresponding to the two terms in equation 13.31.
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Induction hypothesis

Suppose now that the proposition is true for allm � k. We wish to show that:

xn [k + 2] 1;1 =
X

(B;C )
jCj= k+1 ;jB j= k

F� (C)
s(F� (B ))

Gn
� (C)

t(Gn
� (B ))

x[1]C s(x[0])� B (6.32)

By the induction hypothesis, we know that (using a di�erent set of variables):

yn� 1[k + 1] 1;1 =
X

(A;B )
jB j= k;jA j= k� 1

F� (B )
s(F� (A))

Gn� 1
� (B )

t(Gn� 1
� (A))

yn� 1[1]B s(yn� 1[0])� A

If we now set xn [k + 1] = yn� 1[k] then we have:

xn [k + 2] 1;1 =
X

(A;B )
jB j= k;jA j= k� 1

F� (B )
s(F� (A))

Gn� 1
� (B )

t(Gn� 1
� (A))

xn [2]B s(xn [1])� A (6.33)

But by the recurrence we know that:

xn [2]i;j =
� i;n � j xn [1]i;j xn [1]i +1 ;j +1 + � i;j xn [1]i;j +1 xn [1]i +1 ;j

xn [0]i +1 ;j +1

To simplify notation we will write:

xn [2]B =
D(xn [1])B

s(xn [0])B

where:

D (xn [k + 1]) i;j = � i;n � k+1 � j xn [k]ij xn [k]i +1 ;j +1 + � ij xn [k]i;j +1 xn [k]i +1 ;j (6.34)

Term by term comparison of coe�cients

Let us now �x an arbitrary alternating sign matrix B of dimensions k by k. The
coe�cient of s(xn [0])� B on the right hand side of equation13.32is given by:

X

jC j= k+1

F� (C)
s(F� (B ))

Gn
� (C)

t(Gn
� (B ))

xn [1]C (6.35)

where the sum is over allC which are interlacing with B . Similarly, the coe�cient of
s(xn [0])� B on the right hand side of equation13.33is given by:

X

jA j= k� 1

F� (B )
s(F� (A))

Gn� 1
� (B )

t(Gn� 1
� (A))

D (xn [1])B s(xn [1])� A (6.36)

where the sum is over allA which are interlacing with B .
We shall now use the results of section13.4.3to simplify these two expressions.
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Duality: Cmax = Cmin

Beginning with equation 13.35we use the fact that the set ofk + 1 matrices interlacing
with B decomposes as a boolean lattice, as well as remark13.3.1 to factorize equation
13.35into:

F� (Cmax )
s(F� (B ))

Gn
� (Cmax )

t(Gn
� (B ))

xn [1]C
max Y

B ij =1

�
� i;n +1 � j + � ij

xn [1]i +1 ;j xn [1]i;j +1

xn [1]ij xn [1]i +1 ;j +1

�

Re-arranging slightly, this gives:

F� (Cmax )
s(F� (B ))

Gn
� (Cmax )

t(Gn
� (B ))

xn [1]C
max Y

B ij =1

D(xn [1]i;j )
xn [1]ij s(xn [1]i;j )

(6.37)

Duality: Amax = Amin

Now for equation 13.36. We use the fact that the set of k matrices interlacing with
B also decomposes as a boolean lattice, as well as remark13.4.1 to factorize equation
13.36into:

F� (B )
s(F� (Amin ))

Gn� 1
� (B )

t(Gn� 1
� (Amin ))

D (xn [1])B s(xn [1])� A min

Y

B i;j = � 1

�
� i;n +1 � j + � i;j

xn [1]i +1 ;j xn [1]i;j +1

xn [1]ij xn [1]i +1 ;j +1

�

Re-arranging slightly, this gives:

F� (B )
s(F� (Amin ))

Gn� 1
� (B )

t(Gn� 1
� (Amin ))

s(xn [1])� A min
D(xn [1])B

Y

B i;j = � 1

D(xn [1]i;j )
x[1]ij s(xn [1]i;j )

which by combining the terms of the form D(x[1]) may be simpli�ed even further to
give:

F� (B )
s(F� (Amin ))

Gn� 1
� (B )

t(Gn� 1
� (Amin ))

s(xn [1])� A min Y

B i;j =1

D(xn [1]i;j )
Y

B i;j = � 1

1
xn [1]ij s(xn [1]i;j )

(6.38)

Summarizing what we need to prove

We wish to show that equation 13.37 is equal to equation13.38. Equivalently, we wish
to show that:

s(F� (Amin ))F� (Cmax )t(Gn� 1
� (Amin ))Gn

� (Cmax )xn [1]C
max

s(xn [1])A min
(6.39)

= F� (B )s(F� (B ))Gn� 1
� (B )t(Gn

� (B ))( xn [1]s(xn [1]))B
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Comparing power of � i;j on both sides

In this section we show that:

s(F� (Amin ))F� (Cmax ) = F� (B )s(F� (B )) (6.40)

Observe �rstly that:

min(x + 1 ; y) + max( x; y � 1) = x + y

Now, by equations13.10and 13.11we have:

A
min
i;j = max( B i;j ; B i +1 ;j +1 � 1)

C
max
i;j = min( B i;j ; B i � 1;j � 1 + 1)

and so:

C
max
i;j + A

min
i � 1;j � 1 = min( B i � 1;j � 1 + 1 ; B i;j ) + max( B i � 1;j � 1; B i;j � 1)

= B i;j + B i � 1;j � 1

This gives us the same power of� i;j on both sides of equation13.39

Comparing power of � i;n +1 � j on both sides

In this section we show that:

t(Gn� 1
� (Amin ))Gn

� (Cmax ) = Gn� 1
� (B )t(Gn

� (B )) (6.41)

By equations 13.17and 13.18we have:

A i;j
min = max( B i;j +1 ; B i +1 ;j � 1)

C i;j
max = min( B i � 1;j + 1 ; B i;j � 1)

and so:

A i � 1;j � 1
min + C i;j

max = max( B i � 1;j ; B i;j � 1 � 1) + min( B i � 1;j + 1 ; B i;j � 1)

= B i � 1;j + B i;j � 1

This gives us the same power of� i;n +1 � j on both sides of equation13.39.

Comparing power of xn [k]i;j on both sides

In this section we show that:

xn [1]C
max

s(xn [1])A min
= ( xn [1]s(xn [1]))B (6.42)

The result follows from equation 13.40 together with equations 13.7 and 13.14 for
expressing the original alternating sign matrix in terms of the corner sum matrices.
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6.5.4 Special case

In this section we shall prove corollary13.5.1. Begin by observing that if:

xn [0]i;j = 1 for all i; j = 1 ::(n + 1)

xn [1]i;j = M i;j for all i; j = 1 ::n

then:

xn [n]1;1 =
X

jB j= n

M B

0

@
X

jA j= n� 1

F� (B )
s(F� (A))

Gn
� (B )

t(Gn
� (A))

1

A (6.43)

The second sum is over all matricesA which are interlacing with B . The above equation
may be rewritten in the form:

xn [n]1;1 =
X

jB j= n

M B

0

@ F� (B )
s(F� (Amin ))

Gn
� (B )

t(Gn
� (Amax ))

Y

B i;j = � 1

(� i;n +1 � j + � i;j )

1

A (6.44)

By 13.3.1we have:
F� (B )

s(F� (Amin ))
= � Inv( B ) (6.45)

while by proposition 13.4.4we have:

Gn
� (B )

t(Gn
� (Amax ))

= � Dinv( B )0
(6.46)

The result follows.

6.6 Conclusion

We have given a multi-parameter generalization of the� -determinant of Robbins and
Rumsey [RR86]. Our result exhibits the Laurent phenomenon [FZ02] and generalizes a
previous result given by diFrancesco [DiF12].
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7. Commutators in semicircular
systems

7.1 Hilbert spaces

In this section we recall some basic de�nitions from functional analysis [Kre78] which
will perhaps be helpful to combinatorialists. Professional analysts may skip this section.

Inner product spaces

An inner product space is a complex vector spaceV equipped with a map:

h�j�i : V � V ! C

which is linear in the second variable, and which satis�es:

� hwjvi = hvjwi (conjugate symmetry)

� hvjvi > 0 for v 6= 0 (positive de�niteness)

A basis f e1; e2; : : :g of V is said to be orthonormal if hei jej i = � ij . A pair of bases
f w1; w2; : : :g and f r1; r2; : : :g are said to bedual if hwi jr j i = � i;j .

Projections

For S a vector subspace ofV , a projection operator with image S is a linear map
� S : V ! V such that:

� Image(� S) = S

� � S[v] = v for all v 2 S

If f wi g is a basis forS and f r i g is the corresponding dual basis, then:

� S[v] =
X

i

hr i jvi wi

In the �nite dimensional case, let P be the rectangular matrix Pij = hei jwi i and let
Q be the rectangular matrix Qi;j = hr i jei i . One can show that:

Q = ( PP � ) � 1P

This is known as the left pseudo inverse. The projection operator may be expressed in
the form:

� S = P � Q

121
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Gramm matrices

The matrices PPT and QQT are known as theGramm matrices. We have:

(PP � ) i;j = hwi j wj i (7.1)

(QQ� ) i;j = hr i j r j i (7.2)

(7.3)

One can show that:
(PP � ) � 1 = QQ� (7.4)

Topology

A topology is a pair (X; �) consisting of a set X and a collection � of subsets of X ,
called open sets, satisfying the following three axioms:

� The union of open sets is an open set.

� The �nite intersection of open sets is an open set.

� X and the empty set ; are open sets.

A function f : X ! Y between topological spaces is said to becontinuous if the inverse
image of every open set is open.

Metric spaces

A metric space is a pair (X; d ) where X is a set andd is a function:

d : X � X ! R

which satis�es:

� d(x; y) � 0

� d(x; y) = 0 if and only if x = y

� d(x; y) = d(y; x)

� d(x; z) � d(x; y) + d(y; x)

For any inner product space we may de�ne thenorm of a vector to be:

jjvjj = hvjvi

One can show that every inner product space is also a metric space with distance
function:

d(v; w) = jjv � wjj

Every metric space carries a natural topology generated by open sets of the form:

B r (v) = f w 2 X j d(w; v) < r g
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Cauchy sequences

For any metric space (X; d ), a Cauchy sequenceis a sequencex1; x2; x3; : : : of elements
of X such that for every � there exists anN such that:

d(xn ; xm ) � � for all n; m > N

An element x of X is said to be the limit of the Cauchy sequencex1; x2; x3; : : : if for
every � there exists anN such that such that:

d(xm ; x) < � for all n > N

A complete metric space (X; d ) is one for which every Cauchy sequence ofX con-
verges to some limit in X . Every metric subspace admits a uniquemetric completion

A subset S of a metric space (X; d ) is closedif for every x 2 X there exists a Cauchy
sequence inS whose limit is also in S. Every subspaceS of a complete metric space
admits a unique closure which which is denoted byS.

A subspace of a metric space is said to bedenseif its closure is the whole space.

Hilbert spaces

A Hilbert space is an inner product space which is also a complete metric space with
respect to the norm induced by the inner product. All �nite di mensional inner product
spaces are automatically Hilbert spaces. All Hilbert spaces of the same dimension are
isomorphic.

We shall refer to the topology on a Hilbert space induced by the norm associated to
the inner product as the natural topology of the space.

Hilbert basis

Let f e1; e2; e3; : : :g denote a sequence of linearly independent vectors in some in�nite
dimensional Hilbert spaceH . The span of these vectors, consisting of all �nite linear
combinations of the form:

nX

i =1

� i ei

is an in�nite dimensional vector space, but it is not a Hilbert space, because it isnot
closed under the natural topology onH .

The vector space spanned by the linearly independent vectors f e1; e2; e2 : : :g is said
to be densein H if for every v 2 H there exists a sequence of vectorsf vng of the form:

vn = a1;n e1 + a2;n e2 + � � � an;n en

such that:
lim

n!1
jj v � vn jj = 0

If this is the case we say thatf e1; e2; : : :g is a Hamel basisfor V . If in addition we have
hei ; ej i = � i;j then we say that f e1; e2; : : :g is a Hilbert basis.
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Example of a dense subspace

It is possible for a proper vector subspace of a Hilbert spaceto be dense in the whole
space. We shall now give an example

Let f e1; e2; e3; : : :g be a Hilbert basis for some in�nite dimensional Hilbert space
H . For each k � 1 let Vk denote the �nite dimensional subspace spanned by Hilbert
f e1; : : : ekg, let dk = ek � ek+1 and let Wk denote the �nite dimensional subspace spanned
by the vectors f d1; : : : ; dkg. We shall denote by W the in�nite dimensional vector
subspace spanned byall the dk . It is clear that e1 62W . We shall see however thate1,
lies in the closure of W .

The subspaceWk may be characterized as the orthogonal complement of the vector
e1 + e2 + � � � ek+1 in the subspaceVk+1 . For each k let us de�ne the vector:

f k =

s
1

k(k + 1)
(e1 + e2 + � � � + ek ) �

r
k

k + 1
ek+1

We have jj f k jj = 1. We also have:

hf k ; f ` i = � k;`

It follows that the f f kg form an orthonormal basis for the subspaceW .
Let us de�ne the following sequence of vectors:

qn =
nX

k=1

he1; f k i f k

=
nX

k=1

s
1

k(k + 1)
f k

The vector qn is the projection of the vector e1 onto the subspaceWn . We have:

jjqn jj =
nX

k=1

1
k(k + 1)

= 1 �
1

n + 1

In other words limn!1 jjqn jj = 1. Since jje1 � qn jj � jj e1jj � jj qn jj it follows that
q1; q2; q3; : : : forms a Cauchy sequence inW which converges towardse1. That is e1 lies
in the closure ofW . This implies that W is a dense subspace ofH .

Operator norm

Let U and V be Hilbert spaces. A linear operator:

L : V ! U

is said to beboundedif there exists someM > 0 such that for all v 2 V we have:

jjL (v)jjU � M jjvjjV
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The set of bounded linear operators on a Hilbert spaceH is an algebra which is
denoted by B (H ). Note that B (H ) is not a Hilbert space since it does not admit an
inner product. We can nevertheless de�ne anorm on B (H ) via:

jjL jjB (H ) = sup
v2 V

jjL (v)jjU

jj vjjV
(7.5)

This norm induces a topology onB (H ) which we shall refer to as theoperator norm
topology of B (H )

Weak operator topology

The operator norm topology is not the only topology which canbe de�ned on B (H ).
Let B (H ) denote the set of bounded linear operators on some Hilbert spaceH . For

eachx; y 2 H we can de�ne a map:

 (x; y) : B (H ) ! R

which is given by:
 (x; y)[T] = hx j Tyi

The weak operator topologyis the weakest topology onB (H ), such that the map
 (x; y) is continuous for all x; y 2 H .

von Neumann algebras

The adjoint of a linear map A : V ! V is the unique mapA � : V ! V satisfying:

hA � vjui = hvjAui

A linear operator is said to beself-adjoint if A � = A. We say that a subalgebraof A
of B (H ) is self adjoint if:

a 2 A () a� 2 A

A von Neumann algebraa self-adjoint algebra A of bounded operators on a Hilbert
space which contains the identity and which is closed under the weak operator topology.

For any algebra A and any subsetS � A the commutant of S in A is de�ned to be
the subalgebra ofA given by:

S0 = f a 2 A j sa = as for all s 2 Sg

The double commutantof S is de�ned to be the subalgebra ofA given by:

S00= f a 2 A j ta = at for all t 2 S0g

By von Neumann's double commutant theorema self-adjoint subalgebraA of B (H ) is a
von Neumann algebra if and only if:

A00= A

A von Neumann algebra is said to be afactor if A0 \ A = C:1. That is to say, a
factor is a von Neumann algebra with trivial center.
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Random variables

For our purposes arandom variable is simply a self-adjoint operator X acting on some
Hilbert space spaceH with inner product h�j�i and distinguished vector 
 satisfying:

h
 j 
 i = 1

In the language of quantum mechanics, random variables are referred to asobservables.
The moments of a random variable X are de�ned to be:

� n = E(X n ) = h
 j X n 
 i

Two operators are are said to beidentically distributed if they have the same moments.
The distinguished vector 
 is often referred to as a state.

When working with an algebra of random variablesA with the property that E(XY ) =
E(Y X ) for all X; Y 2 A the state 
 is said to be tracial .

7.2 Chebyschev polynomials

In what follows we shall make extensive use of the operator \multiplication by x" acting
on the Hilbert spaceh.

Measurable functions

A measure spaceis a pair (X; M ) where X is a set andM is a set of subsets ofX the
property that if A 2 M then X nA 2 M , and if A1; A2; A3; : : : is a sequence of elements
of M then [ i A i is an element ofM . We also require that ; 2 M .

The Borel � -algebra of R is the smallest � algebra onR which is generated by the
open sets ofR. Similarly, the Borel � -algebra of C is the smallest � algebra onC which
contains all the open sets ofC.

A function between measure spaces is said to bemeasurableif the pre-image of every
measurable set is measurable.

Square integrable functions

Let H denote the set of all measurable functions.f : [� 2; 2] ! C, modulo the equivalence
relation in which two functions are equal if they di�er only o n a set of measure zero,
which satisfy: Z 2

� 2
jf (x)j2

p
4 � x2 dx < 1

The inner product is given by

hf j gi =
Z 2

� 2
f (x)g(x)

p
4 � x2 dx

The space of polynomialsC[x] sits inside ofH as a dense subspace. The closure ofC[x]
with respect to the natural topology on H is the whole spaceH. In other words, the
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monomialsf 1; x; x 2; x3; � � � g form a Hamel basis forh. They are not orthogonal however.
Let us de�ne:

P(x; z) =
1

1 � 2tx + t2 =
X

n

Pn (x)tn

One may check that:

hPn (x); Pm (x)i = �� n;m

The polynomials f Pn (x)g are known as theChebyshev polynomials of the second kind.
They form a Hilbert basis for the spaceH.

Three term recurrence

The Chebyshev polynomials satisfy the following three termrecurrence:

xPn (x) = Pn+1 (x) + Pn� 1(x) (7.6)

The operator \multiplication by x" is bounded and may be thought of as living in the
spaceB (H).

Embedding

Let us consider the algebra Poly(x) of polynomials in the operator x. This is a subalgebra
of B (H ) of bounded linear operators onh. There is a natural embedding of Poly(x)
into H which sends the operatorp(x) 2 B (H ) to the vector v 2 H given by:

v = p(x)[1] (7.7)

Topological considerations

By the Stone{Weierstrass theoremthe closure of Poly(x) with respect to the operator
norm topology on B (H ) is isomorphic to the space of continuous functions inx. Note
that since not every square integrable function is continuous, the closure of Poly(x) with
respect to the operator norm isnot the entire spaceH.

A measurable function:

f : R ! C

is said to beboundedif there exists someK > 0 such that jf (x)j < K for all x 2 C. One
can show that the closure of Poly(x) under the weak operator topologyis isomorphic
to the space of all bounded measurable functions inx. Again, since not every square
integrable function is bounded, this is not the entire Hilbert space H.

In general, the weaker the topology, the less open sets and the more continuous
functions. The closure of a subspace with respect to a weakertopology is larger than
or equal to the closure of a subspace with respect to a stronger topology. As the name
suggests, the weak operator topology is weaker than the operator norm topology.
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Moments

We remark that the operator \multiplication by x" is self-adjoint, and may be thus
thought of as a random variable. We will now study its moments. One may calculate:

Z 2

� 2
x2n

p
4 � x2dx =

1
n + 1

�
2n
n

�
(7.8)

while: Z 2

� 2
x2n+1

p
4 � x2dx = 0 (7.9)

The numbers:

Cn =
1

n + 1

�
2n
n

�
(7.10)

are known as theCatalan numbers.

7.3 Semicircular Systems

The semicircular system was �rst introduced by Voiculescu to study free group von
Neumann algebras [Voi90]. The \multiplication by x" operator in the Chebyshev basis
arises naturally in the the context of Wigner's semi-circular law for random matrices.
In free probability theory Wigner's semicircular distribu tion plays a role analogous to
the Gaussian distribution in classical probability theory.

Fock space

Fix a �nite dimensional inner product space H with inner product h�j�i and orthonor-
mal basis:

f e1; e2; � � � ; ekg

Let us de�ne:
T(H ) = C
 � n� 1 H 
 n (7.11)

As a vector spaceT(H ) is naturally graded. The dimension of the graded component
of degreed is equal to nd. A basis for the graded component of degreed is given by:

f ei 1 
 ei 2 
 � � � 
 ei d g j i 1; i 2; : : : id 2 f 1; 2; : : : kgg (7.12)

The inner product of H lifts to an inner product of T(H ) in a natural way. If v
and w are homogeneous, but not of the same degree, thenhvjwi = 0. Otherwise, if
v = ei 1 
 ei 2 
 � � � 
 ei d and w = ej 1 
 ej 2 
 � � � 
 ej d then:

hvjwi = � i 1 ;j 1 � i 2 ;j 2 � � � � i d ;j d

In otherwords, the inner product on T(V ) is de�ned in such a way that the basis
described in equation14.12is orthonormal. The Fock spaceF of H is de�ned to be the
metric completion of T(H ).
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Special subspaces

Note that since all Hilbert spaces of the same dimension are isomorphic, for any i
the closure with respect to the natural topology on F of the subspace generated by
the f e
 n

i gn� 0 for any given i is isomorphic to the vector spaceh of square integrable
functions discussed in section14.2.

Creation and annihilation operators

For each i let ci be the creation operator:

ci [v] = ei 
 v (7.13)

The adjoint operator c�
i is known as theannihilation operator . It acts via:

c�
i [
] = 0 (7.14)

c�
i [(v1 
 v2 
 � � � 
 vn )] = hei jv1i (v2 
 � � � 
 vn ) (7.15)

The operators A i = ci + c�
i are both self-adjoint and bounded.

Moments

One can easily convince oneself that:

h
 j A2n
i 
 i =

1
n + 1

�
n
2n

�
(7.16)

while:
h
 j A2n+1

i 
 i = 0 (7.17)

Comparing equations 14.16 and 14.17 with equations 14.8 and 14.9 one can conclude
that the operator A i acts on the natural closure of the vector space spanned byf e
 n

i gn� 0

in the same way as the operator \multiplication by x" acts on the spaceH of section
14.2.

In particular, if Pn (x) is the n-th Chebyshev polynomial then we have:

Pn (A i )[
] = e
 n
i (7.18)

von Neumann algebra

We shall use the notation An to denote the Von Neumann algebra generated by the
semi-circular elementsA1; A2; : : : An . Thinking of each of the operatorsA i as arandom
variable we may de�ne the following state

� (X ) = h
 j X 
 i (7.19)

It is not hard to show that � is in fact a tracial state:

� (XY ) = � (Y X )
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Embedding

It is not hard to convince oneself that for all f i 1; i 2; : : : ; i r g 2 N� 1 and for all j 1; j 2; : : : j r 2
f 1; 2; : : : ng such that j ` 6= j `+1 we have:

Pj 1 (A i 1 )Pj 2 (A i 2 ) � � � Pj k (A i k )[
] = e
 j 1
i 1

e
 j 2
i 2

� � � e
 j k
i k

(7.20)

In other words, we have an embedding ofAn � B (F) into F which is given by:

X 7! X [
] (7.21)

Topological considerations

Let us remark that there is no natural inner product on B (F). Nevertheless, the embed-
ding of An into F allows us to induce an inner product on An . Even with this induced
inner product, the vector spaceAn is not a Hilbert space, since it isnot closed under
the topology induced by the inner product.

7.4 Main result

7.4.1 Statement

For each i = 1 ; 2; : : : n, let Poly( A i ) denote the subalgebra ofB (F) generated byA i and
let Alg( A i ) denote the closure of Poly(A i ) in the weak operator topology of B (F).

Similarly let Comm( A i ) the sub-algebra ofAn consisting of all elements which com-
mute with A i . One can show that Comm(A i ) is already closed under the weak operator
topology.

The goal of the next two sections is to prove the following result:

Theorem 7.4.1.
Alg(A i ) = Comm( A i ) (7.22)

As a consequence of Theorem14.4.1we have:

Theorem 7.4.2. For n � 2 the center of An is trivial.

Proof. Suppose thatx lies in the center ofAn . It follows that x commutes with A1, and
x commutes with A2. Now, by Theorem 14.4.1we havex 2 Alg(A1) and x 2 Alg(A2).
But:

Alg(A i ) \ Alg(A j ) = C:1

The result follows.

Note that in the language of Von Neumann algebras Theorem14.4.2implies that An

is a factor. This result is already known [Voi90]. Our proof is still interesting however
as it yields a number of explicit projection formulae (see section 14.4.5).
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7.4.2 Topological considerations

We shall use the notationAn to denote the closure ofAn under the natural topology of
F. Furthermore we shall use the notationAd

n to denote the intersection ofAn with the
�nite dimensional subspace ofF consisting of elements of degreed.

Lemma 7.4.1. For any vector subspaceV of some Hilbert spaceH , the orthogonal
complementV ? is closed.

Let Alg(A i ) denote the closure of Alg(A i ) with respect to the topology of F.

Lemma 7.4.2.
Alg(A i ) \ An = Alg( A i ) (7.23)

Proof. Let Vi denote the vector space spanned byf e
 n
i gn� 0. Under the embedding of

An into F we have:
Poly(A i ) = Vi (7.24)

Let hi denote the closure ofVi under the topology of F. We have

Alg(A i ) = hi (7.25)

But we also have that An \ hi = Alg( A i ) \ hi . Referring back to remarks made in section
14.2, every bounded measurable function is also square integrable, that is to say:

Alg(A i ) � hi

and so:
Alg(A i ) \ hi = Alg( A i )

The result follows.

Let Comm(A i ) denote the closure of Comm(A i ) with respect to the topology of F.

Lemma 7.4.3.
Comm(A i ) \ An = Comm( A i ) (7.26)

Proof. We have:

Comm(A i ) = f x 2 An j xA i = A i xg (7.27)

(7.28)

and so:

Comm(A i ) \ An = f x 2 An j xA i = A i xg \ An (7.29)

= f x 2 An j xA i = A i xg (7.30)

= Comm( A i ) (7.31)

The result follows.
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Strategy

We shall begin by proving the following:

Proposition 7.4.1.

Comm(A i )? = Alg( A i )? (7.32)

This implies in particular that:

Alg(A i ) = Comm(A i ) (7.33)

Taking the intersection of both sides with An we obtain Theorem 14.4.1
Our goal is now to prove proposition 14.4.1. It is clear that we have:

Comm(A i )? � Alg(A i )? (7.34)

We need only to prove the reverse inclusion of equation14.34.

Alg(A i )? � Comm(A i )? (7.35)

7.4.3 Commutators

Recall that the commutator of two operators X and Y is given by:

[X; Y ] = XY � Y X (7.36)

Lemma 7.4.4. For all x; y 2 A we have:

� (x[A i ; y]) = � (y[x; A i ]) (7.37)

Proof. By the linearity and the traciality of the state � , we have:

� (x[A i ; y]) = � (xA i y) � � (xyA i )

= � (yxA i ) � � (yA i x)

= � (y[x; A i ])

Our plan is to study the following family of �nite dimensiona l vector subspaces:

f [A i ; y]; y 2 Ad
ng (7.38)

Lemma 7.4.5. For all d � 1 we have the following inclusion:

f [A i ; y]; y 2 Ad
ng � Comm(A i )? (7.39)

Proof. Choose anyy 2 Ad
n . By lemma 14.4.4we have that if x 2 Comm(A i ) then:

� (x[A i ; y]) = � (y[x; A i ]) = 0

In other words [A i ; y] lies in the orthogonal complement of Comm(A i ).
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Lemma 7.4.6. For all d � 1

Alg(A i )? 6� f [A i ; y]; y 2 Ad
ng

Proof. For any j 6= i we haveA j 2 Alg(A i )? but we do not have A j 2 f [A i ; y]; y 2 Ad
ng

for any d.

Our goal in the next section will be to show that:

Proposition 7.4.2.

Alg(A i )? �
[

d� 1

f [A i ; y]; y 2 Ad
ng (7.40)

That is to say, for any B 2 Alg(A i )? there exists a sequence of operatorsf y1; y2; y3; : : :g
with: ym 2 Ad

n for somed which depends onm. such that, as a vector:

B = lim
m!1

[A i ; ym ] (7.41)

Note that this is to be understood as convergence in the metric space induced by the
inner product of the Fock spaceF.

Proposition 14.4.2 and Lemma 14.4.5 will together give us equation 14.35, thus
proving Theorem 14.4.1.

7.4.4 Projection formula

In this section we prove proposition 14.4.2 for i = 1. The general result follows by
symmetry.

Notation

Let S be any non-trivial element of A of the form:

S = Pj 1 (A i 1 )Pj 2 (A i 2 ) � � � Pj r (A i r )

such that j 1; j 2; : : : j r � 1 and j ` 6= j `+1 as well asi 1 6= 1 6= i r . We have:

S 2 Alg(A1)?

Next, for each n; k � 1 let:

Sn;k = Pn (A1)SPk (A1)

Again we have:

Sn;k 2 Alg(A1)?

In fact, the collection of all operators of the form Sn;k for all possible choices ofS form
a Hilbert basis for Alg(A1)?
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Simpli�cation

Lemma 7.4.7. If a and c both commute withx then:

[x; abc] = a[x; b]c

Proof.

[x; abc] = xabc� abcx

= axbc� abxc

= a[x; b]c

Proposition 7.4.3. If:

S 2
[

d� 1

f [A i ; y]; y 2 Ad
ng

Then, for all n; k � 0 we have:

Sn;k 2
[

d� 1

f [A i ; y]; y 2 Ad
ng

Proof. Suppose that we already have a sequence of operatorsf y1; y2; y3; : : :g with: ym 2
An such that:

S = lim
m!1

[A1; ym ]

It follows that:

Sn;k = lim
m!1

Pn (A1)[A1; ym ]Pk (A1)

= lim
m!1

[A1; Pn (A1) ym Pk (A1)]

= lim
m!1

[A1; zm ]

where zm = Pn (A1) ym Pk (A1). The result follows

Projection formula for arbitrary S:

S = lim
m!1

1
2m + 3

m� 1X

k=0

(m � k)([Sk;k +1 ; A1] � [Sk+1 ;k ; A1]) (7.42)

In order to prove this formula we will need some more notation. For �xed S, let W
denote the vector subspace spanned by all vectors of the form:

vn;k = [ Sn;k ; A1]

= Sn;k +1 � Sn+1 ;k + Sn;k � 1 � Sn� 1;k
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The second equality above is a consequence of the three-termrecurrence for Chebyshev
polynomials (see equation14.6). It will be convenient to make the following change of
notation:

en;k =
1

p
2

(Sn;k + Sk;n ) for n < k

ek;k = Sk;k

wn;k =
1

p
2

(vn;k � vk;n ) for n < k

We may now rewrite equation 14.42as follows:

sm =
1

2m + 3

m� 1X

k=0

(m � k)([Sk;k +1 ; A1] � [Sk+1 ;k ; A1])

=

p
2

2m + 3

m� 1X

k=0

(m � k)wk;k +1

=
1

2m + 3

m� 1X

k=0

(m � k)(
p

2ek;k +2 � 2ek+1 ;k+1 + 2ek;k �
p

2ek� 1;k+1 )

=
1

2m + 3

 

2me0;0 +
p

2
m� 1X

k=0

ek;k +2 � 2
mX

k=1

ek;k

!
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Suppose thatS is an element of degreet = j 1 + j 2 + � � � + j r . For each m � 0 let us
de�ne:

E 2m
S �

m[

d=0

A2d+ t
n (7.43)

to be the vector space spanned by theen;k for n + k even andn + k � 2m. Similarly,
let us de�ne, for each m � 0 the vector subspace:

W 2m� 1
S � E 2m

S (7.44)

to be the vector space spanned by thewn;k for n + k odd, n < k and n + k � 2m � 1.

Proposition 7.4.4. The vector sm is the orthogonal projection of the vectorS onto the
�nite dimensional subspaceW 2m� 1

S .

Proof. We shall show that the vector (S � sm ) lies in the orthogonal complement of
W 2m� 1

S with respect to E 2m
S . We begin by observing that if r > 2 then:

hS; ek;k + r i = hsm ; ek;k + r i = 0

Thus we may restrict ourselves even further to the subspace:

F � E 2m
S (7.45)

spanned by vectors of the formek;k or ek;k +2 with degree less than or equal to 2m. Next,
if j � i � 4 then:

hek;k ; wi;j i = hek;k +2 ; wi;j i = 0

Let U denote the vector subspace ofW 2m� 1
S spanned by vectors of the formwk;k +1

for k < m and wk;k +3 for k < m � 1. We must show that for all u 2 U we have:

hS � Sm jui = 0

Now:
(2m + 3) hSjw0;1i = he0;0j

p
2e0;0i = � (2m + 3)

p
2

While:

(2m + 3) hsm jw0;1i = h2me0;0j
p

2e0;0i + h
p

2e0;2; e0;2i + h� 2e1;1j �
p

2e1;1i

= (2 m + 3)
p

2

Next, for all i > 0 we have:
hSjwi;i +1 i = 0

and:

(2m + 3) hsm jwi;i +1 i = h
p

2ei;i +2 ; ei;i +2 i � h 2ei;i ;
p

2ei;i i

+ h2ei +1 ;i +1 ;
p

2ei +1 ;i +1 i � h
p

2ei � 1;i +1 jei +1 ;i +1 i

=
p

2 � 2
p

2 + 2
p

2 �
p

2

= 0
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Finally, for all i � 0 we have:

hSjwi;i +3 i = 0

While:

(2m + 3) hsm jwi;i +1 i = h
p

2ei;i +2 ; ei;i +2 i � h 2ei;i ;
p

2ei;i i

+ h2ei +1 ;i +1 ;
p

2ei +1 ;i +1 i � h
p

2ei � 1;i +1 jei +1 ;i +1 i

=
p

2 � 2
p

2 + 2
p

2 �
p

2

= 0

The result follows.

It remains to verify that:

lim
m!1

jj sm jj =
1

(2m + 3) 2

�
4m2 + 2m + 4m

�

= lim
m!1

2m
2m + 3

= 1

We have proven equation14.42and shown that:

S 2
[

d� 1

f [A i ; y]; y 2 Ad
ng

Theorems14.4.1and 14.4.2follow as a consequence of proposition14.4.3.

7.4.5 An interesting matrix

Let us �x the following order on the wet of vectors wn;k for n + k odd and n < k and
n + k � 2m � 1:

w0;1; w0;3; w1;2; w0;5; w1;4; w2;3; w0;7; w1;6; w2;5; w3;4; w0;9; w1;8; w2;7; w3;6; w4;5

For each m � 1 let Am denote the Gramm matrix of inner products hwn;k ; wn0;k0i
for n + k odd and n + k � 2m � 1. Let Bm = (2 m + 3) A � 1

m . Here is the matrix B5:
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B5 =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

5 0 4 0 0 3 0 0 0 2 0 0 0 0 1
0 12 4 0 9 3 0 0 6 2 0 0 0 3 1
4 4 8 0 3 6 0 0 2 4 0 0 0 1 2
0 0 0 15 9 3 0 10 6 2 0 0 5 3 1
0 9 3 9 18 6 0 6 12 4 0 0 3 6 2
3 3 6 3 6 9 0 2 4 6 0 0 1 2 3
0 0 0 0 0 0 14 10 6 2 0 7 5 3 1
0 0 0 10 6 2 10 20 12 4 0 5 10 6 2
0 6 2 6 12 4 6 12 18 6 0 3 6 9 3
2 2 4 2 4 6 2 4 6 8 0 1 2 3 4
0 0 0 0 0 0 0 0 0 0 9 7 5 3 1
0 0 0 0 0 0 7 5 3 1 7 14 10 6 2
0 0 0 5 3 1 5 10 6 2 5 10 15 9 3
0 3 1 3 6 2 3 6 9 3 3 6 9 12 4
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

We have used some colour to highlight the self-similar structure of this matrix.

We may block diagonalize the matrix B5 by conjugating by the following matrix:

U =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

� 4
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 � 3

4 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 � 3

4 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 � 2

3 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 � 2

3 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 � 2

3 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 � 1

2 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 � 1

2 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 � 1

2 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 � 1

2 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The matrix UB5UT is given by:

[5] �
1
5

�
60 20
20 24

�
�

1
4

2

4
60 36 12
36 45 15
12 15 18

3

5 �
1
3

2

6
6
4

42 30 18 6
30 40 24 8
18 24 30 10
6 8 10 12

3

7
7
5 �

1
2

2

6
6
6
6
4

18 14 10 6 2
14 21 15 9 3
10 15 20 12 4
6 9 12 15 5
2 3 4 5 6

3

7
7
7
7
5
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The matrix A5 is given by:
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

5 1 � 3 0 0 0 0 0 0 0 0 0 0 0 0
1 3 � 2 1 � 2 1 0 0 0 0 0 0 0 0 0

� 3 � 2 6 0 1 � 3 0 0 0 0 0 0 0 0 0
0 1 0 3 � 2 0 1 � 2 1 0 0 0 0 0 0
0 � 2 1 � 2 4 � 2 0 1 � 2 1 0 0 0 0 0
0 1 � 3 0 � 2 6 0 0 1 � 3 0 0 0 0 0
0 0 0 1 0 0 3 � 2 0 0 1 � 2 1 0 0
0 0 0 � 2 1 0 � 2 4 � 2 0 0 1 � 2 1 0
0 0 0 1 � 2 1 0 � 2 4 � 2 0 0 1 � 2 1
0 0 0 0 1 � 3 0 0 � 2 6 0 0 0 1 � 3
0 0 0 0 0 0 1 0 0 0 3 � 2 0 0 0
0 0 0 0 0 0 � 2 1 0 0 � 2 4 � 2 0 0
0 0 0 0 0 0 1 � 2 1 0 0 � 2 4 � 2 0
0 0 0 0 0 0 0 1 � 2 1 0 0 � 2 4 � 2
0 0 0 0 0 0 0 0 1 � 3 0 0 0 � 2 6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The matrix V = U � 1 is given by:

U � 1 =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4
5 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 3

4 0 0 1 0 0 0 0 0 0 0 0 0 0
3
5 0 3

4 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 2

3 0 0 0 1 0 0 0 0 0 0 0
0 1

2 0 0 2
3 0 0 0 1 0 0 0 0 0 0

2
5 0 1

2 0 0 2
3 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1

2 0 0 0 0 1 0 0 0
0 0 0 1

3 0 0 0 1
2 0 0 0 0 1 0 0

0 1
4 0 0 1

3 0 0 0 1
2 0 0 0 0 1 0

1
5 0 1

4 0 0 1
3 0 0 0 1

2 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The matrix V T A5V is given by:

1
5

[13]�
1
4

�
6 � 5

� 5 15

�
�

1
3

2

4
5 � 4 0

� 4 8 � 4
0 � 4 12

3

5�
1
2

2

6
6
4

4 � 3 0 0
� 3 6 � 3 0
0 � 3 6 � 3
0 0 � 3 9

3

7
7
5�

2

6
6
6
6
4

3 � 2 0 0 0
� 2 4 � 2 0 0
0 � 2 4 � 2 0
0 0 � 2 4 � 2
0 0 0 � 2 6

3

7
7
7
7
5

Note that:
13 = 7 + 18� 6 � 6

These examples suggest that there is some rich underlying structure which is worth
further pursuit.
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7.5 Conclusion

We have given a elementary proof that semicircular algebra is a factor in the sense of
Von Neumann algebras. Although this result is already known, our proof is particularly
simple. We have also given an explicit formula for the projection of any element onto the
dense subspace of commutators. It would be interesting to see if this approach could be
extended to the case of theq-semicircular algebra [BS91], or even the (q; t)-semicircular
algebra [Bli12].

Examining the Gramm matrix of the most natural basis for the space of commuta-
tors, we have found it to have an intriguing self-similar structure which may be inter-
esting to investigate further.
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Alternating sign matrix
Bruhat order, 108, 244
dual inversion, 97, 113, 233, 249
F(X) de�nition, 101, 237
G(X), de�nition, 107, 243
inversion, 97, 103, 113, 233, 239, 249
lambda weight, 113, 249
mu weight, 113, 249
shifts, 113, 249

Arbitrarily labelled
cylindric diagram, 23, 161
diagram, 19, 157
rectangle, 18, 156

Aztec diamond, 103, 239

Binary String
inversion, 14, 152
partial order, 16, 154

Borodin identity, 21, 159
Bijection

strongly weight preserving, 63, 72,
201, 210

Macdonald
re�ned, 75, 213

Schur
re�ned, 59, 197

Box
arm length, 14, 152
hook length, 14, 152
inside corner,14, 152
inversion coordinates,14, 152
leg length, 14, 152
outside corner,14, 152

Bruhat order, 95, 98, 231, 234

Burge correspondence
forward, 42, 180
reverse,42, 180

Burge permutation, 40, 178

Canonical commutation relations, 54, 192
Corner sum matrix

left, 100, 236
right, 107, 243

Cube
arm length, 80, 218
associated lattice path,81, 219
interlacing sequence de�nition, 20, 158
lattice path de�nition, 81, 219
leg length, 80, 218
peak cube,81, 219
surface cube,82, 220
valley cube, 81, 219

Cylinder, 82, 220
non-intersecting lattice paths, 82, 220

vertical reading, 83, 221
path, 82, 220

Cylindric diagram
cohook,71, 209
cylindric hook length, 23, 161
cylindric inversion coordinates,21, 159
de�nition, 20, 158
diag, 71, 209
inside corner,65, 203
outside corner,65, 203
re�ned weight, 63, 201
rotation operator, 24, 162
weight, 72, 210

Cylindric growth diagram

145
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de�nition, 68, 206
example,69, 207
face,68, 206
path, 68, 206

Cylindric poset, 67, 205

Determinant
lambda, 100, 236
lambda, multi-parameter, 114, 250
regular, 94, 230

Fomin growth diagram, 31, 169
horizontal type, 38, 176
input, 33, 171
local rules, 33, 171
output, 35, 173
patch, 37, 40, 175, 178
standardization, 35, 173
vertical type, 38, 39, 176, 177

Hall{Littlewood polynomials, 57, 195
Horizontal strip

properly labelled, 37, 38, 175, 176
regular, 16, 154

Interlacing matrices
left, down, 101, 237
left, up, 102, 238
right, down, 108, 244
right, up, 108, 244

Lattice, 95, 231
Local rule

Fomin, reverse,35, 173
Burge, 42, 180
Fomin, forward, 32, 170
RSK, 42, 180
symmetric functions, 50, 188
weight condition, 39, 43, 177, 181

Macdonald polynomial
Cauchy identity, 55, 193
de�nition, 55, 193
dual Pieri formula, 56, 194
dual Pieri operator, 55, 193
inner product, 55, 193
Pieri formula, 56, 194
Pieri operator, 55, 193

MacMahon identity, 18, 156
Monotone triangle, 95, 98, 231, 234

Partition
dominance order,16, 154
lexicographic order, 16, 154
pro�le, generalized, 15, 153
pro�le, minimum, 13, 151

Permutation
block, 39, 177
dual inversion, 94, 230
inversion, 93, 229
partial

decreasing chain,37, 175
increasing chain,37, 175

Plane partition
cylindric, 19, 157
regular, 17, 155
reverse,18, 156

Plethystic notation, 46, 54, 184, 192
Pochhammer symbol,54, 192
Poset, 95, 231

Robinson correspondence
regular, 25, 163
skew, 33, 36, 171, 174

RSK correspondence
forward, 42, 180
reverse,41, 179

RSK permutation, 39, 177

Schur function
Cauchy identity, 48, 186
de�nition, 47, 53, 185, 191
dual Pieri formula, 49, 187
Hall inner product, 47, 185
Pieri formula, 49, 187

Stanley identity, 19, 157
Symmetric function


( Xz ) de�nition, 47, 185

 � (X ) de�nition, 49, 187

Tableau
de-standardization, 37, 175
semi-standard,36, 174

content, 36, 174
skew standard,32, 170
standard, 25, 32, 163, 170
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standardization, 37, 175

Vertical strip
properly labelled, 39, 177
regular, 17, 155

Viennot shadow, 28, 166

Yamanouchi word, 25, 163
Young diagram, 13, 151
Young lattice, 15, 153
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