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Cylindric plane partitions, Lambda determinants, Commutant s in
semicircular systems

Resune

Cette these se compose de trois parties. La premere parg est consacee aux partitions
planes cylindriques, la deuxeme aux lambda-ceterminarts et enn la troiseme aux
commutateurs dans les syseemes semi-circulaires.

La classe des partitions planes cylindriques est une gemalisation naturelle de celle
des partitions planes inverses. Borodin a donre ecemmenune srie gereratrice pour
les partitions planes cylindriques. Notre premier esultat est une preuve bijective de
cette identie utilisant les diagrammes de croissance de &min for la correspondance
RSK cererali®e. Le deuxeme esultat est un ( q;t)-analogue de la formule de Borodin,
qui gereralise un eultat d'Okada. Enn le troieme e sultat de la premere partie est
une description combinatoire explicite du poids de Macdonkl intervenant dans cette
formule, qui utilise un mocetle de chemins non-intersectai pour les partitions planes
cylindriques.

Les matricesa signes alternants ontee decouvertes par Robbins et Rumsey alors
gu'ils etudiaient les -ceterminants. Dans la deuxeme partie de cette these nous
cemontrons une ereralisation a plusieurs paranetre s de ce -ceterminant, general-
isant un esultat ecent de di Francesco. Comme le -determinant, notre formule est un
exemple dupkenonene de Laurent.

Les sysemes semi-circulaires ont et introduits par Voiculescu an detudier les
algebres de von Neumann des groupes libres. Dans la troime partie de la trese, nous
etudions les commutateurs dans l'algebre engendee parun syseme semi-circuliare.
Nous avons mis enevidence une matrice possdant une strigre auto-silimaire ineressante,
qui nous permet de donner une formule explicite pour la projetion sur I'epace des com-
mutateurs de dege donre. En utilisant cette expression, nous donnons une preuve
simple du fait que les syseme semi-circulaires engendrémles facteurs.

Keywords:

Cylindric partitions, Borodin's identity, growth diagram s, local rules, Schur functions,
Pieri rules, Cauchy identity, Macdonald polynomials, comnutation relations, RSK cor-

respondence, non-intersecting lattice paths on the cylindr, alternating sign matrices,
domino tilings of Aztec diamond, Bruhat order, lambda determinants, Laurent phe-
nomenon, semicircular systems, von Neumann algebras, frggobability theory, Cheby-

shev polynomials.



Vi Rsum

Abstract

This thesis is divided into three parts. The rst part deals with cylindric plane parti-
tions. The second with lambda-determinants and the third with commutators in semi-
circular systems.

Cylindric plane partitions may be thought of as a natural generalization of reverse
plane partitions. A generating series for the enumeration 6 cylindric plane partitions
was recently given by Borodin. The rst result of section oneis a new bijective proof
of Borodin's identity which makes use of Fomin's growth diagam framework for gener-
alized RSK correspondences. The second result is g;t)-analog of Borodin's identity
which extends previous work by Okada in the reverse plane péition case. The third re-
sult is an explicit combinatorial interpretation of the Mac donald weight occurring in the
(g; t)-analog using the non-intersecting lattice path model forcylindric plane partitions.

Alternating sign matrices were discovered by Robbins and Rmsey whilst studying -
determinants. In the second part of this thesis we prove a multi-parameteigeneralization
of the -determinant, generalizing a recent result by di Francesco Like the original -
determinant, our formula exhibits the Laurent phenomenon

Semicircular systems were rst introduced by Voiculescu asa part of his study of
von Neumann algebras. In the third part of this thesis we stud/ certain commutator
subalgebras of the semicircular system. We nd a projectiomrmatrix with an interesting
self-similar structure. Making use of our projection formua we given an alternative,
elementary proof that the semicircular system is a factor.

Keywords:

Cylindric partitions, Borodin's identity, growth diagram s, local rules, Schur functions,
Pieri rules, Cauchy identity, Macdonald polynomials, commnutation relations, RSK cor-

respondence, non-intersecting lattice paths on the cylindr, alternating sign matrices,
domino tilings of Aztec diamond, Bruhat order, lambda deteminants, Laurent phe-
nomenon, semicircular systems, von Neumann algebras, frggobability theory, Cheby-

shev polynomials.
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Introduction

This thesis is divided into three parts. The three parts are atirely independent and
may be read in any order. The rst part is signi cantly longer than the other two.

Part | deals with cylindric plane partitions. The main tools used are the theory of
symmetric functions and Macdonald polynomials Mac95] and Fomin's theory of growth
diagrams [Fom88, Fom95]. The results of this section are entirely my own. They were
presented as a poster at FPSAC 2012 and will appear in the Elé¢mnic Journal of
combinatorics.

Part 1l deals with a multi-parameter generalization of the -determinant of Rob-
bins and Rumsey RR86] which was originally conjectured by Alain Lascoux. Our
formula exhibits the Laurent phenomenon[FZ02]. It also generalizes a recent result by
di Franceso PiF12]. Our approach is completely di erent from that of di France sco. We
follow the original proof of Robbins and Rumsey closely, ankyzing carefully the Bruhat
order structure on pairs of interlacing alternating sign matrices (or equivalently, domino
tilings of the Aztec Diamond [EKLP92]). The idea for the proof was suggested by my
advisor, Philippe Biane. This work is not yet published.

Part Il is a study of commutators in semicircular systems [Voi90]. This section is
somewhat of a work in progress. Although we have some prelimary results, we have
not yet had the chance to apply them seriously. This is joint work with Philippe Biane.

Cylindric Plane Partitions

Summary of results

There are three main results in this section. The rst is a bijective proof of Borodin's
identity. The second is a Macdonald polynomial analog. The hird is a combinatorial
interpretation of the weight function which appears in the Macdonald polynomial analog
of Borodin's identity.

Our bijection actually proves a re ned version of Borodin's identity. The re ned
version of the reverse plane partition case is due to GasnefG[E81]. A bijective proof
using Fomin's growth diagram framework was previously giva in the reverse plane
partition case by Krattenthaler [ Kra06]. | was inspired to attempt the cylindric case
after reading a well-written paper by Adachi [Ada08g].

The Macdonald polynomial analog is also proved in the full geerality of the re ned
case. The Macdonald analog of the reverse plane partition & is due to Okada Qkald].
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2 Introduction

The Hall{Littlewood case of cylindric identity is due to Cor teel and Savelief, Cyrille and
Vuletc [ CSV11]. The commutation relations which are key to the whole apprach are
due to Haiman, Garcia and Tesler GHT99]. When g = 0 our combinatorial formula for
the weight function reduces to the Hall{Littlewood version given in [CSV1]].

Bijective proof of Borodin's identity

Cylindric plane partitions were rst introduced by Gessel and Krattenthaler [ GK97].
For any binary string  of length T, a cylindric plane partition with prole  may be
de ned as a sequence of integer partitions:

( 0; l; e T) [U—
such thatif , =1then k=X lisahorizontal strip. Otherwise if  =0then k 1=k
is a horizontal strip (see Section8.1.4).

The weight of a cylindric partition is given by jg = j 1j+j 2j+ | 71j. Inthe special
case where o = 1 = ; we recover the usual de nition of areverse plane partition If,
in addition to this there are no inversions in the pro le, we have aregular plane partition
(see Section8.2).

For those readers who are more familiar with the de nition of a plane partition as an
array of integers which is weakly decreasing along both rowand columns, the bijection
with the \interlacing sequence" model is obtained by readirg from right to left along
the NW ! SE diagonals. For example, the plane partition:

2

1
1/{1/1|/0|0

0

0/0|0|0]|0

corresponds to the following sequence of partitions:
c=(::(2);(2,1);(3:1);(4,2,1);(3;1); (1); (1);3)

A regular plane partition may also be thought of as a pair of semi-standard Young
tableaux of the same shape. In the case of our example, the two tableawre:

4 4
412 4(3
(4]3]1]1] [4]3]3]1

We are using neither the French nor the English notation for Young diagrams. The rst
tableau in the pair corresponds to the rst half of the sequerce read o the NW ! SE
diagonals, from right to left:

@ D &L 421

while the second tableau in the pair corresponds to the secahhalf of the sequence read
o the NW ! SE diagonals, from right to left:

M W GD* (4,21)
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The RSK correspondence gives a bijection between pairs of standaibung tableau
of the same shape, and integer matrices with non-negative tegers. This is essentially
the Cauchy identity for symmetric functions:

Y 1 X
— = S (X)S (Y
T (X)S (¥)

In 2007 Borodin [Bor07] gave a symmetric function theoretic proof of the following

hook-product formula for the enumeration of cylindric plane partitions of given pro le

of length T . In 2008, a very di erent proof involving the representation theory of
8(n) was given by Tingley [Tin08]:

0 1
X i Y % 1 Y 1 Y 1 §
z7 = 1 Z+nnT 1 gz i+nT 1 7 (T
@CPP( ) n o i< i>]

P> P>
This identity generalizes, not only MacMahon's identity for regular plane partitions:

1 n

Zi4 =
1 2zn

@PP
but also Stanley's identity for reverse plane partitions:
1

1 oz
C2RPP( ) i<j
i

9 =

The Robinson correspondencdRob3§ gives a bijection between permutations and
pairs of standard tableaux of the same shape. Fomin's growth diagram framework
[Fom8§] gives a particularly elegant way of understanding this biection. Fomin's growth
diagram framework is strictly equivalent to Viennot's geometric construction [Vie77] (see
Section 9.1).

Underlying Fomin's approach is an action of theWeyl algebraon integer partitions
(see Section10.5.4. The creation operator c adds a box to a partition in every way
possible. The annihilation operator c removes a box from a partition in every way
possible. Thecanonical commutation relations:

[c;c]=1

can be understood as saying that each integer partition alwgs has one more outside
corner than inside corner.

Fomin also showed Fom95] that his abstract framework can be applied in the context
of a wide class of commutation relations, including those cmmmutation relations between
vertex operators used to study plane partitions by OkounkovReshetikhin [OR03]. The
speci c local rules which are needed in this case were desbad explicitly by vanLeeuwen
[vLO5]. Interestingly, the local rules which are needed for the fll RSK correspondence
can be derived directly from those which apply in the specialcase of the Robinson
correspondence (see Sectio.?).
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The commutation relations which we are interested in are thee between thePieri
operator [ Xz] and the dual Pieri operator [Xz]. These operators act on Schur
functions as follows:

X X
[ Xz]S [X]= S [XIn[X]z' = S [X]Z'
r X 2Ur ()
[Xz]S =S [X + z]= S [X]Z'
2D ()

Here U;( ) denotes the set of all partitions which can be obtained from by adding
a horizontal r-strip and D;( ) denotes the set of all partitions which can be obtained
from by removing a horizontal r-strip.

The Pieri operators satisfy the following commutation relations (see Sectionl0.4.2:

[Xul[ Xv]=

T oy XVl Xul

In section 11.1 we give a slightly simpli ed algebraic proof of Borodin's identity
using only the above commutation relation and a certain \traciality property". The
de nitions in Section 8.3 are necessary to understand the framework of the bijective
proof which is contained in Section11.2. The bijection itself is described in Section
11.3 The proof that the bijection is weight preserving is given in Section 11.4

Macdonald Polynomial analog

Macdonald polynomialsfP (X)g [Mac95 are a family of symmetric polynomials over
the ring Q(q;t) of rational functions in q and t. The Macdonald polynomials bear a
number of remarkable similarities with the Schur functions. In particular the Macdonald
polynomials satisfy the following (q; t)-analog of the Cauchy identity (see Sectionl0.6.3:

Y (txiyj; A1 _X Y (1 ¢ Of O+
L (Xiyjia) o (1 gt (O ()

P (X;0;9P (Y;a;t)
iij
The Macdonald polynomials also satisfy a (; t)-analog of the Pieri rules:

X
[ Xz]gtP (X;q;0) = = (P (X;q;02
2U( )
X L
Xz]qtP (X;0;1) = "o ()P (X2 )
2D( )

The Pieri coe cients ([ Mac99 page 341) are given by:

@9 Y 1 R Ot (941 Y 1 o 1t
' = q,t = +1 ¢+ N +1
we. 1 @ Ot (9 e, 1 @Ot 6
Y 1 o (1t () Y 1 (8)t" ()41
= ()=

[EEN

1 @ Ot (oL

a (s)+1t (s
S6Z - S6Z _ q © t ®

Here C- denotes the set of columns of which are longer than the corresponding
columns of . In Section 12.1 we prove the following (g; t)-analog of Borodin's identity:
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Theorem 0.0.1.

0 1
X . Y 1 Y tzi i+nT. Y tzl iH(n+)T.
We(q; )29 = %1 2D T ((sz i+ nT .’C?))l ((sz i+(n+l)T.’C?))1 §
@CPP( ) n o i<j VL 1
P> P>
1)
where the weight function is given by:
Y Y
We(q; 1) = "ok k(oY) k 1= (05 1) (2)
k=0 k=0
k=1 k=0

Our proof relies on the following (q; t)-analog of the commutation relation which is due
to Haiman, Garcia and Tesler [GHT99]:

(tuv; )1

QJt[XU] qtlXv] = (UV: Q)1

q;t[XV] q;t[Xu] (3)

Simpli cation of weight function

Although we have de ned cylindric plane partitions as certain sequences of integer
partitions which di er by a horizontal strip, it is also poss ible to de ne them families
of non-intersecting lattice paths on a cylinder (see Sectin 12.2.1). Using this latter
de nition, the weight function Wc(q;t) may be greatly simpli ed.
Recall that in the plethystic notation [ GHT99] if:
X
a(q;t) = anm q't™

n;m

with an.m 2 Z and ag,p = 0, then we have:

[ a(g; )] = . @ qtmyanm

In section 12.3 we make use of the plethystic notation to give the cylindric weight
function the following explicit combinatorial descriptio n:

Theorem 0.0.2.

We(g;t) = [( g t)D(a;1)] 4)
where the alphabeD(q;1) is given by:
Dc(q, t) = X qac(s)t\c(s) X qac(s)t\c(s) (5)
s2 peak(c) s2valley (0

The precise de nition of \valley" and \peak" cubes depend on the lattice path
picture. They are de ned in section 12.2.2
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Outline

For the impatient reader, here is a quick road map. Page linkgo important de nitions
can be found in the index.

The most important part of Chapter 1 is the section pertaining to cylindric diagrams,
cylindric inversion co-ordinates and cylindric hook lenghs, as well as the rotation oper-
ator. The purpose of section8.2 is to act as a motivator for the de nition or arbitrary
cylindric diagrams in section 8.3.5 The de nition of arms and legs in 8.1.2 will be
needed for the de nition of the Macdonald polynomial weight de ned in section 10.6.3

Chapter 2 does not contain original work, and with the excepton of Section9.2.10
is not strictly speaking needed in order to construct the cyindric bijection. It does
nevertheless provide motivation and intuition for understanding Section11.2.

The introduction to the theory of symmetric functions in chapter 3 is very brief.
The key point is the Pieri formula and the commutation relati ons in both the Schur and
Macdonald cases. Sectiond0.4 and 10.5 attempt to clarify the relation between the
algebra and the combinatorics.

Section 11.1 contains all the algebra that is needed to understand sectio 12.1. It
is not strictly needed to understand the bijection, since the bijection can be formulated
in a purely combinatorial manner. Section 11.2 sets up notation required for working
with local rules and encoding the recursive structure of thebijection. Section 11.3
de nes cylindric growth diagrams and veri es that they act a s an \interpolation" object
between the two sides of the identity to be proved. Finally in section 11.4 we verify
that the bijection which has been constructed in the previows two sections is weight
preserving.

In section 12.1 we prove Theorem7.5.1. In Section 12.2.1we describe how cylindric
plane partitions may be interpreted as non-intersecting ldatice paths on a cylinder. It is
here that we de ne peak and valley cubes, amongst other thing. The diagonal reading
of a family of non-intersecting lattice paths together with Proposition 12.2.1is crucial
for understanding the combinatorial reformulation of the weight function. The rest can
be safely ignored.

In section 12.3 we prove Theorem7.5.2 The key point to understand is that in
the \interlacing sequence" model the cubes are grouped acoding to which partition in
the sequence they belong to. In the lattice path model, cube$rom the same column
number but di erent partitions are grouped together. To get from one de nition of the
weight function to the other, we simply switch between thesetwo models.

Lambda determinants

Main result

An alternating sign matrix is a square matrix of 0's 1's and 1's such that the sum of
each row and column is 1 and the non-zero entries in each row drcolumn alternate in
sign. For example:

0 1
00 1 0
_Bo 1 1&
AZ@ o o
00 1 0
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A permutation matrix is an special case of an alternating sign matrix with no ( 1)'s.
The total number of alternating sign matrices of sizen is given by:

Y1 @Ek+)

A=
y (N K

1,1;2,7,42,429 7436 :::

The rst proof of this result was given by Zeilberger [Zei96. A much simpli ed proof
was given by Kuperberg Kup96]. Kuperberg's proof made use of ideas from the theory
of integrable systems, the Yang-Baxter equation and the sixvertex model with domain
wall boundary conditions. It also made use of a recurrence tation due to Izergin and
Korepin [KBI93].

The theory of alternating sign matrices is currently an active area of research. One
long standing open problem is to nd an explicit bijection between the set of alternating
sign matrices andtotally symmetric self-complementary plane partitions[MRR86]. Al-
ternating sign matrices also played a key role in the recengt proven Razumov-Strogano
conjecture [CS11]].

The rst time which alternating sign matrices appeared in th e literature was in the
famous paper by Robbins and RumseyRR86] on the lambda-determinant The lambda
determinant may be de ned as follows:

For eachk =0 :::n let us denote byxu[k] the doubly indexed collection of variables
Xn[K]i;j with indices running from i;j =1:(n k+1). One should think of the variables
as forming a square pyramid with basen + 1 by n + 1. The index k determines the
\height" of the variable in the pyramid.

The variables are initialized as follows:

Xn[Ofj =1forall i;j =1:(n+1)
Xn[1]j = Mj; forall i;j =1:n

The value of the remaining variables is calculated via the fdowing recurrence:

Xn[Klijj Xn[Kli+1;j+1 + X n[K]ij +2 Xn[K]i+1;;
Xn[K 14141

Xn[k + 1] = (6)

The end result [RR86] is that:

X Y y
Xn[Ny1 = ML+ NG M
B2 A, ihj =1

Here A, denotes the set of all alternating sign matrices of sizen, inv(B) denotes the
inversion number of B and N (B) denotes the number of negative ones irB.

Note that the -determinant exhibits the Laurent phenomenon[FZ02]. From the
recursive de nition we expect the value ofx,[n]1.1 to be a rational function. The fact
that it is a Laurent polynomial is very surprising.

When = 1the -determinant reduces to the regular determinant, and the reur-
sive method for calculating the determinant above reducesd the algorithm known as
Dodgson condensationBre99).
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Our main result is to replace the recurrence given in equatio 7.51 by the following
recurrence:
in k+1 jXn[Klij Xn[Kli+1;+1 + ij Xn[Klij +1 Xn[K]i+1;

Xn [k + 1] i = ’ Xn[k 1]i+1 J+1 (7)

This is a more general case of the recurrence considered by Eiancesco DiF12]. The
closed form expression which we ne forx,[n]s.1 is the following:
0 1
X 5 Y Y Y
Xn[N]1;1 = ME @ i in+l (iner j+ )A
jBj=n (i:j )2inv(B) (i:j )2dinv( B) Biy= 1
where inv(B) denotes the set ofinversions of B and dinv(B) denotes the set ofdual

inversions of B. Note that our formula also exhibits the Laurent phenomenon
It is also possible to consider more general initial conditns:

Xn [OJ;;
Xn[1i;

Ni; foralli;j =1:(n+1)
Mi; foralli;j =1:n

and give a closed form expression fok,[k + 1]1.1. In order to do this we must rst
introduce the idea of interlacing matrices, which are closely related todomino tilings of
the Aztec diamond [EKLP92]. We may state the formula here, however the reader will
have to wait until sections 13.3.1and 13.4.1for the de nitions of F (B) and G"(B).

X F (B) G"(B)

Xnlk +1]1.1 = s(F (A)) t(G"(A))

MBs(N) A (8)

(AB)
iBj=kjjAj=k 1

The sum is over all pairs of interlacing matrices.

Outline

In Section 13.1 we de ne the Bruhat order. We show how a permutation can be rep
resented by a monotone triangle, and look at the inversions iad dual inversion of a
permutation.

In Section 13.2we de ne alternating sign matrices, and show that they compékte the
Bruhat order as a lattice. We extend the de nition of monotone triangle to alternating
sign matrices, as well as the de nition of inversion and dualinversion.

In Section 13.3we de ne left corner sum matrices and left interlacing matrices, We
show that pairs of left interlacing matrices are in bijection with domino tilings of the
Aztec diamond. It is here that we de ne the notation for F(B).

In Section 13.4 we de ne right corner sum matrices and right interlacing matrices
We study the duality between left and right interlacing matr ices. It is here that we
de ne the notation for G(B).

In Section 13.5we prove our main theorem. The proof is by recurrence and malke
use of results established in Sectiori 3.4
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Semicircular systems

For any Hilbert space H we may de ne its Fock spaceF to be the metric closure of the
tensor algebra ofH. That is:
F=T(H)
where:
T(H)= n oH

Let us x to be some element of H © of norm 1. For any v 2 H one can construct
the creation operator:
ox]=v x

as well as theannihilation operator

cl]=0
o [x yl= hvjxiy

An operator of the form A, = ¢, + ¢, may be thought of as asemi-circular random
variable [Voi90]. Let A denote the von Neumann algebra generated by the semi-circait
random variables of the formA,. The map:

AT A[]

gives an embedding ofA into F (as a vector space). We are interested in subspaces of
F of the form:
Va = fI[AlYLy 2 Ag

where A is some xed element ofA.

In Section 14.4.5we study the Gramm-matrix of a natural, non-orthogonal basis
of Va. We nd that this matrix has a curious self-similar structur e. In Section 14.4.1
we nd an explicit projection formula for the projection of a ny B which is not in the
subalgebra of A generated by A onto the subspaceV,. This allows us to prove, in
particular, that the center of A is trivial. Although this is already well known [ Voi90],
our proof is particularly simple and elementary.
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1. Partitions

1.1 Integer Partitions

An integer partition is simply a weakly decreasing list of non-negative integers.t is
often convenient to represent an integer partition visually as a Young diagram, which
is a collection of \boxes" in the Cartesian plane which are \sacked up" in the bottom
right hand corner.

N
=(5;33,2)

Note that our convention di ers from both the standard frenc h and English conven-
tions. If the sum of the parts of is equal ton, then we say that is a partition of n
and write j j = n. If has exactly k distinct non-zero parts, then we say that has
length k and write “( ) = k. The generating series for integer partitions is given by:

o 1
Z it () = T (1.1)
n 1
The conjugate of the integer partition = ( 1; 2;:::; ) is dened to be ©=
(% i D where P=#fij ; g For example the conjugate of the partition

=(5;3;32)is °=(4;4;3;1;1). In terms of Young diagrams, conjugating a partition
is equivalent to re ecting about the main diagonal.

0= (4:4;3,1;1)

1.1.1 Inversions

The minimum pro le of an integer partition is the binary string which traces out the
\jagged boundary" of the associated Young diagram. Readingrom the top right hand

13



14 Chapitre 1 | Partitions

corner to the bottom left hand corner, a zero is recorded for eery vertical step and a
one for every horizontal step. For example the minimum pro le of our example partition
=(5;3;3;2) is 110100110:

11
1[0
0
110
0]

The minimum pro le of an integer partition necessarily starts with a one and ends
with a zero. An integer partition is uniquely determined by its minimum pro le.
An inversion in a binary string is a pair of indices (;j ) such that i <j and
i > j. There is a natural bijection between the \boxes" of an integer partiton and
the inversions in the minimum pro le  of the partition . The box marked with a star
below has inversion co-ordinates (26) because the one lying above it is position 2 in
the pro le, while the zero lying to the left of it is position 6 in the pro le.

11
0

[EEY

o

110
0]

=110100110

1.1.2 Arms, legs and hooks

Let s be a box of the partition with prole . Suppose thats has \inversion coordi-
nates” (i;j ). The arm length of s is given by:

a(s)=#fi<k<j j x=1g (1.2)
The leg lengthof s is given by:

T (s)=# fi<k<j j x=0g (1.3)
The hook lengthof s is given by:

h(s)=a(s)+b(s)+1=j i (1.4)

The arm length of the box s counts the number of boxes in the same row as lying
to the left, while the leg length of s counts the number of boxes in the same column as
s but above. The arm length of our example box, marked with a sta in the diagram
above, is equal to 1 while the leg length is equal to 2.

A box with arm length zero and leg length zero is said to be anoutside corner.
Equivalently an outside corner corresponds to a subword ofhie pro le of the form 10.
An inside corner is de ned to be a subword of the pro le of the form 01. The outside
corners of our example pro le are the following:
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110100110 11000110 11010010
The inside corners of our example pro le are the following:
110100110 11010110

The number of outside corners is always equal to one more thathe number of inside
corners. An integer partition always has exactly one more otside corner than inside
corner.

1.1.3 Partial orders

Generalized pro les

A generalized pro le is an arbitrary string of zeros and ones. A generalized proé
may be thought of as an integer partition pre-conceived as $ling inside some larger
rectangle. For example the generalized pro le of our exam@ partiton = (5;3;3;2)
thought of as sitting inside an 8 by 8 box is 0000110100110111

0
0
0
110
1[0
0
1 1[0
11 1[0]

Let Bin( n; m) denote the set of all binary strings with n zeros andm ones. This set
is in bijection with the set of all integer partitions whose Young diagrams t inside an
n by m box. For any pair of integer partitons and we may nd some (n; m) such
that both and admit generalized pro les lying in Bin(n; m).

Young lattice

It is possible to de ne a partial order on the set of all integer partitions. For any two
partitions and we say that if the Young diagram of ts inside the Young
diagram of . For any pair of partitions and there is a unique smallest partition
containing both  and which we denote by [ . Similarly there is a unique largest
partition contained in both and which we denote by \ . In other words, our
partial order forms a lattice which is known as the Young lattice

3:31) (5332)
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Partial order on binary strings

It is also possible to de ne a partial order on Bin(n; m) whose covering relations are
given by Oif and only if there is somei suchthat { =0= 0, and j;; =1= 0
and for all other k we have E = . In other words Cis obtained from by adding an
inversion.

If s the partition with generalized prole and Cis the partition with generalized
prole Cwith ; ©2 Bin(n;m) then Oif and only if °can be obtained from by
adding a single box.

We shall denote by min the binary string with n zeros follows bym ones and max
the binary string with m ones follows byn zeros. Note that n;, corresponds to the
empty partition, while  pmax = (m;m;:::;m).

Dominance and lexicographic order

Finally, the dominance order on integer partitions is dened by E if and only if:

1 1
1t 2 1t 2
1t 27 k 1t 27t T ok
The lexicographical order is a total order de ned on integer partitions by if
and only if there exists somem such that > nand ;= ;foralli m. Note
that E implies but the converse is false.

1.1.4 Horizontal and vertical strips

For any pair of partitions and satisfying we say that = is ahorizontal strip
and write * if and only if

1 1 2 2

Equivalently, * if and only if each column of contains at most one more box
than the corresponding column of .

(3;3;3)* (5:3;3;,2)

In terms of proles, = is a horizontal strip if and only if the generalized pro le
of can be obtained from the generalized pro le of by \hopping” some of the ones,
which may be thought of as \particles", a single step to the Idft.
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1\ 1\ 0 |1 0 1\ 1\ 0 | 1
o 1 1 1 0 O O 1 1 1
Similarly, for any pair of partitions and satisfying we say that = is a
vertical strip and write + if and only if
0 0 0 0
1 1 2 2
Equivalently, + if and only if each column of contains at most one more box

than the correspondingrow of

(4,2,2,2) + (5;3,3,2)

In terms of proles, = is a vertical strip if and only if the generalized pro le of
can be obtained from the generalized pro le of by \hopping" some of the zeros, which
may be thought of as \holes", a single step to the right.

(l) Cl) 1 1 (l) 1/0/0 1 1/0 1
o 0o 11 0 O O 1 1 O 1 1
If = is a horizontal strip, then the conjugate % C%is a vertical strip. The pro le

of Cis obtained from the pro le of by reversing the string and interchanging the role
of zeros and ones.

1.2 Plane partitions

Throughout this section, all labels are assumed to be non-rgative integers.

1.2.1 Regular plane partitions

A regular plane partition is a labelled rectangle whose labels are weakly decreasimgm
north to south, and from east to west. The weight of a regular partition is the sum of
the labels. For example, the following regular plane partiion has weight 22:

4 0

OO, [INW
OO [(FPIN
O |Oo|O(FrIN

ORIk, IW

0
0
0
0




18 Chapitre 1 | Partitions

In general we may think of the rectangle as extending in nitely in both the eastern
and southern directions. We require that only a nite number of labels are non-zero.

Reading from right to left along the NW ! SE diagonals we obtain a sequence of
integer partitions which di er each by a horizontal strip. T he sequence increases rst,
and then decreases:

c=(;:(2);(2;1);(3;1);(4,21);(3;1);(1); (1); )

The generating series for regular plane partitions is giverby MacMahon's famous
formula: X v L N

zZ’7 =
1 2z

(1.5)
@2PP n1
The right hand side of MacMahon's identity can be expressedr terms of hook lengths
as follows: v L Ny L v L

noo ] 1 h (9
nllZ i;jllZ 3212

The third product is over all boxes of the in nite rectangle which we denote by the
symbol

Let us de ne an arbitrarily labelled rectangle to be a labelled rectangle with no
conditions whatsoever on the labels. For example:

0 0|0
0 2|0
3 0|0

0|0|0|1

O|IN|F

The weight of an arbitrarily labelled rectangle is given by a sum over the boxes of
the diagram of [the label of the box] times [the hook length ofthe box]. In our example
above the weight is given by:

1 2+2 3+2 4+3 3+1 7=32
The right hand side of MacMahon's identity may be interpreted as a weighted sum
over all arbitrarily labelled rectangles.
1.2.2 Reverse plane partitions

A reverse plane partition is a labelled Young diagram with the property that the labels
are weakly decreasing in both the eastern and southern dird¢ions. For example:

3[3
4[3]3
4[2]1

[4]4]3]1]1

Reading from right to left along the NW ! SE diagonals we have the following
sequence of integer partitions:

SN €< I €< M) I QR H R CES A0 I G G D QR €€ I € Bl CO B QR
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Let be the shape of the Young diagram, and let be its prole. An equivalent
de nition for a reverse plane partition of shape is the following:

De nition 1.2.1.  For any binary string  of length T, a reverse plane partition with
prole is a sequence of integer partitions:

G: Loz T

such that if , =1 then k= k 1is a horizontal strip, otherwise if | =0 then k 1=k
is a horizontal strip.

The following formula for the enumeration of reverse plane prtitions with arbitrary
prole is due to Stanley [Sta77:
Y 1

219 = _
z !

(1.6)
2RPP( ) I|<>J |

Note that the right hand side could have been written in the form:
Y 1 Y 1

7 h (s
z Sz12()

i<j
P>

Let us de ne an arbitrarily labelled diagrams of shape to be a labelled Young
diagram of shape with no conditions whatsoever on the labels. For example:

0|3
o[1]0
2]0]1
lo]oJo[1]0

The weight of an arbitrarily labelled diagram of shape is given by a sum over the
boxes of the diagram of [the label of the box] times [the hookdngth of the box]. In our
example above the weight is given by:

3 2+1 3+2 2+1 5+1 7=25
The right hand side of Stanley's identity may be interpreted as a weighted sum over
all arbitrarily labelled diagrams of shape .
1.3 Cylindric Plane Partitions

1.3.1 De nition

Cylindric plane partitions were rst introduced by Gessel and Krattenthaler [ GK97].
We shall work with a modi ed, though equivalent, de nition.
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De nition 1.3.1.  For any binary string  of length T, a cylindric plane partition with
prole may be de ned as a sequence of integer partitions:

(% Lo M 0= T 1.7)
such thatif y =1 then k= X 1is a horizontal strip, otherwise if , =0 then k 1=k
is a horizontal strip.

In the special case where 0= T = we recover the usual de nition of a reverse
plane partition.

De nition 1.3.2. A cube of a cylindric plane partition is de ned to be a box of one

of the underlying integer partitions.
De nition 1.3.3.  The weight of the cylindric partition ¢=( % ;::: T)is given by
jg=j +i g+ T

In other words, the weight of a cylindric plane partition is the number of cubes.
Note that to avoid double counting, we do not include the boxes of the partition © in
the de nition of the weight of c.

1.3.2 Cylindric diagrams

A cylindric diagram may be thought of as an in nite partition with periodic prol e,
which has been wrapped around a cylinder. Here is an examplef a cylindric diagram

with pro le = 10100 and period T = 5. The \fundamental domain" is coloured in
yellow.
1
1/0
0
1/0
1/0
0
1|0
110
0
110
1|0
0
0

Note that the pro le is read from top to bottom, right to left. The 1's represent hori-
zontal steps while the O's represent vertical steps. Althogh we have not drawn all of it,
the diagram above is to be understood to extend in nitely in the Eastern and Southern
directions.

Cylindric plane partitions are often represented as labekd cylindric diagrams. For
example, the cylindric plane partition

c=((3:2,2);(4;3;2,1);(4;3;2);(6;4,3;2);(5;3,2);(3; 2, 2)
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with pro le 10100 may be represented as:

(6]
NjWw|h~|P>
NfwWwlwlwlw

NINININ
O IN

2]0|0

The individual partitions in the interlacing sequence picture are read o the NW ! SE
diagonals in order from right to left.

Lemma 1.3.1. The labels of the cylindric diagram associated to a cylindd plane par-
tition are weakly decreasing along both \cylindric rows" ard \cylindric columns”.

Proof. This is an immediate consequence of the horizontal strip cadition on diagonals
O

The following hook-product formula for the enumeration of ¢ylindric plane partitions
of given pro le was rst given by Borodin [ Bor07]. A very di erent proof involving the
representation theory of§l(n) was later given by Tingley [Tin08]:

0 1
X Y Y Y
gV BT L S P
1 Z(n+1)T o 1 gz i+nT o 1 7z i+(n+1) T
C2CPP( ) n 0 S| i>]

i i

Here T denotes the length of the pro le

1.3.3 Cylindric inversion coordinates

It is natural to index the boxes of the cylindric diagram via \ cylindric inversion coordi-
nates" (i;j;k ) where =1, j=0andif j<i thenk 1 otherwisek 0. Consider
the box labelled below:

1
1[0
0
1[0
1[0
0
10
1[0
0
10
1[0
0
0

It corresponds to the following inversion in the in nite pro le:

§101001010G1010G1010q
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The inversion coordinates of the box marked are (1;2;2). The 1 of the inversion
occurs in position 1 of the prole. The 0 of the inversion occus in position 2 of the
pro les. There are two \bars" j between the 1 and the 0, hence thd& coordinate is 2.

Here are the cylindric inversion coordinates of each box of wr example cylindric
diagram:

i coordinate j coordinate k coordinate
212 113 0|1
4141414 311|3]1 0O|0f1]1
5/5|5|5]5 3[113[1]3 0|0j1(1]2
212(2(2]|2 3]1{3(1|3 111(2|2|3
414144 113(1|3 112|123
5]5|5 3113 2]12|3

Two boxes lie in the same \cylindric row" if they have the samei-coordinate, and
in the same \cylindric column" if they have the same j -coordinate.

1 1
1]0 1]0
0 0
10 10
1]0 1[0
0 0
1[0 1[0
1 1
1 1
1[0 1]0
0 0
0 | 0 |

The k-coordinate may be thought of as a sort of \depth" or \winding number".

1
1[0
0
1[0
1[0
0
1[0
1
1
1[0

o
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1.3.4 Cylindric hook length

The cylindric hook length of a box is the hook length of the box relative to the larger
partition.

1
1[0
0
1[0
1[0
0
1[0
1[0
0
1[0
1[0
0
0

We shall use the notation hA( )(b) to denote the cylindric hook length of the box b
. . . . N
relative to the cylindric diagram " ( )
Lemma 1.3.2. The cylindric hook length of a box with cylindric inversion oordinates
(i;j;k) is given byj i+ KT.

Here are the hook lengths of the boxes in our example partitio:

9|1
1114
11j13/16
121417

As a consequence of Lemma.3.2Borodin's identity (equation 8.8) may be rewritten
in the form:

O N[O~
oo

N
[oc] NepR IR~ VNN

Y 1
X X X
Sd = JTil @ 1

C2CPP( ) s2b()

71 o )® (2.9)

1.3.5 Arbitrarily labelled cylindric diagrams

An arbitrarily labelled cylindric diagram d with pro le is simply an assignment of
non-negative integers to the boxes of the associated cylimital diagram in such a way
that only nitely many of the labels are non-zero. We shall use the notation ALCD( )

to denote the set of all arbitrarily labelled cylindric diagrams with pro le

De nition 1.3.4.  The depth of an arbitrarily labelled cylindric diagram d is the small-
est k such that all boxes with cylindric inversion coordinates(i; j; k 9 with k® k have
label zero.



24 Chapitre 1 | Partitions

The weight of an arbitrarily labelled cylindric diagram is given by the sum over
boxes in the cylindric diagram of the label of the box times the hook length of the box:
X
jdj = label(b) j hook(b)j (1.10)
b2"( )

For example, the following arbitrarily labelled cylindric diagram has depth 2 and
weight 26.

110
5/0|0]0
0/1|1(1|0
0]0|0|0]|0

0]0|0|0

0j0|0

The right hand side of Borodin's identity may be interpreted combinatorially as a
weighted sum over pairs (; d) where is an integer partition and d is an arbitrarily
labelled cylindric diagram with prole . The weight of the pair (; d) is given by
Tj j+ jdi. where is an integer partition and d is an arbitrarily labelled cylindric
diagrams

1.3.6 Rotation operator

De nition 1.3.5.  The rotation operator on binary strings is de ned by:

()i= (+1) mod T (1.11)
where T is the length of .

There is a natural bijection between the cylindric diagram with pro le and the
cylindric diagram with prole (). Nevertheless since the same box will have di erent
cylindric inversion coordinates, depending on the choice forotation of the pro le, we
prefer to consider two cylindric diagrams which di er by a rotation to be two distinct
objects. Likewise for arbitrarily labelled cylindric diagrams.

Lemma 1.3.3. The rotation operator naturally induces well-de ned weight preserving
maps:

ALCD( )! ALCD( ()
CPP( ) ! CPP( ()



2. Correspondences

Throughout this section, all labels are assumed to be non-rgative integers.

2.1 Robinson correspondence

2.1.1 Standard Young Tableau

A standard tableauis a labelled Young diagram with n boxes for which the labels are
strictly decreasing along both columns and rows, and for whih each number from 1 to
n occurs exactly once. For example:

1310
1197
863
112[5]4]2]1

A Yamanouchi word is a word with the property that for any initial subword, and
for any k, the number of times that k appears in that initial subword is greater than or
equal to the number of times that k + 1 appears in that subword.

Standard tableau are naturally in bijection with Yamanouchi words. For example,
the tableau above corresponds to the word:

1121123234314

The k-th number in the Yamanouchi word tells you on which row you will nd the label
k. Note that we are counting the rows from bottom to top.

2.1.2 Viennot's shadow method

A permutation is a f0; 1g matrix with exactly one 1 in each row and each column.
A partial permutation is a f0;1g matrix with at most one 1 in each row and each
column. Note that a partial permutation matrix need not be square. The Robinson
correspondence[Rob38] gives a bijection between permutations and pairs of standal
Young tableau of the same shape.

Instead of de ning the algorithm rigorously, we shall just give an example using
Viennot's shadow technique[Vie77]. We begin with the matrix of our permutation, but
transformed into the grid. In our case, we have chosen:

4 5 6 7
1 47 2

1 2 3
5 3 6

25
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Here is the grid. The large black dots correspond to ones in th permutation matrix,
while the small black dots correspond to zeros.

Next imagine that the sun is shining down from the top left hand corner, and that
it casts a shadow:

T'

We have essentially regrouped the permutation by decreasionsequences:

1 2 4 357 6
5316 427

Remove the rst number from the top row and the last letter fro m the bottom row
of each block then shift everything across to obtain a partid permutation:

.24.57:7|24577|1234567
53: 6 4: : 536 4 ° 5 3 6 4

Now we repeat the process, beginning by drawing the partial prmutation onto the
grid:
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The sun shines down from the top left hand corner and causes adows:

Regrouping the partial permutation into decreasing sequenes:

2 4 57
5 3 6 4

Extracting the partial permutation:

.4:77|477|1234567
5: 6 : "5 6 5 6

And once more we draw the partial permutation:



28 Chapitre 2 | Correspondences

The sun shines down from the top left hand corner, casting shdows:

Here is where the algorithm terminates, since the next partal permutation in the
sequence is empty:

4 7 Do 1 2 3 456 7
| |
5 6 7! . 7!
Putting all this information together, we obtain the follow ing Viennot shadow dia-
gram:

® 1

w W NN

The pair of standard tableau which we are searching for can ne be read, as Ya-
manouchi words from the right most column and the bottom mostrow. The black path
is labelled 1, the blue path is labelled 2 and the red path is Ieelled 3. Reading down

the nal column we have:
1122331

while reading along the bottom row we have:

1213213
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Thus, under the Robinson correspondence, we have:
0 1

12345677!% 6]5] . 74§
[7][2]1 6/3[1

2.1.3 Reverse Viennot shadow method

To reverse the algorithm, we begin with the two Yamanouchi wads, and the empty
permutation:

((1;1,2,2,3;3,1); (1,2, 1; 3,2, 1, 3))

The largest number, the threes, occur in positionss and 6 on the left, and positions 4
and 7 on the right. This gives us:
(1,5,2,2551), (1,2 152,150) M
5 6
Next we note that the twos occur at positions 3 and 4 on the left, and positions 2 and
5 on the right:
4 7

4.7 q 24 57
5 6 5 : 6 : 53 6 4
We are left with:

(@%@ sL551))

The ones on the left occur at position1,2 and 7 while the ones on the right occur at
positions 1, 3 and 6. This gives us:

24577|.24.57 7|1243576
53 6 4 " 53: 6 4: 531 6 42 7
The nal result is the permutation:
_ 1 2 3 4567
5361472

2.1.4 Fomin growth diagrams

Viennot's shadow method is strictly equivalent to Fomin growth diagram technique
[Fom88].

We begin by labelling the faces of the rst and last rows of ourshadow diagram with
the empty partition:
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you add a box to the second row:

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0
.—
o ©
® ® @

Next we continue lling in the faces of the diagram in such a wgy that a new box is
added to the rst row every time that one crosses one of the blak shadows:

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0
. . . o

0 0 0o | @ @ @

0 0 0O | @ @O (@
. . @

0 | @ @

0 | @ @
® ® o)

(1)

1)

1)

Keep \growing" the diagram in such a way that every time you cross a blue line,
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0

0

0

0

0

0

0

0

0 0 0 0 0 0 0

0 0 0 o @O O O

0 0 0 o @O O @
. o @

0 oL O |1y 1Y) Y| =Y
. [ ] Y

0 L O ;D)= 1) (=2
® o ®

1) ((1;1) 1;1)

@ @
1) (1) (2;1)
1) (1) (21

When you cross a red line, you add a box to the third row:

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0
®
0 0 0 1) 1) 1) 1)
—
0 0 0 1) 1) 1) (2)
® ®
0 1) (6 N G O O e B € e I O 72 B
® ®
0 1) @ (@) |2y 21 | (22
@ @
1 [ (@) @) (LY=L 2:15)](2:21)
® o @
1) 1;1) | 2D [(2;5,D](2;21) (2,2,1)((2,2,2)
@ | @D | 2 |215D|22 1)](3;2; 1)|(3;2;2)

The pair of standard partitions may be read of the bottom row and the nal column
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as a sequence of integer partitions, each of which may be oliteed from the previous by
adding a single box.

2.1.5 Skew standard tableau
A standard skew tableaumay be de ned as a sequence of partitions:
S=( 1, 2,17 n)

such that if i >j then i and such that each partition in the sequence di ers by
at most one box. We say thatS is of shape = 1.

It is often convenient to represent a skew standard tableau aalabelled skew diagram
For example, the skew standard tableau:

S=(2;1):(2,2):(2,2),(2,2,1);(2,2,2);(3;2,2))

may be represented by the diagram:

The box s is labelledk if it rst appears in the k-th partition of S.
A regular standard Young tableau is a special case of a skewatdard tableau in
which ; = () and for which each partition in the sequence di ers by exactly one box.

2.1.6 Fomin's local rules

Fomin's local rules [Fom8§] tell us how to nd the partition given the partitions
and and a value ofx which may be either O or 1, corresponding to a small dot and a
large dot respectively.

The blue data is input, and the red data is output. The rules are as follows:

l.Ifx=1and = = then is the partition obtained from by adding a box
to the rst row.

2. Ifx=0and = = then =

3. fx=0and = 6 then = (this corresponds to the case of a shadow

passing through the face vertically).

4, If x=0and = 6 then = (this corresponds to the case of a shadow
passing through the face horizontally).
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5. Ifx=0and , and are pairwise distinctthen = [ (this corresponds to
the case of two shadows passing through each other).

6. Ifx=0and = 6 and diersfrom on thek-throw, then is the partition
which is obtained from by adding a box to row k + 1 (this corresponds to the
case of two shadows \bouncing o " each other).

In the diagram below we have highlighted an example of rule 1n yellow, rule 2 in
blue, rule 3 in red, rule 4 in pink, rule 5 in orange and rule 6 inpurple.

o 0 0o o 0o (© @© o
0O 0 0 ® v W

® o oo
(1) (11 .

©
©
@ «vey .
(L, L1D[(2;11) (2,1,1)(2,21)

@ \Q/ >
(2:1;1) (221) (2,2,1 (2:2:2)

0 @O | @&y [ =Y |Z15D))=Z2D|E21)

0 0

0
o o |@
(@)

0 0
® ©
0 (1)

0 (1)

/
a\

Although it is not immediately obvious that Fomin's local ru les are exhaustive as
given, one can prove by recurrence that they cover every podde case which can arise,
given suitable initial conditions.

2.1.7 Skew Robinson correspondence

It is now possible to forget about Viennot's shadows, and pdiorm the Robinson corre-
spondence using only Fomin's local rules. In fact, we shall @ something slightly more
general.

The input to algorithm is a pair ( A; B) of skew standard tableau of shape= and
= respectively, together with a partial permutation . The partial permutation must
be compatible with the pair (A;B) in the sense that if there is a 1 in columnk then
Ak = Ag+1, Similarly, if there is a 1 in row k then By = Bg+1 . For example:
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(1) o @1y Yy *1Y (21
o
1)

(1,1)
(1;1)
(2:1)

(2:1)

Another way of expressing the compatibility condition between (A;B) and is that
if the partial permutation matrix is n by m then each of the labels from 1 tom must
occur at most once once either in the labelled diagram foA or in the top row of the
two line notation for . Similarly each of the labels from 1 ton must occur at most
once either in the labelled diagram forB or in the bottom row of the two line notation

for
A= 2] B= |2 =34
1 5

Starting from these initial conditions, we may make use of Fonin's local rules to I
out the rest of the data in the diagram:

1) o @1 @1y 1Y) (21
o
o @y ©Yy =1 1Y) (22

1) 1) ;51 (251 (2,21) (2,21)
1) 1) ;L1 (251 (2,21) (2,21)

(2;1) (21 (2:171) (2,21) (2,21) (2,2,2)
o
(21) (21 (251 (221 (3:21) (3;22)

The output of the algorithm, may be read o the right-most col umn and the bottom-
most row:
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(2;1)

(2:2)

(2;2,1)

(2;2;1)

(2;2,2)

(21) (1) (251 (221 (3:21) (3:22)

The output is a pair of standard skew tableaux (A% B9 of shape = and =
respectively.

Note that the label k is missing from ACif and only if it is missing from both A and
the top row of . Similarly the label k is missing from BCif and only if it is missing
from both B and the bottom row of

We shall say that a growth diagram isstandard if it has no repeated rows or columns.
The output pair (A% B9 of a growth diagram will have the property that each and evely
label occurs exactly once if and only if the corresponding gwth diagram is standard.
The standardization of a growth diagram is the diagram obtained from the original by
removing any repeated rows or columns.

2.1.8 Fomin's reverse local rules

Fomin's reverse local rulestell us how to nd the pair ( ;X ) given the partitions ,
and

The value of x may be either 0 or 1, corresponding to a small dot and a large do
respectively. The blue data is input, and the red data is output. Fomin's reverse local
rule may be described as follows:

1.If = 6 andif diersfrom onthe rstrowthen = andx=1.
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2.1f = = then = andx=0.

3.1f = 6 then = andx=0.

4. 1f = 6 then = andx=0.

5. If , and are pairwise distinct, then = \ andx =0.

6.1f = 6 andif diersfrom on the k-th row for k > 1 then is the

partition obtained from by removing a box on the k 1)-th row and x = 0.

Staring with the output con guration from the previous sect ion, one may use Fomin's
reverse local rules to \grow" the diagram backwards and receer the initial conditions.

This algorithm is slightly more general than we need. It coresponds, in fact, to
the skew Robinson correspondencgsea9(. We recover the special case of the Robinson
correspondence whenA® B9 are regular standard Young tableau.

2.2 RSK and Burge correspondences

The RSK correspondence and the Burge correspondence bothvgi a bijection between
non-negative integer matrices and pairs of semi-standard dung tableaux of the same
shape.

2.2.1 Semi-standard tableau

A semi-standard Young tableauis a labelled Young diagram which is weakly decreasing
along rows and strictly decreasing along columns. For examnip:

5]4
4[4]3
3[2]2

2]2]1]1]1

A semistandard Young tableau may also be represented by a segnce of integer
partitions which di er successively by a horizontal strip. The k-th integer partition in
this sequence is given by the subtableau covered by the rsk labels:

3 B2 53D (5331 * (53,32
The content ¢(T) of a semi-standard Young tableau is the vector:
(Cu(T); ca(T);ca(T);000)

where ¢ (T) denotes the number of times the labelk occurs in the tableauT. The
content of our example tableau is (34;2; 3;1).

We remark that a regular plane partition may be thought of as a pair of semi-
standard tableau of the same shape. For example, the regulaplane partition from
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section 8.2:
4(3|12|2|0
312|1(1|0
1{1(1|0/|0
1/0/0({0]|0
0|0|0|0]|O0

is in bijection with the following two tableaux:
(4] (4]
4|2 4|3

14]3[1]1] [4]3[3]1

The rst tableau in the pair corresponds to the rst half of th e sequence read o the
NW ! SE diagonals, from right to left:

@ @D @D* 42D

while the second tableau in the pair corresponds to the secahhalf of the sequence read
o the NW ! SE diagonals, from right to left:

M W GD* (4;,21)

The standardization of a semi-standard Young tableau is the unique standard Youg
tableau with the following properties:

1. The labels 1 2;:::c1(T) lie on the rst row (read from the bottom).

2. The set of labelsi satisfying: ¢ (T) <i  ck+1 (T) forms a horizontal strip.
3. If o (T) <i;j ck+1 (T) and i<j theni lies to the right of j.
4

. when you replace the rst ¢i(T) labels with 1, the next ¢;(T) labels with 2, the
next c3(T) labels with 3 and so on, you recover the original semi-stanard Young
tableau.

The standardization of our example semi-standard Young takeau is the following:

1310
1211
5
17]6]3]2

©

NN

2.2.2 Horizontal and vertical strips

A partial permutation matrix  is said to form anincreasing chain if there existsk;> 0
such that after removing the rst k rows and the rst ~ columns, the remaining matrix
is that of the identity permutation. Similarly, a partial pe rmutation matrix  is said to
form an decreasing chainif there existsk; = 0 such that after removing the nal k rows
and the nal °~ columns, the remaining permutation is that of the maximal permutation.

Let us de ne a properly labelled horizontal stripto be a standard skew tableau with
the property that if i > | then the label i always occurs to the left of labelj. The
following important lemma is due to vanLeeuwen {L05].
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Lemma2.2.1. Suppose that the skew Robinson correspondence seigdsB; ) to (A% B9).
The pair of skew standard tableatA®and B are properly labelled horizontal strips if and
only if the pair of skew tableauA and B are also properly labelled horizontal strips and
if after the growth diagram has been standardized the partigpermutation form a de-
creasing chain

An example:
2 21 22 22 22
o
21 211 221 221 221
]
22 221 222 222 222
[
22 221 222 322 322
22 221 222 322 422
=t227 A=8=|2]1 A%= BO=

We shall say that a growth diagram is of horizontal type if the output tableaux
(A% B9 are both properly labelled horizontal strips.

Similarly, let us de ne a properly labelled vertical stripto be a skew standard tableau
with the property that if i >j then the label i always occurs to theright of label j.
The following lemma is also due to vanLeeuwenv]_05]:

Lemma 2.2.2. Suppose that the skew Robinson correspondence seifdsB:; ) to (A% B9.
The pair of skew standard tableauA® and B® are properly labelled vertical strips if and
only if the pair of skew tableauA and B are also properly labelled vertical strips and, after
the growth diagram has been standardized, the partial pernation  form an increasing
chain.

For example:
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11 11 11 21 22
® ° O
11 11 21 22 221
® ° o O
11 21 22 221 2211
° O
21 22 221

22 221 2211 22111 221111

N -

We shall say that a growth diagram is ofvertical type if the output tableau (A% B9
are both properly labelled vertical strips.

In both the horizontal strip and the vertical strip case case the following weight
condition is satis ed. Suppose thatA®is of shape= and Bis of shape = while A
is of shape= and B is of shape = . If the partial permutation  contains exactly m
ones then:

Jitij=jirjj+tm (2.1)

2.2.3 Block permutation matrices

Suppose thatM is a non-negative integer matrix. Let ¢, denote the sum of the entries
on the k-th row of M and let ¢ denote the sum of the entries in thek-th column of M .
If the total sum of all the entries of M is equal to n, then there are two canonical ways
in which we may associate am by n permutation matrix P to the matrix M.

In both cases we begin by dividing up our matrix P into \block rows" and \block
columns". The k-th \block row" of P contains ¢, normal rows of P, while the k-th
\block column” of P contains c¢? columns of P. A \block” of P is an intersection of a
\block row" and a \block column".

The rst way of associating a permutation matrix P to a non-negative integer matrix
M is to place ones into the block matrix P in such a way that:

The number of ones in the block {;j ) of P is equal to Mj; .

The ones are strictly decreasing from left to right as you moe along any block
row.
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The ones are strictly decreasing from top to bottom as you moe along any block
column.

For example:

2 1 0 0|0 0O O3
0 0021000
1 3 0 000100
5 1 7720 0 0/0 010
01 0/0O0O00O0
0 0 1/0 00O
0 0 0]0 0 01

In this case we shall refer toP as the RSK permutation associated toM . If the row
sums and column sums are known, then this operation is inveible

The second way of associating a permutation matrixP to a non-negative integer
matrix M is to place ones into the block matrix P in such a way that:

The number of ones in the block (;j ) of P is equal to Mj; .

The ones are strictly increasing from left to right as you move along any block

row.

The ones are strictly increasing from bottom to top as you move along any block

column.

For example: 5 3
0 00/0O0O0T1

0 00/0O 010

1 3 0 00/0O 100

5 1 77280 0 1/0 0 0O

0 001 00O

01 0/00O00O0

1 0 0|0 0 0O

In this case we shall refer toP as the Burge permutation associated toM . Again, if the
row sums and column sums are known, then this operation is irertible.

2.2.4 Growth diagram patches

Its not hard to see that any subdiagram of a growth diagram is aain a growth dia-
gram. In particular, given a block permutation matrix P we may apply the Robinson
correspondence, and then consider each of the blocks as seqie, individual growth

diagrams.

Lemma 2.2.3 (vanLeeuwen) If P is an RSK permutation, then each block ofP is
of horizontal type. Similarly, if P is a Burge permutation, then each block of is of

vertical type.
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2.2.5 Reverse algorithm (RSK)

The RSK correspondence may be realized with the aid of the Rdhson correspondence.
The reverse algorithm is as follows:
Suppose that your two semi-standard Young tableau are T; T9 with content vectors

c=(c;:iisc) and = ( ;D) respectively. For example:
2|2 3|2
13]1]1 13]2]1

We havec=(2;2;3) and c°= (1;2;3;1).
The rst step is to standardize both T and T%to obtain a pair of standard tableau
(S: SY. In our case we have:

0 1

% 65 - 74§
4|3 5|2

17]2]1 16[3]1

Note that this is the same pair of tableau which appeared in ou example in section
9.1.2

The next step is to apply the reverse Robinson correspondeecto get some permu-
tation matrix. In our case we have:
0

2
Finally we use the content vectors of T and Tto nd the matrix M for which P is
the associated RSK permutation:

2

U

1
OOPFrOOO0OOo
oNeoNeoNaell oo
OFr OO0 OO0OO0o
eNeNeoNolNolNoll
cNeoNeol NelNolNo)
P OOOOOOo

ocorlooloo
ooolorloo
or olooloo
oooloolor
o ook oloo
~ o olooloo
o ooloolr o
URRRRRRRN W
-
2N
oo
B RO
(RN
© GiFw

Although in our example the resulting matrix only contains zeros and ones, in general
the entries of M may be any non-negative integer.
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2.2.6 Forward algorithm (RSK)

Given a non-negative integer matrix M , begin by recording the row and column sums
of M into the vectors ¢ and c®. Next, let P be the RSK permutation associated toM ,
and apply the Robinson correspondence t®. Suppose that S; S is the resulting pair
of standard tableau. The content vectors €;® may now be used tode-standardize S
and S%into a pair of semi-standard Young tableau (T; T9

2.2.7 Forward algorithm (Burge)

Given a non-negative integer matrix M, the forward algorithm is as follows:

1. Record the content vectorsc and c® by reading of the row sums and column sums
of M respectively.

2. Find the Burge permutation P associated toM .

3. Apply the Robinson correspondence to the permutation matix P to obtain a pair
of standard Young tableau (S; S9.

4. Conjugate the pair of standard Young tableau S;S9 to obtain a new pair of
standard Young tableau (R;R9

5. De-standardize the tableau R;R9 using the content vectors (c; d to obtain the
nal pair of standard Young tableau ( T;T9.
2.2.8 Reverse algorithm (Burge)

Given a pair (T;TY of semi-standard Young tableau of the same shape, the revee
algorithm is as follows:

1. Record the content vectors ¢; & of (T;T9.

2. Standardize the semi-standard Young tableaux T; T9 to obtain a pair of standard
Young tableau (R; R9.

3. Conjugate the pair of standard Young tableau R;R9 to obtain a new pair of
standard Young tableau (S; S9

4. Apply the reverse Robinson correspondence toS; SY to obtain the permutation
P.

5. Use the content vectors ¢;d to nd the matrix M for which P is the associated
Burge permutation.

2.2.9 Local rules

As a consequence of lemma.2.3 both the RSK and the Burge correspondence can be
performed directly, without passing through the standardization and de-standardization
procedure.

The growth diagram for the RSK correspondence looks very siitar to that for the
Robinson correspondence, the main di erence being that nghboring partitions di er
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by a horizontal strip, rather than a single box. In the case ofthe Burge correspondence,
neighboring partitions di er by a vertical strip - but the n al result is conjugated.

For any partition let U( ) denote the set of integer partitions which can be obtained
from by adding a horizontal strip, and let D( ) denote the set of integer partitions
which can be obtained from by removing a horizontal strip. A forward local rule is a
map with type signature:

U, :(Z ;D()\VD(C ) U(C)\VU() (2.2)
such thatif = U. (m; ) then the following weight conditions are satis ed:
Jitii=ii+ii+tm (2.3)

A reverse local rules is a map with type signature:

D, :U()VUC)! (Z osD( )\ D() (2.4)

As a consequence of lemma&.2.1 and 9.2.2, the local rules for both the RSK cor-
respondence and the Burge correspondence may be derived elitly from Fomin's local
rules.

We shall describe here only the local rule associated to the BBge correspondence.
The reader is referred to LO5] for the RSK version of the local rule.

2.2.10 Burge local rule

In the case of the Burge correspondence, the operat® . is de ned as follows. Suppose
that (m; )= D. ( ). Let A denote the set of columns of which are longer than the
corresponding columns of and let B denote the set of columns of which are longer
than the corresponding columns of .

Next, for eachi 2 A\ B let (i) 62A[ B denote the largest integer such that (i) < i
and (i)6 (j)foranyj 2 A\ B suchthatj>i . Let

C=f (i)>0ji2 A\ Bg

Finally let  be the partition obtained from by removing a box from the end of each
of the columns indexed byA[ B[ C and let

m=#f (i) 0ji2A\ Bg

Here is an example:

D (6:5:5:3):(6:6:5:2) (7: 6,5 3; 1) = (1 (6;5; 4; 2))

The calculation proceeds as follows:

0=(5;4,4,3,3,21)
A =columns(= )= f1,6;7g
B =columns(= )= f1;3;7g
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C = f5g
0=(4;4;3,3,21)
m=1
The inverse operatorU. is de ned similarly. Suppose that = U. (m; ). Let

A denote the set of columns of which are longer than the corresponding columns of

and let B denote the set of columns of which are longer than the corresponding
columns of .

Next, for eachi 2 A\ B let (i) 62A [ B be the smallest integer such that (i) > i
and (i) 6 (j)foranyj 2 A\ B with j<i . Let

C=f (i)ji 2A\ Bg

Finally let D denote the rst m elements of the complement of the seA[ B[ C and let

be the partition obtained from by adding a box to the end of each of the columns
inA[ B[ C[ D.

Here is the inverse of our example:

Us:sis:3):6:6:52) (15 (6:5,4,2)) = (7:6,5,3, 1)

The calculation is straightforward:

0=(4;4,3,3,21)
A =columns(= )= f3;59
B =columns( = )= f5;6g

m=1

C=1f7g
0=(5;4;4;3;3,2,1)



3. Symmetric functions and
Macdonald polynomials

In this chapter we recall some of the theory of symmetric funtons.

3.1 Symmetric functions

3.1.1 Compositions

A composition is simply a list of non-negative integers. For example:
c=(2;0;1;2)

The symmetric group S, acts naturally on the set of compositions with m parts.
Each orbit of Sy, contains a unique partition. For example, the partition corresponding
to our example composition above is:

=(2;2;1,0)

Note that we allow for the possibility of trailing zeros. For any composition let
r( ;i) denote the number of parts of equal toi. and let:
Y
r = r(;i)!
i 0

Then r is the order of the subgroup ofSy, that stabilizes the composition . The
number of distinct elements in the order of is equal tom!=r . In our exampler =2
and the number of distinct compositions is equal to 12.

3.1.2 Multivariable polynomials

Consider the multivariate polynomial ring Q[X1;:::;Xm]. Each monomial inQ[Xz;:::;Xm]
corresponds to a composition. For example, the monomiak2xsx3 in Q[X1; X2; X3; X4]
corresponds to our example composition (20; 1; 2).

For notational convenience, if =( 1; 2;:::; m) is a composition, then by X we

and =( 1;:::; m)then + =( 1+ 1115 m+ m)andX(*)=X X .
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3.1.3 Monomial symmetric functions

For each partition we de ne the monomial symmetric function to be:
1 X
mX)== x O
r ZSn

In other words the monomial symmetric function m (X) is the sum of all distinct
permutations of the monomial X . An example:

2 2 2,2 2,2 2 2 2,2

— y2y2
M2:2.1:0)(X) = XIX5X3 + XTX2X3 + X1X5X3 + XTX5X4 + XX2X7 + X1X5X]

+X2X3X4 + XIX3XZ + X1X5X2 + X3X3X4 + X3X3X5 + X2X5%X3
The monomial symmetric functions have the property that they are invariant under
the action of the symmetric group on the set of variables. Futhermore, any function

which is symmetric under the action of the symmetric group onthe variables may be
expressed as a linear combination of monomial symmetric fustions.

3.1.4 Innitely many variables

If there are m variables, then we only need to consider integer partitionswith at most
m parts. Sometimes it will be necessary to work with an in nite humber of variables
fx1;X2;X3;:::g. In this case we take any partition which is padded at the end vith an
in nite number of zeros.

3.2 Plethystic notation
3.2.1 Alphabets

We shall use the notation to denote the ring of symmetric functions, in in nitely
many variables, over the eld of rational nhumbers [Mac95]. In what follows we shall
make extensive use of thelethystic notation [GHT99, Las03.

In the plethystic notation addition corresponds to the union of two sets and multi-
plication corresponds to the Cartesian product. For exampé, we write:

X =X1+ X0+ (31)
to denote the set of variablesf x1; x2;:::g. We also write:

XY =(x1+ X2+ )(ypr+y2+ i) (3.2)

3.2.2 Complete and elementary symmetric functions

The complete symmetric functionsmay be de ned by their generating series:

Y 1 X
[ Xz]= — = hn(X)z" (3.3)
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The generating series for theelementary symmetric functions may be expressed
using the plethystic negation of an alphabet [Las03 GHT99].

Y X
[ Xz]= (@ xiz)= ( D"e(X)2" (3.4)
i1 n 0

It helps to think of the generating function for the complete symmetric functions as
a sort of exponential function:

[ X+ Y]=[X][Y] (3.5)
[ X]= 1X] (3.6)
For any integer partition  we de ne:
h (X)=h (X)h ,(X)h ,(X) (3.7)
e (X)= e, (X)e ,(X)e ,(X) (3.8)
One can show that, just like the monomial symmetric functions fm (X)g both
fh (X)gand fe (X)g are bases for the ring of symmetric functions.
3.2.3 Hall inner production

It is a straightforward exercise to verify that:

Y X
[ XY ]= 1 ])'( - = h (X)m (Y) (3.9)
i1 i

The Hall inner product hji may be characterized by th property that:
m (X);h (X)i = . (3.10)

Equivalently, the Hall inner product is characterized by the fact that for any pair of
basesff (X)gandfg (X)g such that:

H (X);g (X)i =
we have: ) Y 1 ) X f
[ XY]= LT, = (X)g (Y) (3.11)

3.3 Schur functions

3.3.1 De nition in terms of semistandard Young tableau

The most important basis for the ring of symmetric functions is the Schur basis There

are many di erent ways in which the Schur functions may be de ned. Each has its

advantages and its disadvantages. For now we shall make usé the following de nition.
For any integer partition , the Schur function is given by:

X
S (X) = x g Dx My (3.12)
T2sh( )
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where the sum is over all semistandard Young tableau of shape and:
(ca(T);ca(T);: )
denotes thecontent vector of T. Note that it is not immediately clear that the Schur
function as de ned above is symmetric, SeeB95] for a proof.
3.3.2 Cauchy identity and RSK

The Cauchy identity is an immediate consequence of the de nition of Schur functins
in terms of semi-standard Young tableau:

Y 1
1 Xiyj

X
[ XY]= = S (X)S (Y) (3.13)
ij 1

The left hand side may be interpreted as a weighted sum over nenegative integer

matrices. The re ned weight of a matrix M is given by:

xExg Oy )
where di is the sum of all the entries in thek-th row of M and d? is the sum of all the
entries in the k-th column of M.

The right hand side may be interpreted as a weighted sum over @irs of semi-standard
Young tableau of the same shape. The re ned weight of a pair osemi-standard Young
tableau (T;T) is given by:

C1C2 c?,,C
(X1"X3 )(Y1'Y; )
where (c1;¢p;:::) is the content vector of T while (c9;c3;:::) is the content vector of
TO This is none other than the RSK correspondence (see Sectioh2.5. We remark

that MacMahon's identity may be obtained from Cauchy's identity by specializing the

variables to:

— — Sk
Xk =Yk = 2

N

3.3.3 Pieri rules

The following recurrence is an immediate consequence of thee nition of the Schur
function given in equation 10.12

X o
S[X+z]= S [X]Z 1 (3.14)
2D( )
Here D( ) denotes the set of partitions which can be obtained from by removing a

horizontal strip. This is known as the dual Pieri rule.
Assuming that we have proved the symmetry of the Schur functon, we may write:

X
S (X)= K. m (X) (3.15)
where K . is the Kostka number which counts the number of semi-standard Young

tableau of shape and content (see Sectiod.2.1). Note that K. =0 unless is
greater than in the dominance order (see Sectior8.1.3).
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Since Cauchy's identity tells us that the Schur-functions form an orthonormal basis
with respect to the Hall inner product, we have by duality that:

X
S(X)= K. h(X) (3.16)

The following recurrence is an immediate consequence of egfion 10.16

X o
[ Xz]S [X]= S [X]Z 1 (3.17)
20( )

where U( ) denotes the set of partitions which can be obtained from by adding a
horizontal strip. This is known as the Pieri rule.
Combining equation 10.17and equation 10.15and using another duality argument,
we discover that:
[Xz]S [X]=S [X + Z] (3.18)

where [Xz]is de ned to be adjoint to the operator [ Xz] with respect to the Hall
inner product.
HE(X)j  [Xz]g(X)i = h[ Xz]f (X)jg(X)i (3.19)

3.4 Local rules

To show how these ideas are connected, let us assume that thedf rule and the dual
Pieri rule are true and attempt to deduce Cauchy's identity as a consequence. We will
then prove an important commutation relation between the Pieri operator and the dual
Pieri operator

3.4.1 Alternative proof of Cauchy identity

Proposition 3.4.1. If X, is the alphabetX, = X1+ xo+ + X, and Y, is the alphabet
Yn=Yy1+Yy2+ +y,then:
X Y 1
S [Xn]S [Yn] =
ij =1

1 Xy

Proof. The casen = 1 is trivial. We assume that the result is true for all k < n. By
the Pieri formula (equation 10.17), and the induction assumption, we have on the right
hand side:

| | |
X X X '
RHS(n) = hr[Xn 1]xq hs[Yn 1lyq S [Xn 1]S [Yn 4]
r 0
1

X 1 X
= @~
- S [Xn 1]S [Yn 1] 1 XnYn

1
1 Xnyn

Wy A
2D( )\D( )

while by the dual Pieri formula (equation 10.18, we have on the left hand side:
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X
LHS(n)= S [Xn 1+ XnlS [Xn 1+ ynl
0 1

X L
S [Xn 1S [Ya 1@ xh= lyl= 1A
20U( N U()

In order to complete this proof, we need, for any given and a bijection between
the set of pairs (m; )with 2 D( )[ D( ) and m a non-negative integer and the set
of partitions 2 U( )[ U( ) in such a way that:

Ji=iiriig o itm
A local rule is just such a bijection (see sectiorD.2.9).

U, (Z ;D)L DO UC)L UC) (3.20)

3.4.2 Commutation Relations

Proposition 3.4.2. The operators [ Xv]and [Xu] satisfy the following commutation
relations:

[Xu] [ Xv]=

[ Xv] [Xu] (3.21)

1 uv

Proof. For any integer partition  we have:

[Xul[ Xv]S (X)=1[( X + u)v]S (X +u)

[ u][ Xv] [Xu]S (X)
1

1 uv

[ Xv] [Xul]S (X)
O

A local rule may be thought of as a bijective proof of propositon 10.4.2, which may
be expressed in the form:

hS j [Xu][ Xv]S i= 1 1uv hS j[ Xv] [Xu]S i (3.22)
for all integer partitons and . In other words, a local rule is a map with type
signature:

D, :U()\VUC)! (Z osD( )\ D()) (3.23)

Such that if (m; )= D. ( ) then the following weight conditions are satis ed:



x 3.5 | Robinson correspondence revisited 51

j=0=j=j+m (3.24)
j=0=j=j+m (3.25)

By adding these two weight conditions together and dividingby 2 we obtain:
Ji=ig+igg j+m (3.26)

This is precisely the inverse of the local rule described athe end of proposition
10.4.1. Again see sectiond.2.9,

3.5 Robinson correspondence revisited

3.5.1 Representation Theory
Permutations

Any permutation may be expressed as the product of disjoint gcles. For example, the
permutation:

1 23 456 789

4 83 657 9 21

may be expressed irdisjoint cycle notation as = (1;4;6;7;9)(2; 8)(3)(5). Since disjoint
cycles commute with one another, they can always be ordereddm longest to shortest.
The cycle type of a permutation is the integer partition which determines the length of
the cycles. The cycle type of our example partition is (52; 1; 1).

A pair of permutations 1 and » are said to beconjugate if there exists some third
permutation suchthat ;1= > ! Two permutations are conjugate if and only if
they have the same cycle type.

Characters

A representation of the symmetric group S, is a homomorphism from theS , to GL(V)

for some complex vector spacé/. A representation is said to beirreducible if there is

no non-trivial subspaceU V with the property that :u 2 U for all u2 U and for all
2S,.

One can show that the irreducible representations of the symmetric group are natu-
rally indexed by integer partitions [ Sag0]. Furthermore the dimension of the irreducible
representation indexed by , which we denote byf , is given by the number of standard
tableau of shape . [Sag0].

Suppose that : S, ! GL(V) is a representation of the symmetric group. The
character associated to isthemap :S,! Cgivenby ( )=tr( ). Since the trace
is invariant on conjugacy classes, it makes sense to write( ) where is a partition of
n.

Note that for the identity permutation we have:

@an) = f (3.27)
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3.5.2 Newton power sums
De nition

The Newton power sums are de ned by:
Pn(X) = x§ + x5 + (3.28)

As in the case of the complete symmetric functions and the ehlaentary symmetric
functions, if we de ne:

p (X)=p ,(X)p ,(X) (3.29)
then fp (X)g is a basis for the ring of symmetric functions.

Relation to complete symmetric functions

For any integer partition let us de ne:

Y
z = m( )imO) (3.30)

wherem;( ) denotes the number of parts of of length i. As a consequence of the fact

that:
g L = X 3.31
Og 1 X - . F ( * )
we have that: 0 1
X
( Xz)=exp @ Pn(X) na (3.32)
n 1 n
In particular: X
haoy= P (3.33)
I
Dual basis
Using the notation from Section 10.2 we have:
Pn(X)pn(Y) = pn(XY) (3.34)
Now:
0 1
X
(xY)zexp @ PnXY) np (3.35)
n 1 n
0 1
X
=exp @ MZHA (3.36)
n 1 n
_ X p(X)

TP (Y) (3.37)
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It follows that the dual basis to the fP (X)g is given by:

p (X)
z

3.5.3 Algebraic proof of Robinson correspondence

An alternative de nition for the Schur functions is the foll owing:

()

X
s()=" —p(X) (3.38)

where () denotes thecharacter of the representation of S, indexed by evaluated
on the conjugacy class of type .
The Robinson correspondence (sectiof.1) tells us that:

Nz (f )2 (3.39)

This identity may be derived from Cauchy's formula (equation 10.13 as follows. On
the left hand side we have:

X X
(XY)= hyxy)= P (;W) (3.40)
n
and so:
. . 1
h( XY)jpan) (XY )ixy = Zan 1 (3.41)
While on the right hand side we have:
* « +
S (X)S (Y)jpan (X)pan(Y) (3.42)
X XY
= S (X)ipany(X)ix M (Y)ipam(Y) (3.43)
X @ ?
= S (3.44)
X 2
= r (3.45)

n!

Putting the two sides together we recover equation10.39
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3.5.4 Canonical commutation relations

Let p, denote the adjoint of the operator \multiplication by p;" with respect to the Hall
inner product. The pair (p1; p;) satisfy the canonical commutation relations:

[py;p1] =1 (3.46)

Noting that p1(X) = h1(X) this can be understood by the fact that an integer partition
always has one more outside corner box than inside corner boX¥-omin's original local
rule can be understood as a bijective proof of the identity:

hS jpipiS i=1+ hS jpip; S i (3.47)
Equation 10.39can be proved algebraically by remarking that:
X X
ff = hip!jS ihS jp] 1 (3.48)
= hilp}jp] i (3.49)
= hLj(p,)" (p)" i (3.50)

The last step makes use of the commutation relations in equabn 10.47 together with
the fact that p;1 = 0. Each term of the form p; must \annihilate" with some term of
the form p;. There are exactly n! ways in which this can happen.

3.6 Macdonald Polynomials

3.6.1 Plethystic notation

In this section we recall some of the theory of Macdonald polgomials. Let g de-
note the ring of symmetric functions over the eld Q(qg;t) of rational functions in the
indeterminants g and t. Making use of the plethystic notation, the expression:

1t
1 q
may be interpreted as the alphabet:
fLosesa®, o 6 ota; tg% tg* g

So that, for example:
1 t_ _ (tz;01

T q 3.52
I o~ @ (3:52)
where the Pochhammer symbolis de ned by:
Y
(@ = (1 ad) (3.53)

n 0
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3.6.2 (q;t)-Pieri operators

We shall de ne:

1t Y (txiz:
atlXz]=  ——Xz = (o2 Dy

1 g B o, (Xizo)s
Note that when g = t this reduces to the generating series for complete symmet-
ric function (see equation10.3. Let hji gt denote the Macdonald inner product
associated to the @;t)-deformed Cauchy Kernel:
1t Yo (txiyi;

g o iy

(3.54)

(3.55)

When g = t this reduces to the usual Cauchy kernel (see equation0.13. The operator
q:t[X2] is de ned to be adjoint to the operator  4:[Xz] with respect to the Macdonald
inner product.

HE(X) T qulXZ19(X)ige = h qu[XZ]F (X)X )i
When q = t the Macdonald inner product reduces to the Hall inner produd (see
equation 10.10).

3.6.3 De nition

The Macdonald polynomialsfP (X;q;t)g may be de ned as the unique basis for q;
which is both orthogonal with respect to the Macdonald inner product:

P (X;q;);P (X;0;0iqe=0if 6 (3.56)

and which admits a triangular change of basis with respect tahe monomial symmetric

functions: X

P(X)=m (X)+ 2 m (X) (3.57)
<

Here we are using thelexicographical order on integer partitions. The dual basis is

denoted by fQ (X;q;t)g. When g =t the Macdonald polynomials reduce to the Schur

functions.

Curious properties

It is a surprising fact [Mac95 (page 338 { 340) that, just like the Schur functions,
the Macdonald polynomials admit an expansion in terms of themonomial symmetric
functions of the form: X
P(X)=m (X)+ 2 m (X) (3.58)
/

Here we are using thedominance order on integer partition.

Another surprising fact about the Macdonald polynomials is that, when expanded
in terms of the Schur functions, the coe cients K . (q;t) are polynomials in g and t
with non-negative integer co-e cients.

X
PX)=  K; (@9S (X) (3.59)
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This was known asMacdonald's positivity conjecture until it was eventually proved
by Haiman using di cult ideas from algebraic geometry [HaiO1]. It remains an open
problem to nd a combinatorial proof.

There is a simple closed form expression for the inner prodiicof a Macdonald
polynomial with itself:

Y 1 g Oy (9)

P (X5a;t);P (X;0;Digy = (1 @ Ot (1)

(3.60)

s2

see Section8.1.2 for the de nition of arms and legs. This is not at all obvious from
the de nition which we have given. To prove it requires an alternative de nition of
the Macdonald polynomials as eigenvectors of a certain fartyi of commuting operators
[Mac9y].

Pieri formulae

Like the Schur functions, there is a Macdonald Pieri formulg and a Macdonald dual
Pieri formula:

X L
[ Xz]qtP (X;0;t) = - (q; )P (X;q;02 10 (3.61)
2U()
X L
[Xz]gt P (X;q;t) = " (g;)P (X022 M) (3.62)
2D()

The Macdonald Pieri coe cients are given ([Mac95] page 341) by:

Y 1 @@ Y 1 @ O (9

"o (gih) = —— — (3.63)
we. 1 @ Ot (9 e 1 @ (s)t" (s)
Y 1 o (1t () Y 1 (8)t" (s)+1
= (q;t) = 1 a (s)t (s)+1 a (s)+1t° (3'64)
q t 1 @ &y (9

S6Z _ S6Z -

Here C- denotes the set of columns of which are longer than the corresponding
columns of . When gq= t the Pieri coe cients are equal to 1.

Key lemmas

The following two lemmas are essentially due to Garcia, Hairan and Tesler [GHT99].
They constitute a (q;t)-analog of the commutation relations for \vertex operators" to
be found in Jimbo and Miwa [JM83]

Lemma 3.6.1.
q;t[Xz]P X;q;0=P (X +z,0q;1) (3.65)
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Proof. Let fQ (X ;q;t)g denote the dual basis to thef P (X ;q;t)g with respect to the
Macdonald inner product. We have:

q;t[XZ]P (X;g;0)=h q;t[YZ]Q (V50,0 qulXY lige
M (Yia:0) ) qilY 2z qulXY Jigt
Q (Yia;t)] qul(X + 2)Y]igy

=P (X +Zzq1)
m
Lemma 3.6.2.
XUl qalXv]= m qilXV] gu[Xu] (3.66)
Proof.
qtXul quXVIP (X5q;0 = qu[(X + u)z]P (X + u;q;t)
= qiluz] qiXz] G«[XZ]P (X;q;1)
Y (tuv;
- 0(<w;<3)11 alX2] qIXZ]P (X:q:1
m

3.6.4 Hall{Littlewood polynomials

As a nal remark, when q = 0 the Macdonald polynomials reduce to theHall{Littlewood
polynomials.
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4. Bijective proof of Borodin's
identity

4.1 Symmetric function proof of Borodin's identity

We shall begin by sketching an algebraic proof of Borodin'sdentity.
0 1

X Y % 1 Y 1 Y 1 §
8= @1 zomT 1 g 1 g wemrA @D
1< i>j

P> P>

We shall actually be proving a re ned version of equation11.1in which on the left
hand side we replace:

297 2024 AT 4.2)

while on the right hand side we replace:

2"T 7 2z A, (4.3)
rJBA (I AP AN /1 VA e P A wheni < | (4.4)

j i+(n+) T n+l_n+1 n+l._n n,n+l n+l S i
Z )T 7y 20+l g0 g+ AV Ay wheni>] (4.5)

The re ned version of the reverse plane partition case is dud¢o Gasner [GE81]. We
would like to emphasize the fact that the structure of the bijective proof follows very
closely the structure of the algebraic proof.

4.1.1 Notation

Let D, denote the \degree" operator:
D,S [X]= Z IS [X] (4.6)
The degree operator satis es the following commutation rehtions:

Lemma 4.1.1.

D, [ Xu]l=[ Xuz]D, (4.7)
D, [Xu]= [Xuz YD, (4.8)
Proof. This fact follows immediately from equations 10.17and 10.18 O

59
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For notational convenience we shall de ne:

G%2) = [ Xz] (4.9)
Glz)= [Xz] (4.10)
4.1.2 Algebraic interpretation of cylindric plane partiti on

Lemma 4.1.2. The left hand side of the re ned version of equationl1.1 may be ex-
pressed in the form:

X
Ihs( ) = S jG °(ug)G *(u1)) G T(ur)Dw S i (4.11)
where:
w = %ozl 77T 1 (4.12)
if =1
Uy = 2021 Zg 1 LI (4.13)

1,1 1 -
Zy°2; z.-, if =0

Proof. From the \interlacing sequence” de nition of a cylindric pl ane partitions 8.3.1
it is clear that a cylindric plane partition is constructed by successively adding and
removing horizontal strips. The degree operatorD, is used to keep track of the number
of cubes in the resulting cylindric plane partition.

Using the fact that the Schur functions are orthonormal with respect to the hall
inner product we may write:

X
Ihs( )= S jD; G °(1)D,, G *(1) Dy ,GT()S (4.14)

It remains to commute all the shift operators to the right hand side using Lemma
11.1.1 O

Note that the above expression for lhs() can also be thought of as thetrace of the
operator:
G °(up)G *(u1)) G T(ur)Dw

acting on symmetric functions.

41.3 Some lemmas
Let us de ne:
De nition 4.1.1.

X \4 Y
M (my= IS j [ Xuw™] [Xuk]DwS i (4.15)

K Ix
Il
o
~N
Il
[

We have:
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Lemma 4.1.3. v
M (m)=

(i)
i€ j

1

iu]

Proof. This is a straightforward calculation. Using the fact that t he Schur functions are
orthogonal with respect to the Hall inner product, as well asthe fact that:

tr(AB) =tr( BA)

We may write:

X Y Y
M (m)= IS | [ Xu,w™S ihS j [XU]Dw S i (4.17)
; k=1 k=1
k=0 k=1
X Y
= 15 ] [XUk]Dw S ihS j [ XUwW™]S | (4.18)
; k=1 k=1
k=1 k=0
X Y
=" ts | XuklDw [ XUW™]S i (4.19)
k=1 k=1
k=1 k=0

Next applying the commutation relations of Lemma 11.1.1 and Proposition 10.4.2 we
have:

X Y Y
M (m) = hS j [Xuk]Dw [ Xu ka]S i (4.20)
k=1 k=1
k=1 k=0
X Y
= IS [Xuy] [ Xuw™ Dy S i (4.21)
k=1 k=1
k=1 k=0
v 1 X i W m+1 W .
= 1 guwet S [XuwT [Xu]DwS i (4.22)
(i) k=1 k=1
i€ k=0 K=1
Y 1
- T uwowna M (m+1 4.23
1 ujuywmtl (m+1) (4.23)
(i)
i€ |
O
In the limit we have:
Lemma 4.1.4.
Y 1
M1)= (4.24)
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Proof. In order for this limit to even make sense, we must havgzj < 1 for all i, in
which case:

i 1 Ml =
ml;gn [ Xug! "] =1 (4.25)

Since [Xu] is a degree lowering operator, it follows that:

X \4
im M (m)= " IS ] [XUk]DwS i (4.26)
m! k=1
X =
=" 1S |DyS i (4.27)
X .
= wl | (4.28)
Y 1
= (4.29)
n 1
OJ

4.1.4 The proof

The proof of the re ned version of Theorem11.1 now proceeds as follows. We begin by
applying Lemma 13.36

X X
Z9=" 1S jG °(Ug)G *(u1) G T(ur)DwS i (4.30)
Q2CPP( )

(4.31)

Next we repeatedly applies the commutation relations of Lenma 11.6 followed by def-
inition 11.1.1

Y 1 X Y \4
= hS | [ Xuk] [Xuk]Dw S i
1 ujy ~ ~
i<j k=1 k=1
P> k=0 k=1
Y 1
= M (O
o1 Ui Uj ( )
i<j
P> j
We then repeatedly apply Lemmall.1.3
0 1
Y 1 Y Y 1
= LR -
1 ujy; o1 ujuywm
i< m 0 (ij)
iZ i6 |

Splitting the second product into two, and combining it with the rst we have:
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0 10 1
! %Y : g%Y : §
= 1
. 1 uuwm1 1 ujujwm (1)
m 1 g 2

0 10 1
Y 1 % Y 1 § % Y 1 §
- 1 wm 1 uujwm 1 1 ujuywm
m 1 i<j _|>j

To obtain the non-re ned version of the Theorem, it su ces to take the following
specialization of variables on both sides:

W= %JTJ (4.32)
Zk if kK = 1

u:
KT 2k if =0

(4.33)

4.2 Local rule as higher order function

4.2.1 Combinatorial formulation

We saw in section8.3.5that Borodin's identity (equation 11.1) may be expressed in the
form:
1 0 1
X g X 7 X 1
29 = Tl @
C2CPP( ) s2b( )

TR (4.34)

where b( ) denotes thecylindric diagram with prole  and hb( )(s) denotes thecylin-
dric hook length of the box s.

The right hand side may be interpreted combinatorially as a weighted sum over pairs
(; d) where is an integer partition and d is an arbitrarily labelled cylindric diagram.
In other words, we may write Borodin's identity as:

. X o
29 = ZId+ T ] (4.35)
2CPP( ) (;d)2(P;ALCD( )

Here P denotes the set of all integer partitions and ALCD( ) denotes the set of all
arbitrarily labelled cylindric diagrams with pro le

Our goal is thus to nd, for each possible prole , a weight-preserving bijection
between the sets CPP() and the tuple (P; ALCD( )).

- (P;ALCD( ))! CPP( ) (4.36)

Our bijection will be such that it actually proves the follow ing re ned identity:
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i1l 2l iTi—
z, 7, zZ, =

C2CPP( ) X

7
(: d2(P:ALCD( )

J+Jdlag(1)1d212J+Jdlag(2)ld ZJI_J+Jd|ag(T)Jd (4.37)

See sectionl1.4.1for the de nition of diag.

4.2.2 De nition of local rule

In section 9.2.9 we de ned the local rule to be a map with type signature:

U, tU()\VUC)! (Z osD( )\ D()) (4.38)
which satis es the following weight condition. If = D. (m; ) then
Ji=ii+ijg o jtm (4.39)

The inverse local rule has type signature:
D; (Z o;D()ND(C ) UC)\ U(C) (4.40)

An explicit map satisfying the conditions of the local rule was given in section9.2.1Q
Sometimes the local rule is represented graphically as falvs:

See for example, the diagram in sectiori1.3.3

Local rule as higher order function

At slight risk of confusion, we shall also use the term \localrule" to refer to a certain
higher order function, in the sense of functional programming Tho99]. In functional
programming, a higher order function is a function which takes as input a function, and
returns as output a di erent function.

Referring back to section8.1.3 for any Osuch that Cis obtained from
by adding an inversion at position i, the input function for our local rule L; will be a
weight-preserving bijection of the form:

:(P;ALCD( ))! CPP( ) (4.41)
while the output function is a weight preserving bijection of the form:

o: (P;ALCD( 9)! CcPP( 9 (4.42)
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That is to say, the local rule L; will have type signature:

Li : (P;ALCD( ))! CPP( ))! ((P;ALCD( 9)! cPP( 9 (4.43)
In other words:
Li[ 1= o (4.44)

Let* and' o denote the inverse of and o respectively. The \inverse local
rule" M; is the higher order function with type signature:

M;:(CPP( )! (P;ALCD( ))! (CPP( %! (P:ALCD( 9%)) (4.45)
That is:
Mi[ 1=" o (4.46)

Note that M; is only \inverse" to L; in the sense that:

Lil T Mil[ 1= 1cpp( 9
Mi[' 1 Li[ 1= pacoc 9)

It is not possible to composelL; and M directly due to incompatible type signatures.

Adding and removing boxes

An inside corner of an arbitrarily labelled cylindric diagram is an inversion in the pro le
of the form (i;i +1) or (T;1). An outside corner of an arbitrarily labelled cylindric
diagram is a co-inversion in the prole of the form (i;i +1) or (T;1). A cylindric
diagram always has the same number of inside corners as oulsi corners.

An inside corner at position i of an arbitrarily labelled cylindric diagram d° with
prole 9 can always be removed to obtain an arbitrarily labelled cylndric diagram
with prole  where 0 (see Sections.1.3).

Keeping track of the label of the box which we have removed, wehall denote this
operator by:

li :ALCD( 9! (Z o;ALCD( )) (4.47)

Conversely, ifd is an arbitrarily labelled cylindric diagram with prole , then given
an integer m we may create a new arbitrarily labelled cylindric diagram d® with pro le
0 by adding an outside corner at positioni and giving it the label m.
We shall denote this operator by:

r:(Z o;ALCD( ))! ALCD( 9 (4.48)
De nition of Local Rule
Choose any (; d) 2 (P; ALCD( 9) and let
(m; d) = li[d] (4.49)

Suppose that:
GGd=c=( % Yo T (4.50)
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Let:
- i1
_ i
and let
=U;, (;m) (4.51)
We de ne:
Li[ 1(;d)= P=( %y WLy M T (4.52)

Note that the horizontal strip condition in the de nition of U. ensures that this
de nition is well-de ned.

De nition of inverse Local Rule

The inverse local rule is de ned similarly. Choose any cylimrical plane partition =
(9 L:::: Tywithprole © Letus de ne:

Next let

(m; )=D; ()

and let cbe the cylindric plane partition withprole  givenbyc=( ©:::; ' 1 #1001,
If ' (0 =(; d) then we de ne

Ml ) =(; d)

where d®= r;[(m; d)]

4.3 The bijection

4.3.1 Idea of bijection

In the special case when the arbitrarily labelled cylindricdiagram d has depth zero (see
de nition 8.3.4), the strongly weight-preserving bijection is particularly simple:

(;)=Cs0 ) (4.53)

The idea is to recursively construct bijections, starting from this base case, by re-
peated application of the local rule (section11.2.2 and the rotation operator (de nition
8.3.5.
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Each application of the local rule corresponds to an applicdon of the commutation
relation (equation 10.4.2) in the algebraic proof of Borodin's identity while each appli-
cation of the rotation operator corresponds to an applicaton of the cylindric invariance
of the trace.

The recursion is not only over the number of inversions in thepro le, but also over
the depth of the arbitrarily labelled cylindric diagram upon which th e bijection is acting.

Although the precise structure of the recursion is a little complicated to describe in
words, it may be neatly encoded in a geometric object called aylindric growth diagram.

4.3.2 Cylindric growth diagrams
Cylindric diagram

The idea of a growth diagram was rst introduced by Fomin [ Fom95, Fom8§]. Krat-
tenthaler [Kra06] made use of this framework to give a new bijective proof of Stnley's
identity (equation 8.6). In the cylindric case we change the underlying poset, but he
essential idea remains the same.

De nition 4.3.1.  For any n;m 1, the cylindric poset G(n; m) is the quotient of Z?
via the equivalence relation:

(x;y) (x+nmy m) (4.54)

We shall write v w to indicate that the vertexw covers the vertexv in the cylindric
poset.

One need to check that this de nition is well-de ned. The equivalence classes are
given by:
[(xy)] = f(x+ kn;x  km);k 2 Zg

Re exivity and transitivity are obvious, we shall just prov e antisymmetry. Suppose that
[(x;y)] [(x%y9%]. This implies that there exists a k°2 Z such that:

x  x% k%
y y? k'

If we have also that [x®y9] [(x;y)] then there existsk 2 Z such that:

0

X X + kn

y

Putting these together we havex x + (k + k9n which implies (k + k9 0. Similarly
we havey y (k+ k9m which implies that (k + k9 0. The only way that this is
possible is itk + k°=0, or k= k°

Now:

O y km

x+kn X% kh+ kn=x°

which implies that x ~ x%+ k%. But:
x%+ kh  x+ kn+ kh = x

Sox = x%+ k%h. Similarly y = y + km. It follows that [( x;y)] = [( x% y9].
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Bijection with cylindric diagrams

De nition 4.3.2. A facein the cylindric poset is a set of four vertices(u;vl; v2;w)
satisfyingu vl wandu v2 w.

We say that the face (u;v1;v2;w) lies abovethe vertex u and belowthe vertex w

De nition 4.3.3.  For any binary string  containing n zeros andm ones, apath in a
cylindric growth diagram G( ) with prole is a sequence of vertices:

P=(Vo;V1i,:::;Va+m 1,Vn+m) with Vo = Vh+m (4.55)
satisfying vk 1 vk if =0, otherwisevy, 1 k.

Lemma 4.3.1. There is a natural bijection between the cylindric diagram \ith pro le
2 Bin(n;m), and the subposet of the cylindric poseG( ) which lies below any given
path with pro le

This bijection maps the boxesof the cylindric diagram (section 8.3.2) to the faces
of the cylindric poset.
Cylindric growth diagram

De nition 4.3.4. A cylindric growth diagram with prole 2 Bin(n;m) is the subset
of the cylindric diagram G( ) which lies below a path with prole (referred to as the
upper boundary), whose vertices are labelled by integer g#ions, and whose faces are
labelled by non-negative integers, in such a way that the folving three conditions are
satis ed:

1. If v w, andif is the integer partition labelling the vertexv and is the integer
partition labelling the vertex w, then = is a horizontal strip.

2. All but nitely many of the vertices are labelled with the sime integer partition

3. If (u;v1;v2;w) is a face with labelm, and if the labels ofu, v1, v2 and w are
, and respectively then:

U, (m; )=
The invertibility of the local rule implies that condition ( 3) could be equivalently
formulated as follows:

Lemma 4.3.2. If (u;vl;v2;w) is a face of a cylindric diagram G( ) with labelm, and
if the labels ofu, vl, v2andw are , , and respectively then:

D, ()=(m; )
Observe that the weight condition of the local rule 11.2.2we have:
Lemma 4.33. D. ()=(; )

It follows that below a certain point in a cylindric growth di agram, all the vertices
will have the same label, and all the faces will be labelled byero.



x 4.3 | The bijection 69

4.3.3 The bijection

Here is an example of a growth diagram with = 00101. Note that the pro le is read
from right to left. Zero corresponds to aSW step and one corresponds to NW step:

(6:4;3;2)

(6;4;3;2) 4;3;,2;1) (5;32) 5

5 4;3;2) 1 (3;2,2) 0 4;3;2)

N/

(4;3;2) 0 (3;2,2) 0 (3;2,1) 1

/ \_/
AUV

1 (3:2:2) 0 (3;2,1) 0 (3;2)

/NN
N/ N/

N/

(3;2) 1 (3;21) 0 (3:2)

/\
/\
\/

(3;2) 1 (3;2)

\ /

(3:2)

Note that we have truncated the diagram below the lower boundry, where all ver-
tices have the same label.

Lemma 4.3.4. For any path p in a cylindric growth diagram G( ) with prole , the
sequence of pro les associated to the vertices of the pathrfo a cylindric plane partition.

In particular, the sequence of partitions labelling the vettices along the upper bound-
ary form an element of CPP( ).

(6;4,3;2)

\

(6;4;3;2) (4;3;2,1) (5:3;2)

/
\
/
\

(4,3;,2) (3;2,2)

AvA
YA,
\VAVA

Y

AVAV,
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Note that this is just a rotation of the example cylindric pla ne partition given in
section 8.3.2

Lemma 4.3.5. If the labels of the vertices of a cylindric growth diagramG( ) with
prole are forgotten, then we obtain an arbitrarily labelled cylirdric diagram.

\V4

/N
A%

/N
AYA

/\
VA
\

v
VA

/
\

Note that the arbitrarily labelled cylindric diagram is a ro tation of the example given
in section 8.3.5

A growth diagram should be thought of as an object which inteppolates between the
LHS and the RHS of the bijection which we wish to establish.

Proposition 4.3.1. To every cylindric plane partition, there is a uniquely assaiated
cylindric growth diagram.

Proof. Once the labels on the upper boundary have been specied, pperty (3) of
de nition 11.3.4 ensures that there is a unique way in which to label the remaimg
faces and vertices. O

Proposition 4.3.2. To every pair ( ; d) where is an integer partition and d is an
arbitrarily labelled cylindric diagram, there exists a uniquely de ned cylindric growth
diagram.

Proof. Let d denote the depth ofd. To every face with depth greater than d assign
the label 0. To every vertex lying below a face with depth greter than d, assign the
label . Property (3) of de nition 11.3.4ensures that there is a unique way to label the
remaining faces and vertices. Lemmad.1.3.3ensures that the resulting growth diagram
is well-de ned. O

4.3.4 Remarks

The following lemma guarantees that, when there are multipk inversions in the pro le
string, the order in which the local rules are applied is of noimportance.

Lemma 4.3.6. If has inversions at both positions andj then:

Li Lj[ ]: Lj Li[ ] (4.56)
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Proof. Without loss of generality we may assume thatj >i . If has inversions at both
positionsi andj then ;=0= jand j+1 =1= 4+ thusj i 2. Application
of the local rule L; does not e ect the (j  1)th diagonal. Similarly, application of the
local rule Lj does not e ect the (i +1)th diagonal, thus the two operators commute. [

Given a path p with prole  yax it is not possible to apply the local rule M for any
i. It is however possible to rotate the cylinder, and thus obtan a new path (p) with
prole min (see Section8.3.5).

If dis an arbitrarily labelled cylindric diagram with pro le and depth d > 0 then

in order to construct the bijection  (; d) the cylindric shift operator will have to be
appliedd 1 times.

It remains to prove that our bijection is weight preserving.

4.4 The weight

4.4.1 Alternative de nition of weight

Let us de ne the cohook of a boxbin an arbitrarily labelled cylindric diagram d to be:

cohook() = fbib2 hook(d)g (4.57)
1
10
0
10
1[0
0
110
1/0
0
10
110
0
0

Although the number of boxes in the cohook of a given box is alays in nite, since
only a nite number of the labels are zero it still makes sensdo de ne the weight of a
cohook:

X
jcohook()jg = label(t?) (4.58)
k%2 cohook(b)

Let diag(k) denote the set of all boxes on thek-th diagonal. Furthermore let us
de ne the weight of the diagonal of an arbitrarily labelled cylindric diagram d to be:
X
jdiag(k)jq = j cohook®)jq (4.59)
b2 diag(k)
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Note that if bis taken to be the box of diagk) lying furthest to the \north-west"
then jdiag(k)jq is none other than the sum of all the labels of boxes lying \soth-east"
of b.

With these de nitions we may give an alternative de nition o f the weight of d:

X
jdj = label(b") hook(b) (4.60)
X
= label(t)) 1 (4.61)
t))‘éZ X b2 hook(bP)
= label(t) (4.62)
?(2 b%2 cohook(b)
= jcohook()jd (4.63)
b2
XT
= jdiag(k)jg (4.64)
k=1
(4.65)

The re ned weight of a cylindric plane patrtition is given by:

zjldiag(l)juzjzdiag(Z)jd erdiag(T)jd (4.66)

De nition 4.4.1.  We shall say that a bijection:
:(P;ALCD( ))! CPP( )

is strongly weight preserving if whenever:

we have for alll k T that:
i %= j+ jdiag(K)jd (4.67)

Lemma 4.4.1. Strongly weight preserving implies weight preserving.

4.4.2 Proof that the bijection is strongly weight preservin g

In this section we prove that our bijection is strongly weight preserving.
Proposition 4.4.1. If (m;d) = |;[d9 then:
jdiag(i)je = m+ jdiag(i 1)jg+ jdiag(i +1)jq j diag(i)jq (4.68)

Proof. Let b denote the box ofd® with cylindric inversion coordinates (i;i +1;0). The
sum of all the labels in boxes in the same cylindric column as is given by:

jdiag(i +1)ja | diag(i)ja (4.69)
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while the sum of all the labels in boxes lying in the same cylidric row as bis given by:
jdiag(i  1)ja j diag(i)ja (4.70)
In other words:

cohook(;i +1;0)g= m+ jdiag(i 1)jq+ jdiag(i +1)jg 2j diag(i)jq (4.71)

Now:
jdiag(i)jqe = jdiag(i)jq + cohook(i;i +1;0)q0 (4.72)
= m+ jdiag(i 1)jg+ jdiag(i +1)jg | diag(i)jd (4.73)
O

Proposition 4.4.2. If is strongly weight preserving, then so id.i( ).

Proof. Let:
(m;d) = Ii[d] (4.74)
and let:
(GGd=c=( %Gy ) (4.75)
Then:
Lil 1 d)=EP=( %y T (4.76)
where:
=U. (m; ) (4.77)

The weight condition for the local rule assures us that:

Ji=m+jj+jig ] (4.78)
Forall j 6 i we have
jdiag()ja = jdiag()jw=j 'j j | (4.79)
We must show that:
jdiag()jw=1J j | | (4.80)

Now, by proposition 11.4.1and the assumption that  is strongly weight-preserving,
we have:

jdiag(i)jo= m+ jdiag(i 1)jq+ jdiag(i +1)ja j diag(i)jd (4.81)
=m+(j i D+Gii D Giih (4.82)
=jid (4.83)

The result follows. O
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4.5 Conclusion

We have made use of Fomin's growth diagram frameworkHom95, Fom88] to give a
bijective proof of a re ned version of Borodin's identity (equation 8.8). Our proof
generalizes known proofs for Stanley's identity (equatior8.6) and MacMahon's identity
(equation 8.5).

Due to the fact that there are two equally natural extensions of Fomin's local rule to
the horizontal strip case (see sectior®.2.9) we have actually given two distinct bijective
proofs of Borodin's identity, one corresponding to the RSK orrespondence, and the
other corresponding to the Burge correspondence:

r; B :(P;ALCD( ))! CPP( ) (4.84)

These two maps are closely related by the Schatzenbergerwolution [vL05]. Observe
that we have:
R g :CPP()! CPP() (4.85)

What can we say about this map?

Tingley [Tin08] showed that cylindric plane partitions can be understood & crystal
bases for§l,,. Does the map in equation11.85have any interpretation at the level of
representation theory?

It is known [JM83] that the tensor product of the highest weight representation of
8, associated to the prole by the evaluation representation of 81, associated to the
natural representation of sl, decomposes as a direct sum of highest weight represen-
tations, where those highest weight representations occuing in the sum are precisely
those associated to the prole °where Oin the partial order described in section
8.1.3 Is it possible to make use of the local rule formalism to betér understand this
decomposition on the crystal basis level?



5. Macdonald polynomial analog

5.1 (q;t)-Borodin identity

5.1.1 Statement

Theorem 5.1.1. For any binary string  we have:
0

1
X . Y 1 Y tzl i+nT. Y tzl i+ (n+)T.
WC(q;t)qu = %1 z(n+1) T ((ZZJ i+nT 1(?))11 ((ZZJ i+(n+1)T-,C(]:]))1 §
C2CPP( ) n 0 i<j ! i>j yY)1
P> P>
(5.1)
where ifc=( 0 1;::: T)then the weight function is given by:
Y Y
We(q;t) = "ok 1(0st) k 1= k(Q;1) (5.2)
k=1 k=1
k=1 k=0

See equationsl0.63and 10.64for the de nition of the Macdonald Pieri coe cients.

Note that when g = t the weight function reduces to one, and equatiornL2.1.1reduces
to equation 11.1. The proof of the Hall{Littlewood case of this identity is du e to Corteel
and Savelief, Cyrille and Vulett [ CSV11] while the proof of the Macdonald version of
the reverse plane partition case is due to Okada(kald].

As in the Schur case, the nature of the proof is such that the iéntity remains true
if on the left hand side we replace:

ig ool 1l JoT ol
297 2y V7 Zr
while on the right hand side we replace:

nT n-n n
z" 1''zgzy z1 4

2 TR A Yy A wheni<j
2 T 70zttt 2+ A AT wheni>j
5.1.2 Proof
Our proof is almost identical to that given in section 11.1. The only di erence is that
instead of using the Hall inner producth ; i and the operators [ Xu]and [Xv]from
section 10.3, we use the Macdonald inner producth ; i g and the operators g;[Xu]

and 4.[Xv] from section 10.6.3

75
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Notation

Using the same \degree" operator as in sectiori1.1.1

D,P [X]=Z 1P [X] (5.3)
We have:
Lemma 5.1.1.
D; qt[Xu]= qt[Xuz]D, (5.4)
D, quXul= 4[Xuz 'D; (5.5)
Proof. This fact follows immediately from the action of ¢[Xu]and ¢[Xv] on Mac-
donald polynomials (equations10.61and 10.62). O
For notational convenience we shall de ne:
HO%z)= qu[Xz] (5.6)
Hi(z2)= q[Xz] (5.7)

These shall play an analogous role to the operator&°(z) and G1(z) de ned in section
11.1.1
Algebraic interpretation of left hand side

Lemma 5.1.2. The left hand side of the re ned version of equation12.1 may be ex-
pressed in the form:

X
Ihs( ) = Q jH °(ug)H *(uy) H T(ur)DwP igyt (5.8)
where:
w = %021 T 1 (5.9
if =1
uo= o A Tk (5.10)

1, 1 1 _
2,72, z.-, if =0

Proof. From the \interlacing sequence"” de nition of a cylindric pl ane partitions 8.3.1
it is clear that a cylindric plane partition is constructed by successively adding and
removing horizontal strips. As in the Schur case, the degreeperator D, is used to keep
track of the number of cubes in the resulting cylindric plane partition.

The new feature in the Macdonald case is presence of thej{t)-Pieri coe cients in
the de nition of the weight function (equation 12.2). This comes directly from the action
of the operators ¢;((Xu) and 4.(Xu) on Macdonald polynomials given in equations
10.61and 10.62

Using the fact that the Macdonald P-functions are orthogonal to the Macdonald

Q-functions with respect to the Macdonald inner product we may write:
X
lhs( ) = Q jDzH °(1)DyH (1) Dy ,H T(Q)P gy (5.11)

It remains to commute all the shift operators to the right hand side using Lemma
12.1.1 O
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Note that the above expression can also be understood as thieace of the operator:

H °(ug)H *(uz) H T(ur)Dw

acting on symmetric functions over Q(q; t).

Some lemmas

Let us de ne:

De nition 5.1.1.

X Y Y _
N (m)= R j g [Xuew™] qtXuk]Dw P igy

=~ 7]_
1l
o
~N
Il
=

Lemma 5.1.3.
(tuju;wm*; )y
(uiu;wm*L;qg)g

N (m)=

(i)
i6 j

N (m+1)

(5.12)

Proof. This is the same calculation as in Lemmall1.1.3 only using the Macdonald com-
mutation relation (lemma 10.6.2 rather than the Schur commutation relation (propo-

sition 10.4.2.

Since thefP g are orthogonal to the fQ g with respect to the Macdonald inner

product, and since:

tr(AB) =tr( BA)

We may write:

N (m)= hQ | gt Xuw™ P ighQ j qt[XUK]Dw P g
; k=1 k=1
k=0 k=1
x . - - -
= M j qtXuk]Dw P igtQ j gt XU kW™ P gt
: k=1 k=1
k=1 k=0
X Y \d _
= hQ j q;t[xuk] Dw q;t[Xuka]P Lot
k=1 k=1

=1 k=0

=

(5.13)

(5.14)

(5.15)
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Next applying the commutation relations of Lemma 12.1.1and Lemma 10.6.2we have:

X Y \d '
N (m)=  j q;t[xuk]Dw q;t[XUka]P lg:t (5.16)
kk=:11 kk=:10
X _ \d _— _
= ] qit[Xuk] gt XuW™ =] Dw P igit (5.17)
kk=:11 kk=:10
Y (tuiu; wm*; g) X Y Y _
) (UiIUjJWm+1'Q)11 Q1 galXu W™ ] qtXUKIDw P gy
(I|§J )j kk=:10 kk==11
(5.18)
Yo (tujuywm*; )
] ’ 1
N + .
iy UuwWmTia) (m+1) 5-19)
6]
O]

As in the Schur case, we have in the limit:

Lemma 5.1.4. v 1

N (1)= T W
n 1

(5.20)

Proof. In order for this limit to even make sense, we must havgzj < 1 for all i, in
which case:
i . 1 M1 =
m“{n qtXu! M1=1

Since 4[Xu] is a degree lowering operator, it follows that:

- X - W .
m“{n N (m)= R | . q;t[Xuk]DWP Iqit

X €=

Q DwP igt
EEANE

Y 1

The proof

The proof of the re ned version of Theorem12.1.1now proceeds in the same manner as
in section 11.1.4 We begin by applying Lemma12.1.2
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X X
We(g; 2P = hQ jH °(ug)H *(u1)) H T(ur)DwP g
2CPP( )

Next we repeatedly applies the commutation relations of Lemrma 10.6.2 followed by
de nition 12.1.1

Y e X Y Y
T g abxud qXUdDWP g
i<j R k=1 k=1
> k=0 k=1
Yo (tuiy; g
= T YS N (0
(uiuj; )1 ©

i<j
i

We then repeatedly apply Lemmal1.1.3
0

Yo (tuiu;o)r Y %Y (tUinWm+l;q)1§N 1
R (VRV I ] (uiuywm*1:q)q (1)
i J m 0 (i) ]

i j i j

Splitting the second product into two, and combining it with the rst we have:

0
_ VB (uyw™ Yo Yo (tuiuyyw™;q)q
6 i e

m o1 ki (uiujw™ 1;0)q (uju; w™; q)
P>

Finally, applying Lemma 12.1.4we have:
0 1

Y %Y (tuiuyw™ ;) g% (tuiu;w™; Q)1 §
m 1 1 wm i<i (Uin wm 1;Q)1 i>] (U Ui wm; CI)1
i i

As in the Schur case, to obtained the non-re ned version of tle Theorem, it su ces
to take the following specialization of variables on both siles:

W= %J'TJ' (5.21)
Zk if k=1

5.22
4 k if k=0 ( )

Uk =

5.2 The Macdonald weight

Recall that in the plethystic notation [ GHT99, Las03, if
X
a(g;t) = anm q't"

n;m
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with an.m 2 Z and ag,o = 0, then we have:

. J— Y 1
[ a(a; 9] = - A qmyenn

Making use of this notation, the cylindric weight function (equation 12.2 may be
given an explicit combinatorial description:

Theorem 5.2.1.

We(a;) = [( g t)Dc(a;1)] (5.23)

where the alphabeDc(q;1) is given by:

X . X .
De(q;t) = ope(S)t <(9) et <(9) (5.24)
s2 peak(c) s2valley (¢

The arm length of a cube in a cylindric plane partition is equal to the arm length
of the corresponding box with respect to the partition in which it lies. Likewise, the
leg length of a cube in a cylindric plane partition is equal to the leg length of the
corresponding box with respect to the partition in which it [ ies (see Sectior8.1.2).

The precise de nition of \valley" and \peak" cubes will be gi ven in subsection12.2.2
A proof of theorem 12.2.1will be given in subsection12.3. In section 12.2.3we remark
that Theorem 12.2.1reduces to the combinatorial formula for the Hall{Littlewo od weight
function given in [Vul09] and [CSV1]].

5.2.1 Lattice paths on the cylinder

The goal of this section is to give a bijection between cylindic plane partitions, de ned
as periodic interlacing sequences, and certain families afon-intersecting lattice paths
on the cylinder - or equivalently rhombus tilings on the cylinder. In particular we need
to understand what the meaning of acubeis in the non-intersecting lattice path picture
(see De nition 8.3.2)

Our construction is \dual" to the construction given in Krat tenthaler's original paper
[GK97]. Before proceeding any further, here is an example:
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valley: g?t~ -
. peak: qt

~

G R

c=(3;22);(4,3,21);(4,3,2);(6:4,3,2);(5,3,2); (3,2, 2))
The bijection between the path model and the tiling model is dear. The white
vertices correspond to the yellow tiles. Each upstep of a pdt corresponds to a red tile.

Each downstep of a path corresponds to a blue tile. Note thatdue to cylindricity, the
rst column corresponds to the last column, only shifted onestep.

5.2.2 Cubes in lattice path picture

De nition 5.2.1. We say that a vertex of the lattice isoccupiedor black if there is
a path passing through that vertex, otherwise we say that theertex is unoccupied or
white

De nition 5.2.2. A \cube" in the non-intersecting lattice path model correspnds to a
pair of vertices u = (x;y1) and v = (x;y2) with u coloured black,v coloured white and

Yi<Yya.

De nition 5.2.3. The path associated to the cube (;v) is the path which passes
through the black vertexv.

De nition 5.2.4. A valley cube is a cubg(u;v) for which the associated path takes a
down step just before passing through, followed immediately by an upstep.

De nition 5.2.5. A peak cube is a cubgu;v) for which the associated path takes an
up step just before passing through, followed immediately by a downstep.
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We have marked one peak cube and one valley cube on the diagrarogether with
their contribution to the alphabet D¢(q;t) in equation 12.2.1 Since we are working on
a cylinder, the rst vertical is identi ed with the last vert ical in such a way that each
path forms a closed loop.

5.2.3 Hall{Littlewood case

De nition 5.2.6. A surface cubeis a cube(u; V) such that ifu = (x;y1) andv = (X;y2)
then for all w = (x;y9 with y; <y %<y, the vertexw is coloured white.

De nition 5.2.7.  The level of a surface cube(u;v) isy» y1 whereu = (x;y1) and
v =(XY2).

Surface cubes are naturally in bijection with the yellow tiles in the rhombus tiling
model. In the Hall{Littlewood case we haveq = 0, thus the only boxes which contribute
to the alphabet D¢(q; t) are those with arm-length zero. Since there is a bijection btween
such cubes and the \yellow" tiles of the rhombus tiling model and since the leg length
of the cube is precisely thelevel as de ned in [Vul09] and [CSV1]], it follows that
Theorem 12.2.1reduces the combinatorial formula for the Hall{Littlewood weight case
in [Vul09] and [CSV1]].

5.2.4 Bijection

We shall now describe explicitly the bijection between cylhdric plane partitions and
families of non-intersecting lattice paths on the cylinder The impatient reader may
wish to skip the technical details in the section, and simplyremark that the parts of the
individual partitions in the interlacing sequence model mg be read, from right to left,
from the \heights" of the corresponding surface cubes in therhombus tiling model.
Equivalently, interpreting the black vertices as ones and he white vertices as zeros,

the binary strings obtained from reading upwards along a gien vertical gives the pro le
of the corresponding patrtition in the \interlacing sequence model".

De nition 5.2.8.  The cylinder of period T is the triangular lattice with vertices (x;y)
where either bothx and y are even or bothx andy are odd, and for which0 x T.

In our example we haveT = 5. We have drawn a segment of the cylinder corre-
spondingto 0 'y 22.

Encoding of paths

De nition 5.2.9. A path on the cylinder of periodT is a sequence of integeréyo; y1;:::;Y1)
with yg even such that for eactk we have eitheryxi1 = yk +1 or ye+1 = Vv 1L

Lemma 5.2.1. Each path on the cylinder of periodT may be uniquely encoded by its
starting position yo and the binary string p given bypX =1 if yis1 = y+1 andpk =0
otherwise.
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De nition 5.2.10. A family of non-intersecting lattice paths on the cylinder of period
T is a collection of paths:

Pt = (Y8 VL iyT)
P* = (Y& y5ioooyf)

P = (Yo YT iiiyT)
i+1 i+1 i+1

satisfying y,'* >y for all k and i as well asyy,™ yh=yrt yi forall i.

Note that the second condition is necessary in order to enserthat it is possible to
take the cylindric quotient identifying the vertices (0 ;y) with the vertices (T;y + d) for
d=m n wherem is the number of ones in the pro le, andn is the number of zeros.

The paths in our example may be encoded using Lemma?2.2.1as follows:

p'=(1;0;1;0;1);
p?=(1;0;1;1;0);
p°=(0;0;1;1;1);
p*=(0;0,1;1;1);

<
1
AN

< <
1
[EEN
o

<
ON OO OU1 O~ OW ON OF
I
[ERN
N

p°P=(0;11,10); ys=16
p®=(1;0,1;1;0); y5S=18
p’=(1;1,0,1;,0); y5=20

Extra conditions at boundary

De nition 5.2.11. A family of non-intersecting lattice paths on the cylinder d period
T is said to be minimal with m paths if there is somei such thaty,, vy, 1> 2.

De nition 5.2.12.  The pro le of a minimal family of m non-intersecting lattice paths
is the binary string associated to themth path.

Our example family of non-intersecting lattice paths is minimal with 7 paths. Its
proleis =11010.

Vertical reading of lattice paths

The reader is referred back to sectior8.1.1 for the bijection between integer partitions
and the binary string encoding their pro les.

De nition 5.2.13. The vertical reading of a minimal family of m non-intersecting
lattice paths is the sequence of binary strings®; 1;::: T obtained by reading, for each
k, vertically upwards from the vertex(k; y%) to the vertex(k; yg'), and recording a0 each
time the vertex is occupied and &l each time the vertex is unoccupied.
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The vertical reading of our example family of non-intersecing lattice paths is the
following:
0=110010111 3=110101011
1 =110101101 4=1010101011
2=110101011 5=110010111

Observe that o= 7.

Horizontal strips

Proposition 5.2.1. Let ( % %;:::; T) be a sequence of binary strings arising from
the vertical reading of a minimal family of non-intersecting lattice paths on a cylinder
of period T and prole . For eachk 2f1;2;:::Tglet X denote the partition whose
pro le is given by K. If =1 then X= kK 1is a horizontal strip, otherwise if , =0
then Kk 1= K s a horizontal strip.

Proof. Follows immediately from the characterization of horizontal strips in terms of
pro les in section 8.1.4 m
Length of i-th column

Let c=( 9 %;:::; T) be an arbitrary cylindric plane partition with prole . For
eachi let us de ne:

PO=( O (H* oY (7T H+ 1) (5.25)

Note that p;(c) encodes information about the length of thei-th column of the
successive partitions in the interlacing sequence af. This fact will be very important
in section 12.3.4

Proposition 5.2.2.  For eachi we have thatp;(c) as de ned in Equation (12.25) is a
binary string.

Proof. If =1 then from de nition 8.3.1it follows that *= k 1 s a horizontal strip
and thus we have that ( K 1)° ( K)92f 1:0g. Similarly, if =0then * 1= kisa
horizontal strip and ( X 1)° ( K)92f1;0g O

Bijection
Theorem 5.2.2. For any binary string  of length T there is a bijection between mini-

mal families of non-intersecting lattice paths on the cylirder of period T with prole
and cylindric plane partitions of pro le

Proof. The map from families of non-intersecting lattice paths on te cylinder to inter-

lacing sequences is given by taking vertical readings, anchen translating from pro les

to partitions. Conversely, the family of non-intersecting lattice paths associated to a
given interlacing sequencec is given by

f(P1(9; 1);(P2(9); 2);:::(Pm(9); m)d
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where ; is the position of i-th one in the prole of © and p;i(c) is de ned in Equation
12.25 O

5.3 Proof of Theorem 12.2.1

Making use of the plethystic notation is just like taking the logarithm in order to turn
multiplication and addition and division into subtraction . The terms which arise in the
alphabet of the weight function must be regrouped appropridely before cancellations
can take place between contributions of the same cube to twoidgrent Pieri co-e cients.

After the cancellation, a second regrouping of terms takes lace. This regrouping
involves putting together contributions of boxes which corme from the came column
number, but a di erent partition in the \interlacing sequen ce" model.

Equivalently, we put together cubes which lie on the same vdical of the interlacing
sequence model. Propositiori2.2.1is used extensively in this step.

5.3.1 Plethystic notation

We begin by making use of theplethystic notation [GHT99, Las03 to rewrite the (q;t)-
Pieri coe cients (equations 10.63and 10.69) in the following form:

- @Y= (@ DA (@Y B - (a0), (5.26)
- (@)= (@ t)BL (@) AL (g (5.27)
where:
X .
A (g;t) = o Gt © (5.28)
s%gz
B- (q;) = o Gt © (5.29)
s2C _
X .
AL (i) = ¢ Ot © (5.30)
S6Z _
X .
BL (a;t)= o Ot © (5.31)
S6L _

Here we have changed our notation slightly from that used in Macdonald Mac95)],
so that now C- denotes the set of boxes = (i;j) 2 such that ?> © while C-
denotes the set of boxes = (i;j) 2 such that 9> jo_

j
Making use of this notation we may rewrite equation12.2 as:

We(g;t) = (g t)Dc(q;t) (5.32)
where:
X X
Dc(a;t) = (Ag=x 1 B k=x 1)+ (BY 1= A D =) (5.33)
k=1 k=1

k=1 k=0
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To avoid unnecessary indices, we use the convention that:
Xik=k 1= X k=« 1(q;1) (5.34)

Our goal is to nd a simpli ed expression for D¢(q; t).

5.3.2 Regrouping terms

Recall from section8.3.1that in the \interlacing sequence" model, a cube of the cylindric
plane partition c corresponds to abox of one of the underlying partitions K.

Observe now that eachbox s 2 K contributes to at most two terms in equation
12.33 one involving the pair of partitions X and * 1, the other involving the pair of
partitions X and k*I.

Regrouping terms, and setting 141 = 1 aswellas T*' = 1 we may write:
X - X -
D(ag;t) = Eri(0) + Eoo(0) + Eo1(0) + Ero(0) (5.35)
k=1 k=1 k=1 k=1
k=1 k=0 k=0 k=1
k+1 =1 k+1 =0 k+1 =1 k+1 =0
where:
Ef(0 = Ak 1 B ek (5.36)
E5o(© = BY 1o A Pon (5.37)
E(l)<1(c): BE 1=k B k+1=k (5.38)
Efo(OQ = Aksk 1 A o (5.39)

For eachk, there is only one term of the formEX (c) appearing in the expression for
D¢(q; 1), and this term groups together all contributions from the boxess 2 X,
5.3.3 Cancellations
The next step is to observe that we have a large number of canllations. For example:
B (0 = (A>12:k 1 B k+1=1)
- qak(s)t\k(s) qak(s)t\k(s)

s2 Ck=k 1 526k+1 =Kk

S|gn11(3) qak (S)t\k (s)

s2 k

:
:

where:
if 2 Cy=x 1 and s 62C 1 =
if 2 Cyex 1 @and s 2 Cyyq =
if S62C,= 1 and S 62C .1 =
1 ifs62C,- 1 ands2 Cyiq

o O -

sign1(s) = (5.40)
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Again we are using a simpli ed notation:
ax(s) = a «(s)
k(s) =" «(s)
Similarly:
Efo = (BY 1ok A Reen)
= xSt «(9) xSt x(9)
S)%fk 1=k \ SGEk:k +1
= signgo(s) gt
s2 k
where: 8 .
E 1 ifs2 Cyg 1= and s 62Cy—+1
. 0 ifs2Cy 1=« ands2 Cy
siggo(s) = T Tk keked (5.41)
E 0 if s62C, 1-x and s 62C, 41
1 if s GEk 1=k and s 2 Ck:k+1
Next:
Elél = ( Bg( 1=k B k+1=k)
- o ()¢ x(s) qak(s)t\k(s)
6L, 1o $2Cyu1 =«
X .
= SignOl(S) qak (S)t k(s)
s2 k
where: 8 B o
% 0 if s2 Ck 1= and s 62C+1 =
. 1 ifs2Cy 1=« ands2 Cyyq-
signy, (s) = L e ki (5.42)
§ 1 if s62C, 1-« and s 62C 1 =«
-0 if s 6fk 1= and s 2 6k+1 =x(
And:
Elo(©) = (Agec 1 A foker)
- qak(S)t‘k(S) qak(s)t‘k(s)
s>2<ck:k 1 \Ssz:kﬂ
= signyo(s) g )t « )
s2 k
where: 8
% 0 if s2 Ck=k 1 and s 62Ck:k+l
: 1 if s2 Cy=x 1 and s 2 Cy-
sign;o(s) = _ K=k 1 kektl (5.43)
E 1 if s62C,- 1 and s 62C,—+1
-0 if s 62Ck:k 1 and s 2 Ck=k+l
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5.3.4 Switching models

The nal step in the proof is to switch from the \interlacing s equence" model of cylindric
plane partitions (section 8.3.1) to the \non-intersecting lattice path model" (section
12.2.7). This entails a grouping together of all the cubesof the cylindric plane partition
which belong to the same column of possibly di erent partitions in the sequence.

Recall that a cubein the non-intersecting path model corresponds to a pair of ertices
vi = (Xx;y1) and vo = (X;y2) with y1 <y, wherev; is coloured black andv, is coloured
white.

Recall also that the i-th path in the non-intersecting path model encodes the lenth
of the i-th column in each succeeding partition of the interlacing £quence (see equation
(12.29 in section 12.2.7).

We shall say that the cubec = (vy; Vo) is of type i if the black vertex y; lies on the
ith path. This is equivalent to saying that the cube c lies in the ith column of X for
somek.

Four cases to check

If «=0and = Kk 1then atthe kth step, all the paths move downwards. More
generally if = 0then K K 1 and the ith path moves upwards if and only if the
ith column of K is shorter than the corresponding column of * 1,

That is to say, at the kth step, the ith path moves upwards if and only ifc2 Cy 1
forall c2 K of typei.

If «=1and X = Kk 1then atthe kth step, all the paths move upwards. More
generally if  =1then X1 kK and the ith path moves downwards if and only if the
ith column of ¥ is longer than the corresponding column of ¥ 1,

That is to say, at the kth step, the ith path moves downwards if and only ifc 2 Cy— 1
forall c2 K of typei.

In a similar spirit, +1 =0and K = K then at the (k + 1)th step, all the paths
move downwards. More generally if 41 = 0 then Kk*1 kK and the ith path moves
up if and only if the ith column of Kk*! is shorter than the corresponding column of K.

That is to say, at the (k + 1)th step, the ith path moves upwards if and only if
€2 Cyeysy forall c2 X oftypei.

Finally, if 41 =0 and ** = K then at the (k + 1)th step, all the paths move
upwards. More generally if  =1then K  X*1 and the ith path moves downwards
if and only if the ith column of k*1 is longer than the corresponding column of K.

That is to say, at the (k + 1)th step, the ith path moves downwards if and only if
c2 Cyiy forall c2 K of typei.

Last but not least, one may check that the signs agree in all 1gossible cases.

5.4 Conclusion
We have proved a Macdonald polynomial analog of Borodin's iéntity. This simultane-

ously generalizes results of Okada(kal(] and Corteel and Savelief, Cyrille and Vulett
[CSV11]. We have also given a combinatorial interpretation of the weight function which
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is new even in the reverse plane partition case. Our proof rids heavily on the @;t)-
analog of the classical commutation relations originally gven by Haiman, Garcia and
Tesler [GHT99].

Is it possible to give a bijective proof of these commutationrelations, and thus
recover a bijective proof of the Macdonald polynomial analg of Borodin's identity? Is
it possible to nd a Macdonald polynomial analog of equation 10.39?
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6. Lambda determinants

Introduction

For those readers in a hurry, the most important de nitions are 13.3.1and 13.4.1. The
key lemmas are propositionl3.3.1and proposition 13.4.4 The later relies on proposition
13.4.1. Remark 13.2.1and Lemma 13.4.1are trivial but important.

The main theorem is stated in section13.5 The proof is by recurrence. The key
step depends on a certain duality betweeneft interlacing matrices (section 13.3.2 and
right interlacing matrices (section 13.4.2 which allows us to factorize a certain sum.
This duality is stated in propositions 13.4.2and 13.4.3

6.1 Permutations

A permutation of n is simply a bijection from the setf1;2;:::ng to itself. The number
of permutations of n is equal ton!. It is often convenient to represent a permutation as

matrix. We put a 1 in position (i;j ) if (j) = i. In all other positions we place a 0. For
example, the permutation: = 24153 is represented by the matrix:
20 010 03
1 000
=20 0 0 O
0100
00010

We shall denote byl the identity permutation which maps i to i for all i, and we
shall denote byJ the maximum permutation which mapsi ton i for all i:

2 3
1

%

1 000O

(&

1
HOOOO
o o
= O OO
OoOr OO

[eNeN el

Observe that the inversions of correspond to the dual inversions of]

6.1.1 Inversions and dual inversions

An inversion in a permutation is a pair (i;j ) with i<j and (i)> (j).

93



94 Chapitre 6 | Lambda determinants

The inversions of permutation correspond to the zeros of thenatrix which lie in the
same row but to the left of a 1 and the same column but above a 1.

2 3
1 00

1 000

0 0 1

0100

00010

A dual inversion in a permutation is a pair (i;j ) with i>j and (i) > (j). The
dual inversions of permutation correspond to the zeros of tB matrix which lie in the
same row but to theright of a 1 and the same column but above a 1.

2O 01 3
1 0

EO 0 0O %
010 0
0 0010

6.1.2 Determinants

Our interest in permutations comes from the well-known fornula for the determinant
of a matrix:

X :
detA = ( 1)™()A (6.1)
where the sum is over all permutations ofn and we are using the notation:
Y

There is a curious method for calculating determinants, knavn as Dodgson conden-
sation, which is originally due to Charles Dodgson (aka Lewis Card) [Bre99. One
proceeds as follows:

For eachk =0 :::n let us denote byx,[k] the doubly indexed collection of variables
Xn[K]i;j with indices running from i;j =1:(n k+1). One should think of the variables
as forming a square pyramid with basen + 1 by n+ 1. The index k determines the
\height" of the variable in the pyramid.

The variables are initialized as follows:

Xn[Of; =1forall i;j =1:(n+1)
Xn[1]; = Mj; forall i;j =1:n

The value of the remaining variables is calculated via the fdowing recurrence:

Xn[Klij Xn[Kli+1;j+1  Xn[Klij +1 Xn[Kli+1;

+1]i =
Xn[K + 1]i; Xn[k  1li+1+1

(6.3)

The end result is that:

X .
xp[Nlia = ( )™O)x[1] =det(M) (6.4)
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6.1.3 Posets and lattices

A partial order is a setP equipped with a binary relation  satisfying:
a aforall a2 P (re exivity)
a bandb cimpliesa c (transitivity)
a bandb aimplies a= b (antisymmetry)

We say that the elementb coversthe elementa 6 bif a band if thereisnoa6 c6 b
suchthata c¢ b
A poset is said to begraded if their exists some function:

w:P! Z g

with the property that w(b) = w(a) + 1 whenever a coversh.

A lattice is a partial order P with the property that for every every a;b2 P there
exists unique elementa” b (meet) and a_ b (join) with the propertythat a®*b a;b a b
and for all csuch thata;b cwe havea b cand forall dsuchthatd a;bwe have
d a”h

Not every poset is a lattice, but very poset can be completedn a unique way to
form a lattice.

6.1.4 Bruhat order

A transposition is a permutation  with the property that there exists some i;j such
that (i)=j and (j)= i while for all other k one has (k) = k.

The Bruhat order may be de ned as follows. The permutationa coversbif and only
if there exists some transposition such that b= a with inv( b) =inv( a) + 1.

The strong Bruhat order is graded by the involution number. The largest element
in the Bruhat order is the maximum permutation J. One can show that for any per-
mutations and we have if and only if J J .

The Bruhat order doesnot form a lattice, since the permutations 132 and 213 have
no join, while 312 and 231 have no meet.

6.1.5 Monotone triangles

A monotone triangle is a triangle of integers:

ai a2 ai;3 ag:a ai;s
azi azo az;s az4
az1 as;2 asz;3
a~4;l a-4;2
as;1

with the following properties:
azk = k for all k.

aj +1 > Ajjj for all i;j .
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aj;j A+l Ai+1;j+1 -

A monotone triangle is a special case of a Gelfand-Tsetlin tangle [KB95]. It is
sometimes also referred to as &og triangle [Zei9€].

There is a way to associate a unique monotone triangle to evgrpermutation. The
rule is as follows. Thekth row from the bottom of the monotone triangle associated to

contains a list, in increasing order, of those columns of thenatrix of ~ which contain

a 1lin the nal k rows of the matrix.

Here is the monotone triangle for our example permutation atthe beginning of
section 13.1:

The inversions in the monotone triangle picture correspond to pairs of equal num-
bers, one immediately above and to the left of the other. Hereare the four inversions
of our example:

The dual inversions in the monotone triangle picture correpond to pairs of equal
numbers, one immediately above and to the right of the other. Here are the six dual
inversions of our example:

The e ect on the monotone triangle of a permutation  of multiplying the left by
the maximum permutation J is to send eachi to n+1 i, and then re ect around the
main horizontal.

Not every monotone triangle is associated to a permutation.For example:

1 2 3
1 3
2
We shall see in sectionl3.2 that the above monotone triangle corresponds to the fol-
lowing alternating sign matrix : 2 3
0 1 0
41 1 15

0 1 O
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6.2 Alternating Sign matrices

An alternating sign matrix is a square matrix of 0's 1's and 1's such that the sum of
each row and column is 1 and the non-zero entries in each row dncolumn alternate in
sign. For example:

0 1
00 1 O
_Bo 1 1J(§
A‘%100
00 1 0

A permutation matrix is an alternating sign matrix with no ( 1)'s.
The total number of alternating sign matrices of sizen is given by:

_ Y1 @Ek+1)

An = o (N+K)!

1,1;2,7;42,429 7436 : ::

This result was a conjecture for a long time. The rst proof was given by Zeilberger
[Zei9q. Zeilberger's proof was long and complicated and eventubl a simpli ed proof
given by Kuperberg [Kup96]. Kuperberg's proof made use of ideas from the theory of
integrable systems, the Yang-Baxter equation and the six vaex model with domain
wall boundary conditions. It also made use of a recurrence fation due to Izergin and
Korepin [KBI93].

6.2.1 Inversions and dual inversions

As with permutations, an inversion of an alternating sign matrix is a zeros in the matrix
with the property that the sum of the entries in the same row lying to the right is equal
to one, and the sum of the entries in the same column lying bels is equal to one. Our
example alternating matrix A has three 3 inversions.

0

b

0

1

© 95 -

oo

1
0
1

A dual inversion of an alternating sign matrix is a zero in the matrix with the
property that the sum of the entries in the same row lying to the left is equal to one,
and the sum of the entries in the same column lying below is el to one. Our example
alternating matrix A has 2 dual inversions.

0 1
00 1
%01 1(1}%
1 0

00 1 O

Remark 6.2.1. The alternating sign matrix M has a dual inversion at position(i;j )
if and only if the alternating sign matrix JM has an inversion at position(i;n +1 j).
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6.2.2 Monotone triangles

Just like permutation matrices, alternating sign matrices may be associated with mono-
tone triangles.

The rule for constructing the monotone triangle from the alternating sign matrix
is that the kth row from the bottom contains, in increasing order, a list of all those
columns of the matrix whose nal k entries sum to 1. Again this process is reversible.

Here is the monotone triangle of our example alternating sig matrix from section
13.2

Every monotone triangle corresponds to an alternating signmatrix. The de nition
of inversions and dual inversions in the monotone triangle fture is exactly the same
as for permutations.

6.2.3 Completion of Bruhat order

One can show that the set of all monotone triangles of siz&, under the partial order
a bif and only if each element ofa is greater than or equal to the corresponding
element of b, forms a lattice which completes the Bruhat order [S96]. One monotone
triangle covers another in the completion of the Bruhat orde if and only if they di er
by exactly 1 at a single position.

Here is the Hasse diagramfor the Bruhat order on permutations for n = 3:
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The completion of this diagram involves adding an extra elerent in the center, where
the two lines cross. This element is the monotone triangle:

3

0 1 0
41 1 15
0 1 0

6.2.4 Lambda determinant

Alternating sign matrices rst appeared in the literature i n the context of the so called
lambda determinant of Robbins and Rumsey RR86]. We shall now de ne the -
determinant.

As in the case of Dodgson condensation (see Sectidr8.1.9), for eachk = 0:::n
let us denote by x,[k] the doubly indexed collection of variablesxn[K]i;; with indices
running from i;j =1:(n k+1). Again one should think of the variables as forming a
square pyramid with basen +1 by n +1. The index k determines the \height" of the
variable in the pyramid.
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The variables are initialized in the same way:

Xn[Of;j =1 forall i;j =1:(n+1)
Xn[l];j = Mj; forall i;j =1:n

However the value of the remaining variables is calculated i the following modi ed
recurrence:

Xn[Klij Xn[Kli+15+1 + X nlKlij +1 Xn[Kli+1

Xn[k 1]i+1 g+l (6'5)

Xnlk+1]ij =

The end result [RR86] is that:

X )
Xn[n]11 = nv(B)(1+ YNEIWBE (6.6)
B2 An

Here A, denotes the set of all alternating sign matrices of sizen, inv(B) denotes the
inversion number of B and N (B) denotes the number of negative ones iB.

The -determinant reduces to the regular determinant when = 1. The deter-
minant exhibits what is known as the Laurent phenomenon[FZ02]. From the recursive
de nition we expect x[n]1.1 to be a rational function. The fact that it turns out to be a
Laurent polynomial is very surprising.

Our goal is to generalize equation13.6 by adding additional parameters.

6.3 Interlacing matrices

6.3.1 Left corner sum matrices

For eachn by n alternating sign matrix X let X be the matrix whose (;j )-th entry is
equal to the sum of the entries lying above and to the left of tle (i;j )-th entry of X.
For example: 0

0100 0111
_B1 1 %112§
X‘%01 1 2 2

0 0 1o 2 3 4

We shall refer to X as the left corner sum matrix of X. The original alternating
sign matrix may be recovered by the formula:

Xij =Xj+Xi 51 Xijg 1 Xi g (6.7)

If the indices are out of range, then the value of)Tij is taken to be zero.
The left corner sum matrices of alternating sign matrices hae the following proper-
ties:

The last row contains the integers from 1 ton in increasing order.

The last column contains the integers from 1 ton in increasing order.
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Neighboring entries di er by at most one.
Each row and each column is non-decreasing.

Any non-negative integer matrix satisfying these properties is the left corner sum matrix
of some alternating sign matrix [RR86].

De nition 6.3.1. For any alternating sign matrix X we de ne:
F(X)=1T X (6.8)

In other words: B
F (X )i;j =min(i;j) X i (6.9)

There is a natural order on the set ofn by n left corner sum matrices given bya b
if each entry of a is greater than or equal to the corresponding entry ofb. The order
corresponds precisely to the lattice closure of the Bruhat aler discussed in the section
13.2.3

Remark 6.3.1. Adding 1 to position (i;j ) of X (where this is allowed) has the e ect
on X of adding the2 by 2 matrix:

1 1
1 1

to the 2 by 2 submatrix of X whose upper left hand corner is at position(i;j ).

6.3.2 Left interlacing matrices

A pair of left corner sum matrices (A; B) with A of dimensionsn by n and B of dimension
n+1by n+1are said to be left interlacing if the following conditions are satis ed:

. Az1 Az Azz
Baa Ba:2 Bas Baas

For all elements x;y;z;w of B and and all elementsa of A which are arranged in
the following con guration:

We must have:

xw 1 a yz (6.10)
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An example:
0 0 1 1 1l
f0; 19 1 1
1 1 2
1 f1,29 2
1 2 2
1 2 3
1 2 3 4

Remark 6.3.2.  Above and to the left of a 1 in the alternating sign matrix B there
are two possible choices for the corresponding value of thef corner sum matrix A. At
all other positions there is a single choice RR86].

Let us now consider the case of allrf + 1) by (n + 1) left corner sum matrices C
which are left interlacing with a given left corner sum matrix B:

0_ _ — 1
Ci1 Ci2 Ci3
Bui B>
Co1 Ca2 Co3
~ Baax B2z
Cza1 Cao Ca3s

The rule for constructing all possiblen + 1 by n + 1 left corner sum matrices C
which are interlacing with given n by n left corner sum matrix B is the last row and
last column must be strictly increasing from 1 ton + 1 as well as that for all elements
X;y;z;w of B and and all remaining elementsc of C which are arranged in the following
con guration:

0 1
X y
@ ¢ A
z w
We must have:
iz c wix+1 (6.11)

If the element c lies in the rst row or column, then we take the out of range indices to
be equal to zero.

Here is an example: 0 1
0 f0; 1g

1
0 1
E}f 0;1g 1 Zg
1 2
1 2 3

Remark 6.3.3. Above and to the left of al in the alternating sign matrix B there are
two possible choices for the corresponding value &. At all other positions there is a
single choice RR86].
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6.3.3 Inversions

Lemma 6.3.1. Let B be an alternating sign matrix. If Bjj is an inversion then Bij =
Bi 1j 1 otherwiseBij > Bj 1;j 1.

The \smallest" alternating sign matrix A which is left interlacing with a given alter-
nating sign matrix B is denoted by A™". By equation 13.10ts left corner sum matrix
satis es:

—min

Aij =max(Bij;Bis1ja 1) (6.12)

Proposition 6.3.1.  If the alternating sign matrix B has an inversion at position (i;j )
then:

F(B)ij F(A™) 15 1=1

Otherwise:
F(B)j F(A™) 1 1=0
Proof.
F(B)ij F(A™) 1j 1=1+max(Bj 1j 1;Bij 1) By (6.13)
The result follows from Lemma 13.3.1 O

6.3.4 Domino tiling of Aztec diamond

An Aztec diamond of sizen is the region of the lattice Z? satisfying jxj + jyj n+1.
For example, here is an Aztec diamond of size 3:

A domino tiling is a complete covering of an Aztec diamond by either 2 by 1 or 1
by 2 rectangles. For example:
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The total number of domino tilings of the Aztec diamond of size n is equal to
2n(n+1) =2 [EKLP92]. There is a bijection between domino tilings of the Aztec damond
and pairs of left interlacing alternating sign matrices [EKLP92].

An example

We wish to nd the pair of interlacing matrices ( A; B) which are in bijection with the
domino tiling above.

If nis even, then we begin by marking all the vertices i{j ) on the interior of the
diamond such thati + j is even, otherwise we begin by marking all the verticesi{j ) on
the interior of the diamond such that i + j is odd.

Next we record the degree of each vertex. Note that the \rows"go up and to the
right, while the \columns" go down and to the right:
2 3

3
4 p3
3

w N W
N AN

Finally we replace each 3 with a zero, each 2 with a one, and elae! with a negative
one to get the matrix A.

3
0 1 0
41 1 15
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Next, if n is even we mark all the vertices {;j ) such that i + j is odd, including
vertices on the boundary of the diamond. Otherwise we mark dlthe vertices (i;j ) such
that i + j is even, including vertices on the boundary of the diamond. V& imagine that
the original tiling has been extended to in nity with horizo ntal tiles.

!

Sl

Again we record the degree of each vertex:

2 3
3 3 4 3

§342§
4 2 4
3 4 3 3

This time we replace 3 with a zero, each 4 with a one and each 2 thi a negative
one, to obtain the matrix B.

2 3
0 0 1 0
go 1 1%
1 1 1
0 1 0 O

One may verify that in our example the two matrices are interlacing.

Flips

For the general case there are several things to check:
That the two matrices obtained are always alternating sign matrices
That the two matrices obtained are always interlacing.
That the process is invertible.

The reader is referred to the paper EKLP92] for a complete proof. Nevertheless we
shall make several remarks.

An elementary ip involves changing two adjacent horizontal dominos into twoad-
jacent vertical dominos, or vice versa.
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One can show EKLP92] that every domino tiling of the Aztec diamond may be
obtained from the \minimal" tiling, with only vertical tile s, by some sequence of ele-
mentary ips. For example, for n = 3 we have:

The pair of interlacing matrices (A; B ) for the \minimal” tiling are a pair of maximal
permutations, while for the \maximal" tiling, with all vert ical tiles, they are a pair of
identity permutations.

The midpoint (i;j ) of big square involved in an elementary ip is always of degee
2 both before and after the ip.

+ .

There are two cases to consider. Either the midpoint belongso the matrix A and
corresponds to a 1. In this case the four vertices around thedge of the square being

ipped all belong to B.
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The e ect of of ipping from the vertical con guration to the horizontal con guration

is to add the matrix:
1 1

1 1

to these four vertices ofB, or equivalently move up the Bruhat order by one step (see
remark 13.3.7)

The second case to consider is when the midpoint of the squateeing ipped belongs
to B and corresponds to a 1. The four vertices around the edge of the square all belong
to A. In this case the e ect of ipping from the horizontal con guration to the vertical
con guration is to add the matrix:

1 1
1 1

to these four vertices ofA, or equivalently move up one step in the Bruhat order (see
remark 13.4.7).

One may conclude that since the bijection works in the base s, and since the
elementary ips preserve both the alternating sign matrix condition and the interlacing
condition, the bijection works in all cases.

6.4 Duality

6.4.1 Right corner sum matrices

For eachn by n alternating sign matrix X let X be the matrix whose (;j )-th entry is
equal to the sum of the entries lying above and to theright of the (i;j )-th entry of X.

For example: 0 1 0 1
01 0 O 1100
B1 1 1 B 211(1&2
X‘%o 1 01 18 XT 2 1
0 0 1 0 4 3 2 1

We shall refer to X as theright corner matrix of X . The original alternating sign
matrix may be recovered by the formula:

Xi =X +Xj 1541 Xija1 X 1 (6.14)
If the indices are out of range, then the value OKU is taken to be zero.
Remark 6.4.1. Adding one at position (i;j ) in the right corner sum matrix X is

equivalent to adding the matrix with upper right hand corner at position

1 1
1 1
(i;j ) to the alternating sign matrix X.

De nition 6.4.1.  For any alternating sign matrix X we de ne:
GX)=J X (6.15)

In other words:

G(X)ij =min(iin+1 j) Xjj (6.16)
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Lemma 6.4.1. If B9= BJ then B%= BJ

Remark 6.4.2. The Bruhat order on right corner sum matrices is given bya b if
each entry ofa is less thanor equal to the corresponding entry ofo.

6.4.2 Right interlacing matrices

A pair of matrices (A; B) of dimensionsn by n andn +1 by n+ 1 respectively are said
to be right interlacing if their right corner sum matrices satisfy the following conditions:

0 1
Bis Bi» Bis Big

Al;l A1;2 A1;3

B2 B Bas By
AZ;l A2;2 A2;3

Bay Ba; Bas B34
A3;l AS;Z A3;3

54;1 §4;2 54;3 §4;4

For all elementsx;y;z;w of B and and all elementsa of A which are arranged in
the following con guration:

0 1
X y
@ a A
z w
We must have:
iz 1 a xw (6.17)
Continuing with our example:
0 1 1 0 0l
1 f0; 1g 0
2 1 1
2 1 f0; 19
3 2 1
3 2 1
4 3 2 1

Remark 6.4.3. Above and to theright of a 1 in the alternating sign matrix B there
are two possible choices for the corresponding value of théght corner sum matrix A.
At all other positions there is a unique choice.

Let us now consider the case of allrf + 1) by (n + 1) left corner sum matrices C
which are right interlacing with a given right corner sum matrix B:

0 1
91;1 91;2 Q1;3

El;l 51;2

92;1 QZ;Z QZ;S
52;1 52;2

Cs1 Cspo Cas
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The rule for constructing all possiblen + 1 by n + 1 right corner matrices C which
are interlacing with a given n by n right corner sum matrix B is the rst column must
be strictly increasing from 1 to n+1, the last row must be strictly decreasing fromn+1
to 1, and for all elementsx;y;z;w of B and and all elementsc of C which are arranged
in the following con guration:

0 1
X y
@ ¢ A
z w
we must have:
wix ¢ y+1;z (6.18)
Here is an example: 0 1
1 1 f0; 19
1 1
%}2 f1;29 1
2 1
3 2 1

Remark 6.4.4. Above and to theright of a 1 in the alternating sign matrix B there
are two possible choices for the corresponding value @f. At all other positions there is
a single choice.
6.4.3 Duality between left and right interlacing pairs
Left corner matrices and right corner matrices are related ly the following lemma:
Lemma 6.4.2. For all i;j we have:

Bij + Bijug =i

Proof. The left hand side is equal to the sum of all the entries of the Hernating sign
matrix B inthe rst i rows. Since the sum of entries in each row dB is equal to 1, the
nal result is equal to i as claimed. O

For any binary string , let ~ denote the binary string in which all the zeros have
been replaced by ones, and all the ones have been replaced ®ras. For example:

= 0010110100
~=1101001011

Suppose that we x ann+1 by n+ 1 alternating sign matrix. In keeping with our
previous examples, let us choose:

0 1
0 1 0 O

“B1 1 1

B= 1 1 1
0 0 1 0
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If our alternating sign matrix B has exactly k negative ones then it followed that
the number of n by n corner sum matrices which are interlacing withB is 2¢.

Let us x now an order on the negative ones, say top to bottom, kft to right. We
can now index all the n by n matrices which are right interlacing with B by a binary
string. Continuing with the example from section 13.4.2 we have:

0 1
110
A,=@ 1 1A
321

0 i N 0 1

100 110

Apy=@ 1 1A Ap=@ 1 A

321 321
~ 0 T
100
Ap=@ 1 A
321

A zero means that we chose the smaller of the two possibilite for A. A one means
that we chose the larger. Here are the corresponding alterrieng sign matrices:

0 1
0 1 O
Ap=@ 1 1A
0 1 0
0 1 N9 1
100 010
A= @ 0 1A Ap=@ 0 A
010 001
N 1
100
Aoo:@010°\
001

Note that we use subscripts to indicate alternating sign matices which are right
interlacing with B. No underscore means the interlacing matrix itself, ratherthan the
associated right corner sum matrix. We shall denote byA i, the alternating sign matrix
right interlacing with B which is indexed by the binary string with all zeros and A max
the alternating sign matrix right interlacing with B which is indexed by the binary
string with all ones.

Let us now do the same with theleft corner sum matrix X from section 13.3.2
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0 1
1 1 1
Al=@ 2 A
1 2 3
0 1 N 1
011 1 1 1
Al-@ 2 A Al-@ 1 A
1 2 3 1 2 3
N o 1
0 1
AY-@ 1 A
1 2 3
Here are the corresponding alternating sign matrices:
0 1
1 00
All=@ 1 A
0 0 1
0 r N 1
010 1 00
Al=@1 0 A AlO=@o o0 1A
0 01 010
N 1
0O 1 O
A=@ 1 1A
0O 1 O

Note that we use superscripts to indication alternating sign matrices which are left
interlacing with B. No overline indicates the alternating sign matrix itself, rather than
the associated left corner sum matrix. We shall denote byA™" the alternating sign
matrix left interlacing with B which indexed by the binary string with all zeros and
AMX the alternating sign matrix left interlacing with B which is indexed by the binary
string with all ones.

Proposition 6.4.1.
Amin = AmaX (6.19)

Proof. Consider the following segments of left and right interlachg matrices respectively:

Oa b c d1 Oa b c dl
X y z X y z
e f g h e f g h
w u v w u v
[ i k i j k
t s r t s r
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The elementsa,b,c, etc... belong to the left corner sum matrix B while the elements
X,y,z etc... belong to the left-interlacing matrix A" .

Similarly the elementsa ,b ,c , etc... belong to the right corner sum matrix B while
the elementsx ,y ,z etc... belong to the right-interlacing matrix A, -

We wish to show that the value of the alternating sign matrix A™* at position u
is equal to the value of the alternating sign matrix Ay, at position u . That is, by
equations (13.7) and (13.14 we want to show that:

X+U W y=u+z Yy Vv

As a consequence of lemma3.4.2there is some such that:

a+b=b+c =c+d =

e+f =f+g =g+h = +1
i+j =j+k =k+" = +2
m+n =n+o0 =0+p = +3

Now, by equations13.10and 13.17, we have:

X+u w vy
=min(a;f 1)+min(f;k 1) min(e;j 1) min(b;g 1)
= min( b; g)+min( +1 g; +1 )

min( +1 f; +1 k) min( C; h)
max(b;g) max(g; )+max(f ;k )+max(c;h)
=y V +tu +z

The result follows. O
Proposition 6.4.2. If is a binary string, and ~ is its complement, thenA = A_

Proof. This follows immediately from remarks 13.3.1and 13.4.1 Itis possible to remove
a 1 from position (i;j ) of A if and only if it is possible to add a 1 at position (i;j + 1)
of A_.

O

Corollary 6.4.1. _
AT = AL (6.20)

Suppose now that we x ann by n alternating sign matrix B containing exactly s
ones. It follows that the number of n + 1 by n + 1 right corner sum matrices which are
right interlacing with B is equal to 2.

If we x an order on the ones, then each of these right corner son matrices may be
indexed by a binary string. Let C denote then + 1 by n + 1 alternating sign matrix
associated withC

Similarly the number of n+1 by n + 1 left corner sum matrices which are left
interlacing with B is equal to 2. Again we may index these by binary strings. LetC
denote then + 1 by n + 1 alternating sign matrix associated to C .
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Proposition 6.4.3.  We have:

C™ = Cin
and more generally, if ~ is the complement of then
C =cC- (6.21)

Proof. The proof is essentially identical to proposition13.4.1and proposition 13.4.2 [

Proposition 6.4.4. Ifthe n+1 byn+1 alternating sign matrix B has a dual inversion
at position (i;n +1 j) then:

G(B)i;n+l i G(Amax)i Ln+l =1
Otherwise:

G(Bin; | G(Amax)i 1n+1 j =0
Proof. By Lemma 13.4.1we have:

G(B)i;n +1 G(Amax)i Ln+l F(B%i;j F((Amax)%i 1 1 (6-22)
F(B%; F(A™)% 1 1 (6.23)
But by remark 13.4.1B has a dual inversion at position §;n +1 ) if and only if B
has an inversion at position (;j ). The result now follows from proposition 13.3.1. [

6.5 Main Theorem

6.5.1 Notation

Before we can state our formula, we need a few more de nitions Let us de ne the
lambda weightof a k by k alternating sign matrix B to be:

oo
F(B)= F® = ir;?m(u) Bij (6.24)
iij =1

(see Section13.3.1)
Similarly, let us de ne the mu weight of an k by k alternating sign matrix A to be:

min(i;k+1 ) By
iin+l j

Y
G"(B) = (6.25)

ijj =1

(see Section13.4.1).

Let Inv(B) denote the matrix with the property that Inv( B);; = 1 if Bj; is an
inversion, otherwise Inv(B);; = 0. Similarly, let Dinv( B) denote the matrix with the
property that Dinv( B);j = 1if Bj; is a dual inversion, otherwise Dinv@);; = 0.

Finally, two more pieces of notation. We shall de ne the following two operators on
laurent polynomials in the variablesf jjgandf j;g:

S( i;j)= i+1;j+1 (6.26)
tC i) = ieng (6.27)
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6.5.2 Statement of theorem

For eachk = 0:::n let us denote by x,[k] the doubly indexed collection of variables
Xn[K]i;j with indices running from i;j =1:(n k+1). One should think of the variables
as forming a square pyramid with basen + 1 by n + 1. The index k determines the
\height" of the variable in the pyramid.

The variables are initialized as follows::

Xn[O]i;j = Yi;j forall i;j =1::(n+1)
Xn[l]i;j = Xi;j forall i;j =1:n

The remaining variables are de ned by the following recurrence;

iin k+1 an[k]i;j Xn[Kli+1j+1 + i Xn[Klij +1 Xn[Kli+1;

6.28
Xn[k  Lfi+1;+1 (6.28)

Xnlk +1]i; =

Theorem 6.5.1.
X F (B) G"(B)

B A
s(F (A)) t(G"(A)) Xn[1]” s(xn[0]) (6.29)

Xn[k + 1] 11 =

(AB)
Bi=kijA=k 1

The sum is over all pairs of left interlacing matrices.
If instead we Iinitialize the variables as:
Xn[Of;j =1 forall i;j =1:(n+1)
Xn[l];j = Mj; forall i;j =1:n

then we obtain the following corollary:

Corollary 6.5.1.
0 1

X , o Y
Xn[N]11 = MB @ Inv(B) Dinv(B) ( in+1 P+ )A (6.30)
jBj=n Biy= 1
6.5.3 Proof of Theorem 13.5.1
This proof follows closely the original proof of Robbins andRumsey [RR86] for the
-determinant [RR86].
Base case
In the casek = 1 we have from the recurrence (equation13.29 that:

o 1 X 11X o X 19X 5.
1n 1X1:1X2:2 11X 12X 211 (6.31)
Y22

while the closed form expression in equatiori3.29tells us that we must take the sum
over all interlacing pairs (A;B) where A is 1 by 1 andB is 2 by 2. There are exactly two
such pairs of interlacing matrices, corresponding to the tw terms in equation 13.31

Xn[2]1:1 =
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Induction hypothesis
Suppose now that the proposition is true for allm k. We wish to show that:
X F (C) G"(C)

se, SF (B)ICE)
iCj=k+1;jBj=k

Xnlk +2]11 = x[1]°s(x[0]) B (6.32)
By the induction hypothesis, we know that (using a di erent set of variables):

X F () G" !(B)
s(F (A)) t(G" 1(A))

Yn 1k +1]11 = yn 1[1Ps(yn 1[0]) A

(AB)
iBi=kjjAj=k 1

If we now setxp[k +1] = y, 1[K] then we have:

X F (B) G" B)
s(F (A)) t(G" 1(A))

Xnlk +2]1:1 = Xn[2P s(xn[1]) A (6.33)

(AB)
iBi=kijAj=k 1
But by the recurrence we know that:

in jXn[lij Xn[1hi+15+1 + i Xn[Llij +2 Xn[1]i+1

Xn[2]ij =
n[ ]I,J Xn [0]i+1 §+1
To simplify notation we will write:
D (xn[1])®
Xp[2P = — 20
"= Salo)e
where:
DXn[K+1])ij = in k+1 jXnlKlj Xn[Kli+1;j+1 + ij Xn[Klij +1 Xn[K]i+1; (6.34)

Term by term comparison of coe cients

Let us now x an arbitrary alternating sign matrix B of dimensionsk by k. The
coe cient of s(xp[0]) B on the right hand side of equation13.32is given by:

X F (C) G"(C)

C
sF () wGn@) " (6:35)

jCj=k+1
where the sum is over allC which are interlacing with B. Similarly, the coe cient of
s(xn[0]) B on the right hand side of equation13.33is given by:

X F () G"B)

ek 1S(F (A H(G" Y(A))

D (xn[1])® s(xn[1]) * (6.36)

where the sum is over allA which are interlacing with B.
We shall now use the results of sectiori3.4.3to simplify these two expressions.
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Dua“ty Cmax = Cmin

Beginning with equation 13.35we use the fact that the set ofk + 1 matrices interlacing
with B decomposes as a boolean lattice, as well as rematild.3.1to factorize equation
13.35into:

F (C™) G"(Cmax)
s(F (B)) t(G"(B))

) Xn[1fi+1 5 Xn[1]i +1
! Xn[l]ij Xn[1]i+1 i+

Y
CmaX
Xn[1] in+1 ]t
Bj =1

Re-arranging slightly, this gives:

F (Cmax) G”(Cmax) C max D(Xn[l]i;j )
s(F (B)) t(G"(B)) Xn[1] o, -1 XLl SO [11) (6.37)

Duality: A™ = Ain

Now for equation 13.36 We use the fact that the set of k matrices interlacing with
B also decomposes as a boolean lattice, as well as remakrR.4.1to factorize equation
13.36into:

F (B) G" (B)
s(F (A™M)) t(G" Y(Amin))
Y N Xn[Lfi+1; Xn[1]ij +1

in+l )t
o o=, Y Ll xa[ea e
L=

D (xn[L])® s(xn[1]) A™

Re-arranging slightly, this gives:

F (B) G" (B)
s(F (AMM)) t(G" Y(Amin))

D (Xn[1l; )

s(xn[1]) A™ D (xn[1])B . XLy s(xn[1])

which by combining the terms of the form D (x[1]) may be simpli ed even further to
give:
F (B) G" 1(8) Amin Y Y 1
. s(Xn[1 D (Xn[1]i;
S(F (AT (G Hama)) ) T PO B st )
(6.38)

Summarizing what we need to prove

We wish to show that equation 13.37is equal to equation13.38 Equivalently, we wish
to show that:

C max

S(F (AMM)F (C™)t(G" “(Amin)) G"(Cmax)Xn[1°™ s(xn[1)*™" (6.39)

= F (B)s(F (B))G" *(B)t(G"(B))(xn[Lls(xn[1])®
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Comparing power of ij on both sides
In this section we show that:
s(F (AMM)F (CM) = F (B)s(F (B)) (6.40)
Observe rstly that:
min(x+1;y)+max(x;y 1)=x+y
Now, by equations 13.10and 13.11we have:
Kir;rj]in

~Mmax

Ci;J'

= m61X(§i;j Bi+1 j+1 1)

= min( gi;j ‘B 1 1+ 1)

and so:

N+ AT 1=min(By 1y 1+1;By)+max(Bi 1 1By 1)
=Bij +Bi 15 1

C,

This gives us the same power of ;; on both sides of equation13.39

Comparing power of in+1 j on both sides

In this section we show that:
t(G" *(Amin))G"(Cmax) = G" 1(B)t(G"(B)) (6.41)
By equations 13.17and 13.18we have:

Air;rj]in = max( §i;j +1;Bin i 1)

Cll=min(Bi 15 +1;Bj; 1)

>
£
-
+
(@)
3
QD
X
11

max(Bi 1j;Bij 1 1)+min(Bj 1j +1;Bjj 1)
=Bi 15+ Bij 1

This gives us the same power of i, +1 j on both sides of equation13.39

Comparing power of  x,[K]i; on both sides

In this section we show that:

C max

Xn[21°™ s(xa[L)A™ = (Xn[Lls(Xa[1]))® (6.42)

The result follows from equation 13.40together with equations 13.7 and 13.14 for
expressing the original alternating sign matrix in terms of the corner sum matrices.
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6.5.4 Special case
In this section we shall prove corollary13.5.1. Begin by observing that if:

Xn[Of; =1forall i;j =1:(n+1)
Xn[1]j = Mj; forall i;j =1:n

then: 0 1
X F(B) G"(B) 5
L S(F (A)) t(G"(A))

X B
xn[n]l;l = M @
jBj=n jAj=n

(6.43)

The second sum is over all matrice®\ which are interlacing with B. The above equation
may be rewritten in the form:

0 1
F (B) G"(B) Y
q = B@ . i - i )A 6.44
olha= M E A (G A, _ T )T 64
jBj=n Bij = 1
By 13.3.1we have:
F (B) — Inv(B)
SF (Amm)) - (6.45)
while by proposition 13.4.4we have:
G"(B) — Dinv(B)° (6.46)
t(G" (Amax))

The result follows.

6.6 Conclusion

We have given a multi-parameter generalization of the -determinant of Robbins and
Rumsey [RR86]. Our result exhibits the Laurent phenomenon [FZ02] and generalizes a
previous result given by diFrancesco DiF12].
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7. Commutators In semicircular
systems

7.1 Hilbert spaces

In this section we recall some basic de nitions from functimal analysis Kre78] which
will perhaps be helpful to combinatorialists. Profession&analysts may skip this section.

Inner product spaces

An inner product spaceis a complex vector space/ equipped with a map:

hji :v V! C
which is linear in the second variable, and which satis es:
hwjvi = hvjwi (conjugate symmetry)
hvjvi > 0 forv 60 (positive de niteness)
A basisfe;;ep;:::g of V is said to beorthonormal if hejjgi = j . A pair of bases

fwi;woiiigand fry;rp;:i:g are said to bedual if hwijrji = ;.

Projections

For S a vector subspace ofV, a projection operator with image S is a linear map
s .V ! V such that:

Image( s)= S
s[v]=vforallv2 s
If fwjgis a basis forS and fr;g is the corresponding dual basis, then:
X
slvl= Mijviw;
i
In the nite dimensional case, let P be the rectangular matrix Pj = hgjw;i and let
Q be the rectangular matrix Q;j = hrijgi. One can show that:

Q=(PP) P

This is known as the left pseudo inverse The projection operator may be expressed in
the form:

s=PQ

121
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Gramm matrices

The matrices PPT and QQT are known as theGramm matrices. We have:

(PP )i;j = hNijoi (7.1)
(QQ )ij = hrijrji (7.2)
(7.3)
One can show that:
(PP) '=QQ (7.4)

Topology

A topology is a pair (X; ) consisting of a set X and a collection of subsets of X,
called open sets, satisfying the following three axioms:

The union of open sets is an open set.
The nite intersection of open sets is an open set.
X and the empty set; are open sets.

A function f : X ! Y between topological spaces is said to beontinuous if the inverse
image of every open set is open.

Metric spaces
A metric spaceis a pair (X;d) where X is a set andd is a function:
d:X X! R
which satis es:
dix;y) 0
dix;y)=0ifandonly if x =y
d(x;y) = d(y;x)
d(x;z) d(x;y)+ d(y;x)
For any inner product space we may de ne thenorm of a vector to be:
jivii = hjvi

One can show that every inner product space is also a metric sge with distance
function:

d(viw) = jiv  wjj
Every metric space carries a natural topology generated by pen sets of the form:

Br(v)=fw2 X jd(w;v)<rg
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Cauchy sequences

For any metric space (X;d), a Cauchy sequenceas a sequences; Xo; X3;::: of elements
of X such that for every there exists anN such that:

d(Xn; Xm) forall ;m>N

An element x of X is said to be thelimit of the Cauchy sequencexy; xo; x3;::: if for
every there exists anN such that such that:

d(Xm;x) < forall n>N

A complete metric space ;d) is one for which every Cauchy sequence o con-
verges to some limit in X . Every metric subspace admits a uniquemetric completion

A subset S of a metric space ¥;d) is closedif for every x 2 X there exists a Cauchy
sequence inS whose limit is also in S. Every subspaceS of a complete metric space
admits a unique closure which which is denoted by S.

A subspace of a metric space is said to bdenseif its closure is the whole space.

Hilbert spaces

A Hilbert space is an inner product space which is also a complete metric spacwith
respect to the norm induced by the inner product. All nite di mensional inner product
spaces are automatically Hilbert spaces. All Hilbert space of the same dimension are
isomorphic.

We shall refer to the topology on a Hilbert space induced by tle norm associated to
the inner product as the natural topology of the space.

Hilbert basis

Let fep;e;es3;:::g denote a sequence of linearly independent vectors in some fite
dimensional Hilbert spaceH. The span of these vectors, consisting of all nite linear
combinations of the form:

X

i€

i=1
is an in nite dimensional vector space, but it is not a Hilbert space, because it isnot
closed under the natural topology onH .

The vector space spanned by the linearly independent vectarfe;; ex; e :::g is said

to be densein H if for every v 2 H there exists a sequence of vectorbv,g of the form:

Vh = ain€ + aynex + An:n €n

such that:
lim jjv. vnjj =0

If this is the case we say thatf e;; e;;:::g is a Hamel basisfor V. If in addition we have
hei;gi = i then we say thatfeq;er;:::gis aHilbert basis.
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Example of a dense subspace

It is possible for a proper vector subspace of a Hilbert spacto be dense in the whole
space. We shall now give an example

Let fep;ep;es3;:::9 be a Hilbert basis for some in nite dimensional Hilbert space
H. For eachk 1 let Vi denote the nite dimensional subspace spanned by Hilbert
fer;:::eg, letdg = e e+1 and let Wy denote the nite dimensional subspace spanned

subspace spanned bwll the di. It is clear that e, 62W. We shall see however thate;,
lies in the closure of W.

The subspaceWy may be characterized as the orthogonal complement of the véar
e+ e+ e+1 In the subspaceVi., . For eachk let us de ne the vector:

s r
(1 + e+ + &)

k

fie = k+1

1
7k(k ) €k+1

We havejjfgjj = 1. We also have:
Hiifi= g

It follows that the ffyg form an orthonormal basis for the subspacén .
Let us de ne the following sequence of vectors:

I’El;fkifk
k=1S
X 1
— = fy
k(k + 1)

th

k=1
The vector g, is the projection of the vector e; onto the subspaceW,. We have:
X 1 1

it = kD) =1

In other words limni1  jjohjj = 1. Since jjer  onjj i eii ji anjj it follows that
th; p; Og; « - : forms a Cauchy sequence iW which converges towardse;. That is e; lies
in the closure of W. This implies that W is a dense subspace dfl .

Operator norm
Let U and V be Hilbert spaces. A linear operator:
L:v!I U
is said to beboundedif there exists someM > 0 such that for all v2 V we have:

LMViju  Mjjvijv
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The set of bounded linear operators on a Hilbert spaced is an algebra which is
denoted by B(H). Note that B(H) is not a Hilbert space since it does not admit an
inner product. We can nevertheless de ne anorm on B(H) via:

JLMiju

s 7.5
IVllv (7:5)

jiLiig (1) = sup
v2V
This norm induces a topology onB (H) which we shall refer to as theoperator norm
topology of B (H)
Weak operator topology

The operator norm topology is not the only topology which canbe de ned on B(H).
Let B(H) denote the set of bounded linear operators on some HilbertgaceH . For
eachx;y 2 H we can de ne a map:

(xy):B(H)! R

which is given by:
CGYITI= hjTyi

The weak operator topologyis the weakest topology onB(H), such that the map
(x;y) is continuous for all x;y 2 H.

von Neumann algebras

The adjoint of a linear mapA :V ! V is the unigue mapA :V ! V satisfying:
hA vjui = hvjAui

A linear operator is said to be self-adjoint if A = A. We say that a subalgebraof A
of B(H) is self adjoint if:
a2zA() az2A

A von Neumann algebraa self-adjoint algebra A of bounded operators on a Hilbert
space which contains the identity and which is closed undertie weak operator topology.

For any algebra A and any subsetS A the commutant of S in A is de ned to be
the subalgebra ofA given by:

S°= fa2 Ajsa= asforall s2 Sg
The double commutantof S is de ned to be the subalgebra ofA given by:
S%=fa2 Ajta= atforall t 2 S

By von Neumann's double commutant theorema self-adjoint subalgebraA of B(H) is a
von Neumann algebra if and only if:

A%= A

A von Neumann algebra is said to be afactor if A°\ A = C:1. That is to say, a
factor is a von Neumann algebra with trivial center.
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Random variables

For our purposes arandom variable is simply a self-adjoint operator X acting on some
Hilbert space spaceH with inner product hji and distinguished vector satisfying:

hiji=1

In the language of quantum mechanics, random variables areeferred to asobservables
The moments of a random variable X are de ned to be:

n= E(XM=h jXx" i

Two operators are are said to bddentically distributed if they have the same moments.
The distinguished vector is often referred to as a state.

When working with an algebra of random variablesA with the property that E(XY ) =
E(Y X) for all X;Y 2 A the state is said to be tracial.

7.2 Chebyschev polynomials

In what follows we shall make extensive use of the operator \altiplication by x" acting
on the Hilbert spaceh.

Measurable functions

A measure spaceds a pair (X;M ) where X is a set andM is a set of subsets oK the
property thatif A2 M then XnA 2 M, and if Aj;A2;As;::: is a sequence of elements
of M then [ jA; is an element ofM . We also require that; 2 M.

The Borel -algebraof R is the smallest algebra onR which is generated by the
open sets ofR. Similarly, the Borel -algebraof C is the smallest algebra onC which
contains all the open sets ofC.

A function between measure spaces is said to bmeasurableif the pre-image of every
measurable set is measurable.

Square integrable functions

Let H denote the set of all measurable functionsf : [ 2;2]! C, modulo the equivalence
relation in which two functions are equal if they dier only o n a set of measure zero,
which satisfy:

Z,

p
if ()2 4 x2dx< 1

2

The inner product is given by

Z, P
Hjgi = f(x)g(x) 4 x2dx
2

The space of polynomialsC[x] sits inside ofH as a dense subspace. The closure Gfx]
with respect to the natural topology on H is the whole spaceH. In other words, the
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monomialsf 1;x;x2;x3; g form a Hamel basis forh. They are not orthogonal however.
Let us de ne:

P(x;z) = B S X Pn(x)t"
T kw2 T
One may check that:
hPn(X); Pm(X)i = nm

The polynomials f P, (x)g are known as theChebyshev polynomials of the second kind
They form a Hilbert basis for the spaceH.

Three term recurrence

The Chebyshev polynomials satisfy the following three termrecurrence:
XPn(X) = Pn+1(X) + P 1(X) (7.6)

The operator \multiplication by x" is bounded and may be thought of as living in the
spaceB (H).

Embedding

Let us consider the algebra Polyk) of polynomials in the operator x. This is a subalgebra
of B(H) of bounded linear operators onh. There is a natural embedding of Polyk)
into H which sends the operatorp(x) 2 B(H) to the vector v 2 H given by:

v = p(x)[1] (7.7)

Topological considerations

By the Stone{Weierstrass theoremthe closure of Polyx) with respect to the operator
norm topology on B(H) is isomorphic to the space of continuous functions inx. Note
that since not every square integrable function is continuais, the closure of Polyk) with
respect to the operator norm isnot the entire spaceH.

A measurable function:

f:R! C

is said to beboundedif there exists someK > 0 such that jf (x)j <K forall x 2 C. One
can show that the closure of Polyk) under the weak operator topologyis isomorphic
to the space of allbounded measurable functions inx. Again, since not every square
integrable function is bounded, this is not the entire Hilbert space H.

In general, the weaker the topology, the less open sets and ¢hmore continuous
functions. The closure of a subspace with respect to a weakeopology is larger than
or equal to the closure of a subspace with respect to a stronge¢opology. As the name
suggests, the weak operator topology is weaker than the opator norm topology.
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Moments

We remark that the operator \multiplication by x" is self-adjoint, and may be thus
thought of as a random variable. We will now study its moments One may calculate:

Z2 — 12
x?" 4 x2dx = n (7.8)
2 n+1 n
hile:
while zZ, 0
x?"*1 4 x2dx =0 (7.9)
2
The numbers:
1 2n
Co= 7 (7.10)

are known as theCatalan numbers

7.3 Semicircular Systems

The semicircular system was rst introduced by Voiculescu to study free group von
Neumann algebras Y/0i90]. The \multiplication by x" operator in the Chebyshev basis
arises naturally in the the context of Wigner's semi-circular law for random matrices.
In free probability theory Wigner's semicircular distribu tion plays a role analogous to
the Gaussian distribution in classical probability theory.

Fock space
Fix a nite dimensional inner product space H with inner product hji and orthonor-
mal basis:
fe;; € ;&g
Let us de ne:
TH)=C ,1H " (7.11)

As a vector spaceT (H) is naturally graded. The dimension of the graded component
of degreed is equal ton?. A basis for the graded component of degred is given by:

fe, e, €,0jiig:itig2f1;2:::kgg (7.12)

The inner product of H lifts to an inner product of T(H) in a natural way. If v
and w are homogeneous, but not of the same degree, thewjwi = 0. Otherwise, if
V=6, €, g, andw=1¢g, g, g, then:

hvjwi = i1 i2ij2 idijd
In otherwords, the inner product on T(V) is de ned in such a way that the basis

described in equation14.12is orthonormal. The Fock spaceF of H is de ned to be the
metric completion of T(H).
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Special subspaces

Note that since all Hilbert spaces of the same dimension aresomorphic, for any i
the closure with respect to the natural topology on F of the subspace generated by
the fe "gn o for any given i is isomorphic to the vector spaceh of square integrable
functions discussed in sectionl4.2

Creation and annihilation operators
For eachi let ¢ be the creation operator:

Glvl=e v (7.13)
The adjoint operator ¢, is known as theannihilation operator. It acts via:

G[]=0 (7.14)
Gl(vi V2 vn)l = heijvii(ve Vn) (7.15)

The operators A = ¢ + ¢ are both self-adjoint and bounded.

Moments

One can easily convince oneself that:

1 n
n+1l 2n

h jAZ" = (7.16)

while:
h jA?™! =0 (7.17)

Comparing equations 14.16 and 14.17 with equations 14.8 and 14.9 one can conclude
that the operator A; acts on the natural closure of the vector space spanned bye, "g, o
in the same way as the operator \multiplication by x" acts on the spaceH of section
14.2

In particular, if P,(x) is the n-th Chebyshev polynomial then we have:

Pa(AD[]= ¢ " (7.18)

von Neumann algebra

We shall use the notation A, to denote the Von Neumann algebragenerated by the
semi-circular elementsA1; Az;:::An. Thinking of each of the operatorsA; as arandom
variable we may de ne the following state

(X)=h jX i (7.19)
It is not hard to show that is in fact a tracial state:

(XY)= (YX)
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Embedding
Itis not hard to convince oneselfthat forall fiq;iz;:::;i;g2 N andforallji;j2;:::jr 2
f1;2;:::ngsuch that j- 6 j-4+1 we have:

PL(ALPL (AL PL(AI= glte)? ek (7.20)

Tk

In other words, we have an embedding oA, B(F) into F which is given by:

X 7! X[] (7.21)

Topological considerations

Let us remark that there is no natural inner product on B (F). Nevertheless, the embed-
ding of A, into F allows us toinduce an inner product on A,. Even with this induced
inner product, the vector spaceA, is not a Hilbert space, since it isnot closed under
the topology induced by the inner product.

7.4 Main result

7.4.1 Statement

For eachi =1;2;:::n, let Poly(A;) denote the subalgebra oB (F) generated byA; and
let Alg( A;) denote the closure of Poly@;) in the weak operator topology of B (F).
Similarly let Comm( A;) the sub-algebra of A, consisting of all elements which com-
mute with A;j. One can show that Comm@;) is already closed under the weak operator
topology.
The goal of the next two sections is to prove the following resit:

Theorem 7.4.1.

]Alg(Ai) = Comm( Aj) \ (7.22)

As a consequence of Theoreri4.4.1we have:

Theorem 7.4.2. For n 2 the center of A, is trivial.

Proof. Suppose thatx lies in the center of A,,. It follows that x commutes with A1, and
x commutes with A,. Now, by Theorem 14.4.1we havex 2 Alg(Aj1) and x 2 Alg(A»).
But:

Alg(Ai)\ Alg(Aj)=C:1

The result follows. m
Note that in the language of Von Neumann algebras Theoreni4.4.2implies that A,

is afactor. This result is already known [Voi90]. Our proof is still interesting however
as it yields a number of explicit projection formulae (see setion 14.4.5.
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7.4.2 Topological considerations

We shall use the notation A, to denote the closure ofA, under the natural topology of
F. Furthermore we shall use the notationAd to denote the intersection of A" with the
nite dimensional subspace ofF consisting of elements of degred.

Lemma 7.4.1. For any vector subspaceV of some Hilbert spaceH, the orthogonal
complementV? is closed.

Let Alg(A;) denote the closure of Alg@;) with respect to the topology of F.

Lemma 7.4.2.
Alg(Ai)\ An = Alg( Aj) (7.23)

Proof. Let V; denote the vector space spanned bye "g, o. Under the embedding of
Ap into F we have:

Poly(Aj) = Vi (7.24)
Let h; denote the closure ofV; under the topology of F. We have
Alg(Ai) = h; (7.25)

But we also have that A\ h; = Alg( A;)\ h;. Referring back to remarks made in section
14.2, every bounded measurable function is also square integrédy that is to say:

Alg(Aj) b

and so:
Alg(Ai)\ hi = Alg( Aj)

The result follows. O

Let Comm(A;) denote the closure of CommA;) with respect to the topology of F.

Lemma 7.4.3.
Comm(Aij)\ Ay =Comm(A;) (7.26)
Proof. We have:
Comm(A;j) = fx 2 AnjxAi = Aixg (7.27)
(7.28)
and so:
Comm(Ai)\ An = fx2 AnjxA; = Ajxg\ Ay (7.29)
= fx 2 AhjxAi = Aixg (7.30)
= Comm(A)) (7.31)

The result follows. O



132 Chapitre 7 | Commutators in semicircular systems

Strategy
We shall begin by proving the following:

Proposition 7.4.1.

Comm(A;)’ = Alg( A;)?

This implies in particular that:

Alg(Aj) = Comm(A;)

Taking the intersection of both sides with A,, we obtain Theorem 14.4.1
Our goal is now to prove proposition14.4.1. It is clear that we have:

Comm(A;)’  Alg(A;)?

We need only to prove the reverse inclusion of equatiori4.34

Alg(Ai)? Comm(A;)’

7.4.3 Commutators
Recall that the commutator of two operators X and Y is given by:
[X;Y]= XY YX
Lemma 7.4.4. For all x;y 2 A we have:
(x[AisyD = (YIS AID
Proof. By the linearity and the traciality of the state , we have:
(X[AisyD = (xAiy)  (xyAi)

(yxAi)  (YAiX)
(y[x; Ail)

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

(7.37)

O

Our plan is to study the following family of nite dimensiona | vector subspaces:

flAi;yly 2 Alg

Lemma 7.4.5. Forall d 1 we have the following inclusion:

f[Ai;yl;y 2 Adg  Comm(A;)?

(7.38)

(7.39)

Proof. Choose anyy 2 A4. By lemma 14.4.4we have that if x 2 Comm(A;) then:

X[AisyD) = (YI;AiD=0

In other words [A;; Y] lies in the orthogonal complement of CommA,;).
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Lemma 7.4.6. Foralld 1
Alg(Ai)® 6 f[Ai; Yy 2 ASg

Proof. For any j 6 i we haveA; 2 Alg(A;)? but we do not have A; 2 f [Ai yly 2 Adg
for any d. O

Our goal in the next section will be to show that:

Proposition 7.4.2.

—

Alg(A;)? f[Ai;yly 2 Adg (7.40)
d 1

That is to say, forany B 2 Alg(A;)? there exists a sequence of operatofs/1;y»;ya;:::g
with: ym 2 AY for somed which depends onm. such that, as a vector:

B = lim [Ai;ym] (7.41)

Note that this is to be understood as convergence in the metd space induced by the
inner product of the Fock spaceF.

Proposition 14.4.2 and Lemma 14.4.5 will together give us equation 14.35 thus
proving Theorem 14.4.1

7.4.4 Projection formula

In this section we prove proposition 14.4.2 for i = 1. The general result follows by
symmetry.

Notation
Let S be any non-trivial element of A of the form:
S = P (AP, (Ai,)  Pj(Ai)
such thatjqi;j2;:::jr landj- 6 j4+; aswellasi; 61 6 i,. We have:
S 2 Alg(A,)?

Next, for eachn;k 1 let:
Snk = Pn(A1)SPk(A1)

Again we have:
Snk 2 Alg(A1)”

In fact, the collection of all operators of the form S, for all possible choices ofS form
a Hilbert basis for Alg(A1)?
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Simpli cation

Lemma 7.4.7. If a and c both commute withx then:
[x; abd = a[x; b]c
Proof.

[X;abd = xabc abcx
= axbc abxc
= a[x; bjc

Proposition 7.4.3. If: c

s2 f[AiyLy 2 Adg
d 1

Then, for all n;k 0 we have:

[
L

Snk 2 f[A;Yly 2 Adg
d 1

Proof. Suppose that we already have a sequence of operatdrg; y»; y3;:::gwith: ym, 2
Ap such that:

S= lm [Asiym]
It follows that:

Shik = lim Pn(A1)[A1 ym]Pk(A1)

mil
= Iim [A1;Pn(A1) ym Pk(A1)]
= Iim [A1;Zm]
wherezm = Pp(A1) Ym Pk(A1). The result follows O
Projection formula for arbitrary S:
K 1
S=MD gmes (M W(SaeiAl [SeiiAd (7.42)

In order to prove this formula we will need some more notation For xed S, let W
denote the vector subspace spanned by all vectors of the form

[ Shk; A1l
= Snhk+1 Sn+1kt Snk 1 Sn 1k

Vn:k
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The second equality above is a consequence of the three-tenmacurrence for Chebyshev
polynomials (see equationl4.6). It will be convenient to make the following change of
notation:

1
€nk = %(Sn;k + Sin) for n <k
€k = Skk

1
Whik = %(Vn;k Vikin) for n <k

We may now rewrite equation 14.42 as follows:

1 X1
Sm= 5z (M K([Sckei Al S Adl)
k=0
= (M K)Wik+1
2m + 3 .
1 X! p_ b
= >m+3 (m k)( 2ek;k+2 2@k+1;k+1 +2ek;k 26, 1;k+1)
k=0
!
1 p_X1 X0
= om+3 2Meoot 2 Gz 2 Gk

k=0 k=1
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Suppose thatS is an element of degre¢ = j1+ jo+ +j,. Foreachm O letus
de ne:
[

EQM AZ (7.43)
d=0
to be the vector space spanned by the,« for n + k even andn + k  2m. Similarly,
let us de ne, for eachm 0 the vector subspace:

wém b EST (7.44)
to be the vector space spanned by thev, forn+ k odd,n<k andn+ k 2m 1.

Proposition 7.4.4.  The vector sy, is the orthogonal projection of the vectorS onto the
nite dimensional subspacew3™ *.

Proof. We shall show that the vector (S sy) lies in the orthogonal complement of
w2 1 with respect to EZ™. We begin by observing that if r > 2 then:

hS; &ck+ri = MBm; &K+l =0
Thus we may restrict ourselves even further to the subspace:

F EZM (7.45)
spanned by vectors of the formeyx.x or eck+2 with degree less than or equal to Bh. Next,
ifj i 4then:

hecic; Wi 1= heck+2 ;Wi i =0
Let U denote the vector subspace oWS2m ! spanned by vectors of the formwick +1
for k <m and wygk+s for k<m 1. We must show that for all u 2 U we have:

hS Spjui =0
Now: p_ p_
(2m + 3) f‘SjWo;]_i = f'EQ;oj Zeo;oi = (2m + 3) 2
While:
) ) b p_ ) R
(2m +3) hsmjwo1i = h2meg,o] 2epoi + h 2ep2; €021 + h 2€11]  2eqi
=(2m+3) P 2
Next, for all i > 0 we have:
f’SjWi;i +1 i=0

and:
p_ i p—-
h 2e+2;€i+21 h 26;; 2g;i 0
+ I"Qe|+1;i+1; Ee|+1;i+1i h éei 1;i+1je|+1;i+li
3 24273 P3

(2m + 3) hem jWi;i +1 i

P

0
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Finally, for all i O we have:

hSjwii+3i =0
While:

) ) p_ ) p—-
(2m+3)mjwii+1i = h 2642 6i+20 h 28;; 2e;i

+ € 41:+1; 268+1:i+11 D 268 giv1]€+1iieni

:pé 2p§+2p§ pz
=0
The result follows.
O
It remains to verify that:
lim jismijj = ! Am2+2m+4m
mit Ul = Hna)2
— i 2m
“mil 2m+3

=1

We have proven equation14.42and shown that:

I
s2 " flA;:yLy 2 Adg
d 1

Theorems14.4.1and 14.4.2follow as a consequence of propositiofi4.4.3

7.4.5 An interesting matrix

Let us x the following order on the wet of vectors w, for n + k odd andn < k and
n+k 2m 1:

Wo;1, Wo;3; W1;2, Wo;5, W1:4; W2;3;, Wo:7;, W1:6; W2;5, W3:4; Wo;9; W1;8, W2:7; W36, W4;5

For eachm 1 let Ay, denote the Gramm matrix of inner products hwp: ; Wnool
forn+ koddandn+ k 2m 1. LetBy=(2m+3)A_ . Hereis the matrix Bs:



Commutators in semicircular systems

Chapitre 7 |

138

M NTNNTNNNNNNNNNNNSNNND
A | N[N MmN < N m < w0
OCmdlmoanmoom| ©of«
o o
Coowmdadw So | SBom
< o
cloocjlcocolrwma[-3 G o«
oloocloooloooo
NN |NT O|N < OO oM<
N N 0
clon|joNg|loNBowomoom
o oo N o
clocolQoalSRYN<low G oan
cloojlcoco|lF G oanlo~wmd
mlmolmooloantoloo adam
oclomlo BoowNYgtloomwoan
clooBomoS oanjoowm-
St |FToOmowooN<gT|OO O N
ol “locomooownjoo om
wWosloomloooN|oo oo«

2
B5 = E
We have used some colour to highlight the self-similar struture of this matrix.

We may block diagonalize the matrix Bs by conjugating by the following matrix:

i

0|0 0 0O OO
0|0 0 0O OO
0|0 0 0OO0O
0|0 0 0OOO
0|0 0 0O O0O
0|0 00O OO
00 0 00O
0|0 0 0 0O
0/00O0OTDO
1/0 0 00O
0|1 0O0O0O
0(0 1000
0|0 01 0O

0
0
0
0
0
0
0
0
1
0
0
0
0
1
2
0

M

o<t

—|O OO0 000000 0O O0oOOo

The matrix UBsUT is given by:

NESTLORE s TN
N
691E1u
O
=4 QY
< A W0
—AN— 9
0 < O
o - ®
N ©ooost
— N
™, N0,
©
oolm_
O <
N &3
O o<
O F N XD
N O
<t MA@
N Qo<
)
My 0
1lw
© 10 o
M < A
o © N
© M -
N <
- | <t
o
SO
o o
©
IO

[5]
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The matrix As is given by:

2

U 1is given by:

The matrix V

3000000000000001
elloNeoloNoNollecNelolollclNoNaoll. Nel
OO0 000000000 +H OO
OO O 0O O 0000 |0O-H 0 0O0o
O 00000000010 0O0O0
OO0OO0O0DO0OO0O0OO0 O 00 O O un
lslleNollcNoNellcNel NolloNeNe o)
OO0 000|000 O0O|0 0«0 O
OO0 0O O|10 0 O0|0«nO O O
OO0 0O 100 O0aNmO O O Owm
OO OO dO|0O0ONMmMO|O O O«mO
OO0 O|+1O0 O 0NmO OO O-HMmO O
OO0 O Om«gO O O «nO O O O «i
Ol OOt O O O HnNO |O O O «xO
| O 9O O MO O O O O O O «in

The matrix VT AsV is given by:

Note that:

+18 6 6

13=

These examples suggest that there is some rich underlying rsicture which is worth

further pursuit.



140 Chapitre 7 | Commutators in semicircular systems

7.5 Conclusion

We have given a elementary proof that semicircular algebras a factor in the sense of
Von Neumann algebras. Although this result is already known our proof is particularly
simple. We have also given an explicit formula for the projetion of any element onto the
dense subspace of commutators. It would be interesting to geif this approach could be
extended to the case of theg-semicircular algebra BS91], or even the (g;t)-semicircular
algebra Bli12].

Examining the Gramm matrix of the most natural basis for the space of commuta-
tors, we have found it to have an intriguing self-similar structure which may be inter-
esting to investigate further.
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Alternating sign matrix
Bruhat order, 108 244
dual inversion, 97, 113 233, 249
F(X) de nition, 101, 237
G(X), de nition, 107, 243
inversion, 97, 103, 113 233 239, 249
lambda weight, 113 249
mu weight, 113 249
shifts, 113 249

Arbitrarily labelled
cylindric diagram, 23, 161
diagram, 19, 157
rectangle, 18, 156

Aztec diamond, 103 239

Binary String
inversion, 14, 152
partial order, 16, 154
Borodin identity, 21, 159
Bijection

strongly weight preserving, 63, 72,

201, 210
Macdonald
re ned, 75, 213
Schur
re ned, 59, 197
Box
arm length, 14, 152
hook length, 14, 152
inside corner, 14, 152
inversion coordinates, 14, 152
leg length, 14, 152
outside corner, 14, 152
Bruhat order, 95, 98, 231, 234

Burge correspondence
forward, 42, 180
reverse,42, 180

Burge permutation, 40, 178

Canonical commutation relations, 54, 192
Corner sum matrix

left, 100, 236
right, 107, 243
Cube

arm length, 80, 218

associated lattice path,81, 219
interlacing sequence de nition, 20, 158
lattice path de nition, 81, 219

leg length, 80, 218

peak cube,81, 219

surface cube,82, 220

valley cube, 81, 219

Cylinder, 82, 220

non-intersecting lattice paths, 82, 220
vertical reading, 83, 221
path, 82, 220

Cylindric diagram

cohook, 71, 209

cylindric hook length, 23, 161
cylindric inversion coordinates, 21, 159
de nition, 20, 158

diag, 71, 209

inside corner, 65, 203

outside corner, 65, 203

re ned weight, 63, 201

rotation operator, 24, 162

weight, 72, 210

Cylindric growth diagram
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de nition, 68, 206
example, 69, 207
face, 68, 206
path, 68, 206

Cylindric poset, 67, 205

Determinant

lambda, 100, 236
lambda, multi-parameter, 114, 250
regular, 94, 230

Fomin growth diagram, 31, 169

horizontal type, 38, 176
input, 33, 171

local rules, 33, 171

output, 35, 173

patch, 37, 40, 175 178
standardization, 35, 173
vertical type, 38, 39, 176, 177

Hall{Littlewood polynomials, 57, 195
Horizontal strip

properly labelled, 37, 38, 175 176
regular, 16, 154

Interlacing matrices

left, down, 101, 237
left, up, 102, 238
right, down, 108 244
right, up, 108 244

Lattice, 95, 231
Local rule

Fomin, reverse,35, 173

Burge, 42, 180

Fomin, forward, 32, 170

RSK, 42, 180

symmetric functions, 50, 188
weight condition, 39, 43, 177, 181

Macdonald polynomial

Cauchy identity, 55, 193
de nition, 55, 193

dual Pieri formula, 56, 194
dual Pieri operator, 55, 193
inner product, 55, 193
Pieri formula, 56, 194

Pieri operator, 55, 193

MacMahon identity, 18, 156
Monotone triangle, 95, 98, 231, 234

Partition
dominance order,16, 154
lexicographic order, 16, 154
pro le, generalized, 15, 153
prole, minimum, 13, 151
Permutation
block, 39, 177
dual inversion, 94, 230
inversion, 93, 229
partial
decreasing chain,37, 175
increasing chain,37, 175
Plane partition
cylindric, 19, 157
regular, 17, 155
reverse,18, 156
Plethystic notation, 46, 54, 184, 192
Pochhammer symbol,54, 192
Poset, 95, 231

Robinson correspondence
regular, 25, 163
skew, 33, 36, 171, 174

RSK correspondence
forward, 42, 180
reverse,41, 179

RSK permutation, 39, 177

Schur function
Cauchy identity, 48, 186
de nition, 47, 53, 185, 191
dual Pieri formula, 49, 187
Hall inner product, 47, 185
Pieri formula, 49, 187
Stanley identity, 19, 157
Symmetric function
( Xz) de nition, 47, 185
(X)) de nition, 49, 187

Tableau
de-standardization, 37, 175
semi-standard, 36, 174
content, 36, 174
skew standard,32, 170
standard, 25, 32, 163 170
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standardization, 37, 175

Vertical strip
properly labelled, 39, 177
regular, 17, 155

Viennot shadow, 28, 166

Yamanouchi word, 25, 163
Young diagram, 13, 151
Young lattice, 15, 153
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