M. Aguiar and J. Loday, Quadri-algebras, Journal of Pure and Applied AlgebraAnd81] D. André. Sur les permutations alternées. Journal de mathématiques pures et appliquées, pp.205-221, 2004.
DOI : 10.1016/j.jpaa.2004.01.002

URL : https://hal.archives-ouvertes.fr/hal-00118621

]. V. Arn92, Arnol'd. The calculus of snakes and the combinatorics of bernoulli, euler and springer numbers of coxeter groups, Russian Mathematical Surveys, vol.47, issue.1, pp.1-51, 1992.

J. Bultel, A. Chouria, J. Luque, and O. Mallet, Redfield-pólya theorem in wsym, DMTCS Proceedings, issue.01, pp.563-574, 2013.

]. F. Ber87 and . Bergeron, Une combinatoire du pléthysme, Journal of Combinatorial Theory, Series A, vol.46, issue.2, pp.291-305, 1987.

A. [. Brouder and . Frabetti, Renormalization of QED with planar binary trees, The European Physical Journal C, vol.19, issue.4, pp.715-741, 2001.
DOI : 10.1007/s100520100586

A. [. Brouder and . Frabetti, QED Hopf algebras on planar binary trees, Journal of Algebra, vol.267, issue.1, pp.298-322, 2003.
DOI : 10.1016/S0021-8693(03)00331-4

URL : https://hal.archives-ouvertes.fr/hal-00019203

F. [. Bergeron, J. Hivert, and . Thibon, The peak algebra and the Hecke???Clifford algebras at q=0, Journal of Combinatorial Theory, Series A, vol.107, issue.1, pp.1-19, 2004.
DOI : 10.1016/j.jcta.2004.03.004

URL : https://hal.archives-ouvertes.fr/hal-00622603

]. F. Bll-+-94, G. Bergeron, P. Labelle, and . Leroux, Département de mathématiques et d'informatique, and Université du QuébecQuébecà Montréal. Laboratoire de combinatoire et d'informatique mathématique, Théorie des especes et combinatoire des structures arborescentes. Montréal : Dép. de mathématiques et d'informatique, 1994.

M. [. Burgunder and . Ronco, Tridendriform structure on combinatorial Hopf algebras, Journal of Algebra, vol.324, issue.10, pp.2860-2883, 2010.
DOI : 10.1016/j.jalgebra.2010.07.010

]. W. Bur72 and . Burge, An analysis of a tree sorting method and some properties of a set of trees, Proceedings of the First USA-Japan Computer Conference, AFIPS and IPSJ, pp.372-379, 1972.

]. L. Car71 and . Carlitz, A conjecture concerning Genocchi numbers. Norske Vid, Selsk. Skr. (Trondheim ), issue.9, p.4, 1971.

]. F. Cha02 and . Chapoton, Un théorème de cartier?milnor?moore?quillen pour les bigèbres dendriformes et les algèbres braces, Journal of Pure and Applied Algebra, vol.168, issue.1, pp.1-18, 2002.

D. [. Connes and . Kreimer, Hopf algebras, renormalization and noncommutative geometry, Quantum field theory : perspective and prospective, pp.59-109, 1999.

M. [. Chapoton and . Livernet, Pre-lie algebras and the rooted trees operad, International Mathematics Research Notices, issue.8, pp.395-408, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00002110

L. [. Corteel and . Williams, Tableaux combinatorics for the asymmetric exclusion process, Advances in Applied Mathematics, vol.39, issue.3, pp.293-310, 2007.
DOI : 10.1016/j.aam.2006.08.002

L. S. Corteel and . Williams, Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials, Duke Mathematical Journal, vol.159, issue.3, pp.385-415, 2011.
DOI : 10.1215/00127094-1433385

. [. Dumont, Interpr???tations combinatoires des nombres de Genocchi, Duke Mathematical Journal, vol.41, issue.2, pp.305-318, 1974.
DOI : 10.1215/S0012-7094-74-04134-9

D. [. Dumont and . Foata, Une propri??t?? de sym??trie des nombres de Genocchi, Bulletin de la Société mathématique de France, vol.79, pp.433-451, 1976.
DOI : 10.24033/bsmf.1839

G. Duchamp, F. Hivert, J. Novelli, and J. Thibon, Noncommutative Symmetric Functions VII: Free Quasi-Symmetric Functions Revisited, Annals of Combinatorics, vol.175, issue.2, pp.655-673, 2011.
DOI : 10.1007/s00026-011-0115-4

URL : https://hal.archives-ouvertes.fr/hal-00826640

G. Duchamp, F. Hivert, and J. Thibon, NONCOMMUTATIVE SYMMETRIC FUNCTIONS VI: FREE QUASI-SYMMETRIC FUNCTIONS AND RELATED ALGEBRAS, DM97] A. Dress and T. Müller. Decomposable functors and the exponential principle. advances in mathematics, pp.671-717188, 1997.
DOI : 10.1142/S0218196702001139

URL : https://hal.archives-ouvertes.fr/hal-00622613

D. [. Dumont, M. Flajolet, and . Noy, Combinatorial aspects of continued fractions Analytic combinatorics of non-crossing configurations [Foa78] D. Foata. A combinatorial proof of the mehler formula Bidendriform bialgebras, trees, and free quasi-symmetric functions, Conjectures sur des symétries ternaires liées aux nombres de Genocchi. Discrete MathFoi02] L. Foissy. Les algebres de hopf des arbres enracinés décorés, i. Bulletin des sciences mathematiquesFra76] J. Françon. Arbres binaires de recherche : propriétés combinatoires et applications. RAIRO-Theoretical Informatics and Applications-Informatique Théorique et ApplicationsFra79] J. Françon. Combinatoire des structures de données. Institut de Recherche Mathematique Avancée, pp.469-472125, 1976.

]. D. Fs-+-73a, M. Foata, and . Schützenberger, In A survey of combinatorial theory Euler numbers and variations of permutations. Colloquio Internazionale sulle Teorie Combinatorie Permutations selon leurs pics, creux, doubles montées et double descentes Denert's permutation statistic is indeed euler-mahonian A conjectured representation of Genocchi numbers [Ges80] I. Gessel. A noncommutative generalization and q-analog of the lagrange inversion formula. Transactions of the, Ges84] I. M Gessel. Multipartite p-partitions and inner products of skew schur functions. Contemp. MathGes03] I. Gessel. Applications of the classical umbral calculus. Algebra Universalis, pp.173-187, 1970.

. Gkl-+-95-]-i, D. Gelfand, A. Krob, B. Lascoux, V. S. Leclerc et al., Noncommutative Symmetric Functions, Han. Symétries trivariées sur les nombres de Genocchi, pp.218-348397, 1992.

N. Thomas and . Hibbard, Some combinatorial properties of certain trees with applications to searching and sorting, J. ACM, vol.9, issue.1, pp.13-28, 1962.

J. [. Hivert, J. Novelli, and . Thibon, The algebra of binary search trees, Theoretical Computer Science, vol.339, issue.1, pp.129-165, 2005.
DOI : 10.1016/j.tcs.2005.01.012

URL : https://hal.archives-ouvertes.fr/hal-00622706

]. F. Hnt08a, J. Hivert, J. Novelli, and . Thibon, Commutative combinatorial hopf algebras, Journal of Algebraic Combinatorics, vol.28, issue.1, pp.65-95, 2008.

]. F. Hnt08b, J. Hivert, J. Novelli, and . Thibon, Trees, functional equations, and combinatorial hopf algebras, European Journal of Combinatorics, vol.29, issue.7, pp.1682-1695, 2008.

F. Hivert, J. Novelli, L. Tevlin, and J. Thibon, Permutation statistics related to a class of noncommutative symmetric functions and generalizations of the Genocchi numbers, Selecta Mathematica, vol.15, issue.1, pp.105-119, 2009.
DOI : 10.1007/s00029-009-0489-x

URL : https://hal.archives-ouvertes.fr/hal-00484691

E. [. Hetyei and . Reiner, Permutation Trees and Variation Statistics, European Journal of Combinatorics, vol.19, issue.7, pp.847-866, 1998.
DOI : 10.1006/eujc.1998.0233

]. A. Joy81, Une théorie combinatoire des séries formelles Advances in mathematics, pp.1-82, 1981.

J. P. Kung, G. Rota, and C. H. Yan, Combinatorics : the Rota way, 2009.
DOI : 10.1017/CBO9780511803895

D. Kim and J. Zeng, A Combinatorial Formula for the Linearization Coefficients of General Sheffer Polynomials, European Journal of Combinatorics, vol.22, issue.3, pp.313-332, 2001.
DOI : 10.1006/eujc.2000.0459

]. G. Lab81 and . Labelle, Une nouvelle démonstration combinatoire des formules d'inversion de lagrange, Advances in Mathematics, vol.42, issue.3, pp.217-247, 1981.

]. Lod96, A. Loday, and . France, La renaissance des opérades, pp.47-74, 1996.

]. Lod06 and . Loday, Generalized bialgebras and triples of operads. arXiv preprint math, 2006.

A. [. Littlewood and . Richardson, Group Characters and Algebra, Containing Papers of a Mathematical or Physical Character, pp.99-141, 1934.
DOI : 10.1098/rsta.1934.0015

[. Loday and M. Ronco, Hopf Algebra of the Planar Binary Trees, Advances in Mathematics, vol.139, issue.2, pp.293-309, 1998.
DOI : 10.1006/aima.1998.1759

[. Loday and M. Ronco, Trialgebras and families of polytopes, Contemporary Mathematics AMS, vol.346, pp.369-398, 2004.
DOI : 10.1090/conm/346/06296

URL : https://hal.archives-ouvertes.fr/hal-00139417

G. [. Leroux and . Viennot, Combinatorial resolution of systems of differential equations, I. Ordinary differential equations, 1986.
DOI : 10.1016/0097-3165(80)90001-1

[. Loday and B. Vallette, Algebraic operads, 2012.

R. Maurice, Algèbres de hopf combinatoires, 2013.

]. J. May72 and . May, The geometry of iterated loop spaces, 1972.

C. [. Malvenuto and . Reutenauer, Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra, Journal of Algebra, vol.177, issue.3, pp.967-982, 1995.
DOI : 10.1006/jabr.1995.1336

M. Markl, S. Shnider, and J. Stasheff, Operads in algebra, topology and physics. Number 96, 2007.

]. Nt06a, J. Novelli, and . Thibon, Polynomial realizations of some trialgebras. arXiv preprint math, p.605061, 2006.

J. Novelli and J. Thibon, Noncommutative bessel symmetric functions. arXiv preprint math, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00693568

[. Novelli and J. Thibon, Noncommutative symmetric functions and an amazing matrix, Advances in Applied Mathematics, vol.48, issue.3, pp.528-534, 2012.
DOI : 10.1016/j.aam.2011.11.008

URL : https://hal.archives-ouvertes.fr/hal-00786607

[. Novelli and J. Thibon, Hopf algebras of m-permutations,(m+ 1)-ary trees, and m-parking functions. arXiv preprint, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01289784

J. Novelli, J. Thibon, and L. K. Williams, Combinatorial Hopf algebras, noncommutative Hall???Littlewood functions, and permutation tableaux, Advances in Mathematics, vol.224, issue.4, pp.311-1348, 2010.
DOI : 10.1016/j.aim.2010.01.006

URL : https://hal.archives-ouvertes.fr/hal-00823073

]. G. Pól37 and . Pólya, Kombinatorische anzahlbestimmungen für gruppen, graphen und chemische verbindungen, Acta mathematica, vol.68, issue.1, pp.145-254, 1937.

C. [. Poirier and . Reutenauer, Algèbres de Hopf de tableaux, Ann. Sci. Math. Québec, vol.19, pp.79-90, 1995.

]. M. Pur93 and . Purtill, André permutations, lexicographic shellability and the cd-index of a convex polytope. Transactions of the, Ran94] A. Randrianarivony. Polynômes de Dumont-Foata généralisés. Sémin. Lothar. Comb, pp.77-10412, 1993.

]. G. Rob38, B. De, and . Robinson, On the representations of the symmetric group, American Journal of Mathematics, pp.745-760, 1938.

]. Ron02, G. Roman, and . Rota, Eulerian idempotents and milnor?moore theorem for certain noncocommutative hopf algebras The umbral calculus, Journal of Algebra Advances in Mathematics, vol.254, issue.272, pp.152-17295, 1978.

P. [. Riordan and . Stein, Proof of a conjecture on Genocchi numbers, Discrete Mathematics, vol.5, issue.4, pp.381-388, 1973.
DOI : 10.1016/0012-365X(73)90131-3

C. Schensted, Longest increasing and decreasing subsequences, Journal canadien de math??matiques, vol.13, issue.0, pp.179-191, 1961.
DOI : 10.4153/CJM-1961-015-3

[. Schützenberger and D. Foata, Théorie géométrique des polynômes eulériens, p.138, 1970.

]. N. Slo and . Sloane, The On-Line Encyclopedia of Integer Sequences

]. L. Sol76 and . Solomon, A mackey formula in the group ring of a coxeter group, Journal of Algebra, vol.41, issue.2, pp.255-264, 1976.

]. R. Sta11 and . Stanley, Enumerative combinatorics, Ste97] J. Stembridge. Enriched P -partitions. Transactions of the, pp.763-788, 1997.

L. [. Steingrímsson and . Williams, Permutation tableaux and permutation patterns, Journal of Combinatorial Theory, Series A, vol.114, issue.2, pp.211-234, 2007.
DOI : 10.1016/j.jcta.2006.04.001

[. Thomas, Baxter algebras and schur functions, 1974.

]. J. Tou52 and . Touchard, Sur unprobì eme de configurations et sur les fractions continues, Canad. J. Math, vol.4, issue.2, p.25, 1952.

]. B. Val08 and . Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math, vol.620, pp.105-164, 2008.

]. G. Vie77, . Viennotvie80-]-g, and . Viennot, Une forme géométrique de la correspondance de robinson-schensted Une interpretation combinatoire des coefficients des développements en série entiere des fonctions elliptiques de jacobi, Combinatoire et représentation du groupe symétrique, pp.29-58121, 1977.

]. G. Vie82 and . Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Sémin. Théor. Nombres, Univ. Bordeaux I, 1981.

]. G. Vie83, ]. Viennotvog73, and . Vogt, Une théorie combinatoire des polynômes orthogonaux généraux Homotopy limits and colimits, Mathematische Zeitschrift, vol.134, issue.1, pp.11-52, 1973.

]. A. Zel81 and . Zelevinsky, A generalization of the littlewood-richardson rule and the robinsonschensted-knuth correspondence, Journal of Algebra, vol.69, issue.1, pp.82-94, 1981.

]. J. Zen96 and . Zeng, Sur quelques propriétés de symétrie des nombres de Genocchi, Discrete Math, vol.153, issue.1-3, pp.319-333, 1996.