F. R. Chung, Spectral Graph Theory, 1997.
DOI : 10.1090/cbms/092

D. Spielman, Spectral Graph Theory, Lecture Notes, 2009.
DOI : 10.1201/b11644-19

R. Horn and C. Johnson, Matrix analysis, 2005.

M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, vol.23, issue.2, pp.298-305, 1973.

F. Chung, Laplacians and the Cheeger Inequality for Directed Graphs, Annals of Combinatorics, vol.9, issue.1, pp.1-19, 2005.
DOI : 10.1007/s00026-005-0237-z

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE Transactions on Information Theory, vol.52, issue.6, pp.2508-2530, 2006.
DOI : 10.1109/TIT.2006.874516

T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, Broadcast Gossip Algorithms for Consensus, IEEE Transactions on Signal Processing, vol.57, issue.7, pp.2748-2761, 2009.
DOI : 10.1109/TSP.2009.2016247

P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues, 1999.
DOI : 10.1007/978-1-4757-3124-8

S. Chatterjee and E. Seneta, Towards consensus: some convergence theorems on repeated averaging, Journal of Applied Probability, vol.64, issue.01, pp.89-97, 1977.
DOI : 10.1017/S0305004100077276

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson et al., Epidemic algorithms for replicated database maintenance, ACM Symposium on Principles of Distributed Computing (PODC), pp.1-12, 1987.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Analysis and optimization of randomized gossip algorithms, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.5310-5315, 2004.
DOI : 10.1109/CDC.2004.1429652

P. Slater, E. Cockayne, and S. Hedetniemi, Information Dissemination in Trees, SIAM Journal on Computing, vol.10, issue.4, pp.692-701, 1981.
DOI : 10.1137/0210052

U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Randomized broadcast in networks, Random Structures and Algorithms, vol.47, issue.4, pp.447-460, 1990.
DOI : 10.1002/rsa.3240010406

W. Heinzelman, J. Kulik, and H. Balakrishnan, Adaptive protocols for information dissemination in wireless sensor networks, Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking , MobiCom '99, pp.174-185, 1999.
DOI : 10.1145/313451.313529

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, Randomized rumor spreading, Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.565-574, 2000.
DOI : 10.1109/SFCS.2000.892324

S. Kashyap, S. Deb, K. Naidu, R. Rastogi, and A. Srinivasan, Efficient gossip-based aggregate computation, Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '06, pp.308-317, 2006.
DOI : 10.1145/1142351.1142395

B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and Robustness, Automata, Languages and Programming, pp.366-377, 2009.
DOI : 10.1007/978-3-642-02927-1_31

N. Fountoulakis, A. Huber, and K. Panagiotou, Reliable Broadcasting in Random Networks and the Effect of Density, 2010 Proceedings IEEE INFOCOM, pp.1-9, 2010.
DOI : 10.1109/INFCOM.2010.5462084

I. Chlamtac and S. Kutten, On Broadcasting in Radio Networks--Problem Analysis and Protocol Design, IEEE Transactions on Communications, vol.33, issue.12, pp.1240-1246, 1985.
DOI : 10.1109/TCOM.1985.1096245

O. Bar-yehuda, R. Goldreich, and A. Itai, On the time-complexity of broadcast in radio networks: an exponential gap between determinism randomization, Proceedings of the sixth annual ACM Symposium on Principles of distributed computing , PODC '87, pp.104-126, 1992.
DOI : 10.1145/41840.41849

E. Kushilevitz and Y. Mansour, An $\Omega(D\log (N/D))$ Lower Bound for Broadcast in Radio Networks, SIAM Journal on Computing, vol.27, issue.3, pp.702-712, 1998.
DOI : 10.1137/S0097539794279109

L. Chrobak, M. Gasieniec, and W. Rytter, Fast broadcasting and gossiping in radio networks, Journal of Algorithms, vol.43, issue.2, pp.177-189, 2002.
DOI : 10.1016/S0196-6774(02)00004-4

A. Czumaj and W. Rytter, Broadcasting algorithms in radio networks with unknown topology, IEEE Symposium on Foundations of Computer Science (FOCS), pp.492-501, 2003.

J. Cortés, Distributed algorithms for reaching consensus on general functions, Automatica, vol.44, issue.3, pp.726-737, 2008.
DOI : 10.1016/j.automatica.2007.07.022

U. Feige, A tight upper bound on the cover time for random walks on graphs, Random Structures & Algorithms, vol.4, issue.1, pp.51-54, 1995.
DOI : 10.1002/rsa.3240060106

C. Cooper and A. Frieze, The cover time of random geometric graphs, ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.48-57, 2009.

T. Sauerwald and A. Stauffer, Rumor Spreading and Vertex Expansion on Regular Graphs, ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.462-475, 2011.
DOI : 10.1137/1.9781611973082.37

D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs Draft available online

C. Avin and G. Ercal, On the cover time and mixing time of random geometric graphs, Theoretical Computer Science, vol.380, issue.1-2, pp.2-22, 2007.
DOI : 10.1016/j.tcs.2007.02.065

D. Gillman, A Chernoff Bound for Random Walks on Expander Graphs, SIAM Journal on Computing, vol.27, issue.4, pp.1203-1220, 1998.
DOI : 10.1137/S0097539794268765

A. Frieze and G. Grimmett, The shortest-path problem for graphs with random arc-lengths, Discrete Applied Mathematics, vol.10, issue.1, pp.57-77, 1985.
DOI : 10.1016/0166-218X(85)90059-9

G. Giakkoupis and T. Sauerwald, Rumor Spreading and Vertex Expansion, ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.1623-1641, 2012.
DOI : 10.1137/1.9781611973099.129

R. Motwani and P. Raghavan, Randomized algorithms, 1995.

M. Penrose, Random geometric graphs, 2003.
DOI : 10.1093/acprof:oso/9780198506263.001.0001

F. Bénézit, Distributed Average Consensus for Wireless Sensor Networks, 2009.

A. D. Dimakis, A. D. Sarwate, and M. J. Wainwright, Geographic Gossip: Efficient Averaging for Sensor Networks, IEEE Transactions on Signal Processing, vol.56, issue.3, pp.1205-1216, 2008.
DOI : 10.1109/TSP.2007.908946

F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli, Order-Optimal Consensus Through Randomized Path Averaging, IEEE Transactions on Information Theory, vol.56, issue.10, pp.5150-5167, 2010.
DOI : 10.1109/TIT.2010.2060050

B. Nazer, A. G. Dimakis, and M. Gastpar, Neighborhood gossip: Concurrent averaging through local interference, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.3657-3660, 2009.
DOI : 10.1109/ICASSP.2009.4960419

D. Ustebay, B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, Greedy Gossip With Eavesdropping, IEEE Transactions on Signal Processing, vol.58, issue.7, pp.3765-3776, 2010.
DOI : 10.1109/TSP.2010.2046593

S. Wu and M. G. Rabbat, Broadcast Gossip Algorithms for Consensus on Strongly Connected Digraphs, IEEE Transactions on Signal Processing, vol.61, issue.16, pp.3959-3971, 2013.
DOI : 10.1109/TSP.2013.2264056

F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, Weighted Gossip: Distributed Averaging using non-doubly stochastic matrices, 2010 IEEE International Symposium on Information Theory, pp.1753-1757, 2010.
DOI : 10.1109/ISIT.2010.5513273

D. Kempe, A. Dobra, and J. Gehrke, Gossip-based computation of aggregate information, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pp.482-491, 2003.
DOI : 10.1109/SFCS.2003.1238221

M. H. Degroot, Reaching a Consensus, Journal of the American Statistical Association, vol.38, issue.345, pp.118-121, 1974.
DOI : 10.1287/mnsc.15.2.B61

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation, Old Tappan NJ (USA, 1989.

L. Xiao, S. Boyd, and S. Lall, Distributed Average Consensus with Time-Varying Metropolis Weights, 2006.

P. Denantes, F. Bénézit, P. Thiran, and M. Vetterli, Which Distributed Averaging Algorithm Should I Choose for my Sensor Network?, IEEE INFOCOM 2008, The 27th Conference on Computer Communications, pp.986-994, 2008.
DOI : 10.1109/INFOCOM.2008.152

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

A. Tahbaz-salehi and A. Jadbabaie, A Necessary and Sufficient Condition for Consensus Over Random Networks, IEEE Transactions on Automatic Control, vol.53, issue.3, pp.791-795, 2008.
DOI : 10.1109/TAC.2008.917743

M. Franceschelli, A. Giua, and C. Seatzu, Distributed Averaging in Sensor Networks Based on Broadcast Gossip Algorithms, IEEE Sensors Journal, vol.11, issue.3, pp.808-817, 2011.
DOI : 10.1109/JSEN.2010.2064295

E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, Spectrum Sensing for Cognitive Radio : State-of-the-Art and Recent Advances, IEEE Signal Processing Magazine, vol.29, issue.3, pp.101-116, 2012.
DOI : 10.1109/MSP.2012.2183771

P. Braca, S. Marano, V. Matta, and P. Willett, Asymptotic Optimality of Running Consensus in Testing Binary Hypotheses, IEEE Transactions on Signal Processing, vol.58, issue.2, pp.814-825, 2010.
DOI : 10.1109/TSP.2009.2030610

F. S. Cattivelli and A. H. Sayed, Distributed Detection Over Adaptive Networks Using Diffusion Adaptation, IEEE Transactions on Signal Processing, vol.59, issue.5, pp.1917-1932, 2011.
DOI : 10.1109/TSP.2011.2107902

W. Zhang, Z. Wang, Y. Guo, H. Liu, Y. Chen et al., Distributed Cooperative Spectrum Sensing Based on Weighted Average Consensus, IEEE Global Telecommunications Conference (GLOBECOM), pp.1-6, 2011.

P. Ciblat, P. Bianchi, and M. Ghogho, Training Sequence Optimization for Joint Channel and Frequency Offset Estimation, IEEE Transactions on Signal Processing, vol.56, issue.8, pp.3424-3436, 2008.
DOI : 10.1109/TSP.2008.921712

P. A. Forero, A. Cano, and G. B. Giannakis, Distributed Clustering Using Wireless Sensor Networks, IEEE Journal of Selected Topics in Signal Processing, vol.5, issue.4, pp.707-724, 2011.
DOI : 10.1109/JSTSP.2011.2114324

J. Tsitsiklis, Problems in decentralized decision making and computation, 1984.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Transactions on Automatic Control, vol.31, issue.9, pp.803-812, 1986.
DOI : 10.1109/TAC.1986.1104412

A. Nedi´cnedi´c, D. Bertsekas, and V. Borkar, Distributed Asynchronous Incremental subgradient methods, Studies in Computational Mathematics, pp.381-407, 2001.

A. Nedi´cnedi´c and A. Ozdaglar, Distributed Subgradient Methods for Multi-Agent Optimization, IEEE Transactions on Automatic Control, vol.54, issue.1, pp.48-61, 2009.
DOI : 10.1109/TAC.2008.2009515

S. S. Ram, A. Nedi´cnedi´c, and V. V. Veeravalli, Distributed stochastic subgradient projection algorithms for convex optimization, Journal of optimization theory and applications, vol.147, issue.3, pp.516-545, 2010.

P. Bianchi and J. Jakubowicz, Convergence of a Multi-Agent Projected Stochastic Gradient Algorithm for Non-Convex Optimization, IEEE Transactions on Automatic Control, vol.58, issue.2, pp.391-405, 2013.
DOI : 10.1109/TAC.2012.2209984

URL : https://hal.archives-ouvertes.fr/hal-00816500

D. Jakoveti´cjakoveti´c, J. M. Moura, and X. Joao, Distributed Nesterov-like gradient algorithms, IEEE Conference on Decision and Control (CDC), pp.5459-5464, 2012.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling, IEEE Transactions on Automatic Control, vol.57, issue.3, pp.592-606, 2012.
DOI : 10.1109/TAC.2011.2161027

A. Jadbabaie, A. Ozdaglar, and M. Zargham, A distributed newton method for network optimization, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp.2736-2741, 2009.
DOI : 10.1109/CDC.2009.5400289

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Machine Learning, pp.1-122, 2011.
DOI : 10.1561/2200000016

I. Schizas, A. Ribeiro, and G. Giannakis, Consensus in <emphasis>Ad Hoc</emphasis> WSNs With Noisy Links&#x2014;<newline/>Part I: Distributed Estimation of Deterministic Signals, IEEE Transactions on Signal Processing, vol.56, issue.1, pp.350-364, 2008.
DOI : 10.1109/TSP.2007.906734

E. Wei and A. Ozdaglar, Distributed Alternating Direction Method of Multipliers, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp.5445-5450, 2012.
DOI : 10.1109/CDC.2012.6425904

P. Bianchi, G. Fort, and W. Hachem, Performance of a Distributed Stochastic Approximation Algorithm, IEEE Transactions on Information Theory, vol.59, issue.11, 2013.
DOI : 10.1109/TIT.2013.2275131

S. P. Boyd and L. Vandenberghe, Convex optimization, 2004.

A. Nedi´cnedi´c and D. P. Bertsekas, Incremental Subgradient Methods for Nondifferentiable Optimization, SIAM Journal on Optimization, vol.12, issue.1, pp.109-138, 2001.
DOI : 10.1137/S1052623499362111

G. Pólya and G. Szegö, Problems and Theorems in Analysis I: Series Integral Calculus Theory of Functions, Classics in mathematics, 1998.

M. Duflo, Random Iterative Models Translated from original French edition " Méthodes Récursives Aléatoires, 1990.

H. Robbins and D. Siegmund, A convergence theorem for non negative almost supermartingales and some applications., " in Optimization Methods in Statistics, pp.233-257, 1971.

G. Morral, P. Bianchi, G. Fort, and J. Jakubowicz, Distributed stochastic approximation: The price of non-double stochasticity, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp.1473-1477, 2012.
DOI : 10.1109/ACSSC.2012.6489272

URL : https://hal.archives-ouvertes.fr/hal-00816041

N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends?? in Optimization, vol.1, issue.3, pp.123-231, 2013.
DOI : 10.1561/2400000003

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), vol.58, issue.1, pp.267-288, 1996.

R. T. Rockafellar, Monotone Operators and the Proximal Point Algorithm, SIAM Journal on Control and Optimization, vol.14, issue.5, pp.877-898, 1976.
DOI : 10.1137/0314056

J. Eckstein and D. P. Bertsekas, On the Douglas???Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, pp.293-318, 1992.
DOI : 10.1007/BF01581204

H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643354

G. J. Minty, On the maximal domain of a ``monotone'' function., The Michigan Mathematical Journal, vol.8, issue.2, pp.135-137, 1961.
DOI : 10.1307/mmj/1028998564

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, vol.3, issue.1, pp.133-181, 1922.

P. L. Combettes and J. Pesquet, Proximal Splitting Methods in Signal Processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.185-212, 2011.
DOI : 10.1007/978-1-4419-9569-8_10

URL : https://hal.archives-ouvertes.fr/hal-00643807

J. Douglas and H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Transactions of the American Mathematical Society, vol.82, issue.2, pp.421-439, 1956.
DOI : 10.1090/S0002-9947-1956-0084194-4

P. Lions and B. Mercier, Splitting Algorithms for the Sum of Two Nonlinear Operators, SIAM Journal on Numerical Analysis, vol.16, issue.6, pp.964-979, 1979.
DOI : 10.1137/0716071

M. Schmidt, N. L. Roux, and F. Bach, Convergence rates of inexact proximal-gradient methods for convex optimization, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00618152

P. Machart, S. Anthoine, and L. Baldassarre, Optimal computational trade-off of inexact proximal methods, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00704398