M. Aharon, M. Elad, and A. Bruckstein, <tex>$rm K$</tex>-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, IEEE Transactions on Signal Processing, vol.54, issue.11, pp.4311-4322, 2006.
DOI : 10.1109/TSP.2006.881199

S. Alliney, Digital filters as absolute norm regularizers, IEEE Transactions on Signal Processing, vol.40, issue.6, pp.1548-1562, 1992.
DOI : 10.1109/78.139258

F. J. Anscombe, THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA, Biometrika, vol.35, issue.3-4, pp.246-254, 1948.
DOI : 10.1093/biomet/35.3-4.246

J. Atif, C. Hudelot, G. Fouquier, I. Bloch, and E. Angelini, From generic knowledge to specific reasoning for medical image interpretation using graph based representations, Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI'07, pp.224-229, 2007.

I. Bloch, Fuzzy spatial relationships for image processing and interpretation: a review, Image and Vision Computing, vol.23, issue.2, pp.89-110, 2005.
DOI : 10.1016/j.imavis.2004.06.013

I. Bloch, T. Géraud, and H. Maître, Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition???Application to 3D brain imaging, Artificial Intelligence, vol.148, issue.1-2, pp.141-175, 2003.
DOI : 10.1016/S0004-3702(03)00018-3

URL : https://hal.archives-ouvertes.fr/hal-00556174

A. Buades, B. Coll, and J. M. , A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

A. Buades, B. Coll, and J. Morel, A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

F. M. Buck, R. Guggenberger, P. P. Koch, and C. Pfirrmann, Femoral and Tibial Torsion Measurements With 3D Models Based on Low-Dose Biplanar Radiographs in Comparison With Standard CT Measurements, American Journal of Roentgenology, vol.199, issue.5, pp.607-612, 2012.
DOI : 10.2214/AJR.11.8295

P. J. Burt and E. H. Adeldon, The Laplacian Pyramid as a Compact Image Code, IEEE Transactions on Communications, vol.31, issue.4, pp.532-540, 1983.
DOI : 10.1109/TCOM.1983.1095851

E. Candes, Ridgelets: theory and applications, 1998.

E. J. Candes and D. L. Donoho, Curvelets and Curvilinear Integrals, Journal of Approximation Theory, vol.113, issue.1, pp.59-90, 2001.
DOI : 10.1006/jath.2001.3624

E. J. Candes and M. B. Wakin, An Introduction To Compressive Sampling, IEEE Signal Processing Magazine, vol.25, issue.2, pp.21-30, 2008.
DOI : 10.1109/MSP.2007.914731

T. Cerciello, P. Bifulco, M. Cesarelli, and A. Fratini, A comparison of denoising methods for X-ray fluoroscopic images, Biomedical Signal Processing and Control, vol.7, issue.6, pp.550-559, 2012.
DOI : 10.1016/j.bspc.2012.06.004

D. C. Chang and W. R. Wu, Image contrast enhancement based on a histogram transformation of local standard deviation, IEEE Transactions on Medical Imaging, vol.17, issue.4, pp.518-531, 1998.
DOI : 10.1109/42.730397

G. Charpak, R. Bouclier, T. Bressani, J. Favier, and ?. Zupan?i?, The use of multiwire proportional counters to select and localize charged particles, Nuclear Instruments and Methods, vol.62, issue.3, pp.262-268, 1968.
DOI : 10.1016/0029-554X(68)90371-6

P. Chatterjee and P. Milanfar, Patch-Based Near-Optimal Image Denoising, IEEE Transactions on Image Processing, vol.21, issue.4, pp.1635-1649, 2012.
DOI : 10.1109/TIP.2011.2172799

O. Colliot, O. Camara, and I. Bloch, Integration of fuzzy spatial relations in deformable models???Application to brain MRI segmentation, Pattern Recognition, vol.39, issue.8, pp.1401-1414, 2006.
DOI : 10.1016/j.patcog.2006.02.022

URL : https://hal.archives-ouvertes.fr/hal-00878443

M. Colom and A. Buades, Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image, Image Processing On Line, vol.3, pp.332-359, 2013.
DOI : 10.5201/ipol.2013.90

S. Cotter, R. Adler, R. Rao, and K. Kreutz-delgrado, Forward sequential algorithms for best basis selection, IEE Proceedings Vision, Image and Signal Processing, pp.235-244, 1999.
DOI : 10.1049/ip-vis:19990445

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

A. Criminisi, J. Shotton, and S. Bucciarelli, Decision Forests with Long-Range Spatial Context for Organ Localization in CT Volumes, MICCAI workshop on Probabilistic Models for Medical Image Analysis (MICCAI-PMMIA), 2009.

A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton, S. Pathak et al., Regression forests for efficient anatomy detection and localization in computed tomography scans, Medical Image Analysis, vol.17, issue.8, pp.1293-1303, 2013.
DOI : 10.1016/j.media.2013.01.001

M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, Wavelet-based statistical signal processing using hidden Markov models, IEEE Transactions on Signal Processing, vol.46, issue.4, pp.886-902, 1998.
DOI : 10.1109/78.668544

K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian, Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering, IEEE Transactions on Image Processing, vol.16, issue.8, pp.2080-2095, 2007.
DOI : 10.1109/TIP.2007.901238

K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian, BM3D Image Denoising with Shape-Adaptive Principal Component Analysis, Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured Representations, pp.1-6, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00369582

J. Damet, P. Fournier, P. Monnin, M. Sans-merce, D. Ceroni et al., Occupational and patient exposure as well as image quality for full spine examinations with the EOS imaging system, Medical Physics, vol.32, issue.4, pp.411-423, 2014.
DOI : 10.1118/1.1876592

J. Darbon, A. Cunha, T. F. Chan, S. Osher, and G. J. Jensen, Fast nonlocal filtering applied to electron cryomicroscopy, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1331-1334, 2008.
DOI : 10.1109/ISBI.2008.4541250

I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992.

M. Delbracio, P. Musé, A. Buades, J. Chauvier, N. Phelps et al., Boosting monte carlo rendering by ray histogram fusion, ACM Transactions on Graphics, vol.33, issue.1, pp.1-8, 2014.
DOI : 10.1145/2532708

C. Deledalle, Image denoising beyond additive Gaussian noise, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00662520

C. Deledalle, F. Tupin, and L. Denis, Poisson NL means: Unsupervised non local means for Poisson noise, 2010 IEEE International Conference on Image Processing, pp.801-804, 2010.
DOI : 10.1109/ICIP.2010.5653394

URL : https://hal.archives-ouvertes.fr/hal-00957982

C. Deledalle, V. Duval, and J. Salmon, Anisotropic Non-Local Means with Spatially Adaptive Patch Shapes, Scale Space and Variational Methods in Computer Vision, pp.231-242, 2011.
DOI : 10.1007/978-3-642-24785-9_20

C. Deledalle, L. Denis, and F. Tupin, How to Compare Noisy Patches? Patch Similarity Beyond Gaussian Noise, International Journal of Computer Vision, vol.21, issue.11, pp.86-102, 2012.
DOI : 10.1007/s11263-012-0519-6

URL : https://hal.archives-ouvertes.fr/hal-00672357

S. Deschênes, G. Charron, and G. Beaudoin, Diagnostic Imaging of Spinal Deformities, Spine, vol.35, issue.9, pp.989-994, 2010.
DOI : 10.1097/BRS.0b013e3181bdcaa4

P. Despres, G. Beaudoin, P. Gravel, and J. A. De-guise, Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging, Medical Physics, vol.5032, issue.22, pp.1193-1204, 2005.
DOI : 10.1118/1.1876592

S. Dippel, M. Stahl, R. Wiemker, and T. Blaffert, Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform, IEEE Transactions on Medical Imaging, vol.21, issue.4, pp.343-353, 2002.
DOI : 10.1109/TMI.2002.1000258

D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1994.
DOI : 10.1093/biomet/81.3.425

D. L. Donoho and I. M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, Journal of the American Statistical Association, vol.31, issue.432, pp.1200-1224, 1995.
DOI : 10.1080/01621459.1979.10481038

J. Dubousset, G. Charpak, I. Dorion, W. Skalli, F. Lavaste et al., A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system, pp.287-97, 2005.

V. Duval, J. Aujol, and Y. Gousseau, A Bias-Variance Approach for the Nonlocal Means, SIAM Journal on Imaging Sciences, vol.4, issue.2, pp.760-788, 2011.
DOI : 10.1137/100790902

URL : https://hal.archives-ouvertes.fr/hal-00947885

A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.1033-1038, 1999.
DOI : 10.1109/ICCV.1999.790383

B. Fan and H. Han, Medical image enhancement based on modified lut-mapping derivative and multi-scale layer contrast modification, 2011 4th International Congress on Image and Signal Processing, pp.696-703, 2011.
DOI : 10.1109/CISP.2011.6100342

Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, Edge-preserving decompositions for multi-scale tone and detail manipulation, ACM Transaction on Graphics, vol.2767, issue.3, pp.1-6710, 2008.

R. Fattal, M. Agrawala, and S. Rusinkiewicz, Multiscale Shape and Detail Enhancement from Multi-light Image Collections, Proc. SIGGRAPH), pp.1-9, 2007.

M. Fenchel, S. Thesen, and A. Schilling, Automatic Labeling of Anatomical Structures in MR FastView Images Using a Statistical Atlas, Medical Image Computing and Computer-Assisted Intervention ? MICCAI, 2008.
DOI : 10.1007/978-3-540-85988-8_69

A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data, IEEE Transactions on Image Processing, vol.17, issue.10, pp.1737-1754, 2008.
DOI : 10.1109/TIP.2008.2001399

D. H. Foos, X. Wang, and W. J. Sehnert, Low-dose automatic exposure control system for digital portable x-ray imaging, p.2012

G. Fouquier, J. Atif, and I. Bloch, Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations, Computer Vision and Image Understanding, vol.116, issue.1, pp.146-165, 2012.
DOI : 10.1016/j.cviu.2011.09.004

URL : https://hal.archives-ouvertes.fr/hal-00862556

M. Gao, Y. Zhan, G. H. Valadez, Y. Shinagawa, D. N. Metaxas et al., Saliency-based rotation invariant descriptor for wrist detection in whole body CT images, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp.117-120, 2014.
DOI : 10.1109/ISBI.2014.6867823

R. Gauriau, R. Cuingnet, R. Prevost, B. Mory, R. Ardon et al., A Generic, Robust and Fully-Automatic Workflow for 3D CT Liver Segmentation, Abdominal Imaging. Computation and Clinical Applications, pp.241-250, 2013.
DOI : 10.1007/978-3-642-41083-3_27

URL : https://hal.archives-ouvertes.fr/hal-00917847

R. Gauriau, R. Cuingnet, D. Lesage, and I. Bloch, Multi-organ Localization Combining Global-to-Local Regression and Confidence Maps, Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2014, pp.337-344, 2014.
DOI : 10.1007/978-3-319-10443-0_43

URL : https://hal.archives-ouvertes.fr/hal-01138091

G. Gilboa, N. Sochen, and Y. Y. Zeevi, Variational denoising of partly textured images by spatially varying constraints, IEEE Transactions on Image Processing, vol.15, issue.8, pp.2281-2289, 2006.
DOI : 10.1109/TIP.2006.875247

B. Glocker, J. Feulner, A. Criminisi, D. R. Haynor, and E. Konukoglu, Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations, MICCAI (3), pp.590-598, 2012.
DOI : 10.1007/978-3-642-40763-5_33

J. W. Gofman, Radiation and human health, Sierra Club Books, 1981.

M. J. Goske, K. E. Applegate, J. Boylan, P. F. Butler, M. J. Callahan et al., The ???Image Gently??? campaign: increasing CT radiation dose awareness through a national education and awareness program, Pediatric Radiology, vol.14, issue.3, pp.265-269, 2008.
DOI : 10.1007/s00247-007-0743-3

R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, Automatic anatomical brain MRI segmentation combining label propagation and decision fusion, NeuroImage, vol.33, issue.1, pp.115-126, 2006.
DOI : 10.1016/j.neuroimage.2006.05.061

M. Hensel, B. Lundt, T. Pralow, and R. Grigat, Robust and Fast Estimation of Signal-Dependent Noise in Medical X-Ray Image Sequences, Bildverarbeitung für die Medizin, pp.46-50, 2006.
DOI : 10.1007/3-540-32137-3_10

B. Ilharreborde, C. Vidal, W. Skalli, and K. Mazda, Sagittal alignment of the cervical spine in adolescent idiopathic scoliosis treated by posteromedial translation, European Spine Journal, vol.76, issue.2, pp.330-337, 2013.
DOI : 10.1007/s00586-012-2493-7

T. Illés, M. Tunyogi-csapó, and S. Somoskeöy, Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors, European Spine Journal, vol.34, issue.1, pp.135-143, 2011.
DOI : 10.1007/s00586-010-1566-8

L. Itti and C. Koch, Computational modelling of visual attention, Nature Reviews Neuroscience, vol.2, issue.3, pp.194-203, 2001.
DOI : 10.1038/35058500

Y. Jin, L. M. Fayad, and A. F. Laine, Contrast enhancement by multiscale adaptive histogram equalization, Proc. SPIE, pp.206-213, 2001.
DOI : 10.1117/12.449705

URL : http://academiccommons.columbia.edu/download/fedora_content/download/ac:128566/CONTENT/196.pdf

K. R. Kase, B. E. Bjärngard, and F. H. Attix, The Dosimetry of Ionizing Radiation, American Journal of Clinical Oncology, vol.10, issue.1, 2012.
DOI : 10.1097/00000421-198702000-00024

V. Katkovnik, K. Egiazarian, and J. Astola, Adaptive Window Size Image De-noising Based on Intersection of Confidence Intervals (ICI) Rule, Journal of Mathematical Imaging and Vision, vol.16, issue.3, pp.223-235, 2002.
DOI : 10.1023/A:1020329726980

C. Kervrann and J. Boulanger, Local Adaptivity to Variable Smoothness for Exemplar-Based Image Regularization and Representation, International Journal of Computer Vision, vol.27, issue.2, pp.45-69, 2008.
DOI : 10.1007/s11263-007-0096-2

S. Kullback and R. A. Leibler, On Information and Sufficiency, The Annals of Mathematical Statistics, vol.22, issue.1, pp.79-86, 1951.
DOI : 10.1214/aoms/1177729694

A. Laine, J. Fan, and W. Yang, Wavelets for contrast enhancement of digital mammography, IEEE Engineering in Medicine and Biology Magazine, vol.14, issue.5, pp.536-550, 1995.
DOI : 10.1109/51.464770

N. Lay, N. Birkbeck, J. Zhang, and S. K. Zhou, Rapid Multi-organ Segmentation Using Context Integration and Discriminative Models, Information Processing in Medical Imaging, pp.450-462, 2013.
DOI : 10.1007/978-3-642-38868-2_38

J. Lazennec, A. Brusson, and M. Rousseau, Hip???spine relations and sagittal balance clinical consequences, European Spine Journal, vol.93, issue.6 Suppl, pp.686-698, 2011.
DOI : 10.1007/s00586-011-1937-9

J. Huec, P. Leijssen, M. Duarte, and S. Aunoble, Thoracolumbar imbalance analysis for osteotomy planification using a new method: FBI technique, European Spine Journal, vol.5, issue.1, pp.669-680, 2011.
DOI : 10.1007/s00586-011-1935-y

M. Lebrun, An Analysis and Implementation of the BM3D Image Denoising Method, Image Processing On Line, vol.2, pp.175-213, 2012.
DOI : 10.5201/ipol.2012.l-bm3d

M. Lebrun, M. Colom, A. Buades, and J. Morel, Secrets of image denoising cuisine, Acta Numerica, vol.21, issue.5, pp.475-576
DOI : 10.1017/S0962492912000062

M. Lebrun, A. Buades, and J. Morel, A Nonlocal Bayesian Image Denoising Algorithm, SIAM Journal on Imaging Sciences, vol.6, issue.3, pp.1665-1688, 2013.
DOI : 10.1137/120874989

Y. Li, L. Sharan, and E. H. Adelson, Compressing and companding high dynamic range images with subband architectures, ACM Transactions on Graphics, vol.24, issue.3, pp.836-844, 2005.
DOI : 10.1145/1073204.1073271

C. Lindner, S. Thiagarajah, J. M. Wilkinson, G. A. Wallis, and T. F. Cootes, Accurate Fully Automatic Femur Segmentation in Pelvic Radiographs Using Regression Voting, Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2012, pp.353-360, 2012.

C. Lindner, S. Thiagarajah, J. M. Wilkinson, G. A. Wallis, and T. F. Cootes, Accurate Bone Segmentation in 2D Radiographs Using Fully Automatic Shape Model Matching Based On Regression-Voting, Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2013, pp.181-189, 2013.

D. Liu, K. S. Zhou, D. Bernhardt, and D. Comaniciu, Search strategies for multiple landmark detection by submodular maximization, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2831-2838, 2010.
DOI : 10.1109/CVPR.2010.5540016

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

A. Loza, D. Bull, N. Canagarajah, and A. Achim, Non-Gaussian model-based fusion of noisy images in the wavelet domain, Computer Vision and Image Understanding, vol.114, issue.1, pp.54-65, 2010.
DOI : 10.1016/j.cviu.2009.09.002

A. Loza, P. Hill, P. Verkade, D. Bull, M. Al-mualla et al., Joint denoising and contrast enhancement for light microscopy image sequences, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp.1083-1086, 2014.
DOI : 10.1109/ISBI.2014.6868062

F. Luisier, C. Vonesch, T. Blu, and M. Unser, Fast interscale wavelet denoising of Poisson-corrupted images, Signal Processing, vol.90, issue.2, pp.415-427, 2010.
DOI : 10.1016/j.sigpro.2009.07.009

F. Luisier, T. Blu, and M. Unser, Image Denoising in Mixed Poisson&#x2013;Gaussian Noise, IEEE Transactions on Image Processing, vol.20, issue.3, pp.696-708, 2011.
DOI : 10.1109/TIP.2010.2073477

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration, 2009 IEEE 12th International Conference on Computer Vision, pp.2272-2279, 2009.
DOI : 10.1109/ICCV.2009.5459452

M. Makitalo and A. Foi, Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising, IEEE Transactions on Image Processing, vol.20, issue.1, pp.99-109, 2011.
DOI : 10.1109/TIP.2010.2056693

S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, 2008.

S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1109/34.192463

J. F. Mangin, O. Coulon, and V. Frouin, Robust brain segmentation using histogram scale-space analysis and mathematical morphology, Proceedings 1st MICCAI, pp.1230-1241, 1998.
DOI : 10.1109/34.19041

R. Mantiuk, K. Myszkowski, and H. Seidel, A perceptual framework for contrast processing of high dynamic range images, ACM Transactions on Applied Perception, vol.3, issue.3, pp.286-308, 2006.
DOI : 10.1145/1166087.1166095

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development, NeuroImage, vol.2, issue.2, pp.89-101, 1995.
DOI : 10.1006/nimg.1995.1012

C. H. Mccollough, Automatic Exposure Control in CT: Are We Done Yet?, Radiology, vol.237, issue.3, pp.755-756, 2005.
DOI : 10.1148/radiol.2373051151

D. Menotti, L. Najman, J. Facon, A. A. De, and . Araujo, Multi-Histogram Equalization Methods for Contrast Enhancement and Brightness Preserving, IEEE Transactions on Consumer Electronics, vol.53, issue.3, pp.1186-1194, 2007.
DOI : 10.1109/TCE.2007.4341603

URL : https://hal.archives-ouvertes.fr/hal-00622372

U. Mothiram, P. C. Brennan, J. Robinson, S. Lewis, and B. Moran, Retrospective evaluation of exposure index (EI) values from plain radiographs reveals important considerations for quality improvement, Journal of Medical Radiation Sciences, vol.48, issue.4, pp.115-122, 2013.
DOI : 10.1002/jmrs.25

F. Murtagh, J. Starck, and A. Bijaoui, Image restoration with noise suppression using a multiresolution support, Astronomy and Astrophysics Supplement Series, vol.112, pp.179-189, 1995.

M. Nikolova, Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers, SIAM Journal on Numerical Analysis, vol.40, issue.3, pp.965-994, 2002.
DOI : 10.1137/S0036142901389165

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, issue.1, pp.51-59, 1996.
DOI : 10.1016/0031-3203(95)00067-4

A. Papadakis, K. Perisinakis, and J. Damilakis, Automatic exposure control in CT: the effect of patient size, anatomical region and prescribed modulation strength on tube current and image quality, European Radiology, vol.48, issue.10, pp.2520-2531, 2014.
DOI : 10.1007/s00330-014-3309-4

S. Paris, S. W. Hasinoff, and J. Kautz, Local Laplacian Filters: Edge-aware Image Processing with a Laplacian Pyramid, ACM Transaction on Graphics, vol.3068, issue.4, pp.1-6812, 2011.

O. Pauly, B. Glocker, A. Criminisi, D. Mateus, A. Möller et al., Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences, Medical Image Computing and Computer-Assisted Intervention ? MICCAI 2011, pp.239-247, 2011.
DOI : 10.1016/0031-3203(95)00067-4

E. Peli, Contrast in complex images, Journal of the Optical Society of America A, vol.7, issue.10, pp.2032-2040, 1990.
DOI : 10.1364/JOSAA.7.002032

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz et al., Adaptive histogram equalization and its variations, Computer Vision, Graphics, and Image Processing, vol.39, issue.3, pp.355-368, 1987.
DOI : 10.1016/S0734-189X(87)80186-X

G. G. Polkowski, R. M. Nunley, E. L. Ruh, B. M. Williams, and R. L. Barrack, Does Standing Affect Acetabular Component Inclination and Version After THA?, Clinical Orthopaedics and Related Research??, vol.468, issue.suppl 5, pp.4702988-2994, 2012.
DOI : 10.1007/s11999-012-2391-7

N. N. Ponomarenko, V. V. Lukin, M. S. Zriakhov, A. Kaarna, and J. Astola, An automatic approach to lossy compression of AVIRIS images, 2007 IEEE International Geoscience and Remote Sensing Symposium, pp.472-475, 2007.
DOI : 10.1109/IGARSS.2007.4422833

V. Portilla, J. Strela, M. J. Wainwright, and E. P. Simoncelli, Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Transactions on Image Processing, vol.12, issue.11, pp.1338-1351, 2003.
DOI : 10.1109/TIP.2003.818640

G. Ramponi, N. Strobel, S. K. Mitra, and T. Yu, Nonlinear unsharp masking methods for image contrast enhancement, Journal of Electronic Imaging, vol.5, issue.3, pp.353-366, 1996.

C. M. Ronckers, M. M. Doody, J. E. Lonstein, M. Stovall, and L. C. , Multiple Diagnostic X-rays for Spine Deformities and Risk of Breast Cancer, Cancer Epidemiology Biomarkers & Prevention, vol.17, issue.3, pp.605-613, 2008.
DOI : 10.1158/1055-9965.EPI-07-2628

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

M. Sakata and K. Ogawa, Noise reduction and contrast enhancement for small-dose X-ray images in wavelet domain, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp.2924-2929, 2009.
DOI : 10.1109/NSSMIC.2009.5401610

J. Salmon, C. Deledalle, R. Willett, and Z. T. Harmany, Poisson Noise Reduction with Non-Local PCA, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP12), pp.1109-1112, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00957837

A. Seibert and M. Richard, The standardized exposure index for digital radiography: an opportunity for optimization of radiation dose to the pediatric population, Pediatric Radiology, vol.36, issue.5, pp.573-581, 2011.
DOI : 10.1007/s00247-010-1954-6

A. Seibert, D. K. Shelton, and E. H. Moore, Computed radiography X-ray exposure trends, Academic Radiology, vol.3, issue.4, pp.313-318, 1996.
DOI : 10.1016/S1076-6332(96)80247-9

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Processing Magazine, vol.22, issue.6, pp.123-151, 2005.
DOI : 10.1109/MSP.2005.1550194

S. J. Shepard, J. Wang, M. Flynn, E. Gingold, L. Goldman et al., An exposure indicator for digital radiography: AAPM Task Group 116 (Executive Summary), Medical Physics, vol.24, issue.6, pp.362898-2914, 2009.
DOI : 10.1118/1.597953

I. Shuryak, R. K. Sachs, and D. J. Brenner, Cancer Risks After Radiation Exposure in Middle Age, JNCI Journal of the National Cancer Institute, vol.102, issue.21, pp.1628-1636, 2010.
DOI : 10.1093/jnci/djq346

R. Smith-blindman, D. L. Miglioretti, and E. Johnson, Use of Diagnostic Imaging Studies and Associated Radiation Exposure for Patients Enrolled in Large Integrated Health Care Systems, The Journal of American Medical Association, vol.307, issue.22, pp.2400-2409, 1996.

M. Söderberg and M. Gunnarsson, Automatic exposure control in computed tomography ??? an evaluation of systems from different manufacturers, Acta Radiologica, vol.51, issue.6, pp.625-634, 2010.
DOI : 10.3109/02841851003698206

S. Somoskeöy, M. Tunyogi-csapó, C. Bogyó, and T. Illés, Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific threedimensional models created by the eos 2d/3d imaging system, The Spine Journal, issue.11, pp.121052-1059, 2012.

A. Sotiras, C. Davatzikos, and N. Paragios, Deformable Medical Image Registration: A Survey, IEEE Transactions on Medical Imaging, vol.32, issue.7, pp.1153-1190, 2013.
DOI : 10.1109/TMI.2013.2265603

URL : https://hal.archives-ouvertes.fr/hal-00684715

M. Stahl, T. Aach, S. Dippel, T. Buzug, R. Wiemker et al., Noise-Resistant Weak-Structure Enhancement for Digital Radiography, Medical Imaging Image Processing, vol.3661, issue.99, pp.1406-1417, 1999.

J. Starck, J. Fadili, and F. Murtagh, The Undecimated Wavelet Decomposition and its Reconstruction, IEEE Transactions on Image Processing, vol.16, issue.2, pp.297-309, 2007.
DOI : 10.1109/TIP.2006.887733

URL : https://hal.archives-ouvertes.fr/hal-00080092

C. M. Stein, Estimation of the Mean of a Multivariate Normal Distribution, The Annals of Statistics, vol.9, issue.6, pp.1135-1151, 1981.
DOI : 10.1214/aos/1176345632

H. Takeda, S. Farsiu, and P. Milanfar, Kernel Regression for Image Processing and Reconstruction, IEEE Transactions on Image Processing, vol.16, issue.2, pp.349-366, 2007.
DOI : 10.1109/TIP.2006.888330

P. Than, K. Szuper, S. Somoskeöy, V. Warta, and T. Illés, Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system, International Orthopaedics, vol.52, issue.6, pp.1291-1297, 2012.
DOI : 10.1007/s00264-011-1403-7

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp.839-847, 1998.
DOI : 10.1109/ICCV.1998.710815

A. Treisman, Preattentive processing in vision. Computer Vision Graphics and Image Processing, pp.156-177, 1985.

P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.511-518, 2001.
DOI : 10.1109/CVPR.2001.990517

T. Vrtovec, F. Pernu?, and B. Likar, A review of methods for quantitative evaluation of spinal curvature, European Spine Journal, vol.32, issue.5, pp.593-607, 2009.
DOI : 10.1007/s00586-009-0913-0

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

R. Wolz, C. Chu, K. Misawa, M. Fujiwara, K. Mori et al., Automated Abdominal Multi-Organ Segmentation With Subject-Specific Atlas Generation, IEEE Transactions on Medical Imaging, vol.32, issue.9, pp.1723-1730, 2013.
DOI : 10.1109/TMI.2013.2265805

M. Wybier and P. Bossard, Musculoskeletal imaging in progress: The EOS imaging system, Joint Bone Spine, vol.80, issue.3, pp.238-243, 2013.
DOI : 10.1016/j.jbspin.2012.09.018

Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh et al., Low-Dose X-ray CT Reconstruction via Dictionary Learning, IEEE Transactions on Medical Imaging, issue.9, pp.311682-1697, 2012.

L. P. Yaroslavsky, K. O. Egiazarian, and J. T. Astola, <title>Transform domain image restoration methods: review, comparison, and interpretation</title>, Nonlinear Image Processing and Pattern Analysis XII, pp.155-169, 2001.
DOI : 10.1117/12.424970

P. Yin, A. Criminisi, J. Winn, and I. Essa, Tree-based Classifiers for Bilayer Video Segmentation, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383008

Y. Zhan, X. S. Zhou, Z. Peng, and A. Krishnan, Active Scheduling of Organ Detection and Segmentation in Whole-Body Medical Images, Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) -Part I, pp.313-321, 2008.
DOI : 10.1007/978-3-540-85988-8_38

Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu, Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features, IEEE Transactions on Medical Imaging, vol.27, issue.11, pp.1668-1681, 2008.
DOI : 10.1109/TMI.2008.2004421

Y. Zheng, B. Georgescu, and D. Comaniciu, Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images, Information Processing in Medical Imaging, pp.411-422, 2009.
DOI : 10.1007/978-3-540-73273-0_1

S. K. Zhou, Shape regression machine and efficient segmentation of left ventricle endocardium from 2D B-mode echocardiogram, Medical Image Analysis, vol.14, issue.4, pp.563-581, 2010.
DOI : 10.1016/j.media.2010.04.002

S. K. Zhou, Discriminative anatomy detection: Classification vs regression, Pattern Recognition Letters, vol.43, issue.0, pp.25-38, 2014.
DOI : 10.1016/j.patrec.2013.08.009

S. K. Zhou, J. Zhou, and D. Comaniciu, A boosting regression approach to medical anatomy detection, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383139