S. Ameduri, V. Antonucci, E. Artioli, D. Asprone, F. Auricchio et al., Shape Memory Alloy Engineering, 2015.

J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International Journal of Plasticity, vol.26, issue.7, pp.976-991
DOI : 10.1016/j.ijplas.2009.12.003

F. Auricchio, E. Bonetti, G. Scalet, and F. Ubertini, Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation, International Journal of Plasticity, vol.59, pp.30-54
DOI : 10.1016/j.ijplas.2014.03.008

F. Auricchio, R. L. Taylor, and J. Lubliner, Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Computer Methods in Applied Mechanics and Engineering, vol.146, issue.3-4, pp.281-31201232, 1997.
DOI : 10.1016/S0045-7825(96)01232-7

A. Bekker and L. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia, vol.46, issue.10, pp.3649-3665, 1998.
DOI : 10.1016/S1359-6454(97)00490-4

T. Belytschko, W. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, p.25, 2000.

O. W. Bertacchini, D. C. Lagoudas, and E. Patoor, Thermomechanical transformation fatigue of TiNiCu SMA actuators under a corrosive environment ??? Part I: Experimental results, International Journal of Fatigue, vol.31, issue.10, pp.311571-1578
DOI : 10.1016/j.ijfatigue.2009.04.012

Z. Bo and D. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect, International Journal of Engineering Science, vol.37, issue.9, pp.1175-1203, 1999.
DOI : 10.1016/S0020-7225(98)00115-3

M. Bodaghi, A. Damanpack, M. Aghdam, and M. Shakeri, A robust three-dimensional phenomenological model for polycrystalline SMAs: Analytical closed-form solutions, International Journal of Engineering Science, vol.82, pp.1-21, 2014.
DOI : 10.1016/j.ijengsci.2014.05.002

C. Bouvet, S. Calloch, and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, European Journal of Mechanics - A/Solids, vol.23, issue.1, pp.37-61, 2004.
DOI : 10.1016/j.euromechsol.2003.09.005

J. G. Boyd and D. C. Lagoudas, Thermomechanical Response of Shape Memory Composites, Journal of Intelligent Material Systems and Structures, vol.24, issue.123, pp.333-346, 1994.
DOI : 10.1177/1045389X9400500306

J. Boyd and D. Lagoudas, A thermodynamical constitutive model for shape memory materials

I. Part, The monolithic shape memory alloy, International Journal of Plasticity, vol.12, issue.8, pp.805-842, 1996.

C. Brinson and M. S. Huang, Simplifications and Comparisons of Shape Memory Alloy Constitutive Models, Journal of Intelligent Material Systems and Structures, vol.51, issue.4, pp.108-114, 1996.
DOI : 10.1177/1045389X9600700112

L. C. Brinson, I. Schmidt, and R. Lammering, Micro and Macromechanical Investigations of CuAlNi Single Crystal and CuAlMnZn Polycrystalline Shape Memory Alloys, Journal of Intelligent Materials Systems and Structures, vol.13, issue.12, pp.761-772, 2002.
DOI : 10.1177/1045389X02013012002

. Brinson, One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable, Journal of Intelligent Material Systems and Structures, vol.4, issue.2, pp.229-242, 1993.
DOI : 10.1177/1045389X9300400213

Y. Chemisky, A. Duval, E. Patoor, and T. B. Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mechanics of Materials, vol.43, issue.7, pp.361-376
DOI : 10.1016/j.mechmat.2011.04.003

Y. Chemisky, F. Meraghni, N. Bourgeois, S. Cornell, R. Echchorfi et al., Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests, International Journal of Mechanical Sciences, vol.96, issue.97, pp.96-9713
DOI : 10.1016/j.ijmecsci.2015.03.007

URL : https://hal.archives-ouvertes.fr/hal-01196302

B. Coleman and M. Gurtin, Thermodynamics with internal variables, J. Chem. Phys, vol.47, issue.15, pp.85-98, 1967.

B. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Archive for Rational Mechanics and Analysis, vol.4, issue.1, pp.167-184, 1963.
DOI : 10.1007/BF01262690

. Echchorfi, Dialogue essais-simulation et identification de lois de comportement d'alliage à mémoire de forme en chargement multiaxial, p.15

K. Gall and H. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Materialia, vol.50, issue.18
DOI : 10.1016/S1359-6454(02)00315-4

E. Gibeau, M. Laydi, and C. Lexcellent, Determination and transport of phase transformation yield surfaces for shape memory alloys, Zeitschrift für Angewandte Mathematik und Mechanik, pp.595-604, 200900364.
DOI : 10.1002/zamm.200900364

C. Grabe, O. Bruhns, S. C. Modeling, O. Grabe, and . Bruhns, Tension/torsion tests of pseudoelastic, polycrystalline NiTi shape memory alloys under temperature control Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes, Materials Science and Engineering: A International Journal of Plasticity, vol.25, issue.3, pp.481-482, 2008.

V. Grolleau, H. Louche, V. Delobelle, A. Penin, G. Rio et al., Assessment of tension???compression asymmetry of NiTi using circular bulge testing of thin plates, Scripta Materialia, vol.65, issue.4, pp.347-350
DOI : 10.1016/j.scriptamat.2011.05.003

URL : https://hal.archives-ouvertes.fr/hal-00757982

G. Guénin, Shape Memory and Pseudoelastic Properties of Fe-Mn-Si and Ti-Ni Based Alloys, Le Journal de Physique IV, vol.07, issue.C5, pp.7-12, 1997.
DOI : 10.1051/jp4:1997574

D. J. Hartl and D. Lagoudas, Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys, Smart Materials and Structures, vol.18, issue.10, pp.1040170964-1726, 2009.
DOI : 10.1088/0964-1726/18/10/104017

J. H. Calkins and . Mabe, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization, Smart Materials and Structures, vol.19, issue.8, pp.964-1726, 15020.

D. J. Hartl, G. Chatzigeorgiou, and D. C. Lagoudas, Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys, International Journal of Plasticity, vol.26, issue.10, pp.1485-1507
DOI : 10.1016/j.ijplas.2010.01.002

D. J. Hartl, Y. Chemisky, and F. Meraghni, Three-dimensional constitutive model considering transformation-induced damage and resulting fatigue failure in shape memory alloys, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, page 905805. International Society for Optics and Photonics
URL : https://hal.archives-ouvertes.fr/hal-01199560

D. A. Hebda and S. R. White, Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior, Smart Materials and Structures, vol.4, issue.4, pp.298-3040964, 1995.
DOI : 10.1088/0964-1726/4/4/010

D. Helm and P. Haupt, Shape memory behaviour: modelling within continuum thermomechanics, International Journal of Solids and Structures, vol.40, issue.4, pp.827-849, 2003.
DOI : 10.1016/S0020-7683(02)00621-2

R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. Roy. Soc. London, pp.281-297, 1948.
DOI : 10.1098/rspa.1948.0045

L. Juhász, H. Andrä, and O. Hesebeck, A Simple Model for Shape Memory Alloys Under Multi-axial Non-Proportional Loading, Smart Materials, pp.51-65, 2001.
DOI : 10.1007/978-3-642-56855-8_5

G. Kang, Q. Kan, L. Qian, and Y. Liu, Ratchetting deformation of super-elastic and shape-memory NiTi alloys, Mechanics of Materials, vol.41, issue.2, pp.139-153, 2009.
DOI : 10.1016/j.mechmat.2008.09.001

B. Kiefer and D. C. Lagoudas, Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys, Philosophical Magazine, vol.70, issue.33-35, 2007.
DOI : 10.1016/S0167-6636(01)00088-6

B. Kiefer, H. Karaca, D. Lagoudas, and I. Karaman, Characterization and modeling of the magnetic field-induced strain and work output in magnetic shape memory alloys, Journal of Magnetism and Magnetic Materials, vol.312, issue.1, pp.164-175
DOI : 10.1016/j.jmmm.2006.09.035

C. Kleinstreuer, Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber, Computational mechanics of Nitinol stent grafts, Journal of Biomechanics, vol.41, issue.11, pp.2370-2378
DOI : 10.1016/j.jbiomech.2008.05.032

D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, International Journal of Plasticity, vol.32, issue.33, pp.32-33155
DOI : 10.1016/j.ijplas.2011.10.009

D. C. Lagoudas, D. A. Miller, L. Rong, and P. K. Kumar, Thermomechanical fatigue of shape memory alloys, Smart Materials and Structures, vol.18, issue.8, pp.850210964-1726085021, 2009.
DOI : 10.1088/0964-1726/18/8/085021

D. Lagoudas, Shape Memory Alloys -Modeling and Engineering Applications, p.15, 2008.

D. Lagoudas and Z. Bo, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle, International Journal of Engineering Science, vol.37, issue.9, pp.1141-117300114, 1999.
DOI : 10.1016/S0020-7225(98)00114-1

C. Lagoudas and P. B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs, Mechanics of Materials, vol.36, issue.9, pp.865-892
DOI : 10.1016/j.mechmat.2003.08.006

D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson et al., Shape memory alloys, Part II: Modeling of polycrystals, Mechanics of Materials, vol.38, issue.5-6, pp.430-462
DOI : 10.1016/j.mechmat.2005.08.003

S. Leclercq and C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.44, issue.6, pp.953-9800022, 1996.
DOI : 10.1016/0022-5096(96)00013-0

J. Lemaitre and J. L. Chaboche, Mechanics of Solid Materials, p.17, 2002.

C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch, and P. Blanc, IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids, 2002.

C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch, and P. Blanc, Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys, Journal of the Mechanics and Physics of Solids, vol.50, issue.12, pp.2717-2735, 2002.
DOI : 10.1016/S0022-5096(02)00007-8

URL : https://hal.archives-ouvertes.fr/hal-00079417

Y. Liu and D. Favier, Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi, Acta Materialia, vol.48, issue.13, pp.3489-3499, 2000.
DOI : 10.1016/S1359-6454(00)00129-4

J. Lubliner, S. T. Modeling, C. Merzouki, N. Collard, T. B. Bourgeois et al., On the thermodynamic foundations of non-linear solid mechanics, International Journal of Non-Linear Mechanics, vol.7, issue.3, pp.237-25472, 1972.
DOI : 10.1016/0020-7462(72)90048-0

M. Meuwissen, C. Oomens, F. Baaijens, R. Petterson, and J. Janssen, Determination of the elasto-plastic properties of aluminium using a mixed numerical???experimental method, Journal of Materials Processing Technology, vol.75, issue.1-3, pp.204-211, 1998.
DOI : 10.1016/S0924-0136(97)00366-X

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015), vol.56, pp.1078-1113, 2014.
DOI : 10.1016/j.matdes.2013.11.084

C. Morin, Z. Moumni, and W. Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling, International Journal of Plasticity, vol.27, issue.12, pp.1959-1980
DOI : 10.1016/j.ijplas.2011.05.005

I. Müller and S. Seelecke, Thermodynamic aspects of shape memory alloys, Mathematical and Computer Modelling, vol.34, issue.12-13, pp.12-131307, 2001.
DOI : 10.1016/S0895-7177(01)00134-0

J. Olbricht, A. Yawny, A. Condó, F. Lovey, and G. Eggeler, The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482142
DOI : 10.1016/j.msea.2007.01.182

K. Otsuka and C. M. Wayman, Shape Memory Materials, 1999.

M. Panico and L. Brinson, A three-dimensional phenomenological model for martensite reorientation in shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2491-2511
DOI : 10.1016/j.jmps.2007.03.010

E. Patoor, M. Amrani, A. Eberhardt, and M. Berveiller, Determination of the Origin for the Dissymmetry Observed between Tensile and Compression Tests on Shape Memory Alloys, Le Journal de Physique IV, vol.05, issue.C2, pp.495-500, 1995.
DOI : 10.1051/jp4:1995276

URL : https://hal.archives-ouvertes.fr/jpa-00253662

E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, and X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials, vol.38, issue.5-6, pp.5-6
DOI : 10.1016/j.mechmat.2005.05.027

B. Peultier, T. B. Zineb, and E. Patoor, A simplified micromechanical constitutive law adapted to the design of shape memory applications by finite element methods, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482384, 2008.
DOI : 10.1016/j.msea.2007.05.117

M. Piao, S. Miyazaki, and K. Otsuka, Characteristics of Deformation and Transformation in Ti<SUB>44</SUB>Ni<SUB>47</SUB>Nb<SUB>9</SUB> Shape Memory Alloy, Materials Transactions, JIM, vol.33, issue.4, pp.346-353
DOI : 10.2320/matertrans1989.33.346

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International Journal of Plasticity, vol.23, issue.10-11, pp.10-111679
DOI : 10.1016/j.ijplas.2007.03.011

M. Qidwai and D. Lagoudas, On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material, International Journal of Plasticity, vol.16, issue.10-11, pp.10-111309, 2000.
DOI : 10.1016/S0749-6419(00)00012-7

C. Rogueda, C. Lexcellent, and L. Bocher, Experimental study of pseudoelastic behaviour of a Cu Zn AI polycrystalline shape memory alloy under tension-torsion proportional and non-proportional. Archives of Mechanics, p.15, 1996.

L. Saint-sulpice, S. A. Chirani, and S. Calloch, Super-elastic behavior of shape memory alloys under proportional cyclic loadings, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482174
DOI : 10.1016/j.msea.2007.02.144

URL : https://hal.archives-ouvertes.fr/hal-00449151

L. Saint-sulpice, S. A. Chirani, and S. Calloch, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mechanics of Materials, vol.41, issue.1, pp.12-26, 2009.
DOI : 10.1016/j.mechmat.2008.07.004

URL : https://hal.archives-ouvertes.fr/hal-00449131

A. Saleeb, S. Arnold, M. Castelli, T. Wilt, and W. Graf, A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys, International Journal of Plasticity, vol.17, issue.10, pp.1305-1350, 2001.
DOI : 10.1016/S0749-6419(00)00086-3

A. Saleeb, S. Padula, and A. Kumar, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, International Journal of Plasticity, vol.27, issue.5, pp.655-687
DOI : 10.1016/j.ijplas.2010.08.012

P. Sedlák, M. Frost, B. Bene?ová, T. B. Zineb, and P. ?ittner, Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, International Journal of Plasticity, vol.39, issue.null, pp.132-151
DOI : 10.1016/j.ijplas.2012.06.008

S. Seelecke and I. Müller, Shape memory alloy actuators in smart structures: Modeling and simulation, Applied Mechanics Reviews, vol.57, issue.1, 2004.
DOI : 10.1115/1.1584064

J. Shaw, Thermomechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, pp.1243-1281, 1995.
DOI : 10.1016/0022-5096(95)00024-D

J. Shaw and S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International Journal of Plasticity, vol.13, issue.10, pp.837-871, 1997.
DOI : 10.1016/S0749-6419(97)00062-4

P. Sittner, Y. Hara, and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metallurgical and Materials Transactions A, vol.32, issue.11, pp.2923-2935, 1995.
DOI : 10.1007/BF02669649

S. Modeling, P. ?ittner, and V. Novák, Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, International Journal of Plasticity, vol.16, issue.00 8, pp.10-111243, 2000.

A. Souza, E. Mamiya, and N. Zouain, Three-dimensional model for solids undergoing stressinduced phase transitions, European Journal of Mechanics -A/Solids1, pp.789-806, 1998.

R. Stalmans, J. Van-humbeeck, and L. Delaey, The two way memory effect in copper-based shape memory alloys ??? thermodynamics and mechanisms, Acta Metallurgica et Materialia, vol.40, issue.11, pp.2921-29310956, 1992.
DOI : 10.1016/0956-7151(92)90456-O

R. Stalmans, J. Van-humbeeck, and L. Delaey, Thermomechanical cycling, two way memory and concomitant effects in Cu???Zn???Al alloys, Acta Metallurgica et Materialia, vol.40, issue.3, pp.501-5110956, 1992.
DOI : 10.1016/0956-7151(92)90399-Y

K. Taillard, Étude du comportement thermomécanique des alliages à mémoire de forme sous sollicitations multiaxiales complexes, 2006.

K. Taillard, S. A. Chirani, S. Calloch, and C. Lexcellent, Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys, Mechanics of Materials, vol.40, issue.4-5, pp.151-170, 2008.
DOI : 10.1016/j.mechmat.2007.07.005

URL : https://hal.archives-ouvertes.fr/hal-00449152

S. Tsai and E. Wu, A General Theory of Strength for Anisotropic Materials, Journal of Composite Materials, vol.5, issue.1, pp.58-80, 1971.
DOI : 10.1177/002199837100500106

X. Wu, G. Sun, and J. Wu, The nonlinear relationship between transformation strain and applied stress for nitinol, Materials Letters, vol.57, issue.7, pp.1334-1338, 2003.
DOI : 10.1016/S0167-577X(02)00983-7

Y. Zhu and G. Dui, A macro-constitutive model of polycrystalline NiTi SMAs including tensile???compressive asymmetry and torsion pseudoelastic behaviors, International Journal of Engineering Science, vol.48, issue.12, pp.2099-2106
DOI : 10.1016/j.ijengsci.2010.04.002

E. D. Study, H. Li, S. Garmestani, and . Ahzi, Processing path optimization to achieve desired texture in polycrystalline materials, Acta Materialia, vol.55, issue.2, pp.647-654

T. J. Lim and D. L. Mcdowell, Mechanical Behavior of an Ni-Ti Shape Memory Alloy Under Axial-Torsional Proportional and Nonproportional Loading, Journal of Engineering Materials and Technology, vol.121, issue.1
DOI : 10.1115/1.2816007

R. Mehrabi, M. T. Andani, M. Elahinia, and M. Kadkhodaei, Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling, Mechanics of Materials, vol.77, pp.110-124
DOI : 10.1016/j.mechmat.2014.07.006

M. Miller, T. Chavez, M. Dearborn, E. Tong, E. Devore et al., Effect of Heat Treatments on the Mechanical Properties of Ti-3Al-2.5V Alloy, Journal of Materials Engineering and Performance, vol.81, issue.1, pp.3277-3290, 2015.
DOI : 10.1007/s11665-015-1628-5

S. Nemat-nasser and W. Guo, Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, Mechanics of Materials, vol.38, issue.5-6, pp.463-474
DOI : 10.1016/j.mechmat.2005.07.004

E. Patoor, M. Amrani, A. Eberhardt, and M. Berveiller, Determination of the Origin for the Dissymmetry Observed between Tensile and Compression Tests on Shape Memory Alloys, Le Journal de Physique IV, vol.05, issue.C2, pp.495-500, 1995.
DOI : 10.1051/jp4:1995276

URL : https://hal.archives-ouvertes.fr/jpa-00253662

L. Saint-sulpice, S. A. Chirani, and S. Calloch, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mechanics of Materials, vol.41, issue.1, pp.12-26, 2009.
DOI : 10.1016/j.mechmat.2008.07.004

URL : https://hal.archives-ouvertes.fr/hal-00449131

A. Saleeb, S. Padula, and A. Kumar, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, International Journal of Plasticity, vol.27, issue.5, pp.655-687
DOI : 10.1016/j.ijplas.2010.08.012

D. Arbab-chirani, C. Aleong, D. Dumont, E. Mcdowell, and . Patoor, Superelastic behavior modeling in shape memory alloys, ANISOTROPIC TRANSFORMATION 3.6 References S, pp.205-208, 2003.
DOI : 10.1051/jp4:2003866

A. Bekker and L. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia, vol.46, issue.10, pp.3649-3665, 1998.
DOI : 10.1016/S1359-6454(97)00490-4

K. Bhattacharya and R. Khon, Symmetry, texture and the recoverable strain of shape-memory polycrystals, Acta Materialia, vol.44, issue.2, pp.529-542, 1996.
DOI : 10.1016/1359-6454(95)00198-0

C. Boehlert, S. Longanbach, and T. Bieler, Effect of thermomechanical processing on the creep behaviour of Udimet alloy 188, Philosophical Magazine, vol.11, issue.5, pp.641-664, 2008.
DOI : 10.1016/j.ijplas.2006.03.008

C. Bouvet, S. Calloch, and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, European Journal of Mechanics - A/Solids, vol.23, issue.1, pp.37-61
DOI : 10.1016/j.euromechsol.2003.09.005

J. S. Bowles and C. M. Wayman, The bain strain, lattice correspondences, and deformations related to martensitic transformations, Metallurgical Transactions, vol.18, issue.5, pp.1113-1121, 1972.
DOI : 10.1007/BF02642442

J. Boyd and D. Lagoudas, A thermodynamical constitutive model for shape memory materials

I. Part, The monolithic shape memory alloy, International Journal of Plasticity, vol.12, issue.696, pp.805-842, 1996.

S. P. Boyd and L. Vandenberghe, Convex Optimization, p.66, 2004.

R. Caddell, R. Raghava, and A. Atkins, Pressure dependent yield criteria for polymers, Materials Science and Engineering, vol.13, issue.2, pp.113-120, 1974.
DOI : 10.1016/0025-5416(74)90179-7

S. Calloch, K. Taillard, S. Arbab-chirani, C. Lexcellent, and E. Patoor, Relation between the martensite volume fraction and the equivalent transformation strain in shape memory alloys, Materials Science and Engineering: A, vol.438, issue.440, pp.438-440441
DOI : 10.1016/j.msea.2005.12.072

URL : https://hal.archives-ouvertes.fr/hal-00020337

D. Chatziathanasiou, Y. Chemisky, F. Meraghni, G. Chatzigeorgiou, and E. Patoor, Phase Transformation of Anisotropic Shape Memory Alloys: Theory and Validation in Superelasticity, Shape Memory and Superelasticity, vol.8, issue.3, pp.359-374, 2015.
DOI : 10.1007/s40830-015-0027-y

URL : https://hal.archives-ouvertes.fr/hal-01196348

Y. Chemisky, A. Duval, B. Piotrowski, T. B. Zineb, V. Tahiri et al., Numerical tool for SMA material simulation: application to composite structure design, Smart Materials and Structures, pp.1040120964-1726, 2009.
DOI : 10.1088/0964-1726/18/10/104012

Y. Chemisky, A. Duval, E. Patoor, and T. B. Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mechanics of Materials, vol.43, issue.7, pp.361-376
DOI : 10.1016/j.mechmat.2011.04.003

J. References, F. Arghavani, R. Auricchio, A. Naghdabadi, S. Reali et al., A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International Journal of Plasticity, vol.26, issue.124, pp.976-991

F. Auricchio, E. Bonetti, G. Scalet, and F. Ubertini, Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation, International Journal of Plasticity, vol.59, pp.30-54
DOI : 10.1016/j.ijplas.2014.03.008

D. Chatziathanasiou, Y. Chemisky, G. Chatzigeorgiou, and F. Meraghni, Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading, International Journal of Plasticity, vol.82
DOI : 10.1016/j.ijplas.2016.03.005

URL : https://hal.archives-ouvertes.fr/hal-01360902

G. Chatzigeorgiou, N. Charalambakis, Y. Chemisky, and F. Meraghni, Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials, International Journal of Plasticity, vol.81, pp.18-39, 2016.
DOI : 10.1016/j.ijplas.2016.01.013

Y. Chemisky, F. Meraghni, N. Bourgeois, S. Cornell, R. Echchorfi et al., Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests, International Journal of Mechanical Sciences, vol.96, issue.97, pp.96-9713
DOI : 10.1016/j.ijmecsci.2015.03.007

URL : https://hal.archives-ouvertes.fr/hal-01196302

R. Echchorfi, Y. Chemisky, N. Bourgeois, F. Meraghni, and E. Patoor, Identification of Model Parameters for the Simulation of SMA Structures Using Full Field Measurements, The International Conference on Shape Memory and Superelastic Technologies (SMST). Asm

S. Enemark and I. F. Santos, Quasi-static characterisation of trained pseudoelastic shape memory alloy wire subjected to cyclic loading: transformation kinetics, Journal of Intelligent Material Systems and Structures, vol.2, issue.1, pp.1150-1164, 2015.
DOI : 10.1016/0921-5093(95)09801-1

S. Enemark, M. A. Savi, and I. F. Santos, Experimental analyses of dynamical systems involving shape memory alloys. Smart Structures and Systems, pp.1521-1542

A. Fischer, A special newton-type optimization method. Optimization, pp.3-4269, 1992.

C. Grabe and O. Bruhns, Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes, International Journal of Plasticity, vol.25, issue.3, pp.513-545, 2009.
DOI : 10.1016/j.ijplas.2008.03.002

J. Hartl and D. Lagoudas, Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys, Smart Materials and Structures, vol.18, issue.10, pp.964-1726, 104017.
DOI : 10.1088/0964-1726/18/10/104017

O. Heintze and S. Seelecke, A coupled thermomechanical model for shape memory alloys???From single crystal to polycrystal, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482389
DOI : 10.1016/j.msea.2007.08.028

B. Kiefer, T. Bartel, and A. Menzel, Implementation of numerical integration schemes for the simulation of magnetic SMA constitutive response, Smart Materials and Structures, vol.21, issue.9, p.94007
DOI : 10.1088/0964-1726/21/9/094007

D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, International Journal of Plasticity, vol.32, issue.33, pp.32-33155
DOI : 10.1016/j.ijplas.2011.10.009

D. Lagoudas, Shape Memory Alloys -Modeling and Engineering Applications, p.129, 2008.

A. Maynadier, Couplages thermomécaniques dans les alliages à mémoire de forme : mesure de champs cinématique et thermique et modélisation multiéchelle, 0129.

Y. Meraghni, B. Chemisky, R. Piotrowski, N. Echchorfi, E. Bourgeois et al., Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix, European Journal of Mechanics - A/Solids, vol.45, pp.226-237
DOI : 10.1016/j.euromechsol.2013.12.010

URL : https://hal.archives-ouvertes.fr/hal-01196127

M. Panico and L. Brinson, A three-dimensional phenomenological model for martensite reorientation in shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2491-2511
DOI : 10.1016/j.jmps.2007.03.010

A. Pathak, D. Brei, and J. Luntz, Transformation strain based method for characterization of convective heat transfer from shape memory alloy wires, Smart Materials and Structures, vol.19, issue.3, pp.350050964-1726035005
DOI : 10.1088/0964-1726/19/3/035005

Y. Piotrowski, F. Chemisky, R. Meraghni, N. Echchorfi, E. Bourgeois et al., Identification and Interpretation of Material Parameters of a Shape Memory Alloy (SMA) Model, Materials Science Forum, vol.738, issue.739, pp.738-739276
DOI : 10.4028/www.scientific.net/MSF.738-739.276

URL : https://hal.archives-ouvertes.fr/hal-01501434

S. Of, . P. Structures, Y. Sittner, M. Hara, and . Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metallurgical and Materials Transactions A, vol.26, issue.124, pp.2923-2935

P. Sittner, L. Heller, J. Pilch, P. Sedlak, M. Frost et al., Roundrobin SMA modeling, ESOMAT 2009, 8th European Symposium on Martensitic Transformations, pp.8001-123, 2009.
DOI : 10.1051/esomat/200908001

S. Bibliographie, V. Ameduri, E. Antonucci, D. Artioli, F. Asprone et al., Shape Memory Alloy Engineering, 2015.

J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International Journal of Plasticity, vol.26, issue.7, pp.976-991
DOI : 10.1016/j.ijplas.2009.12.003

F. Auricchio, E. Bonetti, G. Scalet, and F. Ubertini, Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation, International Journal of Plasticity, vol.59, pp.30-54
DOI : 10.1016/j.ijplas.2014.03.008

A. Bekker and L. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia, vol.46, issue.10, pp.3649-3665, 1998.
DOI : 10.1016/S1359-6454(97)00490-4

Z. Bo and D. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect, International Journal of Engineering Science, vol.37, issue.9, pp.1175-1203, 1999.
DOI : 10.1016/S0020-7225(98)00115-3

C. Bouvet, S. Calloch, and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, European Journal of Mechanics - A/Solids, vol.23, issue.1, pp.37-61, 2004.
DOI : 10.1016/j.euromechsol.2003.09.005

J. G. Boyd and D. C. Lagoudas, Thermomechanical Response of Shape Memory Composites, Journal of Intelligent Material Systems and Structures, vol.24, issue.123, pp.333-346, 1994.
DOI : 10.1177/1045389X9400500306

J. Boyd and D. Lagoudas, A thermodynamical constitutive model for shape memory materials

I. Part, The monolithic shape memory alloy, International Journal of Plasticity, vol.12, issue.696 11, pp.805-842, 1996.

L. C. Brinson and M. S. Huang, Simplifications and Comparisons of Shape Memory Alloy Constitutive Models, Journal of Intelligent Material Systems and Structures, vol.51, issue.4, pp.108-114, 1996.
DOI : 10.1177/1045389X9600700112

L. C. Brinson, I. Schmidt, and R. Lammering, Micro and Macromechanical Investigations of CuAlNi Single Crystal and CuAlMnZn Polycrystalline Shape Memory Alloys, Journal of Intelligent Materials Systems and Structures, vol.13, issue.12, pp.761-772, 2002.
DOI : 10.1177/1045389X02013012002

L. Brinson, One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable, Journal of Intelligent Material Systems and Structures, vol.4, issue.2, pp.229-242, 1993.
DOI : 10.1177/1045389X9300400213

Y. Chemisky, F. Meraghni, N. Bourgeois, S. Cornell, R. Echchorfi et al., Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests, International Journal of Mechanical Sciences, vol.96, issue.97, pp.96-9713
DOI : 10.1016/j.ijmecsci.2015.03.007

URL : https://hal.archives-ouvertes.fr/hal-01196302

B. Coleman and M. Gurtin, Thermodynamics with internal variables, J. Chem. Phys, vol.47, issue.2 11, pp.85-98, 1967.

. Echchorfi, Dialogue essais-simulation et identification de lois de comportement d'alliage à mémoire de forme en chargement multiaxial, 2013.

K. Gall and H. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Materialia, vol.50, issue.18
DOI : 10.1016/S1359-6454(02)00315-4

C. Grabe and O. Bruhns, Tension/torsion tests of pseudoelastic, polycrystalline NiTi shape memory alloys under temperature control, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482
DOI : 10.1016/j.msea.2007.03.117

C. Grabe and O. Bruhns, Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes, International Journal of Plasticity, vol.25, issue.3, pp.513-545
DOI : 10.1016/j.ijplas.2008.03.002

V. Grolleau, H. Louche, V. Delobelle, A. Penin, G. Rio et al., Assessment of tension???compression asymmetry of NiTi using circular bulge testing of thin plates, Scripta Materialia, vol.65, issue.4, pp.347-350
DOI : 10.1016/j.scriptamat.2011.05.003

URL : https://hal.archives-ouvertes.fr/hal-00757982

G. Guénin, Shape Memory and Pseudoelastic Properties of Fe-Mn-Si and Ti-Ni Based Alloys, Le Journal de Physique IV, vol.07, issue.C5, pp.7-12, 1997.
DOI : 10.1051/jp4:1997574

J. Hartl and D. Lagoudas, Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys, Smart Materials and Structures, vol.18, issue.10, pp.964-1726, 104017.
DOI : 10.1088/0964-1726/18/10/104017

J. Hartl, G. Chatzigeorgiou, and D. C. Lagoudas, Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys, International Journal of Plasticity, vol.26, issue.10, pp.1485-1507
DOI : 10.1016/j.ijplas.2010.01.002

D. A. Hebda and S. R. White, Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior, Smart Materials and Structures, vol.4, issue.4, pp.298-3040964, 1995.
DOI : 10.1088/0964-1726/4/4/010

D. Helm and P. Haupt, Shape memory behaviour: modelling within continuum thermomechanics, International Journal of Solids and Structures, vol.40, issue.4, pp.827-849, 2003.
DOI : 10.1016/S0020-7683(02)00621-2

H. Juhász, O. Andrä, and . Hesebeck, A Simple Model for Shape Memory Alloys Under Multi-axial Non-Proportional Loading, Smart Materials, pp.51-65, 2001.
DOI : 10.1007/978-3-642-56855-8_5

G. Kang, Q. Kan, L. Qian, and Y. Liu, Ratchetting deformation of super-elastic and shape-memory NiTi alloys, Mechanics of Materials, vol.41, issue.2, pp.139-153, 2009.
DOI : 10.1016/j.mechmat.2008.09.001

M. Des, A. D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado et al., Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, International Journal of Plasticity, pp.32-33155

D. Lagoudas, Shape Memory Alloys -Modeling and Engineering Applications, p.11, 2008.

L. Lecce and A. Concilio, Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, 2014.

C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch, and P. Blanc, Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys, Journal of the Mechanics and Physics of Solids, vol.50, issue.12, pp.2717-2735, 2002.
DOI : 10.1016/S0022-5096(02)00007-8

URL : https://hal.archives-ouvertes.fr/hal-00079417

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015), vol.56, pp.1078-1113, 2014.
DOI : 10.1016/j.matdes.2013.11.084

J. Olbricht, A. Yawny, A. Condó, F. Lovey, and G. Eggeler, The influence of temperature on the evolution of functional properties during pseudoelastic cycling of ultra fine grained NiTi, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482142
DOI : 10.1016/j.msea.2007.01.182

K. Otsuka and C. M. Wayman, Shape Memory Materials, 1999.

M. Panico and L. Brinson, A three-dimensional phenomenological model for martensite reorientation in shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2491-2511
DOI : 10.1016/j.jmps.2007.03.010

E. Patoor, M. Amrani, A. Eberhardt, and M. Berveiller, Determination of the Origin for the Dissymmetry Observed between Tensile and Compression Tests on Shape Memory Alloys, Le Journal de Physique IV, vol.05, issue.C2, pp.495-500, 1995.
DOI : 10.1051/jp4:1995276

URL : https://hal.archives-ouvertes.fr/jpa-00253662

E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, and X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials, vol.38, issue.5-6, pp.5-6
DOI : 10.1016/j.mechmat.2005.05.027

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International Journal of Plasticity, vol.23, issue.10-11, pp.1679-1720
DOI : 10.1016/j.ijplas.2007.03.011

M. Qidwai and D. Lagoudas, On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material, International Journal of Plasticity, vol.16, issue.10-11, pp.10-111309, 2000.
DOI : 10.1016/S0749-6419(00)00012-7

L. Saint-sulpice, S. A. Chirani, and S. Calloch, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mechanics of Materials, vol.41, issue.1, pp.12-26
DOI : 10.1016/j.mechmat.2008.07.004

URL : https://hal.archives-ouvertes.fr/hal-00449131

A. Saleeb, S. Arnold, M. Castelli, T. Wilt, and W. Graf, A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys, International Journal of Plasticity, vol.17, issue.10, pp.1305-1350, 2001.
DOI : 10.1016/S0749-6419(00)00086-3

A. Saleeb, S. Padula, and A. Kumar, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, International Journal of Plasticity, vol.27, issue.5, pp.655-687
DOI : 10.1016/j.ijplas.2010.08.012

P. Sedlák, M. Frost, B. Bene?ová, T. B. Zineb, and P. ?ittner, Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, International Journal of Plasticity, vol.39, issue.null, pp.132-151
DOI : 10.1016/j.ijplas.2012.06.008

J. Shaw and S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International Journal of Plasticity, vol.13, issue.10, pp.837-871, 1997.
DOI : 10.1016/S0749-6419(97)00062-4

P. Sittner, Y. Hara, and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metallurgical and Materials Transactions A, vol.32, issue.11, pp.2923-2935, 1995.
DOI : 10.1007/BF02669649

P. ?ittner and V. Novák, Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, International Journal of Plasticity, vol.16, issue.10-11, pp.10-111243, 2000.
DOI : 10.1016/S0749-6419(00)00009-7

A. Souza, E. Mamiya, and N. Zouain, Three-dimensional model for solids undergoing stressinduced phase transitions, European Journal of Mechanics -A/Solids1, pp.789-806, 1998.

R. Stalmans, J. Van-humbeeck, and L. Delaey, The two way memory effect in copper-based shape memory alloys ??? thermodynamics and mechanisms, Acta Metallurgica et Materialia, vol.40, issue.11, pp.2921-29310956, 1992.
DOI : 10.1016/0956-7151(92)90456-O

R. Stalmans, J. Van-humbeeck, and L. Delaey, Thermomechanical cycling, two way memory and concomitant effects in Cu???Zn???Al alloys, Acta Metallurgica et Materialia, vol.40, issue.3, pp.501-5110956, 1992.
DOI : 10.1016/0956-7151(92)90399-Y

K. Taillard, S. A. Chirani, S. Calloch, and C. Lexcellent, Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys, Mechanics of Materials, vol.40, issue.4-5, pp.151-170, 2008.
DOI : 10.1016/j.mechmat.2007.07.005

URL : https://hal.archives-ouvertes.fr/hal-00449152

Y. Zhu and G. Dui, A macro-constitutive model of polycrystalline NiTi SMAs including tensile???compressive asymmetry and torsion pseudoelastic behaviors, International Journal of Engineering Science, vol.48, issue.12, pp.2099-2106
DOI : 10.1016/j.ijengsci.2010.04.002

J. Hartl and D. Lagoudas, Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys, Smart Materials and Structures, vol.18, issue.10, pp.964-1726, 2019.
DOI : 10.1088/0964-1726/18/10/104017

M. T. Mehrabi, M. Andani, M. Elahinia, and . Kadkhodaei, Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling, Mechanics of Materials, vol.77, pp.110-124
DOI : 10.1016/j.mechmat.2014.07.006

S. Nemat-nasser and W. Guo, Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, Mechanics of Materials, vol.38, issue.5-6, pp.463-474
DOI : 10.1016/j.mechmat.2005.07.004

L. Saint-sulpice, S. A. Chirani, and S. Calloch, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mechanics of Materials, vol.41, issue.1, pp.12-26, 2009.
DOI : 10.1016/j.mechmat.2008.07.004

URL : https://hal.archives-ouvertes.fr/hal-00449131

E. Patoor, A. Eberhardt, and M. Berveiller, Micromechanical Modelling of Superelasticity in Shape Memory Alloys, Le Journal de Physique IV, vol.06, issue.C1, pp.1-277, 1996.
DOI : 10.1051/jp4:1996127

URL : https://hal.archives-ouvertes.fr/jpa-00254159

M. Somerday, R. J. Comstock, and J. A. Wert, A systematic analysis of transformation stress anisotropy in shape memory alloys, Philosophical Magazine A, vol.197, issue.5, pp.1193-1207, 1997.
DOI : 10.1007/BF02644584

E. Auricchio, G. Bonetti, F. Scalet, and . Ubertini, Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation, International Journal of Plasticity, vol.59, pp.30-54
DOI : 10.1016/j.ijplas.2014.03.008

L. Brinson, I. Schmidt, and R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, Journal of the Mechanics and Physics of Solids, vol.52, issue.7, pp.1549-1571
DOI : 10.1016/j.jmps.2004.01.001

Y. Chemisky, A. Duval, E. Patoor, and T. B. Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mechanics of Materials, vol.43, issue.7, pp.361-376
DOI : 10.1016/j.mechmat.2011.04.003

J. Hartl and D. C. Lagoudas, Thermomechanical Characterization of Shape Memory Alloy Materials, Shape Memory Alloys, pp.53-119, 2008.
DOI : 10.1007/978-0-387-47685-8_2

J. Hartl, G. Chatzigeorgiou, and D. C. Lagoudas, Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys, International Journal of Plasticity, vol.26, issue.10, pp.1485-1507
DOI : 10.1016/j.ijplas.2010.01.002

Z. Morin, W. Moumni, and . Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling, International Journal of Plasticity, vol.27, issue.12, pp.1959-1980
DOI : 10.1016/j.ijplas.2011.05.005

M. R. Phénoménologique, A. Peyroux, C. Chrysochoos, M. Licht, and . Löbel, Thermomechanical couplings and pseudoelasticity of shape memory alloys, International Journal of Engineering Science, vol.36, issue.497, pp.489-509, 1998.

J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International Journal of Plasticity, vol.26, issue.7, pp.976-991
DOI : 10.1016/j.ijplas.2009.12.003

F. Auricchio, E. Bonetti, G. Scalet, and F. Ubertini, Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation, International Journal of Plasticity, vol.59, pp.30-54
DOI : 10.1016/j.ijplas.2014.03.008

D. Chatziathanasiou, Y. Chemisky, G. Chatzigeorgiou, and F. Meraghni, Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading, International Journal of Plasticity, vol.82
DOI : 10.1016/j.ijplas.2016.03.005

URL : https://hal.archives-ouvertes.fr/hal-01360902

Y. Chemisky, F. Meraghni, N. Bourgeois, S. Cornell, R. Echchorfi et al., Analysis of the deformation paths and thermomechanical parameter identification of a shape memory alloy using digital image correlation over heterogeneous tests, International Journal of Mechanical Sciences, vol.96, issue.97, pp.96-9713
DOI : 10.1016/j.ijmecsci.2015.03.007

URL : https://hal.archives-ouvertes.fr/hal-01196302

A. Fischer, A special newton-type optimization method. Optimization, pp.3-4269, 1992.

C. Grabe, O. Bruhns, D. J. Hartl, and D. Lagoudas, Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys, International Journal of Plasticity Smart Materials and Structures, vol.251810, issue.1810, pp.513-5451040170964, 2009.

O. Heintze and S. Seelecke, A coupled thermomechanical model for shape memory alloys???From single crystal to polycrystal, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482389
DOI : 10.1016/j.msea.2007.08.028

B. Kiefer, T. Bartel, and A. Menzel, Implementation of numerical integration schemes for the simulation of magnetic SMA constitutive response, Smart Materials and Structures, vol.21, issue.9, pp.940070964-1726094007
DOI : 10.1088/0964-1726/21/9/094007

D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, International Journal of Plasticity, vol.32, issue.33, pp.32-33155
DOI : 10.1016/j.ijplas.2011.10.009

A. Maynadier, Couplages thermomécaniques dans les alliages à mémoire de forme : mesure de champs cinématique et thermique et modélisation multiéchelle, 1957.

Y. Meraghni, B. Chemisky, R. Piotrowski, N. Echchorfi, E. Bourgeois et al., Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix, European Journal of Mechanics - A/Solids, vol.45, pp.226-237
DOI : 10.1016/j.euromechsol.2013.12.010

URL : https://hal.archives-ouvertes.fr/hal-01196127

M. Panico and L. Brinson, A three-dimensional phenomenological model for martensite reorientation in shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2491-2511
DOI : 10.1016/j.jmps.2007.03.010

P. Sittner, Y. Hara, and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metallurgical and Materials Transactions A, vol.32, issue.11, pp.2923-2935, 1995.
DOI : 10.1007/BF02669649