.. Caractéristiques-du-problème-À-estimer, 104 4.3.2 Constitution de la base de données

.. Algorithme-de-rétropropagation-du-gradient and .. La-couche-de-sortie, Calcul de l'erreur de propagation 109 Cas d'une couche cachée, p.113

.. Performances-de-l-'estimateur-neuronal, 115 Précision de l'estimation

.. Paramétrage-de-l-'apprentissage-par-renforcement, 126 Model-free vs Model-based / exploration vs exploitation, p.126

M. Höök and X. Tang, Depletion of fossil fuels and anthropogenic climate change???A review, Energy Policy, vol.52, pp.797-809, 2013.
DOI : 10.1016/j.enpol.2012.10.046

S. Solomon, Climate change 2007-the physical science basis : Working group I contribution to the fourth assessment report of the IPCC, 2007.

K. Rajendra, . Pachauri, . Mr-allen, . Vr-barros, . Broome et al., Climate change 2014 : Synthesis report. contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change, 2014.

B. Lefèvre, Urban transport energy consumption : Determinants and strategies for its reduction.. an analysis of the literature, SAPI EN. S. Surveys and Perspectives Integrating Environment and Society, issue.2, 2009.

Y. Bocharnikov, C. Tobias, and . Roberts, Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation, IET Conference on Railway Traction Systems (RTS 2010), 2010.
DOI : 10.1049/ic.2010.0038

S. Aç?kba? and M. Söylemez, Energy wise driving of a mass transit train, 5th International Conference on Electrical and Electronics Engineering, 2007.

M. Kinder, Models for periodic timetabling, Technische Universität, 2008.

P. Hachemane, Évaluation de la capacité de réseaux ferroviaires, 1997.

H. Bellaiche, Recherche sur la saturation des lignes ferroviaires (rapport d'étape de la phase 1). rapport technique 2166, pp.317-97, 1997.

F. Schneider, Recherche sur la saturation des lignes ferroviaires (rapport d'étude de la phase 2). rapport technique 2166, pp.721-97, 1997.

S. Liu, Modelling and solving train scheduling problems under capacity constraints, 2008.

T. Chiang, H. Hau, H. M. Chiang, S. Y. Kob, and C. Hsieh, Knowledge-based system for railway scheduling, Data & Knowledge Engineering, vol.27, issue.3, pp.289-312, 1998.
DOI : 10.1016/S0169-023X(97)00040-2

A. Higgins, E. Kozan, and L. Ferreira, Optimal scheduling of trains on a single line track, Transportation Research Part B: Methodological, vol.30, issue.2, pp.147-161, 1996.
DOI : 10.1016/0191-2615(95)00022-4

K. Ghoseiri and F. Morshedsolouk, Acs-ts : Train scheduling using ant colony system Advances in Decision Sciences, 2006.

X. Zhou and M. Zhong, Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds, Transportation Research Part B: Methodological, vol.41, issue.3, pp.320-341, 2007.
DOI : 10.1016/j.trb.2006.05.003

S. Raymond, P. Kwan, and . Mistry, A co-evolutionary algorithm for train timetabling, Evolutionary Computation The 2003 Congress on, pp.2142-2148, 2003.

I. Amit and D. Goldfarb, The timetable problem for railways, Developments in Operations Research, pp.379-387, 1971.

P. Serafini and W. Ukovich, A Mathematical Model for Periodic Scheduling Problems, SIAM Journal on Discrete Mathematics, vol.2, issue.4, pp.550-581, 1989.
DOI : 10.1137/0402049

E. Bampas and G. Kaouri, Michael Lampis, and Aris Pagourtzis. Periodic metro scheduling, ATMOS, 2006.

J. Cury, M. Fac-gomide, and . Mendes, A methodology for generation of optimal schedules for an underground railway system, IEEE Transactions on Automatic Control, vol.25, issue.2, pp.217-222, 1980.
DOI : 10.1109/TAC.1980.1102282

K. Nachtigall and S. Voget, A genetic algorithm approach to periodic railway synchronization, Computers & Operations Research, vol.23, issue.5, pp.453-463, 1996.
DOI : 10.1016/0305-0548(95)00032-1

S. Gordon and D. Lehrer, Coordinated train control and energy management control strategies, Proceedings of the 1998 ASME/IEEE Joint Railroad Conference, pp.165-176, 1998.
DOI : 10.1109/RRCON.1998.668103

B. Sansé and P. Girard, Instantaneous Power Peak Reduction and Train Scheduling Desynchronization in Subway Systems, Transportation Science, vol.31, issue.4, 1994.
DOI : 10.1287/trsc.31.4.312

C. Chang, Y. Phoa, and . Wang, Economy/regularity fuzzy-logic control of DC railway systems using event-driven approach, IEE Proceedings- Electric Power Applications, pp.9-17, 1996.
DOI : 10.1049/ip-epa:19960204

P. Firpo and S. Savio, Optimized train running curve for electrical energy saving in autotransformer supplied AC railway systems, International Conference on Electric Railways in a United Europe, pp.23-27, 1995.
DOI : 10.1049/cp:19950174

T. Albrecht, Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control. Power Supply, Energy Management and Catenary Problems, p.3, 2004.

J. Chen, R. Lin, and Y. Liu, Optimization of an MRT Train Schedule: Reducing Maximum Traction Power by Using Genetic Algorithms, IEEE Transactions on Power Systems, vol.20, issue.3, pp.1366-1372, 2005.
DOI : 10.1109/TPWRS.2005.851939

P. Buzila, Gestion énergétique optimale des installations fixes de traction électrique ferroviaire hybrides, 2015.

K. Kim and S. Oh, Moonseob Han, and Basic Rate Peak Power. A mathematical approach for reducing the maximum traction energy : the case of korean mrt trains, 2010.

A. Nasri, H. Moghadam, and . Mokhtari, Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems, SPEEDAM 2010, pp.1218-1221, 2010.
DOI : 10.1109/SPEEDAM.2010.5542099

A. Ramos, M. T. Peña, A. Fernández, and P. Cucala, Mathematical programming approach to underground timetabling problem for maximizing time synchronization, XI Congreso de Ingeniería de Organización, pp.1395-1405, 2007.

M. Peña-alcaraz, A. Fernández, A. P. Cucala, A. Ramos, R. Ramon et al., Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy, Proceedings of the Institution of Mechanical Engineers, pp.397-408, 2012.
DOI : 10.1177/0954409711429411

X. Yang, B. Ning, X. Li, and T. Tang, A Two-Objective Timetable Optimization Model in Subway Systems, IEEE Transactions on Intelligent Transportation Systems, vol.15, issue.5, pp.1913-1921, 2014.
DOI : 10.1109/TITS.2014.2303146

J. Xun, . Yang, . Ning, W. Tang, and . Wang, Coordinated train control in a fully automatic operation system for reducing energy consumption, Computers in Railways XIII, p.3, 2013.
DOI : 10.2495/CR120011

M. Miyatake and H. Ko, Numerical analyses of minimum energy operation of multiple trains under dc power feeding circuit, Power Electronics and Applications, 2007 European Conference on, pp.1-10, 2007.

B. Sansó and P. Girard, Train scheduling desynchronization and power peak optimization in a subway system, Proceedings of the 1995 IEEE/ASME Joint Railroad Conference, pp.75-78, 1995.
DOI : 10.1109/RRCON.1995.395167

C. J. Goodman, B. Mellitt, and N. B. Rambukwella, Computers in railway operations. chapter CAE for the Electrical Design of Urban Rail Transit Systems, pp.173-193, 1987.

C. Goodman, T. Siu, and . Ho, A review of simulation models for railway systems, International Conference on Developments in Mass Transit Systems, 1998.
DOI : 10.1049/cp:19980101

V. Van-breusegem, G. Campion, and G. Bastin, Traffic modeling and state feedback control for metro lines. Automatic Control, IEEE Transactions on, vol.36, issue.7, pp.770-784, 1991.

K. Kam, W. , and T. Ho, Dwell-time and run-time control for dc mass rapid transit railways, Electric Power Applications, IET, vol.1, issue.6, pp.956-966, 2007.

M. Tulbure and R. Both, Models for the AC locomotives regenerative braking, Proceedings of 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, pp.525-530, 2012.
DOI : 10.1109/AQTR.2012.6237767

Z. Tian, S. Hillmansen, C. Roberts, P. Weston, L. Chen et al., Modeling and simulation of DC rail traction systems for energy saving, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp.2354-2359, 2014.
DOI : 10.1109/ITSC.2014.6958067

M. Sjöholm, Benefits of regenerative braking and eco driving for high-speed trains : Energy consumption and brake wear, 2011.

J. Valero, R. , and J. S. Feito, Calculation of remote effects of stray currents on rail voltages in dc railways systems, IET Electrical Systems in Transportation, vol.3, issue.2, pp.31-40, 2013.

R. Vial, Vers un dimensionnement optimal structure-commande de système multi-convertisseurs. Application aux réseaux de tramways, 2012.

C. Mayet, M. Mejri, . Bouscayrol, Y. Pouget, and . Riffonneau, Energetic Macroscopic Representation and inversion-based control of the traction system of a hybrid locomotive, 2012 IEEE Vehicle Power and Propulsion Conference, 2012.
DOI : 10.1109/VPPC.2012.6422763

T. Ho, Y. Chi, . Wang, . Leung, C. Siu et al., Probabilistic load flow in AC electrified railways, Electric Power Applications, IEE Proceedings, pp.1003-1013, 2005.
DOI : 10.1049/ip-epa:20045091

E. Pilo, A. Rouco, A. Fernandez, and . Hernández-velilla, A simulation tool for the design of the electrical supply system of high-speed railway lines, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), pp.1053-1058, 2000.
DOI : 10.1109/PESS.2000.867519

. Bih-yuan, J. Ku, and . Liu, Solution of DC power flow for nongrounded traction systems using chain-rule reduction of ladder circuit Jacobian matrices, ASME/IEEE Joint Railroad Conference, pp.123-130, 2002.
DOI : 10.1109/RRCON.2002.1000104

O. Bossi, Vers la conception optimale d'une electrification ferroviaire. La revue 3EI, pp.9-17, 2013.

C. Goodman and L. Sin, DC railway power network solutions by diakoptics, Proceedings of IEEE/ASME Joint Railroad Conference, pp.103-110, 1994.
DOI : 10.1109/RRCON.1994.289015

M. Chymera, M. Renfrew, and . Barnes, Analysis of power quality in a DC tram system, 3rd IET International Conference on Power Electronics, Machines and Drives (PEMD 2006), 2006.
DOI : 10.1049/cp:20060079

J. B. Ward and H. W. Hale, Digital computer solution of power-flow problems. Transactions of the American Institute of Electrical Engineers. Part III : Power Apparatus and Systems, pp.3-398, 1956.

M. Albert, . Sasson, J. Fernando, and . Jaimes, Digital methods applied to power flow studies. Power Apparatus and Systems, IEEE Transactions on, issue.7, pp.860-867, 1967.

X. Wang, Y. Song, and M. Irving, Modern power systems analysis, 2010.
DOI : 10.1007/978-0-387-72853-7

F. William, . Tinney, E. Clifford, and . Hart, Power flow solution by newton's method. Power Apparatus and Systems, IEEE Transactions on, issue.11, pp.1449-1460, 1967.

R. Idema and D. Lahaye, Kees Vuik, and Lou Van der Sluis. Fast newton load flow, Transmission and Distribution Conference and Exposition, pp.1-7, 2010.

W. Liu, Q. Li, and M. Chen, Study of the simulation of dc traction power supply system based on ac/dc unified newton-raphson method, Sustainable Power Generation and Supply, 2009. SUPERGEN'09. International Conference on, pp.1-4, 2009.

Y. Tzeng, R. Wu, and N. Chen, Electric network solutions of dc transit systems with inverting substations. Vehicular Technology, IEEE Transactions on, vol.47, issue.4, pp.1405-1412, 1998.

Y. Cai, S. Irving, and . Case, Iterative techniques for the solution of complex DC-rail-traction systems including regenerative braking, IEE Proceedings - Generation, Transmission and Distribution, vol.142, issue.5, pp.445-452, 1995.
DOI : 10.1049/ip-gtd:19952098

S. Yasunobu, S. Miyamoto, and H. Ihara, A fuzzy control for train automatic stop control. Trans. of the society of instrument and control engineers, pp.1-9, 2002.

G. Acampora, C. Landi, N. Luiso, and . Pasquino, Optimization of energy consumption in a railway traction system, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006., pp.1121-1126, 2006.
DOI : 10.1109/SPEEDAM.2006.1649936

Y. Bocharnikov, C. Tobias, . Roberts, C. Hillmansen, and . Goodman, Optimal driving strategy for traction energy saving on DC suburban railways, IET Electric Power Applications, vol.1, issue.5, pp.675-682, 2007.
DOI : 10.1049/iet-epa:20070005

K. Wong and T. Ho, Dynamic coast control of train movement with genetic algorithm, International Journal of Systems Science, vol.35, issue.13-14, pp.13-14835, 2004.
DOI : 10.1049/ip-epa:20040346

C. Chang and S. Sim, Optimising train movements through coast control using genetic algorithms, Electric Power Applications, pp.65-73, 1997.
DOI : 10.1049/ip-epa:19970797

S. Aç?kba? and M. Söylemez, Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms, IET Electric Power Applications, pp.172-182, 2008.
DOI : 10.1049/iet-epa:20070381

K. Wong and T. Ho, Coast control of train movement with genetic algorithm, Evolutionary Computation The 2003 Congress on, pp.1280-1287, 2003.

K. Wong and T. Ho, Coast control for mass rapid transit railways with searching methods, IEE Proceedings-Electric Power Applications, pp.365-376, 2004.
DOI : 10.1049/ip-epa:20040346

C. Chang and B. Thia, Online rescheduling of mass rapid transit systems: fuzzy expert system approach, Electric Power Applications, IEE Proceedings, pp.307-316, 1996.
DOI : 10.1049/ip-epa:19960311

K. Kim, M. Kim, and . Han, A model and approaches for synchronized energy saving in timetabling, Korea Railroad Research Institute, 2011.

D. Fournier, Metro regenerative braking optimization through rescheduling : Mathematical Model and Greedy Heuristics Compared to MILP and CMA-ES, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01102408

. Siemens, Document technique interne, 2007.

D. Fournier, D. Mulard, and F. Fages, Optimisation énergétique de tables horaires de métros : une approche hybride, JFPC 2012-Huitièmes Journées Francophones de Programmation par Contraintes, 2012.

A. Caprara, M. Fischetti, and P. Toth, Modeling and Solving the Train Timetabling Problem, Operations Research, vol.50, issue.5, pp.851-861, 2002.
DOI : 10.1287/opre.50.5.851.362

P. Tormos, F. Lova, . Barber, M. Ingolotti, . Abril et al., A Genetic Algorithm for Railway Scheduling Problems, Metaheuristics for Scheduling in Industrial and Manufacturing Applications, pp.255-276, 2008.
DOI : 10.1007/978-3-540-78985-7_10

D. Epstein, . Lu, R. Zhao, and . Leachman, An exact solution procedure for determining the optimal dispatching times for complex rail networks, 2005.

A. Ponsich, Stratégies d'optimisation mixte en génie des procédés? application à la conception d'ateliers discontinus, 2005.

J. Hao, P. Galinier, and M. Habib, Métaheuristiques pour l'optimisation combinatoire et l'affectation sous contraintes. Revue d'intelligence artificielle, pp.283-324, 1999.

H. David, . Wolpert, G. William, and . Macready, No free lunch theorems for optimization, Evolutionary Computation IEEE Transactions on, vol.1, issue.1, pp.67-82, 1997.

V. Gardeux, Conception d'heuristiques d'optimisation pour les problèmes de grande dimension. Application à l'analyse de données de puces à ADN, 2012.

N. Smairi, Optimisation par essaim particulaire : adaptation de tribes à l'optimisation multiobjectif, École Nationale des Sciences de l'Informatique, p.2013
URL : https://hal.archives-ouvertes.fr/tel-00981558

A. El and D. , Perfectionnement des algorithmes d'optimisation par essaim particulaire : applications en segmentation d'images et en électronique, 2012.

. Ahmed-nasreddine-benaichouche, Conception de métaheuristiques d'optimisation pour la segmentation d'images : application aux images IRM du cerveau et aux images de tomographie par émission de positons, 2014.

C. Darwin, De l'origine des espèces par voie de sélection naturelle. On the Origin of Species by Means of Natural Selection, 1859.

C. Darwin and C. Royer, De l'origine des especes ou des lois du progres chez les etres organises par Ch, p.1862

I. Rechenberg, Evolution Strategy: Nature???s Way of Optimization, Optimization : Methods and applications, possibilities and limitations, pp.106-126, 1989.
DOI : 10.1007/978-3-642-83814-9_6

T. Back, B. David, Z. Fogel, and . Michalewicz, Handbook of evolutionary computation, 1997.

H. John and . Holland, Adaptation in natural and artificial systems : An introductory analysis with applications to biology, control, and artificial intelligence, 1975.

R. John and . Koza, Hierarchical genetic algorithms operating on populations of computer programs, IJCAI, pp.768-774, 1989.

R. Storn and K. Price, Differential evolution?a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, vol.11, issue.4, pp.341-359, 1997.
DOI : 10.1023/A:1008202821328

D. Pham, . Ghanbarzadeh, . Koc, . Otri, M. Rahim et al., The Bees Algorithm ??? A Novel Tool for Complex Optimisation Problems, Intelligent Production Machines and Systems-2nd I* PROMS Virtual International Conference, p.454, 2006.
DOI : 10.1016/B978-008045157-2/50081-X

W. Craig and . Reynolds, Flocks, herds and schools : A distributed behavioral model, In ACM Siggraph Computer Graphics, vol.21, pp.25-34, 1987.

F. Heppner and U. Grenander, A stochastic nonlinear model for coordinated bird flocks, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, 1990.

J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks, 1995.
DOI : 10.1109/ICNN.1995.488968

M. Clerc and J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, vol.6, issue.1, pp.58-73, 2002.
DOI : 10.1109/4235.985692

J. Kennedy, F. James, . Kennedy, C. Russell, Y. Eberhart et al., Swarm Intelligence, 2001.
DOI : 10.1007/0-387-27705-6_6

Y. Shi, C. Russell, and . Eberhart, Empirical study of particle swarm optimization, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999.
DOI : 10.1109/CEC.1999.785511

C. Vanaret, Hybridation d'algorithmes évolutionnaires et de méthodes d'intervalles pour l'optimisation de problèmes difficiles, 2015.

K. Premalatha and A. Natarajan, Hybrid pso and ga for global maximization, Int. J. Open Problems Compt. Math, vol.2, issue.4, pp.597-608, 2009.

H. Hachimi, Hybridations d'algorithmes métaheuristiques en optimisation globale et leurs applications, p.2013

A. Ahmed, S. Esmin, and . Matwin, Hpsom : a hybrid particle swarm optimization algorithm with genetic mutation, International Journal of Innovative Computing, Information and Control, vol.9, issue.5, pp.1919-1934, 2013.

Y. Kao and E. Zahara, A hybrid genetic algorithm and particle swarm optimization for multimodal functions, Applied Soft Computing, vol.8, issue.2, pp.849-857, 2008.
DOI : 10.1016/j.asoc.2007.07.002

C. Joseph and . Pemberton, k-best : A new method for real-time decision making, IJCAI, pp.227-235, 1995.

F. Corman, A. D. Ariano, D. Pacciarelli, and M. Pranzo, Bi-objective conflict detection and resolution in railway traffic management, Transportation Research Part C: Emerging Technologies, vol.20, issue.1, pp.79-94, 2012.
DOI : 10.1016/j.trc.2010.09.009

M. A. Shafia, M. Pourseyed-aghaee, S. J. Sadjadi, and A. Jamili, Robust train timetabling problem : Mathematical model and branch and bound algorithm. Intelligent Transportation Systems, IEEE Transactions on, vol.13, issue.1, pp.307-317, 2012.

T. Dollevoet, F. Corman, A. D. Ariano, and D. Huisman, An iterative optimization framework for delay management and train scheduling, Flexible Services and Manufacturing Journal, vol.128, issue.1, pp.490-515, 2014.
DOI : 10.1007/s10696-013-9187-2

J. Törnquist-krasemann, Design of an effective algorithm for fast response to the re-scheduling of railway traffic during disturbances, Transportation Research Part C: Emerging Technologies, vol.20, issue.1, pp.62-78, 2012.
DOI : 10.1016/j.trc.2010.12.004

. Xu-jun-eberlein, H. Nigel, D. Wilson, and . Bernstein, The Holding Problem with Real???Time Information Available, Transportation Science, vol.35, issue.1, pp.1-18, 2001.
DOI : 10.1287/trsc.

P. Delle-site and F. Filippi, Service optimization for bus corridors with short-turn strategies and variable vehicle size. Transportation Research Part A : Policy and Practice, pp.19-38, 1998.

Y. Ding and S. Chien, Improving transit service quality and headway regularity with real-time control. Transportation Research Record, Journal of the Transportation Research Board, pp.161-170, 1760.

B. Ning, J. Xun, S. Gao, and L. Zhang, An Integrated Control Model for Headway Regulation and Energy Saving in Urban Rail Transit, IEEE Transactions on Intelligent Transportation Systems, vol.16, issue.3
DOI : 10.1109/TITS.2014.2366495

W. Lin and J. Sheu, Adaptive critic design of automatic train regulation of mrt system, Industrial Technology ICIT 2008. IEEE International Conference on, pp.1-7, 2008.

W. Lin and J. Sheu, Automatic train regulation for metro lines using dual heuristic dynamic programming, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol.8, issue.2001, pp.15-23, 2010.
DOI : 10.1243/09544097JRRT283

W. Lin and J. Sheu, Metro traffic regulation by adaptive optimal control. Intelligent Transportation Systems, IEEE Transactions on, vol.12, issue.4, pp.1064-1073, 2011.

W. Lin and J. Sheu, Optimization of Train Regulation and Energy Usage of Metro Lines Using an Adaptive-Optimal-Control Algorithm, IEEE Transactions on Automation Science and Engineering, vol.8, issue.4, pp.855-864, 2011.
DOI : 10.1109/TASE.2011.2160537

J. Qu, X. Feng, and Q. Wang, Real-time trajectory planning for rail transit train considering regenerative energy, Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on, pp.2738-2742, 2014.

T. Albrecht, A. Binder, and C. Gassel, Applications of real-time speed control in rail-bound public transportation systems, IET Intelligent Transport Systems, vol.7, issue.3, pp.305-314, 2013.
DOI : 10.1049/iet-its.2011.0187

P. Wang, M. Rob, L. Goverde, and . Ma, A Multiple-Phase Train Trajectory Optimization Method under Real-Time Rail Traffic Management, 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp.771-776, 2015.
DOI : 10.1109/ITSC.2015.130

J. Yin, D. Chen, and L. Li, Intelligent train operation algorithms for subway by expert system and reinforcement learning. Intelligent Transportation Systems, IEEE Transactions on, vol.15, issue.6, pp.2561-2571, 2014.

J. Yin, D. Chen, W. Zhao, and L. Chen, Online adjusting subway timetable by q-learning to save energy consumption in uncertain passenger demand, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp.2743-2748, 2014.
DOI : 10.1109/ITSC.2014.6958129

Y. Wang, B. D. Schutter, J. Ton, . Van-den, B. Boom et al., Real-time scheduling for trains in urban rail transit systems using nonlinear optimization, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp.1334-1339, 2013.
DOI : 10.1109/ITSC.2013.6728416

Y. Wang, B. Ning, T. Tang, J. Ton, . Van-den et al., Efficient real-time train scheduling for urban rail transit systems using iterative convex programming. Intelligent Transportation Systems, IEEE Transactions on, vol.16, issue.6, pp.3337-3352, 2015.

N. Balacheff, Didactique et intelligence artificielle, pp.9-42, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00190648

J. Cunha, R. Serra, N. Lau, L. S. Lopes, J. Antóio et al., Batch Reinforcement Learning for Robotic Soccer Using the Q-Batch Update-Rule, Journal of Intelligent & Robotic Systems, vol.32, issue.11, pp.1-15, 2015.
DOI : 10.1007/s10846-014-0171-1

S. Dini and M. Serrano, Combining q-learning with artificial neural networks in an adaptive light seeking robot, 2012.

G. Peter and Z. , Neural networks for classification : a survey. Systems, Man, and Cybernetics, Part C : Applications and Reviews, IEEE Transactions on, vol.30, issue.4, pp.451-462, 2000.

A. Garg and R. Bajaj, Facial expression recognition & classification using hybridization of ica, ga, and neural network for human-computer interaction, Journal of Network Communications and Emerging Technologies, vol.2, issue.1, p.2015

F. Richardson, D. Reynolds, and N. Dehak, A unified deep neural network for speaker and language recognition, 2015.

J. Kumar-mantri, . Gahan, B. Braja, and . Nayak, Artificial neural networks? an application to stock market volatility. Soft-Computing in Capital Market : Research and Methods of Computational Finance for Measuring Risk of Financial Instruments, p.179, 2014.

I. Kaastra and M. Boyd, Designing a neural network for forecasting financial and economic time series, Neurocomputing, vol.10, issue.3, pp.215-236, 1996.
DOI : 10.1016/0925-2312(95)00039-9

A. Maciej, . Mazurowski, A. Piotr, . Habas, M. Jacek et al., Training neural network classifiers for medical decision making : The effects of imbalanced datasets on classification performance, Neural networks, vol.21, issue.2, pp.427-436, 2008.

B. Harry and . Burke, Artificial neural networks for cancer research : outcome prediction, Seminars in Surgical Oncology, pp.73-79, 1994.

A. Shantia, E. Begue, and M. Wiering, Connectionist reinforcement learning for intelligent unit micro management in StarCraft, The 2011 International Joint Conference on Neural Networks, pp.1794-1801, 2011.
DOI : 10.1109/IJCNN.2011.6033442

J. Schrum and R. Miikkulainen, Evolving multimodal behavior with modular neural networks in Ms. Pac-Man, Proceedings of the 2014 conference on Genetic and evolutionary computation, GECCO '14, pp.325-332, 2014.
DOI : 10.1145/2576768.2598234

X. Li, Intelligent Learning Control of Hydraulic Flow Regulating Pump with Neural Network Load Flow Identifier, 2009 International Conference on Artificial Intelligence and Computational Intelligence, pp.539-543, 2009.
DOI : 10.1109/AICI.2009.53

K. Adrian, K. Agogino, and . Tumer, Quicker q-learning in multi-agent systems

R. Coulom, Apprentissage par renforcement utilisant des réseaux de neurones, avec des applications au contrôle moteur, 2002.

S. Kamalasadan, D. Srivastava, and . Thukaram, Novel algorithm for online voltage stability assessment based on feed forward neural network, 2006 IEEE Power Engineering Society General Meeting, p.7, 2006.
DOI : 10.1109/PES.2006.1709621

T. Nguyen, Neural network load-flow. IEE Proceedings-generation, transmission and distribution, pp.51-58, 1995.

D. Thukaram and . Kashyap, Artificial neural network application to power system voltage stability improvement, TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region, pp.53-57, 2003.

E. Aparaschivei, O. Ivanov, and M. Gavrilas, Load flow estimaton in electrical systems using artificial neural networks, 2012 International Conference and Exposition on Electrical and Power Engineering, pp.276-279, 2012.
DOI : 10.1109/ICEPE.2012.6463917

S. Jeme?, D. Hissel, M. Péra, and J. Kauffmann, On-board fuel cell power supply modeling on the basis of neural network methodology, Journal of Power Sources, vol.124, issue.2, pp.479-486, 2003.
DOI : 10.1016/S0378-7753(03)00799-7

I. Basheer and M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application, Journal of Microbiological Methods, vol.43, issue.1, pp.3-31, 2000.
DOI : 10.1016/S0167-7012(00)00201-3

N. Kumar, R. Wangneo, S. Kalra, and . Srivastava, Application Of Artificial Neural Networks To Load Flow Solutions, TENCON '91. Region 10 International Conference on EC3-Energy, Computer, Communication and Control Systems, pp.199-203, 1991.
DOI : 10.1109/TENCON.1991.712546

W. Chan, A. So, and L. Lai, Initial applications of complex artificial neural networks to load-flow analysis, IEE Proceedings-Generation, Transmission and Distribution, pp.361-366, 2000.
DOI : 10.1049/ip-gtd:20000713

A. Jain, . Sc-tripathy, Y. Balasubramanian, and . Kawazoe, Stochastic load flow analysis using artificial neural networks, 2006 IEEE Power Engineering Society General Meeting, pp.6-14, 2006.
DOI : 10.1109/PES.2006.1709368

A. Rathinam, V. Padmini, and . Ravikumar, Application of supervised learning artificial neural networks [CPNN, BPNN] for solving power flow problem, IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), 2007.
DOI : 10.1049/ic:20070603

R. Hecht-nielsen, Theory of the backpropagation neural network, International Joint Conference on Neural Networks, pp.593-605, 1989.

A. Yann, L. Lecun, G. B. Bottou, K. Orr, and . Müller, Efficient backprop, Neural networks : Tricks of the trade, pp.9-48, 2012.

M. Mezard and J. Nadal, Learning in feedforward layered networks: the tiling algorithm, Journal of Physics A: Mathematical and General, vol.22, issue.12, p.2191, 1989.
DOI : 10.1088/0305-4470/22/12/019

M. Marchand, M. Golea, and P. Ruján, A Convergence Theorem for Sequential Learning in Two-Layer Perceptrons, Europhysics Letters (EPL), vol.11, issue.6, p.487, 1990.
DOI : 10.1209/0295-5075/11/6/001

E. Scott, C. Fahlman, and . Lebiere, The cascade-correlation learning architecture, 1989.

D. Martinez and D. Esteve, The Offset Algorithm: Building and Learning Method for Multilayer Neural Networks, Europhysics Letters (EPL), vol.18, issue.2, p.95, 1992.
DOI : 10.1209/0295-5075/18/2/001

M. Christopher and . Bishop, Neural networks for pattern recognition, 1995.

T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the IEEE, pp.1481-1497, 1990.
DOI : 10.1109/5.58326

J. Depenau, Automated Design of Neural Network Architecture for Classification, DAIMI Report Series, vol.24, issue.500, 1995.
DOI : 10.7146/dpb.v24i500.7029

B. Hassibi, G. David, and . Stork, Second order derivatives for network pruning : Optimal brain surgeon, 1993.

Y. Lecun, S. John, . Denker, A. Sara, . Solla et al., Optimal brain damage, NIPs, 1989.

Y. Lecun, P. Y. Simard, and B. Pearlmutter, Automatic learning rate maximization by on-line estimation of the hessian's eigenvectors, Advances in Neural Information Processing Systems, pp.156-163, 1993.

J. Sola and J. Sevilla, Importance of input data normalization for the application of neural networks to complex industrial problems, IEEE Transactions on Nuclear Science, vol.44, issue.3, pp.1464-1468, 1997.
DOI : 10.1109/23.589532

S. Saarinen, G. Bramley, and . Cybenko, Ill-Conditioning in Neural Network Training Problems, SIAM Journal on Scientific Computing, vol.14, issue.3, pp.693-714, 1993.
DOI : 10.1137/0914044

C. Vastrad, Performance analysis of neural network models for oxazolines and oxazoles derivatives descriptor dataset. arXiv preprint, 2013.

A. Cherif, Réseaux de neurones, SVM et approches locales pour la prévision de séries temporelles

D. Randall, W. Tony, and R. Martinez, The general inefficiency of batch training for gradient descent learning, Neural Networks, vol.16, issue.10, pp.1429-1451, 2003.

T. Czernichow, Architecture selection through statistical sensitivity analysis, Artificial Neural Networks?ICANN 96, pp.179-184, 1996.
DOI : 10.1007/3-540-61510-5_33

B. Mark and . Milam, Real-time optimal trajectory generation for constrained dynamical systems, 2003.

M. Carey, Optimizing scheduled times, allowing for behavioural response, Transportation Research Part B: Methodological, vol.32, issue.5, pp.329-342, 1998.
DOI : 10.1016/S0191-2615(97)00039-8

M. Rob and . Goverde, A delay propagation algorithm for large-scale railway traffic networks, Transportation Research Part C : Emerging Technologies, vol.18, issue.3, pp.269-287, 2010.

X. Zhou and M. Khan, Slack time allocation in robust double-track train timetabling applications, Transportation Research Board 87th Annual Meeting, pp.8-2971, 2008.

J. Michiel, R. Vromans, . Dekker, G. Leo, and . Kroon, Reliability and heterogeneity of railway services, European Journal of Operational Research, vol.172, issue.2, pp.647-665, 2006.

F. Corman and L. Meng, A Review of Online Dynamic Models and Algorithms for Railway Traffic Management, IEEE Transactions on Intelligent Transportation Systems, vol.16, issue.3
DOI : 10.1109/TITS.2014.2358392

M. Blancheteau, L'apprentissage chez l'animal : faits et théories, Editions Mardaga, vol.114, 1979.

C. Kent, . Berridge, E. Terry, and . Robinson, What is the role of dopamine in reward : hedonic impact, reward learning, or incentive salience ?, Brain Research Reviews, vol.28, issue.3, pp.309-369, 1998.

R. Bellman, A Markovian Decision Process, Indiana University Mathematics Journal, vol.6, issue.4, 1957.
DOI : 10.1512/iumj.1957.6.56038

P. Dimitri, . Bertsekas, P. Dimitri, . Bertsekas, P. Dimitri et al., Dynamic programming and optimal control, 1995.

S. Richard and . Sutton, Learning to predict by the methods of temporal differences, Machine learning, vol.3, issue.1, pp.9-44, 1988.

E. Rachelson, Problèmes décisionnels de Markov temporels : formalisation et résolution, 2009.

B. Sebastian and . Thrun, The role of exploration in learning control. Handbook of intelligent control : Neural, fuzzy and adaptive approaches, 1992.

S. Nissen, Large scale reinforcement learning using q-sarsa (?) and cascading neural networks, 2007.

S. Dini and M. Serrano, Combining q-learning with artificial neural networks in an adaptive light seeking robot, 2012.

A. Marco and . Wiering, Explorations in efficient reinforcement learning, 1999.

R. Munos, Programmation dynamique avec approximation de la fonction valeur, Processus décisionnels de Markov et intelligence artificielle, pp.19-50, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00830192

M. Hayoun, La méthode de monte carlo metropolis, École «Simulation Numérique en Matière Condensée», pp.29-31, 2002.

S. Richard, . Sutton, G. Andrew, and . Barto, Reinforcement learning : An introduction, 1998.

D. Kamenetsky, A comparison of neural network architectures in reinforcement learning in the game of othello, 2005.

A. Cornuéjols and L. Miclet, Apprentissage artificiel : concepts et algorithmes, Editions Eyrolles, 2011.

P. Satinder, . Singh, S. Richard, and . Sutton, Reinforcement learning with replacing eligibility traces, Machine learning, vol.22, issue.1-3, pp.123-158, 1996.

P. Vamplew and R. Ollington, Global Versus Local Constructive Function Approximation for On-Line Reinforcement Learning, AI 2005 : Advances in Artificial Intelligence, pp.113-122, 2005.
DOI : 10.1007/11589990_14

D. Garc?a and L. Garrido, Generation of motion policies applying multiagent reinforcement learning in simulated robotic soccer

R. Munos, W. Andrew, and . Moore, Variable resolution discretization for highaccuracy solutions of optimal control problems, Robotics Institute, p.256, 1999.

S. Pareigis, Adaptive choice of grid and time in reinforcement learning, NIPS. Citeseer, 1997.

T. Degris, M. Patrick, . Pilarski, S. Richard, and . Sutton, Model-Free reinforcement learning with continuous action in practice, 2012 American Control Conference (ACC), pp.2177-2182, 2012.
DOI : 10.1109/ACC.2012.6315022

URL : https://hal.archives-ouvertes.fr/hal-00764281

A. Alexander, P. Sherstov, and . Stone, Function approximation via tile coding : Automating parameter choice, Abstraction, Reformulation and Approximation, pp.194-205, 2005.

M. Riedmiller, Neural Fitted Q Iteration ??? First Experiences with a Data Efficient Neural Reinforcement Learning Method, Machine Learning : ECML 2005, pp.317-328, 2005.
DOI : 10.1007/11564096_32

S. Richard and . Sutton, Dyna, an integrated architecture for learning, planning, and reacting, ACM SIGART Bulletin, vol.2, issue.4, pp.160-163, 1991.

. Kao-shing, C. Hwang, and . Lo, Policy Improvement by a Model-Free Dyna Architecture, Neural Networks and Learning Systems, pp.776-788, 2013.
DOI : 10.1109/TNNLS.2013.2244100

T. Tateyama, S. Kawata, and Y. Shimomura, Parallel reinforcement learning systems using exploration agents and dyna-Q algorithm, SICE Annual Conference 2007, pp.2774-2778, 2007.
DOI : 10.1109/SICE.2007.4421460

S. Richard and . Sutton, Integrated architectures for learning, planning, and reacting based on approximating dynamic programming, Proceedings of the seventh international conference on machine learning, pp.216-224, 1990.

G. Laurent, Synthèse de comportements par apprentissages par renforcement parallèles : application à la commande d'un micromanipulateur plan, 2002.

A. Pérez-uribe and E. Sanchez, A comparison of reinforcement learning with eligibility traces and integrated learning, planning and reacting, Computational Intelligence for Modelling, Control and Automation, pp.154-159, 1999.

S. Zaidenberg, Apprentissage par renforcement de modeles de contexte pour l'informatique ambiante, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00497656

G. Petkov, T. Naydenov, M. Grinberg, and B. Kokinov, Building Robots with Analogy-Based Anticipation, KI 2006 : Advances in artificial intelligence, pp.76-90, 2007.
DOI : 10.1007/978-3-540-69912-5_7

M. Riedmiller, 10 Steps and Some Tricks to Set up Neural Reinforcement Controllers, Neural Networks : Tricks of the Trade, pp.735-757, 2012.
DOI : 10.1007/978-3-540-74958-5_41

Z. Miljkovi?, M. Miti?, M. Lazarevi?, and B. Babi?, Neural network Reinforcement Learning for visual control of robot manipulators, Expert Systems with Applications, vol.40, issue.5, pp.1721-1736, 2013.
DOI : 10.1016/j.eswa.2012.09.010

P. Cheynet, Etude de la robustesse du contrôle intelligent face aux fautes induites par les radiations, 1999.

M. Emmerson and R. Damper, Relations between fault tolerance and internal representations for multi-layer perceptrons, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.281-284, 1992.
DOI : 10.1109/ICASSP.1992.226065

K. Matsuoka, Noise injection into inputs in back-propagation learning. Systems, Man and Cybernetics, IEEE Transactions on, vol.22, issue.3, pp.436-440, 1992.

A. González-gil, . Palacin, J. Batty, and . Powell, A systems approach to reduce urban rail energy consumption. Energy Conversion and Management, pp.509-524, 2014.

W. Gunselmann, Technologies for increased energy efficiency in railway systems, 2005 European Conference on Power Electronics and Applications, p.10, 2005.
DOI : 10.1109/EPE.2005.219712

M. Clement, P. Delarue, A. Bouscayrol, C. Eric, J. Noel et al., Comparison of different emr-based models of traction power substations for energetic studies of subway lines, 2015.

A. Gonzalez-gil, R. Palacin, P. Batty, and J. P. Powell, Energy-efficient urban rail systems : strategies for an optimal management of regenerative braking energy, Transport Research Arena (TRA) 5th Conference : Transport Solutions from Research to Deployment, 2014.

P. Capros, L. Mantzos, and N. Tasios, Alessia De Vita, and Nikolaos Kouvaritakis. EU Energy Trends to 2030 : Update, 2009.