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Mâıtre de Conférences Pablo Piantanida Supélec
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Abstract

A uniform mobile user quality of service and a distributed use of the spec-
trum represent the key-ingredients for next generation cellular networks. To-
ward this end, physical layer cooperation among the network infrastructure
and the wireless nodes has emerged as a potential technique. Cooperation
leverages the broadcast nature of the wireless medium, that is, the same
transmission can be heard by multiple nodes, thus opening up the possibil-
ity that nodes help one another to convey the messages to their intended
destination. Cooperation also promises to offer a smart way to manage in-
terference, instead of just simply disregarding it and treating it as noise.
Understanding how to properly design such cooperative wireless systems so
that the available resources are fully utilized is of fundamental importance.

The objective of this thesis is to conduct an information theoretic study
on practically relevant wireless systems where the network infrastructure
nodes cooperate among themselves in an attempt to enhance the network
performance in many critical aspects, such as throughput, robustness and
coverage. Wireless systems with half-duplex relay stations as well as sce-
narios where a base station overhears another base station and consequently
helps serving this other base station’s associated mobile users, represent the
wireless cooperative networks under investigation in this thesis.

The first part of the thesis is dedicated to the study of half-duplex relay
networks, where the downlink communication from a base station to a mobile
user is assisted by a series of relay stations, operating in time-division du-
plexing (at each point in time each relay either receives or transmits). First,
the single relay case is analyzed and its channel capacity is studied. In par-
ticular, the exact capacity of the linear deterministic channel is determined
and several transmission strategies are designed. These techniques, when
evaluated for the practically relevant Gaussian noise channel, are proven to
achieve the cut-set outer bound to within a constant gap, uniformly over all
channel gains. This analysis presents interesting insights and might be used
as a guideline to deploy a half-duplex relay station. Then, a network with a
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iv Abstract

general number N of half-duplex relays is considered for which fundamental
intrinsic structural properties are indentified that allow for a drastic (from
exponential in N to linear in N) simplification of the analysis. In such a net-
work, since each relay can either transmit or receive, there are 2N possible
listen / transmit configuration states. It is proven that for any memoryless
half-duplex N -relay network for which the cut-set bound is approximately
optimal to within a constant gap under some conditions (satisfied for ex-
ample by Gaussian noise networks), at most N + 1 states have a strictly
positive probability.

The second part of the thesis focuses on the study of the two-user causal
cognitive interference channel, where two transmitters aim to communicate
independent messages to two different receivers via a common channel. One
source, referred to as the cognitive source, is capable of overhearing the
other source, referred to as the primary source, through a noisy in-band
link and can hence assist in sending the primary’s data. Two different
modes of operation at the cognitive source are considered, namely full-
duplex, that is, when it can simultaneously transmit and receive over the
same time-frequency-space resources, and half-duplex. Different network
topologies are considered, corresponding to different interference scenarios:
the interference-symmetric scenario, where both destinations are in the cov-
erage area of the two sources and hence experience interference, and the
interference-asymmetric scenario, where one destination does not suffer from
interference. Novel outer bounds on the capacity region are derived and sev-
eral transmission strategies are designed. For each topology and mode of
operation at the cognitive source, the outer and inner bounds are evaluated
for the Gaussian noise channel and shown to be a constant number of bits
apart from one another.
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Chapter 1

Introduction

In this chapter, we first briefly intoduce the two network models analyzed
in this dissertation, namely the half-duplex relay network and the causal
cognitive interference channel, or the interference channel with unilateral
source cooperation. We then summarize relevant past information theoretic
results on these two scenarios and finally conclude the chapter with the thesis
outline and the list of contributions.

1.1 Motivation

The next major upgrade of fourth generation cellular networks will consist
of a massive deployment of radio infrastructure nodes, i.e., base stations and
relay stations. Radio infrastructure nodes will come in several flavors, char-
acterized primarily by their available bandwidth and number of concurrent
frequency channels on which they can simultaneously operate (spectrum
aggregation), the capacity of their backhaul links to the operator’s core net-
work (e.g., wireless, high throughput / low-latency wired interconnect, non
carrier-grade wired backhaul), their ability to collaborate with other simi-
lar nodes, and their coverage area and tolerance to interference. Enabling
physical layer cooperation among the infrastructure and the wireless nodes
is envisaged to be the key-ingredient of future cellular networks. The broad-
cast nature of the wireless medium, in fact, allows the same transmission
to be heard by multiple nodes, hence opening up the possibility the nodes

2
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assist one another to relay their message to the destination. Cooperation
promises to offer smart solutions to cope with and manage the interference,
to guarantee a fair and uniform mobile user quality of service within the
cell and to allow for a distributed and aggressive use of the spectrum. All
these factors are of extreme importance and it becomes therefore critical to
understand how to properly design such cooperative networks.

Since Shannon’s landmark work “A mathematical theory of communi-
cations”, information theory has played a central role in the evolution of
wireless communication systems. The core of information theory for wireless
networks is to provide fundamental insights for several key problems (such
as interference), by determining the ultimate performance limits of these
systems. This then, for many years, has motivated wireless researchers to
design techniques and transmission strategies through which these limits can
be as closely as possible approached.

In this thesis, we conduct an information theoretic study on two prac-
tically relevant classes of cooperative wireless systems, where the various
radio infrastructure nodes (base stations and relay stations), by leveraging
the broadcast nature of the wireless medium, cooperate between themselves
in an attempt to increase the network performance (e.g., throughput, cov-
erage, robustness). In particular, we focus on the half-duplex multi-relay
network and on the Causal Cognitive Interference Channel (CCIC), or the
Interference Channel (IC) with unilateral source cooperation.

The multi-relay network represents a fundamental example of a cooper-
ative wireless system [2], where several relay stations assist the over-the-air
communication from a source base station (connected to a network infras-
tructure) to a mobile user. Adding relaying stations to today’s cellular
infrastructure promises, in fact, to boost network performance in terms of
coverage, network throughput and robustness. Actually, relay nodes provide
extended coverages in targeted areas, offering a way through which the base
station can communicate with cell-edge users. Moreover, the use of relay
nodes may offer a cheaper and lower energy consumption alternative to in-
stalling new base stations, especially for regions where deployment of fiber
fronthaul solutions are impossible. Depending on the mode of operation,
relays are classified into two categories: Full-Duplex (FD) and Half-Duplex
(HD). A relay is said to operate in FD mode if it can receive and transmit si-
multaneously over the same time-frequency-space resource, and in HD mode
otherwise. Although higher performances can be attained with FD relays,
in commercial wireless networks the HD modeling assumption is at present
more practical than the FD one. This is so because practical restrictions arise
when a node can simultaneously transmit and receive, such as for example
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how well the self-interference can be canceled, making the implementation
of FD relays challenging [3–5]. It is therefore more realistic to assume that
the relay stations operate in HD mode, either in Frequency-Division Du-
plexing (FDD) or Time-Division Duplexing (TDD). In FDD, the relays use
one frequency band to transmit and another one to receive, while in TDD,
the relays listen for a fraction of time and then transmit in the remaining
time. We first analyze the single relay case, i.e., the classical relay channel
for which we seek to derive the ultimate capacity performance in the spirit
of [6]. Many interesting insights are provided on how the design of a HD
relay station should be properly carried out, which is an important practical
task for future cellular networks. We then consider a general number N of
HD relay stations. For such a network there are 2N possible listen-transmit
configuration states whose probability must be optimized. Due to the pro-
hibitively large complexity of this optimization problem (i.e., exponential in
the number of relays N) it is critical to identify, if any, structural properties
of such networks that can be leveraged in order to find optimal solutions
with limited complexity. By using properties of submodular functions and
Linear Programs (LPs), we seek to show that a practically relevant class
of HD multi-relay networks has indeed structural intrinsic properties which
allow for a remarkable (from exponential in N to linear in N) simplification
of the analysis.

The CCIC, or the IC with unilateral source cooperation, represents a par-
ticular aspect of future wireless networks, namely, a practical application of
the cognitive overlay paradigm [7]. It consists of one primary source PTx
(Primary Transmitter) and one cognitive / capable source CTx (Cognitive
Transmitter) which aim to reliably communicate with two different receivers,
namely the PRx (Primary Receiver) and the CRx (Cognitive Receiver), via
a common channel. Differently from the classical non-cooperative IC, in
the CCIC the CTx (thanks to advanced radio capabilities) is able to over-
hear the PTx through a noisy in-band link; the CTx can therefore exploit
this side information to enhance the rate performance of the two (primary
and cognitive) systems. The major and novel feature of the CCIC is the
concept of causal cognition / source cooperation, which represents both an
interference management tool and a practical model for the cognitive radio
technology. Actually, unilateral source cooperation offers a way to ‘smartly’
manage and cope with the interference. In today’s wireless systems, the
general approach to deal with interference is either to avoid it, by trying
to ‘orthogonalize’ (in time / frequency / space) the users’ transmission, or
to simply treat it as noise. However, these approaches may severely limit
the system capacity since a perfect user orthogonalization is not possible in
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practice 1. In contrast, in the CCIC the CTx, which can causally learn the
primary’s data through a noisy link, may protect both its own (by precoding
against some known interference) and the primary’s (by allocating some of
its transmission resources to assist the PTx to convey data to the PRx) in-
formation from interference. Thus, the transmission techniques designed for
the CCIC aim to leverage the structure of the interference, instead of just
simply disregarding it and treating it as noise. The CCIC also represents
a more practically relevant model for the cognitive overlay paradigm, com-
pared to the case where the CTx is assumed to a priori (before the transmis-
sion begins) know the message of the PTx [11], which may be granted only
in limited scenarios. In contrast, in the CCIC the CTx causally learns the
PTx’s data through a noisy link. Thus, the transmission techniques designed
for the CCIC account for the time the CTx needs for decoding and for the
(possible) further rate losses that may incur in decoding the PTx’s message
though a limited capacity and noisy link. We study different deployment
configurations, which correspond to different interference scenarios. In the
interference-symmetric scenario both destinations are in the coverage area
of the two sources; this implies that both destinations are interfered. In
the interference-asymmetric scenario, one destination does not suffer from
interference; in this case one of the interfering links is absent. Due to the
asymmetry in the cooperation, two interference-asymmetric scenarios must
be considered: the Z-channel, where the link from the PTx to the CRx is
non-existent (i.e., the CRx is out of the range of the PTx) and the S-channel,
where the link from the CTx to the PRx is non-existent (i.e., the PRx is out
of the range of the CTx). We further assume two different modes of opera-
tion at the CTx, namely FD (i.e., the CTx can simultaneously receive and
transmit over the same time-frequency-space resource) and HD TDD (i.e.,
in each time slot, the CTx listens for a fraction of time and then transmits

1A well-known example on how ‘treating interference as noise’ severely limits the
system capacity is given by an ad-hoc network where n randomly located pairs of devices
aim to communicate. In [8] the authors showed that, if each node decodes only the signal
of the closest neighbor (by treating all the other signals as noise) the rate per source-
destination pair decreases to zero as O (1/

√
n) for dense networks (i.e., when the area is

fixed and n → ∞). In [9], this scaling law was proven to be information theoretically
optimal for extended networks (when n is fixed and the area increases linearly with n) in
high attenuation (i.e., for a path loss exponent α > 4). In [10], Özgür et al. showed a
novel scaling law for dense networks and extended networks in low attenuation: if nodes
can cooperate, then the total capacity of the network scales with n, i.e., the rate of each
source-destination pair is not impaired as n increases. This was accomplished through a
novel hierarchical cooperation architecture, where nodes within the same cluster cooperate
in delivering the messages to their destinations.
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in the remaining time). For each topology we study the ultimate capacity
performance in the spirit of [6, 12], by deriving novel outer bounds on the
capacity region and by designing transmission strategies which are provably
approximately optimal for the Gaussian noise channel.

1.2 Background

1.2.1 Half-Duplex Relay Networks

The relay channel model, where a source communicates with a destina-
tion with the help of one relay station, was first introduced by van der
Meulen [13] in 1971. Despite the significant research efforts, the capacity
of the general memoryless relay channel is still unknown. In their semi-
nal work [14], Cover and El Gamal proposed a general outer bound, now
known as the max-flow min-cut outer bound or cut-set for short, and two
achievable schemes: Decode-and-Forward (DF) and Compress-and-Forward
(CF). In DF, the relay fully decodes the message sent by the source and
then coherently cooperates with the source to communicate this informa-
tion to the destination. In CF, the relay does not attempt to recover the
source message, but it just compresses the received signal and then sends it
to the destination. The combination of DF and CF is still the largest known
achievable rate for a general memoryless relay channel. The cut-set outer
bound was shown to be tight for the degraded relay channel, the reversely
degraded relay channel and the semi-deterministic relay channel [14], but it
is not tight in general [15]. The pioneering work of [14] has been extended
to networks with multiple relays. In [16], the authors proposed several in-
ner and outer bounds for FD relay networks as a generalization of DF, CF
and the cut-set bound; it was shown that DF achieves the ergodic capac-
ity of a wireless Gaussian network with uniform phase fading if the phase
information is locally available and the relays are close to the source node.

Although more study has been conducted for FD relays, there are some
important references treating HD ones. In [17], the author studied the TDD
relay channel. Both an outer bound, based on the cut-set argument, and
an inner bound, based on Partial DF (PDF), a generalization of DF where
the relay only decodes part of the message sent by the source, were derived.
In [17], the time instants at which the relay switches from listen to transmit
and vice versa were assumed to be fixed, i.e., a priori known by all the nodes;
we refer to this mode of operation as deterministic switch. In [18], Kramer
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showed that higher rates can be achieved by considering a random 2 switch
at the relay. In this way the randomness that lies into the switch may be
used to transmit (at most 1 bit per channel use of) further information to the
destination. In [18], it was also shown how the memoryless FD framework
incorporates the HD one as a special case, and as such there is no need to
develop a separate theory for networks with HD nodes.

The exact characterization of the capacity region of a general memoryless
network is challenging. Recently it has been advocated that progress can
be made towards understanding the capacity by showing that achievable
strategies are provably close to (easily computable) outer bounds [6]. As
an example, in [19], the authors studied FD Gaussian relay networks with
N + 2 nodes (i.e., N relays, a source and a destination) and showed that
the capacity can be achieved to within

PN+2
k=1 5min{Mk, Nk} bits with a

network generalization of CF named Quantize-reMap-and-Forward (QMF),
where Mk and Nk are the number of transmit and receive antennas, respec-
tively, of node k. Recently, for single antenna networks with N FD relays,
the 5(N + 2) bits gap of [19] was reduced to 2 ⇥ 0.63(N + 2) bits (where
the factor 2 accounts for complex-valued inputs) thanks to a novel ingenious
generalization of CF named Noisy Network Coding (NNC) [20]. The gap
characterization of [20] is valid for a general Multicast Gaussian Network
(MGN) with FD nodes; the gap grows linearly with the number of nodes
in the network, which could be a too coarse capacity characterization for
networks with a large number of nodes. Smaller gaps can be obtained for
more structured networks. For example, a diamond network [21] consists of
a source, a destination and N relays where the source and the destination
can not communicate directly and the relays can not communicate among
themselves. In other words, a general Gaussian relay network with N relays
is characterized by (N + 2)(N + 1) generic channel link gains, while a dia-
mond network has only 2N non-zero channel link gains. In [21] the case of
N = 2 relays was studied and an achievable region based on time sharing be-
tween DF and Amplify-and-Forward (AF) was proposed. In [22], the authors
considered two specific configurations of a diamond network with a general
number of relays (agents), where the relay-destination links were assumed
to be lossless; in the first scenario the relays do not have decoding capabili-
ties, while in the second scenario they do. Upper and lower bounds on the
capacity were derived and evaluated for the Gaussian noise channel. More-
over the capacity of the deterministic channel when the relays can decode

2Since the relay’s state (either listen or transmit) is part of the codebook, random

switch can equivalently be referred to as coded switch.
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was characterized. The scenarios of [22] were further studied in [23] under
the assumption of lossy relay-destination links and where each source-relay
link and relay-destination link is a binary-symmetric channel. In [24], the
authors analyzed the Gaussian diamond network with a direct link between
the source and the destination and showed that ‘uncoded forwarding’ at the
relays asymptotically achieves the cut-set upper bound when the number
of relays goes to infinity. This strategy simply requires that each relay de-
lays the input of one time unit and scales it to satisfy the power constraint.
In general, the capacity of the Gaussian FD diamond network is known to
within 2 log(N + 1) bits [25], [26], i.e., the simplified (and sparse) diamond
topology allows for a gap reduction from linear [20] to logarithmic [25], [26].
If, in addition, the network is symmetric, that is, all source-relay links are of
the same strength and all relay-destination links are of the same strength,
the gap is less than 3.6 bits for any N [27].

Interestingly, the gap result of [19] remains valid for static and ergodic
fading networks where the nodes operate either in FD mode or in HD mode;
however [19] did not account for random switch in the outer bound. In
[28], the authors demonstrated that the QMF scheme can be realized with
nested lattice codes. Moreover, they showed that for HD networks with N
relays, by following the approach of [18], i.e., by also accounting for random
switch in the outer bound, the cut-set outer bound is achievable to within
N + 4

PN
k=1Mk + (2 + log(2))

PN
k=1Nk bits, with Mk and Nk being the

number of antennas used to receive and transmit at the k-th relay; in the
special case of single-antenna nodes this gap reduces to 5N . In [29], the
authors established capacity expressions of the error-free half-duplex line
network, i.e., a relay network where a source, a certain number of relays and
a destination are arranged on a line and communication takes place only
between adjacent nodes. In particular, in [29, Theorem 1] they characterized
the capacity of the line network with a single source-destination pair, in [29,
Theorem 2] they found an explicit capacity expression when the number of
relays goes to infinity and in [29, Theorem 3] they characterized the capacity
of the line network where each relay can act as a source if the rates of the
relay sources fall below certain thresholds. All these capacity results were
proved by using a random switch at each relay. In [30, Theorems 3.1, 3.2],
the capacity of the deterministic line network with two sources, i.e., when
either the second relay (in [30, Theorem 3.1]) or the last relay in the line
(in [30, Theorem 3.2]) is the second source, was characterized; also in these
scenarios the cut-set upper bound is achieved if the relays randomly switch
from listen to transmit. In general, finding the capacity of a single-antenna
HD multi-relay network is a combinatorial problem since the cut-set upper
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bound is the minimum between 2N bounds (one for each possible cut in the
network), each of which is a linear combination of 2N relay states (since
each relay can either transmit or receive). For a diamond network with
N = 2 relays, [31] showed that, out of the 2N = 4 possible states, at most
N + 1 = 3 states suffice to achieve the cut-set bound to within less than
4 bits. We refer to the states with a strictly positive probability as active
states. The achievable scheme of [31] is a clever extension of the two-hop
DF strategy of [32]. In [31] a closed-form expression for the aforementioned
active states, by assuming no power control and deterministic switch, was
derived by solving the dual LP associated with the LP derived from the
cut-set bound. The work in [33] studied a Gaussian diamond network with
N = 2 relays and an ‘antisymmetric’ Gaussian diamond network with N = 3
relays and showed that a significant fraction of the capacity can be achieved
by: (i) selecting a single relay, or (ii) selecting two relays and allowing them
to work in a complementary fashion as in [31]. Inspired by [31], the authors
of [33] also showed that, for a specific HD diamond network with N = 3
relays, at most N + 1 = 4 states, out of the 2N = 8 possible ones, are
active. The authors also numerically verified that for a general Gaussian HD
diamond network with N  7 relays, at most N + 1 states are active and
conjectured that the same holds for any number N of relays. In [34], this
conjecture was proved for single-antenna Gaussian HD diamond networks
with N  6 relays; the proof is by contradiction and uses properties of
submodular functions and LP duality but requires numerical evaluations;
for this reason the authors could only prove the conjecture for N  6, since
for larger values of N “the computational burden becomes prohibitive” [34].

HD relay networks were also studied in [35], where an iterative algorithm
was proposed to determine the optimal fraction of time each HD relay trans-
mits/receives by using DF with deterministic switch. In [36] the authors
proposed a ‘grouping’ technique to find the relay schedule that maximizes
the approximate capacity of certain Gaussian HD relay networks, including
for example layered networks; since finding a good node grouping is com-
putationally complex, the authors proposed an heuristic approach based on
tree decomposition that results in polynomial-time algorithms; as for dia-
mond networks in [33], the low-complexity algorithm of [36] relies on the
‘simplified’ topology of certain networks.

1.2.2 The Interference Channel with Source Cooperation

The presence of a lossy communication link between the PTx and the CTx
enables the CTx to cooperate with the PTx. The CTx, in fact, through this
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noisy channel overhears the signal sent by the PTx and gathers information
about the PTx’s message, which serves as the basis for unilateral cooperation
between the two sources. Unilateral source cooperation is a special case of
the IC with generalized feedback, or bilateral source cooperation. The CCIC
also represents a practical scenario for cognitive radios, where one source
has superior capabilities with respect to the other source. Moreover, closely
related to the IC with unilateral source cooperation is the classical output
feedback model, where the received signal is sent back through a perfect or
noisy channel from one receiver to the corresponding transmitter. Lately,
these scenarios have received significant attention, as summarized next.

Non-cooperative IC. The capacity region of the classical non-cooperative
IC is not known in general. The only case for which the capacity is known is
the strong interference regime [37,38], where the interfering / cross links are
of a better quality with respect to the direct links. The largest achievable
rate region is due to Han and Kobayashi [39]. In the transmission strategy
proposed in [39], each source splits its message into two parts, i.e., a common
message, decoded also at the non-intended receiver and a private message,
treated as noise at the non-intended receiver. In [40], the Han-Kobayashi
scheme was shown to be optimal for a class of deterministic discrete mem-
oryless ICs for which the receiver outputs and the interferences are a deter-
ministic function of the channel inputs. In [12], the authors evaluated the
rate region of [39] for the practically relevant Gaussian noise channel. They
showed that, by setting the power of the private message in such a way it is
received at most at the level of the noise at the non-intended receiver, the
corresponding achievable rate region is to within 1 bit of the capacity.

FD IC with bilateral source cooperation. Bilateral source coopera-
tion has been actively investigated recently. Host-Madsen [41] first studied
outer and inner bounds on the capacity for the Gaussian IC with either
source or destination bilateral cooperation. Regarding the outer bound, the
author in [41] evaluated the different cut-set upper bounds and then tight-
ened the sum-rate upper bound by extending the sum-rate outer bounds
originally developed by Kramer [42] for the Gaussian non-cooperative IC
in weak and strong interference to the cooperative case. The lower bound
region of [41] was derived by designing a scheme based on Gelfand-Pinsker’s
binning [43] (i.e., Dirty Paper Coding (DPC) in Gaussian noise [44]) and
superposition encoding, DF relaying and joint decoding. Tuninetti [45] de-
rived a general outer bound for the IC with bilateral source cooperation by
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extending Kramer’s Gaussian noise sum-rate upper bounds in [42, Theo-
rem 1] to any memoryless IC with source cooperation, and more recently
to any form of source and destination cooperation [46]. Prabhakaran and
Viswanath [47] extended the idea of [12, Theorem 1] to derive a sum-rate
outer bound for a class of Injective Semi-Deterministic (ISD) IC with bilat-
eral source cooperation in the spirit of the work by Telatar and Tse [48],
and evaluated it for the Gaussian channel with independent noises (this as-
sumption is not without loss of generality when cooperation and feedback
are involved). Tandon and Ulukus [49] derived an outer bound for the IC
with bilateral source cooperation based on the dependence-balance idea of
Hekstra and Willems [50] and proposed a novel method to evaluate it for
the Gaussian channel with independent noises.

The largest known achievable rate region for general bilateral source
cooperation, to the best of our knowledge, is the one presented in [51, Section
V]. In [51, Section V] each source splits its message into two parts, i.e., a
common and a private message, as in the Han-Kobayashi’s scheme for the
non-cooperative IC [39]; these two messages are further sub-divided into
a non-cooperative and a cooperative part. The non-cooperative messages
are transmitted as in the non-cooperative IC [39], while the cooperative
messages are delivered to the destinations by exploiting the cooperation
among the two sources. In [51, Section V] each source, e.g. source 1, after
learning the cooperative messages of source 2, sends the common cooperative
message of source 2 and uses Gelfand-Pinsker’s binning [43] against the
private cooperative message of source 2 in an attempt to rid its own receiver
of this interference. The achievable scheme in [51, Section V] uses PDF
for cooperation. A possibly larger achievable region could be obtained by
including CF as cooperation mechanism as in [14] for the relay channel.

For the two-user Gaussian noise IC with bilateral source cooperation, un-
der the assumption that the cooperation links have the same strength, the
scheme of [51, Section V] was sufficient to match the sum-capacity upper
bounds of [45,47] to within a constant gap [47,52]. In particular, [47] char-
acterized the sum-capacity to within 19 bits of the IC with bilateral source
cooperation under the condition that the cooperation links have the same
strength, but otherwise arbitrary direct and interfering links. The gap was
reduced to 2 bits in the ‘strong cooperation regime’ in [52] with symmetric
direct links, symmetric interfering links and symmetric cooperation links.

FD IC with unilateral source cooperation. Unilateral source coop-
eration is clearly a special case of the general bilateral cooperation case
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where the cooperation capabilities of the two sources are not restricted to
be the same. This case has been specifically considered in [53] where the
cooperating transmitter works either in FD or in HD mode. The authors
of [53] evaluated the performance of two achievable schemes: one that ex-
ploits PDF and binning and a second one that extends the first by adding
rate splitting. It was observed, through numerical evaluations, that the pro-
posed inner bounds are not too far from the outer bound of [49] for certain
Gaussian noise channels. An extension of the IC with unilateral source co-
operation was studied in [54], where it was assumed that at any given time
instant the cognitive source has a non-causal access to L ≥ 0 future chan-
nel outputs. The case L = 0 corresponds to the strictly causal case, while
the case L ! 1 to the ideal non-causal Cognitive Interference Channel
(CIC) [11]. The authors of [54] derived potentially tighter outer bounds on
the capacity of the CCIC channel (i.e., case L = 0) than those of [45, 47]
specialized to unilateral source cooperation; unfortunately it is not clear how
to evaluate these bounds in Gaussian noise because they are expressed as
a function of auxiliary random variables jointly distributed with the inputs
and for which no cardinality bounds on the corresponding alphabets are
known. The achievable region in [54, Corollary 1] is also no smaller than
the region in [51, Section V] specialized to the case of unilateral source co-
operation (see [54, Remark 2, point 6]). Although [54, Corollary 1] is, to
the best of our knowledge, the largest known achievable region for the gen-
eral memoryless IC with unilateral cooperation, its evaluation in general is
quite involved as the rate region is specified by 9 jointly distributed auxil-
iary random variables and by 30 rate constraints. In [54] inner bounds were
compared numerically to the 2⇥2 Multiple Input Multiple Output (MIMO)
outer bound for the Gaussian CCIC; the 2⇥2 MIMO outer bound is loose in
general compared to the bounds in [41,45,47]. Although it was noted in [54]
that, for the simulated set of channel gains, the proposed bounds are not far
away from one another, a performance guarantee in terms of (sum-)capacity
to within a constant gap was not given.

HD IC with source cooperation. HD cooperation can be studied as a
special case of FD cooperation by using the formalism of [18]. This approach
is usually not followed in the literature, often making imprecise claims about
capacity and Gaussian capacity to within a constant gap. In [55], the sum-
capacity of the Gaussian IC with HD source cooperation and deterministic
switch was characterized to within 20 bits and 31 bits for the case of sym-
metric (direct, interference and cooperation links) bilateral and general uni-
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lateral cooperation, respectively. These approximately optimal schemes are
inspired by the Linear Deterministic Approximation (LDA) of the Gaussian
noise channel at high Signal-to-Noise Ratio (SNR). The LDA, first proposed
in [19] in the context of relay networks, captures in a simple deterministic
way the interaction between interfering signals of different strengths. In the
LDA the effect of the noise is neglected and the signal interaction is mod-
eled as bit-wise additions. Thereby, this simplification allows for a complete
characterization of the capacity region in many instances where the capacity
of the noisy channel counterpart is a long standing open problem.

IC with output feedback. In [56], Suh and Tse studied the Gaussian
IC where each source has a perfect output feedback from the intended des-
tination. The authors characterized the capacity of this system to within
2 bits and showed that feedback provides a generalized Degrees-of-Freedom
(gDoF) gain, and thus an unbounded rate gain, with respect to the classical
(i.e., with no feedback) IC. It was proved, see [56, Theorems 2-3], that the
capacity region has constraints on the single rates and on the sum-rate, but
not bounds of the type 2Rp +Rc and Rp + 2Rc (where Rp, respectively Rc,
is the transmission rate for the PTx, respectively CTx), which appear in the
capacity region of the classical Gaussian IC [12]. The authors interpreted the
bounds on 2Rp +Rc and Rp +2Rc in the capacity region of the classical IC
as a measure of the amount of ‘resource holes’, or system underutilizations,
due to the distributed nature of the non-cooperative IC. In other words,
output feedback eliminates these ‘resource holes’ and the system resources
are fully utilized. In [57], the symmetric Gaussian IC with all 9 possible
output feedback configurations was analyzed. The authors proved that the
bounds derived in [56] suffice to approximately (i.e., to within a constant
gap) characterize the capacity of all the 9 configurations except for the case
where only one source receives feedback from the corresponding destination,
i.e., the ‘single direct-link feedback model / model (1000)’. For this model,
in [57] it was shown that an outer bound of the type 2Rp +Rc is needed to
capture the fact that the second source (whose transmission rate is Rc) does
not receive feedback. In the language of [56] we thus have that the ‘single
direct-link feedback’ does not suffice to cover all the ‘resource holes’ whose
presence is captured by the bound on 2Rp+Rc. The authors of [57] derived
a novel outer bound on 2Rp + Rc for the ISD model (1000) with indepen-
dent noises and showed it is active for the Gaussian noise case. In [58], the
authors characterized the capacity of the two-user ‘symmetric linear deter-
ministic IC with partial feedback’, where only some bits are received at the
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transmitter as feedback from the corresponding receiver. In [59], the same
authors evaluated the bounds for the symmetric Gaussian noise channel and
proved that they are at most 11.7 bits far from one another, universally over
all channel parameters. The capacity characterization was accomplished by
deriving novel outer bounds on 2Rp+Rc and Rp+2Rc that rely on carefully
chosen side information random variables tailored to the symmetric Gaus-
sian setting and whose generalization to non-symmetric or non-Gaussian
scenarios does not apper straightforward.

Non-causal cognitive radio channel. The cognitive radio channel is
commonly modeled following the pioneering work of Devroye et al. [11] in
which the superior capabilities of the cognitive source are modeled as perfect
non-causal, i.e., before transmission begins, knowledge of the PTx’s message
at the CTx. For this non-causal model, the capacity is exactly known when
the PRx experiences weak interference [60,61] and in the strong interference
regime [62]. For the other operating regimes, to the best of our knowledge,
the largest known achievable rate region is the one presented in [63, Theorem
7], which in [64] was evaluated for the Gaussian noise case and shown to be
at most 1 bit apart from an outer bound region characterized by constraints
on the single rates and on the sum-rate. In other words, the capacity region
of the non-causal model does not have bounds on 2Rp + Rc and Rp + 2Rc,
i.e., the assumption of full a priori knowledge of the PTx’s message at the
CTx allows to fully exploit the available system resources.

1.3 Contributions of this dissertation

In this thesis we analyze two practically relevant wireless channel models
with nodes cooperation, namely the HD relay network and the CCIC, or the
IC with unilateral source cooperation. These two scenarios are studied into
two different parts, namely Part I and Part II, respectively. In particular,
our analysis makes use of information theoretic and graph theoretic tools.
Properties on submodular functions and linear programming are also used.

This thesis resulted in 13 conference papers and 6 journal papers, all
currently under submission or already published by IEEE. Parts of these
works are reprinted next with permission from IEEE.

1.3.1 Part I

In Part I, we study the HD relay network where the communication between
a source and a destination is assisted by N relay stations operating in HD.
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In particular,

Chapter 2. In Chapter 2, we analyze the practically relevant Gaussian
noise case for N = 1, i.e., the Gaussian relay channel, whose exact capacity
is unknown. We make progress toward determining its capacity by charac-
terizing its gDoF in closed-form and proving a constant gap result. We also
propose a scheme inspired by the LDA, which is provably asymptotically
optimal. Our main contributions can be summarized as follows:

1. We determine the exact capacity of the LDA channel: we show that
random switch and correlated non-uniform input bits at the relay are
optimal. We also show that deterministic switch is at most 1 bit from
optimal.

2. We derive the gDoF for the Gaussian relay channel in closed-form: we
show that both PDF and CF are gDoF optimal, both with determinis-
tic and with random switch at the relay. We also show that a scheme
inspired by the LDA with deterministic switch is gDoF optimal.

3. For the Gaussian noise case, we prove that the above transmission
strategies are optimal to within a constant gap, uniformly over all
channel parameters. In particular, PDF is optimal to within 1 bit, CF
to within 1.61 bits, and the scheme inspired by the LDA to within 3 bits.
In all cases, the gap is smaller than the one of 5 bits available in the
literature for the case of one relay [28].

4. For the three coding schemes, we obtain a closed-form expression for
the approximately optimal schedule (i.e., duration of the transmit-
and receive-phases at the relay) with deterministic switch. This result
sheds light on the design of a HD relay node in future wireless networks.

5. We prove that PDF with random switch is exactly optimal for the
general memoryless line network, i.e., when the direct link between
the source and the destination is absent. A closed-form expression for
the optimal input distribution with random switch policy is however
not available.

Publications related to this chapter are:

• [65] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay channels: generalized degrees of freedom and constant gap
result”, in 2013 IEEE International Conference on Communications
(ICC 2013), Budapest (Hungary), June 2013.
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• [66] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “The capacity
to within a constant gap of the Gaussian half-duplex relay channel”,
in 2013 IEEE International Symposium on Information Theory (ISIT
2013), Istanbul (Turkey), July 2013.

• [67] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaus-
sian half-duplex relay channel”, in IEEE Transactions on Information
Theory, Volume 60, Issue n.5, May 2014, Pages 2542-2562.

A practical implementation of the transmission strategy inspired by the
LDA can be found in

• [68] R. Thomas, M. Cardone, R. Knopp, D. Tuninetti, B. T. Ma-
haraja, “An LTE implementation of a novel strategy for the Gaussian
half-duplex relay channel”, to appear in 2015 IEEE International Con-
ference on Communications (ICC 2015), London (United Kingdom),
June 2015.

Chapter 3. In Chapter 3, we study the HD relay network with a general
number N of relays, by following the approach proposed in [18]. Our main
contributions can be summarized as follows:

1. For the practically relevant Gaussian noise case, we prove that NNC
with deterministic switch achieves the cut-set bound (properly evalu-
ated to account for random switch) to within 1.96(N + 2) bits. This
gap is smaller than the 5N bits gap available in the literature [28]. Our
gap result for a HD relay network is obtained as a special case of a
more general result for a HD MGN, which extends the 1.26 bits/node
gap for the FD case [20] to a 1.96 bits/node gap for the HD case. We
also show that this gap result extends to the case of multi-antenna
nodes and is of 1.96 bits per channel use per antenna.

2. In order to determine the gDoF of the Gaussian channel, one needs
to find a tight high-SNR approximation for the different mutual in-
formation terms involved in the cut-set upper bound. As a result of
independent interest, beyond its application to the Gaussian relay net-
work studied in this chapter, we show that such tight approximations
can be found as the solution of MaximumWeighted Bipartite Matching
(MWBM) problems, or assignment problems [69], for which efficient
polynomial-time algorithms, such as the Hungarian algorithm [70], ex-
ist. As an example, we show that this technique is useful to derive the
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gDoF of Gaussian broadcast networks with and without relays and to
solve user scheduling problems.

3. We prove Brahma et al.’s conjecture [33] beyond Gaussian networks
with a diamond topology. In particular, we show that for any HD net-
work with N relays, with independent noises and for which the cut-set
bound is approximately optimal to within a constant under certain
assumptions, the (approximately) optimal relay policy is simple, i.e.,
at most N + 1 states (out of the 2N possible ones) have a strictly
positive probability. The key idea is to use the Lovász extension and
the greedy algorithm for submodular polyhedra to highlight structural
properties of the minimum of a submodular function. Then, by using
the saddle-point property of min-max problems and the existence of
optimal basic feasible solutions for LPs, an (approximately) optimal
relay policy with the claimed number of active states can be shown.
Gaussian noise relay networks satisfy all the assumptions and thus ad-
mit a simple schedule. More importantly, when the nodes are equipped
with multiple antennas and the antennas at the relays may be switched
between transmit and receive modes independently of one another, the
schedule has at most N+1 active states (as in the single-antenna case),
regardless of the total number of antennas in the system.

4. We finally consider two network examples: for the first scenario, con-
sisting of N = 2 single-antenna relays, we highlight under which chan-
nel conditions a best-relay selection scheme is strictly suboptimal in
terms of gDoF and we gain insights into the nature of the rate gain
attainable in networks with multiple relays; for the second scenario,
consisting of N = 1 relay equipped with 2 antennas, we show that
independently switching the 2 antennas at the relays not only achieves
in general strictly higher rates compared to using the antennas for the
same purpose, but can actually provide a strictly larger pre-log factor.

Publications related to this chapter are:

• [71] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay networks: improved gap and a connection with the as-
signment problem”, in 2013 IEEE Information Theory Workshop (ITW
2013), Seville (Spain), September 2013.

• [72] M. Cardone, D. Tuninetti, R. Knopp, “On user scheduling for
maximum throughput in K-user MISO broadcast channels”, to ap-
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pear in 2015 IEEE International Conference on Communications (ICC
2015), London (United Kingdom), June 2015.

• [73] M. Cardone, D. Tuninetti, R. Knopp, “The approximate optimal-
ity of simple schedules for half-duplex multi-relay networks”, to appear
in 2015 IEEE Information Theory Workshop (ITW 2015), Jerusalem
(Israel), May 2015.

• [74] M. Cardone, D. Tuninetti, R. Knopp, “Gaussian MIMO half-
duplex relay networks: approximate optimality of simple schedules”, to
appear in 2015 IEEE International Symposium on Information Theory
(ISIT 2015), Hong Kong, June 2015.

• [75] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay networks: improved constant gap and connections with
the assignment problem”, in IEEE Transactions on Information The-
ory, Volume 60, Issue n.6, June 2014, Pages 3559-3575.

• [76] M. Cardone, D. Tuninetti, R. Knopp,“On the optimality of simple
schedules for networks with multiple half-duplex relays”, submitted to
IEEE Transactions on Information Theory, December 2014.

1.3.2 Part II

In Part II, we study the CCIC, or the IC with unilateral source cooperation,
which consists of two source-destination pairs sharing the same channel and
where the CTx overhears the PTx through a lossy communication link and
can hence allocate some of its transmission resources to assist the commu-
nication of the primary pair. In particular,

Chapter 4. In Chapter 4, we consider FD mode of operation at the cog-
nitive source, i.e., the CTx can receive and transmit simultaneously over
the same time-frequency-space resources. Our main contributions can be
summarized as follows:

1. We develop a general framework to derive outer bounds of the type
2Rp + Rc and Rp + 2Rc on the capacity of the general ISD CCIC
when the noises at the different source-destination pairs are indepen-
dent; this framework includes for example feedback from the intended
destination. As a special case, we recover and strengthen the bounds
derived in [47, 57]. The key technical ingredient is the proof of two
Markov chains.
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2. We design a transmission strategy for the general memoryless CCIC
and we derive its achievable rate region. The proposed scheme uses
superposition and binning encoding, PDF relaying and simultaneous
decoding at the receivers. Since the CCIC shares common features
with the classical non-cooperative IC [39], both common and pri-
vate messages are used. Moreover, we use both cooperative and non-
cooperative messages for the PTx, while the messages of the CTx are
only non-cooperative.

3. We evaluate the outer bound and the achievable rate regions for the
practically relevant Gaussian noise channel. We prove that for the
symmetric case, i.e., when the two direct links and the two cross /
interfering links are of the same strength, for the Z-channel, i.e., when
the link from the PTx to the CRx is absent, and for the S-channel, i.e.,
when the link from the CTx to the PRx is absent, the achievable region
is a constant (uniformly over all channel gains) number of bits apart
from the outer bound region. Interestingly, we show that the capacity
regions of the two asymmetric scenarios (i.e., the Z-channel and the
S-channel) do not have bounds of the type 2Rp + Rc and Rp + 2Rc,
i.e., unilateral cooperation allows for a full utilization of the channel
resources. On the other hand, we prove that the two novel outer
bounds of the type 2Rp+Rc and Rp+2Rc are active for the symmetric
channel in weak interference and when the cooperation link is weaker
than the direct link, i.e., for this regime unilateral cooperation is too
weak and leaves some system resources underutilized.

4. The constant gap results imply the exact knowledge of the gDoF for
the Z-, S- and symmetric channels. We identify the parameter regimes
where the Gaussian CCIC (both with symmetric and asymmetric con-
figurations) is equivalent in terms of gDoF to the non-cooperative
Gaussian IC [12] (i.e., unilateral cooperation might not be worth imple-
menting in practical systems) and to the Gaussian non-causal CIC [64]
(i.e., unilateral causal cooperation attains the ultimate limit of cogni-
tive radio technology). These comparisons shed lights into the param-
eter regimes and network topologies that in practice might provide
an unbounded throughput gain compared to currently available (non-
cognitive) technologies.

Publications related to this chapter are:

• [77] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Approximate
sum-capacity of full- and half-duplex asymmetric interference channels
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with unilateral source cooperation”, in 2013 Information Theory and
Applications Workshop (ITA 2013), San Diego (USA), February 2013.

• [78] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the interfer-
ence channel with causal cognition”, in 2013 IEEE International Con-
ference on Communications (ICC 2013), Budapest (Hungary), June
2013.

• [79] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaussian
interference channel with unilateral generalized feedback”, in 6th In-
ternational Symposium on Communications, Control and Signal Pro-
cessing (ISCCSP 2014), Athens (Greece), May 2014.

• [80] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the capacity
of full-duplex causal cognitive interference channels to within a con-
stant gap”, in 2014 IEEE International Conference on Communications
(ICC 2014), Sydney (Australia), June 2014.

• [81] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “New outer
bounds for the interference channel with unilateral source coopera-
tion”, in 2014 IEEE International Symposium on Information Theory
(ISIT 2014), Honolulu (Hawaii), July 2014.

• [82] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the capac-
ity of the two-user Gaussian causal cognitive interference channel”, in
IEEE Transactions on Information Theory, Volume 60, Issue n.5, May
2014, Pages 2512-2541.

• [83] M. Cardone, D. Tuninetti, R. Knopp, “The two-user causal cogni-
tive interference channel: novel outer bounds and constant gap result
for the symmetric Gaussian noise channel in weak Interference”, sub-
mitted to IEEE Transactions on Information Theory, March 2014.

Chapter 5. In Chapter 5, we consider HD mode of operation at the cog-
nitive source, i.e., in each time slot the CTx listens for a fraction of time
and then transmits in the remaining time. Our main contributions can be
summarized as follows:

1. We characterize the sum-capacity to within a constant gap for the
Gaussian symmetric Z-channel, the Gaussian symmetric S-channel
and the symmetric fully-connected Gaussian HD-CCIC; this is accom-
plished by adapting the sum-capacity outer bounds for FD unilateral
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cooperation in Chapter 4 to the case of HD unilateral cooperation by
using the framework of [18], i.e., by properly accounting for random
switch at the CTx, and by designing novel transmission strategies in-
spired by the LDA of the Gaussian noise channel at high SNR. In
particular, the gap is of 5 bits/user for the symmetric case and of 3
bits/user for the symmetric Z-channel and the symmetric S-channel.
We remark that these gap results not only, differently from [55], are
derived by properly accounting for random switch at the CTx, but
they are also smaller than those derived in [55].

2. Using the LDA model, we obtain a closed-form expression for the
gDoF and for the different optimization variables (e.g., schedule, power
splits, coding schemes and corresponding decoding orders, etc.). This
result sheds light on how the design of the HD CTx should be properly
carried out, which is an important practical task for future wireless
networks.

3. As done for the FD case in Chapter 4, we compare the gDoF of the
Gaussian HD-CCIC with that of: (i) the classical non-cooperative IC,
i.e., where there is no cooperation among the nodes [12], and (ii) the
non-causal CIC, i.e., where the CTx has a non-causal knowledge of
the PTx’s message [64]. In particular, we find the parameter regimes
where HD unilateral cooperation does not yield benefits compared to
the non-cooperative IC [12], and those where it attains the ultimate
performance limits of the non-causal CIC [64]. Interestingly, we show
that in the regimes where the Gaussian HD-CCIC outperforms the
non-cooperative IC the cooperation link must be able to reliably con-
vey a rate larger than the sum-capacity of the corresponding non-
cooperative IC.

4. We finally identify the regimes where a loss, in terms of gDoF, incurs
by using HD mode of operation at the CTx with respect to the FD
case analyzed in Chapter 4. These losses might motivate the use of a
more expensive CTx with FD capabilities in future wireless networks
in these regimes.

Publications related to this chapter are:

• [84] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “The symmetric
sum-capacity of the Gaussian half-duplex causal cognitive interference
channel to within a constant gap”, in 2013 IEEE International Sym-
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posium on Information Theory (ISIT 2013), Istanbul (Turkey), July
2013.

• [85] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaus-
sian interference channel with half-duplex causal cognition”, in IEEE
Journal on Selected Areas in Communications, Volume 32, Issue n.11,
November 2014, Pages 2177-2189.
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Chapter 2

Half-Duplex Relay Channel

In this chapter, we study the HD relay channel. Our main contributions can
be summarized as follows: (i) we determine the exact capacity of the LDA
channel; (ii) we show that, for the Gaussian noise case, the cut-set outer
bound is achievable to within a constant gap by PDF and CF, evaluated both
with deterministic and random switch; (iii) we design an ‘optimal to within
a constant gap’ scheme inspired by the LDA of the Gaussian noise channel
at high SNR; (iv) we prove that PDF with random switch is exactly optimal
when the direct link is absent.

2.1 System model

2.1.1 General memoryless channel

A general memoryless relay network has one source (node 0), one destination
(node N + 1), and N 1 relays indexed from 1 to N . It consists of N + 1
input alphabets (X1, · · · ,XN ,XN+1) (here Xi is the input alphabet of node i
except for the source / node 0 where, for notation convenience, we use XN+1

rather than X0), N +1 output alphabets (Y1, · · · ,YN ,YN+1) (here Yi is the
output alphabet of node i), and a transition probability PY[1:N+1]|X[1:N+1]

.

The source has a message W uniformly distributed on [1 : 2nR] for the

1Even if this chapter focuses on the single relay case, we here define the channel model
for the general case of N relays, since we will adopt the same model in the next chapter.

25



26 Chapter 2 Half-Duplex Relay Channel

Tx1
W Ŵ
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Figure 2.1: The general memoryless HD relay channel.

destination, where n denotes the codeword length and R the transmission
rate in bits per channel use. At time i, i 2 [1 : n], the source maps its
message W into a channel input symbol XN+1,i (W ), and the k-th relay,
k 2 [1 : N ], maps its past channel observations into a channel input symbol
Xk,i

(
Y i−1
k

)
. The channel is assumed to be memoryless, that is, the following

Markov chain holds for all i 2 [1 : n]

⇣
W,Y i−1

[1:N+1], X
i−1
[1:N+1]

⌘
−X[1:N+1],i − Y[1:N+1],i.

At time n, the destination makes an estimate of the message W based on all
its channel observations Y N

d as cW (Y n
N+1). A rate R is said to be ✏-achievable

if, for some block length n, there exists a code such that P[cW 6= W ]  ✏ for
any ✏ > 0. The capacity is the largest non-negative rate that is ✏-achievable.

In this general memoryless framework, each relay can listen and transmit
at the same time, i.e., it is a FD node. HD channels are a special case of the
memoryless FD framework in the following sense [18]. With a slight abuse
of notation compared to the previous paragraph, we let the channel input
of the k-th relay, k 2 [1 : N ], be the pair (Xk, Sk), where Xk 2 Xk as before
and Sk 2 [0 : 1] is the state random variable that indicates whether the
k-th relay is in receive-mode (Sk = 0) or in transmit-mode (Sk = 1). In the
HD case the transition probability is specified as PY[1:N+1]|X[1:N+1],S[1:N ]

. In

particular, when the k-th relay, k 2 [1 : N ], is listening (Sk = 0) the outputs
are independent of Xk, while when the k-th relay is transmitting (Sk = 1)
its output Yk is independent of all other random variables.

For the particular case of N = 1 studied in this chapter, the general
memoryless channel is shown in Figure 2.1, where for notation convenience,
we use the subscripts s for the source, r for the relay, and d for the des-
tination; the memoryless HD channel transition probability for N = 1 is

hence defined by PYr,Yd|Xs,Xr,Sr=0 := P
(0)
Yr,Yd|Xs,Sr=0 and PYr,Yd|Xs,Xr,Sr=1 :=

P
(1)
Yd|Xs,Xr,Sr=1P

(1)
Yr|Sr=1.
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Figure 2.2: The Gaussian HD relay channel.

2.1.2 The Gaussian noise channel

The single-antenna complex-valued power-constrained Gaussian HD relay
channel, shown in Figure 2.2, is described by the input/output relationship

Yr =
√
CXs (1− Sr) + Zr ∈ C, (2.1a)

Yd =
√
SXs + ej✓

√
IXr Sr + Zd ∈ C, (2.1b)

where the real-valued and non-negative channel power gains C, S, I and the
phase ✓ are constant and therefore known to all terminals. Since a node
can compensate for the phase of one of its channel gains, we can assume
without loss of generality that the channel gains from the source to the
other two terminals are real-valued and nonnegative. The channel inputs
are subject to unitary average power constraints without loss of generality,
i.e., E[|Xu|2]  1, u 2 {s, r}. The switch random variable Sr is binary. In
our model, both Xr and Sr at any given time, are functions of the past
received channel outputs. The noise (Zd, Zr) is a zero-mean proper-complex
Gaussian random vector with, without loss of generality, unit entries on the
main diagonal of the covariance matrix. In particular, but not without loss of
generality [86], we assume that Zd and Zr are independent. In the following
we consider the Gaussian HD relay channel for which C > 0 and I > 0, since
for either C = 0 or I = 0 the relay is disconnected from either the source
or the destination, respectively, so the channel reduces to a point-to-point
channel with capacity equal to the direct-link capacity log(1 + S).
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2.1.3 The deterministic / noiseless channel

The LDA approximates the Gaussian noise HD relay channel in (2.1) at high
SNR. It is a deterministic channel with input-output relationship

Yr = Sn−βsrXs (1− Sr), (2.2a)

Yd = Sn−βsdXs + Sn−βrdXr Sr, (2.2b)

for some non-negative integers βsr, βsd, βrd, where the vectors Yr, Yd, Xr, Xs

are of length n := max{βsr, βsd, βrd} and take value in GF(2) (with GF we
indicate the Galois Field), the sum is understood bit-wise on GF(2), S is
the n× n shift matrix [19], and Sr is the relay binary-valued state random
variable. The model has the following interpretation. The source sends
a length-n vector Xs, whose top βsd bits are received at the destination
(through the source-destination link) and the top βsr bits are received at
the relay (through the source-relay link); similarly the relay sends a length-
n vector Xr, whose top βrd bits are received at the destination (through
the relay-destination link). The fact that only a certain number of bits
are observed at a given node is a consequence of the ‘down shift’ operation
through the matrix S. The bits not observed at a node are said to be ‘below
the noise floor’.

2.2 Overview of the main results

The capacity C(HD−RC) of the Gaussian HD relay channel in (2.1) is un-
known. Here we make progress toward determining its capacity by first
establishing its gDoF, i.e., an exact “pre-log” capacity characterization in
the limit for high SNR, and then by characterizing its capacity to within a
constant gap at any finite SNR. Consider SNR > 0 and the parameterization

S := SNRβsd , source-destination link, (2.3a)

I := SNRβrd , relay-destination link, (2.3b)

C := SNRβsr , source-relay link, (2.3c)

for some non-negative real-valued triplet (βsd, βrd, βsr)
2. We define:

2We use the symbols (βsd, βrd, βsr) for both the LDA in (2.2) and the SNR parame-
terization in (2.3) for the channel power gains of the Gaussian HD relay channel in (2.1).
In the former case (βsd, βrd, βsr) ∈ N

3, while in the latter case (βsd, βrd, βsr) ∈ R
3
+. This

choice is motivated by the fact that the capacity of the LDA is related to the gDoF of the
Gaussian HD relay channel.
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Definition 1. The gDoF of the Gaussian HD relay channel is defined as

d(HD−RC) := lim
SNR!+1

C(HD−RC)

log(1 + SNR)
.

Definition 2. The capacity C(HD−RC) is said to be known to within GAP bits
if one can show achievable rates R(in) and outer bound R(out) such that

R(in)  C(HD−RC)  R(out)  R(in) + GAP.

Our main results of this chapter are summarized as follows:

Theorem 1. The gDoF of the Gaussian HD relay channel in (2.1) is

d(HD−RC) =

(
βsd +

(βrd−βsd)(βsr−βsd)
(βrd−βsd)+(βsr−βsd)

for βsr > βsd, βrd > βsd
βsd otherwise

, (2.4)

and the cut-set upper bound is achieved to within

Achievable scheme LDAi CF PDF

analytical gap 3 bits 1.61 bits 1 bit
numerical gap 1.32 bits 1.16 bits 1 bit

where LDAi is an achievable scheme inspired by the LDA.

The result of Theorem 1 should be compared to a similar result for the
FD case. The gDoF of the Gaussian FD relay channel is

d(FD−RC) = βsd +min{[βsr − βsd]
+, [βrd − βsd]

+}, (2.5)

and its capacity C(FD−RC) is achievable to within 1 bit by either DF or
CF [19]. We notice that HD achieves the same gDoF of FD if min{βrd, βsr} 
βsd, in which case the relay channel behaves gDoF-wise like a point-to-point
channel from the source to the destination with gDoF given by βsd. In both
FD and HD the gDoF has a routing interpretation [19]: if the weakest link
from the source to the destination through the relay is smaller than the direct
link from the source to the destination, then direct transmission is optimal
and the relay can be kept silent, otherwise it is optimal to communicate with
the help of the relay, i.e., route part of the information through the relay.

Regarding gaps, we note that Theorem 1 improves on the 5 bits gap
of [28]. Moreover, we note a tradeoff between the coding scheme complex-
ity and the gap, with lower gaps for more complex schemes (for example,
compare the gap of PDF with that of LDAi).

In an attempt to design simple and asymptotically optimal achievable
schemes for the Gaussian HD relay channel, by following the footsteps of [19],
we study the capacity of the LDA. We show:
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Theorem 2. The capacity of the LDA in (2.2) is given by

C(HD)=

(
βsd if βsdmax {βsr, βrd}
βsd+maxγ2[0,1]min

n
A (γ) , γ(βsr−βsd)

o
otherwise

(2.6)

where

A (γ) := (1− ✓⇤ (γ)) log
1

1− ✓⇤ (γ)
+ ✓⇤ (γ) log

L− 1

✓⇤ (γ)
,

✓⇤ (γ) := 1−max

⇢
1

L
, γ

}
, L := 2(βrd−βsd),

and is achieved with random switch and correlated non-uniform input bits
at the relay. Moreover, a scheme with deterministic switch and independent
and identically distributed (i.i.d.) Bernoulli(1/2) bits at the relay is at most
1 bit from the capacity in (2.6).

2.3 The gDoF for the Gaussian HD relay channel

In this section, by adapting known bounds for the general memoryless FD
relay channel [87] to the HD case with the methodology introduced by [18],
we derive the gDoF of the Gaussian HD relay channel in (2.1).

2.3.1 Cut-set upper bounds

We now prove a number of upper bounds that we shall use for the converse
part of Theorem 1. From the cut-set bound we have:

Proposition 1. The capacity C(HD−RC) of the Gaussian HD relay channel
is upper bounded as

C(HD−RC)

 min
n
I(Xs, Xr, Sr;Yd), I(Xs;Yr, Yd|Xr, Sr)

o∣∣∣
(Xs,Xr,Sr)⇠P⇤

Xs,Xr,Sr

(2.7a)

 maxmin
n
H(γ) + γI1 + (1− γ)I2, γI3 + (1− γ)I4

o
=: r(CS−HD) (2.7b)

 2 + log (1 + S)

✓
1 +

(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

◆
, (2.7c)

where:
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• In (2.7a): the distribution P
⇤
Xs,Xr,Sr

is the one that maximizes the
cut-set upper bound, i.e.,

P
⇤
Xs,Xr,Sr

:= arg max
PXs,Xr,Sr

min
n
I(Xs, Xr, Sr;Yd), I(Xs;Yr, Yd|Xr, Sr)

o
.

• In (2.7b): the parameter γ := P[Sr = 0] ∈ [0, 1] represents the fraction
of time the relay node listens, H(γ) is the binary entropy function

H(γ) := −γ log(γ)− (1− γ) log(1− γ), (2.8)

the maximization is over the set

γ ∈ [0, 1], (2.9a)

|↵1|  1, (2.9b)

(Pu,0, Pu,1) 2 R
4
+ : γPu,0 + (1− γ)Pu,1  1, u 2 {s, r}, (2.9c)

and the mutual information terms I1, . . . , I4 are defined as

I1 := log (1 + S Ps,0) , (2.10)

I2 := log
⇣
1 + SPs,1 + IPr,1 + 2|↵1|

p
SPs,1 IPr,1

⌘
, (2.11)

I3 := log (1 + (C + S)Ps,0) , (2.12)

I4 := log
(
1 + (1− |↵1|2)S Ps,1

)
. (2.13)

• In (2.7c): the terms b1 and b2 are defined as

b1 :=
log
⇣
1 + (

p
I +

p
S)2
⌘

log (1 + S)
> 1 since I > 0, (2.14)

b2 :=
log (1 + C + S)

log (1 + S)
> 1 since C > 0. (2.15)

Proof. The proof can be found in Appendix 2.A.

The upper bound in (2.7a) will be used to prove that PDF with random
switch achieves the capacity to within 1 bit, the one in (2.7b) to prove that
PDF with deterministic switch also achieves the capacity to within 1 bit and
for numerical evaluations (since we do not know the distribution P

⇤
Xs,Xr,Sr

that maximizes the cut-set upper bound in (2.7a)), and the one in (2.7c) for
analytical computations such as the derivation of the gDoF. With the upper
bound in Proposition 1 we can show:
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Proposition 2. The gDoF of the Gaussian HD relay channel is upper
bounded by the Right Hand Side (RHS) of (2.4).

Proof. The proof can be found in Appendix 2.B.

2.3.2 PDF lower bounds

In this section we prove a number of lower bounds that we shall use for the
direct part of Theorem 1. From the achievable rate with PDF we have:

Proposition 3. The capacity of the Gaussian HD relay channel is lower
bounded as

C(HD−RC)

≥ min
n
I(U ;Yr|Xr, Sr) + I(Xs;Yd|Xr, Sr, U), I(Xs, Xr, Sr;Yd)

o
(2.16)

≥ maxmin
n
I
(PDF)
0 +γI5+(1−γ)I6, γI7+(1−γ)I8

o
=: r(PDF−HD) (2.17)

≥ log (1 + S)

✓
1 +

(c1 − 1)(c2 − 1)

(c1 − 1) + (c2 − 1)

◆
, (2.18)

where:

• In (2.16): we fix the input PU,Xs,Xr,Sr to evaluate the PDF lower
bound; in particular we set PXs,Xr,Sr to be the same distribution that
maximizes the cut-set upper bound in (2.7a) and we choose either
U = Xr or U = XrSr +Xs(1− Sr).

• In (2.17): the parameter γ := P[Sr = 0] ∈ [0, 1] represents the fraction
of time the relay node listens, the maximization is over the set (2.9a)-
(2.9c) as for the cut-set upper bound in (2.7b), the mutual information
terms I5, . . . , I8 are

I5 := I1 given in (2.10), (2.19)

I6 := I2 given in (2.11), (2.20)

I7 := log (1 + max{C, S}Ps,0)  I3 given in (2.12), (2.21)

I8 := I4 given in (2.13), (2.22)

and I
(PDF)
0 := I(Sr;Yd) is computed from the density

fYd
(t) =

γ

⇡v0
e−|t|2/v0 +

1− γ

⇡v1
e−|t|2/v1 , t 2 C, (2.23)

with v0 = 2I5 where I5 is given in (2.19), and v1 = 2I6 where I6 is
given in (2.20).
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• In (2.18): the terms c1 and c2 are

c1 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0, (2.24)

c2 :=
log (1 + max{C, S})

log (1 + S)
> 1 since C > 0. (2.25)

Proof. The proof can be found in Appendix 2.C.

The lower bound in (2.16) will be compared to the upper bound in (2.7a)
to prove that PDF with random switch achieves capacity to within 1 bit, the
one in (2.17) with the one in (2.7b) to prove that PDF with deterministic
switch also achieves capacity to within 1 bit and for numerical evaluations,
and the one in (2.18) will be used for analytical computations such as the
evaluation of the achievable gDoF.

Remark 1. In Appendix 2.C, we found that the approximately optimal
schedule for PDF with deterministic switch is

γ⇤PDF :=
(c1 − 1)

(c1 − 1) + (c2 − 1)
∈ [0, 1],

where c1 is given in (2.24) and c2 is given in (2.25). The expression for γ⇤PDF

can be understood as follows. Suppose that min{C, I} ≥ S, otherwise the
relay is not used in the transmission and setting either γ⇤PDF = 0 or γ⇤PDF = 1
is approximately optimal. Notice that γ⇤PDF is a decreasing function in C
and increasing in I. This implies that the stronger C compared to I the
lesser the time the relay needs to listen to the channel to (partially) decode
the source message. On the other hand, if C < I, more time is needed to
learn the message and less time to convey the message to the destination.

With the lower bound in Proposition 3 we can show:

Proposition 4. The gDoF of the Gaussian HD relay channel is lower
bounded by the RHS of (2.4).

Proof. The proof can be found in Appendix 2.D.

Propositions 2 and 4 prove that the gDoF of the Gaussian HD relay
channel is given by (2.4) and that PDF achieves the gDoF.

Figure 2.3 shows the difference between the gDoF of the Gaussian FD
relay channel in (2.5) and that of the Gaussian HD relay channel in (2.4) as
a function of βsr and βrd, where without loss of generality we fixed βsd = 1.
This difference is zero when min {βrd, βsr}  βsd = 1, in which case both
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Figure 2.3: Difference between the gDoF of the Gaussian FD and of the
Gaussian HD relay channels, for βsd = 1, as a function of βsr and βrd.

the FD and the HD channels are gDoF-wise equivalent to a point-to-point
channel without relay. When min {βrd, βsr} > βsd = 1, the point-to-point
communication channel is outperformed by the relay channel since now using
the relay to convey the information is optimal. Moreover, as expected, the
difference is always greater than or equal to zero because in the Gaussian
FD relay channel the relay can simultaneously listen and transmit; therefore,
the Gaussian FD relay channel represents an outer bound for the Gaussian
HD relay channel. The largest difference occurs when βrd = βsr := βsd↵ in

which case d(FD−RC)

βsd
= max{1, ↵}, while d(HD−RC)

βsd
= max

{
1, 1+↵

2

 
, in other

words, for ↵ > 1 the rate difference between FD and HD grows unboundedly
as SNR increases. This might motivate the use of more expensive FD relays
in future wireless networks in this regime.

2.4 Capacity of the LDA and a simple achievable
strategy for the Gaussian noise channel

In the previous section we showed that PDF achieves the gDoF of the Gaus-
sian HD relay channel. PDF is based on block Markov encoding and joint
decoding [87], which can be too complex to realize in practical systems. For
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this reason we seek now to design schemes that are simpler than PDF and
that are still gDoF optimal. In order to do so, we consider the LDA in (2.2).
Based on the many recent success stories, such as [19], we first determine the
capacity achieving scheme for the LDA and we then try to ‘translate’ it into
a gDoF-optimal scheme for the Gaussian HD relay channel. The rational
is the “folk’s theorem” that the capacity of the LDA gives the gDoF of the
corresponding Gaussian noise channel.

2.4.1 Capacity of the LDA

The capacity of the general memoryless deterministic relay channel is given
by the cut-set bound [14]. For the LDA the cut-set bound evaluates to (2.6)
in Theorem 2, which is proved next.

Proof. The capacity of a HD channel is upper bounded by the capacity of
the corresponding FD channel. Therefore for the capacity of the LDA we
have C(HD)  C(FD) where C(HD) and C(FD) are defined as

C(HD) := max
PXs,Xr,Sr

min
n
I(Xs, Xr, Sr;Yd), I(Xs;Yr, Yd|Xr, Sr)

o

= max
PXs,Xr,Sr

min
n
H(Yd), H(Yr, Yd|Xr, Sr)

o
(2.26)

C(FD) := max
PXs,Xr

min
n
I(Xs, Xr;Yd), I(Xs;Yr, Yd|Xr)

o

= βsd +min{[βrd − βsd]
+, [βsr − βsd]

+}, (2.27)

where C(FD) in (2.27) is achieved by i.i.d. Bernoulli(1/2) input bits for the
source and the relay [19]. In order to evaluate C(HD) we distinguish two
cases:

Regime 1: βrd  βsd or βsr  βsd in which case C(HD)  C(FD) = βsd.
Since the rate C(HD) = βsd can be achieved by silencing the relay and using
i.i.d. Bernoulli(1/2) input bits for the source, we conclude that C(HD) =
C(FD) = βsd in this regime.

Regime 2: βrd > βsd and βsr > βsd. Here we need to evaluate the
expression in (2.26), for which we need to determine the optimal H(Yd) and

H(Yr, Yd|Xr, Sr) = P[Sr = 0]H(Yr, Yd|Xr, Sr = 0)

+ P[Sr = 1]H(Yr, Yd|Xr, Sr = 1)

 γmax{βsr, βsd}+ (1− γ)βsd.

To upper bound H(Yd), we write Yd = [Yd,u, Yd,l], where
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• Yd,l contains the lower βsd bits of Yd. These bits are a combination
of the bits of Xs and the lower bits of Xr. The lower bits of Xr are
indicated as Xr,l. With reference to Figure 2.4(b), Yd,l corresponds to
the portion of Yd containing the “orange bits” labeled b1[2].

• Yd,u contains the upper βrd − βsd bits of Yd. These bits only depend
on the upper bits of Xr. The upper bits of Xr are indicated as Xr,u.
With reference to Figure 2.4(b), Yd,u corresponds to the portion of Yd
containing the “green bits” labeled a.

Hence we have

H(Yd) = H(Yd,u, Yd,l)  H(Yd,u) +H(Yd,l)  H(Yd,u) + βsd,

since Yd,l contains βsd bits and where H(Yd,u) is computed from

P[Yd,u = y] = P[Sr = 0]P[Yd,u = y|Sr = 0] + P[Sr = 1]P[Yd,u = y|Sr = 1]

= γδ[y] + (1− γ)P[Xr,u = y|Sr = 1],

for y 2 [0 : L − 1], L := 2βrd−βsd > 1, where δ[y] = 1 if y = 0 and zero
otherwise, and where γ := P[Sr = 0]. Let P[Xr,u = y|Sr = 1] = py 2 [0, 1] :P

y py = 1. Then, we have that

H(Yd,u) = H
⇣⇥

γ + (1− γ)p0, (1− γ)p1, . . . , (1− γ)pL−1

⇤⌘

 H

0
BB@

2
664γ + (1− γ)p0, (1− γ)

1− p0
L− 1

, . . . , (1− γ)
1− p0
L− 1| {z }

L− 1 times

3
775

1
CCA

= (1− ✓) log
1

1− ✓
+ ✓ log

L− 1

✓

∣∣∣∣
✓:=(1−γ)(1−p0)2[0,1−γ]

, (2.28)

which is maximized by

✓⇤ = 1−max{1/L, γ} () p⇤0 =
[1/L− γ]+

1− γ
. (2.29)

Thus, collecting all the bounds, we have that C(HD) in (2.26) is upper
bounded as

C(HD)  βsd + max
γ2[0,1]

min
n
(1− ✓⇤) log

1

1−✓⇤
+ ✓⇤ log

L− 1

✓⇤
, γ(βsr − βsd)

o
.

(2.30)
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Figure 2.4: Achievable strategy for the LDA with βsd  βsr  βrd.

In order to show the achievability of (2.30) consider the following inputs:
the state Sr is Bernoulli(1 − γ) independent of any other random variable,
and Xs and Xr are independent. The source uses i.i.d. Bernoulli(1/2) bits.
The relay uses i.i.d. Bernoulli(0) bits for Xr,l and P[Xr,u = y] = p⇤0 if
y = 0 and P[Xr,u = y] = (1 − p⇤0)/(L − 1) otherwise, for p⇤0 in (2.29), i.e.,
the components of Xr,u are neither independent nor uniformly distributed.
Notice that the distribution of Xr,u in state Sr = 0 is irrelevant because its
contribution at the destination is zero anyway, so we can assume that the
input distribution for Xr is independent of the state Sr. It is straightforward
to verify that this choice of input distribution achieves the upper bound
in (2.30) thereby showing capacity in this regime.
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Our motivation to determine the capacity of the LDA was to get ‘inspira-
tion’ to design a simple achievable scheme for the Gaussian HD relay channel.
While proving Theorem 2 we found that the capacity achieving distribution
of the LDA has two fundamental features that can not be straightforwardly
translated into a strategy for the Gaussian HD relay channel, namely: (i)
the relay employs random switch, and (ii) correlated non-uniform inputs at
the relay are optimal. Therefore next we further upper bound the capacity
in (2.30) in the hope to get finally ‘inspired’. Consider

C(HD) = max
PXs,Xr,Sr

min
n
H(Yd), H(Yr, Yd|Xr, Sr)

o

 max
PXs,Xr,Sr

min
n
H(Yd|Sr), H(Yr, Yd|Xr, Sr)

o
+H(Sr)

 max
γ2[0,1]

min{γβsd+(1−γ)max{βsd,βrd}, γmax{βsd,βsr}+(1−γ)βsd}+1

= βsd + γ⇤LDA[βsr − βsd]
+ + 1, (2.31)

where γ⇤LDA is the optimal γ := P[Sr = 0] 2 [0, 1] obtained by equating the
two arguments within the min and is given by

γ⇤LDA :=

(
(βrd−βsd)

(βrd−βsd)+(βsr−βsd)
if βrd > βsd,βsr > βsd

0 otherwise.
(2.32)

We now show that the upper bound in (2.31) is achievable to within 1 bit.
This 1 bit represents the maximum amount of information I(Sr;Yd) that
could be conveyed to the destination through a random switch at the relay.
If we neglect this 1 bit we can achieve the upper bound in (2.31) with the
scheme shown in Figure 2.4(a) and Figure 2.4(b) for the case min{βsr,βrd} >
βsd, which is the case where the upper bound differs from direct transmission
and for which Xr 6= 0. In Phase I / Figure 2.4(a) the relay listens and the
source sends b1 (of length βsd bits) directly to the destination and b2 (of
length βsr−βsd bits) to the relay; note that b2 is below the noise floor at the
destination; the duration of Phase I is γ, hence the relay has accumulated
γ(βsr−βsd) bits to forward to the destination. In Phase II / Figure 2.4(b) the
relay forwards the bits learnt in Phase I to the destination by ‘repackaging’
them into a (of length βrd − βsd bits); the source keeps sending a new b1 (of
length βsd bits) directly to the destination; note that a does not interfere
with b2 at the destination; the duration of Phase II is such that all the bits
accumulated by the relay in Phase I can be delivered to the destination, i.e.,

γ(βsr − βsd) = (1− γ)(βrd − βsd),
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giving precisely the optimal γ⇤LDA in (2.32). The total number of bits decoded
at the destination is 1 · βsd + γ⇤LDA · (βsr − βsd), which shows that the rate
in (2.31) is achievable to within 1 bit. Notice that the LDA-rate in (2.31),
besides the 1 bit term, looks formally the same as the gDoF in (2.4) after
straightforward manipulations.

The scheme that is optimal within 1 bit for the LDA uses deterministic
switch and i.i.d. Bernoulli(1/2) input bits, similarly to the FD optimal
scheme in [19]; therefore, similarly to the FD case, we are now in the position
to obtain a scheme for the original Gaussian HD relay channel. Before we
describe the scheme for the Gaussian noise channel, let us compare the
results obtained for the LDA. The HD optimal strategy in Figure 2.4(a)
and Figure 2.4(b) should be compared with the FD optimal strategy in
Figure 2.4(c). In Figure 2.4(c), in a given time slot t, the source sends b1[t]
(of length βsd bits) directly to the destination and b2[t + 1] (of length at
most βsr − βsd bits) to the relay; the relay decodes both b1[t] and b2[t + 1]
and forwards b2[t + 1] in the next slot; in slot t the relay sends b2[t] (of
length at most βrd − βsd bits) to the destination; the number of bits the
relay forwards must be the minimum among the number of bits the relay
can decode (given by βsr − βsd) and the number of bits that can be decoded
at the destination without harming the direct transmission from the source
(given by βrd − βsd). Therefore, the total number of bits decoded at the
destination is βsd +min{βrd − βsd,βsr − βsd}, which formally looks exactly
as the optimal gDoF for the Gaussian FD relay channel in (2.5) in the case
the relay is actually used.

Figure 2.5 compares the capacities of the FD and HD LDA channels;
it also shows some achievable rates for the HD LDA channel. In particu-
lar, the capacity of the FD channel is given by (2.5) (dotted black curve
labeled “FD”), the capacity of the HD channel is given by (2.6) (solid black
curve labeled “HD” obtained with the optimal p⇤0 in (2.29)) and its upper
bound by (2.31) (red curve labeled “HDlda upper”). For comparison we also
show the performance when the source uses i.i.d. Bernoulli(1/2) bits and
the relay uses one of the following strategies: i.i.d. Bernoulli(q) bits and
random switch (blue curve labeled “HDiid q+rand” obtained by numerically
optimizing q 2 [0, 1]), i.i.d. Bernoulli(1/2) bits and random switch (green
curve labeled“HDiid 1/2+rand”obtained with p0 = 1/L in (2.28)), and i.i.d.
Bernoulli(1/2) bits and deterministic switch (magenta curve labeled “HDiid
1/2+det” and given by βsd + min{γ[βsr − βsd]

+, (1 − γ)[βrd − βsd]
+}). We

can draw some interesting conclusions from Figure 2.5:

• With deterministic switch: i.i.d. Bernoulli(1/2) bits for the relay are
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Figure 2.5: Comparison of the capacities of the LDA for both HD and FD
modes of operation at the relay.

optimal but this choice is quite far from capacity (magenta curve vs.
solid black curve); this choice however is at most 1 bit from optimal
(magenta curve vs. red curve).

• With random switch: the optimal input distribution for the relay is
not i.i.d. bits; i.i.d. inputs incur a rate loss (blue curve vs. solid black
curve); if in addition we insist on i.i.d. Bernoulli(1/2) bits for the relay
we incur a further loss (green curve vs. blue curve).

This shows that for optimal performance the relay inputs are correlated
and that random switch must be used.

2.4.2 LDAi: an achievable strategy for the Gaussian HD re-
lay channel inspired by the LDA

We mimic the LDA strategy with deterministic switch from Section 2.4.1 so
as to get an achievable rate for the Gaussian HD relay channel. We assume
S < C, otherwise we use direct transmission to achieve R = log(1+S). The
transmission is divided into two phases (it might help to refer to Figure 2.4(a)
and Figure 2.4(b)):
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• Phase I of duration γ: the transmit signals are

Xs[1] =
p
1− δXb1[1] +

p
δXb2 , δ :=

1

1 + S
,

Xr[1] = 0.

The relay applies successive decoding of Xb1[1] followed by Xb2 from

Yr[1] =
p
C

p
1− δXb1[1] +

p
C

p
δXb2 + Zr[1],

which is possible if (rates are normalized by the total duration of the two
phases)

Rb1[1]  γ log (1 + C)− γ log

✓
1 +

C

1 + S

◆
,

Rb2  γ log

✓
1 +

C

1 + S

◆
. (2.33)

The destination decodes Xb1[1] treating Xb2 as noise from

Yd[1] =
p
S

p
1− δXb1[1] +

p
S

p
δXb2 + Zd[1],

which is possible if

Rb1[1]  γ log (1 + S)− γ log

✓
1 +

S

1 + S

◆
. (2.34)

Finally, since we assume S < C, Phase I is successful if (2.33) and (2.34)
are satisfied.
• Phase II of duration 1− γ: the transmit signals are

Xs[2] = Xb1[2],

Xr[2] = Xb2 ,

recall that the bits in a in Figure 2.4(b) are the exact same bits in b2 in
Figure 2.4(a) just ‘repacked’ to form a vector with different length, which
we mimic here by setting Xr[2] = Xb2 .

The destination applies successive decoding of Xb2 (by exploiting also
the information about b2 that it gathered in the first phase) followed by
Xb1[2] from

Yd[2] =
p
SXb1[2] + e+j✓

p
IXb2 + Zd[2],
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which is possible if

Rb2  (1− γ) log

✓
1 +

I

1 + S

◆
+γ log

✓
1 +

S

1 + S

◆
, (2.35)

Rb1[2]  (1− γ) log(1 + S). (2.36)

• By imposing that the rateRb2 is the same in both phases, that is, that (2.33)
and (2.35) are equal, we get that γ should be chosen equal to γ⇤

γ⇤ =
log
⇣
1 + I

1+S

⌘

log
⇣
1 + I

1+S

⌘
+ log

⇣
1 + C

1+S

⌘
− log

⇣
1 + S

1+S

⌘ . (2.37)

Note that γ⇤ in (2.37) tends to γ⇤LDA in (2.32) as SNR increases by using
the parameterization in (2.3). Moreover we give here an explicit closed
form expression for the optimal duration of the time the relay listens to the
channel.

The rate sent directly from the source to the destination, that is, the
sum of (2.34) and (2.36), is

Rb1[1] +Rb1[2] = log(1 + S)− γ⇤ log

✓
1 +

S

1 + S

◆

| {z }
2[0,1]

. (2.38)

Therefore the total rate decoded at the destination through the two phases
is r(LDAi−HD) := Rb1[1] +Rb1[2] +Rb2 as in Proposition 5 below:

Proposition 5. The capacity of the Gaussian HD relay channel is lower
bounded as C(HD−RC) ≥ r(LDAi−HD), with

r(LDAi−HD) = log(1 + S) +
log
⇣
1+ I

1+S

⌘ h
log
⇣
1+ C

1+S

⌘
−log

⇣
1+ S

1+S

⌘i+

log
⇣
1+ I

1+S

⌘
+
h
log
⇣
1+ C

1+S

⌘
−log

⇣
1+ S

1+S

⌘i+ .

(2.39)

We notice that the rate expression for r(LDAi−HD) in (2.39) (please notice
the operator [·]+), which was derived under the assumption C > S, is valid
for all C since for C < S it reduces to direct transmission from the source
to the destination. Moreover we can show that:

Proposition 6. The LDAi strategy achieves the gDoF in (2.4).
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Proof. The proof can be found in Appendix 2.E.

Remark 2. The LDAi scheme can be seen as a specialization of PDF with
deterministic switch at the relay combined with the scheduling and power
splits inspired by the analysis of the LDA channel. The specialization con-
sists of the classical PDF with sliding window decoding and without coherent
codebooks [87]. Thus, the same observations drawn for γ⇤PDF in Remark 1
also hold for the LDAi schedule γ⇤ in (2.37).

Before concluding this section, we point out some important practical
aspects of the LDAi that are worth noticing:

1. The proposed scheme is not the classical block Markov encoding scheme
with backward decoding; in particular, the destination uses sliding
window decoding, which simplifies the decoding procedure and incurs
no delay; a further simplification would be to consider a slot-by-slot
decoding scheme.

2. The destination uses successive decoding, which is simpler than joint
decoding.

3. No power allocation is applied at the source or at the relay across the
two phases; this simplifies the encoding procedure and can be used for
time-varying channels as well. The source uses superposition coding,
i.e., power split, only to ‘route’ part of its data through the relay.

2.5 Analytical gaps

In Sections 2.3 and 2.4 we described upper and lower bounds to determine
the gDoF of the Gaussian HD relay channel. In Section 2.4 we proposed
a scheme inspired by the analysis of the LDA channel that also achieves
the optimal gDoF. We now show that the same upper and lower bounds
are to within a constant gap of one another thereby concluding the proof of
Theorem 1. We consider both the case of random switch and of deterministic
switch for the relay. For completeness we also consider the CF lower bound.

Proposition 7. PDF with random switch is optimal to within 1 bit.

Proof. The proof can be found in Appendix 2.F.

Proposition 8. PDF with deterministic switch is optimal to within 1 bit.

Proof. The proof can be found in Appendix 2.G.
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The intuition of why the gap does not improve with random switch is
that there exist channel parameters for which direct transmission is approx-
imately optimal (when min{C, I}  S); in the case of direct transmission
there are no benefits to use the relay at all and silencing the relay is a case
of deterministic switch.

Proposition 9. LDAi is optimal to within 3 bits.

Proof. The proof can be found in Appendix 2.H.

For completeness, we conclude this section with a discussion on the gap
that can be obtained with CF. For the Gaussian FD relay channel, it is
known that CF represents a good alternative to PDF in the case when the
link between the source and the relay is weaker than the direct link [87].
The CF achievable rate is presented in Appendix 2.I. By using Remark 5 in
Appendix 2.I we have:

Proposition 10. CF with deterministic switch is optimal to within 1.61 bits.

Proof. The proof can be found in Appendix 2.J.

Remark 3. In Appendix 2.I, we found that the approximately optimal sched-
ule with CF and deterministic switch is given by

γ⇤CF :=
(c5 − 1)

(c5 − 1) + (c6 − 1)
2 [0, 1],

c5 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0,

c6 :=
log
⇣
1 + C

1+σ2
0
+ S

⌘

log (1 + S)
> 1 since C > 0.

Suppose, as in Remark 1 for PDF, that min{C, I} ≥ S, otherwise setting
either γ⇤CF = 0 or γ⇤CF = 1 is approximately optimal. Notice that, although
the same observations drawn from the analysis of γ⇤PDF in Remark 1 hold,
γ⇤CF here also depends on the variance of the quantization noise at the relay,
i.e., σ2

0. The schedule γ⇤CF is an increasing function of σ2
0, meaning that

the higher σ2
0 the longer the time the relay should listen to the channel.

Therefore, differently from PDF, the approximately optimal schedule does
not only depend on the channel gains, but also on the level at which the
signal at the relay is quantized.

Proposition 11. CF with random switch is optimal to within 1.61 bits.
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Proof. Random switch improves on deterministic switch, since at most 1 bit
of further information may be conveyed to the destination by randomly
switching between the transmit- and receive-phases. Thus, it follows that
any rate achievable with deterministic switch is also achievable with random
switch, i.e., random switch can not increase the gap.

2.6 Numerical gaps

In this section we show that the gap results obtained in Section 2.5 are
pessimistic and are due to crude bounding of the upper and lower bounds,
which was necessary in order to obtain rate expressions that can be handled
analytically. In order to illustrate our point, we first consider a relay network
without the source-destination link, that is, with S = 0, and then we show
that the same observations are valid for any network.

2.6.1 Gaussian HD relay channel without a source-destination
link (single-relay line network)

Upper Bound: We start by showing that the (upper bound on the) cut-
set upper bound in (2.7b) can be improved upon. Note that we were not able
to evaluate the actual cut-set upper bound in (2.7a) so we further bounded
it as in (2.7b), which for S = 0 reduces to

r(CS−HD)|S=0= max
γ2[0,1]

min

⇢
H(γ)+(1−γ) log

✓
1+

I

1−γ

◆
, γ log

✓
1+

C

γ

◆}
.

The capacity of the Gaussian FD relay channel for S = 0 is known exactly
and is given by the cut-set upper bound, i.e., C(FD)|S=0=log (1+min{C, I}).
C(FD) is a trivial upper bound for the capacity of the Gaussian HD relay
channel. Now we show that our upper bound r(CS−HD)|S=0 can be larger
than C(FD)|S=0. For the case C = 15/2 > I = 3/2 we have

r(CS−HD)|S=0 ≥ min

⇢
H
✓
1

2

◆
+

1

2
log (1 + 2I) ,

1

2
log (1 + 2C)

}

= log(4) > C(FD)|S=0 = log (2.5) .

The reason why the capacity of the FD channel can be smaller than our
upper bound r(CS−HD)|S=0 is the crude bound I(Sr;Yd)  H(Sr) = H(γ).
As mentioned earlier, we needed this bound in order to have an analytical
expression for the upper bound. Actually for S = 0 the cut-set upper bound
in (2.7a) is tight, as we show next.
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Exact capacity with PDF:

Corollary 1. In absence of direct link between the source and the destination
PDF with random switch achieves the cut-set upper bound.

Proof. The single-relay line network represents an example of degraded relay
channel since Xs − (Xr, Sr, Yr)− Yd forms a Markov chain. The capacity of
the general memoryless degraded relay channel is exactly known [14, The-
orem 1], i.e., for this network the cut-set upper bound is tight. Therefore,
our result is a special case of [14, Theorem 1].

Improved gap for the LDAi lower bound: Despite knowing the ca-
pacity expression for S = 0 from Corollary 1, its actual evaluation is elusive
as it is not clear what the optimal input distribution P

⇤
Xs,Xr,Sr

in (2.7a) is.
For this reason we next specialize the LDAi strategy to the case S = 0 and
evaluate its gap from the (upper bound on the) cut-set bound in (2.7b).

The LDAi achievable rate in (2.39) with S = 0 is

r(LDAi−HD)|S=0 = max
γ2[0,1]

min{γ log (1 + C) , (1− γ) log (1 + I)},

where we left intentionally explicit the optimization with respect to γ, and
where we note that r(LDAi−HD)|S=0 coincides with the PDF lower bound
with deterministic switch at the relay and without optimizing the powers
between the relay transmit- and receive-phases. The gap between the outer
bound and r(LDAi−HD)|S=0 is less than 3 bits since

GAP  r(CS−HD)|S=0 − r(LDAi−HD)|S=0

 max
γ2[0,1]

⇢
γ log

✓
1 +

C

γ

◆
− γ log (1 + C) ,

H(γ) + (1− γ) log

✓
1 +

I

1− γ

◆
− (1− γ) log (1 + I)

}

 max
γ2[0,1]

⇢
γ log

✓
1

γ

◆
,H(γ) + (1− γ) log

✓
1

1− γ

◆}

= max
γ2[0,1]

⇢
H(γ) + (1− γ) log

✓
1

1− γ

◆}
= 1.5112 bits.

Note that the actual gap is even less than 1.5 bits. In fact, by numerically
evaluating

GAP = min{C(FD), r(CS−HD)}|S=0 − r(LDAi−HD)|S=0

one can found that the gap is at most 1.11 bits.
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Figure 2.6: Numerical evaluation of the various achievable schemes.

Numerical gaps with deterministic switch: Similarly to what done for
the LDAi, by numerical evaluations one can find that the PDF strategy with
deterministic switch in Remark 4-Appendix 2.C and the CF strategy with
deterministic switch in Remark 5-Appendix 2.I are to within 0.80 bits and
1.01 bits, respectively, of the improved bound min{C(FD), r(CS−HD)}|S=0.
Note that in these cases there is no information conveyed by the relay to the
destination through the switch.

Figure 2.6(a) shows different upper an lower bounds for the Gaussian
HD relay channel for S = 0, C = 15, I = 3 versus γ = P[Sr = 0]. We
see that the cut-set upper bound (solid black curve) exceeds the capacity
of the Gaussian FD relay channel (dashed black curve). Different achiev-
able strategies are also shown, whose order from the most performing to the
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least performing is: PDF with random switch (red curve with maximum
rate 1.916 bits/ch.use), PDF with deterministic switch (blue curve with
maximum rate 1.68 bits/ch.use), CF with random switch (cyan curve with
maximum rate 1.446 bits/ch.use), CF with deterministic switch (magenta
curve with maximum rate 1.403 bits/ch.use), and LDAi (green curve with
maximum rate 1.333 bits/ch.use). In this particular setting, the maximum
rate using the CF strategy with random switch (cyan curve with maximum
rate 1.446 bits/ch.use) is achieved for P[Q = 0, Sr = 0] = 0,P[Q = 0, Sr =
1] ⇡ 0.33,P[Q = 1, Sr = 0] ⇡ 0.45,P[Q = 1, Sr = 1] ⇡ 0.22. This is due to
the absence of the direct link (S = 0) between the source and the destina-
tion. Actually, since the source can communicate with the destination only
through the relay, it is necessary a coordination between the transmissions
of the source and those of the relay. This coordination is possible thanks to
the time-sharing random variable Q, i.e., when Q = 0 the source stays silent
while when Q = 1 the source transmits.

2.6.2 Gaussian HD relay channel with direct link

Figure 2.6(b) and Figure 2.6(c) show the rates achieved by using the dif-
ferent achievable schemes presented in the previous sections for a channel
with S > 0. In Figure 2.6(b) the channel conditions are such that PDF
outperforms CF, while in Figure 2.6(c) the opposite holds. In Figure 2.6(b)
the PDF strategy with random switch (red curve with maximum rate 11.66
bits/ch.use) outperforms both the CF with random switch (cyan curve with
maximum rate 11.11 bits/ch.use) and the PDF with deterministic switch
(blue curve with maximum rate 11.4 bits/ch.use); then the PDF with de-
terministic switch outperforms the CF with deterministic switch (magenta
curve with maximum rate 10.94 bits/ch.use), which is also encompassed by
the CF with random switch. Differently from the case without direct link,
we observe that the maximum CF rates both in Figure 2.6(b) and in Fig-
ure 2.6(c) are achieved with the choice Q = ;, i.e., the time-sharing random
variable Q is a constant. This is due to the fact that the source is always
heard by the destination even when the relay transmits so there is no need
for the source to remain silent when the relay sends.

Figure 2.6(d) shows, as a function of SNR and for βsd = 1, (βrd, βsr) 2
[0, 2.4], the maximum gap between the cut-set upper bound r(CS−HD) in (2.7b)
and the following lower bounds with deterministic switch: the PDF lower

bound obtained from r(PDF−HD) in (2.17) with I
(PDF)
0 = 0, the CF lower

bound in Remark 5 in Appendix 2.I, and the LDAi lower bound in (2.39).
From Figure 2.6(d) we observe that the maximum gap with PDF is 1 bit as
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in Proposition 8, but with CF the gap is around 1.16 bits and with LDAi
around 1.32 bits, which are lower than the analytical gaps found in Propo-
sitions 10 and 9, respectively.

The lower bounds can be improved upon by considering that information
can be transmitted through a random switch. However, this improvement
depends on the channel gains. If the information can not be routed through
the relay because min{C, I}  S, then the system can not exploit the ran-

domness of the switch, and so I
(PDF)
0 = 0 and I

(CF)
0 = 0 are approximately

optimal (in this case the relay can remain silent). This behavior for the
PDF strategy is represented in Figure 2.7. In this figure we numerically
evaluate the difference between the analytical gap, i.e., the one computed

with I
(PDF)
0 = 0, and the numerical one, i.e., computed with the optimal

I
(PDF)
0 indicated as Iopt0 (i.e., Iopt0 is the actual value of I

(PDF)
0 ), at a fix

SNR = 20 dB and by varying (βrd, βsr). We observe that when the infor-
mation can not be conveyed through the relay, i.e., min {βrd, βsr}  1, then

I
(PDF)
0 = 0 is optimal, since the information only flows through the direct
link. On the other hand, when min {βrd, βsr} > 1, random switch outper-
forms deterministic switch. Moreover, from Figure 2.7 we observe that, the
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Figure 2.8: Numerical evaluation of the maximum gap varying the SNR for
βsd = 1 and (βrd, βsr) 2 [1.2, 2.4] with deterministic (red curve) and random
switch (blue curve).

stronger the channel gains along the path through the relay the larger the
amount of information conveyed by random switch.

In Figure 2.8 the channel gains are set such that the use of the relay
increases the gDoF of the channel (βsd = 1 and (βrd, βsr) 2 [1.2, 2.4]). Here
the relay uses PDF. We observe that we have a further improvement in
terms of gap by using a random switch (blue curve) instead of using a de-
terministic switch (red curve). We notice that at high SNR, where the gap
is maximum, this improvement is around 0.1 bits. As mentioned earlier, the
rate advantage of random switch over deterministic switch depends on the
channel gains.

2.7 Conclusions and future directions

In this chapter we considered a system where a source communicates with
a destination across a Gaussian channel with the help of a HD relay node.
We determined the capacity of the LDA of the Gaussian noise channel at
high SNR, by showing that random switch and correlated non-uniform in-
put bits at the relay are optimal. We then analyzed the Gaussian noise
channel at finite SNR; we derived its gDoF and showed several schemes that
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achieve the cut-set upper bound on the capacity to within a constant finite
gap, uniformly for all channel parameters. We considered both the case of
deterministic switch and of random switch at the relay. We showed that
random switch is optimal and for the case without a direct link it achieves
the exact capacity. In general random switch increases the achievable rate
at the expense of more complex coding and decoding schemes. For each
scheme, we determined in closed form the approximately optimal schedule,
i.e., duration of the transmit- and receive-phases at the relay, to shed light
into practical HD relays for future wireless networks.

With respect to the results presented in this chapter, interesting future
research directions may include: (i) designing the switch so that further (at
most 1 bit per channel use) information can be conveyed to the destination
when CF is used; (ii) implementing the LDA-inspired scheme on an LTE
simulation test bench and study the impact of using codes of finite length
and discrete input constellations in contrast to asymptotically large block-
length Gaussian codes in the spirit of [68].

Appendix

2.A Proof of Proposition 1

An outer bound on the capacity of the memoryless relay channel is given by
the cut-set outer bound [87, Theorem 16.1] that specialized to our Gaussian
HD relay channel gives

C(HD−RC) max
PXs,[Xr,Sr ]

min
n
I(Xs, [Xr, Sr];Yd), I(Xs;Yr, Yd|[Xr, Sr])

o
(2.40a)

= max
PXs,Xr,Sr

min
n
I(Sr;Yd) + I(Xs, Xr;Yd|Sr), I(Xs;Yr, Yd|Xr, Sr)

o
(2.40b)

 max
PXs,Xr,Sr

min
n
H(Sr) + I(Xs, Xr;Yd|Sr), I(Xs;Yr, Yd|Xr, Sr)

o
(2.40c)

 maxmin
n
H(γ)+γI1+(1−γ)I2, γI3+(1−γ)I4

o
=: r(CS−HD), (2.40d)

where the different steps follow since:

• We indicate the (unknown) distribution that maximizes (2.40a) as
P
⇤
Xs,Xr,Sr

in order to get the bound in (2.7a).

• In order to obtain the bound in (2.40c) we used the fact that, for a
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discrete binary-valued random variable Sr, we have

I(Sr;Yd) = H(Sr)−H(Sr|Yd)  H(Sr) = H(γ),

for some γ := P[Sr = 0] 2 [0, 1] that represents the fraction of time the
relay listens and where H(γ) is the binary entropy function in (2.8).
In (2.40d) the maximization is over the set defined by (2.9a)-(2.9c) and
is obtained as an application of the ‘Gaussian maximizes entropy’ prin-
ciple as follows. Given any input distribution PXs,Xr,Sr , the covariance
matrix of (Xs, Xr) conditioned on Sr can be written as

Cov


Xs

Xr

]∣∣∣∣
Sr=`

=


Ps,` ↵`

p
Ps,`Pr,`

↵⇤
`

p
Ps,`Pr,` Pr,`

]
,

with |↵`|  1 for some (Ps,0, Ps,1, Pr,0, Pr,1) 2 R
4
+ satisfying the av-

erage power constraint in (2.9c). Then, a zero-mean jointly Gaussian
input with the above covariance matrix maximizes the different mutual
information terms in (2.40c). In particular, we obtain

I(Xs, Xr;Yd|Sr = 0)  log (1 + SPs,0) =: I1,

I(Xs, Xr;Yd|Sr = 1)  I2

:= log
⇣
1 + SPs,1 + IPr,1 + 2|↵1|

p
SPs,1 IPr,1

⌘
,

I(Xs;Yr, Yd|Xr, Sr = 0)  log
(
1 + (C + S)(1− |↵0|2)Ps,0

)

 log (1 + (C + S)Ps,0) =: I3,

I(Xs;Yr, Yd|Xr, Sr = 1)  log
(
1 + S(1− |↵1|2)Ps,1

)
=: I4,

as defined in (2.10)-(2.13) thereby proving the upper bound in (2.7b),
which is the same as r(CS−HD) in (2.40d).

• Regarding (2.7c), the average power constraints at the source and at
the relay given in (2.9c) can be expressed as follows. Since the source
transmits in both phases we define, for some β 2 [0, 1], the power split
Ps,0 = β

γ , Ps,1 = 1−β
1−γ . Since the relay transmission only affects the

destination output for a fraction (1−γ) of the time, i.e., when Sr = 1,
the relay must exploit all its available power when Sr = 1; we thus
split the relay power as Pr,0 = 0, Pr,1 =

1
1−γ . The cut-set upper bound
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r(CS−HD) in (2.40d) can be rewritten as

r(CS−HD) = max
(γ,|↵1|,β)2[0,1]3

min
n
H(γ)+γ log

✓
1+

Sβ

γ

◆

+(1− γ) log

 
1+

I

1− γ
+
S(1− β)

1− γ
+ 2|↵1|

s
I

1− γ

S(1− β)

1− γ

!
,

γ log

✓
1 +

Cβ

γ
+

Sβ

γ

◆
+ (1− γ) log

✓
1 + (1− |↵1|2)

S(1− β)

1− γ

◆}

 max
γ2[0,1]

min
n
H(γ) + γ log

✓
1 +

S

γ

◆

+ (1− γ) log

0
@1 +

 s
I

1− γ
+

s
S

1− γ

!2
1
A ,

γ log

✓
1 +

C

γ
+

S

γ

◆
+ (1− γ) log

✓
1 +

S

1− γ

◆}

= max
γ2[0,1]

min
n
2H(γ)+γ log (γ+S)+(1−γ) log

✓
1−γ +

⇣p
I+

p
S
⌘2◆

,

H(γ) + γ log (γ + C + S) + (1− γ) log (1− γ + S)}

 2 + max
γ2[0,1]

min

⇢
γ log (1 + S) + (1− γ) log

✓
1 +

⇣p
I +

p
S
⌘2◆

,

γ log (1 + C + S) + (1− γ) log (1 + S)}
= 2 + log (1 + S) max

γ2[0,1]
min {γ + (1− γ)b1, γb2 + (1− γ)}

= 2 + log (1 + S)

✓
1 + max

γ2[0,1]
min {(1− γ)(b1 − 1), γ(b2 − 1)}

◆

= 2 + log (1 + S)

✓
1 +

(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

◆
, (2.41)

where we defined b1 and b2 as in (2.14)-(2.15), namely

b1 :=
log
⇣
1 + (

p
I +

p
S)2
⌘

log (1 + S)
> 1 since I > 0,

b2 :=
log (1 + C + S)

log (1 + S)
> 1 since C > 0.

Note that the optimal γ is found by equating the two arguments of
the min and is given by γ⇤CS := (b1−1)

(b1−1)+(b2−1) .
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2.B Proof of Proposition 2

The upper bound in (2.7c) implies

d(HD−RC)  lim
SNR!+1

log (1 + S)

log (1 + SNR)

✓
1 +

(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

◆

=βsd

✓
1 +

[βrd/βsd − 1]+ [βsr/βsd − 1]+

[βrd/βsd − 1]+ + [βsr/βsd − 1]+

◆

=βsd +
[βrd − βsd]

+ [βsr − βsd]
+

[βrd − βsd]+ + [βsr − βsd]+
,

since b1 ! max{βsd, βrd}/βsd and b2 ! max{βsd, βsr}/βsd at high SNR,
which is equivalent to the RHS of (2.4).

2.C Proof of Proposition 3

The PDF scheme in [87, Theorem 16.3] adapted to the HD model gives the
following rate lower bound

C(HD−RC) ≥ max
PU,Xs,Xr,Sr

min
n
I(Sr;Yd) + I(Xs, Xr;Yd|Sr),

I(U ;Yr|Xr, Sr) + I(Xs;Yd|U,Xr, Sr)
o

≥maxmin
n
I
(PDF)
0 + γI5 + (1− γ)I6, γI7 + (1− γ)I8

o

=r(PDF−HD) in (2.17),

where for the last inequality we let γ := P[Sr = 0] 2 [0, 1] be the fraction
of time the relay listens and, conditioned on Sr = `, ` 2 {0, 1}, we consider
the following jointly Gaussian inputs

0
BB@

U
Xsp
Ps,`

Xrp
Pr,`

1
CCA

∣∣∣∣∣∣∣∣
Sr=`

⇠ N

0
B@0,

2
64

1 ⇢s|` ⇢r|`
⇢⇤s|` 1 ↵`

⇢⇤r|` ↵⇤
` 1

3
75

1
CA :

2
64

1 ⇢s|` ⇢r|`
⇢⇤s|` 1 ↵`

⇢⇤r|` ↵⇤
` 1

3
75 ⌫ 0.

In particular, we use specific values for the parameters {⇢s|`, ⇢r|`,↵`}`2{0,1},
namely

\↵1 + ✓ = 0, (2.42a)

↵0 = 0 and either |⇢s|0|2 = 1− |⇢r|0|2 = 0

or |⇢r|0|2 = 1− |⇢s|0|2 = 0, (2.42b)

⇢s|1 = ↵⇤
1, ⇢r|1 = 1. (2.42c)
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With these definitions, the mutual information terms I
(PDF)
0 , I5, . . . , I8

in (2.17) are

I(Xs, Xr;Yd|Sr = 0) = log (1 + SPs,0) =: I5,

I(Xs, Xr;Yd|Sr = 1) = log
⇣
1 + SPs,1 + IPr,1 + 2|α1|

p
SPs,1 IPr,1

⌘
=: I6,

(note I5 = I1 and I6 = I2 because of the assumption in (2.42a)); next, by
using the assumption in (2.42b), that is, in state Sr = 0 the inputs Xs and
Xr are independent, and that either U = Xs or U = Xr, we have: if U = Xs

independent of Xr

I(U ;Yr|Xr, Sr = 0) + I(Xs;Yd|U,Xr, Sr = 0)

= I(Xs;
p
CXs + Zr|Xr, Sr = 0) + I(Xs;

p
SXs + Zd|Xs, Xr, Sr = 0)

= log (1 + CPs,0) ,

and if U = Xr independent of Xs

I(U ;Yr|Xr, Sr = 0) + I(Xs;Yd|U,Xr, Sr = 0)

= I(Xr;
p
CXs + Zr|Xr, Sr = 0) + I(Xs;

p
SXs + Zd|Xr, Sr = 0)

= log (1 + SPs,0) ;

therefore under the assumption in (2.42b) we have

I(U ;Yr|Xr, Sr = 0)+I(Xs;Yd|U,Xr, Sr = 0) =log (1+max{C, S}Ps,0)=:I7;

next, by using the assumption in (2.42c), that is, in state Sr = 1 we let
U = Xr, we have

I(U ;Yr|Xr, Sr = 1) + I(Xs;Yd|U,Xr, Sr = 1)

= I(Xr;Zr|Xr, Sr = 1) + I(Xs;
p
SXs + Zd|Xr, Sr = 1)

= I(Xs;
p
SXs + Zd|Xr, Sr = 1)

= log
(
1 + S(1− |α1|2)Ps,1

)
=: I8,

(note I7  I3 and I8 = I4); finally

I(Sr;Yd) = E


log

1

fYd
(Yd)

]
−[γ log(v0)+(1−γ) log(v1)+log(⇡e)] =: I

(PDF)
0 ,
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where fYd
(·) is the density of the destination output Yd, which is a mixture

of (proper complex) Gaussian random variables, i.e.,

fYd
(t) =

γ

⇡v0
e−|t|2/v0 +

1− γ

⇡v1
e−|t|2/v1 , t 2 C,

v0 := Var[Yd|Sr = 0] = 2I5 , v1 := Var[Yd|Sr = 1] = 2I6 .

Note that I
(PDF)
0 = I(Sr;Yd)  H(Sr) = H(γ). This proves the lower bound

in (2.17).
Next we show how to further lower bound the rate in (2.17) to obtain

the rate expression in (2.18). With the same parameterization of the powers
as in Appendix 2.A, namely Ps,0 =

β
γ , Ps,1 =

1−β
1−γ , Pr,0 = 0, Pr,1 =

1
1−γ , we

have that

r(PDF−HD) = max
γ2[0,1],|↵|1,β2[0,1]

min
n
I
(PDF)
0 + γ log

✓
1 +

βS

γ

◆
+

+(1− γ) log

 
1 +

S(1− β)

1− γ
+

I

1− γ
+ 2|↵|

s
S(1− β)

1− γ

I

1− γ

!
,

γ log

✓
1 +

1

γ
max {Cβ, Sβ}

◆
+ (1− γ) log

✓
1 + (1− |↵|2)S(1− β)

1− γ

◆}

≥ max
γ2[0,1],β2[0,1]

min

⇢
γ log

✓
1+

βS

γ

◆
+ (1− γ) log

✓
1+

S(1− β)

(1− γ)
+

I

1− γ

◆
,

γ log

✓
1 +

1

γ
max {βC,βS}

◆
+ (1− γ) log

✓
1 +

S(1− β)

(1− γ)

◆}

≥ max
γ2[0,1]

min {γ log (1 + S) + (1− γ) log (1 + S + I) ,

γ log (1 + max {C, S}) + (1− γ) log (1 + S)}
= log (1 + S) max

γ2[0,1]
min {γ + (1− γ)c1, γc2 + (1− γ)}

= log (1 + S)

✓
1 + max

γ2[0,1]
min {(1− γ)(c1 − 1), γ(c2 − 1)}

◆

= log (1 + S)

✓
1 +

(c1 − 1)(c2 − 1)

(c1 − 1) + (c2 − 1)

◆
, (2.43)

where we defined c1 and c2 as in (2.24)-(2.25), namely

c1 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0,

c2 :=
log (1 + max{C, S})

log (1 + S)
> 1 since C > 0.
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Notice that ci  bi, i = 1, 2, where bi, i = 1, 2, are defined in (2.14)-(2.15).
The optimal γ, indicated by γ⇤PDF is given by

γ⇤PDF :=
(c1 − 1)

(c1 − 1) + (c2 − 1)
2 [0, 1].

Remark 4. A further lower bound on the PDF rate r(PDF−HD) in (2.17) can

be obtained by trivially lower bounding I
(PDF)
0 ≥ 0, which corresponds to a

fixed transmit/receive schedule for the relay.

2.D Proof of Proposition 4

The lower bound in (2.18) implies

d(HD−RC) ≥ lim
SNR!+1

log (1 + S)

log (1 + SNR)

✓
1 +

(c1 − 1)(c2 − 1)

(c1 − 1) + (c2 − 1)

◆

=βsd

✓
1 +

[βrd/βsd − 1]+ [βsr/βsd − 1]+

[βrd/βsd − 1]+ + [βsr/βsd − 1]+

◆

=βsd +
[βrd − βsd]

+ [βsr − βsd]
+

[βrd − βsd]+ + [βsr − βsd]+
,

since c1 ! max{βsd,βrd}/βsd and c2 ! max{βsd,βsr}/βsd at high SNR,
which is equivalent to the RHS of (2.4).

2.E Proof of Proposition 6

The rate in (2.39) can be further lower bounded as

r(LDAi−HD) ≥ −1+log (1+S)

✓
1 +

(c3 − 1)(c4 − 1)

(c3 − 1) + (c4 − 1)

◆
,

where c3 := c1 = log(1+I+S)
log(1+S) and c4 := b2 = log(1+C+S)

log(1+S) . The rate above
implies

d ≥ lim
SNR!+1

log (1 + S)

log (1 + SNR)

✓
1 +

(c3 − 1)(c4 − 1)

(c3 − 1) + (c4 − 1)

◆

= βsd

✓
1 +

[βrd/βsd − 1]+ [βsr/βsd − 1]+

[βrd/βsd − 1]+ + [βsr/βsd − 1]+

◆

= βsd +
[βrd − βsd]

+ [βsr − βsd]
+

[βrd − βsd]+ + [βsr − βsd]+
,

since c3 ! max{βsd,βrd}/βsd and c4 ! max{βsd,βsr}/βsd at high SNR,
which is equivalent to the RHS of (2.4).
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2.F Proof of Proposition 7

Consider the upper bound in (2.7a) and the lower bound in (2.16). Since
the term I(Xs, Xr, Sr;Yd) is the same in the upper and lower bounds, the
gap is given by

GAP I(Xs;Yr, Yd|Xr, Sr)− I(U ;Yr|Xr, Sr)− I(Xs;Yd|Xr, Sr, U).

Next we consider two different choices for U :

• For C  S we choose U = Xr and

GAP  I(Xs;Yr, Yd|Xr, Sr)− I(Xs;Yd|Xr, Sr)

=I(Xs;Yr|Xr, Sr, Yd)

=P[Sr = 0]I(Xs;
p
CXs + Zr|Xr, Sr = 0,

p
SXs + Zd)

+ P[Sr = 1]I(Xs;Zr|Xr, Sr = 1,
p
SXs + Zd)

=P[Sr = 0] log

✓
1 +

CPs,0

1 + SPs,0

◆
+ P[Sr = 1] · 0

1 · log
✓
1 +

SPs,0

1 + SPs,0

◆

1 bit.

• For C > S we choose U = XrSr +Xs(1− Sr) and

GAP  I(Xs;Yr, Yd|Xr, Sr)− I(XrSr +Xs(1− Sr);Yr|Xr, Sr)

− I(Xs;Yd|Xr, Sr, XrSr +Xs(1− Sr))

=P[Sr = 0]
⇣
I(Xs;Yr, Yd|Xr, Sr = 0)− I(Xs;Yr|Xr, Sr = 0)

⌘

+ P[Sr = 1]
⇣
I(Xs;Yr, Yd|Xr, Sr = 1)− I(Xs;Yd|Xr, Sr = 1)

⌘

=P[Sr = 0] I(Xs;Yd|Xr, Sr = 0, Yr) + P[Sr = 1] I(Xs;Yr|Xr, Sr = 1, Yd)

=P[Sr = 0]I(Xs;
p
SXs + Zd|Xr, Sr = 0,

p
CXs + Zr)

+ P[Sr = 1] I(Xs;Zr|Xr, Sr = 1,
p
SXs + Zd)

=P[Sr = 0] log

✓
1 +

SPs,0

1 + CPs,0

◆
+ P[Sr = 1] · 0

1 · log
✓
1 +

CPs,0

1 + CPs,0

◆

1 bit.
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2.G Proof of Proposition 8

Consider the upper bound in (2.7b) and the lower bound in (2.17). Recall
that I1 = I5 I2 = I6 I3 ≥ I7 I4 = I8 and therefore

GAP  max
n
H(γ) + γI1 + (1− γ)I2 − γI5 − (1− γ)I6,

γI3 + (1− γ)I4 − γI7 − (1− γ)I8

o

 max

⇢
1, log

✓
1 + CPs,0 + SPs,0

1 + max{C, S}Ps,0

◆}

 max

⇢
1, log

✓
1 + 2max{C, S}Ps,0

1 + max{C, S}Ps,0

◆}
 1 bit.

2.H Proof of Proposition 9

Consider the upper bound in (2.7c) and the lower bound in (2.39). We
distinguish two cases:

• Case 1: S > C. In this case r(LDAi−HD) = log(1 + S). The gap is

GAP  r(CS−HD) − r(LDAi−HD)

 2 + log (1 + S)
(b1 − 1)(b2 − 1)

(b1 − 1) + (b2 − 1)

 2 + log (1 + S) (b2 − 1)

= 2 + log

✓
1 +

C

1 + S

◆
 3 bits.

• Case 2: S  C. First, by noticing that log

✓
1 +

⇣p
I +

p
S
⌘2◆


log (1 + I + S)+1, we further upper bound the expression in (2.7c) as

r(CS−HD)  2 + log (1 + S) +

⇣
log
⇣
1 + I

1+S

⌘
+ 1
⌘
log
⇣
1 + C

1+S

⌘

log
⇣
1 + I

1+S

⌘
+ 1 + log

⇣
1 + C

1+S

⌘ .

Next we further lower bound r(LDAi−HD) in (2.39) as

r(LDAi−HD) ≥ log (1 + S) +
log
⇣
1 + I

1+S

⌘⇣
log
⇣
1 + C

1+S

⌘
− 1
⌘

log
⇣
1 + I

1+S

⌘
+ log

⇣
1 + C

1+S

⌘ .
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Hence, with x = log
⇣
1 + I

1+S

⌘
, y = log

⇣
1 + C

1+S

⌘
, we have

GAP  r(CS−HD) − r(LDAi−HD)

 2 +
(x+ 1)y

x+ 1 + y
− x(y − 1)

x+ y
 3 bits.

2.I Achievable rate with CF

Proposition 12. The capacity of the Gaussian HD relay channel is lower
bounded as

C(HD−RC) ≥ r(CF−HD) := maxmin
n
I
(CF)
0 +

X

(i,j)2[0:1]2

γijI9,ij ,
X

(i,j)2[0:1]2

γijI10,ij

o
,

(2.44a)

where the maximization is over

γij 2 [0, 1] :
X

(i,j)2[0:1]2

γij = 1, (2.44b)

Ps,i ≥ 0 :
X

(i,j)2[0:1]2

γij Ps,i  1, (2.44c)

Pr,ij ≥ 0 :
X

(i,j)2[0:1]2

γij Pr,ij  1, (2.44d)

and where the different mutual information terms in (2.44) are defined next.

Proof. The CF scheme in [87, Theorem 16.4] adapted to the HD model gives

C(HD−RC) ≥ max
PQPXs|QP[Xr,Sr ]|QPbYr |[Xr,Sr ],Yr,Q

:|Q|2
min

n
I(Xs; bYr, Yd|[Xr, Sr], Q),

I(Xs, [Xr, Sr];Yd|Q)− I(Yr; bYr|Xs, [Xr, Sr], Yd, Q)
o

= max
PQPSr |QPXs|QPXr |Sr,QPbYr |Xr,Yr,Sr,Q

:|Q|2
min

n
I(Xs; bYr, Yd|Q,Sr, Xr),

I(Sr;Yd|Q) + I(Xs, Xr;Yd|Sr, Q)− I(Yr; bYr|Xs, Xr, Yd, Sr, Q)
o

≥ r(CF−HD) in (2.44a), (2.45)

where the mutual information terms {I9,ij , I10,ij}, (i, j) 2 [0 : 1]2 and I
(CF)
0

in (2.44a) are obtained as follows. We consider the following assignment on
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the inputs and on the auxiliary random variables for each (i, j) 2 [0 : 1]2

P[Q = i, Sr = j] = γij such that (2.44b) is satisfied,
✓
Xs

Xr

◆∣∣∣∣
Q=i,Sr=j

⇠ N
✓
0,


Ps,i 0
0 Pr,ij

]◆

such that (2.44c) and (2.44d) are satisfied,

bYr|Xr,Yr,Q=i,Sr=j = Yr + bZr,ij ,

bZr,ij ⇠ N (0,σ2
ij) and independent of everything else,

and in order to meet the constraint thatXs can not depend on Sr conditioned
on Q we must impose the constraint that in state Q = i, Sr = j the power
of the source only depends on the index i. Then for each (i, j) 2 [0 : 1]2

I(Xs; bYr, Yd|Xr, Q = i, Sr = j) =

= log

 
1 +

 
S +

C(1− j)

1 + σ2
ij

!
Ps,i

!
=: I10,ij , (2.46)

I(Xs, Xr;Yd|Q = i, Sr = j)− I(Yr; bYr|Xs, Xr, Yd, Q = i, Sr = j)

= log (1+SPs,i+IjPr,ij)−log

 
1 +

1

σ2
ij

!
=: I9,ij , (2.47)

I(Sr;Yd|Q) = I
(CF)
0 =: −

X

(i,j)

γij log(vij)− log(⇡e)

+ (γ00+γ01) E


log

1

f0(Y )

∣∣∣∣Q = 0

]
+ (γ10+γ11) E


log

1

f1(Y )

∣∣∣∣Q = 1

]
,

where

Yd|Q=0 ⇠ f0(t) :=
γ00

γ00 + γ01

1

⇡v00
e−|t|2/v00+

γ01
γ00 + γ01

1

⇡v01
e−|t|2/v01 , t 2 C,

Yd|Q=1 ⇠ f1(t) :=
γ10

γ10 + γ11

1

⇡v10
e−|t|2/v10+

γ11
γ10 + γ11

1

⇡v11
e−|t|2/v11 , t 2 C,

vij := Var[Yd|Q = i, Sr = j] = 1 + S Ps,i + I j Pr,ij .

This proves the lower bound in (2.44) as a function of σ2
ij , (i, j) 2 {0, 1}2.

In order to find the optimal σ2
ij , (i, j) 2 {0, 1}2 we reason as follows.

I10,ij in (2.46) is decreasing in σ2
ij while I9,ij in (2.47) is increasing. At the

optimal point these two rates are the same. Let

Ci := 1 +
CPs,i

1 + SPs,i
, xi :=

1

σ2
i0

, I 0 := I(Sr, Xr;Yd|Q),
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and rewrite the lower bound in (2.44) as

r(CF−HD) = (γ00 + γ01) log(1 + SPs,0) + (γ10 + γ11) log(1 + SPs,1)

− γ00 log (1 + x0)− γ10 log (1 + x1)

+ min
n
γ00 log (1 + x0C0) + γ10 log (1 + x1C1) , I

0
o
.

The solution of

min
(x0,x1)2R2

+

n
γ00 log (1 + x0) + γ10 log (1 + x1)

o

subject to γ00 log (1 + x0C0) + γ10 log (1 + x1C1) = I 0

can be found to be xi = [⌘Ci−1]+

(1−⌘)Ci
, i 2 [1 : 2], with ⌘  1 such that

γ00 log (1 + x0C0) + γ10 log (1 + x1C1) = I 0.

Remark 5. For the special case of Q = Sr, that is, I
(CF)
0 = I(Sr;Yd|Q) =

I(Q;Yd|Q) = 0, the achievable rate in Proposition 12 reduces to

r(CF−HD) ≥ max
(γ,β)2[0,1]2

min
n
γI9 + (1− γ)I10, γI11 + (1− γ)I12

o
, (2.48a)

I9 := log (1 + SPs,0)− log

✓
1 +

1

σ2
0

◆
, (2.48b)

I10 := log (1 + SPs,1 + IPr,1)− log

✓
1 +

1

σ2
1

◆
, (2.48c)

I11 := log

✓
1 + SPs,0 +

C

1 + σ2
0

Ps,0

◆
, (2.48d)

I12 := log (1 + SPs,1) , (2.48e)

σ2
0 :=

B + 1

(1 +A)
1
γ
−1 − 1

, σ2
1 = +1, (2.48f)

A :=
IPr,1

1 + SPs,1
, B :=

CPs,0

1 + SPs,0
, (2.48g)

Ps,0 =
β

γ
, Ps,1 =

1− β

1− γ
, Pr,1 =

1

1− γ
, (2.48h)

where the optimal value for σ2
0 in (2.48f) is obtained by equating the two

expressions within the min in (2.48a).

Proposition 13. CF with deterministic switch achieves the gDoF upper
bound in (2.4).
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Proof. With the achievable rate in Remark 5 (where here we explicitly write
the optimization with respect to σ2

0) we have that

r(CF−HD) ≥ max
γ2[0,1],σ2

0≥0,β2[0,1]
min

⇢
γ log

✓
1 +

βS

γ

◆
− γ log

✓
1 +

1

σ2
0

◆
+

+(1− γ) log

✓
1 +

(1− β)S

1− γ
+

I

1− γ

◆
,

γ log

✓
1 +

Cβ

(1 + σ2
0)γ

+
Sβ

γ

◆
+ (1− γ) log

✓
1 +

(1− β)S

1− γ

◆}

β=γ
≥ max

γ2[0,1],σ2
0≥0

min {γ log (1 + S) + (1− γ) log (1 + S + I) ,

γ log

✓
1 +

C

1 + σ2
0

+ S

◆
+ (1− γ) log (1 + S)

}
− γ log

✓
1 +

1

σ2
0

◆

= max
γ2[0,1],σ2

0≥0


log (1+S)min {γ + (1−γ)c5, γc6 + (1−γ)} − γ log

✓
1+

1

σ2
0

◆]

γ=γ⇤
CF≥ max

σ2
0≥0

log (1+S)

0
@1+

(c5−1)(c6−1)

(c5−1)+(c6−1)

0
@1−

log
⇣
1+ 1

σ2
0

⌘

log
⇣
1+ C

(1+σ2
0)(1+S)

⌘

1
A
1
A

σ2
0=1

≥ −1 + log (1 + S)

✓
1 +

(c5 − 1)(c6 − 1)

(c5 − 1) + (c6 − 1)

◆
, (2.49)

where we defined c5 and c6 as

c5 = c1 :=
log (1 + I + S)

log (1 + S)
> 1 since I > 0 and as in (2.24),

c6 :=
log
⇣
1 + C

1+σ2
0
+ S

⌘

log (1 + S)
> 1 since C > 0,

and where

γ⇤CF :=
(c5 − 1)

(c5 − 1) + (c6 − 1)
2 [0, 1].

By reasoning as for the PDF in Appendix 2.D, it follows from the last rate
bound that CF also achieves the gDoF in (2.4).

Remark 6. For the special case of Q = ;, i.e., the time-sharing variable Q
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is a constant, the achievable rate in Proposition 12 reduces to

r(CF−HD) ≥ max
PXsPXr,SrPbYr |[Xr,Sr ],Yr

min
n
I
⇣
Xs; bYr, Yd|Sr, Xr

⌘
,

I (Xs, Xr, Sr;Yd)− I
⇣
Yr; bYr|Sr, Xr, Xs, Yd

⌘o

≥ max
γ2[0,1],σ2

min

⇢
γ log

✓
1 + S +

C

1 + σ2

◆
+ (1− γ) log (1 + S) ,

I (Sr;Yd) + γ log (1 + S)− γ log

✓
1 +

1

σ2

◆

+(1− γ) log

✓
1 + S +

I

1− γ

◆}
.

With Q = ; the source always transmits with constant power, regardless of
the state of the relay, while the relay sends only when in transmitting mode.
Thus with Q = ; there is no coordination between the source and the relay.

2.J Proof of Proposition 10

With CF we have that

GAP  max
n
H(γ) + γI1 + (1− γ)I2 − γI9 − (1− γ)I10,

γI3 + (1− γ)I4 − γI11 − (1− γ)I12

o

 max
n
H(γ) + γ log (1+SPs,0) + γ log

✓
1+

1

σ2
0

◆
− γ log (1+SPs,0)

+ (1−γ) log
⇣
1+(

p
SPs,1+

p
IPr,1)

2
⌘
−(1−γ) log (1+SPs,1+IPr,1) ,

γ log (1 + (C + S)Ps,0) + (1− γ) log (1 + SPs,1)+

− γ log

✓
1 + SPs,0 +

CPs,0

1 + σ2
0

◆
− (1− γ) log (1 + SPs,1)

o

 max

⇢
H(γ) + (1− γ) + γ log

✓
1 +

1

σ2
0

◆
,

γ log

0
@1 +

σ2
0

1+σ2
0
CPs,0

1 + SPs,0 +
1

1+σ2
0
CPs,0

1
A
9
=
;

 max

⇢
H(γ) + (1− γ) + γ log

✓
1 +

1

σ2
0

◆
, γ log

(
1 + σ2

0

)}

 1.6081 bits,
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where for σ2
0 we chose the value σ2

0 = 2
H(γ)+(1−γ)

γ by equating the two ar-

guments of the max (this is so because H(γ) + (1 − γ) + γ log
⇣
1 + 1

σ2
0

⌘
is

decreasing in σ2
0, while log

(
1 + σ2

0

)
is increasing in σ2

0). Numerically one
can find that with the chosen σ2

0 the maximum over γ 2 [0, 1] is 1.6081 for
γ = 0.3855. Note that by choosing σ2

0 = 1 the gap would be upper bounded
by 2 bits.



Chapter 3

The Half-Duplex
Multi-Relay Network

In this chapter, we study HD relay networks where the communication be-
tween a source and a destination is assisted by N HD relays. Our main
contributions can be summarized as follows: (i) we show that, for the Gaus-
sian noise case, the cut-set outer bound is achievable to within a constant
gap by NNC; (ii) we prove that, for any memoryless HD N -relay network
with independent noises and for which the cut-set outer bound is achievable
to within a constant gap under certain assumptions, the (approximately) op-
timal schedule has at most N + 1 states, out of the 2N possible ones, with
a strictly positive probability; (iii) we show that the gDoF of the Gaussian
network is the solution of a LP, where the coefficients of the linear inequality
constraints are the solution of several LPs referred to as the MWBM prob-
lem; this result also allows to characterize the gDoF of broadcast networks
with relays and to solve user scheduling problems; (iv) we apply the results
to networks with multi-antenna nodes, where the antennas at the relays can
be switched between listen and transmit state independently of one another.

3.1 System model

The general multi-relay network, defined in Section 2.1.1, consists of N HD
relay nodes (numbered 1 through N) assisting the communication between a

66
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source (node 0) and a destination (nodeN+1), through a shared memoryless
channel. The input-output relationship of a multi-antenna complex-valued
power-constrained Gaussian HD relay network generalizes (2.1) as follows 1

y = Heqx+ z 2 C
(mtot+mN+1)⇥1, (3.1a)

Heq :=


Imtot − S 0mtot⇥mN+1

0mN+1⇥mtot ImN+1

]
H


S 0mtot⇥m0

0m0⇥mtot Im0

]
, (3.1b)

where

• m0 is the number of antennas at the source, mk is the number of
antennas at relay k 2 [1 : N ] with mtot :=

PN
k=1mk (i.e., mtot is the

total number of antennas at the relays), and mN+1 is the number of
antennas at the destination.

• y := [y1; . . . ;yN ;yN+1] 2 C
(mtot+mN+1)⇥1 is the vector of the received

signals with yi 2 C
mi⇥1, i 2 [1 : N + 1] being the received signal at

node i.

• x := [x1; . . . ;xN ;xN+1] 2 C
(mtot+m0)⇥1 is the vector of the transmit-

ted signals where xi 2 C
mi⇥1, i 2 [0 : N ] is the signal transmitted by

node i (xN+1 is the channel input of the source).

• z := [z1; . . . ; zN ; zN+1] 2 C
(mtot+mN+1)⇥1 is the jointly Gaussian noise

vector which is assumed to have i.i.d. N (0, 1) components.

• S is the block diagonal matrix of dimension mtot ⇥mtot to account for
the state (either transmit or receive) of the relay antennas; in particular

S :=

2
6664

S1 0m1⇥m2 . . . 0m1⇥mN

0m2⇥m1 S2 . . . 0m2⇥mN

...
...

...
...

0mN⇥m1 0mN⇥m2 . . . SN

3
7775 ,

Si := diag[Si,1, . . . , Si,mi
] 2 [0 : 1]mi ,

where Si,j = 1 if the j-th antenna of the i-th relay is transmitting
and Si,j = 0 if it is receiving, with j 2 [1 : mi], i 2 [1 : N ]. In this
model the antennas of each relay can be switched independently of one
another to transmit or receive mode for a total of 2mtot possible states.

1Recall that, for notation convenience, the input at the source / node 0 is denoted as
XN+1 rather than X0.
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• H 2 C
(mN+1+mtot)⇥(m0+mtot) is the constant, hence known to all nodes,

channel matrix defined as

H :=


Hr!r Hs!r

Hr!d Hs!d

]
, (3.2)

where:

– Hr!r 2 C
mtot⇥mtot is the block matrix which defines the network

connections among the relays. In particular,

Hr!r :=

2
6664

? H1,2 . . . H1,N

H2,1 ? . . . H2,N
...

...
...

...
HN,1 HN,2 . . . ?

3
7775 ,

with Hi,j 2 C
mi⇥mj , (i, j) 2 [1 : N ]2, being the channel matrix

from the j-th relay to the i-th relay. Notice that the matrices on
the main diagonal of Hr!r do not matter for the channel capacity
since the relays operate in HD mode.

– Hs!r := [H1,N+1;H2,N+1; . . . ;HN,N+1] 2 C
mtot⇥m0 is the matrix

which contains the channel gains from the source to the relays. In
particular, Hi,N+1 2 C

mi⇥m0 , i 2 [1 : N ], is the channel matrix
from the source to the i-th relay.

– Hr!d := [HN+1,1,HN+1,2, . . . ,HN+1,N ] 2 C
mN+1⇥mtot is the ma-

trix which contains the channel gains from the relays to the des-
tination. In particular, HN+1,i 2 C

mN+1⇥mi , i 2 [1 : N ], is the
channel matrix from the i-th relay to the destination.

– Hs!d 2 C
mN+1⇥m0 is the channel matrix between the source and

the destination.

3.2 Background and overview of the main results

In this section we first briefly overview some general definitions and prop-
erties on submodular functions [88], LPs [89] and graph theory [69, 70, 90]
that are crucial for the proof of our main results, which are outlined at the
end of this section.

Definition 3 (Submodular function, Lovász extension and greedy solution
for submodular polyhedra). A set-function f : 2N ! R is submodular if
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and only if, for all subsets A1,A2 ✓ [1 : N ], we have f (A1) + f (A2) ≥
f (A1 [ A2) + f (A1 \ A2)

2.
Submodular functions are closed under non-negative linear combinations.
For a submodular function f such that f(;) = 0, the Lovász extension is

the function bf : RN ! R defined as

bf (w) := max
x2P (f)

wTx, 8w 2 R
N
+ , (3.3)

where P (f) is the submodular polyhedron defined as

P (f) :=

(
x 2 R

N :
X

i2A

xi  f(A), 8A ✓ [1 : N ]

)
. (3.4)

The optimal x in (3.3) can be found by the greedy algorithm for submodular
polyhedra and has components

x⇡i
= f ({⇡1, . . . ,⇡i})− f ({⇡1, . . . ,⇡i−1}) , 8i 2 [1 : N ], (3.5)

where ⇡ is a permutation of [1 : N ] such that the weights w are ordered as
w⇡1 ≥ w⇡2 ≥ . . . ≥ w⇡N

, and where by definition {⇡0} = ;.
The Lovász extension is a piecewise linear convex function.

Proposition 14 (Minimum of submodular functions). Let f be a submod-
ular function and bf its Lovász extension. The minimum of the submodular
function satisfies

min
A✓[1:N ]

f (A) = min
w2[0:1]N

bf (w) = min
w2[0,1]N

bf (w) ,

i.e., bf (w) attains its minimum at a vertex of the cube [0, 1]N .

Definition 4 (Basic feasible solution). Consider the LP

maximize cTx
subject to Ax  b x ≥ 0,

where x 2 R
n is the vector of unknowns, b 2 R

m and c 2 R
n are vectors

of known coefficients, and A 2 R
m⇥n is a known matrix of coefficients. If

m < n, a solution for the LP with at most m non-zero values is called a
basic feasible solution.

2A set-function f is supermodular if and only if −f is submodular, and it is modular
if it is both submodular and supermodular.
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Proposition 15 (Optimality of basic feasible solutions). If a LP is feasible,
then an optimal solution is at a vertex of the (non-empty and convex) feasible
set S = {x 2 R

n : Ax  b,x ≥ 0}. Moreover, if there is an optimal solution,
then an optimal basic feasible solution exists as well.

Proposition 16 (Saddle-point property). Let φ(x, y) be a function of two
vector variables x 2 X and y 2 Y. By the minimax inequality we have

max
y2Y

min
x2X

φ (x, y)  min
x2X

max
y2Y

φ (x, y)

and equality holds if the following three conditions hold: (i) X and Y are
both convex and one of them is compact, (ii) φ (x, y) is convex in x and
concave in y, and (iii) φ (x, y) is continuous.

Definition 5 (Bigraph, matching, assignment problem, Hungarian algo-
rithm). A weighted bipartite graph, or bigraph, is a graph whose vertices can
be separated into two sets such that each edge in the graph has exactly one
endpoint in each set. A non-negative weight is associated with each edge in
the bigraph. The weight matrix B is defined as follows: there is one set of
n1 nodes, where n1 is the number of rows in B, and another set of n2 nodes,
where n2 is the number of columns in B; the element [B]ij is the weight of
the edge between nodes i and j. A matching, or independent edge set, is a
set of edges without common vertices. The MWBM problem, or assignment
problem, is defined as a matching where the sum of the edge weights in the
matching has the maximal value. The Hungarian algorithm is a polynomial
time algorithm that efficiently solves the assignment problem.

In the following we overview our main results on the HD multi-relay
network. In particular, for simplicity of presentation, we state the results
for the particular case of single antenna nodes, i.e., mi = 1, 8i 2 [0 :
N +1]; however, in the rest of the chapter we show how each of these results
generalizes to the case of multi-antenna nodes. Our main results of this
chapter are summarized as follows 3:

Theorem 3. The cut-set upper bound on the capacity of the Gaussian HD
relay network with N relays is achievable by NNC with deterministic switch
to within

GAP  1.96(N + 2) bits. (3.6)

3We refer to Definition 1 and Definition 2 in Section 2.2 for the concepts of gDoF and
capacity to within a constant gap, respectively.
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Theorem 4. For any general memoryless HD relay network for which:

1. independent inputs are approximately (i.e., to within a constant gap)
optimal in the cut-set outer bound, that is there exists a product input
distribution

PX[1:N+1]|S[1:N ]
=

Y

i2[1:N+1]

PXi|S[1:N ]
(3.7)

for which we can bound the capacity C(HD−RN) as

C0 − G1  C(HD−RN)  C0 + G2, : C0 := max
PS[1:N ]

min
A✓[1:N ]

I
(fix)
A , (3.8)

where G1 and G2 are non-negative constants that may depend on N
but not on the channel transition probability and where

I
(fix)
A := I

(
XN+1, XAc ;YN+1, YA|XA, S[1:N ]

)
(3.9)

=
X

s2[0:1]N

λs fs(A), (3.10)

with

λs := P[S[1:N ] = s] 2 [0, 1] :
X

s2[0:1]N

λs = 1, (3.11)

fs(A) := I
(
XN+1, XAc ;YN+1, YA|XA, S[1:N ] = s

)
, (3.12)

2. the “noises are independent”, that is

PY[1:N+1]|X[1:N+1],S[1:N ]
=

Y

i2[1:N+1]

PYi|X[1:N+1],S[1:N ]
, (3.13)

3. the functions in (3.12) are not a function of {λs, s 2 [0 : 1]N}, i.e.,
they can depend on the state s but not on the {λs, s 2 [0 : 1]N},

then simple relay policies are (approximately) optimal in (3.8), i.e., the (ap-
proximately) optimal probability mass function PS[1:N ]

has at most N + 1
non-zero entries / active states.
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Theorem 5. The gDoF d(HD−RN) of the Gaussian HD multi-relay network
is the solution of the following LP

maximize{fT x} (3.14)

subject to


−A 12N
1T
2N

0

]
x  f , x ≥ 0, (3.15)

where xT := [λvect, d
(HD−RN)] with λvect := [λs] 2 R

1⇥2N

+ , fT := [0T
2N

, 1] and

where the entries of the non-negative matrix A 2 R
2N⇥2N can be found by

solving 2N−1
(
2N + 1

)
independent assignment problems.

Note that, in the theorems above and in the rest of this chapter as well,
we use interchangeably the notation s 2 [0 : 1]N to index all possible binary
vectors of length N , as well as, s 2 [0 : 2N − 1] to indicate the decimal
representation of a binary vector of length N .

3.3 Capacity to within a constant gap

This section is devoted to the proof of Theorem 3. We first adapt the cut-
set upper bound [16] and the NNC lower bound [20] to the HD case by
following the approach proposed in [18]. We then show that these bounds
are at most a constant number of bits apart. In particular, since the unicast
Gaussian network with HD relays is a special MGN with K = N + 2 nodes
(one source, N relays, and one destination), we first prove that for a single-
antenna complex-valued MGN with HD power-constrained nodes the cut-set
upper bound can be achieved to within 1.96 bits/node (while for the FD case
the gap is 1.26 bits/node [20, Theorem 4]).

3.3.1 Channel Model

A MGN with K nodes 4 is defined similarly to the multi-relay network
introduced in Section 3.1 except that now each node k 2 [1 : K], with
channel input (Xk, Sk) and channel output Yk, has an independent mes-
sage of rate Rk to be decoded by the nodes indexed by D ✓ [1 : K].
The channel input/output relationship of this HD GMN reads Y = (IK −
diag[S]) H diag[S] X+ Z. We let Cmulticast be the capacity region.

4Here, for notation convenience, we number the nodes from 1 to K, rather than from
0 to N + 1.
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3.3.2 Inner Bound

The capacity of a HD GMN can be lower bounded by adapting the NNC
scheme for the general memoryless network from [20] to the HD case by
following the approach of [18]. In particular, NNC achieves the rate region

Cmulticast ◆
[(X

i2Ac

Ri  I(XAc ; bYA|XA, S[1:K], Q)

−I(YAc ; bYAc |bYA, X[1:K], S[1:K], Q)

such that A ✓ [1 : K], Ac 6= ;, A \D 6= ;
)

,

where bYk represents a compressed version of Yk, for k 2 [1 : K], and where
the union is over all input distributions that factorize as

PQ

KY

k=1

PXk,Sk|QPbYk|Yk,Xk,Sk,Q

and satisfy the power constraints. We consider jointly Gaussian inputs so
as to get a rate region similar to [20, eq.(20)]. In all states s 2 [0 : 1]K ,
we consider i.i.d. N (0, 1) inputs, time sharing random variable Q set to
Q = S[1:K] (with this choice the nodes can coordinate), and compressed

channel output bYk := Yk + bZk, k 2 [1 : K], for bZk ⇠ N (0,σ2) independent
of all other random variables and where the variance of bZk does not depend
on the user index k. With this the NNC achievable region evaluates to

Cmulticast ◆
[
8
<
:
X

i2Ac

Ri 
X

s2[0:1]K

λs log

∣∣∣∣I|A| +
1

1 + σ2
HA,sH

H
A,s

∣∣∣∣

−|Ac| log
✓
1 +

1

σ2

◆

such that A ✓ [1 : K], Ac 6= ;, A \D 6= ;
)

, (3.16)

where the union is over all λs := P[S[1:K] = s] 2 [0, 1], 8s 2 [0 : 1]K :P
s2[0:1]Kλs = 1 and over all σ2 2 R

+, and where the matrix HA,s 2
C
|A|⇥|Ac| is defined as HA,s :=

⇥
(IK − diag[s]) H diag[s]

⇤
A,Ac .
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3.3.3 Outer Bound

The cut-set upper bound, adapted to the HD case by following [18], gives

Cmulticast ✓
[(X

i2Ac

Ri  I(XAc , SAc ;YA|XA, SA)

such that A ✓ [1 : K],Ac 6= ;,A \D 6=;} ,

where the union is over all joint input distributions PXK ,SK and satisfy the
power constraints. Similarly to [20, eq.(19)], we upper bound each mutual
information term as

I(XAc , SAc ;YA|XA, SA)

= I(SAc ;YA|XA, SA) + I(XAc ;YA|XA, S[1:K])

H(SAc) +
X

s2[0:1]K

λs log
∣∣I|A| +HA,sKA,sH

H
A,s

∣∣ (3.17a)

 |Ac| log(2) +
X

s2[0:1]K

λs log

∣∣∣∣I|A| +
1

γ
HA,sH

H
A,s

∣∣∣∣

+
X

s2[0:1]K

λs |Ac|
log
⇣
emax

n
1, γe

|Ac|
rank[HA,s]

o⌘

max
n

e
γ ,

|Ac|
rank[HA,s]

o , (3.17b)

where: (i) KA,s represents the covariance matrix of XAc conditioned on
S[1:K] = s; (ii) the inequality in (3.17a) follows since conditioning reduces
the entropy, since the entropy of a discrete random variable is non-negative,
and by using the ‘Gaussian maximizes entropy’ principle; (iii) the inequality
in (3.17b) follows since the entropy of a discrete random variable can be
upper bounded as a function of the size of its support and from [20, Lemma

1] for all γ ≥ e − 1. Finally, since the function log(e max{1,x})
max{1,x} in (3.17b) is

decreasing in x, the function in (3.17b) attains its maximum value when

rank[HA,s] is maximum, i.e., when x = γ
e

|Ac|
rank[HA,s]

= γ
e

|Ac|
min{|A|,|Ac|} , from
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which it thus follows that

Cmulticast ✓
[
8
<
:
X

i2Ac

Ri  |Ac| log(2) +
X

s2[0:1]K

λs log

∣∣∣∣I|A| +
1

γ
HA,sH

H
A,s

∣∣∣∣

+|Ac|
log
⇣
emax

n
1, γe

|Ac|
min{|A|,|Ac|}

o⌘

max
n

e
γ ,

|Ac|
min{|A|,|Ac|}

o

such that A ✓ [1 : K], Ac 6= ;, A \D 6= ;} (3.18)

holds, where the union is over all λs := P[S[1:K] = s] 2 [0, 1], 8s 2 [0 : 1]K :P
s2[0:1]Kλs = 1 and where the parameter γ ≥ e− 1 can be chosen so as to

tighten the RHS of (3.18).

3.3.4 Gap

We now proceed to bound the worst case gap (over A) between the cut-set
upper bound in (3.18) and the NNC lower bound in (3.16) (recall that the
parameters γ and σ2 can be chosen so as to tighten the bound). By choosing

σ2 = γ − 1 in (3.16) and by defining µ = |Ac|
K 2 [0, 1], the gap is given by

GAP

K
 min

γ≥e−1
max
µ2[0,1]

⇢
µ log

✓
2γ

γ − 1

◆

+µ min

⇢
γ

e
,
min{µ, 1− µ}

µ

}
log

✓
max

⇢
e,

γ µ

min{µ, 1− µ}

}◆}

 1.96 bits/node,

where the last inequality follows by numerical evaluations. The gap result
in Theorem 3 follows by substituting K = N + 2.

The difference between the HD and the FD case is the factor 2 (inside the
logarithm) for the HD case. Also notice that the HD gap of 1.96 bits/node
is smaller than (1+1.26) bits/node where 1.26 bits/node is the FD gap [20]
and the extra 1 bit/node is due to random switch.

Remark 7. The gap in Theorem 3 improves on the previously known gap
result of 5N bits [28]. ⇤

Remark 8 (Single relay case). The gap result in (3.6) for N = 1 gives GAP 
5.88 bits, which is greater than the 1.61 bits gap we found in Chapter 2. This
is due to the fact that the bounding steps in the special case of N = 1 are
tighter than those we used here for a general MGN withK nodes. Notice also
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Figure 3.1: Gap in (3.6) (dash-dotted curve), gap in (3.6) specialized to the
HD diamond network (solid curve) and gap in [1] (dashed curve) for the HD
diamond network.

that for a single relay, PDF is optimal to within 1 bit (see Chapter 2). PDF
has been extended to a general HD multi-relay network in [91]. However,
to analytically evaluate this achievable rate and show that it achieves the
cut-set upper bound to within a constant gap seems to be a challenging task,
which is the main motivation for considering NNC here. ⇤

Remark 9 (Diamond networks). A smaller gap than the one in (3.6) may
be obtained for specific network topologies. For example, in [25] and [26]
it was found that for a Gaussian FD diamond network with N relays the
gap is of the order log(N), rather than linear in N [20]. Moreover, for a
symmetric FD diamond network with N relays the gap does not depend
on the number of relays and it is upper bounded by 3.6 bits [27]. The key
difference between a general relay network and a diamond network is that
for each subset A we have that rank[HA]  2; hence in (3.17b) we can use
rank[HA]  min{|A|, |Ac|, 2}. With this and by numerically evaluating the
resulting gap we obtain the result plotted in Figure 3.1. From Figure 3.1,
we observe that the gap for the HD diamond network is in general smaller
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than the one computed for the general HD relay network; this is in line with
what happens in FD. However, in FD for the diamond network the gap is
logarithmic in N [25], [26], while the gap in Figure 3.1 (solid curve) still
grows linearly with N . This is due to the fact that the HD cut-set outer
bound, as opposed to the FD one, contains the entropy of the state vector,
which is upper bounded by the uniform distribution over all the possible
states; this term contributes linearly in the number of nodes to the overall
gap. Moreover, from Figure 3.1 we observe that our gap (solid curve) is
larger than the gap of order N + 3 log(N) from [1] (dashed curve). We
believe that the reason is because our gap has been computed as a special
case of a general HD MGN while the one in [1] has been specifically derived
for HD diamond relay networks. ⇤

Remark 10. We argue here that Theorem 3, valid for Gaussian HD relay
networks with single-antenna nodes, gives a constant gap result also for
the case of multiple-antenna nodes. Actually, Theorem 3 holds for the more
general MGN in which one has K = N+2 HD nodes (N relays, 1 source and
1 destination); thus, we shall argue that the gap result for the general single-
antenna MGN extends to the multiple-antenna case. The key observation
is to consider a MGN with multiple-antenna nodes as a new MGN with
single-antenna nodes, where: (i) each node in the new MGN corresponds to
a different antenna in the original MGN model and (ii) in the new MGN, the
links connecting the nodes corresponding to different antennas at the same
node in the original MGN are of infinite capacity. Now, since our original
gap result applies to the new MGN (as the gap result in Theorem 3 holds
uniformly over all channel gains), then for the original MGN we have that
GAP  1.96Mtot bits per channel use, with Mtot being the total number of
nodes in the new MGN, that is the total number of antennas in the original
MGN, i.e., Mtot := m0 +mtot +mN+1.

3.4 Simple schedules for a class of HD multi-relay
networks

The goal of this section is to prove Theorem 4, i.e., to show that simple relay
policies are (approximately) optimal in (3.8).

We start by noting that the capacity C(HD−RN) of the HD multi-relay
network is not known in general, but can be upper bounded by the cut-set
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bound

C(HD−RN)  max
PX[1:N+1],S[1:N ]

min
A✓[1:N ]

I
(rand)
A , (3.19)

where

I
(rand)
A := I (XN+1, XAc , SAc ;YN+1, YA|XA, SA) (3.20)

 H(SAc) + I
(fix)
A , (3.21)

where I
(fix)
A is defined in (3.9). In particular, I

(rand)
A in (3.20) is the mutual

information across the network cut A ✓ [1 : N ] when a random schedule
is employed, i.e., information is conveyed from the relays to the destination
by switching between listen and transmit modes of operation at random

times [18] (see the term H(SAc)  |Ac|  N in (3.21)); I
(fix)
A in (3.9) is the

mutual information with a fixed schedule, i.e., the time instants at which a
relay transitions between listen and transmit modes of operation are fixed
and known to all nodes in the network [18] (see the term S[1:N ] in the con-
ditioning in (3.9)).

The proof of Theorem 4 consists of the following steps:

1. We first show that the function I
(fix)
A defined in (3.9) is submodular

under the three assumptions in Theorem 4.

2. By using Proposition 14, we show that the problem in (3.8) can be
recast into an equivalent max-min problem.

3. With Proposition 16 we show that the max-min problem is equivalent
to solve a min-max problem. The min-max problem is then shown
to be equivalent to solve N ! max-min problems, for each of which we
obtain an optimal basic feasible solution by Proposition 15 with the
claimed maximum number of non-zero entries.

We now give the details for each step in a separate subsection.

3.4.1 Proof Step 1

We show that I
(fix)
A in (3.9) is submodular. The result in [92, Theorem 1]

showed that fs(A) in (3.12) is submodular for each relay state s 2 [0 : 1]N

under the assumption of independent inputs and independent noises (the
same work provides an example of a diamond network with correlated inputs
for which the cut-set bound is neither submodular nor supermodular). Since
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submodular functions are closed under non-negative linear combinations (see

Definition 3), this implies that I
(fix)
A =

P
s2[0:1]N λs fs(A) is submodular

under the assumptions of Theorem 4. For completeness, we provide the
proof of this result in Appendix 3.A, where we use Definition 3 as opposed
to the “diminishing marginal returns” property of a submodular function
used in [92].

Example for N = 2: In this setting we have 22 = 4 possible cuts, each of
which is a linear combination of 22 = 4 possible listen/transmission config-
uration states. In particular, from (3.10) we have

A = ;, I
(fix)
; := λ0f0 (;) + λ1f1 (;) + λ2f2 (;) + λ3f3 (;) ,

A = {1} , I
(fix)
{1} := λ0f0 ({1}) + λ1f1 ({1}) + λ2f2 ({1}) + λ3f3 ({1}) ,

A = {2} , I
(fix)
{2} := λ0f0 ({2}) + λ1f1 ({2}) + λ2f2 ({2}) + λ3f3 ({2}) ,

A = {1, 2} , I
(fix)
{1,2} := λ0f0 ({1, 2}) + λ1f1 ({1, 2})

+λ2f2 ({1, 2}) + λ3f3 ({1, 2}) ,

where, 8s 2 [0 : 3], we have that the functions in (3.12) are given by

fs (;) := I
(
X3, X1, X2;Y3|S[1:2] = s

)
,

fs ({1}) := I
(
X3, X2;Y3, Y1|X1, S[1:2] = s

)
,

fs ({2}) := I
(
X3, X1;Y3, Y2|X2, S[1:2] = s

)
,

fs ({1, 2}) := I
(
X3;Y3, Y2, Y1|X2, X1, S[1:2] = s

)
,

and are submodular under the three assumptions in Theorem 4.

3.4.2 Proof Step 2

Given that I
(fix)
A in (3.9) is submodular, we would like to use Proposition 14

to replace the minimization over the subsets of [1 : N ] in (3.8) with a mini-

mization over the cube [0 : 1]N . Since I
(fix)
; = I

(
X[1:N+1];YN+1|S[1:N ]

)
≥ 0

in general, we define a new submodular function

g (A) := I
(fix)
A − I

(fix)
; (3.22)
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and proceed as follows

min
A✓[1:N ]

I
(fix)
A = I

(fix)
; + min

A✓[1:N ]
g (A)

=I
(fix)
; + min

w2[0,1]N

⇥
w⇡1 w⇡2 . . . w⇡N

⇤
2
64

g ({⇡1})− g (;)
...

g ({⇡1, . . . ,⇡N})− g ({⇡1, . . . ,⇡N−1})

3
75

= I
(fix)
; + min

w2[0,1]N

⇥
w⇡1 w⇡2 . . . w⇡N

⇤
2
664

I
(fix)
{⇡1}

− I
(fix)
;

...

I
(fix)
{⇡1,...,⇡N} − I

(fix)
{⇡1,...,⇡N−1}

3
775

= min
w2[0,1]N

⇥
1 w⇡1 w⇡2 . . . w⇡N

⇤

2
666664

I
(fix)
;

I
(fix)
{⇡1}

− I
(fix)
;

...

I
(fix)
{⇡1,...,⇡N} − I

(fix)
{⇡1,...,⇡N−1}

3
777775

=: min
w2[0,1]N

{
[1,wT ] H⇡,f

 
, (3.23)

which implies that the problem in (3.8) is equivalent to

C0 = max
λvect

min
w2[0,1]N

n
[1,wT ] H⇡,fλvect

o
, (3.24)

where λvect is the probability mass function of S[1:N ] in (3.11), H⇡,f is defined
as

H⇡,f := P⇡

2
666664

1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...
0 0 . . . −1 1

3
777775

| {z }
(N+1)⇥(N+1)

F⇡ 2 R
(N+1)⇥2N , (3.25)
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Figure 3.2: Lovász extension bg(w1, w2) in (3.27), with g ({1}) = 3, g ({2}) =
4 and g ({1, 2}) = 6.

whereP⇡ 2 R
(N+1)⇥(N+1) is the permutation matrix that maps [1, w1, . . . , wN ]

into [1, w⇡1 , . . . , w⇡N
], and F⇡ is defined as

F⇡ :=

2
66664

f0(;) . . . f2N−1(;)
f0({⇡1}) . . . f2N−1({⇡1})

f0({⇡1,⇡2}) . . . f2N−1({⇡1,⇡2})
. . .

f0({⇡1, . . . ,⇡N}) . . . f2N−1({⇡1, . . . ,⇡N})

3
77775
2 R

(N+1)⇥2N ,

(3.26)

with fs (A) being defined in (3.12). We thus expressed our original opti-
mization problem in (3.8) as the max-min problem in (3.24).

Example for N = 2: With N = 2, we have g (A) = I
(fix)
A − I

(fix)
; ,A ✓ [1 :

2] and the Lovász extension (see Definition 3) is

bg(w1, w2) =

⇢
w1g ({1}) + w2 [g ({1, 2})− g ({1})] if w1 ≥ w2

w2g ({2}) + w1 [g ({1, 2})− g ({2})] if w2 ≥ w1
. (3.27)

A visual representation of the Lovász extension bg(w1, w2) in (3.27) on [0, 1]2

is given in Figure 3.2, where we considered g ({1}) = 3, g ({2}) = 4 and
g ({1, 2}) = 6 (recall g(;) = 0).
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Let

iM := argmax {w1, w2} and im := argmin {w1, w2} . (3.28)

The optimization problem in (3.23) for N = 2 can be written as

min
0wimwiM

1

8
<
:
⇥
1 wiM wim

⇤
2
4

1 0 0
−1 1 0
0 −1 1

3
5F⇡

9
=
;

= min
0wimwiM

1

{⇥
1− wiM wiM − wim wim

⇤
F⇡

 
, (3.29)

with

F⇡ =

2
4

f0(;) f1(;) f2(;) f3(;)
f0({iM}) f1({iM}) f2({iM}) f3({iM})
f0({1, 2}) f1({1, 2}) f2({1, 2}) f3({1, 2})

3
5 , (3.30)

and finally the optimization problem in (3.24) is

C0 = max
λvect

min
0wimwiM

1

8
>><
>>:

⇥
1− wiM wiM − wim wim

⇤
F⇡

2
664

λ0

λ1

λ2

λ3

3
775

9
>>=
>>;

. (3.31)

3.4.3 Proof Step 3

In order to solve (3.24) we would like to reverse the order of min and max.
We note that the function φ (λvect,w) := [1,wT ]H⇡,fλvect satisfies the prop-
erties in Proposition 16 (it is continuous; it is convex in w by the convexity
of the Lovász extension and linear (under the assumption in item 3 in The-
orem 4), thus concave, in λvect; the optimization domain in both variables
is compact). Thus, we now focus on the problem

C0 = min
w2[0,1]N

max
λvect

n
[1,wT ] H⇡,fλvect

o
, (3.32)

which can be equivalently rewritten as

C0 = min
⇡2PN

min
w⇡2[0:1]N

max
λvect

n
[1,wT

⇡ ] H⇡,fλvect

o
(3.33)

= min
⇡2PN

max
λvect

min
w⇡2[0:1]N

n
[1,wT

⇡ ] H⇡,fλvect

o
, (3.34)
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where PN is the set of all the N ! permutations of [1 : N ]. In (3.33), for
each permutation ⇡ 2 PN , we first find the optimal λvect, and then find the
optimal w⇡ : w⇡1 ≥ w⇡2 ≥ . . . w⇡N

. This is equivalent to (3.34), where again
by Proposition 16, for each permutation ⇡ 2 PN , we first find the optimal
w⇡ : w⇡1 ≥ w⇡2 ≥ . . . w⇡N

, and then find the optimal λvect.

Let now consider the inner optimization in (3.34), that is, the problem

P1 : max
λvect

min
w⇡2[0:1]N

n
[1,wT

⇡ ] H⇡,fλvect

o
. (3.35)

From Proposition 14 we know that, for a given ⇡ 2 PN , the optimal w⇡ is
a vertex of the cube [0 : 1]N . For a given ⇡ 2 PN , there are N + 1 vertices
whose coordinates are ordered according to ⇡. In (3.35), for each of the
N +1 feasible vertices of w⇡, it is easy to see that the product [1,wT

⇡ ] H⇡,f

is equal to a row of the matrix F⇡. By considering all possible N+1 feasible
vertices compatible with ⇡ we obtain all the N + 1 rows of the matrix F⇡.
Hence, P1 is equivalent to

P2 : maximize ⌧

subject to 1(N+1)⌧  F⇡λvect

and 1T
2N

λvect = 1, λvect ≥ 02N , ⌧ ≥ 0.
(3.36)

The LP P2 in (3.36) has n = 2N + 1 optimization variables (2N values for
λvect and one value for ⌧), m = N + 2 constraints, and is feasible (consider
for example the uniform distribution of λvect and ⌧ = 0). Therefore, by
Proposition 15, P2 has an optimal basic feasible solution with at most m =
N + 2 non-zero values. Since ⌧ > 0 (otherwise the channel capacity would
be zero), it means that λvect has at most N + 1 non-zero entries.

Since for each ⇡ 2 PN the optimal λvect in (3.34) has at most N +1 non-
zero values, then also for the optimal permutation the corresponding optimal
λvect has at mostN+1 non-zero values. This shows that the (approximately)
optimal schedule in the original problem in (3.8) is simple.

This concludes the proof of Theorem 4.

Example for N = 2: For N = 2, we have |P2| = 2! = 2 possible
permutations. From Proposition 14, the optimal w is one of the vertices
(0, 0), (0, 1), (1, 0), (1, 1). Let now focus on the case iM = 1 and im = 2 (a
similar reasoning holds for iM = 2 and im = 1 as well). Under this condition
P1 in (3.35) is the problem in (3.31) with iM = 1 and im = 2. The vertices
compatible with this permutation are (w1, w2) 2 {(0, 0), (1, 0), (1, 1)}, which
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result in (1 − w1, w1 − w2, w2) 2 {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This implies
that P2 in (3.36) is

maximize ⌧

subject to ⌧  f0(;)λ0 + f1(;)λ1 + f2(;)λ2 + f3(;)λ3,
⌧  f0({1})λ0 + f1({1})λ1 + f2({1})λ2 + f3({1})λ3,
⌧  f0({1, 2})λ0+f1({1, 2})λ1+f2({1, 2})λ2+f3({1, 2})λ3,
λ0 + λ1 + λ2 + λ3 = 1, λi ≥ 0 i 2 [0 : 3], ⌧ ≥ 0,

(3.37)

where each of the three inequality constraints correspond to a different row
of F⇡ multiplied by λvect = [λ0,λ1,λ2,λ3]

T . Therefore, P2 in (3.37) has four
constraints (three from the rows of F⇡ and one from λvect) and five unknowns
(one value for ⌧ and four entries of λvect). Thus, by Proposition 15, P2 has
an optimal basic feasible solution with at most four non-zero values, of which
one is ⌧ and thus the other (at most) three belong to λvect. In particular, in
Appendix 3.B, we show that either λ0 or λ3 is zero, thus giving the desired
(approximately) optimal simple schedule.

Remark 11. In order to apply the saddle-point property (see Proposition
16) and hence cast our optimization problem as a LP, the proof of Step 3
requires that the matrix F⇡ does not depend on λvect; this is the reason of
our assumption in item 3 in Theorem 4. In Gaussian noise this assumption
excludes the possibility of power allocation across the relay states because
power allocation makes the optimization problem non-linear in λvect.

Remark 12. As stated in Theorem 4, our three assumptions provide a set of
sufficient conditions for the existence of an (approximately) optimal simple
schedule. As those conditions are not necessary, there might exist networks
for which these assumptions are not satisfied, but for which the (approxi-
mately) optimal schedule is still simple. Determining necessary conditions
for optimality of simple schedules is an interesting challenging open question.

Remark 13. For FD relays, it was shown in [92] that wireless erasure net-
works, Gaussian networks with single-antenna nodes and their linear deter-
ministic high-SNR approximations are examples for which the cut-set bound
(or an approximation to it) is submodular. Since submodular functions are
closed under non-negative linear combinations (see Definition 3), this implies
that the cut-set bound (or an approximation to it) is submodular when eval-
uated for these networks with HD relays. As a consequence, Theorem 4 holds
for wireless erasure networks, Gaussian networks with single-antenna nodes
and their linear deterministic high-SNR approximations with HD relays.
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Remark 14. Gaussian relay networks with multi-antenna nodes, where each
antenna at the relays can be switched independently of one another, satisfy
all the conditions in Theorem 4. Actually, as highlighted in Remark 10, the
NNC strategy, which uses independent inputs, achieves the cut-set upper
bound to within a constant gap; moreover, as we shall see in the example in
Section 3.6.2, a constant power allocation across the relay states is optimal to
within a constant gap. As we showed for the single-antenna nodes case, what
dictates the number of active states of the relay scheduling policy is related
to the minimization over A ✓ [1 : N ] and not to the maximization over
the 2mtot possible relay configurations. This extends the result in Theorem
4 to Gaussian HD multi-relay networks with multi-antenna nodes, i.e., the
(approximately) optimal schedule has at most N+1 active states (out of the
22

mtot possible ones), independently of the total number of antennas. This
result implies that for Gaussian relay networks, the cut-set upper bound can
be achieved to within a constant gap by employing the NNC strategy with
a time-sharing among the N + 1 active states.

3.5 The gDoF and its relation to the MWBM prob-
lem.

In order to determine the gDoF of the Gaussian HD multi-relay network we
must find a tight high-SNR approximation for the different MIMO-type mu-
tual information terms involved in the cut-set upper bound (see eq.(3.17a)).
As a result of independent interest beyond the application to the Gaus-
sian HD relay network studied in this chapter, we first show that such an
approximation can be found as the solution of a MWBM problem.

In particular, equipped with the definitions in Definition 5, we now show
the following high-SNR approximation of the MIMO capacity:

Theorem 6. Let the channel matrix H 2 R
k⇥n be a full-rank matrix, where

without loss of generality k  n. Let Sn,k be the set of all k-combinations of
the integers in [1 : n] and Pn,k be the set of all k-permutations of the integers
in [1 : n]5.

5The k-combinations and the k-permutations of the integers in [1 : n] are defined
as sequences of a fixed length k of elements taken from a given set of size n such that
no elements occurs more than once. Then, over this k-length sequence all the possible
combinations Sn,k and all the possible permutations Pn,k are computed. With π(i) we
indicate the element in the i-th position of the permutation π ∈ Pn,k.
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Then,

|Ik +HHH | =
X

&2Sn,k

X

⇡2Pn,k

kY

i=1

∣∣∣[H& ]i,⇡(i)

∣∣∣
2
+ T

.
= SNRMWBM(B),

where

MWBM(B) := max
&2Sn,k

max
⇡2Pn,k

kX

i=1

[B& ]i,⇡(i), (3.38)

where B is the SNR-exponent matrix defined as [B]ij = βij ≥ 0 : |hij |2 =
SNRβij (with hij being the channel gain from the j-th antenna at the trans-
mitter to the i-th antenna at the receiver), H& and B& are the square ma-
trices obtained from H and B, respectively, by retaining all rows and the
columns indexed by &, and T is the sum of terms that overall behave as

o
⇣
SNRMWBM(B)

⌘
.

Proof. The proof can be found in Appendix 3.C. The expression in (3.38) is
a possible way of writing the MWBM problem.

Theorem 6 establishes an interesting connection between the gDoF of a
MIMO channel (with independent inputs) and graph theory. Notice that
the high-SNR expression found in Theorem 6 holds for correlated inputs
as well, as long as the average power constraint is a finite constant. More
importantly, Theorem 6 allows to move from DoF, where all exponents βij
have the same value, to gDoF, where different channel gains have different
exponential behavior. DoF is essentially a characterization of the rank of the
channel matrix; gDoF captures the potential advantage due to ‘asymmetric’
channel gains. In Section 3.7 we will show, through some network examples,
that Theorem 6 is an efficient tool to characterize the gDoF region for any
Gaussian network whose capacity can be approximated to within a constant
gap by linear combinations of log | . . . | terms and it also represents an useful
tool to solve user scheduling problems.

With Theorem 6 we can now express the gDoF d(HD−RN) of a HD relay
network as in Theorem 5, where the non-negative matrix A 2 R

2N⇥2N in
(3.15) has entries

[A]ij := lim
SNR!+1

I(XAc
i[{N+1};YAi[{N+1}|XAi

, S[1:N ] = sj)

log(1 + SNR)
, (3.39)
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where Ai and sj are defined right after Theorem 7. In other words, each row
of the matrix A refers to a possible cut in the network, while each column
of A refers to a possible listening/transmitting configuration state.

By a simple application of Theorem 6 we have that each entry of the
matrix A can be evaluated by solving the corresponding MWBM problem.
More formally

Theorem 7. For the LP in Theorem 5

[A]ij = MWBM
⇣
B{N+1}[(Ai\Aj), {N+1}[(Ac

i\A
c
j}

⌘
.

The notation in eq.(3.39) and in Theorem 7 is as follows. B indicates
the SNR-exponent matrix defined as [B]ij = βij ≥ 0 : |hij |2 = SNRβij , and
the indices (i, j) have the following meaning. Index i refers to a “cut” in
the network and index j to a “state of the relays”. Both indices range in
[1 : 2N ] and must be seen as the decimal representation of a binary number
with N bits. Ac

i , i 2 [1 : 2N ], is the set of those relays who have a one in
the corresponding binary representation of i − 1 and sj , j 2 [1 : 2N ], sets
the state of a relay to the corresponding bit in the binary representation of
j − 1. Finally, we evaluate the MWBM of the bigraph with weight matrix


IN−diag[sj ] 0N

0TN 1

]
B


diag[sj ] 0N
0TN 1

]]

{N+1}[Ai,{N+1}[Ac
i

= B{N+1}[(Ai\Aj), {N+1}[(Ac
i\A

c
j}
,

where the equality follows from the following observation. Among the re-
lays ‘on the side of the destination’ (indexed by Ai) only those in receive
mode matter (indexed by Aj), therefore we can reduce the set of ‘receiv-
ing nodes’ from Ai to Ai \ Aj . Similarly, among the relays ‘on the side of
the source’ (indexed by Ac

i ) only those in transmit mode matter (indexed
by Ac

j), therefore we can reduce the set of ‘transmitting nodes’ from Ac
i to

Ac
i \Ac

j . Notice that B{N+1}[(Ai\Aj), {N+1}[(Ac
i\A

c
j}

does not change if the

roles of i and j are swapped, which implies that [A]ij = [A]ji, i.e., the matrix
A is symmetric. To better understand the notation, consider the following
example.

Example: N = 3, i = 7, and j = 5. From i− 1 = 6 = 1 · 22 +1 · 21 +0 · 20
we have A7 = {3} = {1, 2}c, meaning that relay 1 and relay 2 lie in the cut
of the source and relay 3 lies in the cut of the destination. From j − 1 =
4 = 1 · 22 + 0 · 21 + 0 · 20 we have s5 = [1, 0, 0], meaning that relay 1 is
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transmitting, and relays 2 and 3 are receiving (also A5 = {2, 3} = {1}c).
With this we have

{N + 1} [ Ai = {4} [ {3} = {3, 4},
{N + 1} [ Ac

i = {4} [ {1, 2} = {1, 2, 4},
{N + 1} [ (Ac

i \ Ac
j) = {4} [ ({1, 2} \ {1}) = {1, 4},

{N + 1} [ (Ai \ Aj} = {4} [ ({3} \ {2, 3}) = {3, 4},

and

[A]7,5 = MWBM

0
BB@

2
664

2
664

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
775

2
664

β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

3
775

2
664

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3
775

3
775
{3,4},{1,2,4}

1
CCA

= MWBM

✓
β31 0 β34

β41 0 β44

]◆
= max {β31 + β44,β34 + β41} .

Also

[A]7,5 = MWBM

0
BBB@

2
664

β11 β12 β13 β14
β21 β22 β23 β24
β31 β32 β33 β34
β41 β42 β43 β44

3
775
{3,4},{1,4}

1
CCCA

= MWBM

✓
β31 β34
β41 β44

]◆
= max {β31 + β44,β34 + β41} .⇤

3.6 Network examples

In order to gain insights into how relays are best utilized, in this section
we analyze two network examples. In particular, the first example, shown
in Figure 3.3, consists of N = 2 single-antenna HD relays (RN1 and RN2)
assisting the communication between a source (Tx) and a destination (Rx),
while in the second example, shown in Figure 3.5, there is N = 1 relay (RN)
equipped with mr = 2 antennas. For the scenario in Figure 3.3 we seek to
find under which channel conditions a best-relay selection scheme is strictly
suboptimal in terms of gDoF with respect of using both relays, while for
the scenario in Figure 3.5 we aim to show that independently switching the
mr = 2 antennas at the relay not only achieves in general strictly higher
rates compared to using the mr = 2 antennas for the same purpose, but can
actually provide a strictly larger pre-log factor. We now analyze these two
scenarios separately.
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Tx

RN1

Rx

RN2

αs1

1

αs2

α1d

α2d

β1β2

Figure 3.3: Example of a network with N = 2 relays with single-antenna
nodes.

3.6.1 Example 1: HD relay network with N = 2 relays

We consider the network in Figure 3.3 where, in order to increase the read-
ability, the SNR-exponents are indicated as


log(|hij |2)
log(SNR)

]

(i,j)2[1:3]2
=

0
@

? β1 ↵s1

β2 ? ↵s2

↵1d ↵2d 1

1
A , (3.40)

where ? denotes an entry that does not matter for channel capacity, ↵si is
the SNR-exponent on the link from the source to relay i, i 2 [1 : 2], ↵id is
the SNR-exponent on the link from relay i, i 2 [1 : 2], to the destination,
βi is the SNR-exponent on the link from relay j to relay i, (i, j) 2 [1 : 2]2

with j 6= i, and the direct link from the source to the destination (entry in
position (3,3) in (3.40)) has SNR-exponent normalized to 1 without loss of
generality. Notice that in order to consider a network without a direct link
it suffices to consider all the other SNR-exponents to be larger than 1, or
simply replace ‘1’ with ‘0’ in the discussion in the rest of the section.

We next derive the gDoF in both the FD and HD cases.

The full-duplex case: For the FD case, the cut-set bound is achievable
to within 2⇥ 0.63⇥ 4 = 5.04 bits with NNC [20]. As a consequence, it can
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be verified that the gDoF for the FD case is

d
(FD)
N=2 = min

n
max {1,↵s1,↵s2} ,max {↵s2+↵1d,β2+1} ,

max {↵s1 + ↵2d,β1 + 1} ,max {1,↵1d,↵2d}
o
. (3.41)

Note that d
(FD)
N=2 ≥ 1, i.e., the gDoF in (3.41) is no smaller than the gDoF

that could be achieved without using the relays, that is, by communicating
directly through the direct link to achieve gDoF = 1. Notice also that the
gDoF in (3.41) does not change if we exchange ↵s1 with ↵2d, and ↵s2 with
↵1d, i.e., if we swap the role of the source and destination. We aim to iden-
tify the channel conditions under which using both relays strictly improves
the gDoF compared to the best-relay selection policy (which includes di-
rect transmission from the source to the destination as a special case) that
achieves

d
(FD)
N=2,best relay = max

{
1,min{↵s1,↵1d},min{↵s2,↵2d}

 
2 [1, d

(FD)
N=2]. (3.42)

We distinguish the following cases:

1. Case 1: if

either

⇢
↵s1 ≥ ↵s2

↵1d ≥ ↵2d
or

⇢
↵s1 < ↵s2

↵1d < ↵2d

then, since one of the relays is ‘uniformly better’ than the other, we

immediately see that d
(FD)
N=2 = d

(FD)
N=2,best relay, so in this regime selecting

the best relay for transmission is gDoF optimal.

2. Case 2: if not in Case 1, then we are in

either

⇢
↵s1 ≥ ↵s2

↵1d < ↵2d
or

⇢
↵s1 < ↵s2

↵1d ≥ ↵2d
.

Consider the case ↵s2  ↵s1, ↵1d < ↵2d (the other one is obtained
essentially by swapping the role of the relays). This corresponds to
an ‘asymmetric’ situation where relay 1 has the best link from the
source but relay 2 has the best link to the destination. In this case we
would like to exploit the inter relay communication links (which are
not present in a diamond network) to create a route source! relay1!
relay2! destination in addition to the direct link source!destination.

Indeed, in this case d
(FD)
N=2 in (3.41) can be rewritten as

d
(FD)
N=2=min

n
max {↵s2+↵1d,β2+1} ,max{1,min{↵s1,↵2d}}

o
, (3.43)
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where the term max{1,min{↵s1,↵2d}} in (3.43) corresponds to the
gDoF of a virtual single-relay channel such that the link from the
source to the “virtual relay” has SNR-exponent ↵s1 and the link from
the“virtual relay”to the destination has SNR-exponent ↵2d. We aim to
determine the subset of the channel parameters ↵s2  ↵s1, ↵1d < ↵2d

for which the gDoF in (3.43) is strictly larger than the ‘best relay’
gDoF in (3.42). The case ↵s2  ↵s1, ↵1d < ↵2d subsumes the following
possible orders of the channel gains:

case i ↵1d ↵2d ↵s2 ↵s1

case ii ↵1d ↵s2 ↵2d ↵s1

case iii ↵1d ↵s2 ↵s1 ↵2d

case iv ↵s2 ↵1d ↵2d ↵s1

case v ↵s2 ↵1d ↵s1 ↵2d

case vi ↵s2 ↵s1 ↵1d ↵2d

We partition the set of channel parameters ↵s2  ↵s1, ↵1d < ↵2d as
follows:

• Sub-case 2a) (all but cases i and vi in the table): if

max{↵s2,↵1d} < min{↵s1,↵2d}, (3.44)

then

d
(FD)
N=2,best relay = max{1,↵s2,↵1d}, (3.45)

which is strictly less than d
(FD)
N=2 in (3.43) if either

max{1,↵s2,↵1d} < min{↵s1,↵2d}  max {↵s2 + ↵1d,β2 + 1}

or
n
max {↵s2 + ↵1d,β2 + 1} < min{↵s1,↵2d}

o
\Oc

where

O :={β2 = 0,↵s2 + ↵1d  1} [ {↵1d = 0,β2 + 1  ↵s2}
[ {↵s2 = 0,β2 + 1  ↵1d},

that is for

max{1,↵s2,↵1d} < min{↵s1,↵2d} except in region O.



92 Chapter 3 The Half-Duplex Multi-Relay Network

• Sub-case 2b) (case i in the table above): if ↵1d < ↵2d  ↵s2  ↵s1,
then the condition

d
(FD)
N=2,best relay = max{1,↵2d} < d

(FD)
N=2

= min
n
max {↵s2 + ↵1d,β2 + 1} ,max{1,↵2d}

o

is never verified, i.e., in this case d
(FD)
N=2,best relay = d

(FD)
N=2.

• Sub-case 2c) (case vi in the table above): if ↵s2  ↵s1  ↵1d <
↵2d, then

d
(FD)
N=2,best relay = max{1,↵s1} < d

(FD)
N=2

= min
n
max {↵s2 + ↵1d,β2 + 1} ,max{1,↵s1}

o

is never verified, i.e., in this case d
(FD)
N=2,best relay = d

(FD)
N=2.

To summarize, for a 2-relay network where the single-antenna relays operate
in FD, using both relays gives a strictly larger gDoF compared to only
exploiting the best one if

max{1,↵s2,↵1d} < min{↵s1,↵2d} except for (3.46a)

O := {β2 = 0,↵s2 + ↵1d  1} [ {↵1d = 0,β2 + 1  ↵s2}
[ {↵s2 = 0,β2 + 1  ↵1d}. (3.46b)

Recall that there is also a regime similar to (3.46) where the role of the
relays is swapped.

In Figure 3.3 consider the case of ↵s1 = ↵2d = x, ↵s2 = ↵1d = y,
β1 = β2 = z with 0 < y < x. With these parameters, the network in Figure
3.3 satisfies the conditions in (3.44). This is an ‘asymmetric’ network, i.e.,
one relay has the best link from the source and the other relay has the best
link to the destination. By exploiting both relays, the system attains

d
(FD)
N=2 = min

n
max{1, x, y},max{2x, z + 1},max{2y, z + 1}

o

= min
n
max{1, x},max{2y, z + 1}

o
,

while, by using only the best relay, it achieves

d
(FD)
N=2,best relay = max

{
1,min{x, y}

 
= max

{
1, y
 
.
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By (3.46), we have d
(FD)
N=2 > d

(FD)
N=2,best relay if

x > max
{
1, y
 
except for

⇢
z = 0, y  1

2

}
. (3.47)

Note that a non-zero link between relay1 and relay2 allows to route the
information through the path source!relay1!relay2!destination, which
leads to an increase in terms of gDoF with respect to the best relay selection
strategy.

The half-duplex case: With HD, the gDoF is given by

d
(HD)
N=2 =maxmin

n
λ0D

(0)
1 + λ1D

(1)
1 + λ2D

(2)
1 + λ3D

(3)
1 ,

λ0D
(0)
2 + λ1D

(1)
2 + λ2D

(2)
2 + λ3D

(3)
2 ,

λ0D
(0)
3 + λ1D

(1)
3 + λ2D

(2)
3 + λ3D

(3)
3 ,

λ0D
(0)
4 + λ1D

(1)
4 + λ2D

(2)
4 + λ3D

(3)
4

o
, (3.48)

where the maximization is over λs, 8s 2 [0 : 1]2, with λs = P[S[1:2] = s] ≥ 0,
such that

P
s2[0:3]λs = λ0 + λ1 + λ2 + λ3 = 1 6, and

D
(0)
1 := max {1,↵s1,↵s2} , D

(1)
1 = D

(0)
2 := max {1,↵s1} ,

D
(3)
4 := max {1,↵1d,↵2d} , D

(2)
1 = D

(0)
3 := max {1,↵s2} ,

D
(1)
2 := max {↵s1 + ↵2d,β1 + 1} , D

(3)
2 = D

(1)
4 := max {1,↵2d} ,

D
(2)
3 := max {↵s2 + ↵1d,β2 + 1} , D

(3)
3 = D

(2)
4 := max {1,↵1d} ,

D
(3)
1 = D

(2)
2 = D

(1)
3 = D

(0)
4 := 1.

For future reference, if only one relay helps the communication between
the source and the destination then the achievable gDoF is given by (2.4) in
Chapter 2, which with the notation in (3.40)

d
(HD)
N=2,best relay = 1 + max

i2[1:2]

[↵si − 1]+ [↵id − 1]+

[↵si − 1]+ + [↵id − 1]+
2 [1, d

(HD)
N=2 ]. (3.49)

An analytical closed form solution for the optimal {λs} in (3.48) is com-
plex to find for general channel gain assignments. However, numerically it

6Recall that we use interchangeably the notation s ∈ [0 : 1]N to index all possible
binary vectors of length N , as well as, s ∈ [0 : 2N−1] to indicate the decimal representation
of a binary vector of length N .
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is a question of solving a LP, for which efficient numerical routines exist.
Moreover, see Appendix 3.B, we can set, without loss of optimality, either
λ0 or λ3 to zero.

For the example in Figure 3.3 with ↵s1 = ↵2d = x, ↵s2 = ↵1d = y,
β1 = β2 = z and 0 < y < x, the (approximately) optimal schedule has
λ0 = λ3 = 0 without loss of optimality (see Appendix 3.B). By letting
λ1 = γ 2 [0, 1] and λ2 = 1− γ (recall 0 < y < x without loss of generality),
the gDoF in (3.48) can be written as

d
(HD)
N=2 = max

γ2[0,1]
min

n
γmax{1, x}+ (1− γ)max{1, y},

γmax{2x, z + 1}+ (1− γ),

γ + (1− γ)max{2y, z + 1}
o

= 1 +min

⇢
[x− 1]+max{2y − 1, z}

[x− 1]+ +max{2y − 1, z} − [y − 1]+
,

max{2x− 1, z}max{2y − 1, z}
max{2x− 1, z}+max{2y − 1, z}

}
. (3.50)

By using only the best relay as in (3.49), we would achieve

d
(HD)
N=2,best relay = 1 +

[x− 1]+[y − 1]+

[x− 1]+ + [y − 1]+
. (3.51)

It can be easily seen that the best relay selection policy is strictly sub-
optimal if (3.47) is verified, as for the FD case. Considerations similar
to those made for the FD case, can be made for the HD case as well.
Figure 3.4 shows, for different values of z, i.e., strength of the links be-

tween the two relays, the behaviors of d
(HD)
N=2,best relay in (3.51) and d

(HD)
N=2 in

(3.50). Regarding the curves with y = 0.4, since we have y < 1
2 and hence

max{2y − 1, z} = z, 8z ≥ 0, d
(HD)
N=2 in (3.50) is an increasing function of z.

On the other hand, since y < 1, d
(HD)
N=2,best relay in (3.51) is always equal to

1, i.e., direct transmission is gDoF optimal. We also notice that for z = 0,
the two curves overlap since the condition in (3.47) holds. Regarding the

curves with y = 1.2, we notice that d
(HD)
N=2 in (3.50) is always strictly greater

than d
(HD)
N=2,best relay in (3.51), i.e., the channel conditions are such that the

synergies between the two relays bring to an unbounded rate gain with re-

spect to best relay selection. Moreover, d
(HD)
N=2 in (3.50) starts to increase

with z, when min {max{2y − 1, z},max{2x− 1, z}} = max{2y − 1, z} = z,
i.e., z = 1.4 and best relay selection is always gDoF-wise greater than direct

transmission, i.e., d
(HD)
N=2,best relay > 1, since min{x, y} > 1.
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Figure 3.4: d
(HD)
N=2 in (3.50) and d

(HD)
N=2,best relay in (3.51) for different values of

z 2 [0, 3] and for x = 1.3, y = 0.4, 1.2 in Figure 3.3

3.6.2 Example 2: HD relay network with N = 1 relay equipped
with mr = 2 antennas

We consider the network in Figure 3.5, which consists of a single-antenna
source (Tx), a single-antenna destination (Rx) andN = 1 relay (RN) equipped
with mr = 2 antennas. For readability, we use here a different convention for
the subscripts compared to the rest of the chapter and indicate the input-
output relationship as

yr =


(1− S1)hrs,1
(1− S2)hrs,2

]
x0 + zr, (3.52a)

yd =
⇥
hds hdr,1 hdr,2

⇤
2
4

x0
S1x1
S2x2

3
5+ zd, (3.52b)

where: (i) x0 and xr = [x1; x2] are the signals transmitted by the source and
the relay, respectively; (ii) yr = [y1; y2] and yd are the signals received at the
relay and destination, respectively; (iii) zr = [z1; z2] and zd are the noises
at the relay and destination, respectively; (iv) sr = [S1; S2] is the state of
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Tx RN Rx

hdr,1

hrs,2 hdr,2

hrs,1

hds

Figure 3.5: Example of network with N = 1 relay with mr = 2 antennas,
and single-antenna source and destination.

the relay antennas; (v) the inputs are subject to the power constraints

E[|x0|2] =
X

s2[0:1]2

λsE[|x0|2|sr = s] =
X

s2[0:1]2

λsP0|s  1, (3.53a)

E
⇥
kxrk2

⇤
= Tr

2
4 X

s2[0:1]2

λsE
⇥
xrx

H
r |sr = s

⇤
3
5

= Tr

2
4 X

s2[0:1]2

λs


P1|s ⇢s

p
P1|sP2|s

⇢⇤s
p

P1|sP2|s P2|s

]3
5  1, (3.53b)

where ⇢s : |⇢s| 2 [0, 1] is the correlation coefficient among the relay antennas
in state s 2 [0 : 1]2 and Pk|s is the power allocated on xk, k 2 [0 : 2], in state
s 2 [0 : 1]2.

In what follows we consider two different possible switching strategies at
the relay: (i) sr 2 [0 : 1]2: the mr = 2 antennas at the relay are switched
independently of one another, and (ii) sr = S12 : S 2 [0 : 1]: the mr = 2
antennas at the relay are used for the same purpose, either transmit or
receive. We now analyze these two cases separately.

1. Case (i): independent use of the relay antennas. For the cut-set upper
bound, two cuts must be considered, namely, A = ; (the relay is in
the cut of the source) and A = {1} (the relay is in the cut of the
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destination). In this case the capacity Ccase (i) is upper bounded as

Ccase (i)  max
Px0,xr,sr

min {I (x0,xr, sr; yd) , I (x0; yd,yr|xr, sr)}

 H (sr) + max
Px0,xr

min {I (x0,xr; yd|sr) , I (x0; yd,yr|xr, sr)} ,

where the last inequality follows since I (sr; yd)  H (sr)  2 bits.
Note that, in general, Gaussian inputs are not optimal for Gaussian
networks with HD relays since useful information can be conveyed to
the destination through random switch [18]. However, as seen in Re-
mark 10, to within a constant gap a fixed switching policy between
receive and transmit states is optimal, in which case a Gaussian input
for each state is optimal. Moreover, the optimal choice of the correla-

tion coefficients is ⇢00 = ⇢01 = ⇢10 = 0 and ⇢11 = ej\(h
H
dr,1hdr,2). With

this we have

I (x0,xr; yd|sr)  I
(fix)
;

:=md log(2) + λ0 log
(
1 + |hds|2P0|00

)

+ λ1 log
(
1 + |hds|2P0|01 + |hdr,2|2P2|01

)

+ λ2 log
(
1 + |hds|2P0|10 + |hdr,1|2P1|10

)

+λ3 log

✓
1+|hds|2P0|11+

⇣q
|hdr,1|2P1|11+

q
|hdr,2|2P2|11

⌘2◆
, (3.54)

where the term md log(2) (with md being the number of antennas at
the destination) accounts for the loss of considering independent inputs
at Tx and at RN. Similarly, we have

I (x0; yd,yr|xr, sr)  I
(fix)
{1}

:=λ0 log
(
1 + (|hds|2 + |hrs,1|2 + |hrs,2|2)P0|00

)

+ λ1 log
(
1 + (|hds|2 + |hrs,1|2)P0|01

)

+ λ2 log
(
1 + (|hds|2 + |hrs,2|2)P0|10

)

+ λ3 log
(
1 + |hds|2P0|11

)
. (3.55)

Note that to determine the NNC achievable rate it suffices to remove
the term I (yr; ŷr|x0,xr, sr, yd) = mr log(1 + 1/σ2) from I; and the
term I (x0;yr|ŷr, yd,xr, sr)  log(1+ σ2) from I{1}, with σ2 being the
variance of the quantization noise. We let σ2 = 1 for simplicity. Note

also that the expressions for I
(fix)
; and I

(fix)
{1} should be optimized with
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respect to the power allocation across the relay states, which makes
the optimization problem non-linear in λs, s 2 [0 : 1]mr . As pointed
out in Remark 11 (see also the assumption in item 3 in Theorem 4), in
order to apply Theorem 4 (see also Remark 14) we must further bound
the two expressions so that to obtain a new optimization problem with
constant powers across the relay states, i.e., we need to obtain a LP
in {λs}. In Appendix 3.D we show Ccase (i)  GAP+ C0

case (i) where

C0
case (i) = max

λs

min
{
λ0 log

(
1 + |hds|2

)
+ λ1 log

(
1 + |hds|2 + |hdr,2|2

)

+λ2 log
(
1 + |hds|2 + |hdr,1|2

)

+λ3 log

 
1 + |hds|2 +

✓q
|hdr,1|2 +

q
|hdr,2|2

◆2
!
,

λ0 log
(
1 + |hds|2 + |hrs,1|2 + |hrs,2|2

)
+ λ1 log

(
1 + |hds|2 + |hrs,1|2

)

+λ2 log
(
1 + |hds|2 + |hrs,2|2

)
+ λ3 log

(
1 + |hds|2

) 
,

and where GAP  8 bits to account for deterministic switch, indepen-
dent inputs at the source and at the relay, constant power allocation
across the states and NNC transmission strategy. Now, by applying
Theorem 4 (see also Remark 14) C0

case (i), which can be straightfor-

wardly cast into a LP as in (3.36), has at most N + 1 = 2 active
states.

2. Case (ii): same use of the relay antennas. In this case the mr = 2
antennas at the relay are used for the same purpose so it suffices to
set λ1 = λ2 = 0 in C0

case (i) and optimize over λ0 = 1− λ3 = λ 2 [0, 1].

With this we get that Ccase (ii)  GAP+ C0
case (ii) where

C0
case (ii) = log

(
1 + |hds|2

)
+ λ? log

✓
1 +

|hrs,1|2 + |hrs,2|2
1 + |hds|2

◆

λ? =

log

 
1 +

⇣p
|hdr,1|2+

p
|hdr,2|2

⌘2

1+|hds|2

!

log

 
1 +

⇣p
|hdr,1|2+

p
|hdr,2|2

⌘2

1+|hds|2

!
+ log

⇣
1 +

|hrs,1|2+|hrs,2|2

1+|hds|2

⌘

and where again GAP  8 bits. The optimal λ? for C0
case (ii) was found

by equating the two expressions within the maxmin.
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We now show through some simple examples that not only C0
case (i) ≥

C0
case (ii), i.e., independently switching the antennas at the relay brings achiev-

able rate gains compared to using the antennas for the same purpose, but
that the difference between the two can be unbounded. In other words, at
high SNR C0

case (i) and C0
case (ii) have different pre-logs / multiplexing gains

/ degrees of freedom.

Example 1: let |hds| = |hrs,2| = |hdr,1| = 0 and |hrs,1|2 = |hdr,2|2 = γ > 0
in Figure 3.5. With this choice of the channel parameters we get

C0
case (i) = max

λs

min {λ1 log (1 + γ) + λ3 log (1 + γ) ,

λ0 log (1 + γ) + λ1 log (1 + γ)} = log (1 + γ) ,

where the last equality follows since the optimal choice of λs is given by
λ0 = λ2 = λ3 = 0 and λ1 = 1, i.e., there is 1 < N + 1 = 2 active state. For
C0
case (ii) the optimal λ is 1/2 and

C0
case (ii) =

log (1 + γ)

2
.

From the two expressions above not only we have C0
case (i) > C0

case (ii), 8γ > 0,
but independently switching the mr = 2 antennas also provides a pre-log
factor that is twice of the one provided by using the antennas for the same
purpose. This can be interpreted as follows. By independently switching the
mr = 2 antennas at the relay, the achievable rate C0

case (i) equals (to within a

constant gap) the capacity of a single-antenna relay channel with a FD relay
with the source-relay and relay-destination channel gains of strength equal
to γ. On the other hand, by using themr = 2 antennas for the same purpose,
the achievable rate C0

case (ii) reduces to the capacity of a single-antenna HD
relay channel.

Example 2: let |hds| = 0 and |hrs,1|2 = |hrs,2|2 = |hdr,1|2 = |hdr,2|2 = γ >
0 in Figure 3.5. With this choice of the channel parameters we get

C0
case (i) = max

λs

min {λ1 log (1 + γ) + λ2 log (1 + γ) + λ3 log (1 + 4γ) ,

λ0 log (1 + 2γ) + λ1 log (1 + γ) + λ2 log (1 + γ)}
(a)
= max

⇢
log (1 + γ) ,

log (1 + 2γ) log (1 + 4γ)

log (1 + 2γ) + log (1 + 4γ)

}

(b)
=

(
log (1 + γ) if γ ≥ 0.752
log(1+2γ) log(1+4γ)
log(1+2γ)+log(1+4γ) otherwise

, (3.56)
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where the equality in (a) follows since among the ten possible (approxi-
mately) optimal simple schedules λs (six possible λs with two active states
plus four possible λs with one active state), it is easy to see that only the two

cases λs = [0, 0, 1, 0] and λs = [λ, 0, 0, 1 − λ], with λ = log(1+4γ)
log(1+2γ)+log(1+4γ) ,

have to be considered and the equality in (b) follows from numerical eval-
uations. Thus, if γ ≥ 0.752 the (approximately) optimal schedule has
1 < N + 1 = 2 active state (i.e., λ2 only), otherwise it has N + 1 = 2
active states (i.e., λ0 and λ3).

For C0
case (ii) we obtain that the optimal λ = log(1+4γ)

log(1+2γ)+log(1+4γ) and

C0
case (ii) =

log (1 + 2γ) log (1 + 4γ)

log (1 + 2γ) + log (1 + 4γ)
. (3.57)

It hence follows that C0
case (i) > C0

case (ii), 8γ ≥ 0.752, as can also be observed

from Figure 3.6 (blue dashed line for C0
case (i) versus red dashed line for

C0
case (ii)). Moreover, in the high-SNR regime, the pre-log factor for C0

case (i) =

log (1 + γ) is again twice of the one of C0
case (ii) ⇡ 1

2 log (1 + γ). This example

(as also Example 1) highlights the importance of smartly switching the relay
antennas in order to fully exploit the available system resources. Figure 3.6

also shows the achievable rates C00
case (i) = maxλs

min{I(fix); , I
(fix)
{1} } (solid blue
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line) and C00
case (ii) (solid red line) obtained by optimizing the powers in I

(fix)
;

in (3.54) and I
(fix)
{1} in (3.55) across the different states by Water Filling (WF),

as described in Appendix 3.E. In particular, under the channel conditions
considered in this example, from Appendix 3.E we get that the optimal
power allocation can be found by solving

C00
case (i) = max

λ2[0,1],ν≥0

⇢
λ log+ (γ⌫) +

1− λ

2
log+ (2γ⌫)

}

⌫ : λ

✓
⌫ − 1

γ

◆+

+
1− λ

2

✓
⌫ − 1

2γ

◆+

= 1,

where λ1 + λ2 = λ 2 [0, 1], λ0 = λ3 =
1−λ
2 , which is equal to

C00
case (i) = max

λ2[0,1]

⇢
λ log

✓
3λ+ 1

2(λ+ 1)
+

2

λ+ 1
γ

◆

+
1− λ

2
log

✓
3λ+ 1

λ+ 1
+

4

λ+ 1
γ

◆}
, (3.58)

which is represented by the blue solid line in Figure 3.6. For case (ii) it
suffices to set λ = 0 in C00

case (i); with this we obtain

C00
case (ii) =

1

2
log (1 + 4γ) , (3.59)

which is represented by the red solid line in Figure 3.6.

From Figure 3.6 we observe that the highest rates are achieved by opti-
mizing the powers across the different states (solid lines versus dashed lines).
However, as also highlighted in Remark 11 (see also the assumption in item 3
in Theorem 4), with optimal power allocation there are no guarantees that
the (approximately) optimal schedule is simple. This is exactly what we
observe in this example for which the optimal λ 2 [0, 1] that maximizes
C00
case (i) in (3.58) is neither zero nor one, i.e., the schedule has 3 > N +1 = 2

active states. From Figure 3.6 we also notice that the difference between
the solid lines (obtained by optimizing the powers across the states) and the
dashed lines (obtained with a constant / fixed power allocation) is at most
0.1977 bits for case (i) (blue lines) and 0.2636 bits for case (ii) (red lines).
These differences are far smaller than the 3 bits computed analytically in
Appendix 3.D, showing that the theoretical gap of 3 bits is very conservative,
at least for this choice of the channel parameters.
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Example 3: we consider the case of Rayleigh fading, where hds ⇠ N
(
0,σ2

ds

)
,

hrs,i ⇠ N
(
0,σ2

rs

)
and hdr,i ⇠ N

(
0,σ2

dr

)
with i 2 [1 : 2] in Figure 3.5 are

assumed to be constant over the whole slot (block-fading model) and we

let σ2
ds = E

h
|hds|2

i
= c

1↵ , σ
2
rs = E

h
|hrs,i|2

i
= c

d↵ and σ2
dr = E

h
|hdr,i|2

i
=

c
(1−d)↵

, where c is a constant, d 2 [0, 1] is the distance between the source and

the relay and (1− d) is the distance between the relay and the destination,
and ↵ ≥ 2 is the path loss exponent.

Figure 3.7 shows the average C0
case (i) (solid curve) and the average C0

case (ii)

(dashed curve) versus d 2 [0, 1], with fixed ↵ = 3 and c = 1. The av-
erage was taken over 5 · 104 different realizations of the channel gains for
each value of d 2 [0, 1]. From Figure 3.7 we observe again that in general

E

h
C0
case (i)

i
> E

h
C0
case (ii)

i
, with a maximum difference of around 0.6 bits at

d = 0.5. Note, in fact, that for d = 0.5 we have σ2
ds = 1 and σ2

rs = σ2
dr = 8.

Under these channel conditions, by independently switching the mr = 2
antennas at the relay we (approximately) achieve the FD performance, i.e.,

E

h
C0
case (i)

i
⇡ log

(
σ2
rs

)
= 3 bits/s/Hz, while by using the mr = 2 antennas

for the same purpose the rate performance reduces to the capacity of a single-
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antenna HD relay channel, i.e., E
h
C0
case (ii)

i
⇡ log(32) log(16)

log(32)+log(16) ⇡ 2.2 bits/s/Hz.

3.7 Applications of Theorem 6

In this section we show that the result in Theorem 6 is an efficient tool
to characterize the gDoF region for any Gaussian network whose capacity
can be approximated to within a constant gap by linear combinations of
log | . . . | terms and it also represents an useful tool to solve user scheduling
problems. In particular, in what follows, we analyze separately the MIMO
point-to-point channel, the relay-aided Broadcast Channel (BC) and the
Multiple Input Single Output (MISO) BC.

3.7.1 The MIMO point-to-point channel

The gDoF, to the best of our knowledge, has been investigated so far only
for Single Input Single Output (SISO) networks with very few number of
nodes; we believe that the reason is that in these cases one has only to con-
sider equivalent MISO and Single Input Multiple Output (SIMO) channels,
or to explicitly deal with determinants of matrices with small dimensions.
Our result extends the gDoF analysis to any MIMO channel as we explain
through some examples.

MISO and SIMO channels, i.e., the case k = 1  n: In a MISO
or SIMO channel, with channel vector h := [h1, . . . , hn] such that |hi|2 =
SNRβi , i 2 [1 : n], one trivially has

log(1 + khk2) = log

 
1 +

nX

i=1

SNRβi

!
SNR/1.
= log

⇣
SNRmaxi2[1:n]{βi}

⌘
.

The corresponding MWBM problem has one set of vertices A1 consisting of
k = |A1| = 1 node and the other set of vertices A2 consisting of n = |A2| ≥ 1
nodes. The weights of the edges connecting the single vertex in A1 to the n
vertices inA2 can be represented as the non-negative vectorB = [β1, . . . ,βn].
Clearly, the optimal MWBM(B) = maxi2[1:n]{βi} assigns the single vertex
in A1 to the vertex in A2 that is connected to it through the edge with the
maximum weight.

2 ⇥ 2 MIMO channels, i.e., the case k = n = 2: As another example
from the 2-user interference channel literature, consider the cut-set sum-rate
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upper bound

H :=


h13 h23
h14 h24

]
=

"p
SNRβ13 ej✓13

p
SNRβ23 ej✓23p

SNRβ14 ej✓14
p
SNRβ24 ej✓24

#

=) B :=


β13 β23
β14 β24

]
,

log
∣∣I2 +HHH

∣∣ SNR/1.
= log

⇣
SNRmax{β13+β24,β23+β14}

⌘
.

The corresponding MWBM problem has one set of vertices A1 consisting of
k = |A1| = 2 nodes (for future references let us refer to these vertices as
nodes 1 and 2 – see first subscript in the channel gains) and the other set
of vertices A2 consisting also of n = |A2| = 2 nodes (for future references
let us refer to these vertices as nodes 3 and 4 – see second subscript in
the channel gains). The weights of the edges connecting the vertices in
A1 to the vertices in A2 can be represented as the non-negative weights
βji, i 2 [3 : 4], j 2 [1 : 2]. In this example, one possible matching assigns
node 1 to node 3 and node 2 to node 4 (giving total weight β13+β24), while
the other possible matching assigns node 2 to node 3 and node 1 to node 4
(giving total weight β23+β14); the best assignment is the one that gives the
largest total weight.

Notice that the MWBM is a tight approximation of the 2 ⇥ 2 MIMO
capacity only if the channel matrix is full rank, see [47, eq.(5) 1st line], but
it is loose when the channel matrix is rank deficient, see [47, eq.(5) 2nd
line, and compare with eq.(11)]. The reason is that the MWBM can not
capture the impact of phases in MIMO situations. To exclude the case of
a rank deficient channel matrix from our general setting for any value of k
and n, we may proceed as in [93, page 2925]. Namely, we pose a reasonable
distribution, such as for example the i.i.d. uniform distribution, on the
phases ✓ji, i 2 [3 : 4], j 2 [1 : 2], so that almost surely the channel matrix
is full rank.

3.7.2 The relay-aided BC

The relay-aided BC consists of one source communicating with K destina-
tions with the help of L FD relays. The cut-set outer bound on the capacity
region of such a network was shown to be achievable to within O (N log(N))
bits, where N = K +L+1 is the total number of nodes [94]. This constant
gap result implies the exact knowledge of the gDoF region. As an example
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of application of Theorem 6, we next show how to derive the sum-gDoF of
the relay-aided BC.

Consider a relay-aided BC with one source, K destinations, and L = 1
relay (the result can be straightforwardly extended to the case of multiple
relays, of cooperation among destinations and with generalized feedback at
the source). The source has input X0, the relay has input X1, the k-th
destination has output

Yk=
p

SNRβk,0X0+
p
SNRβk,1 ej✓k,1X1+Zk, k 2 [1 : K],

and the relay has output

YR =
p

SNRβRX0 + ZR,

where, since the channel is known to all nodes, each receiving node compen-
sates for the phase of the link from the source. We assume that the phases
{✓k,1, k 2 [1 : K]} are such that all the involved channel (sub)matrices are
full rank almost surely. Without loss of generality, we let

β1,0 = max
k2[1:K]

{βk,0},

i.e., destination 1 has the strongest link from the source. We define the gDoF
of destination k as dk = limSNR!1

Rk

log(1+SNR) , k 2 [1 : K]. The capacity
region of this relay-aided BC is to within a constant gap from the cut-set
upper bound [94]. The cut-set outer bound yields for all A ✓ [1 : K], A 6= ;,

X

k2A

Rk  I(X0, X1;YA), (3.60a)

X

k2A

Rk  I(X0;YA, YR|X1). (3.60b)

The sum gDoF (and similarly for any other bounds) is the minimum of two
terms: the first term from (3.60a) with A = [1 : K] is

KX

k=1

dkMWBM

0
B@

2
64
β1,0 β1,1
...

...
βK,0 βK,1

3
75

1
CA= max

j2[2:K]
{β1,0+βj,1,βj,0+β1,1} , (3.61a)

and the second term from (3.60b) with A = [1 : K] is

KX

k=1

dk  MWBM
(⇥
β1,0 . . . βK,0 βR

⇤)
= max {β1,0,βR} , (3.61b)
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from the assumption β1,0 ≥ βk,0, k 2 [2 : K]. The closed-form expression
for the gDoF in (3.61) sheds light into approximately optimal achievable
schemes: if βR  β1,0 = maxk2[1:K]{βk,0} the sum-gDoF is as for the BC
without a relay (i.e., in practical wireless broadcast networks it might not
be worth using a relay if the source-relay link is weaker than the strongest
source-destination link), while if β1,0 < βR it is sum-gDoF optimal to serve
at most one extra destination in addition to destination 1 (see eq.(3.61a)).
With L relays, it is sum-gDoF optimal to serve at most L+ 1 destinations;
which subset of destinations to serve can be found by examining the 2L

MWBM-based bounds, in the spirit of (3.61). This simple example shows
that the result in Theorem 6 represents an useful tool to solve user scheduling
problems, i.e., to understand which is the best subset of L+ 1 destinations
which has to be served.

3.7.3 The MISO K-user BC

The static K-user MISO BC consists of one source equipped with N an-
tennas and K single-antenna destinations. The source has an independent
message for each of the K destinations. The input-output relationship reads

yk = hkx+ zk, k 2 [1 : K], (3.62)

where the input x 2 C
N⇥1 is constrained to satisfy the average power con-

straint Tr
(
E
⇥
xxH

⇤)
 1 (a non-unitary power constraint can be incorpo-

rated into the channel gains), the vector hk 2 C
1⇥N contains the channel

gain coefficients from each transmit antenna at the base station to the k-th
user and zk is the zero-mean unit-variance proper-complex white Gaussian
noise. We assume N < K, i.e., the number of transmit antennas at the base
station is strictly smaller than the number of users.

The sum-capacity or throughput for theK-user MISO BC is given by the
“Sato’s cooperative upper bound with least favorable noise correlation” [95]

C(H) = min
00Sz :

[Sz ]k,k=1,
8k2[1:K]

max
00Sx:

Tr(Sx)1

I (x;Hx+ z) , (3.63)

where H = [h1; . . . ;hK ] 2 C
K⇥N is the overall channel matrix and z =

[z1; . . . ; zK ] is the overall noise vector with covariance matrix Sz = E
⇥
zzH

⇤
2

C
K⇥K . By exploiting the Multiple Access Channel (MAC)-BC duality [96–

98], the sum-capacity in (3.63) can be equally obtained by solving C(H) =
maxD2D log

∣∣IN +HHDH
∣∣, where D is the set of K⇥K non-negative diag-

onal matrices D with Tr(D)1.
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We now show that the result in Theorem 6 allows us to find the sum-
gDoF for the K-user MISO BC and inspires a user selection algorithm which
outputs a set of N users, out of the K possible ones, which has to be served
(recall that we are assuming N < K).

For some SNR > 0 we parameterize the channel gains as |hk,n|2 =
SNRβk,n ,βk,n ≥ 0, for all k 2 [1 : K] and n 2 [1 : N ] and assume that
the phases of the fading channel gains are such that all involved channel
(sub)matrices are full rank almost surely. The sum-gDoF, as a function of

{βk,n}, is defined as d := limSNR!1
C(H)

log(1+SNR) .

Since the constraint Tr (D)  1 implies D 8 IK , we have that the sum-
capacity is upper bounded by

C(H)  log
∣∣IK +HHH

∣∣ = log
∣∣IN +HHH

∣∣ . (3.64)

By applying Theorem 6 to the RHS of (3.64) we immediately find that the
sum-gDoF is upper bounded by

d  MWBM (B) , B =

2
64
β1,1 . . . β1,N
...

. . .
...

βK,1 . . . βK,N

3
75 , (3.65)

that amounts to solve a MWBM problem with weight matrix B given by
the SNR-exponents {βk,n, k 2 [1 : K], n 2 [1 : N ]}.

To gain insights into the result in (3.65), we next consider the case N = 2
(the result can be straightforwardly extended to a general N). Without loss
of generality, let the antennas and the users be numbered in such a way that

|h1,1| ≥ max
k2[1:K], n2[1:N ]

|hk,n| () β1,1 ≥ max
k2[1:K], n2[1:N ]

βk,n, (3.66)

i.e., the link from antenna 1 to user 1 is the strongest among all links to any
user from any of the antennas; then, by using (3.66) in (3.65), it is easy to
see that

d(N=2)  MWBM

2
64
β1,1 β1,2
...

...
βK,1 βK,2

3
75 (3.67)

= MWBM


β1,1 β1,2
βk⇤,1 βk⇤,2

]
, (3.68)

k⇤ := arg max
k2[2:K]

{β1,1 + βk,2,β1,2 + βk,1}, (3.69)
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or in other words, destinations 1 and k⇤ form the best set of N = 2 users to
be served in order to attain the gDoF upper bound in (3.67). Let H⇡ 2 C

2⇥2

be the channel matrix that contains the channel gains of user 1 and user k⇤.
Since the constraint Tr (D)  1 allows D = 1

2I2 (by allocating equal power
among users 1 and k⇤), we have that the sum-capacity is lower bounded by

C(H) ≥ log

∣∣∣∣I2+
1

2
H⇡H

H
⇡

∣∣∣∣ ≥ log
∣∣I2+HH

⇡ H⇡

∣∣−2 log(2).

By applying Theorem 6 to the RHS of the above equation we immediately
find that the sum-gDoF d(N=2) is lower bounded by (3.68). This implies
that the sum-gDoF d(N=2) is given by (3.68) (the upper and lower bounds
coincide). Thus, from (3.69) it is easy to see that sum-gDoF-wise just serving
N = 2 users, among the possible K, is optimal. Moreover, it is simple to
understand which N = 2 users have to be served: user 1, i.e., the user who
has the strongest link from the source, has to be always served, and the
“second best” user is the one defined in (3.69).

By extending the above reasoning to any N and K, it is straightforward
to prove that the solution of the MWBM problem in (3.65), which outputs
the N = min{N,K} users to be scheduled, represents the sum-gDoF of the
K-user MISO BC as long as the channel matrix is full rank. One appealing
feature of the proposed algorithm is that it runs in polynomial time.

We now numerically assess the performance of the MWBM-based algo-
rithm for different values of N and K. We consider the case of Rayleigh
fading, where hk,n ⇠ N

(
0,σ2

k

)
, k 2 [1 : K] and n 2 [1 : N ], is assumed to

be constant over the whole slot (block-fading model), i.e.,

hk,n = σk gk,n, (3.70)

where gk,n ⇠ N (0, 1). We define

σ2
k = E[|hk,n|2] =

c

d↵k
, (3.71)

where c is a constant that depends on the model parameters (e.g., base
station’s transmit power), dk is the distance of the k-th user from the base
station and ↵ ≥ 2 is the path loss exponent. We assume a short-term average
power constraint on the inputs. With this model, we start by considering
a dynamic scheduling that depends on |hk,n|2 (note that our proposed al-
gorithm does not make use of phase information), which later on will be
compared to a static scheduling based on E[|hk,n|2] only. We set

βk,n = 10 log10

⇣
|hk,n|2

⌘
. (3.72)
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Note that multiplying the weight matrix B in (3.65) by a constant and/or
adding a constant to each matrix entry does not change the nature of the
matching in the MWBM problem. We assume that the K users are inde-
pendently uniformly distributed on an annulus with minimum radius equal
to rmin and maximum radius equal to rmax. Moreover, we consider that
the model parameters are such that the average SNR at the cell edges is
SNR (rmax), that is, the average SNR at distance dk is given by

SNR (dk) := E

"
NX

n=1

|hk,n|2
∣∣∣∣∣ dk
#
=

Nc

d↵k
= SNR (rmax)

✓
dk

rmax

◆−↵

.

Let (X,Y ) be the coordinate of the random position of a user; then the
cumulative density function (cdf) of its position is

F d
rmax

(x) = P

hp
X2 + Y 2  x rmax

i
=

h
min(1, x2)− r2min

r2max

i+

1− r2min
r2max

, (3.73)

for x ≥ 0 and hence the probability density function (pdf) is

f d
rmax

(x) =
2x

1− r2min
r2max

for x 2

rmin

rmax
, 1

]
. (3.74)

Figure 3.8 shows the cdf of the throughput for different values of N and
K, with fixed ↵ = 3, SNR (rmin) = 40 dB, and SNR (rmax) = 0 dB. The
cfd was estimated with MATLAB command ecdf with a confidence level of
0.05 (default value) whose input was generated by considering Niter,1 = 100
different user positions (i.e., for each k 2 [1 : K] we consider Niter,1 = 100
different values of dk in (3.71)), for each of which we considered Niter,2 =
K · 103 different realizations of gk,n in (3.70), k 2 [1 : K], n 2 [1 : N ].
In Figure 3.8, the average throughput E [C(H⇡)] achieved by our MWBM-
based algorithm is also reported for all values of K and N .

From Figure 3.8, we observe that the throughput performance of our
MWBM-based algorithm is very close to the one of [99] when DPC is used in
both cases (blue dashed lines versus dash-dotted lines). Differently from [99],
our scheduling algorithm does not use the knowledge of the channel phases.
This means that, in a practical scenario, less information has to be fed
back to the base station for the purpose of scheduling users. Once our
MWBM-based algorithm has selected the N users to serve, only the channel
phases of the N selected users need to be fed back to the base station
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Figure 3.8: cdf of the throughput with N 2 {2, 4, 8} and K 2 {3, 7, 15}.
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in order to implement the DPC strategy. In other words, given a fixed
amount of bits on the feedback link, the base station can get a more accurate
representation of the phases of the N selected users, as opposed to [99] that
requires phases from all the K users. From Figure 3.8 we also observe
that, if Zero Forcing BeamForming (ZFBF) is used instead of DPC, our
algorithm does not perform as well as the one in [99] (red dashed lines
versus dash-dotted lines). This is because ZFBF is most effective when
the selected users have nearly orthogonal channel vectors. Hence, when
ZFBF is used, it becomes essential to schedule those users whose channel
gains are as orthogonal as possible. Thus, the knowledge of the channel
phases becomes critical. Our MWBM-based algorithm, which is based on
a “coarse” approximation of the channel gains (since only the magnitude of
the channel gains is considered while the phases are neglected), does not
capture this aspect. This appears to cost in performance at low-SNR if
ZFBF is employed. Indeed we expect our MWBM-based algorithm to be
nearly optimal at high-SNR, where the phases become negligible; in the
simulated scenario the average SNR, averaged over the random positions of
the users, is

E [SNR (d)] = SNR (rmax)

Z 1

rmin
rmax

2x1−↵

1− r2min
r2max

dx = 16.1481 dB,

which is far from being in the high-SNR regime, thus explaining the better
performance of [99] if ZFBF is used.

Figure 3.8(d) shows that the throughput increases when the number of
users increases for a fixed value of N . This is due to multiuser diversity:
as K increases for a fixed N , the base station has a larger pool of users to
choose from and it is therefore more likely to find a subset of users with
‘good’ channels thereby attaining a larger throughput. Figure 3.8(d) also
shows the throughput performance of our MWBM-based algorithm when a
static scheduling is performed, i.e., a schedule which is based only on the
fading expected value. We observe that the dynamic scheduling (dashed
lines) outperforms the static scheduling (dotted lines), since the former is
adapted to each instantaneous channel realization. Figure 3.8(e) and Figure
3.8(f) show that the throughput increases when the number of antennas
increases for a fixed K. This is due to the multiplexing gain: for a fixed K,
as the number of transmit antennas increases (always considering N < K),
more users can be served leading to a throughput’s boost.

Finally, we remark that in Figure 3.8 the black curves represent the sum-
capacity outer bound in (3.64) and not the exact sum-capacity in (3.63).
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Numerically, we notice that the gap between the black curves (outer bounds
to the sum-capacity) and the achievable throughputs grows with K and N .

3.8 Conclusions and future directions

In this chapter we analyzed a network where a source communicates with
a destination and is assisted by N relays operating in HD mode. For such
networks, the capacity achieving scheme must be optimized over the 2N pos-
sible listen-transmit relay configurations. We first characterized the capacity
of the Gaussian noise network to within a constant gap by using NNC as
achievable scheme and we proved that the gDoF is the solution of a LP,
where the coefficients of the linear inequality constraints are the solution
of several LPs referred to as the MWBM problem in graph theory. More
generally, we showed that the high-SNR approximation of several practically
relevant Gaussian networks, such as the MIMO point-to-point channel, the
MISO BC and the relay-aided BC, can be found by solving several MWBM
problems. We then proved that, if the noises are independent and inde-
pendent inputs are approximately optimal in the cut-set bound, then the
approximately optimal schedule is simple in the sense that at most N+1 re-
lay configurations have a non-zero probability. Finally we showed how these
results generalize to the case of multi-antenna nodes, where the antennas at
the relays can be switched between listen and transmit state independently
of one another. We also analyzed two network examples; for the first sce-
nario with N = 2 single-antenna relays, we showed under which channel
conditions by exploiting both relays a strictly greater gDoF can be attained
compared to a network where best-relay selection is used; for the second
scenario with N = 1 relay equipped with 2 antennas, we showed that inde-
pendently switching the antennas at the relay can provide a strictly larger
multiplexing gain compared to using the antennas for the same purpose.

With respect to the results presented in this chapter, interesting future
research directions may include: (i) understanding which are the N+1 states
with a strictly positive probability and (ii) determining necessary conditions
for optimality of simple schedules.
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Appendix

3.A Proof that I
(fix)
A in (3.9) is submodular

Consider two possible cuts of the network represented by A1,A2 ✓ [1 : N ]
and let

B0 := A1 \ A2, B1 := A1\A2,
B2 := A2\A1, B3 := [1 : N ]\(A1 [ A2),

so that, Bj , j 2 [0 : 3] is a partition of [1 : N ] and thus

A1 = B0 [B1, A2 = B0 [B2,
A1 \ A2 = B0, [1 : N ]\(A1 [ A2) = B3.

Let XA := {Xi : i 2 A} and X(n) := {Xi : i 2 Bn}, n 2 [0 : 3]. We

write I
(fix)
A = H

(
YN+1, YA|XA, S[1:N ]

)
− H

(
YN+1, YA|X[1:N+1], S[1:N ]

)
. We

next show that, under the assumption of “independent noises” in (3.13),
the function h1 (A) := H

(
YN+1, YA|X[1:N+1], S[1:N ]

)
is modular and that,

under the assumption of independent inputs in (3.7), the function h2 (A) :=

H
(
YN+1, YA|XA, S[1:N ]

)
is submodular; these two facts imply that I

(fix)
A in

(3.9) is submodular.

For h1 (A) we have

h1 (A1) + h1 (A2)− h1 (A1 [ A2)− h1 (A1 \ A2)

= H
(
YN+1, Y(0), Y(1)|X[1:N+1], S[1:N ]

)
+H

(
YN+1, Y(0), Y(2)|X[1:N+1], S[1:N ]

)

−H
(
YN+1, Y(0), Y(1), Y(2)|X[1:N+1], S[1:N ]

)
−H

(
YN+1, Y(0)|X[1:N+1], S[1:N ]

)

= H
(
Y(1)|YN+1, Y(0), X[1:N+1], S[1:N ]

)
+H

(
Y(2)|YN+1, Y(0), X[1:N+1], S[1:N ]

)

−H
(
Y(1), Y(2)|YN+1, Y(0), X[1:N+1], S[1:N ]

)

= I
(
Y(1);Y(2)|YN+1, Y(0), X[1:N+1], S[1:N ]

)
= 0,

where the last equality follows because of the assumption of “independent
noises” in (3.13). Therefore h1 (A) is modular.
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For h2 (A) we have

h2 (A1) + h2 (A2)− h2 (A1 [ A2)− h2 (A1 \ A2)

= H
(
YN+1, Y(0), Y(1)|X(0), X(1), S[1:N ]

)

+H(YN+1, Y(0), Y(2)|X(0), X(2), S[1:N ])

−H(YN+1, Y(0), Y(1), Y(2)|X(0), X(1), X(2), S[1:N ])

−H(YN+1, Y(0)|X(0), S[1:N ])

= H(YN+1, Y(0)|X(1), S[1:N ], X(0)) +H(YN+1, Y(0)|X(2), S[1:N ], X(0))

−H(YN+1, Y(0)|X(1), X(2), S[1:N ], X(0))−H(YN+1, Y(0)|S[1:N ], X(0))

+H(Y(1)|X(1), S[1:N ], YN+1, X(0), Y(0))

+H(Y(2)|X(2), S[1:N ], YN+1, X(0), Y(0))

−H(Y(1), Y(2)|X(1), X(2), S[1:N ], YN+1, X(0), Y(0))

= I(YN+1, Y(0);X(2)|X(1), S[1:N ], X(0))− I(YN+1, Y(0);X(2)|S[1:N ], X(0))

+ I(Y(1);X(2)|X(1), S[1:N ], YN+1, X(0), Y(0))

+ I(Y(2);Y(1), X(1)|X(2), S[1:N ], YN+1, X(0), Y(0))

= I(X(1);X(2)|S[1:N ], X(0), YN+1, Y(0))

+ I(Y(1);X(2)|X(1), S[1:N ], YN+1, X(0), Y(0))

−I(X(1);X(2)|S[1:N ], X(0))

+ I(Y(2);Y(1), X(1)|X(2), S[1:N ], YN+1, X(0), Y(0))

≥ 0,

where the last inequality follows because the “independent inputs” assump-
tion in (3.7) implies I(X(1);X(2)|S[1:N ], X(0)) = 0. This shows that h2 (A) is
submodular.

3.B (Approximately) Optimal simple schedule for
N = 2.

In a HD relay network with N = 2, we have 2N = 4 possible states that
may arise with probabilities λs, 8s 2 [0 : 3], with λs = P[S[1:2] = s] ≥ 0,
such that

P
s2[0:3]λs = λ0 + λ1 + λ2 + λ3 = 1. Here we aim to demonstrate

that a schedule with λ0λ3 = 0 is optimal.
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Consider the following LP

max
λ0s

min

8
>><
>>:

2
664

max{a1, a2}+D1 a2 a1 0
a2 a2 + b1 +D2 0 b1
a1 0 a1 + b2 +D3 b2
0 b1 b2 max{b1, b2}+D4

3
775

2
664

λ0

λ2

λ1

λ3

3
775

9
>>=
>>;

,

(3.75)

where the different quantities (au, bu), u 2 [1 : 2], and Dv, v 2 [1 : 4], are
non-negative and will be defined later.

The proof is by contradiction. Assume that
⇥
λ̂0 λ̂1 λ̂2 λ̂3

⇤
is the

optimal solution with λ̂0 > 0. This implies that for any (↵,β, γ) 2 [0, 1]3

such that ↵+ β + γ = 1 we must have that

min

8
>><
>>:

2
664

max{a1, a2}+D1 a2 a1 0
a2 a2 + b1 +D2 0 b1
a1 0 a1 + b2 +D3 b2
0 b1 b2 max{b1, b2}+D4

3
775

2
664

λ̂0

λ̂2

λ̂1

λ̂3

3
775

9
>>=
>>;

≥min

8
>><
>>:

2
664

max{a1, a2}+D1 a2 a1 0
a2 a2+b1+D2 0 b1
a1 0 a1+b2+D3 b2
0 b1 b2 max{b1, b2}+D4

3
775

2
664

0

λ̂2+λ̂0↵

λ̂1+λ̂0β

λ̂3+λ̂0γ

3
775

9
>>=
>>;

holds. Since λ̂0 > 0 by assumption, we can rewrite the above problem as

0 = min

8
>><
>>:

2
664

max{a1, a2}+D1 a2 a1 0
a2 a2 + b1 +D2 0 b1
a1 0 a1 + b2 +D3 b2
0 b1 b2 max{b1, b2}+D4

3
775

2
664

1
0
0
0

3
775

9
>>=
>>;

≥ min

8
>><
>>:

2
664

max{a1, a2}+D1 a2 a1 0
a2 a2 + b1 +D2 0 b1
a1 0 a1 + b2 +D3 b2
0 b1 b2 max{b1, b2}+D4

3
775

2
664

0
↵

β

γ

3
775

9
>>=
>>;

= min

8
>><
>>:

2
664

a2 a1 0
a2 + b1 +D2 0 b1

0 a1 + b2 +D3 b2
b1 b2 max{b1, b2}+D4

3
775

2
4
↵

β

γ

3
5

9
>>=
>>;

for all (↵,β, γ) 2 [0, 1]3 such that ↵ + β + γ = 1. If we can find a triplet
(↵,β, γ) 2 [0, 1]3 : ↵+ β + γ = 1 for which

min

8
>><
>>:

2
664

a2 a1 0
a2 + b1 +D2 0 b1

0 a1 + b2 +D3 b2
b1 b2 max{b1, b2}+D4

3
775

2
4
↵

β

γ

3
5

9
>>=
>>;

> 0
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holds, we reach a contradiction; hence, for this set of values we must have
λ̂0 = 0. Assume b1b2  a1a2 and define

↵ =
b2

a2 + b2
, β =

b1
a1 + b1

,

γ = 1− ↵− β =
a1a2 − b1b2

(a1 + b1)(a2 + b2)
,

which is a valid assignment since all coefficients are non-negative and sum
to one. With this we have that

max
(α,β,γ)∈[0,1]3:α+β+γ=1

min

8
>><
>>:

2
664

a2 a1 0
a2 + b1 +D2 0 b1

0 a1 + b2 +D3 b2
b1 b2 max{b1, b2}+D4

3
775

2
4
↵

β

γ

3
5

9
>>=
>>;

≥ min

8
>><
>>:

2
664

a2 a1 0
a2 + b1 +D2 0 b1

0 a1 + b2 +D3 b2
b1 b2 max{b1, b2}+D4

3
775

2
64

b2
a2+b2

b1
a1+b1

a1a2−b1b2
(a1+b1)(a2+b2)

3
75

9
>>=
>>;

= min

8
><
>:


a2 a1 0
b1 b2 max{b1, b2}+D4

]
2
64

b2
a2+b2

b1
a1+b1

a1a2−b1b2
(a1+b1)(a2+b2)

3
75

9
>=
>;

> 0 if (a1, a2, b1, b2) 6= (0, 0, 0, 0).

Hence, for b1b2  a1a2 and (a1, a2, b1, b2) 6= (0, 0, 0, 0) we must have λ̂0 = 0.
A similar reasoning shows that if b1b2 ≥ a1a2 and (a1, a2, b1, b2) 6= (0, 0, 0, 0)
we must have λ̂3 = 0. It is easy to show that if min {a1, a2} = 0 then
λ̂0 = 0, without loss of optimality. Similarly if min {b1, b2} = 0 then λ̂3 = 0,
without loss of optimality. This is because, under these conditions, one of
the constraints in (3.75) becomes redundant and therefore, by contradiction,
it is easy to show that either λ̂0 = 0 or λ̂3 = 0 is optimal.

We now define the different non-negative quantities (au, bu), u 2 [1 : 2],
and Dv, v 2 [1 : 4]. From our previous discussion, we restrict attention
to the case min {a1, a2, b1, b2} 6= 0. After straightforward manipulations the
cut-set bound, for N = 2, can be further upper bounded as

R(cut−set,N=2)  2 log(2) + max
S1,S2

{I(X3;Y3|X1, X2, S1, S2)}+ eq.(3.75),

where the term maxS1,S2{I(X3;Y3|X1, X2, S1, S2)}  log(1 + |h33|2) (with
h33 being the channel gain from the source to the destination) and where
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a02 := I(X3;Y2|Y3, X1, X2, S1 = 0, S2 = 0),

c02 := I(X3;Y2|Y3, X1, X2, S1 = 1, S2 = 0),

a01 := I(X3;Y1|Y3, X1, X2, S1 = 0, S2 = 0),

d01 := I(X3;Y1|Y3, X1, X2, S1 = 0, S2 = 1),

a2 := max{a02, c02},
a1 := max{a01, d01},
b01 := I(X1;Y3|X2, S1 = 1, S2 = 1),

c01 := I(X1;Y3|X2, S1 = 1, S2 = 0),

b02 := I(X2;Y3|X1, S1 = 1, S2 = 1),

d02 := I(X2;Y3|X1, S1 = 0, S2 = 1),

b1 := max{b01, c01},
b2 := max{b02, d02},
D1 := I(X3;Y1, Y2|Y3, X1, X2, S1=0, S2=0)

−max {I(X3;Y1|Y3, X1, X2, S1 = 0, S2 = 0),

I(X3;Y2|Y3, X1, X2, S1 = 0, S2 = 0)} ,
D2 := I(X1;Y2|Y3, X2, S1 = 1, S2 = 0),

D3 := I(X2;Y1|Y3, X1, S1 = 0, S2 = 1),

D4 := I(X1, X2;Y3|S1 = 1, S2 = 1)

−max {I(X1;Y3|X2, S1 = 1, S2 = 1), I(X2;Y3|X1, S1 = 1, S2 = 1)} .
If one is interested in the gDoF for the Gaussian noise case, it suffices to
consider

d  1 + eq.(3.75),

which is the high-SNR approximation of R(cut−set,N=2) where the direct link
from the source to the destination has SNR-exponent normalized to 1, i.e.,
|h33|2 = SNR1, without loss of generality. In this case the different quantities
in (3.75) can be simply found by evaluating the different mutual information
terms above and by using the definition of gDoF in Definition 1. We obtain

a02 = c02 = a2 := [↵s2 − 1]+, a01 = d01 = a1 := [↵s1 − 1]+,
b01 = c01 = b1 := [↵1d − 1]+, b02 = d02 = b2 := [↵2d − 1]+,
D1 := 0, D4 := 0,

D2 := max {↵1d + ↵s2 − 1,β2}− [↵1d − 1]+ − [↵s2 − 1]+,

D3 := max {↵2d + ↵s1 − 1,β1}− [↵2d − 1]+ − [↵s1 − 1]+,
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where ↵si is the SNR-exponent on the link from the source to relay i, i 2
[1 : 2], ↵id is the SNR-exponent on the link from relay i, i 2 [1 : 2], to the
destination and βi is the SNR-exponent on the link from relay j to relay i,
(i, j) 2 [1 : 2]2 with j 6= i.

3.C Proof of Theorem 6

Let Sn,k be the set of all k-combinations of the integers in [1 : n] and Pn,k

be the set of all k-permutations of the integers in [1 : n]. Let σ(⇡) be the
sign / signature of the permutation ⇡.

We start by demonstrating that the asymptotic behavior of |Ik +HHH |
is as that of |HHH |, i.e., the identity matrix can be neglected. By using the
determinant Leibniz formula [100], in fact we have,

|Ik +HHH | =
X

⇡2Pn,k

σ(⇡)

kY

i=1

⇥
Ik +HHH

⇤
i,⇡(i)

=
X

⇡2Pn,k

σ(⇡)

( 
kY

i=2

⇥
Ik +HHH

⇤
i,⇡(i)

!⇣⇥
Ik +HHH

⇤
1,⇡(1)

⌘)

=
X

⇡2Pn,k

σ(⇡)

 
kY

i=2

⇥
Ik +HHH

⇤
i,⇡(i)

!
δ[1− ⇡(1)]

+
X

⇡2Pn,k

σ(⇡)

kY

i=2

⇥
Ik +HHH

⇤
i,⇡(i)

⇥
HHH

⇤
1,⇡(1)

.

Let

A (SNR) :=
X

⇡2Pn,k

σ(⇡)

 
kY

i=2

⇥
Ik +HHH

⇤
i,⇡(i)

!
δ[1− ⇡(1)]

B (SNR) :=
X

⇡2Pn,k

σ(⇡)

kY

i=2

⇥
Ik +HHH

⇤
i,⇡(i)

⇥
HHH

⇤
1,⇡(1)

,

we have that A (SNR) = o (B (SNR)) , because lim
SNR!+1

A(SNR)
B(SNR) = 0 where

the SNR parameterizes the channel gains as |hij |2 = SNRβij , for some non-
negative βij . This is so because, as a function of SNR, B (SNR) grows faster
than A (SNR) due to the term

⇥
HHH

⇤
1,⇡(1)

. By induction it is possible to
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show that this reasoning holds 8i 2 [1 : k] and hence

|Ik +HHH | .
=

X

⇡2Pn,k

σ(⇡)
kY

i=1

⇥
HHH

⇤
i,⇡(i)

= |HHH |.

Therefore, we now focus on the study of |HHH |. We have that

|HHH | (a)=
X

&2Sn,k

|H& ||HH
& | =

X

&2Sn,k

|H& |2
(b)
=

X

&2Sn,k

∣∣∣∣∣∣
X

⇡2Pn,k

σ(⇡)

kY

i=1

[H& ]i,⇡(i)

∣∣∣∣∣∣

2

=
X

&2Sn,k

8
<
:

0
@ X

⇡12Pn,k

σ(⇡1)

kY

i=1

[H& ]i,⇡1(i)

1
A
0
@ X

⇡22Pn,k

σ(⇡2)

kY

j=1

[H& ]j,⇡2(j)

1
A

⇤9=
;

=
X

&2Sn,k

8
<
:

0
@ X

⇡2Pn,k

kY

i=1

∣∣∣[H& ]i,⇡(i)

∣∣∣
2

1
A

+

0
@ X

⇡1,⇡22Pn,k,⇡1 6=⇡2

σ(⇡1)σ(⇡2)
kY

i=1

kY

j=1

[H& ]i,⇡1(i)

⇣
[H& ]j,⇡2(j)

⌘⇤
1
A
9
=
;

(c)


X

&2Sn,k

8
<
:

0
@ X

⇡2Pn,k

kY

i=1

∣∣∣[H& ]i,⇡(i)

∣∣∣
2

1
A

+

0
@ X

⇡1,⇡22Pn,k,⇡1 6=⇡2

kY

i=1

kY

j=1

r∣∣∣[H& ]i,⇡1(i)

∣∣∣
2 ∣∣∣[H& ]j,⇡2(j)

∣∣∣
2

1
A
9
=
;

=
X

&2Sn,k

8
<
:

0
@ X

⇡2Pn,k

SNR
Pk

i=1[B& ]i,⇡(i)

1
A

+

0
@ X

⇡1,⇡22Pn,k,⇡1 6=⇡2

SNR
1
2

⇣Pk
i=1[B& ]i,⇡1(i)

+
Pk

j=1[B& ]j,⇡2(j)

⌘
1
A
9
=
;

(d).
=

X

&2Sn,k

0
@ X

⇡2Pn,k

SNR
Pk

i=1[B& ]i,⇡(i)

1
A .

= SNR
max&2Sn,k

max⇡2Pn,k

Pk
i=1[B& ]i,⇡(i) ,

where the equalities / inequalities above are due to the following facts:

• equality (a): by applying the Cauchy-Binet formula [100] where H&

is the square matrix obtained from H by retaining all rows and those
columns indexed by &;
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• equality (b): by applying the determinant Leibniz formula [100];

• inequality (c): by applying the Cauchy-Schwarz inequality [101];

• equality (d): when SNR ! 1, we have

kX

i=1

[B& ]i,⇡(i) ≥
1

2

0
@

kX

i=1

[B& ]i,⇡1(i)
+

kX

j=1

[B& ]j,⇡2(j)

1
A .

Consider the following example. Let |a|2 = SNRβa , |b|2 = SNRβb ,
|c|2 = SNRβc , |d|2 = SNRβd

|ab− cd|2  |a|2|b|2 + |c|2|d|2 + 2|a||b||c||d|.
Now apply the gDoF formula, i.e.,

d := lim
SNR!+1

log
(
|a|2|b|2 + |c|2|d|2 + 2|a||b||c||d|

)

log(1 + SNR)

= max

⇢
βa + βb, βc + βd,

βa + βb + βc + βd

2

}
,

but

βa + βb + βc + βd

2
 2max {βa + βb,βc + βd}

2
= max {βa + βb,βc + βd} .

Therefore, the term βa+βb+βc+βd

2 does not contribute in character-
izing the gDoF. By direct induction, the above reasoning may be
extended to a general number of terms leading to

Pk
i=1 [B& ]i,⇡(i) ≥

1
2

⇣Pk
i=1 [B& ]i,⇡1(i)

+
Pk

j=1 [B& ]j,⇡2(j)

⌘
.

3.D Upper and lower bounds for I
(fix)
; in (3.54) and

I
(fix)
{1} in (3.55)

In (3.53) we assume, without loss of optimality that P1|00 = P1|01 = 0
(respectively P2|00 = P2|10 = 0), since for the HD constraint when the first
(respectively second) antenna at the relay is receiving the relay’s transmit
power on that antenna is zero. With this, we let

P0|00 =
↵0

λ0
, P0|01 =

β0

λ1
, P0|10 =

γ0

λ2
, P0|11 =

δ0

λ3
,

P2|01 =
↵1

λ1
, P1|10 =

β1

λ2
, P1|11 =

γ1

λ3
, P2|11 =

δ1

λ3
,
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where ↵i + βi + γi + δi  1, i 2 [0 : 1] in order to meet the power constraints

in (3.53). We now upper bound I
(fix)
; in (3.54) and I

(fix)
{1} in (3.55) separately.

We have

I
(fix)
; = md log(2) + λ0 log

✓
1 + |hds|2

↵0

λ0

◆

+ λ1 log

✓
1 + |hds|2

β0

λ1
+ |hdr,2|2

↵1

λ1

◆

+ λ2 log

✓
1 + |hds|2

γ0

λ2
+ |hdr,1|2

β1

λ2

◆

+ λ3 log

0
@1 +|hds|2

δ0

λ3
+

 r
|hdr,1|2

γ1

λ3
+

r
|hdr,2|2

δ1

λ3

!2
1
A

 md log(2) +H (λs) + λ0 log
(
1 + |hds|2↵0

)

+ λ1 log
(
1 + |hds|2β0 + |hdr,2|2↵1

)

+ λ2 log
(
1 + |hds|2γ0 + |hdr,1|2β1

)

+ λ3 log

 
1 + |hds|2δ0 +

✓q
|hdr,1|2γ1 +

q
|hdr,2|2δ1

◆2
!

 md log(2) + 2 log(2) + λ0 log
(
1 + |hds|2

)

+ λ1 log
(
1 + |hds|2 + |hdr,2|2

)

+ λ2 log
(
1 + |hds|2 + |hdr,1|2

)

+ λ3 log

 
1 + |hds|2 +

✓q
|hdr,1|2 +

q
|hdr,2|2

◆2
!
,

where the two inequalities follow because: (i) the entropy of a discrete ran-
dom variable can be upper bounded by the logarithm of the size of its support
(i.e., H(λs)  log(4)); (ii) by further upper bounding the power splits by
setting ↵i = βi = γi = δi = 1, i 2 [0 : 1]; (iii) by further upper bounding all
the λs, s 2 [0 : 3] inside the logarithms by one. With similar steps we obtain

I
(fix)
{1}  2 log(2) + λ0 log

(
1 + |hds|2 + |hrs,1|2 + |hrs,2|2

)

+ λ1 log
(
1 + |hds|2 + |hrs,1|2

)

+ λ2 log
(
1 + |hds|2 + |hrs,2|2

)

+ λ3 log
(
1 + |hds|2

)
.
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We now lower bound I
(fix)
; in (3.54) and I

(fix)
{1} in (3.55) separately. We have

I
(fix)
; = md log(2) + λ0 log

✓
1 + |hds|2

↵0

λ0

◆

+ λ1 log

✓
1 + |hds|2

β0

λ1
+ |hdr,2|2

↵1

λ1

◆

+ λ2 log

✓
1 + |hds|2

γ0

λ2
+ |hdr,1|2

β1

λ2

◆

+ λ3 log

0
@1 + |hds|2

δ0

λ3
+

 r
|hdr,1|2

γ1

λ3
+

r
|hdr,2|2

δ1

λ3

!2
1
A

≥ md log(2)− log(2) + λ0 log
(
1 + |hds|2

)

+ λ1 log
(
1 + |hds|2 + |hdr,2|2

)

+ λ2 log
(
1 + |hds|2 + |hdr,1|2

)

+ λ3 log

 
1 + |hds|2 +

✓q
|hdr,1|2 +

q
|hdr,2|2

◆2
!
,

by setting ↵1 = λ1, β1 = λ2, γ1 = δ1 = λ3
2 , ↵0 = λ0, β0 = λ1, γ0 = λ2 and

δ0 = λ3 (note that with these power splits the power constraints in (3.53)

are satisfied) and by using the further bound log
⇣
1 +

(p
a
2 +

p
c
2

)2⌘
=

log
⇣
1 + 1

2 (
p
a+

p
c)

2
⌘
≥ log

⇣
1
2 + 1

2 (
p
a+

p
c)

2
⌘
= log

⇣
1 + (

p
a+

p
c)

2
⌘
−

log(2). With similar steps we obtain

I
(fix)
{1} ≥ λ0 log

(
1 + |hds|2 + |hrs,1|2 + |hrs,2|2

)

+ λ1 log
(
1 + |hds|2 + |hrs,1|2

)

+ λ2 log
(
1 + |hds|2 + |hrs,2|2

)

+ λ3 log
(
1 + |hds|2

)
.

3.E Water filling power allocation for I
(fix)
; in (3.54)

and I
(fix)
{1} in (3.55)

By optimizing the powers in the different relay states subject to the power
constraints in (3.53) we have

C00
case (i) = max

λs

min
n
I
(fix)
; , I

(fix)
{1}

o
,
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where I
(fix)
; and I

(fix)
{1} are defined in (3.54) and in (3.55), respectively. By

writing the Lagrangian of the optimization problem above (subject to the
power constraints in (3.53) and by considering |hds| = 0, i.e., the direct link
is absent) we obtain

I
(fix)
; = λ1 log

+
(
⌫0|hdr,2|2

)
+ λ2 log

+
(
⌫0|hdr,1|2

)

+ λ3 log
+
(
⌫0(|hdr,1|2 + |hdr,2|2)

)

⌫0 : λ1


⌫0 −

1

|hdr,2|2
]+

+ λ2


⌫0 −

1

|hdr,1|2
]+

+ λ3


⌫0 −

1

|hdr,1|2 + |hdr,2|2
]+

= 1,

I
(fix)
{1} = λ0 log

+
(
⌫1(|hrs,1|2 + |hrs,2|2)

)
+ λ1 log

+
(
⌫1|hrs,1|2

)

+ λ2 log
+
(
⌫1|hrs,2|2

)
,

⌫1 : λ0


⌫1 −

1

|hrs,1|2 + |hrs,2|2
]+

+ λ1


⌫1 −

1

|hrs,1|2
]+

+ λ2


⌫1 −

1

|hrs,2|2
]+

= 1.

For case (ii), it suffices to set λ1 = λ2 = 0 in case (i). Let λ3 = 1−λ0 = λ 2
[0, 1], and khdrk2 = |hdr,1|2 + |hdr,2|2, khrsk2 = |hrs,1|2 + |hrs,2|2. With this
we get

C00
case (ii) = max

λ2[0,1]
min

⇢
λ log

✓
1 +

khdrk2
λ

◆
, (1− λ) log

✓
1 +

khrsk2
1− λ

◆}

2

log(1+khrsk2) log(1+khdrk2)
log(1+khrsk2)+log(1+khdrk2)

,
log(1+khrsk2) log(1+khdrk2)
log(1+khrsk2)+log(1+khdrk2)

+1

]
,

where the optimal λ is obtained by equating the two expressions within the
min.
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Chapter 4

Case I: Full-Duplex CTx

In this chapter, we study the CCIC, or the IC with unilateral source co-
operation, when the CTx operates in FD. Our main contributions can be
summarized as follows: (i) we develop a general framework to derive outer
bounds of the type 2Rp+Rc and Rp+2Rc on the capacity of the general ISD
channel when the noises at the different source-destination pairs are inde-
pendent; (ii) we design a transmission strategy for the general memoryless
channel and we derive its achievable rate region; (iii) we evaluate the outer
bound and the achievable rate regions for the Gaussian noise channel and
we prove a constant gap result for the Z-, the S- and the symmetric fully-
connected channels; (iv) we identify the regimes where the Gaussian channel
attains the same gDoF of the non-cooperative Gaussian IC and those where
the gDoF performance equals that of the non-causal CIC.

4.1 System Model

Throughout this chapter we adopt the following notation convention. The
subscript c (in sans serif font) is used for quantities related to the cognitive
pair, while the subscript p (in sans serif font) for those related to the primary
pair. The subscript f or F (in sans serif font) is used to refer to generalized
feedback information received at the CTx. The subscript c (in roman font)
is used to denote both common and cooperative messages, the subscript p

(in roman font) to denote private messages and the subscript n (in roman

126
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Figure 4.1: The general memoryless CCIC.

font) to denote non-cooperative messages.

4.1.1 General memoryless channel

A general memoryless CCIC, shown in Figure 4.1, consists of two input
alphabets (Xp,Xc), three output alphabets (YFc,Yp,Yc) and a memoryless
transition probability PYFc,Yp,Yc|Xp,Xc

. PTx has a message Wp 2 [1 : 2NRp ]

for PRx and CTx has a message Wc 2 [1 : 2NRc ] for CRx, where N 2 N

denotes the codeword length and Rp 2 R+ and Rc 2 R+ the transmission
rates for PTx and CTx, respectively, in bits per channel use. The messages
Wp and Wc are independent and uniformly distributed on their respective
domains. At time i, i 2 [1 : N ], PTx maps its message Wp into a channel
input symbol Xpi(Wp) and CTx maps its message Wc and its past channel
observations into a channel input symbol Xci(Wc, Y

i−1
Fc ). At time N , PRx

outputs an estimate of its intended message based on all its channel ob-
servations as cWp(Yp

N ), and similarly CRx outputs cWc(Yc
N ). The capacity

region is the convex closure of all non-negative rate pairs (Rp, Rc) such that

maxu2{c,p} P[cWu 6= Wu] ! 0 as N ! +1.

4.1.2 ISD channel

The ISD model, shown in Figure 4.2 and first introduced in [48] for the
classical IC, assumes that the input Xp, respectively Xc, before reaching the
destinations, is passed through a memoryless channel to obtain Tp, respec-
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Figure 4.2: The ISD CCIC.

tively Tc. The channel outputs are therefore given by

Yp = fp (Xp, Tc) , (4.1a)

Yc = fc (Xc, Tp) , (4.1b)

where fu, u 2 {p, c}, is a deterministic function that is invertible given Xu,
or in other words, Tp, respectively Tc, is a deterministic function of (Yc, Xc),
respectively (Yp, Xp).

In the CCIC, the “generalized feedback signal” at the CTx satisfies

YFc = ff (Xc, Tf) , (4.1c)

for some deterministic function ff that is invertible given Xc, i.e., Tf is
a deterministic function of (YFc, Xc), where Tf is obtained by passing Xp

through a noisy channel [47].

We further assume that the noises seen by the different source-destination
pairs are independent, i.e.,

PYFc,Yp,Yc|Xp,Xc
= PYp|Xp,Xc

PYFc,Yc|Xp,Xc
. (4.2)

In other words, we assume that the noises at the PRx and at the CRx are
independent, but we do not impose any constraint on the noises at the CTx
and CRx.
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Figure 4.3: The Gaussian CCIC.

4.1.3 The Gaussian noise channel

A single-antenna Gaussian CCIC, shown in Figure 4.3, is a special case of
the ISD model and it is defined by the input / output relationship

Tp :=
p

Ipe
j✓pXp + Zc, (4.3a)

Tc :=
p
Ice

j✓cXc + Zp, (4.3b)

Tf =
p
CXp + Zf , (4.3c)

Yp =
p
SpXp + Tc, (4.3d)

Yc = Tp +
p

ScXc, (4.3e)

YFc = Tf , (4.3f)

where Tf = YFc in (4.3f) is without loss of generality since the CTx can
remove the contribution of its transmit signalXc from its received signal YFc.
The channel gains are assumed to be constant for the whole transmission
duration, and hence known to all nodes. Without loss of generality, certain
channel gains can be taken to be real-valued and non-negative since a node
can compensate for the phase of one of its channel gains. The channel
inputs are subject to a unitary average power constraint, i.e., E

⇥
|Xi|2

⇤


1, i 2 {p, c}. This assumption is without loss of generality, since non-unitary
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power constraints can be incorporated into the channel gains. The noises
are circularly symmetric Gaussian random variables with, without loss of
generality, zero mean and unitary variance. We assume that the noise Zp is
independent of (Zc, Zf), while (Zc, Zf) can be arbitrarily correlated.

The non-cooperative Gaussian IC is obtained as a special case of the
Gaussian CCIC by setting C = 0 and the Gaussian non-causal CIC in the
limit for C ! +1. A Gaussian CCIC is said to be a Z-channel if Ip = 0,
i.e., the CRx does not experience interference from PTx, and an S-channel
if Ic = 0, i.e., the PRx does not experience interference from CTx.

As already remarked for the HD relay channel in Chapter 2, for the
Gaussian noise case, it is customary to approximate the channel capacity as
follows.

Definition 6. The capacity region of the Gaussian CCIC is said to be known
to within GAP bits if one can show an inner bound region I and an outer
bound region O such that

(Rp, Rc) 2 O =) ([Rp − GAP]+, [Rc − GAP]+) 2 I.

For the two particular cases of C = 0 (i.e., non-cooperative IC) and of
C ! +1 (non-causal CIC), the capacity is known to within 1 bit [12, 64].
The approximate (i.e., to within a constant gap) characterization of the
capacity region implies the exact knowledge of its gDoF region. The gDoF
metric, first introduced in [12] for the non-cooperative IC, captures the high-
SNR behavior of the capacity as a function of the relative strengths of the
direct, cooperation and interfering links. The gDoF represents a more refined
characterization of the capacity in the high-SNR regime compared to the
classical DoF since it captures the fact that, in wireless networks, the channel
gains can differ by several orders of magnitude. Let S > 1 and parameterize

Sp := S1, primary direct link, (4.4a)

Sc := S1, cognitive direct link, (4.4b)

Ip := S↵p , ↵p ≥ 0, interference at CRx from PTx, (4.4c)

Ic := S↵c , ↵c ≥ 0, interference at PRx from CTx, (4.4d)

C := Sβ , β ≥ 0, cooperation link, (4.4e)

where ↵p and ↵c measure the strength of the interference links compared
to the direct link, while β the strength of the cooperation link compared to
the direct link. We remark that the parameterization in (4.4), with direct
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links of the same strength, will be used only for evaluation of the gDoF.
Moreover, in order to capture different network topologies, we focus on

1. interference-symmetric channel: ↵p = ↵c = ↵;

2. Z-channel: ↵p = 0, ↵c = ↵;

3. S-channel: ↵p = ↵, ↵c = 0.

The case ↵p = ↵c = 0 is not interesting since in this case the Gaussian
CCIC reduces to two parallel point-to-point links for which cooperation
is useless. For the above three cases, the system is parameterized by the
triplet (S,↵,β), where S is referred to as the (direct link) SNR, ↵ as the
interference exponent and β as the cooperation exponent. 1 Following the
naming convention of the non-cooperative IC [12], we say that the Gaussian
CCIC for the above three cases has strong interference if S  I, that is
1  ↵, and weak interference otherwise. Similarly, we say that the Gaussian
CCIC has strong cooperation if S  C, that is 1  β, and weak cooperation
otherwise.

Definition 7. Given the parameterization in (4.4), the gDoF is defined as

d(↵,β) := lim
S!+1

max{Rp +Rc}
2 log(1 + S)

, (4.5)

where the maximization is intended over all possible achievable rate pairs
(Rp, Rc).

The gDoF of the classical IC (C = 0) is the “W-curve” first characterized
in [12] and given by d(↵, 0) = min{max{1− ↵,↵}, max{1− ↵/2,↵/2}, 1}.
The gDoF of the non-causal CIC (C ! 1) is the “V-curve”, which can be
evaluated from the capacity characterization to within 1 bit of [64], and is
given by d(↵,1) = max{1 − ↵/2,↵/2}. An interesting question we seek
to answer in this chapter is whether there are values of β > 0 such that
d(↵,β) = d(↵, 0) — in which case unilateral causal cooperation is not helpful
in terms of gDoF — or values of β < 1 such that d(↵,β) = d(↵,1) — in
which case unilateral causal cooperation is equivalent to non-causal message
knowledge in terms of gDoF.

1In principle the system performance also depends on the phases of the interfering links
(θc, θp). However, as far as gDoF and capacity to within a constant gap are concerned, the

phases (θc, θp) only matter if the IC channel matrix

" p
Sp

p
Ice

jθcp
Ipe

jθp
p
Sc

#

is rank deficient

[56], in which case one received signal is a noisier version of the other. In this work, we
assume that the phases are such that the IC channel matrix is full rank.
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4.2 Overview of the main results

The exact capacity of the Gaussian CCIC described in (4.3) is unknown.
In this chapter, we characterize the capacity to within a constant gap (see
Definition 6) and, hence, the gDoF (see Definition 7), for the symmetric case
(i.e., Ip = Ic and Sc = Sp in (4.3)), for the Z-channel (i.e., Ip = 0 in (4.3)) and
for the S-channel (i.e., Ic = 0 in (4.3)) for the case of independent noises.

In order to show the constant gap results an outer and an inner bound
regions on the capacity of the Gaussian CCIC are needed. Concerning the
outer bound region, we use some outer bounds on the single rates Rp and
Rc and on the sum-rate Rp + Rc known in the literature [45, 47, 87]. More-
over, in order to show capacity to within a constant gap for the symmetric
Gaussian CCIC in weak interference, we develop a general framework to
derive outer bounds of the type 2Rp + Rc and Rp + 2Rc on the capacity of
the general ISD CCIC when the noises at the different source-destination
pairs are independent; this framework includes for example feedback from
the intended destination. In particular, our first main result is

Theorem 8. For the ISD CCIC satisfying (4.2) the capacity region is outer
bounded by

2Rp +Rc  I (Yp;Xp, Xc) + I (Yp;Xp|Yc, Tf , Xc) + I (Yc, Tf ;Xp, Xc|Tc) ,
(4.6)

Rp + 2Rc  I (Yc;Xp, Xc) + I (Yc;Xc|Yp, Tf , Xp) + I (Yp, Tf ;Xp, Xc|Tp) ,
(4.7)

for some input distribution PXp,Xc.

The key technical ingredient is the proof of the two following Markov
chains.

Lemma 1. For the ISD CCIC with the noise structure in (4.2), the following
Markov chains hold for all i 2 [1 : N ]:

(Wp, Tp
i−1, Xp

i)− (Tc
i−1, Tf

i−1)− (Tci), (4.8a)

(Wc, Tc
i−1, Xc

i)− (Tp
i−1, Tf

i−1)− (Tpi, Tf i). (4.8b)

Concerning the inner bound region, we use the superposition+binning
transmission strategy from [51, Section V]. This scheme was originally de-
signed for the general memoryless IC with generalized feedback, or bilateral
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source cooperation. In this chapter we adapt this strategy to the case of
unilateral source cooperation. In particular, the PTx’s message is split into
four parts: the non-cooperative common message and the non-cooperative
private message are sent as in the Han-Kobayashi’s scheme for the non-
cooperative IC [39]; the cooperative common message and the cooperative
private message are decoded at CTx in a given slot and retransmitted in the
next slot by using a PDF based block-Markov scheme. The CTx’s message
is split into two parts: the non-cooperative common message and the non-
cooperative private message that are sent as in the Han-Kobayashi’s scheme
for the non-cooperative IC [39]. The common messages are decoded at
both destinations while non-intended private messages are treated as noise.
For cooperation, the two sources ‘beam form’ the PTx’s cooperative com-
mon message to the destinations as in a distributed MIMO system, and the
CTx precodes its private messages against the interference created by the
PTx’s cooperative private message as in a MIMO BC. The achievable region
in [51, Section V] is quite complex to evaluate because it is a function of
11 auxiliary random variables and is described by about 30 rate constraints
per source-destination pair. In this chapter we use a small subset of these
11 auxiliary random variables in each parameter regime and show that the
corresponding schemes are to within a constant gap from the outer bound
region described above. In particular, our constant gap results are stated in
the three following theorems.

Theorem 9. The capacity region outer bound of the symmetric Gaussian
CCIC (i.e., when Sp = Sc = S and Ip = Ic = I) is achievable to within 5 bits.
In particular,

1. When I ≥ S (i.e., ↵ ≥ 1), then GAP  1 bit,

2. When I < S (i.e., ↵ < 1) and C  S (i.e., β  1), then GAP  5 bits,

3. When I < S (i.e., ↵ < 1) and S < C (i.e., 1 < β), then GAP  2 bits.

Theorem 10. The capacity region outer bound of the Z-channel (i.e., Ip = 0,
the link PTx!CRx is non-existent) is characterized to within 2 bits. In
particular,

1. When C  Sp, then GAP  2 bits,

2. When C > Sp and Sc  Ic, then GAP  1.5 bits,

3. When C > Sp and Sc > Ic, then GAP  1 bit.
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Theorem 11. The capacity region outer bound of the S-channel (i.e., Ic =
0, the link CTx!PRx is non-existent) is achievable to within 3 bits. In
particular,

1. When C  max {Sp, Ip}, then GAP  2.5 bits,

2. When max {Sp, Ip} < C  IpSp, then GAP  3 bits,

3. When C > IpSp, then GAP  1 bit.

The rest of this chapter is dedicated to the proof of Theorems 8-11.

4.3 Outer bounds on the capacity region for the
CCIC

This section is dedicated to the study of outer bounds on the capacity region
for the CCIC. First, in Section 4.3.1, some known outer bounds are summa-
rized. Moreover, the outer bound originally derived in [47] for the ISD CCIC
with independent noises at all terminals, is generalized to the case where the
noises at the different source-destination pairs are independent as in (4.2).
Then, in Section 4.3.2, the two novel outer bounds of the type Rp+2Rc and
2Rp +Rc in Theorem 8 are derived for the ISD CCIC when (4.2) holds. Fi-
nally, in Section 4.3.3, all the outer bounds are evaluated for the practically
relevant Gaussian noise case.

4.3.1 Known outer bounds and some generalizations

In the literature, several outer bounds are known for the IC with bilateral
source cooperation [45,47], which we specialize here to the CCIC. In partic-
ular, for an input distribution PXp,Xc , we have:

1. For the general memoryless CCIC, described in Section 4.1.1, the cut-
set upper bound [87] gives

Rp  I (Xp;Yp, YFc|Xc) , (4.9a)

Rp  I (Xp, Xc;Yp) , (4.9b)

Rc  I (Xc;Yc|Xp) , (4.9c)

and from [45] we have

Rp +Rc  I (Xp;Yp, YFc|Yc, Xc) + I (Xp, Xc;Yc) , (4.9d)

Rp +Rc  I (Xc;Yc|Yp, Xp) + I (Xp, Xc;Yp) . (4.9e)
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Notice that in the bounds in (4.9a)-(4.9e), YFc always appears con-
ditioned on Xc. This implies that, for the ISD channel described in
Section 4.1.2, YFc can be replaced with Tf without loss of generality.

2. For the memoryless ISD CCIC, described in Section 4.1.2, with inde-
pendent noises at the different source-destination pairs as in (4.2), we
have

Rp +Rc I (Yp;Xp, Xc|Tp, Tf) + I (Yc, Tf ;Xp, Xc|Tc) . (4.9f)

The details of the proof of the bound in (4.9f) can be found in Appendix
4.B. We note that a bound as the one in (4.9f) was originally derived
in [47, Appendix IV pages 177-179] for the ISD IC with bilateral source
cooperation when all noises are independent; for the case of unilateral
source cooperation, this follows from the two following Markov chains

(Wp, Xp
i)− (Tf

i−1)− (Wc, Xc
i, Tc

i), 8i 2 [1 : N ], (4.10)

(Wc, Xc
i)− (Tf

i−1)− (Wp, Xp
i, Tp

i), 8i 2 [1 : N ]. (4.11)

A careful analysis of the bounding steps in [47, Appendix IV pages
177-179] shows that the derivation of the bound in (4.9f) is valid
even when PYFc,Yc,Yp|Xp,Xc

factors as in (4.2), i.e., the independent
noises assumption at all terminals captured by the product distribu-
tion PYFc,Yc,Yp|Xp,Xc

= PYFc|Xp,Xc
PYc|Xp,Xc

PYp|Xp,Xc
is not necessary for

the bound to hold by suitably modifying the Markov chains in (4.10)
and (4.11) – see Lemma 1. An advantage of the bound in (4.9f) is
that the case of output feedback from the intended destination is a
special case of the more general framework and can be obtained by
YFc = Yc. We note that our bound in (4.9f) not only is more general
but it is also tighter than the one in [47, Appendix IV pages 177-179]
since I (Tf ;Xp, Xc|Tc)  I (Tf ;Xp); moreover, thanks to more care-
ful bounding steps compared to [47], in (4.9f) we obtained the term
H (Yp|Tp, Tf)  H (Yp|Tp). The key step of the proof for the bound
in (4.9f) is Lemma 1, which is proved in Appendix 4.A by using the
Functional Dependence Graph (FDG) [102].

3. For the memoryless ISD-IC with output feedback YFc = Yc in (4.2),
from [57, model-(1000)] we have

Rp + 2Rc I (Yc;Xp, Xc) + I (Yc;Xc|Yp, Xp) + I (Yp;Xp, Xc|Tp) .
(4.12)
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To the best of our knowledge, (4.12) is the only upper bound of the
type Rp+2Rc available in the literature for the cooperative IC (which
includes feedback models as a special case), but it is only valid for
the case of output feedback. Our goal in the next section is to de-
rive bounds of the type of (4.12) for the class of ISD CCICs de-
scribed in Section 4.1.2 with independent noises at the different source-
destination pairs as in (4.2).

4.3.2 Novel outer bounds

In this section we prove Theorem 8, i.e., we derive two novel outer bounds
of the type Rp+2Rc and 2Rp+Rc on the capacity region for the ISD CCIC
described in Section 4.1.2 with independent noises at the different source-
destination pairs. These two outer bounds generalize those of [48, Theorem
1], derived for the classical non-cooperative IC, to the CCIC. Note also that,
when evaluated for the case of output feedback with independent noises, i.e.,
Tf = Tp, the outer bound in (4.7) reduces to the one in (4.12).

By Fano’s inequality, by considering that the messages Wp and Wc are
independent and by giving side information similarly to [47], we have

N(2Rp +Rc − 3✏N )

2I
(
Wp;Yp

N
)
+ I

(
Wc;Yc

N
)

I
(
Wp;Yp

N
)
+ I

(
Wp;Yp

N , Tp
N , Tf

N |Wc

)
+ I

(
Wc;Yc

N , Tc
N , Tf

N
)

=H
(
Yp

N
)
−H

(
Yp

N , Tp
N , Tf

N |Wp,Wc

)
(4.13a)

+H
(
Yp

N , Tp
N , Tf

N |Wc

)
−H

(
Yc

N , Tc
N , Tf

N |Wc

)
(4.13b)

+H
(
Yc

N , Tc
N , Tf

N
)
−H

(
Yp

N |Wp

)
. (4.13c)

We now analyze and bound each pair of terms.

Pair in (4.13a): We have

H
(
Yp

N
)
−H

(
Yp

N , Tp
N , Tf

N |Wp,Wc

)

(a)
=
X

i2[1:N ]

H
(
Ypi|Ypi−1

)
−H

(
Ypi, Tpi, Tf i|Wp,Wc, Yp

i−1, Tp
i−1, Tf

i−1, Xp
i, Xc

i
)

(b)


X

i2[1:N ]

H
(
Ypi
)
−H

(
Ypi, Tpi, Tf i|Wp,Wc, Yp

i−1, Tp
i−1, Tf

i−1, Xp
i, Xc

i
)

(c)
=
X

i2[1:N ]

H
(
Ypi
)
−H

(
Ypi, Tpi, Tf i|Xpi, Xci

)
,



4.3 Outer bounds on the capacity region for the CCIC 137

where: the equality in (a) follows by applying the chain rule of the entropy
and since, for the ISD CCIC, the encoding function Xci(Wc, Y

i−1
Fc ) is equiv-

alent to Xci(Wc, Tf
i−1) and since, given Wp, Xp is uniquely determined; the

inequality in (b) is due to the conditioning reduces entropy principle; the
equality in (c) follows because of the ISD property of the channel and since
the channel is memoryless.

Pair in (4.13b): We have

H
(
Yp

N , Tp
N , Tf

N |Wc

)
−H

(
Yc

N , Tc
N , Tf

N |Wc

)

(d)
=

X

i2[1:N ]

H
(
Ypi, Tpi, Tf i|Ypi−1, Tp

i−1, Tf
i−1,Wc, Xc

i
)

−H
(
Yci, Tci, Tf i|Yci−1, Tc

i−1, Tf
i−1,Wc, Xc

i
)

(e)
=
X

i2[1:N ]

H
(
Ypi, Tpi, Tf i|Ypi−1, Tp

i−1, Tf
i−1,Wc, Xc

i
)

−H
(
Tpi, Tci, Tf i|Tp

i−1, Tc
i−1, Tf

i−1,Wc, Xc
i
)

(f)


X

i2[1:N ]

H
(
Tpi, Tf i|Tp

i−1, Tf
i−1,Wc, Xc

i
)
−H

(
Tpi, Tf i|Tp

i−1, Tc
i−1, Tf

i−1,Wc, Xc
i
)

| {z }
= 0 because of (4.8b)

+
X

i2[1:N ]

H
(
Ypi|Tpi, Tf i, Xci

)
−H

(
Tci|Tp

i, Tc
i−1, Tf

i,Wc, Xc
i, Xp

i
)

(g)
=

X

i2[1:N ]

H
(
Ypi|Tpi, Tf i, Xci

)
−H

(
Ypi|Tpi, Tf i, Xci, Xpi

)
,

where: the equality in (d) follows by applying the chain rule of the entropy
and since, for the ISD CCIC, the encoding function Xci(Wc, Y

i−1
Fc ) is equiv-

alent to Xci(Wc, Tf
i−1); the equality in (e) is due to the fact that Yc is a

deterministic function of (Xc, Tp), which is invertible given Xc; the inequal-
ity in (f) is due to the conditioning reduces entropy principle; the equality in
(g) follows because of the ISD property of the channel and since the channel
is memoryless.

Pair in (4.13c): Since

H
(
Yp

N |Wp

)

(h)
=

X

i2[1:N ]

H
(
Ypi|Ypi−1,Wp, Xp

i
) (i)
=

X

i2[1:N ]

H
(
Tci|Tc

i−1,Wp, Xp
i
)
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(j)

≥
X

i2[1:N ]

H
(
Tci|Tc

i−1,Wp, Xp
i, Tf

i−1
)

(k)
=

X

i2[1:N ]

H
(
Tci|Tc

i−1, Tf
i−1
)
− I

(
Tci;Wp, Xp

i|Tc
i−1, Tf

i−1
)

| {z }
= 0 because of (4.8a)

,

where: the equality in (h) follows by applying the chain rule of the entropy
and since, given Wp, Xp is uniquely determined; the equality in (i) is due to
the fact that Yp is a deterministic function of (Xp, Tc), which is invertible
given Xp; the inequality in (j) follows since conditioning reduces the entropy;
the equality in (k) follows from the definition of mutual information; we have

H
(
Yc

N , Tc
N , Tf

N
)
−H

(
Yp

N |Wp

)

(l)


X

i2[1:N ]

H
(
Yci, Tci, Tf i|Yci−1, Tc

i−1, Tf
i−1
)
−H

(
Tci|Tc

i−1, Tf
i−1
)

(m)


X

i2[1:N ]

H
(
Tci|Tc

i−1, Tf
i−1
)
−H

(
Tci|Tc

i−1, Tf
i−1
)

+H
(
Yci, Tf i|Yci−1, Tc

i, Tf
i−1
)

(n)


X

i2[1:N ]

0 +H (Yci, Tf i, |Tci) ,

where the inequality in (l) is a consequence of the inequality in (k) above and
the inequalities in (m) and (n) are due to the conditioning reduces entropy
principle.

Final step: By combining everything together, by introducing the time
sharing random variable uniformly distributed over [1 : N ] and indepen-
dent of everything else, by dividing both sides by N and taking the limit
for N ! 1 we get the bound in (4.6). We finally notice that by drop-
ping the time sharing we do not decrease the bound. Note also that, since
for the ISD model defined in (4.1) Tp, respectively Tc, is a deterministic
function of (Yc, Xc), respectively (Yp, Xp), we have H (Tp, Tf |Yp, Xp, Xc) =
H (Yc, Tf |Tc, Xp, Xc).

By following similar steps, see Appendix 4.C, as in the derivation of
(4.6) and by using the Markov chains in (4.8a) and (4.8b), one can derive
the upper bound in (4.7).
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4.3.3 Outer bounds evaluated for the Gaussian CCIC

We evaluate the bounds in (4.9), (4.6) and (4.7) for the Gaussian noise
channel in (4.3). We define E [XpXc

⇤] := ⇢ : |⇢| 2 [0, 1]. We also assume that
all the noises are independent, which represents a particular case for which
our outer bounds hold. By the ‘Gaussian maximizes entropy’ principle,
jointly Gaussian inputs exhaust the outer bounds in (4.9), (4.6) and (4.7).
Thus, we start by evaluating each mutual information term in (4.9), (4.6) and
(4.7) by using jointly Gaussian inputs. Then, we further upper bound each
mutual information term over the input correlation coefficient ⇢ : |⇢| 2 [0, 1].
By doing so, see Appendix 4.D, we obtain:

Lemma 2. The capacity region of the Gaussian CCIC is contained into

Rp  log (1 + C+ Sp) , (4.14a)

Rp  log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆
, (4.14b)

Rc  log (1 + Sc) , (4.14c)

Rp +Rc  log

✓
1 +

Sp

1 + Ip

◆
+ log

✓
1 +

⇣p
Sc +

p
Ip

⌘2◆

+ log

✓
1 +

C

1 + Ip + Sp

◆
, (4.14d)

Rp +Rc  log

✓
1 +

Sc

1 + Ic

◆
+ log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆
, (4.14e)

Rp +Rc  log

✓
1+C+Ip+

Sp

1 + Ic

◆
+log

✓
1+Ic+Sc

1 + C

1+C+Ip

◆
+2 log(2),

(4.14f)

2Rp +Rc  log

✓
1 +

Sc

1 + Ic

◆
+ log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆

+ log

✓
1 + Ip + Sp

1 + Ic + Sc

◆
+ log

✓
1 +

C

1 + Ip + Sp

◆

+ log

✓
1 + Ic + Sc

1 + C

1 + C+ Ip

◆
+ log(2), (4.14g)

Rp + 2Rc  log

✓
1 +

Sp

1 + Ip

◆
+ log

✓
1 +

⇣p
Sc +

p
Ip

⌘2◆

+log

✓
1+Ic+Sc

1+Ip+Sp

◆
+log

✓
1+C+Ip+

Sp

1+Ic

◆
+log(2). (4.14h)
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Figure 4.4: Different regimes depending on the values of ↵ and β, with
d? := max {↵, 1− ↵}+max {↵, 1 + β −max {↵,β}}.

4.4 The capacity region to within a constant gap
for the symmetric Gaussian CCIC

In this section, we prove Theorem 9, i.e., we characterize the capacity to
within a constant gap for the symmetric Gaussian CCIC defined by Sp =
Sc = S and Ip = Ic = I = S↵. Figure 4.4 shows the gDoF d (↵,β) (abbreviated
with d) and the gap (per user) for the symmetric Gaussian CCIC for the
different regions in the (↵,β) plane, where the whole set of parameters has
been partitioned into multiple sub-regions depending upon different levels
of cooperation (β) and interference (↵) strengths.

At a high level, the approximately optimal coding schemes are as follows.
In the strong interference and weak cooperation regime both users employ
a non-cooperative common message. In the strong interference and strong
cooperation regime, PTx’s common message becomes cooperative and is for-
warded to PRx with the help of CTx. In the weak interference regime, each
user splits its message into a common and a private part; for CTx the two
message parts are non-cooperative while for PTx are both cooperative and
non-cooperative depending on the strength of the cooperation link; in partic-
ular, PTx’s cooperative private message is the ‘known interference’ against
which CTx’s message is precoded in a DPC-based scheme. Binning/DPC
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is used in the weak interference and ‘sufficiently’ strong cooperation regime
where CTx can easily decode the signal from PTx because of the good qual-
ity of the cooperation link, but CRx cannot because of weak interference;
therefore in this regime it makes sense that the best use of CTx’s knowledge
of PTx’s message is to treat it as a ‘known state’ to precode its message
against it.

We shall now discuss different operating regimes separately.

4.4.1 Regime 1 (strong interference I)

This regime corresponds to very strong interference (i.e., I ≥ S(1 + S) or
↵ ≥ 2) and weak cooperation (i.e., C  S or β  1), i.e., part of the blue
region in Figure 4.4. In the non-cooperative IC with very strong interference
it is exactly optimal to use only (non-cooperative) common messages in
order to achieve the whole capacity region; since the interference is very
strong, it can be decoded by treating the intended signal as noise, after
which each receiver is left with an interference-free point-to-point channel
from its transmitter; this non-cooperative strategy achieves

I4.4.1 : Rp  log(1 + S), (4.15a)

Rc  log(1 + S), (4.15b)

or d (↵,β)  (1+1)/2 = 1. Since in this regime the cooperation link is weak,
the amount of data PTx could communicate to CTx for cooperation is very
limited. As a result in this regime unilateral cooperation does not improve
the gDoF performance compared to the non-cooperative case. In other words
cooperation provides a ‘beamforming gain’ but not a gDoF gain. To see this,
the cut-set upper bounds on the individual rates in (4.14a) and (4.14c), in
the symmetric case for β  1 () C  S, give the following upper bounds
on the individual rates

O4.4.1 : Rp  log(1 + S+ C)  log(1 + S) + log(2), (4.16a)

Rc  log(1 + S). (4.16b)

From the upper bound on Rp in (4.16a), we see that unilateral coop-
eration can at most double the SNR on the primary direct link, which
can at most increase the rate by 1 bit compared to the non-cooperative
case. As a result, the gDoF with unilateral cooperation is d (↵,β) = 1
and the rate pair in (4.15) is optimal to within 1 bit, i.e., max{eq(4.16a)−
eq(4.15a), eq(4.16b)− eq(4.15b)}  max{log(2), 0} = 1 bit.
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4.4.2 Regime 2 (strong interference II)

In this regime the interference is very strong (i.e., I ≥ S(1+S) or ↵ ≥ 2) and
the cooperation is strong (i.e., C > S or β > 1), i.e., part of the blue region
in Figure 4.4. Similarly to the non-cooperative IC in very strong interfer-
ence regime, the transmitters send a common message only. As opposed to
regime 1, where both messages were sent non-cooperatively, here the PTx
takes advantage of the strong cooperation link and sends its message to PRx
with the help of the CTx. In order to enable cooperation, a block Markov
coding scheme is used as follows. Transmission is over a frame of B 9 1
slots. In slot t 2 [1 : B], the PTx sends its old (cooperative common)
message Wp,t−1 and superposes to it the new (cooperative common) mes-
sage Wp,t, while the CTx forwards the primary old (cooperative common)
message Wp,t−1 and superposes to it its (non-cooperative common) message
Wc,t. At the end of slot t, CTx decodes the new message Wp,t after subtract-
ing the contribution of the old message Wp,t−1. The destinations wait until
the whole frame has been received and then proceed to jointly backward
decode all messages. The details can be found in Appendix 4.E (more in
particular in Appendix 4.E.1) and the achievable region is given in (4.51),
which evaluated for |a1| = |c1| = |b2| = 0 (since U1 = T1 = T2 = ;), and
hence |b1| = |a2| = 1, for the symmetric Gaussian CCIC in very strong
interference (note that all the constraints in (4.51), except (4.51b), (4.51c)
and (4.51d), are redundant) reduces to

I4.4.2 : Rp  log(1 + C), (4.17a)

Rc  log(1 + S), (4.17b)

Rp +Rc  log(1 + S+ I). (4.17c)

The region in (4.17) is strictly larger than the non-cooperative capacity
region in very strong interference given by (4.15) for S(1 + S)  I, or ↵ ≥ 2,
and C > S, or β > 1, which is precisely the definition of regime 2. The sum-
capacity from (4.17) can take two possible values, depending on which one
among the MAC sum-rate bound in (4.17c) and the sum of the bounds on
the individual rates in (4.17a)-(4.17b) is the most stringent. In particular,
the following sum-rate is achievable

Rp +Rc 
⇢

log(1 + C) + log(1 + S) if C(1 + S)  I

log (1 + S+ I) if C(1 + S) > I
,

that is, d (↵,β)  (β + 1)/2 if β + 1  ↵ and d (↵,β)  ↵/2 otherwise;
in both cases the gDoF is larger than the one of the non-cooperative IC
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d (↵, 0) = 1; moreover, when β + 1 > ↵ the gDoF equals the one of the
ideal non-causal CIC, i.e., d (↵,β) = ↵/2, i.e., unilateral source cooperation
attains the ultimate performance limits of non-causal cognitive radio.

From the outer bound region obtained from the cut-set upper bounds on
the individual rates in (4.14a) and (4.14c) and the sum-rate upper bound
in (4.14e), under the condition β > 1 () C > S, we have that any achiev-
able rate pair must satisfy

O4.4.2 : Rp  log(1 + S+ C)  log(1 + C) + log(2), (4.18a)

Rc  log(1 + S), (4.18b)

Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

SI

 log (1 + S+ I) + 2 log(2), (4.18c)

since (
p
x+

p
y)2  2(x+y), 8(x, y) 2 R

2
+. The upper bound in (4.18) and

the achievable region in (4.17) are to within 1 bit of one another since

GAP  max {eq(4.18a)− eq(4.17a), eq(4.18b)− eq(4.17b),

eq(4.18c)− eq(4.17c)

2

}
 log(2).

This shows that the whole capacity region, and therefore the gDoF d (↵,β) =
min{β + 1, ↵}/2 too, is achievable to within 1 bit in regime 2.

4.4.3 Regime 3 (strong interference III)

This regime corresponds to strong but not very strong interference (i.e.,
S  I < S(1 + S) or ↵ 2 [1, 2)), i.e., part of the blue region in Figure 4.4.
Note that there are no restrictions on the cooperation exponent β in this
regime. Similarly to regimes 1 and 2, here we use only common messages – a
strategy that is capacity achieving in the corresponding non-cooperative IC.
The difference between regime 1 and regime 3 is that stripping decoding is
no longer optimal and the receivers must instead jointly decode the intended
and non-intended messages as in a MAC. By taking the largest between the
achievable region developed for regime 2 in (4.17) and the non-cooperative
achievable region for this regime (i.e., common messages only), which has
Rp  log(1+S) as a bound on the primary rate rather than Rp  log(1+C),
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we obtain the following achievable region

I4.4.3 : Rp  log(1 + max{C, S}), (4.19a)

Rc  log(1 + S), (4.19b)

Rp +Rc  log(1 + S+ I), (4.19c)

which implies d (↵,β)  min{1 + max{1,β}, max{1,↵}}/2 = ↵/2, i.e.,
the sum-rate bound in (4.19c) is the tightest. Note also that in regime 3
d (↵,β) = d (↵, 0) = d (↵,1), i.e., no matter how strong the cooperation
link is, cooperation does not increase the gDoF of the non-cooperative IC.

From the outer bound region obtained from the cut-set upper bounds on
the individual rates in (4.14a) and (4.14c) and the sum-rate upper bound
in (4.14e), we have that any achievable rate pair must satisfy

O4.4.3 : Rp  log(1 + S+ C)

 log(1 + max{C, S}) + log(2), (4.20a)

Rc  log(1 + S), (4.20b)

Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

 log(1 + S+ I) + 2 log(2). (4.20c)

The upper bound in (4.20) and the achievable region in (4.19) are to within
1 bit of one another since

GAP  max {eq(4.20a)− eq(4.19a), eq(4.20b)− eq(4.19b),

eq(4.20c)− eq(4.19c)

2

}
 log(2).

This shows that the whole capacity region, and therefore the gDoF d (↵,β) =
↵/2 too, is achievable to within 1 bit in regime 3.

4.4.4 Regime 4 (weak interference I)

In this regime the interference is weak (I < S or ↵ < 1) and the cooperation
is strong (i.e., C > S or β > 1), i.e., the cooperation link is stronger than
both the interfering and the direct links (yellow region in Figure 4.4). The
PTx takes advantage of the strong cooperation link and sends its message
to the PRx with the help of the CTx, i.e., the messages of the PTx are
only cooperative. Moreover, since the interference is weak, the messages
of the CTx and of the PTx are both common and private. Also for this
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regime we use binning at the CTx. In other words, for this regime, the PTx
does not make use of the non-cooperative messages, i.e., with reference to
the transmission strategy in Appendix 4.E, we set U1 = T1 = ;, i.e., we set
|d1| = 0 in the achievable rate region in (4.53) in Appendix 4.E.2. Moreover,
motivated by the observation in [12] that all the terms that appear as noise
should be at most at the level of the noise, we set |a1|2 = |b1|2 = I

2(1+I) ,

|b2|2= I
1+I

and |c1|2= |c2|2= 1
1+I

in the achievable rate region in (4.53). With
these choices the achievable rate region in (4.53), evaluated for the symmetric
channel, can be further lower bounded (by considering min {k1, k2} ≥ 0 and
that the sum-rate constraint in (4.53e) is redundant in (4.53)) as

I4.4.4 : Rp  log (1 + C)− log(2), (4.21a)

Rp  log (1 + S+ I)− log(2), (4.21b)

Rc  log (1 + S)− log(2), (4.21c)

Rp +Rc  log (1 + C) + log (1 + S+ I)− 3 log(2), (4.21d)

Rp +Rc  log

✓
1 +

C

1 + I

◆
+ log (1 + S)− log(2), (4.21e)

Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log (1 + S)− 2 log(2), (4.21f)

Rp + 2Rc  log (1 + S) + log

✓
1 +

S

1 + I

◆

+ log (1 + S+ I)− 4 log(2), (4.21g)

Rp + 2Rc  log

✓
1 +

C

1 + I

◆
+ log (1 + S+ I)

+ log (1 + S)− 3 log(2), (4.21h)

Rp + 3Rc  2 log (1 + S+ I) + log (1 + S)

+ log

✓
1 +

S

1 + I

◆
− 6 log(2), (4.21i)

which implies d (↵,β)  min{β+1, 2,β−↵+1, 2−↵}/2 = 1−↵/2, i.e., the
sum-rate bound in (4.21f) is the tightest. In this regime the gDoF is larger
than the one of the classical IC d (↵, 0) = min {max {1− ↵,↵} , 1− ↵/2}
everywhere except for 2/3  ↵ < 1; moreover, the gDoF equals everywhere
the one of the ideal non-causal CIC, i.e., d (↵,β) = 1 − ↵/2, i.e., unilateral
source cooperation attains the ultimate performance limits of non-causal
cognitive radio.

From the outer bound region obtained from the cut-set upper bounds on
the individual rates in (4.14a), (4.14b) and (4.14c) and the sum-rate upper
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bound in (4.14e), we have that any achievable rate pair must satisfy

O4.4.4 : Rp  log(1 + S+ C)  log(1 + C) + log(2), (4.22a)

Rp  log

✓
1 +

⇣p
S+

p
I
⌘2◆

 log (1 + S+ I) + log(2), (4.22b)

Rc  log(1 + S), (4.22c)

Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log(1 + S+ I) + log(2). (4.22d)

The upper bound in (4.22) and the achievable region in (4.21) are to within
2 bits of one another since

GAP  max {eq(4.22a)− eq(4.21a), eq(4.22b)− eq(4.21b),

eq(4.22c)− eq(4.21c),
eq(4.22a) + eq(4.22c)− eq(4.21d)

2
,

eq(4.22d)− eq(4.21e)

2
,
eq(4.22d)− eq(4.21f)

2
,

eq(4.22d) + eq(4.22c)− eq(4.21g)

3
,

eq(4.22d) + eq(4.22c)− eq(4.21h)

3
,

eq(4.22d) + 2eq(4.22c)− eq(4.21i)

4

}
 2 log(2).

This shows that the whole capacity region, and therefore the gDoF d (↵,β) =
1− ↵/2 too, is achievable to within 2 bits in regime 4.

4.4.5 Regime 5 (weak interference II)

In this regime the interference is weak (i.e., I < S or ↵ < 1) and the coop-
eration link is stronger than the interfering link, but weaker than the direct

link, i.e., max
n
I, S

1+I

o
 C  S or max {↵, 1− ↵}  β  1 (red region

in Figure 4.4). Thus, on the one hand the PTx takes advantage of these
channel conditions by using cooperative messages; on the other hand, the
cooperation link is not strong enough to allow the CTx to fully decode the
PTx’s message, and hence the PTx also uses a non-cooperative message. In
particular, the non-cooperative message of the PTx is private; this is be-
cause the interference is too weak and forcing the CRx to fully decode the
PTx’s message would constrain the rate too much. The CTx can also benefit
from the strength of the cooperation link and boost its rate performance by
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‘smartly’ precoding its message against the private cooperative message of
the PTx, i.e., the scheme is based both on superposition and binning. Thus,
for this regime, the PTx does not make use of the common non-cooperative
message, i.e., with reference to the transmission strategy in Appendix 4.E,
we set U1 = ; (see Appendix 4.E.2). After Fourier-Motzkin Elimination
(FME) we obtain the rate region in (4.52), which evaluated for the practi-
cally relevant Gaussian noise case gives (4.53) in Appendix 4.E.2. In (4.53)
we further set |a2| = 0 and |c2|2 = 1−|b2|2 = 1

1+I
so that the private message

of the CTx (conveyed by T2) is received below the noise level at the PRx in
the spirit of [12]. Note also that the CTx does not cooperate with the PTx
in conveying information to the PRx, but it just exploits the information it
learns through the cooperation link to smartly pre-encode its messages. For
the PTx we let |a1|2 = |b1|2 = I+C+2IC

4(1+I)(1+C) , |c1|2 = 1
2(1+I) and |d1|2 = 1

2(1+C)

in (4.53); with this choice of the power splits and since we are in the regime
C > I, the two private messages of the PTx (i.e., the cooperative one carried
by Z1 and the non-cooperative one carried by T1) are received at most at the
level of the noise at the CRx. Moreover, the non-cooperative private mes-
sage (carried by T1) is received at the level of the noise at the CTx. With
these choices we get that the achievable rate region in (4.53) is contained
into (by considering min {k1, k2} ≥ 0 in (4.53))

I4.4.5 : Rp  log (1 + C+ S)− 5 log(2), (4.23a)

Rp  log (1 + S+ I)− log(2), (4.23b)

Rc  log (1 + S)− log(3), (4.23c)

Rp +Rc  log (1 + C) + log

✓
1 +

S

1 + C
+ I

◆
+ log

✓
1 +

S

1 + I

◆

− 5 log(2)− log(3), (4.23d)

Rp +Rc  log (1 + S+ I) + log

✓
1 +

S

1 + I

◆
− log(2)− log(3), (4.23e)

Rp +Rc  log

✓
1 +

C

1 + I

◆
+ log

✓
1 +

S

1 + C

◆
+ log (1 + S)

− 4 log(2)− log(3), (4.23f)

Rp +Rc  log (1 + S) + log

✓
1 +

S

1 + I
+

S

1 + C

◆

− 2 log(2)− log(3), (4.23g)
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Rp + 2Rc  log (1 + S+ I) + log

✓
1 +

S

1 + I

◆
+ log (1 + S)

− 3 log(2)− 2 log(3), (4.23h)

Rp + 2Rc  log (1 + S) + log

✓
1 +

S

1 + I

◆
+ log

✓
1 + I+

S

1 + C

◆

+ log

✓
1 +

C

1 + I

◆
− 4 log(2)− 2 log(3), (4.23i)

Rp + 3Rc  log (1 + S+ I) + 2 log

✓
1 +

S

1 + I

◆
+ log

✓
1 + I+

S

1 + C

◆

+ log (1 + S)− 5 log(2)− 3 log(3), (4.23j)

which implies d (↵,β)  min{β+1, 2, 2−↵}/2 = 1−↵/2, i.e., the sum-rate
bound in (4.23e) is the tightest. In this regime the gDoF is larger than the
one of the classical IC d (↵, 0) = min {max {1− ↵,↵} , 1− ↵/2} everywhere
except for 2/3  ↵ < 1; moreover, the gDoF equals everywhere the one
of the ideal non-causal CIC, i.e., d (↵,β) = 1 − ↵/2, i.e., unilateral source
cooperation attains the ultimate performance limits of non-causal cognitive
radio.

From the outer bound region obtained from the cut-set upper bounds
on the individual rates in (4.14a), (4.14b) and (4.14c), the sum-rate upper
bound in (4.14e) and the upper bound on Rp+2Rc in (4.14h), we have that
any achievable rate pair must satisfy

O4.4.5 : Rp  log(1 + S+ C), (4.24a)

Rp  log

✓
1 +

⇣p
S+

p
I
⌘2◆

 log (1 + S+ I) + log(2), (4.24b)

Rc  log(1 + S), (4.24c)

Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log(1 + S+ I) + log(2), (4.24d)

Rp + 2Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ log

✓
1 + C+ I+

S

1 + I

◆
+ log(2)

 log

✓
1+

S

1+I

◆
+log (1+I+S)+log (1+C)+4 log(2), (4.24e)

where the last inequality follows since I+ S
1+I

 2max
n
I, S

1+I

o
 2C.
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The upper bound in (4.24) and the achievable region in (4.23) are to
within 5 bits of one another since

GAP  max {eq(4.24a)− eq(4.23a), eq(4.24b)− eq(4.23b),

eq(4.24c)− eq(4.23c),
eq(4.24d)− eq(4.23d)

2
,

eq(4.24d)− eq(4.23e)

2
,
eq(4.24d)− eq(4.23f)

2
,

eq(4.24d)− eq(4.23g)

2
,
eq(4.24d) + eq(4.24c)− eq(4.23h)

3
,

eq(4.24e)− eq(4.23i)

3
,
eq(4.24e) + eq(4.24c)− eq(4.23j)

4

}

 5 log(2).

This shows that the whole capacity region, and therefore the gDoF d (↵,β) =
1− ↵/2 too, is achievable to within 5 bits in regime 5.

4.4.6 Regime 6 (weak interference III)

In this regime the interference is weak (i.e., I < S or ↵ < 1) and the cooper-

ation link is also weak, i.e., C  max
n
I, S

1+I

o
or β  max {↵, 1− ↵} (green

region in Figure 4.4); we hence expect the CCIC to ‘behave’ as the classical
non-cooperative IC [12] for which both private and common non-cooperative
messages are approximately optimal. Differently from the classical IC, the
PTx also conveys part of its message through the CTx. This cooperative
message is common, and thus also decoded at the CRx. Actually, since the
cooperation link is weak, the amount of information that can be decoded,
and hence delivered, by the CTx is limited. Thus, there is no need to em-
ploy binning, i.e., the scheme is based on superposition coding only. In other
words, with reference to the transmission strategy in Appendix 4.E, we set
S1 = Z1 = ; (see Appendix 4.E.1). After FME we obtain the rate region in
(4.50), which evaluated for the practically relevant Gaussian noise case gives
(4.51) in Appendix 4.E.1. In (4.51) we further set |b2|2 = 1 − |a2|2 = 1

1+I

so that the private message of CTx (conveyed by T2) is received below the
noise level at the PRx in the spirit of [12]. Regarding the choice of the
power splits for the PTx, we further split the green region into two subre-
gions: subregion (i) for which C  I(1+I)

1+S
(i.e., β  [2↵− 1]+) and subregion

(ii) for which C > I(1+I)
1+S

(i.e., β > [2↵ − 1]+). We now analyze these two
subregions separately.
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Subregion (i): when β  [2↵ − 1]+, the cooperation link is very weak
and thus we expect the Gaussian CCIC to behave as the non-cooperative
Gaussian IC [12]. Therefore, we set the power of the cooperative common
message (carried by V1) to |b1|2 = 0 in (4.51) and |c1|2 = 1 − |a1|2 =
1

1+I
so that the private message of PTx (conveyed by T1) is received below

the noise level at the CRx in the spirit of [12]. With these choices and
by removing the redundant constraints in (4.51) (i.e., eq(4.51a), eq(4.51e),
eq(4.51f), eq(4.51g), eq(4.51j) and eq(4.51l)), we get that the achievable rate
region in (4.51) is contained into

I4.4.6(i) : Rp  log (1 + S)− log(2), (4.25a)

Rc  log (1 + S)− log(2), (4.25b)

Rp +Rc  log (1 + S+ I) + log

✓
1 +

S

1 + I

◆
− 2 log(2), (4.25c)

Rp +Rc  2 log

✓
1 + I+

S

1 + I

◆
− 2 log(2), (4.25d)

2Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log (1 + S+ I)

+ log

✓
1 + I+

S

1 + I

◆
− 3 log(2), (4.25e)

Rp + 2Rc  log

✓
1 + I+

S

1 + I

◆
+ log

✓
1 +

S

1 + I

◆

+ log (1 + S+ I)− 3 log(2), (4.25f)

which implies d (↵,β)  min {2, 2− ↵,max {2↵, 2− 2↵}} /2 = ↵, i.e., the
sum-rate bound in (4.25d) is the tightest. Note that the rate region in (4.25)
is (up to a constant gap) the achievable rate region for the classical symmet-
ric non-cooperative IC in weak interference, which is optimal up to a gap of
1 bit/user [12]. This implies that for this regime d (↵,β) = d (↵, 0).

For this regime, we have that any achievable rate pair must satisfy (by
considering all the constraints except (4.14b) and (4.14d))

O4.4.6(i) : Rp  log(1 + S+ C)  log(1 + S) + log(2), (4.26a)

Rc  log(1 + S), (4.26b)

Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

 log

✓
1 +

S

1 + I

◆
+ log(1 + S+ I) + log(2), (4.26c)
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Rp +Rc  log

✓
1+C+I+

S

1 + I

◆
+log

✓
1+I+S

1 + C

1+C+I

◆
+2 log(2)

0CI

 log

✓
1+I+

S

1 + I

◆
+log

✓
1+I+S

1 + C

1+I

◆
+3 log(2)

C I(1+I)
1+S

 2 log

✓
1 + I+

S

1 + I

◆
+ 4 log(2), (4.26d)

2Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log (1 + S+ I)

+ log

✓
1 + I+

S

1 + I

◆
+ 4 log(2), (4.26e)

Rp + 2Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ log

✓
1 + C+ I+

S

1 + I

◆
+ log(2)

 log

✓
1 +

S

1 + I

◆
+ log (1 + S+ I)

+ log

✓
1 + I+

S

1 + I

◆
+ 3 log(2). (4.26f)

The upper bound in (4.26) and the achievable region in (4.25) are to within
3 bits of one another since

GAP  max {eq(4.26a)− eq(4.25a), eq(4.26b)− eq(4.25b),

eq(4.26c)− eq(4.25c)

2
,
eq(4.26d)− eq(4.25d)

2
,

eq(4.26e)− eq(4.25e)

3
,
eq(4.26f)− eq(4.25f)

3

}

 3 log(2).

This shows that the whole capacity region, and therefore the gDoF d (↵,β) =
↵ too, is achievable to within 3 bits in regime 6 subregion (i).

Subregion (ii): when β > [2↵ − 1]+, the Gaussian CCIC starts to ben-
efit from cooperation and indeed the outer bound region depends on C.
Therefore the cooperative common message carried by V1 can boost the rate
performance of the system. In (4.51), we set the power of the common non-
cooperative message (carried by U1) to |a1|2 = 1

2(1+min{C,I}) . This choice is
motivated by the fact that, in order to approximately match the outer bound,
the single rate constraint on Rp in (4.51b) must approximately behave as an
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interference-free point-to-point channel. Therefore, the fact that CTx can
now decode part of the message of PTx (carried by V1) must not limit (up
to a constant gap) the performance of the PTx. In other words, since C is
‘quite large’ but not ‘huge’, the rate of V1 cannot be too large. Moreover,
we set |c1|2 = 1

2(1+I) so that the private message of PTx (conveyed by T1) is

received below the noise level at the CRx in the spirit of [12]. Thus, if I  C

we have |b1|2 = I
1+I

, while if I > C we have |b1|2 = C+I+2CI
2(1+C)(1+I) . With these

choices and by removing the redundant constraints in (4.51) (i.e., eq(4.51a),
eq(4.51d), eq(4.51f), eq(4.51g), and eq(4.51m)), we get that the achievable
rate region in (4.51) is contained into

I4.4.6(ii) : Rp  log (1 + S)− 4 log(2), (4.27a)

Rc  log (1 + S)− log(2), (4.27b)

Rp +Rc  log (1 + S+ I) + log

✓
1 +

S

1 + I

◆
− 3 log(2), (4.27c)

Rp +Rc  log

✓
1 + I+

S

1 + I

◆
+ log

✓
1 +

S

1 + I

◆

+ log (1 + min {I,C})− 5 log(2), (4.27d)

2Rp +Rc  2 log

✓
1 +

S

1 + I

◆
+ log (1 + S+ I)

+ log (1 + min{I,C})− 6 log(2), (4.27e)

2Rp +Rc  2 log

✓
1 +

S

1 + I

◆
+ log

✓
1 + I+

S

1 + min{I,C}

◆

+ 2 log (1 + min{I,C})− 9 log(2), (4.27f)

Rp + 2Rc  log

✓
1 + I+

S

1 + I

◆
+ log

✓
1 +

S

1 + I

◆

+ log (1 + S+ I)− 4 log(2), (4.27g)

which implies d (↵,β)  min {2− ↵,max {1, 2− 2↵}+min{↵,β}} /2, i.e.,
the minimum between the sum-rate bound in (4.27c) and the one in (4.27d)
is the tightest.

For this regime, we have that any achievable rate pair must satisfy (by
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considering all the constraints except (4.14b) and (4.14d))

O4.4.6(ii) : Rp  log(1 + S+ C)  log(1 + S) + log(2), (4.28a)

Rc  log(1 + S), (4.28b)

Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

 log

✓
1 +

S

1 + I

◆
+ log(1 + S+ I) + log(2), (4.28c)

Rp +Rc  log

✓
1+C+I+

S

1 + I

◆
+log

✓
1+I+S

1 + C

1+C+I

◆
+2 log(2)

Cmax{I, S
1+I}

 log

✓
1 + I+

S

1 + I

◆
+ log

✓
1 + I+ S

1 + C

1 + I+ C

◆

+ 3 log(2), (4.28d)

2Rp +Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ log

✓
1 +

C

1 + I+ S

◆
+ log

✓
1 + I+ S

1 + C

1 + C+ I

◆
+ log(2)

 log

✓
1 +

S

1 + I

◆
+ log (1 + S+ I)

+ log

✓
1 + I+ S

1 + C

1 + C+ I

◆
+ 3 log(2), (4.28e)

Rp + 2Rc  log

✓
1 +

S

1 + I

◆
+ log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ log

✓
1 + C+ I+

S

1 + I

◆
+ log(2)

Cmax{I, S
1+I}

 log

✓
1 +

S

1 + I

◆
+ log (1 + S+ I)

+ log

✓
1 + I+

S

1 + I

◆
+ 3 log(2). (4.28f)

The upper bound in (4.28) and the achievable region in (4.27) are to within
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5 bits of one another since

GAP  max {eq(4.28a)− eq(4.27a), eq(4.28b)− eq(4.27b),

eq(4.28c)− eq(4.27c)

2
,
eq(4.28d)− eq(4.27d)

2
,

eq(4.28e)− eq(4.27e)

3
,
eq(4.28e)− eq(4.27f)

3
eq(4.28f)− eq(4.27g)

3

}
 5 log(2).

This shows that the whole capacity region, and therefore the gDoF too, is
achievable to within 5 bits in regime 6 subregion (ii).

4.4.7 Implication of the gap result

In the symmetric case, the two novel outer bounds 2Rp +Rc in (4.14g) and
Rp + 2Rc in (4.14h) are active when S ≥ max {C, I}, which corresponds to
the red and green regions in Figure 4.4. In [56], the authors interpreted the
need of this type of bounds as a measure of the amount of the ‘resource
holes’, or inefficiency, due to the distributed nature of the non-cooperative
classical IC [12]. Thus, in line with the work in [56], we conclude that
when S ≥ max {C, I} unilateral cooperation is too weak to allow for a full
utilization of the channel resources, i.e., it leaves some system resources
underutilized.

We conclude this section with some observations on the regimes where
the bounds 2Rp + Rc in (4.14g) and Rp + 2Rc in (4.14h) are active for the
symmetric Gaussian CCIC.

• Strong interference (i.e., I > S, blue region in Figure 4.4): in
this regime both the capacity region of the non-cooperative Gaussian
IC [12] and the capacity region of the Gaussian non-causal CIC [64],
do not have bounds of the type 2Rp + Rc and Rp + 2Rc; since the
capacity region of the Gaussian CCIC is ‘sandwiched’ between these
two regions, it hence follows that these bounds are not necessary. In
other words, in this regime, even for the non-cooperative Gaussian IC
the system resources are fully utilized [56].

• Weak interference and strong cooperation (i.e., I  S < C,
yellow region in Figure 4.4): for this regime the outer bound in (4.22)
equals (to within a constant gap) the outer bound on the capacity
region for the non-causal Gaussian CIC [64, Theorem III.1], which
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does not have bounds of the type 2Rp + Rc and Rp + 2Rc. In other
words, in this regime the ideal non-causal cognition assumption at
the CTx just provides a ‘beamforming gain’ compared to the more
practical case of causal learning for the CTx through a noisy link. It
hence follows that for this regime unilateral cooperation allows to fully
utilize the channel resources [56], i.e., the bounds of the type 2Rp+Rc

and Rp + 2Rc are not active.

• Weak interference and weak cooperation (i.e., S ≥ max {C, I},
green and red regions in Figure 4.4): for this regime the capacity region
of the non-cooperative Gaussian IC has bounds of the type 2Rp + Rc

and Rp+2Rc [12], while the one of the non-causal Gaussian CIC does
not [64]. From our constant gap result in these two regions, it follows
that: (i) Rp + 2Rc in (4.14h) is active in the red region, (ii) 2Rp +Rc

in (4.14g) and Rp+2Rc in (4.14h) are both active in the green region.
In other words, in this regime unilateral cooperation does not allow
enough coordination among the sources which results in some ‘resource
holes’ as in the non-cooperative Gaussian IC.

Remark 15. From our discussion, it follows that causal unilateral source
cooperation does not improve on the gDoF of the non-cooperative Gaussian
IC, i.e., d (↵,β) = d (↵, 0), when

↵ 2

2

3
, 2

]
or β  min

{
1, [2↵− 1]+

 
.

Thus, for this set of parameters, unilateral cooperation might not be worth
implementing in practical systems since the same gDoF is achieved without
explicit cooperation, i.e., unilateral cooperation only provides a power /
beamforming gain. Moreover, the gDoF of the Gaussian CCIC is equal to
that of the non-causal Gaussian CIC, i.e., d (↵,β) = d (↵,1), everywhere
except for

↵  2

3
with β  min {↵, 1− ↵} and ↵ ≥ max{2,β + 1}.

For this set of parameters unilateral cooperation attains the ultimate per-
formance limits of non-causal cognitive radio and hence represents the ideal
channel condition for cognitive radio.
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4.5 The capacity region to within a constant gap
for the Gaussian Z-channel

In this section, we prove Theorem 10, i.e., we characterize the capacity to
within a constant gap for the Z Gaussian CCIC defined by Ip = 0. In
particular, we show that the upper bound

Rp  log (1 + C+ Sp) , (4.29a)

Rp  log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆
, (4.29b)

Rc  log (1 + Sc) , (4.29c)

Rp +Rc  log

✓
1 +

Sc

1 + Ic

◆
+ log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆
, (4.29d)

obtained from (4.14) by setting Ip = 0, is achievable to within a constant
gap. The region in (4.29) without the bound in (4.29a) (i.e., the only one
that depends on C) is the capacity upper bound for the non-causal cognitive
IC in [64, Theorem III.1], which unifies previously known outer bounds for
the weak (Sc > Ic) and strong (Sc  Ic) interference regimes and is achievable
to within 1 bit. Hence, we interpret the bound in (4.29a) as the ‘cost’ of
causal cooperation on the Z-channel.

Moreover, as we shall see later in more details, the capacity region of the
Z-channel, differently from that of the symmetric Gaussian CCIC, does not
have bounds of the type 2Rp +Rc and Rp + 2Rc.

4.5.1 Case C  Sp: when unilateral cooperation might not be
useful

For the case C  Sp we further upper bound the capacity outer bound
in (4.29) as

O4.5.1 : Rp  log (1 + Sp) + log(2), (4.30a)

Rc  log (1 + Sc) , (4.30b)

Rp +Rc  log

✓
1 +

Sc

1 + Ic

◆
+ log (1 + Sp + Ic) + log(2). (4.30c)
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The region in (4.30) is at most 1 bit away from

I4.5.1 : Rp  log (1 + Sp) , (4.31a)

Rc  log (1 + Sc) , (4.31b)

Rp +Rc  log+
✓
1 + Sc

1 + Ic

◆
+ log (1 + Sp + Ic) , (4.31c)

which is achievable to within 1 bit by a non-cooperative scheme [12]. There-
fore, for this set of parameters we have that the outer bound in (4.30) is
achievable to within 2 bits.

4.5.2 Case C > Sp, Sc  Ic (i.e., strong interference at PRx):
when unilateral cooperation is useful

In this case, we further outer bound the region in (4.29) as

O4.5.2 : Rp  log (1 + C) + log(2), (4.32a)

Rc  log (1 + Sc) , (4.32b)

Rp +Rc  log (1 + Sp + Ic) + 2 log(2). (4.32c)

In this regime, the PTx takes advantage of the strong cooperation link and
sends its message with the help of the CTx. Moreover, since the PTx does
not create interference at the CRx (Ip = 0), it sends a (cooperative) private
message only. On the other hand, since the interference at the PRx is strong,
the CTx sends a (non-cooperative) common message only. This is exactly
the strategy described in Appendix 4.E, by setting V1 = U1 = T1 = T2 = ;
and the resulting achievable region is given by (4.53). In (4.53), we further
set |a1| = |b1| = |d1| = 0 (private message only for the PTx carried by
Z1), |c2| = 0 (common non-cooperative message only for CTx carried by
U2) and Ip = 0. With the possible suboptimal choice |a2|2 = 1

1+Sc
, we have

k1 = 0, k2  log
⇣
1 + Ic|a2|2

1+Sp

⌘
in (4.53) and the achievable region in (4.53) is

contained into

I4.5.2 : Rp  log (1 + C) , (4.33a)

Rc  log (1 + Sc)− log(2), (4.33b)

Rp +Rc  log (1 + Sp + Ic) , (4.33c)

Rp +Rc  log

✓
1 + Sp +

Ic

1 + Sc

◆
+ log (1 + Sc)− log(2). (4.33d)

It is not difficult to see that the outer bound in (4.32) and the inner bound
in (4.33) are at most 1.5 bits away.
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4.5.3 Case C > Sp, Sc > Ic (i.e., weak interference at PRx):
when unilateral cooperation is useful

For this regime, an outer bound for the Z-channel is given by the capacity
of the non-causal CIC in weak interference [61, Theorem 4.1], [60, Lemma
3.6] together with the cut-set bound in (4.14a), i.e.,

O4.5.3 : Rp  log (1 + C) + log(2), (4.34a)

Rp  log

 
1 +

Sp + |γc|2Ic + 2|γc|
p

SpIc

1 + (1− |γc|2)Ic

!
, (4.34b)

Rc  log
(
1 + (1− |γc|2)Sc

)
, (4.34c)

union over all |γc|  1. Since C > Sp, the PTx takes advantage of the
strong cooperation link and sends its message with the help of the CTx.
Moreover, since the PTx does not create interference at the CRx (Ip = 0),
it sends a (cooperative) private message only. The outer bound in (4.34b)
suggests that the PRx should treat as noise the message of the CTx, while
the bound in (4.34c) tells us that the CRx should decode its own message
without experiencing interference. In order to model this last observation,
we use a DPC-based scheme. In this strategy the CTx precodes its message
against the ‘known interference’ so that the CRx decodes its own message
as if the interference was not present [44].

This is exactly the strategy described in Appendix 4.E, by setting V1 =
U1 = T1 = T2 = ; and the resulting achievable region is given by (4.53).
In (4.53), we further set |a1| = |b1| = |d1| = 0 (private message only for
the PTx carried by Z1), |b2| = 0 (private non-cooperative message only
for CTx carried by T2) and Ip = 0. We further let a2 = γc and |c2| =p
1− |γc|2, with |γc| 2 [0, 1] in (4.53); with these choices we have k1 = 0,

k2 = log
⇣

1+Ic+Sp
1+Sp+Ic(1−|γc|2)

⌘
in (4.53) and the achievable region in (4.53) is

contained into

I4.5.3 : Rp  log (1 + C) , (4.35a)

Rp  log

✓
1 +

Sp + |γc|2Ic
1 + (1− |γc|2)Ic

◆
, (4.35b)

Rc  log
(
1 + (1− |γc|2)Sc

)
, (4.35c)

for all |γc|  1. By simple computations, the achievable region in (4.35)
can be shown to be at most 1 bit away from the upper bound in (4.34).
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1

1

β

GAP  1 bit GAP  1.5 bits

d = 1− α
2 d = min{1+β,α}

2

GAP  2 bits

d =
min{2,[1−α]++max{1,α}}

2

α

Figure 4.5: Optimal gDoF and constant gap for the Z-channel in the different
regimes of (↵,β).

4.5.4 Comparisons

We conclude this section by comparing the performance of unilateral coop-
eration on the Z-channel with other forms of cooperation. Moreover, we
also consider whether the absence of an interfering link is beneficial in the
Gaussian CCIC. We shall use as performance metric the gDoF, or high SNR
throughput. In order to reduce the number of parameters, we restrict our at-
tention to the case where the direct links have the same strength. For future
reference, the gDoF of the non-cooperative Z-channel is given by [103]

dZ (↵, 0) = min{max{1− ↵/2,↵/2}, 1},

and that of the non-causal cognitive Z-channel, which can be evaluated
from [64], is

dZ (↵,1) = max{1− ↵/2,↵/2}.
Figure 4.5 shows the gDoF and the gap for the Z-channel for different regions
in the (↵,β) plane. The whole set of parameters has been partitioned into
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multiple sub-regions depending upon different level of cooperation (β) and
interference (↵) strengths.

When comparing unilateral cooperation with other channel models in
terms of gDoF we observe:

• For the non-cooperative IC, it is well known that removing an inter-
ference link cannot degrade the performance and the sum-capacity is
known exactly for all channel parameters [103]. The same cannot be
said in full generality for the cooperative channel because“useful coop-
erative information” can flow through the interference link. In partic-
ular, for the Z-channel unilateral cooperation improves the gDoF with
respect to the non-cooperative case, i.e., dZ (↵,β) > dZ (↵, 0), only in
the regime ↵ ≥ 2 and β ≥ 1, i.e., in very strong interference and strong
cooperation.

• The Z-channel achieves the same gDoF of the ideal non-causal cog-
nitive channel, i.e., dZ (↵,β) = dZ (↵,1), everywhere except in ↵ >
max{2,β + 1}.

• By comparing Figure 4.4 and Figure 4.5 we observe that the gDoF of
the Z-channel is always greater than or equal to that of the interference-
symmetric Gaussian CCIC. This is due to the fact that the PTx does
not cooperate in sending the cognitive signal. Therefore, by removing
the link between PTx and CRx we rid CRx of only an interfering signal
and this leads to an improvement in terms of gDoF.

The regimes where the Z-channel strictly outperforms the interference-
symmetric Gaussian CCIC, i.e., dZ (↵,β) > d (↵,β), are when 0  ↵ 
2
3 and β  min{↵, 1−↵}, i.e., weak interference and fairly weak coop-
eration. This regime can be thought of as the one where interference
is the most harmful for the interference-symmetric Gaussian CCIC.

• From our constant gap result, it follows that the capacity region of the
Z-channel, differently from the one of the symmetric Gaussian CCIC,
does not have bounds of the type 2Rp + Rc and Rp + 2Rc. In other
words, when the link between the PTx and the CRx is absent, unilat-
eral cooperation allows for a full utilization of the channel resources,
i.e., there are no ‘resource holes’ in the system [56].
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4.6 The capacity region to within a constant gap
for the Gaussian S-channel

In this section, we prove Theorem 11, i.e., we characterize the capacity to
within a constant gap for the S Gaussian CCIC defined by Ic = 0. In
particular, we distinguish two cases, depending on whether the following
upper bound

Rp  log (1 + Sp) , (4.36a)

Rc  log (1 + Sc) , (4.36b)

Rp +Rc  log
⇣
1 + (

p
Sc +

p
Ip)

2
⌘
+ log

✓
1 +

C+ Sp

1 + Ip

◆
, (4.36c)

from (4.14) with Ic = 0, can be achieved with a non-cooperative scheme or
not. Note that the bounds on Rp and Rc in (4.36) are the capacity region of
the corresponding non-causal CIC; we hence interpret the sum-rate bound
in (4.36c) as the ‘cost’ for causally learning the primary message at the CTx
through a noisy channel.

4.6.1 Case C  max{Ip, Sp}: when unilateral cooperation might
not be useful

For the case Cmax{Ip, Sp} we can further upper bound (4.36) as

O4.6.1 : Rp  log (1 + Sp) , (4.37a)

Rc  log (1 + Sc) , (4.37b)

Rp +Rc  log (1 + Sc + Ip) + log

✓
1 +

Sp

1 + Ip

◆
+ 2 log(2). (4.37c)

The region in (4.37) is at most 1.5 bits (per user) away from

I4.6.1 : Rp  log (1 + Sp) , (4.38a)

Rc  log (1 + Sc) , (4.38b)

Rp +Rc  log (1 + Sc + Ip) + log+
✓
1 + Sp

1 + Ip

◆
, (4.38c)

which is achievable to within 1 bit by a non-cooperative scheme [12]. There-
fore, we conclude that for C  max{Ip, Sp} a non-cooperative scheme is
optimal to within 2.5 bits.
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4.6.2 Case C > max{Ip, Sp}: when unilateral cooperation is
useful

When C > max{Ip, Sp}, a sufficient condition for the sum-rate upper bound
in (4.36c) to be redundant is that

1 + Sp  1 +
C+ Sp

1 + Ip
() C ≥ IpSp. (4.39)

For the set of parameters in (4.39), we use the achievable region in Ap-
pendix 4.E, by further setting V1 = U1 = T1 = T2 = ; and the resulting
achievable region is given by (4.53). In (4.53), we further set |b1| = |d1| = 0
(private message only for the PTx carried by the pair (S1, Z1)), |a2| =
|b2| = 0 (private non-cooperative message only for CTx carried by T2) and

Ic = 0. We further let |c1|2 = Sp
C

in (4.53); with these choices we have k1 = 0,

k2 = log
⇣

1+Sp
1+Sp|c1|2

⌘
in (4.53) and the achievable region in (4.53) is contained

into

I4.6.2 : Rp  log (1 + Sp) , (4.40a)

Rc  log (1 + Sc)− log(2). (4.40b)

By comparing the rate bounds in (4.40) with those in (4.36), it is easy to
see that when (4.39) holds the gap is at most of 1 bit.

This shows that, when the condition in (4.39) holds, not only the upper
bound is achievable to within 1 bit but we can also achieve to within 1 bit the
ultimate capacity of the corresponding non-causal cognitive channel. This
result agrees with the intuition that, as the strength of the cooperation link
increases, the performance of the causal cognitive channel should approach
that of the corresponding non-causal model. The condition in (4.39) can thus
be interpreted as a sufficient condition on the strength of the cooperation
link to achieve the capacity region of the corresponding non-causal model
to within a constant gap.

In the regime C < SpIp we use the DPC-based achievable scheme in Ap-
pendix 4.E with U1 = ; (see Appendix 4.E.2). In this scheme the CTx sends
a private message only since Xc is not received at the PRx; since the coop-
eration link is quite strong, the PTx sends a private and a common message
(carried by the pairs (S1, Z1) and (Q, V1), respectively), both with the help
of the CTx. In other words, with reference to the scheme in Appendix 4.E,
we set U1 = T1 = ;, i.e., no non-cooperative messages for PTx and the
resulting achievable rate region is given by (4.53). The PTx’s common mes-
sage is forwarded by the CTx to facilitate decoding at both receivers. The
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PTx’s private message is decoded at the CTx and its effect is ‘pre-canceled’
at the CRx thanks to DPC. In (4.53), we further set |d1| = 0 (no private
non-cooperative message for PTx carried by T1), |a2| = |b2| = 0 (private
non-cooperative message only for CTx carried by T2) and Ic = 0. We fur-
ther let |a1|2 = C

2(1+Ip)(1+Sp)
and |c1|2 = 1

2(1+Ip)
in (4.53); with these choices

we have k1 = log
⇣

1+Sc+Ip
1+Sc+Ip(1−|b1|2)

⌘
, k2 = log

✓
1+Sp(1−|b1|2)

1+Sp|c1|2

◆
in (4.53) and

the achievable region in (4.53) is contained into

I4.6.2 : Rp  log(1 + C)− log(2), (4.41a)

Rp  log(1 + Sp), (4.41b)

Rc  log (1 + Sc)− log(2), (4.41c)

Rp +Rc  log

✓
1 +

C

1 + Ip

◆
+ log (1 + Sc)

+ log

 
1 + Sc + Ip

1 + Sc +
1+C
1+Sp

!
− 2 log(2), (4.41d)

Rp +Rc  log

✓
1 + Sp

1 + C

(1 + Ip) (1 + Sp)

◆
+ log (1 + Sc)

+ log

 
1 + Sc + Ip

1 + Sc +
1+C
1+Sp

!
− 2 log(2). (4.41e)

By comparing the rate bounds in (4.41) with those in (4.36), it is easy to
see that the gap is at most of 3 bits. Notice that, in order to find the gap,
we compared (4.41d) and (4.41e) with (4.36a) + (4.36b) if Sc  1+C

1+Sp
and

with (4.36c) otherwise.

4.6.3 Comparisons

We conclude this section by comparing the performance of unilateral coop-
eration on the S-channel with other forms of cooperation and by considering
whether the absence of an interfering link is beneficial in the Gaussian CCIC.
In order to reduce the number of parameters, we restrict our attention to
the case where the direct links have the same strength. For future reference,
the gDoF of the non-cooperative S-channel is given by [103]

dS (↵, 0) = min{max{1− ↵/2,↵/2}, 1},
and that of the non-causal cognitive S-channel is given by [64]

dS (↵,1) = 1.
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1

1

β

α

β = α

β = 1 + α

GAP  1 bit

GAP  2.5 bits

GAP  3 bits

d = 1

d =
min{2,max{1,α}+[1−α]+}

2

d = min{2,max{1,α}+β−α}
2

Figure 4.6: Optimal gDoF and constant gap for the S-channel in the different
regimes of (↵,β).

Figure 4.6 shows the gDoF and the gap for the S-channel in the (↵,β)
plane. The whole set of parameters has been partitioned into multiple sub-
regions depending upon different levels of cooperation (β) and interference
(↵) strengths. We observe:

• Unilateral cooperation achieves the same gDoF of the non-cooperative
IC, i.e., dS (↵,β) = dS (↵, 0), when ↵ ≥ 2 or β  max{1,↵}. In
other words, unilateral cooperation is worth implementing in practice
when the interference is not very strong and the cooperation link is
the strongest among all links.

• The S-channel achieves the same gDoF of the non-causal CIC, i.e.,
dS (↵,β)=dS (↵,1), everywhere except in ↵2 and βmin{2,↵+1}.

• The S-channel outperforms the interference-symmetric Gaussian CCIC,
i.e., dS (↵,β) > d (↵,β), when either 0  ↵  2

3 and β  min{↵, 1 −
↵} or when ↵  2 and β ≥ max{1,↵}. On the other hand, the
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interference-symmetric Gaussian CCIC outperforms the S-channel, i.e.,
dS (↵,β) < d (↵,β), in very strong interference and strong cooperation,
i.e., ↵ ≥ 2 and β ≥ 1. This is due to the fact that the information for
the PRx can no longer be routed through the CTx since

p
Ice

j✓c = 0.

• As for the Z-channel, also the capacity region of the S-channel, dif-
ferently from that of the symmetric Gaussian CCIC, does not have
bounds of the type 2Rp +Rc and Rp +2Rc. In other words, when the
link between the CTx and the PRx is absent, unilateral cooperation
allows for a full utilization of the channel resources, i.e., there are no
‘resource holes’ in the system [56].

4.7 Extension to the general Gaussian CCIC

In this section we seek to extend our gap results to the general Gaussian
CCIC, which is more complex to analyze due to the fact that one has to deal
with 5 different channel parameters. Following the naming convention of the
non-cooperative IC, we say that the general Gaussian CCIC has strong in-
terference if {Sp  Ip, Sc  Ic}, weak interference if {Sp > Ip, Sc > Ic}, and
mixed interference otherwise. Moreover, we say that the general Gaussian
CCIC has strong cooperation if C > Sp and weak cooperation otherwise. As
we shall see in what follows, this section provides a capacity characteriza-
tion to within a constant gap for the general Gaussian CCIC when, roughly
speaking, the two receivers do not experience weak interference simultane-
ously. In particular,

• Case A: When C  Sp, i.e., weak cooperation regime, we can further
upper bound (4.14) as

OCase A : Rp  log(1 + Sp) + log(2), (4.42a)

Rc  log(1 + Sc), (4.42b)

Rp +Rc  log

✓
1+

Sp

1 + Ip

◆
+log (1+Sc+Ip)+2 log(2), (4.42c)

Rp +Rc  log

✓
1 +

Sc

1 + Ic

◆
+log (1 + Sp + Ic)+log(2). (4.42d)
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Figure 4.7: Regime identified as Case A, with GAP  2 bits.

The bounds in (4.42) are to within 1.5 bits of

ICase A : Rp  log(1 + Sp), (4.43a)

Rc  log(1 + Sc), (4.43b)

Rp +Rc  log+
✓
1 + Sp

1 + Ip

◆
+ log(1 + Sc + Ip), (4.43c)

Rp +Rc  log+
✓
1 + Sc

1 + Ic

◆
+ log(1 + Sp + Ic), (4.43d)

which is achievable to within 1 bit for the non-cooperative IC [12]
when ScSp  (1 + Ip)(1 + Ic). Thus, for this regime, depicted in yellow
in Figure 4.7, we have GAP  2.5 bits.

• Case B: When Sp < C  Ip, we further upper bound (4.14) as

OCase B : (4.44a)

Rp  log(1 + C) + log(2), (4.44b)

Rp  log (1 + Sp + Ic) + log(2), (4.44c)

Rc  log(1 + Sc), (4.44d)

Rp +Rc  log (1 + Sc + Ip) + 2 log(2), (4.44e)

Rp +Rc  log

✓
1 +

Sc

1 + Ic

◆
+ log (1 + Sp + Ic) + log(2). (4.44f)
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In this regime, unilateral cooperation helps increasing the rate of the
primary user. In the symmetric case, this regime corresponds to part
of the blue region in Figure 4.4 with 1 < β  ↵; we therefore consider
the generalization of the achievable scheme we used for the symmetric
case in this regime to the case of general channel gains. Here the PTx
takes advantage of the strong cooperation link and sends its message
with the help of the CTx. The sum-rate upper bound in (4.44e) sug-
gests that the CRx should decode the PTx’s message in addition to its
intended message, that is, the PTx should use a (cooperative) common
message only. The sum-rate upper bound in (4.44f), suggests that the
PRx should decode the CTx’s message only when Ic > Sc, that is,
the CTx should use both a (non-cooperative) common and a (non-
cooperative) private message. This is exactly the strategy described
in Appendix 4.E.1 with U1 = T1 = ; (i.e., no non-cooperative mes-
sages for PTx) and the resulting achievable region is given in (4.51).
In (4.51), we further set |b1| = 1 (common cooperative message only
for PTx carried by V1) and |b2|2 = 1

1+Ic
so that the private message

of the CTx (carried by T2) is received below the noise level at the
PRx in the spirit of [12]. With these choices the achievable rate region
in (4.51) is contained into

ICase B : Rp  log (1 + C) , (4.45a)

Rp  log (1 + Sp + Ic)− log(2), (4.45b)

Rc  log (1 + Sc) , (4.45c)

Rp +Rc  log(1 + Sc + Ip), (4.45d)

Rp +Rc  log

✓
1+

Sc

1+Ic

◆
+log(1+Sp+Ic)−log(2). (4.45e)

By comparing the upper bound in (4.44) with the achievable region
in (4.45) we conclude that the capacity region is known to within
2 bits for a general Gaussian CCIC where the channel gains satisfy
Sp < C  Ip (see blue regime Figure 4.8). Notice that we did not
impose any condition on the strength of Ic compared to Sc, i.e., in
other words this gap result holds regardless of whether the interference
at PRx is strong (Ic ≥ Sc) or weak (Ic < Sc).
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Sp Ip

Sc

C

weak

Sc(1+Sp)

Ic

GAP  2 bits

GAP  2 bits

Figure 4.8: Blue and green regimes identified as Case B and Case C,
respectively with GAP  2 bits.

• Case C: When max{Sp, Ip} < C and Sc  Ic, we further upper
bound (4.14) as

OCase C : Rp  log(1 + C) + log(2), (4.46a)

Rc  log(1 + Sc), (4.46b)

Rp +Rc  log

✓
1 +

C

1 + Ip

◆
+ log (1 + Sc + Ip) + 2 log(2),

(4.46c)

Rp +Rc  log (1 + Sp + Ic) + 2 log(2). (4.46d)

In this regime, unilateral cooperation helps increasing both the rate
of the primary user and the sum-capacity. In the symmetric case, this
regime corresponds to part of the blue region in Figure 4.4 with 1 <
↵ < β. Here the PTx takes advantage of the strong cooperation link
and sends its message with the help of the CTx. The sum-rate upper
bound in (4.46d) suggests that PRx should decode the CTx’s message
in addition to its intended message, that is, CTx should use a (non-
cooperative) common message only; this is so because the condition
Sc  Ic corresponds to strong interference at the PRx. The sum-
rate upper bound in (4.46c), suggests that PTx should use both a
(cooperative) common and a (cooperative) private message; this is so
because here we do not specify which one among Sp and Ip is the
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largest, and therefore the interference at CRx could be either strong
or weak. This is exactly the strategy described in Appendix 4.E.2 with
T1 = T2 = ;, i.e., no private non-cooperative messages. The achievable
region is given in (4.53). In (4.53), we further set |a1| = |d1| = |c2| = 0
(i.e., no private non-cooperative messages) and |c1|2 = 1

1+Ip
and |a2|2 =

1
1+Sc

inspired by [12]. Moreover, we do not pre-encode U2 against the
private (cooperative) message of PTx, i.e., λU = 0. With these choices

we have k1 = log
⇣

1+Sc+Ip
1+Sc+Ip(1−|b1|2)

⌘
, k2 = log

⇣
1 + Ic|a2|2

1+Sp|c1|2

⌘
and the

achievable rate region in (4.53) is contained into

ICase C : Rp  log (1 + C) , (4.47a)

Rc  log (1 + Sc)− 2 log(2), (4.47b)

Rp +Rc  log

✓
1+

C

1 + Ip

◆
+log (1+Sc+Ip)−2 log(2), (4.47c)

Rp +Rc  log (1 + Sp + Ic) , (4.47d)

Rp +Rc  log

✓
1 +

Sp

1 + Ip
+

Ic

1 + Sc

◆

+ log (1 + Sc + Ip)− 2 log(2), (4.47e)

if Sc
1+Ip+Sp
1+2Ip

 Ic. We imposed this condition in order to get rid of the

bound on Rp + 2Rc in (4.53h). Actually, from (4.52) we have that

eq(4.52c) + eq(4.52g)  eq(4.52h) ()
eq(4.49r) + eq(4.49g)  eq(4.49f) + eq(4.49t) ()
I (Yc;U2|Q, V1)  I (Yp;U2|Q, V1) ()

Sc

1 + Sc|a2|2 + Ip|c1|2
 Ic

1 + Ic|a2|2 + Sp|c1|2
()

Sc + ScSp|c1|2  Ic + IcIp|c1|2 () Sc
1 + Ip + Sp

1 + 2Ip
 Ic.

By comparing the upper bound in (4.46) with the inner bound in (4.47)
it easy to see that they are at most 2 bits away from one another. Thus,
when max{Sp, Ip} < C, Sc  Ic and if Sc

1+Ip+Sp
1+2Ip

 Ic, then GAP  2

bits (see green regime Figure 4.8).

Remark 16. The analysis above provides the characterization of the capac-
ity to within a constant gap for the general Gaussian CCIC when, roughly
speaking, the two receivers do not suffer weak interference simultaneously.
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Although not a trivial task (since there are 5 different channel gains), char-
acterizing the capacity (to within a constant gap) in the regimes left open
in this chapter is an interesting future research direction.

4.8 Conclusions and future directions

In this chapter we considered the two-user CCIC where the CTx is con-
strained to operate in FD mode. We first derived two novel outer bounds
of the type 2Rp +Rc and Rp + 2Rc on the capacity region of the ISD chan-
nel with independent noises at the two destinations. We then designed a
transmission strategy based on binning and superposition encoding, PDF
relaying and jointly decoding and we derived its achievable rate region. We
evaluated the outer and lower bounds on the capacity for the Gaussian noise
case and we proved that these bounds are a constant number of bits (uni-
versally over all channel gains) apart from one another for the symmetric
case (i.e., the two direct links and the two interfering links are of the same
strength) and for the case where one interfering link is absent (i.e., Z-channel
and S-channel). In particular, we showed that, for the symmetric case, the
two novel outer bounds of the type 2Rp+Rc and Rp+2Rc are active in weak
interference when the cooperation link is weaker than the direct link. We
also considered the general Gaussian CCIC and we proved a constant gap
result when, roughly speaking, the two receivers do not experience weak in-
terference simultaneously. Finally, we identified the set of parameters where
causal cooperation achieves the same gDoF of the non-cooperative IC and
of the ideal non-causal CIC.

With respect to the results presented in this chapter, interesting future
research directions may include: (i) characterization of the capacity to within
a constant gap for the general Gaussian CCIC in the left open regimes
and (ii) derivation of tighter outer bounds and design of novel transmission
strategies in order to reduce the gap.

Appendix

4.A Proof of the Markov chains in (4.8a) and (4.8b)

We prove the two Markov chains in (4.8a)-(4.8b) by using the FDG [102].
Figure 4.9 proves the Markov chain in (4.8a), while Figure 4.10 the one in
(4.8b). The two proofs, without loss of generality, consider the time instant
i = 3. According to [102], we proceed through the following steps.
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Figure 4.9: Proof of the Markov chain in (4.8a) using the FDG.
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Figure 4.10: Proof of the Markov chain in (4.8b) using the FDG.
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1. Draw the directed graph G1, which takes into consideration the de-
pendence between the different random variables involved in the ISD
CCIC considered. In particular, we define

Z?
fi =


Zf i

Zci

]

to consider the fact that the noises at the CTx and at the CRx can be
arbitrally correlated and we have

Xpi = f(Wp), Ypi = f(Xpi, Tci), Tci = f(Xci, Zpi), Tf i = f(Xpi, Z
?
fi),

Xci = f(Wc, Tf
i−1), Yci = f(Xci, Tpi), Tpi = f(Xpi, Z

?
fi),

where with f we indicate that the left-hand side of the equality is a
function of the random variables into the bracket.

2. In G1, highlight all the different nodes / random variables involved in
the two Markov chains in (4.8a)-(4.8b) we aim to prove. In particular,
the random variables circled in magenta, given those circled in green,
should be proved to be independent of those circled in grey.

3. From the graph G1, consider the subgraph G2 which contains those
edges and vertices encountered when moving backwards one or more
edges starting from the colored (magenta, green and grey) random
variables. The edges of the subgraph G2 are depicted with dashed
black lines in Figure 4.9 and Figure 4.10 and the vertices in G2 are all
those touched by a dashed black line.

4. From the graph G2, remove all the edges coming out from the random
variables in green (those which are supposed to d-separate the random
variables colored in magenta and grey). In Figure 4.9 and Figure 4.10,
this step is highlighted with red crosses on the edges which are re-
moved. We let G3 be the subgraph obtained from G2 by removing all
the edges with red crosses.

5. From G3, remove all the arrows on the edges, and obtain the undirected
subgraph G4. In G4 it is easy to see that, by starting from any grey
node, it is not possible to reach any magenta node. This concludes the
proof of the two Markov chains in (4.8a)-(4.8b).
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4.B Proof of the sum-rate outer bound in (4.9f)

By using the two Markov chains in (4.8a)-(4.8b) we can now derive the sum-
rate outer bound in (4.9f). This bound was originally derived in [47] for the
case of independent noises; here we extend it to the case when only the noises
at the different source-destination pairs are independent, i.e., PYFc,Yc|Xp,Xc

in (4.2) is not a product distribution. By using Fano’s inequality and by
providing the same genie side information as in [47], we have

N(Rp +Rc − 2✏N )

I
(
Wp;Yp

N
)
+ I

(
Wc;Yc

N
)

I
(
Wp;Yp

N , Tp
N , Tf

N
)
+ I

(
Wc;Yc

N , Tc
N , Tf

N
)

=H
(
Yp

N , Tp
N , Tf

N
)
−H

(
Yc

N , Tc
N , Tf

N |Wc

)

+H
(
Yc

N , Tc
N , Tf

N
)
−H

(
Yp

N , Tp
N , Tf

N |Wp

)
.

We now analyze and bound the two pairs of terms. First pair:

H
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N
)
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N |Wc
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+
X
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H
(
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)
−H

(
Tci|Tp

i, Tf
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)

(d)
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X
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H
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Ypi|Tpi, Tf i

)
−H

(
Ypi|Tpi, Tf i, Xpi, Xci

)
,

where: the equality in (a) follows by applying the chain rule of the entropy
and since, for the ISD CCIC, the encoding function Xci(Wc, Y

i−1
Fc ) is equiv-

alent to Xci(Wc, Tf
i−1); the equality in (b) is due to the fact that Yc is a

deterministic function of (Xc, Tp), which is invertible given Xc; the inequal-
ity in (c) is due to the conditioning reduces entropy principle; the equality in
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(d) follows because of the ISD property of the channel and since the channel
is memoryless. Second pair:
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+
X
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H (Tf i|Tci)−H
(
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i, Tf
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+
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(h)
=

X
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H (Tf i|Tci)−H
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+
X
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(
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)
,

where: the equality in (e) follows by applying the chain rule of the entropy
and since, given Wp, Xp is uniquely determined; the equality in (f) is due
to the fact that Yp is a deterministic function of (Xp, Tc), which is invertible
given Xp; the inequality in (g) is due to the conditioning reduces entropy
principle; the equality in (h) follows because of the ISD property of the
channel and since the channel is memoryless.

By combining all the terms together, by introducing the time sharing
random variable uniformly distributed over [1 : N ] and independent of ev-
erything else, by dividing both sides by N and taking the limit for N ! 1
we get the bound in (4.9f). We finally notice that by dropping the time
sharing we do not decrease the bound.
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4.C Proof of the outer bound in (4.7)

By Fano’s inequality, by considering that the messages Wp and Wc are in-
dependent and by giving side information similarly to [47], we have
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I
(
Wp;Yp

N
)
+ 2I

(
Wc;Yc

N
)

I
(
Wp;Yp

N , Tp
N , Tf

N
)
+ I

(
Wc;Yc

N
)
+ I

(
Wc;Yc

N , Tc
N , Tf

N |Wp

)

H
(
Yc

N
)
−H

(
Yc

N , Tc
N , Tf

N |Wp,Wc

)

+H
(
Yc

N , Tc
N , Tf

N |Wp

)
−H

(
Yp

N , Tp
N , Tf

N |Wp

)

+H
(
Yp

N , Tp
N , Tf

N
)
−H

(
Yc

N |Wc

)
.

We now analyze each pair of terms. In particular, we proceed similarly
as we did to prove the outer bound 2Rp +Rc in (4.6).
First pair:
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)
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
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Third pair: since
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where the last equality follows because of (4.8b), then
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By combining everything together, by introducing the time sharing ran-
dom variable uniformly distributed over [1 : N ] and independent of every-
thing else, by dividing both sides by N and taking the limit for N ! 1 we
get the bound in (4.7). We finally notice that by dropping the time sharing
we do not decrease the bound.
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4.D Evaluation of the outer bounds in (4.9), (4.6)
and (4.7) for the Gaussian CCIC

By defining E [XpXc
⇤] := ⇢ : |⇢| 2 [0, 1] we obtain: from the cut-set bounds

in (4.9a)-(4.9c)
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From the bounds in (4.9d)-(4.9e) we get
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where the inequality in (a) follows by evaluating the first logarithm in |⇢| = 0
and the second logarithm in ⇢ = e−j✓p and the inequality in (b) follows by
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evaluating the first logarithm in |⇢| = 0 and the second logarithm in ⇢ = ej✓c .
Finally, from the bound in (4.9f) we obtain
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where the inequality in (c) follows by: (i) evaluating the first term of the
first logarithm in ⇢ = ej✓c and the second term of the first logarithm in
|⇢| = 0; (ii) evaluating the first term of the second logarithm in ⇢ =
e−j✓p and the second term of the second logarithm in |⇢| = 0; (iii) since
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We now evaluate the new outer bounds in Theorem 8 and we get
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where the inequality in (d) follows by (i) evaluating the first logarithm in
⇢ = ej✓c , (ii) evaluating the second logarithm in |⇢| = 0, (iii) evaluating
the first term of the third logarithm in ⇢ = e−j✓p and the second term of
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where the inequality in (e) follows by: (i) evaluating the first logarithm in
⇢ = e−j✓p , (ii) evaluating the second logarithm in |⇢| = 0 and (iii) evaluat-
ing the first term of the third logarithm in ⇢ = ej✓c and the second term of the

third logarithm in |⇢| = 0 and again (iv) since log
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|a|2 +
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+ log(2).

4.E Achievable Scheme Based on Superposition
Coding and Binning

Q(W1cc,t−1) Z1(W1cc,t−1,W1cc,t,W1pc,t−1,W1pc,t)

U2(W1cc,t−1,W2cn,t, b1c) T2(W1cc,t−1,W2cn,t, b2c,W2pn,t, b2p)

S1(W1cc,t−1,W1pc,t−1)

V1(W1cc,t−1,W1cc,t) U1(W1cc,t−1,W1cc,t,W1cn,t) T1(W1cc,t−1,W1cc,t,W1cn,t,W1pn,t)

Figure 4.11: Achievable scheme based on binning and superposition coding.

We specialize the ‘binning+superposition’ achievable scheme in [51, Sec-
tion V]. In [51, Thereom V.1] the network consists of four nodes numbered
from 1 to 4; nodes 1 and 2 are sources and nodes 3 and 4 destinations;
source node j 2 [1 : 2], with input to the channel Xj and output from the
channel Yj , has a message Wj for node j + 2; destination node j 2 [3 : 4]
has channel output Yj from which it decodes message Wj−2. Both users
use rate splitting, where the messages of user 1 / primary are both non-
cooperative and cooperative, while the messages of user 2 / cognitive are
non-cooperative. In [51, Section V], we set Y1 = S2 = V2 = Z2 = ;, i.e.,
then R1 = R11c+R10c+R10n+R11n, R2 = R22n+R20n, to obtain a scheme
that comprises: a cooperative common message (carried by the pair (Q, V1)
at rate R10c) for user 1, a cooperative private message (carried by the pair
(S1, Z1) at rate R11c) for user 1, a non-cooperative common message (carried
by U1 at rate R10n) for user 1, a non-cooperative private message (carried
by T1 at rate R11n) for user 1, a non-cooperative common message (carried
by U2 at rate R20n) for user 2 and a non-cooperative private message (car-
ried by T2 at rate R22n) for user 2. Here the pair (Q,S1) carries the ‘past
cooperative messages’, and the pair (V1, Z1) the ‘new cooperative messages’
in a block Markov encoding scheme. The channel inputs are functions of the
auxiliary random variables, where X1 is a function of (Q,S1, Z1, V1, U1, T1)
and X2 is a function of (Q,S1, U2, T2).



4.E Achievable Scheme Based on Superposition Coding and Binning181

Input distributions: The set of possible input distributions is

PQ,S1,V1,Z1,U1,T1,X1,U2,T2,X2

=PQPV1|QPU1,T1|Q,V1
PS1|QPZ1|Q,S1,V1

PU2,T2|S1,Q

PX1|Q,S1,Z1,V1,U1,T1
PX2|Q,S1,U2,T2

. (4.48)

A schematic representation of the achievable scheme is given in Figure 4.11,
where a black arrow indicates superposition coding and a red arrow indicates
binning.

Encoding: The codebooks are generated as follows: first the codebook Q
is generated; then the codebook V1 is superposed to Q, after the codebook
U1 is superposed to (Q, V1) and finally the codebook T1 is superposed to
(Q, V1, U1); independently of (V1, U1, T1), the codebook S1 is superposed to
Q and then the codebook Z1 is superposed to (Q,S1, V1); independently
of (S1, Z1, V1, U1, T1), the codebook U2 is superposed to Q and then the
codebook T2 is superposed to (Q,U2). With this random coding codebook
generation, the pair (U2, T2) is independent of S1 conditioned on Q. [51,
Theorem V.1] involves several binning steps to allow for a large set of input
distributions. Here the only binning steps are for (U2, T2) against S1.

We use a block Markov coding scheme to convey the message of user 1
to user 2. In particular, at the end of any given time slot in a block Markov
coding scheme, encoder 2 knows (Q,S1, U2, T2) and decodes (V1, Z1) from
its channel output; the decoded pair (V1, Z1) becomes the pair (Q,S1) of
the next time slot; then, at the beginning of each time slot, encoder 2, by
binning, finds the new pair (U2, T2) that is jointly typical with (Q,S1); for
this to be possible, we must generate several (U2, T2) sequences for each
message of user 2 so as to be able to find one pair to send with the correct
joint distribution with (Q,S1); this entails the rate penalties in [51, eq(20)]
for user 1 and then again [51, eq(20)] for user 2 by swapping the role of the
subscripts 1 and 2, with S2 = Z2 = V2 = ;, i.e.,

R
0

20n +R
0

22n ≥ I(U2, T2;S1|Q), (4.49a)

R
0

20n ≥ I(U2;S1|Q). (4.49b)

Decoding: The cooperative source uses the PDF strategy and the desti-
nations backward decoding. There are three decoding nodes in the network
and therefore three groups of rate constraints. These are:
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• Node2 / CTx jointly decodes (V1, Z1) from its channel output with
knowledge of the indices in (Q,S1, U2, T2, X2). Successful decoding is
possible if (use [51, eq(21)] by swapping the role of the subscripts 1
and 2, with S2 = Z2 = V2 = ; and with V1 independent of S1)

R10c +R11c  I(Y2;Z1, V1|U2, T2, X2, S1, Q), (4.49c)

R11c  I(Y2;Z1|U2, T2, X2, S1, Q, V1). (4.49d)

• Node3 / PRx jointly decodes (Q,S1, U2, U1, T1) from its channel out-
put, with knowledge of some message indices in (V1, Z1), by treating
T2 as noise. Successful decoding is possible if (see [51, eq(22)] with
S2 = Z2 = V2 = ;)

R10c +R10n +R11n +R20n +R11cI(Y3;Q, V1, U1, T1, S1, Z1, U2)

− (R
0

20n − I(U2;S1|Q)), (4.49e)

R10n +R11n +R20n +R11c  I(Y3;U1, T1, S1, Z1, U2|Q, V1)

− (R
0

20n − I(U2;S1|Q)), (4.49f)

R10n +R11n +R11c  I(Y3;U1, T1, S1, Z1|Q, V1, U2), (4.49g)

R11n +R20n +R11c  I(Y3;T1, S1, Z1, U2|Q, V1, U1)

− (R
0

20n − I(U2;S1|Q)), (4.49h)

R10n +R11n +R20n  I(Y3;U1, T1, U2|Q,S1, Z1, V1)

− (R
0

20n − I(U2;S1|Q)), (4.49i)

R11n +R11c  I(Y3;T1, S1, Z1|Q, V1, U1, U2), (4.49j)

R20n +R11c  I(Y3;S1, Z1, U2|Q, V1, U1, T1)

− (R
0

20n − I(U2;S1|Q)), (4.49k)

R10n +R11n  I(Y3;U1, T1|Q,S1, Z1, V1, U2), (4.49l)

R11n +R20n  I(Y3;T1, U2|Q,S1, Z1, V1, U1)

− (R
0

20n − I(U2;S1|Q)), (4.49m)

R11c  I(Y3;S1, Z1|Q, V1, U1, T1, U2), (4.49n)

R11n  I(Y3;T1|Q,S1, Z1, V1, U1, U2). (4.49o)

• Node4 / CRx jointly decodes (Q,U1, U2, T2) from its channel output,
with knowledge of some message index in V1, by treating Z1 and T1 as
noise (recall that the pair (U2, T2) has been precoded/binned against
S1). Successful decoding is possible if (see [51, eq(22)], with the role
of the users swapped, where only the bounds in [51, eq(22a)], [51,
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eq(22h)], [51, eq(22i)], [51, eq(22j)], and [51, eq(22k)] remain after
removing the redundant constraints)

R10c +R20n +R22n +R10n  I(Y4;Q,U2, T2, V1, U1)

− (R
0

20n +R
0

22n), (4.49p)

R20n+R22n+R10n  I(Y4;U2, T2, U1|Q, V1)−(R
0

20n+R
0

22n), (4.49q)

R20n +R22n  I(Y4;U2, T2|Q, V1, U1)− (R
0

20n +R
0

22n), (4.49r)

R22n +R10n  I(Y4;T2, U1|Q,U2, V1)−R
0

22n, (4.49s)

R22n  I(Y4;T2|Q,U2, V1, U1)−R
0

22n. (4.49t)

Compact region: Instead of applying the FME directly on the general
achievable rate region, in the following we apply the FME on two particular
cases, namely the case when S1 = Z1 = ; and the case U1 = ;. For both
cases we take the constraints in (4.49a) and (4.49b) to hold with equality.

4.E.1 FME on the achievable rate region when S1 = Z1 = ;
We set S1 = Z1 = ; in the achievable rate region in (4.49). After FME of
the achievable region in (4.49) with S1 = Z1 = ; (see also [51, eq(8)]), we
get

R1  eq(4.49e), (4.50a)

R1  eq(4.49c) + eq(4.49g), (4.50b)

R2  eq(4.49r), (4.50c)

R1 +R2  eq(4.49e) + eq(4.49t), (4.50d)

R1 +R2  eq(4.49j) + eq(4.49p), (4.50e)

R1 +R2  eq(4.49c) + eq(4.49i) + eq(4.49t), (4.50f)

R1 +R2  eq(4.49c) + eq(4.49j) + eq(4.49q), (4.50g)

R1 +R2  eq(4.49c) + eq(4.49m) + eq(4.49s), (4.50h)

2R1 +R2  eq(4.49c) + eq(4.49j) + eq(4.49e) + eq(4.49s), (4.50i)

2R1 +R2  2 · eq(4.49c) + eq(4.49j) + eq(4.49i) + eq(4.49s), (4.50j)

R1 + 2R2  eq(4.49m) + eq(4.49s) + eq(4.49p), (4.50k)

R1 + 2R2  eq(4.49c) + eq(4.49m) + eq(4.49t) + eq(4.49q), (4.50l)

for all distributions that factor as (4.48) and by setting S1 = Z1 = ; in all
the mutual information terms.
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We identify Node1 with the PTx (i.e., Xp = X1), Node2 with the CTx
(i.e., Xc = X2, Tf = Y2), Node3 with the PRx (i.e., Yp = Y3) and Node4
with the CRx (i.e., Yc = Y4). For the Gaussian noise channel, in the region
in (4.50), we choose Q = ;, we let V1, U1, T1, U2, T2 be i.i.d. N (0, 1), and

Xp = a1U1 + b1V1 + c1T1 : |a1|2 + |b1|2 + |c1|2 = 1,

Xc = a2U2 + b2T2 : |a2|2 + |b2|2 = 1.

With these choices, the channel outputs are

Tf =
p
C (a1U1 + b1V1 + c1T1) + Zf ,

Yp =
p

Sp (a1U1 + b1V1 + c1T1) +
p
Ice

j✓c (a2U2 + b2T2) + Zp,

Yc =
p
Ipe

j✓p (a1U1 + b1V1 + c1T1) +
p

Sc (a2U2 + b2T2) + Zc,

and the achievable region in (4.50) becomes

Rp  log

✓
1 + Sp + Ic

1 + Ic|b2|2
◆
, (4.51a)

Rp  log

✓
1 + C

1 + C (|a1|2 + |c1|2)

◆
+ log

 
1 +

Sp
(
|a1|2 + |c1|2

)

1 + Ic|b2|2

!
, (4.51b)

Rc  log

✓
1 +

Sc

1 + Ip|c1|2
◆
, (4.51c)

Rp +Rc  log

✓
1 + Sp + Ic

1 + Ic|b2|2
◆
+ log

✓
1 +

Sc|b2|2
1 + Ip|c1|2

◆
, (4.51d)

Rp +Rc  log

✓
1 +

Sp|c1|2
1 + Ic|b2|2

◆
+ log

✓
1 + Sc + Ip

1 + Ip|c1|2
◆
, (4.51e)

Rp +Rc  log

✓
1 + C

1 + C (|a1|2 + |c1|2)

◆

+ log

 
1 + Sp

(
|a1|2 + |c1|2

)
+ Ic

1 + Ic|b2|2

!
+ log

✓
1 +

Sc|b2|2
1 + Ip|c1|2

◆
, (4.51f)

Rp +Rc  log

✓
1 + C

1 + C (|a1|2 + |c1|2)

◆
+ log

✓
1+

Sp|c1|2
1 + Ic|b2|2

◆

+ log

✓
1 +

Sc + Ip|a1|2
1 + Ip|c1|2

◆
, (4.51g)

Rp +Rc  log

✓
1 + C

1 + C (|a1|2 + |c1|2)

◆
+ log

✓
1 + Sp|c1|2 + Ic

1 + Ic|b2|2
◆

+ log

✓
1 +

Ip|a1|2 + Sc|b2|2
1 + Ip|c1|2

◆
, (4.51h)
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(4.51i)

2Rp +Rc  log

✓
1 + C

1 + C (|a1|2 + |c1|2)

◆
+ log

✓
1 +

Sp|c1|2
1 + Ic|b2|2

◆

+ log

✓
1 + Sp + Ic

1 + Ic|b2|2
◆
+ log

✓
1 +

Ip|a1|2 + Sc|b2|2
1 + Ip|c1|2

◆
, (4.51j)

2Rp +Rc  2 · log
✓

1 + C

1 + C (|a1|2 + |c1|2)

◆
+ log

✓
1 +

Sp|c1|2
1 + Ic|b2|2

◆

+log

 
1+Sp

(
|a1|2+|c1|2

)
+ Ic

1+Ic|b2|2

!
+log

✓
1+

Ip|a1|2+Sc|b2|2
1+Ip|c1|2

◆
, (4.51k)

Rp + 2Rc  log

✓
1 + Sp|c1|2 + Ic

1 + Ic|b2|2
◆
+log

✓
1 +

Ip|a1|2 + Sc|b2|2
1 + Ip|c1|2

◆

+ log

✓
1 + Sc + Ip

1 + Ip|c1|2
◆
, (4.51l)

Rp + 2Rc  log

✓
1 + C

1 + C (|a1|2 + |c1|2)

◆
+ log

✓
1 + Sp|c1|2 + Ic

1 + Ic|b2|2
◆

+ log

✓
1 +

Sc|b2|2
1 + Ip|c1|2

◆
+ log

✓
1 +

Sc + Ip|a1|2
1 + Ip|c1|2

◆
. (4.51m)

4.E.2 FME on the achievable rate region when U1 = ;
After FME of the achievable region in (4.49) with U1 = ;, we get

R1  eq(4.49c) + eq(4.49o), (4.52a)

R1  eq(4.49e), (4.52b)

R2  eq(4.49r), (4.52c)

R1 +R2  eq(4.49c) + eq(4.49i) + eq(4.49t), (4.52d)

R1 +R2  eq(4.49e) + eq(4.49t), (4.52e)

R1 +R2  eq(4.49d) + eq(4.49o) + eq(4.49p), (4.52f)

R1 +R2  eq(4.49g) + eq(4.49p), (4.52g)

R1 + 2R2  eq(4.49f) + eq(4.49p) + eq(4.49t), (4.52h)

R1 + 2R2  eq(4.49d) + eq(4.49i) + eq(4.49p) + eq(4.49t), (4.52i)

R1 + 3R2  eq(4.49k) + eq(4.49i) + eq(4.49p) + 2 · eq(4.49t), (4.52j)

for all distributions that factor as (4.48) and by setting U1 = ; in all the
mutual information terms.
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We identify Node1 with the PTx (i.e., Xp = X1), Node2 with the CTx
(i.e., Xc = X2, Tf = Y2), Node3 with the PRx (i.e., Yp = Y3) and Node4
with the CRx (i.e., Yc = Y4). For the Gaussian noise channel, in the achiev-
able region in (4.52), we choose Q = ;, we let S1, V1, T1, Z1, U

0
2, T

0
2 be i.i.d.

N (0, 1), and

Xp = |a1|ej✓cS1 + b1V1 + c1Z1 + d1T1 : |a1|2 + |b1|2 + |c1|2 + |d1|2 = 1,

Xc = |a2|S1 + b2U
0
2 + c2T

0
2 : |a2|2 + |b2|2 + |c2|2 = 1,

U2 = U 0
2 + λUS1,

T2 = T 0
2 + λTS1,

where

λU =
Sc|b2|2

Sc|b2|2 + Sc|c2|2 + 1 + Ip(|c1|2 + |d1|2)

p
Ipe

j✓pej✓c |a1|+
p
Sc|a2|p

Scb2
,

λT =
Sc|c2|2

Sc|c2|2 + 1 + Ip(|c1|2 + |d1|2)

p
Ipe

j✓pej✓c |a1|+
p
Sc|a2| −

p
Scb2λUp

Scc2
,

i.e., the choice of λU is so as to “pre-cancel” S1 from Yc in decoding U2,
i.e., so as to have I(Yc;U2|V1, Q)− I(S1;U2|Q) = I(Yc;U2|V1, Q, S1) and the
choice of λT is so as to “pre-cancel” S1 from Yc in decoding T2, i.e., so as
to have I(Yc;T2|V1, Q, U2) − I(S1;T2|Q,U2) = I(Yc;T2|V1, Q, U2, S1). With
these choices, the channel outputs are

Tf =
p
C
⇣
|a1|ej✓cS1 + b1V1 + c1Z1 + d1T1

⌘
+ Zf ,

Yp = (
p

Sp|a1|+
p

Ic|a2|)ej✓cS1 +
p

Sp (b1V1 + c1Z1 + d1T1)

+
p
Ice

j✓c
(
b2U

0
2 + c2T

0
2

)
+ Zp,

Yc = (
p

Ipe
j✓pej✓c |a1|+

p
Sc|a2|)S1 +

p
Ipe

j✓p (b1V1 + c1Z1 + d1T1)

+
p
Sc
(
b2U

0
2 + c2T

0
2

)
+ Zc,

and the achievable region in (4.52) becomes

Rp  log

✓
1 +

C(|b1|2 + |c1|2)
1 + C|d1|2

◆
+ log

✓
1 +

Sp|d1|2
1 + Ic|c2|2

◆
, (4.53a)

Rp  log

 
1 + Sp + Ic + 2

p
SpIc|a1|2|a2|2

1 + Ic|c2|2

!
, (4.53b)

Rc  log

✓
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

◆
, (4.53c)
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Rp +Rc  log

✓
1 +

C(|b1|2 + |c1|2)
1 + C|d1|2

◆
+ log

✓
1 +

Sp|d1|2 + Ic|b2|2
1 + Ic|c2|2

◆

+ log

✓
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

◆
, (4.53d)

Rp +Rc  log

 
1 + Sp + Ic + 2

p
SpIc|a1|2|a2|2

1 + Ic|c2|2

!

+ log

✓
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

◆
, (4.53e)

Rp +Rc  log

✓
1 +

C|c1|2
1 + C|d1|2

◆
+ log

✓
1 +

Sp|d1|2
1 + Ic|c2|2

◆

+ log

✓
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

◆
+ k1, (4.53f)

Rp +Rc  log

✓
1 +

Sp(|c1|2 + |d1|2)
1 + Ic|c2|2

◆
+ log

✓
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

◆

+ k1 + k2, (4.53g)

Rp + 2Rc  log

 
1 +

Sp(|c1|2 + |d1|2) +
(p

Sp|a1|+
p
Ic|a2|

)2
+ Ic|b2|2

1 + Ic|c2|2

!

+log

✓
1+

Sc(|b2|2+|c2|2)
1+Ip(|c1|2+|d1|2)

◆
+log

✓
1+

Sc|c2|2
1+Ip(|c1|2+|d1|2)

◆
+k1,

(4.53h)

Rp + 2Rc  log

✓
1 +

C|c1|2
1 + C|d1|2

◆
+ log

✓
1 +

Sp|d1|2 + Ic|b2|2
1 + Ic|c2|2

◆

+ log

✓
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

◆
+log

✓
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

◆
+k1,

(4.53i)

Rp + 3Rc  log

 
1 +

Sp|c1|2 +
(p

Sp|a1|+
p
Ic|a2|

)2
+ Ic|b2|2

1 + Ic|c2|2

!

+ log

✓
1 +

Sp|d1|2 + Ic|b2|2
1 + Ic|c2|2

◆
+ log

✓
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

◆

+ 2 log

✓
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

◆
+ k1, (4.53j)

where we defined k1 := I (Yc;V1) and k2 := I (Yp;S1|V1, U2) without evalu-
ating them for the Gaussian noise case.



Chapter 5

Case II: Half-Duplex CTx

In this chapter, we analyze the CCIC when the CTx operates in HD. Our
main contributions can be summarized as follows: (i) we characterize the
sum-capacity to within a constant gap for the Gaussian Z-, S- and symmetric
fully-connected channels; this is accomplished by adapting the sum-capacity
outer bounds of Chapter 4 to the HD case and by designing transmission
strategies inspired by the LDA of the Gaussian noise channel at high SNR;
(ii) we derive in closed form the (approximately) optimal schedule, i.e., the
fraction of time the cognitive source listens to the channel; (iii) we high-
light the regimes where the gDoF equals: (a) the one of the Gaussian non-
cooperative IC, (b) the one of the ideal Gaussian non-causal CIC and (c)
the one attained with a FD cognitive source.

5.1 System Model

5.1.1 General memoryless channel

The general memoryless CCIC with the CTx operating in HD mode is de-
fined as in Section 4.1.1 (see Figure 4.1), with the difference that now the
channel input at the CTx is the pair (Xc,Mc), where Mc 2 [0 : 1] is the
state random variable that indicates whether the CTx is in receive-mode
(Mc = 0) or in transmit-mode (Mc = 1). As we already pointed out in
Section 2.1.1 for the HD relay network, by following this approach, first pro-
posed in [18], there is no need to develop a separate theory for memoryless

188
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networks with HD nodes as the HD constraints can be incorporated inside
the FD framework.

5.1.2 Gaussian noise channel

The single-antenna Gaussian CCIC with the CTx operating in HD mode is
defined similarly to the FD counterpart in Section 4.1.3 (see Figure 4.3). In
particular, the input / output relationship is given by
2
4
Tf

Yp
Yc

3
5 =

2
4
1−Mc 0 0

0 1 0
0 0 1

3
5
2
4

p
C ?p
Sp

p
Ice

j✓cp
Ipe

j✓p
p
Sc

3
5

1 0
0 Mc

] 
Xp

Xc

]
+

2
4
Zf

Zp

Zc

3
5 . (5.1)

The channel inputs are subject, without loss of generality, to the average
power constraint E

⇥
|Xi|2

⇤
 1, i 2 {p, c} (i.e., non-unitary power con-

straints can be incorporated into the channel gains) and Mc is the bi-
nary random variable that indicates the state of the CTx. A ? in the
channel transfer matrix indicates the channel gain that does not affect the
capacity region because of the HD constraint. The channel parameters
(C, Sp, Sc, Ip, Ic, ✓p, ✓c) 2 R

7
+ are fixed and so known to all nodes. Some

of the channel gains can be taken to be real-valued and non-negative since a
node can compensate for the phase of one of its channel gains. In the follow-

ing we assume that the channel sub-matrix

 p
Sp

p
Ice

j✓cp
Ipe

j✓p
p
Sc

]
is full-rank

(otherwise one channel output is a degraded version of the other and hence
one receiver can, without loss of generality, decode all messages). The noises
are independent proper-complex Gaussian random variables with, without
loss of generality, zero mean and unit variance.

5.1.3 Deterministic / noiseless channel

As already introduced for the HD relay channel in Section 2.1.3, the LDA
model approximates the Gaussian noise channel in (5.1) at high-SNR [19].
The LDA model is a deterministic channel which has input / output rela-
tionship

Tf = (1−Mc) Sn−nfXp, (5.2a)

Yp = Sn−ndpXp +Mc Sn−nicXc, (5.2b)

Yc = Sn−nipXp +Mc Sn−ndcXc, (5.2c)

where: (nf , ndk, nik) are non-negative integers with n := max {nf , ndk, nik}
and k 2 {p, c}; Mc is the binary random variable that indicates the state
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of the CTx, all input and output vectors have length n and take value in
GF(2), the sum is understood bit-wise on GF(2), and S is the down-shift
matrix of dimension n. The model has the following interpretation. The
PTx sends a length-n vector Xp, whose top ndp bits are received at the PRx
through the direct link, the top nip bits are received at the CRx through the
interference link, and the top nf bits are received at the CTx through the
cooperation / feedback link; similarly for Xc. The fact that only a certain
number of bits are observed at a given node is a consequence of the ‘down
shift’ operation through the matrix S. The bits not observed at a node are
said to be ‘below the noise floor’.

5.2 Overview of the main results

The exact capacity of the Gaussian HD-CCIC described in (5.1) is unknown.
In this chapter, we characterize the sum-capacity to within a constant gap,
which is defined as

Definition 8. The sum-capacity of the Gaussian HD-CCIC in (5.1) is said
to be known to within GAP bits per user if one can show an inner bound
(Rp +Rc)

IB and an outer bound (Rp +Rc)
OB such that

(Rp +Rc)
OB − (Rp +Rc)

IB

2
 GAP,

where GAP is a constant with respect to the channel parameters.

As already noticed for the FD case, the knowledge of the sum-capacity
to within a constant gap implies the exact knowledge of the gDoF, i.e.,
the sum-capacity pre-log factor at high SNR [12]. The gDoF is defined in
Definition 7, where we use the parameterization in (4.4).

Before stating our main results of this chapter, it is worth noting that
the parameters of the LDA model in (5.2) can be related to those of the
Gaussian HD-CCIC in (5.1) with the parameterization in (4.4) as

ndp = ndc = nd = blog (1 + Sp)c = blog (1 + Sc)c,
nip = blog (1 + Ip)c,
nic = blog (1 + Ic)c,
nf = blog (1 + C)c,

where we indicate ↵p :=
nip

nd
, ↵c := nic

nd
and β := nf

nd
as they play the same

role of the corresponding quantities in (4.4). The simplicity of the LDA



5.2 Overview of the main results 191

model allows for the exact sum-capacity characterization in many instances
where the capacity of the Gaussian counterpart is open. Moreover, the sum-
capacity of the LDA normalized by 2nd equals the Gaussian gDoF defined
in Definition 7.

The main contribution of this chapter is the sum-capacity characteriza-
tion to within a constant gap (see Definition 8) for the symmetric case (i.e.,
Ip = Ic and Sc = Sp in (5.1)), for the symmetric Z-channel (i.e., Sc = Sp
and Ip = 0 in (5.1)) and for the symmetric S-channel (i.e., Sc = Sp and
Ic = 0 in (5.1)) for the case of independent noises. This constant gap result
implies the closed-form characterization of the gDoF (see Definition 7) and
the derivation in closed-form of the (approximately) optimal schedule, i.e.,
the fraction of time the CTx listens to the channel.

In order to show the constant gap results an outer and an inner bounds
on the sum-capacity of the Gaussian HD-CCIC are needed. Concerning the
sum-rate outer bound, we make use of some outer bounds known in the
literature, namely those in [45, 47, 87]. These outer bounds were originally
derived for the case of FD cooperation; in this chapter, we specialize them to
the case of HD cooperation by following the approach of [18]. Concerning the
inner bound our ‘optimal to within a constant gap’ schemes for the Gaussian
HD-CCIC are inspired by the LDA model in (5.2). In particular, depending
on the operating regime, we design different transmission strategies that,
similarly to the FD case in Chapter 4, involve:

• Use of common (i.e., decoded also at the non-intended receiver) and
private (i.e., treated as noise at the non-intended receiver) messages
for both the PTx and the CTx.

• Use of cooperative (i.e., relayed to the PRx with the help of the CTx)
and non-cooperative (i.e., sent without the help of the CTx) messages
for the PTx and use of non-cooperative messages only for the CTx.

• Binning and superposition encoding, PDF relaying at the CTx and
successive decoding both at the CTx and at the receivers, which is
simpler than the joint decoding we used for the FD case.

By using these outer and inner bounds on the sum-capacity of the Gaus-
sian HD-CCIC, in this chapter we will prove the three following theorems.

Theorem 12. The sum-capacity of the symmetric Gaussian HD-CCIC (i.e.,
when Sp = Sc = S and Ip = Ic = I) is achievable to within 5 bits/user.
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Theorem 13. The sum-capacity of the symmetric Z-channel (i.e., Sp =
Sc = S and Ip = 0, the link PTx!CRx is non-existent) is characterized to
within 3 bits/user.

Theorem 14. The sum-capacity of the symmetric S-channel (i.e., Sp =
Sc = S and Ic = 0, the link CTx!PRx is non-existent) is achievable to
within 3 bits/user.

5.3 Outer bounds on the sum-capacity for the Gaus-
sian HD-CCIC

In this section we specialize the sum-capacity outer bounds for FD unilateral
cooperation in (4.9) to the case of HD unilateral cooperation by following
the approach of [18]. In particular (see Appendix 5.A for the details), we
have

Rp  γI (Xp;Yp, Tf |Xc,Mc=0)+(1− γ) I (Xp;Yp, Tf |Xc,Mc=1) , (5.3a)

Rp  H (Mc) + γI (Xp, Xc;Yp|Mc = 0)

+ (1− γ) I (Xp, Xc;Yp|Mc = 1) , (5.3b)

Rc  H (Mc) + γI (Xc;Yc|Xp,Mc = 0)

+ (1− γ) I (Xc;Yc|Xp,Mc = 1) , (5.3c)

Rp +Rc  H (Mc)+γ [I (Xp;Yp, Tf |Yc, Xc,Mc=0)+I (Xp, Xc;Yc|Mc=0)]

+ (1− γ) [I (Xp;Yp, Tf |Yc, Xc,Mc = 1) + I (Xp, Xc;Yc|Mc = 1)] , (5.3d)

Rp +Rc  2H (Mc)+γ [I (Xc;Yc|Yp, Xp,Mc=0)+I (Xp, Xc;Yp|Mc=0)]

+ (1− γ) [I (Xc;Yc|Yp, Xp,Mc = 1) + I (Xp, Xc;Yp|Mc = 1)] , (5.3e)

Rp +Rc  2H (Mc)

+ γ [I (Yp;Xp, Xc|Tp, Tf ,Mc = 0) + I (Yc, Tf ;Xp, Xc|Tc,Mc = 0)]

+ (1− γ) [I (Yp;Xp, Xc|Tp, Tf ,Mc = 1) + I (Yc, Tf ;Xp, Xc|Tc,Mc = 1)] ,
(5.3f)

where γ := P[Mc = 0] 2 [0, 1], i.e., γ indicates the fraction of time the CTx
listens to the channel.

We now evaluate the sum-capacity outer bounds in (5.3) for the prac-
tically relevant Gaussian noise channel in (5.1), under the assumption of

independent noises. We define


Pp,` ⇢`

p
Pp,`Pc,`

⇢⇤`
p

Pp,`Pc,` Pc,`

]
for |⇢`|  1,

` 2 [0 : 1] and (Pp,0, Pp,1, Pc,0, Pc,1) 2 R
4
+ satisfying the power constraint
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γPu,0 + (1− γ)Pu,1  1, u 2 {p, c}. In particular, since all the mutual in-
formation terms in (5.3) are conditioned onMc = `, the ‘Gaussian maximizes
entropy’ principle guarantees that in order to exhaust all possible input dis-
tributions it suffices to consider jointly Gaussian proper-complex inputs. By
further upper bounding each mutual information term over (⇢0, ⇢1) 2 [0, 1]2,
as well as over the phases of the channel gains and over the power allocation
across the two phases, see Appendix 5.A for the details, we obtain

Rp  γ log (1 + C+ Sp) + (1− γ) log (1 + Sp) + log(2), (5.4a)

Rp  γ log (1 + Sp) + (1− γ) log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆

+ 2 log(2), (5.4b)

Rc  (1− γ) log (1 + Sc) + 1.52 log(2), (5.4c)

Rp +Rc  γ log (1 + Sp + C+ Ip) + (1− γ) log

✓
1 +

Sp

Ip

◆

+ (1− γ) log

✓
1 +

⇣p
Sc +

p
Ip

⌘2◆
+ 2 log(2), (5.4d)

Rp +Rc  γ log (1 + Sp) + (1− γ) log

✓
1 +

Sc

Ic

◆

+ (1− γ) log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆
+ 3 log(2), (5.4e)

Rp +Rc  γ log (1 + Ip + C+ Sp)

+ (1− γ) log

✓
1 + Ic +

Sp

1 + Ip

◆

+ (1− γ) log

✓
1 + Ip +

Sc

1 + Ic

◆
+ 3.51 log(2). (5.4f)

In the rest of the chapter we will show that

(Rp +Rc)
OB = min {eq(5.4a) + eq(5.4c), eq(5.4b) + eq(5.4c),

eq(5.4d), eq(5.4e), eq(5.4f)} (5.5)

is achievable to within a constant gap for the Z-, the S- and the symmetric
Gaussian HD-CCIC. In all the three scenarios we will consider the case
Sp = Sc = S, i.e., the two direct links are of the same strength.
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5.4 Sum-capacity to within a constant gap for the
symmetric Gaussian HD-CCIC

In this section, we prove Theorem 12, i.e., we characterize the sum-capacity
to within a constant gap for the symmetric Gaussian HD-CCIC defined by
Sp = Sc = S and Ip = Ic = I = S↵. Figure 5.1 shows the gDoF d (↵,β)
(abbreviated with d) and the gap (per user) for the symmetric Gaussian
HD-CCIC for the different regions in the (↵,β) plane, where the whole set
of parameters has been partitioned into multiple sub-regions depending upon
different levels of cooperation (β) and interference (↵) strengths.

The proof of the constant gap result can be found in Appendix 5.B. This
(approximate) sum-capacity characterization implies that the gDoF can be
obtained from Definition 7 with (5.5) and equals

d (↵,β) = max
γ2[0,1]

1

2
min

n
γmax {1,β}+ 2 (1− γ) , (5.6a)

γ + (1− γ)
(
max {1,↵}+ [1− ↵]+

)
, (5.6b)

γmax {↵,β, 1}+ 2 (1− γ)max {↵, 1− ↵}
o

(5.6c)

=

8
>>>><
>>>>:

1− ↵+ 1
2
[β−2+2↵]+ ↵

β+↵−1 ↵ 2 [0, 1/2)

↵+ 1
2
[β−2↵]+ (2−3↵)

β−3↵+1 ↵ 2 [1/2, 2/3)

max
{
1− 1

2↵,
1
2↵
 

↵ 2 [2/3, 2)

1 + 1
2
[β−2]+ (↵−2)

β+↵−3 ↵ 2 [2,1)

. (5.6d)

The gDoF expression in (5.6d), to be compared with

d (↵, 0) = min{1,max{1− ↵,↵},max{1− ↵/2,↵/2}},

i.e., non-cooperative IC [12], and

d (↵,1) = max{1− ↵/2,↵/2},

i.e., ideal non-causal CIC [64], has an interesting interpretation, which we
shall discuss in details for the different interference regimes in the following.
In particular, we will use the LDA model described in (5.2) with ↵p = ↵c = ↵

to get insights into approximately optimal achievable schemes.

Very weak interference regime: ↵ 2 [0, 2/3). Without cooperation,
i.e., β = 0, the tightest upper bound in this regime is (5.6c) [12]. Recall
that no-cooperation in equivalent to γ = 0, i.e., the CTx never listens to



5.4 Sum-capacity to within a constant gap for the symmetric Gaussian HD-CCIC195

1

1

β

α

GAP  0.5 bits

d = 1

d = α
2

2

2

1

GAP  1 bit

GAP  3 bits

d = 1
2

αβ−2
β+α−3

GAP  1.26 bits

d = 1

1
2

2
3

2

3458

7

6

9

10

GAP  2 bits
d = 1− α

2

GAP  3 bits
d = αd = α

GAP  2.8 bits

GAP  5 bits

d = 1
2
2β−αβ−2α
β−3α+1

GAP  2.8 bits
d = 1− α

GAP  3.5 bits

d = 1
2
2β+2α−αβ−2

β+α−1

Figure 5.1: Different regimes depending on the values of ↵ and β.

the channel. For a β > 0, the bound in (5.6c) is optimized by γ = 0, that
is, by no-cooperation, whenever max{1,↵,β}  2max{1−↵,↵} = 2d (↵, 0),
which is equivalent to β  2d (↵, 0). Intuitions suggest that the cooperation
link gain should be “sufficiently strong” for HD unilateral cooperation to be
beneficial. We can precisely quantify the statement “sufficiently strong” as
follows: d (↵,β) > d (↵, 0) if β > 2d (↵, 0). Recall that a strict inequality in
the gDoF, or sum-capacity pre-log at high SNR, implies that the difference
between the sum-capacities with HD unilateral cooperation and without co-
operation becomes unbounded when SNR increases. In other words, when
the cooperation link can reliably convey a rate larger than the sum-capacity
of the non-cooperative IC (β > 2d (↵, 0)), HD unilateral cooperation pro-
vides an unbounded sum-rate gain compared to the non-cooperative IC.

The optimal γ is obtained by equating the bounds in (5.6c) and (5.6b)
and is given by

γ? =
min{2− 3↵,↵}

min{2− 3↵,↵}+ β − 1
. (5.7)

We now give an intuitive argument for the optimal γ in (5.7). For the
case 2 − 3↵  ↵, i.e., ↵ 2 [1/2, 2/3), an achievable scheme for the LDA
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Figure 5.2: Phase I (Mc = 0) common to the symmetric and asymmetric
channels.

is represented in Figure 5.2 and Figure 5.3 for the case β ≥ 1.1 The bit
vectors (b1, b2, b3) are from the PTx to the PRx, and the bit vector b4 from
the CTx to the CRx. Since the CTx can only either receive or transmit at
any point in time, we divide the transmission into two phases. Phase I: for
a fraction γ 2 [0, 1] of the time the CTx listens to the channel and the PTx
sends (b1, b2); b1 is decoded by the PRx and b2 is decoded only at the CTx.
Phase II: for the remaining fraction 1−γ of the time the CTx transmits; the
PTx sends (b2, b3) and the CTx sends (b2, b4) – notice that the PTx and the
CTx cooperate in sending b2, which hence is a cooperative message. The
vectors bi, i 2 {3, 4}, are split into a common message (bic) and a private
message (bip).

More specifically, in Phase I in Figure 5.2 the CTx listens to the chan-
nel and the PTx sends the vector [b1, b2], where b1 has normalized (by the
direct link gain nd) length 1 and b2 has normalized length β − 1 (for a total
normalized length of 1+(β−1) = β = max{1,↵,β}). Hence, over a fraction
γ of the transmission time, the CTx receives γ(β − 1) b2-bits that the PRx
has not received yet. In Phase II, the CTx assists the PTx to deliver these

1In each figure, on the LHS we represent the transmitted signals Xp and Xc, which are
vectors of normalized length n/nd = max{1, α, β}, and on the RHS the received signals
Yp and Yc, which are vectors of normalized length max{1, α} and are the sum of a certain
down shifted version of the transmitted vectors. After the down-shift operation, the top
part of a vector would be populated by zero; we do not represent these zeros and instead
leave an empty space in order not to clutter the figure. Note that the bits received at the
same level at a node must be summed modulo-two.
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Figure 5.3: Phase II (Mc = 1) for ↵ 2 [1/2, 2/3).

b2-bits to the PRx in either of the two following cooperation modes: (i) the
CTx relays the b2-bits to the PRx on behalf of the PTx by spending some
of its own resources, (ii) the CTx treats the b2-bits as a ‘state non-causally
known at the transmitter but unknown at the receiver’ and precodes its
transmitted signal against it.

Phase II in Figure 5.3: the CTx sends the vector [b4c, 0, b4p + b2], whose
components have normalized lengths 2↵− 1, 1− ↵ and 1− ↵, respectively.
In the LDA, the linear combination b4p+ b2 can be thought of as pre-coding
the signal b4p against the interference caused by b2. The PTx sends the
vector [b3c, b2, 0, b3p], whose components have normalized lengths 2↵ − 1,
2 − 3↵, 2↵ − 1 and 1 − ↵ (with an abuse of notation, here b2 indicates the
bits that have been received in Phase I at CTx), respectively. The CRx
successively decodes b4c, b3c, b4p in this order, while the PRx successively
decodes b3c, b2, b4c, b3p in this order. Notice that the CRx does not experience
interference from b2 when decoding b4p (recall that on GF(2) 1+1 = 0+0 =
0). The achievable rates are

Rp

nd

= γ · 1 + (1− γ) · (2− 2↵),

Rc

nd

= γ · 0 + (1− γ) · ↵,

thus giving the sum-rate

(Rp +Rc)
(IB)

nd

= γ · 1 + (1− γ) · (2− ↵).

This sum-rate is larger than that without cooperation, given by 2d (↵, 0) =
2↵ [12], if γ  2−3↵

1−↵ . Next, γ? in (5.7) is smaller than 2−3↵
1−↵ only if β > 2↵.
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Figure 5.4: Phase II (Mc = 1) for ↵ 2 [0, 1/2).

Thus, when β  2↵, it would take too much time for the CTx to learn the
message of the PTx and it is therefore better to not cooperate at all. The
last observation gives an intuitive interpretation of why the gDoF in (5.6d)
contains the term [β−2↵]+ for ↵ 2 [1/2, 2/3): the gDoF without cooperation
is improved by HD unilateral cooperation only when β > 2d (↵, 0) = 2↵.

A similar reasoning may be done for the case 2 − 3↵ > ↵, which cor-
responds to ↵ 2 [0, 1/2). For this regime an achievable scheme is given in
Figure. 5.2 and Figure 5.4, and the gDoF without cooperation is improved
by HD unilateral cooperation only when β > 2d (↵, 0) = 2−2↵. The scheme
for ↵ 2 [0, 1/2) is simpler than the one for ↵ 2 [1/2, 2/3) in that it only in-
volves private messages. In particular, the CTx sends the vector [b4p + b2]
(i.e., b4p is DPC-ed against b2), of normalized length 1; the PTx sends the
vector [b2, b3p, 0], whose components have normalized lengths ↵, 1− 2↵ and
↵, respectively; the CRx decodes b4p interference free because of DPC; the
PRx decodes b2 and b3p in this order; the optimal γ is such that the amount
of b2-bits received by the CTx in Phase I can be delivered to the PRx in
Phase II, that is, γ(β−1) = (1−γ)↵ thus giving the γ? in (5.7) for ↵ < 1/2;
the achievable sum-rate is

(Rp +Rc)
(IB)

nd

= γ · 1 + (1− γ) · (2− ↵).

Very strong interference regime: ↵ ≥ 2. Without cooperation, i.e.,
β = 0, the tightest upper bound in this regime is (5.6a) [12]. For a general
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β > 0, the bound in (5.6a) is optimized by γ = 0, which is equivalent to no-
cooperation, whenever max{1,β}  2 = 2d (↵, 0), which is equivalent to β 
2d (↵, 0). Again we see that HD unilateral cooperation is beneficial in terms
of gDoF only when β is larger than the sum-gDoF without cooperation.
Here the optimal γ is obtained by equating the bounds in (5.6a) and (5.6b)
and given by

γ? =
↵− 2

β + ↵− 3
. (5.8)

To see why the optimal γ is given by (5.8), we again first analyze the
LDA. Phase I is the same as in Figure 5.2. In Phase II / Figure 5.5, the CTx
sends [b4c, b2, 0], whose components have normalized lengths 1, ↵− 2, and 1
(here b2 indicates again, with an abuse of notation, the bits that have been
received in Phase I at the CTx), respectively. The PTx sends [b3c, 0], whose
components have normalized lengths 1 and ↵ − 1, respectively. The CRx
successively decodes b3c, b4c in this order. The PRx successively decodes
b4c, b2, b3c in this order. The achievable rates are

Rp

nd

= γ · 1 + (1− γ) · (↵− 1),

Rc

nd

= γ · 0 + (1− γ) · 1,

giving a sum-rate of

(Rp +Rc)
(IB)

nd

= γ · 1 + (1− γ) · ↵.
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This sum-rate is larger than that without cooperation, given by 2d (↵, 0) = 2
[12], if γ  ↵−2

↵−1 . Next, γ
? in (5.8) is smaller than ↵−2

↵−1 only if β > 2. Again,
the interpretation is that, if β  2, it takes too long to transfer bits from PTx
to CTx and hence it is preferable not to cooperate. This last observation
gives an intuitive interpretation of why the gDoF in (5.6d) contains the term
[β−2]+ for ↵ 2 [2,1): the gDoF without cooperation is improved only when
β > 2d (↵, 0) = 2.

Moderately weak and strong interference regimes: For ↵ 2 [2/3, 2)
and without cooperation β = 0 the upper bound in (5.6b) is the tightest [42].
The bound in (5.6b) is always optimized by γ = 0, which is equivalent to
the case of no-cooperation. Hence, in this regime it is always gDoF-optimal
to operate the channel as a non-cooperative IC [12] and HD unilateral coop-
eration does not help in managing interference. It is very surprising that in
this regime, no matter how strong the cooperation link is, unilateral causal
cooperation cannot beat the performance of the non-cooperative system. In
other words, d (↵, 0) = d (↵,β) = d (↵,1) for ↵ 2 [2/3, 2). For ↵ 2 [2/3, 1),
an optimal scheme for the LDA only uses b3c, b3p at PTx and b4c, b4p at
CTx [104]; for ↵ 2 [1, 2), b3c at the PTx and b4c at the CTx, both of nor-
malized length ↵/2, are optimal [104].

From the LDA to the Additive White Gaussian Noise (AWGN):
In Appendix 5.E, we show how the LDA schemes described above can be
‘translated’ into schemes for the Gaussian HD-CCIC that are to within a
constant gap from the upper bound in (5.5). The ‘translation’ is as follows:
(i) the different pieces of information conveyed through the b-vectors in the
LDA correspond to independent Gaussian codewords which are summed
together and sent through the Gaussian HD-CCIC; (ii) the position, from
top to bottom, of a b-vector within the transmit signal vector in the LDA
corresponds to the transmit power of the corresponding Gaussian codeword
in the Gaussian HD-CCIC; the higher the position of the b-vector, the larger
the power of the corresponding Gaussian codeword; (iii) the length of a b-
vector in the LDA corresponds to the rate of the corresponding Gaussian
codeword in the Gaussian HD-CCIC; the longer the b-vector, the higher the
rate of the corresponding Gaussian codeword; (iv) the transmission of the
sum of two b-vectors in the LDA corresponds to a Gaussian codeword being
DPC-precoded against known interference in the Gaussian HD-CCIC; (v)
at the receiver side, stripping decoding is used with the Gaussian codeword
corresponding to the top-most not-yet-decoded b-vector in the received LDA
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signal being decoded while treating the other signals as noise. Therefore,
the LDA schemes described above tell us exactly: (a) how many Gaussian
codewords must be superposed, with which power and at what rate, (b)
if DPC is needed and if so against which interfering codeword, and (c)
the decoding order at the receivers. With this, the achievable scheme is
completely specified and the achievable rate can be computed.

Comparisons: In Figure 5.1, the different operating regimes are num-
bered from 1 to 10, each discussed in Appendix 5.B. We conclude the analysis
of the symmetric Gaussian HD-CCIC with few comments:

• Everywhere, except in regions 3 (i.e., min {↵,β} ≥ 2), 8 and 10 (i.e.,
↵  2/3 and β ≥ max {2− 2↵, 2↵}) in Figure 5.1, HD unilateral
cooperation might not be worth implementing since the same gDoF is
achieved without cooperation [12].

• The symmetric Gaussian HD-CCIC attains the same gDoF of the non-
causal Gaussian CIC [64] in regions 4 and 5 (i.e., 2/3  ↵  2) in
Figure 5.1. Thus, in these two regions, the performance of the system,
in terms of gDoF, is not worsened by allowing causal learning at CTx.

• In regions 1, 4, 5 and 6 of Figure 5.1 the gDoF equals that of the
equivalent FD channel analyzed in Section 4.4 and is equal to the
non-cooperative case. Since the FD channel is an outer bound for the
HD channel and no-cooperative strategies are possible under the HD
constraint, we conclude that in these regimes the same gap results
found for the FD case in Section 4.4 hold in the case of HD source
cooperation. In this case, gDoF-wise, there is no loss in having a HD
CTx compared to a more powerful FD CTx.

• All the achievable schemes use successive decoding at the receivers,
which, in practice, is simpler than joint decoding. Thus our proposed
schemes, which are optimal to within a constant gap, may be used as
guidelines to deploy practical cognitive radio systems.

• The computed gap is quite large; possible ways to reduce the gap may
be: (i) apply joint decoding at the receivers; (ii) develop block Markov
coding schemes instead of taking inspiration by the LDA; (iii) design
achievable strategies that exploit the randomness into the switch to
convey further useful information; (iv) derive tighter upper bounds
than those used in this chapter.
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Figure 5.6: Numerical evaluation of the gap for the symmetric Gaussian
HD-CCIC with ↵ = 0.55 and β = 2 (Region 8 in Figure 5.1).

On numerical evaluation of the gap: The gap in Theorem 12 is pes-
simistic and it is due to the crude bounding of the upper and lower bounds,
which seems to be necessary to obtain expressions that can be easily handled
and compared analytically. In order to illustrate this point, in Figure 5.6 we
numerically evaluate the outer bound in (5.5) and the lower bound obtained
from the scheme in Appendix 5.E.3 when the channel parameters fall into
region 8 in Figure 5.1, where the gap is the largest. By numerically optimiz-
ing all the optimization variables, i.e., power splits, correlation coefficients,
fraction of time the CTx listens, we observe from Figure 5.6 that the gap is
of around 1.2 bits/user, i.e., more than 3 bits/user less than the analytical
one. Although we can claim this gap reduction only for the simulated set of
channel gains, we believe that this is a more general result.

5.5 Sum-capacity to within a constant gap for the
Gaussian HD symmetric Z-channel

In this section, we prove Theorem 13, i.e., we characterize the sum-capacity
to within a constant gap for the symmetric Gaussian Z-channel defined by
Sp = Sc = S and Ip = 0. Figure 5.7 shows the gDoF dZ (↵,β) (abbreviated
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with d) and the gap (per user) for the symmetric Gaussian Z-channel for the
different regions in the (↵,β) plane, where the whole set of parameters has
been partitioned into multiple sub-regions depending upon different levels
of cooperation (β) and interference (↵) strengths.

1

1

β

α

GAP  0.5 bits

d = 1

d = α
2

2

2

4

1

2

35

GAP  1 bit

d = 1− α
2

GAP  1 bit

GAP  3 bits

d = 1
2

αβ−2
β+α−3

GAP  1.26 bits

d = 1

Figure 5.7: Optimal gDoF and constant gap for the Z-channel in the different
regimes of (↵,β).

The proof of the constant gap result can be found in Appendix 5.C. This
(approximate) sum-capacity characterization implies that the gDoF can be
obtained from Definition 7 with (5.5) (evaluated for Ip = 0) and equals

dZ =
1

2
max
γ2[0,1]

min {γmax {1,β}+ (1− γ) 2,

γ + (1− γ)
(
max {1,↵}+ [1− ↵]+

) 

=

(
max

{
1− 1

2↵,
1
2↵
 

↵ 2 [0, 2)

1 + 1
2
[β−2]+ (↵−2)

β+↵−3 ↵ 2 [2,1)
. (5.9)

For future reference, for the non-cooperative Z-channel from [103] we
have

dZ (↵, 0) = min{max{1− ↵/2,↵/2}, 1},
and for the non-causal cognitive Z-channel from [64] we have

dZ (↵,1) = max{1− ↵/2,↵/2}.
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It hence follows that cooperation can improve the gDoF only in very strong
interference, i.e., ↵ > 2.

The interpretation of the gDoF in (5.9) is similar to that of the interference-
symmetric case in (5.6d). In particular, if the channel has weak or strong
interference, i.e., ↵  2, the gDoF is the same as the one of the non-
cooperative Z-channel [103]; in this regime it might not be worth to engage
in unilateral cooperation. In very strong interference, i.e., ↵ > 2, unilat-
eral cooperation gives larger gDoF than in the case of no-cooperation only
when β > 2dZ (↵, 0) = 2. An achievable scheme for the LDA in this regime
is exactly the same developed for the corresponding interference-symmetric
channel in Figure 5.2 and Figure 5.5, with the only difference that now the
signal Xp[2] is not received at Yc[2] since Ip = 0.

We conclude this section with few comments:

• In regions 1, 4 and 5 of Figure 5.7 the gDoF of the HD channel is as
that in FD analyzed in Section 4.5 and so the same gap results found
for the FD case hold in the HD case. Moreover, in region 2 in Figure 5.7
the gDoF equals that of the non-cooperative Z-channel [103]. Hence,
in regions 1, 2, 4 and 5 cooperation might not be worth implementing
since the same gDoF is attained without cooperation.

• The symmetric Z-channel achieves the same gDoF of the non-causal
cognitive symmetric Z-channel everywhere except for ↵ > 2 (regions
1, 2 and 3 in Figure 5.7), i.e., for ↵  2, causal cognition attains the
ultimate performance of the ideal non-causal cognitive Z-channel.

• By comparing Figure 5.1 and Figure 5.7, we observe that the gDoF of
the Z-channel is always greater than or equal to that of the interference-
symmetric channel. This is because, as already remarked for the
FD case in Section 4.5, the PTx does not cooperate in sending the
message of the CTx, i.e., by removing the link between PTx and
CRx we rid CRx of only interfering signals. We observe that the Z-
channel outperforms the interference-symmetric Gaussian HD-CCIC
when 0  ↵  2/3.

5.6 Sum-capacity to within a constant gap for the
Gaussian HD symmetric S-channel

In this section, we prove Theorem 14, i.e., we characterize the sum-capacity
to within a constant gap for the symmetric Gaussian S-channel defined by
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Figure 5.8: Optimal gDoF and constant gap for the S-channel in the different
regimes of (↵,β).

Sp = Sc = S and Ic = 0. Figure 5.8 shows the gDoF dS (↵,β) (abbreviated
with d) and the gap (per user) for the symmetric Gaussian S-channel for the
different regions in the (↵,β) plane, where the whole set of parameters has
been partitioned into multiple sub-regions depending upon different levels
of cooperation (β) and interference (↵) strengths.

The proof of the constant gap result can be found in Appendix 5.D. This
(approximate) sum-capacity characterization implies that the gDoF can be
obtained from Definition 7 with (5.5) (evaluated for Ic = 0) and equals

dS =
1

2
max
γ2[0,1]

min {γ + 2 (1− γ) ,

γmax {β,↵, 1}+ (1− γ)
(
max {1,↵}+ [1− ↵]+

) 

=

8
><
>:

1− 1
2↵+ 1

2
↵[↵+β−2]+

β+↵−1 ↵ 2 [0, 1)

1
2↵+ 1

2
(2−↵)[β−↵]+

β−↵+1 ↵ 2 [1, 2)

1 ↵ 2 [2,1)

. (5.10)

For future reference, for the non-cooperative S-channel from [103] we
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Figure 5.9: Phase II (Mc = 1) for ↵  1  2 and β > ↵.

have
dS (↵, 0) = min{max{1− ↵/2,↵/2}, 1},

and for the non-causal cognitive S-channel from [64] we have

dS (↵,1) = 1.

It hence follows that cooperation can improve the performance only if the
channel is not in very strong interference, i.e., ↵ < 2. It is interesting to
note the different behavior of the Z- and S-channel: for the Z-channel HD
unilateral cooperation is useful only in very strong interference, while for the
S-channel only when not in very strong interference. Also in this case the
interpretation of the gDoF in (5.10) is similar to that of the interference-
symmetric case in (5.6d). In particular,

• If the channel has very strong interference, i.e., ↵ > 2, the gDoF is
the same as for the non-cooperative S-channel [103]; in this regime it
might not be worth to engage in unilateral cooperation.

• In weak and strong interference, i.e., ↵  2, unilateral cooperation
gives larger gDoF than in the case of no-cooperation only when β >
2dS (↵, 0) = 2max{1−↵/2,↵/2}. A representation of the LDA schemes
used for ↵ < 2 and β > 2max{1 − ↵/2,↵/2} is given in Figure 5.2,
Figure 5.9 and Figure 5.10 which can be interpreted as done for the
interference-symmetric case in Section 5.4. It is worth noting that the
CTx uses only private messages since it does not create interference
at the PRx.
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Figure 5.10: Phase II (Mc = 1) for ↵ < 1 and β > 2− ↵.

We conclude the analysis of the S-channel with few comments:

• There are some regimes (regions 1, 2 and 4 in Figure 5.8) in which
the gDoF of the HD channel is as that in FD. In these regions, the
same additive gap results found for the FD case in Section 4.6 hold in
HD. Moreover, in region 5 in Figure 5.8 the gDoF equals that of the
non-cooperative S-channel [103].

• The S-channel achieves the same gDoF of the non-causal cognitive S-
channel [64] for ↵ ≥ 2 (region 1 in Figure 5.8). Thus, in this region
the S-channel attains the ultimate performance of the ideal non-causal
cognitive S-channel.

• The S-channel outperforms the interference-symmetric Gaussian HD-
CCIC when either 0  ↵  2/3 or when ↵  2 and β ≥ max{2−↵,↵}
(regions 3 and 6, and parts of regions 4 and 5 in Figure 5.8). On
the other hand, the interference-symmetric Gaussian HD-CCIC out-
performs the S-channel in very strong interference and strong cooper-
ation, i.e., min{↵,β} ≥ 2. This is so because, as already remarked for
the FD case in Section 4.6, in the very strong interference and coop-
eration regime, the system performance is enhanced by allowing the
CTx to help the PTx to convey the information to the PRx, but this
is not possible since Ic = 0.

• When ↵ ≥ 2 (region 1 in Figure 5.8) we have an exact sum-capacity
result, i.e., the gap between the sum-capacity outer bound and inner
bound is equal to zero.
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5.7 Conclusions and future directions

In this chapter we studied the CCIC where, differently from Chapter 4,
the cognitive source, who assists the primary source in the transmission, is
constrained to operate in HD mode. We analyzed both the interference-
symmetric and interference-asymmetric (Z- and S-) channels, which corre-
spond to different network deployments. For each topology we determined
the sum-capacity to within a constant gap and hence the gDoF. This was
accomplished by adapting the upper bounds on the sum-capacity of Chap-
ter 4 to the HD case and by designing transmission strategies based on the
LDA of the Gaussian noise channel at high SNR. In particular, the various
schemes exploit binning and superposition encoding, PDF relaying and suc-
cessive decoding. Moreover, by using the LDA model, we obtained a closed-
form expression for the different optimization variables (e.g., schedule, power
splits, coding schemes and corresponding decoding orders, etc.); this result
sheds light on how to design the HD cognitive source, which is an impor-
tant practical task for future wireless networks. Finally, we compared the
interference-symmetric and interference-asymmetric models by highlighting
the regimes where the gDoF is as that of the classical IC without coopera-
tion and by identifying the regimes where the system attains the ultimate
limits predicted by the ideal non-causal cognitive model. Moreover, we also
showed that there are some regimes where no losses (in terms of gDoF) incur
by considering a HD, rather than a FD, CTx.

With respect to the results presented in this chapter, interesting future
research directions may include: (i) characterizing the whole capacity region
(not only the sum-capacity) as done for the FD case in Chapter 4, (ii)
extending the gap result to the general Gaussian channel, which is defined
by 5 different channel gains and (iii) designing transmission strategies which
exploit the randomness inside the switch to convey further information; this
last point is critical and might lead to much smaller gap results compared
to those presented in this chapter.

Appendix

5.A Derivation of the sum-capacity outer bounds
and evaluation for the Gaussian noise channel

In (4.9), by following the approach of [18], we incorporate the HD con-
straints by substituting Xc with the pair (Xc,Mc). Moreover, for any triplet
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of random variables (A,B,C) we bound I(A,Xc,Mc;B|C)  H(Mc) +
I(A,Xc;B|C,Mc) since, for a binary-valued random variable Mc, we have
I(Mc;B|C)  H(Mc).

From (4.9a) we obtain

Rp  I (Xp;Yp, Tf |Xc,Mc)

= γI (Xp;Yp, Tf |Xc,Mc = 0) + (1− γ) I (Xp;Yp, Tf |Xc,Mc = 1) ,

which is exactly (5.3a).
From (4.9b) we obtain

Rp  I (Xp, Xc,Mc;Yp)

= I (Xp, Xc;Yp|Mc) + I (Mc;Yp)

 H (Mc) + γI (Xp, Xc;Yp|Mc = 0) + (1− γ) I (Xp, Xc;Yp|Mc = 1) ,

which is exactly (5.3b).
From (4.9c) we obtain

Rc  I (Xc,Mc;Yc|Xp)

= I (Xc;Yc|Xp,Mc) + I (Mc;Yc|Xp)

 H (Mc) + γI (Xc;Yc|Xp,Mc = 0) + (1− γ) I (Xc;Yc|Xp,Mc = 1) ,

which is exactly (5.3c).
From (4.9d) we obtain

Rp +Rc  I (Xp;Yp, Tf |Yc, Xc,Mc) + I (Xp, Xc,Mc;Yc)

= I (Xp;Yp, Tf |Yc, Xc,Mc) + I (Xp, Xc;Yc|Mc) + I (Mc;Yc)

 H (Mc)+γ [I (Xp;Yp, Tf |Yc, Xc,Mc=0)+I (Xp, Xc;Yc|Mc=0)]

+ (1− γ) [I (Xp;Yp, Tf |Yc, Xc,Mc = 1) + I (Xp, Xc;Yc|Mc = 1)] ,

which is exactly (5.3d).
From (4.9e) we obtain

Rp +Rc  I (Xc,Mc;Yc|Yp, Xp) + I (Xp, Xc,Mc;Yp)

= I (Xc;Yc|Yp, Xp,Mc) + I (Mc;Yc|Yp, Xp)

+ I (Xp, Xc;Yp|Mc) + I (Mc;Yp)

 2H (Mc)+γ [I (Xc;Yc|Yp, Xp,Mc=0)+I (Xp, Xc;Yp|Mc=0)]

+ (1− γ) [I (Xc;Yc|Yp, Xp,Mc = 1) + I (Xp, Xc;Yp|Mc = 1)] ,

which is exactly (5.3e).
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From (4.9f) we obtain

Rp +Rc  I (Yp;Xp, Xc,Mc|Tp, Tf) + I (Yc, Tf ;Xp, Xc,Mc|Tc)

= I (Yp;Xp, Xc|Tp, Tf ,Mc) + I (Mc;Yp|Tp, Tf)

+ I (Yc, Tf ;Xp, Xc|Tc,Mc) + I (Mc;Yc, Tf |Tc)

 2H (Mc)+γ [I (Yp;Xp, Xc|Tp, Tf ,Mc=0)+I (Yc, Tf ;Xp, Xc|Tc,Mc=0)]

+ (1− γ) [I (Yp;Xp, Xc|Tp, Tf ,Mc = 1) + I (Yc, Tf ;Xp, Xc|Tc,Mc = 1)] ,

which is exactly (5.3f).

We now evaluate the sum-capacity upper bounds above for the Gaussian

HD-CCIC in (5.1). We let


Pp,` ⇢`

p
Pp,`Pc,`

⇢⇤`
p

Pp,`Pc,` Pc,`

]
for |⇢`|  1, ` 2

[0 : 1] and (Pp,0, Pp,1, Pc,0, Pc,1) 2 R
4
+ satisfying the power constraint γPu,0+

(1− γ)Pu,1  1, u 2 {p, c}. In particular, since the PTx always transmits
we define, for some ⌧ 2 [0, 1],

Pp,0 =
⌧

γ
, Pp,1 =

1− ⌧

1− γ
,

while, since the CTx’s transmission only affects the receiver outputs when
Mc = 1, we let

Pc,0 = 0, Pc,1 =
1

1− γ
.

It is also easy to see that |⇢0| = 0 is the optimal choice since when the CTx is
in receiving mode, everything is independent of Xc. For all the sum-capacity
outer bounds we let H (Mc) = H(γ)  log(2). All the mutual information
terms below, evaluated in Gaussian noise, are already maximized with re-
spect to |⇢1| 2 [0, 1]; the steps of this optimization are not reported since
they are similar to those in Appendix 4.D.

From (5.3a), we have

Rp  γ log (1 + (C+ Sp)Pp,0) + (1− γ) log (1 + SpPp,1)

= γ log

✓
1 + (C+ Sp)

⌧

γ

◆
+ (1− γ) log

✓
1 + Sp

1− ⌧

1− γ

◆

= H(γ) + γ log (γ + (C+ Sp) ⌧) + (1− γ) log (1− γ + Sp(1− ⌧))

 log(2) + γ log (1 + C+ Sp) + (1− γ) log (1 + Sp) ,

which is exactly (5.4a).
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From (5.3b), we have

Rp  H(γ) + γ log (1 + SpPp,0) + (1− γ) log

✓
1 +

⇣p
SpPp,1 +

p
IcPc,1

⌘2◆

= H(γ)+γ log

✓
1 + Sp

⌧

γ

◆
+(1− γ) log

 
1 +

✓r
Sp

1− ⌧

1− γ
+

r
Ic

1

1− γ

◆2
!

= 2H(γ)+γ log (γ + Sp⌧)+(1− γ) log

 
1− γ +

✓q
Sp(1− ⌧) +

p
Ic

◆2
!

 2 log(2)+γ log (1 + Sp)+(1− γ) log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆
,

which is exactly (5.4b).

From (5.3c), we have

Rc  H(γ) + (1− γ) log (1 + ScPc,1)

= H(γ) + (1− γ) log

✓
1 + Sc

1

1− γ

◆

= H(γ)− (1− γ) log (1− γ) + (1− γ) log (1− γ + Sc)

 1.52 log(2) + (1− γ) log (1 + Sc) ,

which is exactly (5.4c).

From (5.3d), we have

Rp +Rc  H(γ)+γ log (1+(Sp+C+Ip)Pp,0)+(1−γ) log

✓
1+

SpPp,1

1+IpPp,1

◆

+ (1− γ) log

✓
1 +

⇣p
ScPc,1 +

p
IpPp,1

⌘2◆

= H(γ)+γ log

✓
1+(Sp+C+Ip)

⌧

γ

◆
+(1−γ) log

 
1+

Sp
1−τ
1−γ

1+Ip
1−τ
1−γ

!

+ (1− γ) log

 
1 +

✓r
Sc

1

1− γ
+

r
Ip
1− ⌧

1− γ

◆2
!

= 2H(γ)+γ log (γ+(Sp+C+Ip) ⌧)+(1−γ) log

✓
1+

Sp(1−⌧)

1− γ+Ip(1−⌧)

◆

+ (1− γ) log

 
1− γ +

✓p
Sc +

q
Ip(1−⌧)

◆2
!
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 2 log(2) + γ log (1 + Sp + C+ Ip) + (1− γ) log

✓
1 +

Sp

Ip

◆

+ (1− γ) log

✓
1 +

⇣p
Sc +

p
Ip

⌘2◆
,

which is exactly (5.4d).

From (5.3e), we have

Rp +Rc  2H(γ) + γ log (1 + SpPp,0) + (1− γ) log

✓
1 +

ScPc,1

1 + IcPc,1

◆

+ (1− γ) log

✓
1 +

⇣p
SpPp,1 +

p
IcPc,1

⌘2◆

= 2H(γ) + γ log

✓
1 + Sp

⌧

γ

◆
+ (1− γ) log

 
1 +

Sc
1

1−γ

1 + Ic
1

1−γ

!

+ (1− γ) log

 
1 +

✓r
Sp

1− ⌧

1− γ
+

r
Ic

1

1− γ

◆2
!

= 3H(γ) + γ log (γ + Sp⌧) + (1− γ) log

✓
1 +

Sc

1− γ + Ic

◆

+ (1− γ) log

 
1− γ +

✓q
Sp(1− ⌧) +

p
Ic

◆2
!

 3 log(2) + γ log (1 + Sp) + (1− γ) log

✓
1 +

Sc

Ic

◆

+ (1− γ) log

✓
1 +

⇣p
Sp +

p
Ic

⌘2◆
,

which is exactly (5.4e).

From (5.3f), we have

Rp +Rc  2H(γ) + γ log (1 + (Ip + C+ Sp)Pp,0)

+ (1− γ) log

✓
1 + IcPc,1 +

SpPp,1

1 + IpPp,1

◆

+ (1− γ) log

✓
1 + IpPp,1 +

ScPc,1

1 + IcPc,1

◆
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= 2H(γ) + γ log

✓
1 + (Ip + C+ Sp)

⌧

γ

◆

+ (1− γ) log

 
1 + Ic

1

1− γ
+

Sp
1−τ
1−γ

1 + Ip
1−τ
1−γ

!

+ (1− γ) log

 
1 + Ip

1− ⌧

1− γ
+

Sc
1

1−γ

1 + Ic
1

1−γ

!

= 3H(γ)− (1− γ) log (1− γ) + γ log (γ + (Ip + C+ Sp) ⌧)

+ (1− γ) log

 
1− γ + Ic +

Sp(1− ⌧)

1 + Ip
1−τ
1−γ

!

+ (1− γ) log

 
1− γ + Ip(1− ⌧) +

Sc

1 + Ic
1

1−γ

!

 3.51 log(2) + γ log (1 + Ip + C+ Sp)

+ (1− γ) log

✓
1 + Ic +

Sp

1 + Ip

◆

+ (1− γ) log

✓
1 + Ip +

Sc

1 + Ic

◆
,

which is exactly (5.4f).

5.B Proof of Theorem 12

Let Ip = Ic = I = Sα, Sp = Sc = S and d (↵,β) = d for brevity. We analyze
the different regimes in Figure 5.1.

Regime 1 (↵ ≥ 2, β  1) / Very Strong Interference 1: in this regime
I ≥ S(1+S) and C  S and we have d  1 as in the FD case. Thus, we have

GAP =
(eq(4.16a) + eq(4.16b))− (eq(4.15a) + eq(4.15b))

2
 0.5 bits/user.

Regime 2 (↵ ≥ 2, 1 < β  2) / Very Strong Interference 2: in this
regime I ≥ S(1 + S) and S < C  S(1 + S) and we have d  1, achieved with
γ = 0, as in the classical non-cooperative IC [12]. We hence use the same
transmission strategy as in the non-cooperative IC (see also Section 4.4.1),
whose achievable sum-rate is given by

(Rp +Rc)
IB  2 log (1 + S) .
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The tightest sum-capacity outer bound in (5.5) is

(Rp +Rc)
OB  eq(5.4a) + eq(5.4c)

CS(1+S)

 2 log (1 + S) + 2.52 log(2).

Thus,

GAP =
(Rp +Rc)

OB − (Rp +Rc)
IB

2
 1.26 bits/user.

Regime 3 (min {↵,β} ≥ 2) / Very Strong Interference 3: in this
regime I ≥ S(1 + S) and C > S(1 + S) and we have

2d  max
γ

min {γβ + 2 (1− γ) , γ + (1− γ)↵} .

In this expression the first term is increasing in γ while the second one is
decreasing in γ. Thus the optimal γ can be found by equating the two terms
and is given by γ? = ↵−2

β+↵−3 as in (5.8), which leads to

d  1

2

β↵− 2

β + ↵− 3
.

In this regime we use the transmission strategy described in Appendix 5.E.1
and Appendix 5.E.2 that, since the interference is very strong, uses common
messages only. The sum-rate achieved with this scheme is

(Rp +Rc)
(IB) = γ0 log (1 + S) + γ0 log

✓
1 +

C

1 + S

◆
− log

✓
1 +

S

1 + S

◆

+ 2
(
1− γ0

)
log (1 + S) , (5.11)

where (see Appendix 5.E.2 for the details) γ0 = x
log(1+ C

1+S)+x

SNR/1! γ? as in

(5.8) for x := log
⇣
1 + I

(1+S)2

⌘
SNR/1! ↵− 2 (recall that log

⇣
1 + C

1+S

⌘
SNR/1!

β − 1). The tightest sum-capacity outer bounds in (5.5) for this regime are
eq(5.4a) + eq(5.4c)

(Rp +Rc)
(OB)  γ log (1 + C+ S) + 2 (1− γ) log (1 + S) + 2.52 log(2),

which gives (note that we evaluate (Rp +Rc)
(IB) for the optimal γ in the

upper bound; this is a possible suboptimal choice)

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 1.76 bits/user,
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and (5.4e)

(Rp +Rc)
(OB)  γ log (1 + S) + (1− γ) log

✓
1 +

S

I

◆

+ (1− γ) log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ 3 log(2),

which gives

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 3 bits/user.

Thus, for this regime we have GAP  3 bits/user.

Regime 4 (1  ↵ < 2) / Strong Interference: in this regime S  I <
S(1 + S) and we have d  ↵

2 as in the FD case and in the classical IC.
We use as lower bound on the sum-capacity the sum-rate achieved by the
non-cooperative IC in strong interference (common messages only), i.e.,

(Rp +Rc)
(IB) = log (1 + S+ I) .

As upper bound on the sum-capacity for this regime we use the one in
(4.14e), valid for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  log (1 + S+ I) + 2 log(2).

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 1 bit/user.

Regime 5 (2/3  ↵ < 1) / Moderately Weak Interference: in this
regime I < S and S(S+1)  I(I+1)2 and we have d  1− ↵

2 as in the FD case
and in the classical IC. We use as lower bound on the sum-capacity the sum-
rate achieved by the non-cooperative IC in moderately weak interference
(common and private messages with the power split of [12]), i.e.,

(Rp +Rc)
(IB) = log (1 + S+ I) + log

✓
1 + S

1 + I

◆
− 2 log(2).

As upper bound on the sum-capacity for this regime we use the one in
(4.14e), valid for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  log

✓
1 +

S

1 + I

◆
+ log (1 + S+ I) + log(2).
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Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 2 bits/user.

Regime 6 (1/2  ↵ < 2/3, β  2↵ − 1) / Weak Interference 1: in

this regime S(S + 1) > I(I + 1)2, S  I (1 + I) and C  I(1+I)
1+S

and we have
d  ↵ as in the FD case and in the classical IC. We use as lower bound on
the sum-capacity the sum-rate achieved by the non-cooperative IC in weak
interference (common and private messages with the power split of [12]),
i.e.,

(Rp +Rc)
(IB) = 2 log

✓
1 + I+

S

1 + I

◆
− 2 log(2).

As upper bound on the sum-capacity for this regime we use the one in (4.14f),
valid for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  2 log

✓
1 + I+

S

1 + I

◆
+ 4 log(2).

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 3 bits/user.

Regime 7 (1/2  ↵ < 2/3, 2↵ − 1 < β  2↵) / Weak Interference 2:

in this regime S(S + 1) > I(I + 1)2, S  I (1 + I) and I(1+I)
1+S

< C  I2 and we
have d  ↵, achieved with γ = 0, as in the classical non-cooperative IC [12].
We hence use the same transmission strategy as in the non-cooperative IC,
whose achievable sum-rate is given by

(Rp +Rc)
IB  2 log

✓
1 + I+

S

1 + I

◆
− 2 log(2).

The tightest sum-capacity outer bound in (5.5) is

(Rp +Rc)
OB  eq(5.4f)

CI2

 2 log

✓
1 + I+

S

1 + I

◆
+ 3.51 log(2).

Thus,

GAP =
(Rp +Rc)

OB − (Rp +Rc)
IB

2
 2.8 bits/user.
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Regime 8 (1/2  ↵ < 2/3,β > 2↵) / Weak Interference 3: in this
regime S(S+ 1) > I(I+ 1)2, S  I (1 + I) and C > I2 and we have

2d  max
γ

min {γ + (1− γ) (2− ↵) , γβ + 2 (1− γ)↵} .

In this expression the first term is decreasing in γ while the second one is
increasing in γ. Thus the optimal γ can be found by equating the two terms
and is given by γ? = 2−3↵

β−3↵+1 in (5.7), which leads to d  1
2
2β−↵β−2↵
β−3↵+1 . In this

regime we use the transmission strategy described in Appendix 5.E.1 and
Appendix 5.E.3 that, since the interference is weak, uses both common and
private messages. The sum-rate achieved with this scheme is

(Rp +Rc)
(IB) = γ0 log (1 + S)− γ0 log

✓
1 +

S

1 + S

◆
+ γ0 log

✓
1 +

C

1 + S

◆

+ 2
(
1− γ0

)
log

✓
1 + I+

S

1 + I

◆
− 2

(
1− γ0

)
log

✓
1 +

I

1 + I

◆

+
(
1− γ0

)
log

✓
1 +

S

1 + I
+

I

1 + I

◆

−
(
1− γ0

)
log

✓
1 +

SI+ I+ I2

(1 + I)2
+

S

1 + I

◆
, (5.12)

where (see Appendix 5.E.3 for the details) γ0 = x
log(1+ C

1+S)+x

S/1! γ? as in

(5.7) for x := log
⇣
1 + S2

(1+I)3+S+SI

⌘
SNR/1! 2−3↵. The tightest sum-capacity

outer bounds in (5.5) for this regime are (5.4e)

(Rp +Rc)
(OB)  γ log (1 + S) + (1− γ) log

✓
1 +

S

I

◆

+ (1− γ) log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ 3 log(2),

which gives (note that we evaluate (Rp +Rc)
(IB) for the optimal γ in the

upper bound; this is a possible suboptimal choice)

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 5 bits/user,
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and (5.4f)

(Rp +Rc)
(OB)  γ log (1 + I+ C+ S)

+ (1− γ) log

✓
1 + I+

S

1 + I

◆

+ (1− γ) log

✓
1 + I+

S

1 + I

◆
+ 3.51 log(2),

which gives

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 3.3 bits/user.

Thus, for this regime we have GAP  5 bits/user.

Regime 9 (↵ < 1/2,β  2−2↵) / Weak Interference 4: in this regime

I(I+ 1) < S and C  S2

I2
and we have d  1− ↵, achieved with γ = 0, as in

the classical non-cooperative IC [12]. We hence use the same transmission
strategy as in the classical IC, whose achievable sum-rate is given by

(Rp +Rc)
IB  2 log

✓
1 + I+

S

1 + I

◆
− 2 log(2).

The tightest sum-capacity outer bound in (5.5) is

(Rp +Rc)
OB  eq(5.4f)

C S2

I2 2 log

✓
1 + I+

S

1 + I

◆
+ 3.51 log(2).

Thus,

GAP =
(Rp +Rc)

OB − (Rp +Rc)
IB

2
 2.8 bits/user.

Regime 10 (↵ < 1/2,β > 2 − 2↵) / Weak Interference 5: in this

regime I(I+ 1) < S and C > S2

I2
and we have

2d  max
γ

min {γ + (1− γ) (2− ↵) , γβ + 2 (1− γ) (1− ↵)} .

In this expression the first term is decreasing in γ while the second term is
increasing in γ. So the optimal γ can be found by equating the two terms
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and is given by γ? = ↵
β+↵−1 in (5.7), which leads to d  1

2
2β+2↵−↵β−2

β+↵−1 . In
this regime we use the transmission strategy described in Appendix 5.E.1
and Appendix 5.E.4 that, since the interference is weak, uses both common
and private messages. The sum-rate achieved with this scheme is

(Rp +Rc)
(IB) = γ0 log (1 + S)− γ0 log

✓
1 +

S

1 + S

◆
+ γ0 log

✓
1 +

C

1 + S

◆

+
(
1− γ0

)
log

✓
1 + I+

S

1 + I

◆
−
(
1− γ0

)
log (1 + I)

+
(
1−γ0

)
log

✓
1+

I

1+I
+S

◆
−
(
1−γ0

)
log

✓
1+

I

1+I

◆
, (5.13)

where (see Appendix 5.E.4 for the details) γ0 = x
log(1+ C

1+S)+x

SNR/1! γ? as in

(5.7) for x := log
⇣
1 + SI

(1+I)2+S

⌘
SNR/1! ↵. The tightest sum-capacity outer

bounds in (5.5) for this regime are (5.4e)

(Rp +Rc)
(OB)  γ log (1 + S) + (1− γ) log

✓
1 +

S

I

◆

+ (1− γ) log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ 3 log(2),

which gives (note that we evaluate (Rp +Rc)
(IB) for the optimal γ in the

upper bound; this is a possible suboptimal choice)

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 3.5 bits/user,

and (5.4f)

(Rp +Rc)
(OB)  γ log (1 + I+ C+ S)

+ (1− γ) log

✓
1 + I+

S

1 + I

◆

+ (1− γ) log

✓
1 + I+

S

1 + I

◆
+ 3.51 log(2),

which gives

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 2.8 bits/user.

Thus, for this regime we have GAP  3.5 bits/user.
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5.C Proof of Theorem 13

Let Sp = Sc = S, Ic = I, Ip = 0 and dZ = d for brevity. We analyze the
different regimes in Figure 5.7.

Regime 1 (↵ ≥ 2, β  1) / Very Strong Interference 1: in this
regime I ≥ S(1 + S) and C  S and we have d  1 as in the FD case and
in the classical IC. We use as lower bound on the sum-capacity the sum-
rate achieved by the non-cooperative Z-IC in very strong interference [103,
Theorem 2], i.e.,

(Rp +Rc)
(IB) = 2 log (1 + S) .

As upper bound on the sum-capacity for this regime we use eq(4.29a)+eq(4.29c),
valid for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  2 log (1 + S) + log(2).

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 0.5 bits/user.

Regime 2 (↵ ≥ 2, 1 < β  2) / Very Strong Interference 2: in this
regime I ≥ S(1 + S) and S < C  S(1 + S) and we have d  1, achieved with
γ = 0, as in the classical non-cooperative Z-channel [103]. We hence use the
same transmission strategy as in the non-cooperative Z-channel (see [103,
Theorem 2]), whose achievable sum-rate is given by

(Rp +Rc)
IB  2 log (1 + S) .

The tightest sum-capacity outer bound in (5.5) is

(Rp +Rc)
OB  eq(5.4a) + eq(5.4c)

CS(1+S)

 2 log (1 + S) + 2.52 log(2).

Thus,

GAP =
(Rp +Rc)

OB − (Rp +Rc)
IB

2
 1.26 bits/user.
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Regime 3 (min {↵,β} ≥ 2) / Very Strong Interference 3: in this
regime I ≥ S(1 + S) and C > S(1 + S) and we have

2d  max
γ

min {γβ + 2 (1− γ) , γ + (1− γ)↵} .

In this expression the first term is increasing in γ while the second one is
decreasing in γ. Thus the optimal γ can be found by equating the two terms
and is given by γ? = ↵−2

β+↵−3 as in (5.8), which leads to

d  1

2

β↵− 2

β + ↵− 3
.

In this regime we use the transmission strategy described in Appendix 5.E.1
and Appendix 5.E.2 that, since the interference is very strong, uses common
messages only. Recall that, since Ip = 0, the signal Xp[2] is not received at
the CRx. The sum-rate achieved with this scheme is

(Rp +Rc)
(IB) = γ0 log (1 + S) + γ0 log

✓
1 +

C

1 + S

◆
− log

✓
1 +

S

1 + S

◆

+ 2
(
1− γ0

)
log (1 + S) , (5.14)

where (see Appendix 5.E.2 for the details) γ0 = x
log(1+ C

1+S)+x

SNR/1! γ? as in

(5.8) for x := log
⇣
1 + I

(1+S)2

⌘
SNR/1! ↵− 2 (recall that log

⇣
1 + C

1+S

⌘
SNR/1!

β − 1). The tightest sum-capacity outer bounds in (5.5) for this regime are
eq(5.4a) + eq(5.4c)

(Rp +Rc)
(OB)  γ log (1 + C+ S) + 2 (1− γ) log (1 + S) + 2.52 log(2),

which gives (note that we evaluate (Rp +Rc)
(IB) for the optimal γ in the

upper bound; this is a possible suboptimal choice)

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 1.76 bits/user,

and (5.4e)

(Rp +Rc)
(OB)  γ log (1 + S) + (1− γ) log

✓
1 +

S

I

◆

+ (1− γ) log

✓
1 +

⇣p
S+

p
I
⌘2◆

+ 3 log(2),

which gives

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 3 bits/user.

Thus, for this regime we have GAP  3 bits/user.
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Regime 4 (1  ↵ < 2) / Strong Interference: in this regime S  I <

S(1 + S) and we have d  ↵
2 as in the FD case and in the classical Z-IC.

We use as lower bound on the sum-capacity the sum-rate achieved by the
non-cooperative Z-IC in strong interference [103, Theorem 2], i.e.,

(Rp +Rc)
(IB) = log (1 + S+ I) .

As upper bound on the sum-capacity for this regime we use (4.29d), valid
for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  log (1 + S+ I) + 2 log(2).

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 1 bit/user.

Regime 5 (↵ < 1) / Weak Interference: in this regime I < S and we
have d  1− ↵

2 as in the FD case and in the classical Z-IC. We use as lower
bound on the sum-capacity the sum-rate achieved by the non-cooperative
Z-IC in weak interference [103, Theorem 2], i.e.,

(Rp +Rc)
(IB) = log (1 + S) + log

✓
1 +

S

1 + I

◆
.

As upper bound on the sum-capacity for this regime we use (4.29d), valid
for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  log

✓
1 +

S

1 + I

◆
+ log (1 + S) + 2 log(2).

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 1 bit/user.

5.D Proof of Theorem 14

Let Sp = Sc = S, Ip = I, Ic = 0 and dS = d for brevity. We analyze the
different regimes in Figure 5.8.
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Regime 1 (↵ ≥ 2) / Very Strong Interference: in this regime I ≥
S(1 + S) and we have d  1 as in the FD case and in the classical S-IC.
We use as lower bound on the sum-capacity the sum-rate achieved by the
non-cooperative S-IC in very strong interference [103, Theorem 2], i.e.,

(Rp +Rc)
(IB) = 2 log (1 + S) .

As upper bound on the sum-capacity for this regime we use eq(4.36a)+(4.36b),
valid for the FD case, i.e.

(Rp +Rc)
(OB)  2 log (1 + S) .

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 0 bit/user,

i.e., for this regime the sum-capacity is known exactly.

Regime 2 (1  ↵ < 2, β  ↵) / Strong Interference 1: in this
regime S  I < S(1 + S) and C  I and we have d  ↵

2 as in the FD case
and in the classical non-cooperative S-IC. We use as lower bound on the
sum-capacity the sum-rate achieved by the non-cooperative S-IC in strong
interference [103, Theorem 2], i.e.,

(Rp +Rc)
(IB) = log (1 + S+ I) .

As upper bound on the sum-capacity for this regime we use (4.36c), valid
for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  log (1 + S+ I) + log(2) + log(3).

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 1.3 bits/user.

Regime 3 (1  ↵ < 2, β > ↵) / Strong Interference 2: in this regime
S  I < S(1 + S) and C > I and we have

2d  max
γ

min {γ + 2 (1− γ) , γβ + (1− γ)↵} .
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In this expression the first term is decreasing in γ while the second term is
increasing in γ. Thus the optimal γ can be found by equating the two terms
and is given by γ? = 2−↵

β−↵+1 , which leads to d  1
2

2β−↵
β−↵+1 . In this regime we

use the transmission strategy described in Appendix 5.E.1 and Appendix
5.E.3, but with different power splits. In particular

• In the transmitted signal Xp[2] we set δ3 = 0, i.e., the non-cooperative
message of the PTx is common since we are in strong cooperation. We
further choose δ2 = 1− δ1 =

S
1+I

.

• In the transmitted signal Xc[2] we set δ4 = 1, i.e., private message
only for the CTx; this is because since Ic = 0, there is no interference
at the PRx.

With these choices we obtain that Phase I is successful if

Rb1  eq(5.25), (5.15)

Rb2  eq(5.26), (5.16)

while Phase II is successful if

Rb2  (1− γ) log

✓
1 +

S2

1 + I

◆
, (5.17)

Rb3c  (1− γ) log (1 + S+ I)− (1− γ) log

✓
1 + S

I

1 + I
+ S

◆
, (5.18)

Rb4p  (1− γ) log (1 + S) . (5.19)

By imposing that Rb2 is the same in both phases, i.e., that (5.26) and (5.17)
are equal, we get that γ should be chosen equal to

γ0 =
x

log
⇣
1 + C

1+S

⌘
+ x

SNR/1! γ? x := log

✓
1 +

S2

1 + I

◆
SNR/1! 2− ↵.

Therefore the total sum-rate decoded at the PRx and at the CRx through
the two phases is

(Rp +Rc)
(IB) = Rb1 +Rb2 +Rb3c +Rb4p

= γ0 log (1 + S)− γ0 log

✓
1 +

S

1 + S

◆
+ γ0 log

✓
1 +

C

1 + S

◆

+
(
1− γ0

)
log (1 + S+ I)−

(
1− γ0

)
log

✓
1 + S

I

1 + I
+ S

◆

+ (1− γ) log (1 + S) .
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The tightest sum-capacity upper bounds for this regime are (5.4d) and
(5.4e) (evaluated for Ic = 0), which can be respectively further upper bounded
as

(Rp +Rc)
(OB)  γ log (1 + C) + (1− γ) log (1 + S+ I)

+ 2 log(2) + γ log(3) + 2 (1− γ) log(2),

(Rp +Rc)
(OB)  γ log (1 + S) + 2 (1− γ) log (1 + S) + 3 log(2).

Both outer bounds lead to

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 2.5 bits/user.

Regime 4 (↵ < 1, β  1) / Weak Interference 1: in this regime I < S

and C  S and we have d  1− ↵
2 as in the FD case and in the classical non-

cooperative S-IC. We use as lower bound on the sum-capacity the sum-rate
achieved by the non-cooperative S-IC in weak interference [103, Theorem 2],
i.e.,

(Rp +Rc)
(IB) = log (1 + S) + log

✓
1 +

S

1 + I

◆
.

As upper bound on the sum-capacity for this regime we use (4.36c), valid
for the FD case, which can be further upper bounded as

(Rp +Rc)
(OB)  log (1 + S+ I) + log

✓
1 +

S

1 + I

◆
+ 2 log(2).

Thus, for this regime we have

GAP =
(Rp +Rc)

(OB) − (Rp +Rc)
(IB)

2
 1.5 bits/user,

Regime 5 (↵ < 1, 1 < β  2 − ↵) / Weak Interference 2: in this

regime I < S and S < C  S2

1+I
and we have d  1− ↵

2 , achieved with γ = 0,
as in the classical non-cooperative S-channel [103]. We hence use the same
transmission strategy as in the non-cooperative S-channel (see [103, Theorem
2]), whose achievable sum-rate is given by

(Rp +Rc)
IB  log (1 + S) + log

✓
1 +

S

1 + I

◆
.
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The tightest sum-capacity outer bound in (5.5) is (5.4d), which can be fur-
ther upper bounded as

(Rp +Rc)
OB  log

✓
1 +

S

I

◆
+ log (1 + S+ I) + 3 log(2).

Thus,

GAP =
(Rp +Rc)

OB − (Rp +Rc)
IB

2
 2.5 bits/user.

Regime 6 (↵ < 1, β > 2 − ↵) / Weak Interference 3: in this regime

I < S and C > S2

1+I
and we have

2d  max
γ

min {γ + 2 (1− γ) , γβ + (1− γ) (2− ↵)} .

In this expression the first term is decreasing in γ while the second term is
increasing in γ. Thus the optimal γ can be found by equating the two terms
and is given by γ? = ↵

β+↵−1 , which leads to d  1
2
2β+↵−2
β+↵−1 . In this regime

we use the transmission strategy described in Appendix 5.E.1 and Appendix
5.E.4, adapted to the S-channel. We obtain that Phase I is successful if

Rb1  eq(5.25), (5.20)

Rb2  eq(5.26), (5.21)

and that Phase II is successful if

Rb2  (1− γ) log (1 + S)− (1− γ) log

✓
1 +

S

1 + I

◆
, (5.22)

Rb3p  (1− γ) log

✓
1 +

S

1 + I

◆
, (5.23)

Rb4p  eq(5.41). (5.24)

By imposing that Rb2 is the same in both phases, i.e., that (5.26) and
(5.22) are equal, we get that γ should be chosen equal to

γ0 =
x

log
⇣
1 + C

1+S

⌘
+ x

SNR/1! γ?

x := log

✓
1 +

SI

1 + S+ I

◆
SNR/1! min{1,↵} = ↵.
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Therefore the total sum-rate decoded at the PRx and at the CRx through
the two phases is

(Rp +Rc)
(IB) = Rb1 +Rb2 +Rb3p +Rb4p

= γ0 log (1 + S)− γ0 log

✓
1 +

S

1 + S

◆
+ γ0 log

✓
1 +

C

1 + S

◆

+
(
1− γ0

)
log

✓
1 +

S

1 + I

◆
+
(
1− γ0

)
log

✓
1 + S+

I

1 + I

◆

−
(
1− γ0

)
log

✓
1 +

I

1 + I

◆
.

The tightest sum-capacity upper bounds for this regime are (5.4d) and (5.4e)
(evaluated for Ic = 0), which can be respectively further upper bounded as

(Rp +Rc)
(OB)  γ log (1 + C) + (1− γ) log (1 + S+ I) + (1− γ) log

✓
1 +

S

I

◆

+ 2 log(2) + γ log(3) + (1− γ) log(2),

(Rp +Rc)
(OB)  γ log (1 + S) + 2 (1− γ) log (1 + S) + 3 log(2).

With the first outer bound we obtain

GAP =
(Rp +Rc)

OB − (Rp +Rc)
IB

2
 3 bits/user,

while with the second one we have

GAP =
(Rp +Rc)

OB − (Rp +Rc)
IB

2
 2 bits/user.

Thus, for this regime we have GAP  3 bits/user.

5.E Transmission strategies

Here we develop achievable schemes inspired by the LDA-based transmission
strategies. In the following all signals Xbj for some subscript j, are indepen-
dent proper-complex Gaussian random variables with zero mean and unit
variance and represent codebooks used to convey the bits in bj .

5.E.1 Phase I of duration γ 2 [0, 1] (see also Figure 5.2)

The transmitted signals are

Xp[1] =
p
1− ⌘Xb1 +

p
⌘Xb2 ,

Xc[1] = 0.
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Thus, the received signals at the CTx and at the PRx are

Tf [1] =
p
C
⇣p

1− ⌘Xb1 +
p
⌘Xb2

⌘
+ Zf [1],

Yp[1] =
p
S
⇣p

1− ⌘Xb1 +
p
⌘Xb2

⌘
+ Zp[1].

The CTx applies successive decoding ofXb1 followed byXb2 from Tf [1] which
is possible if

Rb1  γ log (1 + C)− γ log (1 + C⌘) ,

Rb2  γ log (1 + C⌘) .

The PRx decodes Xb1 treating Xb2 as noise from Yp[1], which is possible if

Rb1  γ log (1 + S)− γ log (1 + S⌘) .

Since C ≥ S and motivated by the observation in [12] that all the terms
that appear as noise should be at most at the level of the noise, we choose
⌘ = 1

1+S
. With this we have that Phase I is successful if

Rb1  γ log (1 + S)− γ log

✓
1 +

S

1 + S

◆
, (5.25)

Rb2  γ log

✓
1 +

C

1 + S

◆
. (5.26)

5.E.2 Phase II of duration (1− γ) for Region 3 in Figure 5.1
(see also Figure 5.5)

The transmitted signals are

Xp[2] = Xb3c ,

Xc[2] =
p
⌘Xb2 +

p
1− ⌘Xb4c ,

where we choose ⌘ = 1
1+S

. Thus, the received signal at the PRx and at the
CRx are

Yp[2] =
p
SXb3c +

p
Iej✓c

 r
1

1 + S
Xb2 +

r
S

1 + S
Xb4c

!
+ Zp[2],

Yc[2] =
p
Iej✓pXb3c +

p
S

 r
1

1 + S
Xb2 +

r
S

1 + S
Xb4c

!
+ Zc[2].
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The PRx applies successive decoding from Yp[2] as follows: Xb4c , Xb2 , Xb3c ,
which is possible if

Rb4c  (1− γ) log (1 + S+ I)− (1− γ) log

✓
1 + S+

I

1 + S

◆
, (5.27)

Rb2  (1− γ) log

✓
1 + S+

I

1 + S

◆
− (1− γ) log (1 + S) , (5.28)

Rb3c  (1− γ) log (1 + S) . (5.29)

The CRx successively decodes Xb3c and Xb4c (treating Xb2 as noise) from
Yc[2], which is possible if

Rb3c  (1− γ) log (1 + I+ S)− (1− γ) log (1 + S) , (5.30)

Rb4c  (1− γ) log (1 + S)− (1− γ) log

✓
1 +

S

1 + S

◆
. (5.31)

Thus, Phase II is successful if

Rb3c  min {eq.(5.29), eq.(5.30)} I≥S(1+S)
= eq.(5.29),

Rb4c  min {eq.(5.27), eq.(5.31)} I≥S(1+S)
= eq.(5.31),

Rb2  eq(5.28).

By imposing that Rb2 is the same in both phases, i.e., that (5.26) and (5.28)
are equal, we get that γ should be chosen equal to

γ0 =
x

log
⇣
1 + C

1+S

⌘
+ x

, x := log

✓
1 +

I

(1 + S)2

◆
.

Therefore the total sum-rate decoded at the PRx and at the CRx through
the two phases is

(Rp +Rc)
(IB) = Rb1 +Rb2 +Rb3c +Rb4c ,

as given in (5.11).

5.E.3 Phase II of duration (1− γ) for Region 8 in Figure 5.1
(see also Figure 5.3)

The transmitted signals are

Xp[2] =
p

δ1Xb3c +
p
δ2Xb2 +

p
δ3Xb3p ,

Xc[2] =
p

δ4Xb4p +
p
1− δ4Xb4c ,



230 Chapter 5 Case II: Half-Duplex CTx

where we choose δ1 = 1− δ2 − δ3, δ2 =
S

(1+I)2
, δ3 = δ4 =

1
1+I

, and where

Xb4p is DPC-ed against Xb2 at Yc[2]. Thus, the received signal at the PRx
and at the CRx are

Yp[2] =
p
S
⇣p

δ1Xb3c +
p
δ2Xb2 +

p
δ3Xb3p

⌘

+
p
Iej✓c

⇣p
δ4Xb4p +

p
1− δ4Xb4c

⌘
+ Zp[2],

Yc[2] =
p
Iej✓p

⇣p
δ1Xb3c +

p
δ2Xb2 +

p
δ3Xb3p

⌘

+
p
S
⇣p

δ4Xb4p +
p
1− δ4Xb4c

⌘
+ Zc[2].

The PRx applies successive decoding from Yp[2] as follows: Xb3c , Xb2 , Xb4c

and Xb3p (by treating Xb4p as noise), which is possible if

Rb3c  (1− γ) log (1 + S+ I)− (1− γ) log

✓
1 + I+

S2 + S+ SI

(1 + I)2

◆
, (5.32)

Rb2  (1− γ) log

✓
1+I+

S2+S+SI

(1+I)2

◆
− (1− γ) log

✓
1+I+

S

1 + I

◆
, (5.33)

Rb4c  (1− γ) log

✓
1+I+

S

1 + I

◆
− (1− γ) log

✓
1+

S

1 + I
+

I

1 + I

◆
, (5.34)

Rb3p  (1− γ) log

✓
1 +

S

1 + I
+

I

1 + I

◆
− (1− γ) log

✓
1 +

I

1 + I

◆
. (5.35)

The CRx applies successive decoding from Yc[2] as follows: Xb4c , Xb3c and
Xb4p , which is possible if

Rb4c  (1− γ) log (1 + S+ I)− (1− γ) log

✓
1 + I+

S

1 + I

◆
, (5.36)

Rb3c  (1− γ) log

✓
1 + I+

S

1 + I

◆

− (1− γ) log

✓
1 +

S

1 + I
+

IS+ I+ I2

(1 + I)2

◆
, (5.37)

Rb4p  (1− γ) log

✓
1 +

S

1 + I
+

I

1 + I

◆
− (1− γ) log

✓
1 +

I

1 + I

◆
. (5.38)
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Thus, Phase II is successful if

Rb3c  min {eq.(5.32), eq.(5.37)} S(S+1)>I(I+1)2

= eq.(5.37),

Rb4c  min {eq.(5.34), eq.(5.36)} S(S+1)>I(I+1)2

= eq.(5.34),

Rb2  eq(5.33),

Rb3p  eq(5.35),

Rb4p  eq(5.38).

By imposing that Rb2 is the same in both phases, i.e., that (5.26) and (5.33)
are equal, we get that γ should be chosen equal to

γ0 =
x

log
⇣
1 + C

1+S

⌘
+ x

, x := log

✓
1 +

S2

(1 + I)3 + S+ SI

◆
.

Therefore the total sum-rate decoded at the PRx and at the CRx through
the two phases is

(Rp +Rc)
(IB) = Rb1 +Rb2 +Rb3c +Rb3p +Rb4c +Rb4p ,

as given in (5.12).

5.E.4 Phase II of duration (1− γ) for Region 10 in Figure 5.1
(see also Figure 5.4)

The transmitted signals are

Xp[2] =
p
1− δXb2 +

p
δXb3p ,

Xc[2] = Xb4p ,

where we choose δ = 1
1+I

, and where Xb4p is DPC-ed against Xb2 at Yc[2].
Thus, the received signal at the PRx and at the CRx are

Yp[2] =
p
S
⇣p

1− δXb2 +
p
δXb3p

⌘
+
p
Iej✓cXb4p + Zp[2],

Yc[2] =
p
Iej✓p

⇣p
1− δXb2 +

p
δXb3p

⌘
+
p
SXb4p + Zc[2].

The PRx applies successive decoding from Yp[2] as follows: Xb2 and Xb3p

(by treating Xb4p as noise), that is possible if

Rb2  (1− γ) log (1 + S+ I)− (1− γ) log

✓
1 + I+

S

1 + I

◆
, (5.39)

Rb3p  (1− γ) log

✓
1 + I+

S

1 + I

◆
− (1− γ) log (1 + I) . (5.40)
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The CRx decodes Xb4p (by treating Xb3p as noise) from Yc[2], which is pos-
sible if

Rb4p  (1− γ) log

✓
1 + S+

I

1 + I

◆
− (1− γ) log

✓
1 +

I

1 + I

◆
. (5.41)

Thus Phase 2 is successful if

Rb2  eq(5.39),

Rb3p  eq(5.40),

Rb4p  eq(5.41).

By imposing that Rb2 is the same in both phases, i.e., that (5.26) and (5.39)
are equal, we get that γ should be chosen equal to

γ0 =
x

log
⇣
1 + C

1+S

⌘
+ x

, x := log

✓
1 +

SI

(1 + I)2 + S

◆
.

Therefore the total sum-rate decoded at the PRx and at the CRx through
the two phases is

(Rp +Rc)
(IB) = Rb1 +Rb2 +Rb3p +Rb4p ,

as given in (5.13).



Chapter 6

Conclusions

In this thesis we conducted an information theoretic study on two practically
relevant cooperative wireless networks, namely the HD relay network and
the CCIC, or the IC with unilateral source cooperation.

The first part of the thesis was dedicated to the study of the HD relay
network, where the communication between a source and a destination is
assisted by N relay stations operating in HD mode. In particular, in Chap-
ter 2, we analyzed the case N = 1, i.e., the classical relay channel. For
this system we first determined the exact capacity of the LDA channel, by
showing that random switch and correlated non-uniform input bits at the
relay are optimal. We then showed that, for the Gaussian noise case, the
cut-set outer bound is achievable to within a constant gap by PDF and CF,
evaluated both with deterministic and random switch. This constant gap
result implies the exact knowledge of the gDoF, which was derived in closed
form. We finally designed an ‘optimal to within a constant gap’ scheme
inspired by the LDA of the Gaussian noise channel at high SNR, which
is based on superposition encoding, PDF relaying and successive decoding.
Publications related to this chapter are [65–67]. In Chapter 3, we analyzed
the general case of N relays. We first showed that, for the Gaussian noise
case, the cut-set outer bound is achievable to within a constant gap (which
only depends on N) by NNC; we also extended this constant gap result
to the case of multi-antenna nodes, by showing that the gap only depends
on the total number of antennas in the system. We then proved that, for

233
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any memoryless HD N -relay network with independent noises and for which
the cut-set outer bound is achievable to within a constant gap under cer-
tain assumptions, the (approximately) optimal schedule has at most N + 1
states, out of the 2N possible ones, with a strictly positive probability; the
Gaussian noise network with single-antenna nodes is a practically relevant
model where this result holds; interestingly, it was shown that this result
holds for the case of Gaussian noise networks with multi-antenna nodes as
well where the antennas at the relays are switched between transmit and
receive modes independently of one another; in other words, the (approxi-
mately) optimal schedule has at most N + 1 active states, independently of
the total number of antennas in the system. We also proved that the gDoF
of the Gaussian noise network is the solution of a LP, where the coefficients
of the linear inequality constraints are the solution of several LPs referred
to as the assignment / MWBM problem; beyond its application to Gaussian
relay networks, this technique was also showed to be useful to derive the
gDoF of Gaussian broadcast networks and to solve user scheduling prob-
lems. Finally, through two simple network examples we highlighted under
which channel conditions a best-relay selection scheme is strictly suboptimal
in terms of gDoF and we showed that independently switching the antennas
at the relays not only achieves in general strictly higher rates compared to
using the antennas for the same purpose, but can actually provide a strictly
larger multiplexing gain. Publications related to this chapter are [71–76].

In the second part of the thesis we studied the two-user CCIC, an IC
where one capable source, i.e., the cognitive source CTx, cooperates with /
assists the other source, i.e., the primary source PTx, to convey information.
In contrast to the original overlay cognitive paradigm, where the CTx a priori
knows the message of the PTx, in the CCIC the CTx causally learns the
primary’s data through a noisy in-band link. In particular, in Chapter 4,
we assumed a FD mode of operation at the cognitive source, i.e., the CTx
receives and transmits over the same time-frequency-space resources. For
this system, we first derived two novel outer bounds of the type 2Rp+Rc and
Rp +2Rc on the capacity region of the class of ISD CCICs where the noises
at the different source-destination pairs are independent. We then derived
an achievable rate region based on Gelfand-Pinsker binning, superposition
coding, PDF relaying at the CTx and simultaneous decoding at the receivers.
We specialized the outer and lower bounds on the capacity to the practically
relevant Gaussian noise case and we proved that these bounds are a constant
number of bits apart from one another for the symmetric case (i.e., the two
direct links and the two interfering links are of the same strength) and for
two asymmetric scenarios, namely the Z-channel (i.e., the link between the
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PTx and the CRx is absent) and the S-channel (i.e., the link between the
CTx and the PRx is absent). We showed that the capacity regions of the
Z-channel and S-channel are only characterized by constraints on the single
rates and on the sum-rate, while the one of the symmetric channel has
also bounds of the type 2Rp + Rc and Rp + 2Rc which are active in weak
interference when the cooperation link is weaker than the direct link, i.e., in
this regime unilateral cooperation is too weak to allow for a full utilization
of the channel resources. We finally identified the set of parameters where
causal cooperation achieves the same gDoF of the non-cooperative IC, i.e.,
regimes where cooperation might not be worth implementing, and of the
ideal non-causal CIC, i.e., regimes where the performance is not worsened
by allowing causal learning at the cognitive source. Publications related
to this chapter are [77–83]. In Chapter 5, we constrained the cognitive
source to operate in HD mode, i.e., at each time instant the CTx can either
listen or transmit but not both, and we conducted an analysis similar to
the FD case. In particular, our main contribution was the characterization
to within a constant gap of the sum-capacity for the symmetric Z-, S- and
fully-connected channels. This was accomplished by adapting to the HD case
(by properly accounting for random switch) the sum-capacity outer bounds
of Chapter 4 and by designing novel transmission strategies based on the
LDA of the Gaussian noise channel at high SNR. Similarly to the FD case in
Chapter 4, also for the HD case we highlighted the parameter regimes where
the gDoF equals those of the non-cooperative IC and of the non-causal CIC.
We finally identified the regimes where no losses (in terms of gDoF) incur
by assuming HD mode of operation at the CTx with respect of employing a
CTx with FD capabilities. Publications related to this chapter are [84,85].



Chapter 7

Résumé [Français]

7.1 Introduction

La prochaine majeure innovation des réseaux cellulaires de quatrième généra-
tion consistera en un déploiement massif de l’infrastructure radio, c’est-à-
dire, des stations de base et des stations relais. Ces nœuds seront déployés
sous différentes formes, caractérisés principalement par leur largeur de bande
disponible et le nombre de canaux de fréquence simultanées sur lesquels ils
peuvent opérer au même temps (agrégation du spectre), le type de liens
vers le réseau principal de l’opérateur (par exemple, sans-fil, par câble haut
débit/faible délai), leur capacité de collaborer avec d’autres nœuds simi-
laires et leur zone de couverture et tolérance à l’interférence. La coopéra-
tion au niveau de la couche physique est considérée comme un ingrédient
clé des réseaux cellulaires du futur. La transmission sans-fil permet ainsi
au même signal émis d’être entendu par de multiples noeuds, permettant
que les nœuds s’aident à retransmettre leur message vers la destination.
La coopération promet aussi d’offrir des solutions intelligentes afin de faire
face et de gérer l’interférence, garantir une qualité de service uniforme pour
l’utilisateur mobile à l’intérieur de la cellule et permettre une utilisation
distribuée et agressive du spectre. Tous ces facteurs sont d’une extrême im-
portance et il devient donc critique de comprendre comment correctement
concevoir de tels réseaux coopératifs.

À partir du travail de référence de Shannon “Théorie mathématique des

236
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communications”, la théorie de l’information a joué un rôle essentiel dans
l’évolution de systèmes de communication sans fil. Le cœur de la théorie
de l’information pour les réseaux sans fil est de fournir des aperçus fon-
damentaux pour plusieurs problèmes clés (comme l’interférence), tout en
déterminant les performances limites de ces systèmes. Ceci motive depuis
des nombreuses années des chercheurs du domaine à concevoir des techniques
et des stratégies de transmission s’approchant aussi près que possible de ces
limites.

Dans cette thèse, nous conduisons une étude du point de vue de la théorie
de l’information sur deux groupes pertinents dans la pratique de systèmes
sans fil coopératifs, où les différents nœuds radio de l’infrastructure (sta-
tions de base et relais), en exploitant la nature transmissive du moyen sans
fil, coopèrent entre eux afin d’augmenter les prestations du réseau (par ex-
emple, le débit moyen, la couverture, la robustesse). En particulier, nous
nous concentrons sur les réseaux multi-relais semi-duplex et sur le canal
d’interférence causal-cognitif (CCIC), ou le canal d’interférence (IC) avec
coopération unilatérale à la source.

Le réseau multi-relais est un exemple fondamental d’un système sans
fil coopératif [2], où plusieurs relais aident la communication d’une station
source (connectée à une infrastructure de réseau) à un utilisateur mobile.
L’ajout de stations relais aux infrastructures cellulaires d’aujourd’hui promet
de stimuler la performance de réseau en termes de couverture, débit, et ro-
bustesse. En réalité, les nœuds relais fournissent des couvertures améliorées
dans des zones cibles, offrant une façon par laquelle la station de base peut
communiquer avec des utilisateurs situés aux bords de la cellule. De plus,
l’utilisation de nœuds relais peut offrir une alternative moins chère et avec
une consommation d’énergie inférieure par rapport à l’installation de nou-
velles stations de base, particulièrement pour des régions où le déploiement
de solutions en fibre optique est impossible. Selon le mode de fonction-
nement, les relais sont classifiés en deux catégories : plein-duplex (FD) et
semi-duplex (HD). On dit qu’un relais fonctionne en mode FD s’il peut
recevoir et transmettre simultanément sur les mêmes ressources de temps-
fréquence-espace, et qu’il est en mode HD autrement. Bien que des per-
formances plus hautes puissent être atteintes avec des relais FD, dans les
réseaux sans fil commerciaux l’hypothèse du modèle HD est à présent plus
pratique que celui de FD. En effet, des restrictions pratiques existent quand
un nœud peut simultanément transmettre et recevoir, comme par exem-
ple l’efficacité avec laquelle l’auto-interférence peut être éliminée, ce qui
rend son implémentation difficile [3–5]. Il est donc plus réaliste de supposer
que les stations relais opèrent en mode HD, soit en duplex avec division de
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fréquence (FDD) soit en duplex avec division de temps (TDD). En FDD, les
relais utilisent une bande de fréquence pour transmettre et une autre pour
recevoir, tandis qu’en TDD, les relais écoutent pour une fraction de temps
et transmettent ensuite dans le temps restant. Nous analysons d’abord le
cas de relais simple, c’est-à-dire, le canal relais classique pour lequel nous
cherchons à dériver la performance maximale en termes de capacité, dans
l’esprit de [6]. Nous donnerons de l’intuition intéressante sur la conception
d’une station relais HD, ce qui est un élément critique pour les réseaux mo-
biles du futur. Nous considérons alors un nombre général N de stations
relais HD. Pour un tel réseau il y a 2N états possibles de configuration
écoute-transmission dont la probabilité doit être optimisée. En raison de la
complexité prohibitive de ce problème d’optimisation (c’est-à-dire, exponen-
tielle dans le nombre de relais N), il est critique d’identifier, le cas échéant,
les propriétés structurelles de tels réseaux qui peuvent être exploitées pour
trouver des solutions optimales ayant une complexité limitée. En utilisant les
propriétés des fonctions sous modulaires et des programmes linéaires (LPs),
nous montrerons qu’une classe de réseaux multi-relais HD pratiquement per-
tinente possède des propriétés structurelles qui permettent une remarquable
réduction de la complexité (d’exponentiel en N à linéaire en N).

Le CCIC, ou l’IC avec la coopération à la source unilatérale, représente
un aspect particulier des réseaux sans fil du futur, à savoir, une application
pratique du paradigme de revêtement cognitif [7]. Il consiste d’une source
primaire PTx (l’émetteur principal) et une source CTx cognitif / capable
(l’émetteur cognitif) qui ont pour but de communiquer de façon fiable avec
deux destinataires différents, à savoir le PRx (le récepteur primaire) et le
CRx (le récepteur cognitif), via un canal commun. Différemment du IC
classique non-coopératif, dans le CCIC le CTx (grâce aux capacités radio
avancées) peut entendre le PTx par un lien sans-fil partagé bruyant; le CTx
peut donc exploiter ces informations pour améliorer le taux de performance
des deux systèmes (principal et cognitif). La caractéristique majeure et
nouvelle du CCIC est le concept de connaissance causale / coopération à la
source, qui représente tant un outil de contrôle de l’interférence qu’un modèle
pratique pour la technologie radio cognitive. En réalité, la coopération uni-
latérale à la source offre un moyen de gérer et faire face à l’interférence ‘avec
intelligence’. Dans les systèmes sans fil d’aujourd’hui, l’approche générale
pour traiter l’interférence consiste soit à l’éviter, en essayant de rendre or-
thogonale (dans le temps / la fréquence / l’espace) la transmission des util-
isateurs, soit à simplement la traiter comme du bruit. Cependant, ces ap-
proches peuvent sévèrement limiter la capacité du système puisqu’une or-
thogonalization parfaite au niveau de l’utilisateur n’est pas possible dans la
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pratique 1. Au contraire, dans le CCIC le CTx, qui peut causalement ap-
prendre les données du primaire par un lien bruyant, peut protéger soit sa
propre information (en pré-codant contre un peu d’interférence connue) soit
celle du primaire (en répartissant certaines de ses ressources de transmis-
sion pour aider le PTx à transmettre des données au PRx) de l’interférence.
Ainsi, les techniques de transmission conçues pour le CCIC ont pour but de
démultiplier la structure de l’interférence, au lieu de simplement la traiter
comme le bruit. Le CCIC représente aussi un modèle plus pertinent dans la
pratique pour le paradigme de revêtement cognitif, comparé au cas où le CTx
est assumé à a priori (avant que la transmission ne commence) connâıtre le
message du PTx [11], qui n’est adapté qu’a certains scénarios limités. Au
contraire, dans le CCIC, le CTx apprend causalement les données du PTx
par un lien bruyant. Ainsi, les techniques de transmission conçues pour
le CCIC tiennent en compte le temps dont le CTx nécessite pour décoder
et de (possible) pertes ultérieures dans le décodage du message du PTx.
Nous étudions des configurations de déploiement différentes, qui correspon-
dent à différents scénarios d’interférence. Dans le scénario d’interférence
symétrique les deux destinations sont dans la zone de couverture des deux
sources; ceci implique que les deux destinations souffrent de l’interférence.
Dans le scénario d’interférence asymétrique, une destination ne souffre pas de
l’interférence; dans ce cas un des liens d’interférence est absent. En raison de
l’asymétrie en coopération, on doit considérer deux scénarios asymétriques
d’interférence : le canal Z, où le lien du PTx au CRx est inexistant (c’est-à-
dire, le CRx est hors de la portée du PTx) et le canal S, où le lien du CTx au
PRx est inexistant (c’est-à-dire, le PRx est hors de la portée du CTx). Nous
assumons de plus deux modes de fonctionnement différents au CTx, à savoir
FD (c’est-à-dire que le CTx peut simultanément recevoir et transmettre sur

1Un exemple célèbre de comment ‘traiter l’interférence comme du bruit’ limite sévère-
ment la capacité du système est donné par un réseau ad hoc où n paires aléatoirement
placés ont pour but de communiquer. Dans [8] les auteurs ont montré que, si chaque nœud
décode seulement le signal du voisin le plus proche (en traitant tous les autres signaux
comme du bruit) le débit par paire destination-source converges vers zéro en O (1/

√
n)

pour des réseaux denses (c’est-à-dire, quand l’aire est fixée et n → ∞). Dans [9], il
est montré que cette loi de convergence est optimale d’un point de vue de la théorie de
l’information pour des réseaux étendus (quand n est fixé et l’aire grandit linéairement
avec n) dans la haute atténuation (c’est-à-dire, pour un exposant d’atténuation α > 4).
Dans [10], Özgür et al. ont montré une nouvelle loi de convergence pour des réseaux denses
et des réseaux étendus à faible atténuation: si les nœuds peuvent coopérer, la capacité
totale du réseau augmente avec n, c’est-à-dire, le débit de chaque paire destination-source
n’est pas détérioré avec l’augmentation de n. Ceci a été accompli par une nouvelle archi-
tecture de coopération hiérarchique, où les nœuds dans le même cluster coopèrent dans la
livraison des messages à leurs destinations.
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la même ressource de temps, fréquence, espace) et HD TDD (c’est-à-dire,
dans chaque créneau horaire, le CTx écoute pour une fraction du temps et
transmet ensuite pour le temps restant). Pour chaque topologie nous étu-
dions la performance ultime en termes de capacité dans l’esprit de [6, 12],
en dérivant de nouvelles bornes supérieures pour la région de capacité et en
concevant des stratégies de transmission permettant d’atteindre ces limites
dans le cas du canal avec bruit Gaussien.

7.2 Contributions de cette dissertation

Dans cette thèse nous analysons deux modèles de canal sans fil pertinents
dans la pratique avec coopération entre les nœuds, à savoir le réseau avec
relais HD et le CCIC, ou l’IC avec coopération unilatérale au niveau de
la source. Ces deux scénarios sont étudiés dans deux parties différentes, à
savoir la Partie I et la Partie II, respectivement. En particulier, notre analyse
se sert d’outils de la théorie de l’information et de la théorie des graphes.
Les propriétés des fonctions sous-modulaires et de la programmation linéaire
sont aussi utilisées.

Cette thèse a abouti à 13 publications de conférence et 6 articles de jour-
nal, tous actuellement en phase de soumission ou déjà publié par IEEE. Des
parties de ces œuvres sont réimprimées ensuite avec la permission d’IEEE.

7.2.1 Partie I

Dans la Partie I, nous étudions le réseau de relais HD où N stations relais
aident la communication entre une source et une destination fonctionnant
en HD. Particulièrement,

Chapitre 2. Dans le Chapitre 2, nous analysons le cas avec bruit Gaussien
pour N = 1, c’est-à-dire, le canal relais Gaussien, dont la capacité exacte
C(HD−RC) est inconnue. Nous faisons des progrès vers la détermination de sa
capacité en caractérisant son gDoF (degrés-de-liberté généralisés) d(HD−RC)

(voir la Définition 1) analytiquement et en prouvant un résultat à écart
constant (voir la Définition 2). Nous proposons aussi une stratégie de trans-
mission inspirée par le LDA (approximation linéaire déterministe), qui est
de façon prouvable asymptotiquement optimal.

Définition 1. Le gDoF du canal relais Gaussien HD est defini comme

d(HD−RC) := lim
SNR!+1

C(HD−RC)

log(1 + SNR)
,
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où SNR est le rapport signal sur bruit.

Définition 2. On dit que la capacité C(HD−RC) est connue avec un écart
de GAP bits, si on peut montrer des débits réalisables R(in) et une limite
supérieure R(out) tels que:

R(in)  C(HD−RC)  R(out)  R(in) + GAP.

Nos propres contributions principales peuvent être résumés comme suit:

1. Nous déterminons la capacité exacte du canal LDA: nous montrons
qu’un commutateur aléatoire et des entrées non uniformes corrélés au
niveau du relais sont optimaux. Nous montrons aussi qu’un commu-
tateur déterministe induit une perte maximale de 1 bit. Particulière-
ment, nous démonstrons le théorème suivant,

Théorème 1. La capacité du LDA est donnée par:

C(HD)=

(
βsd si C1

βsd+maxγ2[0,1]min
n
A (γ) , γ(βsr−βsd)

o
autrement

,

(7.1)

où

C1 : βsdmax {βsr,βrd} ,

A (γ) := (1− ✓⇤ (γ)) log
1

1− ✓⇤ (γ)
+ ✓⇤ (γ) log

L− 1

✓⇤ (γ)
,

✓⇤ (γ) := 1−max

⇢
1

L
, γ

}
, L := 2(βrd−βsd),

et où βsr,βsd,βrd sont des entiers non négatifs avec le sens suivant: βsr
est le nombre de bits envoyés par la source et observés au relais, βsd est
le nombre de bits envoyés par la source et observés à la destination et
βrd est le nombre de bits envoyés par le relais et observés à la destina-
tion. C(HD) est atteinte avec un commutateur aléatoire et des entrées
non uniformes corrélés au niveau du relais. De plus, une stratégie avec
un commutateur déterministe et des bits indépendant et identiquement
distribués selon Bernoulli(1/2) au relais est au maximum 1 bit de la
capacité dans (7.1).

2. Nous dérivons le gDoF pour le canal relais Gaussien sous forme an-
alytique: nous montrons que PDF (décoder-et-retransmettre partiel)
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ainsi que CF (compresser-et-retransmettre) sont gDoF optimales, tant
avec un commutateur déterministe qu’avec un commutateur aléatoire
au relais. Nous montrons aussi qu’une technique inspirée par le LDA
avec un commutateur déterministe est gDoF optimal. Particulière-
ment, nous prouvons le théorème suivant,

Théorème 2. Le gDoF d(HD−RC) du canal relais Gaussien HD est

d(HD−RC) =

(
βsd +

(βrd−βsd)(βsr−βsd)
(βrd−βsd)+(βsr−βsd)

pour βsr > βsd, βrd > βsd

βsd autrement
,

où: βsr est l’exposant SNR du lien source-relais, βsd est l’exposant SNR
du lien source-destination et βrd est l’exposant SNR du lien relais-
destination.

3. Pour le cas de bruit Gaussien, nous montrons que les stratégies de
transmission ci-dessus sont optimales à l’intérieur d’un intervalle con-
stant, uniformément sur tous les paramètres du canal. En particulier,
PDF est optimale à 1 bit, CF à 1.61 bits et la stratégie inspirée par
le LDA à 3 bits. Dans tous les cas, l’écart est plus petit que celui
de 5 bits existant dans la littérature pour le cas d’un relais [28]. Nos
résultats d’écart constant sont résumés dans le tableau suivant,

Stratégie de transmission LDAi CF PDF

Écart Analytique 3 bits 1.61 bits 1 bit

Écart Numérique 1.32 bits 1.16 bits 1 bit

où LDAi est une stratégie réalisable inspirée par le LDA.

4. Pour les trois systèmes de codage, nous obtenons une expression ana-
lytique pour la durée des phases de transmission et réception au relais
avec interrupteur déterministe. Ce résultat met en lumière la concep-
tion d’un nœud HD de relais dans les réseaux sans fil de demain.

5. Nous prouvons que PDF avec un commutateur aléatoire est exacte-
ment optimale pour un réseau des relais placés sur une ligne sans
mémoire générale, soit, lorsque le lien direct entre la source et la des-
tination est absent. Une expression analytique pour la distribution
d’entrée optimale avec la politique de commutateur aléatoire n’est
cependant pas disponible.



7.2 Contributions de cette dissertation 243

Le travail présenté dans ce chapitre a donné lieu aux publications suiv-
antes:

• [65] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay channels: generalized degrees of freedom and constant gap
result”, in 2013 IEEE International Conference on Communications
(ICC 2013), Budapest (Hungary), June 2013.

• [66] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “The capacity
to within a constant gap of the Gaussian half-duplex relay channel”,
in 2013 IEEE International Symposium on Information Theory (ISIT
2013), Istanbul (Turkey), July 2013.

• [67] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaus-
sian half-duplex relay channel”, in IEEE Transactions on Information
Theory, Volume 60, Issue n.5, May 2014, Pages 2542-2562.

Une mise en œuvre concrète de la stratégie de transmission inspirée par
le LDA peut être trouvée dans

• [68] R. Thomas, M. Cardone, R. Knopp, D. Tuninetti, B. T. Ma-
haraja, “An LTE implementation of a novel strategy for the Gaussian
half-duplex relay channel”, to appear in 2015 IEEE International Con-
ference on Communications (ICC 2015), London (United Kingdom),
June 2015.

Chapitre 3. Dans le Chapitre 3, nous étudions le réseau relais HD avec
un certain nombre de relais N générale, en suivant l’approche proposée dans
[18]. Nos principales contributions peuvent être résumées comme suit:

1. Pour le cas du bruit Gaussien pertinent dans la pratique, nous prou-
vons que NNC (codage de réseau avec bruit) avec un interrupteur
déterministe atteint la limite cut-set (correctement évaluée pour tenir
compte de l’interrupteur aléatoire) à moins de 1.96(N + 2) bits. Cet
écart est plus petit que l’écart de 5N bits disponible dans la littéra-
ture [28]. Notre résultat d’écart pour un réseau HD de relais est obtenu
comme un cas particulier d’un résultat plus général pour un réseau
Gaussien multidiffusion HD, qui étend l’écart de 1.26 bits au nœud
pour le cas FD [20] à un écart au nœud de 1.96 bits pour le cas de
HD. Nous montrons également que ce résultat d’intervalle peut être
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étendu au cas des nœuds multi-antennes et est de 1, 96 bits par utilisa-
tion du canal par antenne. En particulier, nous prouvons le théorème
suivant

Théorème 3. La cut-set borne supérieure de la capacité du réseau
relais Gaussien HD avec unique antenne et N relais est atteinte par
NNC avec interrupteur déterministe à moins de

GAP  1.96(N + 2) bits. (7.2)

2. Afin de déterminer le gDoF du canal Gaussien, nous avons besoin de
trouver une approximation précise à SNR élevé pour les différents ter-
mes d’information mutuelle impliqués dans la borne supérieure cut-set.
En conséquence d’un intérêt indépendant, au-delà de son application
au réseau relais Gaussien étudié dans ce chapitre, nous montrons que
telles approximations précises peuvent être trouvées comme solution
de problèmes d’appariement maximum bipartite pondéré (MWBM),
ou problèmes d’affectation [69], pour lesquels des algorithmes efficaces
à temps polynomial, tels que l’algorithme Hongrois [70], existent. À
titre d’exemple, on montre que cette technique est utile pour dériver
le gDoF de réseaux Gaussiens diffusés avec et sans relais et pour ré-
soudre des problèmes de planification de l’utilisateur. En particulier,
nous démontrons le théorème suivant

Théorème 4. Le gDoF d(HD−RN) du réseau multi-relais Gaussien HD
est la solution du problème de programmation linéaire suivant:

maximizer {fT x} (7.3)

sujet


−A 12N
1T
2N

0

]
x  f , x ≥ 0, (7.4)

où xT := [λvect, d
(HD−RN)] avec λvect := [λs] 2 R

1⇥2N

+ , fT := [0T
2N

, 1] et

où les éléments de la matrice non négative A 2 R
2N⇥2N peuvent être

calculés comme solutions de 2N−1
(
2N + 1

)
problèmes d’affectation in-

dépendants.

3. Nous prouvons la conjecture de Brahma et al. [33] au-delà des réseaux
Gaussiens avec une topologie de diamant. En particulier, nous mon-
trons que pour tout réseau HD avec N relais, avec des bruits indépen-
dants et pour lesquels la borne supérieure cut-set est approximative-
ment optimale à une constante sous certaines hypothèses, la politique
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de commutation de relais (approximativement) optimale est simple, à
savoir, au plus N+1 états (sur les 2N possibles en total) ont une prob-
abilité strictement positive. L’idée principale est d’utiliser l’extension
de Lovàsz et l’algorithme glouton pour les polyèdres sous-modulaires
pour mettre en évidence les propriétés structurelles du minimum d’une
fonction sous-modulaire. Puis, en utilisant la propriété de point col des
problèmes de min-max et l’existence de solutions faisables basiques
optimales pour la programmation linéaire, une politique de relais (ap-
proximativement) optimale avec le nombre d’états actifs déclaré peut
être démontrée. Réseaux à relais avec bruit Gaussien satisfont à toutes
les hypothèses et donc admettent une programmation simple. Plus im-
portant encore, lorsque les nœuds sont équipés de plusieurs antennes et
les antennes aux relais peuvent être commutées entre mode d’émission
et de réception indépendamment les unes des autres, la stratégie de
commutation a au plus N + 1 états actifs (comme dans le cas mono-
antenne), quel que soit le nombre total d’antennes dans le système.
En particulier, nous prouvons le théorème suivant

Théorème 5. En général, pour chaque réseau relais HD sans mé-
moire, pour lequel:

3.1. entrées indépendantes sont approximativement (à l’intérieur d’un
intervalle constant) optimales dans la borne supérieure cut-set,
c’est-à-dire s’il existe une distribution d’entrée en forme de pro-
duit

PX[1:N+1]|S[1:N ]
=

Y

i2[1:N+1]

PXi|S[1:N ]
(7.5)

pour laquelle nous pouvons limiter la capacité C(HD−RN) comme

C0 − G1  C(HD−RN)  C0 + G2, : C0 := max
PS[1:N ]

min
A✓[1:N ]

I
(fix)
A ,

(7.6)

où G1 et G2 sont des constantes non-négatives qui peuvent être
dépendantes en N mais pas de la probabilité de transition du
canal, et où

I
(fix)
A := I

(
XN+1, XAc ;YN+1, YA|XA, S[1:N ]

)
(7.7)

=
X

s2[0:1]N

λs fs(A), (7.8)
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Figure 7.1: Example d’un reseau avec N = 2 relais et avec nœuds mono-
antenne.

avec

λs := P[S[1:N ] = s] 2 [0, 1] :
X

s2[0:1]N

λs = 1, (7.9)

fs(A) := I
(
XN+1, XAc ;YN+1, YA|XA, S[1:N ] = s

)
, (7.10)

3.2. les “bruits sont indépendants”, c’est-à-dire

PY[1:N+1]|X[1:N+1],S[1:N ]
=

Y

i2[1:N+1]

PYi|X[1:N+1],S[1:N ]
, (7.11)

3.3. les fonctions en (7.10) ne sont pas en fonction de {λs, s 2 [0 :
1]N}, soit elles peuvent dépendre de l’état s mais pas de {λs, s 2
[0 : 1]N},

donc des politiques de relais simples sont (environ) optimales en (7.6),
c’est-à-dire, la fonction de probabilité de masse (environ) optimale
PS[1:N ]

a au plus N + 1 entrées non nulles / états actifs.

4. Nous considérons enfin deux exemples de réseaux: pour le premier scé-
nario dans la Figure 7.1, constitué de N = 2 relais à antenne unique,
nous mettons en évidence les conditions de canal dans lesquelles une
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hrs,1

hds

Figure 7.2: Example d’un reseau avec N = 1 relais avec mr = 2 antennes,
et source et destination mono-antenne.

stratégie de sélection du meilleur relais est strictement sous-optimale
en termes de gDoF et nous gagnons un aperçu de la nature du gain de
débit atteignable dans des réseaux avec plusieurs relais; pour le deux-
ième scénario dans la Figure 7.2, consistant en N = 1 relais équipé
de 2 antennes, nous montrons que la commutation des deux antennes
indépendamment au niveau du relais non seulement atteint en général
des débits strictement plus élevés par rapport à l’utilisation des an-
tennes pour le même but, mais peut fournir effectivement un facteur
de pré-logarithme strictement plus grand.

Le travail présenté dans ce chapitre a donné lieu aux publications suiv-
antes:

• [71] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay networks: improved gap and a connection with the as-
signment problem”, in 2013 IEEE Information Theory Workshop (ITW
2013), Seville (Spain), September 2013.

• [72] M. Cardone, D. Tuninetti, R. Knopp, “On user scheduling for
maximum throughput in K-user MISO broadcast channels”, to ap-
pear in 2015 IEEE International Conference on Communications (ICC
2015), London (United Kingdom), June 2015.

• [73] M. Cardone, D. Tuninetti, R. Knopp, “The approximate optimal-
ity of simple schedules for half-duplex multi-relay networks”, to appear
in 2015 IEEE Information Theory Workshop (ITW 2015), Jerusalem
(Israel), May 2015.
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• [74] M. Cardone, D. Tuninetti, R. Knopp, “Gaussian MIMO half-
duplex relay networks: approximate optimality of simple schedules”, to
appear in 2015 IEEE International Symposium on Information Theory
(ISIT 2015), Hong Kong, June 2015.

• [75] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay networks: improved constant gap and connections with
the assignment problem”, in IEEE Transactions on Information The-
ory, Volume 60, Issue n.6, June 2014, Pages 3559-3575.

• [76] M. Cardone, D. Tuninetti, R. Knopp,“On the optimality of simple
schedules for networks with multiple half-duplex relays”, submitted to
IEEE Transactions on Information Theory, December 2014.

7.2.2 Partie II

Dans la Partie II, nous étudions le CCIC, ou l’IC avec coopération de la
source unilatérale, qui se compose de deux paires de source-destination
partageant le même canal et où le CTx espionne le PTx par un lien de com-
munication avec perte et peut donc consacrer une partie de ses ressources de
transmission pour aider la communication du paire primaire. En particulier,

Chapitre 4. Dans le Chapitre 4, nous considérons le mode de fonction-
nement FD à la source cognitive, à savoir le CTx peut recevoir et transmet-
tre simultanément sur les mêmes ressources de fréquence-espace-temps. Nos
principales contributions peuvent être résumées comme suit:

1. Nous développons un cadre général pour calculer les bornes supérieures
du type 2Rp+Rc et Rp+2Rc (où Rp, respectivement Rc, est le débit de
transmission du PTx, respectivement du CTx) sur la capacité du CCIC
général ISD (injectif semi-déterministe) lorsque les bruits aux différents
couples source-destination sont indépendants; ce cadre comprend par
exemple les retours d’information de la destination prévue. Comme
cas particulier, nous retrouvons et renforçons les limites dérivées dans
[47, 57]. L’ingrédient technique clé est la preuve de deux châınes de
Markov. En particulier, nous prouvons le théorème suivant

Théorème 6. Pour le ISD CCIC de Figure 7.3 satisfaisant

PYFc,Yp,Yc|Xp,Xc
= PYp|Xp,Xc

PYFc,Yc|Xp,Xc
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Figure 7.3: Le CCIC général ISD, où Yp = fp (Xp, Tc), Yc = fc (Xc, Tp)
et YFc = ff (Xc, Tf), où fu, u 2 {p, c}, est une fonction déterministe et
invertible donnée Xu et ff est une fonction déterministe et invertible donnée
Xc.

la région de capacité est bornée supérieurement par

2Rp+Rc  I (Yp;Xp, Xc)+I (Yp;Xp|Yc, Tf , Xc)+I (Yc, Tf ;Xp, Xc|Tc) ,

Rp+2Rc  I (Yc;Xp, Xc)+I (Yc;Xc|Yp, Tf , Xp)+I (Yp, Tf ;Xp, Xc|Tp) ,

pour certaines distributions d’entrée PXp,Xc.

2. Nous concevons une stratégie de transmission pour le CCIC général
sans mémoire et nous en dérivons la région de débit atteignable. La
stratégie proposée utilise la superposition et l’encodage binning, trans-
mission PDF et le décodage simultané sur les récepteurs. Dès que le
CCIC partage des caractéristiques communes avec l’IC classique non
coopératif, des messages à la fois communes (décodés également au
niveau du récepteur non-voulu) et privés (traités comme du bruit au
niveau du récepteur non-voulu) sont utilisés. En outre, nous utilisons
des messages coopératifs (envoyés en coopération avec le CTx) et non-
coopératifs (directement envoyés au PRx sans l’aide du CTx) pour le
PTx, tandis que les messages du CTx sont seulement non coopératifs.

3. Nous évaluons la limite externe et les régions de débit atteignable pour
le canal de bruit Gaussien pertinent dans la pratique dans la Figure 7.4.
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Figure 7.4: Le CCIC de bruit Gaussien.

Nous prouvons que pour le cas symétrique, à savoir, lorsque les deux
liens directs et les deux liens croisés interférents sont de la même force,
pour le canal Z, à savoir, lorsque le lien du PTx au CRx est absent,
et pour le canal S, soit, lorsque le lien du CTx au PRx est absent,
la région atteignable est à un nombre constant de bits (uniformément
sur tous les gains de canal) de la région de la borne extérieure. En
particulier, nos résultats d’écart constant sont indiqués dans les trois
théorèmes suivants.

Théorème 7. La limite extérieure de la région de capacité du CCIC
Gaussien symétrique (c’est-à-dire avec référence à la Figure 7.4 où
Sp = Sc = S et Ip = Ic = I) est atteignable à moins de 5 bits. Partic-
ulièrement,

3.1. quand I ≥ S, alors GAP  1 bit,

3.2. quand I < S et C  S, alors GAP  5 bits,

3.3. quand I < S et S < C, alors GAP  2 bits.

Ces résultats d’écart constant sont également reportés sur la Figure
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7.5, où ↵ est l’exposant SNR des liens d’interférence, à savoir I = S↵

et β est l’exposant SNR de la liaison de coopération, à savoir, C = Sβ.
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Figure 7.5: Différent régimes dependant de valeurs ↵ et β, avec d? :=
max {↵, 1− ↵}+max {↵, 1 + β −max {↵,β}}.

Théorème 8. La limite extérieure de la région de capacité du canal
Z (à savoir, avec référence à la Figure 7.4 Ip = 0, le lien PTx ! CRx
est non-existant) est caractérisée sous 2 bits. En particulier,

3.1. quand C  Sp, alors GAP  2 bits,

3.2. quand C > Sp et Sc  Ic, alors GAP  1.5 bits,

3.3. quand C > Sp et Sc > Ic, alors GAP  1 bit.

Ces résultats d’écart constant sont également représentés sur la Figure
7.6 pour le cas de liens directs aussi fortes, soit, Sp = Sc = S1 et où
↵ est l’exposant SNR de la liaison d’interférence, soit Ic = S↵ et β est
l’exposant SNR du lien de coopération, à savoir, C = Sβ.

Théorème 9. La limite extérieure de la région de capacité du canal
S (à savoir, avec référence à la Figure 7.4 Ic = 0, le lien CTx ! PRx
est non-existant) est atteignable à moins de 3 bits. En particulier,
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Figure 7.6: gDoF optimals et écart constant pour le canal Z dans les dif-
férents régimes dans le plan (↵,β).

3.1. quand C  max {Sp, Ip}, alors GAP  2.5 bits,

3.2. quand max {Sp, Ip} < C  IpSp, alors GAP  3 bits,

3.3. quand C > IpSp, alors GAP  1 bit.

Ces résultats d’écart constant sont également rapportés sur la Figure
7.7 pour le cas de liens directs aussi forts Sp = Sc = S1 et où ↵ est
l’exposant SNR de la liaison d’interférence, à savoir, Ip = S↵ et β est
l’exposant SNR du lien de coopération, à savoir, C = Sβ.

Fait intéressant, nous montrons que les régions de capacité des deux
scénarios asymétriques (c’est-à-dire le canal Z et le canal S) ne pos-
sèdent pas de limites du type 2Rp + Rc et Rp + 2Rc, à savoir, la
coopération unilatérale permet une pleine utilisation des ressources du
canal. D’autre part, nous prouvons que les deux nouvelles limites ex-
térieures du type 2Rp + Rc et Rp + 2Rc sont actives pour le canal
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Figure 7.7: gDoF optimals et écart constant pour le canal S dans les dif-
férents régimes dans le plan (↵,β).

symétrique avec interférences faible et lorsque le lien de coopération
est plus faible que le lien direct, ce qui signifie que pour ce régime
la coopération unilatérale est trop faible et laisse des ressources de
système sous-utilisées.

4. Les résultats d’écart constant impliquent la connaissance exacte du
gDoF pour les canaux Z, S et symétrique. Pour chaque configuration,
le gDoF est rapporté sur la Figure 7.5 (pour le canal symétrique), sur
la Figure 7.6 (pour le canal Z) et sur la Figure 7.7 (pour le canal S).
Nous identifions les régimes de paramètres où le CCIC Gaussien (à la
fois avec des configurations symétriques et asymétriques) est équiva-
lent en termes de gDoF au IC Gaussien non-coopératif [12] (c’est-à-
dire, l’implémentation de la coopération unilatérale pourrait ne pas
être intéressant dans les systèmes pratiques) et au CIC Gaussien non-
causal [64] (en d’autres mots, la coopération causale unilatérale atteint
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la performance ultime de la technologie radio cognitive). Ces compara-
isons mettent en lumières les régimes de paramètres et les topologies
de réseau qui pourraient fournir dans la pratique un gain de débit
illimité par rapport à des technologies actuellement disponibles (non-
cognitives).

Le travail présenté dans ce chapitre a donné lieu aux publications suiv-
antes:

• [77] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Approximate
sum-capacity of full- and half-duplex asymmetric interference channels
with unilateral source cooperation”, in 2013 Information Theory and
Applications Workshop (ITA 2013), San Diego (USA), February 2013.

• [78] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the interfer-
ence channel with causal cognition”, in 2013 IEEE International Con-
ference on Communications (ICC 2013), Budapest (Hungary), June
2013.

• [79] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaussian
interference channel with unilateral generalized feedback”, in 6th In-
ternational Symposium on Communications, Control and Signal Pro-
cessing (ISCCSP 2014), Athens (Greece), May 2014.

• [80] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the capacity
of full-duplex causal cognitive interference channels to within a con-
stant gap”, in 2014 IEEE International Conference on Communications
(ICC 2014), Sydney (Australia), June 2014.

• [81] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “New outer
bounds for the interference channel with unilateral source coopera-
tion”, in 2014 IEEE International Symposium on Information Theory
(ISIT 2014), Honolulu (Hawaii), July 2014.

• [82] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the capac-
ity of the two-user Gaussian causal cognitive interference channel”, in
IEEE Transactions on Information Theory, Volume 60, Issue n.5, May
2014, Pages 2512-2541.

• [83] M. Cardone, D. Tuninetti, R. Knopp, “The two-user causal cogni-
tive interference channel: novel outer bounds and constant gap result
for the symmetric Gaussian noise channel in weak Interference”, sub-
mitted to IEEE Transactions on Information Theory, March 2014.
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Figure 7.8: Différent régimes dependant de valeurs ↵ et β.

Chapitre 5. Dans le Chapitre 5, nous considérons le mode de fonction-
nement HD à la source cognitive, à savoir, dans chaque tranche de temps
le CTx écoute pour une fraction du temps et puis transmet dans le temps
restant. Nos principales contributions peuvent être résumées comme suit:

1. Nous caractérisons la somme des capacités à l’intérieur d’un intervalle
constant pour le canal Z Gaussien symétrique, le canal S Gaussien
symétrique et le HD-CCIC Gaussien symétrique entièrement connecté;
cela est accompli en adaptant les bornes supérieurs de la somme des
capacités pour la coopération FD unilatérale dans le Chapitre 4 au
cas de la coopération unilatérale HD en utilisant le cadre théorique
de [18], à savoir, en tenant correctement en compte d’un commutateur
aléatoire au CTx, et en concevant des nouvelles stratégies de trans-
mission inspirées par le LDA du canal avec bruit Gaussien à SNR
élevé. En particulier, l’intervalle est de 5 bits/utilisateur pour le cas
symétrique et de 3 bits/utilisateur pour le canal Z symétrique et le
canal S symétrique. Nous remarquons que ces résultats d’écart limité,
différemment de [55], sont dérivés en tenant correctement en compte
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Figure 7.9: gDoF optimals et écartement constant pour le canal Z dans les
différents régimes dans le plan (↵,β).

l’utilisation d’un commutateur aléatoire au CTx, et ils sont aussi plus
petits que ceux dérivés en [55]. En particulier, nos résultats d’écart
constants sont indiqués dans les trois théorèmes suivants.

Théorème 10. La somme des capacités du HD - CCIC Gaussien
symétrique (à savoir, avec référence à la Figure 7.4 où Sp = Sc = S et
Ip = Ic = I) est atteignable à moins de 5 bits/utilisateur.

La Figure 7.8 montre l’écart (par utilisateur) pour le HD - CCIC
symétrique Gaussien pour les différentes régions dans le plan (↵,β),
où l’ensemble entier des paramètres a été partitionné en plusieurs
sous-régions en fonction de différents niveaux de coopération (β, avec
C = Sβ) et d’interférence (↵, avec I = S↵).

Théorème 11. La somme des capacités du canal Z symétrique (c’est-
à-dire, avec référence à la Figure 7.4 où Sp = Sc = S et Ip = 0, donc
le lien PTx ! CRx est non-existant) est caractérisée à moins de 3
bits/utilisateur.

Le diagramme dans la Figure 7.9 montre l’écart (par utilisateur) pour
le canal Z symétrique Gaussien pour les différentes régions dans le
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Figure 7.10: gDoF optimals et écart constant pour le canal S dans les dif-
férents régimes dans le plan (↵,β).

plan (↵,β), où l’ensemble entier des paramètres a été partitionné en
plusieurs sous-régions en fonction des différents niveaux de coopération
(β, avec C = Sβ) et d’interférence (↵, avec Ic = S↵).

Théorème 12. La somme des capacités du canal S symétrique (c’est-
à-dire, avec référence à la Figure 7.4 où Sp = Sc = S et Ic = 0, donc
le lien CTx ! PRx est non-existant) est atteignable à moins de 3
bits/utilisateur.

Le diagramme dans Figure 7.10 montre l’écart (par utilisateur) pour
le canal S symétrique Gaussien pour les différentes régions dans le
plan (↵,β), où l’ensemble des paramètres a été partitionné en plusieurs
sous-régions en fonction de différents niveaux de coopération (β, avec
C = Sβ) et d’interférence (↵, avec Ip = S↵).

2. En utilisant le modèle LDA, nous obtenons une expression analytique
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pour le gDoF et pour les différentes variables d’optimisation (par exem-
ple, la stratégie, les allocations de puissance, les systèmes de codage et
ordres de décodage correspondants, etc.). Ce résultat met en lumière
la façon dont la conception du CTx HD doit être correctement effec-
tuée, ce qui est une tâche pratique importante pour les réseaux sans
fil de demain.

3. Comme pour le cas FD au Chapitre 4, nous comparons le gDoF du
HD-CCIC Gaussien avec celui de: (i) le IC classique non coopératif,
à savoir, où il n’y a pas de coopération entre les nœuds [12], et (ii) le
CIC non-causal, à savoir, où le CTx a une connaissance non-causale
du message du PTx [64]. En particulier, nous trouvons les régimes de
paramètres où la coopération unilatérale HD ne donne pas d’avantages
par rapport à l’IC non coopératif [12], et ceux où il atteint les limites
de performances ultimes du CIC non-causal [64]. Fait intéressant, nous
montrons que dans les régimes où le HD-CCIC Gaussien surpasse l’IC
non coopératif le lien de coopération doit être capable de transmettre
de manière fiable un débit supérieur à la somme des capacités de l’IC
non coopératif correspondant. Pour chaque configuration, le gDoF est
montré sur la Figure 7.8 (pour le canal symétrique), sur la Figure 7.9
(pour le canal Z) et sur la Figure 7.10 (pour le canal S).

4. Nous identifions enfin les régimes où une perte, en termes de gDoF, est
subie en utilisant le mode de fonctionnement HD au CTx par rapport
au cas FD analysé au Chapitre 4. Ces pertes pourraient motiver (dans
ces régimes) l’utilisation d’un CTx plus cher avec des capacités FD
dans les futurs réseaux sans fil.

Le travail présenté dans ce chapitre a donné lieu aux publications suiv-
antes:

• [84] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “The symmetric
sum-capacity of the Gaussian half-duplex causal cognitive interference
channel to within a constant gap”, in 2013 IEEE International Sym-
posium on Information Theory (ISIT 2013), Istanbul (Turkey), July
2013.

• [85] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaus-
sian interference channel with half-duplex causal cognition”, in IEEE
Journal on Selected Areas in Communications, Volume 32, Issue n.11,
November 2014, Pages 2177-2189.
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[33] S. Brahma, A. Özgür, and C. Fragouli, “Simple schedules for half-
duplex networks,” in IEEE International Symposium on Information
Theory (ISIT), July 2012, pp. 1112 –1116.

[34] S. Brahma and C. Fragouli, “Structure of optimal schedules in diamond
networks,” in IEEE International Symposium on Information Theory
(ISIT), June 2014, pp. 641–645.

[35] L. Ong, M. Motani, and S. J. Johnson, “On capacity and optimal
scheduling for the half-duplex multiple-relay channel,” IEEE Transac-
tions on Information Theory, vol. 58, no. 9, pp. 5770 –5784, September
2012.

[36] R. H. Etkin, F. Parvaresh, I. Shomorony, and A. S. Avestimehr, “Com-
puting half-duplex schedules in Gaussian relay networks via min-cut
approximations,” IEEE Transactions on Information Theory, vol. 60,
no. 11, pp. 7204–7220, November 2014.

[37] A. Carleial, “A case where interference does not reduce capacity (cor-
resp.),” IEEE Transactions on Information Theory, vol. 21, no. 5, pp.
569–570, September 1975.

[38] H. Sato, “On the capacity region of a discrete two-user channel for
strong interference (corresp.),” IEEE Transactions on Information
Theory, vol. 24, no. 3, pp. 377–379, May 1978.

[39] T. Han and K. Kobayashi, “A new achievable rate region for the inter-
ference channel,” IEEE Transactions on Information Theory, vol. 27,
no. 1, pp. 49 – 60, January 1981.

http://mediatum.ub.tum.de/node?id=1231171
http://mediatum.ub.tum.de/node?id=1231171


Bibliography 263

[40] A. E. Gamal and M. Costa, “The capacity region of a class of de-
terministic interference channels (corresp.),” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 343–346, March 1982.

[41] A. Host-Madsen, “Capacity bounds for cooperative diversity,” IEEE
Transactions on Information Theory, vol. 52, no. 4, pp. 1522 –1544,
April 2006.

[42] G. Kramer, “Outer bounds on the capacity of Gaussian interference
channels,” IEEE Transactions on Information Theory, vol. 20, no. 3,
pp. 581–586, March 2004.

[43] S. Gelfand and M. Pinsker, “Coding for channel with random param-
eters,” Problems of control and information theory, vol. 9, no. 1, pp.
19 – 31, 1980.

[44] M. Costa, “Writing on dirty paper (corresp.),” IEEE Transactions on
Information Theory, vol. 29, no. 3, pp. 439 – 441, May 1983.

[45] D. Tuninetti, “An outer bound region for interference channels with
generalized feedback,” in Information Theory and Applications Work-
shop (ITA), February 2010, pp. 1–5.

[46] ——, “An outer bound for the memoryless two-user interference chan-
nel with general cooperation,” in IEEE Information Theory Workshop
(ITW), September 2012, pp. 217–221.

[47] V. M. Prabhakaran and P. Viswanath, “Interference channels with
source cooperation,” IEEE Transactions on Information Theory,
vol. 57, no. 1, pp. 156 –186, January 2011.

[48] E. Telatar and D. Tse, “Bounds on the capacity region of a class of
interference channels,” in IEEE International Symposium on Informa-
tion Theory (ISIT), June 2007, pp. 2871–2874.

[49] R. Tandon and S. Ulukus, “Dependence balance based outer bounds
for Gaussian networks with cooperation and feedback,” IEEE Trans-
actions on Information Theory, vol. 57, no. 7, pp. 4063 –4086, July
2011.

[50] A. Hekstra and F. Willems, “Dependence balance bounds for single-
output two-way channels,” IEEE Transactions on Information Theory,
vol. 35, no. 1, pp. 44 –53, January 1989.



264 Bibliography

[51] S. Yang and D. Tuninetti, “Interference channel with generalized feed-
back (a.k.a. with source cooperation): Part i: Achievable region,”
IEEE Transactions on Information Theory, vol. 57, no. 5, pp. 2686
–2710, May 2011.

[52] ——, “Interference channels with source cooperation in the strong co-
operation regime: Symmetric capacity to within 2 bits/s/hz with dirty
paper coding,” in Conference Record of the Forty Fifth Asilomar Con-
ference on Signals, Systems and Computers, November 2011, pp. 2140
–2144.

[53] Z. Wu and M. Vu, “Partial decode-forward binning schemes for the
causal cognitive relay channels,”CoRR, vol. abs/1111.3966, 2011.

[54] M. Mirmohseni, B. Akhbari, and M. Aref, “On the capacity of in-
terference channel with causal and noncausal generalized feedback at
the cognitive transmitter,” IEEE Transactions on Information Theory,
vol. 58, no. 5, pp. 2813–2837, May 2012.

[55] R. Wu, “Interference channels with half-duplex source cooperation,”
Master’s thesis, Electrical and Computer Engineering Department,
University of Illinois at Urbana-Champaign, May 2011. [Online].
Available: http://hdl.handle.net/2142/24136

[56] C. Suh and D. N. C. Tse, “Feedback capacity of the Gaussian inter-
ference channel to within 2 bits,” IEEE Transactions on Information
Theory, vol. 57, no. 5, pp. 2667–2685, May 2011.

[57] A. Sahai, V. Aggarwal, M. Yuksel, and A. Sabharwal, “Capacity of all
nine models of channel output feedback for the two-user interference
channel,” IEEE Transactions on Information Theory, vol. 59, no. 11,
pp. 6957–6979, November 2013.

[58] S.-Q. Le, R. Tandon, M. Motani, and H. Poor, “The capacity region
of the symmetric linear deterministic interference channel with partial
feedback,” in 50th Annual Allerton Conference on Communication,
Control, and Computing, October 2012, pp. 1864–1871.

[59] ——, “Approximate capacity region for the symmetric Gaussian inter-
ference channel with noisy feedback,” submitted to IEEE Transactions
on Information Theory, December 2012.

http://hdl.handle.net/2142/24136


Bibliography 265

[60] W. Wu, S. Vishwanath, and A. Arapostathis, “Capacity of a class of
cognitive radio channels: Interference channels with degraded message
sets,” IEEE Transactions on Information Theory, vol. 53, no. 11, pp.
4391–4399, November 2007.
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