Numerical methods and models in market risk and financial valuations area

Abstract : This work is organized in two themes : (i) A novel numerical method to price options on manyassets, (ii) The liquidity risk, the limit order book modeling and the market microstructure.First theme : Greedy algorithms and applications for solving partial differential equations in high dimension Many problems of interest for various applications (material sciences, finance, etc) involve high-dimensional partial differential equations (PDEs). The typical example in finance is the pricing of a basket option, which can be obtained by solving the Black-Scholes PDE with dimension the number of underlying assets. We propose to investigate an algorithm which has been recently proposed and analyzed in [ACKM06, BLM09] to solve such problems and try to circumvent the curse of dimensionality. The idea is to represent the solution as a sum of tensor products and to compute iteratively the terms of this sum using a greedy algorithm. The resolution of high dimensional partial differential equations is highly related to the representation of high dimensional functions. In Chapter 1, we describe various linear approaches existing in literature to represent high dimensional functions and we introduce the high dimensional problems in finance that we will address in this work. The method studied in this manuscript is a non-linear approximation method called the Proper Generalized Decomposition. Chapter 2 shows the application of this method to approximate the so-lution of a linear PDE (the Poisson problem) and also to approximate a square integrable function by a sum of tensor products. A numerical study of this last problem is presented in Chapter 3. The Poisson problem and the approximation of a square integrable function will serve as basis in Chapter 4for solving the Black-Scholes equation using the PGD approach. In numerical experiments, we obtain results for up to 10 underlyings. Second theme : Liquidity risk, limit order book modeling and market microstructure. Liquidity risk and market microstructure have become in the past years an important topic in mathematical finance. One possible reason is the deregulation of markets and the competition between them to try to attract as many investors as possible. Thus, quotation rules are changing and, in general, more information is available. In particular, it is possible to know at each time the awaiting orders on some stocks and to have a record of all the past transactions. In this work we study how to use this information to optimally execute buy or sell orders, which is linked to the traders' behaviour that want to minimize their trading cost. In [AFS10], Alfonsi, Fruth and Schied have proposed a simple LOB model. In this model, it is possible to explicitly derive the optimal strategy for buying (or selling) a given amount of shares before a given deadline. Basically, one has to split the large buy (or sell) order into smaller ones in order to find the best trade-off between attracting new orders and the price of the orders. Here, we focus on an extension of the Limit Order Book (LOB) model with general shape introduced by Alfonsi, Fruth and Schied. The additional feature is a time-varying LOB depth that represents a new feature of the LOB highlighted in [JJ88, GM92, HH95, KW96]. We solve the optimal execution problem in this framework for both discrete and continuous time strategies. This gives in particular sufficient conditions to exclude Price Manipulations in the sense of Huberman and Stanzl [HS04] or Transaction-Triggered Price Manipulations (see Alfonsi, Schied and Slynko). The seconditions give interesting qualitative insights on how market makers may create price manipulations
Document type :
Theses
Complete list of metadatas

Cited literature [61 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/tel-01347050
Contributor : Abes Star <>
Submitted on : Wednesday, July 20, 2016 - 11:39:10 AM
Last modification on : Tuesday, June 27, 2017 - 12:50:40 PM

File

TH2013PEST1086.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01347050, version 1

Collections

Citation

José Arturo Infante Acevedo. Numerical methods and models in market risk and financial valuations area. General Mathematics [math.GM]. Université Paris-Est, 2013. English. ⟨NNT : 2013PEST1086⟩. ⟨tel-01347050⟩

Share

Metrics

Record views

217

Files downloads

142