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General Introduction

Titanium is a relatively recent light metal, by metallurgical history standard. It is

very important and much used both as pure and allied in the aeronautic industry

and in biomedical applications as well as for transport of some corrosive products

at very low temperatures for instance [1, 2, 3, 4].

It is much used in its hexagonal close packed (hcp) α-phase under mechanical

constraints and it is therefore important to study the elementary mechanisms

of its deformation behaviour which will be influenced by the presence of impu-

rities. The two principal plastic deformation modes in hexagonal materials are

dislocation gliding and deformation twinning [5, 6]. It is well known that the

room-temperature plastic deformation of titanium is controlled by the motion of

screw dislocations [7], whose non-planar core structure induces a large Peierls

stress. Because of the insufficient number of independent slip systems in hcp met-

als, like α-titanium, deformation twinning is also activated, all the more so for

deformations along the c-axis, and/or at low temperature.

Titanium alloys always contain some residual solute impurities such as oxygen,

hydrogen, nitrogen and carbon. Oxygen is an interstitial impurity with a solubility

limit of perhaps 1 at.% (∼3400 weight ppm) at room temperature. Oxygen has

a clear strengthening effect [8, 9, 10]. It is known to increase titanium and it

alloys yield stress by changing the structure of dislocation cores and by reducing

the mobility of screw dislocations. It is also supposed to be responsible for the

dynamic strain ageing phenomena [8, 11]. An oxygen diffusion controlled twinning

during low-temperature creep has been proposed [12]. Hydrogen, with a solubility

limit as small as about 0.1 at.% (∼ 20 weight. ppm) at room temperature, has a

complicated, yet important role. It softens titanium in some cases [13, 14, 15] and

hardens it in other cases [17, 18]. For example, one softening effect is the fact that

the sustained load cracking resistances are increased with the increase of hydrogen

concentration. The hydrogen enhanced localized plasticity mechanism is used

to explain this phenomena. It suggests that hydrogen facilitates the dislocation
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2 General Introduction

emission and glide at crack tips and can thus accelerate the creep in this region

and prevents the attainment of the high localized stresses necessary for fracture

[19, 20]. The non-monotonic effect of H on low temperature creep in titanium

is also observed [21]. Furthermore, different H/O concentration ratios also affect

the creep phenomena and other mechanical properties of α-Ti [11, 16, 20]. As

suggested by analysing of compression test on commercial-purity titanium, the

presence of hydrogen decreases the extent of dynamic strain ageing in titanium [22].

This phenomenon can be explained by assuming that hydrogen in solid solution

prevents other solute atoms from segregating to mobile dislocations thanks to the

high mobility of hydrogen.

Thus, accurate atomistic level simulations of the interactions of oxygen and hydro-

gen with extended defects on α-titanium are key points to understand the strong

effect of oxygen and the complex role of hydrogen on the plasticity of α-titanium.

Thanks to the development of high performance computing clusters and advanced

atomistic models [23, 24], density functional theory based ab initio calculations

can now be performed to study solute-extended defects interactions.

I shall not try to explain in this manuscript how titanium nuclei were first synthe-

sized in stars, see [25], whether it happened in supernovae or in neutron mergers.

I shall not either try to explain why titanium is the ninth most abundant element

by weigh in Earths rocky crust, nor shall I recall when and how titanium was

discovered, in its dioxide form, in the late eighteenth century by William Gregor

and Martin Heinrich Klaproth, who still knew nothing about it, and only fully ex-

ploited much later on thanks to very important technological progresses, e.g. with

Guillaume/William Kroll. I shall concentrate on titanium, in its low temperature

α-phase, on its extended defects, and on the influence of O and H by using density

functional theory based ab initio calculations.

Chapter 1 presents a literature review of previous studies in three parts: i) ex-

tended defects in α-titanium (stacking-faults, dislocation cores, twin boundaries

and twinning disconnections) and the small scale plasticity; ii) interstitial solutes

H and O in α-titanium and iii) the effects of H and O on such extended defects.

Chapter 2 presents the theories and the simulation tools and techniques and models

used in this work. Density functional theory via VASP program and the zero

point energy calculations are rapidly introduced. Different simulation models are

presented for solutes interactions in Ti; this chapter 2 also presents elastic constant

calculations, extended defects and the effects of H and O on them.



General Introduction 3

In chapter 3, the main goal is to study the effects of H and O in α titanium. It

addresses the problem of the preferred interstitial positions of H and O in α-Ti, the

interaction of H and O with α-Ti, the effects of H and O on the elastic constants

of α-Ti and the migration of H and O in α-Ti. These studies constitute first steps

before studying the effects of H and O on extended defects in α-Ti.

In chapter 4, I study the effects of hydrogen and oxygen on various stacking faults

and dislocation cores. Various stacking faults are first built in α-Ti on the basal,

prismatic, π1 and π2 plane. I also study various generalised stacking faults, ie. I

get several Vitek’s gamma surfaces. The 〈a〉 and 〈c+a〉 screw dislocation cores

are built and studied. The effect of H and O on the stacking faults, and on the

〈a〉 screw core and its glide is eventually carried out in that chapter.

In Chapter 5, I study the effects of hydrogen and oxygen on four important twin

boundaries and on the {101̄2} twinning disconnection. The four TBs, {101̄2},
{101̄1}, {112̄1}, {112̄2}, are first built and relaxed, and the effects of H and O

on their structures and on their behaviour under deformation along 〈c〉-axis or

along the direction perpendicular to their twin plane K1 are investigated. A new

Twinning disconnection (TD) dipole model is proposed and built. The effects of

hydrogen and oxygen on the {101̄2} TD is briefly studied.





Chapter 1

Literature Review

This chapter presents a literature review of studies done on three parts: extended

defects in α-titanium; interstitial solutes H and O in α-titanium and the effects of

H and O on such extended defects.

In the first part, I started by the discussion of phases of titanium. The slip

systems, stacking-faults, dislocation cores and their glides are summarised. Twin

boundaries and twinning disconnection are then presented in this part.

In the second part, different interstitial sites containing H and O are summarised.

The solubilities of H and O are then discussed. Some results of H and O diffusion

obtained from DFT+Phonon calculations are also presented.

In the third part, the effects of H and O on dislocation core are presented, much

less studied compared to dislocation-interstitial solute interaction, their effects on

twinning and twinning dislocation are briefly discussed .

5



6 Chapter 1 Literature Review

1.1 Some general facts about of α-titanium

1.1.1 Preliminaries about phases in Ti

In pure titanium, three phases are mainly known: α, β and ω [1, 2, 3, 26]. The α

phase has a hexagonal close-packed (hcp) structure. It exists at ambient pressure

and temperature. The β phase has a body centred cubic (bcc) structure with

one atom per primitive cell. It exists at high temperature and ambient or high

pressure. The ω phase, hexagonal structure with three atoms per primitive cell,

is generally formed under high pressure.

A γ and a δ phases have also been observed under high pressure [27, 28, 29]. A

non-observed face centred cubic (fcc) phase has also recently been proposed by

density functional theory (DFT) calculation [30] as well as a δ′ phase [31]. The

γ and δ phases have respectively a distorted hcp and a distorted bcc structure.

They are obtained from the ω phase under pressures of around 120 GPa and 140

GPa respectively [27, 28]. The structures of α-Ti and ω-Ti are shown in figure 1.1.

The pressure-temperature phase diagram of titanium established by Zhang et al.

[33] is presented in figure 1.2. The stability of the Ti phases at 0 K and 0 Pa

Figure 1.1: a) The conventional hexagonal cell of the α-Ti structure; b) The primitive
cell of the hexagonal ω-Ti structure. In figure b, all balls should have the same size (in

first approximation). The ’sticks’ have no physical meaning.

has been widely studied by first-principles calculations. Except for the calculation

of Nishitani et al. [34] in which the hexagonal c/a ratio is not allowed to relax,

all other DFT calculations give the ω phase as the more stable one compared to

the α phase, by several meV per atom in terms of electronic total energy. From

the extrapolation of the experimental values shown in figure 1.2, Tonkov’s 1992

results [35] give the ω phase more stable while Zhang’s 2008 results [33] give α

phase more stable at 0 K with a transition pressure around 5 GPa. Both α and ω

phases may well be metastable at 0 K under 0 Pa. The atom quantum vibrational
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Figure 1.2: Phase diagram of titanium, determined by Tonkov in 1992 [35] and by
Zhang et al. in 2008 [33]

contribution at zero K, namely the so-called zero point energy (ZPE) contribution

can play an important role on phase stability at very low temperatures. It may

reverse energy differences between phases, as known long from a long time in

studies of molecular crystals. The α and ω phase stability should thus be checked

with explicit consideration of ZPE (see section 3.1).

1.1.2 Slip in α-Ti

1.1.2.1 Slip systems

Possible slip modes, or slip systems, are presented in figure 1.3. They are also

summarised per families in table 1.1 together with their respective numbers of in-

dependent modes. Independent modes within one family may not be independent

with respect to modes of other families [36, 37, 38]. The first three families (with

〈a〉) only provide four independent slip systems, so that a 〈c+a〉 associated slip is

required to fulfill the von Mises criterion of five independent modes for easy plastic

deformation, or, since such a slip system may be difficult to activate, a twinning

mode may be activated instead. [6]
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Figure 1.3: Slip systems. The arrow in a given plane indicates a slip direction [39].

Table 1.1: Deformation modes of α-Ti.

Direction Plane Crystallographic elements Number of independent modes

Prismatic Slip {11̄00}〈12̄10〉 2

〈a〉 Basal Slip {0001}〈12̄10〉 2

π1 Slip {101̄1}〈12̄10〉 4

〈c+a〉 π1 Slip {101̄1}〈112̄3̄〉 5

〈c+a〉 π2 Slip {112̄2}〈112̄3̄〉 5

Twinning modes {K1}〈η1〉 5

where K1 and η1 are the twinning plane and twinning direction of a given twinning mode (see section 1.1.3).

The activated slip systems for a T60 grade titanium sample (α-Ti with a oxygen

concentration of 3200 wt.ppm) under a transverse tensile test are shown in figure

1.4. It clearly shows that, for a deformation less than 0.43%, the prismatic plane

glides dominate the plasticity. When deformation is larger than 0.43%, the 〈a〉
dislocation and 〈c+a〉 dislocation associated π1 plane glides become important.

The basal plane glides and twinning are not observed in that T60 sample, was

observed in a T40 sample (with 1155 wt.ppm for oxygen) [40].

In table 1.2, the normalised critical resolved shear stress (CRSS) compared with

the prismatic CRSS. These results are consistent with the slip mode activation

frequencies shown in figure 1.4.

Table 1.2: Critical resolved shear stress (CRSS) in two α-Ti samples, normalised to
their prismatic CRSS, Barkia’s PhD thesis 2014 [11].

Material Prism 〈a〉 Basal 〈a〉 π1 〈a〉 π1 〈c+a〉
T40 1 1.52 ± 0.08 1.24 ± 0.04 2.01 ± 0.30

T60 1 1.48 ± 0.08 1.18 ± 0.05 1.82 ± 0.15
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Figure 1.4: Frequency of slip modes under a transverse tensile for a T60 sample.
Barkia’s PhD thesis 2014 [11].

1.1.2.2 Stacking-faults

The stacking-faults (SFs) in α-titanium, a hcp metal, can be divided into two

categories: the 〈a〉 dislocation associated SFs and the 〈c+a〉 dislocation associated

SFs. Note that the 1
4
[1̄012] SF in the π1 plane, fifth line in table 1.3, is not

associated to a dislocation in the literature.

Table 1.3: Stacking-faults studied in the literature. bTD is the twinning dislocation
associated to the {101̄1} twin.

Slip Plane Associated dislocation SF vector SFE(mJ/m)

Basal {0001} 〈a〉 1
3
〈101̄0〉 292 [41], 287 [42], 259 [43]

Prism {101̄0} 〈a〉 1
6
〈1̄21̄0〉 220 [41], 250 [43]

π1 {101̄1} 〈a〉 1
6
〈1̄21̄0〉 689 [41]

π1 {101̄1} 〈a〉 1
6
〈1̄21̄0〉 − 1

2
bTD 227 [44]

π1 {101̄1} 1
4
〈101̄2̄〉 (240-Zr [45])

π1 {101̄1} 〈c + a〉 1
6
〈1̄1̄23〉 409 [46]

π2 {112̄2} 〈c + a〉 1
6
〈1̄1̄23〉 (388-Zr [47]), 399 [46]

The 〈a〉 dislocation associated prismatic and basal I2 SFs are well known. Several

numerical studies have been carried out to investigate the 〈c+a〉 dislocation in hcp

[46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. The edge dislocation on {112̄2} was found to

dissociate into two 1
2
〈c+a〉 partial dislocations or into three partial dislocations as

1
9
[1̄]1̄26]+ 1

9
[145̄3]+ 1

3
[101̄0]. The screw dislocation was found to dissociate into two
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1
2
〈c+a〉 in {101̄1} or {112̄2} pyramidal planes also called π1 and π2, respectively.

Calculations of stable 1
2
〈c+a〉 stacking faults found on the two pyramidal planes

were also used to support these dissociation mechanisms. These calculations,

however, were based on pair potentials, so that both the SF energies (SFEs) and

the core dissociation configurations may be suspect. A recent work, [44], showed

the failure of an advanced semi-empirical n-body potential to predict a stable 〈a〉
associated SF on the {101̄1} plane. Moreover, the stable SFs are usually found

with the the traditional Vitek’s method [56]. It has been shown, however, that such

a restricted γ-surface approach can fail to detect more stable SFs, such as the 〈a〉
associated SF on the π1 plane, due to the prohibition of all-atom relaxations [41].

Previous simulations [57] revealed a dissociation of the 〈a〉 screw dislocation core

in the prismatic plane, in connexion with the prism SF. However, a more stable

π1 dissociation configuration has recently been found [41, 24], clearly related to

the new π1 SF just mentioned [44]. The landscape of the 〈c+a〉 associated SF

deserves to be re-examined.

1.1.2.3 Dislocation cores

1.1.2.3.1 Dislocation core atomistic models

For the atomistic simulation of dislocation cores, three major methods exist. The

first method is called the cluster method and is illustrated in figure 1.5. A screw

dislocation core is created with its atoms positioned according to the elasticity

theory. An outer cylindrical layer of atoms, more or less thick, is kept fixed and

surrounded by vacuum. Only the atoms within that cylinder are allowed to relax

[45]. The application of this method is rather straightforward but its drawback

lays in the presence of a fixed surface and its possible effect on the dislocation

core, especially in DFT simulation where the number of atoms one can simulate

is still rather limited.

The second method is the so called flexible boundary condition method where a

lattice Green’s function couples the atomistic core to the far-field harmonically

responding medium, thus eliminating the spurious effects of the surfaces in insuffi-

ciently large cells in the cluster approach [41]. It can be used either with periodic

or non-periodic boundary conditions. It is presented in figure 1.6.

The third method is the dipole dislocation core method which is discussed in de-

tails in Bulatov and Cai’s book [58]. It uses periodic boundary conditions with the
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Figure 1.5: The fixed boundary method

Figure 1.6: The flexible boundary method

atomic displacements created by a screw or edge dislocation core being counter-

balanced by an opposite direction dislocation core. For the 〈a〉 screw dislocation

core construction, Clouet orients the dipole to a diagonal direction or adjusts the

supercell transition vectors in order to create a quadrupolar model [23], see figure

1.7. Since each core is placed at the geometric centre of surrounding opposite

cores in the quadrupolar model, the stress of other dislocations cores at each core

position is minimal.

1.1.2.3.2 〈a〉 screw dislocation core

Many atomistic simulations of the 〈a〉 screw dislocation core structure can be

found in the literature. Using tight-binding method in a pioneering way, Legrand

found that the 〈a〉 screw dislocation core mainly spreads in prismatic plane with

secondary spreading in basal plane [59, 60], giving a non-planar character to the

core. Liang & Bacon used pair-wise potentials and also showed a metastable
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Figure 1.7: Clouet’s quadrupolar configuration [23]: an extended dipole method. (a) and
(b) represent two quadrupolar configurations with different periodic dislocation arrange-

ments.

prismatic plane extended 〈a〉 screw dislocation core structures when using large

numbers of atoms [52].

Recent simulations by Tarrat et al. with a DFT method showed that the prismatic

core dissociates into two partial dislocations in the same or in neighbouring pris-

matic planes, depending on the initial core central position (line position) [57, 61],

see figure 1.8. These simulations use the cluster model.

Figure 1.8: 〈a〉 screw dislocation core structure with one specific dislocation line position,
only the screw components are shown with DD map [61]

With the flexible boundary condition method in DFT calculation, Ghazisaeidi

and Trinkle confirmed Tarrat et al.’s point with different initial positions. A

pure prismatic spreading or a combination of prismatic and π1 spreading can be

obtained [41], see figure 1.9.

Clouet et al. [24], using their quadrupolar method, confirmed the existence of the

prismatic and π1 plane spreading of the 〈a〉 screw dislocation core. They showed
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Figure 1.9: 〈a〉 screw dislocation core spreads to the π1 plane [41].

that the π1 plane spreading core is more stable than the prismatic plane spreading

core with, a ∆E ∼ 5 meV/Å. With nudged elastic band method (NEB), they

obtained a Peierls energy barrier of 8 meV/Åfor the prismatic to pyramidal plane

cross-slip, see figure 1.10 (ξ=0 to 1). They related their results to the locking-

unlocking mechanism proposed by Farenc, Caillard and Couret [62], see section

1.2.2.4.3.

1.1.2.3.3 〈c + a〉 screw dislocation core

The 〈c + a〉 screw dislocation core structures has been much less studied than

the 〈a〉 screw dislocation core. Minonishi et al. simulated the 〈c + a〉 screw

dislocation core with a Lennard-Jones potential (lj56) and showed that the core

structure dissociates into two 1
2
〈c+a〉 partial dislocations in {101̄1} or {112̄2}

pyramidal planes. The final core structure depends on the initial dislocation line

position and the initial state of dislocation (perfect or pre-extended), see figure

1.11.

Using various pair-wise potentials, labelled na56, ti12 and be134, Liang and Bacon

[52] showed that the 〈1̄1̄23〉 screw dislocation has a variety of stable forms in every

material (na56, ti12 and be134). The disregistry is concentrated on combinations

of {101̄1} (π1), {112̄2} (π2) and {101̄0} (prismatic) planes with the na56 and ti12

potentials. However, the be134 potential did not reveal a prismatic dissociation

character, so that the disagreement between these empirical potentials results

needs to be elucidated by ab initio DFT calculations.
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Figure 1.10: 〈a〉 screw dislocation core gliding on π1 plane (ξ = −2 ∼ 0), on prismatic
plane (ξ = 1 ∼ 5) and the cross slip (ξ = 0 ∼ 1) [24]. The various dislocation core

structures are shown in the bottom part of the figure, b, c, d, e.

1.1.2.4 Dislocation glides

1.1.2.4.1 Peierls energy barrier and Peierls stress

In order to move a dislocation, it is necessary to ’move atomic bonds’ at the core

of the dislocation in a crystal with lattice periodicity, against the so-called lattice

friction. The model of Orowan-Peierls [63] and Nabarro [64] takes into account

this discretisation and periodicity. The Peierls’ potential images and describes

the lattice friction, see figure 1.13. ∆Ep, the maximal value of the Peierls poten-

tial profile is called the Peierls energy barrier. The minimal value represents the
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(d)(a) (b) (c)

(e) (f) (g)

π1
π2

π1

Figure 1.11: Possible 〈c + a〉 screw dislocation core dissociation proposed by Minonishi
et al. [50] in which the 1.11c andd 1.11e are actually observed in their simulations. The
figure 1.11c corresponds to the relaxed core structure from a initially perfect dislocation

core and the 1.11e are obtained from a pre-extended 〈c + a〉 screw dislocation core

A

Figure 1.12: 〈c + a〉 screw dislocation core dissociation in π1, π2 and prismatic planes
obtained using a ti12 potential with a dislocation line position at A [52].

equilibrium state of the dislocation and corresponds to the Peierls valleys. The

Peierls stress, which allows a dislocation motion from one Peierls valley to another

without thermally-activation process, can be obtained from the maximal slope of

the Peierls potential profile.



16 Chapter 1 Literature Review

x

E
Δ

p

τp

EΔ

Figure 1.13: Peierls potential profile. ∆Ep is the Peierls energy barrier and τp is the
Peierls stress.

1.1.2.4.2 〈a〉 screw dislocation glide

The 〈a〉 screw dislocation glide is intensively studied in literature. As concluded

by Caillard and Martin [65], two thermally activated mechanisms may operate

below and above a given temperature (around 300 K for Ti) for the prismatic

glide, which leads to a discontinuity of the activation enthalpy. Above 373 K,

straight screw dislocations move steadily with an average velocity depending more

on their intrinsic mobility between visible obstacles than on their interactions

with obstacles. This behaviour corresponds to a kink-pair mechanism. Below 300

K, the same dislocation move jerkily. They stay immobile and then jump very

quickly to the next position. This phenomenon is related to the locking-unlocking

mechanism presented in the next paragraph.

A dislocation glide in prismatic plane at 150 K [24] is presented in figure 1.14. The

white arrows in figure 1.14c represent the dislocation glide during 0.4 second. The

barrier potential corresponding to this prismatic slip is presented in figure 1.10 for

ξ = 1 ∼ 5.

1.1.2.4.3 locking-unlocking mechanism

The locking-unlocking mechanism [62] was proposed by Farenc, Caillard and Couret

to explain the jerky and immobile dislocation behaviours observed in α-Ti for tem-

peratures below 300 K. In this mechanism, screw dislocations have a sessile (i.e.

sitting, immobile) core in their ground state and suddenly transform to activated

metastable glissile (i.e. sliding) core states and move rapidly (jerkily) in a pris-

matic plane. This proposition was confirmed by Clouet et al. in 2015 [24] with
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ab initio calculations of the 〈a〉 screw dislocation core. Their results have been

shown in figure 1.10.

The locking-unlocking mechanism starts from ξ = 0 ∼ 1 where the energy barrier

is 8 meV/Å, twenty times larger than the Peierls energy barrier for the prismatic

glide (0.4 meV/Å, very small). The prismatic plane spreading core (figure 1.10d) is

transited to a more stable pyramidal plane (π1) spreading core (figure 1.10c). Since

the Peierls energy barrier for a π1 plane glide is about 12 meV/Å, thirty times

higher than the Peierls energy barrier for the prismatic glide. The dislocation

motion is slowed down after locking. The process in the reverse direction leads to

the unlocking of the 〈a〉 screw dislocation glide, hence a quick dislocation motion

in prismatic plane.

1.1.3 Twinning in α-Ti

1.1.3.1 Twin boundaries

Because of the insufficient number of independent slip systems in hcp materials

(see section 1.1.2.1), deformation twinning is also activated, all the more so for

deformations along the c-axis, and/or at low temperature. Deformation twinning

has an important impact on mechanical properties such as material formability

[66], texture development [67, 68], strain hardening [69] and ductility [6] in tita-

nium. The three most common twins observed in titanium, as well as in zirconium

which also has a low axial c/a ratio, are the {101̄2}, {112̄1}, and {112̄2} twins

[2]. The {101̄1} twin is observed under high compression, e.g. 25% strain at room

temperature [70], and under low compression along the c-axis at high tempera-

ture, above 400oC, [71]. The {101̄2} twin boundary (TB) has been intensively

studied by ab initio calculations [72, 73, 74], as well as the {112̄1} [75], the {112̄2}
[76, 72], and the {101̄1} TB [76]. The {101̄1} TB has been correctly observed

and analysed at the atomic level with high resolution transmission electron mi-

croscopy (HRTEM) in titanium in 1996, after a series of erroneous analyses [77].

The {101̄2} TB was first observed with HRTEM in zinc (c/a = 1.856) in 1994

[78], then in titanium [79], also see [70] for a review in 1999. These observations

agreed with the previously established atomic models with semi-empirical inter-

atomic potentials [80, 81]. Other, rarer, twins can appear in α-Ti, such as {101̄3},
{112̄3}, {112̄4} [82]. I do not consider them in this work. Different types of twins

can form within the same grain [83], double twinning phenomena are observed

[84]. Detwinning [85] could be induced with a reverse direction load applied.
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The crystallographic elements of twinning presented in figure 1.1 and are listed in

table 1.4 for the four most important deformation twins observed in α-Ti.

Figure 1.14: Crystallographic elements of twinning. The unit cell defined by η1 ,η2 and
S is homogeneously sheared to the unit cell in twin defined by η

′
1, η

′
2 and S. Figure from

[6].

Note: The determination of the crystallographic elements and parameters of twins

can be obtained with Kihô and Bilby&Crocker’s theory [86, 87, 88]. Other descrip-

tive elements η2 (then (K2,η1) than those given for each K1 in table 1.4 can be

obtained. One usually chose the most reasonable ones, see section x.x.x.x)

Table 1.4: Twinning crystallographic elements K1, η2, K2, η1, S, shear magnitude s =
1
2 | e~η1 | / | ~η2 |, Kihô, Bilby and Crocker’s index q, and c-type (Tension or Compression,

along c) for the {101̄2}, {112̄1}, {112̄2} and {101̄1} TBs (with γ=c/a〈1.633).

K1 η2 K2 η1 S s q c-type

{101̄2} 〈101̄1〉 {1̄012} 〈1̄011〉 {12̄10} 3−γ2

γ
√

3
4 T

{112̄1} 〈112̄0〉 (0001) 〈1̄1̄26〉 {1̄100} 1
γ

2 T

{112̄2} 〈224̄3〉 {112̄4̄} 〈112̄3̄〉 {1̄100} 2(γ2−2)
3γ

6 C

{101̄1} 〈303̄2〉 {101̄3̄} 〈101̄2̄〉 {12̄10} 4γ2−9

4γ2+3
8 C

1.1.3.2 Twinning disconnections

The mechanical twins we study are generated during plastic deformations. The

formation of such twins can be divided into two parts: twin nucleation and twin

growth (see figure 1.15). Twinning disconnection or twinning dislocation (TD) is

the key concept for twinning development. It is presented in figure 1.16. t(m) and
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t(t) are respectively the translation vector of the matrix part and twin part. The

twinning disconnection vector is bp= t(t)-t(m). The TDs tep height hp is equal to

n·t(m)=n·t(t). It is also equal to p·d, where p is the number of crystallographic

planes (interplanar distance d) affected by TD. The TD is characterized by (bp,

hp).

Figure 1.15: Schematic presentation of a TD [89].

Two twin nucleation models exist: homogeneous nucleation [90] and heterogeneous

nucleation [91] mechanisms. The first one assumes that the nucleation process

can happen without any defect. This model requires a high stress and has little

experimental support. The second model proposes that the nucleation process

starts from defects such as dislocations, grain boundaries and twin boundaries.

As discussed for instance by Wang et al. for hcp metals [92], the instability of

a monolayer twin fault suggests that the pole mechanism for twin nucleation in

HCP metals, first proposed by Thompson & Millard [93], is not possible. Apart

of a few exceptions, the non-coincidence of slip-twinning plane in HCP makes the

dissociation-of-dislocation caused twin nucleation unfavourable. A pure-shuffling

mechanism has been proposed by Lann and Dubertret [94]. MD simulations by

Wang et al. [95] showed a pure-shuffling mechanism.

Generally, the deformation twin growth includes propagation and thickening pro-

cesses. The propagation process is mainly due to the TD glide in K1 plane under

stress. The thickening process could be explained by: the repeated nucleation

process, the entering of matrix dislocations in the twin part, the generation of

TDs by dissociation and the rebound of a TD off a boundary onto an adjacent

atomic plane [82]. For hcp crystals, since a single TD is stable on pre-existing TB,

layer-by-layer glide of TDs is a possible mechanism for twin growth and thicken-

ing [81, 96]. The importance of the low energy prismatic/basal interface for the

{101̄2} twin growth has been established [97, 98]. Capolungo et al. pointed that

the {101̄2} twin thickening in Mg is independent of slip-assisted mechanism [99].
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Figure 1.16: Basic processes for twin development: a) nucleation, b) propagation and c)
thickening (yellow regions). The twin thickness t is the spacing between two adjacent twin
boundaries (TBs). The bottom blue region is one grain, and the top blue region is another
grain with a different crystallographic orientation. θ corresponds to the orientation of
the parent grain, and θt is the orientation of the twin. The red dashed lines are the glide

planes. The bold black symbols represent twinning dislocations [82].

Numerous studies of the four TD core structures [100, 101], TD generation and

growth [102, 96], TD mobilities [81, 103, 89], and TB-dislocation interactions [104,

105] in hcp materials have been carried out by Bacon, Pond, Serra and their

collaborators, based on TD constructions using empirical potentials.

Because of the limited accuracy of these potentials and the lack of reliable hcp

metal-solute potentials for defect-solute interaction, the ab initio DFT method

is also needed. To our knowledge, only Ghazisaeidi, Hector and Curtin [106]

simulated with DFT a {101̄2} TD, with a simple model in which surfaces with fixed

borders are used. In that 2014 work, 858 atoms were used for a TD construction,

which is at the limit of current (2015-2016) DFT calculations.

1.2 Effects of H and O on α-Ti

1.2.1 H and O position in Ti

When oxygen (O) and hydrogen (H) are present in α-Ti as solutes, i.e. not forming

as oxides or hydrides, they stay at interstitial sites. There are two main types of

interstitial sites in hcp metals [8]: the octahedral (Octa) and tetrahedral (Tetra)

sites. They are shown in figure 1.17.

Eight possible self-interstitial atom sites in hcp Ti or Zr have been studied [45, 107,

108]. For oxygen, Henning et al. found the hexahedral site more stable than the
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Figure 1.17: The octahedral interstitial atom is shown in red and the tetrahedral
interstitial atom is shown in pink. One has a = [21̄10], b = [1̄21̄0] and c = [0001].

tetra site [109]. The octahedral site proves to be the most stable one, in agreement

with experimental results [110, 8].

The site is, by far, the larger in size compared with the tetrahedra site. Although

it is tempting to consider the sizes of these sites and compare them with sizes

of oxygen and hydrogen atoms, it would not make much sense with respect to

DFT calculations. Besides, the quantum mechanical considerations by Clementi

et al. ascribe an atomic radius of 0.48. Albeit in disagreement with experimental

analyses at finite temperatures [111, 112], DFT calculations find hydrogen to be

more stable in an octahedral site at zero K in α-Ti [113, 114, 115].

1.2.2 Solubility of H and O in Ti

In this work, H and O are put in an octahedral site for a series of supercells of

different sizes. The largest box used is 768 atoms (8x8x6) for H and 96 atoms

(4x4x3) for O, corresponding to a H concentration of 27 wt.ppm or 0.13 at.% and

3480 wt.ppm or 1.04 at.% for O. To the best of my knowledge, the Ti-O phase

diagram does not seem to be known below 400oC [116]. The maximum solubility of

oxygen in α-titanium is about 33 at.% at elevated temperature, above 600oC. As a

stable surface oxide (TiO2, rutile) forms at the titanium surface (with a thickness

very slowly growing in time between 3-7 nm at room temperature), oxygen can be

kept within titanium even at room temperature, up to 1 at.% (∼3400 wt.ppm).

The maximum solubility of hydrogen in the α phase is of the order of 8 at.% (at

high temperatures like 600oC for instance), that of nitrogen 19 at.% and carbon
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2 at.% [8]. At any given temperature, hydrides may form for H concentrations

above the corresponding solubility limit. The solubility limit of H as interstitial

atoms of α-Ti at ambient temperature mesured by Paton [118] is 21 wt.ppm (∼
0.1 at%), in good agreement with the work of Vitt and Ono [119] and Køster et

al. [121]. Vitt and Ono summarised several works with a solubility limit for H in

α Ti (purity 〉 99.7%) which follows a Sieverts law.

Figure 1.18: H’s limit of solubility in the Octa interstitial site [119].

In the Industrial and in the experimental academic world, labels grades 1 to 4 are

used for titanium considered as commercially pure (CP), corresponding to various

preparations, thermally and mechanically, and various contents of oxygen and

other impurities (H, C, N, Fe). The samples can also be qualified according to the

US/International ASTM nomenclature, the British (UK) BS nomenclature, the

French AFNOR nomenclature (T40, T60, ...), or the German DIN nomenclature,

not to mention titanium producers own commercial designations, see, for instance,

Cardarelli’s Materials Handbook [120].

In the case of oxygen, at ambient temperature, a T40 (with 1600 wt.ppm or 0.51

at.%) and a T60 (with 3200 wt.ppm or 1.02 at.%) materials have been intensively

used in the framework of the FluTi ANR project.
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1.2.3 H and O diffusion in Ti by DFT+Phonon calculation

1.2.3.1 H diffusion

Coupling DFT-NEB calculation with phonon calculation, Lu and Zhang estimated

the H, deuterium and tritium diffusivity in Ti [122]. They also reported experi-

mental results for comparison in a figure which we reproduce as figure 1.19. They

obtained diffusion pre-factors 2.5×10−6m2/s and 1.3×10−6m2/s for the D0⊥ and

D0‖ directions for temperatures varying from 280 to 1000 K, in pretty good agree-

ment with experimental results which give 3.0 × 10−6m2/s and 1.7 × 10−6m2/s,

respectively [122] .

Figure 1.19: Basal and perpendicular diffusivities of H (and of deuterium (D) and of
tritium (T)), functions of temperature T, in α-Ti, figure from [122].

1.2.3.2 O diffusion

For oxygen diffusion study, the activation energy obtained by Wu and Trinkle in

2011 [110] matches well the experimental results while their calculated absolute

diffusion coefficient is ten times smaller than the experimental one. This may be

due to their inaccurate energy barriers because only one intermediate image was
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used in their the NEB calculations. The comparison with experimental results are

shown in figure 1.20.

Figure 1.20: Diffusion of O in α-Ti by Wu and Trinkle [110] (Analytical Model) vs.
experimental results.

1.3 Effects of H and O on extended defects in

α-titanium

1.3.1 Effects of O on dislocation cores

Oxygen is an α phase stabilizer and presents a strong strengthening effect. Its

effect on flow stress becomes larger as its concentration increases or as the tem-

perature is lowered in both single and polycrystalline titanium [11, 8, 123], see

figure 1.21. The strengthening effect of oxygen is usually explained by its sup-

posed effects on 〈a〉 screw dislocation.

According to Conrad [8], the dislocation kinetic aspects can be divided into three

temperature regimes:

(a) A low or ambient temperature regime where moving dislocations interact with

stationary solutes.
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Figure 1.21: Effect of oxygen on the yield stress of Ti wire specimens with a ‘bamboo’
structure. Data from Elssner, Krohn and Ruano [124].

(b) An intermediate temperature regime where moving dislocations interact with

slowly moving solutes and where the dynamic strain ageing behaviour appears

(in the PhD thesis work of Barkia, the dynamic strain ageing (serration) is also

observed in the ambient temperature)

(c) An high temperature regime where the solutes move rapidly.

First tentative explanations were related to the elastic strain field interactions since

the presence of O creates a non-spherical distortion of Octa sites, which meets the

Fleischer criterion for rapid hardening [125]. The solute is assumed to act as a

“thermal” obstacle for the prismatic dislocation motion. Several models exist for

the solute strengthening phenomena. There are at least two models for the solute

interaction with a non-dissociated core: 1) the Friedel-Fleischer model where the

obstacles to the dislocations are individual solute atoms at low concentration, 2)

the Mott-Nabarro-Cottrell model where the obstacles reflect the collective action

of groups of solute atoms at high concentrations.

A model by Šob, Kratochvil and Kroupa [126, 127] proposed that the core struc-

ture of screw dislocations in the hcp, lattice of α-Ti can be described by a sessile

splitting on the prism plane and on the first order pyramidal plane simultaneously

and that slip can proceed after its transformation into a glissile configuration on

the prism plane. The strengthening by interstitial solutes is considered as a bar-

rier (through an elastic interaction between the interstitial atoms and the partial

on the first-order pyramidal planes) for this these thermal activated sessile-glissile

transformations.
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The work of Tyson, Kratochvil and Conrad suggests that the strengthening effect

cannot be simply explained by elastic interaction. A chemical interaction is likely

to be involved. The breaking of Ti-O directed bonds may change dislocation core

structure.

A recent study of Yu et al. [10] showed a dramatic strengthening effect of oxy-

gen. The dislocations before and after deformation in the α-Ti with an oxygen

concentration of 0.1 wt.% and 0.3 wt.% are shown in 3D in figure 1.22. After

deformation, the dislocation array with 0.3% of oxygen is tangled and moved to

different planes. The dislocation array breaks up into groups, each containing

several dislocation lines with defined pinning points (red arrows in figure 1.22B).

Figure 1.22: A) dislocations in 3D before and after deformation in Ti-0.1wt%O, B)
dislocations in 3D before and after deformation in Ti-0.3wt%O.

Yu et al. also performed a DFT-based 〈a〉 screw dislocation core simulations.

They only found the metastable prismatic plane spreading core. When an oxygen

is put into the small core region and in the prismatic plane where the dislocation

line is located, they obtained a large repulsive “interaction” between the core and

the oxygen. They observed a partial cross-slip of the prismatic plane spreading

core to an adjacent prismatic plane and proposed a possible cross-slip mechanism

of 〈a〉 screw dislocation induced by oxygen. However, the proposed cross-slip

mechanism implies the appearance of two partial edge dislocations connected with

the screw segment, see figure 1.23, which is very different from Šob’s proposition.
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Figure 1.23: The cross-slip mechanism of an 〈a〉 screw dislocation induced by an
oxygen, as proposed by Yu et al. [10]

In 2015, in her PhD thesis work, Chaari, together with her supervisor(s), showed a

strong effect of oxygen on the prismatic core structure. Three different sites near

central core position were tested with prismatic or pyramidal plane spreading

core configuration. They found that the presence of such an oxygen favours a

combination of mixed prismatic-pyramidal plane core spreading when started from

either a prismatic or a pyramidal plane spreading core, see figure 1.24.

Figure 1.24: a) Initial DD map with a oxygen is placed in central core position; b) DD
map after relaxation [128].

Some of my works on oxygen-core interaction have been done in parallel.

The presence of oxygen near 〈a〉 screw dislocation cores may be also responsible

for other phenomena, such as dynamic strain ageing (serration). Figure 1.25 shows

a mechanical jump test of α-Ti, where serration is clearly found.

Abnormal peaks at the front of transerval direction (TD) strain-stress curves were

observed in the PhD thesis work of Barkia [11], see figure 1.26. Since 〈c+a〉
dislocation were observed only in TD direction, the abnormal peak, considered

as a static ageing phenomena, was attributed to the interaction of oxygen with

〈c+a〉 dislocation, see figure 1.26.
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Figure 1.25: Serration on Stress-Strain curve under a mechanical jump test [11]

Figure 1.26: Abnormal peaks at the front of two TD direction strain-stress curves related
to O-〈c+a〉 interaction [11].

1.3.2 Effects of H on dislocation cores

Hydrogen is a β phase stabilizer. It has a low solubility limit (21 wt.ppm) in α-Ti

at ambient temperature, see section 1.2.2. It presents a more complex role with

respect to the mechanical properties of α-Ti. Beck’s experiments (figure 1.27)

showed a slight increase of the prismatic CRSS [17]. It seems that even its small

strengthening effects depend on the concentration of other major solutes in Ti,

such as O, Fe, N, C.

However, it weakens titanium in other cases [13, 14, 22, 15]. The recent study

done by Marchenko (and her supervisor(s)) in her PhD thesis work [20] showed a
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Figure 1.27: Effect of hydrogen content on the critical resolved shear stress for prism
slip of Ti.[17]

decrease of fracture toughness (“softening effect”) with the increase of H concen-

trations tested in T40 and T60 samples, see figure 1.28. A non-monotonic effect

of H on Ti creep at ambient temperature was observed by Mignot et al. [21]. Fur-

thermore, both Barkia and Marchenko observed that different H/O concentration

ratios affect the creep phenomena and other mechanical properties of α-Ti [11, 20].

Figure 1.28: Fracture toughness Kmax for T40 and T60 as a function of H
concentration [20].



30 Chapter 1 Literature Review

1.3.3 Effects of H and O on Twin boundaries

The effects of interstitial solute on twinning are much less studied compared to

solute-dislocation interaction study. Periodic segregation of substitutional solutes

has recently been observed in magnesium [129] to three coherent twin boundaries,

accompanied by pinning and strengthening effects . The presence of oxygen in

twin boundaries of α-Ti has recently been studied by ab initio calculations [74]

(see figure 1.29), as well as the solubility of many impurities in TBs in several

hexagonal metals [72], but a complete segregation study of H or O on the three

most common TBs in α-titanium has not yet been done. In view of the increasing

interest for ab initio calculations of mechanical properties (see [130] for a recent

review), it may also be useful to investigate at the atomistic level the behaviour

of these TBs under strain along a uniquely chosen crystallographic axis, e.g. the

c-axis, for the sake of comparisons, without and with solutes.

Figure 1.29: a) Geometric analysis of O in a bulk site or two near {101̄2} TB sites.
Values in parenthesis are distances before relaxation in Å. After relaxation, octahedral

site in TB1 and TB2 approach those in bulk environment. b) electronic density of
states for oxygen s and p states at each site. Site 0 is the bulk octahedral site.

Attractive and repulsive sites show shifts in the oxygen states, but not changes in
broadening [74].
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1.3.4 Effects of H and O on Twinning disconnections

Oxygen diffusion controlled twinning mechanism during low-temperature creep

has been proposed [12]. They explained that, since oxygen diffuse very slowly

compared with the twin growth speed during creep, the presence of oxygen in the

octahedral sites near TB act as barrier for new twin layer formation, the schematic

twinning formation in presence of oxygen is presented in figure 1.30.

Figure 1.30: a) Shear added to perfect crystal to form a {101̄2} twin in 〈1̄101̄〉
direction; b) Arrows give the shuffles required to move the atoms in B-type sites (red)

to either the B-(red) or C-type sites (green) in the twinned lattice. Reorientation of the
lattice will eliminate the octahedral sites (marked with an X) where an oxygen atom

could reside. [12].





Chapter 2

Theory & Tools and Techniques

This chapter presents the theories, the simulation tools and the techniques and

models used in this work.

The theories and the corresponding simulation tools are presented in the first

part, including the ab initio calculations via Vienna Ab initio Simulation Pack-

age (VASPTM), the Zero Point Energy (ZPE) calculations coupled with PHON

program.

In the second part, different simulation models are presented for solutes interac-

tions in Ti, elastic constant calculations, stacking faults, screw dislocation cores;

twin boundaries and twinning disconnection and solute segregation.

33
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2.1 Theory & Tools

2.1.1 Density Functional Theory with VASP code

2.1.1.1 Density Functional Theory

In this PhD work, the density functional theory (DFT) is used to study the

solute-defect interactions in α-Ti. I use the Vienna Ab intio Simulation Pack-

age (VASPTM) in its 5th version [131, 132].

Although DFT is very well described in several good books, such as, among others,

Martin’s book [133], I still want to say a few words about it in order to introduce

what still are its main approximations in its (practical) actual applications, for

which I rely on VASPTM .

Among the different electronic structure calculation methods with wave-function-

based approaches, the Hartree-Fock method is one of the simplest. It uses the

Born-Oppenheimer, or adiabatic, approximation to decouple the motion of elec-

trons from the motion of atomic nuclei. For the electrons, it only considers some

limited, approximated, effects between them. They can only “feel” the effect of

other electrons as an average, expressed by the Hartree potential term. This

method does not take the so-called correlation effects between the electrons but it

takes the electron exchange effects into account via the use of rapidly heavy Slater

determinants.

The density functional theory also uses the Born-Oppenheimer approximation.

The main differences with previous approach is the consideration of the ground

state electronic density as the fundamental notion instead of the electron wave-

functions.

The use of the electronic density relies on two fundamental theorems provided by

Pierre Hohenberg and Walter Kohn [134].

The first theorem is: the electronic ground-state energy of a system described by a

from Schrödinger’s equation is a unique functional of the electron density assuming

the so-called v-representability, when “v” is the external potential applied onto the

electrons. It rigorously proves that a functional of the electron density exists that

can be used to solve the Schrödinger equation, but it says nothing about what the

functional actually is.
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The second theorem is: the electron density that minimises the energy of the

overall functional is the true electron density corresponding to the full solution

of the Schrödinger equation. That theorem still says nothing about what the

functional actually is even if it provides, in principle, a way to get its variational

minimisation.

In order to offer a constructive way to actually progress in the finding of the

electron density problem in some nuclei environment, Walter Kohn and Lu-Jeu

Sham [135] considered in 1965 that the electronic density n(r) can be expressed as

corresponding to a set of N fictitious Kohn-Sham electrons with fictitious Kohn-

Sham orbitals ϕ(r), via n(r) =
∑ |ϕ(r)|2, so that the kinetic energy functional

T[n] is exactly
∑n

i − k2

2m
∇2ϕi(r)

[
− ~

2m
∇2 + νext(r) + νH(r) + νXC(r)

]
ϕi = εiϕi (2.1)

for i=1,N . − ~
2m
∇2ϕi is the kinetic part of electron i, νext(r) is the external

Coulomb potential due to the atomic nuclei, νH(r) is the Hartree-Coulomb po-

tential between the electrons, and νXC(r) is the exchange-correlation part of the

effective external potential.

Note that for heavy atoms this approach can be extended to the consideration of

the Dirac equation, rather than the Schrödinger equation.

The main problem is to get some good approximation of the exchange and cor-

relation description. This problem is addressed (alluded to) in the next section.

Another problem is related to the fact that is usually numerically very difficult

to actually consider all N electrons where N is the total number of electrons at

stake in the many atom problem considered. It is numerically very difficult and

may not be necessary for the study of many properties. This will be addressed in

the ‘pseudopotentials’ section (2.1.1.3).

2.1.1.2 Exchange-correlation functional: PBE-GGA

Several approximations can be used to define the exchange-correlation functional.

Among them, we have: the local density approximation (LDA) and the generalized

gradient approximation (GGA). The LDA considers that it is possible and numer-

ically efficient to simply carry out a spatial integration over locally homogeneous
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electron gas.

ELDA
XC [n] =

∫
εXC(n)n(r)dr (2.2)

where εXC(n) is the one electron exchange-correlation energy of a homogeneous

electron gas, which has been obtained by Ceperley and Alder [136] using a heavy

quantum mechanical Monte-Carlo simulation.

For system where the electron density is too far from being uniform, even ‘locally’,

information on the spatial variation in the electron density, should be included.

The GGA approximation is then usually used although it is not perfect and may

even prove worse than LDA in some cases such as vacancy problems. One has:

ELDA
XC [n] =

∫
f(n,∇n)n(r)dr (2.3)

where f(n,∇n) is a an effective one electron exchange-correlation energy.

The Perdew-Burke-Ernzerhof GGA functional (PBE-GGA) [137] is used in this

work, via VASP. According to its authors, it integrates many of the best features of

the local spin density approximation (LSDA). The improvements over the Perdew-

Wang GGA [138] include an accurate description of the linear response of the

uniform electron gas, a correct behaviour under uniform scaling, and a smoother

potential. It is divided into a correlation EGGA
C and an exchange EGGA

X part.

EGGA
C [n ↑, n ↓] =

∫
d3r n[εunifC (rs, ζ) +H(rs, ζ, t)] (2.4)

where n ↑, n ↓ represent the electron spin densities. εunifC (rs, ζ) is the correlation

energy per particle of a uniform electron gas. H is the gradient contribution from

three conditions. rs is the local Wigner-Seitz radius ( n = 3/4πr3
s , ζ = (n ↑ −n ↓

)/n is the relative spin polarization, and t is a dimensionless density gradient.For

the exchange EGGA
X part:

EGGA
X =

∫
d3r nεunifX (n) + FX(rs, ζ, s) (2.5)

where FX is the spin-polarized enhancement factor, s is the reduced gradient. See

Perdew et al. [137] for a detailed description. The PBE-GGA functional is a very

widely used functional for metals.



Chapter 2 Theory & Tools and Techniques 37

2.1.1.3 Pseudopotentials: the PAW method

The chemical bonding and other physical properties of materials are mainly defined

by the so-called valence electrons. The so-called core electrons have generally

small influences on these properties. Thus, instead of explicitly calculating all

electron interactions between all electrons (as in the full-potential linear muffin-

tin orbital (FP-LMTO) Method, for example, which implies some linearisation

procedure), a frozen core approximation is used in the so-called pseudopotential

method. Rigorous arguments are provided in many good books and I only want to

give here some flavour of the method. A core region is defined by a cut radius rc.

Inside that core region, the true electronic wavefunction with its large variations

is replaced by a smoothly varying wavefunction. The part outside the core region

keeps the same dispersion character. This treatment decreases significantly the size

of a plane wave basis needed for a given accuracy. Furthermore, compared with

the norm-conserving pseudopotential (NCPP) and the ultrasoft pseudopotential

(USPP), the projector-augmented-wave (PAW) method originally introduced by

Blöchl [139] provides a way to calculate almost all-electron like properties from the

smooth wavefunctions. The PAW method keeps the full all-electron wavefunction

in a form similar to the general orthogonalized-plane-wave (OPW) method used

in NCPP or USPP, and the augmented-plane-wave (APW) approach is used with

muffin-tin spheres for describing the rapid variation of full wavefunction near the

nucleus.

A linear transformation τ relates the smooth functions Ψ̃υ(r) to the all-electron

wavefunctions |Ψυ〉 by:

|Ψ̃υ〉 = τ−1 |Ψυ〉 (2.6)

τ implies a set of projectors within a core region defined by a chosen parameter

rc, so that, beyond rc, one has |Ψ〉 = |Ψ̃〉.

With respect to previous pseudization schemes, the PAW method ensures in an

automatic way that the valence wavefunctions are initially built in an exact, full-

electron, way. Yet, of course, only these valence wave functions are explicitly

considered in the many atom density functional optimisation. The core functions

below rc remain frozen. The accuracy of the PAW potential modelling thus still

depends on the number of electrons considered as valence electrons, e.g. 4 or 12

in the case of titanium. Besides, even for a given number of valence electrons, the

PAW construction involves rc as a parameter. This is probably what distinguishes
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VASP PAW 12 electrons 2000 and 2005. From inspection of the VASP POTCAR

input files, the main difference is the use of an RCLOC=1.7 (cutoff of potential)

in the version of 2000, replaced by a variable ICORE=3 (Local potential) in 2005.

Reducing the rc is important for the study of very high pressure phases, see [31].

It should not be important in this work which is carried out at zero pressure.

If X is a given transition metal with d and s valence electrons, one has in VASP

X-potentials which only consider valence electrons, and Xpv-potentials which also

consider the six 3p electrons in the underlying layer (so-called semicore electrons).

In VASP guide, it is said that: “when to switch from Xpv potentials to the X

potentials for metal with 3d electrons, even the Ti, V and Cr potentials give

reasonable results, but should be used with uttermost care”.

Most calculations done in this work are performed with X-potential (4 electrons in

Ti with 3d4s. Recall that isolated Ti atoms have the following electronic structure:

1s22s22p63s23p63d24s2). X and Xsv potentials (two more 3s electrons compared

to Xpv potential) are compared versus several physical properties in the following

table 2.1. Xsv considers 12 electrons in Ti with 3s23p63d4s. We used the version

PAW-PBE 12e-2005 (the 2000 version gives similar results).

For the plane wave cut-off energies (see definition in eq. (2.9)), I use 300 eV

for the 4e PAW potential (i.e. about 70% larger than the corresponding VASP

ENMAX value which is 178 eV), and 500 eV for the 12e PAW potential (more

than 80% larger than the VASP ENMAX=275 eV). Kpoint=14x14x10 for both

cases. A Methfessel-Paxton method of order one or two is used for smearing with

a smearing width of 0.02-0.1 eV [132, 149]. Some calculated properties are given

in table 2.1. The last column should be complemented by direct comparisons with

experimental values when available, as it is the case for the elastic constants. This

is done in Table 3.10 (in Chapter 3). With respect to these elastic constants,

the 12e PAW potential is not much more superior to the 4e PAW potential. It is

actually worse for some. And whereas C44 and C66 (as (C11−C12)/2) are the linear

responses to shear modes, C12 and C13 are not autonomous elastic responses: C12

is obtained as C12=(C11 +C12)/2 + C66, and C13 as C13=[9B-2(C11 +C12)-C33]/4.

Some discussions about the other physical properties are provided in section 2.2.

The partial density of states (DOS) of one Ti atom with 4e and 12e potential

are presented in figure 2.1. The s, p, d orbital of both potential have the same

variation profiles, but differences can be easily observed. For example, the 3d

orbital with 12e potential in less smooth than the one with 4 potential. Band

structures between the two potentials are very similar (figure 2.2).
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Table 2.1: Comparison between 4e and 12e PAW-PBE potential for various properties
in α-Ti. Also see section 3.4 and table 3.10 for the elastic constants.

4e 12e-2005 Expt. | 12e−4e
12e

|
Lattice parameter [140]

a 2.924 Å 2.937 Å 2.946 Å 0.4%

c/a 1.581 1.582 1.587 0.4%

Elastic constants (GPa) (GPa) (GPa)[141]

C11 186 185 176 0.53%

C12 88 81 87 8.6%

C13 84 76 68 10.5%

C33 191 189 191 1.1%

C44 47 49 45 4.1%

C66 49 52 45 5.8%

C66/C44 1.04 1.06 2.0%

Ef of H in Ti 3x3x2 (eV) (eV)

Octa -2.705 -2.702 0.1%

Tetra -2.624 -2.627 0.1%

Octa-Tetra -0.081 -0.075 7.4%

SFE (mJ/m2) (mJ/m2) (mJ/m2)

Prism. 1
2
〈a〉 213 244 155±25 [142] 12.7%

Basal I2 309 307 0.7%

π1
1
2
〈a〉 738 803 8.1%

π1
1
2
〈c+ a〉 513 543 5.5%

π2
1
2
〈c+ a〉 626 664 5.7%

Disloc. core Eexcess (eV/Å) (eV/Å)

Prism. 0.403 0.413 4.1%

π1 0.387 0.401 3.0%

Eprism − Eπ1 0.016 0.012 25%

2.1.1.4 Plane wave bases

Any one-electron wavefunction can be described by a finite or infinite set of plane

waves. A supercell periodically repeated in space allows to define a series of

relevant wavefunctions:

ϕnk = unk(r)eik·r (2.7)
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Figure 2.1: DOS of Ti with 4e or 12e
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Figure 2.2: Band structures of Ti with 4e or 12e

where ϕnk is the wavefunction associated with band n and the wave vector k.

The unk(r) are functions with the periodicity of the supercell. They can thus

be Fourier expanded in terms of plane waves involving G vectors of the form

m1 · b1 +m2 · b2 +m3 · b3 where the mi span all possible integers and the bi are

reciprocal lattice vector of the supercell lattice vector ai, defined by ai ·bj = 2πδij.
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Thus, the wavefunctions can be described as:

ϕnk =
∑

G

Cn,k+Ge
i(k+G)·r (2.8)

One obviously has ϕnk+G’ = ϕnk. The k vectors of all the relevant ϕnk functions

can thus be restricted to the first Brillouin zone. The previously mentioned Fourier

expansions of the unk(r) are in principle infinite. In practice they can be limited

as soon as one consider that the physical properties obtained from a sufficiently

large set of ϕnk are converged. That limitation on the G is, for a given k, on all

the G such that:

|k+G|2〈2mEc
~2

(2.9)

Where Ec is called a cut-off energy and is determined together with a satisfying

sampling in k of the first BZ until convergence of the physical properties.

High symmetrical k points are naturally chosen for an efficient sampling of the

First BZ. The Monkhorst-Pack method [144] can be used to get these points. The

MP method is optimised for cubic crystals. It is not so for hexagonal crystals for

which a Gamma centred grid is a better choice.

In VASP, in the INCAR file, the cutoff energy (ENCUT) need for convergence is

300 eV for 4e and 500 eV for 12e PAW-PBE potential. In the KPOINTS file,

parameter nk1 × nk2 × nk3 is set to determine the k-grid generation. After the

convergence test, a 14x14x10 k-grid is applied to a α-Ti primitive cell containing

2 atoms for both the 4e and 500 eV for 12e PAW-PBE potential.

The choice of a larger cell decreases the volume of corresponding BZ and thus

reduces the number of k points needed to achieve convergence. For a slab, the

number for k point is set to one in the slab direction since it is considered as a

supercell with an infinitely large dimension in that direction (infinitely large in

principle, numerically finite in practice).

2.1.1.5 Calculation of ground state in VASP

The procedures to obtain the ground states are visualised in figure 2.3.

Four files are needed for a VASP calculation, the INCAR, POSCAR, KPOINTS,

POTCAR file. POSCAR contains the information about the three lattice vectors

of the supercell, the atoms species and the atomic positions. KPOINTS contains
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Figure 2.3: Procedures of a self-consistent calculation to obtain the KS ground state in
VASP [145]

the information for the k-grid generation. POTCAR is the file describing the ion-

electron interaction potential. INCAR is the file which defines the options to be

taken to carry out the abinitio DFT calculation which implies various optimization

algorithms.

Note that another way than Kohn-Sham exists, which is orbital free, and compu-

tationally much more efficient for some materials (no matrices to diagonalise, up

to 1 million atoms of Al in simulation box for example [146]). Unfortunately it

implies other limits and it is not efficient for transition metals.
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2.1.2 Vibrational Energy Calculations via PHON

From the Gibbs free energy G=F+PV, the Helmholtz energy F part can be ap-

proximated at volume V and temperature T can be approximated by the following

equation [147]:

F (V, T ) = Eel(V ) + Fvib(V, T ) + FTEC(V, T ) (2.10)

where Eel(V ) is the 0 K electronic total energy, Fvib(V, T ) the lattice vibrational

free energy of the ions under the quasi-harmonic approximation. Fvib(V, T ) is:

Fvib(V, T ) = kBT
∑

q

∑

j

ln

{
2sinh

[
~ωj(q, V )

2kBT

]}
(2.11)

where ωj(q, V ) represents the frequency of the jth phonon mode at wave vector

q. When possible magnetic contributions and electron - phonon interactions are

neglected, the thermal electronic contribution FTEC(V, T ) is composed by the en-

ergy and entropy parts, equal to ETEC − TSTEC . The bare electronic entropy is

expressed by :

STEC(V, T ) = −kB
∫
n(ε, V )[f lnf + (1− f)ln(1− f)]dε (2.12)

where n(ε, V ) is the electronic density of states and f is the Fermi distribution

f(εF , ε, T ) where εF is the Fermi energy. The electronic excitation part is expressed

by:

ETEC(V, T ) =

∫
n(ε, V )fεdε−

∫ εF

0

n(ε, V )fεdε (2.13)

The electronic total energy Eel(V ) at 0 K is directly obtained with VASP program.

For the Fvib(V, T = 0), the phonon frequencies ωj(q, V ) are obtained from the

Born force constant matrix. The phonon frequencies at wave-vector q are the

eigenvalues of the dynamical matrix Dsα,tβ, expressed as:

Dsα,jtβ(q) =
1√
MsMt

∑

i

Φisα,jtβexp[iq · (R0
j + τt −R0

i − τs)] (2.14)

and the force constant matrix elements Φisα,jtβ are calculated with the force com-

ponents F
ujtβ
isα,jtβ on atom is when atom jt moved by uβ with respect to its perfect



44 Chapter 2 Theory & Tools and Techniques

position.

Φisα,jtβ = −
F
ujtβ
isα,jtβ − F

−ujtβ
isα,jtβ

2ujtβ
(2.15)

where i, j are cell numbers, s, t atom numbers, α, β Cartesian directions. R0
i is a

lattice vector which gives the position of the primitive cell i and τs is the position

of the atom s in the primitive cell.

The forces are calculated with VASP with the Hellmann-Feynman theorem, using

for the electronic occupancies a smearing procedure adapted to metallic systems.

Fvib(V, T ) is then obtained from the related above. These calculations are actually

done by and with Alfè’s PHON program [148]. The thermal electronic contribution

Fel is zero since we work at 0 K.

2.2 Techniques

The 5th version of VASPTM is used with MPI parallel programming mainly on k

points and on electronic bands. Simulations were mainly performed using HPC

resources from local clusters at École Polytechnique through the LLR-LSI project

(672 cores on LLR-LSI Jollyjumper; 128 cores on LLR-LSI Rantanplan and 128

cores on LSI Zauberfloete) where I have been one of the major users so that the

LLR-LSI project must be gratefully acknowledged. 0.43 million CPU hours are also

consumed via equally gratefully acknowledge projects on GENCI-CINES/IDRIS.

Generally, 24-256 cores are used for one calculation during 1∼2 days. About 2-2.5

million CPU hours were consumed during my PhD work.

The needs of diagonalisation of Kohn-Sham Hamiltonians for DFT calculations

cause an extremely calculation time increase with the increase of number of elec-

trons per simulated cell. A calculation with 12e potential is more than ten times

heavier than the one with a 4e potential in α-Ti.

For α-Ti, the energy is converged to 10−6 eV on a primitive cell containing two

atoms with a plane-wave energy cut-off of 300 eV and 14x14x10 k points generated

in a Gamma centred grid. For further simulations, the number of irreducible k

points times the number of simulated atoms product is maintained as mush as

possible for larger boxes. The metallic electronic partial occupancies are taken

care of with the tetrahedron method with Blöchl corrections for small boxes when
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forces are not required. Otherwise a Methfessel-Paxton method of order one or

two is used for smearing with a smearing width of 0.02-0.1 eV [132, 149]. The

Kohn-Sham Hamiltonian is diagonalised with the residual minimisation method

direct inversion in the iterative subspace [132, 133]. Conjugate gradient method is

used to optimise the atom positions by minimising the Hellmann-Feynman forces.

For convergence criterion of electronic relaxation (labelled EDIFF in VASP INCAR

file), I most usually chose a value of 0.01 meV. For the convergence criterion of

subsequent atom position relaxation, so-called ionic relaxation (labelled EDIFFG

in VASP INCAR file). I generally chose a value of 1 meV (EDIFFG positive)

on the energy where only energy minimisations are required. I also occasionally

carried out convergence on forces rather than on energy (using negative value

of EDIFFG in VASP) to check the validity of some atomic position relaxations.

For the calculations with dislocation cores where relaxations may be difficult to

achieve with only energy minimisation convergence, the convergence on forces are

chosen. In this work, I consider that the core relaxation in pure α-titanium is

converged within 2 meV/Å. The solute segregation calculations and the Peierls

energy barrier calculations performed with CI-NEB method of three intermediate

images are converged to 10 meV/Å(See Sections 3.5 and 5.1).

Seen from table 2.1, the comparison between 4e and 12e potential shows that:

lattice parameters of α-titanium are nearly the same; elastic constant values change

less than 10%; anisotropy of α-Ti changes by 2%; Stacking-fault energy changes

are less than 13%; Formation energy of Ti-H bond within a Ti36H system is nearly

the same, which indicates the solute effects on Ti bulk or with defects should be

very limited when passing its potential from 12e to 4e.

Larger differences (in %) can be obtained if one considers differences of differences.

This is the case when calculating the energy difference between a prismatic plane

spreading core and a pyramidal plane spreading core: the difference between 4e

and 12e goes up to 25%. Yet the important point is that both PAW versions

give a larger Eprism than Eπ1 . The some remark must be done for the Octa-Tetra

difference.

For Ti-H and Ti-O system calculations, oxygen is modelled with its six 2s2p elec-

trons. Hydrogen is modelled with a potential in which the number of electrons is

not exactly one. All potentials (Ti,H,O) are provided by VASP. Cutoff energies

of 300 eV and 400 eV have been tested for Ti-H and Ti-O system. Differences

are less than 2% for the Ti-solute bond formation energy when the solute is in an

octahedral or in a tetrahedral site. The differences of formation energy between
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the octahedral and the tetrahedral site is less than 0.5%. I thus chose 300 eV for

ENCUT, consistent with the cutoff perviously chosen for pure α-Ti.

2.2.1 Solutes interactions in Ti

In this section, I first introduce the equation for the formation energy of of Ti-solute

bond, with one solute in an Octa or a Tetra interstitial site. The formation energy

is calculated as the difference between the total energy of supercell containing

Ti+solute and the sum of energy of the pure titanium cell and one half of the

energy of the solute under the form of a molecule.

Ef = ECell+solute − [ECell + 1/2Emolecule] (2.16)

When there are two solutes in a cell of α-titanium and each solute is in a different

interstitial site, the interaction energy between the two solutes is calculated in

equation 2.17. Possible configurations for interstitial-interstitial atom interaction

are shown in figure 2.4 with c direction projection (a) and a direction projec-

tion (b). In total, 15 possible configurations are found. The interaction energy is

calculated by the difference between the sum of total energy of supercell contain-

ing Ti+A+B plus a pure titanium supercell and the sum of total energy of two

supercell each containing one solute in interstitial site.

EInteraction = ECell+A+B + ECell − [ECell+A + ECell+B] (2.17)

2.2.2 Elastic constant calculations

The elastic stiffness constants (EC) of a material characterise the strain-stress

relations in the elastic domain. A symmetric Voigt matrix of 6x6 is used to describe

these relations. For a hexagonal material, crystalline symmetry reduces number of

independent elastic constants to only five [150, 151]. The Voigt matrix is presented

below. In its standard way, x and y are orthogonal directions in the isotropic basal

plane, z is along c axis.
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Figure 2.4: Possible configurations for the study of interstitial-interstitial atom
interaction. a) c-axis projection; b) a direction projection

[Cij]Hex =




C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66




with C66 = (C11−C12)
2

From these elastic constants, three important moduli can be obtained, The bulk

modulus B (module of compressibility, noted B in this work, yet noted K by other

good authors, Feynman included!), the Euler-Young modulus E (elastic modulus),

and the Coulomb shear modulus G (modulus of rigidity).

One can estimate these moduli for isotropic polycrystals under the Voigt assump-

tion of uniform strain within the polycrystal [150] rather than under the Reuss

assumption of uniform stress (cf., for instance, [152]) because the results are almost

the same for Ti (This would not be true for Zn). The formulas are:

B =
1

9
[2(C11 + C12) + C33 + 4C13] (2.18)
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G =
1

30
[7C11 − 5C12 + 2C33 − 4C13 + 12C44] (2.19)

E =
[(2C11 + 2C12 + 4C13 + C33)(7C11 − 5C12 + 2(−2C13 + C33 + 6C44)]

3[9C11 + 5C12 + 4(3C13 + C33 + C44)]
(2.20)

The three-dimensional distribution of the directional Young modulus characterizes

its elastic anisotropy [153]. It is obtained by the following equation:

E(l1, l2, l3) = [(1− l23)S11 + l43S33 + l23(1− l23)(2S13 + S44)]−1 (2.21)

where the Sij are the elastic compliance constants and l3 is the z-cosine direction.

The [Sij] matrix is the inverse of the [Cij] matrix.

Five independent deformation modes are used to get the 5 independent Cij of the

hexagonal symmetry [32, 154]. Series of deformations [-2%, -1%, -0.5%, 0.5%, 1%,

2%] are applied for each deformation mode in order to obtain the corresponding

elastic constants, see section 3.4.

2.2.3 Stacking faults

In this method, the rigid translation is applied to the upper half block of super-cell

in order to create a Generalised-SF (GSF) in the middle (See figure 2.5). The

atoms are allowed to relax only in the direction perpendicular to the fault plane.

We use the slab model with two surfaces. The form and the volume of the supercell

are fixed. The excess energies for each GSF are then obtained on each slip plane

by the following equation:

γ =
EGSF
slab − Eslab

A
(2.22)

Working out the corresponding this γ-plot, we identified some possible meta-stable

SFs which are revealed by local energy minima on the surface.
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vGSF

Figure 2.5: Schematic presentation of a GSF characterized by the fault vector vGSF .

2.2.4 Screw dislocation cores

2.2.5 〈c+a〉 screw dislocation core construction

Three models for dislocation core construction are introduced in the first chap-

ter. Since the second method (flexible boundary condition method) is difficult to

control and the plane perpendicular to 〈c+a〉 screw dislocation direction is not

periodic in the direction perpendicular to π2 plane [112̄ 2
Λ2 ] with Λ2 = (2/3)(c/a)2

, the first method is chosen.

The initial condition for relaxation is the isotropic elasticity solution for the perfect

screw dislocation displacement field which is applied to all atoms.

uz =
b

2π
· tan−1(

y

x
) (2.23)

A quasi-cylinder with 8 periods of [1̄100] vector length, see figure 2.6 and 32 atomic

layers in the direction perpendicular to π2 plane are built. The unrelaxed 〈c+a〉
screw dislocation core is presented in figure 2.6 . Two central core positions, A

and B in figure 2.6, are tested as centres for the atomic displacements imposed in

the outer cylinder according to elasticity theory. My systems contain about four
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hundred atoms (412 with A and 413 with B). A vacuum layer of 15 Å surrounds

the cylinder. The cut-off is also chosen to separate the light blue zone where the

atoms are allowed to a three direction relaxation while the atoms in the dark blue

zone are allowed to relax only in the 〈c+a〉 direction.

Figure 2.6: The 〈c+a〉 screw dislocation visualised with two central core positions A and
B for the application of uz [eq. 2.22]. Direction perpendicular to π2 plane is [112̄ 2

Λ2 ]
with Λ2 = (2/3)(c/a)2.

After DFT relaxation, Vitek’s difference displacement maps (DDmap) of the re-

laxed configuration are drawn. What the DDmaps show are pair difference dis-

placements uz[i, j]: The arrows are from the smaller to the larger displacement

between atoms. The arrow lengths represent the displacement differences. Only

arrows with a magnitude larger than 0.1 | 〈c+a〉 | are presented in the DDmap.

uz[ij] = (ufinaliz − uinitializ )max − (ufinaljz − uinitialjz )min (2.24)

Since uz in equation 2.24 depends only the distance from the core position from

screw dislocation, pairs of close atoms as visible in figure 2.6 can be considered as

single entities and the DDmap procedure is applied on these pair entities.
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2.2.6 〈a〉 screw dislocation core construction

The quadrupole dislocation model applied by Clouet on Zr [23] uses a 3D periodic

method, thus without free surface problems. The centrosymmetry property of the

quadrupole configuration minimise the stress added by one core of the dipole to

the other. This allows the use of a relative small box to calculate the Peierls Stress

by imposing a NEB method. Compared with O arrangement, the S arrangement

avoids the annihilation of two prismatic direction orientated dislocation dissoci-

ation [23]. We will thus use the S arrangement to simulate our α-Ti 〈a〉 screw

dislocation core.

Once a bulk structure is built, the anisotropic elasticity of a straight dislocation

is applied to the box, see Eschelby et al., Stroh, Hirth & Lothe 1982 section 13-3,

Balluffi section 3 [37, 155, 156, 157, ?, ?]. In the equilibrium state, one has

ciαkβ
∂2uk
∂xα∂xβ

= 0 i = 1, 2, 3 (2.25)

where Einstein summation is assumed on the indices α, k, β which together with

i, represent orthogonal directions. ciαkβ are the elastic stiffness constants in their

four indices tensorial notation, uk is the elastic field displacement along k within

the stroh et al. formalism. The solutions of these equations are :

uk = Akf(η) (2.26)

where

η = x1 + px2 (2.27)

and where p and Ak are constants. Solving the sextic equation for a screw dislo-

cation, one gets:

uk = Re
[
−1
2πi

∑3
n=1 Ak(n)D(n)lnηn

]
(2.28)

when x3 is parallel to the screw dislocation direction line. The basic requirement

for a simple solution of the pure edge-pure screw type is that the x1x2 plane be a

reflection plane. This is true in our case.
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For the pure screw dislocation, A1(1) = A2(1)=0 and A3(1) can be chosen equal

1. One finds that the displacement is (see, [37], eq. 13-128)

uz = − bz
2π
tan−1 (C

′
44C

′
55 − C

′2
45)

1
2y

C
′
44x− C

′
45y

(2.29)

Where the C
′
ij are the Voigt elastic constants with respect to the relevant (x1, x2, x3)

orthogonal frame. C
′
44, C

′
45 and C

′
55 must thus be obtained from the standard Cij.

In the case of our 〈a〉 screw dislocation, two Bond-rotations are needed [?]. The

first corresponds to a clockwise 90◦ rotation and the second to an anti-clockwise

rotation of 42◦.
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Figure 2.7: 〈a〉 screw dislocation core construction.

Table 2.2: Titanium elastic constants (GPa) in the standard and in the new Cartesian
frames.

C11 C12 C13 C33 C44 C45 C55 C66

standard 186 88 84 191 47 0 47 49

new 184 90 84 186 48 2 48 51

Since the tan−1( y
x
) is discontinuous at x ∼ 0, correct +π or -π constants must be

added in the computer program (written in Fortran).

A dipole is then constructed in several steps using the method of Cai [58]. The

dipole is visualised in figure 2.8 with a continuous analytic model in the left which

is without error adjustment and a discontinuous model with 800 atoms in the right

in which the adjustment has been done .
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Figure 2.8: 〈a〉 screw dislocation core dipole model. Continuous model and atomic model.

2.2.7 Twin boundaries and deformation tests

The {101̄2}, {101̄1}, {112̄1} and {112̄2} TBs can be built in the Haüy-Bravais

hemitropic (half-turn) way by rotating one part of a crystal by a half turn about

either the axis normal to the twin plane (Mügge’s type I twin) or about an axis

contained in the twin plane (Mügge’s type II twin). The {112̄1} TB requires a

pre-opposite direction displacement (shuffle) of 1
12
〈11̄00〉 on to the alternate basal

planes so as to relax to its minimum energy state [158, 80, 89]. It eventually

proves to be strictly type II. that if originally built as a type II twin, the atomic

relaxations for the {112̄1} TB are actually pretty small. Conversely, the relaxed

{112̄2} TB is strictly type I, because of its in depth z structure. Because we

use bulk 3D periodic boundary conditions with a code which utilizes the Bloch

theorem (VASP), there are two boundaries per simulated box, instead of one if à

la Möbius periodic conditions were allowed along z [159].

After relaxation to a stable twin structure, one layer on the top and two layers

on the bottom of the bi-crystal twin structure are fixed for H & O segregation

calculations. Thus 3 layers in each supercell boundary are fixed to maintain the

twin structure.

For the deformation tests on such structures, two directions are chosen. They are

respectively the direction perpendicular to each K1 plane (figure 2.9a) and the

c-axis direction of α-Ti of the matrix (figure 2.9b).
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Figure 2.9: Schema of deformation tests done on twin structures. a) deformation direc-
tion is perpendicular to each K1 plane; b) deformation direction is the c-axis direction

of the matrix part.

2.2.8 A new twinning disconnection dipole model

We propose a disconnection dipole model with a pair of opposite disconnections in

the box for the sake of ab initio studies with size limited boxes. The disconnections

to be studied are twinning disconnections so that our model can be called a TD

dipole model. However ab initio studies in solid state systems are still mostly static

studies, and not dynamical studies even if DFT molecular dynamics is possible,

in principle (its just a question of CPU time). We will not be able to study

the twinning in itself. According to results by Wang et alii since 2009, taking

magnesium as a prototype hcp metal, a stacking fault near a partial dislocation

can dissociate into multiple location dipoles, thus forming a twin nucleus [92,

160]. Barrett and El Kadiri [161, 162] and Ostapovets and Serra [98] proposed

a model of twin growth with disclinations situated in basal-prismatic (BP, or

PB) facets, creating superimposed interfacial disconnection (ID) dipoles whose

conservative motion can mediate the motion of the facets[98]. These dynamical

and large size dipole models are different from the static TD dipole model we

are going to describe. In our model, see figure 2.11, the left-right boundaries are

periodic because the ”+TD”/”-TD” dipole suppresses the horizontal mismatch.

Since the vertical mismatch induced by the TDs cannot be suppressed, a three
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atomic layer thick twin boundary (TB) is fixed at the top-bottom junction. Two

vertical atomic layers are also fixed in the middle of the dipole in order to prevent

the likely interaction between the ”+TD” and the ”-TD” in a small box. The

fixed boundaries are coloured in dark blue in figure 2.11. The validity of this

tentative approach has not been fully checked in this preliminary study. Yet, the

segregation energies on the TB obtained within the TD dipole model are in good

agreement with the ones obtained with a simple TB model (actually with two TBs

for vertical periodicity), see the result parts.

Figure 2.10: TD model by Ghazisaeidi et al. for Mg-solute interaction [106].

Figure 2.11: The TD dipole model.

2.2.9 Solute Segregation

The segregation energy is defined as the energy difference between a super-cell

containing a solute at a given interstitial site i at the extended-defect and the

same supercell with the solute in the bulk-like environment. With the following

equation, segregation is favored at site i if Eseg(i) is negative.

Eseg(i) = Ei
solute − Ebulk

solute

Taking the example of a solute segregation energy calculation on stacking-fault

(see figure 2.12), all deformed octahedral sites on or near the SFs are investigated.

According to their distances to the SFs, they are named site 1 (closest to SF), site

2 and site3 (far from SF), site2 are closer than site3, except for the site 2 of the

prism fault for which it is also a on-SF-site. Their positions with respect to SFs

are shown in figure 2.12.
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Figure 2.12: Segregation sites for H and O near SFs



Chapter 3

Results I: Titanium and H & O in

α-Ti

Although the main goal of this chapter is to study the effects of H and O in α

titanium, I first start by studying the stability problem between the α and ω

phases of Ti at 0 K and zero pressure.

I then study:

-the question of the preferred interstitial positions of H and O in α.

-the interaction of H and O with α-Ti and of two solutes H/O in α-Ti.

-the effects of H and O on elastic constants of α-Ti.

-the migration of H and O in Ti.

These studies constitute first steps before studying the effects of H and O on

stacking-faults, on dislocation cores, on twin boundaries and on twinning disloca-

tions in α-Ti.

57
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3.1 About α and ω phases of Ti at 0 K and 0 Pa

Three different PAW potentials of Ti with the GGA-PBE exchange and correlation

function are used to calculate the total free energies F at 0 K: A four electron

3d4s potential (2002 version) and two 12 electron 3s3p3d4s potentials (2000 and

2005 versions). For the phonon calculations, I used Encut = 500 eV for 4e-02

potential and Encut=700 eV for the two 12e potentials. Kpoints are equivalent to

a 25x25x15 grid in a primitive cell of 2 atoms of the α phase.

The optimised lattice parameters and the free energies of the α, ω and β phases

obtained by DFT calculations are given in tables 3.1- 3.4 for Ti and Zr. Since

the energy differences between α and ω are very small, ZPE calculations will be

carried out to get the complete ∆F at zero K.

Table 3.1: Lattice parameters and electronic total energies of α, ω and β phases of Ti,
calculated at 0 K and 0 Pa, with experimental values

α ω β

Potentials a (Å) c/a Eel (eV) a (Å) c/a Eel (eV) a (Å) Eel (eV)

4e 2.924 1.582 -7.762 4.552 0.619 -7.776 3.236 -7 .662

12e-00 2.938 1.583 -7.946 4.581 0.618 -7.952 3.254 -7.837

12e-05 2.937 1.582 -7.8357 4.579 0.618 -7.8407 3.252 -7.725

Expt. 2.946 1.587 [140] 4.614 0.608 [163] 3.263 [164]
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Figure 3.1: The phonon dispersion curves of α-Ti. 12e-05 used for the PAW potential.

The ∆Eel between the α and ω phases of Ti are presented in table 3.2. The ZPEs

calculated with different box sizes and the total free energy differences at 0 K are
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Figure 3.2: The phonon dispersion curves of ω-Ti. 12e-05 used for the PAW potential.

also given in that table. Phonon dispersion curves of the α phase calculated with a

12e potential are shown in figure 3.1. Only experimental data measured by Stassis

et al. at 295 K are available [165]. Phonon dispersion curves of the ω phase are

shown in figure 3.2.

Table 3.2: Energy differences (in meV) between the α and the ω phases of Ti, not
including and including ∆ZPEs

α ω

Potentials Size ZPE Size ZPE ∆Eel ∆F

4e 2x2x2 33

3x3x2 33 2x2x3 34 -14 -13

4x4x3 32 3x3x4 34 -14 -12

12e-00 2x2x2 36

3x3x2 34 2x2x3 33 -6 -7

4x4x2 34 3x3x4 36 -6 -4

12e-05 3x3x2 35 2x2x3 36 -5 -4

4x4x3 35 3x3x4 34 5 -6

From table 3.2, we can see that the ZPE difference between α and ω is very small,

1 or 2 meV, and not sufficient to reverse the ω phase stability at 0 K obtained with

pure electronic total energies for Ti. The energy difference remains very small in

all cases. In the literature review, see section 1.1.1, we wrote that both α and ω

pahses may well be metastable at 0 K and 0 Pa.

A similar study can be done for Zr which is also a group IV B transition metal.

The values are shown in tables 3.3-3.4. The ZPE differences can change the α/ω

phase stability of Zr deduced from ∆Eel differences although these calculations
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seem to be at the current DFT limits for Zr, probably because Zr has altogether

more electrons than Ti (40 vs. 22).

Table 3.3: Lattice parameters and electronic total energies of α, ω and β phases of Zr

α ω β

Potentials a (Å) c/a Eel (eV) a (Å) c/a Eel (eV) a (Å) Eel (eV)

4e 3.235 1.599 -8.478 5.037 0.626 -8.486 3.574 -8.340

12e-00 3.232 1.597 -8.5469 5.055 0.624 -8.5473 3.579 -8.468

12e-05 3.234 1.598 -8.5197 5.042 0.625 -8.5194 3.574 -8.435

Expt. 3.228 1.592[167] 5.037 0.622[168] 3.573[166]

Table 3.4: Energy differences (in meV) between the α and ω phases of Zr not including
and including ZPEs

α ω

Potentials Size ZPE Size ZPE ∆Eel ∆F

4e-02 3x3x2 23 2x2x3 23 -8 -8

12e-05 3x3x2 24 2x2x3 21.6 -4 -2.8

4x4x3 23 3x3x4 24.1 -4 +0.7

12e-05 3x3x2 24.5 2x2x3 21.6 +0.3 -2.6

3.2 H and O interstitial positions in α-Ti

Figure 3.3: The octahedral interstitial atom is shown in red, the tetrahedral interstitial
atom is shown in pink. a = [21̄10], b = [1̄21̄0] and c = [0001]
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Octahedral and tetrahedral sites are shown in figure 3.3. For an octahedral site,

with 4e potential, the distance of a H and O with their six first neighbour Ti atoms

is 2.04 Å before structural relaxation. It turns to 2.08 Å after relaxation, both

for H and O. For a tetrahedral site, the distances with its four first neighbour Ti

atoms are 1.73 Å for three of them in the bottom and 1.78 Å of fourth one which

is on the top. They turn to respectively 1.87 Å and 2.00 Å after relaxation for

H and 1.96 Å and 2.19 Å for O. The tetrahedral site has thus a larger change

compared to the octahedral site in presence of a H and O. When O is put in a

tetrahedral site, it moves to the basal plane.

I now calculate the formation energies of Octa and Tetra sites with H or O. The

results are shown in table 3.5. Potentials with 4e and 12e are used. We give the

results for several box sizes and different relaxation condition to explicitly provide

an idea, in this PhD work, of the convergence and reliability of the results.

Table 3.5: Formation energy differences between Octa and Tetra sites for H and O in
Ti. ISIF=3 means that the form and volume of supercell are relaxed, and they are fixed

when ISIF=2.The octahedral site is favoured if EOcta − ETetra is negative:
EOcta < ETetra)

Box size Ef -Octa (eV) Ef -Tetra (eV) ∆Ef (Octa− Tetra)

H-4e 2x2x1 ISIF 3 -2.696 -2.498 -0.198

2x2x2 ISIF 3 -2.718 -2.535 -0.183

3x3x2 ISIF 3 -2.706 -2.624 -0.081

4x4x3 ISIF 3 -2.685 -2.560 -0.124

2x2x1 ISIF 2 -2.689 -2.500 -0.191

2x2x2 ISIF 2 -2.713 -2.535 -0.178

3x3x2 ISIF 2 -2.705 -2.624 -0.081

4x4x3 ISIF 2 -2.680 -2.560 -0.120

H-12e 3x3x2 ISIF 2 -2.702 -2.627 -0.075

4x4x3 ISIF 2 -2.701 -2.627 -0.074

O-4e 3x3x2 ISIF 2 -5.688 -4.459 -1.230

4x4x3 ISIF 2 -5.675 -4.408 -1.267

Since the formation energy difference between octahedral and tetrahedral sites

∆Ef is small for H, the ZPE is also be calculated. Seen from table 3.6, the 0

K phonon contribution to Ef difference is 31 meV with the 4e potential. It it

is in the same trends as of Eel: The octahedral site is even more stable when

the vibrational energy is taken into account. ZPE calculation needs no be done
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with 12e potential. O and H will thus be put in octahedral sites in subsequent

simulations.

Table 3.6: Stability of interstitial sites for H in α-Ti. ∆Ff is the free energy difference
with ZPE taken into account.

Method Box ∆E(Octa− Tetra)

4e ∆Ef 3 3 2 -81

∆ZPE 3 3 2 -31

∆Ff 3 3 2 -112

12e Eel 3 3 2 -75

The same procedures are applied to Zr. Two literature papers give the Tetra site

as the more stable one compared to Octa site for both H and O[45, 171].

Table 3.7: Formation energy differences between Octa and Tetra site for H and O in Zr

Box size Ef -Octa (eV) Ef -Tetra (eV) ∆Ef (Octa− Tetra) ∆Ff

H-4e 3x3x2 -2.664 -2.693 0.029 -0.059

4x4x3 -2.704 -2.728 0.023

H-12e 3x3x2 -2.283 -2.345 0.062 -0.026

O-4e 3x3x2 -2.922 -1.931 -0.991
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Figure 3.4: The phonon dispersion curves of the supercell Ti36H with H in the
octahedral interstitial site. In figure 3.4-3.7, following a usual mode of representation,
the ‘negative’ frequencies correspond to imaginary frequencies coming from negative

eigenvalues.



Chapter 3 Results I: Titanium and H & O in α-Ti 63

0

10

20

30

40

50

Γ K M Γ A

F
re
qu
en
cy
(T
H
z)

Figure 3.5: The phonon dispersion curves of the supercell Ti36H with H in the
tetrahedral interstitial site (see note at the end of this 3.2 section).
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Figure 3.6: The phonon dispersion curves of the supercell Zr36H with H in the
octahedral interstitial site.

The results in table 3.7 confirmed that the Tetra site in Zr is slightly more stable

than the Octa site in terms of total electronic energy Eel. However, the ZPEs are

relatively important and finally change the Tetra site stability.

Phonon band structures of the Ti36H and Zr36H systems with a H in an octahedral

or a tetrahedral site are presented in figure 3.4-3.7. They are developed over the

Γ −K −M − Γ − A lines in the usual Brillouin zone of the hexagonal lattice as

originally defined by Herring in 1942. For the Ti36H system, we clearly see that

the vibration energy of a H in a tetrahedral site (figure 3.5), corresponding to

the phonon band at 43 THz, is higher than in octahedral site where the phonon

bands of H are located between 25 and 30 THz. This means that hydrogen is

more energetic (less stable) in a tetrahedral site than in an octahedral site. Since

these phonon calculations are done with 4e potential and with a large accuracy
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Figure 3.7: The phonon dispersion curves of the supercell Zr36H with H in the
tetrahedral interstitial site.

on structure optimisation and convergence (on force: 0.1 meV/Å), the imaginary

phonons shown in tetrahedral site (figure 3.5) indicate a dynamical instability of

the hydrogen in the tetrahedral site configuration for H.

Similar phenomena are found for Zr except for the appearance of negative phonons

for H in the octahedral site. In this case, it is likely due to the rather low energy

convergence. I used (1 meV) with the 12e potential on Zr36H.

Note : I should have got two extra horizontal (dispersionless) bands with PHON

for the Ti36H system with H in the tetrahedral site (figure 3.5), as for the Zr36H

system (figure 3.7). Lu and Zhang [122] obtain only one extra dispersionless band

and say it is threefold degenerate. Given the isotropy of the planar hexagonal

plane opposed to the c-axis direction, it seems to us that one should obtain two

extra dispersionless modes, as we do in three of our four cases, one of these two

modes being twofold degenerate.

3.3 H and O interactions with α-Ti

3.3.1 Structures and Energies

With the supercells which can be used in this DFT work, the H concentrations

are largely beyond any reasonable solubility limits (see section 1.2.2 in the intro-

duction, Conrads paper). However, with only one H or one O per supercell with

N titanium atoms, nothing else can exist than a (probably rather artificial) TinH
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or TinO compound. This is because, a Ti36H supercell, for instance, is not equiv-

alent to a Ti3600H100 supercell within which possibilities to generate local hydride

would exist. Garcés and Vajda were able to generate chain-like configurations

with H-Ti-H pairs in a Ti24H3 supercell (2x2x3 hcp cell) which they considered as

the seed for hydride formation [172]. I only consider TinH and TinO cells in this

work.

Table 3.8: Effects of one H and one O in various hcp titanium cells. The δ X values
are relatively ∆X/X variations, given in %, see text. Atomic position optimisations are

converged to 0.1 meV, with the 4e PAW potential with Encut=300 eV.

Box size Ef (eV) δdnn δ V δLx δLz/Lx

H 1x1x1 -2.702 2.89 +4.10 +0.80 +2.46

2x2x1 -2.696 3.09 +1.18 +0.32 +0.53

2x2x2 -2.718 2.75 +0.57 +0.10 +0.37

3x3x2 -2.706 2.30 +0.19 +0.06 +0.06

4x4x3 -2.684 2.21 +0.15 -0.03 +0.22

O 1x1x1 -5.458 2.55 -1.91 -1.35 +0.79

2x2x1 -5.724 2.06 -0.98 -0.74 +0.50

2x2x2 - 2.11 -0.57 -0.30 +0.04

3x3x2 -5.692 2.11 -0.28 -0.20 +0.12

4x4x3 -5.682 2.16 -0.09 -0.16 +0.23

I now consider several nx × ny × nz Ti hcp cells with one H or one O in an

octahedral site, corresponding to TinH or TinO cells with N = 2 nx × ny × nz.

As usual, the x and y directions are in the hexagonal plane and z corresponds

to the c-axis. These cells are DFT optimized with respect to atomic positions

and cell size/shape. I thus get the formation energies Ef , calculated with EH2

= 2.233 eV and EO2 = -9.855 eV. The global volume variations ∆V/V which

can be decomposed in ∆Lx/Lx in the hexagonal plane and ∆Lz/Lz along the

c-axis. I can also measure locally the dnn nearest Ti neighbour distances to the

solute and get the relative ∆dnn/dnn variations. All these information are given in

table 3.8 where I give the relative ∆(Lz/Lx)/(Lz/Lx) variations in the last column

because Lz/Lx is reminiscent of the c/a ratio. In that table, in order to save

space, the ∆X symbols correspond to ∆X/X relative variations, given in %. The

negative formation energies indicate that the formation of these systems is always

favoured. It is twice as much favoured for oxygen than for hydrogen, indicating

stronger Ti-O bonds than Ti-H bonds. A hydrogen induces a global expansion
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Figure 3.8: Local titanium position changes induced by (yellow titanium) or by O
(purple titanium) in octahedral site, compared with original positions (blue). The

solute, H or O, is in red. Configuration with a 4× 4× 3 supercell.

of its environment, the cell volumes, both Lx and Lz/Lx while oxygen globally

reduces the cell volumes, to a less extent and with a global decrease in Lx but a

global increase in Lz/Lx. This shows that a simple reasoning from assumed atomic

sizes of hydrogen and oxygen, with hydrogen being assumed to be smaller than

hydrogen, would be much too naive. It would lead to opposite conclusions. Naive

atomic size reasoning neglects possible chemical effects. Besides, the quantum

mechanical considerations by Clementi et al. ascribe an “atomic radius” of 0.48

Å , clearly counter intuitively smaller than for hydrogen (0.53 Å) [173]. It is

noteworthy that the global ∆V are negative when an O is inserted, the local ∆dnn

are always positive. The local atomic displacements are visualised in figure 3.8

relative to a 4x4x3 box (one solute interstitial atom within 96 titanium atoms).

The solute atom, whether H or O, is in red, at the octahedral site. The yellow,
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purple, balls represent the positions of the titanium atoms after relaxation in

presence of a H (yellow titanium), an O (purple titanium), respectively. The

original titanium positions are in blue. Although the radial ∆dnn is the same for

all six Ti nearest neighbour of the solute, the directional displacements are not

isotropic especially in the case of O which induces a more pronounced pushing of

its Ti neighbours in the c-direction than in the basal directions. H has an almost

isotropic effect.

3.3.2 Electronic Structures

Figure 3.9: Charge transfer between Ti and H atom in the plane containing four nearest
Ti atoms and one H. The scale is from -0.005 (deep blue) to 0.02 (red) e/Bohr3

When one H is put in a Ti box of 4×4×3, charge transfer between Ti and H atom

in the plane containing four nearest Ti atoms and one H are showed in figure 3.9.

The scale is from -0.005 to 0.02 e/Bohr3, idem for O in figure 3.10 (Bohr is the

Bohr radius aB=0.5292 Å). More charges are transferred for Ti to H as shown in

figure 3.9 compared with O in figure 3.10. The Ti-H bond has thus a more ionic

character than the Ti-O bond. Dark blue areas are formed only in the Ti-H bond

direction compared with the more homogeneous distribution in the Ti-O system.

This corresponds to a more polarised bond between Ti and H than between Ti

and O. The radius of the light green circle surrounding oxygen core is larger than

in the case of H, this means a larger influence of oxygen atom on the electronic

structures on Ti atoms in the supercell than hydrogen.
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Figure 3.10: Charge transfer between Ti and O atom in the plane containing four
nearest Ti atoms and one O. The scale is from -0.005 to 0.02 e/Bohr3

When one H or one O is put in a Ti box of 4x4x3, the partial DOS of a nearest

neighbour (nn) Ti of H/O is calculated and presented in figure 3.11. The Ti near

H has a DOS comparable to the case of pure Ti. Even the a 2nd nn Ti of O

is more affected by Ti compared to that of 1st nn Ti of H. A small peak around

-7 eV appears in the case of 1st nn Ti of O, which means a hybridization of orbitals

between the 3d of Ti and the orbitals of O. This could correspond to the decrease

of the 3d orbital DOS profile.

3.3.3 solute-solute interactions in α-Ti

The O-O, H-H and O-H interactions have been calculated in a 4ax4ax3c supercell

of 96 atoms of α-Ti. Possible configurations for solute-solute interaction in two

different interstitial sites are shown in figure 3.12.

The O and/or H atoms are put in two different interstitial sites A and B. The

interaction energies thus obtained by the following equation are shown in table 3.9.

EInteraction = EBox+A+B + EBox − [EBox+A + EBox+B]

The interaction energies depend on the vectorial distance between the occupied

interstitial sites A and B, thus implying a scalar distance and an orientation as
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Figure 3.11: DOS of Ti in presence of H or O

indicated in table 3.9. The O-O interaction is repulsive when the O atoms are very

close. It is attractive for distance cases from 4.62 to 5.85 Å. It becomes very small

afterwards. The O-H and H-H interactions are smaller than O-O interactions. The

O-H interaction is always attractive while the H-H one is mainly attractive under

6.86 Å and repulsive beyond. We can safely conclude that the interaction between

two interstitial O or H atoms in α-Ti becomes very small when the distance is

more that ∼3a (or 2c). These results are presented in the table 3.9.

Figure 3.12: Possible configurations for solute-solute interaction in two different
interstitial sites a) c-axis projection; b)a direction projection.
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Table 3.9: O-O, H-H and O-H interaction energies (in meV). Distances are in (Å).
Box size is 4× 4× 3.

c-axis Dis. Basal plane Dis. Total Dis. Orientation O-O H-H O-H

0 a 2.92 [12̄10] 64 7 -28√
3a 5.06 [11̄00] -72 -5 -21

2a 5.85 [12̄10] -55 -21 -31
1
2
c 0 2.31 [0001] 545 -20 -23

a 3.73 [24̄23] 6 -5 -22√
3a 5.57 [22̄01] -9 -3 -10

2a 6.29 [48̄43] 2 -6 -11

c 0 4.62 [0001] -59 23 -17

a 5.47 [12̄13] -55 -5 -24√
3a 6.86 [11̄01] 0 1 -5

2a 7.45 [24̄23] -20 3 -12
3
2
c 0 6.93 [0001] -26 20 -8

a 7.53 [24̄29] -5 -1 -12√
3a 8.59 [22̄03] -1 0 -9

2a 9.07 [48̄49] 3 6 -2

3.4 Effects of H and O on the stiffness elastic

constants

Five independent deformation modes are used to get the 5 independent Cij of

the hexagonal symmetry [32, 154]. A series of deformations [-2%, -1%, -0.5%,

0.5%, 1%, 2%] are applied for each deformation mode in order to obtain the

corresponding elastic constants, see figures 3.14 and 3.15 for the Ti-H system and

Ti-O system, respectively.

The results for pure Ti, Ti-H and Ti-O systems are presented in tables 3.10-3.12.

The values given in the first line of table 3.10, the ’4e VASP’ line, have been ob-

tained with the nice VASP elastic constant facility. According to inspection of the

corresponding VASP OUTCAR output files, this VASP option apparently uses

deformations as large as 10%. This sounds rather large for elastic constants and

the values subsequently indicated have been obtained via series of deformations

for each deformation mode, as said at the beginning of this section. I obtained

the C44 constants from series of double shear deformations (XX-XZ and YY-YZ).

This should give a better numerical estimation than with a series of single shear



Chapter 3 Results I: Titanium and H & O in α-Ti 71

Table 3.10: Elastic Constants (GPa) of pure Ti: comparison

PAW potential C11 C12 C13 C33 C44 C66 B G E

4e VASP 169 84 81 187 41 43 113 44 116

4e 186 88 84 191 47 49 119 49 130

12e00 183 81 76 188 49 51 113 51 134

12e05 185 81 76 189 49 (45) 52 114 52 135

12e [154] 182 83 76 192 45 50 114 49 130

Expt.4K [141] 176 87 68 191 51 45 110 51 132

| 4e−Expt.
Expt.

| (%) 5.7 1.2 23.5 0.0 4.4 10.1 8.2 3.9 1.5

| 12e05−Expt.
Expt.

| (%) 5.1 6.9 11.8 1.0 8.9 16.9 3.6 2.0 2.3

deformations. In the ’12e-05’ line in table 3.10, corresponding to the 12 elec-

trons PAW (PBE GGA) potential provided by VASP, I give in parentheses the

C44 value obtained with single shear deformations. Kwasniak also used single

shear deformations [154]. Double shear deformation C44 values are closer to the

experimental value obtained by Fisher and Renken [141] in 1964 at 4 K, using an

ultrasonic wave interference technique (measurement of acoustic wave velocities in

three independent crystallographic directions of the hexagonal lattice).

The results for the Ti-H systems, viz. TinH cells with N = 2 nx×ny×nz are given

in table 3.11 with elastic constants deduced from curves such as those given in fig-

ure 3.14. For the 1x1x1 and 1x1x2 boxes (Ti2Hand Ti4H respectively), one gets

negative C66 (=(C11-C12)/2) values. Since C66 correspond to a fundamental shear-

ing mode of hexagonal lattice, that means that these two systems are elastically

unstable. The 2x2x1 box, corresponding to Ti8H, seems to have a positive C66.

Yet, from the corresponding ∆E curve for the (C11-C12) shearing mode, this small

positive value probably corresponds to inaccurate fitting. Only larger systems,

Ti16H, Ti36H and Ti96H, can be considered as elastically stable (I also checked

that all eigenvalues of the corresponding Voigt matrices are indeed positive). For

these systems, the bulk compressibility B is not much changed with respect to the

pristine α-Ti B value (120 and 118 GPa vs. 119 GPa). By contrast, the averaged

Coulomb shear value G (rigidity modulus) is significantly decreased (38 and 45

GPa vs. 49 GPa). This is an opposite conclusion with respect to Liang and Gongs

calculations in 2010 [114] but in agreement with experimental measurements for

B and G extrapolated at 0 K for TiH0.04 [175], which corresponds to Ti25H, in

between our Ti16H and Ti36H boxes

All Ti-O systems I studied are elastically stable, see table 3.12. Oxygen clearly
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Table 3.11: Elastic Constants (GPa) of Ti-H system

C11 C12 C13 C33 C44 C66 B G E

1x1x1-Ti2H -355 267 85 232 -109 -311 44 -167 1845

1x1x2-Ti4H 93 200 43 370 32 -54 125 20 57

2x2x1-Ti8H 168 140 63 287 44 12 127 45 120

2x2x2-Ti16H 164 110 83 194 41 27 120 38 103

3x3x2-Ti36H 164 89 92 185 37 37 118 38 112

4x4x3-Ti96H 180 95 84 198 43 43 120 45 121

Pure Ti 186 88 84 191 47 49 119 49 130

Pure Ti [114] 177 81 180 112

2x2x2 [114] 115 51

TiHExp
0.04 [175] 119

has a stiffening effect, in relative agreement with Kwasniak’s 12 electrons calcula-

tions [154] and experimental knowledge according to which oxygen clearly has a

strengthening effect on titanium.

Knowing that Pugh used the polycrystalline B/G ratio in 1954 to define an em-

pirical criterion according to which a polycrystalline material with a larger than

1.75 is ductile [176], and brittle otherwise, it is tempting to draw the polycrys-

talline B/G ratio for our (limited) Ti-H and Ti-O systems, see figure 3.13. Our

systems are always ductile, but they are artificial systems which cannot locally

form hydride or oxides. One can notice the non-monotonic influence of O and H

for our ’low’ concentration boxes, especially so for the Ti-H systems. The slight

increase of the polycrystalline B/G ratio deduced from the Ti96H system may

be put in parallel with the beneficial influence of O at approximately 1 at% on

mechanical properties of α-Ti as recently observed by Firstov et al. [178] and by

Sun et al. [177]. It is probably more audacious to put in parallel the strong but

highly non monotonic influence of the H concentrations in our artificial systems

with the different, and opposite, beneficial or not, effects of H on Ti which have

been experimentally observed [21].

Considering the directional Young’s modulus E(~l) whose formula for hexagonal

crystals has been given in section 2.2.2 of chapter 2, I can draw its surfaces for

pure Ti, Ti-H and Ti-O systems as shown in figure 3.16. Its anisotropy is clearly

enhanced for the Ti36O system, not so for the Ti36H system.
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Table 3.12: Elastic Constants (GPa) of Ti-O system

C11 C12 C13 C33 C44 C66 B G E

1x1x1-Ti2O 423 129 191 408 146 147 253 137 348

1x1x2-Ti4O 227 164 111 300 84 31 170 64 171

2x2x1-Ti8O 245 170 96 244 71 64 150 70 181

2x2x2-Ti16O 201 115 86 230 57 43 134 55 144

3x3x2-Ti36O 207 106 81 228 56 51 131 57 150

4x4x3-Ti96O 186 95 83 207 47 45 122 49 129

Pure Ti 186 88 84 191 47 49 119 49 130

2x2x2 [154] 196 100 80 218 58 48 125 57 147

4x4x3 [154] 187 84 82 196 47 51 118 50 133
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Figure 3.13: B/G ratio of Ti-H and Ti-O system. The polycrystalline Ti is intrinsically
brittle for a B/G value less than 1.75 according to Pugh’s plasticity criterion.
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Figure 3.14: Elastic constant calculation for Ti-H system
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Figure 3.15: Elastic constant calculation for Ti-O system
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3.5 Migration of H and O in α-Ti

Because of the controversy between the experimental conclusions and the DFT

calculations for the hydrogen interstitial site stability and as a preliminary step for

solute segregation study, the climbing image nudged elastic band (NEB) method

[179] is used with three linearly interpolated intermediate to calculate a minimum

energy pathway (MEP) during the Octa to Tetra site migration process. The

results obtained with a H in a 4x4x3 supercell are shown in figure 3.17

One can see that the conjugate gradient algorithm (IBRION=2) fails to predict

a good energy pathway, compared to the quasi newton algorithm (IBRION=1).

However both methods give a similar energy barrier which is 514 meV for IB-

IRON=1 and 479 meV for IBRION=2. The calculation of Lu and Zhang. [122]

gives 504 meV for this energy barrier, in excellent agreement with this work.

For the O migration in α-Ti, our results for a migration along the c-axis give 3.34

eV compared to the 3.25 eV found by Wu and Trinkle [110]. The basal plane

migration barrier is 1.71 eV given by our calculation. This indicates an easier

migration in basal plane for oxygen.

Coupling with our phonon calculations and using the transition state theory [122,

180, 181], one can calculate the jump frequencies for micro-diffusion processes

and the diffusion coefficients depending on the temperature. Further works are

required for this part.

b) c)

a)

a1
a2

c

Figure 3.16: Elastic modulus surface of a) pure Ti; b) Ti36H; c) Ti36O. The unit for
the three box axis is GPa.
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Figure 3.17: The Octa to Tetra site migration of H in α-Ti
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Figure 3.18: The c-axis and basal plane migration of O in α-Ti





Chapter 4

Results II: H and O effects on

stacking faults and on dislocation

cores

This chapter is to study the effects of hydrogen and oxygen on the stacking faults

and dislocation cores.

It is divided into six parts:

stacking faults calculations in α-Ti

〈a+c〉 screw dislocation core simulation

H and O effects on stacking-faults

〈a〉 screw dislocation core simulation

H and O effects on dislocation core

H and O effects on 〈a〉 screw dislocation glide.

79
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4.1 Stacking-Faults in α-Ti

In this part, we first introduce our computational techniques, and, in the result

part, we present the γ-surfaces for the four main slip planes of α-Ti, viz. basal,

prismatic, and pyramidal π1 and π2 planes, thus providing a systematic and unified

study of the SFs in these planes via a state of the art ab initio technique. The

four planes are visualized in figure 4.1 with their associated 〈a〉 and 〈c+a〉 in

red. Possible stable SFs are identified on the γ-surfaces and an all atom relaxation

method is used to get the real stable SFs. The results invite to a further discussion

of 〈c+a〉 dislocation dissociation and cross-slip mechanism.

4.1.1 Vitek’s method for γ-surface calculations

In order to identify the possible stable SFs, we carry out à la Vitek γ-surface

calculations. In this method, [56], a rigid translation is applied to the upper half

block of a crystal in order to create a generalised-SF (GSF). The atoms are allowed

to relax only in the direction perpendicular to the fault plane. We use a slab model

with two surfaces in a supercell whose form is fixed. The excess energies for each

GSF are then obtained by the usual following equation where A is the interfacial

area:

γ =
Eslab−GSF − Eslab

A
(4.1)

The energies are ab initio calculated via density functional theory using the VASP

software with the PAW method, the GGA-PBE functional, and a Methfessel-

Paxton smearing [134, 135, 132, 139, 137, 149]. Our slabs are made of 20 atomic

layers for basal plane, 24 layers for prism plane, 24 layers for π1 plane and 12

layers for π2 plane. We obtain four γ-surfaces which are presented in figure 4.2-

4.5. From local energy minima which can be identified in these γ-surfaces, we get

five possible meta-stable SFs which are presented in table 4.1. Their stabilities

now need to be checked with relaxation of atoms in x− y − z direction.
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Figure 4.1: Slip systems, the arrow on the plane indicates a slip direction [39]. Cf.
section 1.1.2.1.
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Figure 4.2: γ-surfaces of basal plane
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Figure 4.3: γ-surfaces on Prism plane
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π1 plane GSFE
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Figure 4.4: γ-surfaces on π1 plane
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Figure 4.5: γ-surfaces on π2 plane

Table 4.1: Possible SFs identified by γ-plots

Slip Plane Slip direction SF SFE (mJ/m2) Other SFEs

Basal {0001} 〈101̄0〉 1
3
〈101̄0〉 (I2) 309 292 [41], 287 [42], 259 [43]

Prism {101̄0} 〈a〉 1
6
〈1̄21̄0〉 213 220 [41], 250 [43]

π1 {101̄1} η1
1
4
〈101̄2̄〉 243 (240-Zr[45])

π1 {101̄1} 〈c+a〉 0.15〈1̄1̄23〉 444

π2 {112̄2} 〈c+a〉 1
5
〈1̄1̄23〉 416

η1 is the direction of twinning dislocation of {101̄1} twin.
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4.1.2 New stacking faults and twinning-assisted SF forma-

tion

The atoms in the slab model containing each of the presumed five SFs are relaxed

in all three directions. The basal and prism SFs remain stable with exactly the

same structures and energies. Other results are partly given in table 4.2. Both

the 1
4
〈101̄2̄〉 and the 0.15〈1̄1̄23〉 SFs on the π1 plane identified by Vitek’s method

in Section 2 relax to a unique SF which is 0.215〈101̄2̄〉 and has a much lower

energy. The 1
5
〈1̄1̄23〉 SF also relaxes to a lower energy 0.19〈1̄1̄23〉 SF. We do

reproduce the stable SF found by Chaari et al. on the π1 plane [44]. Note that

this SF is not detected by the Vitek’s construction. The 0.215〈101̄2̄〉 energy is

the smallest one in α-Ti (table 4.2). Its atomic structure is shown in figure 4.6,

together with the structure found in [44] for the sake of comparison. Both SFs on

π1 plane correspond to {101̄1} nanotwin structures at the faulted area. The new

0.215〈101̄2̄〉 SF corresponds to a {101̄1} nanotwin AB which leads to a significant

decrease of the SFE, just as the simple {111} SF in a face centred cubic metal can

be seen as made of two close {111} twin boundaries (TBs). Indeed, the {101̄1}
TB energy turns out to be only 92 mJ/m2. Similar twin-assisted SF structures do

not take place in the π2 plane because the associated TB energy is much higher,

viz. 384 mJ/m2.

Since 0.19〈1̄1̄23〉=0.57〈c+a〉, the α factor of the following dissociation model on

the π2-{112̄2} plane

〈c + a〉 = α〈c + a〉+ (1− α)〈c + a〉 (4.2)

is 0.57 instead of 0.5 found with empirical potentials [46, 47].

Table 4.2: Final stable SFs and associated twins in pyramidal planes. bTD is the direc-
tion of twinning dislocation of the {101̄1} twin.

Slip Plane Slip direction SF SFE (mJ/m2)

π1 {101̄1} η1 0.215〈101̄2̄〉 134

π2 {112̄2} 〈c + a〉 0.19〈1̄1̄23〉 297

π1 {101̄1} 1
2
〈a〉 - 1

2
〈bTD〉 1

2
〈1̄21̄0〉 - 0.0384〈101̄2̄〉 205 227 [44]

Associated Twins twinning-dislocation γTB (mJ/m2)

π1 {101̄1} 0.0768〈101̄2̄〉 92

π2 {112̄2} 0.1427〈1̄1̄23〉 384



84 Chapter 4 Results II: H and O effects on stacking faults and on dislocation cores

Figure 4.6: Two {101̄1} Twin-assisted SFs on π1. Left figure is related to the 0.215〈101̄2̄〉
partial dislocation; right figure corresponds to 1

2〈a〉 - 1
2〈bTD〉 partial dislocation found in

[44].

4.1.3 Discussion

From our simulations above, the former conclusions of the 〈c+a〉 screw dislocation

dissociation into two equivalent 1
2
〈c+a〉 dislocations must be reconsidered. We

propose a two step mechanism which is visualized in figure 4.7 and given in the
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following two step equation:

〈c + a〉 = 0.57〈c + a〉π2 + 0.43〈c + a〉π1

0.43〈c + a〉π1 = 0.215η1 + 0.215〈a〉
(4.3)

where η1 is the twinning direction vector of the {101̄1} twin, viz. 〈101̄2̄〉. A

〈c+a〉 screw dislocation dissociates to two partial dislocations with a SF ribbon in

between, and the second partial dissociates to two partials in the π1-{101̄1} plane

for 0.215η1 and π1 or prismatic plane for 0.215〈a〉, one along the η1 direction and

another one along the 〈a〉 direction on the π1 plane.

  

Figure 4.7: A possible 〈c+a〉 screw dislocation dissociation mechanism.

This scheme is currently only based on SF calculations. In order to check its valid-

ity, a further direct study of the 〈c+a〉 screw dislocation dissociation is necessary

and is ongoing although it requires a large amount of atoms. Comparing with

the traditional cross-slip hypothesis on only π1 and π2 planes [46, 55], there may

exist a more complicated cross-slip phenomenon on all the four slip planes (π1,

π2, prism and basal plane). Since the empirical potential do not predict well the

SFs found by our DFT calculations, the cross-slip study can only be done with a

nudged elastic band method, still very heavy in DFT. This kind of work should

hopefully become attainable thanks to the rapid development of computational

capacities.
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4.2 〈c+a〉 screw dislocation core dissociation

In order to investigate the possible 〈c+a〉 dissociation mechanism, 〈c+a〉 screw

dislocation core construction is necessary. Two core positions, A and B in fig-

ure 4.8, are tested as centre for the atomic displacements (dislocation line) im-

posed in the outer cylinder according to elasticity theory. With the cylinder radius

I chose, it gives 412 atoms in the box with core A and 413 atoms in the box with

core B.

Figure 4.8: The 〈c+a〉 screw dislocation visualized with two central core positions A and
B for the application of uz [eq. 2.22]. Direction perpendicular to π2 plane is [112̄ 2

Λ2 ]
with Λ2 = (2/3)(c/a)2. Cf. section 2.2.5.

After DFT relaxation, a Vitek’s difference displacement map (DDmap) of the

relaxed configuration is drawn with a DDmap program I wrote with Mapple.

The DDmaps are presented in figures 4.9- 4.10.

Unlike the π1 plane dissociation observed by Minonishi using a Lennard-Jones

potential (lj56) potential (see section 1.1.2.2.3), but similarly to the dissociation
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Figure 4.9: DDmap of the ‘A-positioned’ 〈c+ a〉 screw dislocation core after relaxation.
(All dots in this DDmap are artefacts from my DDmap generation program. Id. fig.

4.9.)

Figure 4.10: DDmap of the ‘A-positioned’ 〈c+a〉 screw dislocation core after relaxation.
The small arrows presented in the boundary should be the results of surface effects.

configuration of Liang & Bacon [52] using a better ti12 or n56 potential (fig-

ure 4.11), my DFT simulations show the non-planar core spreading on π1, π2 and

prismatic plane planes. Compared with the A position relaxed DDmap, the B po-

sition DDmap spreads more on the π1 and π2 planes and less on the vertical (11̄00)
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A

Figure 4.11: 〈c + a〉 screw dislocation core dissociation in π1, π2 and prismatic planes
obtained using a ti12 potential with a dislocation line position at A [52].

plane. But neither the A nor the B configuration give a clear core dissociation. A

large 0.57〈c + a〉 screw partial dislocation dissociated on π2 is not observed.

All the atoms being allowed to relax in the periodic screw dislocation direction,

the influence from the boundary condition can be thought of as being minimal.

Thus, these simulations should give a good approximation for the screw core re-

laxation. The reason why we do not get a dissociation on π1, π2 and prismatic

plane with expected partial dislocation as proposed by our SF calculations may be

explained by the fact that, as revealed by our previous stacking fault calculations,

the dissociation mechanism is more complex than a simple splitting to 2 partial

dislocations. It could be 3 parts. Thus, such a 〈c+a〉 screw dislocation dissocia-

tion may not be easy to obtain by direct relaxation from an initially perfect core

(see the 〈a〉 screw dislocation core spreading case shown in section 4.4). A pre-

extended dislocation core configuration as shown in the simulation of Minonishi

et al. [46] or some external perturbations may be required.

4.3 H and O interaction with SFs

Plasticity of Ti is mainly controlled by the 〈a〉 screw dislocation glide. As shown

by many DFT-based screw dislocation core simulations on hcp metals (Ti [41], Zr

[23], Mg), the prismatic screw dislocation core 〈a〉 can dissociate to two closely

related partials 1/2 〈a〉, separated by a narrow SF. 〈a〉 or 〈c+a〉 dislocation

associated SFs are also observed in empirical potential simulations. It is thus
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important to study the effect of H or O on them from a energetic point of view.

This will be useful for a rough estimation of the H/O effects on core structure.

4.3.1 Segregation of H and O to stacking faults

Figure 4.12: Segregation sites for H and O near SFs

First of all, in order to study the effect of H and O on SFs, we carry out seg-

regation energy calculations. All deformed octahedral sites on or near the SFs

are investigated. According to their distances to the SFs, they are named site 1

(closest to SF), site 2 and site3 (far from SF), site2 are closer than site3, except

for the site 2 of the prism fault for which it is also a on-SF-site. Their positions

with respect to SFs are shown in figures 4.12. For each site, super-cells of different

sizes are used in order to check the sign and value of Eseg when it is favourable.

table 4.3 gives the segregation energies for these sites.

The segregation energies are small, which sounds reasonable for interstitial rather

than substitutional segregation near SFs. From table 4.3, we start by discussing

the 〈a〉 screw dislocation associated SFs.

For the prismatic fault: O does not segregate to site 1, it segregates to the site 2

only with the box 1x1. It segregates to the site 3, but it seems that the segregation
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Table 4.3: Segregation energies for H and O in different Octa sites near each SFs. bTD
is the direction of twinning dislocation of the {101̄1} twin

SF Size Eseg O (eV) Eseg H (eV)

X-Y Site 1 Site 2 Site 3 Site 1 Site 2 Site 3

Prism. 1x1 2.0 -0.019 -0.068 0.761 -0.047 0.041

〈a〉 2x2 3.183 0.097 -0.008 0.792 -0.031 0.041

3x3 2.473 0.124 -0.001 0.802 -0.026 0.016

π1 1x1 -0.083 0.120 -0.078 0.02 -0.103 0.020

0.5a-0.5bTD 2x1 -0.098 0.025

Basal 1x1 0.123 -0.006 -0.245 -0.168

I2 2x2 -0.01 -0.058 -0.251 -0.164

3x3 0.009 -0.053 -0.279 -0.170

π1 1x1 -0.015 0.123 -0.095 0.06 -0.052 -0.005

0.215〈c+a〉 2x2 0.195 0.165 -0.033 0.066 -0.054 -0.002

π2 1x1 0.394 0.393 -0.124 -0.122

0.57〈c+a〉 2x2 0.373 0.545 -0.134 -0.134

will not happen for a box larger than 3x3 according to the tendency. H segregates

neither to the site 1 nor the site 3, while it segregates to site 2 with all the 3 sizes.

They show that oxygen normally does not segregate to prismatic SF and H has

only a small segregation ability (Eseg lower than 50 meV) to this SF.

For the important 0.5a-0.5bTD SF in π1 plane, O segregates to sites 1 and 3 while

H segregates only to site 2. The segregation energies on this SF are more impor-

tant than those on the prismatic SF, which suppose a more important interaction

between H and O with this SF on π1 plane.

For the secondary glide system associated basal I2 SF, O segregates mainly to site

2 and H segregates to both sites 1 and 2. The large Eseg of H indicates a possible

large effect on the basal glide system.

For the 〈c+a〉 screw dislocation associated SFs, in the case of 0.215 〈c+a〉 on π1

plane, O mainly segregates to the site 3 and H mainly to site 2.

In the case of 0.57〈c+a〉 on π2 plane, O does not segregate while H strongly

segregates to sties 1 and 2. This indicates a possibly large influence of H on the

π2 plane glide.
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We can conclude that except for O in prism & π2 SF cases, O/H will closely

influence the SF and thus the core structures. Segregation energy calculation on

screw dislocation core 〈a〉 on prism and π1 plane will be done in the section 4.5.

4.3.2 Effects of H and O on stacking fault energies

We can go further to see the SFE variations in presence of the H/O in different

sites. The sites now investigated are not limited to the segregation sites because the

velocity of a passing dislocation is much larger than H and O diffusion velocities.

The SF may be formed in presence of O/H in non-segregated sites as H or O may

not have time to diffuse to other sites [8, 12].

SFEs values in presence of H and O in site 1, 2, 3 with different concentrations

are shown in table 4.4. These values are compared to the SFEs obtained from a

pure Ti supercell (column 6)

Table 4.4: SFE values in presence of H and O in different octahedral sites near SFs
and with different concentrations

SF Size SFE with O (mJ/m2) SFE with H (mJ/m2)

X-Y Site 1 Site 2 Site 3 bulk Site 1 Site 2 Site 3

Prism. 1x1 2586 190 132 213 1107 149 206

〈a〉 2x2 944 244 213 213 448 204 213

3x3 695 231 206 213 363 199 208

π1 1x1 170 275 172 205 209 145 132

0.5a-0.5bTD 2x1 209 249 208 205

Basal 1x1 546 265 309 -237 -72

I2 2x2 298 273 309

3x3 294 279 309 234 260

π1 1x1 137 209 96 134 165 107 132

0.215〈c+a〉 2x2 193 185 134 134 153 121 135

π2 1x1 554 554 297 257 258

0.57〈c+a〉 2x2 381 406 297 308 308

The ∆SFE induced by H and O depends linearly on the H and O’s segregation

energies to SFs. Their relations are explained by the following equations. As

defined in section 2.29, the segregation energy with an O in site i is expressed by:

Eseg(O) = ESF
TiO(O in site i)− ESF

TiO(O in bulk) (4.4)
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and SFE variation in presence of an oxygen can be determined by the equation:

∆γ(O) = γ(TiO)− γ(Ti)

=
ESF
TiO(O in site i)− ET iO(O in site i)

A
− ESF

Ti − ET i
A

(4.5)

When an oxygen is in a bulk-environment octahedral site which is far away from

the SF, it is supposed to have on influence on SFE. We thus have:

ESF
Ti − ET i
A

=
ESF
TiO(O in bulk)− ET iO(O in bulk)

A
(4.6)

Since the total energies of TiO system are the same for a O in site i or in bulk site

when there is no more defect in Ti supercell, we have:

ET iO(O in site i) = ET iO(O in bulk) (4.7)

We thus have:

∆γ(O) =
Eseg(O)

A
(4.8)

Let us summarize the effects of O on prismatic SFs: When the material is in its

equilibrium state, O segregates to the sites discussed above. When the material

is under stress and the glide system is activated, under this dynamical process, O

may either decrease the SFE or increase it, whether it happens to be in a favourable

or non favourable site, with ∆γ(O) = Eseg(O)/A. Let us take the example of O

in site 1 of a prism SF, since the plasticity of α-Ti is mainly controlled by the

prismatic glide, the presence of oxygen prevents the formation of a meta-stable

SF during the dislocation glide process and thus hardens the α-Ti material, which

is in qualitative agreement with experimental observations [123, 11]. And the O

effects is mainly related to the dynamical process.

For the effects of H on SFs: Under dynamical process, the effect of H is uncertain,

It depends on the energy barrier of the transition path from site 1 to site 2 (in the

prismatic SF case). H in site 1 will increases the SFE. If it can easily move from

site 1 to site 2, H will slightly decrease the SFE. Furthermore, as the H solubility

limit in alpha Ti is 20 wt.ppm at ambient temperature, dislocation glide has much

less chance to meet a H than an O. The effect of H on dynamical process should

be small. At equilibrium, H segregates to site 1 of basal SF I2 and π2 plane SF

and to site 2 of prismatic plane SF and π1 plane SFs. We conclude that the effects
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of H is mainly related to the equilibrium state and should be further investigated

by a real dislocation core simulation.

4.4 〈a〉 screw dislocation core

I tested supercell sizes N
√

3a × Nc × 1a boxes with an N from 5 to 8 in order

to find an adequate size for a reliable screw core simulation. The core structures

after relaxation are visualized in DDmap. See figure 4.13.

Figure 4.13: dipole supercell size tests with N= 5, 6, 7 and 8

A prismatic dissociation is finally found with N=8 after a relaxation with all the

forces on atoms converged to 2 meV/Å. A more stable pyramidal plane dissociation

of the 〈a〉 screw dislocation core are recently discovered [41, 24]. However, this

structure does not easily show up when the DFT relaxation starts from a perfect

core configuration. With some slightly different initial configurations (slightly
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Figure 4.14: a) Prism-π1 plane mixed dissociation; b) π1 plane dissociation.

changed elastic constants), we got some prism-π1 mixed dissociation, they are

shown in figure 4.14.

By pre-extending the dislocation core partially to the π1 plane, the π1 plane disso-

ciation is eventually obtained for both cores of the dipole. The energy difference

between a prism and a π1 plane dissociation is 15 meV/Å. It is three times larger

than the 4.7 meV/Å obtained in the calculation of Clouet et al. [24]. This may

be related to the differences in the modelling and optimisation algorithms used in

the ab initio softwares to simulate large boxes (e.g. considerations of semi-core

and of smearing of the electronic occupancies applied for metals).

4.5 H and O effects on 〈a〉 screw dislocation core

4.5.1 H and O effects on prismatic plane spreading 〈a〉
screw dislocation core

I want to study the effects of H and O on the gliding-motion the 〈a〉 screw dislo-

cation. Knowing from Clouet et al.’s recent studies that the 〈a〉 screw dislocation

glides in the unlocked prismatic plane dissociated configuration, it is the effects of

H and O on this prismatic plane dissociated configuration that I am first going to

study, in section 4.5.1. I also study the effects of H and O on the pyramidal π1

plane dissociated configuration in section 4.5.2.
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Octahedral interstitial sites are spotted in figure 4.15, in and around the prismatic

plane along which the 〈a〉 screw dislocation is dissociated in its unlocked mode.

These sites are numbered from 0 to 13, possibly doubled or even quadrupled

due to obvious symmetry considerations. The 0 site corresponds to the original

dislocation line position.

With the x and y directions indicated in figure 4.15, viz. [1̄100] and [0001], I

use 8
√

3a × 8c × nza boxes, with nz=1 and 2 (and 216 and 512 titanium atoms,

respectively), to study the one atom, H or O, interstitial segregation energies at

several sites, thus studying two different concentrations along the screw dislocation

line. These segregation energies are given in the following table 4.5.

The first line in this table, noted 02c, corresponds to a first study with one H/O put

in each core of the supercell which actually contains two cores in the Clouets S ar-

rangement (see section 2.2.6 of chapter 2). There are thus two formally equivalent

sites “0”, with nz=1 and four with nz=2. In that first study, I use nz=2 and I put

one H, or one O, in each core, thus giving Ti512H2 and Ti512O2 systems to relax.

After relaxation, the unlocked prismatic configurations have both spontaneously

evolved towards a pyramidal π1 configurations (see the corresponding DDmaps

in figure 4.16). Remember that in the pure Ti case, such an evolution does not

spontaneously occur, so that we can attribute this spontaneous evolution to the

effect of H and O. One may thus think that when an 〈a〉 screw gliding dislocation

in the unlocked prismatic configuration meets an H or an O, it may be turned into

the locked pyramidal configuration. This should strengthen α-Ti. In the case of

oxygen, a similar result has already been obtained by Chaari in her PhD thesis

work [128].

I now put one H or one O at only one of the two possible cores in the supercells,

thus considering TiNH1 and TiNO1 boxes, with N=216 (nz=1) or 512 (nz=2).

When one H is put in a “0” site, the corresponding core evolves toward the π1

dissociation (see fig. 4.16b), while the other core, which is far enough in our

8x8 box, remains in its prismatic configuration. The final nearest neighbours

environment for the hydrogen atom is no longer octahedral: it is surrounded by

only five Ti atoms, at distances equal to, in Å, 1.91, 1.94, 2.02, 2.03 and 2.04. This

occurs whether nz=1 or 2. When one O is put in a “0” site, the corresponding

cores evolve towards a combined (mixed) prismatic-π1 spreading character (the

other core remains prismatic). For O in “0” site, if nz=1, the O environment

remains octahedral (with distances equal to 2.04, 2.04, 2.04, 2.10, 1.18 and 2.20

Å). If nz=2, the O atom moves to a new nearby octahedral environment (with
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Figure 4.15: Octa sites around the prismatic plane dissociated dislocation.

Figure 4.16: Ti512 − H/O : Core structure changes induced y the presence of H/O in
site 1 ( the central core position)

distances equal to 2.04, 2.04, 2.10, 2.11, 2.11 and 2.15 Å), see figure 4.17 i. Thus,

the concentration of O, between nz=1 and nz=2, strongly affects its behaviour with

respect to a prismatic 〈a〉 screw core, whereas the behaviour of H does not seem

to depend on its concentration, between nz=1 and nz=2 (we cannot yet consider

nz=3, 4, ...). This is certainly due to the strong O-O interaction in α-Ti observed
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in the solute-solute interaction section in chapter 3, see table 3.11. The H-H

interaction was observed to be much less important. For the sake of illustration, I

give in figure 4.17 the DDmaps of the core spreading configurations after relaxation

for Ti512H1 and Ti512O1 boxes for seven different sites, viz. the “13” bulk-like site

which induces almost no change, and six sites at and close to the central dislocation

line position, “0”, “1”, “2”, “7” and “8” (see figure 4.15). H and O in sites 0 and

1 induce a spontaneous evolution of the prismatic core to a π1 configuration or to

a combined prismatic-π1 character. One O in site 1 has a similar effect. The other

cases do not induce significant changes. Given the favourable segregation energies

of H for several sites around the central core position, hydrogen may form Cottrell

atmospheres around prismatic plane dissociated 〈a〉 screw dislocations.

Table 4.5: Segregation energies of H and O in the sites near the prismatic core (meV).

H O

Site nz = 1 nz = 2 nz = 1 nz = 2

02c -292 +21

0 -209 -239 0 -33

1 -137 -160 +30 +2

2 -127 -108 -52 +13

3 -133 +3

4 -122 -39

5 -70 0

6 -59 -10

7 +7 +13 +8 -20

8 -106 -20 0 +1

9 -144 -155 +33 +2

10 -35 +26

4.5.2 H and O effects on π1 plane spreading 〈a〉 screw dis-

location core

As in 4.5.1, octahedral interstitial sites are spotted, in figure 4.18, in and around

the π1 plane along which the 〈a〉 screw dislocation is dissociated in its locked mode.

These sites are numbered from 0 to 7. The 0 site which corresponds to the original

dislocation line position. Site 7 corresponds to a bulk-like site. I only consider

8x8x1 Ti256H1 and Ti256O1 boxes. One H in sites 0, 2 or 4 induces the π1 plane

dissociated configuration to evolve to a combined (mixed) prismatic-π1 spreading
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Figure 4.17: Core structure changes induced by the presence of H/O in site 0-1 and site
7-9. The “+” sign indicates the core position. “red square ” sign indicates the solute

position after relaxation.
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character. One O in sites 0 and 1 has the same effect. Again, a similar effect was

observed by Chaari in her PhD thesis work for an O near the π1 core [128]. The

core structure transformation to a mixed prismatic-π1 spreading character may

facilitate the unlocking to a π1 configuration. Segregation energies for sites 0, 1, 2

and 4 are given in table 4.6.

Figure 4.18: Six Octa sites around the π1 plane dissociated dislocation.

Segregation energies of H and O on site 0, 1, 2, 4 for a Ti256H1 cell are given in

table 4.6.

Table 4.6: Segregation energies of H and O in the sites near the π1 core (meV).

Site 0 Site 1 Site 2 Site 4

H -141 -90 +40 -34

O -31 +30 -106 -3

4.6 H and O effects on 〈a〉 screw dislocation glide

4.6.1 〈a〉 screw dislocation glide in pure Ti

The climbing-image NEB (CI-NEB) method [179] can be used to estimate the

Peierls potential, for a stable π1 dislocation from one configuration to the next

nearest stable π1 configuration. Two well relaxed π1 cores separated by one half
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of the lattice vector c are first obtained. They can be called ‘0c’ and ‘0.5c’. Only

three intermediate images are then linearly interpolated from these two stable

configurations to form a five point chain. The CI-NEB resulting MEP is given in

figure 4.19, with the red curve extrapolated with a simple spline interpolation. As

we only used a five point chain, it is probably safer to only consider the energy

barrier and not to try to evaluate a Peierls stress. The energy barrier is 18 meV/Å.

As the ‘0c’ and ‘0.5c’ positions are in a same prismatic plane, this move can be

called a ‘π1 core - prism glide’ move.
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Figure 4.19: Four minimum energy paths (MEPs) for various moves of an 〈a〉 screw
dislocation core. See text for details.

One may similarly look for the MEP for a prismatic core from ‘0c’ position to a

next nearest ‘0.5c’ position and call this move a ‘prism core - prism glide’ move.

The obtained Peierls potential is given in the same figure 4.19, with the purple

curve. The energy barrier is 3.6 meV/Å. I note in passing that this 3.6 meV/Å

value is nine times larger than the value obtained by Clouet et al. [24] As already

mentioned, see section 4.4, this may be due to differences in modelling and in

optimisation algorithms used in the ab initio softwares to simulate large metallic

boxes (e.g. consideration of semi-core electrons, and smearing values applied to

metallic electronic occupancies) since we are the limits of accuracy of the DFT

calculations.

One may also look for the MEP static structural transformation from a π1 core

to a prismatic core and call this a ‘π1 core to prism core’. The corresponding

MEP is given in green in figure 4.19. An energy of 15.5 meV/Å, is needed for this
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transformation, which is smaller than the energy required for the direct ‘π1 core

- prism glide’. It indicates that, in order to glide easily in a prismatic plane, a

π1 core to a prismatic core transformation is more likely to happen than the ‘π1

core - prism glide’. This core structure transformation has already been discussed

by Clouet et al. [24] and is related to the ‘unlocking’ procedure, The reverse core

structure transformation is called the ‘locking’ procedure.

One may also look for the MEP for a ‘π1 core - π1 glide’ move, i.e. for the move

of a π1 core at 0v to a π1 core at 0.5v position with v = 1
2
[1̄106], from site ‘0’

to site ‘5’ in figure 4.18 (also see figure 1.10 in the Literature Review chapter 1,

taken from Clouet et al., then from ξ=-2 to ξ=0). The obtained MEP again looks

like a Peierls potential path and is given in light blue in figure 4.19. Its value is

22.1 meV/Å (Clouet et al.’s value is 11.4 meV/Å). It is the highest value from

the three calculated Peierls barriers. It could be interesting to study the ‘prism

core -π1 glide’ minimal energy path.

4.6.2 〈a〉 screw dislocation glide with H and O solute

In order to estimate the effects of H and O on the dislocation glide on prismatic

plane, Ti256H1 and Ti256O1 supercells are selected for calculations.

A scenario is proposed (see down-part of figure 4.20): Let us assume that a pris-

matic spread 〈a〉 screw core (red ‘+’ symbols in figure) approaches an H atom in

a frontal way. The H atom is at a given octahedral site at a given time, as for

instance the position chosen as a snapshot in figure 4.20 (the H symbol in the

black square). If the screw core keeps on moving left on the prismatic plane with

respect to the H atom, one can look for its minimal energy path between successive

relaxed configurations corresponding to a ‘prism core - prism glide’ in presence of

an H in the dislocation-core-located prismatic plane. This, in principle because of

Galileo, is equivalent to moving the H atom upwards from site 0 to site 1 then to

site 2 and so on in figure 4.15 even if my proposed scenario actually corresponds

to the reverse. The successive MEPs for this scenario are shown in the upper part

of figure 4.20.

These MEPs in presence of a H in figure 4.20 are compared to the case where H

is extremely far away from the dislocation. This is the red curve shown between

ξ=8 and ξ =9. Its presence does not mean that dislocation glide happens in this

area, it is put here just to be compared to other MEPs affected by a H. It is used
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in the same way in figure 4.21- 4.22). The dashed line between two solid points

means that NEB calculation is not performed for dislocation glide in this area.

For each integer value of the reaction coordinate ξ, there are always two cal-

culations made, and thus two corresponding solid points in figure 4.20. They

correspond to calculations for the dislocation core in formally two crystallograph-

ically equivalent positions, viz. 0.5c as the final configuration of one MEP, and

0c as the starting configuration of the next MEP. Ideally, the global path should

be continuous and symmetrical with respect to ξ=0. This is not true in these

simulations, see the divergence of the two solid points at ξ equal to 1 and 3, for

example. Also, checking for symmetry, I did not get symmetrical MEPs, it means

that some of these MEPs are not reliable, probably due to instability problems in

the DFT-NEB algorithms containing many titanium atoms and only one hydrogen

atom in unstable positions.
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Figure 4.20: Up: MEP for a prismatic dislocation glide with H in dissociated plane;
Down: Visualization of a prismatic dislocation glide with respect of a interstitial solute

in an octahedral site. See text for critical comments.
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The MEPs in figure 4.20 go down when the dislocation gets closer to H. This

corresponds to the large segregation energies of H in the sites at the prismatic

core (see table 4.5 together with figure 4.15). The presence of an H at one of

these sites rather naturally increases the dislocation Peierls energy(ies), with non

symmetrical profiles locally, due to the fact that the closer to the centre of the

core the larger the segregation energy of H (table 4.5). The barrier energies are

not the same when going from right to left than from left to right. Again, these

conclusions should be re-checked since some of MEPs shown in figure 4.20 present

a large uncertainty.

In the case of oxygen, see figure 4.21, the very large Peierls energy barrier I ob-

tained, 284 meV/Å, even if not accurate, is largely above all the energy barriers

obtained in the previous section and it is likely that the moving prism core will

cross-slip in order to avoid the oxygen atom. The prism core will probably trans-

form into a π1 core and perform a ‘π1 core - π1 glide’. A cross-slip must happen

in this case and the dislocation glide is blocked in the pyramidal plane (π1). This

could explain the oxygen induced dynamic strain ageing phenomena. Hydrogen

segregates more strongly to the core of the 〈a〉 screw dislocation than oxygen and

probably more rapidly since it diffuses faster. Yet, it is much less present in Ti

than oxygen (probably ten times at ambient temperature, about four times at

elevated temperature, e.g. 600oC, but with an O content up to 33at.%) and it has

a lightly attractive interaction with oxygen. One may thus understand that it has

a complex but probably softening role on α-titanium in presence of oxygen.

When a dislocation moves near a hydrogen or an oxygen, the H and O are in a site

near the dislocation but not in the prismatic glide plane, their effects on prismatic

glide are shown in figure 4.22. ξ=0 and 1 corresponds to site 7 and site 8, the two

closest sites of the dislocation core centre. H increases largely the Peierls barrier

of pure Ti because of its large influence on dislocation core, which is observed

with DDmap when it is in the site 8 (corresponding here ξ=1). Oxygen increases

slightly the Peierls barrier of Ti compared its effects with its presence on glide

plane. For H and O in other octahedral positions farther than the site 7 and 8,

Their effects on dislocation glide should be less important. (Note that the cusps

at ξ=0 and ξ=1 are unphysical. They are simply due to the fact that the spline

fitting does not include points beyond the [0,1] range).
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Chapter 5

Results III: H and O effects on

TB and on TD

This chapter is to study the effects of hydrogen and oxygen on some important

twin boundaries and on the {101̄2} twinning disconnection.

It is divided into 4 parts:

Twin Boundaries in α-Ti.

H and O effects on TBs

TBs under deformation in presence of H and O.

H and O effects on TD.

105
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5.1 Twin boundaries in α-Ti

The three mechanical, or deformation, twins most easily found in α-Ti, as well as

in other hexagonal metals with a low axial ratio, may be simply labelled {101̄2},
{112̄1}, and {112̄2} and will be described below, as well as for the {101̄1} twin.

Figure 5.1: The four K1 planes and the corresponding relaxed atomic twin structures
studied in this paper, shown projected on to their shear planes S. See table 5.1 and the
text for further details. The η1 given here give the actual periodicities. The numbers
1, 2 and 3 indicate the interstitial sites used in Sections 4 and 6. The black bold bars
correspond to the [0001] c-axis in the lower parts considered as the matrix parts in
Sections 5 and 6. For all four considered TBs, the c-axis belong to the S shear planes.

The ninth column in table 5.1 gives the TB energies γ of the four TBs obtained

in this work. It is calculated with the usual equation, given just below, from the
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Table 5.1: Twinning crystallographic elements K1, η2, K2, η1, S, shear magnitude
s, Kihô, Bilby and Crocker’s index q, inter K1 plane distance d1, energy γ, expan-
sion(contraction) δ, periodic area A, Mügge’s type [183] after atomic relaxation, Friedel’s
virtual inverse coincidence lattice site index Σ, and c-type (Tension or Compression,
along c) for the {101̄2}, {112̄1}, {112̄2} and {101̄1} TBs in α-Ti (with c/a = 1.585, or√

5/2 for the Σs). d1 and δ are in Å, A is in Å2, γ is in mJ/m2. The relaxed atomic
structures are given in 5.1.

K1 η2 K2 η1 S s q d1 γ δ A M-type Σ c-type

{101̄2} 〈101̄1〉 {1̄012} 〈1̄011〉 {12̄10} 0.178 4 1.709 299 -0.08 20.06 I,II 11 T

{112̄1} 〈112̄0〉 (0001) 〈1̄1̄26〉 {1̄100} 0.631 2 1.394 257 -0.06 49.19 II 11 T

{112̄2} 〈224̄3〉 {112̄4̄} 〈112̄3̄〉 {1̄100} 0.215 6 1.236 384 +0.18 27.73 I 7 C

{101̄1} 〈303̄2〉 {101̄3̄} 〈101̄2̄〉 {12̄10} 0.096 8 2.221 92 +0.07 30.86 I,II 13 C

difference in energies between an optimised box containing N atoms with two TBs

and a box containing N atoms with no structural defect. The normalising factor

A is the periodic surface in the TB plane. Convergence is ensured with respect

to the distance between the two TBs contained in the periodic box (i.e. the box

length perpendicular to the TB planes):

γ =
EBox+TB − EBox

2A

These TBs experience only small expansion/contraction δ values (given by the

following volume difference equation), except for the highest energy one.

δ =
VBox+TB − VBox

2A

The virtual inverse coincidence lattice site (i.e. nodal site) index Σ, the Friedel’s

index (see [186] and [187]), is calculated with Grimmer’s formula, approximating

the c/a ratio for Ti to its close value
√

5/2 [188]. It can also be evaluated by

direct inspection from the dichromatic patterns with this c/a ratio. Finally, the

inverse of A gives the two-dimensional common nodal density at the TB plane.

These TBs can also be considered as special tilt grain boundaries (GBs) with

specially low energies and simple atomic structures which do not involve any dis-

location cores and can thus be called coherent twin boundaries by contrast with

other more GBs [189].

The energies of these four TBs do not seem to be correlated with any other property

listed in table 5.1. The {101̄1} TB has the smallest energy and smallest shear
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magnitude. Yet, it is only observed under high compressive strain or at high

temperature. This clearly indicates that neither the interface excess energy nor the

shear magnitude are determinant factors for the occurrence of mechanical twins in

titanium (nor in other hcp metals). The {101̄1} TB actually has the highest Kihô

Bilby and Crocker’s q index [86, 87] among the four TBs. This index corresponds

to the number of nodal K1 planes crossed by η2 (taken as primitive translation

vector), and thus relates to the possible difficulty or easiness of the actual twinning

mechanisms even if it still lacks important atomistic details when the atomic basis

is not elementary, as it is the case for hcp metals, see [88, 185, 89]. Let us note

that a given TB can be thought of as being obtainable via different deformation,

or twinning, modes. These modes correspond to different shear magnitudes s and

q indices. Another twinning mode is possible for the {101̄1} TB, with η2=〈011̄0〉
[184] which has a smaller q=2 but a larger s=1.09. The twinning mode given in

table 5.1 is the one indicated in [190]. In the case of the {112̄2} TB, a twinning

mode with η2=〈5, 5, 1̄0, 6〉 would give a very small s=0.004 but with a rather huge

q=42 which, however, only concerns atomic shuffles. No one has yet ever seen a

twinning process in situ in a real metal but twins corresponding to very small s

have never been observed. Mendelson [191] advised to apply minimum energies

shear-strain and small atomic shuffling criteria in choosing the most likely twin

mode on each twin plane.

Let us note that the low energy of the {101̄1} TB may explain the occurrence of

two-layer micro-twins in the pyramidal stacking fault structure minimisation [44].

5.2 H and O effects with TBs

5.2.1 Segregation

All deformed octahedral sites on or near the TBs are investigated. They are

marked in figures 5.1b, c, d.1 and e. table 5.2 gives the segregation energies for

these sites.

The z period is a for the {101̄2} and {101̄1} TBs, and a
√

3 for the {112̄1} and

{112̄2} TBs. For each site, super-cells of different sizes are thus used in order

to check the sign and value of Eseg when it is favourable. The x period for the

last TB is only a
√

1 + (c/a)2 ∼1.87a so that we also checked a double x double z

period for that TB. The segregation energies are small, which sounds reasonable
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Table 5.2: Segregation energies (in meV) for one H or one O at selected interstitial sites
as shown in figure 5.1. Checks on box sizes are d: nz and nx denote the z and x period

multiplicity respectively.

H O

Twin nz Site1 Site2 Site3 Site1 Site2 Site3

{101̄2} 1 881 −85 −27 1506 −97 180

2 −54 −129 −6 72 −88 371

3 −39 −127 −28 −39 −88 364

{101̄1} 1 −6 17 −54 −3 −40 −39

2 3 26 −60 −40 8 −63

3 −6 15 −69 −40 17 −69

{112̄1} 1 −149 −151 97 −43

2 −154 −127 128 −45

{112̄2} 1 −129 96

2 −114 145

nx = 2 −120 479

for interstitial segregation at mechanical twin boundaries, as opposed to substitu-

tional segregation [129, 72]. O and H segregate to all four TBs except for O to

the {112̄2} TB. The sites with largest segregation energies are: for both O and

H, site 2 of {101̄2}, site 3 of {101̄1}, and site 2 of {112̄1}; sites 1 of {112̄1} and

{112̄2} TBs for H. H segregates more than O to the {101̄2}, {112̄1} and {112̄2}
TBs. These tendencies do not depend on the super-cells sizes in x and z. Pe-

riodic substitutional solutes segregations have been observed experimentally, e.g.

in magnesium [129]. We thereafter consider 1x − 1z periodic segregation in the

smallest super-cells.

5.2.2 Atomic and electronic structures

Let us look at the atomic structures of the TBs, when one solute atom, O or H,

is put in its correspondingly most segregating site. They are shown in figure 5.2

where the differences of charge density caused by the solute are also visualised.

Comparing the atomic structures in figures 5.2a and b with figures 5.1b and c, one

can say that the {101̄2} and {101̄1} TB structures are well preserved for both O

and H cases. The segregated solute at site 2 of the {101̄2} TB respects its symmet-

rical environment, and site 3 of the {101̄1} TB corresponds to a large octahedral
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site, larger than in bulk environment, so that an interstitial atom segregated there

does not induce much global structural changes. By contrast, comparison of fig-

ures 5.2c.1 and 5.2 5.2c.2 with figure 5.1d.1 shows that the {112̄1} TB structure

is strongly modified by H/O segregation. In the case of O, for instance, the seg-

regated site which was a strongly deformed octahedral site in the pristine {112̄1}
TB structure is nearly restored in shape by the oxygen atom, figure 5.2c.3, at the

expense of a strong distortion of the global TB structure.

figures 5.2 also display the charge density differences caused by O or H at the four

TBs, as defined by the following equation:

ρdiff = ρT i−solute − ρT i − ρsolute

Figure 5.2: Atomic structures and charge density differences of the four TBs, {101̄2},
{101̄1}, {112̄1} and {112̄2}, in presence of one H (pink) or one O (red), as indicated
by black arrows, initially put at the corresponding most segregating sites (see table 5.2
together with figures 5.1). figure 5.2c.3 explicitly shows the O atom and its nearly per-
fectly restored immediate neighbourhood in the {112̄1} TB, see Section 4.2. Oxygen does

not segregate at the {112̄2} TB, see table 5.2.

In units of one electron per cubic Bohr radius, we chose to represent charge density

difference isosurfaces of +0.002, the yellow surfaces, and isosurfaces corresponding

to a -0.002 depletion, the blue-green surfaces. For the sake of comparison, the

charge density is about 0.035 in the middle of a Ti-Ti metallic bond and excess

isosurfaces up to +0.02 exist near the solute nuclei. The isosurfaces are actually
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3-dimensional surfaces. The dark blue area correspond to cross s of these +0.002

and -0.002 isosurfaces, with ”+” or ”-” signs to distinguish them. O solutes are

surrounded by much larger excess +0.002 isosurfaces than H solutes, corresponding

to larger electronic charge transfer from Ti to O than from Ti to H. This is in good

agreement with what can be expected from the electronegativity scaling between

Ti, H, and O, viz. roughly 1.4, 2.2 and 3.4 respectively in Pauling units. Said

otherwise, the Ti-H and Ti-O bonds do appear to be fairly ionic, with a stronger

interaction between Ti and O than between Ti and H.

Figure 5.3 shows a series of total electronic densities of states (DOS) locally pro-

jected on a Ti atom first neighbouring a segregating site as indicated before. Be-

sides the differences between the different TBs, the character of the metallic band

is always preserved. The O atom has a larger influence than the H atom, in agree-

ment with the previous charge density difference analyses. The local DOS levels in

the [-6,0] eV below the Fermi level are slightly lowered, which implies a lowering of

the metallic cohesive strength for these Ti atoms. The lost occupied band states

are transferred into hybridized O2p-Ti or H1s-Ti states located in the [-8,-6] eV

range, which correspond to the Ti-O and Ti-H interactions. The stronger effect

occurs for the {101̄2} TB which has the lowest x and z periods, thus leading to

an electronic band formation in these directions for periodic segregation.
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Figure 5.3: Local DOSs on one Ti atom at each of the four TBs, pure Ti TBs, and with
one segregated H or O. The Ti atom is first neighbouring a most segregating interstitial

site.

5.3 TBs under deformation in presence of H/O

5.3.1 Twin boundary c-axis deformations

In order to investigate and compare the TB behaviour under deformation, series of

elongation-contraction tests are carried out along the c-axis of the matrix-lower (or

Castor, as Pollux’ twin in Roman-Greek mythology, to follow Crocker and Bilby

and Charles Frank) part of each TB structure shown in figure 5.1, first of all for

perfect α-Ti (null twin). The theoretical stress-strain curves are obtained under

both rigid and relaxation modes. The rigid mode means that neither relaxation of
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atomic positions nor of the super-cell is allowed. The relaxation mode is equivalent

to a total relaxation except for the extended or contracted super-cell dimension

[174]. We start with a first analysis of the four TB behaviour in pure titanium,

and we will go into further details to examine the effects of segregated H or O in

the next section.

Figure 5.4.a corresponds to rigid mode tests which give information about the

interplanar binding forces along the c-axis. We observe only very small variations

of such c-axis rigid ultimate tensile stresses (UTSs, the maximal stress values)

compared with the perfect α-Ti case. The stress-strain curve for the {101̄1} twin,

which has the smallest twinning shear magnitude s, is very similar to the one

in bulk material. The other three TBs have comparable rigid strain-stress curves

and, for instance, their equal presence decreases by about 10% the necessary stress

to get a c-axis rigid 20% elongation. It is important to recall, however, that these

rigid tests do not take care of the Poisson effect.

Figure 5.4.b corresponds to the full relaxation mode tests. By contrast with the

previous mode, the presence of a TB dramatically reduces the relaxed theoretical

UTS of the material. The violent drops of stresses actually correspond to the

disappearance (failure) of the twin structures. Again, the {101̄1} twin follows

most closely the perfect α-Ti stress-strain curve, with only a 7% decrease of the

UTS, failing at an about 35% elongation. The {112̄1} TB fails much before, a little

before a 20% elongation (with a UTS more than halved), while the {101̄2} and

{112̄2} TBs fail almost immediately at the beginning of these tensile tests. More

deformation tests are realised below elongations of 4% and until 4% contraction.

The results are shown in the figure 5.4.c. For these small deformations, pure α-Ti

has a symmetric behaviour under compression or tension. The {101̄2} and {112̄2}
TB start to fail under 2% contraction and 1.5% elongation. The {101̄2} TB,

which corresponds to the most widely observed twin structure, and the {112̄2}
TB are thus clearly the most prone to failure under c-axis deformation. This

can only be due to their detailed atomic structures and does not seem to be

explainable by any parameter given in table 5.1, even if one can notice that they

have highest excess energies γ together with relatively small shear magnitudes s.

They embody only two different atoms per periodic TB area, see figure 5.1, when

{101̄1} has four and {112̄1} has six (allowing for a physically non-zero planar

thickness). The {101̄1} TB has the lowest energy and may thus be thought to be

hard to destabilize. Another possible reason for the stability of the {101̄1} TB

may be related to the fact that, according to the Bilby and Crocker scheme, its

detwinning requires the shuffling of 7/8 of all its atoms in the core region of a zonal
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Figure 5.4: Stress-Strain curves for the four TBs for theoretical tests along c-axis. The
figure 5.4.a corresponds to the non-relaxation tensile test; figure 5.4.b corresponds to
relaxation tensile test; figure 5.4.c is related to deformation tests between -4% and 4%.

As for the other figures, lines are only guides to the eye.

twin dislocation [6, 81]. Experimentally, the {101̄2} twin grows more easily than

the {102̄2} twin. Here we considered these twins independently, in independent

boxes so that the competition between different twins can not appear. In that
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case, it appears that the {102̄2} bi-crystal behaves qualitatively as the {101̄2} bi-

crystal. The {112̄1} TB which has twice higher an energy starts some local atomic

rearrangement at small deformations but these rearrangement occur mainly in

the direction perpendicular to the K1 plane. As this {112̄1} twin is a type II

twin, shuffling in the direction perpendicular to the shear plane S is needed to

suppress the twin structure. The c direction being parallel to that shear plane, no

perpendicular stress component is directly produced. The {112̄1} twin structure is

thus not easily destabilized, until large deformations when perpendicular shuffling

eventually occurs.

5.3.2 Twin boundary c-axis deformations in presence of

O/H

The same type of numerical tests on tension and compression are carried out

with either an O or a H atom at the most segregating site of the considered

TBs. Strain-stress results are shown in figure 5.5. The energy variations ∆E with

respect to zero strain states are also calculated and are shown in figure 5.6. We

first consider the {101̄2} and {112̄2} TBs, then the more resistant {101̄1} and

{112̄1}. Figures 5.7 and 5.8 show the evolution of the atomic structures via their

charge densities for one TB of each one of these two groups, viz. {101̄2} and

{101̄1}.

For the {101̄2} twin, a change in the variation of stress vs. strain takes place

between 1.5% and 2.5% of elongation or of contraction for the pure twin structure

(figure 5.5.a). This is confirmed by the decreases of the total energy in the same

strain ranges (+(1.5-2.5%) and -(1.5-2.5%)) shown in figure 5.6.a. These changes

correspond to a local rearrangement of the atoms of the TB plane which gets tilted

as indicated by the central tilted dashed line in figure 5.7.1 at a 2.5% elongation.

The pure {101̄2} twin structure thus starts to be lightly destabilised after 1.5%

of elongation or of contraction. The stress continues to decrease for elongations

beyond 2.5% (figure 5.5.a). A steeper descent of total energy is observed in the

same strain range in figure 5.6.a. These stronger changes correspond to a global

rearrangement of all the atoms as can be seen in figure 5.7.1 at the 3.5% elongation.

In this structure, the up and down parts of the simulated box have the same

crystallographic structure as indicated by the rectangular cells in red. The twin

structure {101̄2} has disappeared at a 3.5% elongation.
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Figure 5.5: c-axis stress-strain values for the four TBs for pure Ti, and with segregated
O or H, until failures.

These weakening/transforming effects are slightly retarded, by 0.5% to 1%, in

presence of a segregated oxygen, which means an enhanced resistance to failure

for the {101̄2} TB. figures 5.5.a and 5.6.a indicate that hydrogen also retards

these effects, with a twinned structure still maintained at a 3.5% elongation (figure

5.7.3). Figures 5.5.d and 5.6d indicate a similar effect for O at the {112̄2} TB.

The O and H solute play a complex role for the {101̄2} and {112̄2} twin boundaries

because these TBs are very unstable with respect to c-axis deformation, at just a

few percents of deformation, so that the energy variations at stake are very small

and comparable to the segregation energies of O and H, of the order of 0.1 eV

(which is also of the same order of magnitude than the TB energies themselves).

Although this does not imply that these segregated TBs should become more

stable with respect to small c-deformation, it is a possibility, and it indeed seems

to be the case for these two TBs, especially for H.

Let us now discuss the {101̄1} and {112̄1} twin boundaries. Since they have a

similar behaviour under c-deformation, only the evolution of the atomic structure

of {101̄1} TB under elongation is shown in figure 5.8. Figures 5.5b and 5.5.c show

that O decreases the c-UTS of these two TBs. H also does it for the {112̄1}. As
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Figure 5.6: Total energy variations versus c-axis deformation, for pure Ti and with
segregated O/H, until failures.

illustrated in figure 5.8 for the {101̄1} TB, the local atomic perturbation caused

by the presence of a segregated O or H slowly increases with the elongation rate,

eventually causing an advanced and disruptive failure of the whole structure, albeit

still at an important elongation rate corresponding to a very large stress (figures

5.5b and 5.5.c) by experimentalists standards.

One can also see from figures 5.5 that, before failure, the c-stress-strain curves

tend to be stiffer with an O, softer with a H, than in the pure case. Carrying

out calculations of the elastic constants on various supercells with simple crystal-

lographic orientations, like a 3ax3ax2c supercell for instance, with one interstitial

O or one interstitial H, we similarly found that the presence of an O increases the

elastic stiffness coefficient, especially the C33 one by about 10%, while the presence

of a H lightly decreases them, with respect to pristine titanium.
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5.3.3 Twin boundary deformations perpendicular to K1

The strain-stress curves in figure 5.9 are for the case when the Poisson effect is

taken into consideration, while those in figure 5.10 do not take it into account.

When we consider the Poisson effect, the {101̄1} TB is always the most stable

TB. The stabilities of the {101̄2} and the {112̄2} TBs increase to 12%. The lack

of η1 direction shear stress in this kind of deformation make these twin structures

more stable. The stability of the {112̄1} TB decreases to 8%. This may be related

to a increase of z-direction stress which is more favorable for shuffling occurring

in the z-direction, knowing that it is the shuffling process which is responsible for

{112̄1} twin structure transtion.

Without consideration of the Poisson effect, the curves in figure 5.10 show that

the {101̄2} TB is the most unstable TB. It fails under a 4% elongation. The

three other twin structures remain more stable than the Poisson effect is taken

into account (figure 5.9). The constraints on the twin plane dimension probably

explain the enhancement of stabilities of these twins.

Three different deformation methods are used in above sections. The {101̄2} TB

is the most unstable under all three methods while {101̄1} is the most stable.

The results obtained from these three deformation methods show that the twin

structure stabilities depend on their intrinsic structural characters and also the

deformation modes applied.
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Figure 5.7: Evolution of charge density - atomic structure of {101̄2} under c-axis de-
formation, pure titanium and with the presence of one segregated O (red) or H (pink)
solute. Isosurfaces of 0.03 e/(Bohr radius)3 are visualised in yellow except when they
cut a z-plane in blue. Direction z is reversed compared to figure 5.1. The light blue con-
tours of Ti atoms do not appear when an O is segregated because charge density goes up
to 1.13 instead of only 0.2 with a H. The directions of deformation are the dashed lines
in the rectangles in red in the lower parts of the twinned structures at 0% deformation.
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Figure 5.8: Evolution of charge density - atomic structure of {101̄1} under c-axis de-
formation, pure titanium and with the presence of one segregated O (red) or H (pink)

solute.
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Figure 5.9: Twin boundary under deformations along perpendicular direction in pure Ti
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hyama method in pure Ti
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5.4 H and O effects on twinning disconnection

{101̄2}

In order to calculate the segegration energy of different sites near a TD, 7 sites

are chosen. They are visualised in figure 5.11. The most segregating sites on the

TB are also shown in figure 5.11

Figure 5.11: The sites near a relaxed TD core.

Their segregation energies compared to the one on TB are shown in the table 5.3.

Table 5.3: Segregation energy of H/O on the site near the TD core. * Values are obtained
from TB segregation calculation

Site H (meV) O (meV)

CTB-1 -107 -74

CTB-1* -85 -97

CTB-2* 881 720

Site 1 -27 249

Site 2 -106 -39

Site 3 -114 -61

Site 4 -112 -69

Site 5 -126 -86

Site 6 28 334

Site 7 -11 193
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Compared to segregation energy on TB, H prefers to segregate to the site 3, 4

and 5 near TD core and O prefers to segregate to the site 5. However, the energy

differences between the most segegrating sites on TBs or near TD core are very

small (less than 20 meV), this indicates that H and O may segregate more or less

equally to these sites.

Another result come from the table 5.3 is that the site 1, 6, 7, which are in the

layer of TD, have a large positive energy which means a large instability of the

configuration when a H or O is in these sites, which may change a lot the core

structure.

5.4.1 Conclusions

It is worth keeping in mind the several limitations of current DFT studies: our

elongation tests remain ideal in the sense that they are done at zero K, thus with

no atomic dynamics, and our boxes contain no bulk or twin dislocations. They

are size limited and correspond to a fifty percent presence of twins. Yet, from our

comparative DFT calculations on the twin boundaries associated to the three most

commonly found twins in pure α-titanium, viz. {101̄2}, {112̄1}, {112̄2}, together

with the {101̄1} which is also observed under more severe conditions and has the

lowest energy, we can conclude that:

1. The energies of these four mechanical TBs is not correlated to any of the

crystallographical parameters used to describe them. Neither these energies nor

the usually taken shear magnitudes s explain the frequencies of these twins in

deformed titanium. The Kihô Crocker Bilby index q is also involved. Yet, both

s and q depend on the twinning mode assumed for a given twin. This has been

known for a long time (see for instance Mendelson [191]) and we are just confirming

it.

2. For deformations along the c-axis, all four TBs decrease the theoretical Ultimate

Tensile Stress of titanium when all atoms relaxation and the Poisson effect are

taken into account. Specially, the most common {101̄2}, and the {112̄2} TB

structures fail for deformation as low as 1 or 2%.

3. Three different deformation methods are used in above sections. The {101̄2}
TB is always the most unstable while {101̄1} is the most stable. The results
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obtained from the three deformation methods show that the twin structure sta-

bilities depend on their intrinsic structural characters and also the deformation

modes applied.

4. Oxygen and hydrogen segregate to all four TBs, except O to {112̄2}.

5. The presence of segregated oxygen and hydrogen enhances the {101̄2} and

{112̄2} TB limited stability under c-axis deformation. They decrease the {101̄1}
TB stability under high deformation and so does O for the {112̄1} TB.

A twinning disconnection dipole model is proposed which allows the simulation of

a TD in a size limited supercell. TB and TD segregation energies of H and O are

measured in the TB and the TD in such a {101̄2} dipole model. For the TB, the

segregation energies are similar to those obtained in case of a pristine TB model,

showing the validity of this model. Further segregation energy calculations show

that H and O should distribute more or less homogeneously to the TD core and

the {101̄2} TB, with only a slight preference to the TD core although not at the

interstitial sites of the atomic layer related to the disconnection step itself.
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In this work, I studied the influences of hydrogen or oxygen solute on extended

defects in α-titanium by ab initio DFT calculations.

A preliminary result is that the α and ω structures of Ti at zero K and zero pressure

have almost the same energy, with a slight preference for the ω structure, not

changed when the zero point vibration energy contribution is taken into account.

The energy differences are smaller for zirconium, and at the limits of current DFT

calculations. These results have been obtained with PAW PBE potentials, with

4 explicit as well as with 12 explicit valence electrons. Although both hexagonal,

these structures have different atomic local environment and can be considered as

stable at zero pressure, in agreement with experiments (for Ti).

Other main results can be presented in three parts:

— In a first part, the effects of H or O on various properties of titanium with-

out extended defects are first presented. Coupling electronic energy calculations

with zero point energy calculations, the octahedral interstitial site is found to be

energetically more favorable site for a H as well as for an O atom. Calculations

with different H or O concentrations in α-Ti show that the presence of H increases

the hexagonal lattice parameter a, the c/a ratio and the cell volume while O has

a more anisotropic effect: it increases the c/a ratio but decreases the lattice pa-

rameter a and the cell volume. The Ti-O bond formation enthalpy is about twice

larger than its Ti-H counterpart, pointing to a stronger Ti-O than Ti-H interac-

tion. The presence of H decreases the shear modulus G and Young’s modulus E

of α-Ti while O has an opposite and stronger effect on G, E and the bulk mod-

ulus B. H increases the B/G ratio (Pugh’s plasticity criterion), thus makes α-Ti

intrinsically more ductile. It also shows a significant non-monotonic influence on

B/G ratio with respect to its concentration, while the presence of oxygen makes

α-Ti less ductile. Using a nudged elastic band method, the migration energy of a

H from an octahedral to a tetrahedral site is found to be around 0.5 eV. For an

125
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O octahedral-octahedral site migration, it is more than three times larger along

the c-axis and twice larger again in the basal plane. The H-H, H-O, and O-O

interactions in alpha-Ti shows that the O-O interactions are stronger than the

H-H interactions. H-O interaction is always attractive. These interaction energies

get very small, less than 10 meV, when the solutes are more than 9 Å apart.

— In a second part, stacking-faults (SF) and screw dislocation cores are studied

first without, then with H and O. Vitek’s γ-surfaces are measured within all the

possible slip planes of α-Ti, namely the basal, prismatic, π1, and π2 planes. Five

SFs are found. Performing further all-direction relaxations on all atoms, only the

prismatic and basal SFs remain stable. Two new SFs are found: 0.57〈c + a〉 on

π2 and 0.215〈11̄02〉 on π1 plane. Together with the 1/2〈a〉 - 0.0384〈1̄102〉 SF on

π1 plane recently found in the literature, such stable SFs are related to the low

formation energy of the {101̄1} twin boundary. The two new SFs discovered on π1

and π2 plane satisfy the condition for a 〈c + a〉 screw core dislocation dissociation

in a surprising threefold form: 〈c+a〉 = 0.57〈c+a〉π2 + 0.215〈1̄102〉π1 + 0.215〈a〉,
which may reveal a new cross-slip mechanism in α-Ti. In order to check this

proposition, a 〈c + a〉 screw core is built. The core tends to spread in the π2,

π1 and prismatic planes as mentioned above. But a complete 3-part dissociation

as supposed is not found, which may mean that such a dissociation is not easily

obtainable in limited size simulations from an initially perfect dislocation core.

The segregation energies of H and O are measured in different sites near the

SFs. H segregates to all SFs, especially to the basal and the 0.57〈c + a〉π2 ones.

O does not segregate to 0.57〈c + a〉π2 , it almost does not to the prismatic SF

and it slightly does to the other SFs. As segregation to SF means a decrease of

the SF energy, the presence of O may make the SF formation energetically more

difficult, contrary to H case. H and O are then tested with different concentrations

in octahedral sites of the core region of the 〈a〉 screw dislocation. H strongly

segregates to the core region with segregation energies varying up to 300 meV. O’s

segregation energies are small, below 60 meV. The strong segregation energies of H

in multiple sites near core region suggest that a Cottrell atmosphere may form near

the dislocation core. Both H and O in these sites can change the metastable gliding

prismatic dissociation to a π1 plane or a prism-π1 plane mixed configuration. The

Peierls energy barriers are measured with H or O at different sites of the 〈a〉 screw

dislocation core in order to estimate these solute effects on its glide. The Peierls

energy barrier is extremely increased when an O is present in the core position,

more than ten times higher than the barrier for π1 plane glide. A cross-slip must

happen in this case and the dislocation glide is blocked in the pyramidal plane
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(π1). This could explain the oxygen induced dynamic strain ageing phenomena.

Hydrogen segregates more strongly to the core of the 〈a〉 screw dislocation than

oxygen and probably more rapidly since it diffuses faster. Yet, it is much less

present in Ti than oxygen (probably ten times at ambient temperature, about

four times at elevated temperature, e.g. 600oC, but with an O content up to

33at.%) and it has a lightly attractive interaction with oxygen. One may thus

understand that it has a complex but probably softening role on α-titanium in

presence of oxygen.

— Finally, twin boundary (TB) structures and energies, TB deformations, and a

twinning disconnection (TD) are studied, first without then with H and O. Among

the four mechanical TBs investigated, viz. {101̄2}, {101̄1}, {112̄1} and {112̄2}
TBs, the {101̄1} TB has the smallest energy while the {112̄2} has the largest

one. For deformations along the 〈c〉-axis, all four TBs decrease the theoretical

ultimate tensile stress of titanium. The structures of most commonly found TB,

viz. {101̄2}, and of the {112̄2} TB fail for deformation as low as 1% or 2%. The

{112̄1} and the {101̄1} TBs are much more resistant. Three different deformation

methods proposed in the literature are tested. The results show that the TB

structural stabilities depend not only on their intrinsic characters at the atomistic

level but also on the deformation mode applied. H and O segregate to all four TBs,

except O to {112̄2}. The presence of segregated oxygen and hydrogen enhances

the {101̄2} and {112̄2} TB limited stability under 〈c〉-axis deformation. They

decrease the {101̄1} TB stability under high deformation and so does O for the

{112̄1} TB. A twinning disconnection dipole model is proposed which allows the

simulation of a TD in a size limited supercell. TB and TD segregation energies of H

and O are measured in the TB and the TD in such a {101̄2} dipole model. For the

TB, the segregation energies are similar to those obtained in case of a pristine TB

model, showing the validity of this model. Further segregation energy calculations

show that H and O should distribute more or less homogeneously to the TD core

and the {101̄2} TB, with only a slight preference to the TD core although not at

the interstitial sites of the atomic layer related to the disconnection step itself.
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tude s, Kihô, Bilby and Crocker’s index q, inter K1 plane distance
d1, energy γ, expansion(contraction) δ, periodic area A, Mügge’s
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Titre : Simulation ab initio des défauts étendus du Ti-α en présence d’interstitiels H et O
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ségrégation.

Résumé : La thèse est divisée en trois parties. Dans la première partie le site interstitiel
octaédrique du Ti-α est trouvé être le site énergétiquement le plus favorable pour un H ou
un O. La présence d’H augmente le volume tandis que O a un effet inverse. La présence d’H
diminue le module de cisaillement G et le module de Young E, la présence d’O a un effet
opposé. La présence d’H augmente le rapport B/G alors que O le diminue. Deux nouvelles
fautes d’empilement sont trouvées dans la deuxième partie. Un mécanisme de dissociation
triple du cœur de la dislocation vis 〈c + a〉 est proposé et étudié. La présence d’O rend sans
doute la formation des fautes d’empilement énergétiquement plus difficile, contrairement au
cas d’H. Pour la dislocation vis 〈a〉, H et O induisent une dissociation dans le plan π1 ou
vers une configuration prism-π1 mixte. Les barrières d’énergie de Peierls mesurées avec O
dans différents sites et avec différentes concentrations montrent que O rend le glissement de
la dislocation beaucoup plus difficile. Du glissement dévié devrait être induit dans ce cas. H
ségrége plus fortement que O au cœur de la dislocation vis 〈a〉 mais a un léger effet attractif
avec O et il est moins présent que O dans le Ti, ce qui explique probablement pourquoi
l’effet de H sur la plasticité du Ti α est un problème complexe. Finalement, la macle la plus
observée, {101̄2}, et la macle {112̄2} ne résistent pas à une déformation de plus de 1% ou 2%
selon l’axe c. La présence de H ou O ségrégés améliorent la stabilité des macles {101̄2} et
{112̄2}. Un modèle de dipôle de dislocations de mâclage (TD) est proposé. H et O peuvent
se distribuer de manière plus ou moins homogène au joint et niveau de la TD mais pas dans
les sites interstitiels de la couche atomique liée à la TD.

Title: Ab initio simulation of extended defects of α-Ti in presence of interstitial atoms H/O

Keywords: Ti, ab initio calculation, stacking faults, dislocation core, twinning, segregation.

Abstract: This thesis is divided into three parts. In a first part, the octahedral interstitial
site of α-Ti is found energetically more favorable for a H or an O atom. The presence of
H decreases the shear modulus G and Young’s modulus E of α-Ti while O has an opposite
and stronger effect. H increases the B/G ratio while O decreases it. In a second part two
new stacking faults are found. A 〈c + a〉 screw dislocation 3-part dissociation mechanism is
proposed and studied. The presence of O may make the stacking faults formation energetically
more difficult, contrary to the H case. For the 〈a〉 screw dislocation, both H and O in core
sites change the metastable gliding prismatic dissociation to π1 plane or to a prism-π1 plane
mixed configuration. According to our measurements of Peierls energy barriers with O at
different sites and concentrations, O makes the gliding much more difficult. Cross-slip should
happen in that case. H segregates more strongly than O to 〈a〉 screw cores but has a slightly
attractive interaction with O and is less present than O in Ti, which probably explains why
the effect of H on the plasticity of α-Ti is a complex issue. In the last part, the {101̄2} and
{112̄2} twin boundaries (TB) structures are shown to fail for deformations as low as 1% or
2% along the c-axis. The {112̄1} and {101̄1} TBs are much more resistant. The presence
of segregated H and O enhances the {101̄2} and {112̄2} TB limited stability. A twinning
disconnection (TD) dipole model is proposed and applied to {101̄2} case. Segregation energy
calculations show that H and O should distribute more or less homogeneously to the TD core
and the TB, with only a slight preference to the TD core although not at the interstitial sites
of the atomic layer related to the disconnection step itself.
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