T. M. Flynn, Cryogenic Engineering, 2004.

P. G. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, pp.12-169, 1967.

M. H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metallurgical Transactions A, vol.6, issue.a, pp.409-418, 1981.
DOI : 10.1007/BF02648537

M. P. Biget and G. Saada, Low-temperature plasticity of high-purity ??-titanium single crystals, Philosophical Magazine A, vol.197, issue.4, pp.747-757, 1989.
DOI : 10.1063/1.1709121

H. Conrad, Effect of interstitial solutes on the strength and ductility of titanium, Progress in Materials Science, vol.26, issue.2-4, pp.123-403, 1981.
DOI : 10.1016/0079-6425(81)90001-3

S. Naka, L. P. Kubin, and C. Perrier, The plasticity of titanium at low and medium temperatures, Philosophical Magazine A, vol.33, issue.5, pp.1035-1043, 1991.
DOI : 10.1080/01418619108213937

Q. Yu, L. Qi, T. Tsuru, R. Traylor, D. Rugg et al., Origin of dramatic oxygen solute strengthening effect in titanium, Science, vol.347, issue.6222, pp.635-639, 2015.
DOI : 10.1126/science.1260485

B. Barkia, ViscoplasticitéViscoplasticité`Viscoplasticitéà l'ambiante du titane en relation avec ses teneurs en oxygène et hydrogène, 2014.

P. G. Oberson, Z. W. Wyatt, and S. Ankem, Modeling interstitial diffusion controlled twinning in alpha titanium during low-temperature creep, Scripta Materialia, vol.65, issue.7, pp.65-638, 2011.
DOI : 10.1016/j.scriptamat.2011.06.049

D. S. Shih, M. I. Robertson, and H. K. Birnbaum, Hydrogen embrittlement of ?? titanium: In situ tem studies, Acta Metallurgica, vol.36, issue.1, pp.111-124, 1988.
DOI : 10.1016/0001-6160(88)90032-6

O. N. Senkov and J. J. Jonas, Effect of phase composition and hydrogen level on the deformation behavior of titanium-hydrogen alloys, Metallurgical and Materials Transactions A, vol.6, issue.10, pp.27-1869, 1996.
DOI : 10.1007/BF02651936

J. P. Couzinié, B. Barkia, V. Doquet, and I. Guillot, Influence of Hydrogen and Oxygen Content on the Mechanical Behavior of Zr at 300 o C and Ti at 20 o C, Int. Hydrogen Conference, p.44, 2012.

B. Barkia, V. Doquet, J. P. Couzinié, and I. Guillot, Room-temperature creep and stress relaxation in commercial purity titanium???Influence of the oxygen and hydrogen contents on incubation phenomena and aging-induced rejuvenation of the creep potential, Materials Science and Engineering: A, vol.624, pp.79-89, 2015.
DOI : 10.1016/j.msea.2014.11.073

F. H. Beck, Effect of Hydrogen on the Mechanical Properties of Titanium and Its Alloys, 1975.

G. Y. Gao and S. C. Dexter, Effect of hydrogen on creep behavior of Ti-6AI-4V alloy at room temperature, Metallurgical and Materials Transactions A, vol.13, issue.6, pp.1125-1130, 1987.
DOI : 10.1007/BF02642892

H. K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity???a mechanism for hydrogen-related fracture, Materials Science and Engineering: A, vol.176, issue.1-2, pp.191-202, 1994.
DOI : 10.1016/0921-5093(94)90975-X

A. Marchenko, Rupture différée dans le titane non allié en tenant compte des teneurs en hydrogène et en oxyg`oxyg`ne, p.2015

F. Mignot, V. Doquet, and C. Sarrazin-baudoux, Contributions of internal hydrogen and room-temperature creep to the abnormal fatigue cracking of Ti6246 at high Kmax, Materials Science and Engineering: A, vol.380, issue.1-2, pp.308-319, 2004.
DOI : 10.1016/j.msea.2004.04.006

URL : https://hal.archives-ouvertes.fr/hal-00111412

O. N. Senkov and J. J. Jonas, Dynamic strain aging and hydrogen-induced softening in alpha titanium, Metallurgical and Materials Transactions A, vol.31, issue.6, pp.1877-1887, 1996.
DOI : 10.1007/BF02651937

E. Clouet, study, Physical Review B, vol.86, issue.14, p.144104, 2012.
DOI : 10.1103/PhysRevB.86.144104

URL : https://hal.archives-ouvertes.fr/hal-00737922

E. Clouet, D. Caillard, N. Chaari, F. Onimus, and D. Rodney, Dislocation locking versus easy glide in titanium and zirconium, Handbook of Isotopes in the Cosmos. Hydrogen to Gallium, pp.931-936, 2003.
DOI : 10.1038/nmat4340

S. K. Sikka, Y. K. Vohra, and R. Chidambaram, Omega phase in materials, Progress in Materials Science, vol.27, issue.3-4, pp.245-310, 1982.
DOI : 10.1016/0079-6425(82)90002-0

Y. K. Vohra and P. T. Spencer, -Phase of Titanium Metal at Megabar Pressures, Physical Review Letters, vol.86, issue.14, pp.3068-3071, 2001.
DOI : 10.1103/PhysRevLett.86.3068

URL : https://hal.archives-ouvertes.fr/hal-00571106

Y. Akahama, H. Kawamura, and T. L. Bihan, (Distorted-bcc) Titanium to 220 GPa, Physical Review Letters, vol.87, issue.27, p.275503, 2001.
DOI : 10.1103/PhysRevLett.87.275503

Z. G. Mei, S. Shang, Y. Wang, and Z. K. Liu, Density-functional study of the pressure-induced phase transitions in Ti at zero Kelvin, Physical Review B, vol.79, issue.13, p.134102, 2009.
DOI : 10.1103/PhysRevB.79.134102

L. Huang, B. Grabowski, E. Mceniry, D. R. Trinkle, and J. Neugebauer, Importance of coordination number and bond length in titanium revealed by electronic structure investigations, physica status solidi (b), vol.19, issue.140, pp.1907-1924, 2015.
DOI : 10.1002/pssb.201552280

A. Dewaele, V. Stutzmann, J. Bouchet, F. Bottin, F. Occelli et al., High pressure-temperature phase diagram and equation of state of titanium, Physical Review B, vol.91, issue.13, p.134108, 2015.
DOI : 10.1103/PhysRevB.91.134108

V. Trinité, Etude théorique des phases du titane, 2008.

J. Zhang, Y. Zhao, R. S. Hixson, G. T. Gray, I. et al., Experimental constraints on the phase diagram of titanium metal, Journal of Physics and Chemistry of Solids, vol.69, issue.10, pp.2559-2563, 2008.
DOI : 10.1016/j.jpcs.2008.05.016

S. Nishitani, H. Kawabe, and M. Aoki, First-principles calculations on bcchcp transition of titanium, Mater. Sci. Eng., A, pp.312-77, 2001.

E. Yu, Tonkov, High Pressure Phase transformations: A Handbook, Gordon and Breach Science, vol.2, 1992.

G. W. Groves and A. Kelly, Independent slip systems in crystals, Philosophical Magazine, vol.62, issue.89, pp.877-887, 1963.
DOI : 10.1080/14786436108243308

J. P. Hirth and J. Lothe, Theory of Dislocations in Crystals, 1982.

A. Kelly and K. Knowles, Crystallgraphy and Crystal Defects

M. Battaini, Deformation behavior and twinning mechanisms of commercially pure titanium alloys, 2008.

M. Ghazisaeidi and D. Trinkle, Core structure of a screw dislocation in Ti from density functional theory and classical potentials, Acta Materialia, vol.60, issue.3, pp.1287-1292, 2012.
DOI : 10.1016/j.actamat.2011.11.024

X. Wu, R. Wang, and S. Wang, Generalized-stacking-fault energy and surface properties for HCP metals: A first-principles study, Applied Surface Science, vol.256, issue.11
DOI : 10.1016/j.apsusc.2009.12.042

M. Benoit, N. Tarrat, and J. Morillo, Density functional theory investigations of titanium ?-surfaces and stacking faults, Modelling Simul, Mater. Sci. Eng, vol.21, p.15009, 2013.

N. Chaari, E. Clouet, and D. Rodney, First-Principles Study of Secondary Slip in Zirconium, Physical Review Letters, vol.112, issue.7, p.75504, 2014.
DOI : 10.1103/PhysRevLett.112.075504

URL : https://hal.archives-ouvertes.fr/hal-00950867

C. Domain, Simulations atomiques ab initio des effets de l'hydrogène et de l'iode dans le zirconium, 2002.

Y. Minonishi, S. Ishioka, M. Koiwa, S. Morozumi, and M. Yamaguchi, The core structure of 1/3< ¯ 1 ¯ 123>{11 ¯ 22} screw dislocations in h.c.p. metals, Phil. Mag, pp.44-1225, 1981.

J. R. Morris, J. Scharff, K. M. Ho, Y. Y. Ye, and M. H. Yoo, Prediction of a {1122} hcp stacking fault using a modified generalized stacking-fault calculation, Philosophical Magazine A, vol.1, issue.5, pp.76-1065, 1997.
DOI : 10.1103/PhysRevLett.74.1375

Y. Minonishi, S. Ishioka, M. Koiwa, S. Morozumi, and M. Yamaguchi, The core structure of 1, pp.1017-1026, 1981.

Y. Minonishi, S. Ishioka, M. Koiwa, S. Morozumi, and M. Yamaguchi, The core structure of a 1/3< ¯ 1 ¯ 123>{11 ¯ 22} edge dislocation under applied shear stresses in an h.c.p. metals, Phil. Mag, pp.45-835, 1982.

Y. Minonishi, S. Ishioka, M. Koiwa, and S. Morozumi, Motion of a 1/3< ¯ 1 ¯ 123>{11 ¯ 22} screw dislocation in a model h.c.p. lattice, Phil. Mag, pp.46-761, 1982.

D. J. Bacon and M. H. Liang, Computer simulation of dislocation cores in h.c.p. metals I. Interatomic potentials and stacking-fault stability, Philosophical Magazine A, vol.5, issue.2, pp.163-179, 1986.
DOI : 10.1080/14786436808227500

D. J. Bacon and M. H. Liang, Computer simulations of dislocation cores in h.c.p. metals. II. Core structure in unstressed crystals, Phil. Mag. A, vol.53, pp.181-204, 1986.

M. H. Liang and D. J. Bacon, Computer simulation of dislocation cores in h.c.p. metals III. The effect of applied shear strain, Philosophical Magazine A, vol.5, issue.2, pp.205-220, 1986.
DOI : 10.1007/BF02648537

J. R. Morris, K. M. Ho, K. Y. Chen, G. Rengarajan, and M. H. Yoo, Large-scale atomistic study of core structures and energetics of (()) dislocations in hexagonal close packed metals, Modelling and Simulation in Materials Science and Engineering, vol.8, issue.1, pp.25-35, 2000.
DOI : 10.1088/0965-0393/8/1/303

M. H. Yoo, J. R. Morris, K. M. Ho, and S. R. Agnew, Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility, Metallurgical and Materials Transactions A, vol.33, issue.128, pp.813-822, 2002.
DOI : 10.1007/s11661-002-0150-1

V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philosophical Magazine, vol.44, issue.154, pp.773-786, 1968.
DOI : 10.1002/pssb.19660180222

N. Tarrat, M. Benoit, and J. Morillo, Core structure of screw dislocations in hcp Ti: an ab initio DFT study, International Journal of Materials Research, vol.100, issue.3, pp.329-332, 2009.
DOI : 10.3139/146.110055

V. Bulatov and W. Cai, Computer simulation of dislocation, 2006.

B. Legrand, Relations entre la structure ??lectronique et la facilit?? de glissement dans les m??taux hexagonaux compacts, Philosophical Magazine Part B, vol.19, issue.2, pp.171-174, 1984.
DOI : 10.1080/13642818408227636

B. Legrand, 0??? dans le titane, Philosophical Magazine A, vol.21, issue.1, pp.83-97, 1985.
DOI : 10.1080/01418618508237608

N. Tarrat, M. Benoit, D. Caillard, L. Ventelon, N. Combe et al., Screw dislocation in hcp Ti???:???DFT dislocation excess energies and metastable core structures, Modelling and Simulation in Materials Science and Engineering, vol.22, issue.5, p.55016, 2014.
DOI : 10.1088/0965-0393/22/5/055016

S. Farenc, D. Caillard, and A. Couret, An in situ study of prismatic glide in ?? titanium at low temperatures, Acta Metallurgica et Materialia, vol.41, issue.9, pp.41-2701, 1993.
DOI : 10.1016/0956-7151(93)90139-J

R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52, pp.34-37, 1940.

F. R. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc. 59, pp.256-272, 1947.
DOI : 10.1088/0959-5309/59/2/309

D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity, 2003.

N. Itoh, M. Ogaya, S. Ishiyama, T. Matsushita, Y. Hayashi et al., Press formability of commercial pure titanium at warm working temperatures, Proceedings of the 4th International Conference on Titanium, pp.2523-2529, 1980.

M. Philippe, C. Esling, and B. Hocheid, Role of Twinning in Texture Development and in Plastic Deformation of Hexagonal Materials, Textures and Microstructures, vol.7, issue.4, pp.265-301, 1988.
DOI : 10.1155/TSM.7.265

Y. B. Chun, S. H. Yu, S. L. Semiatin, and S. K. Hwang, Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium, Materials Science and Engineering: A, vol.398, issue.1-2, pp.209-219, 2005.
DOI : 10.1016/j.msea.2005.03.019

A. A. Salem, S. R. Kalidindi, and R. D. Doherty, Strain hardening of titanium: role of deformation twinning, Acta Materialia, vol.51, issue.14, pp.4225-4237, 2003.
DOI : 10.1016/S1359-6454(03)00239-8

. Ph, . Komninou, . Th, . Kehagias, . Th et al., Electron Microscopy of Defects in Hexagonal Materials, in Multiscale Phenomena in, Kluwer, pp.215-226, 2000.

N. E. Paton and W. A. Backofen, Plastic Deformation of Titanium at Elevated Temperatures, Met. Trans. 1, pp.2839-2847, 1970.

A. Kumar, J. Wang, and C. N. Tomé, First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals, Acta Materialia, vol.85, pp.144-154, 2015.
DOI : 10.1016/j.actamat.2014.11.015

J. R. Morris, Y. Y. Kee, and M. H. Yoo, First-principles examination of the twin boundary in hcp metals, Philosophical Magazine, vol.33, issue.2-3, pp.233-238, 2005.
DOI : 10.1103/PhysRevB.63.224116

]. M. Ghazisaeidi and D. R. Trinkle, Interaction of oxygen interstitials with lattice faults in Ti, Acta Materialia, vol.76, pp.82-86, 2014.
DOI : 10.1016/j.actamat.2014.05.025

N. Lane, S. I. Simak, A. S. Mikhaylushkin, I. A. Abrikosov, L. Hultman et al., ) twin boundary, Physical Review B, vol.84, issue.18, pp.184101-184108, 2011.
DOI : 10.1103/PhysRevB.84.184101

J. R. Morris, Y. Y. Kee, M. Ho, C. T. Chan, and M. H. Yoo, Structures and energies of compression twin boundaries in hcp Ti and Zr, pp.72-751, 1995.

Y. C. Wang, D. H. Ping, D. X. Li, and H. Q. Ye, A high-resolution transmission electron microscopy study of the {10 ¯ 11} twin-boundary structure in alpha- Ti, pp.74-367, 1996.

S. Lay and G. Nouet, 2) twin interface in zinc, Philosophical Magazine A, vol.19, issue.2, pp.261-275, 1994.
DOI : 10.1080/14786436608211952

. Th, P. Braisaz, G. Ruterana, A. Nouet, and . Serra, High-resolution electron microscopy study of the (10 ¯ 12) twin and defects analysis in deformed polycrystalline alpha titanium, Phil. Mag. Lett, pp.74-331, 1996.

A. Serra and D. J. Bacon, Computer simulation of twin boundaries in the h.c.p. metals, Philosophical Magazine A, vol.12, issue.6, pp.793-804, 1986.
DOI : 10.1080/01418618608244438

A. Serra, R. C. Pond, and D. J. Bacon, Computer simulation of the structure and mobility of twinning dislocations in H.C.P. metals, Acta metall. mater, pp.39-1469, 1991.

I. J. Beyerlein, X. Zhang, and A. , Growth Twins and Deformation Twins in Metals, Annual Review of Materials Research, vol.44, issue.1, pp.44-329, 2014.
DOI : 10.1146/annurev-matsci-070813-113304

R. J. Mccabe, G. Proust, E. K. Cerreta, and A. Misra, Quantitative analysis of deformation twinning in zirconium, International Journal of Plasticity, vol.25, issue.3, pp.25-454, 2009.
DOI : 10.1016/j.ijplas.2008.03.010

I. J. Beyerlein, J. Wang, M. R. Barnett, and C. N. Tomé, Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations, Proc. R. Soc. A 468, pp.1496-1520, 2012.
DOI : 10.1103/PhysRevLett.104.029603

M. Knezevic, I. J. Beyerlein, D. W. Brown, T. A. Sisneros, and C. N. Tomé, A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: Application to beryllium, International Journal of Plasticity, vol.49, pp.49-185, 2013.
DOI : 10.1016/j.ijplas.2013.03.008

H. Kihô, The Crystallographic Aspect of the Mechanical Twinning in Metals, Journal of the Physical Society of Japan, vol.9, issue.5, pp.739-747, 1954.
DOI : 10.1143/JPSJ.9.739

B. A. Bilby and A. G. Crocker, The Theory of the Crystallography of Deformation Twinning, Proc. R. Soc. A, pp.240-255, 1965.
DOI : 10.1098/rspa.1965.0216

J. W. Christian and S. Mahajan, Deformation twinning, Progress in Materials Science, vol.39, issue.1-2, pp.1-157, 1995.
DOI : 10.1016/0079-6425(94)00007-7

H. A. Khater, A. Serra, and R. C. Pond, Atomic shearing and shuffling accompanying the motion of twinning disconnections in Zirconium, Philosophical Magazine, vol.245, issue.10-12, pp.93-1279, 2013.
DOI : 10.1098/rspa.1977.0179

E. Orowan, Dislocations and mechanical properties, Dislocations in Metals, pp.69-195, 1954.

S. Mendelson, Dislocation Dissociations in hcp Metals, Journal of Applied Physics, vol.41, issue.5, pp.1893-1910, 1970.
DOI : 10.1063/1.1659139

J. Wang, R. G. Hoagland, J. P. Hirth, L. Capolungo, I. J. Beyerlein et al., Nucleation of a {10 ¯ 12} twin in hexagonal-close-packed crystals, Scr. Mater, pp.61-903, 2009.

N. Thompson and D. J. Millard, XXXVIII. Twin formation, in cadmium, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.5, issue.339, pp.422-440, 1952.
DOI : 10.1007/978-3-662-34532-0

A. Le-lann and A. Dubertret, A development of Kronbergs model for {10 ¯ 12} twins in H.C.P. metals. Extension to {11 ¯ 22} twins, Phys. Status Solidi, pp.51-497, 1979.

J. Wang, S. K. Yadav, J. P. Hirth, C. N. Tomé, and I. J. Beyerlein, Pure-Shuffle Nucleation of Deformation Twins in Hexagonal-Close-Packed Metals, Materials Research Letters, vol.63, issue.1, pp.126-132, 2013.
DOI : 10.1080/21663831.2013.792019

A. Serra and D. J. Bacon, A new model for {10 ¯ 12} twin growth in HCP metals, pp.73-333, 1996.

B. Xu, L. Capolungo, and D. Rodney, On the importance of prismatic/basal interfaces in the growth of {10 ¯ 12} twins in hexagonal close-packed crystals, Scr. Mater, pp.68-901, 2013.

A. Ostapovets and A. Serra, Characterization of the matrix???twin interface of a (101??2) twin during growth, Philosophical Magazine, vol.94, issue.25, pp.2827-2839, 2014.
DOI : 10.1016/j.actamat.2012.01.001

L. Capolungo, I. J. Beyerlein, and C. N. Tomé, Slip-assisted twin growth in hexagonal close-packed metals, Scripta Materialia, vol.60, issue.1, pp.60-92, 2009.
DOI : 10.1016/j.scriptamat.2008.08.044

A. Serra, D. J. Bacon, and R. C. Pond, The Crystallography and Core Structure of Twinning Dislocations in H.C.P. Metals, Acta metall, pp.36-3183, 1988.

R. C. Pond, D. J. Bacon, and A. Serra, Interfacial structure of {10 ¯ 11} twins and twinning dislocations in titanium, Phil. Mag. Lett, pp.71-275, 1995.

A. Serra and D. J. Bacon, On the Generation of Twinning Dislocations in HCP Twin Boundaries, Materials Science Forum, vol.207, issue.209, pp.207-209, 1996.
DOI : 10.4028/www.scientific.net/MSF.207-209.553

A. Serra and D. J. Bacon, Modelling the motion of {11 ¯ 22} twinning dislocations in the HCP metals, Mat. Sci. Eng. A, pp.400-401, 2005.

A. Serra and D. J. Bacon, Computer simulation of screw dislocation interactions with twin boundaries in H.C.P. metals, Acta metall. mater, pp.43-4465, 1995.

A. Serra and D. J. Bacon, Interaction of a moving {10 ¯ 12} twin boundary with perfect dislocations and loops in a hcp metal, Phil. Mag, pp.90-845, 2010.

M. Ghazisaeidi, L. G. Hector-jr, and W. A. Curtin, First-principles core structures of edge and screw dislocations in Mg, Scripta Materialia, vol.75, pp.278-287, 2014.
DOI : 10.1016/j.scriptamat.2013.11.013

G. Vérité, C. Domain, C. Fu, P. Gasca, A. Legris et al., Self-interstitial defects in hexagonal close packed metals revisited: Evidence for low-symmetry configurations in Ti, Zr, and Hf, Physical Review B, vol.87, issue.13, p.134108, 2013.
DOI : 10.1103/PhysRevB.87.134108

R. G. Hennig, D. R. Trinkle, J. Bouchet, S. G. Srinivasan, R. C. Albers et al., Impurities block the ?? to ?? martensitic transformation in titanium, Nature Materials, vol.37, issue.2, pp.129-133, 2005.
DOI : 10.1088/0953-8984/6/40/015

H. H. Wu and D. G. Trinkle, Direct Diffusion through Interpenetrating Networks: Oxygen in Titanium, Physical Review Letters, vol.107, issue.4, p.45504, 2011.
DOI : 10.1103/PhysRevLett.107.045504

R. Khoda-bakhsh and D. K. Ross, Determination of the hydrogen site occupation in the ?? phase of zirconium hydride and in the ?? and ?? phases of titanium hydride by inelastic neutron scattering, Journal of Physics F: Metal Physics, vol.12, issue.1, pp.15-24, 1982.
DOI : 10.1088/0305-4608/12/1/003

R. Hempelmann, D. Richter, and B. Strizker, Optic phonon modes and superconductivity in ??phase (Ti, Zr)-(H, D) alloys, Journal of Physics F: Metal Physics, vol.12, issue.1, pp.79-86, 1982.
DOI : 10.1088/0305-4608/12/1/009

Q. Xu and A. , First-principles investigation of metal-hydride phase stability: The Ti-H system, Physical Review B, vol.76, issue.6, p.64207, 2007.
DOI : 10.1103/PhysRevB.76.064207

C. P. Liang and H. R. Gong, Fundamental influence of hydrogen on various properties of ??-titanium, International Journal of Hydrogen Energy, vol.35, issue.8, pp.3812-3816, 2010.
DOI : 10.1016/j.ijhydene.2010.01.080

D. Connétable, J. Huez, ´. E. Andrieu, and C. Mijoule, First-principles study of diffusion and interactions of vacancies and hydrogen in hcp-titanium, Journal of Physics: Condensed Matter, vol.23, issue.40
DOI : 10.1088/0953-8984/23/40/405401

J. L. Murray and H. A. Wriedt, The O???Ti (Oxygen-Titanium) system, Journal of Phase Equilibria, vol.53, issue.3, pp.148-165, 1987.
DOI : 10.1007/BF02873201

N. E. Paton, B. S. Hickman, and D. Leslie, Behavior of hydrogen in ??-phase Ti-Al alloys, Metallurgical Transactions, vol.226, issue.10, pp.2791-2796, 1971.
DOI : 10.1007/BF02813253

R. Vitt and K. Ono, Hydrogen solubility in alpha titanium, Metallurgical Transactions, vol.200, issue.2, pp.608-609, 1971.
DOI : 10.1007/BF02663358

F. Cardarelli, Materials Handbook, second Edition, 2008.

Y. Lu and P. Zhang, First-principles study of temperature-dependent diffusion coefficients: Hydrogen, deuterium, and tritium in ??-Ti, Journal of Applied Physics, vol.113, issue.19, p.193502, 1983.
DOI : 10.1063/1.4805362

G. Elssner, V. Krohn, and O. Ruano, Härtung der IVa-Metalle durch interstitiell gelsten Sauerstoff und Stickstoff, Zeits. f. Metallkde, vol.67, pp.311-317, 1976.

M. ?. Sob, J. Kratochvil, and F. Kroupa, Theory of strengthening of alpha titanium by interstitial solutes, Czech, J. Phys. B, vol.25, pp.872-890, 1975.

N. Chaari, Modélisation ab initio de la plasticité dans les métaux hexagonaux: zirconium et titane purs et effet de l'oxygène, p.2015

J. F. Nie, Y. M. Zhu, J. Z. Liu, and X. Y. , Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries, Science, vol.340, issue.6135, pp.957-960, 2013.
DOI : 10.1126/science.1229369

J. Pokluda, M. Cern´ycern´y, M. Sob, and Y. Umeno, Ab initio calculations of mechanical properties: Methods and applications, Progress in Materials Science, vol.73, pp.73-127, 2015.
DOI : 10.1016/j.pmatsci.2015.04.001

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Journal of Non-Crystalline Solids, vol.192, issue.193, pp.558-561, 1993.
DOI : 10.1016/0022-3093(95)00355-X

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, vol.6, issue.1, pp.15-50, 1996.
DOI : 10.1016/0927-0256(96)00008-0

M. Martin, Electronic Structure: Basic Theory and Practical Methods, 2004.
DOI : 10.1017/CBO9780511805769

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

D. Ceperley and B. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett, pp.45-566, 1980.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865

J. P. Perdew and . Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, pp.13244-13249, 1992.
DOI : 10.1103/PhysRevB.45.13244

P. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, issue.24, pp.17953-17978, 1994.
DOI : 10.1103/PhysRevB.50.17953

4. Experiment, H. Dammak, L. Ecole-polytechnique141, ]. E. Fisher, and C. J. Renken, Single-Crystal Elastic Moduli and the hcp ? bcc Transformation in Ti, Phys. Rev, vol.135, pp.482-494, 1964.

A. De-crecy, A. Bourret, S. Naka, and A. Lasalmonie, High resolution determination of the core structure of 1/311 ¯ 20{10 ¯ 0} edge dislocation in titanium, pp.47-245, 1983.

B. Legrand, Relations entre la structure ??lectronique et la facilit?? de glissement dans les m??taux hexagonaux compacts, Philosophical Magazine Part B, vol.19, issue.2, pp.171-184, 1984.
DOI : 10.1080/13642818408227636

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, pp.5188-5192, 1976.
DOI : 10.1103/PhysRevB.13.5188

L. Hung, C. Huang, I. Shin, G. S. Ho, V. L. Lignères et al., Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations, Computer Physics Communications, vol.181, issue.12, pp.181-2208, 2010.
DOI : 10.1016/j.cpc.2010.09.001

A. Van-de-walle and G. Ceder, The effect of lattice vibrations on substitutional alloy thermodynamics, Reviews of Modern Physics, vol.74, issue.1, pp.11-45, 2002.
DOI : 10.1103/RevModPhys.74.11

D. Alfè, PHON: A program to calculate phonons using the small displacement method, Computer Physics Communications, vol.180, issue.12, pp.2622-2633, 2009.
DOI : 10.1016/j.cpc.2009.03.010

M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Physical Review B, vol.40, issue.6, pp.3616-3621, 1989.
DOI : 10.1103/PhysRevB.40.3616

K. B. Panda and K. S. Ravi-chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Computational Materials Science, vol.35, issue.2, pp.35-134, 2006.
DOI : 10.1016/j.commatsci.2005.03.012

P. Kwasniak, M. Muzyk, H. Garbacz, and K. J. Kurzydlowski, Influence of oxygen content on the mechanical properties of hexagonal Ti???First principles calculations, Materials Science and Engineering: A, vol.590, pp.74-79, 2014.
DOI : 10.1016/j.msea.2013.10.004

J. D. Eshelby, W. T. Read, and W. Shockley, Anisotropic elasticity with applications to dislocation theory, Acta Metallurgica, vol.1, issue.3, pp.251-259, 1953.
DOI : 10.1016/0001-6160(53)90099-6

A. N. Stroh, Dislocations and Cracks in Anisotropic Elasticity, Philosophical Magazine, vol.3, issue.30, pp.625-646, 1958.
DOI : 10.1103/RevModPhys.18.409

A. N. Stroh, Steady State Problems in Anisotropic Elasticity, Journal of Mathematics and Physics, vol.35, issue.1-4, pp.77-103, 1962.
DOI : 10.1002/sapm196241177

Y. Minonishi, S. Ishioka, M. Koiwa, and S. Mobozumi, The structure of {11 ¯ 21} twin boundaries in H, C.P. crystals, phys. stat. sol. a, pp.71-253, 1982.

O. H. Duparc and M. Torrent, A New Type of Periodic Boundary Condition Useful for High-Temperature Atomistic Simulations of Grain Boundaries: Applications in Semiconductors, Interface Sci, vol.2, pp.7-16, 1994.

J. Wang, L. Liu, C. N. Tomé, S. X. Mao, and S. K. Gong, Twinning and De-twinning via Glide and Climb of Twinning Dislocations along Serrated Coherent Twin Boundaries in Hexagonal-close-packed Metals, Materials Research Letters, vol.2012, issue.2, pp.81-88, 2013.
DOI : 10.1103/PhysRevB.77.155419

C. D. Barrett and H. Kadiri, The roles of grain boundary dislocations and disclinations in the nucleation of {10 ¯ 12} twinning, Acta Mater, vol.70, pp.1-15, 2014.

C. D. Barrett and H. Kadiri, Impact of deformation faceting on <mml:math altimg="si24.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>??</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>2</mml:mn><mml:mo stretchy="false">}</mml:mo><mml:mtext>,</mml:mtext><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>??</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>1</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math> and <mml:math altimg="si25.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>??</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>3</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math> embryonic twin nucleation in hexagonal close-packed metals, Acta Materialia, vol.70, pp.137-161, 2014.
DOI : 10.1016/j.actamat.2014.02.018

J. C. Jamieson, Crystal Structures of Titanium, Zirconium, and Hafnium at High Pressures, Science, vol.140, issue.3562, pp.72-73, 1963.
DOI : 10.1126/science.140.3562.72

J. Spreadborough and J. Christian, The Measurement of the Lattice Expansions and Debye Temperatures of Titanium and Silver by X-ray Methods, Proc. Phys. Soc, pp.74-609, 1959.
DOI : 10.1088/0370-1328/74/5/314

C. Stassis, D. Arch, B. N. Harmon, and N. Wakabayashi, Lattice dynamics of hcp Ti, Physical Review B, vol.19, issue.1, pp.181-188, 1979.
DOI : 10.1103/PhysRevB.19.181

A. Heiming, Phonon dispersion of the bcc phase of group-IV metals. II. bcc zirconium, a model case of dynamical precursors of martensitic transitions, Physical Review B, vol.43, issue.13, pp.10948-10962, 1991.
DOI : 10.1103/PhysRevB.43.10948

J. Goldak, L. T. Lloyd, and C. S. Barrett, Lattice Parameters, Thermal Expansions , and Grüneisen Coefficients of Zirconium, 4.2 to 1130K, Phy. Rev, pp.144-478, 1966.

B. Olinger and J. C. Jamieson, Zirconim: phases and compressibility to 120 kilobars, pp.123-131, 1973.

A. Heiming, W. Petry, J. Trampenau, M. Alba, C. Herzig et al., Phonon dispersion of the bcc phase of group-IV metals. II. bcc zirconium, a model case of dynamical precursors of martensitic transitions, Physical Review B, vol.43, issue.13, pp.10948-10962, 1991.
DOI : 10.1103/PhysRevB.43.10948

C. Domain and A. Legris, Ab initio atomic-scale determination of point-defect structure in hcp zirconium, Philosophical Magazine, vol.85, issue.4-7, pp.569-575, 2005.
DOI : 10.1080/14786430412331334625

C. Varvenne, O. Mackain, L. Proville, and E. Clouet, Hydrogen and vacancy clustering in zirconium, Acta Materialia, vol.102, pp.56-69, 2016.
DOI : 10.1016/j.actamat.2015.09.019

J. Garcés and P. , H ordering in hcp M???H systems (M=Sc, Y; Ti, Zr), International Journal of Hydrogen Energy, vol.35, issue.11, pp.6025-6030, 2010.
DOI : 10.1016/j.ijhydene.2009.12.079

A. Clementi, D. L. Raimondi, and W. P. Reinhardt, Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, The Journal of Chemical Physics, vol.47, issue.4, pp.47-1300, 1967.
DOI : 10.1063/1.1712084

M. Sob, L. G. Wang, and V. Vitek, Theoretical tensile stress in tungsten single crystals by full-potential first-principles calculations, Mater. Sci. Eng. A, vol.234, pp.236-1075, 1997.

O. N. Senkov, M. Dubois, and J. J. Jonas, Elastic moduli of titanium-hydrogen alloys in the temperature range 20 ??C to 1100 ??C, Metallurgical and Materials Transactions A, vol.28, issue.10, pp.3963-3970, 1996.
DOI : 10.1007/BF02595645

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.62, issue.367, pp.45-823, 1954.
DOI : 10.1007/BF01339674

B. Sun, S. F. Li, I. Hisashi, U. Junko, K. Katsuyoshi et al., Fabrication of highstrength Ti materials by in-process solid solution strengthening of oxygen via P/M methods Effect of small concentrations of oxygen and nitrogen on the structure and mechanical properties of sputtered titanium films, Mater. Sci. Eng. A Surf. Coat. Technol, vol.563, issue.206, pp.3580-3585, 2012.

G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics, vol.113, issue.22, pp.9901-9904, 2000.
DOI : 10.1063/1.1329672

G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, Journal of Physics and Chemistry of Solids, vol.3, issue.1-2, pp.121-127, 1957.
DOI : 10.1016/0022-3697(57)90059-8

S. Ishioka and M. Koiwa, Diffusion coefficient in crystals with multiple jump frequencies, Philosophical Magazine A, vol.233, issue.2, pp.267-277, 1985.
DOI : 10.1080/01418618508237623

A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer, First-principles investigation of the effect of carbon on the stacking fault energy of Fe???C alloys, Acta Materialia, vol.59, issue.8, pp.59-3041, 2011.
DOI : 10.1016/j.actamat.2011.01.044

O. Mügge, Ueber homogene Deformationen (einfache Schiebungen) an dem triklinen Doppelsalzen BaCdCl 4 .4aq, Neues Jahrbuch für Mineralogie B-B6 (1889), pp.274-304

J. W. Christian, The Theory of Transformations in Metals and Alloys, Third Ed, 2002.

O. and H. Duparc, A review of some elements in the history of grain boundaries, centered on Georges Friedel, the coincident site lattice and the twin index, J. Mat. Sci, pp.46-4116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01014024

S. Hagége and G. Nouet, G??om??trie des relations d'orientation dans la sym??trie hexagonale. Dimension de la co??ncidence, Acta Crystallographica Section A Foundations of Crystallography, vol.45, issue.3, pp.217-227, 1989.
DOI : 10.1107/S0108767388010396

J. Wang and I. J. Beyerlein, Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals, Modelling Sim, Mater. Sc. Eng, vol.20, p.24002, 2012.

S. Mendelson, Zonal dislocations and twin lamellae in h.c.p. metals, Materials Science and Engineering, vol.4, issue.4, pp.231-242, 1969.
DOI : 10.1016/0025-5416(69)90067-6

P. Peierls-potential, ?E p is the Peierls energy barrier and ? p is the Peierls stress, p.16

T. Of-ti-h, The polycrystalline Ti is intrinsically brittle for a B/G value less than 1.75 according to Pugh's plasticity criterion, p.73

{. Two and . 11}, Twin-assisted SFs on ? 1 . Left figure is related to the 0.21510 ¯ 1 ¯ 2 partial dislocation

{. ¯. Tbs, {. ¯. 12}, {. 11}, and {. , in presence of one H (pink) or one O (red), as indicated by black arrows, initially put at the corresponding most segregating sites (see table 5.2 together with figures 5.1). figure 5.2c.3 explicitly shows the O atom and its nearly perfectly restored immediate neighbourhood in the {11 ¯ 21} TB, see Section 4.2. Oxygen does not segregate at the {11 ¯ 22} TB, see table 5.2, Atomic structures and charge density, p.110

{. , {. ¯. 21}, {. , and {. , Bilby and Crocker's index q, and c-type (Tension or Compression, along c) for the

H. For and O. Ti, ISIF=3 means that the form and volume of supercell are relaxed, and they are fixed when ISIF=2.The octahedral site is favoured if E Octa ? E T etra is negative: E Octa < E T etra ), Formation energy differences between Octa and Tetra sites, p.61

. Stability and .. Sites-for-h-in-?-ti, ?F f is the free energy difference with ZPE taken into account, p.62