Skip to Main content Skip to Navigation
Theses

High weak order discretization schemes for stochastic differential equation

Résumé : Durant les dernières décennies, l'essor des moyens technologiques et particulièrement informatiques a permis l'émergence de la mise en œuvre de méthodes numériques pour l'approximation d'Equations Différentielles Stochastiques (EDS) ainsi que pour l'estimation de leurs paramètres. Cette thèse aborde ces deux aspects et s'intéresse plus spécifiquement à l'efficacité de ces méthodes. La première partie sera consacrée à l'approximation d'EDS par schéma numérique tandis que la deuxième partie traite l'estimation de paramètres. Dans un premier temps, nous étudions des schémas d'approximation pour les EDSs. On suppose que ces schémas sont définis sur une grille de temps de taille $n$. On dira que le schéma $X^n$ converge faiblement vers la diffusion $X$ avec ordre $h in mathbb{N}$ si pour tout $T>0$, $vert mathbb{E}[f(X_T)-f(X_T^n)] vertleqslant C_f /n^h$. Jusqu'à maintenant, sauf dans certains cas particulier (schémas d'Euler et de Ninomiya Victoir), les recherches sur le sujet imposent que $C_f$ dépende de la norme infini de $f$ mais aussi de ses dérivées. En d'autres termes $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Notre objectif est de montrer que si le schéma converge faiblement avec ordre $h$ pour un tel $C_f$, alors, sous des hypothèses de non dégénérescence et de régularité des coefficients, on peut obtenir le même résultat avec $C_f=C Vert f Vert_{infty}$. Ainsi, on prouve qu'il est possible d'estimer $mathbb{E}[f(X_T)]$ pour $f$ mesurable et bornée. On dit alors que le schéma converge en variation totale vers la diffusion avec ordre $h$. On prouve aussi qu'il est possible d'approximer la densité de $X_T$ et ses dérivées par celle $X_T^n$. Afin d'obtenir ce résultat, nous emploierons une méthode de calcul de Malliavin adaptatif basée sur les variables aléatoires utilisées dans le schéma. L'intérêt de notre approche repose sur le fait que l'on ne traite pas le cas d'un schéma particulier. Ainsi notre résultat s'applique aussi bien aux schémas d'Euler ($h=1$) que de Ninomiya Victoir ($h=2$) mais aussi à un ensemble générique de schémas. De plus les variables aléatoires utilisées dans le schéma n'ont pas de lois de probabilité imposées mais appartiennent à un ensemble de lois ce qui conduit à considérer notre résultat comme un principe d'invariance. On illustrera également ce résultat dans le cas d'un schéma d'ordre 3 pour les EDSs unidimensionnelles. La deuxième partie de cette thèse traite le sujet de l'estimation des paramètres d'une EDS. Ici, on va se placer dans le cas particulier de l'Estimateur du Maximum de Vraisemblance (EMV) des paramètres qui apparaissent dans le modèle matriciel de Wishart. Ce processus est la version multi-dimensionnelle du processus de Cox Ingersoll Ross (CIR) et a pour particularité la présence de la fonction racine carrée dans le coefficient de diffusion. Ainsi ce modèle permet de généraliser le modèle d'Heston au cas d'une covariance locale. Dans cette thèse nous construisons l'EMV des paramètres du Wishart. On donne également la vitesse de convergence et la loi limite pour le cas ergodique ainsi que pour certains cas non ergodiques. Afin de prouver ces convergences, nous emploierons diverses méthodes, en l'occurrence : les théorèmes ergodiques, des méthodes de changement de temps, ou l'étude de la transformée de Laplace jointe du Wishart et de sa moyenne. De plus, dans dernière cette étude, on étend le domaine de définition de cette transformée jointe
Document type :
Theses
Complete list of metadatas

Cited literature [66 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/tel-01355519
Contributor : Abes Star :  Contact
Submitted on : Tuesday, August 23, 2016 - 3:09:10 PM
Last modification on : Wednesday, July 5, 2017 - 9:25:06 AM
Document(s) archivé(s) le : Thursday, November 24, 2016 - 1:03:52 PM

File

TH2015PESC1177.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01355519, version 1

Collections

Citation

Clément Rey. High weak order discretization schemes for stochastic differential equation. General Mathematics [math.GM]. Université Paris-Est, 2015. English. ⟨NNT : 2015PESC1177⟩. ⟨tel-01355519⟩

Share

Metrics

Record views

616

Files downloads

249