A. Ahdida and A. Alfonsi, Exact and high-order discretization schemes for Wishart processes and their affine extensions, The Annals of Applied Probability, vol.23, issue.3, pp.1025-1073, 2013.
DOI : 10.1214/12-AAP863

URL : https://hal.archives-ouvertes.fr/hal-00491371

A. Alfonsi, High order discretization schemes for the CIR process: Application to affine term structure and Heston models, Mathematics of Computation, vol.79, issue.269, pp.209-237, 2010.
DOI : 10.1090/S0025-5718-09-02252-2

URL : https://hal.archives-ouvertes.fr/hal-00143723

A. Alfonsi, A. Kebaier, and C. Rey, Maximum likelihood estimation for Wishart processes, Stochastic Processes and their Applications, vol.126, issue.11, 1997.
DOI : 10.1016/j.spa.2016.04.026

URL : https://hal.archives-ouvertes.fr/hal-01184310

D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, p.39, 2014.
DOI : 10.1007/978-3-319-00227-9

URL : https://hal.archives-ouvertes.fr/hal-00929960

V. Bally and L. Caramellino, On the distances between probability density functions, Electronic Journal of Probability, vol.19, issue.0, p.52, 2013.
DOI : 10.1214/EJP.v19-3175

V. Bally and L. Caramellino, Asymptotic development for the CLT in total variation distance. ArXiv e-prints, 1950.
URL : https://hal.archives-ouvertes.fr/hal-01104866

V. Bally and L. Caramellino, Convergence and regularity of probability laws by using an interpolation method. arXiv preprint arXiv:1409, p.47, 2014.

V. Bally and E. Clément, Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields, pp.613-657, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00431632

V. Bally and C. Rey, Approximation of Markov semigroup in total variation disctance, p.94, 2015.

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, pp.43-60, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074427

V. Bally and D. Talay, The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density, Monte Carlo Methods and Applications, vol.2, issue.2, pp.93-128, 1996.
DOI : 10.1515/mcma.1996.2.2.93

URL : https://hal.archives-ouvertes.fr/inria-00074016

M. B. Alaya and A. Kebaier, Parameter Estimation for the Square-Root Diffusions: Ergodic and Nonergodic Cases, Stochastic Models, vol.28, issue.4, pp.609-634, 2012.
DOI : 10.1137/1116003

URL : https://hal.archives-ouvertes.fr/hal-00579644

M. B. Alaya and A. Kebaier, Asymptotic Behavior of the Maximum Likelihood Estimator for Ergodic and Nonergodic Square-Root Diffusions, Stochastic Analysis and Applications, vol.12, issue.2, pp.552-573, 2013.
DOI : 10.1016/0047-259X(92)90068-Q

R. Bhattacharya and R. Rao, Normal Approximation and Asymptotic Expansions, Society for Industrial and Applied Mathematics, p.36, 2010.
DOI : 10.1137/1.9780898719895

S. G. Bobkov, G. P. Chistyakov, and F. Götze, Berry?Esseen bounds in the entropic central limit theorem. Probab. Theory Related Fields, pp.3-4435, 2014.

S. G. Bobkov, G. P. Chistyakov, and F. Götze, Fisher information and the central limit theorem. Probab. Theory Related Fields, pp.1-59, 2014.

M. Bossy, E. Gobet, and D. Talay, A symmetrized Euler scheme for an efficient approximation of reflected diffusions, J. Appl. Probab, vol.41, issue.37, pp.877-889, 2004.

M. Bru, Thèse 3 ème cycle Résistance d'Escherichia coli aux antibiotiques: Sensibilités des analyses en composantes principales aux perturbations Browniennes et simulation, p.98, 1987.

M. Bru, Wishart processes, Journal of Theoretical Probability, vol.20, issue.4, pp.725-751, 1991.
DOI : 10.1007/BF01259552

C. Cuchiero, D. Filipovi?, E. Mayerhofer, and J. Teichmann, Affine processes on positive semidefinite matrices, The Annals of Applied Probability, vol.21, issue.2, pp.397-463, 2011.
DOI : 10.1214/10-AAP710

J. Da-fonseca, M. Grasselli, and F. Ielpo, Estimating the Wishart affine stochastic correlation model using the empirical characteristic function, Stud. Nonlinear Dyn. Econom, vol.18, issue.26, pp.253-289, 2014.

J. Da-fonseca, M. Grasselli, and C. Tebaldi, Option Pricing When Correlations are Stochastic: An Analytical Framework, SSRN Electronic Journal, vol.10, issue.26, pp.151-180, 2008.
DOI : 10.2139/ssrn.982183

L. Dieci and T. Eirola, Positive definiteness in the numerical solution of Riccati differential equations, Numerische Mathematik, vol.67, issue.3, pp.303-313, 1994.
DOI : 10.1007/s002110050030

C. Donati-martin, Y. Doumerc, H. Matsumoto, and M. Yor, Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws, Publications of the Research Institute for Mathematical Sciences, vol.40, issue.4, pp.1385-1412, 2004.
DOI : 10.2977/prims/1145475450

V. Genon-catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré Probab. Statist, vol.29, issue.1, pp.119-151, 1993.

A. Gnoatto, THE WISHART SHORT RATE MODEL, International Journal of Theoretical and Applied Finance, vol.15, issue.08, pp.1250056-2012
DOI : 10.1142/S0219024912500562

A. Gnoatto and M. Grasselli, The Explicit Laplace Transform for the Wishart Process, Journal of Applied Probability, vol.18, issue.03, pp.640-656, 2014.
DOI : 10.1007/BF00532802

E. Gobet, Weak approximation of killed diffusion using Euler schemes. Stochastic Process, Appl, vol.87, issue.37, pp.167-197, 2000.

E. Gobet and S. Menozzi, Stopped diffusion processes: boundary corrections and overshoot. Stochastic Process, Appl, vol.120, issue.37, pp.130-162, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00157975

C. Gourieroux and R. Sufana, Derivative Pricing With Wishart Multivariate Stochastic Volatility, Journal of Business & Economic Statistics, vol.28, issue.3, pp.438-451, 2010.
DOI : 10.1198/jbes.2009.08105

C. Gourieroux and R. Sufana, Discrete time Wishart term structure models, Journal of Economic Dynamics and Control, vol.35, issue.6, pp.815-824, 2011.
DOI : 10.1016/j.jedc.2011.01.007

J. Guyon, Euler scheme and tempered distributions. Stochastic Process, Appl, vol.116, issue.37, pp.877-904, 2006.

S. Heston, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, vol.6, issue.2, pp.327-343, 1993.
DOI : 10.1093/rfs/6.2.327

J. Jacod, T. G. Kurtz, S. Méléard, and P. Protter, The approximate Euler method for L??vy driven stochastic differential equations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.41, issue.3, pp.523-558, 2005.
DOI : 10.1016/j.anihpb.2004.01.007

P. Jeganathan, Some Aspects of Asymptotic Theory with Applications to Time Series Models, Econometric Theory, vol.1, issue.05, pp.818-887, 1993.
DOI : 10.1214/aos/1176350055

B. Jourdain and A. Kohatsu-higa, A Review of Recent Results on Approximation of Solutions of Stochastic Differential Equations, volume 65 of Progress in Probability, pp.16-84, 2011.

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, vol.23, issue.37, pp.14-84, 1992.

A. Kohatsu-higa and P. Tankov, Jump-adapted discretization schemes for Lévy-driven SDEs. Stochastic Process, Appl, vol.120, issue.37, pp.2258-2285, 2010.

V. Konakov and S. Menozzi, Weak Error for Stable Driven Stochastic Differential Equations: Expansion??of??the??Densities, Journal of Theoretical Probability, vol.8, issue.4, pp.454-478, 2011.
DOI : 10.1007/s10959-010-0291-x

V. Konakov, S. Menozzi, and S. Molchanov, Explicit parametrix and local limit theorems for some degenerate diffusion processes, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.46, issue.4, pp.908-923, 2010.
DOI : 10.1214/09-AIHP207

URL : https://hal.archives-ouvertes.fr/hal-00256588

S. Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus, Adv. Math. Econ, vol.6, issue.37, pp.69-83, 2004.
DOI : 10.1007/978-4-431-68450-3_4

S. Kusuoka, Gaussian K-scheme: justification for KLNV method, Advances in mathematical economics, pp.71-120, 1920.
DOI : 10.1007/978-4-431-54324-4_3

Y. A. Kutoyants, Statistical inference for ergodic diffusion processes. Springer Series in Statistics, p.102, 2004.

L. and L. Cam, Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses, Univ. california Publ. Statist, vol.3, pp.37-98, 1960.

L. , L. Cam, and G. L. Yang, Asymptotics in statistics Springer Series in Statistics Some basic concepts, p.112, 2000.

M. Ledoux, I. Nourdin, and G. Peccati, Stein's method, logarithmic Sobolev and transport inequalities. ArXiv e-prints, p.38, 2014.

J. J. Levin, On the matrix Riccati equation, Proc. Amer, pp.519-524, 1959.
DOI : 10.1090/S0002-9939-1959-0108628-X

E. Löcherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stochastic Process, Appl, vol.118, issue.8, pp.1301-1321, 2008.

H. Luschgy, Local asymptotic mixed normality for semimartingale experiments. Probab. Theory Related Fields, pp.151-176, 1992.

T. Lyons and N. Victoir, Cubature on Wiener space, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.460, issue.2041, pp.169-198, 2004.
DOI : 10.1098/rspa.2003.1239

E. Mayerhofer, Wishart processes and Wishart Distributions: An affine processes point of view. ArXiv e-prints, p.127, 1999.

G. Milstein, Weak approximation of solutions of systems of stochastic differential equations, Numerical Integration of Stochastic Differential Equations, volume 313 of Mathematics and Its Applications, pp.101-134, 1995.
DOI : 10.1007/978-94-015-8455-5_4

B. Mond and J. E. Pe?ari?, On matrix convexity of the Moore-Penrose inverse, International Journal of Mathematics and Mathematical Sciences, vol.19, issue.4, pp.707-710, 1996.
DOI : 10.1155/S0161171296000968

S. Ninomiya and N. Victoir, Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing, Applied Mathematical Finance, vol.29, issue.2, pp.107-121, 2008.
DOI : 10.1016/0020-7225(65)90045-5

I. Nourdin, G. Peccati, and Y. Swan, Entropy and the fourth moment phenomenon, Journal of Functional Analysis, vol.266, issue.5, pp.3170-3207, 2014.
DOI : 10.1016/j.jfa.2013.09.017

URL : https://hal.archives-ouvertes.fr/hal-00807589

I. Nourdin and G. Poly, An invariance principle under the total variation distance. 15 pages, p.49, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873311

E. Nummelin, A splitting technique for Harris recurrent Markov chains, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.29, issue.2, pp.309-318, 1978.
DOI : 10.1007/BF00534764

G. Pagès, Sur quelques algorithmes r??cursifs pour les probabilit??s num??riques, ESAIM: Probability and Statistics, vol.5, issue.101, pp.141-170, 2001.
DOI : 10.1051/ps:2001106

Y. Prokhorov, A local theorem for densities. Doklady Akad, Nauk SSSR (N.S) in Russian, vol.83, issue.20, pp.797-800, 1952.

P. Protter and D. Talay, The Euler scheme for L??vy driven stochastic differential equations, The Annals of Probability, vol.25, issue.1, pp.393-423, 1997.
DOI : 10.1214/aop/1024404293

C. Mathematical and L. , Itô calculus, Reprint of the second, p.123, 1994.

T. H. Rydberg, A note on the existence of unique equivalent martingale measures in a Markovian setting, Finance and Stochastics, vol.1, issue.3, pp.251-257, 1997.
DOI : 10.1007/s007800050024

D. W. Stroock, Probability Theory, an Analytic View, 1993.

D. Talay, Simulation of stochastic differential systems, Probabilistic Methods in Applied Physics, pp.54-96, 1995.
DOI : 10.1007/3-540-60214-3_51

URL : https://hal.archives-ouvertes.fr/inria-00075246

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.20, issue.4, pp.483-509, 1990.
DOI : 10.1080/07362999008809220

URL : https://hal.archives-ouvertes.fr/inria-00075490

A. Y. Za?-itsev, Approximation of convolutions of probability distributions by infinitely divisible laws under weakened moment constraints, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) Raspred, vol.194, issue.12, pp.79-90, 1992.