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Resune: Des sysemesa commande tactile ontees introduits dans le marcte de
masse avec l'advent des tablettes et des smartphones. L'interaction avec de tels
dispositifs a ouvert tout un ensemble de nouvelles possibilies de cevelopper des
logiciels et des applications ceatives. Il semble raisonnable d'en supposer de méme
pour les gestes de main, mais les contraintes imposes par la recessie de traiter des
donrees en temps eel sont beaucoup plus fortes. Cette these a pour but de mettre
au point un syseme de reconnaissance de gestes pour l'interaction homme-machine
en s'appuyant sur des capteurs du type 'time-of- ight' (ToF). Cette approche a
I'avantage d'étre applicable dans n'importe quel contexte, independamment des
conditions declairage ou du soleil (qui pose de graves probemes aux capteur du
genre Kinect ). En plus, des capteurs ToF deviennent de plus en plus petits
et s'approchent egalement a des capteurs normaux en termes de coO0t. An d
combattre le bruit assoce avec des capteurs ToF (qui peut &tre consicerable), une
combinaison de techniques e caces aet eveloppee dans cette these et implan
dans un syseme de cemonstration qui est capable de reconnatre les gestes et gui
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Le syseme ceveloppe dans cette these tourne en temps eel dans des conditions
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pecision jusqua 97% aet obtenue pour 4 gestes dynamiques et 20 gestes statiques
en provenance de 20 personnes dierentes.
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Abstract: Touch-controlled systems have been introduced to our everyday
lives with the launch of smartphones and tablet PCs on the mass-market. The
seamless and intuitive way of interacting with these devices opened up a whole new
range of possibilities for the development of software and creative applications. |It
seems reasonable to assume the same for in-air gestures, however the constraints
posed by developing interfaces and reacting to human input in real-time in 3
are a dierent story. This thesis is devoted to developing an in-air hand gestur
recognition system for Human-Machine Interaction based on data obtained from
time-of- ight camera. This has the advantage of being able to implement the syster
in any scenario, be it in- or outdoors since comparable approaches usually su er frg
di cult illumination conditions. Moreover, these cameras are steadily becoming
smaller in dimension and comparable to o -the-shelf sensors with respect to their
price. In order to deal with potentially high noise coming from these devices, high
data dimensionality as well as the intrinsic complexity of in-air gesture recognition, a
combination of e cient feature computation methods and problem-adapted Machine
Learning algorithms has been developed in this thesis and implemented in a real-time
demonstration system. In order to not lose sight of one of the most important factors,
namely the usability of the system, this works aims to evaluate the functionality of
a hand gesture recognition system within a car environment by user studies.
The system developed in this thesis performs in real-time in an in-vehicle scenario
under di cult, changing illumination by utilizing data coming from a singe depth
camera. It achieves recognition rates of up to 97% for static and dynamic hand
gestures on a complex gesture set of ten static and four dynamic hand poses tested
on 20 di erent persons.
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Introduction

This work is devoted to improve on the task of human hand gesture recognitibn
(HGR), i.e. interpreting the 'meaning’ of a motion performed by humans with their
hand. It is a mainly unsolved problem insofar as many approaches are limited by
either the range of applicability, the number of interpretable hand gestures or simply
a cost-e cient setup itself. Within the scope of this thesis, a contactless camera-based
approach is presented showing the advantages of employing Machine Learning (ML)
algorithms for this task, in order to be able to e ectively integrate an HGR system into
an automotive setting with respect to the relevant Human-Machine Interaction (HMI)
guestions. An HGR system would provide a complementary means of interaction to
already present technologies in the car, assisting the driver in various tasks, optimally
reducing the cognitive load and decreasing driver distraction.

One crucial factor, when developing such an application, is the desire to present
a non-intrusive method, i.e. one that does not force the user to wear additional
hardware as data gloves or even hold a device such as an accelerometer as, amongst
many other reasons, the former would in uence the movement range and the latter
would not allow for full freedom of expression for the user's hand. This mainly reduces
the possibilities to di erent sensor technologies, raising various problems as well as
o ering a lot of advantages. Furthermore, it is desirable to have a hand gesture
recognition system detached from the formulation of a complex hand model, hence
the underlying work presents a data-driven approach allowing to recognize human
hand gestures from their appearance. The system developed in this work aims at
detecting hand gestures in an in-vehicle scenario as depicted in Figure 1. A time-of-
ight (ToF) camera is employed, recording a volume of interest (VOI) in the nearby
user environment. Depth cameras in general, and ToF cameras in particular, allow for
easy depth segmentation through simple thresholding. Thus, once the user enters the
sensitive VOI, the system is presented a depth image, also termed point cloud, of the
hand structure, containing the relevant x-y-z information. Since it cannot be assured
that unnecessary information is contained in this point cloud, mostly irrelevant arm
parts, a cropping module analyzes the principle components and cuts the point cloud
up to the wrist.

ToF cameras have three main advantages: They are reasonably small, retrieve data
at high frame rates and are able to work under challenging illumination in uences.

Lwithin the scope of this thesis, the term (hand) gesturesrefers to gestures performed in three-
dimensional space to avoid confusion with the generally known term of (touch) gestures. Other
commonly used terms include in-air, mid-air or freehand gestures.
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Figure 1: The schematic setup of the HGR system developed in this thesis. The
volume of interest (marked red) outlines the region sensitive to user input (1). Data
recorded in this area is presented as a depth image (2) containing x-y-z information
(here the depth is color-coded, green being more distant to the point of view). This
data is cropped to contain only the relevant information (3) by principal component
analysis (PCA). Extracting features from the data is realized by creating descriptor,
here in the form of a histogram (4). Classi cation is implemented by training and
utilizing a multilayer perceptron (5), its output determines the detected class (6).

However, the signal to noise ratio for depth measurements coming from these cameras
depends, amongst others, on the color of the target object, therefore on the amount of



light re ected (the re ection coe cient of the medium). To make up for potentially
high noise, a robust feature extraction process is developed. These features, termed
descriptors, comprise the geometry of an object, reducing the dimensionality of the
data while being robust to interferences and remaining computable in real-time. These
descriptors form the input for the training and classi cation steps of the system. The
recognition part is handled by neural networks (NNs), more speci cally by multilayer
perceptrons (MLPs), with sophisticated Machine Learning algorithms at its core,
allowing to discriminate between a variety of di erent hand gestures. MLPs facilitate

e cient, robust and fast ML techniques and are therefore the means of choice out
of the many available and established classi ers. They moreover comprise a set of
distinct features especially suitable for the task of multiclass classi cation and will
be motivated to that e ect in detail later on.

This work can be placed at an intersection of the research elds of Computer
Vision, Machine Learning and Human-Machine Interaction as the goal is to have real-
time applicable software which is easily transferable into di erent scenarios, remaining
robust to various kinds of interferences. Hence, the system was embedded into the
automotive environment, being an HMI context where software tools have to meet
demanding criteria in order to demonstrate the aforementioned goals.

This thesis is divided into two parts: Part | presents an introduction into the
most important topics relevant to the three aforementioned research elds. Building
on these prerequisites, Part Il describes how each of the set goals was achieved,
putting each of the chosen means into the overall context.

The following chapter motivates the chosen 3D sensor technology, followed by a
short introduction to the topic of gestures. Afterwards, the requirements of creating
such a system are presented from the viewpoint of HMI in Section 1.3, followed by a
more speci ¢ description within the automotive framework. Then, a broad overview
of the related work along with its applications puts the underlying contribution into
context of the vast amount of related work dedicated to this topic so far, presenting the
pitfalls as well as the possibilities of the chosen approach. In order to be able to make
sense from 3D data, Section 2 explains the background of the 3D algorithms employed
in this thesis along with the advantages as well as the challenges. Subsequently, an
introduction to the topic of Machine Learning in Section 3, with a focus on multiclass
classi cation, motivates the chosen algorithms for the recognition of hand gestures.
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Chapter 1

Problem description

Dealing with the task of hand gesture recognition entails a number of di culties. From
the technological perspective, data retrieved from any type of sensor is susceptible to
miscellaneous error sources, e.g. from illumination interferences, sensor resolution or
stemming from the nature of the topic itself. From the user's perspective, all kinds
of expectations have to be met, mostly at the interface between human and machine,
in order to develop a well-functioning software. This section aims at addressing these
di culties, explaining the various available approaches and alternatives as well as
motivating the means of choice, beginning at the opted sensor technology.

1.1 3D sensors

The task of hand gesture recognition creates a number of challenges, some of which
cannot be dealt with by the approaches utilizing RGB cameras. 3D depth sensor
technology is the means of choice for a number of reasons. Depth data coming from
these sensors evidently has the advantage of adding another dimension, opposed to
optical approaches. Relying solely on RGB data makes it di cult to e.g. distinguish
between multiple adjacent blobs of skin-colored regions belonging to di erent parts of
the body, di erent hands or even di erent persons overall. Such tasks become easier
to handle with the help of 3D sensors through simple depth segmentation.

It is moreover possible to capture ne-grained structures of the surrounding en-
vironment, or even the hand itself, by using depth sensors, information which is not
obtainable from optical approaches or which can sometimes only be extracted via
complicated algorithms, resulting in increased computation time. Last but not least,
depending on the sensor technology utilized, 3D depth cameras allow for setting up
frameworks capable of functioning under di cult lighting conditions, as shall be ex-
plained throughout this chapter. A distinction of sensor technology is sometimes

5



made between active and passive sensor technologies, the former being called active
due to the fact that a speci c signal is actively emitted into the scene and its travel
time is measured from the re ected objects in the scene. Passive sensors do not emit
a signal of their own but rather gather any kind of signal re ected or emitted from
objects in the surrounding environment.

This section presents the most important and commonly employed 3D sensing
technology for works in research and industrial applications along with the respec-
tive advantages and disadvantages and contrasts it with the already mentioned ToF
technology.

1.1.1 Depth by triangulation

Depth measurements can be retrieved by methods callédtive Triangulation and
Passive Triangulation Depth by Passive Triangulationis an optical method, simul-
taneously utilizing two cameras aligned on a common baseline. Depending on the
distance to be observed, this baseline is extended to be able to measure depth in
further distances. To determine depth, thecorrespondence problerhas to be solved -
i.e. matching a pixel in one image to a pixel in another image. This method is highly
susceptible to noise such as intensity and color variation in an image. Moreover it
becomes increasingly complex when trying to determine corresponding pixels from
homogeneous regions. Therefore, it is computationally intensive insofar as reliable
features have to be calculated rst while it is unclear, how con dent these features
can be, depending on the problem. A benet of this approach is that any low-cost
camera can easily be utilized.

Depth by Active Triangulation combines only one camera with an active struc-
tured light emitter, projecting a single line or a complete pattern set onto the scene.
There are many disadvantages here such as the need of a strong power source or low
frame rates due to extra scanning iterations of the pattern, however the biggest prob-
lem - standing in contrast to the ToF cameras - is that this technology requires very
controlled lighting environment making it unsuitable for the underlying purposes (cf.
Foix et al. [26]).

1.1.2 Depth measurement by Kinect

The Kinect sensor released by Microsoft in November 2010 has been the basis for
many applications and research interests in the eld of Computer Vision and HMI.
One of the bene ts is that it is able to deliver depth and RGB data simultaneously



allowing it to tackle di cult problems such as segmentation and occlusion of body
parts in object recognition tasks more easily. It has proven to be applicable to nu-
merous other tasks as shown later on in Section 1.4.

The system, as described by the inventors in Freedman et al. [28], consists of an in-
frared laser emitter, an infrared camera and an RGB camera. Depth data is now cal-
culated by a so-called triangulation process. A single laser beam emits near-infrared
(NIR) light which is subsequently split into multiple beams creating aspeckle pattern
(see Figure 1.1). This pattern is projected onto the scene and collected by the Kinect's
infrared camera which can then be correlated against a reference pattern. The refer-
ence pattern is obtained by capturing a plane at a known distance from the sensor,
and is stored in the memory of the sensor. Any 'mispositioning’ of a speckle results
in a shift along the baseline of the sensor and thus depth can be easily measured by
the disparity of the collected pattern towards the reference pattern.

Figure 1.1: The Kinect reference pattern made visible. Any object interfering with
the pattern would result in distorted points, making the shift measurable.

The Kinect operates at frequencies of up to 30Hz depending on the resolution,
has an operative range of 1.2m-3.5m and a resolution of 640x480 pixels, thus the
data collected at a single time frame contains a coloured point cloud of over 300,000
points. The main disadvantage is its susceptibility towards other infrared light sources
making it unsuitable for outdoor scenarios. In comparison to ToF cameras its frame
rate is low, however it is also low-cost and provides additional RGB data of the scene.



1.1.3 ToF sensors

Name Resolution | Framerate | FoV Size [llumination
Camboard Nano | 160 x 120| <90 fps | 90 x 68| 37x30x25 850nm
Camcube 200 x 200| <40 fps | 40 x 40 - 870nm
Argos 3D - P100 | 160 x 120 | <160 fps 90 75x56x27 850nm
SwissRanger 4000 176 x 144 | 10-30fps | 69x55 | 65x65x76 850nm

Table 1.1: List of the most common ToF sensors employed for research and industrial
applications.

ToF-Sensors have emerged in the recent past as an attractive alternative for re-
trieving 3D information about the nearby environment. They appear with di erent
speci cations (cf. Table 1.1) with the main advantages being high frame rates, ro-
bustness versus other light sources and comparatively low price. The CMOS chips
coming to use in these sensor allow for calculation of depth and greyscale information
simultaneously.

A ToF sensor typically consists of an illumination unit, a lens, an image sensor,
driver electronics and an interface. Usually an LED or a laser diode is used to
illuminate the scene in near-infrared light operating at a wavelength of 850nm -
just outside the visible electromagnetic spectrum (cf. Figure 1.2) - as on the one
hand speed is a crucial factor for the calculation of depth and on the other hand
the surrounding environment should not be disturbed. The lens is responsible for
collecting the re ected light, typically paired with a chip for suppression of background
illumination (SBI). The sensor is responsible for measuring the time the light traveled
forth and back and calculates the depth per pixel. The setup is complicated thus a
pixel sometimes reaches 108 2 in size (pixels on modern cameras in mobile phones
can be about 63n 2 in size). The driver electronics operates at a precision within the
scope of picoseconds in order to be able to measure light pulses for the desired frame
rates. The calculation of distances is also usually realized directly on the sensor, data
is transmitted via USB or Ethernet.

1.1.3.1 ToF sensors with lightpulse emission

In order to measure the distance to an object via pulse modulation the surrounding

scene is illuminated by the light source and the amount of re ected light is collected

for every pixel. This happens simultaneously and is realized by photo-detectors ope-
rating in the scope of picoseconds. During a xed time window (t) the amount of

re ected light (cf. Figure 1.3) is sampled by the two out-of-phase window€; and
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Figure 1.2: The whole electromagnetic spectrum. The visible amount of light ranges
from 390nm to 700nm. ToF cameras operate just out of this range at near in-
frared(NIR) - at around 850nm. Image: Wikipedia.

C,. This results in two electric charges measured; and Q, respectively, and hence
the distance d can be calculated via

g= 1 Q:

= §C tm (1.1)

Here, c is the speed of light.

The integration time of a ToF camera is the duration of data acquisition - the time
from light emission until measuring the re ection of the emission. Longer integrations
times allow for measurement of objects in further distance while shorter integration
times are more suitable for near-range interaction. Setting the integration time too

high can result in oversaturated pixels for objects close by.



Figure 1.3: Light sampling with pulse modulation.

1.1.3.2 ToF sensors with wavelength modulation

ToF sensors based on wavelength modulation derive the depth data of the surrounding
by continuous wave intensity modulation (CWIM) [55]. A modulated NIR signab is
emitted by the LED of the sensor, re ected by the scene and collected by the sensor's
lens. The photons collected by the lens are transformed into electrons pixelwise by a
CMOS chip integrated into the collector for each pixel. The o set between emitted
and collected signal is calculated as the di erence in capacitance and thus makes the
exact distance to each object measurable. This calculation is realized directly on the
chip, also referred to as smart pixels, and results in a high frame rate of the sensor.

The phase-shift algorithmcalculates the autocorrelation function (ACF) between
the emitted optical signal and the electrical reference signal. To this end, four samples
my; my; ms; my are taken at equidistant points in which allow for the calculation of
the phase shift' by

ms my
My My

' =arctan (1.2)

the o set B by

Mg+ Mg+ Mo+ Mg

B =
4

(1.3)

and the mean amplitudeA by
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(M3 mg)2+(my my)? (1.4)

Figure 1.4: Measurement of phase o set at four equally distant points in time.

This process is also known afour-bucket-sampling(see Figure 1.4). It is a de-
modulation of the phase and permits to calculate the depth

D=L (1.5)

The mean amplitude A determines the strength of the signal. The modulation
frequencyf, of the light emitted by the LED de nes the so-calledambiguity-free
distance rangeof the sensor

L = (1.6)

c
2
At a modulation frequency off ., = 20MHz, for example, the wavelength o4
is 15 meters, and therefore the maximum distance of an object is 7.5 meters, as the

signal has to travel forth and back.
Background light is suppressed via an SBI chip responsible for deducing the uncor-

related from the correlated amount of light via the ACF. This allows for operating a
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ToF sensor with an SBI at full sun exposure of 1%0x and is one of the main advan-
tages of the sensor as interesting applications become realizable in outdoor scenarios
under real-time conditions. Di culties of this technology are possible ambiguities in
measurement of the collected signal as the measured distance can refer to a multiple
of the phase shift. Hence ambiguities occur every s the phase wraps around. The
maximum distance measurable unambiguously therefore is de ned by
c
Omax = of o (1.7)

As this work aims for an application recording the nearby environment, ambi-
guities will not occur in the current setting. Reducing the modulation frequency
allows for increased distances to be measured, simultaneously reducing precision. An
alternative is realizing multiple modulation frequencies and disambiguating possible
ambiguities by comparing both frequencies for overlapping phases - equaling the true
distance. The benet of illuminating the scene as a whole comes at the cost of the
optical output - powerful LEDs are necessary to achieve satisfactory results. Objects
in further distance become measurable with higher integration times (time for illu-
mination, light collection and distance calculation) while smaller integration times
reduce the signal/noise ratio.

1.1.4 Conclusion

ToF-based measurement comes with more bene ts than drawbacks in the context
of HMI applications. When looking at the aim of hand gesture recognition devices,
they typically acquire data in the nearby environment. Being able to capture nuances
such as nger movements or slight hand tilts would require high resolution cameras for
distant measurements. Hence, a problem as the turnaround distance (the maximum
measurement distance) becomes obsolete for a task such as HGR. This will become
more evident later on, when looking at the multitude of scenarios presented in Section
1.4, all of which placing HGR in the sensor-near environment - medical apps, VR/AR-
apps or infotainment systems as in this work. The sensor chosen for the underlying
thesis is the Camboard Nano (cf. Table 1.1), operating at 90 fps at a resolution of
160 120px and based on continuous wave modulation.

The light emitted by the IR-chip is modulated with a frequency of 30Hz, posing
the problem of interferences when operating with multiple sensors at the same time,
however it is explained context-dependently later on how this problem can be dealt
with. In contrast, the great advantage of ToF technology is the ability to retrieve
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Figure 1.5: 3D data retrieved from a ToF camera. Top row: Front and side view
of the same point cloud. Bottom row: Front and side view of the same point cloud
without PCA cropping. The number of outliers increases towards the sides of the
recorded object due to the major amount of light not being directly re ected to the
camera.

depth data in outdoor scenarios operating at high frequencies. The inaccuracy of
the depth measurements can sometimes be di cult for recognizing details, especially
when trying to describe the ne-grained structures of the shapes overall.

Figure 1.5 displays the depth images of a hand for two separate shots and from
two di erent angles respectively, recorded by a ToF camera. It is obvious how this
technology can be utilized to catch ne-grained details while also revealing its sus-
ceptibility to noise, especially towards the border parts of the structure. This noise
can be accounted to the insu cient and varying amount of light directly re ected by
the object towards the infrared sensor, resulting in measurement uctuations.

In order to overcome such hurdles, sophisticated 3D point cloud descriptors will be
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introduced and described later on in Section 2. The following sections are a general
introduction to the topic of hands with a transition to the research eld of HMI.

1.2 On the nature of hands

A number of theories have been developed to explain the evolutionary di erence of
the human and the animal world. Putting the emphasis on one or only some of them
would probably not do them justice, also considering the fact that many coherences
remain unclear, one of them being, whether the development of the hand has triggered
the increase in brain size or vice versa. Trying to link the ideas on the origin of
human intelligence, Frank Wilson [128] introduces the hand-thought-language nexus,
basing it on the pillars of the two problem-solving strategies of tool manufacturing
and communication via language. While tools are also used by a number of animals
it remains undisputed that the variety and complexity of those created by man is
unreached, besides the fact that we use them in order to create even more (complex)
tools. All this would not have been possible if it wasn't for the complexity of the
hand's bone arrangement along with its 27 degrees of freedom (DoF), this being one
of the reasons, which makes the study of the underlying topic so interesting.

Figure 1.6: The hand with its complex bone structure (left, Source: Blausen.com
sta . "Blausen gallery 2014".) and its resulting 27 degrees of freedom (right).

So where exactly does this complexity come from? Figure 1.6 displays the bone
structure of the hand (left) and the resulting DoF (right). Being able to move some
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parts of the ngers in one, others however in 2 dimensions along with the 6 DoF for
the wrist results in the overall 27 dimensions.

Creating a tool to be able to make machines interpret and understand the com-
plexity of the hand is a challenging and unsolved task. There is a lot of research
directed toward this topic as the applications, which will be laid out in detail later
on in this work, are countless. One could imagine replicas of human arms to be hel-
ping disabled people, robots mimicking human behaviour to achieve complex tasks
or systems controllable by the varieties of hand gestures as already happening in 2D
on smartphones and tablets, or envisioned in movies and partly realized by virtual
reality environments.

1.2.1 Gesture taxonomy

On a general level, hand gestures are classi ed into two categories - static and dynamic
hand gestures. The former are considered as being non-changing, i.e. remaining static
in shape and position over several points in time (cf. Kanniche [41]). The latter by
contrast are considered as changing in position and/or in shape. For example, pointing
with a nger towards a specic item would be seen as a static gesture (possibly
connoted to selecting something) while moving the hand and leaving the ngers in
position would be a dynamic gesture and could resemble altering the position of an
item. Static gestures are often referred to as poses, though in literature both terms
are often used interchangeably.
Problems can arise, stemming from di erent cultural backgrounds, as a hand pose
can be referring to a harmless indicator in one part of the world while being seen as
o ensive in some other part. This was, in fact, the case for the 'three gesture' (cf.
Figure 4.2) as, in a study conducted for this thesis, one participant was reluctant
to demonstrate this pose due to ethnocultural reasons. Neuliep [69] explains how
seemingly meaningless gestures are misconceived in di erent parts of the world.

One of the reasons for setting up the database, as described later on, was to have
a set of complicated hand poses which are meaningful on the one hand and di cult to
disambiguate (for vision-based approaches) on the other hand. Some of the challenges
one is faced with when implementing a gesture alphabet is e.g. the fact that counting
from 1-5, as included in our database, is performed di erently on various continents
hence it can be concluded that a gesture set, as chosen for this thesis, might be
di cult to be motivated. Nevertheless, because of the aforementioned reasons and
furthermore with regard to the intention of developing a software tool for daily use,
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the database comprises the displayed gestures which, not least, allow for the extension
to dynamic gestures as described towards the end of this thesis.

Figure 1.7: The gesture taxonomy according to Kanniche [41]

The whole taxonomy of dynamic hand gestures, as depicted in Figure 1.7, goes
beyond the scope of this thesis, however, within this frame, this work aims for de-
tecting static and dynamic gestures and within the dynamic category, for detecting
conscious gestures, i.e. the ones being performed intentionally.

1.2.2 Hand gesture recognition approaches

Several surveys have been conducted and give a concise overview over the vast body
of work done so far in the eld of hand gesture recognition [17], [20], [65], [83], [92],
[117], [131], [64], with dierent foci applied, e.g. to underlying techniques, HMI-
related questions, algorithmic approaches or current challenges in general.
Regarding the algorithmic approach there are two di erent kinds of techniques, one
being the model-based approach in which a hand model is created to resemble the 27
DoF of the hand and the other being thedata-driven or appearance-basedpproach
aiming at interpreting e.g. the colors or the silhouette of a certain region in the
data. Naturally, both methods can be combined to improve recognition results - with
one obvious drawback being the impeded computation time - however the underlying
thesis follows the purely data-driven approach as one of the main goals is to demon-
strate that hand gesture recognition can be performed in real-time without the need
to formalize a complex model.

With respect to the interpretation task, one usually follows the three-step approach
of detecting a region of interest, tracking it and implementing a recognition algorithm

at the end to connote some sort of meaning (hand pose/gesture) to the data. Each of
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these individual steps can be achieved by numerous techniques (cf. Rautaray [92] for
an overview), however the underlying thesis shows that more than satisfying results
can be achieved by establishing a large database and using one classi er with sophis-
ticated fusion techniques, coupled with a simple de nition of dynamic hand gestures,
making the need for Hidden Markov Models (HMM) or Finite-State Machines (FSM),
and even the need for computationally expensive tracking algorithms, obsolete.

1.3 Human-Machine Interaction

One de nition of HMI refers to the research and development of interfaces focusing
on the behaviour of humans during an interaction process as well as the design of
computer technology. The termusability! frequently co-occurs when speaking of
HMI and it denotes, on a general level, a measurement of how easy something can be
used or be learned to use. HMI aims at improving the usability of interfaces to be
developed and therefore, within the context of this thesis, the goal is to improve the
usability of an interface controlled by human hand gestures. More speci cally, the
aim is provide an interface which is intuitivé to use, provides a low hurdle of entry
and optimally lowers the cognitive load for the subject.

Computers have increased in computation power, and with simultaneous decrease in
cost and size, new means of interaction have been developed. As stated by Wigdor et
al. [127] these evolution steps have taken place more or less discontinuously, rather in
phases. The outcomes of these phases still persist today as e.g. the command typing
via terminal, followed by the graphical user interface (GUI), are probably still the
most widely used interfaces in most households and o ces around the world. During
these phases naturally some interfaces proved to be more predominant over others,
which is why they prevailed, especially for certain tasks. However, as the authors
further claim, in many situations there exist hybrids which can be seen by a more
in-depth analysis. For instance, the console-like element is available in many di erent
OS as a means to quickly search for items stored on some hard drive because this
simply has shown to be the easiest and most e cient way to solve the given task
(opposed to cumbersome inspecting the contents of each folder) for trained users.
Another example of console-like elements is the possibility to enter complex formulas.

11ISO de nition of usability: The e ectiveness, e ciency and satisfaction with which speci ed
users achieve speci ed goals in particular environments.

2Intuitiveness is a fuzzy term with little methodology to de ne it. However, gestures are consid-
ered as an intuitive means of control, as a study conducted for this thesis demonstrates.
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It is di cult to imagine that a GUI controlled by a mouse could prove superior for
this task. These examples demonstrate what the phases referred to by the authors
have evolved into, namely some form of interface merged together, stemming from
pieces, each being optimal for its speci c, designated task.

With this evolution the way we learn to interact with machines has evolved as well,
as the number of tasks human beings are capable to perform with the computer evolves
with it. One of the questions researched by the eld of HMI is whether this evolution
was driven by the fact that many more people were able to use computers because it
became easier to interact with them or vice versa. This question is beyond the scope
of this thesis, however there is a certain factor immanent to the nature of gestures,
namely the degree of naturalness associated to the medium of interaction, which
this work also intends to shed some light on. Again, whether this naturalness was
driven by some reason or the other way around is not the focus of this contribution.
Nevertheless, the author believes that a certain degree of naturalness is contained
with gestures as a means of interacting with machines. Thus it is of imperial interest
- and as a natural result of the research conducted here in rst place - to have a look
at to what extent gestures indeed ful | this presupposition, since this may be one
reason for why interfaces controlled by gestures carry this notion naturalnesswith
respect to the interaction phase.

As Wigdor et al. claim, one possible step in the evolution is the development
of natural user interfaces (NUI). NUIs seem to be in a similar position to the GUIs
developed in the 1980s with respect to reducing the barriers to computing even further
and simultaneously increasing the power of the user. In order to not try and predict
the future (too much) they further claim that NUIs are 'here to stay' either as a
dominating trend or by nding themselves a niche. In this work, hand gestures are
considered as one possibility of creating such a natural user interface. Hand gestures
are, by no means, an exhaustive way of interacting with machines as the limits, within
which one has to con ne oneself to, become evident very quickly. However, this also
applies to mouse and keyboard, possibly the most common means of interaction with
computers, but is clearly observable that the two degrees of freedom cannot emulate
the three dimensions of space.

The advantages of an interaction via hand gestures are obvious as well. Be it
in situations, where access to a regular mouse and keyboard interface is not feasible
- as e.g. in an operating room in a hospital - or in a possibly less danger-critical
scenario as interacting with an infotainment system within a car, where the driver is
assisted in controlling various menu points while retaining most her/his attention on
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the tra c. This is the scenario of choice in this thesis for showing the possibilities as
well as the limits hand gesture interaction can provide.

The following section places hand gestures in the context of in-vehicle HMI sce-
narios along with the challenges and possibilities, after which the related work section
provides an extensive overview of hand gesture interaction with a focus on HMI con-
cepts, technologies applied and the algorithmic ideas in the background.

1.3.1 HMI for Advanced Driver Assistance Systems

Over time, the interior of the car has become more and more complex when looking
at the technologies installed to assist the driver in various tasks. The main goal of
these Advanced Driver Assistance Systems (ADAS) is to increase driver safety or
road safety in general as well as the driver's comfort. Examples of well-established
representatives include the Adaptive Cruise Control (ACC) regulating the vehicle
speed with respect to the vehicle running ahead, Lane Departure Warning Systems
responsible for emitting warning signals when the current lane is being left or Collision
Avoidance Systems aiming at reducing the damage in case of an accident. Depending
on the degree of 'intrusiveness' these systems vary in the way they interfere in the
driving process. A hand gesture recognition interface for in-vehicle infotainment
systems would be a non-intrusive variant aiming at reducing the gaze diversion of a
driver, optimally lowering the cognitive load during a driving task.

Some of these technologies are taken for granted and have become indispensable
in the in-vehicle context, however, the goal remains to introduce something of use for
the driver or passenger while, at the same time, not increasing the driver distraction,
but rather decreasing it. Driver distraction and driver safety, some of the major
topics discussed at the Intelligent Vehicles Symposium (IV 2015), and the statistics
presented list the number of fatalities related to texting in ongoing tra c in the US
nearly as high as the number of fatalities due to drinking, moreover studies suggest
that the use of mobile phones during a car drive is a real, albeit tangible, threat [25].
While it cannot be assured that a technological solution for writing a text message
during a drive would on the one hand reduce this number signi cantly nor on the
other hand guarantee that everyone would make use of this technology, it can be
assumed that at least some fatalities could be prevented.

Within this context the eld of HMI also takes into account the user experiencéUX)
a user has with a system which can be, of course, a main selling factor. Perceiving

3ISO de nition of user experience: A person's perceptions and responses that result from the use
or anticipated use of a product, system or service.
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an infotainment system as too complicated to use, too outdated in terms of design or
just overloaded with unnecessary functions, which may be even unintuitive to interact
with, can be a counterargument for buying a car. Usability, as mentioned earlier, the
ease of use and learnability of a man-made system, can be de ned through quality
components (as in Nielsen [70]):

Learnability : How easy is it for users to accomplish basic tasks the rst time
they encounter the design?

E ciency : Once users have learned the design, how quickly can they perform
tasks?

Memorability : When users return to the design after a period of not using it,
how easily can they reestablish pro ciency?

Errors : How many errors do users make, how severe are these errors, and how
easily can they recover from the errors?

Satisfaction : How pleasant is it to use the design?

Moreover he stresses the importance of utility, being the question of whether
something provides the features a user needs. He forms tieefulnessn the context
of HMI as the synergy of usability and utility.

When projecting these ideas onto the contribution of this thesis, namely the de-
velopment of a free hand gesture recognition system of in-vehicle application, the
learnability is a very important factor of the system. Gesture control should be
perceived as easy and intuitive, adding little to optimally no cognitive load to the
driving task. When coupling free hand gestures with e.g. an infotainment system,
basic functions such as channel selection could be mapped to a single, easily learnable
gesture.

Looking at e ciency, hand gestures should provide a faster means of interaction.
There are well-established user interfaces in a car developed over the course of years,
and a new technology introduced should not slow the driver down during the inter-
action process. As for memorability, such a system should not demand the driver to
learn a large gesture alphabet, hence mapping every function in a modern car to a
single gesture is ill-advised. Either the most important functions should be targeted,
with a small gesture alphabet, or the additional e ort to explorethese gestures must
remain minimal.
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Considering errors, the following has to be taken into account: First of all, free
hand gestures theoretically have no perceivable 'context area’ as e.g. touch gestures
performed on a touch display. There is a clear frame within which touch gestures can
start and end - such a frame is di cult to realize mid-air in three dimensions, thus it
is the task of the developer and the designer to make sure the user can interact clearly
with freehand gestures. Moreover, such a frame would make it easier to recognize a
gesture, this counts especially for dynamic gestures. In 3D however, the recognition
algorithms have to take this into account. While the 2D-technology counterpart
on smartphones or tablets has to 'only’ deal with the dierent nger size of each
individual, dynamic hand gestures are more complex: how far is the user away?,
is she/he holding the hand in a certain direction?, are the user's ngers aligned as
assumed?, is the hand size di erent? etc. Sometimes, as will be seen in a user study
conducted for this thesis, the users expect something else e.g. a dierent system
behaviour or reaction, hence this is perceived as an error.

Lastly, satisfaction plays a crucial role for such a system. Luckily, at the time of
development of this thesis, free-hand gestures have just begun to emerge as a mass
media interaction technique thus user satisfaction could be easily achieved, due to
the experience of interaction being perceived as something new, special or sometimes
even calledmagical This was an additional bonus when testing the system with
new subjects. Hand gestures however, have some innate naturalness to them and the
added bene t of not having to touch any buttons directly, or even use a medium such
as a handheld device in between, provides for highly satis ed users, ergo high user
experiencé.

When stating the necessity of (re-)designing the interface in the light of usability,
Nielsen often relies on savings being made in terms of time saved due to e cient work
ow and money saved due to uninterrupted processes being brought to an e cient
end. While this may hold true for HGR systems developed, the main focus here is put
on natural, e cient control of a system leading to reduced distraction of the driver
and therefore reduced gaze diversion.

Young et al. [133] provide an extensive overview, distinguishing between driver
inattention and driver distraction, the latter being one variant of the former. Their
research pays special attention towards wireless communication, at a time when mo-
bile phones were common and smartphones were just emerging on the mass market,
and point to gures estimating a quarter of vehicle crashes in North America related

It has to be noted here that while this may sometimes be considered an advantage, touchless
interaction is missing the haptic feedback, which can be bene cial in certain situations.
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to driver distraction. They further claim that as more wireless communication is
about to enter the vehicle, these gures will even increase strongly. This work in-
tends to improve the interaction with in-car systems via hand gestures, hence it is of
uttermost importance that any new technology entering the vehicle does not further
distract the driver but provides a reduction in terms of distraction and the cognitive
load during a car drive. The author of this thesis believes that a well-integrated sys-
tem can provide these demands as gestures - e.g. learned by a xed alphabet - would
allow the driver to interact with an infotainment system without having to redirect
gaze, simultaneously allowing to keep the eyes on the road.

Regan et al. [94] also raise the concern that driver distraction and driver inattention,
for which there is growing evidence that they are major responsible contributors for
vehicle accidents [44] [77], will increase with the number of introduced technologies
in the car. However, their focus is on building a taxonomy in order to correctly de-
ne the terms driver inattention and driver distraction and put them into a correct
taxonomic relationship to be able to properly assess their roles in car accidents. This
goes way beyond the scope of this work, yet it shall be remarked the authors also
de ne driver distraction as one form of driver inattention, which is the de nition also
adopted in this thesis.

1.4 Related work

The introduction of the Kinect to the consumer market by Microsoft in November
2010 spawned numerous applications and elds of research, including hand gesture
recognition. Being able to fuse information from its depth sensor as well as its RGB
camera allowed for powerful algorithmic design, however it was mainly restricted
to scenarios with controllable lighting environments. A more general overview over
Kinect applications developed so far can be found in [33] [135].

The number of applications derived from hand gesture controlled interfaces is
immense as is the number of approaches taken to solve this task. They dier in
the technological means utilized, the algorithms processing the data, the detection
algorithms adapted and tailored to the task, HMI-related questions or possible appli-
cation scenarios which accordingly impose additional parametric speci cations. The
vast amount work already dedicated to solve this problem can therefore be assigned
to one or more of the listed di erences but as this thesis deals with a vision-based
approach focusing on object recognition in 3D, the related work is assigned to ei-
ther the two- or three-dimensional category (Section 1.4.2 and 1.4.3) or to the hybrid
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Figure 1.8: The Microsoft Kinect Sensor (top). The Leap Motion Controller (bottom
left). The SoftKinetic Cam (bottom right). Source: Wikipedia.

category (Section 1.4.4), fusing both kinds of approaches. Towards the end of the
hybrid section special attention is paid to the Kinect sensor being the driving force
for research conducted in the area of HGR. Some of the work relevant for this thesis
deals with HMI-related questions which is dealt with in Section 1.4.5. For the sake
of completeness, related work utilizing contact-based devices is presented rst.

1.4.1 Contact-based approaches

The technologies behind hand gesture recognition systems can be divided into two
categories: The ones using contact-based devices and vision-based approaches. The
former group covers all systems where the user needs to use some kind of device by
e.g. touching or wearing it, such as a data glove or an accelerometer. Such devices
usually have the prerequisite that the user must be taught in some kind of way to
be able to use it. Furthermore the range of application scenarios is limited as the
hand is somehow occupied - e.g. by holding an accelerometer device - or the wires
potentially impose some kind of limited range. Wireless gloves of course have a time
limit determined by the battery life, moreover they are not always available and not
desirable from a user's perspective.

Liu et al. [60] demonstrate a promising system based only on a single personalized
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hand gesture performed by each individual user with an accelerometer device as they
argue a hand gesture can be de ned via a series of forces. They claim that hand
gestures lack a properly de ned vocabulary as e.g. in speech recognition environ-
ments, which is also partly shown by research conducted for the underlying thesis,
as many users on the hand have a di erent connotation to e.g. counting from one
to ve by gestures (shown by experiments) and furthermore slight variations, which
are unavoidable, result in unforeseeable consequences i.e. misinterpretations. They
apply their work to consumer electronics and mobile devices which makes sense, as
these frequently contain accelerometers nowadays. The research for HGR systems
directed towards mobile devices is restrained mostly for employing the accelerometer
of a mobile phone as in the work of Kallio et al. [42].

Gesture recognition has spawned a plethora of work for virtual (VR) and aug-
mented reality (AR) applications as it seems natural to interact in such an environ-
ment with the own hand, given that the idea is to emulate or 'extend' the real world
experience. Weissmann et al. [125] present one of the rst ideas for collecting user
data with data gloves and interpreting it with neural networks in order to control
a robot hand in a virtual environment. An AR system, also based on markers, is
presented by Rei nger et al. [95] di erentiates between static and dynamic gestures
via distance models and HMMs to manipulate objects. The average task, although
performed by the users with increased discomfort, was nished faster and felt more
intuitive to be completed.

The Nintendo Wii released to the market in 2006 has a control device similar to
a remote control, allowing for tracking the user's movement by an infrared camera
recording the scene and an accelerometer within the device. The idea of employing
Wii-sensor data to de ne user-speci ¢ gestures and interpret them via HMM, has been
presented by Schiemer et al. [110] and applied to build up a multimodal interface for
photo browsing and TV control. The gesture set however as well as the evaluation
are comparatively small.

A further area of research covers the area of sign language recognition (SLR).
Liang et al. [59] propose using a DataGlove for recognizing a vocabulary of 250 signs
from the Taiwanese Sign Language with HMMs. Improved recognition rates were
achieved by Starner et al. [115], as well by using a data glove and HMMs, however
on the American Sign Language (ASL) and with a more in-depth analysis of the
problems as well as the perspectives.
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1.4.2 2D vision-based approaches

2D vision-based approaches usually demand a controlled lighting environment. Oka
et al. [76] developed a desktop system call&hhancedDeskior detecting and track-
ing ngertips via an IR-Camera recording the scene top-down and interpreting the
movement via Hidden Markov Models (HMM). The IR camera is adjusted to the
human's body temperature for segmenting hand pixels from non-hand pixels. They
base their system on the assumption that users tend to use the thumb and index
nger for ne-grained interaction in order to manipulate virtual and real objects at

a working desk. Another desktop application presented by Sato et al. [109] uses the
fused information from multiple color cameras directed at a working desk to present a
GUI manipulation system via hand gestures. Neural networks trained on a database
are used to distinguish a set of six di erent static hand poses. The same system is
set up in front of a large immersive display to demonstrate the application range as
well as its simple extensibility.

A typical generic household scenario, as suggested by Roberts et al. [101], can
comprise of a camera recording part of the room's environment reacting to a set of
user inputs which are interpreted by a processing unit of the whole system controlling
various home appliances. A more concrete proposal by Irie et al. [38] describes an
intelligent room within which the interior is recorded by CCD cameras to detect
gestures as waving or pointing based on color images and skin pixel detection. Their
system controls various home appliances via simple hand and nger gestures, however
frequent misinterpretations still occur, albeit being installed in a place with rather
controllabe lighting. Moreover the authors make no suggestions of how to deal with
typical problems such as multiple users or unwanted user input.

Walter et al. [124] transport the idea of employing hand gestures on public dis-
plays, potentially outdoors, however with a focus on raising the awareness of the users
to a system with the underlying controllable interface. One of the more interesting
ndings of their work, regarding the application side of this thesis, is that once the
awareness of the user is raised, coupled with positive feedback, she/he will tend to
explore the gesture alphabet in a certain direction. Nancel et al. [68] levitate the
power of mid-air hand gestures to the interaction of humans with man-sized walls.
Their work is primarily directed to the question of what kind of key factors have to
be considered for the design of such systems. Although their ndings refer to a di er-
ent scenario, common factors as arm fatigue and a reduced accuracy after elongated
usage can be observed and should be considered when designing a system for hand
gesture interaction.
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The idea of employing hand gestures for computer games goes back into the 90s,
as Freeman et al. [29] present their idea of developing games for an arti cial retina
module and control game avatars with the human hand and body, based on image
moments and orientation histograms obtained from visual input.

A possible scenario for interacting with a virtual environment is presented by
Lyons et al. [61]. It is non-immersive as a camera observes user input in 3D for
manipulating objects in VR environments. AR applications intend to intensify or
extend the real-world experience for the user, or to blend the virtual and real world
in a seamless way. Buchmann et al. [12] argue, as hands are our natural means
to interact with objects in the real world it is only natural to integrate them into
an AR system. They presentFingARtips, a system for near-range interaction and
manipulation of objects on a table in an urban planning situation. The scene is
captured with a webcam, extra markers help with nger and hand tracking while the
recognition is based on the nger positions via simple thresholding. Electronic buzzers
provide extra haptic feedback to recognize e.g. grabbing gestures as this can be
di cult in AR environments, however the overall performance, although satisfactory,
is strongly impeded by lighting problems during marker detection.

A popular eld of application and research for mid-air hand gestures is the do-
main of robotics. Malima et al. [62] present a system for controlling a robot via a
static ve-gesture set. The robot interprets user input from a video signal which is
segmented according to skin-colored pixels from where the hand palm position and
ngers are calculated through the center of gravity. Many problems of this approach
are addressed but remain untackled and left to further work. Brethes et al. [10]
present a hand gesture recognition algorithm coupled with a face recognition module,
both based on the detection of skin colored pixels and contour extraction from video
images, with possible applications in the robotics area. Many of the problems as
lighting variation and object tracking are addressed coupled with possible solutions
for the investigated scenario.

Hand gestures provide various advantages, one of them being the direct interaction
possibility, i.e. omitting the need for a glove or an accelerometer. When considering
the medical scenario, where an operation needs to be performed, usually the partici-
pants are wearing gloves to keep the environment sterile. The systems coming to use
so far, as e.g. touch screens, would then be reduced to resistive technologies, as the
electricity cannot be carried through the human body when wearing gloves, which can
prove to be disadvantageous in many situations. Here, mid-air hand gestures provide
an interesting alternative as contactless interaction allows for direct interaction with
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the hand, without the aforementioned drawbacks. Wachs et al. [123] address the idea
of providing a safer and more sterile environment in medical scenarios, presenting a
system for hand gesture recognition for improved HMI based on extracting Haar-like
features from visual data and classifying them with a fuzzy C-Means Clustering Al-
gorithm. Recognition rates are satisfying > 94% - (with minor drawbacks due to
training data), however the number of gestures covered by their system is not very
large (4 di erent gestures, 19-20 trials).

Altho et al. [3] put HGR within the vehicle into the multimodal context - hand
gestures are viewed as one possible form of input subordinate to safety-critical func-
tions as steering and braking. An infrared camera is mounted into the roof of the
vehicle recording the near-driver environment top-down and a frame-wise evaluation
coupled with active lighting to stabilizes the performance in quickly changing envi-
ronmental conditions. Adaptive thresholding is used to exploit the fact that human
skin shows high re ectance under infrared light which raises questions of functionality
for users wearing gloves. Forearm segmentation is done by the silhouette calculation
and circular cropping. To interpret temporal user input, HMMs are trained and used
for testing. Overall, accuracy scores of 86% to 93% are achieved on a 17 gesture set
coming from 6 users and a total number of 1530 samples.

1.4.3 3D vision-based approaches

3D approaches for HGR have a number of bene ts as easy segmentation capabilities
and illumination independence within their area of application. Soutschek et al. [113]
set up a complete framework for exploration and navigation through medical 3D-data
via hand gestures using a single ToF-camera. While the number of gestures is not
very high, recognition rates are satisfyingX 90%) and their study is complemented
with a user evaluation showing e.g. that the use of hand gestures in such a scenario
is found intuitive and strongly accepted by most of the users.

Opricescu et al. [78] use an SR-3000 ToF camera and propose a system for detec-
ting nine di erent static hand gestures based on contour calculation from the depth
data. Their approach shows an accuracy of over 93% using decision trees however on
a fairly small sample set of 50 samples per gesture. Another approach based on depth
information only is presented by Chen et al. [18] which introduces region-growing for
hand shape analysis, also based on nding the center of a region of interest.

Introducing hand gestures into the car interior comes with a couple of challenges
such as dynamic lighting, possibly multiple users or object occlusion to name a few.
Kollorz et al.[45] present an approach by implementing a single ToF-camera into the
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car interior and using the projections of the hand data onto the x- and y-axis as
fast and simple features which are classi ed via a k-NN approach. Simple depth
thresholding is used for segmenting the hand from the background. The system's
performance is evaluated on a set of 12 gestures coming from 34 persons with a
total sample set of 408 samples, and it achieves accuracy scores above 90% with the
leave-one-out method.

1.4.4 Hybrid approaches

Hand gesture recognition for a rock-paper-scissors game (also shown to work for a
mid-air hand gesture controlled Sudoku game with the same methods [96]) as well
as an arithmetic GUI demo was proved to be e ectively realizable in real-time on a
10-gesture set with the Microsoft Kinect by Ren et al. [97]. Further work, directed
towards the entertainment sector by Zhang et al. [134], combines accelerometer data
with multi-channel surface electromyogram (EMG) sensors to interpret user input
for a Rubick's Cube game. Again HMMs are used to classify each input into one of
18 possible classes. Gallo et al. [31] present the Kinect as a low-cost o -the-shelf
alternative for realizing a scenario where, after a short calibration process, browsing
through medical image data is made possible through a set of simple pointing and
moving mid-air gestures.

Ohn et al. [75] recently presented a fusion approach combining RGB and depth
data tested on a sample set of 886 samples. It is tested on a challenging number of 19
gestures, however split into subgroups for context purposes. SVM classi cation scores
achieve accuracies of above 90%, however these gures drop signi cantly on cross-
subject validation. In other work they also propose a multi-ROI scene observation to
be able to better react to unseen behaviour as well as for improved input prediction
[73].

More recently, the work of Molchanov et al. [66], motivated by the fact that driver
distraction is a major reason accounting for 22% of all accidents in the US, shows how
deep networks can be facilitated to make the fusion of three di erent kinds of sensors -
radar, ToF and optical - feasible for dynamic hand gesture recognition within the car.
They combine the depth and visual data from the SoftKinetic cam (cf.1.8, bottom
right) with a radar sensor serving as input to a convolutional neural network (CNN)
[54] and achieving interesting results on a set of 10 di erent dynamic gestures.

There exist various research approaches employing ToF sensors for HGR systems.
ToF sensors have the advantage of being robust vs daylight interferences, but usually
su er from lower resolution and increased noise in the data. Van den Bergh et al. [122]
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therefore combine ToF sensors with RGB cameras which increases the performance
but somehow contradicts the idea of installing a system being e.g. robust against
daylight interferences. Their system needs to be calibrated in order to map depth to
color pixels. Hand recognition relies heavily on skin color detection therefore making
it again unsuitable in situations in which users wear gloves for example. Lit et al. [58]
propose a system working in real-time using a distance transformation of the depth
data to classify hand shapes. This system has problems with accuracy as soon as more
than just hand pixels are included in the distance transformation (DT) algorithm as
nding the center of a region, a crucial point for the approach, is then naturally
distorted. Additional fusion of RGB data for potential improvement of recognition is
suggested, however this again is a potential noise factor.

As the Kinect was the origin of large body of work conducted in numerous re-
search applications, the most important approaches utilizing this device shall be pre-
sented here. One of the rst contributions includes the work of Li [57], motivated
by developing a framework for sign language recognition or medical applications. A
three-step system for detecting the hand and ngers and gesture recognition is pre-
sented with satisfying accuracy, however on a fairly simple problem set. The hand is
segmented via depth thresholding then reduced to only contain the relevant structure
via a convex hull algorithm. The ngertips are identi ed by their relative distances
and classi ed by prede ned feature vectors. Ren et al. [98] present a new metric
called Finger Earth's movers distance (FEMD) to compare histograms or signatures
for hands, which introduces the novel idea of treating each nger as a cluster instead
of the target shape as a whole. While this may be very problem-speci c it proves to
perform well for the task as results show high accuracy scores for very similar looking
poses. The approach is tested on data collected from the Kinect and supposed to work
in challenging conditions, but which remains unspeci ed. Their work is extended to
further prove the real-time applicability and high accuracy on a 1000 samples dataset
[97]. The work of Biswas et al. [8] attempts to recognize eight di erent dynamic hand
gestures with data recorded from the Kinect. Again, depth thresholding is used to
segment the hand from the background while generating normalized grey scale his-
tograms allows for feature extraction from the ROIs. Motion information is extracted
by comparing two consecutive frames and subtracting the depth information from
the images. SVMs are used to classify the samples which are unevenly distributed,
however this approach seems to perform on a satisfying level while it has to be stated
that the gestures are rather easily distinguishable.
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The work of Raheja et al. [89] demonstrates the nger and palm detection and
tracking via Kinect by again using depth thresholding and subsequently applying a
circular Iter for cutting out the palm of the hand. While this proves to work well, it
fails to work for gestures, where the palm is hardly visible in the scenario. Tang [119]
proposes fusing the RGB and depth data from the Kinect sensor and compares three
di erent descriptors - the Radial Histogram, the Raw Pixel Estimates and a modi ed
version of SURF - for detecting two gestures - open and closed hand. For the given
problem, tested on less than 3000 samples with a trained SVM, SURF is found to
perform best. Kurakin et al. [52] present a real-time light-invariant approach with
the Kinect working solely on depth data and being purely data-driven. It is tested on
12 dynamic hand gestures from the ASL on a rather low test set. Here, the human
body is detected to allow for a rst estimate of the position of the hand. The center of
the hand blob serves for calculating its silhouette and HMMs are used to perform the
dynamic HGR task. Although the approach seems promising due to its independence
of complex models and RGB data, it is di cult to assess its validity as each gesture
is performed only three times by ten subjects.

Doliotis et al. [23] also fuse RGB and depth data from the Kinect based on the
dynamic time warping algorithm (DTW) which seems to perform well, however only
when it can be assumed that the user faces towards the sensors. Van den Bergh
et al. present an HGR via Kinect and apply it to give directional commands for a
robot. They build upon an existing hand detection and tracking algorithm from the
OpenNI and present a method for robust arm wrist cropping coupled with a hand
gesture recognition method based on intensity and grey scale values exemplary tested
on four dierent poses. Patsadu et al. [81] demonstrate how human gestures can
be classi ed e ciently with the help of the Kinect and present a study of various
classi ers amongst which the neural networks trained with backpropagation seem to
perform best on a set of 3600 samples, followed by SVMs, decision trees and Naive
Bayes.

Yao et al. [132] further demonstrate the range of applicability of the Kinect sensor
applied to AR frameworks which, although aided by a coloured glove, shows to what
extent contour models can be used for the HGR task. As Caputo et al. claim [14]
the Kinect's ability of recognizing hand gestures is su cient for ranges of up to 1m,
hence they propose coupling it with another sensor - here, a webcam - to increase its
applicability range. Multiple Kinects are positioned in an orthogonal angle and used
for initial tracking. The high-resolution camera is used for distinguishing the ngers.
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As the authors claim, this is not robust and thus a coloured glove is used to further
boost detection performance.

1.4.5 In-vehicle gesture recognition systems

In an early review of gesture-based HMI for vehicles Pickering et al. [86] nd it is
necessary to identify the functions suitable for HGR systems in order to alleviate the
adaption of such systems to the given environment. Not every function within the car
is suited for such a control system, even when referring to the infotainment systems
alone. Furthermore, according to their ndings, the main challenges for vision-based
approaches - the ones researched the most - lie in developing a system workable
under dynamic background, changing lighting conditions, robustness and real-time
capability. They nd user acceptance to be mixed toward this technology indicating
that HGR systems have - at the time of writing - not yet permeated the general
driver's awareness. Further works of interest include [87] [82] [84] being directed
towards HMI concepts such as Natural User Interfaces (NUI) within the automotive
environment. This topic, of creating an NUI within a vehicle, is addressed later on in
the own work chapter in more detail. The work of Ohn-Bar et al. [74] [75] suggests
using a multi-stage approach. The vehicle interior is divided into subregions to rst
determine in which subregion the hand is found and then conclude whether or not
there is an object in one of the hands. The dataset consists of RGBD data recorded
with a Kinect comprising 19 di erent hand gestures. The classi cation step is realized
via SVMs with recognition results peaking when RGB and depth data is combined (up
to 95% for certain gestures). While their system works in real-time on a challenging
dataset, as many parts of the hand are often occluded, the issue of varying lighting
conditions is left to further research. The work of Parada et al. [80] compares the
use of a touch-based interface to a gestural interface with a survey on 23 volunteers.
To their ndings, while the touch-based interface is perceived as more reliable and
easier to use, the hand gesture interface is found to be more useful, less distracting
and more secure. Moreover, the users found a gestural interface more worth buying,
perceiving it very pleasant during the interaction phase.

1.4.6 Conclusion

To sum up, this section provided an extensive overview over the most important
works of research conducted for the topic of HGR, with a focus on vision-based
approaches as they allow for seamless interaction. First of all, it can be concluded
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that there is no single approach being able to deal with all the challenges described
in this section. Most of the solutions rely on RGB data for detecting human body
parts through skin-colored pixels, therefore being unable to deal with challenging
lighting conditions. This is also the major drawback for employing the Kinect sensor,
as it is only able to provide reliable depth data under controllable environmental
scenarios, ruling it our for e.g. in-vehicle use. First work conducted with ToF sensors
demonstrates the advantages of providing data under high frame rates and direct
sunlight in uence. The fairly low resolution is one of the main concerns requiring
more attention, however, it becomes obvious that tasks as segmentation can be easily
performed with 3D-capable cameras.

As for the algorithmic part, most approaches rely on various classi ers trained
for the task, without being able to discern a certain preference for a single approach
standing out in terms performance. HMMs seem to be employed frequently when
it comes to dynamic hand gesture recognition, although it is di cult to assess their
performance as often either the sample set or the number of gestures are fairly small.

To account for the possibly noisy data, sophisticated 3D-algorithms have been
tailored towards the task, as presented in the following section. Finally, the rst part
concludes with an overview of the most relevant ML approaches (Section 3) for this
work. Further emphasis is put on the topic of multiclass classi cation as the core
algorithms rely on the very fact that multiple classes are to be distinguished.
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Chapter 2

3D data algorithms

This section rst provides a short introduction into typical applications of 3D data
processing and presents the necessary background for understanding how depth data
can e ciently be analyzed and processed for the task of hand gesture recognition. A
depth sensor provides the surrounding environment in the form of x-y-z coordinates,
termed point clouds (PC). Depending on the sensor employed, depth data can vary
in precision and noise (e.g. the outliers in data). Finding good features in data of
this form, i.e. a low-dimensional description of characteristic properties of an object,
is a challenging task. of To this end, so-called descriptors are introduced in Section
2.3 with regard to creating an instrument which describes an object in a fast, robust
and precise manner.

2.1 Introduction

In order to make sense from depth data obtained from one or multiple sensors various
e cient algorithms have been developed and extended. The Point Cloud Library
(PCL) is an open source project initially released in 2011 for image processing in 2D
and 3D [107].

Figure 2.1: The point cloud library (Source: [104])

Typically, the eld of application for 3D-algorithms is embedded in the area of
HMI, robotics or Computer Vision in general hence the requirement for PCL appli-
cations is to perform e ciently in real-time.

Rusu et al. [105] present, how models of task-relevant objects within indoor envi-
ronments are acquired. Further indoor applications include indoor mapping of rooms
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[108] or indoor scene segmentation and object recognition (Caron et al. [15]). Data
in e.g. the latter case comes from a Kinect sensor mounted to a mobile robot.
Numerous applications have been developed in the eld of robotics. Rusu et al. [106]
introduce a descriptor for point clouds, and the authors demonstrate how it can be
utilized for object recognition and pose detection for tasks such as object manipu-
lation by robots in real-time. Kehoe et al. of [43] show applications in the closely
related eld of cloud based grasping and more speci cally utilizing the pose estima-
tion algorithm iterative closest pointsfor pose estimation.

Further applications are in the eld of e.g. object recognition [2], [118], person track-
ing [67], [19], facial recognition with a Kinect sensor [36] or hand pose estimation
[46].

Figure 2.2: The KdTree structure in 3D, dividing the search space into further sub-
spaces (Source: [104]).

As the name states, the main purpose of PCL algorithms lies in the processing of
point cloud data, i.e. data obtained from a 3D-sensor and usually representing an ob-
ject or a scene in the form of either structured or unstructured x-y-z-coordinates. As
3D-data typically is high-dimensional, there exist algorithms for spatial partitioning,
downsampling and search operations on the point cloud data set such as tietree
or KdTree algorithms (see Fig.2.2).

In order to be able to distinguish individual objects in a scene, algorithms for
segmenting the individual parts are utilized, as can be seen in Figure 2.3. Here, the
point cloud containing the data points of a mug standing on a table is segmented,
visualized by the red and green colors respectively. As the algorithm recognizes planes
and cylinders the white artifacts in the image refer to unmatched point data and noise.
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Figure 2.3: Segmentation of a mug from the table in 3D (Source: [104])

Finding good features of a target object is a crucial task when it comes to object
recognition. There exist various approaches with di erent degrees of complexity de-
pending on the speci c task or the size of the data. Figure 2.4 shows the same scene
recorded from two di erent angles at two di erent points in time t; and t,. Due to
variations in sensor position, sensor orientation or simply noise the question arises,
how to nd corresponding points in 3D within both images.

Figure 2.4: Features in the same scene, represented by various histograms. (Source:
[104])

A simple euclidean distance metric does not provide enough security as for instance
depending on the precision of the sensor the number of candidates for matching pairs
can vary signi cantly. This problem is depicted by the mapping of corresponding
points P; Pz to Q; Qs. A primitive distance metric is not su cient, therefore
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point features (or point feature representations ) have been introduced in the
PCL. Another common term is that of a(local) descriptor as it introduces a new
concept, namely the description of a point via possibly multiple metrics. In contrast,

a global descriptor describes the point cloud as a whole. In general the quality of a
feature is measured whether it retains its descriptiveness under rigid transformations
(i.e. translations, rotations), under varying sample density (how much information
is available) and its robustness vs. noise. Typically, features are collected and repre-
sented via a histogram as can be seen in the lower part of Fig. 23imilar features

in this example are represented bgimilar histograms and are compared with an
adequate comparison measure.

2.2 Estimating surface normals in a point cloud

For a point p; in the cloud and its normaln; if the following equation holds

Moo P> 0 (2.1)

wherev; is the viewpoint towards the scene, then the orientation of the normal
can be determined as pointing towards the viewpoint.

Figure 2.5: Normals of a point cloud. If the viewpoint is not known, normals appear
on both sides of a plane (left). The same scene disambiguated with normals on the
correct side if the planes. (Source: [104])

Depending on the problem at hand the question of calculating the normal of a
point depends on the so-callek-neighborhood or the search radiusr which is
determined by the search algorithm or the radius of the sphere referring to the query
point respectively. The normal of a point is de ned as standing perpendicular on a
plane tangent to the query point, hence choosing the number of neighboring points
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which de ne the plane is crucial as & or r chosen too small may not represent the
surrounding correctly (e.g. loss of detail) while choosing the parameter too large
leads to distorting artifacts, as surrounding areas have too much in uence on the
calculation. Therefore, the parameter has to be chosen problem-dependent and is
determined via selected experiments. Another crucial factor, especially when aiming
at real-time capable applications is the calculation cost scaling with increaséd(or

r) and depends furthermore on the point cloud density, i.e. the sensor's resolution.
The following section seals with the variety of descriptors and their relevance for this
thesis.

2.3 3D shape descriptors

In order to be able to describe the geometry of an objedgcal and global descrip-

tors are introduced. A local descriptor catches the geometry of a single point within
a point cloud and accordingly a global descriptor describes the point cloud as a whole.
The latter are also denoted a$olistic descriptors . A number of descriptors, each
demonstrating di erent kinds of properties, has been introduced to describe objects
or scenes in 3D, of which only the most relevant shall be described in this section.

A commonly known descriptor is theSignature of oriented Histograms(SHOT
descriptor) introduced by Tombari et al. [120] which calculates multiple histograms
in a locally de ned reference frame and combines these to one descriptor. Tteemal
aligned radial feature(NARF descriptor, [116]) attempts to capture the geometry of
a single point via its normal, initially calculated from the viewer's perspective. The
local geometry is de ned by a so-called star pattern capturing the positions of the
surrounding points in a histogram. Spherical harmonic invariants [13] as well as spin
images [39] have been introduced early on as robust descriptors for 3D shapes, per-
forming well when cloud data is dense and less noisy (cf. del Bimbo et al. [7]), prefer-
ably coming from laser scanners. Data obtained from sensors as the Camboard Nano
is potentially highly noisy and has a comparably low resolution thus spin images are
unsuitable. Curvature maps introduced by Gatzke et al. [32] describe the curvature
of the object by a series of meshes de ned on the surface. However, they also su er
from noisy data acquired by sensors typically coming to use in HMI or robotics and
generally perform best when data is densely sampled. In order to solve complex HMI
tasks such as hand gesture recognition for real-time applications one is con ned to
rely on fast ToF sensors (as the Camboard Nano), for the purpose of real-time appli-
cability as well as portability due to its low dimensions. These bene ts usually come
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at the cost of resolution and noise thus describing the scene under such circumstances
poses additional basic prerequisites - in this case the robustness, descriptiveness and
computational complexity of the descriptors. This section presents the functionality
and computation of the descriptors coming to use along with its main advantages and
drawbacks. These descriptors are essential for the core algorithms introduced in this
work, i.e. for improving hand gesture recognition with neural networks.

2.3.1 Point Feature Histograms

The idea of the Point Feature Histogram (PFH) is to capture the geometry of a point

in a point cloud in relation to its neighbors. This relation is described via the de ni-
tion of the normals of the points in question. To this end the relation between two
points ps and p; (source and target point respectively) can be computed by de ning

a so-called darboux frame - a generalization of an ordered basis in a vector space -
at one of the points. For two pointsps and p; the corresponding normals are de-
ned as ng and n;. The point for the darboux frame to be xed at is determined by
comparing the angle of the each of the normals with the connecting ling,. Thus

if arccoghs f) arccodn fs) the darboux frame is xed at point ps, the point
with the smaller angle between its normal and the connecting line.

Figure 2.6: The darboux frame at the source poinps. This image depicts the posi-
tioning of the two points ps and p; with respect to each other. (Source: [104])

The axes of the coordinate system allow us to compare the positioning of the point
in relation to a target point and its normal.

U= ns
(Pt Ps)
v=u —— 3 2.2
kp, psk, (22)
W= u Vv



This relation is depicted in Figure 2.6: The darboux frame is spanned on the
source pointps with its corresponding normalng. The axesu, v and w spanning the
frame are labeled on both the target and the source poinp{ and p; respectively) -
this gives a better visualization of the relationship between the two points in terms
of the angles:

=V Ng

_y @_p 2.3)

arctan(w ng;u ny)

with d being the Euclidean distance between the two pointps and p;, d =
kp, psk,. These angles are sometimes referred to as pan, tilt and yaw angles re-
spectively.
For a single point its k-neighborhood is de ned. Then, for all pairs in this neigh-
borhood the quadrupleth; ; ;d i is calculated and binned into a 125-dimensional
histogram. The resulting computational complexity of the PFH descriptor for a point
cloud of sizen is O(nk?) as the quadruplet has to be computed for all pairs in a k-
neighborhood of a single query point. To make a step further towards a real-time
applicable feature calculation the Fast Point Feature Histogram is introduced in the
following section.

2.3.2 Fast Point Feature Histograms

In order to reduce the computational complexity of the PFH and make feature calcu-
lations real-time applicable the Fast Point Feature Histogram (FPFH) is introduced.
It maintains the descriptive power of the PFH by reducing the number of calculations
for the local curvature just enough to capture the main features of the surrounding
of a query pointpg. It is computed as such:

X«
FPFH(p,) = SPFH(p,) + % % SPFH(py) (2.4)
i=1
where the SPFH is the simpli ed PFH - the set of tuples; ; and computed as
described in Sec. 2.3.1. For every poitt in the neighborhood ofp, the SPFH is also
determined and added with a weighting parameter to the SPFH of the query point
thus creating a weighted scheme of the surrounding. The computational complexity
is reduced toO(nk). The results are binned in a 33-dimensional histogram.
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2.3.3 The ESF descriptor

The Ensemble of Shape Function (ESF, see Wohlklinger et al. [130]) is another global
descriptor which is however not geometric as it does not rely on the calculation of the
normals! The resulting descriptor consists of ten histograms each itself comprising
64 bins. In an initial step 20000 points are sub-sampled from the cloud. Now in
turn for each iteration, three points are randomly sampled from the rst step and
four measures are calculated. The D2 measure checks whether the points on the line
connecting two of the sampled points lie inside or outside the recorded surface or
both. This 'convexity'-measure is binned into a histogram. The D2 ratio measures
the ratio of these lines lying on the cloud or free. The D3 ratio calculates the square
root of the area spanned by the sampled points and again checks for the position of the
area relative to the cloud. Lastly the A3 measure calculates the angles between the
three points and creates the histogram in an analogous manner to the other measures.
Although this descriptor does not rely on any normal information it represents the
general shape of the data while retaining its global descriptive power.

2.3.4 The VFH descriptor

The Viewpoint Feature Histogram (VFH) was introduced by Rusu et al. [106]. The
idea is to maintain the descriptive power of the FPFH (cf. Section 2.3.2) while adding
viewpoint variance and remaining invariant to scaling. The resulting histogram con-
sists of two components - the viewpoint component and the extended FPFH compo-
nent, i.e. two histograms concatenated to a single one. The viewpoint component is
calculated by computing the angles the viewpoint direction makes with each normal
of every point in the data set. It has to be noted that this is not the directiorto each
normal, but the viewpoint direction translated to each point (and its normal), since
this retains the invariance to scale. The second component calculates the pan, tilt
and yaw angles as described before between the viewpoint direction at the centroid
of the cloud and every normal in the cloud (see Figure 2.7 for visualization of the
VFH).

The resulting histogram is of size 308 with 128 bins for the viewpoint component
and 3 45 bins for the angles. Time complexity is reduced t®(n) thus resulting in
a real-time applicable global shape descriptor. The clustered Viewpoint Feature His-
togram (CVFH) from [1] adds another 45 bins for theéShape Distribution Component
to distinguish planes with similar normal distributions in order to reconstruct shapes

1This section appeared with slight modi cations in Kopinski et al.[47].
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Figure 2.7: Calculation of the VFH with the rst component (left) and the second
component (right). (Source: [104])

of objects partially occluded by other objects. This is however not necessary for the
set goal, since the VFH proves to perform satisfactory as experimental results show
later on.

2.3.5 The randomized PFH descriptor

The randomized PFH descriptor (RPFH), as introduced by Caron et al. [15], is an
extension of the PFH descriptor described aforehand. It relies on the computation
of the three angular features as well as the distance measure. For two randomly
selected points from the cloud these features are calculated, normalized and binned
into a 625-dimensional histogram capturing the curvature of the point cloud. This is
repeated for a maximum of 10,000 points in order to limit computational complexity
of the histogram. Point clouds for the task of hand gesture recognition focused on
in this work usually vary between 200 - 3000 points, thus a limit of 20000 randomly
subsampled points (or 5000 point pairs) captures the geometry of the cloud well.

2.4 Conclusion

This chapter provides an understanding for the 3D algorithms employed, building the
basis for the HGR framework developed in this thesis. In order to describe a point
cloud, a variety of histograms have been analyzed and presented. These histograms
are either based on the calculation of the normals of a certain point in the cloud (or
the cloud as a whole) or are based on describing the shape via a convexity measure.
The analysis conducted for this thesis will explain the advantages and disadvantages
of the chosen descriptors in terms of recognition accuracy and real-time performance
- the two crucial factors for developing an HGR framework.
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The next section delves into the topic of Machine Learning and Classi cation to
provide the necessary basics for the HGR algorithms in this thesis.
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Chapter 3

Machine Learning and multiclass
classi cation

3.1 Object recognition

The goal of this thesis is to improve Object Recognition techniques with a special
emphasis on multiclass classi cation with Neural Networks. This is a very general de-
nition as Object Recognition performed by Machine Learning algorithms is a popular
topic with a plethora of applications in various elds as Human-Machine Interaction,
robotics, face and person detection or Computer Vision in general. The task at
hand is embedded in the eld of HMI, more speci cally in the eld of hand gesture
recognition, however the proposed methods for improving multiclass classi cation can
be transferred to any other eld of research dealing with MCC.

When restricting the task to identifying objects within data streams coming from
any kind of sensor, di erent kinds of problems arise as partly occluded objects, dif-
ferent viewpoint angles or the problem of the same object being scaled, translated or
rotated within a scene. To deal with these kinds of problems various ML approaches
are proposed and thoroughly examined, hence the following chapters provide the
necessary overview of the most popular ML algorithms being used in research and
industrial applications with a focus on providing the preliminaries for understanding
the research conducted in this thesis. These ML approaches belong to the set of
Supervised Learningechniques where a (large) number of samples is being presented
during a training phase while a certain number of samples is retained for thisting
phaseto test the performance of the trained model. If a model predicts the correct
class for a large number of unseen samples - i.e. samples not used during training
- it is said to generalizewell. Models showing a good performance on samples from
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the training set but performing badly on unseen samples have learned the problem
by hard due to over tting .

The following sections provide the theory of support vector machines, neural net-
works as well as a short outline on Deep Learning (DL). Building upon this, the
possibilities of handling the task of multiclass classi cation with the ML approaches
along with the occurring advantages and disadvantages are discussed in the nal
section.

3.2 Introduction to Machine Learning

3.2.1 Support vector machines

Support Vector Machines (SVM) - also termed.arge Margin Classi ers - are a pop-
ular alternative amongst the large family of classi ers. They aim to nd an optimal
separating hyperplane, with a maximum distance to its nearest training points (hence
the large margin) in order to achieve optimal generalization performance. Only some
of the training samples are needed in order to de ne this margin, these samples are
called the support vectors

For a set of training datafx;;yigi =1;:::;1, x; 2 R",andy; 2 f+1; 1g each
samplex; taken from n-dimensional feature space and is assigned a label +1 or -1
belonging to either of the two classes. This can be represented by the Equations 3.1
and 3.2 respectively and can be combined to de ne the optimal separating hyperplane
in Equation 3.3

Xiw+b +1; yi=+1 (3.1)
Xiw + b 1, yy= 1 (3.2)
yilxiw+b) 1 0 8y (3.3)

for the linear separable case. Here, the points taken from the training data are the
support vectors. However, real-world problems tend to not have data presented in a
linear separable way, thus the notion of nding a hyperplane which separates the two
classes by determining the maximal margin is extended to allow for misclassi cations
to occur. Slack variables; are introduced to penalize misclassi cations and hence
Equations 3.1 and 3.2 are extended to
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Xw+b +1 i y=+1 (3.4)
Xiw + b 1+ i, yi= 1 (35)

respectively. The whole problem becomes an optimization task to minimize the
term
: ( 1 x )
argmin  Zkwk?+ C : (3.6)
w;ib 2 -
If we allow for nonlinear decision planes thkernel trick is applied. Here we take
points from RY to some spaceH :

RYIH (3.7)
Choosing the kernel functionK such that
K(Xi;x) = ( xi) (X)) (3.8)

and thus the mapping of the training data is transformed to a higher-dimensional
space, becoming linear separable.

3.2.2 Neural networks

Neural networks (NN), also termed arti cial neural networks (ANN), are function
approximators stemming from the biologically inspired neural networks in the human
brain where millions of neurons, responsible for information processing, are intercon-
nected via synapses, responsible for transmitting information. This pattern was the
inspiration to build the theory ANNSs in order to create ML algorithms for mimicking
intelligent human behaviour in e.g. object recognition tasks.

Neurons are represented by nodes, synapses by weights connecting the neurons
with each other. Neural networks usually consist of a number of nodes in an input
layer, in one or more hidden layers and, depending on the number of classes, nodes
in an output layer. Depending on the kind of network, di erent kinds of connection
patterns exist for the connections between the neurons. If information is processed
layer-wise from input to output layer, i.e. the nodes (neurons) form a directed acyclic
graph via the directed edges, this NN is called a feedforward neural network. If
feedback edges exist between neurons in a layer of higher hierarchy to neurons in
a layer of lower hierarchy, these NNs are termed recurrent neural networks. In the
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underlying thesis, only fully connected feedforward Neural Networks come to use in
order to demonstrate the functionality of various fusion algorithms. The weights,
learned during the learning process, describe potentially multiple hyperplanes split-
ting the search space. These networks are called Multilayer Perceptrons (MLPSs); this
terminology is mainly used for the rest of the underlying work.

Except for the input layer, each neuron has a nonlinear activation function. Typ-
ical choices aretanh(x) = (& e )= + e *) or the logistic sigmoid function
f(x)=1=1+ e *). Training of an MLP aims at determining the network's parame-
ters and is achieved via theBackpropagationalgorithm [102],[126]. The Backpropa-
gation algorithm is a gradient descent method minimizing a sum-of-squares function.
For a set of training inputs x,, with n = 1;:::; N with a corresponding set of target
vectorst,, minimize the error function

X
EW) =3 jiy0aiw) i 39)

n=1

with respect to the weight matrix w of the MLP.
The procedure is as follows:

1. Feed the input vectorx into the MLP and forward propagate the input through
the network to calculate the activations of the neurons in all hidden layers

2. Calculate the output vectoro, i.e. the activations of the output neurons
3. Calculate the error of the output vector

4. Backpropagate the error for each output unit through the hidden layers

Since the output of the net depends on the weights between the layers, nding
the global minimum of the error function is achieved by taking the partial derivative
of E with respect to the weights

@E

— 3.10
Qv (3.10)

and by application of the chain rule this equals
Q@E _ @E @p @ey (3.11)

Qy @p@et @w
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However, two cases have to be distinguished when adapting the weights with

E
Wy = @@W = X (3.12)
because
- . 0(netj)(I§ o) if j is Neuron in output layer (3.13)

'qnet;) |, «wjx if j is Neuron in a hidden layer

Hence the termBackpropagation- once the input is presented to the net and
propagated forward, the nets output can be determined, the error calculated and the
weight adaptation can begin, propagating the error back through the network.

3.2.3 Deep Learning

Deep Learning has emerged as a sub eld of ML due to impressive results on problems
in the eld of Computer Vision or Text Recognition. De nitions around this term
vary, however when relating it to Neural Networks one generally speaks of an MLP
containing multiple hidden layers with nonlinear operations, i.e. activation functions.
Deng et al. [22] provide, at the time of writing, an extensive and up-to-date overview
over the current state of the art methods along with a historical overview of Deep
Learning. Having been abandoned in the 90s due to being outperformed by the SVMs,
deep nets have undergone a renaissance since they were successfully employed in a
number of problems [35] [5]. The main inspiration is derived from the architecture of
the brain being a deeply connected network itself, but due to the aforementioned per-
formance increase from 2006 on, deep architectures have gained increased attention.
The main goal is to learnfeature hierarchiesi.e. learning a complex set of features
out of sets of low-level features, as is shown exemplary in Figure 3.1.

Here, higher-order features as e.g. shapes or edges can be generated by features
lower in the hierarchy, i.e. the greyscale values on the lowest level.

There exist various forms of Deep Learning architectures but Convolutional Neu-
ral Networks (CNNs) have perhaps gained the most attention due to their successful
application in image recognition tasks. CNNs work on a two-dimensional input ar-
ray of data and consist of multiple convolution layers. In each of the layers multiple
kernels are used to extract speci c features from previous layers, thus creating in-
creasingly abstract features with each layer, which are subsequently reused, creating
very complex convolutions. The extracted features are compressed after every layer,
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Figure 3.1: Learning higher-order features from low-level features or feature vectors
(fv).

reducing the amount of data while increasing its signi cance in relation to the prob-
lem. After several convolution layers, an MLP is used to identify the nal result. The
major advantage of this approach is the ability to work directly on the image data
with very abstract de nitions of features, while not de ning special features to be
detected, but instead leaving the setup of these features to the training algorithm.
Furthermore each layer consists of many copies of the same trained kernel, which
allows the network to detect the trained features even on large scale images amongst
much noise and unclassi ed data. This robustness makes this kind of classi er espe-
cially useful in scenarios where objects have to be detected in a dynamic scene, like
a gesture in front of a background. For this objective, it is also possible to duplicate
the output layers and increase the size of the input data on a network that previously
learned on a smaller scale to detect the learned object in large input data, without
the need to recalculate all layers, as the kernels share the same weights on each layer.
This approach of learning in multiple layers, increasing the complexity of calculated
features in each layer, is what de nes Deep Learning. The crucial point about Deep
Learning is, that unsupervised learning methods are used on very exible algorithms,
like Convolutional Neural Networks. This allows the algorithm to learn pretty much
every mathematical description of the original input data, which results in a very sim-
ple implementation of the basic structures that is able to imitate the work of much
more complex supervised algorithms. For the underlying work, the 3D images have
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been transformed into 2D representations and CNNs have been used to classify the
multiclass problem of hand gesture recognition from ToF sensor data. The results
are presented in the Outlook section of this thesis in order to compare the presented
approaches with state-of-the-art ML algorithms and to outline future work in this
direction. To this end, the implementation by LeCun et al. [54] was facilitated and
adapted to the task.

3.3 Introduction to multiclass classi cation

3.3.1 Multiclass classi cation with support vector machines

SVMs are binary classi ers therefore need to be adapted to the multiclass case by
decomposing it into a series of binary classi cation problems. Two strategies are ty-
pically followed, the one-against-one (OAQO) and the one-against-all strategy (OAA).
A simple OAA approach is the winner-takes-all strategy where the classi er with the
highest value from the output function is the one to determine the class. OAO is
typically realized by a voting scheme - each of thé(”z—l) classi ers decides for a class.
The class voted for the most is the one determined for the current instance.
Crammer and Singer [21] propose a an approach where the multiclass classi cation
problem with SVMs becomes a single optimization problem.

Schoelkopf and Smola [111] argue that when approaching the problem with a
OAA scheme by training all pairwise combinations of binary classi ers and using
the winner-takes-all approach the scores coming from the classi ers are somewhat
heuristic which is problematic as they were trained on separated binary problems
thus raising the question of comparability of the scores. It becomes more complex
when introducing a threshold to measure the con dence a certain classi er must
surpass in order to assign the sample to a certain class. If e.g. none of the classi ers
are con dent enough and their outputs are not on comparable scales the question of
how to determine the class becomes more problematic. They also mention the prob-
lem of asymmetryfor the OAA scheme as a binary classi er trained in this way learns
from a many more negative than positive samples which can of course be regularized
by a constant to adjust the ratio between positive and negative samples.

They argue in favour of pairwise classi cation, i.e. the OAO scheme. This increases
the training time, however the number of training samples for each problem is sig-
ni cantly smaller than for the problem as a whole. In terms of execution time the
reduced number of support vectors, due to smaller training samples, and the reduced
problem complexity (due to less class overlap) also reduces the execution speed. Itis
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also noteworthy that evaluating% can be slower as e.g. two classes which already
scored low on several classi ers need not be compared to each other. This can be taken
into consideration when the cascade of classi ers is coded properly. They furthermore
argue that approaching the problem in one take, i.e.modifying the objective function
of the SVM so that the multiclass classi cation task can be addressed directly is the
idea which is mostly in the sense of Vapnik's notion of solving the problem directly.
While the results seem comparable at times with OAA scheme the single optimization
problem needs to deal with all SVs at once thus being very disadvantageous in terms
of training time. Generelizations tomulti-label problems, meaning that a sample can
belong to multiple classes at once, are mentioned [24], however they are beyond scope
of this discussion and of no practical value for the contribution of this work. In ge-
neral they argue that a simple OAA approach produces acceptable results bringing
all the mentioned advantages while referencing that it always comes back to choosing
the appropriate scheme problem-depending [111] .

If the underlying are classi ers well-tuned and regularized, Rifkin and Klatau [99]
argue in favor of the OAA voting scheme within whichn =number of classesare
trained and the one with the highest value in the output function determines the
class. Moreover they show that the two most popular approaches, namely thmgle
classi er -approach where a single optimization problem has to be solved and the error
correcting approach where a collection of binary classi ers is trained and combined,
do not necessarily outperform the OAA scheme. They also compare their ndings
to the all-against-all (AAA) scheme in which 7 binary classi ers are trained, each
separating a pair of classes and - although training time can be reduced when coded
accordingly - conclude that it does not outperform OAA in terms of classi cation
rates on reference data sets. They argue foontrolled experiment runs within which
the hyperparameters of the algorithms are carefully chosen without adapting them
too much to the training set or the task at hand (mining the test set) as it easy
to show that methods tailored to combine aveak set of binary classi ers easily im-
prove the overall result. The main argument in favor of OAA remains that, opposed
to popular opinion, this approach can perform just as well as the other approaches
while maintaining its simplicity in terms of computational complexity and conceptual
modeling. Their extensive experiments demonstrate that a simple OAA scheme can
achieve adequate performance compared to complex error-correcting-schemes or com-
plex single machine optimization problems. They also address the problem of training
speed which shows that an OAA scheme i trained signi cantly more slowly (up to six
times more slowly) than an AAA scheme for their largest data of 15,000 data points.
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This work takes these ndings into account as the improvement of HMI techniques
requires signi cant training and parameter tuning in order to achieve satisfactory
performance for the core ideas developed.

An extensive overview on various data sets comparing the OAO, OAA and di-
rected acyclic graph (DAG) is presented in [37]. The DAG approach basically is an
AAA approach with a directed acyclic graph being used for nally determining the
membership of the class. Their ndings, tested on various data sets containing a a
few hundred up to 40,000 samples show that the OAO and DAG methods are more
suitable for practical use while the more detailed results also indicate there the OAA
approach can also contest although training times naturally are smaller for the former
two, especially if the data set is small.

Platt et al. [88] present the Decision Directed Acyclic Graph (DDAG) method
and compare it to the standard algorithm as well as the max wins approach showing
that accuracy is maintained while increasing training time. They claim that the OAA
approach of training n SVMs, with the highest class determined by the highest output
values of all SVMs, has no bound on the generelization error. The OAO approach was
shown to be Bayes-optimal [30]. They claim that the overall classi er in the OAO
approach tends to over t if the classi ers are not well regularized (which is the case
for SVMs). The max-wins approach has no bounds on the generalization error and
the OAO scheme grows superlinear with the number of classes. They show on three
di erent data sets that their method stays competitive, however for a problem of 7
classes, trained on 11340 samples and tested on 565,893 samples a classi cation error
of 29% is achieved.

Foody et al. [27] compare the performace of discriminant analysis, decision trees,
feedforward neural networks to an OAA-SVM approach by arguing that a single
optimization strategy requires fewer support vectors to be determined and the choice
for parametersC and needs to be determined only once. The decision function
for the feedforward NNs is, though not precisely mentioned, determined by selecting
from several hundreds of candidates. Evaluation is performed on a visual image data
set and results show that the SVM approach outperforms the NNs by approx. 2%
however the data set is very small (100 samples for 6 classes) thus the ndings are
di cult to assess.

SVMs can perform as well as humans on the real-world problem of tra c sign
recognition [114], however are outperformed by a combination of CNNs and MLPs
approach.
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Li et al. [56] present a study on the performance of multiclass SVMs on gene
expression data, outperforming KNNs and Nasve Bayes classi er methods. Their main
insights show that generalization performance is high when the number of classes is
small and decreases signi cantly with a large number of classes (60).

3.3.2 Multiclass classi cation with neural networks

Windeatt et al. [129] argue in the favor of splitting the multiclass problem into
several complementary binary subproblems and use the Error Correcting Output
Code (ECOC) technique. The idea is to employ several base classifers each of which
is responsible for solving a subproblem with di erent class labeling. The motivation
of using base classi ers in this way is to keep the results of them as uncorrelated
as possible. The authors furthermore point out that one of the advantages of this
approach is the fact that subproblems can better be focused on and even further that
parameters are more easily to be ne-tuned. They argue against using the encoding
approach with a multiclass classi er as all output nodes share the same weights de ned
in the training process leading to errors being not independent from each other and
thus making the bene t of combining several classi ers negligible.

Brimberg et al. [11] use 2-layer and 3-layer MLPs within the Automatic Speech
Attribute Transcription project in order to incorporate attributes of the speech signal
for Automatic Speech Recognition (ASR). The individual phonemes are mapped into
feature vectors used as network input and trained on the TIMIT database containing
2342 di erent sentences and demonstrate that multiclass MLPs outperform SVMs in
terms of accuracy.

Multiclass classi cation is devoted to the task of mapping a sample from an input
space to an output space with more than two classes. The applications are manifold
especially as typical real-world applications demand being able to distinguish between
more than two classes, e.g. speech recognition tasks, object classi cation in general or
the task at hand - hand gesture recognition. There exists an extensive body of work
on two class classi cation - as opposed to multiclass classi cation - as the latter is
frequently being treated as an extension of the former which may result in increasing
complexity or decreasing performance.

The multiclass classi cation problem is usually approached by decomposing it into
multiple binary classi cation tasks and handling each one by one. Approaching a
k-classclassi cation problem with neural networks can be done by either employing
a system of multiple neural networks combined with a decision module or a single
neural network handling the disambiguation task on its own. Depending on the
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approach chosen, the pattern classes have to be modelled accordingly which can
be done by the one-against-one approach (OAO), one-against-all (OAA) or the P-
against-Q approach (PAQ). Each of the mentioned modelling possibilities has its
own advantages and disadvantages in terms of parameter choice, modelling overhead,
training and learning depending on the size of the data set and learning capabilities.
We will address these issues and demonstrate why the approach chosen in this work
is convenient for the task of hand gesture recognition.

The problem of distinguishing betweerk classes is the problem of mapping an n-
dimensionalfeature vector x:

0o 1
Xo

x= B X (3.14)
X

n

from an n-dimensional feature space to its corresponding lable® f 1*; :::; 1kg. For
an input % its label is de ned unambiguously i.e.I" 6 I' for all h 6 i. We can train
a neural network in such a way that can make such a prediction for an input vector.

When the problem is approached by the OAA scheme, i.e. each of the classes is
trained against all other classes, this can be realized by either a single neural network
with the number of output nodesm = k, the number of classes. If it is realized by
multiple binary neural networks, the system consists ok binary neural networks.

In the OAO approach the system can only be realized with;2 binary neural
networks. For the PAQ schemep of the k classes are trained versus the remaining
g classes which can be realized by a single neural network or a system of multiple
neural networks, each discriminating between binary or multiple classes.

Figure 3.2 shows that decision boundaries drawn by hyperplanes in the feature
space for the various approaches can be optimal (bottom left) or optimal for the
speci ¢ task but problematic in general, as the hyperplanes go through the feature
space of the remaining classes (top right).

In this work the focus is put on the OAA scheme with a single neural network. The
network architecture thus consists of input, hidden and output layer. The input layer
has size n - the dimensionality of the feature vector. The size of the hidden layer
varies as it is problem-dependent and hence determined by a number of test runs
on the respective task. The output layer comprisek output neurons. Each pattern
class is a codeword df bits, a codeword for thei th class then equal€®; = ::;;O; | =
0;0, =1;041 = :::0, = 0. Neural networks trained in this manner can su er from
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Figure 3.2: The decision boundaries depending on the model choice. Top left: deci-
sion boundary drawn by a single neural network trained with the OAA approach. Top
right: two decision boundaries by two neural networks with the OAA approach. Bot-
tom left: Decision boundary of a single neural network for the PAQ model. Bottom
right: The optimal separation of all classes in the feature space. Source: [79]

ignoring minority classes, i.e. classes represented by many less samples than other
classes. However optimal decision boundaries become possible as seen in Figure 3.2
(bottom right). In this case, features are developed by units in the hidden layer,
therefore some neurons become responsive to certain classes while being ignored by
others (see [16]), while features common for multiple classes can be shared which
is achieved by smaller or larger weights depending on to which class the respective
neurons belong to. Training time scales with the number of weights to be adapted,
which in turns depends on the number of layers and neurons within each layer, as
well as on the number of training samples.

As the task at hand requires setting up a large database with around 600,000 samples
while additionally the size of the feature vectors is high dimensional, this partly
leads to complex neural network architectures. In this thesis, the number of hidden
layers as well as neurons within this layer is determined by multiple experiments

in order to achieve satisfactory generalization performance. Training time rose to
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potentially several hours ¢ 8) per network (see also [79]) which in some cases proved
impracticable as keeping the number of hidden neurons reasonably low also led to
satisfactory performance. Furthermore, depending on the fusion technique, this could
potentially scale even further. Further details about the optimal choice of parameter,
training technique and network architecture will be explained in Part II.
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Part |l

Own contribution
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Introduction

In order to tackle the challenging multiclass problem of static and dynamic hand
gesture recognition, a number of di erent algorithms have been developed, some of
which are based on the insights from the initial ndings, and continually improved
over the course of this thesis. The backbone of this contribution is represented by the
hand gesture database described in Chapter 4 which, towards the end of this work,
contains more than 1.2m samples. In its initial form, the number of data samples
included was signi cantly less (as was the number of di erent persons in the data set)
but due to the complexity of the problem and the developed algorithms' demand for
data, it was continually extended to its current size.

The rest of this thesis is organized as follows: After the description of the database,
the contribution to the topic of hand gesture recognition is split into three di erent
chapters, namely the theoretical background of the ML algorithms outlined in Chapter
5, followed by the real-time applicable hand gesture recognition system described in
Chapter 6 and concluded with research conducted towards the HMI-related question
of what makes up an intuitive and natural gesture-controlled interface explained in
Chapter 7.

The end of this thesis is formed by a critical discussion of the most relevant results,
complemented by research conducted towards the end (therefore it did not nd its
way into this work), and nalized by an outlook and a perspective on forthcoming
research topics.
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Chapter 4

Hand gesture database

In order to evaluate the performance of the various algorithmic approaches and fusion

techniques described later on, a database consisting of a large number of point cloud
samples, partially recorded in a setup with multiple ToF cameras, was established

and extended.

Figure 4.1: The recording setup for the multi-sensor database. Both sensors are
aligned in a perpendicular angle to each other at a distance of approx. 49.5cm.

1The Hand Gesture Database lays the groundwork for the algorithms and the framework devel-
oped in this thesis. In its original form it contained roughly 80,000 samples recorded from 2 angles,
stemming from 4 persons. It was extended to contain more than 1.2m samples from 20 persons. This
and the subsequent chapter therefore appeared with minor modi cations in multiple publications
[46],[471,[48].

58



Figure 4.1 shows the setup for the recording of the multi-sensor database. Data
is recorded by two ToF sensors of type Camboard Nano which provides depth images
at a resolution of 160x120px with up to 90fps. The illumination wavelength is 850nm
which makes the cameras applicable in various light conditions whilst maintaining
robustness versus daylight interferences. Since the ToF-principle works by measuring
the time the emitted light needs to travel from the sensor to an object and back pixel-
wise the light is modulated by a frequency of 30MHz in order to be able to distinguish
it from interferences. In a multi-sensor setup however this may lead to a distortion
of measurements since both sensors have the same modulation frequency. To avoid
such measurement errors, the data was recorded by taking alternating snapshots from
each sensor.

Figure 4.2: The static hand pose database consisting of 10 di erent hand poses:
Counting from 1-5 (top row) and st, at hand, grip, L, point (bottom row).

As can be seen in Figure 4.1 the cameras are mounted in a xed position at a
distance of approx 49.5cm and a perpendicular angle from the recorded object. This
allows for a recording of the database such that the hand can be placed in an equal
distance of about 35cm from each camera to the centroid of the resulting point cloud
data set and therefore each camera can also be calibrated to its needs. As research
results proved during this thesis, an angle of 3@rovides su cient results when fusing
data coming from multiple sensors, hence the subsequent recordings were adapted to
this angle’. In order to maintain a certain variability in the data, each set of poses

2|t is important to note that initial research results yielded similar performance independent of
camera angle and the algorithm of choice. Hence the database in its primary form was discarded
and replaced by a similar setup at 30 camera angle to be realizable in a car setup.
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was recorded with a variation of the hand posture in terms of translation and rotation
of the hand and ngers. This resulted in an alphabet of ten hand posegoint, st,
grip, L, stop and counting from 1-5 (cf. Figure 4.2). For each pose a set of 2000 point
clouds was recorded for each camera yielding a total data set of 40.000 samples.
This basic hand pose data set was extended in order to achieve more variation in
the data. However, the focus is put on data coming from one sensor only. To this
end, data now comes from 20 di erent test persons, each posing for 3000 samples
for every single hand pose. To induce scaling into the point cloud data, three range
zonesnear, intermediate and far (20-30cm, 30-40cm and 40-60cm respectively) were
de ned, within which each individual subject performed a hand pose until a minimum
number of samples was recorded. For one person, this resulted in 1000 samples being
recorded in each of the mentioned range zones for each hand pose. All in all, 30,000
samples per person were recorded summing up to 600,000 data samples for the whole
data set (ergo 1.2m samples for two cameras). In order to induce further variance,
every individual was asked to rotate and translate their hand in all possible directions.
The illumination time to 800 s as this results in a satisfactory signal-to-noise ratio
and is a well-tested value for near-range interaction of up to 1m.

As every sample is recorded with ai erent amount of arm integrated into the
object, the subsequent section describes the means employed to get rid of all the data
points included in each cloud and carrying irrelevant information for the task.

4.1 Hand-forearm cropping with principal compo-
nent analysis

The main directions of the cloud are found using Principal Component Analysis
(PCA) [40].

PCA aims to nd uncorrelated basis vectors for an arbitrary set of data vectors.
Eigenvectors (also termed "principal components") are ordered by the variance of data
points projected onto them, allowing e cient data compression by omitting principal
components of low variance. This algorithm is applied as shown below, using as input
the set ofn 3D coordinates of points in a point cloud denoted;, j 2 [1; n]):

P .
The mean valuex = % jnzl (x;) is computed.

The scatter matrix is calculated by:

S:. (xj  x)(x; x)”



Figure 4.3: Point cloud before PCA-cropping (left) and after (right).

This matrix can be used as maximum-likelihood estimate of the covariance
matrix.

The Eigenvectors of this matrix yield the principal components.

The intention is to cut 0 'unnecessary' parts of the cloud, i.e. outliers and elon-
gated parts of the forearm. In this case, the principal components correspond to or-
thogonal vectors that represent the most important directions in the point cloud. The
vector with the most important y-component allows to recognize the hand-forearm
axis.

The wrist, as the link between the hand and the forearm, is detected in order to
determine a limit for the cropping. The employed method assumes that the distance
between the endpoint of the ngers and the centroid is an upper bound of the distance
between the centroid and the wrist.

To nd the endpoint of the hand towards the direction of the ngers, tests are
made along the axis, starting at the centroid and moving progressively upward. At
each step, it is determined whether there are points within a designated small circular
neighborhood around the axis. The upper end of the hand is marked if this number
of neighboring points equals 0. Then the bottom limit for the wrist is xed at the
same distance from the centroid, but in the inversed direction along the y-axis. All
points below this wrist limit are cut out which is exemplary shown in Figure 4.3.
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Chapter 5

Fusion techniques for multiclass
classi cation with MLPs

This section is dedicated to the various fusion techniques developed within the frame
of this thesis. In Section 5.1 the results of fusing multiple ToF sensors to improve the
overall recognition rate are presented. It is researched how employing more than one
sensor can signi cantly boost recognition results in especially di cult cases and get
a rst grasp on the in uence of the descriptors for this task as well as the in uence of
the choice of parameters on the calculation of the descriptor. Moreover, the introduc-
tion of con dence parameters stabilizes the overall performance of the system. The
performance of MLPs with standard parameters is compared with the performance
of SVMs for which the parameters have been obtained via grid search.

In order to improve the classi cation performance of the MLPs without the need
for sophisticated algorithm design or extensive parameter search, a simple method is
proposed in Section 5.2, which makes use of the existing recognition routines by ex-
ploiting information already present in the output neurons of the MLPs. This simple
fusion technique combines descriptor features with neuron con dences coming from
a previously trained net, and it proves that augmented results can be achieved in
nearly all cases of problem classes and individuals respectively. Moreover its exibil-
ity becomes visible as it can easily be extended and adapted to all kinds of problems,
requiring only some adaptation to the training and classi cation processes.
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5.1 An approach to multi-sensor data fusion

In this section the initial approach of improving hand pose recognition by employing
more than one ToF-sensor is presentéd.To this end, the initial database for one

of the two angle constellations consists of 40,000 samples being recorded for a single
person where each hand pose was recorded 2000 times. This su ces as the focus of
this contribution goes to show that multiple sensors in fact do improve the overall
performance while simultaneously demonstrating that the magnitude of the angle is
not the most important factor. However the performance varies with the introduction

of con dence measures and it furthermore can be shown to which extent the choice
of descriptor a ects the overall performance. The subsequent sections describe the
details of the parameters as well as the experiments more in-depth.

5.1.1 Descriptor parametrization

All used global descriptors were calculated using methods of the publicly available
Point Cloud Library (PCL) as outlined in Section 2.3. Two descriptors were used -
the ESF and the VFH descriptor - which shall be described brie y with regard to the
choice of parameter.

5.1.1.1 The ESF descriptor

The ESF [130] is a global descriptor which does not rely on the calculation of the
normals. First, 20,000 points are sub-sampled from the input point cloud. Then,
the algorithm repeatedly samples three points, from which four simple measures are
calculated, which are discretized and used for histogram calculation. The whole
concept is detailed in Section 2.3.3.

5.1.1.2 The VFH descriptor

The VFH (cf. 2.3.4) [106] is a global descriptor partially based on the local FPFH
[103] descriptor. It uses normal information, taking into consideration the view angle
between the origin of the source and each point's normal. It furthermore includes the
SPFH (Simpli ed Point Feature Histogram) for the centroid of the cloud, as well as
a histogram of distances of the points in the cloud to the centroid. When calculating
the VFH for the various hand poses, the in uence of the normals on the results has

1Some parts of this section appeared with modi cations in Thomas Kopinski, Alexander Gep-
perth, Stefan Geisler, and Uwe Handmann. Neural network based data fusion for hand pose recog-
nition with multiple tof sensors. ICANN, 2014
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to be taken into consideration. In the described case the search parameter r guides
the in uence of the surrounding for the calculation of the normal. Choosing a small r
can result in low descriptive power while a large r results in high computational load
while possibly also overly distorting the captured information. A value of =5cm is
chosen empirically and therefore the resulting descriptor is denoted as VFHS5.

5.1.2 Neural network classi cation and fusion

With M cameras, N descriptors will be produced per frame (here: M=N) according to
the descriptors described above. An MLP is used to model the multiclass classi cation
function, either implicitly by concatenating all N descriptors and subsequent NN
classi cation ("early fusion") or explicitly, by performing classi cation individually
on each of N descriptors and then combining results ("late fusion"). Networks contain
a bias unit at each layer, the training algorithm is "RProp"[34] with hyperparameters
*=1:2, =06, o0=0:1, mn =10 9and max = 5. Network topology is
NK -150-10 (hidden layer sizes from 10-500 were tested without nding signi cant
performance improvements), K indicating the size of the used descriptors and N
the number of cameras, her&l = 2. Activation functions are sigmoid throughout
the network. As the MLP classi ers have 10 output neurons, corresponding to the 10
gesture classes, with activities;, the nal classi cation decision is obtained by taking
the class of the neuron with the highest output. However, not every classi cation shall
be taken seriously, therefore several con dence measures are de ned dan{) to this
e ect. Final decisions are thus taken in the following way:

argmaxo  if conf(fog) > conf

class = Y
no decision else

Three di erent con dence measures are tested, which perform a mapping froRi° !

R: "confOfMax", "di Measure" and "varianceMeasure". Each of these measures
is derived from the idea of approximating an entropy calculation, based on the
information-theoretic idea that low entropy means high information content. The

precise de nitions are as follows:

confOfMax(f 0,g) = max o
di Measure(f 0,g) = max; o max,-2 o}
)

X
varianceMeasuref(o g) = Ni (o E(fag)? (5.1)
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where ma¥ o indicates the second-strongest maximum over the neural outputs. For
performing late fusion, that is, obtaining two independent classi cation®'; o? based
on each camera's features, the arithmetic mean of both output vectors is calculated:
o =0:5(c + ¢?). This intrinsically takes into account the variance in each response,
as an output distribution strongly peaked on one class will dominate a at (or less
peaked) distribution. The resulting output distribution of can then be subjected to
the decision rule of Equation (5.1).

5.1.3 Experiments with MLPs

An MLP is implemented as described in Section 5.1.2 using the freely available
OpenCV library [9] and its C++ interface. Each experiment is performed 10 times
with di erent initial conditions for the MLP, and the best result is retained. In these
experiments, the in uence of di erent con dence measures ("confOfMax", "di Mea-
sure" or "varianceMeasure", see Section 5.1.2) is systematically evaluated on the
fusion strategy ("add", see Section 5.1.2) while measuring the performance of the
rst camera, the second camera as well as an "early fusion" or a "late fusion" of the
two cameras. In order to test the in uence of di erent 3D descriptors, an identical
evaluation is performed except that the VFH5 point cloud descriptor is replaced by
the ESF. Additionally, the same evaluation is performed on an analogous database
using the VFH5 descriptor where the angle between ToF sensors is 90 deg. Results
are evaluated by default according to whether one among th& strongest output
neurons coincides with the true class of a point cloud ("S-peak measure"). Unless
explicitly states, S = 1. Results are given in Figure 5.1.

Several important aspects can be perceived: First of all, fusion strongly improves
results in comparison to any single sensor, w.r.t. to the e ciency of sample rejection
but also in absolute terms when no samples are rejected, corresponding to the inter-
section of the graphs with the right boundary of the coordinate system. Secondly,
early fusion has slightly superior performance than late fusion but the di erence is
marginal, potentially giving a preference to late fusion due to reduced computational
complexity. Lastly, the di erent con dence measures are consistently ranked through-
out all experiments, with the "di Measure" being the best-performing one, closely
followed by "confOfMax". This is encouraging as especially confOfMax is compu-
tationally very lightweight, again favoring real-time execution. Thirdly, the angle
between cameras does not seem to play a crucial role even though individual cam-
era results di er considerably. Here, the bene cial aspects of fusion can be clearly
demonstrated. And lastly, the ESF descriptor seems to perform slightly better than
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Figure 5.1: Experimental results. First row: VFH5 descriptor, 30between cameras.
Second row: VFH5, 90 between cameras. Third row: ESF descriptor, 3(between
cameras. Last row: Same as third row, only classi cation errors evaluated using the
two-peak measure, see text. In all rows, the order of diagrams is, from left to right:
1,2) rst/second sensor 3) late fusion 4) early fusion. Individual plots show the e ects
of varying con dence thresholds on classi cation accuracies for several possible online
con dence measures. The method-dependent con dence thresholds are not shown,
but rather the acceptance rates which change if thresholds are varied. At the far
right of each diagram, the classi cation performance is obtained when not rejecting
anything, naturally leading to reduced performance.
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VFH5, which might lead to prefer this descriptor as it is computationally simpler
and requires constant execution time regardless of point cloud size. An interesting
observation is that the two-peak measure enormously improves classi cation rates in
all conditions. This is very useful for an application, especially for temporal ltering,
as the behaviour of the second-strongest output can obviously also provide valuable
information about the true pose class.

Training times are around 10min per single experiment, which outperforms an
equivalent SVM-based (Support Vector Machine) implementation by a large margin
as this would require 10 one-vs-all training runs with 80.000 examples each, which
would take a few days at the very least.

Execution times vary around 5-8 Hz depending of the use of the descriptor (ESF vs.
VFH), the in uence radius of the normals and the size of the point cloud itself. On
average the point clouds contain 1300-1600 points. This depends on the angle of the
camera, the distance of the recorded hand to each camera and lastly of course also
on the size of the hand of each of the four users.

5.1.4 Experiments with SVMs

This section compares the performance of SVMs to the performance of MLPs on
exactly the same database and the same choice of descriptors. In the experiments,
two types of kernels are evaluated, the ordinary scalar product and the gauss kerhel.
The parameters have been obtained via a grid search over an exponentially sampled
parameter space. The crossvalidation set for ESF descriptors consisted of a total of
40,000 feature vectorsx 2 R?8%  All numerical values were sampled with double
precision and special attention towards compare operations. In order to narrow down
the search range, a coarse crossvalidation with= 5 is applied. As shown in [100] this
reduces the variance of the obtained parameters yet increases the corresponding bias.
Thus, once the area had been narrowed down, a thorough gridsearch with= 100
was commenced. This method can be regarded as a two-stage approach, Figure 5.2
depicts the rst stage results for an RBF kernel and VFH descriptors. One can see
that the kernel parameter's in uence on the classi cation result becomes smaller for
large penalty factors.

Using the scalar product, the best SVM obtained a classi cation performance of

2This section appeared in the underlying form in Thomas Kopinski, Darius Malysiak, Alexander
Gepperth, and Uwe Handmann. Time-of- ight based multi-sensor fusion strategies for hand gesture
recognition. In Computational Intelligence and Informatics (CINTI), 2014 IEEE 15th International
Symposium on pages 243{248. IEEE, 2014
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98:7% for 30 and 98% for 90. The time needed for the grid search was approxi-
mately 16 hours. Regarding the gauss kernel, a classi cation rate of:8% for 30 and
99:6% for 90 was obtained with a total training time of approximately 2 days.

The setup and evaluation procedure for the VFH descriptors is identical to the ESF
case. The only di erence lies in the reduced size of the VFH descriptors which contain
only 616 elements. The results are summarized in table 5.1. It must be mentioned

Descriptor ESF 30| ESF 90| VFH 30 | VFH 90
Classif. rate scalar kernel 98.7% | 98.8% | 96.9% | 94.2%
Classif. rate gauss kernel 99.8% | 99.6% | 98.8% | 93.1%

Table 5.1: Classi cation results for both descriptor types. The SVMs were obtained
through a two-stage grid search.

that the VFH descriptors allowed a much faster parameter estimation due to the
reduced data volume. Using the scalar product the needed time was 3 hours while

23 hours were needed for the gauss kernel. Although training has proven to be a
slow procedure, classi cation of a single feature vector can be done very e ciently
and takes only fractions of a second (e.g. 4 / 250kHz for ESF descriptors on a
modern CPU).

5.1.5 Discussion

Analyzing the results it can be stated that, rst of all, fusion with data from a sec-
ond ToF sensor improves results tremendously in all investigated conditions, camera
setups and point cloud descriptors. Interestingly, late fusion performs globally just as
well as early fusion, which is important as it has the potential to be much more com-
putationally e cient. However, even when considering individual ToF sensors, the
computation of con dence measures from output activity distributions is of tremen-
dous impact as well. Con dence can be e ciently extracted at execution time (no
need to see the class labels for this) and used to avoid classi cation decisions when
they are likely to be incorrect anyway. A number of information-theoretically moti-
vated measures were tested and luckily the most e cient measures seem to perform
best. Concerning the in uence of the used 3D descriptors, the ESF descriptor yields
best performance with or without fusion. As this descriptor does not require normals
computation and has approximately constant scaling behavior w.r.t. point cloud size,
it is the more appropriate choice for real-time applications in the targeted automotive
domain.
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Figure 5.2: Development of classi cation rate during a grid search for VFH descriptors
using an RBF kernel. For large values of the penalty facto€ the kernel parameter
loses some of its signi cance.

The use of support vector machines showed classi cation rates similar to these of
neural networks. Gauss (or RBF) kernels are very common when it comes to SVM-
based classi cation as they usually show the better results. In this case it was found
that for ESF descriptors, the standard scalar product allows the training of SVMs
with a recognition rate close to RBF-based SVMs. The di erence between both kernel
types lies in the range of 1% (with the RBF SVMs being better). There is e ectively
no di erence between ESF descriptors for 30or 90. The VFH descriptors showed
very similar results, they as well lie only slightly apart when comparing both kernel
types. Interestingly, the VFH descriptor degenerates in its classi cation power for
the 90 case. Overall the VFH descriptors seem to perform less e ectively compared
to the ESF features, which seems to indicate that the ESF descriptor retains more of
the sample's variance. Thus, using the scalar product, one can construct classi ers
which are faster and structurally simpler than neural networks. As only a single
scalar product has to be evaluated compared to more complex matrix operations of
neural networks. Yet with the inherent drawback of huge training times one has to
carefully assess the applicability of support vector machines. Neural networks should
be favoured especially if it comes to online or mini-batch learning, whereas SVMs
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should be used in areas which do not require retraining and rapid deployment.
Summarizing, an adaptive data fusion approach for multiple ToF sensors, addressing
the generic task of 3D point cloud categorization in a multiclass setting, is presented.
Using a neural network for this purpose is of high advantage (besides very favourable
database size scaling and multiclass issues) as the ensemble of normalized output
con dences contains valuable information as well that can be e ciently exploited at
runtime to improve results. Neural network learning furthermore removes the need
for precise multi-sensor calibration as long as only categorization is targeted.

How to further exploit information hidden in MLP layers is the focus of the subsequent
sections.

5.2 Extracting information from neuron activities

This section compares a noveiusion approachwith a simple cascade learningap-
proach. More speci cally, it is demonstrated how fusing features extracted from data
with neural activities from previously trained MLPs can e ectively be utilized to
improve the overall classi cation results. It can be shown that although there is in-
formation carried by the neurons, which can be exploited to improve the hand gesture
recognition task, it is, in fact, the combination of features and neuron activities which
brings the most signi cant improvements3

5.2.1 Contribution and novelty

This contribution proposes a pragmatic and application-oriented approach to MCC
when performing an OVA decomposition. Instead of making a priori assumptions
about distributions or conditional independence properties, it is attempted to learn
such properties from data, and to exploit this knowledge for improved accuracy. For
the concrete case of an MLP classi er trained on a di cult hand gesture recognition
task, the question of how the addition of another MLP stage that operates on the
class output activities (COASs) of the rst can a ect performance is investigated. The
basic assumption is that the selective inter-class correlations in the COAs, which can
be observed in Figure 5.3 and, supposedly, will exist for any problem, contain useful
information that the second MLP stage can extract and harness. This technique is
evaluated in a number of experiments (sections 5.2.5 - 5.2.9) and extended by various

3Some of the following sections appeared in Thomas Kopinski, Stephane Magand, Alexander
Gepperth, and Uwe Handmann. A pragmatic approach to multi-class classi cation. In Neural
Networks (IJCNN), 2015 International Joint Conference on, page to appear. IEEE, 2015
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modi cations to demonstrate its versatility. Furthermore, it can be shown for the
well-known MNIST classi cation benchmark for handwritten digits that the addition

of this second stage does not always greatly improve performance, but that it causes
no degradation either.

Figure 5.3: Unnormalized covariance matrix between the activities of output neurons
in a neural network trained on the multiclass classi cation task considered in this
study. It can be observed that some neurons are not at all correlated, and thus are
rarely active together, whereas others are correlated quite strongly. The hypothesis
is that this structure contains information about the task that can be used to further
improve classi cation accuracy.

The novelty of this approach lies in its simplicity and generality, as well as its
practical applicability. As the classi er hierarchy attempts to model the structure of
the data by itself, no explicit assumptions need to be made by the user, other than
issues of classi er design and parametrization, for which standard techniques exist.

5.2.2 Methods

In this section, mainly two di erent training techniques are presented, one of which
can be extendedn times, depending on the problem. The dataset has to be pre-
pared accordingly which is covered separately for each approach. Furthermore, the
databases used for all experiments of Section 5.2.4 are presented.

5.2.2.1 Exploiting information from output neurons

This section describes the cascading of two MLPs, where the basic idea is to let the
rst MLP classify a feature vector, and subsequently the second MLP takes as input
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the vector of output neurons of the rst MLP. Training is performed sequentially,
and care must be taken to prevent over tting as each MLP is trained in a purely
supervised fashion.

Figure 5.4: Training and testing procedure as described in Section 5.2.2.1. The whole
database is randomly split into three subsets D1-D3. There are Training Phases 1
and 2 and one Testing Phase (denoted A, B and C respectively) during which the
MLPs are trained and evaluated.

The procedure consists of three stages A, B and C which are schematically depicted
in Figure 5.4. At rst, the whole data set has to be divided up randomly into three
equally sized sets D1, D2 and D3. In an initial step, the rst MLP, here denoted
MLP1, is trained with standard parameters (cf. Section 5.2.3) on D1. Once MLP1
has converged, training of the second MLP, denoted MLP2, begins on data set D2.
The training is contrasted in such a way as now each individual training sample from
D2 rst has to be fed into MLP1. The input is propagated to the output layer and
each output neuron makes a real-valued prediction for the possible class. These values
form the output vector of length m equalling the number of classes in the MCC task
at hand. This output vector in turn corresponds to the input value of each neuron
in the input layer of MLP2. Therefore, for this approach, the size of the input layer
of MLP2 always equals the size of the MCC in the given task. This propagation of
information is shown in Figure 5.5.

In this way, MLP2 is trained until convergence. The performance of this three-
stage approach is then measured on data set D3. Every sample is rst fed into MLP1
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Figure 5.5: Schematic procedure of sample propagation and fusion technique. MLP1
is always trained with the unchanged samples taken from the training data set. A
sample, represented by a feature vector of length is fed into the MLP's input layer.
After MLP1 has propagated the input and calculated each neuron's activation in the
output layer, MLP2 is trained on the output vector of sizem. Optionally, the output
vector is fused with the feature vector itself (cf. Figure 5.6), forming the new input
of sizem + n.

which again calculates the values of its output neurons. These values are then, ana-
logously to the training phase, presented as inputs to MLP2 which in turn calculates
its own outputs. The determined class for a sampl® corresponds to the neuron with
the highest activation in the output layer:

classf Sg = argmaxfO;g;0 i m; (5.2)

m being the number of classes of the MCC an@; representing the output neuron
corresponding to class.
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Figure 5.6: Training and testing procedure as described in Section 5.2.2.2. The whole
database is randomly split into three subsets D1-D3. There are Training Phases 1
and 2 and one Testing Phase (denoted A, B and C respectively) during which the
MLPs are trained and evaluated. The main di erences are the fusion steps forming
feature vector* from the original feature vector and the output vector. This occurs
for MLP 2 in Training Phase B and Testing Phase C, highlighted in orange (cf. with
Figure 5.4).

5.2.2.2 Fusing features and neural activities

The approach presented in the preceding section is extended in such a way that the
training of MLP2 (and also the evaluation) is performed on the neuron values of the
output layer of MLP1 but also on the features of the sample itself, i.e., the input
to MLP1. The whole procedure again comprises three stages A, B and C and is
schematically depicted in Figure 5.6, the main di erences to the methodology shown
in Figure 5.4 are highlighted. The data set is randomly split in an analogous manner
to the approach described in Section 5.2.2.1 into three equally sized sets D1, D2 and
D3. As before, MLP1 is trained on the whole data set D1 until it converges.

However the input for training MLP2 on D2 is now signi cantly di erent, com-
prising the feature vector of the sample plus the output vector of MLP1yo, =
[Oo; ::5; On], n equaling the number of classes an@; being the activation of neuron
i in the output layer. Thus a new training input 7}, is formed resulting from the
merging of the current feature vectorf, and the output vector v, by simple con-
catenation. Its length lenf?) = len(%) + len(%,) is determined by the size of the
descriptor on the one hand and the number of classes on the other hand. Figure 5.5
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shows the propagation of the features and the formation of the input, in this case the
Feature-Output-Fusion. Opposed to the procedure described in Section 5.2.2.1 the
input now has lengthn + m, n being the size of the feature vector anth the size of
the MCC.

A variation of this approach with only a slight modi cation of the original algo-
rithm is simply achieved by training two separate MLPs (MLP1-A, MLP1-B) on D1.
Now it is possible to concatenate both MLP outputs with the feature vector coming
from training and test set D2 and D3 respectively. The main di erence is that each
sample, in training and testing phase, is now presented to both MLP1-A and MLP1-B
which propagate their inputs so that both outputs generated from each MLP can be
concatenated with the feature vector. The length of the newly formed feature vector
now of course diers, depending on the size of the classi cation task, i.e. for the
approach just described it is formed as lefif) = len(f¢) + k len(¥), with k being
the number of di erent MLPs trained on D1 or on separate data sets.

5.2.3 MLP structure and data set

Within the frame of the experiments, each MLP comprises one input, hidden and
output layer, each layer being fully connected to its successor. The output layer
depends on the size of the classi cation task as each class is represented by a neuron.
Depending on the training technique used (cf. Sections 5.2.2.1, 5.2.2.2) the input
layer varies in size. During the rst stage, the input layer of the rst MLP always
equals the size of the feature vector. For the second stage, this varies depending on
the technique employed as the input here is either formed by the output vector alone
or the output vector concatenated with the feature vector. Therefore the input layer

is of sizen for MLP1 during training and testing and of sizem or m + n for MLP2,

the number of classes or the number of classes + length of feature vector respectively,
depending on the technique. When employing the extension of the method described
in Section 5.2.2.2, the size of the input layer increasesiia k m, k being the number

of individual MLPs trained on a data set.

For the experiments, varying hidden layer sizes were tested within range of {260]
neurons, having a noteworthy but no excessive e ect on the results. Depending on
the size of the input layer, which can vary due to the techniques described in this
paper, choosing a di erent number of hidden neurons may be bene cial. However the
focus of this contribution is to demonstrate the advantages of the presented method-
ology, hence it shall only be noted that a proper parameter search may lead to some
improvement in terms of classi cation performance.
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The whole data set comprises 480,000 samples from 16 persons. 10% of all data
samples from each person and gesture were randomly retained for testing, thus in the
following confusion matrices each row adds up to approx. 16,000 samples.

5.2.4 Experiments - overview

All methods were implemented using the FANN library [72]. The training algorithm
is RPROP, the activation function is the sigmoid function in both hidden and output
layers. The rest of the MLP parameters are standard parameters left xed during the
course of the experiments, as a series of initial test runs were conducted to determine
proper parameters for the described methodology.

To evaluate the performance of the generated models the mean squared error
(MSE) is evaluated:

X
MSEWi9)= & (i 9 53)

i=1

with 4; being the predicted value,y; the true value andn being the number of
samples.

The experiments were taken out on the hand gesture database (cf. Section 4). All
experiments are divided into two di erent testing phases (Phase 1 and Phase 2) in
order to be able to directly compare the e ects of the underlying techniques on the
classi cation performance of each MLP. The results are depicted in the confusion ma-
trices which allow to compare the overall performance of the MLPs, the performance
on each individual class as well as the correlations between all classes.

5.2.5 Experiment 1 - training on output activities

In the rst experiment the e ect of the technique described in Section 5.2.2.1 is tested.
The whole database is randomly split into three subsets D1-D3 (two for training and
one for testing). Both MLPs have 100 neurons in the hidden layer and were trained
on subset D1 and D2 respectively until they converged. The results can be seen in
Figure 5.7. The overall performance of MLP1 (trained on the feature vectors) is at
around 91.80% and at around 91.98% for MLP2 (trained on the output vector of
MLP2) which is an improvement of around 0.2%. Overall, moderate improvements
can be observed in nearly all cases, two cases are subject to negligible decrease in
performance € 0,001%).

76



Figure 5.7: Left - Experiment 1, Phase 1: Confusion matrix for the rst MLP trained
only on the feature vectors. Right - Experiment 1, Phase 2: Confusion matrix for the
second MLP trained only on the net outputs of the rst MLP.

5.2.6 Experiment 2 - fusing output activities with features

In the second experiment the e ect of the technique described in Section 5.2.2.2 is
tested. The whole database is randomly split into three subsets D1-D3 (two for
training and one for testing). Both MLPs have 80 neurons in the hidden layer and

were trained on subset D1 and D2 respectively until they converged. The results
can be seen in Figure 5.8. The overall performance of MLP1 (trained on the feature
vectors) is at around 90.0% and at around 91.0% for MLP2 (trained on the fused
vector) which is an improvement of around 1.0%.

A B C D E F G H I J
MLP1 | 89% | 88% | 87% | 85% | 86% | 96% | 93% | 93% | 86% | 94%
MLP2 | 91% | 91% | 89% | 88% | 88% | 96% | 94% | 93% | 89% | 95%

Table 5.2: Classi cation results for MLP1 and MLP2. The ten classes are named
A-J.

Table 5.2 gives more insight into the improvements of classi cation performance
related to each individual gesture class. There is a performance increase for all cases
(which is below 0.5% in cases F and H) and ranges between 1-3% for all other remain-
ing cases. Most notably, the presented approach signi cantly boosts performance in
situations where MLP1 performs poorly (cf. cases D + |) as opposed to little im-
provement in cases where MLP1 already performs well (e.g. cases F + J).

When comparing the confusion matrices of these cases it can be seen that the im-
provement stems mainly from those classes which contain most false positives, i.e.
class | is most likely to be mistaken for class A or C (cf. Figure 5.8). The number
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of false positives for this speci c example drops by a rate 6f20% which is signi -
cant as it allows an improved disambiguation procedure (613 471 and 573 439
respectively).

Figure 5.8: Left - Experiment 2, Phase 1. Confusion Matrix for the rst MLP trained
only on the feature vectors. Right - Experiment 2, Phase 2: Confusion Matrix for
the second MLP trained on the fused feature vectors (features + outputs).

5.2.7 Experiment 3 - output neurons plus features with mul-
tiple MLPs

The third experiment evaluates the e ect of the extended technique described in
Section 5.2.2.2. Again, the whole database is randomly split into three subsets D1-
D3 (two for training and one for testing). The main di erence here is resembled by
the fact that two MLPs (MLP1-A, MLP1-B) are trained on set D1, instead of just
one. Therefore initially every sample is fed into both MLPs to calculate their output
vectors. These are in turn then concatenated with the feature vector to form the
new input vector for MLP2 during training and testing. The results of this extended
technique are shown in Figure 5.9. The overall performance of MLP1 (trained on the
feature vectors) is at around 91.0% and at around 93.0% for MLP2 (trained on the
fused vector) which is an overall improvement of around 2.0%.

A B C D E F G H I J
MLP1 | 90% | 90% | 89% | 87% | 87% | 95% | 92% | 92% | 89% | 95%
MLP2 | 93% | 93% | 93% | 90% | 91% | 97% | 94% | 94% | 91% | 96%

Table 5.3: Classi cation results for MLP1 and MLP2. The ten classes are named
A-J.
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Figure 5.9: Left - Experiment 3, Phase 1: Confusion matrix for the rst MLP trained
only on the feature vectors. Right - Experiment 3, Phase 2: Confusion matrix for the
second MLP from the extended fusion technique, i.e. the fused feature vector coming
the original feature vector concatenated with the outputs from two separately trained
MLPs.

Individual improvements range from 2-4% for all classes (cf. Table 5.3). As before
(cf. Section 5.2.6) misclassi cation rates drop around 20% - 25% for the most di cult
cases (compare class E: 704 524 and 612 380 for cases D and G respectively).

5.2.8 Experiment 4 - Generalization on unseen data

This contribution presents further experiments conducted with the fusion technique
presented in Section 5.2.2.2, however it includes di erences in the MLP topology and
an in-depth comparison of the algorithm's performance with respect to the general-
ization on unseen persons. The early fusion technique described in Section 5.2.8.2
further divides the training and test set to provide more independence within the
data®.

5.2.8.1 Neural network topology

The experiments were performed in a 2-step approach involving two distinct MLPs.
Each network has three layers - input, hidden and output layer with the input and
hidden layers fully connected to their subsequent layers. The input for the rst netis
formed by the point cloud descriptor of the current sample, the output layer consists
of 10 output neurons, one for each class. The input for the second net di ers as it not

4Some parts of the following sections appeared in similar form in Thomas Kopinski, Alexander
Gepperth, and Uwe Handmann. A simple technique for improving multi-class classi cation with
neural networks. European Symposium on Arti cial Neural Networks, Computational Intelligence
and Machine Learning, 2015
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only takes into account the descriptor of the current sample but also the output values
of the rst net which classi es the same sample. Hidden layer sizes were determined
empirically for all nets, the output layer of the second network consists of 10 neurons.

5.2.8.2 Preparation of the data sets

In order to train the two-stage architecture as described in the previous sections,
the available data samples need to be divided into three disjoint séts One can
distinguish between the training (D1 and D2) and generalization (D3) sets, the latter
consisting of all the samples (about 30,000) coming from person 1i  15. The
remaining samples are divided into the two equally sized sets D1 and D2. In order
to monitor training performance, each set D1 and D2 is randomly split in a ratio 9:1
into the sets D1.train, D1.test, D2.train and D2.test. These sets are used during the
training of each network to achieve a more independent measurement of the current
generalization performance. D1.train is used for training the rst network while the
MSE measured on the D1.test set is used for selecting the best-performing net among
all conducted iterations. As soon as the rst net is trained, the second net is trained
on D2 in an analogous manner. The main di erence is that the input for the second
net is formed as follows: For a sample taken from D2.train, feed this sample into
the rst net and memorize the output of all 10 output neurons. These values are
concatenated with the descriptor (sizen) of the sample, thus having lengtin + 10,

and form the new training sample fed into net 2, with supervision coming again from
the known class of the sample. The rest of the procedure remains the same, D2.test
is used as the performance measure for the decision process of the second phase of
training.

5.2.8.3 Experiments and results

All experiments were conducted with the FANN library and implemented under
Ubuntu in C++. Several con gurations were tested in order to determine the hidden
layer size and optimal training parameters. Initial test runs have shown that the
best generalization results can be achieved when setting the size of the hidden layer
between 25-40 neurons for both networks. The remaining parameters were chosen
as standard values and testing various con gurations provided no meaningful insight
regarding this problem. The training algorithm is RPROP, the activation function is
the symmetric sigmoid function for both hidden and output layers.

SNote: Experiments in the prior sections contained more data samples, as they were conducted
at a later stage than the experiments in this section thus containing data from more persons.
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1 /2 |3 |4 |5 |6 |7 (8 |9 |10 (|11 12|13 |14 |15

81| 43| 68| .43 | .83| .49 .53| 68| .81|.70 | .88| .73 | .95| .66 | .76
83| 44| 67| 54| .84 | 53| .55| .67|.78| .70 .91 | .74 | 97| .73 | .90

Table 5.4: Comparison of the generalization performance of net 1 (upper row, 40
hidden neurons) vs. net 2 (lower row, 40 hidden neurons). The indexed columns
indicate the generalization data coming from person i.

1 /2 |3 |4 |5 |6 |7 (8 |9 |10 (11 12|13 |14 |15
81| .40| 68| .39| .81 | .48 52| .68|.79| .68 | .88 | .71| .94 | .64 | .74
81| .45| 67| .50| .83 | .53 | .52| 67| .77| .67 .90| .71| .96 | .68 | .89

Table 5.5: Comparison of the generalization performance of net 1 (upper row, 25
hidden neurons) vs. net 2 (lower row, 20 hidden neurons)

On average the generalization results were improved by 2-4% considering all classes,
as Table 5.4 shows, when employing two nets each having 40 neurons in the hidden
layer. The upper row shows the results for net 1 alone, being fed the feature vector
only while the lower row displays the fused feature and neuron values. In 3 cases a
slight drop in generalization performance is observable, in one single case no change
is notable while all the remaining cases show partly signi cant improvements when
fusing the data with output activities. In some selected cases there are improvement
rates of 5-9% averaged over all the gestures of one person.

As a comparison Table 5.5 displays the performance of both nets each with 25
and 20 hidden neurons respectively. The main di erence in this case is the fact that
the nets with smaller hidden layer seem to perform slightly more poorly while one
can still show an improvement with the presented fusion technique when individually
comparing each generalization case. Moreover, the most signi cant improvements can
be found in both experiments.

Table 5.6 shows the change in recognition rate in reference to the individual hand
gesture classes averaged over all persons.

a b C d e f g h [ ]
+1.3 | +4.8 | -2.1|-28| +3.8 | +2.0 | +3.1 | +3.2 | +4.7 | +2.5

Table 5.6: The average increase/decrease in recognition rate for all 10 gestures aver-
aged over all the persons for net 1 compared to net 2 (both 40 hidden neurons).

In 8 of 10 cases the recognition rate is improved except for gesture classes ¢ and
d (-2.1% and -2.8%). The best improvement amounts to 4.7% and 4.8% which is,
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for this problem, of special interest since these are two of the more di cult cases to
disambiguate (cf. Figure 4.2).

Table 5.7 shows the corresponding improvements for the recognition rate averaged
over all persons for all individual gesture classes. This approach is tested by randomly

a b C d e f g h i j
+.01| +.02 | +.01 | -.03| +.07 | +.01 | +.05 | +.04 | +.01 | +.04

Table 5.7: The average increase/decrease in recognition rate for all 10 gestures av-
eraged over all the persons for net 1 compared to net 2 (25 and 20 hidden neurons
respectively).

splitting the whole data set (i.e., not taking into account individual persons) into two
equally sized data sets, one for training and one for evaluation. Since the sets were
not completely independent, the overall classi cation rate was 86% for net 1 and 87%
for net 2 which is not surprising but still shows the results are improvable with the
presented fusion approach. A comparison of the presented approach with the MNIST
data set yielded, for 15 di erent test runs conducted in the same manner (as there is
no person information available), neither a signi cant drop nor an improvement since
the classi cation error remained around 5.5% for net 1 and net 2 with a slight variance.
This variance can be ascribed to the random initialization of the weights. It should
be noted that the data set was split into three parts namely 40% for training each net
and 20% for testing, which is a signi cantly reduced training data set. Lastly, MNIST
contains a set of 60,000 training and 10,000 test samples, which is a signi cantly lower
number of data samples compared to the hand gesture database in this thesis.

5.2.9 Experiment 5 - Temporal integration of information

It could be shown in the previous sections how the fusion approach of features and
neuron outputs improves the generalization performance signi cantly. In order to
levitate this approach into the temporal domain this section demonstrates how infor-
mation obtained over time can be harnessed and incorporated employing the same
technique. In order to improve the recognition rates of the MLP-based approach, a
temporal fusion technique is presented. To this end the training and testing data
have to be prepared as follows: Firstly, training and testing data are split for each
run in such a way that data taken from a single designated person is not included
in the training set, thus being able to measure the generalization performance of the
system on previously unknown data. Secondly, the training data has to be presented
in a chronological way in order to make the fusion technique viable. The overall
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procedure is split into a 2-step approach. In an initial step an MLP is trained on
all the data from the training set. To induce temporal information into the second
MLP, the training step has to be modi ed in such a way that, at a given point in
time t, not only the input from the feature vector is presented to the MLP, but also
the values of the output neurons of the rst MLP classifying the sample at time 1.
To achieve this, the training data for MLP 2 have to be presented in a chronolog-
ical order. Therefore the size of the input layer of the second MLP is determined
by the length of the feature vector + number of the output neurons of MLP 1 and
for this case sums up to (625 + 10), the size of the feature vector + the number of
classe& This approach can be motivated as follows: During the interaction of the
user with the system, multiple snapshots are taken from the camera for a single hand
pose. Thus information is observed 'over time', i.e. classi cations coming time points
shortly before the current point in time are be used to stabilize the results.

5.2.9.1 Neural network topology and training parameters

For the described two-step fusion approach the networks are trained with standard
parameters with variations in the network topology. The input for the rst network
is formed by the RPFH descriptor of a processed point cloud as described in Section
2.3.5. The input for the second network is formed by rst classifying the previous
sample with the rst network, calculating the output neurons' activities, and then
concatenating these activities with the RPFH of the current time step. Thus, the
input layer of the second network is of siza + 10, since both networks have as many
output neurons as there are classes in the classi cation problem, i.e., 10. The network
topologies ar