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Abstract

In the present document we treat three dierent topics related to stochastic
optimal control and stochastic calculus, pivoting on the notion of backward stochastic
di erential equation (BSDE) driven by a random measure.

The three rst chapters of the thesis deal with optimal control for di erent classes
of non-di usive Markov processes, in nite or in nite horizon. In each case, the value
function, which is the unique solution to an integro-di erential Hamilton-Jacobi-
Bellman (HJB) equation, is probabilistically represented as the unique solution of
a suitable BSDE. In the rst chapter we control a class of semi-Markov processes
on nite horizon; the second chapter is devoted to the optimal control of pure jump
Markov processes, while in the third chapter we consider the case of controlled piece-
wise deterministic Markov processes (PDMPS) on in nite horizon. In the second and
third chapters the HIB equations associated to the optimal control problems are fully
nonlinear. Those situations arise when the laws of the controlled processes are not
absolutely continuous with respect to the law of a given, uncontrolled, process. Since
the corresponding HJB equations are fully nonlinear, they cannot be represented by
classical BSDEs. In these cases we have obtained nonlinear Feynman-Kac repre-
sentation formulae by generalizing the control randomization method introduced in
Kharroubi and Pham (2015) for classical di usions. This approach allows us to re-
late the value function with a BSDE driven by a random measure, whose solution
has a sign constraint on one of its components. Moreover, the value function of the
original non-dominated control problem turns out to coincide with the value function
of an auxiliary dominated control problem, expressed in terms of equivalent changes
of probability measures.

In the fourth chapter we study a backward stochastic di erential equation on
nite horizon driven by an integer-valued random measure onR; E, whereE isa
Lusin space, with compensator (dtdx) = dA; (dx). The generator of this equation
satis es a uniform Lipschitz condition with respect to the unknown processes. In
the literature, well-posedness results for BSDEs in this general setting have only
been established wherA is continuous or deterministic. We provide an existence
and uniqueness theorem for the general case, i.e. wheh is a right-continuous



nondecreasing predictable process. Those results are relevant, for example, in the
framework of control problems related to PDMPs. Indeed, when is the jump
measure of a PDMP on a bounded domain, ther is predictable and discontinuous.

Finally, in the two last chapters of the thesis we deal with stochastic calculus
for general discontinuous processes. In the fth chapter we systematically develop
stochastic calculus via regularization in the case of jump processes, and we carry
on the investigations of the so-called weak Dirichlet processes in the discontinuous
case. Such a procesX is the sum of a local martingale and an adapted process
A such that [N;A] = 0, for any continuous local martingale N. Given a function
u:[0;T] R! R, which is of classC%! (or sometimes less), we provide a chain rule
type expansion foru(t; X ), which constitutes a generalization of 1t6's lemma being
valid when u is of classC12. This calculus is applied in the sixth chapter to the theory
of BSDEs driven by random measures. In several situations, when the underlying
forward processX is a special semimartingale, or, even more generally, a special
weak Dirichlet process, we identify the solutions {; Z; U) of the considered BSDEs
via the processX and the solution u to an associated integro-partial di erential
equation.

Key words : Backward stochastic di erential equation (BSDE), stochastic optimal
control, Hamilton-Jacobi-Bellman equation, nonlinear Feynman-Kac formula, con-
strained BSDE, random measures and compensators, pure jump processes, piecewise
deterministic Markov processes, semi-Markov processes, stochastic calculus via reg-
ularization, weak Dirichlet processes.



Resune

Dans le pesent document on aborde trois divers tremes les au contrble et au cal-
cul stochastiques, qui s'appuient sur la notion dequation dierentielle stochastique
etrograde (EDSR) dirigee par une mesure akatoire.

Les trois premiers chapitres de la ttese traitent des probemes de controle op-

timal pour dierentes caegories de processus markoviens non-di usifs, a horizon

ni ou in ni. Dans chaque cas, la fonction valeur, qui est l'unique solution d'une
equation inegro-dierentielle de Hamilton-Jacobi-Bellman (HJB), est repesente
comme l'unique solution d'une EDSR appropree. Dans le premier chapitre, nous
contrélons une classe de processus semi-markoviensa horizon ni; le deuxeme chapitre
est consace au contréle optimal de processus markoviens de saut pur, tandis qu'au
troiseme chapitre, nous examinons le cas de processus markoviens ceterministes
par morceaux (PDMPs)a harizon in ni. Dans les deuxeme et troiseme chapitres
lesequations d'HJB assocees au controle optimal sont compétement non-lireaires.
Cette situation survient lorsque les lois des processus controes ne sont pas absol-
ument continues par rapporta la loi d'un processus donre. Etant les equations
d'HJB correspondantes compktement non-lireaires, cesequations ne peuvent pas
etre repesentes par des EDSRs classiques. Dans ces cadre, nous avons obtenu
des formules de Feynman-Kac non lireaires en cereralisant la nmethode de la ran-
domisation du contréle introduite par Kharroubi et Pham (2015) pour les di usions
classiques. Ces techniques nous permettent de relier la fonction valeur du probeme
de contrélea une EDSR dirigee par une mesure akatoire, dont une composante de la
solution subit une contrainte de signe. En plus, on cemontre que la fonction valeur
du probeme de contréle originel non domire concide avec la fonction valeur d'un
probeme de contrble domire auxiliaire, exprirre en termes de changements mesures
equivalentes de probabilie.

Dans le quatreme chapitre, nous etudions une equation dierentielle stochas-
tique etrogradea horizon ni, dirigge par une mesure akatoirea valeurs enteres
surRy E, ar E est un espace lusinien, avec compensateur de la formédtdx) =
dA: (dx). Le gererateur de cetteequation satisfait une condition de Lipschitz uni-
forme par rapport aux inconnues. Dans la literature, I'existence et unicie pour des

L}
\'



Vi

EDSRs dans ce cadre ontetetablis seulement lorsqueA est continu ou ceterministe.
Nous fournissons un treoeme d'existence et d'unicie méme lorsqueA est un proces-
sus pevisible, non decroissant, continua droite. Ce esultat s'applique, par exemple,
au cas du controle le aux PDMPs. En e et, quand est la mesure de saut d'un
PDMP sur un domaine borre, A est pevisible et discontinu.

En n, dans les deux derniers chapitres de la these nous traitons le calcul stochas-
tiqgue pour des processus discontinus gereraux. Dans le cinqueme chapitre, nous
ckveloppons le calcul stochastique via egularisations des processus a sauts qui
ne sont pas recessairement des semimartingales. En particulier nous poursuivons
letude des processus cenommes de Dirichlet faibles, dans le cadre discontinu. Un
tel processusX est la somme d'une martingale locale et d'un processus adapt
tel que [N;A] = 0, pour toute martingale locale continue N. Pour une fonction
u:[0;T] R! R de classeC%! (ou parfois moins), on exprime un ceveloppement
de u(t; X ), dans l'esprit d'une gereralisation du lemme d'lt6, lequel vaut lorsque u
est de classeCt?. Le calcul est applige dans le sixeme chapitrea la treorie des
EDSRs dirigees par des mesures akatoires. Dans de hombreuses situations, lorsque
le processus sous-jacenk est une semimartingale speciale, ou plus gereralement,
un processus de Dirichlet special faible, nous identi ons les solutions des EDSRs
consiceees via le processusX et la solution u d'uneequation aux cerivees partielles
inegro-dierentielle assocee.

Mots cks : Equations dierentielles stochastiques etrogrades (EDSR), contrble op-
timal stochastique,equations d'Hamilton-Jacobi-Bellman, formule de Feynman-Kac
non lireaire, EDSR avec contraintes, mesures akatoires et compensateurs, proces-
sus de saut pur, processus markoviens ceterministes par morceaux, processus semi-
markoviens, calcul stochastique via egularization, processus de Dirichlet faibles.
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Introduction

In the present introductory chapter we provide a general overview of the sub-
sequent chapters of the doctoral dissertation. All the main results of the thesis are
here recalled; for the sake of brevity, we will do not set out the technical assumptions
in detail, instead we refer to later chapters for the precise statements. We also give
only general references, while a detailed analysis on the technical aspects will be
developed in the body of the document.

Brief overview and general references on optimal control problems,
BSDEs and discontinuous stochastic processes

In this Ph.D. thesis we deal with stochastic processes and the associated optimal
control problems. We consider stochastic dynamical systems, where a random noise
a ects the system evolution. Introducing a functional cost which depends on the
state and on the control variable, we are interested in minimizing its expected value
over all possible realizations of the noise process. There exists a large literature on
stochastic control problems of this type; we mention among others the monographs
by Krylov [[89], Bensoussan(13], Yong and Zhou [132], Fleming and Soner [B5],
Pham [107]. In the present work we focus on optimal control problems of stochastic
processes with jumps. An important class of those processes is determined starting
from the so-called marked point processes. Marked point processes are related to
the martingale theory by means of the concept of compensator, which describes the
local dynamics of a marked point process. Martingale methods in the theory of point
processes go back to Watanab&B0], who discovered the martingale characterization
of Poisson processes, but the rst systematic treatment of a general marked point
process using martingales was given by Bemaudll8]. The martingale de nition of
compensator gives the basis to construct a martingale calculus which has the same
power as Ito6 calculus for di usions, see Jacod's booK7/].

In the past few years, many dierent methods have been developed to solve
optimal control problems of the type mentioned above. In our work we consider the
approach based on the theory of backward stochastic di erential equations, BSDEs



2 Introduction

for short. BSDEs are stochastic di erential equations with a nal condition rather
than an initial condition. This subject started with the paper [[98] by Pardoux
and Peng, where the authors rst solved general nonlinear BSDEs driven by the
Wiener process. Afterwards, a systematic theory has been developed for di usive
BSDEs, see for instance El Karoui and Mazliak[$2], ElI Karoui, Peng and Quenez
[53], Pardoux [96], [97]. Many generalizations have also been considered where
the Brownian motion was replaced by more general processes. Backward equations
driven by a Brownian motion and a Poisson random measure have been studied for
instance in Tang and Li [128], Barles, Buckdahn and Pardoux [LO], Royer [113],
Kharroubi, Ma, Pham and Zhang [87], ksendal, Sulem and Zhang [94], in view

of various applications including stochastic maximum principle, partial di erential
equations of nonlocal type, quasi-variational inequalities and impulse control. There
are instead few results on BSDEs driven by more general random measures, among
which we recall for instance Xia [L31], Jeanblanc, Mania, Santacroce and Schweizer
[80], Confortola, Fuhrman and Jacod [29]. In most cases, the authors deal with
BSDEs with jumps with a random compensator which is absolutely continuous with
respect to a deterministic measure, that can be reduced to a Poisson measure by a
Girsanov change of probability, see for instance BechereflP], Cepey and Matoussi
[33], Kazi-Tani, Possamai and Zhou B3], [84].

I. Feynman-Kac formula for nonlinear HJB equations

I.1. State of the art.  We x our attention on BSDEs whose random dependence
is guided by a forward Markov process, typically a solution of a stochastic di erential
equation. Those equations are commonly called forward BSDEs; since Pen@dl]
and Pardoux and Peng [B9], it is well-known that forward BSDEs provide a prob-
abilistic representation (nonlinear Feynman-Kac formula) for a class of semilinear
parabolic partial di erential equations. Let T < 1 be a nite time horizon and con-
sider the Itered space ( ;F;F = (Ft)i20:11; P), WhereF is the canonicalP-completed
ltration associated with a d-dimensional Brownian motion W = (W) 210.17. We
supposeF = Fr. Let t 2 [0; T] and x 2 R"; a forward-backward stochastic di eren-
tial equation on [t; T] is a problem of the following type:
( S RS
s= X+ Jhig X )dr+ (r;xr)di_l\!vr
_ T iy oy - T . (1)
Ys= g(X1)+  I(nX;Ye; Zy)dr s ZrdW;

whereb: [0;T] R"! R", :[0;T] R"! R" 9 |:[0;T] R R RY!
R, and g: R" ! R are Borel measurable functions. Then, it is well-known that,
under suitable assumptions on the coe cients, the above forward-backward equation
admits a unique solution f (X&*; Ye*;z&);t s Tgforany (t;x) 2 [0;T] R".
Moreover, Y,** is deterministic, therefore we can de ne the function

v(t;x) = Y for all (t;x) 2 [0;T] R";
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which turns out to be a viscosity solution to the following partial di erential equation:
%‘t’(t;x)+ Lv(t;x)+ | tx;v(t;x); T(x)Dyev(t;x) =0; (t;x)2[0;T) R";
v(T;x) = 9(x); x 2 R";

where the operatorL is given by

]
Lv = o; Dyvi + Str D2y : 2)

Let us now consider the following fully nonlinear PDE of Hamilton-Jacobi-Bellman
(HJB) type

@V+sup hh(x;a); DyVvi + L T(x;a)D2v +f(x;a) = 0; ()
@t a2a 2

on [0;T) RY, together with the terminal condition
v(T;x) = g(x);  x2R%

whereA is a subset ofR9, andh: R" A! R", :R" A! R"4df:R" Al R
are Borel measurable functions. As it is well-known, see for example Phanil(7],
the above equation is the dynamic programming equation of a stochastic control
problem whose value function is given by
T
V(tx) = SUpE  F(XEK 5 )+ g(X7 ) (4)
t
where X ¥ is the controlled state process starting at timet 2 [0; T] from x 2 RY,
which evolves on {; T accorzding to the stochastic equation
S S
X = x+ hXPE G dr+ (XPE ) dW (5)
t t
where is a predictable control process valued inA. Notice that, if (x) does not
depend ona 2 A and  T(x) is of full rank, then the above HJB equation can be
written as
@v 1

Gt o TOODRV + F(x T(0Dw) = 0; ©)

whereF (X;z) = sup »alf (x;a)+ h (x;a);zi] is the -Fenchel-Legendre transform of
fand (x;a)= T(xX)( T(x)) h(x;a)isasolutionto (x) (x;a)= h(x;a). Then,

sinceF depends on TDv, from [99] we know that the semilinear PDE (6) admits a
nonlinear Feynman-Kac formula through a Markovian forward-backward stochastic
di erential equation.

Starting from Peng [103], the BSDEs approach to the optimal control problem
has been deeply investigated in the di usive case; we mention for instancel(7],
Ma and Yong [93], [132], and [53]. However, all those results require that only
the drift coe cient of the stochastic equation depends on the control parameter and
that  T(x) is of full rank, so that the HIB equation is a second-order semilinear
partial di erential equation and the nonlinear Feyman-Kac formula is obtained as
we explained above. The general case with possibly degenerate controlled di usion
coe cient (x;a), associated to a fully nonlinear HIB equation, has only recently
been completely solved by Kharroubi and Pham[88]. We also mention that a rst
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step in this direction was made by Soner, Touzi, and Zhang124], where however the
theory of second-order BSDEs (2BSDESs) was used rather than the standard theory
of backward stochastic di erential equations. 2BSDEs are backward stochastic dif-
ferential equations formulated under a non-dominated family of singular probability
measures, so that their theory relies on tools from quasi-sure analysis. On the other
hand, according to B8], it is enough to consider a backward stochastic di erential
equation with jumps, where the jumps are constrained to be nonpositive, formulated
under a single probability measure, as in the standard theory of BSDEs.

Let us describe informally the approach presented in88], which we will call
control randomization method, for greater generality and precise statements we refer
to the original paper of Kharroubi and Pham. In [88] the forward-backward system
associated to the HJB equation @) is constructed as follows: the forward equation,
starting at time t 2 [0;T] from (x;a) 2 RY A, evolves on {; T] according to the
system of equations

Z S Z S
X = x+  hXPAIRYdr e (XA R) AW
z'.z !
152 = a+ (b 17) (drdb):
t A
Its form is deduced from the controlled state dynamics ) randomizing the state
processX ¥ | i.e., introducing, in place of the control , a pure-jump (uncontrolled)
processl, driven by a Poisson random measure on R+ A independent of W,
with intensity measure (db)dt, where is a nite measure on (A; B(A)), with full
topological support. W and are de ned on a Itered probability space ( ;F;F;P),
whereF is the completion of the natural Itration generated by W and themselves.
Regarding the backward equation, as expected, it is driven by the Brownian motion
W and the Poisson random measure, namely it is a BSDE with jumps with terminal
condition g(X %) and generatorf (X "®;1%%), as it is natural from the expression
of the HJIB equation. The backward equation is also characterized by a constraint on
the jump component, which turns out to be a crucial aspect of the theory introduced
in [88], and requires the presence of an increasing proceksin the BSDE. This latter
process is reminiscent of the one arising in the re ected BSDE theory, see El Karoui
et al. [51], where howeverK has to ful ll the Skorohod condition, namely is only
active to prevent Y from passing below the obstacle. In conclusion, the backward
stochastic di erential equation has the following form:

Z7
Yst;x;a — g(X _tl_;x;a) + f (X rt;x;a : | rt;a) dr + K_tl_;x;a K;;x;a
Z. * o z.zZ
Z @ dw, LE%a () (drdb); t s T;as: (7)
S S A
together with the jump constraint
L5%2 () 0; dP ds (db ae: (8)

Notice that the presence of the increasing procesK in the backward equation does
not guarantee the uniqueness of the solution. For this reason, as in the theory of
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re ected BSDEs, in [88] the authors look only for the minimal solution (Y;Z;L;K)
to the above BSDE, in the sense that for any other solution {f ;Z; L; K) we must
have Y Y. The existence of the minimal solution is based on a penalization
approach and on the monotonic limit theorem of Peng [L04].

The nonlinear Feynman-Kac formula becomes
vt;x;a) = YR, (tx;a)2[0;T] RY A

Observe that the value function v should not depend ona, but only on (t;x). The
function v turns out to be independent of the variable a, as a consequence of the
A-nonpositive jump constraint. Indeed, the constraint (8) implies that

t+h

E [V(s; X% b)  v(s; X3 159" (dbds =0

t A
for any h > 0. If v is continuous, by sendingh to zero in the above equality divided
by h (and by dominated convergence theorem), we can obtain from the mean-value
theorem that 7

[V(s;x;b) v(s;x;a)]" (dp=0;
A

from which we see thatv does not depend ona. However, it is not clear a priori
that the function v is continuous, therefore, in [B8], the rigorous proof relies on ne
viscosity solutions arguments and on mild conditions on and A, as the assumptions
that the interior set of A is connected and thatA is the closure of its interior. In the
end, in [88] it is proved that the function v does not depend on the variablea in the
interior of A and that the viscosity solution to equation (B) admits the probabilistic
representation formula

v(t;x) = YR (tx)2[0;T] R
for any a in the interior of A.

In [B8] another probabilistic representation is also provided, called dual repre-
sentation, for the solution v to (@. More precisely, let V be the set of predictable

processes : [0;T] A! (0;1 ) which are essentially bounded, and consider the
probability measure P equivalent to Pé)nz( ; F1) with Radon-Nikodym density:
dpP :
aP =L = K (s(b 1)~(dsdbh ;
F 0 A

where E;( ) is the Dokans-Dade exponential, and {dsdb is the compensated ran-
dom measure (dsdb (db) ds. Notice that W remains a Brownian motion under
P , and the e ect of the probability measure P , by Girsanov's Theorem, is to change
the compensator (db)ds of under Pto ¢(b) (db)ds under P . The dual repre-
sentation reads:

Z7

V(tx) = Y% = supE g(X{t)+ F(XER18%)ds 9)
2v t

where E denotes the expectation with respect toP .

The control randomization method has been applied to many cases in the frame-
work of optimal switching and impulse control problems, see Elie and Kharroubi
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[54], [55], [586], Kharroubi, Ma, Pham and Zhang [87], and developed with exten-

sions and applications, see Cosso and Chokroui2%], Cosso, Fuhrman and Pham

[31], and Fuhrman and Pham [67]. In all the above mentioned cases the controlled
processes are di usions constructed as solutions to stochastic di erential equations
of 1t6 type.

Di erently to the di usive framework, the BSDE approach to optimal control
of non-di usive processes is not very traditional. Indeed, there exists a large liter-
ature on optimal control of marked point processes (see Bemaud18], Elliott [ 57]
as general references), but there are relatively few results on their connections with
BSDEs. This gap has been partially lled by Confortola and Fuhrman [28] in the
case of optimal control for pure jump processes, where a probabilistic representation
for the value function is provided by means of a BSDE driven by a suitable ran-
dom measure. In[g8] conditions are imposed to guarantee that the set of controlled
probability laws is absolutely continuous with respect to the law of a given, uncon-
trolled, process. This gives a natural extension to the non-di usive framework of the
well-known di usive case where only the drift coe cient of the stochastic equation
depends on the control parameter.

In Chapter 1[] we extend the approach of 28] to the optimal control problem
of semi-Markov processes. For a semi-Markov process, the Markovian structure
can be recovered by considering the pair of processe¥X;( ), where ¢ denotes the
duration period in the state Xg up to moment s. However, the pair (X; ) is not
pure jump. This prevents to apply in this context the results of [28], and requires
an ad hoc treatment.

We are also interested in the more general case when the laws of the controlled
processes form a non-dominated model, and consequently the HIB equation is fully
nonlinear. Indeed, non-di usive control problems of this type are very frequent
in applications, even when the state space is nite. InChapter 2| we provide a
Feynman-Kac representation formula for the value function of an optimal control
problem for pure jump Markov processes, in a general non-dominated framework.
Chapter 3] is then devoted to generalize previous results to the case of a control
problem for piecewise deterministic Markov processes. This latter class of processes
includes in particular the family of semi-Markov processes. The results in Chapters
@ and@ are achieved adapting the control randomization method developed ir8g|
for classical di usions.

In the next paragraphs we describe the contents of Chapterg|1,] 2] 3.

[.2. Optimal control of semi-Markov processes. In Chapter 1] we study
optimal control problems for a class of semi-Markov processes, and we provide a
Feynman-Kac representation formula for the value function by means of a suitable
class of BSDEs.

A semi-Markov process on a general state spadé can be seen as a two dimen-
sional, time-homogeneous, processX(s; s)s o, Strongly Markovian with respect to
its natural Itration F. The pair (Xs; s)s o iS associated to a family of probability
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measuresP** for x 2 E, # 2 [0;1 ), such that P5#(Xg = x; o = #) = 1. The
process K; ) is constructed starting from a jump rate function (x;#) and a jump
measureA 7! Q(x;#;A) on E, depending onx 2 E and# 0. If the process starts
from (x;#) at time t = 0, then the distribution of its rst jump time T, under P%#

is
Z #+s
P (Ty>s) =exp (x;r)ydr ; (10)
#

and the conditional probability that X is in A immediately after a jump at time
T1=sis

P (X1, 2 AjTL = 8) = Q(x;S;A):
The component , called the age process, is de ned as

ot S ifXp=Xs 806 p6 s; p;s2R,;
s supfp:06 p6 s; Xp,6 Xsg otherwise.

S:

We notice that the component X alone is not a Markov process. The existence
of a semi-Markov process of the type above is a well known fact, see for instance
Stone [IZ25]. Our main restriction is that the jump rate function is uniformly
bounded, which implies that the processX is non explosive. Denoting by T, the
jump times of X , we consider the marked pc,x_i,nt processTn; X 1,) with the associated
integer-valued random measurep(dtdy) = | ; (1,:x;,) on (0;1) E, where
indicates the Dirac measure. The compensatomp of p has the form p{dsdy) =
(Xs ;s )Q(Xs ; s ;dy)ds:

We focus on optimal intensity-control problem for the semi-Markov process in-
troduced above. This is formulated in a classical way by means of a change of
probability measure, see e.g. El Karoui49], Elliott [ 57], Bemaud [18]. In our
formulation we admit control actions that can depend not only on the state process
X but also on the length of time the process has remained in that state. This
approach can be found for instance in Chitopekar24] and in [125]. The class of
admissible control processes, denoted by, contains all the predictable processes
(Us)s2[0; 7] With values in U. For every xed t 2 [0; T]and (x;#) 2 E  [0;1 ), we
de ne the value function of the optimal control problem as

Z1 ¢
Vx#) = inf ESY I(t+ siXs; sius)ds+ g(XT ¢ 7 1) ;
u()2A 0

where g; | are given real functions. HereEﬁ;f denotes the expectation with respect
to another probability Pﬁf depending ont and on the control processu, and con-
structed in such a way that the compensator underP’lj;;’fl isr(t+ s;Xs ; s ;¥;Us)

(Xs ; s )Q(Xs ; s ;dy)ds, wherer is some given measurable function.
Our approach to this control problem consists in introducing a family of BSDEs
parametrized by (t;x;#) 2 [0;T] E [0;1),0on[0; T t]:
Z: 2 Z1 4
Yo+ ¥y ad dy) = gX1 ¢ 1 O+ fteX 5 2% () d;
S E S (11)
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where q(ds dy) denotes the compensated random measurg(dsdy) p(dsdy). The

generator of ) is the Hamiltonianzfunction:
n 0
fsxi#z()=inf - lsxcHmu)+ z)(r(sx#yu) 1) (#) Q(x # dy)
u E
(12)

Under appropriate assumptions, the previous optimal control problem has a so-
lution, and the corresponding value function and optimal control can be represented
by means of the solution to the BSDE [11). In order to prove the existence of an
optimal control we need to require that the in mum in the de nition of f is achieved.
We de ne the (possibly empty) sets

n

(six;#z()= u2U:f(s;x#2()) = I(s;x#u)
Z 0
+ EZ(y)(r(s;x;#;y;U) 1) (x#) Q(x;#;dy) (13)

and we assume that the following condition holds.

Hypothesis 1. The sets in ({3) are non empty; moreover, for every xedt 2 [0; T]
and (x;#) 2 S, one can nd a predictable procesau % (') with values in U satisfying

usP* 2 (t+siXs 1 s ZEP(): PPas8s2[0T t (14)

Theorem 2. Assume that Hypothesig [L holds. Then, under suitable measurability
and integrability conditions on r, | and g, u %¥ () is an optimal control for the
control problem starting from (x; #) at time zero with time horizon T t. Moreover,
Yo' coincides with the value function, i.e.

Yoi = J(tx#u U ():

At this point we solve a nonlinear variant of the Kolmogorov equation for the
process K; ) by means of the BSDEs approach. The integro-di erential in nitesi-
mal generator associated to the processX; ) (which is time-homogeneous, Markov,
but not pure jump) haszthe form

C (x#):=@ (x#)+ K[ (y;0)  (x#)] (x#)Q(x;#:dy); (x;#)2E [0;1):

The di erential term @ does not allow to study the associated nonlinear Kolmogorov
equation proceeding as in the pure jump Markov processes framework considered in
[28]. On the other hand, the two dimensional Markov process Ks; s)s>o belongs
to the larger class of piecewise deterministic Markov processes (PDMPs) introduced
by Davis in [35], and studied in the optimal control framework by several authors,
see Sectior) I.4 below and references therein. Taking into account the speci c struc-
ture of the semi-Markov processes, we present a reformulation of the Kolmogorov
equation which allows us to consider solutions in a classical sense. Indeed, since the
second component of the processX(s; s)ss>o is linear in s, we introduce the formal
directional derivative operator
v(t+ h;x;#+ h)  v(tx#).

h ;

(DV)(t; x; #) = Iim0
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an%we consider the following nonlinear Kolmogorov equation
< Dv(tx;#)+ Lv(tx;#)+ f(tEx;# v (Ex#),v(t ;0) v(tx#)=0;
t2[0;T; x2E; #21][0;1); (15)
v(T;x;#) = g(x;#);

where 7

L (x#):= E[ (y;0)  (x#)] (X #)Q(x;#,dy); (x;#)2E [0;1):

We look for a solution v such that the mapt 7! v(t; x;t + ¢) is absolutely continuous
on [Q;T], forall constantsc2 [ T; +1 ). While it is easy to prove well-posedness of
under boundedness assumptions oh and g, we show that there exists a unique
solution under much weaker conditions related to the distribution of the process
(X; ). This is achieved by de ning a formula of I1t6 type, involving the directional
derivative operator D, for the composition of the process Xs; s)s>0 With functions
v smooth enough. In conclusion we have the following result.

Theorem 3. Under suitable measurability and integrability conditions onf and g,
the nonlinear Kolmogorov equation has a unique solutionv(t; x;#). Moreover,
for every xed t 2 [0; T], for every (x;#)2E [0;1)ands2 [0; T t],

YS’?{# =v(t+ s;Xs ;s ); (16)
Z5(y) = v(t+ s1y;0)  v(t+ s Xs ;s ); (17)
so that in particular v(t;x;#) = Ygi .

At this point, we go back to the original control problem and we observe that
the associated Hamilton-Jacobi-Bellman equation has the form[(1}5) withf given by
the Hamiltonian function ({2]. Then, taking into account Theorems P|and[3, we are
able to identify the HJB solution v(t; x;#), constructed probabilistically via BSDESs,
with the value function.

Corollary 4. Assume that Hypothesi§ L holds. Then, under suitable measurability
and integrability conditions on r, | and g, the value function coincides withv(t; x; #),
i.e.

Jx#mu YFO) = vtx#) = Yo

I.3. Optimal control of pure jump processes. In Chapter 2 |we study a clas-
sical nite-horizon optimal control problem for continuous-time pure jump Markov
processes. For the value function of this problem, we prove a nonlinear Feynman-Kac
formula by extending in a suitable way the control randomization method in [88].

We consider controlled pure jump Markov processes taking values in a Lusin
space E; E). They are obtained starting from a rate measure (x;a;B) de ned for
Xx 2 E,a2 A, B 2 E, where A is a space of control actions equipped with its -
algebraA. These Markov processes are controlled by choosing a feedback control law,
namely a measurable function :[0;1) E ! A, suchthat (t;x) 2 A isthe control
action selected at timet if the system is in statex. The controlled Markov processX
is then simply the one corresponding to the rate transition measure (x; (t;x);B).
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We denote by P the corresponding law, wheret; x are the initial time and starting
point. For convenience, we base this \weak construction" on the well-posedness of
the martingale problem for multivariate (marked) point processes studied in Jacod
[75]. Indeed, on a canonical space , we de ne ank-valued random variable Eg and
a marked point process Tn; En)n 1 with values in E  (0; 1 ], with corresponding
random measure X
p(dtdy) = lit,<1g (ToiEn)(dtdy):

n 1
The processX is constructed by setting X = E, for everyt 2 [T,; Tn+1). Moreover,
foralls OwedeneFs= G_ (Egp), where G denotes the -algebra generated by
the marked point process up to timet > 0. Then, according to Theorem 3.6 in[[5],
the law P™ is the unique probability measure on ( ;F1 ) such that its restriction
to Fo is the Dirac measure concentrated atx, and the (F;); o-compensator of the
measurep is the random measure (Xs ; (s;Xs );dy)ds.

The value function of the corresponding control problem with nite time horizon
T > 0 is de ned as:
Zy
V(t;x) = sup E™ f(s; Xs; (siXs))ds+ g(X7) ; t2[0;T];x2E; (18)
t

where EY* denotes the expectation with respect toP"*, and f;g are given real
functions, de ned respectively on [QT] E A and on E, and representing the
running cost and the terminal cost. We consider the case when the cosfs ad g are
bounded and

sup (x;a;E)< 1 (29)

(x;a)2E A

The optimal control problem is associated to the following rst-order fully nonlinear
integro-di erential HIB equation on [0; T] E:

R
Getx) = supaa (V(Ly) V(EX) (xady)+ f(txa) ; (20)
v(T;x) = g(x):

Notice that the integral operator in the HIB equation allows for easy notions of
solutions, that avoid the use of the theory of viscosity solutions. Indeed, under
suitable measurability assumptions, a bounded functionv : [0; T] E ! Ris a
solution to (@[) if the terminal condition holds, (@ holds almost surely on [G T],
andt 7! v(t;x) is absolutely continuous in [ T].

For the HIB equation (20) we present a classical result on existence and unique-
ness of the solution and the identi cation property with the value function V. The
compactness of the space of control actiong, usually needed to ensure the exis-
tence of an optimal control (see PliskaT08]), is not asked here. This is possible by
using a di erent measurable selection result requiring however lower-semicontinuity
conditions, that may be found for instance in Bertsekas and Shrevels]. We have
the following result.

Theorem 5. Assume that has the Feller property and satis es, and thatf, g
are bouded and lower-semicontinuous functions. Then there exists a unique solution
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v 2 LSCy([0;T] E) to the HJIB equation, and it coincides with the value function
V.

At this point, in order to relate the value function V(t;x) to an appropriate
BSDE, we implement the control randomization method in [88] in the pure jump
framework. Finding the correct formulation required some e orts; in particular we
could not mimic the works on control randomization in the di usive framework,
where the controlled process is de ned as the solution to a stochastic di erential
equation.

In a rst step, for any initial time t 0 and starting point x 2 E, we replace
(Xs; (s;Xs)) by an (uncontrolled) Markovian pair of pure jump stochastic processes
(Xs;ls), in such a way that the processl is a Poisson process with values in the space
of control actions A, with an intensity measure o(db) which is arbitrary but nite
and with full support. The construction of such a pair of pure jump processes relies
on the well-posedness of the martingale problem for marked point processes recalled
before, and is obtained by assigning a rate transition measure oB A of the form:

o(d) x(dy)+ (x;a;dy) a(db):

Next we formulate an auxiliary optimal control problem where we control the
intensity of the processl: for any predictable, bounded and positive random eld
1(b), by means of a theorem of Girsanov type we construct a probability measure
P™® under which the compensator ofl is the random measure ((b) o(db) dt (under
P™® the law of X also changes) and then we maximize the functional

Zy
E™® g(X7)+ (s Xsils)ds ;
t

over all possible choices of the process. Following the terminology of [88], this
will be called the dual control problem. Its value function, denoted V (t;x;a), also
depends a priori on the starting pointa 2 A of the processl , and the family f P*2 g
is a dominated model.

At this point, we can introduce a BSDE that represents V (t;x;a). It is an
equation on the time interval [t; T ] of the form
Zt
YoX® = g(X1)+ f(rXeslr)dr+ Kgx;a K §%2
z.z ° z.2
Z @ (y: b) g(dr dy db) ZP®(Xy; b o(dbdr,  (21)
E A A

S S

with unknown triple ( Yt ; ztxa . K t%a) where g is the compensated random mea-
sure associated to X;1 ), Z is a predictable random eld and K a predictable in-
creasing adhg process, where we additionally add the sign constraint

Z8®(Xs ;b 6 O (22)

Under the previous conditions, this equation has a uniqgue minimal solution ¥; Z; K)
in a certain class of processes, and a dual representation formula holds.
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Theorem 6. For all (t;x;a) 2 [0; T] E A there exists a unique minimal solution
(Ytxa, ztxa, Ktxay) to 21)-@2). Moreover, forall s 2 [t; T], Y& has the explicit
representation: Pt -a.s.,

Zg

Yi%2 = esssupE™?® g(Xt)+ f(nXel)dr Fs 3 s2 [T (23)
2V S

In particular, setting s = t, we have the following representation formula for the
value function of the dual control problem:

V (x;a) = Y\, (tx;a)2[0;T] E A (24)

The proof of this result relies on a penalization approach and a monotonic passage
to the limit. More precisely, we introduce the following family of BSDEs with jumps
indexed byn> 1onf; Tl

Z 1
YR = g(Xg)+  F(nX ;1) dr+ KPR g htxa (25)
z.z ° z.Z
Z["@ (y; b) g(dr dy db) ZMX® (X3 b)) o(db)dr,
S E A S A

where K "t%2 js the nondecreaﬁingzprocess de ned by
S

K§™@ =n 2! (X;B]" o(db)dr:
t A
Here [u]* denotes the positive part ofu. The existence and uniqueness of a solution
(yntxa.zntxa) to the BSDE (R5) relies on a standard procedure, based on a xed
point argument and on integral representation results for martingales. Notice that
the use of the ltration ( F); o introduced above is essential, since it involves appli-
cation of martingale representation theorems for multivariate point processes (see
e.g. Theorem 5.4 in[[5]). The rst componentzof this solution turns out to satisfy
T
YRR = esssupE™?® g(Xt)+  f(r5 X ;l)dr Fs (26)
2vn S

whereV" denotes the subset of controls bounded byn. Since the setsv" are nested,
we have that (Y ™2 ), increasingly converges tor '@ asn goes to in nity. Together
with uniform estimates on (Z™tx@ ; K mtxa ) this allows a monotonic passage into
the limit and gives the existence of the minimal solution to the constrained BSDE
®1)-R2). Finally, from (26}, by control-theoretic considerations we also get the dual
representation formula (23) for the minimal solution Y %@

At this point, we need to relate the original optimal control problem with the
dual one.

We start by proving that the dual value function does not depend ona. To
this end, denotedVv"(t;x;a) := Y,""® and v(t;x;a) := V (t;x;a), we consider the
penalized HIB equation in_the integral form satis ed by Y Mtxa :

< @"(txa) = g (V(ty;a)g VU(txa)) (xady)
+f(tx;a)+ n ,[V'(tx;b)  Vv(tx;a)]" o(db); (27)
vi(T;xa) = g(x):
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Passing to the limit in ( when n goes to in nity, taking into account that v is
right-continuous, we getZ

[v(t;x;b) v(t;x;a)]" o(db =0
A

and by further arguments this nally allows to conclude that v(t;x;a) = v(t; x).

Then, going back to the penalized HJB equation [(2f) and passing to the limit,
we see thatv is a classical supersolution of [(20). In particularv is greater than
the unique solution to the HJB equation. By control-theoretic considerations we
also prove that v is smaller than the value function V. We conclude that the value
function of the dual optimal control problem coincides with the value function of the
original control problem.

Theorem 7. Let v be the unique solution to the Hamilton-Jacobi-Bellman equation
provided by Theorem[5. Then for every(t;x;a) 2 [0; T] E A, the nonlinear
Feynman-Kac formula holds:

v(t;x) = V(x) = Y

In particular, the value function V of the optimal control problem de ned in ({18)
and the dual value functionV de ned in (24) coincide.

I.4. Optimal control of PDMPs. In Chapter 3 |we prove that the value function
in an in nite-horizon optimal control problem for piecewise deterministic Markov
processes (PDMPs) can be represented by means of an appropriate constrained
BSDE. As in Chapter [2, this is obtained by suitably extending the control ran-
domization method in [88]. Compared to the pure jump case, the PDMPs context
is more involved and requires di erent techniques. In particular, the presence of the
controlled ow in the PDMP's dynamics and the corresponding di erential operator

in the HJB equation suggest to use the theory of viscosity solutions. In addition,
we consider discounted in nite-horizon optimal control problems, where the payo
is a cost to be minimized. Such problems are very traditional for PDMPs, see e.g.
Davis [35], Costa and Dufour [32], Guo and Hernandez-Lerma [/2]; moreover the
nite-horizon case can be brought back to the in nite-horizon case by means of a
standard transformation, see Chapter 3 in[B5]. The in nite-horizon character of the
optimal control problems complicates the tractation via the BSDE techniques, since
it leads to deal with BSDEs over an in nite time horizon as well.

We consider controlled PDMPs on a general measurable state spaceE). These
processes are obtained starting from a continuous deterministic ow (t;x), (t;x) 2
[0; 1) E, depending on the choice of a function (t) taking values on the space
of control actions (A; A), and from a jump rate (x;a) and a transition measure
Q(x;a;dy) on E, depending both on ;a) 2 E A. We select the control strategy
among the set ofpiecewise open-loop policies.e., measurable functions that depend
only on the last jump time and post jump position. This kind of approach is habitual
in the literature, see for instance Almudevar [1], Davis [34], Bauerle and Rieder [L1],
Lenhart and Yamada [91], Dempster 40]. Roughly speaking, at each jump timeT,,
we choose an open loop control , depending on the initial condition X1, to be
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used until the next jump time. A control  in this class of admissible control laws,
denoted by A g, has the explicit form
R

t = n(t Tn X)) L7 7o) (1) (28)
n=1

and the controlled processX is
Xe= "t To;X71,); t2[Th; Ther):

Forany x 2 E and 2 A,q, P* indicates the probability measure such that, for every
n 1, the conditional survivor function of the jump time Th+1 and the distribution
of the post jump position Xt,,, onfT, < 1g are

Z S

P (Tn+1 > S | Fr,) = exp ( "(r Ta;X1,); n(r TaiXg,))dr
Th

P*(XTpss 2BjFr,; Tns1) = QC "(Ther Tn; X1,); n(Thsr  Ta; X1,);B):

The corresponding value function, depending orx 2 E, is de ned as:
1

V(x)= inf E* e °f(Xs s)ds (29)
Z, X

= izn/f\ EX e ® f( "(s TiX1,)i n(s T X7 )1, ma)(S)ds
ad 0 n2N

where E* indicates the expectation with respect toP*, f is a given real function on
E A representing the running cost, and 2 (0; 1) is a discounting factor. We
assume that andf are bounded functions, uniformly continuous, andQ is a Feller
stochastic kernel.

When E is an open subset ofRY, and h(x;a) is a bounded Lipschitz continu-
ous function, (t;x) is de ned as the unique solution of the ordinary di erential
equation

x(t) = h(x(t); (1)); x(0)=x2E:
In this case, according to Davis and Farid[B6], under the compactness assumption for
the space of control actionsA, the value function V is the unique continuous viscosity
solutionon [0; 1 ) E to the fuIIy-nonIinZear, integro-di erential HIB equation

v(x)=sup h(x;a) rv(x)+ (x;a) (v(y) Vv(x)) Q(x;a;dy) x 2 E: (30)
a2A E

Our main goal is to represent the value functionV (x) by means of an appropriate
backward stochastic di erential equation. To this end, we implement the control
randomization method in the PDMPs framework. The rst step consists in replacing,
for any starting point x 2 E, the state trajectory and the associated control process
(Xs; s) by an uncontrolled PDMP ( Xs;ls). The process ;1) takes values on
E A, and is constructed in a canonical way by assigning a new triplet of local
characteristics. The compensator corresponding toX; 1 ) is the random measure

p(dsdydh = o(dh x(dy)ds+ (x;a)Q(x;a;dy) a(dbds:
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In particular, 1 is a Poisson process with values in the space of control actions,
with an arbitrary intensity  o(db) nite and with full topological support. For any
xed starting point ( x;a) in E A, P%2 denotes the unique solution to the martingale
problem for marked point processes orE A, corresponding top-and (x;a). The
trajectories of the processX are then constructed as above, with the help of the
deterministic ow associated to the vector eld h.

At this point, we de ne a dual control problem, where we control the intensity of
the processl . To this end, we consider the class of predictable, bounded and positive
random elds {(b), and we construct a probability measure P“* under which the
compensator ofl is the random measure s(db) o(db) ds. The dual control problem
consists then in minimizing over all adgﬂssible the functional

1
J(x;a; )= E*? e Sf(Xslg)ds : (31)
0

The dual value function V (x;a) =inf ,yJ(X;a; ) can be represented by means of
a BSDE overin nite horizon , of the form
Z; Z;
Y& = ype Y/ dr + f(Xeile)dr (K KE?) (32)
z.2 ® *z.2
ZX3(Xy; b o(dbdr ZX3%(y; bq(drdydb); 06 s6 T<1;
S A S E A
with the sign constraint
ZX%(Xs ;b > 0: (33)

Under suitable conditions, equation )-) has a uniqgue maximal (not minimal
since the payo is a cost to be minimized) solution (Y;Z;K) in a certain class of
processes, and/ admits a dual representation formula.

Theorem 8. For every (x;a) 2 E A, there exists a unique maximal solution to the
BSDE with partially nonnegative jumps @)@ Moreover, Y*2 has the explicit
representation:
Z,
yXa =esszi/nfEX?a e " 9fF(X,:1;)dr Fs ; 8s> 0: (34)
S
In particular, setting s =0, we have the following dual representation formula:

V (x;a)= Yo% (xa)2E A (35)

The proof of this result relies as usual on a penalization approach and a mono-
tonic passage to the limit. However, since we deal with in nite-horizon equations, we
need to implement an additional approximating step, where we introduce a family
of penalized BSDEs depending on a nite horizonT > 0. More precisely, forn 1,
we consider the following family of penalized BSDEs on [01 ):

Z Z
yprea =y Y8 dr o+ f(X¢;lp)dr
z.z2 ° ° z.2Z
n [Z77% (X ;0] o(db) dr ZM% (X)) o(db)dr
A

S A S
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Z:Z
ZM%a(y:b)q(drdydb); 06 s6 T<1; (36)
S E A

where ] =max( z;0) denotes the negative part ofz. In order to study the well-
posedness of equation6), we introduce a second family of penalized BSDEs, also
parametrized by T > 0, and with zero nal cost:

Z Z

YA = Yy Imadr+ f (X, 1) dr

S S

n (272 (Xri0)]  o(db) dr
S A
Z" (X 50) o(db) dr

2.z

zlnxa(y-pgdrdydb); 06 s6 T: (37)
S E A
The existence of a unique solutiony :"; ZT") to (B7) is a well known fact, and relies
as usual on xed point arguments. We prove that the sequenceY ")ts( converges
P*a-a.s. to some proces¥, uniformly on compact subsets ofR. , and that, for any
S > 0, the sequence:(”?Tj[o; s)PT>s converges to some process"jjo s in a suitable
sense. This allows to pass to the limit in [37), and, the timeS being arbitrary, to
conclude that (Y"; Z") is the unique solution to (B6). The processY" satis es the
dual representation formula:

1
yhxa = essinf Exa e " 9fF(X,;1,)drFs ; s> 0; (38)

S
where V" denotes the subset of controls bounded by n.

By ( we see that (Y"), increasingly converges toY as n goes to in nity.
Moreover we provide uniform estimates on Z"jjo.sp; K "jjo;sp)n for every S > 0.
Then we monotonically pass into the limit in (@ and we get the existence of the
(unique) maximal solution (Y;Z;K) to the constrained BSDE (32)-(33), for which
we also prove the dual representation formula).

Finally, we show that the maximal solution to (82)-(83) at the initial time also
provides a Feynman-Kac representation of the value function [(2P) of our original
optimal control problem for PDMPs. To this end we introduce the deterministic
real functionon E A

v(x;a) = Yoo (39)
We have the following result.
Theorem 9. The function v in (B9) does not depend on the variable:
v(x;a) = v(x;a%; 8a;a’2 A;
for all x 2 E. Let us de ne
v(X) = v(x;a); 8x 2 E;
for any a2 A. Then v is a viscosity solution to (B0).
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Notice that the concept of viscosity solution we use does not require continuity
properties; this is usually called discontinuous viscosity solution.

The fact that the function v in (B9) is independent on its last component (which
is a consequence of théA-nonnegative constrained jumps) has a key role in the
derivation of the viscosity solution properties of v, and the proof of this feature
constitutes a relevant task. Dierently from [88] and the related papers in the
di usive context, this is obtained exclusively by means of control-theoretic techniques
and relies on the identi cation formula (85). By avoiding the use of viscosity theory
tools, no additional hypothesis is required on the space of control#\, which can
therefore be very general. The non-dependence of on a is a consequence of the
following result.

Proposition 10. Fix x 2 E, a;a®2 A, and 2 V. Then, there exists a sequence
( ") 2 V such that
!II‘E Jx;a% Y= J(xa; ): (40)

Indeed identity (A0) impliesthat V (x;a% J(x;a; ), foreveryx 2 E, a;a°2 A.
By the arbitrariness of it follows that

vV (x;a% Vv (xa)

and, exchanging the roles of and a° this allows to conclude thatV (x;a) = v(x;a)
does not depend ora.

Once we get thatV (and therefore v) does not depend ona, we show that it
actually provides a viscosity solution to the HIB equation (30). Di erently to the
previous literature, we give a direct proof of the viscosity solution property of v,
which avoid to resort to a penalized HJB equation. This is achieved by generalizing
to the setting of the dual control problem the classical proof that allows to derive
the HIB equation from the dynamic programming principle. As a preliminary step,
we need to give an identi cation result of the following form.

Lemma 11. The function v is such that, for any (x;a) 2 E A, we have
Y& = v(Xs;lg); s> 0 dP*®  ds-a.e. (41)

Identi cation (41)]is proved by showing an analogous result for Y", and using
the convergence ofY" to Y provided in Theorem([§. This result follows from the
Markov property of the state process (X;| ), and relies on an iterative construction
of the solution of standard BSDEs inspired by El Karoui, Peng and Quenez33].

Finally, to conclude that v(x) actually gives the unique solution to the HIB
equation we need to use a comparison theorem for viscosity sub and supersolutions
to the equation ). Under an additional assumption on and Q (see condition
(H QY)), and the compactness ofA, the above mentioned comparison theorem
insures that v is the unique viscosity solution to ), which coincides therefore to
the value function V. This yields in particular the nonlinear Feynman-Kac formula
for V, as well as the equality between the value functions of the primal and the dual
control problems.
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Corollary 12. Assume thatA is compact, and that Hypothesis(H Q') holds. Then
the value functionV of the optimal control problem de ned in (29) admits the non-
linear Feynman-Kac representation formula:

V(X)= Y38 (xa)2E A

Moreover, V(x) = V (x;a):

[Il. BSDEs driven by general random measures, possibly non
guasi-left continuous

As we have already mentioned, BSDEs with discontinuous driving terms have
been considered by many authors, among which Barles, Buckdahn and Pardouf{],
El Karoui and Huang [50], Xia [131], Becherer [L2], Carbone, Ferrario, Santacroce
[22], Cohen and Elliott [26], Jeanblanc, Mania, Santacroce and Schweize80], Con-
fortola, Fuhrman and Jacod [29]. In all the papers cited above, and more generally
in the literature on BSDES, the generator of the backward stochastic di erential
equation, usually denoted byf , is integrated with respect to a measuredA, where
A is a nondecreasing continuous (or deterministic and right-continuous as in26])
process. InChapter 4 |we provide an existence and uniqueness result for the general
case, i.e. whenrA is a right-continuous nondecreasing predictable process..

More precisely, consider a nite horizonT > 0, a Lusin space E; E) and a ltered
probability space ( ;F;(F¢): o;P), with (F)¢ o right continuous. We denote by P
the predictable -eld on [0; T]. In Chapter E]we study the backward stochastic
di erential equation

z z Z

Yi= + f(s;Ys ;Zs()) dAs Zs(x)( )(ds;dx); 0 t T; (42)
(tT] (tT] E

where is an integer valued random measure oRR+ E with compensator (dt; dx) =
dA; (dx), with A a right-continuous nondecreasing predictable process such that
Ao =0, and is a transition probability from ( [0; T]; P) into (E; E). We suppose,
without loss of generality, that satises (ftg dx) 1identically, sothat A; 1.

For such general BSDE the existence and uniqueness results were at disposal
only in particular frameworks, see e.g. [26] for the deterministic case, and counter-
examples were provided in the general case, see Section 4.3[29]. For this reason,
the existence and uniqueness result is not a trivial extension of known results, and
we have to impose an additional technical assumption, which is of course violated
by the counter-example presented in29].

Let us give some de nitions. For any 0, E denotes the Dokans-Dade
exponential of the processA , namely
Y

E = e’ 1+ Age As: (43)

O<s t
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By H?(0; T) we indicate the set of pairs (Y;Z) such that Y : [0;T]! Ris an
adapted adhg process satisfying
kka_iz;Y or = E (O_T]Etjvt j2dA; < 1; (44)
and Z : [0;T] E! Risa prezdictablezrandom eld satisfying
2
kaﬁz_Z o = E E. Z«(x) Z¢° (dt;dx)
, ©;T] E
X 2
+ E 21 A < 1; (49)
o<t T
where Z

Zi = Ziy(x) (ftg dx); 0O t T:
E

De nition 13. A solution to equation (§2) with data ( ; ;f ) is a pair (Y;Z) 2
H2(0; T) satisfying equation ). We say that equation ) admits a unique solu-
tion if, given two solutions (Y;Z2);(Y%29 2 H2(0;T), we have (Y;Z) = (Y%Z9 in
H2(0; T).

Notice that, given a solution (Y;Z) to equation with data ( ; ;f ), the
process Zt1p71(t))t o belongs to theﬁpacigaz( ) introduced in Jacod's book [77].
In particular, the stochastic int%ralR(t;T] e Zs(X)( )(ds; dx) in (B2) is well-
de ned, and the processM; = ©Ot] E Zs(x)( )(ds;dx), t 2 [0;T], is a square
integrable martingale.

Suitable measurability and integrability conditions are imposed on and onf,
and f is also asked to verify a uniform Lipschitz condition of the form:

ety %9 fty: )i Lyiy® i
z Z 5

+ L, i ™ x) Al . Y2) (@ w(d2) 1 (dx)
Z 2 1=2

+ A1 Al() E( ™ (X)) 1 (dx) ; (46)

for someLy;L, 0. Asusual, in order to prove the well-posedness of the BSDE (#2)
we give a preliminary result, where the existence and uniqueness of the equation is
provided wheref does not depend ony; ).

Lemma 14. Consider atriple (; ;f ) and suppose thaf = f (!;t ) does not depend
on (y; ). Then, there exists a unique solution(Y;Z) 2 H?(0;T) to equation (42)
with data ( ; ;f ). Moreoveg the following identity holds:

EEjY%ij*+ E Es(1+ As) 'jYs j2dAs
7 z (7] X

+E E.  Zs(x) 2s° (ds;dx)+ E.Z2s°1 A

(tT] E t<s T
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Z
X
= EEjj® +2E E.Ys fsdAs E Eifsi®] Asj? ; (47)
(tT] t<s T

forall t 2 [0; T].

The proof of Lemma[14 is based on the martingale representation theorem for
marked point processes given ing5]. In orger toprove the existence and uniqueness
results we take into account that M = ®T] E Zs(y) ( )(dsdy) is a square

integrable martingalezif ang only if Z 2 G‘ZOC( ), and that

X
MM it = Zi(x) 2¢? (dtdx)+ 221 A
©T] E o<t T

see Theorem[ B.2R). Properties of the Dokans-Dade exponentiaE are also ex-
ploited, in particular we use that dEs = E; dAsandthat E; = Es (1+ Ag) L

Identity (47) plays a fundamental role to get our main result, which reads as
follows.

Theorem 15. Suppose that there exists 2 (0;1) such that

2L2) A2 1 7 Pas;8t2[0;Tl (48)

Then there exists a unique solution(Y;Z) 2 H2(0;T) to equation (#2) with data
(;;f ), for every such that

¢+ P-a.s; 8t2[0;TY;

where ( t)i20:7] IS @ strictly positive predictable process depending only o, A,
L, and Ly.

The proof of Theorem[15 is based on Lemma 14, and is quite technical. Notice
that in [[26] the same condition ) is imposed. As mentioned earlier, in that paper
the authors study a class of BSDEs with a generatorf integrated with respect to
a deterministic (rather than predictable) right-continuous nondecreasing process\,
and provide an existence and uniqueness result for this class of BSDEs. However, the
proof in [26] relies heavily on the assumption thatA is deterministic, and can not be
extended to the case whereA is predictable, which therefore requires a completely
di erent procedure.

[.1. Motivation and future applications. The results in Theorem[I5% could
be employed to solve, by means of the BSDEs theory, optimal control problems of
PDMPs on state spaces with boundary. We recall that the BSDEs approach to
optimal control for PDMPs is implemented in Chapter B] by means of the control
randomization method. However, in that chapter only the case of PDMPs taking
values in open state spaces is considered. Indeed in those cases the compensator
(dsdy) = dAs ((dy) of the random measure associated to the PDMP is quasi-
left continuous, and a fairly complete theory was developed in the literature for
BSDEs driven by such random measures. On the contrary, PDMP's jumps at the
boundary of the domain correspond to predictable discontinuities for the proces#\.
BSDEs driven by random measures of this type belong to the class of equations (42)
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mentioned before, for which, to our knowledge, Theorenj 15 constitutes the only
general well-posedness result at disposal in literature.

More precisely, consider a PDMPX on a general state spacé with boundary
@E The jump dynamics of X in the interior of the domain is described by the
transition probability measure Q : E E! E andthejumprate measure :E! R.
introduced in Chapter 3| In addition, a forced jump occurs every time the process
reaches the active boundary 2 @E(for the precise de nition of see page 61 in
[35]). In this case, the process immediately jumps back to the interior of the domain
accordingly to a transition probability measure R : @E E! E. The compensator
of the integer-valued random measure associated t& then admits the form

p(dsdy) = (Xs )Q(Xs ;dy)ds+ R(Xs ;dy)dps;
where

R
Ps = 1fs Tng]-fXTn 2 g
n=1
is the process counting the number of jumps oK from the active boundary 2 @E
In particular, the compensator can be rewritten as

p(dsdy) = dAs (Xs ;dy);
where (Xs ;dy) = Q(Xs ;dy)1ix, 269+ R(Xs ;dy)1fx, 2 g, and
As:= (Xs )ds+ dpg
is a predictable and discontinuous process, with jumps As=1¢x, 2 g

In this context condition (48} in Theorem [L5]reads

Ly < pl—z: (49)

This is the only additional condition required in order to have a unique solution to
a BSDE of the form (42) driven by the random measure associated to a PDMP. In
particular, Theorem does not impose any condition orL ,, i.e. on the Lipschitz
constant of f with respect to its last argument. This is particularly important in the
study of control problems related to PDMPs by means of BSDEs methods: in this
case indeed.y = 0 and condition (#9) is automatically satis ed. This fact opens to
the possibility of extending the control randomization method developed in Chapter
also in the case of optimal control of PDMPs with bounded domain. This will be
the subject of a future work.

IIl. Weak Dirichlet processes and BSDEs driven by a random
measure

I1l.1. State of the art. Stochastic calculus via regularization was essentially known
in the case of continuous integratorsX , see e.g. Russo and Valloigl[l6], [117]. A
survey on basic elements of the calculus, can be found in Russo and Vallol$2[1];
it applies mainly in the case whenX is not a semimartigale. In the framework of
calculus via regularizations, a complete theory has been developed. In particular
stochastic di erential equations were studied, 1t6 formulae for processes with nite
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gquadratic (and more general) variations were provided. In Flandoli and Russol@3]
were given It6-Wentzell type formulae, and generalizations to the case of Banach
space type integrators are considered for instance in Di Girolami and Russ®4].
The notion of covariation [X; Y ] (resp. quadratic variation [X; X ]) for two processes
X;Y (resp. a processX) has been introduced in the framework of regularizations
(see Russo and Vallois[119]) and of discretization as well (see Fellmer [66]). For
instance, if X is a nite quadratic variation continuous process, an It6 formula has
been proved for the expansion of (X;), when F 2 C2, see[[19]. When F is of class
C! and X a reversible semimartingale, an 1t6 expansion was established in Russo
and Vallois [120]. An important notion in calculus via regularizations is the one of
Dirichlet process (with respect to a given ltration ( F;)). The notion of Dirichlet
process is a generalization of the concept of semimartingale, and was introduced by
[66] and Bertoin [14] in the discretization framework. The analogue of the Doob-
Meyer decomposition for a Dirichlet process is that it is the sum of a local martingale
M and an adapted processA with zero quadratic variation. Here A is the general-
ization of a bounded variation process. The concept of K;)-weak Dirichlet process
(or simply weak Dirichlet process) was later introduced in Errami and Russo 58]
and Gozzi and RussollT] and applications to stochastic control were considered in
Gozzi and Russo[f0]. Such a process is de ned as the sum of a local martingal&l
and an adapted (¢)-orthogonal processA, in the sense that A;N] = 0 for every
continuous local martingale N. An (F;)-weak Dirichlet process constitutes a natural
generalization of the notion of the one of E)-Dirichlet process. An useful chain rule
was established forF (t; X ;) when F belongs to classC%! and X is a weak Dirichlet
process (with nite quadratic variation), see [[/1]. Such a process is indeed again a
weak Dirichlet process (with possibly no nite quadratic variation).

As far as calculus via regularizations wherX is a adhag integrator process only a
few steps were done: we refer in particular to119], Russo and Vallois[L18], and the
book of Di Nunno, ksendal and Proske [45], see Chapter 15 and references therein.
For instance no 1t6 type formulae have been established and in the discretization
framework only few chain rule results are available forF (X ), when F(X) is not a
semimartingale. In that direction two peculiar results are available: the expansion
of F(X) when X is a reversible semimartingale andF is of classC! with some
Helder conditions on the derivatives (see Errami, Russo and Vallois 59]) and a
chain rule for F(X{) when X is a weak Dirichlet (adhg) process and F is of class
Cl, see Coquet, Jakubowsky, Memin and Slomnsky B0]. The work in [59] has
been continued by several authors, see e.g. Eisenbau@] and references therein,
expanding the remainder making use of local time type processes.

In fact, the notion of (Ft)-Dirichlet process does not t to the framework of cal-
culus with respect to jump processes. Indeed, requiring a process to be of zero
guadratic variation imposes that A is continuous. On the other hand, a bounded
variation process with jumps has a non zero nite quadratic variation, so the general-
ization of the semimartingale is not necessarily represented by the notion of Dirichlet
process. The property of weak Dirichlet process turns out to be a correct general-
ization of the one of semimartingale in the discontinuous framework. This concept
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was extended to the case of jumps processes in the signi cant worl30], by using
the discretizations techniques.

I11.2. Stochastic calculus via regularization and weak Dirichlet processes

with jumps.  In Chapter § |we extend, in a systematic way, stochastic calculus via
regularizations to the case of jump processes, and we carry on the investigations of
the so called weak Dirichlet processes in the discontinuous case.

The rst basic objective consists in developing a calculus via regularization in
the case of nite quadratic variation adhg processes. To this end, we revisit the
de nitions given by [[119] concerning forward integrals (f_tgsp. covariations). LetX
and Y be two @dhg processes. The stochastic integral ;Ysd Xs and the covari-
ation [Y; X] are de ned as the uniform convergence in probability (u.c.p.) limit of
the expressions

Z
[ YPtY;dX) = Y (s)
20;t]

[V XJUP () = (Y((s+ )" YENX(s+)"D  X(s)

X((s+ "D X(8) 4 (50)

" 1

ds: (51)
(0;t]
That convergence ensures that the limiting objects are @dhg, since the approxi-
mating expressions have the same property. For instance a adhg proces¥ will be
called nite quadratic variation process whenever the limit (which will be denoted
by [X; X ]) of
z

(X((s+ ") X(? o

[X; X JFP(t) := ; (52)

(0;1]
exists u.c.p. In [119], the authors introduced a slightly di erent approximation of
[X; X ] when X is continuous, namely

z " 2

C G X )(t) = X5+ ") X" 4. (53)
(0;1]

When the u.c.p. limit of C-(X;X ) exists, it is automatically a continuous process,
since the approximating processes are continuous. For this reason, whef is a jump
process, the choice of approximation[(53) would not be suitable, since its quadratic
variation is expected to be a jump process. In that case, the u.c.p. convergence of
(62) can be shown to be equivalent with a notion of convergence which is associated
with the a.s. convergence (up to subsequences) in measure Gf (X; X )(t) dt. Both
formulations will be used in the development of the calculus.

For a adhg nite quadratic variation process X, we establish, via regularization
techniques, an It6 formula for C12 functions of X of the following form.

Proposition 16. Let X be a nite quadratic variation @dhg process and F : [0; T]
R! R a function of classC%2. Then
Z t z t
F(t;X¢) =F(0; Xg) + @F (s; Xs) ds+ @F (s;Xs)d Xg
0 0
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@ F(s;Xs )dDGX I

+ [F(s:Xs) F(s;Xs ) @F(s;Xs ) Xg]: (54)

st

From Propaosition will easily follow an It6 formula under weaker regularity
conditions on F. Notice that a similar formula was stated in [59], using a discretiza-
tion de nition of the covariation, when F is time-homogeneous.

Proposition 17. Let F :[0; T] R! R be a function of classC?! such that @F is
Helder continuous with respect to the second variable for some 2 [0; 1). Let (Xy)
be a reversible semimartingal)t(e, satisfying

i X' <1  as.
O<s t

Then
Zt Zt 1

F(tX¢) = F(0;X0) + @F (s;Xs)ds+ @F(s;Xs )dXs+ 5[@F(;X);X]t
0 0

+ J(F; X)(1);
where

@F(s; Xs)+ @QF(s; Xs )

X
J(F; X)(1) = F(s;Xs) F(siXs ) >

O<s t

Xs

The proof of Proposition [1§ is based on an accurate separation between the
neighborhood of "big" and "small" jumps, where specic tools are used. To this
end, a fundamental role is played by the two following lemmata, the second one
based on Lemma 1, Chapter 3, in Billingsley[16].

Lemma 18. Let Y; be a @adag function with values in R". Let :R" R"! R
be a uniformly continuos function on each compact, such that (y;y) = 0 for every

y2R". Let0 t; tp 1 ty T.We have
X\l 1Z t; "o )(\]
w - 1]0;3](t) (Y(t+")/\s;Yt) dt ! 1]0;5](ti) (Yti;Yti ); (55)
i=1 ! i=1

uniformly in s2 [0; T].
Lemma 19. Let X be a adhg (@aghd) real process. Let > 0, tg;t1 2 R and
| =[to; t1] be a subinterval of[0; T] such that
i X2 % ost2l: (56)
Then there is"g > 0 such that
sup jXa Xi 3:
a;t2l

ja tj "o

Another signi cant tool for our scopes is a Lemma of Dini type in the case of
@adhg functions, which reads as follows.
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Lemma 20. Let (Gn; n 2 N) be a sequence of continuous increasing functions, let
G (resp. F) from [0; T] to R be a adhg (resp. continuous) function. We set
Fn = G, + G and suppose that~, ! F pointwise. Then

limsup sup jFn(s) F(s)j 2 sup jG(9)j:
n'l s2[0; T] s2[0;T]

The second target of the chapter consists in investigating weak Dirichlet jump
processes. Contrarily to the continuous case, the decompositio)X = M + A is
generally not unique. We introduce the notion of aspecial weak Dirichlet process
with respect to some lItration ( F;). Such a process is a weak Dirichlet process
admitting a decomposition

X =M+ M9+ A; (57)

whereM € is a continuous local martingale,M ¢ is a purely discontinuous local martin-
gale, andA is an (F)-orthogonal, predictable process. Supposing that\g = M§ =0,
the decomposition [57) is unique. In that case the decomposition[ (§7) will be called
the canonical decompositionof X. We remark that a continuous weak Dirichlet
process is special weak Dirichlet.

In the sequel we will denote by X the jump measure associated toX , and by X
its compensator. We will also indicate by DYP the set of all adapted @dhg processes
equipped with the topology of the uniform convergence in probability (u.c.p.), by
A (resp Ajoc) the collection of all adapted processes with integrable variation (resp.
with locally integrable variation), and by A* (resp Al‘;C) the collection of all adapted
integrable increasing (resp. adapted locally integrable) processes.

We start by giving an expansion of F (t; X ;) where F is of classC%! and X is
a adhg weak Dirichlet process of nite quadratic variation. The process (F (t; X))
turns out to be again a weak Dirichlet process, however not necessarily of nite
guadratic variation.

Theorem 21. Let X = M + A be a adhg weak Dirichlet process of nite quadratic
variation. Then, for every F : [0;T] R! R of classC%!, we have

Z,
F(ttX)=F(@O;Xo)+ @F(s;Xs )dMs (58)
Z 0
+ (F(siXs +X) F(siXs Nlfyx 19( *  X)(dsdx)
Z(O;t] R
X@F(5;Xs )1y 1g( *  X)(dsdx)
Z(O;t] R
+ (F(s;Xs +X) F(siXs ) X@F(S;Xs ) 1fxj>1g < (dsdX)+ F(1);
(0;t] R

where F :C%11 DUP js a continuous linear map, such that, for everyF 2 C%%,
it ful lls the following properties.

(@ [ F;N]=0 for every N continuous local martingale.
(b) If A is predictable, then F is predictable.
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Starting from Theorem [21], we are able to provide an analogous chain rule when
X and (F(t; X)) are both special weak Dirichlet processes. This constitutes our
m%in result. We make use of the following conditions.

JF(EX: +Xx) F(tEXe ) X@F(GXt )ilgxjs1g < (dtdx) 2 AL (59)
(0;]1 R Z
ij 1f] xj> 1g X (dt dX) 2 A|+(—Jc: (60)
(0;1 R
Theorem 22. Let X be a special weak Dirichlet process of nite quadratic variation
with its canonical decompositionX = M¢+ M9+ A. Assume that condition (59)
holds. Then, for everyF : [0;T] R! R of classC%!, we have

(1) Yy = F(t;X¢) is a special weak Dirichlet process, with decompositiory =
MF + AF where
z t
M = F(0:X0)+  @F(siXs)d(M®+ Mg
7 0
+ (F(siXs +x) F(siXs ) X@F(s;Xs ))( X *)(dsdx);
©O;t] R
and AF : C%11 DU js a linear map such that, for everyF 2 C%1, AF is
a predictable (Ft)-orthogonal process.
(2) If in addition condition (60) holds, M F reduces to
t
M = F(O;Xo)+ @F(s;Xs)dM¢
Z 0
+ (F(s;Xs +X) F(s:Xs N( X *)dsdx):
0;t] R
We remark that a rst important step in this sense was done in [30], where X
belongs to a bit di erent class of special weak Dirichlet jump processes (of nite
energy) and F does not depend on time and has bounded derivative. InN30] the
authors show that F(X) is again a special weak Dirichlet process. There the un-
derlying process has nite energy, which requires a control of the expectation of the
approximating sequences of the quadratic variation. On the other hand, our tech-
nigues do not require that type of control. Moreover, the integrability condition (@
that we ask onF (t; X ;) in order to get the chain rule in Theorem is automatically
veri ed under the hypothesis on the rst-order derivative considered in [30].

In some circumstances a chain rule may hold even wheR is only continuous if

we know a priori some information of (F (t; X )). No assumption are required in this
case on the @dhag processX .

Proposition 23. Let X be an adapted @dhg process. Letr :[0;T] R! Rbea
continuous function such that the following holds.

(i) F(t;X)= B¢+ A2 whereB has bounded variation andA®is a continuous
F¢)-orthogonal process;

jF(s;Xs +X) F(s;Xs )] *(dsdx) 2 A[..

W 01w
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Then F(t; X{) is a special weak Dirichlet process with decomposition
Z

F(t;X ()= F(0;Xo)+ (F(siXs +x) F(s;Xs )( % X)(dsdx)+ AT (1);

©O;t] R
(61)
where AF is a predictable (F;)-orthogonal process.

Finally, we also introduce a subclass of weak Dirichlet processes, callgshrtic-
ular. A particular weak Dirichlet process X admits a decompositionX = M + A,
where M is an (Ft)-local martingale, and A = V + A° with V a bounded variation
adapted process andA®a continuous adapted processR;)-orthogonal process such
that A8 = 0. Those processes inherit some of the semimartingales features: as in
the semimartingale case, the p@\}rticular weak Dirichlet processes admit a (unique)
canonical decomposition when ©: ] rIXiLfxj>1g (dtdx) 2 Ay : and an integral
representation holds. Under that condition, those particular processes are indeed
special weak Dirichlet processes.

[11.3. Application to BSDEs driven by a random measure. In Chapter § |

we apply the stochastic calculus developed in Chapte|5, and we provide an identi -
cation result for the solution of a forward backward stochastic di erential equation

driven by a random measure, when the underlying procesX is of weak Dirichlet

type. Indeed, given a solution (Y; Z; U) to this forward BSDE, often Y appears to
be of the type u(t; X ;) where u is a deterministic function; by using the stochastic
calculus with respect to weak Dirichlet processes, we are able to identify alséd and

U in terms of u.

More precisely, x a nite time horizon T > Oandlet( ;F;(Ft)t o;P) be agiven
Itered probability space, where (F;); o satis es the usual conditions. We will focus

on general BSDEs of the type
Z Z

Yi= + 8(s; Ys ; Zs)d g+ f{s;e; Ys ; Us(e)) (dsde
(tT] (tT1 R
z z
ZsdMs Us(e) ( )(ds de): (62)
(tT] (tT] R
Here is a random measure on [DT] R with compensator . Besides and
appear three driving random elements: a continuous martingaléM , a non-decreasing
adapted continuous process , and a predictable random measure on [0;T] R,
equipped with the usual product -elds. The other data of equation (62) are a
square integrable random variable , and two measurable functionsg= [0;T]
R?! R,f: [0;T] R3! R.
The Brownian context of Pardoux-Peng [99] appears as a particular case, setting
= =0, s s. There M is a standard Brownian motion and is measurable
with respect to the Brownian - eld at terminal time. In that case the unknown
can be reduced to {f;Z), since U can be arbitrarily chosen. Another important
subcase of ) arises when only the purely discontinuous driving term appeatrs,
i,e. M and vanish. A signi cant example is represented by BSDEs driven by the
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random measure associated to a pure jump process, as in Chapfdr 2, or to a piecewise
deterministic Markov process, as in Chapter| 3.

When the random dependence of " and g is provided by a Markov solution X of
a forward SDE, and is a real function of X at the terminal time T, equation (62)
becomes a forward BSDE. As we have recalled in Sectigh I, this generally constitutes
a stochastic representation of a partial integro-di erential equation (PIDE). Indeed,
solutions of forward BSDEs generate solutions of PIDEs in the viscosity sense. More
precisely, for each given couplet{x) 2 [0; T] R, consider an underlying procesX
given by the solution X ¥ of an SDE starting at x at time t. Let (Y% ;Z%;Utx)
be a family of solutions of the forward BSDE. In that case, under reasonable general
assumptions, the functionv(t;x) := Ytt;x is a viscosity solution of the related PIDE.
A demanding task consists in characterizing the pair Z; U) := ( Zt; U'), in term of
v; this is generally called theidenti cation problem of (Z;U). In the continuous case,
this was for instance the object of Fuhrman and Tessitore[$8]: the authors show
that if v 2 C%1, then Zs = @v(s; Xs); under more general assumptions, they also
associateZ with a generalized gradient ofv. At our knowledge, in the discontinuous
case, the problem of the identi cation of the martingale integrands pair (Z;U) has
not been deeply investigated, except for particular situations, as for instance the
purely discontinuous case treated in Confortola and Fuhrman|28].

In Chapter ] we discuss the mentioned identi cation problem in a quite general
framework by means of the calculus related to weak Dirichlet processes. Whevi is
a deterministic function v of a special semimartingaleX (or more generally a special
weak Dirichlet process with nite quadratic variation), related in a speci c way to
the random measure , we apply the chain rule in Theorem[22 in order to identify
the pair (Z;U).

We x an integer-valued random measure on [0; T] R, with compensator .
We suppose, without loss of generality, that satises (ftg dx) 1 identically.
We set

D=f(t): () ftg R)> 0g;

J=f(t): (I, ftg R)> Og;

K=f(t): (I, ftg R)=1g¢:
We will ask the following condition on

Hypothesis 24.
() D = K [ ([nl[TA]]) up to an evanescent set, where ;) are totally inac-
cessible times such that [[ 1]\ [[TR]1=;,n6 m.

(i) For every predictable time S such that [[S]] K, (fSg;de) = (fSg;de)
a.s.

With respect to a generic processX , we will consider the following assumption
in relation to

Hypothesis 25. X = Xi + X P, where X P is a adhg predictable process satisfying
f XP60g J,andX'isa @dhg quasi-left continuous adapted process satisfying
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f X' 60g D. Moreover, there exists a predictable measurable map ~  ]0; T]
R! R such that

X{() e =~(t ) dP (ds;de-ae. (63)
The hypothesis below will concern a pair of processesx(Y ).

Hypothesis 26. X is a special weak Dirichlet process of nite quadratic variation,
satisfying condition (60). Y: = v(t; X) for some (deterministic) function v : [0; T]
R! Rof classC%! such that F = v and X verify condition (§9).

We have the following result.

Proposition 27. Let satisfy Hypothesig 24f. LetX be a process verifying Hypoth-
esis with decompositionX = X'+ XP, where ~ is the predictable process which
relates and X' in agreement with @) Let (Y;Z;U) be a solution to the BSDE
@) such that the pair (X;Y ) satis es Hypothesis with corresponding function
v. Let X° denote the continuous local martingaleM ¢ of X given in the canonical
decomposition @ If Us (v(s;Xs +~(s;)) Vv(s;Xs ) 2 G,ZOC( ), then the pair
(Z; V) fullls
dhX ¢;Mig
dhMig
Us  (V(s;Xs +~(s;)) V(siXs )= Islk(s) dP (dsde-ae.,  (65)
wherel is a predictable process.

Zs= @QV(s; Xs) dPdnMis-a.e., (64)

In the purely discontinuous framework, i.e. when in the BSDE @)M and
vanish, we make use of the chain ruIel) in Propositior@B, which allows, for a
general adhg processX, to expressv(t; X {) without requiring any di erentiability
on v. In particular Proposition 23]does not ask X to be a special weak Dirichlet
process, provided we have some a priori information on the structure of(t; X ;). We
need the following condition on a pair of processesX;Y ).

Hypothesis 28.

() Y = B + A% with B a bounded variation process andA° a continuous
(F¢)-orthogonal process;
@iy Yy = v(t; X ) for some continuous deterministic functionv : [0;T] R! R,
satisfying the integrability condition
z

o ij(t;Xt +X) V(X ) *(dtdx) 2 Af. (66)

The identi cation in that case reads as follows.

Proposition 29. Let satisfy Hypothesis[24. LetX verify Hypothesis[2% with
decompositionX = X'+ XP, where ~ is the predictable process which relates and
X1 in agreement with (63). Let (Y;U) be a solution to the BSDE (62) with M =0
and =0, such that (X;Y ) satis es Hypothesis|28 with corresponding functionv.
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If in addition Us (v(s;Xs +~(s;)) V(s;Xs )) 2 G|20C( ), then there exists a
predictable procesds such that

Us (v(s;Xs +~(5;)) V(s;Xs )= lslk(s) dP (dsde-a.e. (67)

We remark that in most of the literature on BSDEs, the measures; and
of equation @) are non-atomic in time. As we have underlined in Chapter[]4, a
challenging case arises when one or more of those predictable processes have jumps
in time. Our approach to the identi cation problem also applies to forward BSDESs
presenting predictable jumps. As an example, we provide an identi cation result for
a BSDE driven by the random measure associated to a PDMP taking values in a
bounded real interval.

Further remarks and future developments of the thesis

We take the occasion to emphasize that every proof reported in the thesis is new;
on the other hand, when a known result is needed, we give references to where a
proof can be found. We also underline thatChapter 1 |is based on Bandini and
Confortola [4], Chapter 2[ |on Bandini and Fuhrman [7], Chapter 3 |on Bandini [3],
Chapter 4 | on Bandini [2], Chapters § | and [6] respectively on Bandini and Russo
[9] and [8].

Some challenging issues arising in this work are left for future research. First of
all, as recalled in Sectior] I1.1, our existence and uniqueness result for BSDEs driven
by general, possibly non quasi-left continuous, random measures opens to the pos-
sibility of studying optimal control problems for PDMPs with bounded state spaces
by means of BSDEs techniques. This could allow to provide nonlinear Feynman-
Kac representation formulae for the value functions of those control problems. In
particular, combining ideas from Chapters[3 and 4, it might turn out that the value
function of the optimal control problem of a PDMP with a bounded state space solves
a backward stochastic di erential equation with constrained jumps. Notice that it
would be interesting to apply to this context the identi cation results obtained in
Chapter [6, which are already conceived for BSDEs driven by random measures with
possible predictable jumps. Another challenging development might consist in ex-
tending the results obtained in Chapter[Z to a non-Markovian pure jump framework.
Optimal control problems for non-Markovian stochastic di erential equations driven
by a Brownian motion have been recently studied with the BSDEs techniques by
means of the control randomization approach, see Fuhrman and Phanil/]. In this
context the constrained BSDE characterizing the value function can be seen as a
path-dependent version of the HIB equation. Notice that the control randomization
method does not rely on the path-dependent HIB equation associated by dynamic
programming principle to the value function in the non-Markovian context. This
allows to circumvent delicate issues of dynamic programming (as originally studied
in El Karoui [[49] for general non-Markovian stochastic control problems), viscosity
solutions and comparison principles for fully nonlinear path-dependent PDEs, as re-
cently studied in Peng [106], Ekren, Keller, Touzi and Zhang [48] and Tang and
Zhang [127], see also Fabbri, Gozzi and Swiech6[l] for HIB equations in in nite
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dimension arising typically for stochastic systems with delays. This suggests in par-
ticular an original approach to derive the HJB equation for the value function of
stochastic control problem from the BSDE representation, hence without dynamic
programming principle. The generalization of these results to the jump case has not
yet been investigated, and could be obtained by mixing the methodology ing7] with
the speci ¢ theory for optimal control of pure jump processes developed in Chapter
[2. Finally, we emphasize that the chain rule type expansions provided in Chapter
[§ may be helpful to get veri cation theorems for stochastic optimal control prob-
lems of general jump processes. In the di usive context, this was done in Gozzi and
Russo [f0] which treated optimal control problems of continuous processes without
control in the di usion. Those veri cation theorems have the advantage of requiring
less regularity of the value function than the classical ones, which need instea@?!
regularity in time and C? in space (see e.g. Fleming and Soneb%]), and they can
be applied also to problems with pathwise optimality and optimality in probabil-
ity. It would be also judicious to generalize our results of Chapterd b and 6 to the
case of path-dependent adhg processes. In the case of path-dependent continuous
processes, a rst step for extending the chain rules of Chaptefr|5 was done i@3].






Chapter 1

Optimal control of
semi-Markov processes
with a BSDE approach

1.1. Introduction

In this chapter we study optimal control problems for a class of semi-Markov
processes using a suitable class of backward stochastic di erential equations, driven
by the random measure associated to the semi-Markov process itself.

Let us brie y describe our framewaork. Our starting point is a semi-Markov pure
jump processX on a general state spacé. It is constructed starting from a jump
rate function (x;#) and a jump measureA 7! Q(x;#;A) on E, depending onx 2 E
and# 0. Our approach is to consider a semi-Markov pure jump process as a two
dimensional time-homogeneous and strong Markov procesgXs; s); S Og with its
natural Itration F and a family of probabilities P<* for x 2 E, # 2 [0;1 ) such that
P (Xog = X; o= #) = 1. If the process starts from (x;#) at time t = O then the
distribution of its rst jump time Ty under P** is described by the formula

z #+s
P#(T1 >s) = exp (x;r)dr ; (1.1)
#

and the conditional probability that the process is in A immediately after a jump at
time T = sis

P (X1, 2 AjTi = 8) = Q(X;S; A):
X is called the state of the process at times, and s is the duration period in this
state up to moment s:

o+ S ifXp=Xs 806 p6 s; p;s2R,
s supfp:06 p6 s; X, 6 Xsg otherwise.

S:

We note that X alone is not a Markov process. We limit ourselves to the case
of a semi-Markov processX such that the survivor function of Ty under P<0 is

33
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absolutely continuous and admits a hazard rate function as in ). The holding

times of the process are not necessarily exponentially distributed and can be in nite
with positive probability. Our main restriction is that the jump rate function is

uniformly bounded, which implies that the processX is non explosive. Denoting by
T, the jump times of X, we considerlg,he marked point processTn; X1,) and the

associated random measur@(dtdy) =, (1,:x;,)on(0;1) E, where denotes
the Dirac measure. The dual predictable projectionp-of p (shortly, the compensator)

has the following explicit expression

p(dsdy) = (Xs ; s )Q(Xs ; s ;dy)ds:

In Section we address an optimal intensity-control problem for the semi-
Markov process. This is formulated in a classical way by means of a change of
probability measure, see e.g. El Karoui49], Elliott [ 57] and Bemaud [18]. We
de ne a classA of admissible control processesus)sy o 17; for every xed t 2 [0; T]
and (x;#) 2 E [0;1), the cost to be minimized and the corresponding value
function are

Z1 ¢
IGxH#u() = E I(t+ $;Xs; sius)ds+ g(XT ¢ T 1) ;
0

v(t; X; #)

inf  J(t;x;#; ;
ul(n)ZA (t;x;#,u())

where g; | are given real functions. HereE’lj;f denotes the expectation with respect

to another probability Pﬁ’f depending ont and on the control processu and con-
structed in such a way that the compensator underPﬁ;f equalsr(t+s;Xs ; s ;V¥;Us)
(Xs ; s ) Q(Xs ; s ;dy)ds, for some functionr given in advance as another da-
tum of the control problem. Since the process Xs; s)s o We want to control is
time-homogeneous and starts from X;#) at time s = 0, we introduce a temporal
translation which allows to de ne the cost functional for all t 2 [0;T]. For more

details see RemarkK1.3]2.

Our approach to this control problem consists in introducing a family of BSDEs
parametrized by (t;x;#) 2 [0;T] E [0;1):
Z: .2
Yo+ 2% (y) a(d dy)
S E
Zr »
=gX7 T O+ ft+ ;X 5 ;Z%() d; (1.2)
S
s2 [0; T t], where the generator is given by the Hamiltonian functionf de ned
foreverys2 [0; T], (x;#)2 E [0;+1), 22 L%(E;E; (x;#)Q(x;#;dy)), as
z
n 0
f(s;x;#,2()) = in21‘U I(s;x;#,u)+  z(y)(r(s;x;#y;u) 1) (x#) Q(x; # dy)
u E
(1.3)
Under appropriate assumptions we prove that the optimal control problem has a
solution and that the value function and the optimal control can be represented by
means of the solution to the BSDE [1.2).
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Backward equations driven by random measures have been studied in many
papers, within Tang and Li [128], Barles, Buckdahn and Pardoux [LO], Royer [114],
Kharroubi, Ma, Pham and Zhang [87], Xia [131], and more recently Becherer[12],
Cepey and Matoussi [33], Kazi-Tani, Possamas and Zhou [84], [83], Confortola and
Fuhrman [27], [28]. In many of them, among which [128], [10], [114] and [87], the
stochastic equations are driven by a Wiener process and a Poisson process. A more
general result on BSDESs driven by random measures is given b{L81], but in this case
the generatorf depends on the procesz in a speci ¢ way and this condition prevents
a direct application to optimal control problems. In [[12], [33], [84], [83], the authors
deal with BSDEs with jumps with a random compensator more general than the
compensator of a Poisson random measure; here are involved random compensators
which are absolutely continuous with respect to a deterministic measure, that can be
reduced to a Poisson measure by a Girsanov change of probability. Finally, in2[/]
have been recently studied BSDEs driven by a random measure related to a pure
jump process, and in [28] the pure jump Markov case is considered.

Our backward equation ) is driven by a random measure associated to a
two dimensional Markov process K; ), and his compensator is a stochastic random
measure with a non-dominated intensity as in [28]. Even if the associated process
is not pure jump, the existence, uniqueness and continuous dependence on the data
for the BSDE (|1:2]) can be deduced extending in a straightforward way the results
in [28].

Concerning the optimal control of semi-Markov processes, the case of a nite
number of states has been studied in Chitopekaid4], Howard [74], Jewell [81], Osaki
[95], while the case of arbitrary state space is considered in Ros&12], Gihman and
Skorohod K9], and Stone [125]. As in [24] and in [125], in our formulation we
admit control actions that can depend not only on the state process but also on
the length of time the process has remained in that state. The approach based on
BSDEs is classical in the di usive context and is also present in the literature in
the case of BSDEs with jumps, see as instance Lim and Quene®d]. However,
it seems to us be pursued here for the rst time in the case of the semi-Markov
processes. It allows to treat in a uni ed way a large class of control problems, where
the state space is general and the running and nal cost are not necessarily bounded.
We remark that, comparing with [[125], the controlled processes we deal with have
laws absolutely continuous with respect to a given, uncontrolled process; see also a
more detailed comment in Remark{ 1.3.B below. Moreover, inl25] optimal control
problems for semi-Markov processes are studied in the case of in nite time horizon.

In Section we solve a nonlinear variant of the Kolmogorov equation for the
process K; ), with the BSDEs approach. The process K; ) is time-homogeneous
and Markov, but is not a pure jump process. In particular it has the integro-
di erential in nitesimal ggnerator

C (x#):=@ (X #)+ E[ (y;0)  (G#)] (G#)Q(x#,dy); (x#)2E [0;1):

The additional di erential term @ does not allow to study the associated nonlinear
Kolmogorov equation proceeding as in the pure jump Markov processes framework
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(see B8]). On the other hand, the two dimensional Markov process Ks; s)sso
belongs to the larger class of piecewise-deterministic Markov processes (PDMPSs)
introduced by Davis in [35], and studied in the optimal control framework by several
authors, within Davis and Farid [[36], Vermes [129], Dempster [40], Lenhart and
Yamada [91]. Moreover, we deal with a very speci c PDMP: taking into account
the particular structure of semi-Markov processes, we present a reformulation of the
Kolmogorov equation which allows us to consider solutions in a classical sense. In
particular, we notice that the second component of the processXs; s)sso is linear

in s. This fact suggests to introduce the formal directional derivative operator

v(t+ h;x;#+ h)  v(tx#).
h ;
and to consider the following nonlinear Kolmogorov equation
E Dv(t;x;#) + Lv(t;x;#)+ f(Ex# v (Ex#);v(t; ;0) v(tx#))=0;
t2[0;T, x2E;#2[0;1); (1.4)

(DV)(t; x; #) = Iim0

V(T X #) = 9(x;#);

where 7

L (x#):= E[ (y;0)  (x#)] (x#)Q(x;#,dy); (X;#)2E [0;1):

Then we look for a solution v such that the map t 7! v(t;x;t + c¢) is absolutely
continuous on [QT], for all constantsc 2 [ T;+1 ). The functions f;g in (
are given. While it is easy to prove well-posedness 0.4) under boundedness
assumptions, we achieve the purpose of nding a unique solution under much weaker
conditions related to the distribution of the process (X; ): see Theoren|1.4J7. To
this end we need to de ne a formula of 1t6 type, involving the directional derivative
operator D, for the composition of the process Xs; s)s>0 With functions v smooth
enough (see Lemma 1.4]2 below).

We construct the solution v by means of a family of BSDEs of the form ). By the
results above there exists a unique solution Yo" ; Z5¥ )soo;7 1y @and the estimates
on the BSDEs are used to prove well-posedness df (1.4). As a by-product we also
obtain the representation formulae

VX #) = Yoi s Yo = V(tESiXsr s)i Z3F (V) = V(t+siyi0) V(t+siXs 5 s )
which are sometimes called, at least in the di usive case, non linear Feynman-Kac
formulae.

Finally we can go back to the original control problem and observe that the associated
Hamilton-Jacobi-Bellman equation has the form {1.4) wheref is the Hamiltonian

function ([L.3). By previous results we are able to identify the HIB solution v(t; x; #),
constructed probabilistically via BSDEs, with the value function.

1.2. Notation, preliminaries and basic assumptions

1.2.1. Semi-Markov Jump Processes. We recall the de nition of a semi-Markov
process, as given, for instance, ing9]. More precisely we will deal with a semi-
Markov process with in nite lifetime (i.e. non explosive). Suppose we are given
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a measurable spaceK; E), a set and two functions X : 0;1)! E,

[0;1)! [0;1). Foreveryt 0, we denote byF; the -algebra ((Xs; s); S2
[0;t]). We suppose that for everyx 2 E and # 2 [0;1 ), a probability P<* is given
on ( ;Fp:1)) and the following conditions hold.

(1) E contains all one-point sets. denotes a point not included in E.

(2) P#(Xo=x; o=#)=1forevery x2 E,#2[0;1).

(3) Forevery s; p> 0 andA 2 E the function (x; #) 7! P#(Xs2 A; s6 p)is
E B -measurable.

(4) Forevery0 t s,p>0,andA 2 Ewe haveP**(Xs2 A; s6 pjFy) =
PXtit(Xs2 A; s6 p), P#-as.

(5) All the trajectories of the process X have right limits when E is given the
discrete topology (the one where all subsets are open). This is equivalent
to require that for every ! 2 and t O there exists > 0 such that
Xs(P)= X¢(!)fors2[t;t + 1.

(6) All the trajectories of the processa are continuous from the right piecewise
linear functions. For every! 2 ,if [ ; ) is the interval of linearity of

(')then s(!)= (')+s and X (!)= Xg(!);if is a discontinuity
pointof (!)then 4+(!)=0and X (!)6 X (!).

(7) For every ! 2 the number of jumps of the trajectory t 7! X(!) is nite
on every bounded interval.

X Is called the state of the process at times, s is the duration period in this state
up to moment s. Also we call X s the phaseand ¢ the ageor the time component of

a semi-Markov process.X is a non explosive process because of condition (7). We
note, moreover, that the two-dimensional process X; ) is a strong Markov process
with time-homogeneous transition probabilities because of conditions (2), (3), and
(4). 1t has right-continuous sample paths because of conditions (1), (5) and (6), and
it is not a pure jump Markov process, but only a PDMP.

The class of semi-Markov processes we consider in the chapter will be described
by means of a special form of joint lawR under P5# of the rst jump time Ty, and
the corresponding positionX,. To proceed formally, we x Xo = x 2 E and de ne
the rst jump time

Ty=inffp>0: X6 Xxg;
with the convention that Ty =+ 1 if the indicated set is empty.
We introduce S := E [0; +1 ) an we denote bySthe smallest -algebra containing
all sets ofE  B([0; +1 )). (Here and in the following B() denotes the Borel -
algebra of a topological space ). Take an extrapoint 2 E anddene X1 (! )=
forall! 2 ,sothat X1, : ! E[f gis well dened. Then on the extended
spaceS[f ( ;1 )gwe consider the smallest -algebra, denoted byS®", containing
f( ;1)gandall sets ofE B([0; +1 )). Then (Xt,; T1) is a random variable with
values in (S[f ( ;1 )g;S™. Its law under P* will be denoted by R(x;#; ).

We will assume that R is constructed from two given functions denoted by and
Q. More precisely we assume the following.
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Hypothesis 1.2.1. There exist two functions
:S! [0;1)and Q:S E! [0;1]
such that
O (x;#) 7! (x;#) is Smeasurable;
(i) sup(xs)2s (X:#)6 C2 R*;
(i) (x;#) 7' Q(x;#; A) is Smeasurable8A 2 E;
(iv) A 7! Q(x;#;A) is a probability measure onE for all (x; #) 2 S.

We de ne a function H onE [0;1 ] by
RS .
H(x;s):=1 e o (nar. (1.5)

Given and Q, we will require that for the semi-Markov process X we have, for
every (X;#)2 SandforA2E,0 c<d 1 ,

1 Z d

T AKH . Q(x,s,A)d—SH(x,# + s)ds

Z d z #+s

= Q(Xx;5;A) (x;# + s) exp (x;r)dr ds; (1.6)
#

C

R(x;#A (c;d) =

where R was described above as the law of{t,; T1) under P*#. The existence of
a semi-Markov process satisfying 6) is a well known fact, see for instanc&25]
Theorem 2.1, where it is proved thatX is in addition a strong Markov process. The
nonexplosive character ofX is made possible by Hypothesil—(ii).

We note that our data only consist initially in a measurable space E; E) (E
contains all singleton subsets oE), and in two functions , Q satisfying Hypothesis
[1.2.1. The semi-Markov processX can be constructed in an arbitrary way provided

holds.
Remark 1.2.2.

(1) Note that (1.6) completely speci es the probability measure R(x;#; ) on
(S[f ( ;1)g S™): indeed simple computations show that, fors 0,

PX;# (Tl 2 (S; 1 ]) =1 R(X, #.E (O, S])
= exp " xndr (1.7
#

and we clearly have
R
PH(Ti=1) = ROGHT( ;1)g)=exp . (gr)dr :

Moreover, the kernelR is well de ned, becauseH (x;#) < 1forall (x;#) 2 S

by Hypothesis[1.2.1-(ii).
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()

3) In

(4)

The data and Q have themselves a probabilistic interpretation. In fact if
in (L.7) we set# = 0 we obtain
Z

S

PXO(Ty >s) = exp (x;r)dr =1 H(x;s): (1.8)
0

This means that under P59 the law of T, is described by the distribution
function H, and

Ghx#)

A TE5)

Then (x;#) is the jump rate of the processX given that it has been in
state x for a time #.

Moreover, the probability Q(x;s; ) can be interpreted as the conditional
probability that X1, isin A 2 E given that T; = s; more precisely,

PH# (X1, 2 ATi< 1j T1)= Q6T A) Ir<1 ;s P as:

[[69] the following observation is made: starting from Tp = t de ne
inductively Th+1 = inffs > T, : Xs 6 Xr,0; with the convention that
Tn+1 = 1 if the indicated set is empty; then, under the probability P*#,
the sequence of the successive states of the semi-MarkdVv is a Markov
chain, as in the case of Markov processes. However, while for the latter the
duration period in the state depends only on this state and it is necessarily
exponentially distributed, in the case of a semi Markov process the duration
period depends also on the state into which the process moves and the
distribution of the duration period may be arbitrary.

In [69] is also proved that the sequence Xt,;Tn)n o IS a discrete-time
Markov process in S[f ( ;1 )g; S") with transition kernel R, provided
we extend the de nition of R making the state ( ; 1 ) absorbing, i.e. we
de ne

R( ;1;S)=0; R( ;1:;f( ;1)9=1

Note that (X1,;Tn)n o IS time-homogeneous.

This fact allows for a simple description of the process<. Suppose one
starts with a discrete-time Markov process (n; n)n o in S with transition
probability kernel R and a given starting point (x;#) 2 S (conceptually,
trajectories of such a proces& are easy to simulate). One can then de ne a
processY in E setting Y; = n =0 nl[,:.m)(t), where N =supfn 0 :

n 6 1g . Then Y has the same law as the proces¥ under P*#.

(5) We stress that ) limits ourselves to deal with a class of semi-Markov

processes for which the survivor functionT; under P%° admits a hazard
rate function
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1.2.2. BSDEs driven by a Semi-Markov Process. Let be given a measurable
space E; E), a transition measure Q on E and a given positive function , satisfying
Hypothesis[1.2.]. LetX be the associated semi-Markov process constructed out of
them as described in Sectio 1.2]1. We x a deterministic terminal timeT > 0 and
a pair (x;#) 2 S, and we look at all processes under the probabilityP** . We denote
by F the natural ltration ( Ft)iz[0;1 ) Of X. Conditions 1, 5 and 6 above imply
that the lItration F is right continuous (see [L8], Appendix A2, Theorem T26).
The predictable -algebra (respectively, the progressive -algebra) on [0;1)is
denoted by P (respectively, by Prog). The same symbols also denote the restriction
to [0; T].

We de ne a sequence [n)n>1 Of random variables with values in [Q 1 ], setting

To(')=0; Tnsaa (V) =inffs>Ta(): Xs(!) 6 Xv,(1)g; (1.9)

with the convention that Th+1(!) = 1 if the indicated set is empty. Being X a
jump process we havel,(! ) 6 Th (V) if Th+1 (') < 1, while the non explosion of
X meansthatTh+1 (! ) !'1 . We stress the fact that (T)n>1 coincide by de nition

with the time jumps of the two dimensional process ¥; ).

For! 2 we dene aXrandom measureon ([0; 1 ) E; B[0; 1) E) setting
p(;C)= Li(r,¢yxs,(p2ces C2B[0;1) E (1.10)

n>1
The random measure (Xs ; s )Q(Xs ; s ;dy)ds is called the compensator, or
the dual predictable projection, of p(ds;dy). We are interested in the following
family of backward equations driven by the compensated random measurg(ds dy) =
p(ds dy) (Xs ;s )Q(Xs ; s ;dy)ds and parametrized by (x; #): P*-a.s.,
Z:Z Z;
Ys+ Ze(y)qdrdy) = g(X1; 1)+ f Xy Y Ze() dr s2 ][0TI
S E S
(1.11)
We consider the following assumptions on the datd and g.
Hypothesis 1.2.3. h _
[
(1) The nal condition g:S! R is Smeasurable andEX? jg(X7; 1)j° < 1.
(2) The generatorf is such that
(i) foreverys2 [0;T], (x;#)2 S, r 2 R, f is a mapping
f(six#r; ) L2E B (%#)Q(x#dy)) ! R;
(ii) for every bounded andE-measurablez : E'! R the mapping
(s;x;#,r) TV fF(s;x;#,2()) (1.12)
isB(0; T]) S B(R)-measurable.

(i) There existL > 0, L°> 0 such that for everys 2 [0; T], (x;#) 2 S,
nr%2 R;z; 292 L2(E; E; (x;#) Q(x;#; dy)) we have
f(s;x;#rnz()) f(s;x#r%z9))

Z ) 1=2
6Lor P+l z(y) )T (x#)Qx#dy) 0 (113)
E
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(iv) We have
Z 1

S if (s;Xs; §0;0)j%°ds < 1: (1.14)
0

Remark 1.2.4. Assumptions (i), (ii), and (iii) imply the following measurability
properties of f (s; Xs; s; Ys; Zs()):

if Z 2 L?(p), then the mapping

(Esiy) THE(siXs (1) s (1)iyiZs(h )
is P B(R)-measurable;
if, in addition, Y is a Prog-measurable process, then

(Gs)7HE(siXs (M) s (1) Ys(h)iZs(h )
is Prog-measurable.

We introduce the spaceM*# of the processes Y;Z) on [0; T] such that Y is

real-valued and P rog-measurable,Z : E! RisP E-measurable, and
Z Z:Z
§(Y;2)jige = B jYsj®ds+ IZs(V)i® (Xs; s) Q(Xs; s;dy)ds
0 0 E
<1:

The spaceM*# endowed with this norm is a Banach space, provided we identify
pairs of processes whose di erence has norm zero.

Theorem 1.2.5. Suppose that Hypothesis 1.2|3 holds for sone; #) 2 S.
Then there exists a unique pair(Y;Z) in M** which solves the BSDE). Let
moreover (Y% Z9 be another solution in M*# to the BSDE ) associated with
the driver f “and nal datum ¢° ThenZ

T

sup E¥* jYs Y32 + E¥* iYs  YJ2ds
s2[0; T] 0
z.:2

FESIZs) ZEWIF (X 9) Qs sidy)ds

6 CEX* jg(X1) g¥X71)j2
T

+CEY (X siYSZA)) fUsiXs s YSZA)i%ds 5 (L.15)
0

where C is a constant depending onT, L, L2

Remark 1.2.6. The construction of a solution to the BSDE (1.11) is based on the
integral representation theorem of marked point process martingales (see, e.g33]),
and on a xed-point argument. Similar results of well-posedness for BSDEs driven
by random measures can be found in literature, see, in particular, the theorems given
in [28], Section 3, and in [L2]. Notice that these results can not be a priori straight
applied to our framework: in [12] are involved random compensators which are
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absolutely continuous with respect to a deterministic measure, instead in our case
the compensator is a stochastic random measure with a non-dominated intensity;
[28] apply to BSDEs driven by a random measure associated to a pure jump Markov
process, while the two dimensional processX; ) is Markov but not pure jump.
Nevertheless, under Hypothesi3, Theorem 3.4 and Proposition 3.5 i28] can
be extended to our framework without additional di culties. The proofs turn out

to be very similar to those of the mentioned results, and we do not report them here
to alleviate the presentation.

1.3. Optimal control of semi-Markov processes

1.3.1. Formulation of the problem. In this section we consider again a mea-
surable space E; E), a transition measure Q and a function satisfying Hypothesis
[1.2.1. The data specifying the optimal control problem we will address to are an
action (or decision) spaceU, a running cost function |, a terminal cost function g,
a (deterministic, nite) time horizon T > 0 and another function r specifying the
e ect of the control process. We de ne an admissible control process, or simply a
control, as a predictable process {s)s, . 7] With values in U. The set of admissible
control processes is denoted byA. We will make the following assumptions:

Hypothesis 1.3.1.

(1) (U;V) is a measurable space.
(2) Thefunctionr :[0;T] S E U! RisB(0;T]) S E U-measurable
and there exists a constantC, > 1 such that,
06 r(t;x;#;y;u) 6 Cy; t2[0;T]; (X;#)2S;y2E;u2U: (1.16)

(3) The function gr; S! R is Smeasurable, and for all xedt 2 [0; T],
i

B jogX1 o 1 0 <1; 8(x#)2S: (1.17)

(4) The function | : [0; T] S U! RisB(0T]) S U-measurable and
there exists > 1 such that, for every xed t 2 [0; T], for every (x;#) 2 S

andu() 2 A,
infugg I (6 X;#;u) > 1 ; i
B g tinfuzu I(t+ siXs simi®ds <1 (1.18)

R
B (;r Ijl(t"' S; Xs; s;Ug)jds < 1:

To any (t;x;#) 2 [0; T] S and any control u( ) 2 A we associate a probability
measurePﬁ;f by a change of measure of Girsanov type, as we now describe. Recalling
the de nition of the jump times T, in (L.9), we de ne, for every xed t 2 [0; T],

ZL

Ls=exp (L rt+ X 5 5yiu)) (X5 )Q(X 5 dy)d
% 0 E
rt+ Tns X1, 3 1w X103 UTL)S
n>1Th6s
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forall s2 [0; T t], with the convention that the last product equals 1 if there are
no indicesn > 1 satisfying T, 6 s. As a consequence of the boundedness assumption
on Q and it can be proved, using for instance Lemma 4.2 ini27], or [18] Chapter
VIII Theorem T11, that for every xed t 2 [0; T] and for every > 1 we have

B LY, <1; B LY, =1 (1.19)
and therefore the procesd.! is a martingale (relative to P*# and F). De ning a prob-
ability P57 (d) = L% (1) P¥#(d! ), we introduce the cost functional corresponding
tou()2 A as

Z T t
Jtx#u () = ESS I(t+ s;Xs; s;Us)ds+ g(Xt ¢ 7 1) 5 (1.20)
0

where EJj; denotes the expectation underP}; . Taking into account (1.17), (L.18)
and ), and using Helder inequality it is easily seen that the cost is nite for
every admissible control. The control problem starting at (x;#) at time s = 0
with terminal time s= T t consists in minimizing J (t;x;#; ) over A. We nally
introduce the value function

v(t;x;#) = ui(n)fZAJ(t; x;#u()); t2[0; T]; (x;#)2S:

The previous formulation of the optimal control problem by means of change of
probability measure is classical (see e.g/4B], [57], [18]). Some comments may be
useful at this point.

Remark 1.3.2.

1. The particular form of cost functional ([L.20) is due to the fact that the
time-homogeneous Markov processXs; s)¢.o Satis es

P#(Xo= X o=#)=1,
the introduction of the temporal translation in the rst component allows
ustodene J(t;x;#u()) forall t2][0; T].

2. We recall (see e.g.[18], Appendix A2, Theorem T34) that a processu is
F-predictable if and only if it admits the representation

X
us(M) = ud (1) Lty 0 1(S)

n>0

where foreach {;s ) 7! u&”)(! )is Fo.1,; B(R")-measurable, withFg. 1,1 =

(Ti; X1,; 06 1 6 n) (see e.g. 18], Appendix A2, Theorem T30). Thus the
fact that controls are predictable processes admits the following interpreta-
tion: at each time T, (i.e. immediately after a jump) the controller, having
observed the random variablesT;; X1,; (0 6 i 6 n), chooses his current
action, and updates her/his decisions only at timeTy+1 .

3. It can be proved (seell5] Theorem 4.5) that the compensator ofp(ds dy)
under Py is

rit+s;Xs ; s ;¥;us) (Xs ;s )Q(Xs ; s ;dy)ds;
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whereas the compensator of(ds dy) under P* was (Xs ; s ) Q(Xs ; s ;dy)
ds. This explains that the choice of a given controlu( ) a ects the stochastic
system multiplying its compensator by r (t + s;X;#;Y; Usg).

4. We call control law an arbitrary measurable function u: [0; T] S! U.
Given a control law one can de ne an admissible controlu setting us =
u(s;Xs 5 s )

Controls of this form are called feedback controls. For a feedback control the
compensator ofp(dsdy) is r(t + s;Xs ; s ;V;U(S$;Xs ;5 s ) (Xs ;s )
Q(Xs ; s ;dy) ds under Pﬁf Thus, the process K; ) under the opti-
mal probability is a two-dimensional Markov process corresponding to the
transition measure

r(t+ s;x#y;u(s;x;#)) (X #) Q(x; #; dy)

instead of (x;#) Q(x;#;dy). However, even if the optimal control is in the
feedback form, the optimal process is not, in general, time-homogeneous
since the control law may depend on time. In this case, according to the
de nition given in Section [[.2} the processX under the optimal probability

is not a semi-Markov process.

Remark 1.3.3. Our formulation of the optimal control should be compared with

another approach (see e.g. [125]). In [[125] is given a family of jump measures

on EfQ(x;b; ); b2 Bg with B some index set endowed with a topology. In the

so calledstrong formulation a control u is an ordered pair of functions (¢ ) with
0:8! R*, :S! B such that

0 and areS measurable;

8x 2 E; 9t(x) > 0: é(x) Ax;r)ydr< 1;
Q(; ;A)is B*-measurable8A 2 E:

If A is the class of controls which satis es the above conditions, then a control
u=( % )2 A determines a controlled procesX ! in the following manner. Let

R )
HU(s):=1 e o N g(xs)2s;

and suppose that X§; ¢) = (x;#). Then at time 0, the process starts in state x
and remains there a random timeS; > 0, such that

HY(# +s) HY(x#)
1 HY(x;#) '
At time S; the process transitions to the stateX “l, where
P X& 2 AjS1 = Q(x; (x;S1);A):
The process stays in stateX g, for a random time S, > 0 such that
P S, 6 sjS1; Xg, = HY(Xg,;9)
and then at time S; + S, transitions to X§1+SZ, where

P# X& s, 2AISE XE; S2 = Q(XE,; (X§,:S2):A):

P#£S, 6 sg=

(1.21)
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We remark that the processX Y constructed in this way turns out to be semi-Markov.

We also mention that the class of control problems speci ed by the initial data
Oand is in general larger that the one we address in this chapter. This can be
seen noticing that in our framework all the controlled processes have laws which
are absolutely continuous with respect to a single uncontrolled process (the one
corresponding tor 1) whereas this might not be the case for the rate measures
Ax;#) Q(x; (x;#);A) whenu = (¢ ) ranges in the set of all possible control
laws.

1.3.2. BSDEs and the synthesis of the optimal control. We next proceed to
solve the optimal control problem formulated above. A basic role is played by the
BSDE: for every xed t 2 [0; T], P%*-a.s.
Z: Z
Yo+ 2’ (y)a(d dy)
s E
Z1 ¢
=oXt ;T ) ft+ ;X 5 52¥() d; (1.22)
S
8s2 [0; T t], with terminal condition given by the terminal cost g and generator
given by the Hamiltonian function f de ned for every s 2 [0; T]; (X;#) 2 S;z 2
L2(E;E (x#) Q(x;#:dy)), as
n 0
Pz =nf - lsxamu)+ - zi)(r(sxi#yiu) 1) (6#H)Q(# dy)
(1.23)
In (L.22) the superscript (x; #) denotes the starting point at time s = 0 of the process
(Xs; s)s>0, While the dependence ofY and Z on the parametert is related to the
temporal horizon of the considered optimal control problem. For everyt 2 [0 T],
we look for a processYgy” (! ) adapted and @dag and a processZ (Ly) P E-
measurable satisfying the integrability conditions
T t 2
EX# Yo ds <1
AR ,
BFZH ) (X 9 QX sidy)ds <1
One can verify that, under Hypothesis[1.3.]1 on the optimal control problem, all
the assumptions of Hypothesig 1.2]3 hold true for the generatof and the terminal
condition g in the BSDE ({L.22). The only non trivial veri cation is the Lipschitz
condition ([L.13), which follows from the boundedness assumptior| (1.16). Indeed, for
eve£ys 2[0; T], (x;#) 2 S, z; 2°2 L2(E; E; (x;#) Q(x; #; dy)),

EZ(y)(r(S;X;a‘#;y;U)) 1) (x;#) Q(x; #;dy)
y
6 v 2Ay) (r(six#y;u) 1) (6#) Q(x; # dy)
y
+ Ezo(y)(r(s;x;#;y;U) 1) (x;#) Q(x;#; dy)
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Z 1=2
6 (Cr +1)( (x#)Qx;#E))*? _ ) 29y) 2 (x#) Q(x; #dy)
Z
+ Kzo(y)(r(s:X:#;y:U) 1) (x;#) Q(x; #;dy);

so that, adding I(s; X;#;u) on both sides and taking the in mum over u 2 U, it

follows that
Z 1=2

f(s;x;#;2)6 L z(ty) z4y) 2 (x; #) Q(x; #; dy) +f(s;x;#,29; (1.24)
E

P —— . .
whereL := (C; +1)SUP (x#)2s (x;#) exchangingz and z°roles we obtain [1.13).
Then by Theorem[1.2.5, for every xedt 2 [0; T], for every (x;#) 2 S, there
exists a unique solution of [1.22) ¥oi’; ZX )s2i0.7 1, and Y5 is deterministic.
Moreover, we have the following result:

Proposition 1.3.4.  Assume that Hypothesef 1.3]1 hold. Then, for every2 [0; T],
(x;#) 2 S, and for everyu() 2 A,

Yoﬁ# 6 J(t;x;#u()):
Proof. We consider the BSDE [1.22) at times = 0 and we apply the expected
value EJjf associated to the controlled probability P}t . Since the P -compensator

of p(dsdy) is
rt+s;Xs ;s ;y;us) (Xs ;s )Q(Xs ; s ;dy)ds, we have that

Z, .2
Eyt _Z& () q(dsdy)
.#OzT iz
= Egy Zg; (y) p(dsdy)
Eﬁ’;t ZO EZ;;’t (V) (Xs; s) Q(Xs; s;dy)ds
T &£
= Egy . EZSX;’fE(Y)[r(t+ $iXs, s¥iUs) 1] (Xs; s)Q(Xs; s;dy)ds :
Then
H # H# ZT ! H
Yoir = Eg [0XT ¢ 1 o]+ EgY ) f(t+s;Xs; 257 () ds
zZ,.Z
=i ZEE It + siXs; siyius) 1] (Xsi s)Q(Xs; sidy)ds
0 E .
Rr ¢ :

Adding and subtracting Ef
the following relation:
Yol =3(tx#u())
_ Z1 th _ i
+ BNy o flrsixs SZEP()  I(t+ s Xs; sius) ds

o I(t+ s;Xs; s;Us)ds on the right side we obtain
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Z; . Z
S Z5 O+ s:Xs; siysus) 1] (Xsi s) Q(Xs; sidy)ds
0 E
(1.25)
By the de nition of the Hamiltonian function f, the two last terms are non positive,

and it follows that
Yol 6 J(tx;#u());  8u()2 A:

We de ne the following, possibly empty, set:
n

(six;#z()= u2U:f(s;x#2()) = I(s;x#u)
Z

+ EZ(Y)(f(S:X:#iY:U) 1) (X #) Q(x; #, dy);
(0]
s2[0; T]; (#) 2 S; 22 L2(E; E; (x:#) Q(x;#dy)) : (1.26)

In order to prove the existence of an optimal control we need to require that the
in mum in the de nition of f is achieved. Namely we assume that

Hypothesis 1.3.5. The sets introduced in (1.26) are non empty; moreover, for
every xed t 2 [0; T]and (x;#) 2 S, one can nd an F-predictable processu % ()
with values in U satisfying

us"* 2 (t+siXs 3 s 28 (): P¥as8s2[0T ] (1.27)

Theorem 1.3.6. Under Hypothesis|1.3.1 and 1.3.b for every xedt 2 [0; T] and
(x;#) 2 S, u ¥ ()2 A is an optimal control for the control problem starting from
(x; #) at time zero with time horizon T t. Moreover, YO’?{# coincides with the value

function, i.e. Y3 = J(tx;#u B# ().

Proof. It follows immediately from the relation (1.25) and from the de nition of
the Hamiltonian function f .

We recall that general conditions can be formulated for the existence of a process
u W () satisfying ([L.27), hence of an optimal control; this is done by means of an
appropriate selection theorem, see e.g. Proposition 5.9 ii28].

We end this section with an example where the BSDE 2) can be explicitly
solved and a closed form solution of an optimal control problem can be found.

Example 1.3.7. We consider a xed time interval [0; T] and a state space consisting
of three states: E = fXj;Xp;X3;X409. We introduce (T,; n)n>o Ssetting (To; o) =
(0;x1), (Th; n) = (+ 1 ;x9) if n > 3 and on (Ty; 1) and (T2; 2) we make the
following assumptions: 1 takes valuesx, with probability 1, , takes valuesxs; X4
with probability 1 =2. This means that the system starts at time zero in a given state
X1, jumps into state x, with probability 1 at the random time T; and into state x3
or x4 with equal probability at the random time T,. It has no jumps after. We take
U = [0; 2] and de ne the function r specifying the e ects of the control process as
r(xg;u) = r(xz;u) =1, r(xg;u)= u, r(xg;u)=2 u,u22U.
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Moreover, the nal cost g assumes the value 1 inX;#) = (x4; T T») and zero
otherwise, and the running cost is de ned asl(s; x; #;u) = % (x;#), where > 0
is a xed parameter. The BSDE we want to solve takes the form:

Z.:2
Ys + Z (y)p(d dy) = g(X1; 71)

z. F , Z

+ . uzi%f;a - * EZ Wriy;u)Q(X ; ;dy) (X ; )d (1.28)

that ca)rg be written as
Ys+  Z1,(X1,) Lis<T 679 = 9(XT5 T)

n>1

ZT n u 0
+ inf —+ Z (X X ,#+ 1 R d
s u2[0;2] 2 (x2)  (x1 Mios <1 4 Tg
T n 0
+ inf —+ 7 (X2)=+ Z (x2)(1 = X T)1 e d-
s u2[02] 2 ( 3)2 (xa4)( 2) (X2 D116 <1 A Tg

It is known by [[29] that BSDEs of this type admit the following explicit solution
(Ys: Zs( ))SZ[O;T]:

Ys = Y2S)Lfsct g+ V(S Tei 1) Lities<t g+ YA(S: T2i 2:T1i 1) Lity6sqi
Zs(y) = 2°%(S;¥) LrsoTog + 2(Si Y5 Tes 1) LiticseTog Y 2 E:

To deducey® and y* we reduce the BSDE to a system of two ordinary di erential
equation. To this end, it su ces to consider the following cases:

' 2 suchthat T <Ty(!)<T2!): (1.28) reduces to
Zy n 0

0y — : Moo .
y (s) Suzl?ofz] > z°(;x2) (X #+ )d

Tzo(;x ) (xu#+ )d

S

Z

.
= (Y'Gax o2 Y() (xp#+ )d (1.29)
' 2 suchthat Ti(!)<T <T('), s>Ta: (1.28) reduces to
yi(siTo; 1)
2 Ny u u®
) 7 uzig)f;zl -7 z'(ix 3Ty 1)§+ (x4 T 1)@ E) (1, Tyd
T
= [Z2Gx Ty DM ( +22Gx 3Ty )] (1 To)d
ya
= [@r ) YT ol (0 Tod: (1.30)

Solving (1.29) and (1.30) we obtain
R
V(S)=(1 A ) 1 e s Oabr)d
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Ry . ZT Ry . Ry .
(1/\ )e s (Xu#+ )d (Xl;#+ )e (xl,#+z)dze (X252 )dzd o
s
R
YisiTy 9= ) 1 e = (6 ™
maoreover,

YA(si T2; 2 T1s 1) = 14 ,=xuq

20(s;x1) = 29(s;x3) = 2%(s;x4) = 0;

2%(six2) = yi(sisix2)  y%(s);

zY(s;ix1; T1; 1) = 2(s;x2; Ta; 1) =0
zYsix3 T )=(1 " ) e T G T 13
Z(s;xa; Ty 1) =1+ ZY(s;x3; Ty 1);

where z0 and z! are obtained respectively fromy?, y! and y!, y° by subtraction.

The optimal cost is then given by Yo = y°(0). The optimal control is obtained during

the computation of the Hamiltonian function: it is the process us = 21, .1,1(S) if
6 1, and the processug =0 if > 1 (both are optimal if =1).

1.4. Nonlinear variant of Kolmogorov equation

Throughout this section we still assume that a semi-Markov procesX is given.

It is constructed as in Section[1.2.1 by the rate function and the measureQ on E,
and (X; ) is the associated time-homogeneous Markov process. We assume that
and Q satisfy Hypothesis[1.2.].

It is our purpose to present here some nonlinear variants of the classical backward
Kolmogorov equation associated to the Markov processX; ) and to show that their
solution can be represented probabilistically by means of an appropriate BSDE of
the type considered above.

We will suppose that two functions f and g are given, satisfying Hypothesig§ 1.23,

and that moreover g veri es, for every xed t 2 [0; T],
h [

EX? jo(Xt 6 7 0f° <1: (1.31)
We de ne the opezrator
L (x#):= E[ (y;0)  (x#)] (#)Q(x#dy);,  (X#)2S; (1.32)

for every measurable function :S! R for which the integral is well de ned.
The equation
Z 1
V(X #)= gO#+ T )+ Lv(s;x;#+s t)ds
Z t
+ f(s;x;#+s tv(s;x;#+s t);v(s;;0) v(s;x;#+s t)ds; (1.33)
t
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t2[0; T], (x;#) 2 S, with unknown function v:[0; T] S! R will be called the
nonlinear Kolmogorov equation.

Equivalently, one requires that for everyx 2 E andforall constantc2 [ T; +1 ),

t 7! v(t;x;t + c) is absolutely continuous on [QT], (1.34)
and
Dv(t;x;#)+ Lv(t,x;#)+ f(tx;# v (EX#);v(t ;0) v(tx;#))=0 (1.35)
V(T;x;#) = g(X; #);
where D denotes the formal directional derivative operator
(DV)(t:x;#) = lim v(t+ hixi# +hh) VEX#), (1.36)

In other words, the presence of the directional derivative operator [(1.36) allows us
to understand the nonlinear Kolmogorov equation {1.35) in a classical sense. In
particular, the rst equality in (1[35)]is understood to hold almost everywhere on
[0; T] outside of adt-null set of points which can depend on K; #).

Under appropriate boundedness assumptions we have the following result:

Lemma 1.4.1. Suppose thatf and g verify Hypothesis[1.2.3 and that(1.31) holds;
suppose, in addition, that
sup jaG#) + jf (G x#, 0,0))] < 1: (2.37)
t2[0; T]; (X;#)2S
Then the nonlinear Kolmogorov equation (1.33) has a unique solutionv in the class
of measurable bounded functions.

Proof. The result follows as usual from a xed-point argument, that we only sketch.
Let us de ne a map setting v = ( w) where
T
vt x;#)=g(x#+ T t)+ Lw(s;x;#+s t)ds
Z ‘
+ f(s;x;#+s tw(s;x;#+s t);w(s; ;0 w(s;x;#+s t))ds:
t
Using the Lipschitz character of f and Hypothesis[1.2.1-ii), one can show that, for
some > 0 su ciently large, the above map is a contraction in the space of bounded
measurable real functions on [DT] S endowed with the supremum norm:
jivi == sup sup e (T Djv(t;x;#)j:
06t6 T (x;#)2S

The unique xed point of gives the required solution.

Our goal is now to remove the boundedness assumptio?). To this end we
need to de ne a formula of 1t6 type for the composition of the process Ks; s)sso
with functions v smooth enough dened on [Q T] S. Taking into account the
particular form of (, and the fact that the second component of the process
(Xs; s)ssois linear in s, the idea is to use in this formula the directional derivative

operator D given by (1.36).
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Lemma 1.4.2 (A formula of 1t6 type) . Let consider functionsv :[0; T] S! R
such that

(i) 8x2E,8c2[ T;+1),themapt 7! v(t;x;t + c) is absolutely continuous
on [0; T], with directional derivative D given by (1.36);

(i) for xed t2 [0; T], fv(t+s;y;0) v(t+s;Xs ; s );s2[0;T t];y2Eg
belongs toL & .(p).

loc
Then P%#-a.s., for every t 2 [0; T],
z T t z T t
V(T X1 ¢ 1 1) V(EXx#)= Dv(t+ s;Xs; s)ds+ Lv(t+ s;Xs; s)ds
0 0
7’ .z
+ (V(t+ s;y;0)  Vv(t+ s;Xs ;s ) q(ds;dy);
0 E
(1.38)

where the stochastic integral is a local martingale.

Proof. We proceed by reasoning as in the proof of Theorem 26.14 if8%]. We
consider a functionv : [0; T] S! R satisfying (i) and (ii), and we denote by N;
the number of jumps in the interval [O; t]:
X
N¢ = L1, 619"
n>1

We have
V(T X1s 1) V(O #) = V(T X1; 1) V(T Xy, s Ty )
N

+ V(Toi X105 1) V(Th X1, 15 1o 1)
n=2
+ V(T1; X1y 1) V(05X #):

Noticing that X1, = Xy, , forall n 2 [1; Nt], X1 = XTNT, and that 1, =0 for
aln2f[1;Nt], 1, =#+Tq,and 1, =T, T, pforall n2[2 Nt], we have
V(T; X1; 1) Vv(O;x;#)=1+11 + 1l

where
| =(V(T1;X7,50) V(T Xy, 5 o1 )+ (VT # + Ta) v x;#)) = 1%+ 1%
N
I = ((Tn; X7,50) - V(Tn; X7y 5 10 )
n=2
N
(V(Tn; X1, 5T Tao 1) V(Th X1, 130))

n=2
<11 94 1 99

+

V(T; X1;T  Tn) V(T X1y 0):



Chapter 1. Optimal control of semi-Markov processes with a BSDE
52 approach

Let H denote theP E-measurable process

Hs(y) = v(s;¥;0) Vv(s;Xs ;s );
with the convention Xo = Xg, o = #g. We have
19+ 11 ©= (V(Tn; X1,50)  V(Tni X7, 5 10 )

n>1Th6T
= Hr,(X1y) = Hs(y) p(ds; dy):
n>1Th6T 0 E

On the other hand, sincev satis es (i) and recalling the de nition 1.36Jof the direc-
tional derivative operator D,

1 904+ 11 904 1

Z

T y(0+ hs;x;#+ hs) v(0;x;#)

= lim ds

0 h! % h
N X Tn im V(Th 2+ h(s Tn 1) X1, 15 1 ¥ 0h(s Ta1) V(Ta 05X1, 45 1, 4) ds

n>2T,67 Tno 1M O h

LT VO S T)iX g T Fh(S Tag) V(T X ) o

Ty, ' O h

T
T

= Dv(s;Xs; ) ds:
0

Then P%*-a.s.,
V(T; Xt;ar)  Vv(0;x;#)
Z+ YA
Dv(s;Xs; s)ds+ (v(s;y;0) v(s;Xs 5 s ) p(ds;dy)
0 0o E
Dv(s;Xs; g)ds+ Lv(s;Xs; s)ds
7% 7 0
+ (v(s;y;0)  v(s;Xs 5 s ) q(ds; dy);
0 E

where the second equality is obtained using the identityqg(dtdy) = p(dtdy)
(Xt ; t ) Q(X¢ ; t ;dy)dt together with the de nition ( of the operator
L.

Finally, applying a shift in time, i.e. considering for every t 2 [0; T] the di er-
ential of the processv(s+ t;Xs ; s ) with respectto s 2 [0; T t], the previous
formula becomes:P*#-a.s., for everyt 2 [0; T],

Tt Z1 ¢
V(T X7, 1) V(tx#)= Dv(s+ t;Xs; s)ds+ Lv(s+ t;Xs; s)ds
0 0
Z; . Z
+ (V(s+ ty;0) v(s+tXs ; s )) o(ds;dy);
0 E
where the stochastic integral is a local martingale thanks to condition (ii).
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We will call (L.38) the It6 formula for v(t+s; ;) (Xs; s)sppo.7 q- In dierential
notation:

dv(t+ s;Xs ; s )= sz(t+ $;Xs ; s )ds+ Lv(t+s;Xs ; s )ds
+ (V(t+siy;0) v(t+ s Xs s ) q(ds;dy):
E

Remark 1.4.3.  With respect to the classical Ité formula, we underline that in (fL..38)
we have

- the directional derivative operator D instead of the usual time derivative;

- the temporal translation in the rst component of v, i.e. we consider the
di erential of the process
v(t+s; Xs ; s )withrespecttos?2 [0; T t]. Indeed, the time-homogeneous
Markov process Ks; s)e-( Satis es

P#(Xo=x; o= #)=1;

and the temporal translation in the rst component allows us to consider
dv(t;X¢; ¢) forall t 2 [0; T].

We go back to consider the Kolmogorov equation[(1.33) in a more general setting.
More precisely, on the functionsf, g we will only ask that they satisfy Hypothesis

for every ;#) 2 S and that ([L.31) holds.

De nition 1.4.4.  We say that a measurable functionv : [0; T] S! R s a solution
of the nonlinear Kolmogorov equation (1.33), if, for every xedt 2 [0; T], (x;#) 2 S,
i

LEY™ o vt +sy;0)  v(t+ s;Xs; 5)i° (Xs; s) Q(Xs; s;dy)ds <
Ly hR |

2. B 7 Njv(t+ s;Xs; o)jfds <1

3. (1.33) is satis ed.

Remark 1.4.5. Condition 1. is equivalent to the fact that v(t + s;y;0) v(t+
s;Xs ; s ) belongs to L?(p). Conditions 1. and 2. together are equivalent to the
fact that the pair

fv(t+ s;Xs; s); v(t+s;y;0) v(t+s;Xs ;s );s2[0;T tl;)y2Eg

belongs to the spacevi*#; in particular they hold true for every measurable bounded
function v.

Remark 1.4.6. We need to verify the well-posedness of equatiorf (1.33) for a func-
tion v satisfying the condition 1. and 2. above. We start by noticing that, for every
(x;#) 2 S, P*-as.,
Z.Z Z
M0 V(siXsi 5)iF (X5 9 QXsi sidy)dst jv(siXs; o) ds< 1
E
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By the law ([L.7) of the rst jump it follows that the set f! 2 : Ty(!) >Tg
has positive P** probability, and on this set we haveXs (1 )= x, s (1) = #+ s.
Taking such an! we get

T
jv(s;y;0)  v(s;x;# + s)j2 (X;# + s) Q(x; # + s;dy) ds
0, TE
+ jv(s; x; # + s)jzds <1;8(x;#)2S:
0
Since supy#)2s (X #) < 1 by assumption, Helder's inequality implies that
T
jL(v(s;x;# + 9))j ds
°z .2
6 jV(s;y;0)  v(six#+ )] (X # + s)Q(x;# + s;dy) ds
0o_E
Z+:Z 1=2

6 c jv(s;y;0)  v(s;x;# + s)j2 (X;# + s) Q(x;# + s;dy) ds
0 E
<1

for some constantc and for all (x;#) 2 S. Similarly, since
Zt
EX®  jf(siXs 0;0)%ds < 1;
0
and arguing again on the jump time Ty, we deduce that

T
jif (s;x;#+ s,0,0)2ds< 1; 8(x;#)2S;

0
nally, from the Lipschitz conditions on f we can conclude that

T
if(s;x;#+ s;v(s;x;#+ 9);v(s; ;0) v(s;x;#+ s))jds
0
Z 1=2 Z 1=2

6 ¢ if (s;x;# + s;0; O)jzds + G jv(s;x; # + s)jzds
0 0
Z:Z 1=2

+ C3 jv(s;y;0) v(s;x;# + s)j2 (x;# + s) Q(x;# + s;dy) ds
0 E
<1

for some constantsc;, i = 1;2;3, and for all (x;#) 2 S. Therefore, all terms occurring
in equation (1.33) are well de ned.

For every xed t 2 [0; T] and (x;#) 2 S, we consider now a BSDE of the form
yARNY 4
Y+ 2 () a(drdy) = g(X1 6 1 o)
Zr o
+ ft+enXe ;o Yn sz () dos2[0,T ) (1.39)

S
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Then there exists a unique solution (Ys’ft;# . Z;(ff( ))s20:7 1. in the sense of Theorem
, andYo’f{# is deterministic. We are ready to state the main result of this section.

Theorem 1.4.7. Suppose thatf, g satisfy Hypothesis[1.2.B for every(x;#) 2 S
and that (1.31) holds. Then the nonlinear Kolmogorov equation(l.33) has a unique
solution v(t; x;#) in the sense of De nition [1.4.4}

Moreover, for every xed t 2 [0; T], for every (x;#) 2 Sands2 [0; T t] we
have

Ysﬁ# =v(t+ s Xs ;s ) (1.40)
Z5 ()= v(t+ s;y:0) v(t+ s Xs ;s ); (1.41)
so that in particular v(t;x;#) = Y§i .
Remark 1.4.8. The equalities (1.40) and [1.41) are understood as follows.

PX*#-a.s., equality (1.4Q) holds for alls 2 [0; T t]. The trajectories of
(Xs)s2[0;7 1] are piecewise constant and @dag, while the trajectories of
( s)s2po;T 1] are piecewise linear ins (with unitary slope) and @adag; more-
over the processesXs)s2jo;7 ¢ @and ( s)szpo;7 1) have the same jump times
(Tn)n>1. Then the equality (L.40) is equivalent to the condition
YA T t 2
EX# Y& v(t+ s;Xs; s) ds =0:
0
The equality (L.41) holds for all (!;s;y ) with respect to the measure
Xs (1) s (1)Q(Xs (1); s (1);dy)P¥(d!)ds, ie,
. Z: .2 ., 5
B . Zgr (y) Vv(t+sy;00+ v(t+ s Xs; s)  (Xs; s) Q(Xs; s;dy)ds
=0:

Proof. Uniqueness. Let v be a solution of the nonlinear Kolmogorov equation
([1.33). It follows from equality ([L.33) itself that for every x 2 E and every 2
[ T;+1),t 7! v(t;x;t + ) is absolutely continuous on [Q T]. Indeed, applying in
(1.33) the change of variable = # t,weobtain8t2[0;T],8 2[ T;+1),
Z 1
vitx;t+ )=9g(x; T+ )+ Lv(s;x;s+ )ds
Z ‘
+ f(s;x;s+ ;v(s;x;s+ );v(s; ;0) v(s;x;s+ ))ds:

t
Then, since by assumption the process(t + s;y;0) v(t+ s;Xs ; s ) belongs to
L2(p), we are in a position to apply the It6 formula ([.38) to the process v(t +
S;Xs ;s ),S2[0; T t]. We get: P**-a.s.,,

Z S Z S

V(t+s;Xs 5 s )= V(X #)+ Dv(t+ rnXy; ;)dr+ Lv(t+ Xy, ()dr
0 0
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Z 7

+ ) (V(t+ry;0) v(t+ X () g(drdy); s2[0; T t]
0 E

We know that v satis es (1.35); moreover the processX has piecewise constant
trajectories, the process has linear trajectories in's, and they have the same time
jumps. Then, P**-a.s.,

Dv(t+ s;Xg ; s )+ Lv(t+s;Xs ; 5 )
+i(t+sXs 5 s V(t+s5Xs 5 s iv(t+s;0) v(t+sXs ;5 ))=0;
for almosts2 [0; T t]. In particular, P**-a.s.,
v(t+ s; Xg ;
( ® sz)sz

= V(X #) + (v(t+ry;0) v(t+nX, ;¢ )) q(drdy)
Z s 0 E
fFA+nnXe; v(t+ s;Xs; o);v(t+ry;0) v(t+ X ())drn
0
fors2 [0; T t]. Sincev(T;x;#) = g(x;#) forall (x;#) 2 S, by simple computations
we can prove that,8s2 [0; T ],

Tt
V(it+s;Xs ;s )+ (v(t+ry;0) v(t+ X, ; ¢ ) q(drdy)
S E
=dXt ;T 1)
Z1
+ f(t+rnXavit+nnXe, (vt+rny; 0 vit+rnXe; () dr

S
Since the pairs (Yo i Z&t ()soporr g and (V(t+ S;Xs ;s ) iv(t+ s;yi0)  v(t+
$;Xs ;s ))s2p0;7 1] are both solutions to the same BSDE undeP*# | they coincide
as members of the spacé1*#. It follows that equalities (L.40) and hold. In
particular, v(t;x;#) = Yoﬁ#, and this yields the uniqueness of the solution.

Existence. We proceed by an approximation argument, following the same lines
of the proof of Theorem 4.4 in P8]. We recall that, by Theorem [1.2.5, for every
xed t 2 [0; T], the BSDE (L.39) has a unique solution Yo ; ZX¢ () safo;r 4 for
every (x;#) 2 S; moreover, Yoﬁ# is deterministic, i.e., there exists a real number,
denoted by v(t;x;#), such that P%# (Ygf{# = v(t;x;#)) = 1. At this point, we set
ff=(f~n)_( n)yand g"=(g” n)_ ( n) as the truncations of f and g at level
n. By Lemma(l1.4.3, fort 2 [0; T], (x;#) 2 S, equation

Zt
VI x#)= g"(x#+ T t)+ Lv'(s;x;#+ s t)ds (1.42)
Z . t
+ f's;x;#+s v (s;x;#+s t);v'(s;;0) V'(s;x;#+ s t))ds:
t
admits a unique bounded measurable solutiow". In particular, the rst part of the
proof yield the following identi cations:

VUG X#) = Yo
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Vi(t+s;Xs ;s )= Y. sxt#”;

VI(t+ sy;0) VI(t+ s Xs 5 s )= 2500 (y);

in the sense of Remark 1.4)8, whereY({™"; ZX" () s20,7 ¢ is the unique solution
to the BSDE
Z. .2z
Yo+ ZAE" (y) o(dr dy)
' S E
ZT ! x#n x#n
=g"Xt ¢; 1 )+ f7t+ X Yy () dr

S

forall s2 [0; T t]. Recalling (1.39) and applying Theorem[1.2.5, we deduce that,
for some constantc,
h i Z1 ¢
sup Ex;# J-Ysgi# stt#n J2 + Ex# ij)ft’# stt#n szs
s2[0;T t] ' 0 ’
zZ..Z

+ B i Ejz;;?(y) ZEE ()2 (Xs; s) Q(Xs; s dy)ds

6 B jgXt1 6 1 1) "X 6 T 0i?
ZT t
HOE R siXa S YGZET () N siXs s YG I ZE ()%

Lo (1.43)

where the two nal terms tend to zero by monotone convergence. In particular [(1.4B)
yields
. e h . i i
VX #) VG #)2 = YT Y26 sup BXF VS v 2 1 o
’ ’ s2[0;T ] ’ ’
and thereforev is a measurable function. At this point, applying the Fatou Lemma
we get
Z1 4

EX# Y& v(t+ siXs; s) ds
0
' Z T tZ - 2
+ B ; Zgi(y) Vv(t+sy;0)+ v(t+ 5Xs; ) (Xs; s) Q(Xs; s;dy)ds
_ Tt 2
6 liminf EX# Y& V(t+ s Xs; 5)  ds
! 0
AN
. . 2
+lim inf EX* I ZE () V(t+ sy 0+ VI(E+ 5 Xs ) (Xs; s) Q(Xs; s dy)ds
Tt ey 2
= liminf EX* YSF YN T ds
n'l 0 ! !
7’ .z

eliminf £ Z5) 250 () (Xsi 9 QXs: sidy)ds =0
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by (1.43). The above calculations show that [(1.4D) and ) hold. Moreover, they
imply that

Z T t
EX# V(t+ s;Xs; s)j’ds
OZ T tZ
+ BXH# EjV(t+ s;v;0)  v(t+ s; Xg; s)jz (Xs; s) Q(Xs; s;dy)ds
e T vz Cas
ZOT tZ 2
FESZH () (X 9 QXs sidy)ds

<1;
that accords to requirement of De nition [.4.4]

It remains to show that v satis es (1.33). This would follow from a passage to
the limit in (1.42), provided we show that
z

T Z+

Lv'(s;x;#+ s t)ds! Lv(s;x;#+ s t)ds; (1.44)
t t

f(s;x;#+s tv(s;x;#+s t);v'(s;;0) V'(s;x;#+s t))ds

! f(s;x;#+s tv(s;x;#+s t);v(s;;0) v(s;x;#+s t)ds: (1.45)
t

To prove (1.44), we observe that

Z1 4 Z1 ¢
EX# Lv(t+ s;Xs ; s )ds Lv'(t+ s;Xs ; s )ds
0 .z 0
= B 25 ZE") (Xsi ) Q(Xs: sidy)ds
0 Ep
6 (T t)¥2sup (x;#)
(x:#)
Z: Z 1=2
S Zé(;;t# Zé(;;t#;n (Xs; s) Q(Xs; s;dy)ds Lo
0 E
by (L.43). Then, for a subsequence (still denoted/") we get
Z
Tt Tt
Lv'(t+ s;Xs; g)ds! Lv(t+ s;Xs; s)ds; P*-as
0 0

Recalling the law (1.7) of the rstjump Ti, we see thatthe setf! 2 : Ty(!)>Tg
has positive P** probability, and on this set we haveXs (1 )= x, s (1) = #+ s.
Choosing such an! we have

Zr Z1

LV '(t+ s;x;# + s)ds! Lv(t + s;x;# + s)ds;
0 0
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i.e., by a translation of t in the temporal line,
Z: Z

Lv'(s;x;#+ s t)ds! Lv(s;x;#+ s t)ds:
t t

To show (1.45), we compute

Z Tt
B f(t+siXs sYHZE0) 10+ siXs s Y™z ™) ds
OZ Tt
6 B f(t+siXs s YozE) 10 siXa Y28 ds
ZOT t
+ EX# FO(t+ s Xs; & Yai s Zaf) 0+ s Xs; &Y™ Z8") ds
0

The rstintegral term in the right-hand side tends to zero by monotone convergence.
At this point, we notice that f" is a truncation of f, and therefore it satis es the

Lipschitz condition ([.I3) with the same constants L, L% independent ofn. This
yields the following estimate for the second integral:

Tt
L Ogx# Yo Y ds
H# z Tt z X;# X;#n 2 o
FLES o Z5 ) ZgT ) (Xs 9 QX sidy)  ds
Z; 1=2

b sy 2
6 L0 (T t)E* . Yo v ds
Z1 .2

. . » 5 1=2
+L (T ) B o e Zg;’t# (y) Z;(;’t#'n (y) (Xs; s) Q(Xs; s;dy)ds

which tends to zero, again by [1.4B). Considering a subsequence (still denoted')
we get, P%*-a.s.,

Z1

fO(t+ s;Xs; V' (t+ s;Xg; s);V'(t+s;y;0) V' (t+ s;Xg; ) ds
Z1
I

0

f(t+ s Xs; s;V(t+ 5 Xs; 5);V(t+ s;y;0)  v(t+ s;Xs; ) ds:
0

Choosing also in this case an inthe setf! 2 : Ty(!)>Tg, we nd
Z1

ft+ s;x;#+ sV (t+ s;x#+ s); v (t+ s;y;0) V' (t+ s;x;#+ s))ds
Z1 ¢

f(t+s;x;#+ s;v(t+ s;x;#+ s);v(t+ s;y;0) v(t+ s;x;#+ s))ds;
0

and a change of temporal variable allows to prove that|(1.3B) holds, and to conclude
the proof.
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We nally introduce the Hamilton-Jacobi-Bellman (HJB) equation associated to
the control problem considered in Sectio: for every 2 [0; T] and (x;#) 2 S,
T

V(X #)= gG#+ T 1)+ Lv(s;x;#+s t)ds
Z . t
+ f(s;x;#+s tv(s;;0) v(s;x;#+ s t))ds; (1.46)
t

where L denotes the operator introduced in [1.32),f is the Hamiltonian function
de ned by ([L.23) and g is the terminal cost. Since [1.46) is a nonlinear Kolmogorov
equation of the form (1.33), we can apply Theorenj 1.4]7 and conclude that the value
function and an optimal control law can be represented by means of the HIB solution
V(t; X #).

Corollary 1.4.9. Let Hypotheseg 1.3.l and 1.3)5 hold. For every xed 2 [0; T],
for every (x;#) 2 Sands 2 [0; T t], there exists a unique solutionv to the HIB

equation (1.46), satisfying

V(t+ siXs 5 s ) = Yo
# .
Z;(;t (y)!
where the above equalities are understood as explained in Remark 1]4.8.
In particular an optimal control is given by the formula

U™ 2 (t+5;Xs ;s V(t+s;50) V(t+ s Xs ;s ));
while the value function coincides withv(t; x;#), i.e.
Jx#u MO = vt x#) = Yo

v(it+ s;y;0) v(t+s;Xs ;s )



Chapter 2

Constrained BSDEs
representation of the
value function for
optimal control of pure
jump Markov processes

2.1. Introduction

In this chapter we prove that the value function in a classical optimal control
problem for pure jump Markov processes can be represented by means of an appro-
priate backward stochastic di erential equation, that we introduce and for which we
prove an existence and uniqueness result.

We start by describing our setting in an informal way. A pure jump Markov
processX in a general measurable state spaceE( E) can be described by means of
a rate transition measure, or intensity measure, (t;x;B)denedfort 0,x2 E,
B 2 E. The process starts at timet 0 from some initial point x 2 E and stays
there up to a random time T1 such that

Z S

P(Ty>s)=exp (nx;E)dr ; s t
t

At time T, the process jumps to a new pointX, chosen with probability (condi-
tionally to T1) (T1;x; )= (T1;x E) and then it stays again at X1, up to another
random time T, such that

z

S
P(T2>s | Ta; X,) = exp (X1 E)dr ;s Ty

T1

and so on.
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A controlled pure jump Markov process is obtained starting from a rate measure

(x;a;B) denedfor x 2 E, a2 A, B 2 E, i.e., depending on a control parameter
a taking values in a measurable space of control actionsA; A). A natural way to
control a Markov process is to choose a feedback control law, which is a measurable
function :[0;1) E ! A. (tx) 2 A is the control action selected at time
t if the system is in state x. The controlled Markov processX is simply the one
corresponding to the rate transition measure (x; (t;x);B). Let us denote by ptx
the corresponding law, wheret; x are the initial time and starting point.

We note that an alternative construction of (controlled or uncontrolled) Markov
processes consists in de ning them as solutions to stochastic equations driven by
some noise (for instance, by a Poisson process) and with appropriate coe cients
depending on a control process. In the context of pure jump processes, our approach
based on the introduction of the controlled rate measure (x;a;B) often leads to
more general results and it is more natural in several contexts.

In the classical nite horizon control problem one seeks to maximize over all
control laws  a functional of the form

Z 1
J(t;x; )= E%™ f(s; Xs; (S;Xg)) ds+ g(X1) ; (2.1)
t

where a deterministic nite horizon T > 0 is given andf; g are given real functions,
denedon[0;T] E A andE, representing the running cost and the terminal cost,
respectively. The value function of the control problem is de ned in the usual way:

V(t;x)=sup J(t;x; ); t2[0;T]; x 2 E: (2.2)

We will only consider the case when the controlled rate measure and the costs
f;g are bounded. Then, under some technical assumptions/ is known to be the
unique solution on [0 T] E to the Hamilton-Jacobi-Bellman (HJB) equation

&1tx)
v(T;X)

R
SUpaoa  g(V(ty) Vv(tx)) (xiady)+ f(txia) ; 2.3)
a(x); '

and if the supremum is attained at some (t;x) 2 A depending measurably on {; x)
then is an optimal feedback law. Note that the right-hand side of [2.3) is an
integral operator: this allows for easy notions of solutions to the HIB equation, that
do not in particular need the use of the theory of viscosity solutions.

Our purpose is to relate the value functionV (t; x) to an appropriate BSDE. We
wish to extend to our framework the theory developed in the context of classical
optimal control for di usion processes, constructed as solutions to stochastic di er-
ential equations of Ito type driven by Browian motion, where representation formulae
for the solution to the HIB equation exist and are often called non-linear Feyman-
Kac formulae. The majority of those results requires that only the drift coe cient
of the stochastic equation depends on the control parameter, so that in this case
the HJB equation is a second-order semi-linear partial di erential equation and the
non-linear Feyman-Kac formula is well known, see e.g. El Karoui, Peng and Quenez
[53]. Generally, in this case the laws of the corresponding controlled processes are
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all absolutely continuous with respect to the law of a given, uncontrolled process, so
that they form a dominated model.

A natural extension to our framework could be obtained imposing conditions
implying that the set of probability laws fP"™ g , when varies over all feedback
laws, is a dominated model. This is the point of view taken in Confortola and
Fuhrman [28], where an appropriate BSDE is introduced and solved and a Feyman-
Kac formula for the value function is proved in a restricted framework. This approach
is also considered in Chaptef L in the case of controlled semi-Markov processes and
in Confortola and Fuhrman [IZ7] in a hon-Markovian context.

In the present chapter we want to consider the general case wheiPt‘Xg is not
a dominated model. Even for nite state spaceE, by a proper choice of the measure
(x;a;B) it is easy to formulate quite natural control problems for which this is the
case.

In the context of controlled di usions, probabilistic formulae for the value func-
tion for non-dominated models have been discovered only in recent years. We note
that in this case the HJB equation is a fully non-linear partial di erential equation.

To our knowledge, there are only a few available techniques. One possibility is to
use the theory of second-order BSDES, see for instance Cheridito, Soner, Touzi and
Victoir [[23], and Soner, Touzi and Zhang[124]. Another possibility relies on the
use of the theory of G-expectations, see e.g. PendlD5]. Both theories have been
largely developed by several authors. In this chapter we rather follow another ap-
proach which is presented in the paper Kharroubi and Pham[88] and was predated
by similar results concerning optimal switching or optimal impuse control problems,
see Elie and Kharroubi B4], [55], [56], Kharroubi, Ma, Pham and Zhang [87], and
followed by some extensions and applications, see Fuhrman and Phare{], Cosso
and Choukroun [25], and Cosso, Fuhrman and Pham|81]. It consists in a control
randomization method (not to be confused with the use of relaxed controls) which
can be described informally as follows, in our framework of controlled pure jump
Markov processes.

We note that for any choice of a feedback law the pair of stochastic processes
(Xs; (s;Xs)) represents the state trajectory and the associated control process.
In a rst step, for any initial time t 0 and starting point x 2 E, we replace
it by an (uncontrolled) Markovian pair of pure jump stochastic processes Ks;ls),
possibly constructed on a di erent probability space, in such a way that the process
| is a Poisson process with values in the space of control actios with an intensity
measure o(da) which is arbitrary but nite and with full support. Next we formulate
an auxiliary optimal control problem where we control the intensity of the process
|: for any predictable, bounded and positive random eld (a), by means of a
theorem of Girsanov type we construct a probability measureP under which the
compensator ofl is the random measure ((a) o(da)dt (under P the law of X also
changes) and then we maximize the functional

Z+

E oXt)+ f(s; Xs; Is)ds ;
t
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over all possible choices of the process. Following the terminology of [88], this
will be called the dual control problem. Its value function, denoted V (t;x;a), also
dependsa priori on the starting point a 2 A of the processl (in fact we should write
P™® instead of P , but in this discussion we drop this dependence for simplicity)
and the family f P g is a dominated model. As in B8] we are able to show that the
value functions for the original problem and the dual one are the sameV (t;x) =
V (t;x;a), so that the latter does not in fact depend ona. In particular we have
replaced the original control problem by a dual one that corresponds to a dominated
model and has the same value function. Moreover, we can introduce a well-posed
BSDE that representsV (t;x;a) (and henceV (t;x)). It is an equation on the time
interval [t; T] of the form
Z 1
Ys = o(X1)+ f(rnXyelp)dr+ Ky Ks
z.z ° z.Z
Z;(y; b) q(dr dy db) Zi(Xy; b) o(ddr;  (2.4)
S E A S A
with unknown triple ( Y;Z;K) (depending also on ; x;a)), where q is the compen-
sated random measure associated toX; 1 ), Z is a predictable random eld and K a
predictable increasing adhg process, where we additionally add the sign constraint

Zs(Xs ;D) 6 O: (2.5)

It turns out that this equation has a unique minimal solution, in an appropriate
sense, and that the value of the proces¥ at the initial time represents both the
original and the dual value function:

Yi= V(tx)=V (t;x;a): (2.6)

This is the desired BSDE representation of the value function for the original control
problem and a Feyman-Kac formula for the general HIB equation ).

The chapter is organized as follows. Sectiof 2/2 is essentially devoted to lay
down a setting where the classical optimal control problem [(2.P) is solved by means
of the corresponding HIB equation [2.3). We rst recall the general construction of
a Markov process given its rate transition measure. Having in mind to apply tech-
niques based on BSDEs driven by random measures we need to work in a canonical
setting and use a specic ltration, see Remark[2.2.2. Therefore the construction
we present is based on the well-posedness of the martingale problem for multivariate
(marked) point processes studied in Jacod[45] and it is exposed in detail. This
general construction is then used to formulate in a precise way the optimal control
problem for the jump Markov process and it is used again in the subsequent section
when we de ne the pair (X;| ) mentioned above. Still in Section, we present
classical results on existence and uniqueness of the solution to the HIB equation
(@.3) and its identi cation with the value function v. These results are similar to
those in Pliska [108], a place where we could nd a clear and complete exposition
of all the basic theory and to which we refer for further references and related re-
sults. We note that the compactness of the space of control action8., together with
suitable upper-semicontinuity conditions of the coe cients of the control problem,
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is one of the standard assumptions needed to ensure the existence of an optimal
control, which is usually constructed by means of an appropriate measurable selec-
tion theorem. Since our main aim was only to nd a representation formula for
the value function we wished to avoid the compactness condition. This was made
possible by the use of a di erent measurable selection result, that however requires
lower-semicontinuity conditions. Although this is not usual in the context of maxi-
mization problems, this turned out to be the right condition that allows to dispense
with compactness assumptions and to prove well-posedness of the HIB equation and
a veri cation theorem. A small variation of the proofs recovers the classical results
in [108], and even with slightly weaker assumptions: see Remark 2.2./12 for a more
detailed comparison.

In Section[2.3 we start to develop the control randomization method: we in-
troduce the auxiliary process (X;1 ) and formulate the dual control problem under
appropriate conditions. Finding the correct formulation required some e orts; in
particular we could not mimic the approach of previous works on control randomiza-
tion mentioned above, since we are not dealing with processes de ned as solutions
to stochastic equations.

In Section we introduce the constrained BSDE [(2.4){(2.5) and we prove,
under suitable conditions, that it has a unique minimal solution (Y;Z;K) in a cer-
tain class of processes. Moreover, the value of at the initial time coincides with
the value function of the dual optimal control problem. This is the content of the
rst of our main results, Theorem P.4.3. The proof relies on a penalization ap-
proach and a monotonic passage to the limit, and combines BSDE techniques with
control-theoretic arguments: for instance, a \penalized" dual control problem is also
introduced in order to obtain certain uniform upper bounds. In [88], in the context
of di usion processes, a more general result is proved, in the sense that the genera-
tor f may also depend on ¥; Z); similar generalizations are possible in our context
as well, but they seem less motivated and in any case they are not needed for the
applications to optimal control.

Finally, in Section we prove the second of our main results, Theorer 2.5.1.
It states that the initial value of the process Y in (.4)-(R.5) coincides with the value
function v(t;x). As a consequence, the value function is the same for the original
optimal control problem and for the dual one and we have the non-linear Feynman-

Kac formula (2.6).

The assumptions in Theorem[2.5.]L are fairly general: the state spack and
the control action spaceA are Borel spaces, the controlled kernel is bounded and
has the Feller property, and the cost functionsf;g are continuous and bounded.
No compactness assumption is required. Wherk is nite or countable we have
the special case of (continuous-time) controlled Markov chains. A large class of
optimization problems for controlled Markovian queues falls under the scope of our
result.

In recent years there has been much interest in numerical approximation of the
value function in optimal control of Markov processes, see for instance the book Guo
and Hernandez-Lerma [/2] in the discrete state case. The Feynman-Kac formula



Chapter 2. Constrained BSDEs representation of the value function for
66 optimal control of pure jump Markov processes

@) can be used to design algorithms based on numerical approximation of the
solution to the constrained BSDE (2.4)-(2.3). Numerical schemes for this kind of
equations have been proposed and analyzed in the context of di usion processes, see
Kharroubi, Langrere and Pham [[86], [85]. We hope that the results in the present
chapter may be used as a foundation for similar methods in the context of pure jump
processes as well.

2.2. Pure jump controlled Markov processes

2.2.1. The construction of a jump Markov process given the rate tran-

sition measure. Let E be a Borel space, i.e., a topological space homeomorphic

to a Borel subset of a compact metric space (some authors call it a Lusin space);

in particular, E could be a Polish space. LetE denote the corresponding Borel
-algebra.

We will often need to construct a Markov process inE with a given (time de-
pendent) rate transition measure, or intensity measure, denoted by . With this
terminology we mean that B 7! (t;x;B) is a nonnegative measure on K; E) for
every (t;x) 2 [0;1) E and (t;x) 7! (t;x;B) is a Borel measurable function on
[0;1) E foreveryB 2 E. We assume that

sup  (txE)<1: (2.7)

t 0;x2E

We recall the main steps in the construction of the corresponding Markov process.
We note that ( allows to construct a non-explosive process. Since depends on
time the process will not be time-homogeneous in general. Although the existence
of such a process is a well known fact, we need special care in the choice of the cor-
responding ltration, since this will be crucial when we solve associated BSDEs and
implicitly apply a version of the martingale representation theorem in the sections
that follow: see also RemarK 2.2.p below. So in the following we will use an explicit
construction that we are going to describe. Many of the techniques we are going to
use are borrowed from the theory of multivariate (marked) point processes. We will
often follow [75], but we also refer the reader to the treatise Brandt and Last [L7]
for a more systematic exposition.

We start by constructing a suitable sample space to describe the jumping mech-
anism of the Markov process. Let ©denote the set of sequences®= (ty;en)n 1
in (0;1) E)[f (1;) g where 2 E is adjoined to E as an isolated point,
satisfying in addition

th  ther, th<l =) th<tpa: (2.8)

To describe the initial condition we will use the measurable spaceK; E). Finally,
the sample space for the Markov process will be =E 9 We de ne canonical
functions T, : ! (0;1],En: ! E[f gasfollows: writing! = (e;!9 in the
form! =(e;ty;er;tr;e0; ) we setfort Oandforn 1

Ta(!) = tn; En(!) = en; Ti(M)= L'm th; To(!)=0; Eo(!) = e
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We also de ne X : [0;12)! E[f gsetting

p
1[0;T1](t) EO + n 1 1(Tn Th+t ](t) En for t<T 1

Xt:
for t Tq:

P
Xt = l[O;Tl](t) Eo+ n 11(Tn ;Tn+1](t) Epfort<Tqi,X{= for t Tip.

In we introduce forall t 0the -algebrasG = (N(S;QQ . s2 (0;t;A 2 BE),
i.e. generated by the counting processes de ned as (s;A) = | 117, slg,2a.

To take into account the initial condition we also introduce the lItration F =
(FO)t o, WhereFo = E f; ; %, and for all t 0 F; is the -algebra generated
by Fo and G. F is right-continuous and will be called the natural Itration. In
the following all concepts of measurability for stochastic processes (adaptedness,
predictability etc.) refer to F. We denote by F; the -algebra generated by all
the -algebrasF;. The symbol P denotes the -algebra of F-predictable subsets of
0;1)

The initial distribution of the process X will be described by a probability mea-
sure on (E;E). SinceFy = fA 0: A 2 Egis isomorphic to E, will be
identi ed with a probability measure on Fgp, denoted by the same symbol (by abuse
of notation) and such that (A 9= (A).

On the ltered sample space ( ;F) we have so far introduced the canonical
marked point process Th; En)n 1. The corresponding random measure is, for any
I 2 ,a -nite measureon ((0;1) E;B((0;1)) E)denedas

X
p(lidsdy) = Iy )<1  (Ta(1)En( ) (dsaY);
n 1

where  denotes the Dirac measure at pointk 2 (0;1) E.

Now let denote a time-dependent rate transition measure as before, satisfying
@). We need to introduce the corresponding generator and transition semigroup
as follows. We denote byBy(E) the space ofE-measurable bounded real functions
onE and for 2 By(E) we set

z

Ly (x)= E( (y) (x) (txdy); t 0;x2E:

Forany T 2 (0;1 ) and g 2 By(E) we consider the Kolmogorov equation on [0T] E:

%‘is;x) + Lsv(s;X)=0;
v(T;x) = g(x):

It is easily proved that there exists a unique measurable bounded functiow : [0; T]

E such that v(T; ) = gon E and, for all x 2 E, s 7! v(s;x) is an absolutely
continuous map on [ T] and the rst equation in (2.9 holds for almost all s 2 [0; T]
with respect to the Lebesgue measure. To verify this we rst write (2.9) in the
equivalent integral form

(2.9)

z
v(s;x) = g(x) + ! L, v(r;x)dr; s2[0;T]; x2 E:

S
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Then, noting the inequality jLt (X)] 2supe] (Y)i SUppoTyy2e (GY:E), @ so-
lution to the latter equation can be obtained by a standard xed point argument
in the space of bounded measurable real functions on 0] E endowed with the
supremum norm.

This allows to de ne the transition operator Pst : BR(E) ! Bp(E), forO s
T, letting Pst[g](x) = v(s;X), wherev is the solution to (2.9) with terminal condition
g2 By(E).
Proposition 2.2.1.  Let (2.7) hold and letus xt 2 [0;1 ) and a probability measure
on (E; E).

(1) There exists a unique probability measure orf ;F; ), denoted byP" , such
that its restriction to Fg is and the F-compensator (or dual predictable
projection) of the measurep under Pt is the random measurep(ds dy) :=
Liet, )(S) (s;Xs ;dy)ds. Moreover, Pt (T = 1)=1.

(2) In the probability spacef ;F; ;P g the processX has distribution at
time t and it is Markov on the time interval [t; 1 ) with respect to F with
transition operator Pst: explicitly, for every t s T and for every
g2 By(E),

EY [9(X7) | Fs]= Pst[dl(Xs); Pt as:

Proof. Point 1 follows from a direct application of [/5], Theorem 3.6. The non-
explosion conditionP% (T; = 1) =1 follows from the fact that is bounded.
To prove point 2 we denotev(s; x) = Pst[g](X) the solution to the Kolmogorov
equation (2.9) and note that
Z z Z
v
V(T; X71) V(s Xs) = @r(r;x r)dr + (v(ry) v(r Xy ) p(drdy):
S @ (s;T] E
This identity is easily proved taking into account that X is constant among jump
times and using the de nition of the random measurep. Recalling the form of the
F—compensatorpﬁof p under P we have,Pt -a.s.,
"R R .
Et (s:T] hL:R(v(r;l>:\/)) v(r; X ) p(drdy) j Fs
= E e RE(V(“V) v(r; Xy ) p(drdy) j Fs
= E hFés;T] E(V(r;Y) v(r, XI r)) (nXy;dy)drjFs
= Eb L,v(r;X,)drjFs

(siT]
and we nally obtain
= [g(XT)HRFS] Pst[0](Xs) = E® [M(T;X1) jFs] V(s Xs)

=E' ] QX))+ Lv(nX,) drjFs =0:

In the following we will mainly consider initial distributions concentrated at
some pointx 2 E, i.e. = . In this case we use the notationP'* rather than
Pt x. Note that, P**-a.s., we haveT; >t and therefore Xs = x for all s 2 [0;t].
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Remark 2.2.2. Since the processX is F-adapted, its natural Itration FX =
(F¥); odened by FX = (Xs : s2 [0;t]) is smaller than F. The inclusion may be
strict, and may remain such if we consider the corresponding completed ltrations.
The reason is that the random variablesE, and E+1 introduced above may coincide
on a set of positive probability, for somen, and therefore knowledge of a trajectory
of X does not allow to reconstruct the trajectory (Tn; En).

In order to have Fs = FX upto P% -null sets one could require that (t;x; fxg) =
0, i.e. that T, are in fact jump times of X, but this would impose unnecessary
restrictions in some constructs that follow.

Clearly, the Markov property with respect to F implies the Markov property with
respect to FX as well.

2.2.2. Optimal control of pure jump Markov processes. In this section we
formulate and solve an optimal control problem for a Markov process with a state
spacekE, which is still assumed to be a Borel space with its Borel -algebraE. The
other data of the problem will be another Borel spaceA, endowed with its Borel
-algebra A and called the space of control actions; a nite time horizon, i.e. a
(deterministic) element T 2 (0;1 ); two real valued functions f and g, de ned on
[0;T] E A and E and called running and terminal cost functions respectively;
and nally a measure transition kernel from (E A;E A) to (E; E): namely
B 7! (x;a;B) is a nonnegative measure onkE; E) for every (x;a) 2 E A and
(x;a) 7! (x;a;B) is a Borel measurable function for everyB 2 E. We assume that
satis es the following condition:

sup (X;a;E)< 1: (2.10)
x2E;a2A

The requirement that (x;a;fxg)=0forall x 2 E anda 2 A is natural in many
applications, but it is not needed. The kernel depending on the control parameter
a 2 A plays the role of a controlled intensity measure for a controlled Markov process.
Roughly speaking, we may control the dynamics of the process by changing its jump
intensity dynamically. For a more precise de nition, we rst construct , F =
(Ft)t o, F1 asin the previous paragraph. Then we introduce the class of admissible
control laws A4 as the set of all Borel-measurable maps :[0;T] E! A. To any
such we associate the rate transition measure (t;x;dy) := (x; (t;x);dy).

For every starting time t 2 [0; T] and starting point x 2 E, and for each 2 Agg,
we construct as in the previous paragraph the probability measure on (;F1 ), that
will be denoted Pt;x, corresponding tot, to the initial distribution concentrated at x
and to the the rate transition measure . According to Proposition m underP"
the processX is Markov with respect to F and satis es X5 = x for everys 2 [0; T];
moreover, the restriction of the measurep to (t;1 ) E admits the compensator

(Xs ; (s;Xs ); dy)ds. Denoting by E™ the expectation under P™ we nally
dene, fort2[0; T],x 2 E and 2 Agg, the gain functional
Zt
J(t;x; )= E%¥ f(s; Xs; (S;Xg)) ds+ g(X1) ; (2.11)
t
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and the value function of the control problem

V(t;x)= sup J(t;x; ): (2.12)
2Aad
Since we will assume below thaf and g are at least Borel-measurable and bounded,
both J and V are well de ned and bounded.

Remark 2.2.3. In this formulation the only control strategies that we consider are
control laws of feedback type, i.e., the control action (t;x) at time t only depends
ont and on the state x for the controlled system at the same time. This is a natural
and frequently adopted formulation. Di erent formulations are possible, but usually

the corresponding value function is the same and, if an optimal control exists, it is
of feedback type.

Remark 2.2.4. All the results that follows admit natural extensions to slightly
more general cases. For instance, might depend on time, or the set of admissible
control actions may depend on the present state (so admissible control laws should
satisfy (t;x) 2 A(x), where A(x) is a given subset ofA) provided appropriate
measurability conditions are satis ed. We limit ourselves to the previous setting in
order to simplify the notation.

Let us consider the Hamilton-Jacobi-Bellman equation (for short, HIB equa-
tion) related to the optimal control problem: this is the following nonlinear integro-
di erential equationon [0;T] E:

g\gt;x) = sup (L2v(t;x)+ f(;xa)); (2.13)
a2A
v(T;x) = g(x); (2.14)
where the operatorL 2 is de ned by
z
LE (x)= E( () (X)) (xa;dy) (2.15)

for all (t;x;a) 2 [0; T] E A and every bounded Borel-measurable function
E! R.

De nition 2.2.5. We say that a Borel-measurable bounded functiow : [0; T]

E ! R is a solution to the HIB equation if the right-hand side of (2.13) is Borel-
measurable and, for everyx 2 E, (2.14) holds, the mapt 7! v(t;x) is absolutely
continuous in [0;T] and ([2.13) holds almost everywhere or{0; T] (the null set of
points where it possibly fails may depend on).

In the analysis of the HIB equation and the control problem we will use the
following function spaces, de ned for any metric spacesS:
(1) Ci(S)=f :S! R continuous and bounded),

(2) LSCK(S)=f :S! R lower semi-continuous and bounded.
() USCy(S)=f :S! R upper semi-continuous and bounded.
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Cu(S), equipped with the supremum normk kj , is a Banach space.LSCy(S) and
USCy(S) are closed subsets o€y(S), hence complete metric spaces with the induced
distance.

In the sequel we need the following classical selection theorem. For a proof we
refer for instance to Bertsekas and Shrevells], Propositions 7.33 and 7.34, where a
more general statement can also be found.

Proposition 2.2.6. Let U be a metric space,V a metric separable space. For
F:U V! Rset
F (u) =sup F(u;v); uz2U:
v2V
(1) If F2USG(U V) andV is compact thenF 2 USCy(U) and there exists
a Borel-measurable :U! V such that

F(u; (u)=F (u); u?2 U:

(2) If F 2 LSCpU V) thenF 2 LSCp(U) and for every > O there exists
a Borel-measurable :U! V such that

F(u, (u) F (0 ; uz2uU:

Next we present a well-posedness result and a veri cation theorem for the HIB
equation in the spaceLSCy([0; T] E), Theorems|2.2.7 and 2.2.10 below. The use of
lower semi-continuous bounded functions was already commented in the introduction
and will be useful for the results in Section 2.b. A small variation of our arguments
also vyields corresponding results in the class of upper semi-continuous functions,
which are more natural when dealing with a maximization problem, see Theorems
[2.2.8 and[2.2.11 that slightly generalize classical results. We rst formulate the
assumptions we need.

is a Feller transition kernel. (2.16)

We recall that this means that for every 2 Cy(E) the function (x;a) ! ¢ (y)
(x;a; dy) is continuous (hence it belongs toC,(E ~ A) by (R.10)).

Next we will assume either that
f 2LSCy([0;T] E A); g2LSCyE); (2.17)
or

f 2USGY(0;T] E A); g2 USGC(E) and A is a compact metric space (2.18)

Theorem 2.2.7. Under the assumptions(2.10), (2.16), (2.17) there exists a unique
solution v 2 LSCy([0; T] E) to the HIB equation (in the sense of De nition [2.2.5).

Proof. We rst make a change of unknown function setting wt;x) = e v(t;x),
where :=sup ,,g.q2a (X;@ E)is nite by (2.10). It is immediate to check that v

is a solution to (2.13)-(2.14) if and only if v is a solution to
@Ll(t;x) =sup LWt x)+e '(txa)+ ~v(tx) (2.19)
@ a2A
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Z
=sup Wt y) (X a;dy)+( (x;a;E)v(t;x)+ e 'f(txa) ;
a2A E
WT;x)= e Tg(x): (2.20)

The notion of solution we adopt for (2.19)-(2.20) is completely analogous to De -
nition and need not be repeated. We set y(t;X) = tT SUppoa w(S;Xx;a)ds

where
Z

wtx;a): =  wty) (xady)+( (x;a;E)w(tx)+ e 'f(txa) (2.21)
E

and note that solving (2.19)-(2.20) is equivalent to nding ¥ 2 LSCy([0;T] E)
satisfying
Wt x) = g(X)+  w(t;x); t2[0;T]; x2E:

We will prove that v 7! g+  is a well de ned map of LSC([0; T] E) into itself
and it has a unique xed point, which is therefore the required solution.

Fix ¥ 2 LSCu([0; T] E). It follows easily from (2.10) that v is bounded and,

if supoa w(; ;@) is Borel-measurable, v is bounded as well. Next we prove that

+ and  are lower semi-continuous. Note that &;a) 7! (x;a; E) continuous
and nonnegative (this is the reason why we introduced the equation forw, so

(txa) 7 ( (xaE)v(Ex)+e 'f(txa)

isin LSCy([0;T] E A). Since is Feller, it is known that the map
z

(tx;a) 70 wty) (x;a;dy) (2.22)
E

is continuous whenwv-2 Cy([0;T] E) (see [L5], Proposition 7.30). For general
v 2 LSCy([0;T] E), there exists a uniformly bounded and increasing sequence
vq 2 Cu([0;T] E) such that w, ! w pointwise (see [[5], Lemma 7.14). From
the Fatou Lemma we deduce that the map [2.2R) is inLSC([0;T] E A) and
we conclude that 2 LSCy([0;T] E A) as well. Therefore sug,a «(; ;a),
which equals the right-hand side of ), is lower semi-continuous and hence Borel-
measurable. To prove lower semi-continuity of  suppose {n;xn) ! (t;x); then

Z

w(tn:Xn) w(fx) = sup «(s;Xn;a)ds
th a2A
T

+  (sup w(SiXn;@) sup w(s;x;a))ds
t azA a2A
T

j t thjk ¢kg + (sup «(s;Xn;a) sup ¢(s;x;a))ds:
t  a2A a2A

By the Fatou Lemma
Zy
liminf o(th; Xn) w(t;X) liminf (sup w(S;Xn;a@) sup «(s;x;a))ds O;
nil t M a2A a2A

where in the last inequality we have used the lower semi-continuity of sug, o «( ; ;).
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Since we assume thaty 2 LSCy(E) we have thus checked thatv-7! g+  maps
LSCy([0; T] E) into itself. To prove that it has a unique xed point we note the
easy estimate based on[(2.10), valid for every®¥°%2 LSCy([0; T] E):

jsuppa w(t X B)  SUPgaa wodt;X;a)]  SUPaaa ) wltiXja)  wodt; X; )]
SUPa2 onvo(t:y) vREY)I (Gasdy) + j¥tx)  ¥XREx)i (xaE)
2 ke® &
By a standard technique one proves that a suitable iteration of the mapv~7! g+
is a contraction with respect to the distance induced by the supremum norm, and
hence that map has a unique xed point.

Theorem 2.2.8. Under the assumptions(2.10), (2.16), (2.18) there exists a unique
solution v 2 USC([0; T] E) to the HJIB equation.

Proof. The proof is almost the same as in the previous Theorem, replacingSCy

with USGC, with obvious changes. We introducev;  and . as before and we
prove in particular that 2 USC,(0;T] E A). The only dierence is that

we can not immediately conclude that sug,, «(; ;@) is upper semi-continuous as
well. However, at this point we can apply point 1 of Proposition [2.2.6 choosing
U=[0;T] E,V=AandF =  and we deduce that in fact sug,, «(; ;&) 2

USGCy([0;T] E). The rest of the proof is the same.

Corollary 2.2.9.  Under the assumptions(2.10), 2.16), if f 2 Cx([0;T] E A),
g2 Cy(E) and A is a compact metric space then the solutiorv to the HIB equation

belongs toCy([0; T] E).

The Corollary follows immediately from the two previous results. We proceed to
a veri cation theorem for the HIB equation.

Theorem 2.2.10. Under the assumptions(2.10), (2.16), (2.17) the unique solution
v 2 LSCy([0; T] E) to the HIB equation coincides with the value functionV.

Proof. Letus x (t;x) 2 [0;T] E. As in the proof of Proposition [2.2.1 we have
the identity
Z av z Z
9(Xr) v(tXg=  ZEX)dr+ (v(ry) v(rXy ) p(drdy);
¢ @ tT] E
which follows from the absolute continuity of t 7! v(t;x), taking into account that
X is constant among jump times and using the de nition of the random measurep.
Given an arbitrary admissible control 2 A,q we take the expectation with respect
to the corresponding probability pix. Recalling that the compensator underPb* is
Li1y(s) (Xs ; (s:Xs ); dy)ds we obtain
Z 1
. @v
E™[g(XT)] v(tXy) = S nXndr
iz @
+ (v(ry) v(rXy ) (X 5 (5X );dy)dr
(tT] E
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Zt
Qv (rXr)
= —(nX)+ L v(n X dr:
t @#r r) E v(r; Xr) r
~ R
Adding EW tT f(r; X¢; (r;Xy)) dr to both sides and rearranging terms we obtain
Z

T @y (rXr)

v(tx)= J(tx; ) EY @iiX D+ Le VX )+ (X (X)) dr
t

(2.23)
Recalling the HIB equation and taking into account that X has piecewise constant
trajectories we conclude that the term in curly brackets f:::g is nonpositive and
therefore we havev(t;x) J(t;x; ) for every admissible control.

Now we recall that in the proof of Theorem[2.2.T we showed that the function
v de ned in (2.21) belongs to LSCy([0; T] E  A). Therefore the function

F(t;x;a):= e ! w(t;x;a)= Lav(tx)+ f(tx;a)+  v(tx)

is also lower semi-continuous and bounded. Applying point 2 of Propositiof 2.2|6
with U =[0;T] E andV = A we see that for every > 0 there exists a Borel-
measurable :[0;T] E ! A suchthat F(t;x; (t;Xx)) infaaF(t;X;a) for
allt 2 [0;T], x 2 E. Taking into account the HJB equation we conclude that for
every x 2 E we have

)yt w) + f (t x- : Qv
Le vt x)+ f(tx; (t;x)) @10’ X)
for almost all t 2 [0;T]. Noting that is an admissible control and choosing

= in (2.23) we obtain v(t;x) J(tx; )+ (T t). Since we know that
v(t;x)  J(t;x; ) for every 2 Aag we conclude thatv coincides with the value
function V.

Theorem 2.2.11. If assumptions (2.10), (2.16), (2.18) hold, then the unique solu-
tion v2 USCy([0; T] E) to the HIB equation coincides with the value functionV .
Moreover there exists an optimal control , which is given by any function satisfying

LEPex) + f(hx (Gx) =sup (LEV(EX)+ f(txa):  (2.24)
azA

Proof. We proceed as in the previous proof, but we can now apply point 2 of
Proposition [2.2.§ to the function F and deduce that there exists a Borel-measurable
:[0;T] E! A such that (2.24) holds. Any such control is optimal: in fact we

obtain for every x 2 E,

LE(t;X)v(t;x) + f(tx; (tx))= Cgp\lft;x)
for almost all t 2 [0; T] and sov(t;x) = J(t;x; ).

Remark 2.2.12. As already mentioned, Theoremd 2.2)8 anfl 2.2.11 are similar to
classical results: compare for instancell08], Theorems 10, 12, 13, 14. In that paper
the author solves the HJB equations by means of a general result on nonlinear semi-
groups of operators, and for this he requires some more functional-analytic structure,
for instance he embeds the set of decision rules into a properly chosen topological
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vector space. He also has more stringent conditions of the kernel, for instance
(x;a;B) should be strictly positive and continuous in (x;a) for each xed B 2 E.

2.3. Control randomization and dual optimal control problem

In this section we start to implement the control randomization method. In the
rst step, for any initial time t 0 and starting point x 2 E, we construct an
(uncontrolled) Markovian pair of pure jump stochastic processes X; 1 ) with values
in E A, by specifying its rate transition measure as in ( below. Next we
formulate an auxiliary optimal control problem where, roughly speaking, we optimize
a cost functional by modifying the intensity of the process| over a suitable family.
This \dual" control problem will be studied in Section 2.4]by an approach based on
BSDEs. In Section[2.5 we will prove that the dual value function coincides with the
one introduced in the previous section.

2.3.1. A dual control system. Let E, A be Borel spaces with corresponding Borel
-algebrasE, A and let be a measure transition kernel from g A;E A) to
(E; E) as before. As another basic datum we suppose we are given a nite measure
o on (A; A) with full topological support, i.e., it is strictly positive on any non-
empty open subset ofA. Note that since A is metric separable such a measure can
always be constructed, for instance supported on a dense discrete subsetA&f We
still assume ), so we formulate the following assumption:

H ) o is a nite measure on (A; A) with full topological supportand satis es
sup (x;a;E)< 1: (2.25)
xX2E;a2A

We wish to construct a Markov process as in sectiof 2.2]1, but with state space
E A. Accordingly, let °denote the set of sequences®= (tn;en;an)n 1 contained

in((0;1) E A)[f(@; ; 9g where 2E (respectively, °2 A) is adjoined
to E (respectively, to A) as an isolated point, satisfying ) In the sample space
= E A OwedeneT,: ! (0;1],En: ! E[f g An: ! A[f % as
follows: writing ! = (e;a;!C) in the form ! = (e;a;ty;e1;ty; ;i) we setfort O

and forn 1

Ta(!) = tn; Tr (M) =1lim gty To(!)=0;
En(')= en; An(V) = ap; Eo(!) = e Ag(t) = a:

We also de ne processesX : 01)! E[f g1 : 0;1)! A[f Y
setting
X X
Xt=lprgMEo+t Ly 1m.1(t) En; lt =17y Ao+ L1, 1(D) An;
n 1 n 1

fort<Ti,,X{= and I;= Ofort T;.

In  we introduce for all t O the -algebrasG = P(N(S;B) . s2 (0;t];B 2
E A) generated by the counting processed (s;B) = |, 11, slg, A28 and
the -algebra F; generated byFo and G, whereFo := E A f; ; 4. We still
denoteF = ( Ft); o and P the corresponding lItration and predictable -algebra. By
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abuse of notation we also denote by the same symbol the trace & on subsets of
the form [0; T] or[ t;T] , for deterministictimes0 t T < 1.

The random measurepis now denedon (0;1) E A as
X
p(dsdy db = 17,<1g TnEn:Ang(dsdydd: (2.26)
n2N

By means of and g satisfying assumption(H ) we de ne a (time-independent)
rate transition measure onE A given by

( x;a;dydh = (x;a;dy) a(dh+ o(db) x(dy): (2.27)

and the corresponding generatorl :
Z

L' (x;a) = (" (y;b ' (x;a) ( x;a;dydh (2.28)
zE A Z
E(' (y;a) '(xa) (xady)+ A(‘ (x;b) " (x;a)) o(db);

forall (x;a) 2 E A and every function' 2 B(E A).

Given any startingtime t 0 and starting point (x;a) 2 E A, an application of
Proposition provides a probability measure on ( ;F1 ), denoted by P%%2 | such
that (X; 1) is a Markov process on the time interval f; 1 ) with respect to F with
transition probabilities associated to L. Moreover, Pt%2-a.s.,Xs = x and Is = a for
all s 2 [0;t]. Finally, the restriction of the measure pto (t;1) E A admits as
F-compensator underPt*@ the random measure

p(dsdydd := o(dD ¢x, g(dy)ds+ (Xs ;ls ;dy) 1, g(dbds:

We denoteq:= p pthe compensated martingale measure associated o

Remark 2.3.1. Note that ( x;a;fx;ag) = o(fag)+ (x;a;fxg). So even if we
assumed that (x;a;fxg) =0, in general the rate measure would not satisfy the
corresponding condition ( x; a;fx;ag) = 0. We remark that imposing the additional
requirement that o(fag) = 0 is too restrictive since, due to the assumption that

o has full support, it would rule out the important case when the space of control
actions A is nite or countable.

2.3.2. The dual optimal control problem. We introduce a dual control problem
associated to the processX;| ) and formulated in a weak form. For xed (t;x;a),

it consists in de ning a family of probability measures fP*™?; 2 Vg in the space

( ;F1), all absolutely continuous with respect to P2, whose e ect is to change
the stochastic intensity of the process K; 1) (more precisely, under eachP"*? the
compensator of the associated point process takes a desired form), with the aim of
maximizing a cost depending onf;g. We note that fP*™*?; 2 Vg is a dominated
family of probability measures. We proceed with precise de nitions.

We still assume that (H ) holds. Let us de ne

vV = f : [0;1) A! (0;1); P A-measurable and bounded:
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For every 2V, we consider the predictable random measure
p(dsdydh:= s(b) o(dD) x, g(dy)ds+ (Xs ;ls ;dy) i, g(dds: (2.29)

Now we x t 2 [0;T], x 2 E, a2 A and, with the help of a theorem of Girsanov
type, we will show how to construct a probability measure on ( ; F; ), equivalent to
Ptx@ under which p- is the compensator of the measure on (0;T] E A. By
the Radon-Nikodym theorem one can nd two nonnegative functionsdi, d> de ned
on [0;1) E A, measurable with respecttoP E A such that

o(db) ¢x, (dy)dt = di(t;y;b)p(dtdydb)
(Xt 51t 5 dy) 11, g(dbdt da(t; y; b) p(dtdy db);
di(t;y; b) + do(t;y;b) 1; p(dtdydb) a:e:

and we havedp =( di1+ dy)dp. Forany 2 V, consider then the Dokans-Dade

exponential local martingale L de ned setting L =1 for s 2 [0;t] and
zZ Z

S

Ls =exp log( r(b) di(r;y;b) + da(r;y; b)) p(drdy db)
t E A

Z

S

( (B 1) o(dpdr
A

t

s Y
= e al (O ol ( 7 (An) da(Tn; En; An) + d2(Tn; Eni An))
n>1Tn6s

for s 2 [t;T]. When L is a true martingale, i.e., E™?@ [L.] = 1, we can de ne
a probability measure P*2 equivalent to P™@ on ( ; Fy ) setting P™?(d!) =
L. (! )P™2a(d!). By the Girsanov theorem for point processes (5], Theorem 4.5)
the restriction of the random measurepto (0;T] E A admitsp =( d1+ dy)p
as compensator underP™?. We denote by E™*? the expectation operator under
P™@ and byq = p p the compensated martingale measure op under P2 .
The validity of the condition E"™? [L.]= 1 under our assumptions, as well as other
useful properties, are proved in the following proposition.

Lemma 2.3.2. Let assumption (H ) hold. Then, for everyt 2 [0;T], x 2 E and
2 V, under the probability P**2 the processL is a martingale on [0;T] and L is
square integrable.

In addition, for eyery P E  A-measurable functionH : T] E A! R
such thatE™@ T jHs(y;b)j?p(dsdydh < 1, the process
Z Z

X Hs(y;b) g (dsdyd

t

is a P2

-martingale on [t; T].
Proof. The rst part of the proof is inspired by Lemma 4.1 in [88]. In particular,
since is bounded and ¢(A) < 1 , we see that
Z,Z
St =exp i s(B) 1 o(dbds
t A
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is bounded. Therefore, from Theorem 8, see also Theorem 9, ii09], follows the
martingale property of L together with its uniform integrability. Concerning the
square integrability of L, set "(x; ):=2In(x +1 ) In(x? +1 ), for any
x Oand 2 [0;1]. From the de nition of L we have (recalling that d»(s;y;b) =
1 di(s;y;b)
Z,Z
. . 2 < 2
jLtj?= Ly Srexp e ( s(D);di(s;y; D) p(dsdydy Ly Sy;
where the last inequality follows from the fact that * is nonpositive. This entails
that L is square integrable.
Finally, let us x a predictable function H such that
Z:Z
E2 jHs(y:Dj*p(dsdydy <1 :
R t E A
. £ aHs(y;bqg (dsdydp is a P*?-local martingale, and the uni-
form integrability follows from the Burkholder-Davis-Gundy and Cauchy Schwarz
inequalities, together with the square integrability of L.

R
The process

To complete the formulation of the dual optimal control problem we specify the
conditions that we will assume for the cost functionsf , g:

(Hfg) f 2Bp([0; T] E A)and g2 ByE).
Foreveryt 2 [0;T],x2 E,a2 Aand 2 V we nally introduce the dual gain
functional 7
T

J(tx;a; )= E™@ g(X1)+ f(s; Xs; ls)ds ;
t
and the dual value function

V (t;x;a)=sup J(t;x;a; ): (2.30)
2V

Remark 2.3.3. Let s denote byf S,g (resp. f Rng) the jump ti|g1es of I (resp. ofX),

and by '(dsdb = | (s, (dsdD (resp. X (dsdy) = | (r,ixg,)(dsdY))
the corresponding random measureon (L ) A (resp. on (001 ) E).

An interpretation of the dual optimal control problem can be given as follows:
under Ptx@a

() the times fS,g e fR,g are disjoint;
(i) the compensators of the random measures ' (dsdp and X (ds dy) are
~(dsdb = o(dD) Lipsy, gds; ~*(dsdy)= (Xs ;ls ;dy)lyex, gds: (2.31)

In particular, the e ect of choosing is to change the intensity of the | -component.

To prove point (i), let us introduce the P-measurable process$i : R+ E
A! R, dened by

Hs(hysb)=(y Xs (1)b 1s (1)* (2.32)
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We have .
X # z,2
Et;x;a HTn (XTn;ITn) = Et;X;a Hs(y,ls ) (XS 1|S ,dY) dS
0 E
n Z,Z7Z
+ gt Hs(Xs ;B) o(db)ds
0 A
=0:

Recalling (2.32), previous equality reads
! #

. X
S ( Xt.)?( I1,)? =0;

i.e.,, foralln2 N,
( XTn)z( ITn)2 =0 Pt;X;a -a.s.

Therefore the jump times of X and | are disjoint.

Let now consider point (ii). Since, by (i), the jump times fS,gn>1 and fRy0n>1
are disjoint, for any F-predictable processeX : R E! RyandJ: R+
Al R;:, we have

X X X
KR, (XR,) = K, (X1,); Js, (Is,) = Jr, (I7,)
where

Ks(y) = Ks(¥) Liyexs g Js(B) = Js(b) Lipg i, g
In particular, since Ks(Xs )=0and Js(ls )=0for all s2 [0; T], we get
" " #

#
e X e X
S KR, (XR,) = E™® K, (X7,)
: Z'\z
1
= Etxa Ks(y) (Xs ;ls ;dy)ds
vl
= g2 o . KS(Y):I-fyGXS g (xs s ;dY) ds (2-33)
and
" # " #
v X g X
Ebxa Js,(Is,) = E™® J7, (I7y)
A Z'. z
1
= EW™2 Js(b) o(dbds
2,
1
= gtxa ) AJs(b)lfb@.s g o(dbds : (2.34)

Identities (R.34) and (2.33) show the validity of (2.31) under P**2.



Chapter 2. Constrained BSDEs representation of the value function for
80 optimal control of pure jump Markov processes

2.4. Constrained BSDE and the dual value function representation

In this section we introduce a BSDE, with a sign constrain on its martingale
part, and prove existence and unigueness of a minimal solution, in an appropriate
sense. The BSDE is then used to give a representation formula for the dual value
function introduced above.

Throughout this section we assume that the assumptiondH ) and (Hfg) are
satis ed and we use the randomized control setting introduced above: ;F;X; Ptxa
as well as the random measurep; p; g are the same as in subsection 2.3.1. For any
(tx;a) 2[0; T] E A, we introduce the following notation.

L2( o), the set ofA-measuraénIe maps :A! R such that
J ity =1 OF o<1

LZa (F ), the setof F -measurable random variableX such that E¥?@ jXj2 <
1 ; here is an F-stopping time with values in [t; T].
Stz,x,a the set of real valued @dhg adapted processesy = ( Ys)igseT Such
that
iYiZ = E™? sup jYs® < 1:
txa t6s6 T
LtZ,X,a (q), the setof P E A-measurable map<Z : ;T] E Al R
such that
jjzjj2 = gxa TR 7 (2 p(ds dy d
] ”foa (CP\R R t E AJ S(ya )J p( SF)Q/ 2 i
= E%a T Z1snP (Xsilsdydst ||, iZs(Xsi B2 o(dbds < 1

KtZ’X,al the set of nondecreasing predictable processds = (Kg)igseT 2

SZ,a With K¢ =0, with the induced norm
iKiigs = E™® jKgj*
tx,a

We are interested in studying the following family of BSDEs parametrized by ¢; x; a):
ptXa.as.,

Z
Yo% = g(Xr) + Tf(r;Xr;Ir)Olr+ Ky kg
z.z °
Z*2(y; b) q(dr dy db)
ZsT ZE A
Z™X3 (X, b) o(dbdr;, s2[tT]; (2.35)
S A

with the sign constraint
Z™%(Xs ;b6 0; ds dP*™@  o(db ae.on[T] A: (2.36)

This constraint can be seen as a sign condition imposed on the jumps of the corre-
sponding stochastic integral.
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De nition 2.4.1. A solution to the equation (2.35)-(2.36) is a triple (Y;Z;K) 2
S%a L. (@ K. thatsatises (2.35)-(R.36).
A solution (Y; Z;K) is called minimal if for any other solution (Y ;Z; K') we have,
ptxa.as.,
Ys 6 Ys; s2[tTI:

Proposition 2.4.2.  Under assumptions(H ) and (Hfg) , for any (t;x;a) 2 [0; T]
E A, if there exists a minimal solution on ( ; F; F; P**?) to the BSDE (2.35)-(2.36),
then it is unique.

Proof. Let(Y;Z;K)and (Y%Z%K9 be two minimal solutions of (2.35)-(2.38). The
componentY is unique by de nition, and the di erence between the two backward
equzatiozns gives:P™a-a s,

S
(Ze(y; B ZXy; b) p(dr dy db)
t E A .z
= Ks K2+ (Ze(yi1r ) ZAyile ) (X¢ 51y dy)dr; 8t6s6 T:
t E

The right hand is a predictable process, in particular it has no totally inaccessible
jumps (see, e.g., Proposition 2.24, Chapter I, in Jacod and ShiryaeV/B]), while the
left side is a pure jump process with totally inaccessible jumps. This implies the
uniqueness of the componen, and as a consequence the componeit is unique
as well.

We now state the main result of the section.

Theorem 2.4.3. Under the assumptions(H ) and (Hfg) , for all (t;x;a) 2 [0; T]
E A there exists a unique minimal solutionY**2 to (2.35)-(2.36). Moreover, for
all s2 [t;T], Y2 has the explicit representation:
T
Yi%@ = esssupE  g(Xt)+ f(rXel)dr Fs ; s2[tTI: (2.37)
2V S

In particular, setting s = t, we have the following representation formula for the
value function of the dual control problem:

V (tx;a)= Y, (tx;a)2[0;T] E A: (2.38)

The rest of this section is devoted to prove Theorenj 2.4]3. To this end we will
use a penalization approach presented in the following subsections. Here we only
note that for the solvability of the BSDE the use of the Itration F introduced above
is essential, since it involves application of martingale representation theorems for
multivariate point processes (see e.g. Theorem 5.4 ifi/B]).

2.4.1. Penalized BSDE and associated dual control problem. Let us con-
sider the family of penalized BSDEs associated td (2.35)-(2.36), parametrized by the
integer n > 1: P2 .-a.s.,
Z1
YR = g(Xp)+ F(X ) dr+ KPR K e

S
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. Z"%2 (y; b) g(dr dy db)
Z.z
ZMtka (X ;b o(dodr, s2 [T (2.39)
S A
where K" is the nondecreasing process iK t2,x,a de ned by
Z.Z
Kg=n [Z/(Xr; D] o(db) dr:
t A
Here we denote by {i]* the positive part of u. The penalized BSDE [2.39) can be
rewritten in the equivalent form: P%*2-a.s.,
Z 1
YR = g(Xr)+ N X 1 2P (X ) ds
z.Z
zhtxa (y-pg(drdydb); s2[t;T]:
s E A

where the generatorf " is de ned by
f'(t;x;a; )= f(xa)+ n[ (B]* (b)  o(db); (2.40)
A

forall (t;x;a)in[0;T] E A, and 2 L?( o). We note that under (H ) and
(Hfg) " is Lipschitz continuous in  with respect to the norm of L?( g), uniformly
in (t;x;a), i.e., for every n 2 N there exists a constantL, depending only onn such
that for every (t;x;a) 2 [0; T] E Aand ; 92 L2( o),

ffrtxa 9 fh(txa )j6 Laj Yo o)
The use of the natural Itration F allows to use well known integral representation
results for F-martingales (see, e.g., Theorem 5.4 ir7j5]) and we have the following

proposition, whose proof is standard and is therefore omitted (similar proofs can be
found in [131] Theorem 3.2, [L2] Proposition 3.2, [28] Theorem 3.4).

Proposition 2.4.4. Let assumptions(H ) and (Hfg) hold. For every initial con-
dition (t;x;a) 2 [0; T] E A, and for every n 2 N, there exists a unique solution

(Y8, 28 51 2 Sia LEca (q) satisfying the penalized BSDE(R-39).

Next we show that the solution to the penalized BSDE [2.39) provides an ex-
plicit representation of the value function of a corresponding dual control problem
depending onn. This is the content of Lemma[2.4.5 which will allow to deduce some
estimates uniform with respect to n.

For every n > 1, let V" denote the subset of elements 2 V that take values in
(0; n].

Lemma 2.4.5. Let assumptions(H ) and (Hfg) hold. Foralln l1ands2 [t;T],
Zy
YMXa = esssupE  g(X1)+ f(r; X ;1)dr Fs ; PX@ as:  (2.41)
2yn

S
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Proof. We x n 1andforany 2 V" we introduce the compensated martingale
measureq (dsdydd = q(dsdydd ( s(b) 1)di(s;y;b p(dsdydy under P2 . We
see that the solution (Y";Z") to the BSDE (P.39) satis es: P™?-a.s.,
Z
T T
YO = g(X1)+ f(rX;ly)dr+ fnZ(Xr;B]" (D) Z](X;bg o(db) dr
7.7 S S A
T

ZMy;b)q (drdydb); s2[tTI: (2.42)

E A

S

By taking conditional expectation in (£:42) under P*® and applying Lemma[2.3.2
we get, for anys 2 [t; T],

T

yptxe = B g(Xt)+  f(nXy;l)dr Fs (2.43)
z.z2 °
+E fn[zMt™a (X ;" (D) ZM? (X, ;g o(dbdr Fs ;
S A

P™@ _a.s. From the elementary numerical inequality: n[u]* u > 0 for all u 2 R,
2 (0; n], we deduce by |(2.43) that
T

YNX@ > esssufE g(Xt)+  f(r Xl )dr Fs (2.44)
2yn s
On the other hand, for 2 (0; 1), let us consider the process 2 V" de ned by
s =nlzmxa (x  ysogt L aczmwe (xg m<og
ZQ;I;Xia (XS ,b) 1lf22;t;xza (Xs )6 19:

By construction, we have

NZE%™2 (Xs ;B (BZE? (Xs ;B 6 5 s2[TEb2A;
and thus for the choice of = in (2.43):
Z1
yhtxa g EW@ g(X1)+ f(rXeil)dr Fs + Tj o(A)
S
Z 1

6 esssue o(Xt)+  F(nXiil)dr Fs + Tj o(A)j:
2yn s
Together with (R.44), this is enough to prove the required representation ofy ". Note
that we could not take s(b) = nltzp(x, ;n>o0g, SINCE this process does not belong to
V" because of the requirement of strict positivity.

2.4.2. Limit behavior of the penalized BSDEs and conclusion of the proof
of Theorem As a consequence of the representatiorf (2.41) we immediately
obtain the following estimates:

Lemma 2.4.6. Let assumptions(H ) and (Hfg) hold. There exists a constantC,
depending only onT;f;g, such that for any (t;x;a) 2 [0;T] E A andn 1,
ptXa.as.,

st;t;x;a 6 st+l ;t;x;a; ijn;t;x;aj 6 (:7 52 [t,T]
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Proof. For xed s2 [t;T], the almost sure monotonicity of Y "2 follows from the
representation formula ), since by de nition V" V"*1: moreover, the same
formula shows that we can takeC = jjgjjis + Tjjfjj1 . Finally, these inequalities
hold for every s 2 [t; T] outside a null set, since the processeg"™t*2 are mdhg.

Moreover, the following a priori uniform estimate on the sequence Y ™t%2 ;
zZmtxa . K mtxay holds:

Lemma 2.4.7. Let assumptions(H ) and (Hfg) hold. For all (t;x;a) 2 [0; T]
E A andn 2 N, there exists a positive constantC® depending only onT;f;g such
that

FYMRE o+ GZRGE, + KMAE, 6 CY (2.45)
Proof. In the following we omit for simplicity of notation the dependence on (t; x; a)
for the triple (Y Mtxa.zmtxa K mtxa) The estimate on Y" follows immediately
from the previous lemma: "

Yz = E™ sup jYJj* 6 C* (2.46)
tx.a s2[tT]

Next we notice that, since K" is continuous, the jumps of Y" are given by the
formula Z

Yg' = i AZQ(y: b) p(f sg; dy dB:

The 1t6 formula applied to jY,"j? gives:

Y2 = 2 Y+ YR
=2 X il )dr 2" dK .
+2Y," ZMNy;Dqdrdyd)+2Y,"  Z(X; ;b) o(dbdr
7 E A A
+ i AjZP(y;b)jzp(frgdydOS (2.47)

Integrating (R.47) on [s; T], for every s 2 [t; T], and recalling the elementary inequal-
ity 2ab6 la’?+ b? for any constant > 0, and that

e jZM(Xr ;Bj? o(dhdr 6 E™® iz (y; Dj? p(drdy db) ;
s A S E A
(2.48)
we have:
Z:2
EPR jYej® + EP® jZ7(y: Bj® p(dr dy db)
s E A
6 E™® jg(X7)j?
L Z1 Zq
+ ZEW@ (X 1)jPdr + EPR jY,"j%dr
_— > 7.z > Z
+ gt | JZP0iBip(drdyde) + BT jyOidr

S S
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" #

+ ZE™® sup jYQF o+ E™RKE K{P G s2 [T (2.49)
S2[tT]

for some ; ; > 0, Now, from the equation (2.39) we obtain:

Z1
KT K& = Yd gXy) f(rnXy;l)dr
Z.2 °
+ Z!(Xr;b) o(dbdr
2.z

+ ZM(y;D g(drdydb); s2[tT]
E A

S

Next we note the equality
"z.2z N
Ee Z}'(y; b) g(dr dy db)
S E A
Z,Z
= g iZ{(y; b)j? p(dr dy db)
ZsT ZE A
= E@ i (y; B p(dr dy db)
s E A
that cgn e proved applying the Ito formula as before to the square of the martingale
u7! s“ e aZr(y; bg(drdydb), u 2 [s;T] (or by considering its quadratic varia-
tion). Recalling again (2.48) we see that there exists some positive constar® such

that
Et;x;a jK? ngz
Z T
6 B EY™?® jY1j2 + E™? jg(X1)j? + EW@ (P SHBIRCY
s
Z.:2Z
E A

S

Plugging (2.50) into (2.49), and recalling the uniform estimation (2.46) onY", we
get

(1 B )Et;x;a ijan

Z
T A - . .
T oA guxa iZ{ (y; B2 p(dr dy db)
Zq
E™ (X s1y)j%dr

S

+ 1 B +

6 (1+ B)E™ jg(X7)i* + B +
C2 ZT
+—+( + )EW jY"jPdr 5 s2 4TI

S
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Hence, by choosing 2 O0; % , > %, > 0, and applying Gromwall's lemma
tos! EY™2 jyNj2  we obtain:
Z.2
sup E™? Y] + B iZ{(y; Bj° p(ds dy db
s2[t; T ] t E A
Zq
6 CO EY™@ jg(X1)j2 + EW@ if (s;Xs:15)j2ds + C?2 (2.51)
t

for someC%> 0 depending only onT, which gives the required uniform estimate for

(™) and also (K") by (R.50).
We can nally present the conclusion of the proof of Theoren[2.4.3:

Proof. Let (t;x;a) 2 [0;T] E A. We rst show that ( Y";Z";K") (we omit
the dependence onf{x;a) for simplicity of notation) solution to (2.39)| converges in

a suitable way to some processY(; Z; K ) solution to the constrained BSDE (2.35)-
(2.36). By Lemma[2.4.6, (Y")n ¢pnverges increasingly to some adapted process
Y, which moreover satis es E"™? supg,.11iYsj? < 1 by the uniform estimate
for (Y"), in Lemma [2.4.7 and Fat&u's lemma. Furthermore, by the dominated
convergence theorem, we also have oTth” Yij?dt ! 0. Next, we prove that there
exists (Z; K) 2 L3, (@) K&, with K predictable, such that

(i) Z is the weak limit of (Z"), in Ltz,x,a (a);
(i) K isthe weak limit of (K ™), in LIZ,X'a (F ), for any stopping time valued

in[tTI;
(i) P%*2.-a.s.,
z T
Ys = g(X71)+ f(Xe;l)dr+ K Ks
z:z ° Z.Z
Z.(y; b) q(drdy db) Z (X:; b o(dbdr; s 2 [t;T];
S E A S A
with

Zs(Xs ;b 6 0 ds dP™@  o(db a.e.

Let de ne the following mappings from L2, (q) to L2, (F ):

zZ Z
1. z7 Zs(y:b) g(dsdydb;
Zt ZE A
12: z7 Zs(Xs:b) o(dbds;
t A

for eachF-stopping time  with values in [t; T]. We wish to prove that | 1Z" and | 2Z"
converge weakly inLtZ’X’a (F ) to 11Z and | ?Z respectively. Indeed, by the uniform
estimates for Z"), in Lemma , there exists a subsequence, denoted '{x)y,
which converges weakly inLEX,a (g). Sincel; and I, are linear continuous operators
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they are also weakly continuous so that we havd 1Z"«< | 11Z and 12z | |27
weakly in LEX’a (F)ask!1l . Since we have from|(2.39)
Z

KM = YT+ v f(rXe;1p)dr
zZ Z t zZ Z
+ ZM(Xr;b) o(dodr + Z(y;b) g(dr dy dby);
t A t E A

we also obtain the weak convergence im-tz,x,a (F)ask!'1l
Z

K Mk * K = Y +Y f(rX,;l,)dr
z Z t zZ Z
+ Zi(Xr;b) o(dhdr + Z:(y; b) g(dr dy difp.52)
t A E A
Arguing as in Peng [L04], proof of Theorem 2.1, Kharroubi, Ma, Pham and Zhang
[87] Lemma 3.5, Essaky 60] Theorem 3.1, we see thatK inherits from K"k the
properties of having nondecreasing paths and of being square integrable and pre-
dictable. Finally, from Lemma 2.2 in [104] it follows that K and Y are @adhg, so
that K@ 2 K2 ,and Y®™a 2 §2 ..

Notice that the processesZ and K in ( are uniquely determined. In-
deed, if (Z;K) and (Z%K?9 satisfy (2.52), then the predictable processe< and
Z9 coincide at the jump times and can be identi ed almost surely with respect to
p(!; dsdy db)P2 (d! ) (a similar argument can be found in the proof of Proposi-
tion to which we refer for more details). Finally, recalling that the jumps of
p are totally inaccessible, we also obtain the uniqueness of the compone#t. The
uniqueness ofZ and K entails that all the sequences Z"),, and (K "), respectively
converge (in the sense of points (i) and (ii) above) toZ and K .

It remains to show that the jump constraint ( is satis ed. To this end, we

consider the functional on L;‘:X,a (q) given by

Z:Z

G: Z 7! EWa [Zs(Xs ;D]" o(dbds :
t A
From uniform estimate (.45), we see thatG(zZ") ! Oasn!1 . SinceG is
convex and strongly continuous in the strong topology othZ’X’a (9), then G is lower
semicontinuous in the weak topology othZ’X,a (9), see, e.g., Corollary 3.9 in Brezis
[19]. Therefore, we nd
G(2Z) 6 Iimlinf G(Zz")=0;

from which follows the validity of the jump constraint (.36) on [t;T]. We have
then showed that (Y;Z;K) is a solution to the constrained BSDE (2.35)-(2.3¢). It
remains to prove that this is the minimal solution. To this end, x n 2 N and
consider a triple (Y ;Z;K) 2 S, . L& (a) K&, satisfying (2.35)-(2.38). For
any 2 V", by introducing the compensated martingale measurey , we see that the
solution (Y ;Z; K) satis es: P2 -a.s.,
Zt
Ys = o(X1)+ f(Xe;l)dr+ Ky Ks (2.53)

S
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Z.2 Z.Z
Z:(y; b q (drdydb) r(D)Z (Xr;0) o(ddr s2[tT]
A

S E A S

By taking the expectation under P*® in (2.53), recalling Lemma[2.3.2, and thatkK
is nondecreasing, we have

Ys > E g(X71)+ f(rnXysly)dr E r(B) Zr (Xy; ) o(db dr
S S A
Zy
> E g(Xt)+ f(rXe;ly)dr S2[tT]; (2.54)

S

since is valued in (0; n] and Z satis es constraint (2.36). As is arbitrary in V",
we get from the representation formula [2.41) thatYs > Y, 8s 2 [t;T], 8n 2 N.
In particular, Ys = limny1 Y 6 Y, i.e., the minimality property holds. The
uniqueness of the minimal solution straightly follows from Proposition[2.4.2.

To conclude the proof, we argue on the limiting behavior of the dual representa-
tion for Y" whenn goes to in nity. Since V"V, it is clear from the representation
@.47)) that, for all nands2 [t; T],

Z 1
Y 6 esssufE  g(XT1)+ f(r;X;l)dr Fg :
2V s
Moreover, beingY the pointwise limit of Y", we deduce that
Zy
Ys = rI1i|r1n Y 6 esssufE g(X1)+ f(rnX;l)dr Fg : (2.55)
! 2V s
On the other hand, for any 2 V, introducing the compensated martingale measure
g under P as usual, we see thatY; Z; K) satis es
Zt
Ys = g(X1)+ f(nXel)dr+ Ky Ks (2.56)
z,z ° z.Z
Z:(y; b q (drdydb) Zi(Xr; b r(b) o(dhdr; s2[tT]:
s E A A
Arguing in the same way as in [2.54), we obtain
Z7
Ys > E g(X1)+ f(n X l)dr Fs
S
h R i
so that Ys > esssup,yE g(X71)+ ST f(r;Xy;1;)dr Fs by the arbitrariness of
2 V. Together with (R.55) this gives the required equality.

S

2.5. A BSDE representation for the value function

In this section we conclude the last step in the method of control randomiza-
tion and we show that the minimal solution to the constrained BSDE (2.35)-(2.36)
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actually provides a non-linear Feynman-Kac representation of the solution to the
Hamilton-Jacobi-Bellman (HJB) equation (R.13)-(R.14), that we re-write here:

@\gt;x) =sup (LEv(t;x)+ f(t;x;a)); v(T;x) = g(x):
@? a2A

As a consequence of the dual representation in Theorefn 2.4.3 it follows that the
value function of the original optimal control problem can be identi ed with the
dual one, which in particular turns out to be independent on the variable a.

For our result we need the following conditions:

sup (x;a;E)< 1 (2.57)
X2E;a2A

is a Feller transition kernel, (2.58)
f 2Cy([0;T] E A); g2 CyE): (2.59)

We note that these assumptions are stronger that those required in Theorerp 2.2.7
and therefore they imply that there exists a unique solutionv 2 LSCy([0; T] E)
to the HIB equation in the sense of De nition 2.2.5. If, in addition, A is a compact
metric space thenv 2 Cy([0; T] E) by Corollary

Let us consider again the Markov processX;| ) in E A constructed in Section
[2.3.1, with corresponding family of probability measuresP™2 and generatorL in-
troduced in (2.28). Since [2.57){2.5P) are also stronger tharfH ) and (Hfg) , by
Theorem[2.4.3 there exists a unique solution to the BSDE[(2.35)F(2.36).

Our main result is as follows:

Theorem 2.5.1. Assume (2.57), (2.58), (2.59). Let v be the unique solution to
the Hamilton-Jacobi-Bellman equation provided by Theoreny 2.2]7. Then for every
(t,x;a)2[0; T] E A,

v(t;x) = YR
where Y'*2 is the rst component of the minimal solution to the constrained BSDE
with nonpositive jumps (2.35)-(2.36).

More generally, we haveP™ 2 -a.s.,
V(s; Xg) = Yoxa, s2[tTI:

Finally, for the value function V of the optimal control problem de ned in (2.17)
and the dual value functionV de ned in (2.30) we have the equalities

V(tx) = v(tx) = Y% = V (t;xa):

In particular, the latter functions do not depend on a.

The rest of this section is devoted to prove Theorenj 2.5]1.

2.5.1. A penalized HJB equation. Let us recall the penalized BSDE associated
to (2.35)-2.36): P2 -a.s.,
Z zZ.Z
YSPR = g(Xr)+ f(nX1)ds Z{"5® (y;b) o(drdy db)  (2.60)
S S E A
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Z.Z
+ NEZre (X" ZP% (Xesh) o(dBdr; s 2 [T
S A
Let us now consider the parabolic semi-linear penalized integro-di erential equation,
of HIB type: forany n 1,

Ptxars  MiExb) VExal'  (Exb) V(Exa)g o
A

+LVv'(t;x;a)+ f(t;x;a)=0 on[0;T) E A; (2.61)

vi(T;x;a)= g(x) onE A; (2.62)

The following lemma states that the solution of (2.61)-(2.62) can be represented
probabilistically by means of the solution to the penalized BSDE [2.60):

Lemma 2.5.2. Assume 2.57), (2.58), .59). Then there exists a unique function
vl 2 Cy([0;T] E A) such thatt 7! v(t;x;a) is continuously di erentiable on

[0;T] and (2.61))-(2.62) hold for every(t;x;a) 2 [0; T) E A.
Moreover, for every (t;x;a) 2 [0; T] E A and for everyn 2 N,
yata s =y (s; Xe ls) (2.63)
ZyR (yih) = V(siy; b V(siXs s ) (2.64)

(to be understood as an equality between elements of the spa&@a Ltz‘x‘a (q)) so
that in particular v"(t;x;a) = Y,

Proof. We rst note that v" 2 Cy([0;T] E A) is the required solution if and
only if
Z Z
v(t;x;a) = g(x) + Lv"(s;x;a)ds+ f(s;x;a;v(s;x; ) V'(s;x;a))2.65)
t t
fort 2 [0;;T), x 2 E, a2 A, wheref"(t;x;a; ) is the map de ned in (.40). We
use a xed point argument, introducing a map from Cy([0;T] E A) to itself
setting v = ( w) where
Z Z
v(t;x;a) = g(x) + Lw(s;x;a)ds+ f(s;x;a;w(s;x; )  w(s;x;a))ds:
t t
Using the boundedness assumptions on and ¢ it can be shown by standard argu-
ments that some iteration of the above map is a contraction in the space of bounded
measurable real functionson [@T] E A endowed with the supremum norm and
therefore the map has a unique xed point, which is the required solution v".

We nally prove the identi cations (2[63)}(2.64)] Since v" 2 Cy([0;T] E A)we
can apply the It6 formula to the processv(s; Xs;ls), s 2 [t; T], obtaining, P%*2-a.s.,
Z @t
V(s Xs;ls) = Vvt x;a) + = (X )+ LV (X 0)  dr
t @r
z.Z
+ v"(r;y;b) V(X 1y ) q(drdydb); s2 [t T:
t E A
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Taking into account that v" satis es ([2.61)-(2.62) and that (X;I) has piecewise
constant trajectories, we obtain Pt -a s,

@Or(r;xr;lr)+ LVI(EX sl )+ £ X v (6 X s ) v (X 1r))=0;

@
foralmostall r 2 [t;T]. It foIIosz that, P*2-a.s.,
S
Vi(s; Xsils) = V'(x;a) X v (X ) V(s X ly)) dr
z.Z !
+ (v"(r;y;b)  v(r X 1y ) g(drdydb); s2 [t TI:
t E A

SinceVv"(T;x;a) = g(x) for a%l (x;a) 2 E A, simple passages show that
S
Vn(S;Xs;ls) = o(XT)+ fn(r;xr;lr;Vn(r;Xr; ) Vn(r;x rylr))dr
z.z !
vV"(r;y;b)  v( X 1y ) g(drdydb); s2[tTI:
t E A
Thus the pairs (Ya">% ;282 (y; 1)) and (V'(s; Xs; 1s); V(S5 y; D) V(s Xs 51s )
are both solutions to the same BSDE underP%*2 | and thus they coincide as mem-

bers of the spaceSZ,, L& . (9). The required equalities (2.63)-(2.64) follow. In
particular we have that v"(t;x;a) = Ytn;t;x;a .

2.5.2. Convergence of the penalized solutions and conclusion of the proof.
We study the behavior of the functionsv™ asn!1 . To this end we rst show that
they are bounded above by the solution to the HIB equation.

Lemma 2.5.3. Assume (2.57), .58), (2.59). Let v denote the solution to the

HJB equation as provided by Theorenj 2.2]7 and” the solution to (2.61)-([2.62) as
provided in Lemma[2.5.2. Then, for all (t;x;a) 2 [0; T] E Aandn 1,

v(t;x)  V(t;x;a):

Proof. Letv:[0; T] E! R be a solution to the HIB equation. As in the proof
of Proposition [2.2.7 we have the identity
Z av Z Z

g(Xt1) V(tXy) = @Q;Xr)dH (v(riy) v(r; Xy ) p(drdy db);
t tT] E A

which follows from the absolute continuity of t 7! v(t;x), taking into account that
X is constant among jump times and using the de nition of the random measurep
de ned in (R.26) and the fact that v depends ont;x only. Sincev is a solution to
the HJB equation we have, for allx 2 Eza 2 A,

oo LEvE+ fxa)=  (Ey) vEx) (caidy)+ 1 (6xa);
E

almost surely on [QT]. Taking into account that ( X;I) has piecewise constant
trajectories we obtair%

9(X1) V(X4 (v(ry) v(r; Xy )) p(drdydb) (2.66)
(tT] E A
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Z:Z Z
(v(riy) v(r X)) (Xe;lesdy)dr f(rXy;lp)dr
E t

Then, foranyn 1 and 2 V" let us consider the probability P**? introduced
above and recall that underP"2 the compensator of the random measur@(dr dy db)
is p (drdydb) = ((b) o(db) ¢x, g(dy)dr+ (X, ;Ir ;dy) ¢, g(dbdr. Noting
that v(r;y) v(r;X, ) is predictable, taking the expectation in (2.66) we obtain
Z 1
EP™@[g(XT)]  v(t;x) Etxa f(nX,:l)dr
t
Since 2 V" was arbitrary, and recalling (2.41)), we conclude that
Zt
v(t;x) supE g(Xt1)+ f(rnXel)dr = v'(t;x;a):
2vn t

From Lemma we know thatv"(t;x;a) = Y,  and from Lemma we
know that v"(t;x;a) is monotonically increasing and uniformly bounded. Therefore
we can de ne

v(t;x;a) = rI1|'r{1 v'(t;x;a); t2[0;T; x2E;a2A:

v is bounded, and from Lemma[2.5.8 we deduce that  v. As an increasing
limit of continuous functions, v is lower semi-continuous. Further properties ofv are
proved in the following lemma. In particular, (R.67) (or (B.68)) means that v is a
supersolution to the HIB equation.

Lemma 2.5.4. Assume (2.57), (2.58), (.59) and let v be the increasing limit of v".
Then v does not depend org, i.e. v(t;x;a) = v(t;x;b) for everyt 2 [0;T], x 2 E
and a;b2 A. Moreover, setting v(t; x) = v(t; x;a) we have
Z o
v(t;x)  v(t%x) (LEv(s;x) + f(s;x;a)) ds (2.67)
t

foro0 t t° T,x2E,a2A. More generally, for arbitrary Borel-measurable
[0;T]! A we have
Z ;o
v(t;x)  v(t%x) (LeOV(six) + f(s;% (s))) ds (2.68)
t

for0 t t9 T,x2E anda?2A.

Proof. V" satis es the integral equation (2.65), namely
Z.Z
vi(txa) = g(x)+ (V'(s;y;a)  V'(s;x;a)) (x;a;dy)ds
z. ' F Z.2

+ f(s;x;a)ds+ n V'(s;x;b)  Vv"(s;x;a)]" o(db)ds:
t t A
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Since v" is a bounded sequence irCy([0;T] E A) converging pointwise to v,
setting t = 0, dividing by n and letting n!1  we obtain
Z:Z
[V(s;x;b) v(s;x;a)]" o(dbds=0: (2.69)
0 A
Next we claim that v is right-continuous in t on [0;T), for xed x 2 E, a2 A. To
prove this we rst note that, neglecting the term with the positive part [ :::]* we
have
Z oZ
vi(ttx;a) Vv'(tx;a) (V"(s;y;a)  V'(s;x;a)) (x;a;dy)ds
7 tot E
f(s;x;a)ds
t
Co(t° t); (2.70)

for some constantCo > O and forall0 t t° T andn 1, where we have used
again the fact that v" is uniformly bounded. Now x t 2 [0;T). Since, as already
noticed, v is lower semi-continuous we havev(t; x;a) liminf ¢4 v(s;x;a). The
required right continuity follows if we can show that v(t;x;a) limsupgy V(S;X; a).
Suppose not. Then there existssy # t such that v(sk;x;a) tends to some limit
I > v(t). It follows that v(s;x;a) Vv(t;x;a) > Co(sk t) for somek su ciently
large, and therefore alsov"(sk;x;a) V"(t;x;a) > Co(sk t) for somen su ciently
large, contradicting (2.70). This contradiction shows that v is right-continuous in t
on [G;T). R

Then it follows from (R.69) that ,[v(t;x;b) v(t;x;a)]* o(db) = O for every
Xx2E,a2A,t2][0;T]. Therefore there existsB A (dependent ont;x;a) such
that B is a Borel set with ¢(B) =0, and

v(t;x;a) v(t; x; b9; 2 B: (2.71)

Since ¢ has full support, B cannot contain any open ball. So given an arbitrary
b2 A we can nd a sequencey, ! b, b, 2B. Writing (2.7I) with by, instead oft’and
using the lower semi-continuity of v we deduce thatv(t;x;a) liminf, v(t;x; bp)
v(t; x;b). Since a and b were arbitrary we nally conclude that v(t;x;a) = v(t; x;b)
foreveryt 2 [0;T], x 2 E and a;b2 A, so that v(t;x;a) does not depend ona and
we can de nev(t;x) = v(t; x;a).

Passing to the limit asn ! 1 in the rst inequality of (2.70)]we immediately
obtain (2.67), so it remains to prove (2.68). LetA(v) denote the set of all Borel-
measurable :[0;T]! A such that (2.68) holds, namely for every 0 t t° T,
Xx2E,a2A,

Z oZ
v(t;x)  v(t%x) v(s;y) (x; (s);dy)ds
t E
Z o Z o
v(s;x) (x; (s);E)ds+ f(s;x; (s))ds: (2.72)
t
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Suppose that , 2 A(v), :[0;T]! A is Borel-measurable and ,(t)! ,(t) for
almost all t 2 [0; T]. Note that
Z z

v(ty) (x;a;dy) = lim vi(ty;a) (x;a;dy) (2.73)
E n! E

and the latter is an increasing limit. Sincev" 2 Cy([0;T] E A)and is Feller, for
anyn 1 the functions in the right-hand side of (2.73) are continuous in ¢ x; a) (see
e.g. [15], Proposition 7.30) and therefore the left-hand side is a lower semicontinuous
function of (t;x;a). It follows from this and the Fatou Lemma that
yARYA Z o z
v(siy) (% (s);dy)ds liminfv(sjy) (X, n(s);dy) ds
E t 7 02 E
liminf v(s;y) (X; n(s);dy)ds:
nll t E

Using this inequality and the continuity and boundedness of the mapsaa 7! (x;a;E),
a 7! f(t;x;a) we see that assuming the validity of inequality (2.72) for , implies
that it also holds for , hence 2 A(v).
ext we note that A(v) contains all piecewise constant functions of the form (t)

= K, alp . Owith k 1,0=t<tp<:i:<ty =T,a 2 A: indeed, itis
enough to write down (2.67) with [t;t9 = [t;; tj+1) and sum up overi to get (2.68) for

() and therefore conclude that () 2 A(v). Since we have already proved that the
classA(v) is stable under almost sure pointwise limits it follows that A(v) contains
all Borel-measurable functions :[0;T]! A as required.

We are now ready to conclude the proof of our main result.
Proof of Theorem[2.5.7. We will prove the inequality

v(t; x) V(t;x); t2[0;T];x 2 E; (2.74)

wherev = lim i1 V" was introduced before Lemma 2.5)4. Since we know that
v vand, by Theorem[2.2.10,v = V it follows from (R.74) that v = v = V. Passing
to the limitas n!1 in (R.63) and recalling (2.38) all the other equalities follow
immediately.

To prove (2.74) we x t 2 [0;T], x 2 E and a Borel-measurable map : [0; T]
E! A, ie. an element ofA,y, the set of admissible control laws for the primal
control problem, and denote by P™ the associated probability measure on (;F; ),
for the controlled system started at time t from point x, as in section2.2.2. We will
prove that v(t;x)  J(t;x; ), the gain functional de ned in (2.11). Recall that in

we had de ned a canonical marked point process (Th; En)n 1 and the associated
random measurep. Fix ! 2 and consider the points T, (! ) lying in (t; T], which we
renameS;; thus, t<S1<:::S¢ T, for somek (also depending on! ). Recalling
that v(T;x) = g(x) we have

XK
g(Xt) v(tx) = o(Xt) V(Si;Xs )t  [V(Si;Xs) V(Si;Xs )]
i=1
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Xk
o MSiXs ) V(S 1 Xs )t V(S X, ) vt x):
i=2
P**.a.s we haveXs, = Xs , (2 i k)andXs, = X, so we obtain

XK
g(X1) v(tx) = o(Xt) V(S;Xs )+  [V(Si;Xs) V(Si;Xs )]
i=1

X
£ M(SXs 1) V(S 1 Xs OlF V(SEX)  V(tX):
i=2
The rst sum can be written as

Z.:2
V(Si;Xs) V(SiiXs )= [V(s;y) v(s;Xs )] p(dsdy);
i=1 t E
while the other can be estimated from above by repeated applications of[ (2.68),
taking into account that X is constant in the intervals (t;S1], (Si 1;Si] (2 1 K)
and (Sx; Tl
V(Si;xsi 1) V(Si l;xSi 1)
‘s (5Xs; 3)
i s; )
L Le VXS )FT(SiXs 4 (siXs ) ds
Zs
= L% v(s; Xs) + F(5;Xs; (5:Xs) ds
Si 1
for2 i k and similar formulae for the intervals (t; S1], and (Sk; T]. We end up
with
Z.:2
o(Xt1)  v(tx) t E[V(s:y) V(s; Xs ) p(dsdy)
Z

L% y(s;Xs) + (i Xs; (5;Xg)) ds:
t
Recalling that the compensator of the measurg under P™ is Xs 5 (s;Xg ); dy)
ds 1.1 y(s) we have, taking expectation,
Z.Z Z
E™ V(s;y)  V(siXs )Ip(dsdy) = E™ L5 v(s;Xs) ds;
t E t

which implies, by the previous inequality,
T
E™[g(XT)] v(tx)  EY™  f(s;Xs (s:Xs)) ds
t
and sov(t;x) J(t;x; ). Since 2 A,y was arbitrary we conclude that v(t; x)

V (t; x).






Chapter 3

Optimal control of
Piecewise
Deterministic Markov
Processes and
constrained BSDEs
with nonnegative
jumps

3.1. Introduction

The aim of the present chapter is to prove that the value function in an in nite-
horizon optimal control problem for piecewise deterministic Markov processes (PDMPSs)
can be represented by means of an appropriate backward stochastic di erential equa-
tion. Piecewise deterministic Markov processes, introduced in Davis35], evolve
through random jumps at random times, while the behavior between jumps is de-
scribed by a deterministic ow. We consider optimal control problems of PDMPs
where the control acts continuously on the jump dynamics and on the deterministic
ow as well.

Let us start by describing our setting in an informal way. Let E be a Borel space
and E the corresponding -algebra. A PDMP on (E; E) can be described by means
of three local characteristics, namely a continuous ow (t;x), a jump rate (x), and
a transition measure Q(x; dy), according to which the location of the process at the
jump time is chosen. The PDMP dynamic can be described as follows: starting from
some initial point x 2 E, the motion of the process follows the ow (t;x) until a



Chapter 3. Optimal control of Piecewise Deterministic Markov
98 Processes and constrained BSDEs with nonnegative jumps

random jump Ty, verifying

S

P(T1>s)=exp ( (rx)dr ; s O
0

At time T, the process jumps to a new pointX 1, selected with probability Q(x;dy)
(conditionally to T;), and the motion restarts from this new point as before.

Now let us introduce a measurable spaceA; A), which will denote the space of
control actions. A controlled PDMP is obtained starting from a jump rate (x;a)
and a transition measureQ(x; a; dy), depending on an additional control parameter
a 2 A, and a continuous ow (t;x), depending on the choice of a measurable
function (t) taking values on (A; A). A natural way to control a PDMP is to chose
a control strategy among the set of piecewise open-loop policiesi.e., measurable
functions that depend only on the last jump time and post jump position. We can
mention Almudevar [1], Bauerle and Rieder[[1], Costa and Dufour [32], Davis [35],
[34], Dempster [40], as a sample of works that use this kind of approach. Roughly
speaking, at each jump timeT,, we choose an open loop control , depending on
the initial condition X, to be used until the next jump time. A control in the
class of admissible control lawsA 54 has the explicit form

R
t= n(t Tos X70) ImaToan ) (s (3.1)

n=1

and the controlled processX is

We denote by P* the probability measure such that, for everyn > 1, the conditional
survivor function of the jump time Tp+1 and the distribution of the post jump
position X, ,, , are
Z S
P*(Th+1 >sjFr1,) =exp ( "(r Ta;Xt1,)): n(r T Xy,))dr
Tn
PX(XTn+1 2BjFr,; Th+1) = Q( "(Th+r Tn; XT1,); n(Th+r Tn X1,);B);

onfT, < 1g.

In the classic in nite-horizon control problem one wants to minimize over all
control laws  a functional cost of thezform
1
J(x; )= E* e Sf(Xs s)ds (3.2)
0

where E* denotes the expectation underP*, f is a given real function onE A
representing the running cost, and 2 (0; 1) is a discounting factor. The value
function of the control problem is de ned in the usual way:

V(x) = ig\iad\](x; ); x2E: (3.3)

Let now E be an open subset oRY, and h(x;a) be a bounded Lipschitz contin-
uous function such that (t;x) is the unique solution of the ordinary di erential
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equation
x(t) = h(x(t); (1)); x(0)=x2E:

We will assume that andf are bounded functions, uniformly continuous, andQ is
a Feller stochastic kernel. In this caseyV is known to be the unique viscosity solution
on[0; 1) E of the Hamilton-Jacobi-Bellman (HJB) equation

z

v(x)=sup h(x;a) rv(x)+ (x;a) (v(y) V(X)) Q(x;a;dy) ; x2E:
a2A E

(3.4)
The characterization of the optimal value function as the viscosity solution of the
corresponding integro-di erential HIB equation is an important approach to tackle
the optimal control problem of PDMPs, and can be found for instance in Davis and
Farid [36], Dempster and Ye K1], [42]. Alternatively, the control problem can be
reformulated as a discrete-stage Markov decision model, where the stages are the
jumps times of the process and the decision at each stage is the control function that
solves a deterministic optimal control problem. The reduction of the optimal control
problem to a discrete-time Markov decision process is exploited for instance inl],
[111, [32], [35], [34].

In the present chapter our aim is to represent the value functionV (x) by means
of an appropriate BSDE. We are interested in the general case whehP*g is a non-
dominated model, which, roughly speaking, re ects the fully non-linear character
of the HJB equation. This basic di culty has prevented the e ective use of BSDE
techniques in the context of optimal control of PDMPs until now. In fact, we believe
that this is the rst time that this di culty is coped with and this connection is
established. It is our hope that the great development that BSDE theory has now
gained will produce new results in the optimization theory of PDMPs. In the context
of di usions, probabilistic formulae for the value function for non-dominated models
have been discovered only in the recent year. In this sense, a fundamental role is
played by [88], where a new class of BSDEs with nonpositive jumps is introduced in
order to provide a probabilistic formula, known as nonlinear Feynman-Kac formula,
for fully nonlinear integro-partial di erential equations, associated to the classical
optimal control for di usions. This approach was later applied to many cases within
optimal switching and impulse control problems, see Elie and Kharroubi$4], [55],
[56], Kharroubi, Ma, Pham and Zhang [87], and developed with extensions and
applications, see Cosso and ChokrouriZzb], Cosso, Fuhrman and Pham [B1], and
Fuhrman and Pham [67]. In all the above mentioned cases the controlled processes
are di usions constructed as solutions to stochastic di erential equations of 1t6 type
driven by a Brownian motion.

We wish to extend to the PDMPs framework the theory developed in the context
of optimal control for di usions. The fundamental idea behind the derivation of the
Feynman-Kac representation, borrowed from[88], concerns the so-calledandomiza-
tion of the control, that we are going to describe below in our framework. A rst
step in the generalization of this method to the non-di usive processes context was
done in Chapter[2, where a probabilistic representation for the value function asso-
ciated to an optimal control problem for pure jump Markov processes was provided.
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As in the pure jump case, also in the PDMPs framework the correct formulation of
the randomization method requires some e orts, and can not be modelled on the
di usive case, since the controlled processes are not de ned as solutions to stochas-
tic di erential equations. In addition, the presence of the controlled ow between
jumps in the PDMP's dynamics makes the treatment more di cult and suggests to
use the viscosity solution theory. Finally, we notice that we consider PDMPs with
state spaceE with no boundary. This restriction is due to the fact that the presence

of the boundary induces technical di culties on the study of the associated BSDE,
which would be driven by a non quasi-left continuous random measure, see Remark
[3.2.3. For such general BSDEs the existence and uniqueness results were at disposal
only in particular frameworks, see e.g. [26] for the deterministic case, and counter-
examples were provided in the general case, see Section 4.328]. Only recently this
problem was faced and solved in a general context ir2], were a technical condition

is provided in order to achieve existence and uniqueness of the BSDE, see Chapter
[4. The mentioned condition turns out to be veri ed in the case of control problems
related to PDMPs with discontinuities at the boundary of the domain, see Remark
[4.4.8. This fact opens to the possibility to apply the BSDEs techniques also in this
context, which is left as a future development of the method.

Let us now informally describe the randomization method in the PDMPs frame-
work. The rst step, for any starting point x 2 E, consists in replacing the state
trajectory and the associated control process Xs; ) by an (uncontrolled) PDMP
(Xs;1s), in such a way that | is a Poisson process with values in the space of control
actions A, with an intensity o(db) which is arbitrary but nite and with full sup-
port, and X is suitably de ned. In particular, the PDMP ( X;1) is constructed in a
di erent probability space by means of a new triplet of local characteristics and takes
values on the enlarged spac& A. Let us denote by P2 the corresponding law,
where (x; a) is the starting pointin E  A. Then we formulate an auxiliary optimal
control problem where we control the intensity of the procesd : for any predictable,
bounded and positive random eld {(b), by means of a theorem of Girsanov type,
we construct a probability measure P*? under which the compensator ofl is the
random measure (db) o(db) dt (under P*? the law of X is also changed) and we
minimize the functional

Z,
J(x;a;, )= E*® e Sf(Xs;lg)ds : (3.5)
0

over all possible choices of . This will be called the dual control problem. Notice
that the family fP“®g is a dominated model. One of our main results states that the
value function of the dual control problem, denoted asV (x;a), can be represented
by means of a well-posed constrained BSDE. The latter is an equation over an in nite
horizon of the form
Z Z
LA G YRdr+  f(Xpsl)dr (KPT O KE®) (3.6)
z.2 ° 2.2

ZX3(Xy; b) o(db)dr ZX¥2(y; bg(drdydb); 06 s6 T<1;
A E A

S S
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with unknown triplet ( Y*2;Z*2a;K*2) where q is the compensated random mea-
sure associated to X;1 ), K*2 is a predictable increasing @dhg process,Z*? is a
predictable random eld, where we additionally add the sign constraint

ZX%(Xs ;b > 0: (3.7)

The reference lItration is now the canonical one associated to the pair X;1). We
prove that this equation has a unique maximal solution, in an appropriate sense,
and that the value of the processY *2 at the initial time represents the dual value
function:

Yo% =V (xa): (3.8)
Our main purpose is to show that the maximal solution to (3.6)-(3.7) at the ini-
tial time also provides a Feynman-Kac representation to the value function [(3.8) of
our original optimal control problem for PDMPs. To this end, we introduce the
deterministic real function on E A

v(x;a) = Yo% (3.9)

and we prove thatv is a viscosity solution to (3.4). By the uniqueness of the solution
to the HIB equation (B.4) we conclude that the value of the process at the initial
time represents both the original and the dual value function:

Yo% =V (x;a) = V(X): (3.10)

Identity ( is the desired BSDE representation of the value function for the
original control problem and a Feynman-Kac formula for the general HIB equation
(X

Formula (8.10) can be used to design algorithms based on the numerical ap-
proximation of the solution to the constrained BSDE (B.6)-(3.7), and therefore to
get probabilistic numerical approximations for the value function of the addressed
optimal control problem. In the recent years there has been much interest in this
problem, and numerical schemes for constrained BSDEs have been proposed and
analyzed in the di usive framework, see [B6], [85]. We hope that our results may be
used to get similar methods in the PDMPs context as well.

The chapter is organized as follows. Sectiofi 3|2 is dedicated to de ne a set-
ting where the optimal control (B.3) is solved by means of the corresponding HJB
equation (3.4). We start by recalling the construction of a PDMP given its local
characteristics. In order to apply techniques based on BSDEs driven by general ran-
dom measures, we work in a canonical setting and we use a speci c ltration. The
construction is based on the well-posedness of the martingale problem for multivari-
ate marked point processes studied in Jacod?b], and is the object of Sectior 3.2.]1.
This general procedure is then applied in Sectiof 3.2]2 to formulate in a precise way
the optimal control problem we are interested in. At the end of Section[3.2.P we
recall a classical result on existence and uniqueness of the viscosity solution to the
HJB equation (B.4), and its identi cation with the value function V, provided by
Davis and Farid [36].

In Section [3.3 we start to develop the control randomization method. Given
suitable local characteristics, we introduce an auxiliary processX;l ) on E A by
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relying on the construction in Section[3.2.], and we formulate a dual optimal con-
trol problem for it under suitable conditions. The formulation of the randomized
process is very di erent from the di usive framework, since our data are the local
characteristics of the process rather than the coe cients of some stochastic di er-
ential equations solved by it. In particular, we need to choose a speci ¢ probability
space under which the component (independent to X)) is a Poisson process.

In Section[3.4 we introduce the constrained BSDE [(3.6){(3.]7) over in nite hori-
zon. By a penalization approach, we prove that under suitable assumptions the
above mentioned equation admits a unique maximal solution ¥; Z;K) in a certain
class of processes. Moreover, the componelit at the initial time coincides with the
value function V of the dual optimal control problem. This is the rst of our main
results, and is the object of Theoren{ 3.4.8.

Finally, in Section we prove that the initial value of the maximal solution
Y*2 to (B.6)-(B.7) provides a viscosity solution to (3.4). This is the second main
result of the paper, which is stated in Theorem[3.5.]l. As a consequence, by means
of a comparison theorem for sub and supersolutions to rst-order integro-partial
di erential equations, we get the desired nonlinear Feynman-Kac formula, as well as
the equality between the value functions of the primal and the dual control problems,
see Corollary[3.5.2. The proof of Theorenj 3.5|1 is based on arguments from the
viscosity theory, and combines BSDEs techniques with control-theoretic arguments.
A relevant task is to derive the key property that the function v in (B.9) does not
depend ona, as consequence of thé-nonnegative constrained jumps.

Recalling the identi cation in Theorem 8.4.8] we are able to give a direct proof
of the non-dependence of on a by means of control-theoretic techniques, see Propo-
sition 3.5.6 and the comments below. This allows us to consider very general spaces
A of control actions. Moreover, di erently to the previous literature, we provide a
direct proof of the viscosity solution property of v, which does not need to rely on a
penalized HJB equation. This is achieved by generalizing to the setting of the dual
control problem the proof that allows to derive the HIB equation from the dynamic

programming principle, see Propositiong 3.5/8 anfl 3.5]9.

3.2. Piecewise Deterministic controlled Markov Processes

3.2.1. The construction of a PDMP given its local characteristics. Given
a topological spaceF, in the sequel B(F) will denote the Borel - eld associated
with F, and by Cy(F) the set of all bounded continuous functions onF. The Dirac
measure concentrated at some poink 2 F will be denoted .

Let (E; E) be a Borel measurable space. We will often need to construct a
PDMP in E with a given triplet of local characteristics ( ; ;Q ). We assume that
:R E ! E is a continuous function, :E 7! R, is a nonnegative continuous
function satisfying

sup (x) < 1; (3.11)
X2E
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and that Q maps E into the set of probability measuresgn E; E), and is a stochastic
Feller kernel, i.e., for all v 2 Cy(E), the map x 7! . v(y)Q(x;dy) (x 2 E) is
continuous.

We recall the main steps of the construction of a PDMP given its local charac-
teristics. The existence of a Markovian process associated with the triplet ( ; Q )
is a well known fact (see, e.g.,[35], [32]). Nevertheless, we need special care in
the choice of the corresponding ltration, since this will be crucial when we solve
associated BSDEs and implicitly apply a version of the martingale representation
theorem in the sections that follow. For this reason, in the following we will use an
explicit construction that we are going to describe. Many of the techniques we are
going to use are borrowed from the theory of multivariate (marked) point processes.
We will often follow [[75], but we also refer the reader to the treatise[f/] for a more
systematic exposition.

We start by constructing a suitable sample space to describe the jumping mech-
anism of the Markov process. Let ©denote the set of sequences®= (tn;en)n 1
in ((0;1) E)[f(1;) g where 2 E is adjoined to E as an isolated point,
satisfying in addition

th th+1; th < 1 =) th <tnps+r: (312)

To describe the initial condition we will use the measurable spaceK; E). Finally,
the sample space for the Markov process will be =E 0 We de ne canonical
functions T,: ! (0;1],En: ! E[f gas follows: writing! = (e;!9 in the
form ! =(e;ty;er;to; ;) wesetfort Oandforn 1

Ta(V) = tn; En(!) = en; T (1) = M th; To(')=0; Eo(')= e:

P
We also introduce the counting procesN (s;B) = |,y 11, sle,2s, and we de ne
the processX : [0;1)! E[ setting

_ (t
Xt = it Ty

(3.13)
In we introduce forall t Othe -algebrasG = (N(s;B) : s2 (0;t];B 2 E). To
take into account the initial condition we also introduce the ltration F = (F); o,
whereFo= E f; ; %, andforalt OF;isthe -algebra generated byF, and
G. Fis right-continuous and will be called the natural ltration. In the following all
concepts of measurability for stochastic processes (adaptedness, predictability etc.)
refer to F. We denote by F; the -algebra generated by all the -algebrasF;. The
symbol P denotes the -algebra of F-predictable subsets of [01 )

On the ltered sample space ( ;F) we have so far introduced the canonical
marked point process Tn;En)n 1. The corresponding random measure is, for any
' 2 ,a -nitemeasureon ((0;1) E;B(0;1) E)denedas

X
p(!;dsdy) = LT, ()<1g  (Ta( )iEn( ) (dsdy); (3.14)
n2N
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where  denotes the Dirac measure at pointk 2 (0;1 ) E. For notational conve-
nience the dependence oh will be suppressed and, instead op(!;dsdy ), it will be
written p(ds dy).

Proposition 3.2.1.  Assume that (8.11) holds, and x x 2 E. Then there exists a
unique probability measure on( ;F; ), denoted byP*, such that its restriction to Fy
is x, and the F-conensator of the measurep under P* is the random measure

p(dsdy) = Ir,:1,.,)(S) ( (s TniEn)) Q( (s Tn;En);dy)ds:
n2N
Moreover, P*(T; =1 )=1.

Proof. The result is a direct application of Theorem 3.6 in [/5]. The fact that,
P*-a.s.,T; = 1 follows from the boundedness of , see Proposition 24.6 in35].

For xed x 2 E, the sample path of the process X1) in (8.13) under P* can be
de ned iteratively, by means of (; ; Q ), |Zn the following way. Set
S

F(s;x) = exp ( (rpx))dr ;
0

we have
P*(T1>s) = F(s;x); (3.15)
P*(X1, 2 BjT1) = Q(x;B); (3.16)
onfTy < 1g, and, for everyn > 1, .
S
P(Th+1 >sjFr,) =exp ((r Th;Xg,))dr ; (3.17)
Th
P‘(X7ys 2 BjFr,; Tas1) = Q( (Ther  Tns X7,):B); (3.18)

onfT, < 1g .

Proposition 3.2.2. In the probability spacef ;Fi ;P*g the processX has distri-
bution , at time zero, and it is a homogeneous Markov process, i.e., for any 2 E,
nonnegative timest, s, t s, and for every bounded measurable functioff,

EX[f (Xt+s) j Ft] = Ps(f (X4)); (3.19)

where Pef (x) := EX[f (X4)].

Proof. From (B.17), taking into account the semigroup property (t + s;x) =
(t; (s;x)), we have
P (Ther >t + SjFt) Lito[mn: Toa )g
_ PY(Thsr >t + sjFq
) P*(Thgs > tjFr,)

t+s
= exp ( (r TaiXr))dr Leeam, o)
t
ZS
= exp . ((r+t T X7,))dr e Toa)g

ft2[Tn;Tn+1 )0
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z

S

= exp , ( (EX))dr Ltoorm Toa)g
= F(s;Xt) Lreo[mn: Toan ) (3.20)
Hence, denotingN; = N (t; E), it follows from (8.20) that
P*(Tng+1 >t + SjF) = F(s; Xy);

in other words, conditional on F¢, the jump time after t of a PDMP started at x has
the same distribution as the rst jump time of a PDMP started at X;. Since the
remaining interarrival times and postjump positions are independent on the past,
we have shown that [3.19) holds for every bounded measurable functiof.

Remark 3.2.3. In the present chapter we restrict the analysis to the case of PDMPs
on a domain E with no boundary. This choice is motivated by the fact that the
presence of jumps at the boundary of the domain would induce discontinuities in
the compensator of the random measure associated to the process. Since we have
in mind to apply techniques based on BSDEs driven by the compensated random
measure associated to the PDMP (see Sectio@A), this fact would considerably
complicates the tractation.

More precisely, consider a PDMP on a state spac& with boundary @E In this
case, when the process reaches the boundary, a forced jump occurs and the process
immediately goes back to the interior of the domain. According to (26.2) in B5],
the compensator of the counting measure in (B.14)) admits the form

p(dsdy) = (Xs ) Q(Xs ;dy)ds+ dpsR(Xs ;dy);

where

R
Ps = 1fs Tng]-fXTn 2 g
n=1
is the process counting the number of jumps oX from the active boundary 2 @E
(for the precise de nition of see page 61 in [35]), and R : @E E! E is the
transition probability measure describing the distribution of the process after the
forced jumps. In particular, the compensator p-can be rewritten as

p(dsdy) = dAs (Xs ;dy);

where (Xs ;dy) = Q(Xs ;dy)lix, 2eqt R(Xs ;dy)1lix, 2 g, @andAs= (Xs )ds
+dps is a predictable and discontinuous process, with jumps

The presence of these discontinuities in the compensator induces very technical dif-
culties in the study of the associated BSDE, see Chaptef 4. The above mentioned
case is left as a future improvement of the theory.
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3.2.2. Optimal control of PDMPs. In the present section we aim at formulating
an optimal control problem for piecewise deterministic Markov processes, and to
discuss its solvability. The PDMP state spaceE will be an open subset ofRY, and
E the corresponding -algebra. In addition, we introduce a Borel spaceA, endowed
with its -algebra A, called the space of control actions. The additional hypothesis
that A is compact is not necessary for the majority of the results, and will be
explicitly asked whenever needed. The other data of the problem consist in three
functionsf,hand onE A, andin a probability transition Q from(E A;E A)
to (E; E), satisfying the following conditions.

(Hh Q)
(i) h:E A 7! E is a bounded, uniformly continuous, function satisfying
8x; x92 E; and 8a;a’2 A; jh(x;a) h(x%a% 6 L,(x x3+ja ay);
8x 2 E and 8a 2 A, jh(x;a)j 6 My;
where L, and My, are constants independent ofa;a%2 A, x;x°2 E.
(i) :E A T7'R"' isanonnegative bounded uniformly continuous function,
satisfying
sup (x;a)< 1: (3.21)
(x;a)2E A

(ify Q mapsE A into the set of probability measures on E; B, and is a stochas-
tic Feller kernel. i.e., forall v 2 Cy(E), the map (x;a) 7! g4 V(Y) Q(X; &; dy)
is continuous (hence it belongs toC,(E  A)).

(Hf) f :E A 7! R" is a nonnegative bounded uniformly continuous function. In
particular, there exists a positive constant M¢ such that

06 f(x;a)6 M¢; 8x2E;a2A:

The requirement that Q(x;a;fxg) =0 for all x 2 E, a2 A is natural in many
applications, but here is not needed.h, and Q depend on the control parameter
a 2 A and play respectively the role of and controlled drift, controlled jump rate and
controlled probability transition. Roughly speaking, we may control the dynamics
of the process by changing dynamically its deterministic drift, its jump intensity and
its post jump distribution.

Let us give a more precise de nition of the optimal control problem under study.
To this end, we rst construct , F=(F¢); o, F1 as in the previous paragraph.

We will consider the class ofpiecewise open-loop controls rst introduced in
Vermes [[29] and often adopted in this context, see for instancel35], [32], [1]. Let
X be the (uncontrolled) process constructed in a canonical way from a marked point
process Tn; En) as in Section[3.2.1. The class of admissible control law,q is the
set of all Borel-measurable maps :[0; 1) E ! A, and the control applied to X
is of the form:

xR

t= n(t TniBn) Lt (0): (3.22)

n=1
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In other words, at each jump time T,, we choose an open loop control , depending
on the initial condition E, to be used until the next jump time.

By abuse of notation, we de ne the controlled procesX : 1) E[f ¢
setting
Xt = "(t Tn;En); t2[Tn; The1) (3.23)

where (t;x) is the unique solution to the ordinary di erential equation
x(t) = h(x(t); (1)); x(0)=x2E:

with  an A-measurable function. Then, for every starting pointx 2 E and for each

2 Aag, by Proposition there exists a unique probability measure on (;F1 ),
denoted by P*, such that its restriction to Fg is x, and the F-compensator under
P* of the measurep(ds dy) is

b3
p(dsdy)=  Lr,.7...)(8) (Xsi n(s Tn;En)) Q(Xs; n(s  Ta;En);dy)ds:

n=1
According to Proposition 8.2.3, under P* the processX in (B.23) is Markovian with
respect toF.

Denoting by E* the expectation under P*, we nally dene, for x 2 E and

2 Agg, the functional cost
VA 1
J(x; )= E e °f(Xs; s)ds (3.24)
0

and the value function of the control problem

V(x) = igl‘\ ) J(x; ); (3.25)

a

where 2 (0; 1) is a discounting factor that will be xed from here on. By the
boundedness assumption orfi, both J and V are well de ned and bounded.

Let us consider the Hamilton-Jacobi-Bellman equation (for short, HIB equation)
associated to the optimal control problem: this is the following elliptic nonlinear
equationon [0 1) E:

HY(x;v;Dv)=0; (3.26)

where
V4

H (z;v;p)=sal;g v h(z;a) p E( () (2)) (z;8Q(z;a;dy) f(z;9)

Remark 3.2.4. The HJB equation (8.26) can be rewritten as

v(x)=sup fL2(x)+ f(x;a)g=0; (3.27)
az2A

where L2 is the operator depending ona 2 A de ned as
z

LA (x) = h(x;a) r v(x)+ (xa) E(V(y) v(x)) Q(x; a; dy): (3.28)
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Let us recall the following facts. Given a locally bounded functionz : E !
R, we de ne its lower semicontinuous (l.s.c. for short) envelopez , and its upper
semicontinuous (u.s.c. for short) envelope , by

zZ (x)= Iirr))linxf z(y); z (x)= Iim'sup z(y); forall x 2 E:
y2E V2E

De nition 3.2.5.  Viscosity solution to (B.26).
() A locally bounded u.s.c. function w on E is called aviscosity supersolution
(resp. viscosity subsolutior) of () if
HY(xo;W(X0); D" (Xo)) > (resp: 6) 0:
for any xo 2 E and for any' 2 C1(E) such that
(u "X = mIiEn (u ") (resp: mEax(u "))

(ii) A function z on E is called aviscosity solution of (3.26) if it is locally
bounded and its u.s.c. and l.s.c. envelopes are respectively subsolution and

supersolution of (3.26).

The HJIB equation (3.26) admits a unique continuous solution, which coincides
with the value function V in (B.25). The following result is stated in Theorem 7.5 in
[36].

Theorem 3.2.6. Let (Hh Q) and (Hf) hold, and assume thatA is compact. Then
the value functionV of the PDMPs optimal control problem is the unique continuous

viscosity solution of (3.26).
3.3. Control randomization and dual optimal control problem

In this section we start to implement the control randomization method. In the
rst step, for an initial time t 0 and a starting point x 2 E, we construct an
(uncontrolled) Markovian pair of PDMPs ( X;1 ) by specifying its local characteris-
tics, see |(3.29)4(3.30)1(3.31) below. Next we formulate an auxiliary optimal control
problem where, roughly speaking, we optimize a functional cost by modifying the
intensity of the processl| over a suitable family.

This dual problem is studied in Section[3.4 by means of a suitable class of BSDEs.
In Section[3.5 we will show that the same class of BSDEs provides a probabilistic
representation of the value function introduced in the previous section. As a byprod-
uct, we also get that the dual value function coincides with the one associated to the
original optimal control problem.

3.3.1. A dual control system. Let E still denote an open subset ofRY with -
algebra E, and A be a Borel space with corresponding -algebra A. Let moreover
h, and Q be respectively two real functions onE A and a probability transition

from (E A;E A), satisfying (Hh Q) as before. We denote by (t; x; a) the unique
solution to the ordinary di erential equation

x(t) = h(x(t);a); x(0)=x2E; a2 A:
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In particular, (t;x;a) corresponds to the function (t;x), introduced in Section
[3.2.3, when (t) a. Let now introduce another nite measure ¢ on (A; A) satis-
fying the following assumption:

(H o) olisa nite measure on (A; A) with full topological support.

The existence of such a measure is guaranteed by the fact that the spadeis metric
separable. We de ne

txa) = ( (txa) a); (3.29)
T(xa) = (x;a)+ o(A); (3.30)
O adydy := (x;a)Q(x;a;dyl(if:;))+ o(dD) x(dy). (3.31)

We wish to construct a PDMP (X;1 ) as in Section[3.2.1 but with enlarged state
spaceE A and local characteristics (7 7 Q).

Firstly, we need to introduce a suitable sample space to describe the jump mech-
anism of the process X;1 ) on E  A. Accordingly, we set Cas the set of sequences
1 0= (ty;en;an)n 1containedin ((0;1) E A)[f (1; ; 9g where 2ZE (resp.

02 A) is adjoined to E (resp. to A) as an isolated point, satisfying (3.12). In the
sample space = ° E A we de ned the random variablesT, : ! (0;1],
En: ! E[f g An: ! A[f %, asfollows: writing! = (e;a;!9 in the form
I =(e;ajty;er;ag;tr; ;a0 i) we setfort Oandforn 1

Ta(') = tn; T (V)= rllllrln th; To(!)=0;
En(!)=en;  An(!)= an; Eo(!)=e  Ao(!)= a

We de ne the process K;1)on (E A)[f ; Y setting
gy - ((t TaiEniAn);An)  if Ty t<Tper; forn 2 N;
(X;1) = (9 feT, (3.32)
In we introduce for all t O the -algebrasG = P(N(s;B) :s2 (0;t;B 2
E A) generated by the counting processed (s;A) = o511, sle,2a and the

-algebra Fy generated byFo and G, whereFo= E A f; ; %. We still denote
by F = (Ft); o and P the corresponding lItration and predictable -algebra. The
random measurep is now de ned onX(O; 1) E Aas

p(dsdydb = 17, Eq:Ang(dsdy di: (3.33)

n2N
Given any starting point (x;a) 2 E A, by Proposition 3.2.1], there exists a unique
probability measure on ( ;F1 ), denoted by P*2, such that its restriction to Fq is
(x:a) and the F-compensator of the measurep(ds dy dj under P*? is the random

measure
X

p(dsdydd = L,:7,,,)(s) ( (s Tn;En;An);An;dydbds;
n2N

where
( x;a;dydb = (x;a) Q(x;a;dy) a(db+ o(db x(dy); 8(x;a)2 E A:



Chapter 3. Optimal control of Piecewise Deterministic Markov
110 Processes and constrained BSDEs with nonnegative jumps

We indicate by q= p pthe compensated martingale measure associated tm

As in Section[3.2.], the sample path of a processX(! ) with values in E
A, starting from a xed initial point ( x;a) 2 E A at time zero, can be de ned

iteratively by means of its local characteristics (; 7 Q) in the following way. Set
z

F(s;x;a) =exp OS( ( (rx;a);a+ o(A)dr ;

we have
P%3(Ty >s) = F(s;x;a); (3.34)
P (X1, 2B;I7,2CjT1)= Q(x;B  C); (3.35)
onfTy < 1g, and, for everyn >Zl,
P%8(Th+1 >sjFr,) =exp s( ((r To;Xt5lr)il,)+ o(A)dr ;
o (3.36)
P*®(X1,s 2Bil7,; 2CjFr,; Ther) = Q( (Ther Tni X1yil1,)i17,:B  C);
(3.37)
onfT, < 1g.

Finally, an application of Proposition provides that (X;1) is a Markov
process on [01 ) with respect to F. For every real function taking values inE A,
the in nitesimal generator is given by

L (ka):=hica) ry (e ((ia) " (xa) (xia)Qlxady)
z

+ A(' (x;b) " (x;a)) o(db):

For our purposes, it will be not necessary to specify the domain of the previous
operator (for its formal de nition we refer to Theorem 26.14 in [35]); in the sequel
the operator L will be applied to test functions with suitable regularity.

3.3.2. The dual optimal control problem. We now introduce a dual optimal
control problem associated to the processX;| ), and formulated in a weak form. For
xed ( x;a), we consider a family of probability measuresf P*?; 2 Vg in the space
( ;F1), whose e ect is to change the stochastic intensity of the processX;1 ).

Let us proceed with precise de nitions. We still assume that(Hh Q), (H o)
and (Hf) hold. We recall that F = (F{)>0 is the augmentation of the natural
ltration generated by pin (8.33). We de ne

vV="=Ff : [0;1) A! (0;1)P A-measurable and bounded:
For every 2 V, we consider the predictable random measure

p (dsdydh = s(b) o(db x, g(dy)ds
+ (Xs ;1s )Q(Xs ;1s ;dy) ¢, g(dbds: (3.38)
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In particular, by the Radon Nikodym theorem one can nd two nonnegative functions
d;, do de ned on [0;1) E A,P E A, suchthat

o(db) x, g(dy)dt di(t; y; b) p(dtdy db)
(Xt 51t ;5 dy) 1, o(dbdt da(t; y; b) p(dtdy db);
di(t;y; b) + do(t;y; b) 1; p(dtdydb) a:e:
and we havedp = ( dj+ dp)dp. For any 2 V, consider then the Dokans-Dade

exponential Iocgl rgartingale L de ned setting
S
Ls =exp log( r(b) di(r;y;b) + da(r;y; b)) p(drdy db)
0 ,E A
Z S

A( (D) 1) o(dbdr

R, R Y
=eo Al (O olddr ( 7. (An) da(Tn; En; An) + d2(Tn; En; An));
n>1Th6s
(3.39)

fors 0. When (L)t ois a true martingale, for every time T > O we can de ne a
probability measure P’ equivalent to P@ on ( ; Fr) setting

P"Tal (d')= Ly(1)P%(d!): (3.40)
By the Girsanov theorem for point processes (see Theorem 4.5 iif%]) the restriction
of the random measurep to (0;T] E A admits p =( d1+ dp) pas compensator
under P’7. We setq := p p . and we denote byE"; the expectation operator

under PXTa‘ Previous considerations are formalized in the following Lemma, which
is a direct consequence of Lemmpg 2.3.2.

Lemma 3.3.1. Let assumptions(Hh Q) and (H o) hold. Then, for every(x;a) 2
E A and 2V, under the probability P2, the process(L;): o is a martingale.
Moreover, for every time T > 0, L is square integrable, and, for everyPr E A-
meaﬁﬂralﬁle functionH : [0;T] ;E A! Rsuch tBa

Exa OT e alHs(y: b)j?p(dsdydy < 1, the process o e aHs(y;bq (dsdyd
is a P -martingale on [0; T].

We aim at extending the previous construction to the in nite horizon, in order
to get a suitable probability measure on ( ;F; ). We have the following result.

Proposition 3.3.2.  Let assumptions (Hh Q) and (H o) hold. Then, for every
(x;a) 2 E A and 2V, there exists a unique probabilityP*® on ( ;F1 ), under
which the random measurey in (3.38) is the compensator of the measure in (3.33)
on(0;1) E A. Moreover, for any time T > 0, the restriction of P on ( ;F7)
is given by the probability measure®y in (3.40).

Proof. For simplicity, in the sequel we will drop the dependence ofP*2 and P*? on
(x;a), which will be denoted respectively byP and P .

We notice that Fr, = (T1;E1;A1; 5 Th; En;An)Sde nes an increasing family
of sub -elds of F; such that F; is generated by ,Fy,. The idea is then to
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provide a family fP,g, of probability measures on ( ;Ft,) under which p is the
compensator of the measurep on (0; T,] E A, and which is consistent (i.e.,
Pri1 . P,). Indeed, if we have at disposal such a family of probabilities, we
can naturally de ne on | Fy, a set function P verifying the desired property, by
setting P (B) := P,(B) for every B 2 Fr,, 2y 1. Finally, to conclude we would
need to show thatP is countably additive on |, F,, and therefore can be extended
uniquely to Fq .
Let us proceed by steps. For everyn 2 N, we set
dP, =Ly dP on( ;Ft,); (3.41)

whereL is given by (3.39). Notice that, for every n 2 N, the probability P, is well
de ned. Indeed, recalling the boundedness properties of and g, we have

Rr, R Y
L, = g0 Al () oA T (L (ALY (T Ex; Ak) + da(Ti; Ex; A))
k=1
(i jir)"e o™, (3.42)
and sinceT, is exponentially distributed (seﬁ (3.17)), we get
i
Ely, (jjjin)"E e®h <1

Then, arguing as in the proof of the Girsanov theorem for point process (see, e.g.,
the comments after Theorem 4.5 in[¥5]), it can be proved that the restriction of the
random measurepto (0;T,] E A admitsp =( di+ dy)pas compensator under
P,. Moreover, fP,g, is a consistent family of probability measures on ( ;Fr,),
namely
Pn+1 Fro Ph; n2N: (3.43)

Indeed, taking into account de nition (3.41}, it is easy to see that identity ($.43] is
equivalent to

E Ly jFr,, =Ly, ;5 Nn2N: (3.44)
By Corollary 3.6, Chapter Il, in Revuz and Yor [[111], and taking into account
the estimate (3.42), it follows that the process ( )t o is a uniformly integrable
martingale. Then, identity ( follows from the optional stopping theorem for
uniformly integrable martingales (see, e.g., Theorem 3.2, Chaptesr I, in[@1I]).

At this point, we de ne the following probability measure on Fr,:

n n

P(@B)=P,(B); B2Ft,; n2N: (3.45)

In order to get the desirecgprobability measure on ( ;F1 ), we need to show thatP
in ( is -additive on | Fr,: in this case,P can indeed be extended uniquely
to F1 , see Theorem 6.1 in Jacod and Protter{8]. s

Let us then prove that P in (B.45) is countably additive on ~, Fr,. To this end,
let us introduce the product spaceEN := (E A [0;1)[f ( ; %1)gN, with
associated Borel -algebraEN . For every n 2 N, we de ne the following probability
measure on E";E" ):

Q,(A)=P,(' : n(!)2A); A2E"; (3.46)
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where , = (T1;E1;A1; 25 Tn; En; An). The consistency property (3.43) of the family
(Pp)n implies that

Qi1 (A E )= Qnu(A); A2E™: (3.47)
Let now de ne
A=fA E E :A2E"; n Og;
QA E E )=QyA); A2E";n O (3.48)

By the Kolmogorov extension theorem for product spaces (see Theorem 1.1.10 in
Strook and Varadhan [126]), it follows that Q is -additive on A. Then, collecting

(B.45), (3.49) and (3.48),dt is easy to see that the -additivity of Q on A implies
the -additivity of P on | Fr,.

Finally, we need to show that

P . =LiP 8T>0

or, equivalently, that
E[L+ ]=E[ ] 8 Fr-measurable function

To this end, x T > 0, and let be a Fy1,-measurable bounded function. In
particular, is FyaT,, -measurable, for everym n. Since by de nition P =

Frn
LTn P;n 2 N; we have
E[]=ElLy, ]
E[E[Ly, jFra,]]
E[ ElLq,jFrat,]]
E[L t~1,] 8m n
Sincelat, m!Il L+ a.s., and (¢)s20; 7] is @ uniformly integrable martingale, by
Theorem 3.1, Chapter I, in [I11], we get [
E [ ]: r”m E[LTATm ]: E[LT ], 8 2 FT/\Tn:
n

\W
Then, by the monotone class theorem, recalling that | Frat, = FY ¢
e.g., Corollary 3.5, point 6, in He, Wang and Yan [/3]), we get

E[]= E[LT ]; 8 2 FT/\Tn:FW = Fr:

n FraTn

(see,

TATh

n
This concludes the proof.

Finally, for every x 2 E, a2 A and _2 V, we introduce the dual functional cost

1
J(x;a; ):= EX@ e 'f(Xgly)dt ; (3.49)
0

and the dual value function
V (x;a) = ianVJ(x; a, ); (3.50)

where > 0 in (8.49) is the discount factor introduced in Section[3.2.2.
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3.4. Constrained BSDEs and the dual value function representation

In this section we introduce a BSDE with a sign constrain on its martingale
part, for which we prove the existence and uniqueness of a maximal solution, in
an appropriate sense. This constrained BSDE is then used to give a probabilistic
representation formula for the dual value function introduced in (3.50).

Throughout this section we still assume that(Hh Q), (H o) and (H f) hold.
The random measure9, p-and g, as well as the dual control setting ;F; (X;I );P*2,
are the same as in Sectiol. We recall thaF = ( F¢)(>0 is the augmentation
of the natural ltration generated by p, and that P, T > 0, denotes the - eld of
F-predictable subsets of [0 T]

For any (x;a) 2 E A we introduce the following notation.

L2, (F ), the setof F -measurable random variables suchthat EX@ j j2 <
1 ; here > 0is anF-stopping time.

St the set of real-valued @dhg adapted processesy = ( Y;)io Which are
uniformly bounded.

Sia (0,T) , T > 0, the set of real-valued adhg adapted processes’ =
(Yt)oste T satisfying

iiYiisz, 0 = E® supjvij* <1:
' 06t6T

Lia (0,T), T > 0, the set of real-valued progressive process®¥s= ( Yi)ost6T
such that
Z 1
iYis o =E® i iVij2dt < 1:

We also dene L2, oc =\ 1>0L%4(0,T).

Lia (9;0,T), T > 0, the set of Pt B(E) A-measurable mapsZ :
[0 T] E A! R suchthat
. hZ 12 i
20y, o) = B iZi(yibi® p(dtdy dby
‘ hZ+tZ i
= EX® JZe(y; 1017 (X 1) Q(X s 1t dy) dit
0 E
hZtZ [
+ EX® JZi(Xt;0)j* o(dhdt < 1:
0 A

We also dene L2, ¢ (@) = \ 150LZ4(q;0,T).

L2( o), the set of A-measurable maps :A! R such that
Z

it = 0 OF o<1
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L)Z(,a( 0;0,T), T >0, the set of Pt A-measurable mapsw : [0; T]
A'! R such that
Z.Z
Wit oty = B Wb o(ddt <1

We also dene L2, oc ( 0) = \1>0L2,( 0;0,T).

Kfya (0,T), T > 0, the set of nondecreasing @dhg predictable processes
K = (K)osteT such that Ko = 0 and EX? jK1j? < 1. We also de ne
K>2<,a,loc =\ 150K >2<,a (0, T).

We are interested in studying the following family of BSDEs with partially nonneg-
ative jumps over an in nite horizon, parametrized by (x;a): P*2-a.s.,

Z Z
YERE YRR YRR f(Xaldr (KPS KD (351)
z.Z ® Z.Z
ZXa(X,;b) o(dbdr ZX3(y; b)g(drdydb); 06 s6 T<1;
S A 5 E A
with
ZX¥3(Xs ;b > 0; ds dpP*@ o(db);-a.e. on[Q 1) A, (3.52)

where is the positive parameter introduced in Section[3.2.P.

We look for a maximal solution (Y*@;zXa;K*a) 2 st L2 /- (q) K2, to
(B:51)-(3.52). in the sense that for any other solution ;Z;K) 2 St L%, o (@)
KZaoc to (B51)-@.52), we haveY ™ > v;, PX@-as,, for allt > 0.

Proposition 3.4.1. Let Hypotheses(Hh Q), (H o) and (Hf) hold. Then, for
any (x;a) 2 E A, there exists at most one maximal solution(Y*2;zZ*2a; K *2a) 2
St LZ.1c(@ KZ, e to the BSDE with partially nonnegative jumps B.51)-
(8:52).

Proof. Let(Y;Z;K)and (Y%Z%K?9 be two maximal solutions of (3.:51)-(3.52). By
de nition, we clearly have the uniqueness of the componenty . Regarding the other
components, taking the di erence between the two backward equations we obtain:
PYa-a.s.

z.,Z
0 = (K¢ K (Zs(Xs;ib)  ZJ(Xs;b) o(db)ds
th 0 A
(Zs(y:b)  Z%y;D) q(dsdydy; 06t6 T<1;
0 E A
that can be rewritten as
Z.Z
(Zs(y;0)  ZAy; D) p(dsdydh = (K¢ KD (3.53)
0 EZA
Zt

+ (Zs(y;ls)  ZAyils) (Xsils) Q(Xs;ls;dy)ds; 06 t6 T<1:
0 E
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The right-hand side of ) is a predictable process, therefore it has no totally
inaccessible jumps (see, e.g., Proposition 2.24, Chapter I, iri/9]); on the other
hand, the left side is a pure jump process with totally inaccessible jumps. This
implies that Z = Z© and as a consequence the componekt is unique as well.

In the sequel, we prove by a penalization approach the existence of the maximal
solution to (B.51)-(8.57). In particular, this will provide a probabilistic representation
of the dual value function V introduced in Section[3.3.2.

3.4.1. Penalized BSDE and associated dual control problem. Let us intro-
duce the family of penalized BSDEs on [01 ) associated to [3.51){3.5R), parametrized
by the integer n > 1: P*2-a.s.,

Z . Z
YaeR =y Y2 dr+ f(X,;l)dr
z.z ° ° z.Z
n [Z/2 (X D] o(db) dr ZM@ (X ,;b) o(db) dr
Z SZ A S A
T v
Z/™2(y; b g(drdydb); 06 s6 T<1; (3.54)
S E A

where ] = max( z;0) denotes the negative part ofz.

We shall prove that there exists a unique solution to equation [(3.54), and provide
an explicit representation to (3.54) in terms of a family of dual control problems. To
this end, we start by considering, for xed T > 0, the family of BSDEs on [Q T]:
P¥2-a.s.,

Z; Z
YST;n;x;a - YrT;n;x;a dr + f (Xr; | r) dr
Z:2 s Z.Z
n (2™ (X 10)]  o(db) dr zTmxa(X,;b) o(db) dr
S A S A
z:{Z
zlnxa(y-b)g(drdydh); 06 s6 T; (3.55)
S E A

with zero nal cost attime T > 0.

Remark 3.4.2. The penalized BSDE [3.55) can be rewritten in the equivalent form:
P*2-as.,
Z Z.2
YR = (K] YR zTinxa ) gs Z "2 (y; ) (dr dy dby;
s S E A

s 2 [0; T], where the generatorf " is dezned by
f'x;a;u; )=f(x;a) u n[ (@] + (b o(db; (3.56)
A

forall (x;a;u; J)2E A R L2( o).
We notice that, under Hypotheses(Hh Q), (H o) and (Hf) , f" is Lipschitz
continuous in  with respect to the norm of L?( o), uniformly in ( x;a;u), i.e., for
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every n 2 N, there exists a constantL,, depending only onn, such that for every
(x;a;u)2E A Rand ; 92L2( o),

ifrcaiu; 9 f(aju; )j6 LN Iz o)

For every integer n > 1, let V" denote the subset of elements 2 V valued in
(0; n].

Proposition 3.4.3. Let Hypotheses(Hh Q), (H o) and (Hf) hold. For every
(x;a;n;T)2E A N (0; 1), there exists a unique solution(Y T:mxa . zTinxay 2
s'  LZ,(q;0,T) to (3:55). Moreover, the following uniform estimate holds: P¥2-
a.s.,

Y
yJmxa g 2T 852 [0; T]: (3.57)

Proof. The existence and uniqueness of a solutiony(":"*:2; z T:nxay 2 S)Z(,a (0, T)
L>2<,a (9;0,T) to ( is based on a xed point argument, and uses integral repre-
sentation results for F-martingales, with F the natural ltration (see, e.g., Theorem
5.4 in [/5]). This procedure is standard and we omit it (similar proofs can be found
in the proofs of Theorem 3.2 in [L31], Proposition 3.2 in [12], Theorem 3.4 in 28]).
It remains to prove uniform estimate ). To this end, let us apply Ité's formula
toe 'Y, ™2 petweens and T. We get: P*@-as.
Z Z;Z
Y inxa = e (" 9f(X,:1,)dr e (7 9 zTnxa(y-pqg(drdy db)
s S E A
zZ,Z
e " 9fnpzIm™xa (X, :h] + Z5™3(X,;b)g o(dbdr; s2[0; TI:
= A (3.58)
Now forany 2 V", letusintroduce the compensated martingale measurg (ds dy db
= g(dsdydd ( s(b) 1)di(s;y:b p(dsdydp under P*?. Taking the expectation
in (8:58) under P*?, conditional to Fs, and sinceZ™"*2 s in LZ,(q;0;T), from
Lemma[3.3.]1 we get that,P*?-a.s.,

YT;n;x;a
s
Z:Z
- Exa e (1 s)fn[z;l';n;x;a (Xr;b] + (b Z;I';n;x;a (Xr;0)g o(db) dr Fs
7 S A
-
+EB9° e 9f(X5l)drFs 3 s2[0; Tl (3.59)

S

From the elementary numerical inequality: n[z] + z > Oforallz2 R, 2 (0;n],
we deduce by |(3.5P) that, for all 2 V",
Z 1
Y/ nmxa g gxa e U 9f(X,;1;)drFs ; s2]0; T]:

S
Therefore, P%%-a.s.,
e . Z1 M
Y, " g EX@ e U9 (Xeilp)jdr Fs 6 —; s2[0; T

S
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Proposition 3.4.4. Let Hypotheses(Hh Q), (H o) and (Hf) hold. Then, for
every (x;a;n) 2 E A N, there exists a unique solution(Y™xa;znxay 2 gl

L>2<,a, loc (CI) to )

Proof. Uniqueness.Fix n 2 N, (x;a) 2 E A, and consider two solutions {f *;Z1) =
(Yl;n;x;a;zl;n;x;a), (YZ;ZZ) - (Y2;n;x;a;22;n;x;a) 2 Sl L)2<,a,|oc (q) of ( Set
Y=Y2 Y, Z=22 Z! Let06 s6 T < 1. Then, an application of Itd's
formula to e 2 "jY,j? betweens and T yields: P%3-a.s.,
e 2 %jYsj?=e 2 Tjyrj?
T

2n e 2" Y f[Z2(Xs;h)]  [ZM(XsiD)] g o(db) dr
z2z "
T
2 e 2" Y, Z(Xs;b) o(dbdr
7.7
2 e 2" Y; Z(y;b) g(drdy db)
S E A
z:2
e " jZ:(y;b)j?p(drdy db): (3.60)
S E A
Notice that
Z.:2
n e CIYIZAX;b]  [ZH(X:;b)] g o(dbdr
S A
z3z
= e "IV fZZXrH ZMXi;bg  o(dbdr
2.7
" e (" 9Y, fZ2(X,;b) Zrl(xr;b)glijrjﬁlg
S A
Lizaox o =[z3x 0] iz (X, bjs1g o(dD) dr
Z.2
" L © O 9 Ly 1g Lezexe ) =(zE0xem) iz (ko> 2g 0(AD) A
S
where " :R: A is given by
: [Z2(Xr; D] [ZH(Xy; D)
. (b n Z:(X;:D) fZ2(X:b)]  [ZF(Xr:b)] 60g ( )

L viie 19 L zaox b =[ZEXeb) iz (X D)6 10
(V) HZeXED) MLy e ag Lzak it ) S[2EER 0] iz (X2 0> 1g)

for arbitrary " 2 (0; 1). In particular, " is aP A-measurable map satisfying
() 2 [ n], dr dPxa o(db-almost everywhere. Consider the probability
measureP“® on ( :F1 ), whose restriction to ( ;Fr) has Radon-Nikodym density:
Z Z
Ly = E ( () di(ty;b) + da(ty;b) 1) g(dtdydb) (3.62)
0 E A

S
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forall 0 6 s6 T, where E()s is the Dokans-Dade exponential. The existence of
such a probability is guaranteed by Proposition[3.3.2. From Lemmgd 3.3]1 it follows
that (Ls )s2[0:7] iS @ uniformly integrable martingale. Moreover, Ly 2 LP(Fr),

for any p > 1. Under the probability measure P*?, by Girsanov's theorem, the
compensator ofpon [0; T] E Alis ( <(D)di(s;y; b +da(s;y; D) p(dsdy db. We

denote byq (dsdydh := p(dsdydd ( ¢(b) di(s;y; D)+ da(s;y; D) p(dsdydh the

compensated martingale measure gf under P®. Therefore equation [3.60) becomes:
pPxa.a.s.,

Z T Z n
e ?°Ysj®6 e 2 TjYrj* 2 e 2" Y, Z,(Xs;b)q (dsdydh+2 - o(A);
S A
for all " 2 (0; 1). Moreover, from the arbitrariness of", we obtain
Z.Z
e ?5iYsi’6 e 2 TjYrj? 2 e?"Y,Z(Xs;bgq (dsdydb: (3.63)
S A

From Lemma(3.3.1, we see that the stochastic integral in[(3.63) is a martingale, so
that, taking the expectation E*?, conditional on Fs, with respect to P*, we achieve

e 2%iY> 6 e 2T EXYrj3iFs): (3.64)

In particular, (e 2 SjYsj?)s0 iS a submartingale. SinceY is uniformly bounded, we
see that € 2 $jYsj%)0 is a uniformly integrable submartingale, thereforee 2 SjYsj?
I 1 2 LY ;F;P%),ass!1 . Using again the boundedness o¥, we obtain
that ; =0, which implies Y = 0. Finally, plugging Y =0 into (3.60)} we conclude
that Z = 0.

Existence. Fix (x;a;n) 2 E A N. For T > 0, let (YTnxa,zTimxay = (yT.7zT)

denote the unique solution to the penalized BSDE |(3.55) on [0T].

Step 1. Convergence ofYT)t. Let T;T%> 0, with T <T% and s 2 [0; T]. We have
H .

|
YT Y26 e 2 T 9P v vIigE 1t o (3.65)
where the convergence result follows from| (3.57). Let us now consider the sequence
of real-valued @dag adapted processes Y ")t. It follows from (B.65) that, for any

t > 0, the sequence ;' (! ))T is Cauchy for almost every! , so that it converges
P*¥2.a.s. to someF;-measurable random variableY;, which is bounded from the
right-hand side of (3.57). Moreover, using again[(3.66) and[(3.57), we see that, for
any06 S<T A TO with T;T%> 0, we have

sup j¥T° YTj6 e (1o oM, (3.66)
06t6'S
In other words, the sequenceY " )7 o convergesP$2-a.s. toY uniformly on compact
subsets ofR: . Since eachY " is a @mdhg process, it follows that Y is adag, as well.
Finally, from estimate (B.57) we see thatY is uniformly bounded and therefore
belongs toS?* .

Step 2. Convergence ofZT)7. Let S; T; T°> 0, with S<T < T 2 Then, applying
Ib's formulato e 2 SjY,”° V,Tj2 between 0 andS, and taking the expectation, we
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nd
YAPYA
e e 21iz](y;b)  Z[ (y:)i? p(dr dy db)
0 E i
- e 2SEgxa jYSTO YSsz i YOTO YOsz
Z5Z
. 0
2nEX@ e 27 (Y YOF[ZAX0]  [ZHXrb)] g o(dbdr
o, A
Z 7
2E*? e 27 (Y YN(ZI(Xib  ZT(Xr;1) o(dpdr
0o A

Recalling the elementary inequality bc6 ? + c?=4, for any b; ¢ 2 R, we get
ZsZ
X2 e 27z (y:b)  Z] (y;0)j?p(dr dy db)
0 E A
h i Zs .
6 e 2SEX jYd Ydj2 +4(n?+1) o(A)EX® e 2"jvT v j2dr
0
ZsZ
JE*® e 2" j[ZZ(Xr;B]  [ZF(Xr;B] j? o(db) dr

+ B e 27z (X Z] (X 0)j? o(db) dr
0 A
Multiplying the previous inequality by €? S, and recalling the form of the compen-
sator p; we get

1 ZZ
éEx;a . e 27jz"(y;b  Z[(y;bj?p(drdydb)
i Zg

h

6e2SEX jYd° YJj2 +4(n?+1) o(A)EX@ e 27y YTi2dr
0
-T Of
T,'!' 11 O;
where the convergence to zero follows from estimate (3.566). Then, for ang > 0,
we see that Zj{o;S])T>S is a Cauchy sequence in the Hilbert spaceL)z(’a (9; 0; S).
Therefore, we deduce that there existsZS 2 LZ,(q;0; S) such that (ZjT[O; §)T>s
converges toZS in L2, (q; 0; S), i.e.,
z.Z
Exa e 27 izT(y;  ZS(y;bjZp(drdydb) Tt 0
0 E A

Notice that Z$). s = ZS, forany 06 S 6 S°< 1. Indeed, Z§ 5, as Z%, is the
limit in L)Z(’a (;0; S) of (Zj{O;S])bg . Hence, we de nezZs = Z3 for all s 2 [0; S] and
for any S > 0. Observe thatZ 2 L>2<,a,loc (q). Moreover, for any S > 0, (ZjT[O; S])T>S
converges toZ;g; s in L)z(,a (q;0; 9), i.e.,

Z
S
e ezl Zi(yibipardydy oo (3.67)
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Now, x S 2 [0; T] and consider the BSDE satised by (Y";ZT) on [0; S]: P*2-a.s.,

ZS ZS
Y, = Y Y dr+  f(Xel)dr
z.7 ‘ Z<Z
n [Z[ (X)) o(db) dr ZT (X510 o(db) dr;
;ZA t A

zT(y;bq(drdydt); 06 t6 S:
t E A
From (B.67) and (3.66), we can pass to the limit in the above BSDE by letting
T!1 keepingS xed. Then we deduce that (Y;Z) solves the penalized BSDE
(B.54) on [0 S]. SinceS is arbitrary, it follows that ( Y;Z) solves equation [3.54) on
[0; 1).

The penalized BSDE [3.54) can be represented by means of a suitable family of
dual control problems.

Lemma 3.4.5. Let Hypotheses(Hh Q), (H o) and (Hf) hold. Then, for every
(;a;n) 2 E A N, P*®-a.s,, the solution (Y™*&;z"*2) to (B.54) admits the
following explicit representation:
Z,
yhxa = essinf Exa e U 9f(X,;1;)drFs ; s>0: (3.68)
S
Proof. Fix n2 N, and forany 2 V", let us introduce the compensated martingale
measureq (dsdydb = q(dsdydd ( s(b) 1)di(s;y;b p(dsdydp under P2, Fix
T > s and apply Itd's formulato e " Y,"*? betweens and T. Then we obtain:

Z
yxa =g (T shymxay Te (S f (Xy; 1) dr
z.Z °
e 9fnzM*(X;b)] + (8)Z?(X,;0)g o(db) dr
z. 7
e (" 9zMxa(y-1)q (drdydb); s2 [t TI: (3.69)
S E A

Taking the expectation in (8:69) under P*®, conditional to Fs, and since by Propo-

sition Z"%2 s in Licya (), We get from Lemma[3.3.] that, P2-as.,
Z

.
Yoxa = pra e (T 9yMX¥8 4 o (0 9f(X,;1)dr Fs (3.70)
z .2 ®
Exa e " 9fnpzMa(X,;b] + (a)ZM2(X;;bg o(dbdr Fs :
S A

From the elementary numerical inequality: n[z] + z > O0forallz2 R, 2 (0; n],
we deduce by [(3.7D) that, for all 2 V",
Z 1
yhxa g gra g (19 Y78+ e (" 9f(X;;l)dr Fs

S
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Z,
6 B e (T 9vyM@4 e 9f(X;l)drFs :
S
Since Y"*@ is in S' by Proposition B:4.4, sendingT ! 1 , we obtain from the
conditional version of Lebesgue dominated convergence theorem that

YA 1
N AL = e " 9f(Xy;l)dr Fs ;
S
for all 2 V". Therefore,
Z 1
yhxa g eszsilinnfEX;a e (" 9f(X,;1,)dr Fg : (3.71)

S

On the other hand, for " 2 (0; 1), let us consider the process 2 V" de ned by:

s(B) = nlizmxan (. peogt" Lrocz 5@ (xo my<1gt " 2o (Xs 10) Tlizoxa (. s

(notice that we can not take s(b) = nlizpx, :peog: SiNCE this process does not
belong to V" because of the requirement of strict positivity). By construction, we
have

nZ(Xs ;D] + (BZI(Xs ;06" s>0,b2 A

and thus for this choice of = " in (B:70):
z

T
Ygxe > B e (T 9yfX@ 4 e (09 (X,;l)dr Fs
S
1] l e (T S)
— o(A):
Letting T!1 , sincef is bounded byM; and Y™*2 is in S? | it follows from the
conditional version of Lebesgue dominated convergence theorem that
l n
ygxe > g e " 9F(Xiil)drFs = oA);
S
Z 1 n
> essinfEX? e U 9fF(X,:1,)dr Fs  — o(A):
2Vn s
From the arbitrariness of ", together with (8.71), this is enough to prove the required
representation of Y "*:2a

Let us de ne
zZ.Z
K@ =n  [2I(Xsb]  o(dhds t> 0
0 A

The following a priori uniform estimate on the sequence Z"*2; K "*2).. 4 holds.

Lemma 3.4.6. Assume that hypothesegHh Q), (H o) and (Hf) hold. For every
(x;a;n) 2 E A N, and for every T > 0, there exists a constantC depending only
on M¢, andT such that

Zn:x;ajjﬁia(q;o;'r) + JJK n;x:a::

jjiia(o;.r) 6 C: (3.72)

Jj



3.4. Constrained BSDEs and the dual value function representation 123

Proof. In what follows we shall denote by C > 0 a generic positive constant de-
pending onM¢, and T, which may vary from line to line. Fix T > 0 and apply
Ito's formulg to jY;"*?j? between 0 andT. Noticing that K "*2 is continuous and
YR =L Z% (y; b p(frgdy db), we get: P<3-as.,
Zt
Exa onn;X:ajZ = Exa jY_I[l;X:ajZ 2EX2 an;x;ajZ dr
r
Z+ 0 Z
2E*2 Y& dr a2 EXA YR (X5 1) dr
A °
2E%2 Y& 28 (X b)) o(db) dr
z2z "%
E? JZ/™2 (y; Bj* p(drdy db) :
0 E A
Set nowCy := M°: Recalling the uniform estimate (3.57) onY", and using elemen-
tary inequalities, we get
Z,Z

e jZ5™® (y: bj* p(ds dy db
0 E A
6 C{+2TC§ +2T Cy My +2Cy TEX® K9
Z.Z
. o(A)+ CyE*® jz'"™3 (X s;b)j? o(dbydr ; (3.73)
0 A

forany > 0. At this point, from relation (3.54), we obtain:
Z,Z
K?,x,a - Yon,x,a Y{\,X,a st;x;a dS
- 2.7
+ f(Xs;ls)ds+ Z2%%(Xs;b) o(db)ds
ZoT 7 0 A
+ Z2?(y;b) q(dsdy dp: (3.74)
0 E A
Then, using the inequality 2bc6 12+ c2, forany > 0, and taking the expected
value we have

2% jKI¥®j 6 2 CyT+2M;T+ T o(A)
Z.Z
+ EX@ jz0%3 (X s;b)j2 o(dbyds :  (3.75)
0 A
Plugging (3.79) into (8.73), we get
Z:Z
E*? jZ&*2 (y; b)j? p(ds dy di
0 E A 7 ; 7
6 C+Cy QT + ) JZ5*® (Xs;B)j% o(db) ds:
0 A
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Hence, choosing +2 T = ﬁ we get

1 Z,Z

~EX® jZ&¥2 (y; bj°p(dsdydy 6 C;

2 0 E A

which gives the required uniform estimate for ¢"*?2), and also (K "*2) by (B.74).

3.4.2. BSDE representation of the dual value function. In order to prove
the main result of this section we give the following preliminary result.

Lemma 3.4.7. Assume that HypothesegHh Q), (H o) and (Hf) hold. For every
(x;a) 2 E A, let (yxa;zxa;kxay2 st |2 (@ K3 be a solution to

x,a, loc
the BSDE with partially nonnegative jumps (8.51)-(B.52). Then,
Z,
YXe 6 es;\i/nfE’“a e " 9f(X;:1;)dr Fs ; 8s> O (3.76)

S

Proof. Let(x;a) 2 E A, and consider atriplet (Y*?@;z*a;K*a) 2 st L2\ (q)
K2, oc satisfying 3:57)-(3:53). Applying Ito's formulato e " Y*® betweens and
T > s, and recalling that K*? is nondecreasing, we have
Zt
Yrage (TOy2+ e (9f(X;1,)dr
z.2Z ®
e (" 9ZX¥3(X;b) o(dbdr

2.z
] Ae (r s)zxa(y.pgdrdydb); 06 s6 T<1: (3.77)
S
Thenforany 2 V, letus introduce the compensated martingale measurg (dsdy dh =
d(dsdydd ( s(b) 1)di(s;y;b p(dsdydl under P*. Taking expectation in (3.77)
under P*?, conditional to Fs, and recalling that Z*? is in LZ .. (q), we get from
Lemma[3.3.] that, P*2-a.s.,

Z1
Yer e B e (T OvX+ e (09X ;l)drFs
Z.2 °
Exa e 9 (@)zX3(X;;b) o(dydr Fs : (3.78)
S A

Furthermore, since is strictly positive and Z*? satis es the nonnegative constraint
(B.57), from inequality (B.78) we get
Z1
Y% 6 EY® e (T S)YTX:a"' e C S)f(Xr;lr)dr Fs
ZS
_ _ 1
6 B e (T 9yXay e " 9f(X;;l)drFs :

S
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Finally, sending T!1  and recalling that Y*2 is in S , the conditional version of
Lebesgue dominated convergenceztheorem yields

1
Y 6 EX? e " 9fF(X;;l)dr Fg

S
forall 2 V, and the conclusion follows from the arbitrariness of 2 V, .

Now we are ready to state the main result of the section.

Theorem 3.4.8. Under Hypotheses(Hh Q), (H o) and (Hf) , for every (x;a) 2
E A, there exists a unique maximal solution(Y*2; Z*a: K x2) 2 St Lfya, loc (@)

KZ. loc to the BSDE with partially nonnegative jumps @.51)-.52). In particular,
(i) Y*2 is the nondecreasing limit of (Y ™*a),:
(i) z*@ is the weak limit of (Z"X@), in L2, |oc (a);
(i) K&? is the weak limit of (K§7%), in L2(Fs), for any s> 0;

Moreover, Y*2 has the explicit gepresentation:

1
Y zessinfE® e 9(Xoil)dr Fs 5 85> 0 (3.79)

S
In particular, setting s = 0, we have the following representation formula for the
value function of the dual control problem:

V (xa)= Y% (xa)2E A (3.80)

Proof. Let (x;a) 2 E A be xed. From the representation formula ) it
follows that Y > YM*1 for all s> 0 and all n 2 N, since by de nition V"  Vvn*l
and (Y"), are adhg processes. Moreover, recalling the boundedness déf , from
) we see that "), is lower-bounded by a constant which does not depend.
Then (Y™*@), 2 S converges decreasingly to some adapted proce¥s?, which is
moreover uniformly bounded by Fatou's lemma. Furthermore, for everyT > 0, the
Lebesgue's dominated convergence theorem insures that the convergence 6f'(“?),
to Y also holds inL?(0; T).

Letus x T > 0. By the uniform estimates in Lemma[3.4.6, the sequence
(erE(')’;(’?])n is bounded in the Hilbert spacelLZ,(q;0; T). Then, we can extract a
subsequence which weakly converges to sonz' in L)Z(Va (q;0; T). Let then de ne
the following mappings

zZ z
1= zZ 7! Zs(y; b) q(ds dy db
0 E A
L2,(q;0;T) ' L%F);
zZ Z
12 = Z(Xs; ) 7! Zs(Xs;b) o(db) ds
0o A
L2,( 0;0;T) ! L%(F);

for every stopping time 06 6 T. We notice that | 1 (resp. |1 2) de nes a linear con-
tinuous operator (hence weakly continuous) fromL)Z(ya (9;0; T) (resp. L)z(‘a( 0,0; T))
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to L%(F ). Therefore IlzToxi] (resp., IZZJ.%’??](X; )) weakly converges tol1zT

(resp., 12Z7(X; ))in L?(F ). Since

Z
Kmxa = ynxa Yon;X:a Y8 dr + f(Xy¢ilp)dr
z z 0 °
o ZM"%3 (X, :b) o(db)dr
" Z

Z%(y;b) o(drdydb); 8 2 [0; T];
0 A

we also have the following weak convergencze ih?(F ):

Knxa s gT .= yxa Yox;a Yo dr + F(Xidr)dr
z z 0 °
i Azrx?ﬁ‘(xr;b) o(db) dr
2 z

ZE(viba(drdydn: 8 2 [0; T]
0 E

Since the processK s ™ )sz(0: 1 IS nondecreasmg and predictable and ;™ a =0, tpe
limit processK'T on [0; T] remains nondecreasing and predictable witiEX2 jK'Tj <

1 and K§ =0. Moreover, by Lemma 2.2. in Peng [L04], KT and YT are adag,
therefore KT 2 KZ,(0; T)and YT 2 St .

Then we notice that Z“T[0 =2z K—]—[FOOT] = KT, forany06 T6 T°< 1.
Indeed, fori =1;2,1' z1°

o7y @s! 7T, is the weak limit in L?(Fg) of (I ana])n>o,

while K“J[O 1 @K, is the weak limit in L?(Fs) of (KJ'EO’fﬁ])mo, for every s 2 [0; T].
Hence, we denez&® = Z7I, K&® = K{ for all s 2 [0; T] and for any T > 0.

Observe that 2@ 2 L2, . (g) and KXa 2 Kxaloc . Moreover, for any T > 0,
fori=1;2, (I"2"*2 )50 weakly converges tol' ZX2_. in L?(Fs), and (Kjjo: 1))n>0

il0;T] i[0;T]
weakly converges toKJ[0 7] in L2(Fs), for s 2 [0; T] In conclusion, we have: P*2-
a.s.,
Y = vt YXrdr+  f(Xesl)dr (KP?OKE®)
S S
1z~
Z7%(Xr;b) o(dbdr
2.z

ZX3(y;bq(drdydb); 06 s6 T:
A

S

SinceT is arbitrary, it follows that ( Y *2;Z*@; K *?) solves equation (3.51) on [0 1 ).
To show that the jump constraint (n is satis ed, we consider the functional
G:LZ,( 0,0;T)! Rgiven by
Z:Z
G(V()) = E - [Vs(b)] o(dhds ; 8V 2 Lia( 0;0; T):
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Notice that G(Z™%2(X; )) = EX@ K{™%=n, forany n 2 N. From uniform estimate
(B.72), we see thatG(z"*?(X; )) ! Oasn!1l . SinceG is convex and strongly
continuous in the strong topology ofL)%’a( 0;0; T), then G is lower semicontinuous in
the weak topology ofLia( 0;0; T), see, e.g., Corollary 3.9 in Brezis19]. Therefore,
we nd

G(Z¥2(X; ) 6 liminf G(Z"*(X; ))=0;

which implies the validity of jump constraint (3.52) on [0; T], and the conclusion
follows from the arbitrary of T.

Hence, (Y*@;Z%2;K*2) is a solution to the constrained BSDE (3.51)-(3.52) on
[0;1).

It remains to prove the representation formula (3.79) and the maximality prop-
erty for Y*2_ Firstly, since by de nition V" V for all n 2 N, it is clear from
representation formula (3.68) that

1
yhxa = essinfEX@ e " 9F(X,;1,)dr Fs
2Vn s
Z,

> essinfEX@ e " 9f(X,;1,)dr Fs ;
2V s
for all n 2 N, for all s> 0. Moreover, beingY*? the pointwise limit of Y"*a we

deduce that
Z,
Y3 > esginfE e U 9F(X;l)drjFs ; s> 0 (3.81)

S

On the other hand, Y*?2 satis es the opposite inequality (3.7) from Lemma[3.4.7,
and thus we achieve the representation formula[(3.79).

Finally, to show that Y*?2 is the maximal solution, let consider a triplet
(yxa;zxa;gkxay2 st L2 () K2z, solutionto (B:51)-@B:52). By Lemma
, (y*@;Zzxa; K*2) satis es inequality (B.76). Then, from the representation
formula (B:79) it follows that Ys*® 6 Ys**, 8s > 0, P¥@-as,, i.e., the maximal-
ity property holds. The uniqueness of the maximal solution directly follows from

Proposition 3.4.7.

3.5. A BSDE representation for the value function

Our main purpose is to show how maximal solutions to BSDEs with nonnegative
jumps of the form (3.51)-(3.52) provide actually a Feynman-Kac representation to
the value function V associated to our optimal control problem for PDMPs. We
know from Theorem|[3.4.8 that, under HypothesesHh Q), (H o) and (Hf) , there

exists a unique maximal solution (Y *;Z*&; K *2) on (;F;F;P%?) to (B.51)-(B.52).
Let us introduce a deterministic function v:E A! R as

v(x;a) = Y4 (xa)2E A (3.82)

Our main result is as follows:
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Theorem 3.5.1. Assume that HypothesegHh Q), (H o), and (Hf) hold. Then
the function v in (3.82) does not depend on the variable:

v(x;a) = v(x;a%; 8a;a’2 A;
for all x 2 E. Let us de ne by misuse of notation the functionv on E by
v(x) = v(x;a); 8x 2 E;
for any a2 A. Then v is a (discontinuous) viscosity solution to (B.26).
To conclude that v(x) actually provides the unique solution to (3.26) (and there-
fore coincides with the value functionV by Theorem|3.2.6), we need to use a compari-
son theorem for viscosity sub and supersolutions to the fully nonlinear integro-partial

di erential equations of HIB type. To this end, we introduce the following additional
condition on Q and

(H Q)
Q) SUP(xa)2E A Ejy Xj (x;a)Q(x;a;dy) <1

(i) 9¢c;C>0: forevery 2 WL1(E), (0)=0, forevery K E compact
set, andx1;X2 2 E, a2 A,

Z
. (y x1) (x1;@)(Q(x1;a;dy) . (y x2) (x2;a) Q(xz;a;dy)
6 cjr i1 X1 X2
Z and 7
o (y x1) (x1;a) Q(xq;a;dy) . (y x2) (x2;a) Q(x2;a;dy)

6 Cjir Jj1jix1 x2jj:
Corollary 3.5.2. Let Hypotheses(Hh Q), (H o), (H Q" and (Hf) hold, and

assume thatA is compact. Then the value functionV of the optimal control problem
de ned in (B.25) admits the Feynman-Kac representation formula:

V(X)= Yo% (xa)2E A
Moreover, the value functionV coincides with the dual value functionV de ned in

(B.50), namely
VxX)=V (x;a)= Y% (xa)2E A (3.83)

Proof. Under the additional assumption (H Q") , a comparison theorem for viscos-
ity super and subsolutions for elliptic IPDEs of the form (B.26) holds, see Theorem
IV.1 in Sayah [1Z3]. Then, it follows from Theorem that the function v in
(B.87) is the unique viscosity soluton to [3.26), and it is continuous. In particular,
by Theorem [3.2.6, v coincides with the value function V of the PDMPs optimal
control problem, which admits therefore the probabilistic representation (3.5.2). Fi-
nally, Theorem[3.4.§ implies that the dual value functionV coincides with the value
function V of the original control problem, so that () holds.

The rest of the chapter is devoted to prove Theorenj 3.5]1.
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3.5.1. The identi cation property of the penalized BSDE. For everyn 2 N
let us introduce the deterministic function v" dened on E A by
vix;a) = Yo% (xa)2E A (3.84)

We investigate the properties of the function v". Firstly, it straightly follows from

(B.84) and (3.57) that

, ..M

jv'(x;a)j 6 =t 8(x;a)2 E A:
Moreover, we have the following result.

Lemma 3.5.3. Under Hypotheses(Hh Q), (H o) and (Hf) , for any n 2 N, the
function v" is such that, for any (x;a) 2 E A, we have

yhxa — Vn(Xs; |s); s>0 dP*?* ds-a.e. (3'85)
s

Remark 3.5.4. When the pair of Markov processes X;I ) is the unique strong
solution to some system of stochastic di erential equations, K;l ) often satis es
a stochastic ow property, and the fact that Ys"™“® is a deterministic function of
(Xs;Is) straight follows from the uniqueness of the BSDE (see, e.g., Remark 2.4
in Barles, Buckdahn and Pardoux [L0]). In our framework, we deal with the local
characteristics of the state processX; | ) rather than with the stochastic di erential
equation solved by it. As a consequence, a stochastic ow property forX;!| ) is no
more directly available. The idea is then to prove the identi cation (B.85) using an
iterative construction of the solution of standard BSDEs. This alternative approach
is based on the fact that, whenf does not depend ory; z, the desired identi cation
follows from the Markov property of the state process ;1 ), and it is inspired by
the proof of the Theorem 4.1. in El Karoui, Peng and Quenez33].

Proof. Fix (x;a;n) 2 E A N. Let (Y";Z") = (YM*&,z"%2a) pe the solution
to the penalized BSDE (3.54). From Proposition[3.4.4 we know that there exists a
sequence YT ;Z"T)y = (YnTxa,znTxa) jn st 2 | = (q) such that, when
T goes to innity, (Y™T)1 convergesP%2-a.s. to (Y") and (Z™T )t converges to
(Z") in L>2<,a,loc (q). Letnow x T;S>0,S <T, and consider the BSDE solved by
(YNT:Z"TY on [0; S

Zg

S
Yt”;T = YS”?T Y,”;T dr + f(Xe;ly)dr
z.2" ‘ Z.2
n [ZPT (X: b)) o(db) dr Z"T (Xr;b) o(db) dr;
A t A

ZeZ
ZMT (y; b) g(dr dy db); 06t6 S:

t E A

Then, it follows from Proposition B.4.3 that there exists a sequenceY ™k ; z"Tk), =
(ynTkxa,znTikxay jn LZ,(0,S) L%,(9;0,S) converging to (Y™T;Z"T) in
L2,(0,S) L2,(q;0,S), such that (Y"T:0,z"T:% = (0;0) and

Z g Zg
Ytn;T;k+1 — st;T§k an;T;k dr + f (Xr, | r) dr
t t
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Z 7 yAPA
n [ZPTH(X;B)]  o(db) dr ZPTR(X ;) o(db) d;
t A t A
Z 7

ZMTK* (y-) g(drdydb); 06 t6 S:
t E A

Let us de ne
Vn;T (X; a) = Yon:T : Vn;T;k (X; a) = Yon;T;k :
We start by noticing that, for k =0, we have, P%2-a.s.,
Zg

YT = pra t f(Xeil)dr Fe 5 t2]0; S]:

Then, from the Markov property of ( X;I ) we get

YT = vl (X 1) dPYR dt -ae. (3.86)
Furthermore, identi cation (3.86)| implies
ZPTHy; = VTR X sl ) vy b (3.87)

where (3.87) has to be understood as an equality (almost everywhere) between el-
ements of the spaceLf(,a (q;0,S). At this point we consider the inductive step:
16 k2 N, and assume that,P*2-a.s.,

YT = TR (X 1)

Ztn;T;k (y:b = YTk (y:b) YTk (Xt ;1 ):
Then
Zg Z s
Ytn;T;k+1 — Ex;a Vn;T;k(XS;IS) Vn;T;k(Xr;lr)dr + f (erlr)dl’
ZZ t t
N KX VTR (X)) o(db dr
ziz?
VITK(XB) VTR (X 1) o(dDdr Fe s 06 t6 S:
t A
Using again the Markov property of (X;1 ), we achieve that
Ytn;T;k+1 = VTR (X 1) dPY? dt -ae. (3.88)

"Tk v,"Ti2 and taking the supremum of t

Then, applying the I1td formula to jY,
between 0 andS, one can show that

EX® sup Y,"T* v,™T " 1 0 ask goes toin nity.
0616 S

Therefore, v?TK (x;a) | v™T (x;a) as k goes to in nity, for all ( x;a) 2 E A, from
which it follows that

Ytn;T;x;a = V" (X:1y); dP<®  dt -a.e. (3.89)

Finally, from (8.66) we have that (Y "T*@) convergesP*?-a.s. to (Y "*@) uniformly
on compact sets oR. Thus, v"'T (x;a) ! v"(x;a) asT goes to in nity, for all ( x;a) 2
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E A, and this gives the requested identi cation Y,"*® = v"(Xy; 1), dP%@  dt -
a.e.

Remark 3.5.5. By Proposition .4.7], the maximal solution to the constrained BSDE
(B-51)-(3.57) is the pointwise limit of the solution to the penalized BSDE (3.54).

Then, as a byproduct of Lemma[3.5.B we have the following identi cation for v:
P*2-a.s.,

V(Xsils) = Y% (x;a)2E A;s> 0 (3.90)

3.5.2. The non-dependence of the function v on the variable a. We claim
that the function v in 8.82 does not depend on its last argument:

v(x;a) = v(x;a%; a;a’2 A; forany x 2 E: (3.91)

We recall that, by (B.80) and (3.82), v coincides with the value functionV of the
dual control problem introduced in Section[3.3.2. Therefore, [(3.9]L) holds if we prove
that V (x;a) does not depend onma. This is insured by the following result.

Proposition 3.5.6.  Assume that HypothesegHh Q), (H o) and (Hf) hold. Fix
x 2 E, a;a®2 A, and 2 V. Then, there exists a sequenc¢ )+ 2 V such that

"!irg+ J(x;a% Y= J(xa; ): (3.92)
Proof. See Section_3.5)4.

Identity (8.92) implies that
V (x;a% J(xa; ) x2E; aja2 A;
and by the arbitrariness of one can conclude that
V (x;a% V (xa) x2E; aa’2 A:
In other words V (x;a) = v(x;a) does not depend ona, and ) holds.

3.5.3. Viscosity properties of the function v. Taking into account (B.91), by
misuse of notation, we de ne the functionv on E by
v(x):= v(x;a); 8x2E; foranyaz2 A: (3.93)

We shall prove that the function v in (8.93) provides a viscosity solution to (3.26).
We separate the proof of viscosity subsolution and supersolution properties, which
are di erent. In particular the supersolution property is more delicate and should
take into account the maximality property of Y?*2,

Remark 3.5.7. Identity (3.90) in Remark B.5.5|gives

V(Xs)= Y& 8x2E;s>0; foranya2 A (3.94)
Proof of the viscosity subsolution property to [B.26).

Proposition 3.5.8. Let assumptions (Hh Q), (H o) and (Hf) hold. Then, the
function v in (B.93) is a viscosity subsolution to(3.26).
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Proof. Let x 2 E, and let' 2 C(E) be a test function such that
O=(v ")(X)=max(v ")(X): (3.95)
X2E

By the de nition of v (x), there exists a sequenceX;,)m in E such that
Xm! xandv(xm)! v (X)
when m goes to in nity. By the continuity of ' and by (3.95) it follows that
m:="Xm) V(Xm)! O

when m goes to innity. Let be a xed positive constant and , :=infft > 0:
j (tXm) Xmj> 0. Let moreover (hm)m be a strictly positive sequence such that

hm! Oand 21! O©;
hm

when m goes to in nity.

We notice that there exists M 2 N such that, for everym>M , h,y * 1 = hpy.
Let us introduce :=infft> 0:j (t;x) Xxj> g. Clearly > 0. We show that
it does not exists a subsequence,, of , suchthat , ! 2 [0; ). Indeed, let
n ! 021[0; ). Inparticular j ( n;X) Xj> . Then, by the continuity of it
follows that j ( o;x) xj > , and this is in contradiction with the de nition of

Let now x a2 A, and let Y*":2 be the unique maximal solution to (3.51)-
(B52) under P*m@. We apply the I1t6 formula to e ' Y™ between 0 and n, :=
m”™ hm ™ T1, where T1 denotes the rst jump time of ( X;1 ). Using the identi cation
(B.94), from the constraint (8.52) and the fact that K is a nondecreasing process it

follows that P*m-2-a.s.,
Z

m

ViXm) 6 e ™v(X )+ e "f(X;;l)dr
0
Z

,© ' E(V(y) V(X)) g(drdy);
where gtdr dy) = p(dr dy) (Xr;11) Q(Xy; Ir;dy) dr. In particular
z

V(Xm) 6 EX"@ & my(X )+ Om e Tf(X:l,)dr
Equation (B.95) implies that v6 v 6 ', and therefore
C(Xm) w6 B e mr(X )+ Zom e (X, 0)dr
At this point, applying Ité's formulato e "' (X;) between 0 and ,, we get
4

"L LX) f(Xelldr 60, (3.96)

m + Exm a

Am hm

whereL'™" (X;) = e (y) " (Xp) (Xeilr) Q(Xy:lr;dy). Now we notice that,
pPxma.as., X¢;lr)=( (nxm);a) forr 2 [0; m]. Taking into account the continuity

0
R
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ofthe map (y;b) 7! ' (y) L™ (y) f(y;b), we see that for any" > 0,
L () L (xm)  f (xmi@) B0 2
hm hm

Let fr,(s) denote the distribution density of T, under P*"2, see [3.3%). Taking

m>M , we have

60  (3.97)

Zy

hm
EXma a( m) - i se szl(S)dS"' hmeipxma[-rl>hm]
hm hm 0 hm

1 th RS

== se *(((nxm)ia)+ o(A)e of L{m@r o) ds
m 0

R
+e Mmeg o™ ((nxm)a)+ ofA)dr. (3.98)

By the boundedness of and g, itis easy to see that the two terms in the right-hand
side of {3.98) converge respectively to zero and one whem goes to in nity. Thus,
passing into the limit in (8.97) as m goes to in nity, we obtain

"(x) L* (x) f(x;a)6 0:
From the arbitrariness of a 2 A we conclude thatv is a viscosity subsolution to

(3.26) in the sense of De nition[3.2.5.
Proof of the viscosity supersolution property to B.26).

Proposition 3.5.9. Let assumptions (Hh Q), (H o), and (Hf) hold. Then, the
function v in (B.93) is a viscosity supersolution to (3.26).

Proof. Letx 2 E, and let' 2 C(E) be a test function such that
O=(v ")X)=min(v ')X): (3.99)
X2E

Notice that we can assume w.l.0.g. thatx is strict minimum of v ' . As a matter
of fact, one can subtract to' a positive cut-o function which behaves asjx  xj?
whenjx xj? is small, and that regularly converges to 1 agx  xj? increases to 1.

Then, for every > 0, we can de ne

0< ():= Xgigzx_ )(v "I)(X): (3.100)

We will show the result by contradiction. Assume thus that

H (5 r')<o:
Then by the continuity of H, there exists > 0, () > 0and" 2 (0; () ] such
that

Ho(y;5r )6 "
forally 2 B(x; )= fy2 E :jx yj< g Bydenition of v (x), there exists a
sequence Xm)m taking values in B(x; ) such that

Xm! xandv(xm)! v (x)

when m goes to in nity. By the continuity of ' and by (3.99) it follows that

m:=V(Xm) "(Xm)! O
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whenm goestoinnity. Let x T >0anddene = " T,where =infft> 0:
X{ZB(X; )g.

At this point, letus x a2 A, and consider the solutionY "*m-2 to the penalized
(B.54), under the probability P*":2. Notice that

PXm;af :Og: me;an()zB(X; )9:0:

We apply the 1t6 formula to e ' Y,"*™*? between 0 and . Then, proceeding as in
the proof of Lemma[3.4.% we get the following inequality:
Z

Yo m® > i2n\1; EXm@ g yYMWma4 e T{(Xel)dr o (3.101)
" 0
Since Y™Xm:a converges decreasingly to the maximal solutiony*m:2 to the con-

strained BSDE (3.51)-(3.52), and recalling the identi cation (B.94), inequality (8.101)

leads to the corresponding inequality forv(xm):
Z

V(Xm) > ig{/EXm;a e V(X )+ e "f(X;;ly)dr
0

In particular, there exists a strictly positive, predictable and bounded function
such that

Z n
V(Xm) > EXm@ e y(X )+ e "f(X;;l)dr (3.102)
0
Now, from equation (3.99) and (3.100) we get
Z n
‘(Xm)"' m>EXnT;a € I(x)'*' e 1f 6Tg+ e rf(Xr;lr)dr 2 :
0

At this point, applying Ité's formulato e "' (X;) between 0 and , we get
Z

m+ B e T (Xy) L' (X)) f(Xesl)ldr e It g1
0

+ > > 0; (3.103)
whereL'"" (X;) = RE(‘ (y) (X)) (Xe;le) Q(Xy; e dy). Noticing that, for r 2
[0; 1,

C(Xe) L'(Xe) f(Xesl) 6 (Xo) ki)r21£be' Xr) f(Xr:bg

= H X;5r1")
6 ll;
from (8.103) we obtain
n Z
06 mn+ +Ema v e Tdr e 1 g1g
2 m 0
n h n n I
— Xm,a
= m Z*‘Fm . e ?—fsTg*'*e 51 g
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" " h I

— ; T
= m o +-En%e g

6 m +e '

Letting T and m go to in nity we achieve the contradiction: 0 6 2—

3.5.4. Proof of Proposition 3.5[6. | We start by giving a technical result. In the
sequel, "t"2and "1:"2 will denote respectively the random sequencesl, ; En,; An,;
Tni+1 Enp+1 3 Ang+1: 25 Tng s Eng i Any) @nd (Tng s Angs Trg+a 3 Ang+1 5 55 Ty Any), N,
n, 2 NnfOg, ny n,, where (Tx; Ex; Ak)x 1 denotes the sequence of random
variables introduced in Section[3.3.1.

Lemma 3.5.10. Assume that Hypotheses(Hh Q), (H o) and (Hf) hold. Let

n . Ry (R« A" A! (0;1),n> 1(resp. ©: R+ Al (0;1)),
be someP B((R+ A)") A-measurable maps, uniformly bounded with respect to
n (resp. a boundedP A-measurable map). Let moreovery : A! (0;1) bea
boundedA-measurable map, and set

X .
(0= 2(b) Liter,q+ 2O D) Lt <t 6T o (3.104)
n=1

S
D) = g Lierig+ () Lity<t6Tog + 2D L7, <t6Tom g (3.105)
n=2

Fix x 2 E, a;a%2 A. Then, for everyn> 1, for every B((R+ E A)")-measurable
functon F : (R+ E A)"! R,

E® Lirs oFCsy Y

PX;a(T1> ) =T1; =Xz, :Al.
Proof of the Lemma.  Taking into account (B.36), (8.37), and (3.105), we have:
forall r > Tq,

P2’ [T, > E 2 F; A, 2 CjFr,]

0 .
Exba F( 1'n)JFT1 =

(3.106)

z,z Z, z.z
= exp ( (t Ty EpAL)A)dt 2(b) o(db) dt

r F T1 1 A

%fsz Tl;El;AZ:L);Al) Q( (s T1;E1;A1);A1;d£/)sdzs
+ exp ( (t Ty Ez;A7);Ap)dt 2(b) o(db) dt

r C T1 T A

2(0) o(db) ds; (3.107)

and, forallr > Ty, n> 2,
I:)X;oa [Ther > E n+1Z2 F;An+1 2 CjFq,]

1 Z S
= exp ( (t Tn;En;An);Ap)dt
r FZ . 7 Th
exp M2 o(db dt
Th A
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%(S TniEniAn)iAn) Q( (s ThiEnjAn); An;dy)ds
1 Z Z

S

+ exp ( (t TnEn;An);Ap)dt
r CZ . 7 Th
exp nlC2ng o(dydt DY 2" o(dbds: (3.108)
Th A

We will prove identity ( by induction. Let us start by showing that (
holds in the casen = 2, namely that, for every B(R+ E A)?)-measurable function

F:(Re E A)?! R,
Ex;oa0 F( 1;2)jFT - E*? L1, gF(; o l;l) .

X:a .

! P (T1> ) =T1; =X1; =A1

From (B.107) we get

20 oy ;a0 i
Exbaz ¢ Y2)jFr, = BT [F(TuE1Ar T2 E2; Ag)Fry]
1

(3.109)

= F(T1;E1;A1;Sy; A7)
noZ. z.2Z

exp ( (t Ty EpA1);AL)dt d(b) o(db dt
T1 T1 A

% (SZ T1;E1;A1);A1) Q( (s T1E1;A1);A1;dy) ds
1

+ F(T1;E1;As; (s Ty Eq A1) b)
"oz z.2Z
exp ( (t T Eq;A7);A7)d 2(0) o(dhdt () o(db ds:
T1 T1 A

On the other hand,
Z Z Z

P%3(Ty> ) =exp . (@t ;5 ) )dt - to(b) o(db dt ;

and
B dp> gF (it M) = B L gF (50T wEnAY
1

= Elfs> oFCiiisys )
Z zZ.Z

exp (@t 55 ) )dt O(b) o(db) dt
0 0 A

§(Sz ;7 ) )Q( (s 5 );;dy)ds
1
+ Lss gF(5ii8 (s 15 )b
s ZSZ

exp (@t 5 ) )at o) o(dgdt (b o(db) ds:
0 0 A

Therefore,
E* Lir> gFCGis M
PY(Ty > )
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Z zZ 7
=exp ((t ;) )di+ 2(b) o(db) dt
Zl Z 0 0 A
ks> gF(iiisiys )
Fz. z.2
exp ((t 5, ) )dt 2(b) o(db) dt
0 0 A
((Sz” ) )Q( (s 5 )Z,dgf)ds
+exp ((t ;5 ) )dt+ O(b) o(db) dt
Zl Z 0 0 A
I N G A CRE D H )
Az, z.2
exp ((t 5, ) )dt 2D o(dpdt (b o(dbds
Zl 7 0 0 A
= Liss gF(5sisys )
Z . z.Z
exp ((t 55 ) )dt () o(db) dt
A
%(SZ ;5 1 )Q( (s 55 )5 dy)ds
1
+ Lss gF(iiiss (s 55 )b
S ZSZ
exp ((t 55 ) )dt 2B o(dydt (b o(db)ds;
A

and (3.109) follows.

Assume now that (3.106) holds forn 1, namely that, for every B((R+ E
A)" D-measurable functionF : (R E A" 1! R,

Ex;a 1fT1> gF(; - 1n 2)
PX’a(T1> ) :Tl; :Xl; =A1

We have to prove that (3.11Q) implies that, for everyB((R+ E A)")-measurable
functon F : (R E A)"! R,

= Lit,> gFCos s Ln 1y

PX;a(T1> ) =T1; =Xz, :Al.

EX;(;—,lo F( 1n 1)j|:_|_l - (3110)

EX;OaO F( ]_;n)jFTl — (3111)

Using (3.108), we get

.50 .
EX@ F% Em)iFq,

z
-0 -
E*T F( M LsiyiAn 1)

irnlE

s
exp ((t Tn 1;En 1;An 1);An 1)dt
Tn 1

E?° E2° F( YMjFy, , Fr,
Z 1
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Z, Z
{205 L) o(db dt
Th 1 A
%(S ZTn 1En 15An 1);An 1) Q( (s Tn 1;En 1;An 1);An 1;dy)ds
1
+ F( " Ys; (s Ta 1En 1;An 1)ib)
Th 1 %
S
exp ((t Th 1En 1;An 1);An 1)dt
z" 'z

S

n20 I Ly odydt M L) o(dbds Fr,
Th A
' (3.112)

At this point we observe that the term in the conditional expectation in the right-
hand side of ) only depends on the random sequenceé" . For any sequence
of random variables S;; Wi; Vi)izin 1y With valuesin ([0; 1) E  A)" 1's 1 S
foreveryi 2 [1; n 1], we set

Z(Sl;\lzvl;vl;:::;Sn 1;Wh 1;Vh 1) =

1
F(S1; W15V 1S 1 Wh 1S,V 1)
S, 1 E
ZS
exp ((t Sn 1;Wh 1;Vh 1);Va 1) dt
z% 'z
P A(Sy Ve Sy 13Ve 1B o(db) dt
Sh 1 A
%(S ZSn Wh 15V 1);Vh 1) Q( (s Sn 1;Wnh 13V 1);Vh 1;dy)ds
1
+ F(S1;W1;V1;:5Sn 1;Wh 1;Va 135S (S Sn 1;Wh 1,V 1) D)
Sn 1
2,
exp ( (t Sn 1;Wh 1,V 1);Vn l) dt
7z 17

S
D 2(Sy; Va5 S 13Ve 1B o(db) dt
Sh 1 A

D 2(Sy;ViinSn 1Ve 130D o(db) ds:
Identity ( can be rewritten as o i
B F( M)iFr, = B9 (¥ Y Fp (3.113)
Then, by applying the inductive step ), we get
T F( MiF,
- Ex;oao ( I Fr,

(P[> ) YE Lrs g (550 B 9) L (3119
=T =X1; =A1
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Since
e Iin 2
(,Z-l, 5 )
= F(iss M ZsyiAn 2)
ez z, Z
exp ( (t Tn 2:En 2;An 2);An 2)dt 2t 2 o(do) dt
T 2 Th 2 A

%(s ZTn 2,En 2;An 2);An 2)Q( (s Tn 2,En 2;An 2);An 2;dy)ds
1

+ F(;i: ™ %8s (s Tn 2En 2:An 2);D)
Tn 2 % < Z . Z
exp ( (t Tn 2:En 2;An 2);A7)dt N2 Ln 2. o(dbdt
Th 2 Th 2 A
D20 2 o(dbds
=ECFG M YiF L

identity (3.114) can be rewritten as
B F( EiF,

=(P@M> ) YE? Lrs gEF(; 50 B DiFT, ol
=T1; =X1; =A1
_ Ex,a 1fT1> gF(; o Lin 1) . 3.115
- Px;a T > ) . ( . )
( 1 =T, =E1;, =A1
This concludes the proof of the Lemma.
Proof of Proposition 3.4.6. | We start by noticing that,
J(x;a; )= B [F(Te Eq A T2 Egp Ag; )]s
where
F(TZ1;E1;A1;T2;E2;A2;:::)
1
= e tf(Xt;lt)dt
0
= e 'f( (tXolo)lo)dt+ e 'f((t To 1;En 1;An 1);Aq 1)dt:
0 n=2 Tn 1
(3.116)
We aim at constructing a sequence of controls (')- 2 V such that
J(x;a% )= E[F (TyiEqi A T2 Egi Ag; )]
L B IF(THEL AL T Eg Ay )] = J(xia; ): (3.117)

Since 2V, then there exists aP*2-null set N such that admits the representation

3
()= 2(0) Literyg+ (T AL T A2 T An D) L 6o g (3:118)

n=1
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for all (!;t) 2 R+, ! 2 N, for some " : Ri (R+ A" Al (0;1),
n> 1 (resp. °: Ry A! (0;1))P B((R+ A)") A-measurable maps,

uniformly bounded with respect to n (resp. boundedP A-measurable map), see,
e.g., De nition 26.3 in [[35].

Let B(a;") be the closed ball centered ina with radius We notice that
"7 o(B(a;")) de nes a nonnegative, right-continuous, nondecreasing function,
satisfying

o(B(a;0)) = o(fag) 0; o(B(a;"))>0 8"> 0
If o(fag) > 0, we seth(") = " for every " > 0. Otherwise, if o(fag) =0, we de ne
h as the right inverse function of" 7! (B (a;")), hamely

h(p)=inff"> 0: o(B(&;")) pg, p O
From Lemma 1.37 in [/3] the following property holds:

8p 0; o(B(ajh(p)) p: (3.119)
At this point, we introduce the following family of processes, parametrized by":
. 1 1
t(B) =+ mlbeB(a;h(”))glftGTlg + 20 Li1,<t 6 Tog
3
+ D YT AL T An D) Lt <6 T o (3.120)
n=2

With this choice, for all r > 0,

P2°(Ty >E 12 F;A1 2 C)
z,7 Z.

= exp ( (tx;aY;a)dt § ( (s;x;a%;a% Q( (s;x;a%;a%dy)ds
AR Al z°
+ exp ( (txa%addt - %;ulbeB(a'h("))g o(db) ds:
rC 0 o(B(a;h("))) ’
(3.121)
To prove (3.117), it is enough to show that, for everyk > 1,
ECTR( H] ) ERIRC ), (3.122)
where
Z Sl
F (S1; Wi; Vi; 1255 S Wi Vi) = e 'f( (tXo;lo);lo)dt
0
X Zs,
+ € tf( (t Sn 1;Wn 1;Vh 1);Vh 1) dt;
n=2 Sn 1
(3.123)

for any sequence of random variables§,; Wn; Vn)nop1xg With values in ([0; 1) E
A", with S, 1 S, for everyn.

As a matter of fact, the remaining term

1
R(k):= EX®° e Y( (t Ty 1,En 1;An 1);An 1)dt

Tk
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converges to zero, uniformly in", ask goes to in nity. To see it, we notice that

h | h [
. . M - M : "
R(K)] —ER’ e Tk = O pxal Lr.e Tk ; (3.124)
where, L is the Dokans-Dade exponential local martingale de ned in (3.39). Taking
into account (3.120) and (3.119), we get

h i o @l oA g Tt

x;a0 i Tk x;a Tk
E LTk e E — LTk e

# " —— #
i x;ao e'l o(A) L e Ty
e T2 T

where

hs
(tb) = 1emig* (B Litict6Tog + 0 HTo Az T Ans D) Lir <t 67 of
n=2
Since 2V, by Proposition there exists a unique probability P2’ on ( ;F1)
such that its restriction on ( ;Fr,)is Ly, P<a’. Then (8.124) reads
m #

4M¢ pxa’ el o)

RO
JR(" k)] o2 T2

e Tk (3.125)

and the conclusion follows by the Lebesgue dominated convergence theorem.

Let us now prove (3.122). By Lemma| 3.5.10, taking into account|(3.121), we

achieve
Exgla0 E( Lk
[ (h ) h

i
- Ex;vao Ex;va0 F( 1;k) FTl]

n ) . #
_ a0 B L gF(siyibr MY
- X;a
P(T1> ) s=T1,y=X1;b=A;
) Z 1 Z gxa 1fT1>ng(S;y;aO’ 1:k l)
o & P*%(Ty >s)
S
exp ( (tx;a%;addt § ( (s;x;a%;a% Q( (s;x;a9%;a’dy)ds
0
VDT B LR (s (sixadib; Y
o A P (T >s)
s s 1 1
exp ( Gxa%addt T F—— h('yg o(db) ds:
0 o(B(@n() B @)

(3.126)
At this point, we set
EY? 1 F(s;y;b; Lk 1
' (siy:b) = fT1>s;% (s;y ) ;
PX (Tl > S)
Notice that, for every (y;b) 2 E A,
z

s2[0;1);y2E;b2A: (3.127)

S
F(s;y;b; B« Y= e 'f( (Xo;lo);lo)dt+ e 'f( (t syy;b;bdt
0 s
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k1< T,
+ e "f((t Tn En ;AN 1AL D)t
n=2 Th 1
so that
W Mg
" (ssysb) — (3.128)
Identity (3.126) becomes

Ex;la0 E( Lk
z[1 G Z . .
= ) E' (s;y;a) exp i ( (tx;a%;a%dt =

% Es;Z x;a);a) Q( (s;x;a%;a’ ddess

+ ' (s; (s;x;a9;b) exp ( (txa%addt >
0o A 0

1 1

= mlf 2B (ah()g o(db ds

= 1(")+ 12("):

Using the changezof \?riables = "z, we have
1
11(") = f-(ziy) ( ("z:x29%;a%Q( ("z;x;29;a%dy) dz;
2, ZF
1
12(") = 9(z;0 o(db dz;
0 A
where z.,
fo(z;y):= " ("z;y;a% exp ( (tx;a%:a%dt z
0 z.,
"("z; ("z;x;aY9;b) exp ( (tx;aY%;a%)dt z
0
. :
o(B(a;h(")) HEEENOIE
Exploiting the continuity properties of , Q, andf, we get
12(") ! 0' (0;x; @), (3.129)

¢(z:0:

where we have used that (0; x;b) = x for everyb2 A. On the other hand, from the

estimate (3.128), it follows that
: . My .
ffr(ziy) —e?*™
Therefore Z,

e =i e tdz= =L )0 (3.130)

Collecting (3.130) and (3.129), we conclude that
BT ( M1 ) Oxa): (3.131)
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Recalling the de nitions of ' and F given respectively in (3.127) and [(3.12), we see
that

" (0:x;8) .
h |
= (P (T1 > 0) TER LirsggF (O M)
|

EX? F(0;x;a; % 1)

7 Z
. T XK Th 1
— pxa e 'f( (txa)a)dt+ e 'f((t Ton 1En 1;An 1);An 1)dt
0
h i
gxa F( l;k) :

n=2 Th 2

and this concludes the proof.






Chapter 4

BSDEs driven by a
general random
measure, possibly non
guasi-left-continuous

4.1. Introduction

Backward stochastic di erential equations have been deeply studied since the
seminal paper Pardoux and Peng98]. In [98], as well as in many subsequent
papers, the driving term was a Brownian motion. BSDEs with a discontinuous
driving term have also been studied, see, among others, Buchdahn and Pardoux
[21], Tang and Li [[12Z8], Bares, Buckdahn and Pardoux [LO], El Karoui and Huang
[50], Xia [[131], Becherer [L2], Carbone, Ferrario and Santacroce(22], Cohen and
Elliott [ [26], Jeanblanc, Mania, Santacroce and SchweizeB0], Confortola, Fuhrman
and Jacod P9].

In all the papers cited above, and more generally in the literature on BSDEs,
the generator (or driver) of the backward stochastic di erential equation, usually
denoted byf , is integrated with respect to a measuredA, whereA is a hondecreasing
continuous (or deterministic and right-continuous as in [26]) process. The general
case, i.e. A is a right-continuous nondecreasing predictable process, is addressed in
this chapter. It is worth mentioning that Section 4.3 in [[29] provides a counter-
example to existence for such general backward stochastic di erential equations.
For this reason, the existence and uniqueness result (Theorefn 4.4.1) is not a trivial
extension of known results. Indeed, in Theorem 4.4]1 we have to impose an additional
technical assumption, which is violated by the counter-example presented irZ9] (see
Remark [4.4.3(ii)). This latter assumption reads as follows: there exists’ 2 (0;1)
such that (notice that A; 1)

2L2) A2 1 % Pas;8t2[0T); (4.1)
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where Ly is the Lipschitz constant of f with respect to y. As mentioned earlier, in
[26] the authors study a class of BSDEs with a generatof integrated with respect to

a deterministic (rather than predictable) right-continuous nondecreasing processA,
even if this class is driven by a countable sequence of square-integrable martingales,
rather than just a random measure. They provide an existence and unigueness result
for this class of BSDEs, see Theorem 6.1 ir2B], where the same condition ) is
imposed (see RemarS(i)). However, the proof of Theorem 6.1 2] relies
heavily on the assumption that A is deterministic, and it can not be extended to the
case whereA is predictable, which therefore requires a completely di erent proof.

The results obtained in this chapter can be particularly useful in the study of
control problems related to piecewise deterministic Markov processes by means of
BSDEs methods, see Remark 4.4]5.

The chapter is organized as follows: in Sectiofi 4]2 we introduce the random
measure and we x the notation. In Section £.3| we provide the de nition of
solution to the backward stochastic di erential equation and we solve it in the case
wheref = f(t;! ) is independent ofy and z (Lemma([4.3.8). Finally, in Section
we prove the main result (Theorem[4.4.1) of this chapter, i.e. the existence and
uniqueness for our backward stochastic di erential equation.

4.2. Preliminaries

Consider a nite time horizon T 2 (0;1 ), a Lusin space E; E), and a ltered
probability space ( ;F;(F¢)t o;P), with ( Ft); o right-continuous. We denote by P
the predictable - eld on [0; T]. In the sequel, given a measurable spaces; G),
we say that a function on the product space [0;T] G is predictable if it is
P Gmeasurable.

Let be an integer-valued ran