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Abstract

In the present document we treat three di�erent topics related to stochastic
optimal control and stochastic calculus, pivoting on the notion of backward stochastic
di�erential equation (BSDE) driven by a random measure.

The three �rst chapters of the thesis deal with optimal control for di�erent classes
of non-di�usive Markov processes, in �nite or in�nite horizon. In each case, the value
function, which is the unique solution to an integro-di�erential Hamilton-Jacobi-
Bellman (HJB) equation, is probabilistically represented as the unique solution of
a suitable BSDE. In the �rst chapter we control a class of semi-Markov processes
on �nite horizon; the second chapter is devoted to the optimal control of pure jump
Markov processes, while in the third chapter we consider the case of controlled piece-
wise deterministic Markov processes (PDMPs) on in�nite horizon. In the second and
third chapters the HJB equations associated to the optimal control problems are fully
nonlinear. Those situations arise when the laws of the controlled processes are not
absolutely continuous with respect to the law of a given, uncontrolled, process. Since
the corresponding HJB equations are fully nonlinear, they cannot be represented by
classical BSDEs. In these cases we have obtained nonlinear Feynman-Kac repre-
sentation formulae by generalizing the control randomization method introduced in
Kharroubi and Pham (2015) for classical di�usions. This approach allows us to re-
late the value function with a BSDE driven by a random measure, whose solution
has a sign constraint on one of its components. Moreover, the value function of the
original non-dominated control problem turns out to coincide with the value function
of an auxiliary dominated control problem, expressed in terms of equivalent changes
of probability measures.

In the fourth chapter we study a backward stochastic di�erential equation on
�nite horizon driven by an integer-valued random measure� on R+ � E , whereE is a
Lusin space, with compensator� (dt dx) = dAt � t (dx). The generator of this equation
satis�es a uniform Lipschitz condition with respect to the unknown processes. In
the literature, well-posedness results for BSDEs in this general setting have only
been established whenA is continuous or deterministic. We provide an existence
and uniqueness theorem for the general case, i.e. whenA is a right-continuous
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nondecreasing predictable process. Those results are relevant, for example, in the
framework of control problems related to PDMPs. Indeed, when� is the jump
measure of a PDMP on a bounded domain, thenA is predictable and discontinuous.

Finally, in the two last chapters of the thesis we deal with stochastic calculus
for general discontinuous processes. In the �fth chapter we systematically develop
stochastic calculus via regularization in the case of jump processes, and we carry
on the investigations of the so-called weak Dirichlet processes in the discontinuous
case. Such a processX is the sum of a local martingale and an adapted process
A such that [N; A ] = 0, for any continuous local martingale N . Given a function
u : [0; T] � R ! R, which is of classC0;1 (or sometimes less), we provide a chain rule
type expansion for u(t; X t ), which constitutes a generalization of Itô's lemma being
valid when u is of classC1;2. This calculus is applied in the sixth chapter to the theory
of BSDEs driven by random measures. In several situations, when the underlying
forward processX is a special semimartingale, or, even more generally, a special
weak Dirichlet process, we identify the solutions (Y; Z; U) of the considered BSDEs
via the processX and the solution u to an associated integro-partial di�erential
equation.

Key words : Backward stochastic di�erential equation (BSDE), stochastic optimal
control, Hamilton-Jacobi-Bellman equation, nonlinear Feynman-Kac formula, con-
strained BSDE, random measures and compensators, pure jump processes, piecewise
deterministic Markov processes, semi-Markov processes, stochastic calculus via reg-
ularization, weak Dirichlet processes.



R�esum�e

Dans le pr�esent document on aborde trois divers th�emes li�es au contrôle et au cal-
cul stochastiques, qui s'appuient sur la notion d'�equation di��erentielle stochastique
r�etrograde (EDSR) dirig�ee par une mesure al�eatoire.

Les trois premiers chapitres de la th�ese traitent des probl�emes de contrôle op-
timal pour di��erentes cat�egories de processus markoviens non-di�usifs, �a horizon
�ni ou in�ni. Dans chaque cas, la fonction valeur, qui est l'unique solution d'une
�equation int�egro-di��erentielle de Hamilton-Jacobi-Bellman (HJB), est repr�esent�ee
comme l'unique solution d'une EDSR appropri�ee. Dans le premier chapitre, nous
contrôlons une classe de processus semi-markoviens �a horizon �ni; le deuxi�eme chapitre
est consacr�e au contrôle optimal de processus markoviens de saut pur, tandis qu'au
troisi�eme chapitre, nous examinons le cas de processus markoviens d�eterministes
par morceaux (PDMPs) �a horizon in�ni. Dans les deuxi�eme et troisi�eme chapitres
les �equations d'HJB associ�ees au contrôle optimal sont compl�etement non-lin�eaires.
Cette situation survient lorsque les lois des processus contrôl�es ne sont pas absol-
ument continues par rapport �a la loi d'un processus donn�e. �Etant les �equations
d'HJB correspondantes compl�etement non-lin�eaires, ces �equations ne peuvent pas
être repr�esent�ees par des EDSRs classiques. Dans ces cadre, nous avons obtenu
des formules de Feynman-Kac non lin�eaires en g�en�eralisant la m�ethode de la ran-
domisation du contrôle introduite par Kharroubi et Pham (2015) pour les di�usions
classiques. Ces techniques nous permettent de relier la fonction valeur du probl�eme
de contrôle �a une EDSR dirig�ee par une mesure al�eatoire, dont une composante de la
solution subit une contrainte de signe. En plus, on d�emontre que la fonction valeur
du probl�eme de contrôle originel non domin�e co•�ncide avec la fonction valeur d'un
probl�eme de contrôle domin�e auxiliaire, exprim�e en termes de changements mesures
�equivalentes de probabilit�e.

Dans le quatri�eme chapitre, nous �etudions une �equation di��erentielle stochas-
tique r�etrograde �a horizon �ni, dirig�ee par une mesure al�eatoire �a valeurs enti�eres �
sur R+ � E , o�u E est un espace lusinien, avec compensateur de la forme� (dt dx) =
dAt � t (dx). Le g�en�erateur de cette �equation satisfait une condition de Lipschitz uni-
forme par rapport aux inconnues. Dans la litt�erature, l'existence et unicit�e pour des
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EDSRs dans ce cadre ont �et�e �etablis seulement lorsqueA est continu ou d�eterministe.
Nous fournissons un th�eor�eme d'existence et d'unicit�e même lorsqueA est un proces-
sus pr�evisible, non d�ecroissant, continu �a droite. Ce r�esultat s'applique, par exemple,
au cas du contrôle li�e aux PDMPs. En e�et, quand � est la mesure de saut d'un
PDMP sur un domaine born�e, A est pr�evisible et discontinu.

En�n, dans les deux derniers chapitres de la th�ese nous traitons le calcul stochas-
tique pour des processus discontinus g�en�eraux. Dans le cinqui�eme chapitre, nous
d�eveloppons le calcul stochastique via r�egularisations des processus �a sauts qui
ne sont pas n�ecessairement des semimartingales. En particulier nous poursuivons
l'�etude des processus d�enomm�es de Dirichlet faibles, dans le cadre discontinu. Un
tel processusX est la somme d'une martingale locale et d'un processus adapt�eA
tel que [N; A ] = 0, pour toute martingale locale continue N . Pour une fonction
u : [0; T] � R ! R de classeC0;1 (ou parfois moins), on exprime un d�eveloppement
de u(t; X t ), dans l'esprit d'une g�en�eralisation du lemme d'Itô, lequel vaut lorsque u
est de classeC1;2. Le calcul est appliqu�e dans le sixi�eme chapitre �a la th�eorie des
EDSRs dirig�ees par des mesures al�eatoires. Dans de nombreuses situations, lorsque
le processus sous-jacentX est une semimartingale sp�eciale, ou plus g�en�eralement,
un processus de Dirichlet sp�ecial faible, nous identi�ons les solutions des EDSRs
consid�er�ees via le processusX et la solution u d'une �equation aux d�eriv�ees partielles
int�egro-di��erentielle associ�ee.

Mots cl�es : �Equations di��erentielles stochastiques r�etrogrades (EDSR), contrôle op-
timal stochastique, �equations d'Hamilton-Jacobi-Bellman, formule de Feynman-Kac
non lin�eaire, EDSR avec contraintes, mesures al�eatoires et compensateurs, proces-
sus de saut pur, processus markoviens d�eterministes par morceaux, processus semi-
markoviens, calcul stochastique via r�egularization, processus de Dirichlet faibles.



Acknowledgments

I would like to take this opportunity to express my sincere gratitude to my ad-
visors Prof. Marco Fuhrman and Prof. Francesco Russo, for devoting much of their
time to the development of the present Ph.D. thesis, for the many suggestions, as
well as for their continuous support and attention. They gave me the possibility
to appreciate di�erent areas of research in stochastic analysis, always leading me
towards those subjects which turned out to be the best �tted for my research inter-
ests. I also wish to thank Dott. Fulvia Confortola for her help and for her precious
advices.

I would thank Prof. Huyên Pham for giving me the possibility to work on a
cutting-edge topic of stochastic analysis, which results in the article [6] and in the
work in preparation [5], whose formulations unfortunately were premature to be part
of this doctoral dissertation. I wish also to thank Prof. Jean Jacod for his kindness
and willingness; it has been an incredible honour for me to have the possibility to
discuss stochastic analysis with him.

I am very grateful to my three referees Prof. Giulia Di Nunno, Prof. Sa•�d
Hamad�ene and Prof. Agn�es Sulem. I thank them for agreeing to make the reports
on the thesis and for their interest in my work. I would also thank Prof. Fausto
Gozzi and Prof. Gianmario Tessitore for agreeing to partecipate to the jury of my
thesis.

Finally, I would like to thank all the people who made the completion of the
present Ph.D. thesis possible.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

R�esum�e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

xI. Feynman-Kac formula for nonlinear HJB equations . . . . . . . . . . . 2

xII. BSDEs driven by general random measures, possibly non quasi-left
continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xIII. Weak Dirichlet processes and BSDEs driven by a random measure . 21

Chapter 1. Optimal control of semi-Markov processes with a BSDE approach 33

x1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

x1.2. Notation, preliminaries and basic assumptions . . . . . . . . . . . . 36

x1.3. Optimal control of semi-Markov processes . . . . . . . . . . . . . . . 42

x1.4. Nonlinear variant of Kolmogorov equation . . . . . . . . . . . . . . 49

Chapter 2. Constrained BSDEs representation of the value function for optimal
control of pure jump Markov processes . . . . . . . . . . . . . 61

x2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

x2.2. Pure jump controlled Markov processes . . . . . . . . . . . . . . . . 66

x2.3. Control randomization and dual optimal control problem . . . . . . 75

x2.4. Constrained BSDE and the dual value function representation . . . 80

x2.5. A BSDE representation for the value function . . . . . . . . . . . . 88

Chapter 3. Optimal control of Piecewise Deterministic Markov Processes and
constrained BSDEs with nonnegative jumps . . . . . . . . . . 97

x3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x3.2. Piecewise Deterministic controlled Markov Processes . . . . . . . . . 102

ix



x

x3.3. Control randomization and dual optimal control problem . . . . . . 108

x3.4. Constrained BSDEs and the dual value function representation . . . 114

x3.5. A BSDE representation for the value function . . . . . . . . . . . . 127

Chapter 4. BSDEs driven by a general random measure, possibly non quasi-
left-continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

x4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

x4.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

x4.3. The backward stochastic di�erential equation . . . . . . . . . . . . . 147

x4.4. Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Chapter 5. Weak Dirichlet processes with jumps . . . . . . . . . . . . . . . 159

x5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

x5.2. Preliminaries and basic notations . . . . . . . . . . . . . . . . . . . 162

x5.3. Calculus via regularization with jumps . . . . . . . . . . . . . . . . 166

x5.4. Additional results on calculus via regularization . . . . . . . . . . . 173
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Introduction

In the present introductory chapter we provide a general overview of the sub-
sequent chapters of the doctoral dissertation. All the main results of the thesis are
here recalled; for the sake of brevity, we will do not set out the technical assumptions
in detail, instead we refer to later chapters for the precise statements. We also give
only general references, while a detailed analysis on the technical aspects will be
developed in the body of the document.

Brief overview and general references on optimal control problems,
BSDEs and discontinuous stochastic processes

In this Ph.D. thesis we deal with stochastic processes and the associated optimal
control problems. We consider stochastic dynamical systems, where a random noise
a�ects the system evolution. Introducing a functional cost which depends on the
state and on the control variable, we are interested in minimizing its expected value
over all possible realizations of the noise process. There exists a large literature on
stochastic control problems of this type; we mention among others the monographs
by Krylov [ 89], Bensoussan [13], Yong and Zhou [132], Fleming and Soner [65],
Pham [107]. In the present work we focus on optimal control problems of stochastic
processes with jumps. An important class of those processes is determined starting
from the so-called marked point processes. Marked point processes are related to
the martingale theory by means of the concept of compensator, which describes the
local dynamics of a marked point process. Martingale methods in the theory of point
processes go back to Watanabe [130], who discovered the martingale characterization
of Poisson processes, but the �rst systematic treatment of a general marked point
process using martingales was given by Br�emaud [18]. The martingale de�nition of
compensator gives the basis to construct a martingale calculus which has the same
power as Itô calculus for di�usions, see Jacod's book [77].

In the past few years, many di�erent methods have been developed to solve
optimal control problems of the type mentioned above. In our work we consider the
approach based on the theory of backward stochastic di�erential equations, BSDEs
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2 Introduction

for short. BSDEs are stochastic di�erential equations with a �nal condition rather
than an initial condition. This subject started with the paper [ 98] by Pardoux
and Peng, where the authors �rst solved general nonlinear BSDEs driven by the
Wiener process. Afterwards, a systematic theory has been developed for di�usive
BSDEs, see for instance El Karoui and Mazliak [52], El Karoui, Peng and Quenez
[53], Pardoux [96], [97]. Many generalizations have also been considered where
the Brownian motion was replaced by more general processes. Backward equations
driven by a Brownian motion and a Poisson random measure have been studied for
instance in Tang and Li [128], Barles, Buckdahn and Pardoux [10], Royer [113],
Kharroubi, Ma, Pham and Zhang [87], �ksendal, Sulem and Zhang [94], in view
of various applications including stochastic maximum principle, partial di�erential
equations of nonlocal type, quasi-variational inequalities and impulse control. There
are instead few results on BSDEs driven by more general random measures, among
which we recall for instance Xia [131], Jeanblanc, Mania, Santacroce and Schweizer
[80], Confortola, Fuhrman and Jacod [29]. In most cases, the authors deal with
BSDEs with jumps with a random compensator which is absolutely continuous with
respect to a deterministic measure, that can be reduced to a Poisson measure by a
Girsanov change of probability, see for instance Becherer [12], Cr�epey and Matoussi
[33], Kazi-Tani, Possamai and Zhou [83], [84].

I. Feynman-Kac formula for nonlinear HJB equations

I.1. State of the art. We �x our attention on BSDEs whose random dependence
is guided by a forward Markov process, typically a solution of a stochastic di�erential
equation. Those equations are commonly called forward BSDEs; since Peng [101]
and Pardoux and Peng [99], it is well-known that forward BSDEs provide a prob-
abilistic representation (nonlinear Feynman-Kac formula) for a class of semilinear
parabolic partial di�erential equations. Let T < 1 be a �nite time horizon and con-
sider the �ltered space (
 ; F; F = ( Ft )t2 [0; T ]; P), whereF is the canonicalP-completed
�ltration associated with a d-dimensional Brownian motion W = ( Wt )t2 [0; T ]. We
supposeF = FT . Let t 2 [0; T] and x 2 Rn ; a forward-backward stochastic di�eren-
tial equation on [t; T ] is a problem of the following type:

(
X s = x +

Rs
t b(r; X r )dr +

Rs
t � (r; X r )dWr

Ys = g(X T ) +
RT

s l (r; X r ; Yr ; Zr )dr �
RT

s Zr dWr ;
(1)

where b: [0; T] � Rn ! Rn , � : [0; T] � Rn ! Rn� d, l : [0; T] � Rn � R � Rd !
R, and g: Rn ! R are Borel measurable functions. Then, it is well-known that,
under suitable assumptions on the coe�cients, the above forward-backward equation
admits a unique solution f (X t;x

s ; Y t;x
s ; Z t;x

s ); t � s � Tg for any (t; x ) 2 [0; T] � Rn .
Moreover, Y t;x

t is deterministic, therefore we can de�ne the function

v(t; x ) := Y t;x
t ; for all ( t; x ) 2 [0; T] � Rn ;



Introduction 3

which turns out to be a viscosity solution to the following partial di�erential equation:
(

@v
@t(t; x ) + L v(t; x ) + l

�
t; x; v (t; x ); � T (t; x )Dxv(t; x )

�
= 0 ; (t; x ) 2 [0; T) � Rn ;

v(T; x) = g(x); x 2 Rn ;

where the operatorL is given by

L v = hb; Dxvi +
1
2

tr
�
� � T D 2

xv
�
: (2)

Let us now consider the following fully nonlinear PDE of Hamilton-Jacobi-Bellman
(HJB) type

@v
@t

+ sup
a2 A

�
hh(x; a); Dxvi +

1
2

tr
�
�� T (x; a)D 2

xv
�

+ f (x; a)
�

= 0 ; (3)

on [0; T) � Rd, together with the terminal condition

v(T; x) = g(x); x 2 Rd;

whereA is a subset ofRq, and h : Rn � A ! Rn , � : Rn � A ! Rn� d, f : Rn � A ! R
are Borel measurable functions. As it is well-known, see for example Pham [107],
the above equation is the dynamic programming equation of a stochastic control
problem whose value function is given by

v(t; x ) := sup
�

E
� Z T

t
f (X t;x;�

s ; � s) + g(X t;x;�
T )

�
; (4)

where X t;x;� is the controlled state process starting at timet 2 [0; T] from x 2 Rd,
which evolves on [t; T ] according to the stochastic equation

X t;x;�
s = x +

Z s

t
h(X t;x;�

r ; � r )dr +
Z s

t
� (X t;x;�

r ; � r ) dWr ; (5)

where � is a predictable control process valued inA. Notice that, if � (x) does not
depend ona 2 A and �� T (x) is of full rank, then the above HJB equation can be
written as

@v
@t

+
1
2

tr
�
�� T (x)D 2

xv
�

+ F (x; � T (x)Dxv) = 0 ; (6)

where F (x; z) = sup a2 A [f (x; a) + h� (x; a); zi ] is the � -Fenchel-Legendre transform of
f and � (x; a) = � T (x)( �� T (x)) � 1h(x; a) is a solution to � (x)� (x; a) = h(x; a). Then,
sinceF depends on� T Dxv, from [99] we know that the semilinear PDE (6) admits a
nonlinear Feynman-Kac formula through a Markovian forward-backward stochastic
di�erential equation.

Starting from Peng [103], the BSDEs approach to the optimal control problem
has been deeply investigated in the di�usive case; we mention for instance [107],
Ma and Yong [93], [132], and [53]. However, all those results require that only
the drift coe�cient of the stochastic equation depends on the control parameter and
that �� T (x) is of full rank, so that the HJB equation is a second-order semilinear
partial di�erential equation and the nonlinear Feyman-Kac formula is obtained as
we explained above. The general case with possibly degenerate controlled di�usion
coe�cient � (x; a), associated to a fully nonlinear HJB equation, has only recently
been completely solved by Kharroubi and Pham [88]. We also mention that a �rst
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step in this direction was made by Soner, Touzi, and Zhang [124], where however the
theory of second-order BSDEs (2BSDEs) was used rather than the standard theory
of backward stochastic di�erential equations. 2BSDEs are backward stochastic dif-
ferential equations formulated under a non-dominated family of singular probability
measures, so that their theory relies on tools from quasi-sure analysis. On the other
hand, according to [88], it is enough to consider a backward stochastic di�erential
equation with jumps, where the jumps are constrained to be nonpositive, formulated
under a single probability measure, as in the standard theory of BSDEs.

Let us describe informally the approach presented in [88], which we will call
control randomization method; for greater generality and precise statements we refer
to the original paper of Kharroubi and Pham. In [88] the forward-backward system
associated to the HJB equation (3) is constructed as follows: the forward equation,
starting at time t 2 [0; T] from (x; a) 2 Rd � A, evolves on [t; T ] according to the
system of equations

X t;x;a
s = x +

Z s

t
h(X t;x;a

r ; I t;a
r ) dr +

Z s

t
� (X t;x;a

r ; I t;a
r ) dWr ;

I t;a
s = a +

Z s

t

Z

A
(b� I t;a

r � ) � (dr db):

Its form is deduced from the controlled state dynamics (5) randomizing the state
processX t;x;� , i.e., introducing, in place of the control � , a pure-jump (uncontrolled)
processI , driven by a Poisson random measure� on R+ � A independent of W ,
with intensity measure � (db)dt, where � is a �nite measure on (A; B(A)), with full
topological support. W and � are de�ned on a �ltered probability space (
 ; F; F; P),
whereF is the completion of the natural �ltration generated by W and � themselves.
Regarding the backward equation, as expected, it is driven by the Brownian motion
W and the Poisson random measure� , namely it is a BSDE with jumps with terminal
condition g(X t;x;a

T ) and generator f (X t;x;a
� ; I t;a

� ), as it is natural from the expression
of the HJB equation. The backward equation is also characterized by a constraint on
the jump component, which turns out to be a crucial aspect of the theory introduced
in [88], and requires the presence of an increasing processK in the BSDE. This latter
process is reminiscent of the one arising in the reected BSDE theory, see El Karoui
et al. [51], where howeverK has to ful�ll the Skorohod condition, namely is only
active to prevent Y from passing below the obstacle. In conclusion, the backward
stochastic di�erential equation has the following form:

Y t;x;a
s = g(X t;x;a

T ) +
Z T

s
f (X t;x;a

r ; I t;a
r ) dr + K t;x;a

T � K t;x;a
s

�
Z T

s
Z t;x;a

r dWr �
Z T

s

Z

A
L t;x;a

r (b) � (dr db); t � s � T; a:s: (7)

together with the jump constraint

L t;x;a
s (b) � 0; dP 
 ds 
 � (db) a:e: (8)

Notice that the presence of the increasing processK in the backward equation does
not guarantee the uniqueness of the solution. For this reason, as in the theory of
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reected BSDEs, in [88] the authors look only for the minimal solution ( Y; Z; L; K )
to the above BSDE, in the sense that for any other solution (�Y ; �Z; �L; �K ) we must
have Y � �Y . The existence of the minimal solution is based on a penalization
approach and on the monotonic limit theorem of Peng [104].

The nonlinear Feynman-Kac formula becomes

v(t; x; a ) := Y t;x;a
t ; (t; x; a ) 2 [0; T] � Rd � A:

Observe that the value function v should not depend ona, but only on ( t; x ). The
function v turns out to be independent of the variable a, as a consequence of the
A-nonpositive jump constraint. Indeed, the constraint (8) implies that

E
� Z t+ h

t

Z

A
[v(s; X t;x;a

s ; b) � v(s; X t;x;a
s ; I t;a

s� )]+ � (db) ds
�

= 0

for any h > 0. If v is continuous, by sendingh to zero in the above equality divided
by h (and by dominated convergence theorem), we can obtain from the mean-value
theorem that Z

A
[v(s; x; b) � v(s; x; a)]+ � (db) = 0 ;

from which we see that v does not depend ona. However, it is not clear a priori
that the function v is continuous, therefore, in [88], the rigorous proof relies on �ne
viscosity solutions arguments and on mild conditions on� and A, as the assumptions
that the interior set of A is connected and thatA is the closure of its interior. In the
end, in [88] it is proved that the function v does not depend on the variablea in the
interior of A and that the viscosity solution to equation (3) admits the probabilistic
representation formula

v(t; x ) := Y t;x;a
t ; (t; x ) 2 [0; T] � Rd

for any a in the interior of A.

In [88] another probabilistic representation is also provided, called dual repre-
sentation, for the solution v to (3). More precisely, let V be the set of predictable
processes� : 
 � [0; T] � A ! (0; 1 ) which are essentially bounded, and consider the
probability measure P� equivalent to P on (
 ; FT ) with Radon-Nikodym density:

dP�

dP

�
�
�
�
Ft

= L �
t := Et

� Z :

0

Z

A
(� s(b) � 1)~� (ds db)

�
;

where Et (�) is the Dol�eans-Dade exponential, and ~� (ds db) is the compensated ran-
dom measure� (ds db) � � (db) ds. Notice that W remains a Brownian motion under
P� , and the e�ect of the probability measure P� , by Girsanov's Theorem, is to change
the compensator� (db) ds of � under P to � s(b) � (db) ds under P� . The dual repre-
sentation reads:

v(t; x ) = Y t;x;a
t = sup

� 2 V
E�

�
g(X t;x;a

T ) +
Z T

t
f (X t;x;a

s ; I t;a
s )ds

�
; (9)

where E� denotes the expectation with respect toP� .

The control randomization method has been applied to many cases in the frame-
work of optimal switching and impulse control problems, see Elie and Kharroubi
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[54], [55], [56], Kharroubi, Ma, Pham and Zhang [87], and developed with exten-
sions and applications, see Cosso and Chokroun [25], Cosso, Fuhrman and Pham
[31], and Fuhrman and Pham [67]. In all the above mentioned cases the controlled
processes are di�usions constructed as solutions to stochastic di�erential equations
of Itô type.

Di�erently to the di�usive framework, the BSDE approach to optimal control
of non-di�usive processes is not very traditional. Indeed, there exists a large liter-
ature on optimal control of marked point processes (see Br�emaud [18], Elliott [ 57]
as general references), but there are relatively few results on their connections with
BSDEs. This gap has been partially �lled by Confortola and Fuhrman [28] in the
case of optimal control for pure jump processes, where a probabilistic representation
for the value function is provided by means of a BSDE driven by a suitable ran-
dom measure. In [28] conditions are imposed to guarantee that the set of controlled
probability laws is absolutely continuous with respect to the law of a given, uncon-
trolled, process. This gives a natural extension to the non-di�usive framework of the
well-known di�usive case where only the drift coe�cient of the stochastic equation
depends on the control parameter.

In Chapter 1 we extend the approach of [28] to the optimal control problem
of semi-Markov processes. For a semi-Markov processX , the Markovian structure
can be recovered by considering the pair of processes (X; � ), where � s denotes the
duration period in the state X s up to moment s. However, the pair (X; � ) is not
pure jump. This prevents to apply in this context the results of [28], and requires
an ad hoc treatment.

We are also interested in the more general case when the laws of the controlled
processes form a non-dominated model, and consequently the HJB equation is fully
nonlinear. Indeed, non-di�usive control problems of this type are very frequent
in applications, even when the state space is �nite. In Chapter 2 we provide a
Feynman-Kac representation formula for the value function of an optimal control
problem for pure jump Markov processes, in a general non-dominated framework.
Chapter 3 is then devoted to generalize previous results to the case of a control
problem for piecewise deterministic Markov processes. This latter class of processes
includes in particular the family of semi-Markov processes. The results in Chapters
2 and 3 are achieved adapting the control randomization method developed in [88]
for classical di�usions.

In the next paragraphs we describe the contents of Chapters 1, 2, 3.

I.2. Optimal control of semi-Markov processes. In Chapter 1 we study
optimal control problems for a class of semi-Markov processes, and we provide a
Feynman-Kac representation formula for the value function by means of a suitable
class of BSDEs.

A semi-Markov process on a general state spaceE can be seen as a two dimen-
sional, time-homogeneous, process (X s; � s)s� 0, strongly Markovian with respect to
its natural �ltration F. The pair (X s; � s)s� 0 is associated to a family of probability
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measuresPx;# for x 2 E, # 2 [0; 1 ), such that Px;# (X 0 = x; � 0 = #) = 1. The
process (X; � ) is constructed starting from a jump rate function � (x; #) and a jump
measureA 7! Q(x; #; A ) on E, depending onx 2 E and # � 0. If the process starts
from (x; #) at time t = 0, then the distribution of its �rst jump time T1 under Px;#

is

Px;# (T1 > s ) = exp
�

�
Z #+ s

#
� (x; r ) dr

�
; (10)

and the conditional probability that X is in A immediately after a jump at time
T1 = s is

Px;# (X T1 2 A j T1 = s) = Q(x; s; A):

The component � , called the age process, is de�ned as

� s =
�

� 0 + s if X p = X s 8 0 6 p 6 s; p; s 2 R;
s � supf p : 0 6 p 6 s; X p 6= X sg otherwise.

We notice that the component X alone is not a Markov process. The existence
of a semi-Markov process of the type above is a well known fact, see for instance
Stone [125]. Our main restriction is that the jump rate function � is uniformly
bounded, which implies that the processX is non explosive. Denoting byTn the
jump times of X , we consider the marked point process (Tn ; X Tn ) with the associated
integer-valued random measurep(dt dy) =

P
n� 1 � (Tn ;X Tn ) on (0; 1 ) � E , where �

indicates the Dirac measure. The compensator ~p of p has the form ~p(ds dy) =
� (X s� ; � s� ) Q(X s� ; � s� ; dy) ds:

We focus on optimal intensity-control problem for the semi-Markov process in-
troduced above. This is formulated in a classical way by means of a change of
probability measure, see e.g. El Karoui [49], Elliott [ 57], Br�emaud [ 18]. In our
formulation we admit control actions that can depend not only on the state process
X but also on the length of time � the process has remained in that state. This
approach can be found for instance in Chitopekar [24] and in [125]. The class of
admissible control processes, denoted byA, contains all the predictable processes
(us)s2 [0; T ] with values in U. For every �xed t 2 [0; T] and (x; #) 2 E � [0; 1 ), we
de�ne the value function of the optimal control problem as

V(t; x; # ) = inf
u(�)2 A

Ex;#
u;t

� Z T � t

0
l (t + s; X s; � s; us) ds + g(X T � t ; � T � t )

�
;

where g; l are given real functions. HereEx;#
u;t denotes the expectation with respect

to another probability Px;#
u;t , depending ont and on the control processu, and con-

structed in such a way that the compensator underPx;a
u;t is r (t + s; X s� ; � s� ; y; us)

� (X s� ; � s� ) Q(X s� ; � s� ; dy) ds, where r is some given measurable function.

Our approach to this control problem consists in introducing a family of BSDEs
parametrized by (t; x; # ) 2 [0; T] � E � [0; 1 ), on [0; T � t]:

Y x;#
s;t +

Z T � t

s

Z

E
Z x;#

�;t (y) q(d� dy ) = g(X T � t ; � T � t )+
Z T � t

s
f

�
t+ �; X � ; � � ; Z x;#

�;t (�)
�

d�;

(11)
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where q(ds dy) denotes the compensated random measurep(ds dy) � ~p(ds dy). The
generator of (11) is the Hamiltonian function:

f (s; x; #; z(�)) = inf
u2 U

n
l(s; x; #; u) +

Z

E
z(y)( r (s; x; #; y; u) � 1) � (x; #) Q(x; #; dy)

o
:

(12)

Under appropriate assumptions, the previous optimal control problem has a so-
lution, and the corresponding value function and optimal control can be represented
by means of the solution to the BSDE (11). In order to prove the existence of an
optimal control we need to require that the in�mum in the de�nition of f is achieved.
We de�ne the (possibly empty) sets

�( s; x; #; z(�)) =
n

u 2 U : f (s; x; #; z(�)) = l(s; x; #; u)

+
Z

E
z(y)( r (s; x; #; y; u) � 1) � (x; #) Q(x; #; dy)

o
(13)

and we assume that the following condition holds.

Hypothesis 1. The sets � in (13) are non empty; moreover, for every �xed t 2 [0; T]
and (x; #) 2 S, one can �nd a predictable processu� t;x;# (�) with values in U satisfying

u� t;x;#
s 2 �( t + s; X s� ; � s� ; Z x;#

s;t (�)) ; Px;# -a.s: 8s 2 [0; T � t]: (14)

Theorem 2. Assume that Hypothesis 1 holds. Then, under suitable measurability
and integrability conditions on r , l and g, u� t;x;# (�) is an optimal control for the
control problem starting from (x; #) at time zero with time horizon T � t. Moreover,
Y x;#

0;t coincides with the value function, i.e.

Y x;#
0;t = J (t; x; #; u � t;x;# (�)) :

At this point we solve a nonlinear variant of the Kolmogorov equation for the
process (X; � ) by means of the BSDEs approach. The integro-di�erential in�nitesi-
mal generator associated to the process (X; � ) (which is time-homogeneous, Markov,
but not pure jump) has the form

~L  (x; #) := @#  (x; #)+
Z

K
[ (y; 0)�  (x; #)] � (x; #) Q(x; #; dy); (x; #) 2 E � [0; 1 ):

The di�erential term @� does not allow to study the associated nonlinear Kolmogorov
equation proceeding as in the pure jump Markov processes framework considered in
[28]. On the other hand, the two dimensional Markov process (X s; � s)s> 0 belongs
to the larger class of piecewise deterministic Markov processes (PDMPs) introduced
by Davis in [35], and studied in the optimal control framework by several authors,
see Section I.4 below and references therein. Taking into account the speci�c struc-
ture of the semi-Markov processes, we present a reformulation of the Kolmogorov
equation which allows us to consider solutions in a classical sense. Indeed, since the
second component of the process (X s; � s)s> 0 is linear in s, we introduce the formal
directional derivative operator

(Dv)( t; x; # ) := lim
h#0

v(t + h; x; # + h) � v(t; x; # )
h

;
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and we consider the following nonlinear Kolmogorov equation
8
<

:

Dv(t; x; # ) + L v(t; x; # ) + f (t; x; #; v (t; x; # ); v(t; �; 0) � v(t; x; # )) = 0 ;
t 2 [0; T]; x 2 E; # 2 [0; 1 );

v(T; x; #) = g(x; #);
(15)

where

L  (x; #) :=
Z

E
[ (y; 0) �  (x; #)] � (x; #) Q(x; #; dy); (x; #) 2 E � [0; 1 ):

We look for a solution v such that the map t 7! v(t; x; t + c) is absolutely continuous
on [0; T], for all constants c 2 [� T; + 1 ). While it is easy to prove well-posedness of
(15) under boundedness assumptions onf and g, we show that there exists a unique
solution under much weaker conditions related to the distribution of the process
(X; � ). This is achieved by de�ning a formula of Itô type, involving the directional
derivative operator D , for the composition of the process (X s; � s)s> 0 with functions
v smooth enough. In conclusion we have the following result.

Theorem 3. Under suitable measurability and integrability conditions onf and g,
the nonlinear Kolmogorov equation (15) has a unique solutionv(t; x; # ). Moreover,
for every �xed t 2 [0; T], for every (x; #) 2 E � [0; 1 ) and s 2 [0; T � t],

Y x;#
s;t = v(t + s; X s� ; � s� ); (16)

Z x;#
s;t (y) = v(t + s; y;0) � v(t + s; X s� ; � s� ); (17)

so that in particular v(t; x; # ) = Y x;#
0;t .

At this point, we go back to the original control problem and we observe that
the associated Hamilton-Jacobi-Bellman equation has the form (15) withf given by
the Hamiltonian function (12). Then, taking into account Theorems 2 and 3, we are
able to identify the HJB solution v(t; x; # ), constructed probabilistically via BSDEs,
with the value function.

Corollary 4. Assume that Hypothesis 1 holds. Then, under suitable measurability
and integrability conditions on r , l and g, the value function coincides withv(t; x; # ),
i.e.

J (t; x; #; u � t;x;# (�)) = v(t; x; # ) = Y x;#
0;t :

I.3. Optimal control of pure jump processes. In Chapter 2 we study a clas-
sical �nite-horizon optimal control problem for continuous-time pure jump Markov
processes. For the value function of this problem, we prove a nonlinear Feynman-Kac
formula by extending in a suitable way the control randomization method in [88].

We consider controlled pure jump Markov processes taking values in a Lusin
space (E; E). They are obtained starting from a rate measure� (x; a; B ) de�ned for
x 2 E, a 2 A, B 2 E, where A is a space of control actions equipped with its� -
algebraA. These Markov processes are controlled by choosing a feedback control law,
namely a measurable function� : [0; 1 ) � E ! A, such that � (t; x ) 2 A is the control
action selected at timet if the system is in statex. The controlled Markov processX
is then simply the one corresponding to the rate transition measure� (x; � (t; x ); B ).
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We denote byPt;x
� the corresponding law, wheret; x are the initial time and starting

point. For convenience, we base this \weak construction" on the well-posedness of
the martingale problem for multivariate (marked) point processes studied in Jacod
[75]. Indeed, on a canonical space 
, we de�ne anE-valued random variableE0 and
a marked point process (Tn ; En )n� 1 with values in E � (0; 1 ], with corresponding
random measure

p(dt dy) =
X

n� 1

1f Tn < 1g � (Tn ;E n ) (dt dy):

The processX is constructed by setting X t = En for every t 2 [Tn ; Tn+1 ). Moreover,
for all s � 0 we de�ne Fs = Gs _ � (E0), where Gt denotes the� -algebra generated by
the marked point process up to timet > 0. Then, according to Theorem 3.6 in [75],
the law Pt;x

� is the unique probability measure on (
 ; F1 ) such that its restriction
to F0 is the Dirac measure concentrated atx, and the (Ft )t � 0-compensator of the
measurep is the random measure� (X s� ; � (s; X s� ); dy) ds.

The value function of the corresponding control problem with �nite time horizon
T > 0 is de�ned as:

V (t; x ) = sup
�

Et;x
�

� Z T

t
f (s; X s; � (s; X s)) ds + g(X T )

�
; t 2 [0; T]; x 2 E; (18)

where Et;x
� denotes the expectation with respect toPt;x

� , and f; g are given real
functions, de�ned respectively on [0; T] � E � A and on E, and representing the
running cost and the terminal cost. We consider the case when the costsf ad g are
bounded and

sup
(x;a )2 E � A

� (x; a; E ) < 1 : (19)

The optimal control problem is associated to the following �rst-order fully nonlinear
integro-di�erential HJB equation on [0 ; T] � E :

�
� @v

@t(t; x ) = sup a2 A
� R

E (v(t; y) � v(t; x )) � (x; a; dy) + f (t; x; a )
�

;
v(T; x) = g(x):

(20)

Notice that the integral operator in the HJB equation allows for easy notions of
solutions, that avoid the use of the theory of viscosity solutions. Indeed, under
suitable measurability assumptions, a bounded functionv : [0; T] � E ! R is a
solution to (20) if the terminal condition holds, (20) holds almost surely on [0; T],
and t 7! v(t; x ) is absolutely continuous in [0; T].

For the HJB equation (20) we present a classical result on existence and unique-
ness of the solution and the identi�cation property with the value function V . The
compactness of the space of control actionsA, usually needed to ensure the exis-
tence of an optimal control (see Pliska [108]), is not asked here. This is possible by
using a di�erent measurable selection result requiring however lower-semicontinuity
conditions, that may be found for instance in Bertsekas and Shreve [15]. We have
the following result.

Theorem 5. Assume that � has the Feller property and satis�es(19), and that f , g
are bouded and lower-semicontinuous functions. Then there exists a unique solution
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v 2 LSCb([0; T] � E ) to the HJB equation, and it coincides with the value function
V .

At this point, in order to relate the value function V (t; x ) to an appropriate
BSDE, we implement the control randomization method in [88] in the pure jump
framework. Finding the correct formulation required some e�orts; in particular we
could not mimic the works on control randomization in the di�usive framework,
where the controlled process is de�ned as the solution to a stochastic di�erential
equation.

In a �rst step, for any initial time t � 0 and starting point x 2 E, we replace
(X s; � (s; X s)) by an (uncontrolled) Markovian pair of pure jump stochastic processes
(X s; I s), in such a way that the processI is a Poisson process with values in the space
of control actions A, with an intensity measure � 0(db) which is arbitrary but �nite
and with full support. The construction of such a pair of pure jump processes relies
on the well-posedness of the martingale problem for marked point processes recalled
before, and is obtained by assigning a rate transition measure onE � A of the form:

� 0(db) � x (dy) + � (x; a; dy) � a(db):

Next we formulate an auxiliary optimal control problem where we control the
intensity of the process I : for any predictable, bounded and positive random �eld
� t (b), by means of a theorem of Girsanov type we construct a probability measure
Pt;x;a

� under which the compensator ofI is the random measure� t (b) � 0(db) dt (under
Pt;x;a

� the law of X also changes) and then we maximize the functional

Et;x;a
�

�
g(X T ) +

Z T

t
f (s; X s; I s) ds

�
;

over all possible choices of the process� . Following the terminology of [88], this
will be called the dual control problem. Its value function, denoted V � (t; x; a ), also
depends a priori on the starting point a 2 A of the processI , and the family f Pt;x;a

� g�

is a dominated model.

At this point, we can introduce a BSDE that represents V � (t; x; a ). It is an
equation on the time interval [t; T ] of the form

Y t;x;a
s = g(X T ) +

Z T

s
f (r; X r ; I r ) dr + K t;x;a

T � K t;x;a
s

�
Z T

s

Z

E � A
Z t;x;a

r (y; b) q(dr dy db) �
Z T

s

Z

A
Z t;x;a

r (X r ; b) � 0(db) dr; (21)

with unknown triple ( Y t;x;a ; Z t;x;a ; K t;x;a ), where q is the compensated random mea-
sure associated to (X; I ), Z is a predictable random �eld and K a predictable in-
creasing c�adl�ag process, where we additionally add the sign constraint

Z t;x;a
s (X s� ; b) 6 0: (22)

Under the previous conditions, this equation has a unique minimal solution (Y; Z; K )
in a certain class of processes, and a dual representation formula holds.
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Theorem 6. For all (t; x; a ) 2 [0; T] � E � A there exists a unique minimal solution
(Y t;x;a ; Z t;x;a ; K t;x;a ) to (21)-(22). Moreover, for all s 2 [t; T ], Y t;x;a

s has the explicit
representation: Pt;x;a -a.s.,

Y t;x;a
s = ess sup

� 2 V
Et;x;a

�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
; s 2 [t; T ]: (23)

In particular, setting s = t, we have the following representation formula for the
value function of the dual control problem:

V � (t; x; a ) = Y t;x;a
t ; (t; x; a ) 2 [0; T] � E � A: (24)

The proof of this result relies on a penalization approach and a monotonic passage
to the limit. More precisely, we introduce the following family of BSDEs with jumps
indexed by n > 1 on [t; T ]:

Y n;t;x;a
s = g(X T ) +

Z T

s
f (r; X r ; I r ) dr + K n;t;x;a

T � K n;t;x;a
s (25)

�
Z T

s

Z

E � A
Z n;t;x;a

r (y; b) q(dr dy db) �
Z T

s

Z

A
Z n;t;x;a

r (X r ; b) � 0(db) dr;

where K n;t;x;a is the nondecreasing process de�ned by

K n;t;x;a
s = n

Z s

t

Z

A
[Z n;t;x;a

r (X r ; b)]+ � 0(db) dr:

Here [u]+ denotes the positive part ofu. The existence and uniqueness of a solution
(Y n;t;x;a ; Z n;t;x;a ) to the BSDE (25) relies on a standard procedure, based on a �xed
point argument and on integral representation results for martingales. Notice that
the use of the �ltration ( F)t � 0 introduced above is essential, since it involves appli-
cation of martingale representation theorems for multivariate point processes (see
e.g. Theorem 5.4 in [75]). The �rst component of this solution turns out to satisfy

Y n;t;x;a
s = ess sup

� 2 Vn
Et;x;a

�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
; (26)

whereVn denotes the subset of controls� bounded byn. Since the setsVn are nested,
we have that (Y n;t;x;a )n increasingly converges toY t;x;a asn goes to in�nity. Together
with uniform estimates on (Z n;t;x;a ; K n;t;x;a )n , this allows a monotonic passage into
the limit and gives the existence of the minimal solution to the constrained BSDE
(21)-(22). Finally, from (26), by control-theoretic considerations we also get the dual
representation formula (23) for the minimal solution Y t;x;a .

At this point, we need to relate the original optimal control problem with the
dual one.

We start by proving that the dual value function does not depend on a. To
this end, denoted vn (t; x; a ) := Y n;t;x;a

t and �v(t; x; a ) := V � (t; x; a ), we consider the
penalized HJB equation in the integral form satis�ed by Y n;t;x;a :

8
<

:

� @t vn (t; x; a ) =
R

E (vn (t; y; a) � vn (t; x; a )) � (x; a; dy)
+ f (t; x; a ) + n

R
A [vn (t; x; b) � vn (t; x; a )]+ � 0(db);

vn (T; x; a) = g(x):
(27)
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Passing to the limit in (27) when n goes to in�nity, taking into account that � v is
right-continuous, we get

Z

A
[�v(t; x; b) � �v(t; x; a )]+ � 0(db) = 0

and by further arguments this �nally allows to conclude that �v(t; x; a ) = �v(t; x ).

Then, going back to the penalized HJB equation (27) and passing to the limit,
we see that �v is a classical supersolution of (20). In particular �v is greater than
the unique solution to the HJB equation. By control-theoretic considerations we
also prove that �v is smaller than the value function V . We conclude that the value
function of the dual optimal control problem coincides with the value function of the
original control problem.

Theorem 7. Let v be the unique solution to the Hamilton-Jacobi-Bellman equation
provided by Theorem 5. Then for every(t; x; a ) 2 [0; T] � E � A, the nonlinear
Feynman-Kac formula holds:

v(t; x ) = V (t; x ) = Y t;x;a
t :

In particular, the value function V of the optimal control problem de�ned in (18)
and the dual value functionV � de�ned in (24) coincide.

I.4. Optimal control of PDMPs. In Chapter 3 we prove that the value function
in an in�nite-horizon optimal control problem for piecewise deterministic Markov
processes (PDMPs) can be represented by means of an appropriate constrained
BSDE. As in Chapter 2, this is obtained by suitably extending the control ran-
domization method in [88]. Compared to the pure jump case, the PDMPs context
is more involved and requires di�erent techniques. In particular, the presence of the
controlled ow in the PDMP's dynamics and the corresponding di�erential operator
in the HJB equation suggest to use the theory of viscosity solutions. In addition,
we consider discounted in�nite-horizon optimal control problems, where the payo�
is a cost to be minimized. Such problems are very traditional for PDMPs, see e.g.
Davis [35], Costa and Dufour [32], Guo and H�ernandez-Lerma [72]; moreover the
�nite-horizon case can be brought back to the in�nite-horizon case by means of a
standard transformation, see Chapter 3 in [35]. The in�nite-horizon character of the
optimal control problems complicates the tractation via the BSDE techniques, since
it leads to deal with BSDEs over an in�nite time horizon as well.

We consider controlled PDMPs on a general measurable state space (E; E). These
processes are obtained starting from a continuous deterministic ow� � (t; x ), ( t; x ) 2
[0; 1 ) � E , depending on the choice of a function� (t) taking values on the space
of control actions (A; A), and from a jump rate � (x; a) and a transition measure
Q(x; a; dy) on E, depending both on (x; a) 2 E � A. We select the control strategy
among the set ofpiecewise open-loop policies, i.e., measurable functions that depend
only on the last jump time and post jump position. This kind of approach is habitual
in the literature, see for instance Almudevar [1], Davis [34], Bauerle and Rieder [11],
Lenhart and Yamada [91], Dempster [40]. Roughly speaking, at each jump timeTn ,
we choose an open loop control� n depending on the initial condition X Tn to be
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used until the next jump time. A control � in this class of admissible control laws,
denoted by Aad, has the explicit form

� t =
1X

n=1

� n (t � Tn ; X Tn ) 1[Tn ; Tn +1 ) (t); (28)

and the controlled processX is

X t = � � n (t � Tn ; X Tn ); t 2 [Tn ; Tn+1 ):

For any x 2 E and � 2 Aad, Px
� indicates the probability measure such that, for every

n � 1, the conditional survivor function of the jump time Tn+1 and the distribution
of the post jump position X Tn +1 on f Tn < 1g are

Px
� (Tn+1 > s j FTn ) = exp

�
�

Z s

Tn

� (� � n (r � Tn ; X Tn ); � n (r � Tn ; X Tn )) dr
�

;

Px
� (X Tn +1 2 B j FTn ; Tn+1 ) = Q(� � n (Tn+1 � Tn ; X Tn ); � n (Tn+1 � Tn ; X Tn ); B ):

The corresponding value function, depending onx 2 E, is de�ned as:

V (x) = inf
� 2 Aad

Ex
�

� Z 1

0
e� � s f (X s; � s) ds

�
(29)

= inf
� 2 Aad

Ex
�

" Z 1

0
e� � s

X

n2 N

f (� � n (s � Tn ; X Tn ); � n (s � Tn ; X Tn )) 1[Tn ;Tn +1 ) (s) ds

#

;

where Ex
� indicates the expectation with respect toPx

� , f is a given real function on
E � A representing the running cost, and� 2 (0; 1 ) is a discounting factor. We
assume that� and f are bounded functions, uniformly continuous, andQ is a Feller
stochastic kernel.

When E is an open subset ofRd, and h(x; a) is a bounded Lipschitz continu-
ous function, � � (t; x ) is de�ned as the unique solution of the ordinary di�erential
equation

_x(t) = h(x(t); � (t)) ; x(0) = x 2 E:

In this case, according to Davis and Farid [36], under the compactness assumption for
the space of control actionsA, the value function V is the unique continuous viscosity
solution on [0; 1 ) � E to the fully-nonlinear, integro-di�erential HJB equation

�v (x) = sup
a2 A

�
h(x; a) � r v(x) + � (x; a)

Z

E
(v(y) � v(x)) Q(x; a; dy)

�
x 2 E: (30)

Our main goal is to represent the value functionV (x) by means of an appropriate
backward stochastic di�erential equation. To this end, we implement the control
randomization method in the PDMPs framework. The �rst step consists in replacing,
for any starting point x 2 E, the state trajectory and the associated control process
(X s; � s) by an uncontrolled PDMP ( X s; I s). The process (X; I ) takes values on
E � A, and is constructed in a canonical way by assigning a new triplet of local
characteristics. The compensator corresponding to (X; I ) is the random measure

~p(ds dy db) = � 0(db) � x (dy) ds + � (x; a) Q(x; a; dy) � a(db) ds:
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In particular, I is a Poisson process with values in the space of control actionsA,
with an arbitrary intensity � 0(db) �nite and with full topological support. For any
�xed starting point ( x; a) in E � A, Px;a denotes the unique solution to the martingale
problem for marked point processes onE � A, corresponding to ~p and (x; a). The
trajectories of the processX are then constructed as above, with the help of the
deterministic ow associated to the vector �eld h.

At this point, we de�ne a dual control problem, where we control the intensity of
the processI . To this end, we consider the class of predictable, bounded and positive
random �elds � t (b), and we construct a probability measure Px;a

� under which the
compensator ofI is the random measure� s(db) � 0(db) ds. The dual control problem
consists then in minimizing over all admissible� the functional

J (x; a; � ) = Ex;a
�

� Z 1

0
e� � s f (X s; I s) ds

�
: (31)

The dual value function V � (x; a) = inf � 2 V J (x; a; � ) can be represented by means of
a BSDE over in�nite horizon , of the form

Y x;a
s = Y x;a

T � �
Z T

s
Y x;a

r dr +
Z T

s
f (X r ; I r ) dr � (K x;a

T � K x;a
s ) (32)

�
Z T

s

Z

A
Z x;a

r (X r ; b) � 0(db) dr �
Z T

s

Z

E � A
Z x;a

r (y; b) q(dr dy db); 0 6 s 6 T < 1 ;

with the sign constraint
Z x;a

s (X s� ; b) > 0: (33)

Under suitable conditions, equation (32)-(33) has a unique maximal (not minimal
since the payo� is a cost to be minimized) solution (Y; Z; K ) in a certain class of
processes, andY admits a dual representation formula.

Theorem 8. For every (x; a) 2 E � A, there exists a unique maximal solution to the
BSDE with partially nonnegative jumps (32)-(33). Moreover, Y x;a has the explicit
representation:

Y x;a
s = ess inf

� 2 V
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
; 8 s > 0: (34)

In particular, setting s = 0 , we have the following dual representation formula:

V � (x; a) = Y x;a
0 ; (x; a) 2 E � A: (35)

The proof of this result relies as usual on a penalization approach and a mono-
tonic passage to the limit. However, since we deal with in�nite-horizon equations, we
need to implement an additional approximating step, where we introduce a family
of penalized BSDEs depending on a �nite horizonT > 0. More precisely, forn � 1,
we consider the following family of penalized BSDEs on [0; 1 ):

Y n;x;a
s = Y n;x;a

T � �
Z T

s
Y n;x;a

r dr +
Z T

s
f (X r ; I r ) dr

� n
Z T

s

Z

A
[Z n;x;a

r (X r ; b)] � � 0(db) dr �
Z T

s

Z

A
Z n;x;a

r (X r ; b) � 0(db) dr
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�
Z T

s

Z

E � A
Z n;x;a

r (y; b) q(dr dy db); 0 6 s 6 T < 1 ; (36)

where [z]� = max( � z;0) denotes the negative part ofz. In order to study the well-
posedness of equation (36), we introduce a second family of penalized BSDEs, also
parametrized by T > 0, and with zero �nal cost:

Y T;n;x;a
s = � �

Z T

s
Y T;n;x;a

r dr +
Z T

s
f (X r ; I r ) dr

� n
Z T

s

Z

A
[Z T;n;x;a

r (X r ; b)] � � 0(db) dr

�
Z T

s

Z

A
Z T;n;x;a

r (X r ; b) � 0(db) dr

�
Z T

s

Z

E � A
Z T;n;x;a

r (y; b) q(dr dy db); 0 6 s 6 T: (37)

The existence of a unique solution (Y T;n ; Z T;n ) to (37) is a well known fact, and relies
as usual on �xed point arguments. We prove that the sequence (Y T )T > 0 converges
Px;a -a.s. to some processY , uniformly on compact subsets ofR+ , and that, for any
S > 0, the sequence (Z n;T j[0; S])T >S converges to some processZ n j[0; S] in a suitable
sense. This allows to pass to the limit in (37), and, the timeS being arbitrary, to
conclude that (Y n ; Z n ) is the unique solution to (36). The processY n satis�es the
dual representation formula:

Y n;x;a
s = ess inf

� 2 Vn
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
; s > 0; (38)

where Vn denotes the subset of controls� bounded by n.

By (38) we see that (Y n )n increasingly converges toY as n goes to in�nity.
Moreover we provide uniform estimates on (Z n j[0; S]; K n j[0; S])n for every S > 0.
Then we monotonically pass into the limit in (36) and we get the existence of the
(unique) maximal solution (Y; Z; K ) to the constrained BSDE (32)-(33), for which
we also prove the dual representation formula (34).

Finally, we show that the maximal solution to (32)-(33) at the initial time also
provides a Feynman-Kac representation of the value function (29) of our original
optimal control problem for PDMPs. To this end we introduce the deterministic
real function on E � A

v(x; a) := Y x;a
0 : (39)

We have the following result.

Theorem 9. The function v in (39) does not depend on the variablea:

v(x; a) = v(x; a0); 8a; a0 2 A;

for all x 2 E . Let us de�ne

v(x) = v(x; a); 8x 2 E;

for any a 2 A. Then v is a viscosity solution to (30).
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Notice that the concept of viscosity solution we use does not require continuity
properties; this is usually called discontinuous viscosity solution.

The fact that the function v in (39) is independent on its last component (which
is a consequence of theA-nonnegative constrained jumps) has a key role in the
derivation of the viscosity solution properties of v, and the proof of this feature
constitutes a relevant task. Di�erently from [ 88] and the related papers in the
di�usive context, this is obtained exclusively by means of control-theoretic techniques
and relies on the identi�cation formula (35). By avoiding the use of viscosity theory
tools, no additional hypothesis is required on the space of controlsA, which can
therefore be very general. The non-dependence ofv on a is a consequence of the
following result.

Proposition 10. Fix x 2 E, a; a0 2 A, and � 2 V. Then, there exists a sequence
(� " )" 2 V such that

lim
" ! 0+

J (x; a0; � " ) = J (x; a; � ): (40)

Indeed identity (40) implies that V � (x; a0) � J (x; a; � ), for every x 2 E, a; a0 2 A.
By the arbitrariness of � it follows that

V � (x; a0) � V � (x; a)

and, exchanging the roles ofa and a0, this allows to conclude that V � (x; a) = v(x; a)
does not depend ona.

Once we get that V � (and therefore v) does not depend ona, we show that it
actually provides a viscosity solution to the HJB equation (30). Di�erently to the
previous literature, we give a direct proof of the viscosity solution property of v,
which avoid to resort to a penalized HJB equation. This is achieved by generalizing
to the setting of the dual control problem the classical proof that allows to derive
the HJB equation from the dynamic programming principle. As a preliminary step,
we need to give an identi�cation result of the following form.

Lemma 11. The function v is such that, for any (x; a) 2 E � A, we have

Y x;a
s = v(X s; I s); s > 0 dPx;a 
 ds -a.e. (41)

Identi�cation (41) is proved by showing an analogous result for Y n , and using
the convergence ofY n to Y provided in Theorem 8. This result follows from the
Markov property of the state process (X; I ), and relies on an iterative construction
of the solution of standard BSDEs inspired by El Karoui, Peng and Quenez [53].

Finally, to conclude that v(x) actually gives the unique solution to the HJB
equation we need to use a comparison theorem for viscosity sub and supersolutions
to the equation (30). Under an additional assumption on � and Q (see condition
(H � Q') ), and the compactness ofA, the above mentioned comparison theorem
insures that v is the unique viscosity solution to (30), which coincides therefore to
the value function V . This yields in particular the nonlinear Feynman-Kac formula
for V , as well as the equality between the value functions of the primal and the dual
control problems.
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Corollary 12. Assume thatA is compact, and that Hypothesis(H � Q') holds. Then
the value function V of the optimal control problem de�ned in (29) admits the non-
linear Feynman-Kac representation formula:

V (x) = Y x;a
0 ; (x; a) 2 E � A:

Moreover, V (x) = V � (x; a):

II. BSDEs driven by general random measures, possibly non
quasi-left continuous

As we have already mentioned, BSDEs with discontinuous driving terms have
been considered by many authors, among which Barles, Buckdahn and Pardoux [10],
El Karoui and Huang [50], Xia [131], Becherer [12], Carbone, Ferrario, Santacroce
[22], Cohen and Elliott [26], Jeanblanc, Mania, Santacroce and Schweizer [80], Con-
fortola, Fuhrman and Jacod [29]. In all the papers cited above, and more generally
in the literature on BSDEs, the generator of the backward stochastic di�erential
equation, usually denoted by f , is integrated with respect to a measuredA, where
A is a nondecreasing continuous (or deterministic and right-continuous as in [26])
process. InChapter 4 we provide an existence and uniqueness result for the general
case, i.e. whenA is a right-continuous nondecreasing predictable process..

More precisely, consider a �nite horizonT > 0, a Lusin space (E; E) and a �ltered
probability space (
 ; F; (Ft )t � 0; P), with ( Ft )t � 0 right continuous. We denote by P
the predictable � -�eld on 
 � [0; T]. In Chapter 4 we study the backward stochastic
di�erential equation

Yt = � +
Z

(t;T ]
f (s; Ys� ; Zs(�)) dAs �

Z

(t;T ]

Z

E
Zs(x) ( � � � )(ds; dx); 0 � t � T; (42)

where� is an integer valued random measure onR+ � E with compensator � (dt; dx) =
dAt � t (dx), with A a right-continuous nondecreasing predictable process such that
A0 = 0, and � is a transition probability from (
 � [0; T]; P) into ( E; E). We suppose,
without loss of generality, that � satis�es � (f tg� dx) � 1 identically, so that � A t � 1.

For such general BSDE the existence and uniqueness results were at disposal
only in particular frameworks, see e.g. [26] for the deterministic case, and counter-
examples were provided in the general case, see Section 4.3 in [29]. For this reason,
the existence and uniqueness result is not a trivial extension of known results, and
we have to impose an additional technical assumption, which is of course violated
by the counter-example presented in [29].

Let us give some de�nitions. For any � � 0, E� denotes the Dol�eans-Dade
exponential of the process�A , namely

E�
t = e� A t

Y

0<s � t

(1 + � � As) e� � � A s : (43)
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By H2
� (0; T) we indicate the set of pairs (Y; Z) such that Y : 
 � [0; T] ! R is an

adapted c�adl�ag process satisfying

kYk2
H2

�;Y (0;T ) := E
� Z

(0;T ]
E�

t jYt � j2 dAt

�
< 1 ; (44)

and Z : 
 � [0; T] � E ! R is a predictable random �eld satisfying

kZ k2
H2

�;Z (0;T ) := E
� Z

(0;T ]
E�

t

Z

E

�
�Z t (x) � Ẑ t

�
�2 � (dt; dx)

+
X

0<t � T

E�
t

�
� Ẑ t

�
�2�

1 � � A t
�
�

< 1 ; (45)

where

Ẑ t =
Z

E
Z t (x) � (f tg � dx); 0 � t � T:

De�nition 13. A solution to equation (42) with data ( �; �; f ) is a pair (Y; Z) 2
H2

� (0; T) satisfying equation (42). We say that equation (42) admits a unique solu-
tion if, given two solutions (Y; Z); (Y 0; Z 0) 2 H2

� (0; T), we have (Y; Z) = ( Y 0; Z 0) in
H2

� (0; T).

Notice that, given a solution (Y; Z) to equation (42) with data ( �; �; f ), the
process (Z t 1[0;T ](t)) t � 0 belongs to the spaceG2(� ) introduced in Jacod's book [77].
In particular, the stochastic integral

R
(t;T ]

R
E Zs(x) ( � � � )(ds; dx) in (42) is well-

de�ned, and the processM t :=
R

(0;t ]

R
E Zs(x)( � � � )(ds; dx), t 2 [0; T], is a square

integrable martingale.

Suitable measurability and integrability conditions are imposed on � and on f ,
and f is also asked to verify a uniform Lipschitz condition of the form:

jf (!; t; y 0; � 0) � f (!; t; y; � )j � L y jy0� yj

+ L z

� Z

E

�
�
�
� �

0(x) � � (x) � � A t (! )
Z

E

�
� 0(z) � � (z)

�
� !;t (dz)

�
�
�
�

2

� !;t (dx)

+ � A t (! )
�
1 � � A t (! )

�
�
�
�
�

Z

E
(� 0(x) � � (x)) � !;t (dx)

�
�
�
�

2� 1=2

; (46)

for someL y ; L z � 0. As usual, in order to prove the well-posedness of the BSDE (42)
we give a preliminary result, where the existence and uniqueness of the equation is
provided where f does not depend on (y; � ).

Lemma 14. Consider a triple (�; �; f ) and suppose thatf = f (!; t ) does not depend
on (y; � ). Then, there exists a unique solution(Y; Z) 2 H2

� (0; T) to equation (42)
with data (�; �; f ). Moreover, the following identity holds:

E
�
E�

t jYt j2
�

+ � E
� Z

(t;T ]
E�

s (1 + � � As) � 1 jYs� j2 dAs

�

+ E
� Z

(t;T ]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds; dx) +

X

t<s � T

E�
s

�
�Ẑs

�
�2�

1 � � As
�
�
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= E
�
E�

T j� j2
�

+ 2 E
� Z

(t;T ]
E�

s Ys� f s dAs

�
� E

� X

t<s � T

E�
s jf sj2 j� Asj2

�
; (47)

for all t 2 [0; T].

The proof of Lemma 14 is based on the martingale representation theorem for
marked point processes given in [75]. In order to prove the existence and uniqueness
results we take into account that M t :=

R
(t; T ]

R
E Zs(y) ( � � � )(ds dy) is a square

integrable martingale if and only if Z 2 G2
loc(� ), and that

hM; M i T =
Z

(0;T ]

Z

E

�
�Z t (x) � Ẑ t

�
�2 � (dt; dx) +

X

0<t � T

�
�Ẑ t

�
�2�

1 � � A t
�
;

see Theorem B.22). Properties of the Dol�eans-Dade exponentialE� are also ex-
ploited, in particular we use that dE�

s = � E�
s� dAs and that E�

s� = E�
s (1+ � � As) � 1.

Identity (47) plays a fundamental role to get our main result, which reads as
follows.

Theorem 15. Suppose that there exists" 2 (0; 1) such that

2L 2
y j� A t j2 � 1 � "; P-a.s.; 8 t 2 [0; T]: (48)

Then there exists a unique solution(Y; Z) 2 H2
� (0; T) to equation (42) with data

(�; �; f ), for every � such that

� � �� t P-a.s.; 8 t 2 [0; T];

where ( �� t )t2 [0; T ] is a strictly positive predictable process depending only on" , � A,
L z and L y .

The proof of Theorem 15 is based on Lemma 14, and is quite technical. Notice
that in [ 26] the same condition (48) is imposed. As mentioned earlier, in that paper
the authors study a class of BSDEs with a generatorf integrated with respect to
a deterministic (rather than predictable) right-continuous nondecreasing processA,
and provide an existence and uniqueness result for this class of BSDEs. However, the
proof in [26] relies heavily on the assumption thatA is deterministic, and can not be
extended to the case whereA is predictable, which therefore requires a completely
di�erent procedure.

II.1. Motivation and future applications. The results in Theorem 15 could
be employed to solve, by means of the BSDEs theory, optimal control problems of
PDMPs on state spaces with boundary. We recall that the BSDEs approach to
optimal control for PDMPs is implemented in Chapter 3 by means of the control
randomization method. However, in that chapter only the case of PDMPs taking
values in open state spaces is considered. Indeed in those cases the compensator
� (ds dy) = dAs � t (dy) of the random measure associated to the PDMP is quasi-
left continuous, and a fairly complete theory was developed in the literature for
BSDEs driven by such random measures. On the contrary, PDMP's jumps at the
boundary of the domain correspond to predictable discontinuities for the processA.
BSDEs driven by random measures of this type belong to the class of equations (42)



Introduction 21

mentioned before, for which, to our knowledge, Theorem 15 constitutes the only
general well-posedness result at disposal in literature.

More precisely, consider a PDMPX on a general state spaceE with boundary
@E. The jump dynamics of X in the interior of the domain is described by the
transition probability measure Q : E � E ! E and the jump rate measure� : E ! R+

introduced in Chapter 3. In addition, a forced jump occurs every time the process
reaches the active boundary � 2 @E(for the precise de�nition of � see page 61 in
[35]). In this case, the process immediately jumps back to the interior of the domain
accordingly to a transition probability measure R : @E� E ! E . The compensator
of the integer-valued random measure associated toX then admits the form

~p(ds dy) = � (X s� ) Q(X s� ; dy) ds + R(X s� ; dy) dp�
s;

where

p�
s =

1X

n=1

1f s� Tn g 1f X Tn � 2 � g

is the process counting the number of jumps ofX from the active boundary � 2 @E.
In particular, the compensator can be rewritten as

~p(ds dy) = dAs � (X s� ; dy);

where � (X s� ; dy) := Q(X s� ; dy) 1f X s� 2 E g + R(X s� ; dy) 1f X s� 2 � g, and

As := � (X s� ) ds + dp�
s

is a predictable and discontinuous process, with jumps �As = 1 f X s� 2 � g.

In this context condition (48) in Theorem 15 reads

L y <
1

p
2

: (49)

This is the only additional condition required in order to have a unique solution to
a BSDE of the form (42) driven by the random measure associated to a PDMP. In
particular, Theorem 15 does not impose any condition onL z, i.e. on the Lipschitz
constant of f with respect to its last argument. This is particularly important in the
study of control problems related to PDMPs by means of BSDEs methods: in this
case indeedL y = 0 and condition (49) is automatically satis�ed. This fact opens to
the possibility of extending the control randomization method developed in Chapter
3 also in the case of optimal control of PDMPs with bounded domain. This will be
the subject of a future work.

III. Weak Dirichlet processes and BSDEs driven by a random
measure

III.1. State of the art. Stochastic calculus via regularization was essentially known
in the case of continuous integratorsX , see e.g. Russo and Vallois [116], [117]. A
survey on basic elements of the calculus, can be found in Russo and Vallois [121];
it applies mainly in the case whenX is not a semimartigale. In the framework of
calculus via regularizations, a complete theory has been developed. In particular
stochastic di�erential equations were studied, Itô formulae for processes with �nite
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quadratic (and more general) variations were provided. In Flandoli and Russo [63]
were given Itô-Wentzell type formulae, and generalizations to the case of Banach
space type integrators are considered for instance in Di Girolami and Russo [44].
The notion of covariation [X; Y ] (resp. quadratic variation [X; X ]) for two processes
X; Y (resp. a processX ) has been introduced in the framework of regularizations
(see Russo and Vallois [119]) and of discretization as well (see F•ollmer [66]). For
instance, if X is a �nite quadratic variation continuous process, an Itô formula has
been proved for the expansion ofF (X t ), when F 2 C2, see [119]. When F is of class
C1 and X a reversible semimartingale, an Itô expansion was established in Russo
and Vallois [120]. An important notion in calculus via regularizations is the one of
Dirichlet process (with respect to a given �ltration ( Ft )). The notion of Dirichlet
process is a generalization of the concept of semimartingale, and was introduced by
[66] and Bertoin [14] in the discretization framework. The analogue of the Doob-
Meyer decomposition for a Dirichlet process is that it is the sum of a local martingale
M and an adapted processA with zero quadratic variation. Here A is the general-
ization of a bounded variation process. The concept of (Ft )-weak Dirichlet process
(or simply weak Dirichlet process) was later introduced in Errami and Russo [58]
and Gozzi and Russo [71] and applications to stochastic control were considered in
Gozzi and Russo [70]. Such a process is de�ned as the sum of a local martingaleM
and an adapted (Ft )-orthogonal processA, in the sense that [A; N ] = 0 for every
continuous local martingaleN . An (Ft )-weak Dirichlet process constitutes a natural
generalization of the notion of the one of (Ft )-Dirichlet process. An useful chain rule
was established forF (t; X t ) when F belongs to classC0;1 and X is a weak Dirichlet
process (with �nite quadratic variation), see [71]. Such a process is indeed again a
weak Dirichlet process (with possibly no �nite quadratic variation).

As far as calculus via regularizations whenX is a c�adl�ag integrator process only a
few steps were done: we refer in particular to [119], Russo and Vallois [118], and the
book of Di Nunno, �ksendal and Proske [45], see Chapter 15 and references therein.
For instance no Itô type formulae have been established and in the discretization
framework only few chain rule results are available forF (X ), when F (X ) is not a
semimartingale. In that direction two peculiar results are available: the expansion
of F (X t ) when X is a reversible semimartingale andF is of classC1 with some
H•older conditions on the derivatives (see Errami, Russo and Vallois [59]) and a
chain rule for F (X t ) when X is a weak Dirichlet (c�adl�ag) process and F is of class
C1, see Coquet, Jakubowsky, M�emin and Slomi�nsky [30]. The work in [59] has
been continued by several authors, see e.g. Eisenbaum [47] and references therein,
expanding the remainder making use of local time type processes.

In fact, the notion of ( Ft )-Dirichlet process does not �t to the framework of cal-
culus with respect to jump processes. Indeed, requiring a processA to be of zero
quadratic variation imposes that A is continuous. On the other hand, a bounded
variation process with jumps has a non zero �nite quadratic variation, so the general-
ization of the semimartingale is not necessarily represented by the notion of Dirichlet
process. The property of weak Dirichlet process turns out to be a correct general-
ization of the one of semimartingale in the discontinuous framework. This concept
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was extended to the case of jumps processes in the signi�cant work [30], by using
the discretizations techniques.

III.2. Stochastic calculus via regularization and weak Dirichlet processes
with jumps. In Chapter 5 we extend, in a systematic way, stochastic calculus via
regularizations to the case of jump processes, and we carry on the investigations of
the so called weak Dirichlet processes in the discontinuous case.

The �rst basic objective consists in developing a calculus via regularization in
the case of �nite quadratic variation c�adl�ag processes. To this end, we revisit the
de�nitions given by [ 119] concerning forward integrals (resp. covariations). LetX
and Y be two c�adl�ag processes. The stochastic integral

R�
0 Ys d� X s and the covari-

ation [Y; X ] are de�ned as the uniform convergence in probability (u.c.p.) limit of
the expressions

I � ucp("; t; Y; dX ) =
Z

(0; t ]
Y(s)

X ((s + ") ^ t) � X (s)
"

ds; (50)

[Y; X ]ucp
" (t) =

Z

(0; t ]

(Y ((s + ") ^ t) � Y (s))( X ((s + ") ^ t) � X (s))
"

ds: (51)

That convergence ensures that the limiting objects are c�adl�ag, since the approxi-
mating expressions have the same property. For instance a c�adl�ag processX will be
called �nite quadratic variation process whenever the limit (which will be denoted
by [X; X ]) of

[X; X ]ucp
" (t) :=

Z

(0; t ]

(X ((s + ") ^ t) � X (s))2

"
ds (52)

exists u.c.p. In [119], the authors introduced a slightly di�erent approximation of
[X; X ] when X is continuous, namely

C" (X; X )( t) :=
Z

(0; t ]

(X ((s + ") � X (s))2

"
ds: (53)

When the u.c.p. limit of C" (X; X ) exists, it is automatically a continuous process,
since the approximating processes are continuous. For this reason, whenX is a jump
process, the choice of approximation (53) would not be suitable, since its quadratic
variation is expected to be a jump process. In that case, the u.c.p. convergence of
(52) can be shown to be equivalent with a notion of convergence which is associated
with the a.s. convergence (up to subsequences) in measure ofC" (X; X )( t) dt. Both
formulations will be used in the development of the calculus.

For a c�adl�ag �nite quadratic variation process X , we establish, via regularization
techniques, an Itô formula for C1;2 functions of X of the following form.

Proposition 16. Let X be a �nite quadratic variation c�adl�ag process and F : [0; T]�
R ! R a function of class C1;2. Then

F (t; X t ) = F (0; X 0) +
Z t

0
@sF (s; X s) ds +

Z t

0
@xF (s; X s) d� X s



24 Introduction

+
1
2

Z t

0
@2

xx F (s; X s� ) d[X; X ]cs

+
X

s� t

[F (s; X s) � F (s; X s� ) � @xF (s; X s� ) � X s]: (54)

From Proposition 16 will easily follow an Itô formula under weaker regularity
conditions on F . Notice that a similar formula was stated in [59], using a discretiza-
tion de�nition of the covariation, when F is time-homogeneous.

Proposition 17. Let F : [0; T] � R ! R be a function of classC1 such that @xF is
H•older continuous with respect to the second variable for some� 2 [0; 1). Let (X t )
be a reversible semimartingale, satisfying

X

0<s � t

j� X sj1+ � < 1 a.s.

Then

F (t; X t ) = F (0; X 0) +
Z t

0
@sF (s; X s) ds +

Z t

0
@xF (s; X s� ) dX s +

1
2

[@xF (�; X ); X ]t

+ J (F; X )( t);

where

J (F; X )( t) =
X

0<s � t

�
F (s; X s) � F (s; X s� ) �

@xF (s; X s) + @xF (s; X s� )
2

� X s

�
:

The proof of Proposition 16 is based on an accurate separation between the
neighborhood of "big" and "small" jumps, where speci�c tools are used. To this
end, a fundamental role is played by the two following lemmata, the second one
based on Lemma 1, Chapter 3, in Billingsley [16].

Lemma 18. Let Yt be a c�adl�ag function with values in Rn . Let � : Rn � Rn ! R
be a uniformly continuos function on each compact, such that� (y; y) = 0 for every
y 2 Rn . Let 0 � t1 � t2 � ::: � tN � T . We have

NX

i =1

1
"

Z t i

t i � "
1]0; s](t) � (Y(t+ " )^ s; Yt ) dt " ! 0�!

NX

i =1

1]0; s](t i ) � (Yt i ; Yt i � ); (55)

uniformly in s 2 [0; T].

Lemma 19. Let X be a c�adl�ag (c�agl�ad) real process. Let  > 0, t0; t1 2 R and
I = [ t0; t1] be a subinterval of[0; T] such that

j� X t j2 �  2; 8t 2 I: (56)

Then there is "0 > 0 such that

sup
a; t2 I

j a � t j� " 0

jX a � X t j � 3:

Another signi�cant tool for our scopes is a Lemma of Dini type in the case of
c�adl�ag functions, which reads as follows.
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Lemma 20. Let (Gn ; n 2 N) be a sequence of continuous increasing functions, let
G (resp. F ) from [0; T] to R be a c�adl�ag (resp. continuous) function. We set
Fn = Gn + G and suppose thatFn ! F pointwise. Then

lim sup
n!1

sup
s2 [0; T ]

jFn (s) � F (s)j � 2 sup
s2 [0; T ]

jG(s)j:

The second target of the chapter consists in investigating weak Dirichlet jump
processes. Contrarily to the continuous case, the decompositionX = M + A is
generally not unique. We introduce the notion of a special weak Dirichlet process
with respect to some �ltration ( Ft ). Such a process is a weak Dirichlet process
admitting a decomposition

X = M c + M d + A; (57)

whereM c is a continuous local martingale,M d is a purely discontinuous local martin-
gale, andA is an (Ft )-orthogonal, predictable process. Supposing thatA0 = M d

0 = 0,
the decomposition (57) is unique. In that case the decomposition (57) will be called
the canonical decomposition of X . We remark that a continuous weak Dirichlet
process is special weak Dirichlet.

In the sequel we will denote by� X the jump measure associated toX , and by � X

its compensator. We will also indicate byDucp the set of all adapted c�adl�ag processes
equipped with the topology of the uniform convergence in probability (u.c.p.), by
A (resp A loc) the collection of all adapted processes with integrable variation (resp.
with locally integrable variation), and by A+ (resp A+

loc) the collection of all adapted
integrable increasing (resp. adapted locally integrable) processes.

We start by giving an expansion of F (t; X t ) where F is of classC0;1 and X is
a c�adl�ag weak Dirichlet process of �nite quadratic variation. The process ( F (t; X t ))
turns out to be again a weak Dirichlet process, however not necessarily of �nite
quadratic variation.

Theorem 21. Let X = M + A be a c�adl�ag weak Dirichlet process of �nite quadratic
variation. Then, for every F : [0; T] � R ! R of classC0;1, we have

F (t; X t ) = F (0; X 0) +
Z t

0
@xF (s; X s� ) dMs (58)

+
Z

(0; t ]� R
(F (s; X s� + x) � F (s; X s� )) 1fj x j� 1g (� X � � X )(ds dx)

�
Z

(0; t ]� R
x @xF (s; X s� ) 1fj x j� 1g (� X � � X )(ds dx)

+
Z

(0; t ]� R
(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )) 1fj x j> 1g � X (ds dx) + � F (t);

where � F : C0;1 ! Ducp is a continuous linear map, such that, for everyF 2 C0;1,
it ful�lls the following properties.

(a) [� F ; N ] = 0 for every N continuous local martingale.

(b) If A is predictable, then� F is predictable.
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Starting from Theorem 21, we are able to provide an analogous chain rule when
X and (F (t; X t )) are both special weak Dirichlet processes. This constitutes our
main result. We make use of the following conditions.

Z

(0;�]� R
jF (t; X t � + x) � F (t; X t � ) � x @xF (t; X t � )j 1fj x j> 1g � X (dt dx) 2 A+

loc; (59)

Z

(0;�]� R
jxj 1fj x j> 1g � X (dt dx) 2 A+

loc: (60)

Theorem 22. Let X be a special weak Dirichlet process of �nite quadratic variation
with its canonical decomposition X = M c + M d + A. Assume that condition (59)
holds. Then, for everyF : [0; T] � R ! R of classC0;1, we have

(1) Yt = F (t; X t ) is a special weak Dirichlet process, with decompositionY =
M F + AF , where

M F
t = F (0; X 0) +

Z t

0
@xF (s; X s) d(M c + M d)s

+
Z

(0; t ]� R
(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )) ( � X � � X )(ds dx);

and AF : C0;1 ! Ducp is a linear map such that, for everyF 2 C0;1, AF is
a predictable(Ft )-orthogonal process.

(2) If in addition condition (60) holds, M F reduces to

M F
t = F (0; X 0) +

Z t

0
@xF (s; X s) dM c

s

+
Z

(0; t ]� R
(F (s; X s� + x) � F (s; X s� )) ( � X � � X )(ds dx):

We remark that a �rst important step in this sense was done in [30], where X
belongs to a bit di�erent class of special weak Dirichlet jump processes (of �nite
energy) and F does not depend on time and has bounded derivative. In [30] the
authors show that F (X ) is again a special weak Dirichlet process. There the un-
derlying process has �nite energy, which requires a control of the expectation of the
approximating sequences of the quadratic variation. On the other hand, our tech-
niques do not require that type of control. Moreover, the integrability condition (59)
that we ask on F (t; X t ) in order to get the chain rule in Theorem 22 is automatically
veri�ed under the hypothesis on the �rst-order derivative considered in [30].

In some circumstances a chain rule may hold even whenF is only continuous if
we know a priori some information of (F (t; X t )). No assumption are required in this
case on the c�adl�ag processX .

Proposition 23. Let X be an adapted c�adl�ag process. LetF : [0; T] � R ! R be a
continuous function such that the following holds.

(i) F (t; X t ) = B t + A0
t , where B has bounded variation andA0 is a continuous

(Ft )-orthogonal process;

(ii)
R

(0; �]� R jF (s; X s� + x) � F (s; X s� )j � X (ds dx) 2 A+
loc.
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Then F (t; X t ) is a special weak Dirichlet process with decomposition

F (t; X t ) = F (0; X 0)+
Z

(0; t ]� R
(F (s; X s� + x) � F (s; X s� )) ( � X � � X )(ds dx)+ AF (t);

(61)
where AF is a predictable(Ft )-orthogonal process.

Finally, we also introduce a subclass of weak Dirichlet processes, calledpartic-
ular. A particular weak Dirichlet process X admits a decompositionX = M + A,
where M is an (Ft )-local martingale, and A = V + A0, with V a bounded variation
adapted process andA0 a continuous adapted process (Ft )-orthogonal process such
that A0

0 = 0. Those processes inherit some of the semimartingales features: as in
the semimartingale case, the particular weak Dirichlet processes admit a (unique)
canonical decomposition when

R
(0; �]� R jxj 1fj x j> 1g � (dt dx) 2 A+

loc: and an integral
representation holds. Under that condition, those particular processes are indeed
special weak Dirichlet processes.

III.3. Application to BSDEs driven by a random measure. In Chapter 6
we apply the stochastic calculus developed in Chapter 5, and we provide an identi�-
cation result for the solution of a forward backward stochastic di�erential equation
driven by a random measure, when the underlying processX is of weak Dirichlet
type. Indeed, given a solution (Y; Z; U) to this forward BSDE, often Y appears to
be of the type u(t; X t ) where u is a deterministic function; by using the stochastic
calculus with respect to weak Dirichlet processes, we are able to identify alsoZ and
U in terms of u.

More precisely, �x a �nite time horizon T > 0 and let (
 ; F; (Ft )t � 0; P) be a given
�ltered probability space, where (Ft )t � 0 satis�es the usual conditions. We will focus
on general BSDEs of the type

Yt = � +
Z

(t; T ]
~g(s; Ys� ; Zs) d� s +

Z

(t; T ]� R

~f (s; e; Ys� ; Us(e)) � (ds de)

�
Z

(t; T ]
Zs dMs �

Z

(t; T ]� R
Us(e) ( � � � )(ds de): (62)

Here � is a random measure on [0; T] � R with compensator � . Besides� and �
appear three driving random elements: a continuous martingaleM , a non-decreasing
adapted continuous process� , and a predictable random measure� on [0; T] � R,
equipped with the usual product � -�elds. The other data of equation (62) are a
square integrable random variable� , and two measurable functions ~g : 
 � [0; T] �
R2 ! R, ~f : 
 � [0; T] � R3 ! R.

The Brownian context of Pardoux-Peng [99] appears as a particular case, setting
� = � = 0, � s � s. There M is a standard Brownian motion and � is measurable
with respect to the Brownian � -�eld at terminal time. In that case the unknown
can be reduced to (Y; Z), since U can be arbitrarily chosen. Another important
subcase of (62) arises when only the purely discontinuous driving term appears,
i.e. M and � vanish. A signi�cant example is represented by BSDEs driven by the
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random measure associated to a pure jump process, as in Chapter 2, or to a piecewise
deterministic Markov process, as in Chapter 3.

When the random dependence of~f and ~g is provided by a Markov solution X of
a forward SDE, and � is a real function of X at the terminal time T, equation (62)
becomes a forward BSDE. As we have recalled in Section I, this generally constitutes
a stochastic representation of a partial integro-di�erential equation (PIDE). Indeed,
solutions of forward BSDEs generate solutions of PIDEs in the viscosity sense. More
precisely, for each given couple (t; x ) 2 [0; T] � R, consider an underlying processX
given by the solution X t;x of an SDE starting at x at time t. Let (Y t;x ; Z t;x ; U t;x )
be a family of solutions of the forward BSDE. In that case, under reasonable general
assumptions, the function v(t; x ) := Y t;x

t is a viscosity solution of the related PIDE.
A demanding task consists in characterizing the pair (Z; U ) := ( Z t;x ; U t;x ), in term of
v; this is generally called theidenti�cation problem of (Z; U ). In the continuous case,
this was for instance the object of Fuhrman and Tessitore [68]: the authors show
that if v 2 C0;1, then Zs = @xv(s; X s); under more general assumptions, they also
associateZ with a generalized gradient ofv. At our knowledge, in the discontinuous
case, the problem of the identi�cation of the martingale integrands pair (Z; U ) has
not been deeply investigated, except for particular situations, as for instance the
purely discontinuous case treated in Confortola and Fuhrman [28].

In Chapter 6 we discuss the mentioned identi�cation problem in a quite general
framework by means of the calculus related to weak Dirichlet processes. WhenY is
a deterministic function v of a special semimartingaleX (or more generally a special
weak Dirichlet process with �nite quadratic variation), related in a speci�c way to
the random measure� , we apply the chain rule in Theorem 22 in order to identify
the pair (Z; U ).

We �x an integer-valued random measure� on [0; T] � R, with compensator � .
We suppose, without loss of generality, that� satis�es � (f tg � dx) � 1 identically.
We set

D = f (!; t ) : � (!; f tg � R) > 0g;

J = f (!; t ) : � (!; f tg � R) > 0g;

K = f (!; t ) : � (!; f tg � R) = 1 g:

We will ask the following condition on � .

Hypothesis 24.

(i) D = K [ ([ n [[T i
n ]]) up to an evanescent set, where (T i

n )n are totally inac-
cessible times such that [[T i

n ]] \ [[T i
m ]] = ; , n 6= m.

(ii) For every predictable time S such that [[S]] � K , � (f Sg; de) = � (f Sg; de)
a.s.

With respect to a generic processX , we will consider the following assumption
in relation to � .

Hypothesis 25. X = X i + X p, where X p is a c�adl�ag predictable process satisfying
f � X p 6= 0g � J , and X i is a c�adl�ag quasi-left continuous adapted process satisfying
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f � X i 6= 0g � D . Moreover, there exists a predictable measurable map ~ : 
 � ]0; T]�
R ! R such that

� X i
t (! ) 1]0; T ](t) = ~ (!; t; �) dP� (ds; de)-a.e. (63)

The hypothesis below will concern a pair of processes (X; Y ).

Hypothesis 26. X is a special weak Dirichlet process of �nite quadratic variation,
satisfying condition (60). Yt = v(t; X t ) for some (deterministic) function v : [0; T] �
R ! R of classC0;1 such that F = v and X verify condition (59).

We have the following result.

Proposition 27. Let � satisfy Hypothesis 24. LetX be a process verifying Hypoth-
esis 25 with decompositionX = X i + X p, where ~ is the predictable process which
relates � and X i in agreement with (63). Let (Y; Z; U) be a solution to the BSDE
(62) such that the pair (X; Y ) satis�es Hypothesis 26 with corresponding function
v. Let X c denote the continuous local martingaleM c of X given in the canonical
decomposition (57). If Us � (v(s; X s� + ~ (s; �)) � v(s; X s� )) 2 G2

loc(� ), then the pair
(Z; U ) ful�lls

Zs = @xv(s; X s)
dhX c; M i s

dhM i s
dPdhM i s -a.e., (64)

Us � (v(s; X s� + ~ (s; �)) � v(s; X s� )) = ls 1K (s) dP� (ds de)-a.e., (65)

where l is a predictable process.

In the purely discontinuous framework, i.e. when in the BSDE (62) M and �
vanish, we make use of the chain rule (61) in Proposition 23, which allows, for a
general c�adl�ag processX , to expressv(t; X t ) without requiring any di�erentiability
on v. In particular Proposition 23 does not ask X to be a special weak Dirichlet
process, provided we have some a priori information on the structure ofv(t; X t ). We
need the following condition on a pair of processes (X; Y ).

Hypothesis 28.

(i) Y = B + A0, with B a bounded variation process andA0 a continuous
(Ft )-orthogonal process;

(ii) Yt = v(t; X t ) for some continuous deterministic function v : [0; T] � R ! R,
satisfying the integrability condition

Z

(0; �]� R
jv(t; X t � + x) � v(t; X t � )j � X (dt dx) 2 A+

loc: (66)

The identi�cation in that case reads as follows.

Proposition 29. Let � satisfy Hypothesis 24. LetX verify Hypothesis 25 with
decompositionX = X i + X p, where ~ is the predictable process which relates� and
X i in agreement with (63). Let (Y; U) be a solution to the BSDE(62) with M = 0
and � = 0 , such that (X; Y ) satis�es Hypothesis 28 with corresponding functionv.
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If in addition Us � (v(s; X s� + ~ (s; �)) � v(s; X s� )) 2 G2
loc(� ), then there exists a

predictable processls such that

Us � (v(s; X s� + ~ (s; �)) � v(s; X s� )) = ls 1K (s) dP� (ds de)-a.e. (67)

We remark that in most of the literature on BSDEs, the measures�; � and �
of equation (62) are non-atomic in time. As we have underlined in Chapter 4, a
challenging case arises when one or more of those predictable processes have jumps
in time. Our approach to the identi�cation problem also applies to forward BSDEs
presenting predictable jumps. As an example, we provide an identi�cation result for
a BSDE driven by the random measure� associated to a PDMP taking values in a
bounded real interval.

Further remarks and future developments of the thesis

We take the occasion to emphasize that every proof reported in the thesis is new;
on the other hand, when a known result is needed, we give references to where a
proof can be found. We also underline thatChapter 1 is based on Bandini and
Confortola [4], Chapter 2 on Bandini and Fuhrman [7], Chapter 3 on Bandini [3],
Chapter 4 on Bandini [2], Chapters 5 and 6 respectively on Bandini and Russo
[9] and [8].

Some challenging issues arising in this work are left for future research. First of
all, as recalled in Section II.1, our existence and uniqueness result for BSDEs driven
by general, possibly non quasi-left continuous, random measures opens to the pos-
sibility of studying optimal control problems for PDMPs with bounded state spaces
by means of BSDEs techniques. This could allow to provide nonlinear Feynman-
Kac representation formulae for the value functions of those control problems. In
particular, combining ideas from Chapters 3 and 4, it might turn out that the value
function of the optimal control problem of a PDMP with a bounded state space solves
a backward stochastic di�erential equation with constrained jumps. Notice that it
would be interesting to apply to this context the identi�cation results obtained in
Chapter 6, which are already conceived for BSDEs driven by random measures with
possible predictable jumps. Another challenging development might consist in ex-
tending the results obtained in Chapter 2 to a non-Markovian pure jump framework.
Optimal control problems for non-Markovian stochastic di�erential equations driven
by a Brownian motion have been recently studied with the BSDEs techniques by
means of the control randomization approach, see Fuhrman and Pham [67]. In this
context the constrained BSDE characterizing the value function can be seen as a
path-dependent version of the HJB equation. Notice that the control randomization
method does not rely on the path-dependent HJB equation associated by dynamic
programming principle to the value function in the non-Markovian context. This
allows to circumvent delicate issues of dynamic programming (as originally studied
in El Karoui [ 49] for general non-Markovian stochastic control problems), viscosity
solutions and comparison principles for fully nonlinear path-dependent PDEs, as re-
cently studied in Peng [106], Ekren, Keller, Touzi and Zhang [48] and Tang and
Zhang [127], see also Fabbri, Gozzi and Swiech [61] for HJB equations in in�nite
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dimension arising typically for stochastic systems with delays. This suggests in par-
ticular an original approach to derive the HJB equation for the value function of
stochastic control problem from the BSDE representation, hence without dynamic
programming principle. The generalization of these results to the jump case has not
yet been investigated, and could be obtained by mixing the methodology in [67] with
the speci�c theory for optimal control of pure jump processes developed in Chapter
2. Finally, we emphasize that the chain rule type expansions provided in Chapter
5 may be helpful to get veri�cation theorems for stochastic optimal control prob-
lems of general jump processes. In the di�usive context, this was done in Gozzi and
Russo [70] which treated optimal control problems of continuous processes without
control in the di�usion. Those veri�cation theorems have the advantage of requiring
less regularity of the value function than the classical ones, which need insteadC1

regularity in time and C2 in space (see e.g. Fleming and Soner [65]), and they can
be applied also to problems with pathwise optimality and optimality in probabil-
ity. It would be also judicious to generalize our results of Chapters 5 and 6 to the
case of path-dependent c�adl�ag processes. In the case of path-dependent continuous
processes, a �rst step for extending the chain rules of Chapter 5 was done in [43].





Chapter 1

Optimal control of
semi-Markov processes
with a BSDE approach

1.1. Introduction

In this chapter we study optimal control problems for a class of semi-Markov
processes using a suitable class of backward stochastic di�erential equations, driven
by the random measure associated to the semi-Markov process itself.

Let us briey describe our framework. Our starting point is a semi-Markov pure
jump processX on a general state spaceE. It is constructed starting from a jump
rate function � (x; #) and a jump measureA 7! Q(x; #; A ) on E, depending onx 2 E
and # � 0. Our approach is to consider a semi-Markov pure jump process as a two
dimensional time-homogeneous and strong Markov processf (X s; � s); s � 0g with its
natural �ltration F and a family of probabilities Px;# for x 2 E, # 2 [0; 1 ) such that
Px;# (X 0 = x; � 0 = #) = 1. If the process starts from (x; #) at time t = 0 then the
distribution of its �rst jump time T1 under Px;# is described by the formula

Px;# (T1 > s ) = exp
�

�
Z #+ s

#
� (x; r ) dr

�
; (1.1)

and the conditional probability that the process is in A immediately after a jump at
time T1 = s is

Px;# (X T1 2 A j T1 = s) = Q(x; s; A):

X s is called the state of the process at times, and � s is the duration period in this
state up to moment s:

� s =
�

� 0 + s if X p = X s 8 0 6 p 6 s; p; s 2 R;
s � supf p : 0 6 p 6 s; X p 6= X sg otherwise.

We note that X alone is not a Markov process. We limit ourselves to the case
of a semi-Markov processX such that the survivor function of T1 under Px;0 is

33
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absolutely continuous and admits a hazard rate function� as in (1.1). The holding
times of the process are not necessarily exponentially distributed and can be in�nite
with positive probability. Our main restriction is that the jump rate function � is
uniformly bounded, which implies that the processX is non explosive. Denoting by
Tn the jump times of X , we consider the marked point process (Tn ; X Tn ) and the
associated random measurep(dt dy) =

P
n � (Tn ;X Tn ) on (0; 1 ) � E , where � denotes

the Dirac measure. The dual predictable projection ~p of p (shortly, the compensator)
has the following explicit expression

~p(ds dy) = � (X s� ; � s� ) Q(X s� ; � s� ; dy) ds:

In Section 1.3 we address an optimal intensity-control problem for the semi-
Markov process. This is formulated in a classical way by means of a change of
probability measure, see e.g. El Karoui [49], Elliott [ 57] and Br�emaud [18]. We
de�ne a classA of admissible control processes (us)s2 [0; T ]; for every �xed t 2 [0; T]
and (x; #) 2 E � [0; 1 ), the cost to be minimized and the corresponding value
function are

J (t; x; #; u (�)) = Ex;#
u;t

� Z T � t

0
l (t + s; X s; � s; us) ds + g(X T � t ; � T � t )

�
;

v(t; x; # ) = inf
u(�)2 A

J (t; x; #; u (�)) ;

where g; l are given real functions. HereEx;#
u;t denotes the expectation with respect

to another probability Px;#
u;t , depending ont and on the control processu and con-

structed in such a way that the compensator underPx;#
u;t equalsr (t+ s; X s� ; � s� ; y; us)

� (X s� ; � s� ) Q(X s� ; � s� ; dy) ds, for some function r given in advance as another da-
tum of the control problem. Since the process (X s; � s)s� 0 we want to control is
time-homogeneous and starts from (x; #) at time s = 0, we introduce a temporal
translation which allows to de�ne the cost functional for all t 2 [0; T]. For more
details see Remark 1.3.2.

Our approach to this control problem consists in introducing a family of BSDEs
parametrized by (t; x; # ) 2 [0; T] � E � [0; 1 ):

Y x;#
s;t +

Z T � t

s

Z

E
Z x;#

�;t (y) q(d� dy )

= g(X T � t ; � T � t ) +
Z T � t

s
f

�
t + �; X � ; � � ; Z x;#

�;t (�)
�

d�; (1.2)

s 2 [0; T � t], where the generator is given by the Hamiltonian function f de�ned
for every s 2 [0; T], (x; #) 2 E � [0; + 1 ), z 2 L 2(E; E; � (x; #) Q(x; #; dy)), as

f (s; x; #; z(�)) = inf
u2 U

n
l(s; x; #; u) +

Z

E
z(y)( r (s; x; #; y; u) � 1)� (x; #) Q(x; #; dy)

o
:

(1.3)
Under appropriate assumptions we prove that the optimal control problem has a
solution and that the value function and the optimal control can be represented by
means of the solution to the BSDE (1.2).
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Backward equations driven by random measures have been studied in many
papers, within Tang and Li [128], Barles, Buckdahn and Pardoux [10], Royer [114],
Kharroubi, Ma, Pham and Zhang [87], Xia [131], and more recently Becherer [12],
Cr�epey and Matoussi [33], Kazi-Tani, Possama•� and Zhou [84], [83], Confortola and
Fuhrman [27], [28]. In many of them, among which [128], [10], [114] and [87], the
stochastic equations are driven by a Wiener process and a Poisson process. A more
general result on BSDEs driven by random measures is given by [131], but in this case
the generatorf depends on the processZ in a speci�c way and this condition prevents
a direct application to optimal control problems. In [ 12], [33], [84], [83], the authors
deal with BSDEs with jumps with a random compensator more general than the
compensator of a Poisson random measure; here are involved random compensators
which are absolutely continuous with respect to a deterministic measure, that can be
reduced to a Poisson measure by a Girsanov change of probability. Finally, in [27]
have been recently studied BSDEs driven by a random measure related to a pure
jump process, and in [28] the pure jump Markov case is considered.

Our backward equation (1.2) is driven by a random measure associated to a
two dimensional Markov process (X; � ), and his compensator is a stochastic random
measure with a non-dominated intensity as in [28]. Even if the associated process
is not pure jump, the existence, uniqueness and continuous dependence on the data
for the BSDE (1.2) can be deduced extending in a straightforward way the results
in [28].

Concerning the optimal control of semi-Markov processes, the case of a �nite
number of states has been studied in Chitopekar [24], Howard [74], Jewell [81], Osaki
[95], while the case of arbitrary state space is considered in Ross [112], Gihman and
Skorohod [69], and Stone [125]. As in [24] and in [125], in our formulation we
admit control actions that can depend not only on the state process but also on
the length of time the process has remained in that state. The approach based on
BSDEs is classical in the di�usive context and is also present in the literature in
the case of BSDEs with jumps, see as instance Lim and Quenez [92]. However,
it seems to us be pursued here for the �rst time in the case of the semi-Markov
processes. It allows to treat in a uni�ed way a large class of control problems, where
the state space is general and the running and �nal cost are not necessarily bounded.
We remark that, comparing with [ 125], the controlled processes we deal with have
laws absolutely continuous with respect to a given, uncontrolled process; see also a
more detailed comment in Remark 1.3.3 below. Moreover, in [125] optimal control
problems for semi-Markov processes are studied in the case of in�nite time horizon.

In Section 1.4 we solve a nonlinear variant of the Kolmogorov equation for the
process (X; � ), with the BSDEs approach. The process (X; � ) is time-homogeneous
and Markov, but is not a pure jump process. In particular it has the integro-
di�erential in�nitesimal generator

~L  (x; #) := @#  (x; #)+
Z

E
[ (y; 0)�  (x; #)] � (x; #) Q(x; #; dy); (x; #) 2 E � [0; 1 ):

The additional di�erential term @# does not allow to study the associated nonlinear
Kolmogorov equation proceeding as in the pure jump Markov processes framework
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(see [28]). On the other hand, the two dimensional Markov process (X s; � s)s> 0

belongs to the larger class of piecewise-deterministic Markov processes (PDMPs)
introduced by Davis in [35], and studied in the optimal control framework by several
authors, within Davis and Farid [ 36], Vermes [129], Dempster [40], Lenhart and
Yamada [91]. Moreover, we deal with a very speci�c PDMP: taking into account
the particular structure of semi-Markov processes, we present a reformulation of the
Kolmogorov equation which allows us to consider solutions in a classical sense. In
particular, we notice that the second component of the process (X s; � s)s> 0 is linear
in s. This fact suggests to introduce the formal directional derivative operator

(Dv)( t; x; # ) := lim
h#0

v(t + h; x; # + h) � v(t; x; # )
h

;

and to consider the following nonlinear Kolmogorov equation
8
<

:

Dv(t; x; # ) + L v(t; x; # ) + f (t; x; #; v (t; x; # ); v(t; �; 0) � v(t; x; # )) = 0 ;
t 2 [0; T]; x 2 E; # 2 [0; 1 );

v(T; x; #) = g(x; #);
(1.4)

where

L  (x; #) :=
Z

E
[ (y; 0) �  (x; #)] � (x; #) Q(x; #; dy); (x; #) 2 E � [0; 1 ):

Then we look for a solution v such that the map t 7! v(t; x; t + c) is absolutely
continuous on [0; T], for all constants c 2 [� T; + 1 ). The functions f; g in (1.4)
are given. While it is easy to prove well-posedness of (1.4) under boundedness
assumptions, we achieve the purpose of �nding a unique solution under much weaker
conditions related to the distribution of the process (X; � ): see Theorem 1.4.7. To
this end we need to de�ne a formula of Itô type, involving the directional derivative
operator D , for the composition of the process (X s; � s)s> 0 with functions v smooth
enough (see Lemma 1.4.2 below).
We construct the solution v by means of a family of BSDEs of the form (1.2). By the
results above there exists a unique solution (Y x;#

s;t ; Z x;#
s;t )s2 [0; T � t ] and the estimates

on the BSDEs are used to prove well-posedness of (1.4). As a by-product we also
obtain the representation formulae

v(t; x; # ) = Y x;#
0;t ; Y x;#

s;t = v(t+ s; X s; � s); Z x;#
s;t (y) = v(t+ s; y;0)� v(t+ s; X s� ; � s� );

which are sometimes called, at least in the di�usive case, non linear Feynman-Kac
formulae.
Finally we can go back to the original control problem and observe that the associated
Hamilton-Jacobi-Bellman equation has the form (1.4) wheref is the Hamiltonian
function (1.3). By previous results we are able to identify the HJB solution v(t; x; # ),
constructed probabilistically via BSDEs, with the value function.

1.2. Notation, preliminaries and basic assumptions

1.2.1. Semi-Markov Jump Processes. We recall the de�nition of a semi-Markov
process, as given, for instance, in [69]. More precisely we will deal with a semi-
Markov process with in�nite lifetime (i.e. non explosive). Suppose we are given
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a measurable space (E; E), a set 
 and two functions X : 
 � [0; 1 ) ! E , � :

 � [0; 1 ) ! [0; 1 ). For every t � 0, we denote byFt the � -algebra � ((X s; � s); s 2
[0; t]). We suppose that for everyx 2 E and # 2 [0; 1 ), a probability Px;# is given
on (
 ; F[0;1 ) ) and the following conditions hold.

(1) E contains all one-point sets. � denotes a point not included in E .

(2) Px;# (X 0 = x; � 0 = #) = 1 for every x 2 E, # 2 [0; 1 ).

(3) For every s; p > 0 and A 2 E the function (x; #) 7! Px;# (X s 2 A; � s 6 p) is
E 
 B+ -measurable.

(4) For every 0 � t � s, p > 0, and A 2 E we havePx;# (X s 2 A; � s 6 pj Ft ) =
PX t ;� t (X s 2 A; � s 6 p), Px;# -a.s.

(5) All the trajectories of the process X have right limits when E is given the
discrete topology (the one where all subsets are open). This is equivalent
to require that for every ! 2 
 and t � 0 there exists � > 0 such that
X s(! ) = X t (! ) for s 2 [t; t + � ].

(6) All the trajectories of the processa are continuous from the right piecewise
linear functions. For every ! 2 
, if [ �; � ) is the interval of linearity of
� �(! ) then � s(! ) = � � (! )+ s� � and X � (! ) = X s(! ); if � is a discontinuity
point of � �(! ) then � � + (! ) = 0 and X � (! ) 6= X � � (! ).

(7) For every ! 2 
 the number of jumps of the trajectory t 7! X t (! ) is �nite
on every bounded interval.

X s is called the state of the process at times, � s is the duration period in this state
up to moment s. Also we call X s the phaseand � s the ageor the time component of
a semi-Markov process.X is a non explosive process because of condition (7). We
note, moreover, that the two-dimensional process (X; � ) is a strong Markov process
with time-homogeneous transition probabilities because of conditions (2), (3), and
(4). It has right-continuous sample paths because of conditions (1), (5) and (6), and
it is not a pure jump Markov process, but only a PDMP.

The class of semi-Markov processes we consider in the chapter will be described
by means of a special form of joint lawR under Px;# of the �rst jump time T1, and
the corresponding positionX T1 . To proceed formally, we �x X 0 = x 2 E and de�ne
the �rst jump time

T1 = inf f p > 0 : X p 6= xg;

with the convention that T1 = + 1 if the indicated set is empty.
We introduce S := E � [0; + 1 ) an we denote byS the smallest � -algebra containing
all sets of E 
 B([0; + 1 )). (Here and in the following B(�) denotes the Borel � -
algebra of a topological space �). Take an extra point � =2 E and de�ne X 1 (! ) = �
for all ! 2 
, so that X T1 : 
 ! E [ f � g is well de�ned. Then on the extended
spaceS [ f (� ; 1 )g we consider the smallest� -algebra, denoted bySenl, containing
f (� ; 1 )g and all sets ofE
 B([0; + 1 )). Then ( X T1 ; T1) is a random variable with
values in (S [ f (� ; 1 )g; Senl). Its law under Px;# will be denoted by R(x; #; �).

We will assume that R is constructed from two given functions denoted by� and
Q. More precisely we assume the following.
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Hypothesis 1.2.1. There exist two functions

� : S ! [0; 1 ) and Q : S � E ! [0; 1]

such that

(i) ( x; #) 7! � (x; #) is S-measurable;

(ii) sup (x;# )2 S � (x; #) 6 C 2 R+ ;

(iii) ( x; #) 7! Q(x; #; A ) is S-measurable8A 2 E;

(iv) A 7! Q(x; #; A ) is a probability measure on E for all ( x; #) 2 S.

We de�ne a function H on E � [0; 1 ] by

H (x; s) := 1 � e�
Rs

0 � (x;r )dr : (1.5)

Given � and Q, we will require that for the semi-Markov process X we have, for
every (x; #) 2 S and for A 2 E, 0 � c < d � 1 ,

R(x; #; A � (c; d)) =
1

1 � H (x; #)

Z d

c
Q(x; s; A)

d
d s

H (x; # + s) ds

=
Z d

c
Q(x; s; A) � (x; # + s) exp

�
�

Z #+ s

#
� (x; r ) dr

�
ds; (1.6)

where R was described above as the law of (X T1 ; T1) under Px;# . The existence of
a semi-Markov process satisfying (1.6) is a well known fact, see for instance [125]
Theorem 2.1, where it is proved thatX is in addition a strong Markov process. The
nonexplosive character ofX is made possible by Hypothesis 1.2.1-(ii).

We note that our data only consist initially in a measurable space (E; E) (E
contains all singleton subsets ofE), and in two functions � , Q satisfying Hypothesis
1.2.1. The semi-Markov processX can be constructed in an arbitrary way provided
(1.6) holds.

Remark 1.2.2.

(1) Note that (1.6) completely speci�es the probability measure R(x; #; �) on
(S [ f (� ; 1 )g; Senl): indeed simple computations show that, fors � 0,

Px;# (T1 2 (s;1 ]) = 1 � R(x; #; E � (0; s])

= exp
�

�
Z #+ s

#
� (x; r ) dr

�
; (1.7)

and we clearly have

Px;# (T1 = 1 ) = R(x; #; f (� ; 1 )g) = exp
�
�

R1
# � (x; r ) dr

�
:

Moreover, the kernelR is well de�ned, becauseH (x; #) < 1 for all (x; #) 2 S
by Hypothesis 1.2.1-(ii).
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(2) The data � and Q have themselves a probabilistic interpretation. In fact if
in (1.7) we set # = 0 we obtain

Px;0(T1 > s ) = exp
�

�
Z s

0
� (x; r ) dr

�
= 1 � H (x; s): (1.8)

This means that under Px;0 the law of T1 is described by the distribution
function H , and

� (x; #) =
@H
@#(x; #)

1 � H (x; #)
:

Then � (x; #) is the jump rate of the processX given that it has been in
state x for a time #.
Moreover, the probability Q(x; s; �) can be interpreted as the conditional
probability that X T1 is in A 2 E given that T1 = s; more precisely,

Px;# (X T1 2 A; T1 < 1 j T1) = Q(x; T1; A) 1T1< 1 ; Px;# � a:s:

(3) In [ 69] the following observation is made: starting from T0 = t de�ne
inductively Tn+1 = inf f s > T n : X s 6= X Tn g; with the convention that
Tn+1 = 1 if the indicated set is empty; then, under the probability Px;# ,
the sequence of the successive states of the semi-MarkovX is a Markov
chain, as in the case of Markov processes. However, while for the latter the
duration period in the state depends only on this state and it is necessarily
exponentially distributed, in the case of a semi Markov process the duration
period depends also on the state into which the process moves and the
distribution of the duration period may be arbitrary.

(4) In [ 69] is also proved that the sequence (X Tn ; Tn )n� 0 is a discrete-time
Markov process in (S [ f (� ; 1 )g; Senl) with transition kernel R, provided
we extend the de�nition of R making the state (� ; 1 ) absorbing, i.e. we
de�ne

R(� ; 1 ; S) = 0 ; R(� ; 1 ; f (� ; 1 )g) = 1 :

Note that ( X Tn ; Tn )n� 0 is time-homogeneous.
This fact allows for a simple description of the processX . Suppose one

starts with a discrete-time Markov process (� n ; � n )n� 0 in S with transition
probability kernel R and a given starting point (x; #) 2 S (conceptually,
trajectories of such a process are easy to simulate). One can then de�ne a
processY in E setting Yt =

P N
n=0 � n1[� n ;� n +1 ) (t), where N = supf n � 0 :

� n 6 1g . Then Y has the same law as the processX under Px;# .

(5) We stress that (1.5) limits ourselves to deal with a class of semi-Markov
processes for which the survivor functionT1 under Px;0 admits a hazard
rate function � .

�
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1.2.2. BSDEs driven by a Semi-Markov Process. Let be given a measurable
space (E; E), a transition measureQ on E and a given positive function � , satisfying
Hypothesis 1.2.1. LetX be the associated semi-Markov process constructed out of
them as described in Section 1.2.1. We �x a deterministic terminal timeT > 0 and
a pair (x; #) 2 S, and we look at all processes under the probabilityPx;# . We denote
by F the natural �ltration ( Ft )t2 [0;1 ) of X . Conditions 1, 5 and 6 above imply
that the �ltration F is right continuous (see [18], Appendix A2, Theorem T26).
The predictable � -algebra (respectively, the progressive� -algebra) on 
 � [0; 1 ) is
denoted by P (respectively, by P rog). The same symbols also denote the restriction
to 
 � [0; T].

We de�ne a sequence (Tn )n> 1 of random variables with values in [0; 1 ], setting

T0(! ) = 0 ; Tn+1 (! ) = inf f s > Tn (! ) : X s(! ) 6= X Tn (! )g; (1.9)

with the convention that Tn+1 (! ) = 1 if the indicated set is empty. Being X a
jump process we haveTn (! ) 6 Tn+1 (! ) if Tn+1 (! ) < 1 , while the non explosion of
X means that Tn+1 (! ) ! 1 . We stress the fact that (Tn )n> 1 coincide by de�nition
with the time jumps of the two dimensional process (X; � ).

For ! 2 
 we de�ne a random measure on ([0; 1 ) � E; B[0; 1 ) 
 E) setting

p(!; C ) =
X

n> 1

1f (Tn (! ); X Tn (! )) 2 Cg; C 2 B[0; 1 ) 
 E: (1.10)

The random measure� (X s� ; � s� ) Q(X s� ; � s� ; dy) ds is called the compensator, or
the dual predictable projection, of p(ds; dy). We are interested in the following
family of backward equations driven by the compensated random measureq(ds dy) =
p(ds dy) � � (X s� ; � s� ) Q(X s� ; � s� ; dy) ds and parametrized by (x; #): Px;# -a.s.,

Ys+
Z T

s

Z

E
Zr (y) q(dr dy) = g(X T ; � T )+

Z T

s
f

�
r; X r ; � r ; Yr ; Zr (�)

�
dr; s 2 [0; T]:

(1.11)
We consider the following assumptions on the dataf and g.

Hypothesis 1.2.3.

(1) The �nal condition g : S ! R is S-measurable andEx;a
h
jg(X T ; � T )j2

i
< 1 .

(2) The generator f is such that
(i) for every s 2 [0; T], (x; #) 2 S, r 2 R, f is a mapping

f (s; x; #; r; �) : L 2(E; E; � (x; #) Q(x; #; dy)) ! R;
(ii) for every bounded andE-measurablez : E ! R the mapping

(s; x; #; r ) 7! f (s; x; #; r; z (�)) (1.12)

is B([0; T]) 
 S
 B(R)-measurable.
(iii) There exist L > 0, L 0 > 0 such that for every s 2 [0; T], (x; #) 2 S,

r; r 0 2 R; z; z0 2 L 2(E; E; � (x; #) Q(x; #; dy)) we have
�
�f (s; x; #; r; z (�)) � f (s; x; #; r 0; z0(�))

�
�

6 L 0
�
�r � r 0

�
� + L

� Z

E

�
�z(y) � z0(y)

�
�2 � (x; #) Q(x; #; dy)

� 1=2

: (1.13)
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(iv) We have

Ex;#
� Z T

0
jf (s; X s; � s; 0; 0)j2 ds

�
< 1 : (1.14)

Remark 1.2.4. Assumptions (i), (ii), and (iii) imply the following measurability
properties of f (s; X s; � s; Ys; Zs(�)):

� if Z 2 L 2(p), then the mapping

(!; s; y ) 7! f (s; X s� (! ); � s� (! ); y; Zs(!; �))

is P 
 B(R)-measurable;

� if, in addition, Y is a P rog-measurable process, then

(!; s ) 7! f (s; X s� (! ); � s� (! ); Ys(! ); Zs(!; �))

is P rog-measurable.

�

We introduce the spaceM x;# of the processes (Y; Z) on [0; T] such that Y is
real-valued andProg-measurable,Z : 
 � E ! R is P 
 E-measurable, and

jj (Y; Z)jj2
Mx;# := Ex;#

� Z T

0
jYsj2 ds +

Z T

0

Z

E
jZs(y)j2 � (X s; � s) Q(X s; � s; dy) ds

�

< 1 :

The spaceM x;# endowed with this norm is a Banach space, provided we identify
pairs of processes whose di�erence has norm zero.

Theorem 1.2.5. Suppose that Hypothesis 1.2.3 holds for some(x; #) 2 S.
Then there exists a unique pair(Y; Z) in M x;# which solves the BSDE(1.11). Let
moreover (Y 0; Z 0) be another solution in M x;# to the BSDE (1.11) associated with
the driver f 0 and �nal datum g0. Then

sup
s2 [0; T ]

Ex;# �
jYs � Y 0

s j2
�

+ Ex;#
� Z T

0
jYs � Y 0

s j2ds
�

+ Ex;#
� Z T

0

Z

E
jZs(y) � Z 0

s(y)j2� (X s; � s) Q(X s; � s; dy) ds
�

6 CEx;# �
jg(X T ) � g0(X T )j2

�

+ CEx;#
� Z T

0
jf (s; X s; � s; Y 0

s ; Z 0
s(�)) � f 0(s; X s; � s; Y 0

s ; Z 0
s(�)) j2ds

�
; (1.15)

where C is a constant depending onT, L , L 0.

Remark 1.2.6. The construction of a solution to the BSDE (1.11) is based on the
integral representation theorem of marked point process martingales (see, e.g., [35]),
and on a �xed-point argument. Similar results of well-posedness for BSDEs driven
by random measures can be found in literature, see, in particular, the theorems given
in [28], Section 3, and in [12]. Notice that these results can not be a priori straight
applied to our framework: in [12] are involved random compensators which are
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absolutely continuous with respect to a deterministic measure, instead in our case
the compensator is a stochastic random measure with a non-dominated intensity;
[28] apply to BSDEs driven by a random measure associated to a pure jump Markov
process, while the two dimensional process (X; � ) is Markov but not pure jump.
Nevertheless, under Hypothesis 1.2.3, Theorem 3.4 and Proposition 3.5 in [28] can
be extended to our framework without additional di�culties. The proofs turn out
to be very similar to those of the mentioned results, and we do not report them here
to alleviate the presentation. �

1.3. Optimal control of semi-Markov processes

1.3.1. Formulation of the problem. In this section we consider again a mea-
surable space (E; E), a transition measure Q and a function � satisfying Hypothesis
1.2.1. The data specifying the optimal control problem we will address to are an
action (or decision) spaceU, a running cost function l , a terminal cost function g,
a (deterministic, �nite) time horizon T > 0 and another function r specifying the
e�ect of the control process. We de�ne an admissible control process, or simply a
control, as a predictable process (us)s2 [0; T ] with values in U. The set of admissible
control processes is denoted byA. We will make the following assumptions:

Hypothesis 1.3.1.

(1) (U;U) is a measurable space.

(2) The function r : [0; T] � S � E � U ! R is B([0; T]) 
 S
 E
 U-measurable
and there exists a constantCr > 1 such that,

0 6 r (t; x; #; y; u ) 6 Cr ; t 2 [0; T]; (x; #) 2 S; y 2 E; u 2 U: (1.16)

(3) The function g : S ! R is S-measurable, and for all �xed t 2 [0; T],

Ex;#
h
jg(X T � t ; � T � t )j

2
i

< 1 ; 8(x; #) 2 S: (1.17)

(4) The function l : [0; T] � S � U ! R is B([0 T]) 
 S 
 U-measurable and
there exists � > 1 such that, for every �xed t 2 [0; T], for every (x; #) 2 S
and u(�) 2 A,

inf u2 U l (t; x; #; u ) > 1 ;

Ex;#
hRT � t

0 jinf u2 U l (t + s; X s; � s; u)j2 ds
i

< 1 ;

Ex;#
hRT � t

0 jl (t + s; X s; � s; us)j ds
i �

< 1 :

(1.18)

To any (t; x; # ) 2 [0; T] � S and any control u(�) 2 A we associate a probability
measurePx;#

u;t by a change of measure of Girsanov type, as we now describe. Recalling
the de�nition of the jump times Tn in (1.9), we de�ne, for every �xed t 2 [0; T],

L t
s = exp

� Z s

0

Z

E
(1 � r (t + �; X � ; � � ; y; u� )) � (X � ; � � ) Q(X � ; � � ; dy) d�

�
�

�
Y

n> 1:Tn 6 s

r (t + Tn ; X Tn � ; � Tn � ; X Tn ; uTn );
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for all s 2 [0; T � t], with the convention that the last product equals 1 if there are
no indicesn > 1 satisfying Tn 6 s. As a consequence of the boundedness assumption
on Q and � it can be proved, using for instance Lemma 4.2 in [27], or [18] Chapter
VIII Theorem T11, that for every �xed t 2 [0; T] and for every  > 1 we have

Ex;# � ��L t
T � t

�
�  �

< 1 ; Ex;# �
L t

T � t

�
= 1 ; (1.19)

and therefore the processL t is a martingale (relative to Px;# and F). De�ning a prob-
ability Px;#

u;t (d! ) = L t
T � t (! ) Px;# (d! ), we introduce the cost functional corresponding

to u(�) 2 A as

J (t; x; #; u (�)) = Ex;a
u;t

� Z T � t

0
l (t + s; X s; � s; us) ds + g(X T � t ; � T � t )

�
; (1.20)

where Ex;#
u;t denotes the expectation underPx;#

u;t . Taking into account (1.17), (1.18)
and (1.19), and using H•older inequality it is easily seen that the cost is �nite for
every admissible control. The control problem starting at (x; #) at time s = 0
with terminal time s = T � t consists in minimizing J (t; x; #; �) over A. We �nally
introduce the value function

v(t; x; # ) = inf
u(�)2 A

J (t; x; #; u (�)) ; t 2 [0; T]; (x; #) 2 S:

The previous formulation of the optimal control problem by means of change of
probability measure is classical (see e.g. [49], [57], [18]). Some comments may be
useful at this point.

Remark 1.3.2.

1. The particular form of cost functional (1.20) is due to the fact that the
time-homogeneous Markov process (X s; � s)s> 0 satis�es

Px;# (X 0 = x; � 0 = #) = 1;

the introduction of the temporal translation in the �rst component allows
us to de�ne J (t; x; #; u (�)) for all t 2 [0; T].

2. We recall (see e.g. [18], Appendix A2, Theorem T34) that a process u is
F-predictable if and only if it admits the representation

us(! ) =
X

n> 0

u(n)
s (! ) 1(Tn (! );Tn +1 (! )] (s)

where for each (!; s ) 7! u(n)
s (! ) is F[0; Tn ]
 B(R+ )-measurable, withF[0; Tn ] =

� (Ti ; X Ti ; 0 6 i 6 n) (see e.g. [18], Appendix A2, Theorem T30). Thus the
fact that controls are predictable processes admits the following interpreta-
tion: at each time Tn (i.e. immediately after a jump) the controller, having
observed the random variablesTi ; X Ti ; (0 6 i 6 n), chooses his current
action, and updates her/his decisions only at timeTn+1 .

3. It can be proved (see [75] Theorem 4.5) that the compensator ofp(ds dy)
under Px;#

u;t is

r (t + s; X s� ; � s� ; y; us) � (X s� ; � s� ) Q(X s� ; � s� ; dy) ds;
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whereas the compensator ofp(ds dy) under Px;# was� (X s� ; � s� ) Q(X s� ; � s� ; dy)
ds. This explains that the choice of a given controlu(�) a�ects the stochastic
system multiplying its compensator by r (t + s; x; #; y; us).

4. We call control law an arbitrary measurable function u : [0; T] � S ! U.
Given a control law one can de�ne an admissible controlu setting us =
u(s; X s� ; � s� ).
Controls of this form are called feedback controls. For a feedback control the
compensator ofp(ds dy) is r (t + s; X s� ; � s� ; y; u(s; X s� ; � s� )) � (X s� ; � s� )
Q(X s� ; � s� ; dy) ds under Px;#

u;t . Thus, the process (X; � ) under the opti-
mal probability is a two-dimensional Markov process corresponding to the
transition measure

r (t + s; x; #; y; u(s; x; #)) � (x; #) Q(x; #; dy)

instead of � (x; #) Q(x; #; dy). However, even if the optimal control is in the
feedback form, the optimal process is not, in general, time-homogeneous
since the control law may depend on time. In this case, according to the
de�nition given in Section 1.2, the processX under the optimal probability
is not a semi-Markov process.

�

Remark 1.3.3. Our formulation of the optimal control should be compared with
another approach (see e.g. [125]). In [ 125] is given a family of jump measures
on E f Q(x; b; �); b 2 B g with B some index set endowed with a topology. In the
so calledstrong formulation a control u is an ordered pair of functions (� 0; � ) with
� 0 : S ! R+ , � : S ! B such that

� 0 and � are S� measurable;
8x 2 E; 9 t(x) > 0 :

Rt (x)
0 � 0(x; r ) dr < 1 ;

Q(�; �; A ) is B+ -measurable8A 2 E:

If A is the class of controls which satis�es the above conditions, then a control
u = ( � 0; � ) 2 A determines a controlled processX u in the following manner. Let

H u(x; s) := 1 � e�
Rs

0 � 0(x;r ) dr ; 8(x; s) 2 S;

and suppose that (X u
0 ; � u

0 ) = ( x; #). Then at time 0, the process starts in state x
and remains there a random timeS1 > 0, such that

Px;# f S1 6 sg =
H u(x; # + s) � H u(x; #)

1 � H u(x; #)
: (1.21)

At time S1 the process transitions to the stateX u
S1

, where

Px;# �
X u

S1
2 AjS1

	
= Q(x; � (x; S1); A):

The process stays in stateX u
S1

for a random time S2 > 0 such that

Px;# �
S2 6 sjS1; X u

S1

	
= H u(X u

S1
; s)

and then at time S1 + S2 transitions to X u
S1+ S2

, where

Px;# �
X u

S1+ S2
2 AjS1; X u

S1
; S2

	
= Q(X u

S1
; � (X u

S1
; S2); A):
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We remark that the processX u constructed in this way turns out to be semi-Markov.

We also mention that the class of control problems speci�ed by the initial data
� 0 and � is in general larger that the one we address in this chapter. This can be
seen noticing that in our framework all the controlled processes have laws which
are absolutely continuous with respect to a single uncontrolled process (the one
corresponding to r � 1) whereas this might not be the case for the rate measures
� 0(x; #) Q(x; � (x; #); A) when u = ( � 0; � ) ranges in the set of all possible control
laws. �

1.3.2. BSDEs and the synthesis of the optimal control. We next proceed to
solve the optimal control problem formulated above. A basic role is played by the
BSDE: for every �xed t 2 [0; T], Px;# -a.s.

Y x;#
s;t +

Z T � t

s

Z

E
Z x;#

�;t (y) q(d� dy )

= g(X T � t ; � T � t ) +
Z T � t

s
f

�
t + �; X � ; � � ; Z x;#

�;t (�)
�

d�; (1.22)

8s 2 [0; T � t], with terminal condition given by the terminal cost g and generator
given by the Hamiltonian function f de�ned for every s 2 [0; T]; (x; #) 2 S; z 2
L 2(E; E; � (x; #) Q(x; #; dy)), as

f (s; x; #; z(�)) = inf
u2 U

n
l(s; x; #; u) +

Z

E
z(y)( r (s; x; #; y; u) � 1)� (x; #)Q(x; #; dy)

o
:

(1.23)
In (1.22) the superscript (x; #) denotes the starting point at time s = 0 of the process
(X s; � s)s> 0, while the dependence ofY and Z on the parameter t is related to the
temporal horizon of the considered optimal control problem. For everyt 2 [0 T],
we look for a processY x;#

s;t (! ) adapted and c�adl�ag and a processZ x;#
s;t (!; y ) P 
 E-

measurable satisfying the integrability conditions

Ex;#
� Z T � t

0

�
�
�Y x;#

s;t

�
�
�
2

ds
�

< 1 ;

Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t (y)
�
�
�
2

� (X s; � s) Q(X s; � s; dy) ds
�

< 1 :

One can verify that, under Hypothesis 1.3.1 on the optimal control problem, all
the assumptions of Hypothesis 1.2.3 hold true for the generatorf and the terminal
condition g in the BSDE (1.22). The only non trivial veri�cation is the Lipschitz
condition (1.13), which follows from the boundedness assumption (1.16). Indeed, for
every s 2 [0; T], (x; #) 2 S, z; z0 2 L 2(E; E; � (x; #) Q(x; #; dy)),

Z

E
z(y)( r (s; x; #; y; u)) � 1) � (x; #) Q(x; #; dy)

6
Z

E

�
�z(y) � z0(y)

�
� (r (s; x; #; y; u) � 1) � (x; #) Q(x; #; dy)

+
Z

E
z0(y)( r (s; x; #; y; u) � 1) � (x; #) Q(x; #; dy)
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6 (Cr + 1) ( � (x; #) Q(x; #; E ))1=2 �
� Z

E

�
�z(y) � z0(y)

�
�2 � (x; #) Q(x; #; dy)

� 1=2

+
Z

K
z0(y)( r (s; x; #; y; u) � 1) � (x; #) Q(x; #; dy);

so that, adding l(s; x; #; u) on both sides and taking the in�mum over u 2 U, it
follows that

f (s; x; #; z) 6 L
� Z

E

�
�z(y) � z0(y)

�
�2 � (x; #) Q(x; #; dy)

� 1=2

+ f (s; x; #; z0); (1.24)

where L := ( Cr + 1) sup (x;# )2 S

p
� (x; #) exchangingz and z0 roles we obtain (1.13).

Then by Theorem 1.2.5, for every �xed t 2 [0; T], for every (x; #) 2 S, there
exists a unique solution of (1.22) (Y x;#

s;t ; Z x;#
s;t )s2 [0; T � t ], and Y x;#

0;t is deterministic.
Moreover, we have the following result:

Proposition 1.3.4. Assume that Hypotheses 1.3.1 hold. Then, for everyt 2 [0; T],
(x; #) 2 S, and for every u(�) 2 A,

Y x;#
0;t 6 J (t; x; #; u (�)) :

Proof. We consider the BSDE (1.22) at time s = 0 and we apply the expected
value Ex;#

u;t associated to the controlled probability Px;#
u;t . Since thePx;#

u;t -compensator
of p(dsdy) is
r (t + s; X s� ; � s� ; y; us) � (X s� ; � s� ) Q(X s� ; � s� ; dy) ds, we have that

Ex;#
u;t

� Z T � t

0

Z

E
Z x;#

s;t (y) q(dsdy)
�

= Ex;#
u;t

� Z T � t

0

Z

E
Z x;#

s;t (y) p(dsdy)
�

� Ex;#
u;t

� Z T � t

0

Z

E
Z x;#

s;t (y) � (X s; � s) Q(X s; � s; dy) ds
�

= Ex;#
u;t

� Z T � t

0

Z

E
Z x;#

s;t (y) [r (t + s; X s; � s; y; us) � 1] � (X s; � s) Q(X s; � s; dy) ds
�
:

Then

Y x;#
0;t = Ex;#

u;t [g(X T � t ; � T � t )] + Ex;#
u;t

� Z T � t

0
f (t + s; X s; � s; Z x;#

s;t (�)) ds
�

� Ex;#
u;t

� Z T � t

0

Z

E
Z x;#

s;t (y) [r (t + s; X s; � s; y; us) � 1] � (X s; � s) Q(X s; � s; dy) ds
�

:

Adding and subtracting Ex;#
u;t

hRT � t
0 l (t + s; X s; � s; us) ds

i
on the right side we obtain

the following relation:

Y x;#
0;t = J (t; x; #; u (�))

+ Ex;#
u;t

� Z T � t

0

h
f (t + s; X s; � s; Z x;#

s;t (�)) � l (t + s; X s; � s; us)
i

ds
�
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� Ex;#
u;t

� Z T � t

0

Z

E
Z x;#

s;t (�) [r (t + s; X s; � s; y; us) � 1] � (X s; � s) Q(X s; � s; dy) ds
�

:

(1.25)

By the de�nition of the Hamiltonian function f , the two last terms are non positive,
and it follows that

Y x;#
0;t 6 J (t; x; #; u (�)) ; 8u(�) 2 A:

�

We de�ne the following, possibly empty, set:

�( s; x; #; z(�)) =
n

u 2 U : f (s; x; #; z(�)) = l(s; x; #; u)

+
Z

E
z(y) ( r (s; x; #; y; u) � 1) � (x; #) Q(x; #; dy);

s 2 [0; T]; (x; #) 2 S; z 2 L 2(E; E; � (x; #) Q(x; #; dy))
o

: (1.26)

In order to prove the existence of an optimal control we need to require that the
in�mum in the de�nition of f is achieved. Namely we assume that

Hypothesis 1.3.5. The sets � introduced in (1.26) are non empty; moreover, for
every �xed t 2 [0; T] and (x; #) 2 S, one can �nd an F-predictable processu� t;x;# (�)
with values in U satisfying

u� t;x;#
s 2 �( t + s; X s� ; � s� ; Z x;#

s;t (�)) ; Px;# -a.s: 8s 2 [0; T � t]: (1.27)

Theorem 1.3.6. Under Hypothesis 1.3.1 and 1.3.5 for every �xedt 2 [0; T] and
(x; #) 2 S, u� t;x;# (�) 2 A is an optimal control for the control problem starting from
(x; #) at time zero with time horizon T � t. Moreover, Y x;#

0;t coincides with the value

function, i.e. Y x;#
0;t = J (t; x; #; u � t;x;# (�)) .

Proof. It follows immediately from the relation (1.25) and from the de�nition of
the Hamiltonian function f . �

We recall that general conditions can be formulated for the existence of a process
u� t;x;# (�) satisfying (1.27), hence of an optimal control; this is done by means of an
appropriate selection theorem, see e.g. Proposition 5.9 in [28].

We end this section with an example where the BSDE (1.22) can be explicitly
solved and a closed form solution of an optimal control problem can be found.

Example 1.3.7. We consider a �xed time interval [0; T] and a state space consisting
of three states: E = f x1; x2; x3; x4g. We introduce (Tn ; � n )n> 0 setting (T0; � 0) =
(0; x1), (Tn ; � n ) = (+ 1 ; x1) if n > 3 and on (T1; � 1) and (T2; � 2) we make the
following assumptions: � 1 takes valuesx2 with probability 1, � 2 takes valuesx3; x4

with probability 1 =2. This means that the system starts at time zero in a given state
x1, jumps into state x2 with probability 1 at the random time T1 and into state x3

or x4 with equal probability at the random time T2. It has no jumps after. We take
U = [0 ; 2] and de�ne the function r specifying the e�ects of the control process as
r (x1; u) = r (x2; u) = 1, r (x3; u) = u, r (x4; u) = 2 � u, u 2 U.
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Moreover, the �nal cost g assumes the value 1 in (x; #) = ( x4; T � T2) and zero
otherwise, and the running cost is de�ned asl(s; x; #; u) = � u

2 � (x; #), where � > 0
is a �xed parameter. The BSDE we want to solve takes the form:

Ys +
Z T

s

Z

E
Z � (y) p(d� dy ) = g(X T ; � T )

+
Z T

s
inf

u2 [0; 2]

�
� u
2

+
Z

E
Z � (y) r (y; u) Q(X � ; � � ; dy)

�
� (X � ; � � )d� (1.28)

that can be written as

Ys +
X

n> 1

ZTn (X Tn ) 1f s<T n 6 T g = g(X T ; � T )

+
Z T

s
inf

u2 [0; 2]

n � u
2

+ Z � (x2)
o

� (x1; # + � )1f 06 �<T 1^ T g d�

+
Z T

s
inf

u2 [0; 2]

n � u
2

+ Z � (x3)
u
2

+ Z � (x4)(1 �
u
2

)
o

� (x2; � � T1)1f T16 �<T 2^ T g d�:

It is known by [ 29] that BSDEs of this type admit the following explicit solution
(Ys; Zs(�)) s2 [0; T ]:

Ys = y0(s)1f s<T 1g + y1(s; T1; � 1) 1f T16 s<T 2g + y2(s; T2; � 2; T1; � 1) 1f T26 sg;

Zs(y) = z0(s; y) 1f s6 T1g + z1(s; y; T1; � 1) 1f T1<s 6 T2g; y 2 E:

To deduce y0 and y1 we reduce the BSDE to a system of two ordinary di�erential
equation. To this end, it su�ces to consider the following cases:

� ! 2 
 such that T < T 1(! ) < T 2(! ): (1.28) reduces to

y0(s) =
Z T

s
inf

u2 [0; 2]

n � u
2

+ z0(�; x 2)
o

� (x1; # + � ) d�

=
Z T

s
z0(�; x 2) � (x1; # + � ) d�

=
Z T

s
(y1(�; �; x 2) � y0(� )) � (x1; # + � ) d� ; (1.29)

� ! 2 
 such that T1(! ) < T < T 2(! ), s > T 1: (1.28) reduces to

y1(s; T1; � 1)

=
Z T

s
inf

u2 [0; 2]

n � u
2

+ z1(�; x 3; T1; � 1)
u
2

+ z1(�; x 4; T1; � 1)(1 �
u
2

)
o

� (� 1; � � T1) d�

=
Z T

s
[z1(�; x 4; T1; � 1) ^ (� + z1(�; x 3; T1; � 1))] � (� 1; � � T1) d�

=
Z T

s
[(1 ^ � ) � y1(�; T 1; � 1)] � (� 1; � � T1) d�: (1.30)

Solving (1.29) and (1.30) we obtain

y0(s) = (1 ^ � )
�

1 � e�
RT

s � (x1 ;#+ � ) d�
�
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� (1 ^ � ) e�
RT

s � (x1 ;#+ � ) d�
Z T

s
� (x1; # + � ) e

RT
� � (x1 ;#+ z) dze�

RT
� � (x2 ;z� � ) dz d� g;

y1(s; T1; � 1) = (1 ^ � )
�

1 � e�
RT

s � (� 1 ;� � T1 ) d�
�

;

moreover,

y2(s; T2; � 2; T1; � 1) = 1 f � 2= x4g;

z0(s; x1) = z0(s; x3) = z0(s; x4) = 0 ;

z0(s; x2) = y1(s; s; x2) � y0(s);

z1(s; x1; T1; � 1) = z1(s; x2; T1; � 1) = 0 ;

z1(s; x3; T1; � 1) = (1 ^ � )
�

e�
RT

s � (� 1 ;� � T1 ) d� � 1
�

;

z1(s; x4; T1; � 1) = 1 + z1(s; x3; T1; � 1);

where z0 and z1 are obtained respectively fromy2, y1 and y1, y0 by subtraction.
The optimal cost is then given by Y0 = y0(0). The optimal control is obtained during
the computation of the Hamiltonian function: it is the process us = 2 1 (T1 ;T2 ](s) if
� 6 1, and the processus = 0 if � > 1 (both are optimal if � = 1).

1.4. Nonlinear variant of Kolmogorov equation

Throughout this section we still assume that a semi-Markov processX is given.
It is constructed as in Section 1.2.1 by the rate function� and the measureQ on E,
and (X; � ) is the associated time-homogeneous Markov process. We assume that�
and Q satisfy Hypothesis 1.2.1.

It is our purpose to present here some nonlinear variants of the classical backward
Kolmogorov equation associated to the Markov process (X; � ) and to show that their
solution can be represented probabilistically by means of an appropriate BSDE of
the type considered above.

We will suppose that two functions f and g are given, satisfying Hypothesis 1.2.3,
and that moreover g veri�es, for every �xed t 2 [0; T],

Ex;a
h
jg(X T � t ; � T � t )j

2
i

< 1 : (1.31)

We de�ne the operator

L  (x; #) :=
Z

E
[ (y; 0) �  (x; #)] � (x; #) Q(x; #; dy); (x; #) 2 S; (1.32)

for every measurable function : S ! R for which the integral is well de�ned.
The equation

v(t; x; # ) = g(x; # + T � t) +
Z T

t
L v(s; x; # + s � t) ds

+
Z T

t
f (s; x; # + s � t; v(s; x; # + s � t); v(s; �; 0) � v(s; x; # + s � t)) ds; (1.33)
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t 2 [0; T], (x; #) 2 S, with unknown function v : [0; T] � S ! R will be called the
nonlinear Kolmogorov equation.

Equivalently, one requires that for everyx 2 E and for all constant c 2 [� T; + 1 ),

t 7! v(t; x; t + c) is absolutely continuous on [0; T], (1.34)

and
�

Dv(t; x; # ) + L v(t; x; # ) + f (t; x; #; v (t; x; # ); v(t; �; 0) � v(t; x; # )) = 0
v(T; x; #) = g(x; #);

(1.35)

where D denotes the formal directional derivative operator

(Dv)( t; x; # ) := lim
h#0

v(t + h; x; # + h) � v(t; x; # )
h

: (1.36)

In other words, the presence of the directional derivative operator (1.36) allows us
to understand the nonlinear Kolmogorov equation (1.35) in a classical sense. In
particular, the �rst equality in (1.35) is understood to hold almost everywhere on
[0; T] outside of a dt-null set of points which can depend on (x; #).

Under appropriate boundedness assumptions we have the following result:

Lemma 1.4.1. Suppose thatf and g verify Hypothesis 1.2.3 and that(1.31) holds;
suppose, in addition, that

sup
t2 [0; T ]; (x;# )2 S

�
jg(x; #)j + jf (t; x; #; 0; 0)j

�
< 1 : (1.37)

Then the nonlinear Kolmogorov equation(1.33) has a unique solutionv in the class
of measurable bounded functions.

Proof. The result follows as usual from a �xed-point argument, that we only sketch.
Let us de�ne a map � setting v = �( w) where

v(t; x; # ) = g(x; # + T � t) +
Z T

t
L w(s; x; # + s � t) ds

+
Z T

t
f (s; x; # + s � t; w(s; x; # + s � t); w(s; �; 0) � w(s; x; # + s � t)) ds:

Using the Lipschitz character of f and Hypothesis 1.2.1-ii), one can show that, for
some� > 0 su�ciently large, the above map is a contraction in the space of bounded
measurable real functions on [0; T] � S endowed with the supremum norm:

jjvjj � := sup
06 t6 T

sup
(x;# )2 S

e� � (T � t ) jv(t; x; # )j :

The unique �xed point of � gives the required solution. �

Our goal is now to remove the boundedness assumption (1.37). To this end we
need to de�ne a formula of Itô type for the composition of the process (X s; � s)s> 0

with functions v smooth enough de�ned on [0; T] � S. Taking into account the
particular form of (1.33), and the fact that the second component of the process
(X s; � s)s> 0 is linear in s, the idea is to use in this formula the directional derivative
operator D given by (1.36).
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Lemma 1.4.2 (A formula of Itô type) . Let consider functions v : [0; T] � S ! R
such that

(i) 8 x 2 E, 8 c 2 [� T; + 1 ), the map t 7! v(t; x; t + c) is absolutely continuous
on [0; T], with directional derivative D given by (1.36);

(ii) for �xed t 2 [0; T], f v(t + s; y;0) � v(t + s; X s� ; � s� ); s 2 [0; T � t]; y 2 Eg
belongs toL 1

loc(p).

Then Px;# -a.s., for every t 2 [0; T],

v(T; X T � t ; � T � t ) � v(t; x; # ) =
Z T � t

0
Dv(t + s; X s; � s) ds +

Z T � t

0
L v(t + s; X s; � s) ds

+
Z T � t

0

Z

E
(v(t + s; y;0) � v(t + s; X s� ; � s� )) q(ds; dy);

(1.38)

where the stochastic integral is a local martingale.

Proof. We proceed by reasoning as in the proof of Theorem 26.14 in [35]. We
consider a function v : [0; T] � S ! R satisfying (i) and (ii), and we denote by N t

the number of jumps in the interval [0; t]:

N t =
X

n> 1

1f Tn 6 tg:

We have

v(T; X T ; � T ) � v(0; x; #) = v(T; X T ; � T ) � v(TNT ; X TN T
; � TN T

)

+
NTX

n=2

�
v(Tn ; X Tn ; � Tn ) � v(Tn� 1; X Tn � 1 ; � Tn � 1 )

	

+ v(T1; X T1 ; � T1 ) � v(0; x; #):

Noticing that X Tn � = X Tn � 1 for all n 2 [1; NT ], X T = X TN T
, and that � Tn = 0 for

all n 2 [1; NT ], � T1� = # + T1, and � Tn � = Tn � Tn� 1 for all n 2 [2; NT ], we have

v(T; X T ; � T ) � v(0; x; #) = I + II + III;

where

I = ( v(T1; X T1 ; 0) � v(T1; X T1 � ; � T1 � )) + ( v(T1; x; # + T1) � v(0; x; #)) =: I 0+ I 00;

II =
NTX

n=2

(v(Tn ; X Tn ; 0) � v(Tn ; X Tn � ; � Tn � )

+
NTX

n=2

(v(Tn ; X Tn � 1 ; Tn � Tn� 1) � v(Tn� 1; X Tn � 1 ; 0)))

=: II 0+ II 00;

III = v(T; X T ; T � TN ) � v(TN ; X TN ; 0):
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Let H denote the P 
 E-measurable process

Hs(y) = v(s; y;0) � v(s; X s� ; � s� );

with the convention X 0� = X 0, � 0� = #0. We have

I 0+ II 0 =
X

n> 1:Tn 6 T

(v(Tn ; X Tn ; 0) � v(Tn ; X Tn � ; � Tn � ))

=
X

n> 1:Tn 6 T

HTn (X TN ) =
Z T

0

Z

E
Hs(y) p(ds; dy):

On the other hand, sincev satis�es (i) and recalling the de�nition 1.36 of the direc-
tional derivative operator D ,

I 00+ II 00+ III

=
Z T1

0
lim
h! 0

v(0 + hs; x; # + hs) � v(0; x; #)
h

ds

+
X

n> 2:Tn 6 T

Z Tn

Tn � 1

lim
h! 0

v(Tn� 1 + h(s � Tn� 1); X Tn � 1 ; � Tn � 1 + h(s � Tn� 1)) � v(Tn� 1; X Tn � 1 ; � Tn � 1 )
h

ds

+
Z T

TN T

lim
h! 0

v(TNT + h(s � TNT ); X TN T
; � TN T

+ h(s � TNT )) � v(TNT ; X TN T
; � TN T

)

h
ds

=
Z T

0
Dv(s; X s; � s) ds:

Then Px;# -a.s.,

v(T; X T ; aT ) � v(0; x; #)

=
Z T

0
Dv(s; X s; � s) ds +

Z T

0

Z

E
(v(s; y;0) � v(s; X s� ; � s� )) p(ds; dy)

=
Z T

0
Dv(s; X s; � s) ds +

Z T

0
L v(s; X s; � s) ds

+
Z T

0

Z

E
(v(s; y;0) � v(s; X s� ; � s� )) q(ds; dy);

where the second equality is obtained using the identityq(dt dy) = p(dt dy) �
� (X t � ; � t � ) Q(X t � ; � t � ; dy) dt together with the de�nition (1.32) of the operator
L .

Finally, applying a shift in time, i.e. considering for every t 2 [0; T] the di�er-
ential of the processv(s + t; X s� ; � s� ) with respect to s 2 [0; T � t], the previous
formula becomes:Px;# -a.s., for everyt 2 [0; T],

v(T � t; X T ; � T ) � v(t; x; # ) =
Z T � t

0
Dv(s + t; X s; � s) ds +

Z T � t

0
L v(s + t; X s; � s) ds

+
Z T � t

0

Z

E
(v(s + t; y; 0) � v(s + t; X s� ; � s� )) q(ds; dy);

where the stochastic integral is a local martingale thanks to condition (ii). �



1.4. Nonlinear variant of Kolmogorov equation 53

We will call (1.38) the Itô formula for v(t + s; �; �) � (X s; � s)s2 [0; T � t ]. In di�erential
notation:

dv(t + s; X s� ; � s� ) = Dv(t + s; X s� ; � s� ) ds + L v(t + s; X s� ; � s� ) ds

+
Z

E
(v(t + s; y;0) � v(t + s; X s� ; � s� )) q(ds; dy):

Remark 1.4.3. With respect to the classical Itô formula, we underline that in (1.38)
we have

- the directional derivative operator D instead of the usual time derivative;

- the temporal translation in the �rst component of v, i.e. we consider the
di�erential of the process
v(t+ s; X s� ; � s� ) with respect to s 2 [0; T � t]. Indeed, the time-homogeneous
Markov process (X s; � s)s> 0 satis�es

Px;# (X 0 = x; � 0 = #) = 1 ;

and the temporal translation in the �rst component allows us to consider
dv(t; X t ; � t ) for all t 2 [0; T].

�

We go back to consider the Kolmogorov equation (1.33) in a more general setting.
More precisely, on the functionsf , g we will only ask that they satisfy Hypothesis
1.2.3 for every (x; #) 2 S and that (1.31) holds.

De�nition 1.4.4. We say that a measurable functionv : [0; T]� S ! R is a solution
of the nonlinear Kolmogorov equation (1.33), if, for every �xed t 2 [0; T], (x; #) 2 S,

1. Ex;#
hRT � t

0

R
E jv(t + s; y;0) � v(t + s; X s; � s)j2 � (X s; � s) Q(X s; � s; dy) ds

i
<

1 ;

2. Ex;#
hRT � t

0 jv(t + s; X s; � s)j2 ds
i

< 1 ;

3. (1.33) is satis�ed.

Remark 1.4.5. Condition 1. is equivalent to the fact that v(t + s; y;0) � v(t +
s; X s� ; � s� ) belongs to L 2(p). Conditions 1. and 2. together are equivalent to the
fact that the pair

f v(t + s; X s; � s); v(t + s; y;0) � v(t + s; X s� ; � s� ); s 2 [0; T � t]; y 2 Eg

belongs to the spaceM x;# ; in particular they hold true for every measurable bounded
function v. �

Remark 1.4.6. We need to verify the well-posedness of equation (1.33) for a func-
tion v satisfying the condition 1. and 2. above. We start by noticing that, for every
(x; #) 2 S, Px;# -a.s.,
Z T

0

Z

E
jv(s; y;0) � v(s; X s; � s)j2 � (X s; � s) Q(X s; � s; dy) ds+

Z T

0
jv(s; X s; � s)j2 ds < 1 :
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By the law (1.7) of the �rst jump it follows that the set f ! 2 
 : T1(! ) > T g
has positive Px;# probability, and on this set we have X s� (! ) = x, � s� (! ) = # + s.
Taking such an ! we get

Z T

0

Z

E
jv(s; y;0) � v(s; x; # + s)j2 � (x; # + s) Q(x; # + s; dy) ds

+
Z T

0
jv(s; x; # + s)j2 ds < 1 ; 8(x; #) 2 S:

Since sup(x;# )2 S � (x; #) < 1 by assumption, H•older's inequality implies that
Z T

0
jL (v(s; x; # + s)) j ds

6
Z T

0

Z

E
jv(s; y;0) � v(s; x; # + s)j � (x; # + s) Q(x; # + s; dy) ds

6 c
� Z T

0

Z

E
jv(s; y;0) � v(s; x; # + s)j2 � (x; # + s) Q(x; # + s; dy) ds

� 1=2

< 1

for some constantc and for all (x; #) 2 S. Similarly, since

Ex;a
� Z T

0
jf (s; X s; � s; 0; 0)j2 ds

�
< 1 ;

and arguing again on the jump time T1, we deduce that
Z T

0
jf (s; x; # + s;0; 0)j2 ds < 1 ; 8(x; #) 2 S;

�nally, from the Lipschitz conditions on f we can conclude that
Z T

0
jf (s; x; # + s; v(s; x; # + s); v(s; �; 0) � v(s; x; # + s)) j ds

6 c1

� Z T

0
jf (s; x; # + s;0; 0)j2 ds

� 1=2

+ c2

� Z T

0
jv(s; x; # + s)j2 ds

� 1=2

+ c3

� Z T

0

Z

E
jv(s; y;0) � v(s; x; # + s)j2 � (x; # + s) Q(x; # + s; dy) ds

� 1=2

< 1

for some constantsci , i = 1 ; 2; 3, and for all (x; #) 2 S. Therefore, all terms occurring
in equation (1.33) are well de�ned. �

For every �xed t 2 [0; T] and (x; #) 2 S, we consider now a BSDE of the form

Y x;#
s;t +

Z T � t

s

Z

E
Z x;#

r;t (y) q(dr dy) = g(X T � t ; � T � t )

+
Z T � t

s
f

�
t + r; X r � ; � r � ; Y x;#

r;t ; Z x;#
r;t (�)

�
dr; s 2 [0; T � t]: (1.39)
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Then there exists a unique solution (Y x;#
s;t ; Z x;#

s;t (�)) s2 [0; T � t ], in the sense of Theorem

1.2.5, andY x;#
0;t is deterministic. We are ready to state the main result of this section.

Theorem 1.4.7. Suppose thatf , g satisfy Hypothesis 1.2.3 for every(x; #) 2 S
and that (1.31) holds. Then the nonlinear Kolmogorov equation(1.33) has a unique
solution v(t; x; # ) in the sense of De�nition 1.4.4.

Moreover, for every �xed t 2 [0; T], for every (x; #) 2 S and s 2 [0; T � t] we
have

Y x;#
s;t = v(t + s; X s� ; � s� ); (1.40)

Z x;#
s;t (y) = v(t + s; y;0) � v(t + s; X s� ; � s� ); (1.41)

so that in particular v(t; x; # ) = Y x;#
0;t .

Remark 1.4.8. The equalities (1.40) and (1.41) are understood as follows.

� Px;# -a.s., equality (1.40) holds for all s 2 [0; T � t]. The trajectories of
(X s)s2 [0; T � t ] are piecewise constant and c�adl�ag, while the trajectories of
(� s)s2 [0; T � t ] are piecewise linear ins (with unitary slope) and c�adl�ag; more-
over the processes (X s)s2 [0; T � t ] and (� s)s2 [0; T � t ] have the same jump times
(Tn )n> 1. Then the equality (1.40) is equivalent to the condition

Ex;#
� Z T � t

0

�
�
�Y x;#

s;t � v(t + s; X s; � s)
�
�
�
2

ds
�

= 0 :

� The equality (1.41) holds for all (!; s; y ) with respect to the measure
� (X s� (! ); � s� (! )) Q(X s� (! ); � s� (! ); dy) Px;# (d! )ds, i.e.,

Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t (y) � v(t + s; y;0) + v(t + s; X s; � s)
�
�
�
2

� (X s; � s) Q(X s; � s; dy) ds
�

= 0 :

�

Proof. Uniqueness. Let v be a solution of the nonlinear Kolmogorov equation
(1.33). It follows from equality (1.33) itself that for every x 2 E and every � 2
[� T; + 1 ), t 7! v(t; x; t + � ) is absolutely continuous on [0; T]. Indeed, applying in
(1.33) the change of variable� := # � t, we obtain 8t 2 [0; T], 8� 2 [� T; + 1 ),

v(t; x; t + � ) = g(x; T + � ) +
Z T

t
L v(s; x; s + � ) ds

+
Z T

t
f (s; x; s + �; v (s; x; s + � ); v(s; �; 0) � v(s; x; s + � )) ds:

Then, since by assumption the processv(t + s; y;0) � v(t + s; X s� ; � s� ) belongs to
L 2(p), we are in a position to apply the Itô formula (1.38) to the process v(t +
s; X s� ; � s� ), s 2 [0; T � t]. We get: Px;# -a.s.,

v(t + s; X s� ; � s� ) = v(t; x; # ) +
Z s

0
Dv(t + r; X r ; � r ) dr +

Z s

0
L v(t + r; X r ; � r ) dr
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+
Z s

0

Z

E
(v(t + r; y; 0) � v(t + r; X r ; � r )) q(dr; dy); s 2 [0; T � t]:

We know that v satis�es (1.35); moreover the processX has piecewise constant
trajectories, the process� has linear trajectories in s, and they have the same time
jumps. Then, Px;# -a.s.,

Dv(t + s; X s� ; � s� ) + L v(t + s; X s� ; � s� )

+ f (t + s; X s� ; � s� ; v(t + s; X s� ; � s� ); v(t + s; �; 0) � v(t + s; X s� ; � s� )) = 0 ;

for almost s 2 [0; T � t]. In particular, Px;# -a.s.,

v(t + s; X s� ; � s� )

= v(t; x; # ) +
Z s

0

Z

E
(v(t + r; y; 0) � v(t + r; X r � ; � r � )) q(dr; dy)

�
Z s

0
f (t + r; X r ; � r ; v(t + s; X s; � s); v(t + r; y; 0) � v(t + r; X r ; � r )) dr;

for s 2 [0; T � t]. Sincev(T; x; #) = g(x; #) for all ( x; #) 2 S, by simple computations
we can prove that, 8s 2 [0; T � t],

v(t + s; X s� ; � s� ) +
Z T � t

s

Z

E
(v(t + r; y; 0) � v(t + r; X r � ; � r � )) q(dr; dy)

= g(X T � t ; � T � t )

+
Z T � t

s
f (t + r; X r ; ar ; v(t + r; X r ; � r ); v(t + r; y; 0) � v(t + r; X r ; � r )) dr:

Since the pairs (Y x;#
s;t ; Z x;#

s;t (�)) s2 [0; T � t ] and (v(t + s; X s� ; � s� ) ; v(t + s; y;0) � v(t +
s; X s� ; � s� )) s2 [0; T � t ] are both solutions to the same BSDE underPx;# , they coincide
as members of the spaceM x;# . It follows that equalities (1.40) and (1.41) hold. In
particular, v(t; x; # ) = Y x;#

0;t , and this yields the uniqueness of the solution.

Existence. We proceed by an approximation argument, following the same lines
of the proof of Theorem 4.4 in [28]. We recall that, by Theorem 1.2.5, for every
�xed t 2 [0; T], the BSDE (1.39) has a unique solution (Y x;#

s;t ; Z x;#
s;t (�)) s2 [0; T � t ] for

every (x; #) 2 S; moreover, Y x;#
0;t is deterministic, i.e., there exists a real number,

denoted by v(t; x; # ), such that Px;# (Y x;#
0;t = v(t; x; # )) = 1. At this point, we set

f n = ( f ^ n) _ (� n) and gn = ( g ^ n) _ (� n) as the truncations of f and g at level
n. By Lemma 1.4.1, for t 2 [0; T], (x; #) 2 S, equation

vn (t; x; # ) = gn (x; # + T � t) +
Z T

t
L vn (s; x; # + s � t) ds (1.42)

+
Z T

t
f n (s; x; # + s � t; vn (s; x; # + s � t); vn (s; �; 0) � vn (s; x; # + s � t)) ds:

admits a unique bounded measurable solutionvn . In particular, the �rst part of the
proof yield the following identi�cations:

vn (t; x; # ) = Y x;#;n
0;t ;
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vn (t + s; X s� ; � s� ) = Y x;#;n
s;t ;

vn (t + s; y;0) � vn (t + s; X s� ; � s� ) = Z x;#;n
s;t (y);

in the sense of Remark 1.4.8, where (Y x;#;n
s;t ; Z x;#;n

s;t (�)) s2 [0; T � t ] is the unique solution
to the BSDE

Y x;#;n
s;t +

Z T � t

s

Z

E
Z x;#;n

r;t (y) q(dr dy)

= gn (X T � t ; � T � t ) +
Z T � t

s
f n

�
t + r; X r ; � r ; Y x;#;n

r;t ; Z x;#;n
r;t (�)

�
dr;

for all s 2 [0; T � t]. Recalling (1.39) and applying Theorem 1.2.5, we deduce that,
for some constantc,

sup
s2 [0; T � t ]

Ex;#
h
jY x;#

s;t � Y x;#;n
s;t j2

i
+ Ex;#

� Z T � t

0
jY x;#

s;t � Y x;#;n
s;t j2ds

�

+ Ex;#
� Z T � t

0

Z

E
jZ x;#

s;t (y) � Z x;#;n
s;t (y)j2� (X s; � s) Q(X s; � s; dy) ds

�

6 cEx;# �
jg(X T � t ; � T � t ) � gn (X T � t ; � T � t )j2

�

+ cEx;#
� Z T � t

0
jf (t + s; X s; � s; Y x;#

s;t ; Z x;#
s;t (�)) � f n (t + s; X s; � s; Y x;#

s;t ; Z x;#
s;t (�)) j2ds

�

�! 0; (1.43)

where the two �nal terms tend to zero by monotone convergence. In particular (1.43)
yields

jv(t; x; # ) � vn (t; x; # )j2 = jY x;#
0;t � Y x;#;n

0;t j2 6 sup
s2 [0; T � t ]

Ex;#
h
jY x;#

s;t � Y x;#;n
s;t j2

i
�! 0;

and therefore v is a measurable function. At this point, applying the Fatou Lemma
we get

Ex;#
� Z T � t

0

�
�
�Y x;#

s;t � v(t + s; X s; � s)
�
�
�
2

ds
�

+ Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t (y) � v(t + s; y;0) + v(t + s; X s; � s)
�
�
�
2

� (X s; � s) Q(X s; � s; dy) ds
�

6 lim inf
n!1

Ex;#
� Z T � t

0

�
�
�Y x;#

s;t � vn (t + s; X s; � s)
�
�
�
2

ds
�

+ lim inf
n!1

Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t (y) � vn (t + s; y;0) + vn (t + s; X s; � s)
�
�
�
2

� (X s; � s) Q(X s; � s; dy) ds
�

= lim inf
n!1

Ex;#
� Z T � t

0

�
�
�Y x;#

s;t � Y x;#;n
s;t

�
�
�
2

ds
�

+ lim inf
n!1

Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t (y) � Z x;#;n
s;t (y)

�
�
�
2

� (X s; � s) Q(X s; � s; dy) ds
�

= 0
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by (1.43). The above calculations show that (1.40) and (1.41) hold. Moreover, they
imply that

Ex;#
� Z T � t

0
jv(t + s; X s; � s)j2 ds

�

+ Ex;#
� Z T � t

0

Z

E
jv(t + s; y;0) � v(t + s; X s; � s)j2 � (X s; � s) Q(X s; � s; dy) ds

�

= Ex;#
� Z T � t

0

�
�
�Y x;#

s;t

�
�
�
2

ds
�

+ Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t (y)
�
�
�
2

� (X s; � s) Q(X s; � s; dy) ds
�

< 1 ;

that accords to requirement of De�nition 1.4.4.

It remains to show that v satis�es (1.33). This would follow from a passage to
the limit in (1.42), provided we show that

Z T

t
L vn (s; x; # + s � t) ds !

Z T

t
L v(s; x; # + s � t) ds; (1.44)

and
Z T

t
f n (s; x; # + s � t; vn (s; x; # + s � t); vn (s; �; 0) � vn (s; x; # + s � t)) ds

!
Z T

t
f (s; x; # + s � t; v(s; x; # + s � t); v(s; �; 0) � v(s; x; # + s � t)) ds: (1.45)

To prove (1.44), we observe that

Ex;#
�
�
�
�

Z T � t

0
L v(t + s; X s� ; � s� ) ds �

Z T � t

0
L vn (t + s; X s� ; � s� ) ds

�
�
�
�

= Ex;#
�
�
�
�

Z T � t

0

Z

E
(Z x;#

s;t � Z x;#;n
s;t ) � (X s; � s) Q(X s; � s; dy) ds

�
�
�
�

6 (T � t)1=2 sup
(x;# )

p
� (x; #)�

�
�

Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t � Z x;#;n
s;t

�
�
� � (X s; � s) Q(X s; � s; dy) ds

�� 1=2

! 0;

by (1.43). Then, for a subsequence (still denotedvn ) we get
Z T � t

0
L vn (t + s; X s; � s) ds !

Z T � t

0
L v(t + s; X s; � s) ds; Px;# -a.s:

Recalling the law (1.7) of the �rst jump T1, we see that the setf ! 2 
 : T1(! ) > T g
has positive Px;# probability, and on this set we have X s� (! ) = x, � s� (! ) = # + s.
Choosing such an! we have

Z T � t

0
L vn (t + s; x; # + s)ds !

Z T � t

0
L v(t + s; x; # + s)ds;
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i.e., by a translation of t in the temporal line,
Z T

t
L vn (s; x; # + s � t)ds !

Z T

t
L v(s; x; # + s � t)ds:

To show (1.45), we compute

Ex;#
� �
�
�
�

Z T � t

0
f (t + s; X s; � s; Y x;#

s;t ; Z x;#
s;t ) � f n (t + s; X s; � s; Y x;#;n

s;t ; Z x;#;n
s;t )) ds

�
�
�
�

�

6 Ex;#
� Z T � t

0

�
�
� f (t + s; X s; � s; Y x;#

s;t ; Z x;#
s;t ) � f n (t + s; X s; � s; Y x;#

s;t ; Z x;#
s;t )

�
�
� ds

�

+ Ex;#
� Z T � t

0

�
�
� f n (t + s; X s; � s; Y x;#

s;t ; Z x;#
s;t ) � f n (t + s; X s; � s; Y x;#;n

s;t ; Z x;#;n
s;t )

�
�
� ds

�
:

The �rst integral term in the right-hand side tends to zero by monotone convergence.
At this point, we notice that f n is a truncation of f , and therefore it satis�es the
Lipschitz condition (1.13) with the same constants L , L 0, independent of n. This
yields the following estimate for the second integral:

L 0Ex;#
� Z T � t

0

�
�
�Y x;#

s;t � Y x;#;n
s;t

�
�
� ds

�

+ L Ex;#
� Z T � t

0

� Z

E

�
�
�Z x;#

s;t (y) � Z x;#;n
s;t (y)

�
�
�
2

� (X s; � s) Q(X s; � s; dy)
� 1=2

ds
�

6 L 0
�

(T � t) Ex;#
� Z T � t

0

�
�
�Y x;#

s;t � Y x;#;n
s;t

�
�
�
2

ds
�� 1=2

+ L
�

(T � t) Ex;#
� Z T � t

0

Z

E

�
�
�Z x;#

s;t (y) � Z x;#;n
s;t (y)

�
�
�
2

� (X s; � s) Q(X s; � s; dy) ds
� � 1=2

;

which tends to zero, again by (1.43). Considering a subsequence (still denotedvn )
we get, Px;# -a.s.,

Z T � t

0
f n (t + s; X s; � s; vn (t + s; X s; � s); vn (t + s; y;0) � vn (t + s; X s; � s)) ds

!
Z T � t

0
f (t + s; X s; � s; v(t + s; X s; � s); v(t + s; y;0) � v(t + s; X s; � s)) ds:

Choosing also in this case an! in the set f ! 2 
 : T1(! ) > T g, we �nd

Z T � t

0
f n (t + s; x; # + s; vn (t + s; x; # + s); vn (t + s; y;0) � vn (t + s; x; # + s)) ds

!
Z T � t

0
f (t + s; x; # + s; v(t + s; x; # + s); v(t + s; y;0) � v(t + s; x; # + s)) ds;

and a change of temporal variable allows to prove that (1.33) holds, and to conclude
the proof. �
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We �nally introduce the Hamilton-Jacobi-Bellman (HJB) equation associated to
the control problem considered in Section 1.3: for everyt 2 [0; T] and (x; #) 2 S,

v(t; x; # ) = g(x; # + T � t) +
Z T

t
L v(s; x; # + s � t) ds

+
Z T

t
f (s; x; # + s � t; v(s; �; 0) � v(s; x; # + s � t)) ds; (1.46)

where L denotes the operator introduced in (1.32), f is the Hamiltonian function
de�ned by (1.23) and g is the terminal cost. Since (1.46) is a nonlinear Kolmogorov
equation of the form (1.33), we can apply Theorem 1.4.7 and conclude that the value
function and an optimal control law can be represented by means of the HJB solution
v(t; x; # ).

Corollary 1.4.9. Let Hypotheses 1.3.1 and 1.3.5 hold. For every �xedt 2 [0; T],
for every (x; #) 2 S and s 2 [0; T � t], there exists a unique solutionv to the HJB
equation (1.46), satisfying

v(t + s; X s� ; � s� ) = Y x;#
s;t ;

v(t + s; y;0) � v(t + s; X s� ; � s� ) = Z x;#
s;t (y);

where the above equalities are understood as explained in Remark 1.4.8.
In particular an optimal control is given by the formula

u� t;x;#
s 2 �( t + s; X s� ; � s� ; v(t + s; �; 0) � v(t + s; X s� ; � s� )) ;

while the value function coincides withv(t; x; # ), i.e.

J (t; x; #; u � t;x;# (�)) = v(t; x; # ) = Y x;#
0;t :



Chapter 2

Constrained BSDEs
representation of the
value function for
optimal control of pure
jump Markov processes

2.1. Introduction

In this chapter we prove that the value function in a classical optimal control
problem for pure jump Markov processes can be represented by means of an appro-
priate backward stochastic di�erential equation, that we introduce and for which we
prove an existence and uniqueness result.

We start by describing our setting in an informal way. A pure jump Markov
processX in a general measurable state space (E; E) can be described by means of
a rate transition measure, or intensity measure,� (t; x; B ) de�ned for t � 0, x 2 E ,
B 2 E. The process starts at time t � 0 from some initial point x 2 E and stays
there up to a random time T1 such that

P(T1 > s ) = exp
�

�
Z s

t
� (r; x; E ) dr

�
; s � t:

At time T1, the process jumps to a new pointX T1 chosen with probability (condi-
tionally to T1) � (T1; x; �)=� (T1; x; E ) and then it stays again at X T1 up to another
random time T2 such that

P(T2 > s j T1; X T1 ) = exp
�

�
Z s

T1

� (r; X T1 ; E ) dr
�

; s � T1;

and so on.

61
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optimal control of pure jump Markov processes

A controlled pure jump Markov process is obtained starting from a rate measure
� (x; a; B ) de�ned for x 2 E, a 2 A, B 2 E, i.e., depending on a control parameter
a taking values in a measurable space of control actions (A; A). A natural way to
control a Markov process is to choose a feedback control law, which is a measurable
function � : [0; 1 ) � E ! A. � (t; x ) 2 A is the control action selected at time
t if the system is in state x. The controlled Markov processX is simply the one
corresponding to the rate transition measure� (x; � (t; x ); B ). Let us denote by Pt;x

�

the corresponding law, wheret; x are the initial time and starting point.

We note that an alternative construction of (controlled or uncontrolled) Markov
processes consists in de�ning them as solutions to stochastic equations driven by
some noise (for instance, by a Poisson process) and with appropriate coe�cients
depending on a control process. In the context of pure jump processes, our approach
based on the introduction of the controlled rate measure� (x; a; B ) often leads to
more general results and it is more natural in several contexts.

In the classical �nite horizon control problem one seeks to maximize over all
control laws � a functional of the form

J (t; x; � ) = Et;x
�

� Z T

t
f (s; X s; � (s; X s)) ds + g(X T )

�
; (2.1)

where a deterministic �nite horizon T > 0 is given andf; g are given real functions,
de�ned on [0; T] � E � A and E, representing the running cost and the terminal cost,
respectively. The value function of the control problem is de�ned in the usual way:

V (t; x ) = sup
�

J (t; x; � ); t 2 [0; T]; x 2 E: (2.2)

We will only consider the case when the controlled rate measure� and the costs
f; g are bounded. Then, under some technical assumptions,V is known to be the
unique solution on [0; T] � E to the Hamilton-Jacobi-Bellman (HJB) equation

�
� @v

@t(t; x ) = sup a2 A
� R

E (v(t; y) � v(t; x )) � (x; a; dy) + f (t; x; a )
�

;
v(T; x) = g(x);

(2.3)

and if the supremum is attained at some� (t; x ) 2 A depending measurably on (t; x )
then � is an optimal feedback law. Note that the right-hand side of (2.3) is an
integral operator: this allows for easy notions of solutions to the HJB equation, that
do not in particular need the use of the theory of viscosity solutions.

Our purpose is to relate the value functionV (t; x ) to an appropriate BSDE. We
wish to extend to our framework the theory developed in the context of classical
optimal control for di�usion processes, constructed as solutions to stochastic di�er-
ential equations of Ito type driven by Browian motion, where representation formulae
for the solution to the HJB equation exist and are often called non-linear Feyman-
Kac formulae. The majority of those results requires that only the drift coe�cient
of the stochastic equation depends on the control parameter, so that in this case
the HJB equation is a second-order semi-linear partial di�erential equation and the
non-linear Feyman-Kac formula is well known, see e.g. El Karoui, Peng and Quenez
[53]. Generally, in this case the laws of the corresponding controlled processes are
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all absolutely continuous with respect to the law of a given, uncontrolled process, so
that they form a dominated model.

A natural extension to our framework could be obtained imposing conditions
implying that the set of probability laws f Pt;x

� g� , when � varies over all feedback
laws, is a dominated model. This is the point of view taken in Confortola and
Fuhrman [28], where an appropriate BSDE is introduced and solved and a Feyman-
Kac formula for the value function is proved in a restricted framework. This approach
is also considered in Chapter 1 in the case of controlled semi-Markov processes and
in Confortola and Fuhrman [27] in a non-Markovian context.

In the present chapter we want to consider the general case whenf Pt;x
� g� is not

a dominated model. Even for �nite state spaceE, by a proper choice of the measure
� (x; a; B ) it is easy to formulate quite natural control problems for which this is the
case.

In the context of controlled di�usions, probabilistic formulae for the value func-
tion for non-dominated models have been discovered only in recent years. We note
that in this case the HJB equation is a fully non-linear partial di�erential equation.
To our knowledge, there are only a few available techniques. One possibility is to
use the theory of second-order BSDEs, see for instance Cheridito, Soner, Touzi and
Victoir [ 23], and Soner, Touzi and Zhang [124]. Another possibility relies on the
use of the theory ofG-expectations, see e.g. Peng [105]. Both theories have been
largely developed by several authors. In this chapter we rather follow another ap-
proach which is presented in the paper Kharroubi and Pham [88] and was predated
by similar results concerning optimal switching or optimal impuse control problems,
see Elie and Kharroubi [54], [55], [56], Kharroubi, Ma, Pham and Zhang [87], and
followed by some extensions and applications, see Fuhrman and Pham [67], Cosso
and Choukroun [25], and Cosso, Fuhrman and Pham [31]. It consists in a control
randomization method (not to be confused with the use of relaxed controls) which
can be described informally as follows, in our framework of controlled pure jump
Markov processes.

We note that for any choice of a feedback law� the pair of stochastic processes
(X s; � (s; X s)) represents the state trajectory and the associated control process.
In a �rst step, for any initial time t � 0 and starting point x 2 E, we replace
it by an (uncontrolled) Markovian pair of pure jump stochastic processes (X s; I s),
possibly constructed on a di�erent probability space, in such a way that the process
I is a Poisson process with values in the space of control actionsA with an intensity
measure� 0(da) which is arbitrary but �nite and with full support. Next we formulate
an auxiliary optimal control problem where we control the intensity of the process
I : for any predictable, bounded and positive random �eld � t (a), by means of a
theorem of Girsanov type we construct a probability measureP� under which the
compensator ofI is the random measure� t (a) � 0(da) dt (under P� the law of X also
changes) and then we maximize the functional

E�

�
g(X T ) +

Z T

t
f (s; X s; I s) ds

�
;
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over all possible choices of the process� . Following the terminology of [88], this
will be called the dual control problem. Its value function, denoted V � (t; x; a ), also
dependsa priori on the starting point a 2 A of the processI (in fact we should write
Pt;x;a

� instead of P� , but in this discussion we drop this dependence for simplicity)
and the family f P� g� is a dominated model. As in [88] we are able to show that the
value functions for the original problem and the dual one are the same:V (t; x ) =
V � (t; x; a ), so that the latter does not in fact depend on a. In particular we have
replaced the original control problem by a dual one that corresponds to a dominated
model and has the same value function. Moreover, we can introduce a well-posed
BSDE that represents V � (t; x; a ) (and henceV(t; x )). It is an equation on the time
interval [ t; T ] of the form

Ys = g(X T ) +
Z T

s
f (r; X r ; I r ) dr + K T � K s

�
Z T

s

Z

E � A
Zr (y; b) q(dr dy db) �

Z T

s

Z

A
Zr (X r ; b) � 0(db) dr; (2.4)

with unknown triple ( Y; Z; K ) (depending also on (t; x; a )), where q is the compen-
sated random measure associated to (X; I ), Z is a predictable random �eld and K a
predictable increasing c�adl�ag process, where we additionally add the sign constraint

Zs(X s� ; b) 6 0: (2.5)

It turns out that this equation has a unique minimal solution, in an appropriate
sense, and that the value of the processY at the initial time represents both the
original and the dual value function:

Yt = V(t; x ) = V � (t; x; a ): (2.6)

This is the desired BSDE representation of the value function for the original control
problem and a Feyman-Kac formula for the general HJB equation (2.3).

The chapter is organized as follows. Section 2.2 is essentially devoted to lay
down a setting where the classical optimal control problem (2.2) is solved by means
of the corresponding HJB equation (2.3). We �rst recall the general construction of
a Markov process given its rate transition measure. Having in mind to apply tech-
niques based on BSDEs driven by random measures we need to work in a canonical
setting and use a speci�c �ltration, see Remark 2.2.2. Therefore the construction
we present is based on the well-posedness of the martingale problem for multivariate
(marked) point processes studied in Jacod [75] and it is exposed in detail. This
general construction is then used to formulate in a precise way the optimal control
problem for the jump Markov process and it is used again in the subsequent section
when we de�ne the pair (X; I ) mentioned above. Still in Section 2.2, we present
classical results on existence and uniqueness of the solution to the HJB equation
(2.3) and its identi�cation with the value function v. These results are similar to
those in Pliska [108], a place where we could �nd a clear and complete exposition
of all the basic theory and to which we refer for further references and related re-
sults. We note that the compactness of the space of control actionsA, together with
suitable upper-semicontinuity conditions of the coe�cients of the control problem,
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is one of the standard assumptions needed to ensure the existence of an optimal
control, which is usually constructed by means of an appropriate measurable selec-
tion theorem. Since our main aim was only to �nd a representation formula for
the value function we wished to avoid the compactness condition. This was made
possible by the use of a di�erent measurable selection result, that however requires
lower-semicontinuity conditions. Although this is not usual in the context of maxi-
mization problems, this turned out to be the right condition that allows to dispense
with compactness assumptions and to prove well-posedness of the HJB equation and
a veri�cation theorem. A small variation of the proofs recovers the classical results
in [108], and even with slightly weaker assumptions: see Remark 2.2.12 for a more
detailed comparison.

In Section 2.3 we start to develop the control randomization method: we in-
troduce the auxiliary process (X; I ) and formulate the dual control problem under
appropriate conditions. Finding the correct formulation required some e�orts; in
particular we could not mimic the approach of previous works on control randomiza-
tion mentioned above, since we are not dealing with processes de�ned as solutions
to stochastic equations.

In Section 2.4 we introduce the constrained BSDE (2.4)-(2.5) and we prove,
under suitable conditions, that it has a unique minimal solution (Y; Z; K ) in a cer-
tain class of processes. Moreover, the value ofY at the initial time coincides with
the value function of the dual optimal control problem. This is the content of the
�rst of our main results, Theorem 2.4.3. The proof relies on a penalization ap-
proach and a monotonic passage to the limit, and combines BSDE techniques with
control-theoretic arguments: for instance, a \penalized" dual control problem is also
introduced in order to obtain certain uniform upper bounds. In [88], in the context
of di�usion processes, a more general result is proved, in the sense that the genera-
tor f may also depend on (Y; Z); similar generalizations are possible in our context
as well, but they seem less motivated and in any case they are not needed for the
applications to optimal control.

Finally, in Section 2.5 we prove the second of our main results, Theorem 2.5.1.
It states that the initial value of the process Y in (2.4)-(2.5) coincides with the value
function v(t; x ). As a consequence, the value function is the same for the original
optimal control problem and for the dual one and we have the non-linear Feynman-
Kac formula (2.6).

The assumptions in Theorem 2.5.1 are fairly general: the state spaceE and
the control action spaceA are Borel spaces, the controlled kernel� is bounded and
has the Feller property, and the cost functions f; g are continuous and bounded.
No compactness assumption is required. WhenE is �nite or countable we have
the special case of (continuous-time) controlled Markov chains. A large class of
optimization problems for controlled Markovian queues falls under the scope of our
result.

In recent years there has been much interest in numerical approximation of the
value function in optimal control of Markov processes, see for instance the book Guo
and H�ernandez-Lerma [72] in the discrete state case. The Feynman-Kac formula
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(2.6) can be used to design algorithms based on numerical approximation of the
solution to the constrained BSDE (2.4)-(2.5). Numerical schemes for this kind of
equations have been proposed and analyzed in the context of di�usion processes, see
Kharroubi, Langren�e and Pham [86], [85]. We hope that the results in the present
chapter may be used as a foundation for similar methods in the context of pure jump
processes as well.

2.2. Pure jump controlled Markov processes

2.2.1. The construction of a jump Markov process given the rate tran-
sition measure. Let E be a Borel space, i.e., a topological space homeomorphic
to a Borel subset of a compact metric space (some authors call it a Lusin space);
in particular, E could be a Polish space. LetE denote the corresponding Borel
� -algebra.

We will often need to construct a Markov process inE with a given (time de-
pendent) rate transition measure, or intensity measure, denoted by� . With this
terminology we mean that B 7! � (t; x; B ) is a nonnegative measure on (E; E) for
every (t; x ) 2 [0; 1 ) � E and (t; x ) 7! � (t; x; B ) is a Borel measurable function on
[0; 1 ) � E for every B 2 E. We assume that

sup
t � 0; x2 E

� (t; x; E ) < 1 : (2.7)

We recall the main steps in the construction of the corresponding Markov process.
We note that (2.7) allows to construct a non-explosive process. Since� depends on
time the process will not be time-homogeneous in general. Although the existence
of such a process is a well known fact, we need special care in the choice of the cor-
responding �ltration, since this will be crucial when we solve associated BSDEs and
implicitly apply a version of the martingale representation theorem in the sections
that follow: see also Remark 2.2.2 below. So in the following we will use an explicit
construction that we are going to describe. Many of the techniques we are going to
use are borrowed from the theory of multivariate (marked) point processes. We will
often follow [75], but we also refer the reader to the treatise Brandt and Last [17]
for a more systematic exposition.

We start by constructing a suitable sample space to describe the jumping mech-
anism of the Markov process. Let 
0 denote the set of sequences! 0 = ( tn ; en )n� 1

in ((0 ; 1 ) � E ) [ f (1 ; �) g, where � =2 E is adjoined to E as an isolated point,
satisfying in addition

tn � tn+1 ; tn < 1 =) tn < t n+1 : (2.8)

To describe the initial condition we will use the measurable space (E; E). Finally,
the sample space for the Markov process will be 
 = E � 
 0. We de�ne canonical
functions Tn : 
 ! (0; 1 ], En : 
 ! E [ f � g as follows: writing ! = ( e; ! 0) in the
form ! = ( e; t1; e1; t2; e2; : : :) we set for t � 0 and for n � 1

Tn (! ) = tn ; En (! ) = en ; T1 (! ) = lim
n!1

tn ; T0(! ) = 0 ; E0(! ) = e:
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We also de�ne X : 
 � [0; 1 ) ! E [ f � g setting

X t =

(
1[0;T1 ](t) E0 +

P
n� 1 1(Tn ;Tn +1 ](t) En for t < T 1 ;

� for t � T1 :

X t = 1 [0;T1 ](t) E0 +
P

n� 1 1(Tn ;Tn +1 ](t) En for t < T 1 , X t = � for t � T1 .

In 
 we introduce for all t � 0 the � -algebrasGt = � (N (s; A) : s 2 (0; t]; A 2 E),
i.e. generated by the counting processes de�ned asN (s; A) =

P
n� 1 1Tn � s1En 2 A .

To take into account the initial condition we also introduce the �ltration F =
(Ft )t � 0, where F0 = E 
 f; ; 
 0g, and for all t � 0 Ft is the � -algebra generated
by F0 and Gt . F is right-continuous and will be called the natural �ltration. In
the following all concepts of measurability for stochastic processes (adaptedness,
predictability etc.) refer to F. We denote by F1 the � -algebra generated by all
the � -algebrasFt . The symbol P denotes the� -algebra of F-predictable subsets of
[0; 1 ) � 
.

The initial distribution of the process X will be described by a probability mea-
sure � on (E; E). Since F0 = f A � 
 0 : A 2 Eg is isomorphic to E, � will be
identi�ed with a probability measure on F0, denoted by the same symbol (by abuse
of notation) and such that � (A � 
 0) = � (A).

On the �ltered sample space (
 ; F) we have so far introduced the canonical
marked point process (Tn ; En )n� 1. The corresponding random measurep is, for any
! 2 
, a � -�nite measure on ((0; 1 ) � E; B((0; 1 )) 
 E) de�ned as

p(!; ds dy ) =
X

n� 1

1Tn (! )< 1 � (Tn (! );E n (! )) (ds dy);

where � k denotes the Dirac measure at pointk 2 (0; 1 ) � E .

Now let � denote a time-dependent rate transition measure as before, satisfying
(2.7). We need to introduce the corresponding generator and transition semigroup
as follows. We denote byBb(E ) the space ofE-measurable bounded real functions
on E and for � 2 Bb(E ) we set

L t � (x) =
Z

E
(� (y) � � (x)) � (t; x; dy ); t � 0; x 2 E:

For any T 2 (0; 1 ) and g 2 Bb(E ) we consider the Kolmogorov equation on [0; T]� E :
� @v

@s(s; x) + L sv(s; x) = 0 ;
v(T; x) = g(x):

(2.9)

It is easily proved that there exists a unique measurable bounded functionv : [0; T]�
E such that v(T; �) = g on E and, for all x 2 E , s 7! v(s; x) is an absolutely
continuous map on [0; T] and the �rst equation in (2.9) holds for almost all s 2 [0; T]
with respect to the Lebesgue measure. To verify this we �rst write (2.9) in the
equivalent integral form

v(s; x) = g(x) +
Z T

s
L r v(r; x ) dr; s 2 [0; T]; x 2 E:
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Then, noting the inequality jL t � (x)j � 2 supy2 E j� (y)j supt2 [0;T ];y2 E � (t; y; E ), a so-
lution to the latter equation can be obtained by a standard �xed point argument
in the space of bounded measurable real functions on [0; T] � E endowed with the
supremum norm.

This allows to de�ne the transition operator PsT : Bb(E ) ! Bb(E ), for 0 � s �
T, letting PsT [g](x) = v(s; x), where v is the solution to (2.9) with terminal condition
g 2 Bb(E ).

Proposition 2.2.1. Let (2.7) hold and let us �x t 2 [0; 1 ) and a probability measure
� on (E; E).

(1) There exists a unique probability measure on(
 ; F1 ), denoted byPt;� , such
that its restriction to F0 is � and the F-compensator (or dual predictable
projection) of the measurep under Pt;� is the random measure~p(ds dy) :=
1[t;T 1 ) (s) � (s; X s� ; dy) ds. Moreover, Pt;� (T1 = 1 ) = 1 .

(2) In the probability space f 
 ; F1 ; Pt;� g the processX has distribution � at
time t and it is Markov on the time interval [t; 1 ) with respect to F with
transition operator PsT : explicitly, for every t � s � T and for every
g 2 Bb(E ),

Et;� [g(X T ) j Fs] = PsT [g](X s); Pt;� � a:s:

Proof. Point 1 follows from a direct application of [75], Theorem 3.6. The non-
explosion condition Pt;� (T1 = 1 ) = 1 follows from the fact that � is bounded.

To prove point 2 we denotev(s; x) = PsT [g](x) the solution to the Kolmogorov
equation (2.9) and note that

v(T; X T ) � v(s; X s) =
Z T

s

@v
@r

(r; X r ) dr +
Z

(s;T ]

Z

E
(v(r; y ) � v(r; X r � )) p(dr dy):

This identity is easily proved taking into account that X is constant among jump
times and using the de�nition of the random measurep. Recalling the form of the
F-compensator ~p of p under Pt;� we have,Pt;� -a.s.,

Et;�
hR

(s;T ]

R
E (v(r; y ) � v(r; X r � )) p(dr dy) j Fs

i

= Et;�
hR

(s;T ]

R
E (v(r; y ) � v(r; X r � )) ~p(dr dy) j Fs

i

= Et;�
hR

(s;T ]

R
E (v(r; y ) � v(r; X r )) � (r; X r ; dy) dr j Fs

i

= Et;�
hR

(s;T ] L r v(r; X r ) dr j Fs

i

and we �nally obtain

Et;� [g(X T ) j Fs] � PsT [g](X s) = Et;� [v(T; X T ) j Fs] � v(s; X s)

= Et;�
hRT

s

�
@v
@r(r; X r ) + L r v(r; X r )

�
dr j Fs

i
= 0 :

�

In the following we will mainly consider initial distributions � concentrated at
some point x 2 E, i.e. � = � x . In this case we use the notationPt;x rather than
Pt;� x . Note that, Pt;x -a.s., we haveT1 > t and therefore X s = x for all s 2 [0; t].
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Remark 2.2.2. Since the processX is F-adapted, its natural �ltration FX =
(FX

t )t � 0 de�ned by FX
t = � (X s : s 2 [0; t]) is smaller than F. The inclusion may be

strict, and may remain such if we consider the corresponding completed �ltrations.
The reason is that the random variablesEn and En+1 introduced above may coincide
on a set of positive probability, for somen, and therefore knowledge of a trajectory
of X does not allow to reconstruct the trajectory (Tn ; En ).

In order to have Fs = FX
s up to Pt;� -null sets one could require that� (t; x; f xg) =

0, i.e. that Tn are in fact jump times of X , but this would impose unnecessary
restrictions in some constructs that follow.

Clearly, the Markov property with respect to F implies the Markov property with
respect to FX as well.

2.2.2. Optimal control of pure jump Markov processes. In this section we
formulate and solve an optimal control problem for a Markov process with a state
spaceE, which is still assumed to be a Borel space with its Borel� -algebra E. The
other data of the problem will be another Borel spaceA, endowed with its Borel
� -algebra A and called the space of control actions; a �nite time horizon, i.e. a
(deterministic) element T 2 (0; 1 ); two real valued functions f and g, de�ned on
[0; T] � E � A and E and called running and terminal cost functions respectively;
and �nally a measure transition kernel � from (E � A; E 
 A) to ( E; E): namely
B 7! � (x; a; B ) is a nonnegative measure on (E; E) for every (x; a) 2 E � A and
(x; a) 7! � (x; a; B ) is a Borel measurable function for everyB 2 E. We assume that
� satis�es the following condition:

sup
x2 E;a2 A

� (x; a; E ) < 1 : (2.10)

The requirement that � (x; a; f xg) = 0 for all x 2 E and a 2 A is natural in many
applications, but it is not needed. The kernel � depending on the control parameter
a 2 A plays the role of a controlled intensity measure for a controlled Markov process.
Roughly speaking, we may control the dynamics of the process by changing its jump
intensity dynamically. For a more precise de�nition, we �rst construct 
, F =
(Ft )t � 0, F1 as in the previous paragraph. Then we introduce the class of admissible
control laws Aad as the set of all Borel-measurable maps� : [0; T] � E ! A. To any
such � we associate the rate transition measure� � (t; x; dy ) := � (x; � (t; x ); dy).

For every starting time t 2 [0; T] and starting point x 2 E, and for each� 2 Aad,
we construct as in the previous paragraph the probability measure on (
; F1 ), that
will be denoted Pt;x

� , corresponding tot, to the initial distribution concentrated at x
and to the the rate transition measure� � . According to Proposition 2.2.1, underPt;x

�

the processX is Markov with respect to F and satis�es X s = x for every s 2 [0; T];
moreover, the restriction of the measurep to ( t; 1 ) � E admits the compensator
� (X s� ; � (s; X s� ); dy) ds. Denoting by Et;x

� the expectation under Pt;x
� we �nally

de�ne, for t 2 [0; T], x 2 E and � 2 Aad, the gain functional

J (t; x; � ) = Et;x
�

� Z T

t
f (s; X s; � (s; X s)) ds + g(X T )

�
; (2.11)
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and the value function of the control problem

V(t; x ) = sup
� 2 Aad

J (t; x; � ): (2.12)

Since we will assume below thatf and g are at least Borel-measurable and bounded,
both J and V are well de�ned and bounded.

Remark 2.2.3. In this formulation the only control strategies that we consider are
control laws of feedback type, i.e., the control action� (t; x ) at time t only depends
on t and on the statex for the controlled system at the same time. This is a natural
and frequently adopted formulation. Di�erent formulations are possible, but usually
the corresponding value function is the same and, if an optimal control exists, it is
of feedback type.

Remark 2.2.4. All the results that follows admit natural extensions to slightly
more general cases. For instance,� might depend on time, or the set of admissible
control actions may depend on the present state (so admissible control laws should
satisfy � (t; x ) 2 A(x), where A(x) is a given subset ofA) provided appropriate
measurability conditions are satis�ed. We limit ourselves to the previous setting in
order to simplify the notation.

Let us consider the Hamilton-Jacobi-Bellman equation (for short, HJB equa-
tion) related to the optimal control problem: this is the following nonlinear integro-
di�erential equation on [0 ; T] � E :

�
@v
@t

(t; x ) = sup
a2 A

(L a
E v(t; x ) + f (t; x; a )) ; (2.13)

v(T; x) = g(x); (2.14)

where the operatorL a
E is de�ned by

L a
E � (x) =

Z

E
(� (y) � � (x)) � (x; a; dy) (2.15)

for all ( t; x; a ) 2 [0; T] � E � A and every bounded Borel-measurable function� :
E ! R.

De�nition 2.2.5. We say that a Borel-measurable bounded functionv : [0; T] �
E ! R is a solution to the HJB equation if the right-hand side of (2.13) is Borel-
measurable and, for everyx 2 E, (2.14) holds, the mapt 7! v(t; x ) is absolutely
continuous in [0; T] and (2.13) holds almost everywhere on[0; T] (the null set of
points where it possibly fails may depend onx).

In the analysis of the HJB equation and the control problem we will use the
following function spaces, de�ned for any metric spaceS:

(1) Cb(S) = f � : S ! R continuous and boundedg,

(2) LSCb(S) = f � : S ! R lower semi-continuous and boundedg.

(3) USCb(S) = f � : S ! R upper semi-continuous and boundedg.
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Cb(S), equipped with the supremum norm k� k1 , is a Banach space.LSCb(S) and
USCb(S) are closed subsets ofCb(S), hence complete metric spaces with the induced
distance.

In the sequel we need the following classical selection theorem. For a proof we
refer for instance to Bertsekas and Shreve [15], Propositions 7.33 and 7.34, where a
more general statement can also be found.

Proposition 2.2.6. Let U be a metric space,V a metric separable space. For
F : U � V ! R set

F � (u) = sup
v2 V

F (u; v); u 2 U:

(1) If F 2 USCb(U � V ) and V is compact thenF � 2 USCb(U) and there exists
a Borel-measurable� : U ! V such that

F (u; � (u)) = F � (u); u 2 U:

(2) If F 2 LSCb(U � V ) then F � 2 LSCb(U) and for every � > 0 there exists
a Borel-measurable� � : U ! V such that

F (u; � � (u)) � F � (u) � �; u 2 U:

Next we present a well-posedness result and a veri�cation theorem for the HJB
equation in the spaceLSCb([0; T] � E ), Theorems 2.2.7 and 2.2.10 below. The use of
lower semi-continuous bounded functions was already commented in the introduction
and will be useful for the results in Section 2.5. A small variation of our arguments
also yields corresponding results in the class of upper semi-continuous functions,
which are more natural when dealing with a maximization problem, see Theorems
2.2.8 and 2.2.11 that slightly generalize classical results. We �rst formulate the
assumptions we need.

� is a Feller transition kernel. (2.16)

We recall that this means that for every � 2 Cb(E ) the function ( x; a) !
R

E � (y)
� (x; a; dy) is continuous (hence it belongs toCb(E � A) by (2.10)).

Next we will assume either that

f 2 LSCb([0; T] � E � A); g 2 LSCb(E ); (2.17)

or

f 2 USCb([0; T]� E � A); g 2 USCb(E ) and A is a compact metric space: (2.18)

Theorem 2.2.7. Under the assumptions(2.10), (2.16), (2.17) there exists a unique
solution v 2 LSCb([0; T] � E ) to the HJB equation (in the sense of De�nition 2.2.5).

Proof. We �rst make a change of unknown function setting ~v(t; x ) = e� � t v(t; x ),
where � := sup x2 E;a2 A � (x; a; E ) is �nite by (2.10). It is immediate to check that v
is a solution to (2.13)-(2.14) if and only if ~v is a solution to

�
@~v
@t

(t; x ) = sup
a2 A

�
L a

E ~v(t; x ) + e� � t f (t; x; a ) + �~v(t; x )
�

(2.19)
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= sup
a2 A

� Z

E
~v(t; y) � (x; a; dy) + (� � � (x; a; E ))~v(t; x ) + e� � t f (t; x; a )

�
;

~v(T; x) = e� � T g(x): (2.20)

The notion of solution we adopt for (2.19)-(2.20) is completely analogous to De�-
nition 2.2.5 and need not be repeated. We set �~v(t; x ) :=

RT
t supa2 A  ~v(s; x; a) ds

where

 ~v(t; x; a ) :=
Z

E
~v(t; y) � (x; a; dy) + (� � � (x; a; E ))~v(t; x ) + e� � t f (t; x; a ) (2.21)

and note that solving (2.19)-(2.20) is equivalent to �nding ~v 2 LSCb([0; T] � E )
satisfying

~v(t; x ) = g(x) + � ~v(t; x ); t 2 [0; T]; x 2 E:

We will prove that ~v 7! g + � ~v is a well de�ned map of LSCb([0; T] � E ) into itself
and it has a unique �xed point, which is therefore the required solution.

Fix ~v 2 LSCb([0; T] � E ). It follows easily from (2.10) that  ~v is bounded and,
if supa2 A  ~v(�; �; a) is Borel-measurable, �~v is bounded as well. Next we prove that
 ~v and � ~v are lower semi-continuous. Note that (x; a) 7! � � � (x; a; E ) continuous
and nonnegative (this is the reason why we introduced the equation for ~v), so

(t; x; a ) 7! (� � � (x; a; E ))~v(t; x ) + e� � t f (t; x; a )

is in LSCb([0; T] � E � A). Since � is Feller, it is known that the map

(t; x; a ) 7!
Z

E
~v(t; y) � (x; a; dy) (2.22)

is continuous when ~v 2 Cb([0; T] � E ) (see [15], Proposition 7.30). For general
~v 2 LSCb([0; T] � E ), there exists a uniformly bounded and increasing sequence
~vn 2 Cb([0; T] � E ) such that ~vn ! ~v pointwise (see [15], Lemma 7.14). From
the Fatou Lemma we deduce that the map (2.22) is inLSCb([0; T] � E � A) and
we conclude that  ~v 2 LSCb([0; T] � E � A) as well. Therefore supa2 A  ~v(�; �; a),
which equals the right-hand side of (2.19), is lower semi-continuous and hence Borel-
measurable. To prove lower semi-continuity of �~v suppose (tn ; xn ) ! (t; x ); then

� ~v(tn ; xn ) � � ~v(t; x ) =
Z t

tn

sup
a2 A

 ~v(s; xn ; a) ds

+
Z T

t
(sup
a2 A

 ~v(s; xn ; a) � sup
a2 A

 ~v(s; x; a)) ds

� �j t � tn j k ~vk1 +
Z T

t
(sup
a2 A

 ~v(s; xn ; a) � sup
a2 A

 ~v(s; x; a)) ds:

By the Fatou Lemma

lim inf
n!1

� ~v(tn ; xn ) � � ~v(t; x ) �
Z T

t
lim inf
n!1

(sup
a2 A

 ~v(s; xn ; a) � sup
a2 A

 ~v(s; x; a)) ds � 0;

where in the last inequality we have used the lower semi-continuity of supa2 A  ~v(�; �; a).
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Since we assume thatg 2 LSCb(E ) we have thus checked that ~v 7! g + � ~v maps
LSCb([0; T] � E ) into itself. To prove that it has a unique �xed point we note the
easy estimate based on (2.10), valid for every ~v0; ~v002 LSCb([0; T] � E ):

jsupa2 A  ~v0(t; x; a ) � supa2 A  ~v00(t; x; a )j � supa2 A j ~v0(t; x; a ) �  ~v00(t; x; a )j
� supa2 A

� R
E j~v0(t; y) � ~v00(t; y)j � (x; a; dy) + j~v0(t; x ) � ~v00(t; x )j � (x; a; E )

�

� 2� k~v0� ~v00k1 :

By a standard technique one proves that a suitable iteration of the map ~v 7! g + � ~v

is a contraction with respect to the distance induced by the supremum norm, and
hence that map has a unique �xed point. �

Theorem 2.2.8. Under the assumptions(2.10), (2.16), (2.18) there exists a unique
solution v 2 USCb([0; T] � E ) to the HJB equation.

Proof. The proof is almost the same as in the previous Theorem, replacingLSCb

with USCb with obvious changes. We introduce ~v,  ~v and � ~v as before and we
prove in particular that  ~v 2 USCb([0; T] � E � A). The only di�erence is that
we can not immediately conclude that supa2 A  ~v(�; �; a) is upper semi-continuous as
well. However, at this point we can apply point 1 of Proposition 2.2.6 choosing
U = [0 ; T] � E , V = A and F =  ~v and we deduce that in fact supa2 A  ~v(�; �; a) 2
USCb([0; T] � E ). The rest of the proof is the same. �

Corollary 2.2.9. Under the assumptions(2.10), (2.16), if f 2 Cb([0; T] � E � A),
g 2 Cb(E ) and A is a compact metric space then the solutionv to the HJB equation
belongs toCb([0; T] � E ).

The Corollary follows immediately from the two previous results. We proceed to
a veri�cation theorem for the HJB equation.

Theorem 2.2.10. Under the assumptions(2.10), (2.16), (2.17) the unique solution
v 2 LSCb([0; T] � E ) to the HJB equation coincides with the value functionV .

Proof. Let us �x ( t; x ) 2 [0; T] � E . As in the proof of Proposition 2.2.1 we have
the identity

g(X T ) � v(t; X t ) =
Z T

t

@v
@r

(r; X r ) dr +
Z

(t;T ]

Z

E
(v(r; y ) � v(r; X r � )) p(dr dy);

which follows from the absolute continuity of t 7! v(t; x ), taking into account that
X is constant among jump times and using the de�nition of the random measurep.
Given an arbitrary admissible control � 2 Aad we take the expectation with respect
to the corresponding probability Pt;x

� . Recalling that the compensator underPt;x is
1[t;1 ) (s)� (X s� ; � (s; X s� ); dy) ds we obtain

Et;x
� [g(X T )] � v(t; X t ) =

Z T

t

@v
@r

(r; X r ) dr

+
Z

(t;T ]

Z

E
(v(r; y ) � v(r; X r � )) � (X r � ; � (r; X r � ); dy) dr
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=
Z T

t

�
@v
@r

(r; X r ) + L � (r;X r )
E v(r; X r )

�
dr:

Adding Et;x
�

RT
t f (r; X r ; � (r; X r )) dr to both sides and rearranging terms we obtain

v(t; x ) = J (t; x; � ) � Et;x
�

Z T

t

�
@v
@r

(r; X r ) + L � (r;X r )
E v(r; X r ) + f (r; X r ; � (r; X r ))

�
dr:

(2.23)
Recalling the HJB equation and taking into account that X has piecewise constant
trajectories we conclude that the term in curly brackets f : : :g is nonpositive and
therefore we havev(t; x ) � J (t; x; � ) for every admissible control.

Now we recall that in the proof of Theorem 2.2.7 we showed that the function
 ~v de�ned in (2.21) belongs to LSCb([0; T] � E � A). Therefore the function

F (t; x; a ) := e� t  ~v(t; x; a ) = L a
E v(t; x ) + f (t; x; a ) + � v(t; x )

is also lower semi-continuous and bounded. Applying point 2 of Proposition 2.2.6
with U = [0 ; T] � E and V = A we see that for every� > 0 there exists a Borel-
measurable� � : [0; T] � E ! A such that F (t; x; � � (t; x )) � inf a2 A F (t; x; a ) � � for
all t 2 [0; T], x 2 E . Taking into account the HJB equation we conclude that for
every x 2 E we have

L � � (t;x )
E v(t; x ) + f (t; x; � � (t; x )) � �

@v
@t

(t; x ) � �

for almost all t 2 [0; T]. Noting that � � is an admissible control and choosing
� = � � in (2.23) we obtain v(t; x ) � J (t; x; � � ) + � (T � t). Since we know that
v(t; x ) � J (t; x; � ) for every � 2 Aad we conclude that v coincides with the value
function V . �

Theorem 2.2.11. If assumptions (2.10), (2.16), (2.18) hold, then the unique solu-
tion v 2 USCb([0; T] � E ) to the HJB equation coincides with the value functionV .
Moreover there exists an optimal control� , which is given by any function satisfying

L � (t;x )
E v(t; x ) + f (t; x; � (t; x )) = sup

a2 A
(L a

E v(t; x ) + f (t; x; a )) : (2.24)

Proof. We proceed as in the previous proof, but we can now apply point 2 of
Proposition 2.2.6 to the function F and deduce that there exists a Borel-measurable
� : [0; T] � E ! A such that (2.24) holds. Any such control � is optimal: in fact we
obtain for every x 2 E,

L � (t;x )
E v(t; x ) + f (t; x; � (t; x )) = �

@v
@t

(t; x )

for almost all t 2 [0; T] and sov(t; x ) = J (t; x; � ). �

Remark 2.2.12. As already mentioned, Theorems 2.2.8 and 2.2.11 are similar to
classical results: compare for instance [108], Theorems 10, 12, 13, 14. In that paper
the author solves the HJB equations by means of a general result on nonlinear semi-
groups of operators, and for this he requires some more functional-analytic structure,
for instance he embeds the set of decision rules into a properly chosen topological
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vector space. He also has more stringent conditions of the kernel� , for instance
� (x; a; B ) should be strictly positive and continuous in (x; a) for each �xed B 2 E.

2.3. Control randomization and dual optimal control problem

In this section we start to implement the control randomization method. In the
�rst step, for any initial time t � 0 and starting point x 2 E, we construct an
(uncontrolled) Markovian pair of pure jump stochastic processes (X; I ) with values
in E � A, by specifying its rate transition measure � as in (2.27) below. Next we
formulate an auxiliary optimal control problem where, roughly speaking, we optimize
a cost functional by modifying the intensity of the processI over a suitable family.
This \dual" control problem will be studied in Section 2.4 by an approach based on
BSDEs. In Section 2.5 we will prove that the dual value function coincides with the
one introduced in the previous section.

2.3.1. A dual control system. Let E , A be Borel spaces with corresponding Borel
� -algebras E, A and let � be a measure transition kernel from (E � A; E 
 A) to
(E; E) as before. As another basic datum we suppose we are given a �nite measure
� 0 on (A; A) with full topological support, i.e., it is strictly positive on any non-
empty open subset ofA. Note that since A is metric separable such a measure can
always be constructed, for instance supported on a dense discrete subset ofA. We
still assume (2.10), so we formulate the following assumption:

(H � ) � 0 is a �nite measure on (A; A) with full topological support and � satis�es

sup
x2 E;a2 A

� (x; a; E ) < 1 : (2.25)

We wish to construct a Markov process as in section 2.2.1, but with state space
E � A. Accordingly, let 
 0 denote the set of sequences! 0 = ( tn ; en ; an )n� 1 contained
in ((0 ; 1 ) � E � A) [ f (1 ; � ; � 0)g, where � =2 E (respectively, � 0 =2 A) is adjoined
to E (respectively, to A) as an isolated point, satisfying (2.8) In the sample space

 = E � A � 
 0 we de�ne Tn : 
 ! (0; 1 ], En : 
 ! E [ f � g, An : 
 ! A [ f � 0g, as
follows: writing ! = ( e; a; ! 0) in the form ! = ( e; a; t1; e1; t2; e2; : : :) we set for t � 0
and for n � 1

Tn (! ) = tn ; T1 (! ) = lim n!1 tn ; T0(! ) = 0 ;
En (! ) = en ; An (! ) = an ; E0(! ) = e; A0(! ) = a:

We also de�ne processesX : 
 � [0; 1 ) ! E [ f � g, I : 
 � [0; 1 ) ! A [ f � 0g
setting

X t = 1 [0;T1 ](t) E0 +
X

n� 1

1(Tn ;Tn +1 ](t) En ; I t = 1 [0;T1 ](t) A0 +
X

n� 1

1(Tn ;Tn +1 ](t) An ;

for t < T 1 , X t = � and I t = � 0 for t � T1 .

In 
 we introduce for all t � 0 the � -algebrasGt = � (N (s; B) : s 2 (0; t]; B 2
E 
 A) generated by the counting processesN (s; B) =

P
n� 1 1Tn � s1(En ;A n )2 B and

the � -algebra Ft generated by F0 and Gt , where F0 := E 
 A 
 f; ; 
 0g. We still
denoteF = ( Ft )t � 0 and P the corresponding �ltration and predictable � -algebra. By
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abuse of notation we also denote by the same symbol the trace ofP on subsets of
the form [0; T] � 
 or [ t; T ] � 
, for deterministic times 0 � t � T < 1 .

The random measurep is now de�ned on (0; 1 ) � E � A as

p(ds dy db) =
X

n2 N

1f Tn < 1g � f Tn ;E n ;A n g(ds dy db): (2.26)

By means of� and � 0 satisfying assumption(H � ) we de�ne a (time-independent)
rate transition measure onE � A given by

�( x; a; dy db) = � (x; a; dy) � a(db) + � 0(db) � x (dy): (2.27)

and the corresponding generatorL :

L ' (x; a) :=
Z

E � A
(' (y; b) � ' (x; a)) �( x; a; dy db) (2.28)

=
Z

E
(' (y; a) � ' (x; a)) � (x; a; dy) +

Z

A
(' (x; b) � ' (x; a)) � 0(db);

for all ( x; a) 2 E � A and every function ' 2 Bb(E � A).

Given any starting time t � 0 and starting point ( x; a) 2 E � A, an application of
Proposition 2.2.1 provides a probability measure on (
; F1 ), denoted by Pt;x;a , such
that ( X; I ) is a Markov process on the time interval [t; 1 ) with respect to F with
transition probabilities associated to L . Moreover, Pt;x;a -a.s., X s = x and I s = a for
all s 2 [0; t]. Finally, the restriction of the measure p to ( t; 1 ) � E � A admits as
F-compensator underPt;x;a the random measure

~p(ds dy db) := � 0(db) � f X s� g(dy) ds + � (X s� ; I s� ; dy) � f I s� g(db) ds:

We denoteq := p � ~p the compensated martingale measure associated top.

Remark 2.3.1. Note that �( x; a; f x; ag) = � 0(f ag) + � (x; a; f xg). So even if we
assumed that � (x; a; f xg) = 0, in general the rate measure � would not satisfy the
corresponding condition �( x; a; f x; ag) = 0. We remark that imposing the additional
requirement that � 0(f ag) = 0 is too restrictive since, due to the assumption that
� 0 has full support, it would rule out the important case when the space of control
actions A is �nite or countable.

2.3.2. The dual optimal control problem. We introduce a dual control problem
associated to the process (X; I ) and formulated in a weak form. For �xed ( t; x; a ),
it consists in de�ning a family of probability measures f Pt;x;a

� ; � 2 Vg in the space
(
 ; F1 ), all absolutely continuous with respect to Pt;x;a , whose e�ect is to change
the stochastic intensity of the process (X; I ) (more precisely, under eachPt;x;a

� the
compensator of the associated point process takes a desired form), with the aim of
maximizing a cost depending onf; g . We note that f Pt;x;a

� ; � 2 Vg is a dominated
family of probability measures. We proceed with precise de�nitions.

We still assume that (H � ) holds. Let us de�ne

V = f � : 
 � [0; 1 ) � A ! (0; 1 ); P 
 A-measurable and boundedg:
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For every � 2 V, we consider the predictable random measure

~p� (ds dy db) := � s(b) � 0(db) � f X s� g(dy) ds + � (X s� ; I s� ; dy) � f I s� g(db) ds: (2.29)

Now we �x t 2 [0; T], x 2 E , a 2 A and, with the help of a theorem of Girsanov
type, we will show how to construct a probability measure on (
 ; F1 ), equivalent to
Pt;x;a , under which ~p� is the compensator of the measurep on (0; T] � E � A. By
the Radon-Nikodym theorem one can �nd two nonnegative functionsd1, d2 de�ned
on 
 � [0; 1 ) � E � A, measurable with respect toP 
 E 
 A such that

� 0(db) � f X t � g(dy) dt = d1(t; y; b) ~p(dt dy db)

� (X t � ; I t � ; dy) � f I t � g(db) dt = d2(t; y; b) ~p(dt dy db);

d1(t; y; b) + d2(t; y; b) = 1 ; ~p(dt dy db) � a:e:

and we haved~p� = ( � d 1 + d2) d~p. For any � 2 V, consider then the Dol�eans-Dade
exponential local martingale L � de�ned setting L �

s = 1 for s 2 [0; t] and

L �
s = exp

� Z s

t

Z

E � A
log(� r (b) d1(r; y; b) + d2(r; y; b)) p(dr dy db)

�
Z s

t

Z

A
(� r (b) � 1)� 0(db) dr

�

= e
Rs

t

R
A (1� � r (b)) � 0 (db) dr

Y

n> 1:Tn 6 s

(� Tn (An ) d1(Tn ; En ; An ) + d2(Tn ; En ; An ))

for s 2 [t; T ]. When L � is a true martingale, i.e., Et;x;a [L �
T ] = 1, we can de�ne

a probability measure Pt;x;a
� equivalent to Pt;x;a on (
 ; F1 ) setting Pt;x;a

� (d! ) =
L �

T (! )Pt;x;a (d! ). By the Girsanov theorem for point processes ([75], Theorem 4.5)
the restriction of the random measurep to (0; T] � E � A admits ~p� = ( � d 1 + d2) ~p
as compensator underPt;x;a

� . We denote by Et;x;a
� the expectation operator under

Pt;x;a
� and by q� := p � ~p� the compensated martingale measure ofp under Pt;x;a

� .
The validity of the condition Et;x;a [L �

T ] = 1 under our assumptions, as well as other
useful properties, are proved in the following proposition.

Lemma 2.3.2. Let assumption (H � ) hold. Then, for every t 2 [0; T], x 2 E and
� 2 V, under the probability Pt;x;a the processL � is a martingale on [0; T] and L �

T is
square integrable.

In addition, for every P 
 E
 A-measurable functionH : 
 � [t; T ] � E � A ! R

such that Et;x;a
hRT

t

R
E � A jHs(y; b)j2 ~p(ds dy db)

i
< 1 , the process

Z �

t

Z

E � A
Hs(y; b) q� (ds dy db)

is a Pt;x;a
� -martingale on [t; T ].

Proof. The �rst part of the proof is inspired by Lemma 4.1 in [ 88]. In particular,
since � is bounded and� 0(A) < 1 , we see that

S�
T = exp

� Z T

t

Z

A
j� s(b) � 1j2� 0(db) ds

�
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is bounded. Therefore, from Theorem 8, see also Theorem 9, in [109], follows the
martingale property of L � together with its uniform integrability. Concerning the
square integrability of L �

T , set `(x; � ) := 2 ln( x� + 1 � � ) � ln(x2� + 1 � � ), for any
x � 0 and � 2 [0; 1]. From the de�nition of L � we have (recalling that d2(s; y; b) =
1 � d1(s; y; b))

jL �
T j2 = L � 2

T S�
T exp

� Z T

t

Z

E � A
`(� s(b); d1(s; y; b)) p(ds dy db)

�
� L � 2

T S�
T ;

where the last inequality follows from the fact that ` is nonpositive. This entails
that L �

T is square integrable.

Finally, let us �x a predictable function H such that

Et;x;a
� Z T

t

Z

E � A
jHs(y; b)j2 ~p(ds dy db)

�
< 1 :

The process
R�

t

R
E � A Hs(y; b) q� (ds dy db) is a Pt;x;a

� -local martingale, and the uni-
form integrability follows from the Burkholder-Davis-Gundy and Cauchy Schwarz
inequalities, together with the square integrability of L �

T . �

To complete the formulation of the dual optimal control problem we specify the
conditions that we will assume for the cost functionsf , g:

(Hfg) f 2 Bb([0; T] � E � A) and g 2 Bb(E ).

For every t 2 [0; T], x 2 E , a 2 A and � 2 V we �nally introduce the dual gain
functional

J (t; x; a; � ) = Et;x;a
�

�
g(X T ) +

Z T

t
f (s; X s; I s)ds

�
;

and the dual value function

V � (t; x; a ) = sup
� 2 V

J (t; x; a; � ): (2.30)

Remark 2.3.3. Let us denote byf Sng (resp. f Rng) the jump times of I (resp. ofX ),
and by � I (ds db) =

P
n � (Sn ;I Sn ) (ds db) (resp. � X (ds dy) =

P
n � (Rn ;X R n ) (ds dy))

the corresponding random measure on (0; 1 ) � A (resp. on (0; 1 ) � E ).

An interpretation of the dual optimal control problem can be given as follows:
under Pt;x;a ,

(i) the times f Sng e f Rng are disjoint;

(ii) the compensators of the random measures� I (ds db) and � X (ds dy) are

~� I (ds db) = � 0(db) 1f b6= I s� g ds; ~� X (ds dy) = � (X s� ; I s� ; dy) 1f y6= X s� g ds: (2.31)

In particular, the e�ect of choosing � is to change the intensity of the I -component.

To prove point (i), let us introduce the P-measurable processH : 
 � R+ � E �
A ! R+ de�ned by

Hs(!; y; b ) = ( y � X s� (! ))2(b� I s� (! ))2: (2.32)
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We have

Et;x;a

"
X

n

HTn (X Tn ; I Tn )

#

= Et;x;a
� Z 1

0

Z

E
Hs(y; I s� ) � (X s� ; I s� ; dy) ds

�

+ Et;x;a
� Z 1

0

Z

A
Hs(X s� ; b) � 0(db) ds

�

= 0 :

Recalling (2.32), previous equality reads

Et;x;a

"
X

n

(� X Tn )2 (� I Tn )2

#

= 0 ;

i.e., for all n 2 N,

(� X Tn )2 (� I Tn )2 = 0 Pt;x;a -a.s.

Therefore the jump times of X and I are disjoint.

Let now consider point (ii). Since, by (i), the jump times f Sngn> 1 and f Rngn> 1

are disjoint, for any F-predictable processesK : 
 � R+ � E ! R+ and J : 
 � R+ �
A ! R+ , we have

X

n

K Rn (X Rn ) =
X

n

~K Tn (X Tn );
X

n

JSn (I Sn ) =
X

n

~JTn (I Tn )

where
~K s(y) = K s(y) 1f y6= X s� g; ~Js(b) = Js(b) 1f b6= I s� g:

In particular, since ~K s(X s� ) = 0 and ~Js(I s� ) = 0 for all s 2 [0; T], we get

Et;x;a

"
X

n

K Rn (X Rn )

#

= Et;x;a

"
X

n

~K Tn (X Tn )

#

= Et;x;a
� Z 1

0

Z

E

~K s(y) � (X s� ; I s� ; dy) ds
�

= Et;x;a
� Z 1

0

Z

E
K s(y) 1f y6= X s� g � (X s� ; I s� ; dy) ds

�
(2.33)

and

Et;x;a

"
X

n

JSn (I Sn )

#

= Et;x;a

"
X

n

~JTn (I Tn )

#

= Et;x;a
� Z 1

0

Z

A

~Js(b) � 0(db) ds
�

= Et;x;a
� Z 1

0

Z

A
Js(b) 1f b6= I s� g � 0(db) ds

�
: (2.34)

Identities (2.34) and (2.33) show the validity of (2.31) under Pt;x;a .
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2.4. Constrained BSDE and the dual value function representation

In this section we introduce a BSDE, with a sign constrain on its martingale
part, and prove existence and uniqueness of a minimal solution, in an appropriate
sense. The BSDE is then used to give a representation formula for the dual value
function introduced above.

Throughout this section we assume that the assumptions(H � ) and (Hfg) are
satis�ed and we use the randomized control setting introduced above: 
; F; X; Pt;x;a

as well as the random measuresp; ~p; q are the same as in subsection 2.3.1. For any
(t; x; a ) 2 [0; T] � E � A, we introduce the following notation.

� L 2(� 0), the set of A-measurable maps : A ! R such that

j j2L 2 (� 0 ) :=
Z

A
j (b)j2 � 0(db) < 1 :

� L 2
t,x,a (F� ), the set of F� -measurable random variableX such that Et;x;a

�
jX j2

�
<

1 ; here � is an F-stopping time with values in [t; T ].

� S2
t,x,a the set of real valued c�adl�ag adapted processesY = ( Ys)t6 s6 T such

that

jjY jj2
S2

t,x,a
:= Et;x;a

�
sup

t6 s6 T
jYsj2

�
< 1 :

� L 2
t,x,a (q), the set of P 
 E
 A-measurable mapsZ : 
 � [t; T ] � E � A ! R

such that

jjZ jj2
L 2

t,x,a (q)
:= Et;x;a

hRT
t

R
E � A jZs(y; b)j2 ~p(ds dy db)

i

= Et;x;a
hRT

t

R
E jZs(I s; y)j2 � (X s; I s; dy) ds +

RT
t

R
A jZs(X s; b)j2 � 0(db) ds

i
< 1 :

� K 2
t,x,a the set of nondecreasing predictable processesK = ( K s)t6 s6 T 2

S2
t,x,a with K t = 0, with the induced norm

jjK jj2
K 2

t,x,a
= Et;x;a �

jK T j2
�

:

We are interested in studying the following family of BSDEs parametrized by (t; x; a ):
Pt;x;a -a.s.,

Y t;x;a
s = g(X T ) +

Z T

s
f (r; X r ; I r ) dr + K t;x;a

T � K t;x;a
s

�
Z T

s

Z

E � A
Z t;x;a

r (y; b) q(dr dy db)

�
Z T

s

Z

A
Z t;x;a

r (X r ; b) � 0(db) dr; s 2 [t; T ]; (2.35)

with the sign constraint

Z t;x;a
s (X s� ; b) 6 0; ds 
 dPt;x;a 
 � 0(db) � a.e. on [t; T ] � 
 � A: (2.36)

This constraint can be seen as a sign condition imposed on the jumps of the corre-
sponding stochastic integral.
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De�nition 2.4.1. A solution to the equation (2.35)-(2.36) is a triple (Y; Z; K ) 2
S2

t,x,a � L 2
t,x,a (q) � K 2

t,x,a that satis�es (2.35)-(2.36).

A solution ( Y; Z; K ) is called minimal if for any other solution ( ~Y ; ~Z; ~K ) we have,
Pt;x;a -a.s.,

Ys 6 ~Ys; s 2 [t; T ]:

Proposition 2.4.2. Under assumptions(H � ) and (Hfg) , for any (t; x; a ) 2 [0; T]�
E � A, if there exists a minimal solution on (
 ; F; F; Pt;x;a ) to the BSDE (2.35)-(2.36),
then it is unique.

Proof. Let (Y; Z; K ) and (Y 0; Z 0; K 0) be two minimal solutions of (2.35)-(2.36). The
component Y is unique by de�nition, and the di�erence between the two backward
equations gives:Pt;x;a -a.s.

Z s

t

Z

E � A
(Zr (y; b) � Z 0

r (y; b)) p(dr dy db)

= K s � K 0
s +

Z s

t

Z

E
(Zr (y; I r � ) � Z 0

r (y; I r � )) � (X r � ; I r � dy) dr; 8 t 6 s 6 T:

The right hand is a predictable process, in particular it has no totally inaccessible
jumps (see, e.g., Proposition 2.24, Chapter I, in Jacod and Shiryaev [79]), while the
left side is a pure jump process with totally inaccessible jumps. This implies the
uniqueness of the componentZ , and as a consequence the componentK is unique
as well. �

We now state the main result of the section.

Theorem 2.4.3. Under the assumptions(H � ) and (Hfg) , for all (t; x; a ) 2 [0; T]�
E � A there exists a unique minimal solutionY t;x;a to (2.35)-(2.36). Moreover, for
all s 2 [t; T ], Y t;x;a

s has the explicit representation:

Y t;x;a
s = ess sup

� 2 V
E�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
; s 2 [t; T ]: (2.37)

In particular, setting s = t, we have the following representation formula for the
value function of the dual control problem:

V � (t; x; a ) = Y t;x;a
t ; (t; x; a ) 2 [0; T] � E � A: (2.38)

The rest of this section is devoted to prove Theorem 2.4.3. To this end we will
use a penalization approach presented in the following subsections. Here we only
note that for the solvability of the BSDE the use of the �ltration F introduced above
is essential, since it involves application of martingale representation theorems for
multivariate point processes (see e.g. Theorem 5.4 in [75]).

2.4.1. Penalized BSDE and associated dual control problem. Let us con-
sider the family of penalized BSDEs associated to (2.35)-(2.36), parametrized by the
integer n > 1: Pt;x;a -a.s.,

Y n;t;x;a
s = g(X T ) +

Z T

s
f (r; X r ; I r ) dr + K n;t;x;a

T � K n;t;x;a
s
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�
Z T

s

Z

E � A
Z n;t;x;a

r (y; b) q(dr dy db)

�
Z T

s

Z

A
Z n;t;x;a

r (X r ; b) � 0(db) dr; s 2 [t; T ]; (2.39)

where K n is the nondecreasing process inK 2
t,x,a de�ned by

K n
s = n

Z s

t

Z

A
[Z n

r (X r ; b)]+ � 0(db) dr:

Here we denote by [u]+ the positive part of u. The penalized BSDE (2.39) can be
rewritten in the equivalent form: Pt;x;a -a.s.,

Y n;t;x;a
s = g(X T ) +

Z T

s
f n (r; X r ; I r ; Z n;t;x;a

r (X r ; �)) ds

�
Z T

s

Z

E � A
Z n;t;x;a

r (y; b) q(dr dy db); s 2 [t; T ]:

where the generatorf n is de�ned by

f n (t; x; a;  ) := f (t; x; a ) +
Z

A

�
n [ (b)]+ �  (b)

	
� 0(db); (2.40)

for all ( t; x; a ) in [0; T] � E � A, and  2 L 2(� 0). We note that under (H � ) and
(Hfg) f n is Lipschitz continuous in  with respect to the norm of L 2(� 0), uniformly
in ( t; x; a ), i.e., for every n 2 N there exists a constantL n depending only onn such
that for every ( t; x; a ) 2 [0; T] � E � A and  ;  0 2 L 2(� 0),

jf n (t; x; a;  0) � f n (t; x; a;  )j 6 L n j �  0jL 2 (� 0 ) :

The use of the natural �ltration F allows to use well known integral representation
results for F-martingales (see, e.g., Theorem 5.4 in [75]) and we have the following
proposition, whose proof is standard and is therefore omitted (similar proofs can be
found in [131] Theorem 3.2, [12] Proposition 3.2, [28] Theorem 3.4).

Proposition 2.4.4. Let assumptions (H � ) and (Hfg) hold. For every initial con-
dition (t; x; a ) 2 [0; T] � E � A, and for every n 2 N, there exists a unique solution
(Y n;t;x;a

s ; Z n;t;x;a
s )s2 [t;T ] 2 S2

t,x,a � L 2
t,x,a (q) satisfying the penalized BSDE(2.39).

Next we show that the solution to the penalized BSDE (2.39) provides an ex-
plicit representation of the value function of a corresponding dual control problem
depending onn. This is the content of Lemma 2.4.5 which will allow to deduce some
estimates uniform with respect to n.

For every n > 1, let Vn denote the subset of elements� 2 V that take values in
(0; n].

Lemma 2.4.5. Let assumptions(H � ) and (Hfg) hold. For all n � 1 and s 2 [t; T ],

Y n;t;x;a
s = ess sup

� 2 Vn
E�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
; Pt;x;a � a:s: (2.41)
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Proof. We �x n � 1 and for any � 2 Vn we introduce the compensated martingale
measureq� (ds dy db) = q(ds dy db) � (� s(b) � 1) d1(s; y; b) ~p(ds dy db) under Pt;x;a

� . We
see that the solution (Y n ; Z n ) to the BSDE (2.39) satis�es: Pt;x;a -a.s.,

Y n
s = g(X T ) +

Z T

s
f (r; X r ; I r ) dr +

Z T

s

Z

A
f n[Z n

r (X r ; b)]+ � � r (b) Z n
r (X r ; b)g � 0(db) dr

�
Z T

s

Z

E � A
Z n

r (y; b) q� (dr dy db); s 2 [t; T ]: (2.42)

By taking conditional expectation in (2.42) under Pt;x;a
� and applying Lemma 2.3.2

we get, for any s 2 [t; T ],

Y n;t;x;a
s = E�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
(2.43)

+ E�
� Z T

s

Z

A
f n[Z n;t;x;a

r (X r ; b)]+ � � r (b) Z n;t;x;a
r (X r ; b)g � 0(db) dr

�
�
�
� Fs

�
;

Pt;x;a
� -a.s. From the elementary numerical inequality: n[u]+ � �u > 0 for all u 2 R,

� 2 (0; n], we deduce by (2.43) that

Y n;t;x;a
s > ess sup

� 2 Vn
E�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
: (2.44)

On the other hand, for � 2 (0; 1), let us consider the process� � 2 Vn de�ned by

� �
s(b) = n 1f Z n;t;x;a

s (X s� ;b)> 0g + � 1f� 1<Z n;t;x;a
s (X s� ;b)< 0g

� � Z n;t;x;a
s (X s� ; b) � 1 1f Z n;t;x;a

s (X s� ;b)6 � 1g:

By construction, we have

n[Z n;t;x;a
s (X s� ; b)]+ � � �

s(b) Z n;t;x;a
s (X s� ; b) 6 �; s 2 [t; T ]; b 2 A;

and thus for the choice of� = � � in (2.43):

Y n;t;x;a
s 6 Et;x;a

� "

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
+ �T j� 0(A)j

6 ess sup
� 2 Vn

E�
�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
+ �T j� 0(A)j:

Together with (2.44), this is enough to prove the required representation ofY n . Note
that we could not take � s(b) = n1f Z n

s (X s� ;b)> 0g, since this process does not belong to
Vn because of the requirement of strict positivity. �

2.4.2. Limit behavior of the penalized BSDEs and conclusion of the proof
of Theorem 2.4.3. As a consequence of the representation (2.41) we immediately
obtain the following estimates:

Lemma 2.4.6. Let assumptions (H � ) and (Hfg) hold. There exists a constantC,
depending only onT; f; g , such that for any (t; x; a ) 2 [0; T] � E � A and n � 1,
Pt;x;a -a.s.,

Y n;t;x;a
s 6 Y n+1 ;t;x;a

s ; jY n;t;x;a
s j 6 C; s 2 [t; T ]:
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Proof. For �xed s 2 [t; T ], the almost sure monotonicity of Y n;t;x;a follows from the
representation formula (2.41), since by de�nition Vn � Vn+1 ; moreover, the same
formula shows that we can takeC = jjgjj1 + T jj f jj1 . Finally, these inequalities
hold for every s 2 [t; T ] outside a null set, since the processesY n;t;x;a are c�adl�ag. �

Moreover, the following a priori uniform estimate on the sequence (Y n;t;x;a ;
Z n;t;x;a ; K n;t;x;a ) holds:

Lemma 2.4.7. Let assumptions (H � ) and (Hfg) hold. For all (t; x; a ) 2 [0; T] �
E � A and n 2 N, there exists a positive constantC0 depending only onT; f; g such
that

jjY n;t;x;a jj2
S2

t,x,a
+ jjZ n;t;x;a jj2

L 2
t,x,a (q) + jjK n;t;x;a jj2

K 2
t,x,a

6 C0: (2.45)

Proof. In the following we omit for simplicity of notation the dependence on (t; x; a )
for the triple ( Y n;t;x;a ; Z n;t;x;a ; K n;t;x;a ). The estimate on Y n follows immediately
from the previous lemma:

jjY n jj2
S2

t,x,a
= Et;x;a

"

sup
s2 [t;T ]

jY n
s j2

#

6 C2: (2.46)

Next we notice that, since K n is continuous, the jumps of Y n are given by the
formula

� Y n
s =

Z

E � A
Z n

s (y; b) p(f sg; dy db):

The Itô formula applied to jY n
t j2 gives:

djY n
r j2 = 2 Y n

r � dYn
r + j� Y n

r j2

= � 2Y n
r � f (X r � ; I r � ) dr � 2Y n

r � dK n
r

+2 Y n
r �

Z

E � A
Z n

r (y; b) q(dr dy db) + 2 Y n
r �

Z

A
Z n

r (X r � ; b) � 0(db) dr

+
Z

E � A
jZ n

r (y; b)j2 p(f r gdy db): (2.47)

Integrating (2.47) on [s; T], for every s 2 [t; T ], and recalling the elementary inequal-
ity 2ab6 1

� a2 + �b2 for any constant � > 0, and that

Et;x;a
� Z T

s

Z

A
jZ n

r (X r � ; b)j2 � 0(db) dr
�

6 Et;x;a
� Z T

s

Z

E � A
jZ n

r (y; b)j2 ~p(dr dy db)
�

;

(2.48)
we have:

Et;x;a �
jYsj2

�
+ Et;x;a

� Z T

s

Z

E � A
jZ n

r (y; b)j2 ~p(dr dy db)
�

6 Et;x;a �
jg(X T )j2

�

+
1
�

Et;x;a
� Z T

s
jf (r; X r ; I r )j2 dr

�
+ � Et;x;a

� Z T

s
jY n

r j2 dr
�

+
T � 0(A)


Et;x;a

� Z T

s

Z

E � A
jZ n

r (y; b)j2 ~p(dr dy db)
�

+  Et;x;a
� Z T

s
jY n

r j2 dr
�
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+
1
�

Et;x;a

"

sup
s2 [t;T ]

jY n
s j2

#

+ � Et;x;a �
jK n

T � K n
s j2

�
; s 2 [t; T ]; (2.49)

for some�; �;  > 0, Now, from the equation (2.39) we obtain:

K n
T � K n

s = Y n
s � g(X T ) �

Z T

s
f (r; X r ; I r )dr

+
Z T

s

Z

A
Z n

r (X r ; b) � 0(db) dr

+
Z T

s

Z

E � A
Z n

r (y; b) q(dr dy db); s 2 [t; T ]:

Next we note the equality

Et;x;a

" �
�
�
�

Z T

s

Z

E � A
Z n

r (y; b) q(dr dy db)

�
�
�
�

2
#

= Et;x;a
� Z T

s

Z

E � A
jZ n

r (y; b)j2 p(dr dy db)
�

= Et;x;a
� Z T

s

Z

E � A
jZ n

r (y; b)j2 ~p(dr dy db)
�

that can be proved applying the Ito formula as before to the square of the martingale
u 7!

Ru
s

R
E � A Z n

r (y; b) q(dr dy db), u 2 [s; T] (or by considering its quadratic varia-
tion). Recalling again (2.48) we see that there exists some positive constantB such
that

Et;x;a �
jK n

T � K n
s j2

�

6 B
�

Et;x;a �
jY n

s j2
�

+ Et;x;a �
jg(X T )j2

�
+ Et;x;a

� Z T

s
jf (r; X r ; I r )j2 dr

�

+ Et;x;a
� Z T

s

Z

E � A
jZ n

r (y; b)j2 ~p(dr dy db)
� �

; s 2 [t; T ]: (2.50)

Plugging (2.50) into (2.49), and recalling the uniform estimation (2.46) on Y n , we
get

(1 � �B ) Et;x;a �
jY n

s j2
�

+
�

1 �
�
�B +

T � 0(A)


��
Et;x;a

� Z T

s

Z

E � A
jZ n

r (y; b)j2 ~p(dr dy db)
�

6 (1 + �B ) Et;x;a �
jg(X T )j2

�
+

�
�B +

1
�

�
Et;x;a

� Z T

s
jf (r; X r ; I r )j2 dr

�

+
C2

�
+ (  + � ) Et;x;a

� Z T

s
jY n

r j2 dr
�

; s 2 [t; T ]:
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Hence, by choosing� 2
�
0; 1

B

�
,  > T � 0 (A )

1� �B , � > 0, and applying Gromwall's lemma
to s ! Et;x;a

�
jY n

s j2
�
, we obtain:

sup
s2 [t; T ]

Et;x;a �
jY n

s j2
�

+ Et;x;a
� Z T

t

Z

E � A
jZ n

s (y; b)j2 ~p(ds dy db)
�

6 C0
�

Et;x;a �
jg(X T )j2

�
+ Et;x;a

� Z T

t
jf (s; X s; I s)j2 ds

�
+ C2

�
; (2.51)

for someC0 > 0 depending only onT, which gives the required uniform estimate for
(Z n ) and also (K n ) by (2.50). �

We can �nally present the conclusion of the proof of Theorem 2.4.3:

Proof. Let ( t; x; a ) 2 [0; T] � E � A. We �rst show that ( Y n ; Z n ; K n ) (we omit
the dependence on (t; x; a ) for simplicity of notation) solution to (2.39) converges in
a suitable way to some process (Y; Z; K ) solution to the constrained BSDE (2.35)-
(2.36). By Lemma 2.4.6, (Y n )n converges increasingly to some adapted process

Y , which moreover satis�es Et;x;a
h
sups2 [t;T ] jYsj2

i
< 1 by the uniform estimate

for (Y n )n in Lemma 2.4.7 and Fatou's lemma. Furthermore, by the dominated
convergence theorem, we also haveE

RT
0 jY n

t � Yt j2dt ! 0. Next, we prove that there
exists (Z; K ) 2 L 2

t,x,a (q) � K 2
t,x,a with K predictable, such that

(i) Z is the weak limit of (Z n )n in L 2
t,x,a (q);

(ii) K � is the weak limit of (K n
� )n in L 2

t,x,a (F� ), for any stopping time � valued
in [t T ];

(iii) Pt;x;a -a.s.,

Ys = g(X T ) +
Z T

s
f (r; X r ; I r ) dr + K T � K s

�
Z T

s

Z

E � A
Zr (y; b) q(dr dy db) �

Z T

s

Z

A
Zr (X r ; b) � 0(db) dr; s 2 [t; T ];

with

Zs(X s� ; b) 6 0; ds 
 dPt;x;a 
 � 0(db) � a.e.

Let de�ne the following mappings from L 2
t,x,a (q) to L 2

t,x,a (F� ):

I 1
� : Z 7!

Z �

t

Z

E � A
Zs(y; b) q(ds dy db);

I 2
� : Z 7!

Z �

t

Z

A
Zs(X s; b) � 0(db) ds;

for eachF-stopping time � with values in [t; T ]. We wish to prove that I 1
� Z n and I 2

� Z n

converge weakly inL 2
t,x,a (F� ) to I 1

� Z and I 2
� Z respectively. Indeed, by the uniform

estimates for (Z n )n in Lemma 2.4.7, there exists a subsequence, denoted (Z nk )k ,
which converges weakly inL 2

t,x,a (q). Since I 1 and I 2 are linear continuous operators
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they are also weakly continuous so that we haveI 1
� Z nk ! I 1

� Z and I 2
� Z nk ! I 2

� Z
weakly in L 2

t,x,a (F� ) as k ! 1 . Since we have from (2.39)

K nk
� = � Y nk

� + Y nk
t �

Z �

t
f (r; X r ; I r ) dr

+
Z �

t

Z

A
Z nk

r (X r ; b) � 0(db) dr +
Z �

t

Z

E � A
Z nk

r (y; b) q(dr dy db);

we also obtain the weak convergence inL 2
t,x,a (F� ) as k ! 1

K nk
� * K � := � Y� + Yt �

Z �

t
f (r; X r ; I r ) dr

+
Z �

t

Z

A
Zr (X r ; b) � 0(db) dr +

Z �

t

Z

E � A
Zr (y; b) q(dr dy db):(2.52)

Arguing as in Peng [104], proof of Theorem 2.1, Kharroubi, Ma, Pham and Zhang
[87] Lemma 3.5, Essaky [60] Theorem 3.1, we see thatK inherits from K nk the
properties of having nondecreasing paths and of being square integrable and pre-
dictable. Finally, from Lemma 2.2 in [104] it follows that K and Y are c�adl�ag, so
that K t;x;a 2 K 2

t ;x ;a and Y t;x;a 2 S2
t ;x ;a.

Notice that the processesZ and K in (2.52) are uniquely determined. In-
deed, if (Z; K ) and (Z 0; K 0) satisfy (2.52), then the predictable processesZ and
Z 0 coincide at the jump times and can be identi�ed almost surely with respect to
~p(!; ds dy db)Pt;x;a (d! ) (a similar argument can be found in the proof of Proposi-
tion 2.4.2 to which we refer for more details). Finally, recalling that the jumps of
p are totally inaccessible, we also obtain the uniqueness of the componentK . The
uniqueness ofZ and K entails that all the sequences (Z n )n and (K n )n respectively
converge (in the sense of points (i) and (ii) above) toZ and K .

It remains to show that the jump constraint (2.36) is satis�ed. To this end, we
consider the functional on L 2

t,x,a (q) given by

G : Z 7! Et;x;a
� Z T

t

Z

A
[Zs(X s� ; b)]+ � 0(db) ds

�
:

From uniform estimate (2.45), we see that G(Z n ) ! 0 as n ! 1 . Since G is
convex and strongly continuous in the strong topology ofL 2

t,x,a (q), then G is lower
semicontinuous in the weak topology ofL 2

t,x,a (q), see, e.g., Corollary 3.9 in Brezis
[19]. Therefore, we �nd

G(Z ) 6 lim inf
n!1

G(Z n ) = 0 ;

from which follows the validity of the jump constraint (2.36) on [ t; T ]. We have
then showed that (Y; Z; K ) is a solution to the constrained BSDE (2.35)-(2.36). It
remains to prove that this is the minimal solution. To this end, �x n 2 N and
consider a triple ( �Y ; �Z; �K ) 2 S2

t,x,a � L 2
t,x,a (q) � K 2

t,x,a satisfying (2.35)-(2.36). For
any � 2 Vn , by introducing the compensated martingale measureq� , we see that the
solution ( �Y ; �Z; �K ) satis�es: Pt;x;a -a.s.,

�Ys = g(X T ) +
Z T

s
f (r; X r ; I r ) dr + �K T � �K s (2.53)
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�
Z T

s

Z

E � A

�Zr (y; b) q� (dr dy db) �
Z T

s

Z

A
� r (b) �Zr (X r ; b) � 0(db) dr s 2 [t; T ]:

By taking the expectation under Pt;x;a
� in (2.53), recalling Lemma 2.3.2, and that �K

is nondecreasing, we have

�Ys > E�
�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
� E�

� Z T

s

Z

A
� r (b) �Zr (X r ; b) � 0(db) dr

�

> E�
�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
s 2 [t; T ]; (2.54)

since � is valued in (0; n] and Z satis�es constraint (2.36). As � is arbitrary in Vn ,
we get from the representation formula (2.41) that �Ys > Y n

s , 8 s 2 [t; T ], 8 n 2 N.
In particular, Ys = lim n!1 Y n

s 6 �Ys, i.e., the minimality property holds. The
uniqueness of the minimal solution straightly follows from Proposition 2.4.2.

To conclude the proof, we argue on the limiting behavior of the dual representa-
tion for Y n when n goes to in�nity. Since Vn � V, it is clear from the representation
(2.41) that, for all n and s 2 [t; T ],

Y n
s 6 ess sup

� 2 V
E�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
:

Moreover, beingY the pointwise limit of Y n , we deduce that

Ys = lim
n!1

Y n
s 6 ess sup

� 2 V
E�

�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
: (2.55)

On the other hand, for any � 2 V, introducing the compensated martingale measure
q� under P� as usual, we see that (Y; Z; K ) satis�es

Ys = g(X T ) +
Z T

s
f (r; X r ; I r ) dr + K T � K s (2.56)

�
Z T

s

Z

E � A
Zr (y; b) q� (dr dy db) �

Z T

s

Z

A
Zr (X r ; b) � r (b)� 0(db) dr; s 2 [t; T ]:

Arguing in the same way as in (2.54), we obtain

Ys > E�
�
g(X T ) +

Z T

s
f (r; X r ; I r ) dr

�
�
�
� Fs

�
;

so that Ys > ess sup� 2 V E�
h
g(X T ) +

RT
s f (r; X r ; I r ) dr

�
�
� Fs

i
by the arbitrariness of

� 2 V. Together with (2.55) this gives the required equality. �

2.5. A BSDE representation for the value function

In this section we conclude the last step in the method of control randomiza-
tion and we show that the minimal solution to the constrained BSDE (2.35)-(2.36)
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actually provides a non-linear Feynman-Kac representation of the solution to the
Hamilton-Jacobi-Bellman (HJB) equation (2.13)-(2.14), that we re-write here:

�
@v
@t

(t; x ) = sup
a2 A

(L a
E v(t; x ) + f (t; x; a )) ; v(T; x) = g(x):

As a consequence of the dual representation in Theorem 2.4.3 it follows that the
value function of the original optimal control problem can be identi�ed with the
dual one, which in particular turns out to be independent on the variable a.

For our result we need the following conditions:

sup
x2 E;a2 A

� (x; a; E ) < 1 ; (2.57)

� is a Feller transition kernel, (2.58)

f 2 Cb([0; T] � E � A); g 2 Cb(E ): (2.59)

We note that these assumptions are stronger that those required in Theorem 2.2.7
and therefore they imply that there exists a unique solution v 2 LSCb([0; T] � E )
to the HJB equation in the sense of De�nition 2.2.5. If, in addition, A is a compact
metric space thenv 2 Cb([0; T] � E ) by Corollary 2.2.9.

Let us consider again the Markov process (X; I ) in E � A constructed in Section
2.3.1, with corresponding family of probability measuresPt;x;a and generator L in-
troduced in (2.28). Since (2.57)-(2.59) are also stronger than(H � ) and (Hfg) , by
Theorem 2.4.3 there exists a unique solution to the BSDE (2.35)-(2.36).

Our main result is as follows:

Theorem 2.5.1. Assume (2.57), (2.58), (2.59). Let v be the unique solution to
the Hamilton-Jacobi-Bellman equation provided by Theorem 2.2.7. Then for every
(t; x; a ) 2 [0; T] � E � A,

v(t; x ) = Y t;x;a
t ;

whereY t;x;a is the �rst component of the minimal solution to the constrained BSDE
with nonpositive jumps (2.35)-(2.36).

More generally, we havePt;x;a -a.s.,

v(s; X s) = Y t;x;a
s ; s 2 [t; T ]:

Finally, for the value function V of the optimal control problem de�ned in (2.12)
and the dual value functionV � de�ned in (2.30) we have the equalities

V (t; x ) = v(t; x ) = Y t;x;a
t = V � (t; x; a ):

In particular, the latter functions do not depend on a.

The rest of this section is devoted to prove Theorem 2.5.1.

2.5.1. A penalized HJB equation. Let us recall the penalized BSDE associated
to (2.35)-(2.36): Pt;x;a -a.s.,

Y n;t;x;a
s = g(X T ) +

Z T

s
f (r; X r ; I r ) ds �

Z T

s

Z

E � A
Z n;t;x;a

r (y; b) q(dr dy db) (2.60)



90
Chapter 2. Constrained BSDEs representation of the value function for

optimal control of pure jump Markov processes

+
Z T

s

Z

A

�
n [Z n;t;x;a

r (X r ; b)]+ � Z n;t;x;a
r (X r ; b)

	
� 0(db) dr; s 2 [t; T ]:

Let us now consider the parabolic semi-linear penalized integro-di�erential equation,
of HJB type: for any n � 1,

@vn

@t
(t; x; a ) +

Z

A
f n [vn (t; x; b) � vn (t; x; a )]+ � (vn (t; x; b) � vn (t; x; a ))g � 0(db)

+ L vn (t; x; a ) + f (t; x; a ) = 0 on [0; T) � E � A; (2.61)

vn (T; x; a) = g(x) on E � A; (2.62)

The following lemma states that the solution of (2.61)-(2.62) can be represented
probabilistically by means of the solution to the penalized BSDE (2.60):

Lemma 2.5.2. Assume (2.57), (2.58), (2.59). Then there exists a unique function
vn 2 Cb([0; T] � E � A) such that t 7! vn (t; x; a ) is continuously di�erentiable on
[0; T] and (2.61)-(2.62) hold for every (t; x; a ) 2 [0; T) � E � A.

Moreover, for every (t; x; a ) 2 [0; T] � E � A and for every n 2 N,

Y n;t;x;a
s = vn (s; X s; I s) (2.63)

Z n;t;x;a
s (y; b) = vn (s; y; b) � vn (s; X s� ; I s� ); (2.64)

(to be understood as an equality between elements of the spaceS2
t,x,a � L 2

t,x,a (q)) so
that in particular vn (t; x; a ) = Y n;t;x;a

t .

Proof. We �rst note that vn 2 Cb([0; T] � E � A) is the required solution if and
only if

vn (t; x; a ) = g(x) +
Z T

t
L vn (s; x; a) ds +

Z T

t
f n (s; x; a; vn (s; x; �) � vn (s; x; a))(2.65)

for t 2 [0; ; T), x 2 E , a 2 A, where f n (t; x; a;  ) is the map de�ned in (2.40). We
use a �xed point argument, introducing a map � from Cb([0; T] � E � A) to itself
setting v = �( w) where

v(t; x; a ) = g(x) +
Z T

t
L w(s; x; a) ds +

Z T

t
f n (s; x; a; w(s; x; �) � w(s; x; a)) ds:

Using the boundedness assumptions on� and � 0 it can be shown by standard argu-
ments that some iteration of the above map is a contraction in the space of bounded
measurable real functions on [0; T] � E � A endowed with the supremum norm and
therefore the map � has a unique �xed point, which is the required solution vn .

We �nally prove the identi�cations (2.63)-(2.64). Since vn 2 Cb([0; T]� E � A) we
can apply the Itô formula to the processv(s; X s; I s), s 2 [t; T ], obtaining, Pt;x;a -a.s.,

vn (s; X s; I s) = vn (t; x; a ) +
Z s

t

�
@vn

@r
(r; X r ; I r ) + L I

r vn (r; X r ; I r )
�

dr

+
Z s

t

Z

E � A
(vn (r; y; b) � vn (r; X r � ; I r � )) q(dr dy db); s 2 [t; T ]:
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Taking into account that vn satis�es (2.61)-(2.62) and that (X; I ) has piecewise
constant trajectories, we obtain Pt;x;a -a.s.,

@vn

@r
(r; X r ; I r ) + L vn (r; X r ; I r ) + f n (r; X r ; I r ; vn (r; X r ; �) � vn (r; X r ; I r )) = 0 ;

for almost all r 2 [t; T ]. It follows that, Pt;x;a -a.s.,

vn (s; X s; I s) = vn (t; x; a ) �
Z s

t
f n (r; X r ; I r ; vn (r; X r ; �) � vn (r; X r ; I r )) dr

+
Z s

t

Z

E � A
(vn (r; y; b) � v(r; X r � ; I r � )) q(dr dy db); s 2 [t; T ]:

Sincevn (T; x; a) = g(x) for all ( x; a) 2 E � A, simple passages show that

vn (s; X s; I s) = g(X T ) +
Z s

t
f n (r; X r ; I r ; vn (r; X r ; �) � vn (r; X r ; I r )) dr

�
Z s

t

Z

E � A
(vn (r; y; b) � v(r; X r � ; I r � )) q(dr dy db); s 2 [t; T ]:

Thus the pairs (Y n;t;x;a
s ; Z n;t;x;a

s (y; b)) and (vn (s; X s; I s); vn (s; y; b) � vn (s; X s� ; I s� ))
are both solutions to the same BSDE underPt;x;a , and thus they coincide as mem-
bers of the spaceS2

t,x,a � L 2
t,x,a (q). The required equalities (2.63)-(2.64) follow. In

particular we have that vn (t; x; a ) = Y n;t;x;a
t . �

2.5.2. Convergence of the penalized solutions and conclusion of the proof.
We study the behavior of the functions vn asn ! 1 . To this end we �rst show that
they are bounded above by the solution to the HJB equation.

Lemma 2.5.3. Assume (2.57), (2.58), (2.59). Let v denote the solution to the
HJB equation as provided by Theorem 2.2.7 andvn the solution to (2.61)-(2.62) as
provided in Lemma 2.5.2. Then, for all (t; x; a ) 2 [0; T] � E � A and n � 1,

v(t; x ) � vn (t; x; a ):

Proof. Let v : [0; T] � E ! R be a solution to the HJB equation. As in the proof
of Proposition 2.2.1 we have the identity

g(X T ) � v(t; X t ) =
Z T

t

@v
@r

(r; X r ) dr +
Z

(t;T ]

Z

E � A
(v(r; y ) � v(r; X r � )) p(dr dy db);

which follows from the absolute continuity of t 7! v(t; x ), taking into account that
X is constant among jump times and using the de�nition of the random measurep
de�ned in (2.26) and the fact that v depends ont; x only. Since v is a solution to
the HJB equation we have, for all x 2 E a 2 A,

�
@v
@t

(t; x ) � L a
E v(t; x ) + f (t; x; a ) =

Z

E
(v(t; y) � v(t; x )) � (x; a; dy) + f (t; x; a );

almost surely on [0; T]. Taking into account that ( X; I ) has piecewise constant
trajectories we obtain

g(X T ) � v(t; X t ) �
Z

(t;T ]

Z

E � A
(v(r; y ) � v(r; X r � )) p(dr dy db) (2.66)
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�
Z T

t

Z

E
(v(r; y ) � v(r; X r )) � (X r ; I r ; dy) dr �

Z T

t
f (r; X r ; I r ) dr:

Then, for any n � 1 and � 2 Vn let us consider the probability Pt;x;a
� introduced

above and recall that underPt;x;a
� the compensator of the random measurep(dr dy db)

is ~p� (dr dy db) = � r (b) � 0(db) � f X r � g(dy) dr + � (X r � ; I r � ; dy) � f I r � g(db) dr . Noting
that v(r; y ) � v(r; X r � ) is predictable, taking the expectation in (2.66) we obtain

Et;x;a
� [g(X T )] � v(t; x ) � � Et;x;a

�

Z T

t
f (r; X r ; I r ) dr:

Since� 2 Vn was arbitrary, and recalling (2.41), we conclude that

v(t; x ) � sup
� 2 Vn

E�
�
g(X T ) +

Z T

t
f (r; X r ; I r ) dr

�
= vn (t; x; a ):

�

From Lemma 2.5.2 we know thatvn (t; x; a ) = Y n;t;x;a
t , and from Lemma 2.4.6 we

know that vn (t; x; a ) is monotonically increasing and uniformly bounded. Therefore
we can de�ne

�v(t; x; a ) := lim
n!1

vn (t; x; a ); t 2 [0; T]; x 2 E; a 2 A:

�v is bounded, and from Lemma 2.5.3 we deduce that �v � v. As an increasing
limit of continuous functions, �v is lower semi-continuous. Further properties of �v are
proved in the following lemma. In particular, (2.67) (or (2.68)) means that �v is a
supersolution to the HJB equation.

Lemma 2.5.4. Assume (2.57), (2.58), (2.59) and let �v be the increasing limit of vn .
Then �v does not depend ona, i.e. �v(t; x; a ) = �v(t; x; b) for every t 2 [0; T], x 2 E
and a; b2 A. Moreover, setting �v(t; x ) = �v(t; x; a ) we have

�v(t; x ) � �v(t0; x) �
Z t0

t
(L a

E �v(s; x) + f (s; x; a)) ds (2.67)

for 0 � t � t0 � T , x 2 E , a 2 A. More generally, for arbitrary Borel-measurable
� : [0; T] ! A we have

�v(t; x ) � �v(t0; x) �
Z t0

t
(L � (s)

E �v(s; x) + f (s; x; � (s))) ds (2.68)

for 0 � t � t0 � T , x 2 E and a 2 A.

Proof. vn satis�es the integral equation (2.65), namely

vn (t; x; a ) = g(x) +
Z T

t

Z

E
(vn (s; y; a) � vn (s; x; a)) � (x; a; dy) ds

+
Z T

t
f (s; x; a) ds + n

Z T

t

Z

A
[vn (s; x; b) � vn (s; x; a)]+ � 0(db) ds:
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Since vn is a bounded sequence inCb([0; T] � E � A) converging pointwise to �v,
setting t = 0, dividing by n and letting n ! 1 we obtain

Z T

0

Z

A
[�v(s; x; b) � �v(s; x; a)]+ � 0(db) ds = 0 : (2.69)

Next we claim that �v is right-continuous in t on [0; T), for �xed x 2 E, a 2 A. To
prove this we �rst note that, neglecting the term with the positive part [ : : :]+ we
have

vn (t0; x; a) � vn (t; x; a ) � �
Z t0

t

Z

E
(vn (s; y; a) � vn (s; x; a)) � (x; a; dy) ds

�
Z t0

t
f (s; x; a) ds

� C0(t0� t); (2.70)

for some constantC0 > 0 and for all 0 � t � t0 � T and n � 1, where we have used
again the fact that vn is uniformly bounded. Now �x t 2 [0; T). Since, as already
noticed, �v is lower semi-continuous we have �v(t; x; a ) � lim inf s#t �v(s; x; a). The
required right continuity follows if we can show that �v(t; x; a ) � lim sups#t �v(s; x; a).
Suppose not. Then there existssk # t such that �v(sk ; x; a) tends to some limit
l > �v(t). It follows that �v(sk ; x; a) � �v(t; x; a ) > C 0(sk � t) for some k su�ciently
large, and therefore alsovn (sk ; x; a) � vn (t; x; a ) > C 0(sk � t) for somen su�ciently
large, contradicting (2.70). This contradiction shows that �v is right-continuous in t
on [0; T).

Then it follows from (2.69) that
R

A [�v(t; x; b) � �v(t; x; a )]+ � 0(db) = 0 for every
x 2 E, a 2 A, t 2 [0; T]. Therefore there existsB � A (dependent on t; x; a ) such
that B is a Borel set with � 0(B ) = 0, and

�v(t; x; a ) � �v(t; x; b0); b0 =2 B: (2.71)

Since � 0 has full support, B cannot contain any open ball. So given an arbitrary
b 2 A we can �nd a sequencebn ! b, bn =2 B . Writing (2.71) with bn instead ofb0and
using the lower semi-continuity of �v we deduce that �v(t; x; a ) � lim inf n �v(t; x; bn ) �
�v(t; x; b). Since a and b were arbitrary we �nally conclude that �v(t; x; a ) = �v(t; x; b)
for every t 2 [0; T], x 2 E and a; b 2 A, so that �v(t; x; a ) does not depend ona and
we can de�ne �v(t; x ) = �v(t; x; a ).

Passing to the limit as n ! 1 in the �rst inequality of (2.70) we immediately
obtain (2.67), so it remains to prove (2.68). Let A(�v) denote the set of all Borel-
measurable� : [0; T] ! A such that (2.68) holds, namely for every 0� t � t0 � T ,
x 2 E , a 2 A,

�v(t; x ) � �v(t0; x) �
Z t0

t

Z

E
�v(s; y) � (x; � (s); dy) ds

�
Z t0

t
�v(s; x) � (x; � (s); E ) ds +

Z t0

t
f (s; x; � (s)) ds: (2.72)
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Suppose that � n 2 A(�v), � : [0; T] ! A is Borel-measurable and� n (t) ! � n (t) for
almost all t 2 [0; T]. Note that

Z

E
�v(t; y) � (x; a; dy) = lim

n!1

Z

E
�vn (t; y; a) � (x; a; dy) (2.73)

and the latter is an increasing limit. Sincevn 2 Cb([0; T] � E � A) and � is Feller, for
any n � 1 the functions in the right-hand side of (2.73) are continuous in (t; x; a ) (see
e.g. [15], Proposition 7.30) and therefore the left-hand side is a lower semicontinuous
function of ( t; x; a ). It follows from this and the Fatou Lemma that

Z t0

t

Z

E
�v(s; y) � (x; � (s); dy) ds �

Z t0

t
lim inf
n!1

� Z

E
�v(s; y) � (x; � n (s); dy)

�
ds

� lim inf
n!1

Z t0

t

Z

E
�v(s; y) � (x; � n (s); dy) ds:

Using this inequality and the continuity and boundedness of the mapsa 7! � (x; a; E ),
a 7! f (t; x; a ) we see that assuming the validity of inequality (2.72) for � n implies
that it also holds for � , hence� 2 A(�v).

Next we note that A(�v) contains all piecewise constant functions of the form� (t)
=

P k
i =1 ai 1[t i ;t i +1 ) (t) with k � 1, 0 = t1 < t 2 < : : : < t k+1 = T, ai 2 A: indeed, it is

enough to write down (2.67) with [t; t 0) = [ t i ; t i +1 ) and sum up overi to get (2.68) for
� (�) and therefore conclude that � (�) 2 A(�v). Since we have already proved that the
classA(�v) is stable under almost sure pointwise limits it follows that A(�v) contains
all Borel-measurable functions� : [0; T] ! A as required. �

We are now ready to conclude the proof of our main result.

Proof of Theorem 2.5.1. We will prove the inequality

�v(t; x ) � V (t; x ); t 2 [0; T]; x 2 E; (2.74)

where �v = lim n!1 vn was introduced before Lemma 2.5.4. Since we know that
�v � v and, by Theorem 2.2.10,v = V it follows from (2.74) that �v = v = V . Passing
to the limit as n ! 1 in (2.63) and recalling (2.38) all the other equalities follow
immediately.

To prove (2.74) we �x t 2 [0; T], x 2 E and a Borel-measurable map� : [0; T] �
E ! A, i.e. an element ofAad, the set of admissible control laws for the primal
control problem, and denote byPt;x

� the associated probability measure on (
; F1 ),
for the controlled system started at time t from point x, as in section 2.2.2. We will
prove that �v(t; x ) � J (t; x; � ), the gain functional de�ned in (2.11). Recall that in

 we had de�ned a canonical marked point process (Tn ; En )n� 1 and the associated
random measurep. Fix ! 2 
 and consider the points Tn (! ) lying in ( t; T ], which we
renameSi ; thus, t < S 1 < : : : S k � T , for somek (also depending on! ). Recalling
that �v(T; x) = g(x) we have

g(X T ) � �v(t; x ) = g(X T ) � �v(Sk ; X Sk ) +
kX

i =1

[�v(Si ; X Si ) � �v(Si ; X Si � )]
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+
kX

i =2

[�v(Si ; X Si � ) � �v(Si � 1; X Si � 1 )] + �v(S1; X S1 � ) � �v(t; x ):

Pt;x
� -a.s we haveX Si � = X Si � 1 (2 � i � k) and X S1 � = x, so we obtain

g(X T ) � �v(t; x ) = g(X T ) � �v(Sk ; X Sk ) +
kX

i =1

[�v(Si ; X Si ) � �v(Si ; X Si � )]

+
kX

i =2

[�v(Si ; X Si � 1 ) � �v(Si � 1; X Si � 1 )] + �v(S1; x) � �v(t; x ):

The �rst sum can be written as
kX

i =1

[�v(Si ; X Si ) � �v(Si ; X Si � )] =
Z T

t

Z

E
[�v(s; y) � �v(s; X s� )] p(ds dy);

while the other can be estimated from above by repeated applications of (2.68),
taking into account that X is constant in the intervals (t; S1], (Si � 1; Si ] (2 � i � k)
and (Sk ; T ]:

�v(Si ; X Si � 1 ) � �v(Si � 1; X Si � 1 )

� �
Z Si

Si � 1

�
L

� (s;X Si � 1 )
E �v(s; X Si � 1 ) + f (s; X Si � 1 ; � (s; X Si � 1 ))

�
ds

= �
Z Si

Si � 1

�
L � (s;X s )

E �v(s; X s) + f (s; X s; � (s; X s))
�

ds

for 2 � i � k and similar formulae for the intervals (t; S1], and (Sk ; T ]. We end up
with

g(X T ) � �v(t; x ) �
Z T

t

Z

E
[�v(s; y) � �v(s; X s� )] p(ds dy)

�
Z T

t

�
L � (s;X s )

E �v(s; X s) + f (s; X s; � (s; X s))
�

ds:

Recalling that the compensator of the measurep under Pt;x
� is � (X s� ; � (s; X s� ); dy)

ds 1[t;1 ) (s) we have, taking expectation,

Et;x
�

Z T

t

Z

E
[�v(s; y) � �v(s; X s� )] p(ds dy) = Et;x

�

Z T

t
L � (s;X s )

E �v(s; X s) ds;

which implies, by the previous inequality,

Et;x
� [g(X T )] � �v(t; x ) � � Et;x

�

Z T

t
f (s; X s; � (s; X s)) ds

and so v(t; x ) � J (t; x; � ). Since � 2 Aad was arbitrary we conclude that v(t; x ) �
V (t; x ).

�





Chapter 3

Optimal control of
Piecewise
Deterministic Markov
Processes and
constrained BSDEs
with nonnegative
jumps

3.1. Introduction

The aim of the present chapter is to prove that the value function in an in�nite-
horizon optimal control problem for piecewise deterministic Markov processes (PDMPs)
can be represented by means of an appropriate backward stochastic di�erential equa-
tion. Piecewise deterministic Markov processes, introduced in Davis [35], evolve
through random jumps at random times, while the behavior between jumps is de-
scribed by a deterministic ow. We consider optimal control problems of PDMPs
where the control acts continuously on the jump dynamics and on the deterministic
ow as well.

Let us start by describing our setting in an informal way. Let E be a Borel space
and E the corresponding� -algebra. A PDMP on (E; E) can be described by means
of three local characteristics, namely a continuous ow� (t; x ), a jump rate � (x), and
a transition measureQ(x; dy), according to which the location of the process at the
jump time is chosen. The PDMP dynamic can be described as follows: starting from
some initial point x 2 E, the motion of the process follows the ow � (t; x ) until a
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random jump T1, verifying

P(T1 > s ) = exp
�

�
Z s

0
� (� (r; x )) dr

�
; s � 0:

At time T1 the process jumps to a new pointX T1 selected with probability Q(x; dy)
(conditionally to T1), and the motion restarts from this new point as before.

Now let us introduce a measurable space (A; A), which will denote the space of
control actions. A controlled PDMP is obtained starting from a jump rate � (x; a)
and a transition measureQ(x; a; dy), depending on an additional control parameter
a 2 A, and a continuous ow � � (t; x ), depending on the choice of a measurable
function � (t) taking values on (A; A). A natural way to control a PDMP is to chose
a control strategy among the set of piecewise open-loop policies, i.e., measurable
functions that depend only on the last jump time and post jump position. We can
mention Almudevar [1], Bauerle and Rieder [11], Costa and Dufour [32], Davis [35],
[34], Dempster [40], as a sample of works that use this kind of approach. Roughly
speaking, at each jump timeTn , we choose an open loop control� n depending on
the initial condition X Tn to be used until the next jump time. A control � in the
class of admissible control lawsAad has the explicit form

� t =
1X

n=1

� n (t � Tn ; X Tn ) 1[Tn ; Tn +1 ) (t); (3.1)

and the controlled processX is

X t = � � n (t � Tn ; En ); t 2 [Tn ; Tn+1 ):

We denote byPx
� the probability measure such that, for every n > 1, the conditional

survivor function of the jump time Tn+1 and the distribution of the post jump
position X Tn +1 , are

Px
� (Tn+1 > s j FTn ) = exp

�
�

Z s

Tn

� (� � n (r � Tn ; X Tn ); � n (r � Tn ; X Tn )) dr
�

;

Px
� (X Tn +1 2 B j FTn ; Tn+1 ) = Q(� � n (Tn+1 � Tn ; X Tn ); � n (Tn+1 � Tn ; X Tn ); B );

on f Tn < 1g .

In the classic in�nite-horizon control problem one wants to minimize over all
control laws � a functional cost of the form

J (x; � ) = Ex
�

� Z 1

0
e� � s f (X s; � s) ds

�
(3.2)

where Ex
� denotes the expectation underPx

� , f is a given real function on E � A
representing the running cost, and� 2 (0; 1 ) is a discounting factor. The value
function of the control problem is de�ned in the usual way:

V (x) = inf
� 2 Aad

J (x; � ); x 2 E: (3.3)

Let now E be an open subset ofRd, and h(x; a) be a bounded Lipschitz contin-
uous function such that � � (t; x ) is the unique solution of the ordinary di�erential
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equation
_x(t) = h(x(t); � (t)) ; x(0) = x 2 E:

We will assume that � and f are bounded functions, uniformly continuous, andQ is
a Feller stochastic kernel. In this case,V is known to be the unique viscosity solution
on [0; 1 ) � E of the Hamilton-Jacobi-Bellman (HJB) equation

�v (x) = sup
a2 A

�
h(x; a) � r v(x) + � (x; a)

Z

E
(v(y) � v(x)) Q(x; a; dy)

�
; x 2 E:

(3.4)
The characterization of the optimal value function as the viscosity solution of the
corresponding integro-di�erential HJB equation is an important approach to tackle
the optimal control problem of PDMPs, and can be found for instance in Davis and
Farid [36], Dempster and Ye [41], [42]. Alternatively, the control problem can be
reformulated as a discrete-stage Markov decision model, where the stages are the
jumps times of the process and the decision at each stage is the control function that
solves a deterministic optimal control problem. The reduction of the optimal control
problem to a discrete-time Markov decision process is exploited for instance in [1],
[11], [32], [35], [34].

In the present chapter our aim is to represent the value functionV (x) by means
of an appropriate BSDE. We are interested in the general case whenf Px

� g� is a non-
dominated model, which, roughly speaking, reects the fully non-linear character
of the HJB equation. This basic di�culty has prevented the e�ective use of BSDE
techniques in the context of optimal control of PDMPs until now. In fact, we believe
that this is the �rst time that this di�culty is coped with and this connection is
established. It is our hope that the great development that BSDE theory has now
gained will produce new results in the optimization theory of PDMPs. In the context
of di�usions, probabilistic formulae for the value function for non-dominated models
have been discovered only in the recent year. In this sense, a fundamental role is
played by [88], where a new class of BSDEs with nonpositive jumps is introduced in
order to provide a probabilistic formula, known as nonlinear Feynman-Kac formula,
for fully nonlinear integro-partial di�erential equations, associated to the classical
optimal control for di�usions. This approach was later applied to many cases within
optimal switching and impulse control problems, see Elie and Kharroubi [54], [55],
[56], Kharroubi, Ma, Pham and Zhang [87], and developed with extensions and
applications, see Cosso and Chokroun [25], Cosso, Fuhrman and Pham [31], and
Fuhrman and Pham [67]. In all the above mentioned cases the controlled processes
are di�usions constructed as solutions to stochastic di�erential equations of Itô type
driven by a Brownian motion.

We wish to extend to the PDMPs framework the theory developed in the context
of optimal control for di�usions. The fundamental idea behind the derivation of the
Feynman-Kac representation, borrowed from [88], concerns the so-calledrandomiza-
tion of the control, that we are going to describe below in our framework. A �rst
step in the generalization of this method to the non-di�usive processes context was
done in Chapter 2, where a probabilistic representation for the value function asso-
ciated to an optimal control problem for pure jump Markov processes was provided.
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As in the pure jump case, also in the PDMPs framework the correct formulation of
the randomization method requires some e�orts, and can not be modelled on the
di�usive case, since the controlled processes are not de�ned as solutions to stochas-
tic di�erential equations. In addition, the presence of the controlled ow between
jumps in the PDMP's dynamics makes the treatment more di�cult and suggests to
use the viscosity solution theory. Finally, we notice that we consider PDMPs with
state spaceE with no boundary. This restriction is due to the fact that the presence
of the boundary induces technical di�culties on the study of the associated BSDE,
which would be driven by a non quasi-left continuous random measure, see Remark
3.2.3. For such general BSDEs the existence and uniqueness results were at disposal
only in particular frameworks, see e.g. [26] for the deterministic case, and counter-
examples were provided in the general case, see Section 4.3 in [29]. Only recently this
problem was faced and solved in a general context in [2], were a technical condition
is provided in order to achieve existence and uniqueness of the BSDE, see Chapter
4. The mentioned condition turns out to be veri�ed in the case of control problems
related to PDMPs with discontinuities at the boundary of the domain, see Remark
4.4.5. This fact opens to the possibility to apply the BSDEs techniques also in this
context, which is left as a future development of the method.

Let us now informally describe the randomization method in the PDMPs frame-
work. The �rst step, for any starting point x 2 E, consists in replacing the state
trajectory and the associated control process (X s; � s) by an (uncontrolled) PDMP
(X s; I s), in such a way that I is a Poisson process with values in the space of control
actions A, with an intensity � 0(db) which is arbitrary but �nite and with full sup-
port, and X is suitably de�ned. In particular, the PDMP ( X; I ) is constructed in a
di�erent probability space by means of a new triplet of local characteristics and takes
values on the enlarged spaceE � A. Let us denote by Px;a the corresponding law,
where (x; a) is the starting point in E � A. Then we formulate an auxiliary optimal
control problem where we control the intensity of the processI : for any predictable,
bounded and positive random �eld � t (b), by means of a theorem of Girsanov type,
we construct a probability measure Px;a

� under which the compensator ofI is the
random measure� t (db) � 0(db) dt (under Px;a

� the law of X is also changed) and we
minimize the functional

J (x; a; � ) = Ex;a
�

� Z 1

0
e� � s f (X s; I s) ds

�
: (3.5)

over all possible choices of� . This will be called the dual control problem. Notice
that the family f Px;a

� g� is a dominated model. One of our main results states that the
value function of the dual control problem, denoted asV � (x; a), can be represented
by means of a well-posed constrained BSDE. The latter is an equation over an in�nite
horizon of the form

Y x;a
s = Y x;a

T � �
Z T

s
Y x;a

r dr +
Z T

s
f (X r ; I r ) dr � (K x;a

T � K x;a
s ) (3.6)

�
Z T

s

Z

A
Z x;a

r (X r ; b) � 0(db) dr �
Z T

s

Z

E � A
Z x;a

r (y; b) q(dr dy db); 0 6 s 6 T < 1 ;
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with unknown triplet ( Y x;a ; Z x;a ; K x;a ) where q is the compensated random mea-
sure associated to (X; I ), K x;a is a predictable increasing c�adl�ag process,Z x;a is a
predictable random �eld, where we additionally add the sign constraint

Z x;a
s (X s� ; b) > 0: (3.7)

The reference �ltration is now the canonical one associated to the pair (X; I ). We
prove that this equation has a unique maximal solution, in an appropriate sense,
and that the value of the processY x;a at the initial time represents the dual value
function:

Y x;a
0 = V � (x; a): (3.8)

Our main purpose is to show that the maximal solution to (3.6)-(3.7) at the ini-
tial time also provides a Feynman-Kac representation to the value function (3.3) of
our original optimal control problem for PDMPs. To this end, we introduce the
deterministic real function on E � A

v(x; a) := Y x;a
0 ; (3.9)

and we prove that v is a viscosity solution to (3.4). By the uniqueness of the solution
to the HJB equation (3.4) we conclude that the value of the processY at the initial
time represents both the original and the dual value function:

Y x;a
0 = V � (x; a) = V (x): (3.10)

Identity (3.10) is the desired BSDE representation of the value function for the
original control problem and a Feynman-Kac formula for the general HJB equation
(3.4).

Formula (3.10) can be used to design algorithms based on the numerical ap-
proximation of the solution to the constrained BSDE (3.6)-(3.7), and therefore to
get probabilistic numerical approximations for the value function of the addressed
optimal control problem. In the recent years there has been much interest in this
problem, and numerical schemes for constrained BSDEs have been proposed and
analyzed in the di�usive framework, see [86], [85]. We hope that our results may be
used to get similar methods in the PDMPs context as well.

The chapter is organized as follows. Section 3.2 is dedicated to de�ne a set-
ting where the optimal control (3.3) is solved by means of the corresponding HJB
equation (3.4). We start by recalling the construction of a PDMP given its local
characteristics. In order to apply techniques based on BSDEs driven by general ran-
dom measures, we work in a canonical setting and we use a speci�c �ltration. The
construction is based on the well-posedness of the martingale problem for multivari-
ate marked point processes studied in Jacod [75], and is the object of Section 3.2.1.
This general procedure is then applied in Section 3.2.2 to formulate in a precise way
the optimal control problem we are interested in. At the end of Section 3.2.2 we
recall a classical result on existence and uniqueness of the viscosity solution to the
HJB equation (3.4), and its identi�cation with the value function V , provided by
Davis and Farid [36].

In Section 3.3 we start to develop the control randomization method. Given
suitable local characteristics, we introduce an auxiliary process (X; I ) on E � A by



102
Chapter 3. Optimal control of Piecewise Deterministic Markov

Processes and constrained BSDEs with nonnegative jumps

relying on the construction in Section 3.2.1, and we formulate a dual optimal con-
trol problem for it under suitable conditions. The formulation of the randomized
process is very di�erent from the di�usive framework, since our data are the local
characteristics of the process rather than the coe�cients of some stochastic di�er-
ential equations solved by it. In particular, we need to choose a speci�c probability
space under which the componentI (independent to X ) is a Poisson process.

In Section 3.4 we introduce the constrained BSDE (3.6)-(3.7) over in�nite hori-
zon. By a penalization approach, we prove that under suitable assumptions the
above mentioned equation admits a unique maximal solution (Y; Z; K ) in a certain
class of processes. Moreover, the componentY at the initial time coincides with the
value function V � of the dual optimal control problem. This is the �rst of our main
results, and is the object of Theorem 3.4.8.

Finally, in Section 3.5 we prove that the initial value of the maximal solution
Y x;a to (3.6)-(3.7) provides a viscosity solution to (3.4). This is the second main
result of the paper, which is stated in Theorem 3.5.1. As a consequence, by means
of a comparison theorem for sub and supersolutions to �rst-order integro-partial
di�erential equations, we get the desired nonlinear Feynman-Kac formula, as well as
the equality between the value functions of the primal and the dual control problems,
see Corollary 3.5.2. The proof of Theorem 3.5.1 is based on arguments from the
viscosity theory, and combines BSDEs techniques with control-theoretic arguments.
A relevant task is to derive the key property that the function v in (3.9) does not
depend ona, as consequence of theA-nonnegative constrained jumps.

Recalling the identi�cation in Theorem 3.4.8, we are able to give a direct proof
of the non-dependence ofv on a by means of control-theoretic techniques, see Propo-
sition 3.5.6 and the comments below. This allows us to consider very general spaces
A of control actions. Moreover, di�erently to the previous literature, we provide a
direct proof of the viscosity solution property of v, which does not need to rely on a
penalized HJB equation. This is achieved by generalizing to the setting of the dual
control problem the proof that allows to derive the HJB equation from the dynamic
programming principle, see Propositions 3.5.8 and 3.5.9.

3.2. Piecewise Deterministic controlled Markov Processes

3.2.1. The construction of a PDMP given its local characteristics. Given
a topological spaceF , in the sequel B(F ) will denote the Borel � -�eld associated
with F , and by Cb(F ) the set of all bounded continuous functions onF . The Dirac
measure concentrated at some pointx 2 F will be denoted � x .

Let (E; E) be a Borel measurable space. We will often need to construct a
PDMP in E with a given triplet of local characteristics ( �; �; Q ). We assume that
� : R � E ! E is a continuous function, � : E 7! R+ is a nonnegative continuous
function satisfying

sup
x2 E

� (x) < 1 ; (3.11)
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and that Q maps E into the set of probability measures on (E; E), and is a stochastic
Feller kernel, i.e., for all v 2 Cb(E ), the map x 7!

R
E v(y) Q(x; dy) (x 2 E) is

continuous.

We recall the main steps of the construction of a PDMP given its local charac-
teristics. The existence of a Markovian process associated with the triplet (�; �; Q )
is a well known fact (see, e.g., [35], [32]). Nevertheless, we need special care in
the choice of the corresponding �ltration, since this will be crucial when we solve
associated BSDEs and implicitly apply a version of the martingale representation
theorem in the sections that follow. For this reason, in the following we will use an
explicit construction that we are going to describe. Many of the techniques we are
going to use are borrowed from the theory of multivariate (marked) point processes.
We will often follow [75], but we also refer the reader to the treatise [77] for a more
systematic exposition.

We start by constructing a suitable sample space to describe the jumping mech-
anism of the Markov process. Let 
0 denote the set of sequences! 0 = ( tn ; en )n� 1

in ((0 ; 1 ) � E ) [ f (1 ; �) g, where � =2 E is adjoined to E as an isolated point,
satisfying in addition

tn � tn+1 ; tn < 1 =) tn < t n+1 : (3.12)

To describe the initial condition we will use the measurable space (E; E). Finally,
the sample space for the Markov process will be 
 = E � 
 0. We de�ne canonical
functions Tn : 
 ! (0; 1 ], En : 
 ! E [ f � g as follows: writing ! = ( e; ! 0) in the
form ! = ( e; t1; e1; t2; e2; : : :) we set for t � 0 and for n � 1

Tn (! ) = tn ; En (! ) = en ; T1 (! ) = lim
n!1

tn ; T0(! ) = 0 ; E0(! ) = e:

We also introduce the counting processN (s; B) =
P

n2 N 1Tn � s1En 2 B , and we de�ne
the processX : 
 � [0; 1 ) ! E [ � setting

X t =
�

� (t � Tn ; En ) if Tn � t < T n+1 ; for n 2 N;
� if t � T1 :

(3.13)

In 
 we introduce for all t � 0 the � -algebrasGt = � (N (s; B) : s 2 (0; t]; B 2 E). To
take into account the initial condition we also introduce the �ltration F = ( Ft )t � 0,
where F0 = E 
 f; ; 
 0g, and for all t � 0 Ft is the � -algebra generated byF0 and
Gt . F is right-continuous and will be called the natural �ltration. In the following all
concepts of measurability for stochastic processes (adaptedness, predictability etc.)
refer to F. We denote by F1 the � -algebra generated by all the� -algebrasFt . The
symbol P denotes the� -algebra of F-predictable subsets of [0; 1 ) � 
.

On the �ltered sample space (
 ; F) we have so far introduced the canonical
marked point process (Tn ; En )n� 1. The corresponding random measurep is, for any
! 2 
, a � -�nite measure on ((0; 1 ) � E; B(0; 1 ) 
 E) de�ned as

p(!; ds dy ) =
X

n2 N

1f Tn (! )< 1g � (Tn (! );E n (! )) (ds dy); (3.14)
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where � k denotes the Dirac measure at pointk 2 (0; 1 ) � E . For notational conve-
nience the dependence on! will be suppressed and, instead ofp(!; ds dy ), it will be
written p(ds dy).

Proposition 3.2.1. Assume that (3.11) holds, and �x x 2 E. Then there exists a
unique probability measure on(
 ; F1 ), denoted byPx , such that its restriction to F0

is � x , and the F-compensator of the measurep under Px is the random measure

~p(ds dy) =
X

n2 N

1[Tn ; Tn +1 ) (s) � (� (s � Tn ; En )) Q(� (s � Tn ; En ); dy) ds:

Moreover, Px (T1 = 1 ) = 1 .

Proof. The result is a direct application of Theorem 3.6 in [75]. The fact that,
Px -a.s.,T1 = 1 follows from the boundedness of� , see Proposition 24.6 in [35]. �

For �xed x 2 E, the sample path of the process (X t ) in (3.13) under Px can be
de�ned iteratively, by means of (�; �; Q ), in the following way. Set

F (s; x) = exp
�

�
Z s

0
� (� (r; x )) dr

�
;

we have

Px (T1 > s ) = F (s; x); (3.15)

Px (X T1 2 B j T1) = Q(x; B ); (3.16)

on f T1 < 1g , and, for every n > 1,

Px (Tn+1 > s j FTn ) = exp
�

�
Z s

Tn

� (� (r � Tn ; X Tn )) dr
�

; (3.17)

Px (X Tn +1 2 B j FTn ; Tn+1 ) = Q(� (Tn+1 � Tn ; X Tn ); B ); (3.18)

on f Tn < 1g .

Proposition 3.2.2. In the probability spacef 
 ; F1 ; Pxg the processX has distri-
bution � x at time zero, and it is a homogeneous Markov process, i.e., for anyx 2 E,
nonnegative timest, s, t � s, and for every bounded measurable functionf ,

Ex [f (X t+ s) j Ft ] = Ps(f (X t )) ; (3.19)

where Pt f (x) := Ex [f (X t )].

Proof. From (3.17), taking into account the semigroup property � (t + s; x) =
� (t; � (s; x)), we have

Px (Tn+1 > t + s j Ft ) 1f t2 [Tn ; Tn +1 )g

=
Px (Tn+1 > t + s j FTn )

Px (Tn+1 > t j FTn )
1f t2 [Tn ; Tn +1 )g

= exp
�

�
Z t+ s

t
� (� (r � Tn ; X Tn )) dr

�
1f t2 [Tn ; Tn +1 )g

= exp
�

�
Z s

0
� (� (r + t � Tn ; X Tn )) dr

�
1f t2 [Tn ; Tn +1 )g
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= exp
�

�
Z s

0
� (� (r; X t )) dr

�
1f t2 [Tn ; Tn +1 )g

= F (s; X t ) 1f t2 [Tn ; Tn +1 )g: (3.20)

Hence, denotingN t = N (t; E ), it follows from (3.20) that

Px (TN t +1 > t + s j Ft ) = F (s; X t );

in other words, conditional on Ft , the jump time after t of a PDMP started at x has
the same distribution as the �rst jump time of a PDMP started at X t . Since the
remaining interarrival times and postjump positions are independent on the past,
we have shown that (3.19) holds for every bounded measurable functionf . �

Remark 3.2.3. In the present chapter we restrict the analysis to the case of PDMPs
on a domain E with no boundary. This choice is motivated by the fact that the
presence of jumps at the boundary of the domain would induce discontinuities in
the compensator of the random measure associated to the process. Since we have
in mind to apply techniques based on BSDEs driven by the compensated random
measure associated to the PDMP (see Section 3.4), this fact would considerably
complicates the tractation.

More precisely, consider a PDMP on a state spaceE with boundary @E. In this
case, when the process reaches the boundary, a forced jump occurs and the process
immediately goes back to the interior of the domain. According to (26.2) in [35],
the compensator of the counting measurep in (3.14) admits the form

~p(ds dy) = � (X s� ) Q(X s� ; dy) ds + dp�
s R(X s� ; dy);

where

p�
s =

1X

n=1

1f s� Tn g 1f X Tn � 2 � g

is the process counting the number of jumps ofX from the active boundary � 2 @E
(for the precise de�nition of � see page 61 in [35]), and R : @E� E ! E is the
transition probability measure describing the distribution of the process after the
forced jumps. In particular, the compensator ~p can be rewritten as

~p(ds dy) = dAs � (X s� ; dy);

where� (X s� ; dy) = Q(X s� ; dy) 1f X s� 2 E g+ R(X s� ; dy) 1f X s� 2 � g, and As = � (X s� ) ds
+ dp�

s is a predictable and discontinuous process, with jumps

� As = 1 f X s� 2 � g:

The presence of these discontinuities in the compensator induces very technical dif-
�culties in the study of the associated BSDE, see Chapter 4. The above mentioned
case is left as a future improvement of the theory.
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3.2.2. Optimal control of PDMPs. In the present section we aim at formulating
an optimal control problem for piecewise deterministic Markov processes, and to
discuss its solvability. The PDMP state spaceE will be an open subset ofRd, and
E the corresponding� -algebra. In addition, we introduce a Borel spaceA, endowed
with its � -algebra A, called the space of control actions. The additional hypothesis
that A is compact is not necessary for the majority of the results, and will be
explicitly asked whenever needed. The other data of the problem consist in three
functions f , h and � on E � A, and in a probability transition Q from (E � A; E
 A)
to (E; E), satisfying the following conditions.

(Hh � Q)

(i) h : E � A 7! E is a bounded, uniformly continuous, function satisfying
�

8x; x 0 2 E; and 8a; a0 2 A; jh(x; a) � h(x0; a0)j 6 L h (jx � x0j + ja � a0j);
8x 2 E and 8a 2 A; jh(x; a)j 6 M h ;

where L h and M h are constants independent ofa; a0 2 A, x; x 0 2 E.

(ii) � : E � A 7! R+ is a nonnegative bounded uniformly continuous function,
satisfying

sup
(x;a )2 E � A

� (x; a) < 1 : (3.21)

(iii) Q mapsE � A into the set of probability measures on (E; E), and is a stochas-
tic Feller kernel. i.e., for all v 2 Cb(E ), the map (x; a) 7!

R
Rd v(y) Q(x; a; dy)

is continuous (hence it belongs toCb(E � A)).

(Hf) f : E � A 7! R+ is a nonnegative bounded uniformly continuous function. In
particular, there exists a positive constant M f such that

0 6 f (x; a) 6 M f ; 8 x 2 E; a 2 A:

The requirement that Q(x; a; f xg) = 0 for all x 2 E , a 2 A is natural in many
applications, but here is not needed.h, � and Q depend on the control parameter
a 2 A and play respectively the role of and controlled drift, controlled jump rate and
controlled probability transition. Roughly speaking, we may control the dynamics
of the process by changing dynamically its deterministic drift, its jump intensity and
its post jump distribution.

Let us give a more precise de�nition of the optimal control problem under study.
To this end, we �rst construct 
, F = ( Ft )t � 0, F1 as in the previous paragraph.

We will consider the class ofpiecewise open-loop controls, �rst introduced in
Vermes [129] and often adopted in this context, see for instance [35], [32], [1]. Let
X be the (uncontrolled) process constructed in a canonical way from a marked point
process (Tn ; En ) as in Section 3.2.1. The class of admissible control lawAad is the
set of all Borel-measurable maps� : [0; 1 ) � E ! A, and the control applied to X
is of the form:

� t =
1X

n=1

� n (t � Tn ; En ) 1[Tn ; Tn +1 ) (t): (3.22)
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In other words, at each jump time Tn , we choose an open loop control� n depending
on the initial condition En to be used until the next jump time.

By abuse of notation, we de�ne the controlled processX : 
 � [0; 1 ) ! E [ f � g
setting

X t = � � n (t � Tn ; En ); t 2 [Tn ; Tn+1 ) (3.23)

where � � (t; x ) is the unique solution to the ordinary di�erential equation

_x(t) = h(x(t); � (t)) ; x(0) = x 2 E:

with � an A-measurable function. Then, for every starting point x 2 E and for each
� 2 Aad, by Proposition 3.2.1 there exists a unique probability measure on (
; F1 ),
denoted by Px

� , such that its restriction to F0 is � x , and the F-compensator under
Px

� of the measurep(ds dy) is

~p� (ds dy) =
1X

n=1

1[Tn ; Tn +1 ) (s) � (X s; � n (s � Tn ; En )) Q(X s; � n (s � Tn ; En ); dy) ds:

According to Proposition 3.2.2, under Px
� the processX in (3.23) is Markovian with

respect to F.

Denoting by Ex
� the expectation under Px

� , we �nally de�ne, for x 2 E and
� 2 Aad, the functional cost

J (x; � ) = Ex
�

� Z 1

0
e� � s f (X s; � s) ds

�
(3.24)

and the value function of the control problem

V(x) = inf
� 2 Aad

J (x; � ); (3.25)

where � 2 (0; 1 ) is a discounting factor that will be �xed from here on. By the
boundedness assumption onf , both J and V are well de�ned and bounded.

Let us consider the Hamilton-Jacobi-Bellman equation (for short, HJB equation)
associated to the optimal control problem: this is the following elliptic nonlinear
equation on [0; 1 ) � E :

H v(x; v; Dv ) = 0 ; (3.26)

where

H  (z; v; p) = sup
a2 A

�
� v � h(z; a) � p �

Z

E
( (y) �  (z)) � (z; a) Q(z; a; dy) � f (z; a)

�
:

Remark 3.2.4. The HJB equation (3.26) can be rewritten as

� v (x) = sup
a2 A

f L av(x) + f (x; a)g = 0 ; (3.27)

where L a is the operator depending ona 2 A de�ned as

L av(x) := h(x; a) � r v(x) + � (x; a)
Z

E
(v(y) � v(x)) Q(x; a; dy): (3.28)
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Let us recall the following facts. Given a locally bounded function z : E !
R, we de�ne its lower semicontinuous (l.s.c. for short) envelopez� , and its upper
semicontinuous (u.s.c. for short) envelopez� , by

z� (x) = lim inf
y! x
y2 E

z(y); z� (x) = lim sup
y! x
y2 E

z(y); for all x 2 E:

De�nition 3.2.5. Viscosity solution to (3.26).

(i) A locally bounded u.s.c. function w on E is called aviscosity supersolution
(resp. viscosity subsolution) of (3.26) if

H w(x0; w(x0); D' (x0)) > (resp: 6 ) 0:

for any x0 2 E and for any ' 2 C1(E ) such that

(u � ' )(x0) = min
E

(u � ' ) ( resp: max
E

(u � ' )) :

(ii) A function z on E is called a viscosity solution of (3.26) if it is locally
bounded and its u.s.c. and l.s.c. envelopes are respectively subsolution and
supersolution of (3.26).

The HJB equation (3.26) admits a unique continuous solution, which coincides
with the value function V in (3.25). The following result is stated in Theorem 7.5 in
[36].

Theorem 3.2.6. Let (Hh � Q) and (Hf) hold, and assume thatA is compact. Then
the value functionV of the PDMPs optimal control problem is the unique continuous
viscosity solution of (3.26).

3.3. Control randomization and dual optimal control problem

In this section we start to implement the control randomization method. In the
�rst step, for an initial time t � 0 and a starting point x 2 E, we construct an
(uncontrolled) Markovian pair of PDMPs ( X; I ) by specifying its local characteris-
tics, see (3.29)-(3.30)-(3.31) below. Next we formulate an auxiliary optimal control
problem where, roughly speaking, we optimize a functional cost by modifying the
intensity of the processI over a suitable family.

This dual problem is studied in Section 3.4 by means of a suitable class of BSDEs.
In Section 3.5 we will show that the same class of BSDEs provides a probabilistic
representation of the value function introduced in the previous section. As a byprod-
uct, we also get that the dual value function coincides with the one associated to the
original optimal control problem.

3.3.1. A dual control system. Let E still denote an open subset ofRd with � -
algebra E, and A be a Borel space with corresponding� -algebra A. Let moreover
h, � and Q be respectively two real functions onE � A and a probability transition
from (E � A; E
 A), satisfying (Hh � Q) as before. We denote by� (t; x; a ) the unique
solution to the ordinary di�erential equation

_x(t) = h(x(t); a); x(0) = x 2 E; a 2 A:
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In particular, � (t; x; a ) corresponds to the function � � (t; x ), introduced in Section
3.2.2, when� (t) � a. Let now introduce another �nite measure � 0 on (A; A) satis-
fying the following assumption:

(H � 0) � 0 is a �nite measure on (A; A) with full topological support.

The existence of such a measure is guaranteed by the fact that the spaceA is metric
separable. We de�ne

~� (t; x; a ) := ( � (t; x; a ) a); (3.29)
~� (x; a) := � (x; a) + � 0(A); (3.30)

~Q(x; a; dy db) :=
� (x; a) Q(x; a; dy) � a(db) + � 0(db) � x (dy)

~� (x; a)
: (3.31)

We wish to construct a PDMP (X; I ) as in Section 3.2.1 but with enlarged state
spaceE � A and local characteristics (~�; ~�; ~Q).

Firstly, we need to introduce a suitable sample space to describe the jump mech-
anism of the process (X; I ) on E � A. Accordingly, we set 
 0 as the set of sequences
! 0 = ( tn ; en ; an )n� 1 contained in ((0; 1 ) � E � A) [f (1 ; � ; � 0)g, where � =2 E (resp.
� 0 =2 A) is adjoined to E (resp. to A) as an isolated point, satisfying (3.12). In the
sample space 
 = 
 0 � E � A we de�ned the random variables Tn : 
 ! (0; 1 ],
En : 
 ! E [ f � g, An : 
 ! A [ f � 0g, as follows: writing ! = ( e; a; ! 0) in the form
! = ( e; a; t1; e1; a1; t2; e2; a2; :::) we set for t � 0 and for n � 1

Tn (! ) = tn ; T1 (! ) = lim
n!1

tn ; T0(! ) = 0 ;

En (! ) = en ; An (! ) = an ; E0(! ) = e; A0(! ) = a:

We de�ne the process (X; I ) on (E � A) [ f � ; � 0g setting

(X; I )t =
�

(� (t � Tn ; En ; An ); An ) if Tn � t < T n+1 ; for n 2 N;
(� ; � 0) if t � T1 :

(3.32)

In 
 we introduce for all t � 0 the � -algebrasGt = � (N (s; B) : s 2 (0; t]; B 2
E 
 A) generated by the counting processesN (s; A) =

P
n2 N 1Tn � s1En 2 A and the

� -algebra Ft generated byF0 and Gt , where F0 = E 
 A 
 f; ; 
 0g. We still denote
by F = ( Ft )t � 0 and P the corresponding �ltration and predictable � -algebra. The
random measurep is now de�ned on (0; 1 ) � E � A as

p(ds dy db) =
X

n2 N

1f Tn ;E n ;A n g(ds dy db): (3.33)

Given any starting point ( x; a) 2 E � A, by Proposition 3.2.1, there exists a unique
probability measure on (
 ; F1 ), denoted by Px;a , such that its restriction to F0 is
� (x;a ) and the F-compensator of the measurep(ds dy db) under Px;a is the random
measure

~p(ds dy db) =
X

n2 N

1[Tn ; Tn +1 ) (s) �( � (s � Tn ; En ; An ); An ; dy db) ds;

where

�( x; a; dy db) = � (x; a) Q(x; a; dy) � a(db) + � 0(db) � x (dy); 8(x; a) 2 E � A:
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We indicate by q = p � ~p the compensated martingale measure associated top.

As in Section 3.2.1, the sample path of a process (X; I ) with values in E �
A, starting from a �xed initial point ( x; a) 2 E � A at time zero, can be de�ned
iteratively by means of its local characteristics (~h; ~�; ~Q) in the following way. Set

F (s; x; a) = exp
�

�
Z s

0
(� (� (r; x; a ); a) + � 0(A)) dr

�
;

we have

Px;a (T1 > s ) = F (s; x; a); (3.34)

Px;a (X T1 2 B; I T1 2 Cj T1) = ~Q(x; B � C); (3.35)

on f T1 < 1g , and, for every n > 1,

Px;a (Tn+1 > s j FTn ) = exp
�

�
Z s

Tn

(� (� (r � Tn ; X Tn ; I Tn ); I Tn ) + � 0(A)) dr
�

;

(3.36)

Px;a (X Tn +1 2 B; I Tn +1 2 Cj FTn ; Tn+1 ) = ~Q(� (Tn+1 � Tn ; X Tn ; I Tn ); I Tn ; B � C);
(3.37)

on f Tn < 1g .

Finally, an application of Proposition 3.2.2 provides that (X; I ) is a Markov
process on [0; 1 ) with respect to F. For every real function taking values in E � A,
the in�nitesimal generator is given by

L ' (x; a) := h(x; a) � r x ' (x; a) +
Z

E
(' (y; a) � ' (x; a)) � (x; a) Q(x; a; dy)

+
Z

A
(' (x; b) � ' (x; a)) � 0(db):

For our purposes, it will be not necessary to specify the domain of the previous
operator (for its formal de�nition we refer to Theorem 26.14 in [35]); in the sequel
the operator L will be applied to test functions with suitable regularity.

3.3.2. The dual optimal control problem. We now introduce a dual optimal
control problem associated to the process (X; I ), and formulated in a weak form. For
�xed ( x; a), we consider a family of probability measuresf Px;a

� ; � 2 Vg in the space
(
 ; F1 ), whose e�ect is to change the stochastic intensity of the process (X; I ).

Let us proceed with precise de�nitions. We still assume that (Hh � Q) , (H � 0)
and (H f ) hold. We recall that F = ( Ft )t> 0 is the augmentation of the natural
�ltration generated by p in (3.33). We de�ne

V = f � : 
 � [0; 1 ) � A ! (0; 1 ) P 
 A-measurable and boundedg:

For every � 2 V, we consider the predictable random measure

~p� (ds dy db) := � s(b) � 0(db) � f X s� g(dy) ds

+ � (X s� ; I s� ) Q(X s� ; I s� ; dy) � f I s� g(db) ds: (3.38)
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In particular, by the Radon Nikodym theorem one can �nd two nonnegative functions
d1, d2 de�ned on 
 � [0; 1 ) � E � A, P 
 E 
 A, such that

� 0(db) � f X t � g(dy) dt = d1(t; y; b) ~p(dt dy db)

� (X t � ; I t � ; dy) � f I t � g(db) dt = d2(t; y; b) ~p(dt dy db);

d1(t; y; b) + d2(t; y; b) = 1 ; ~p(dt dy db) � a:e:

and we haved~p� = ( � d 1 + d2) d~p. For any � 2 V, consider then the Dol�eans-Dade
exponential local martingale L � de�ned setting

L �
s = exp

� Z s

0

Z

E � A
log(� r (b) d1(r; y; b) + d2(r; y; b)) p(dr dy db)

�
Z s

0

Z

A
(� r (b) � 1)� 0(db) dr

�

= e
Rs

0

R
A (1� � r (b)) � 0 (db) dr

Y

n> 1:Tn 6 s

(� Tn (An ) d1(Tn ; En ; An ) + d2(Tn ; En ; An )) ;

(3.39)

for s � 0. When (L �
t )t � 0 is a true martingale, for every time T > 0 we can de�ne a

probability measure Px;a
�;T equivalent to Px;a on (
 ; FT ) setting

Px;a
�;T (d! ) = L �

T (! ) Px;a (d! ): (3.40)

By the Girsanov theorem for point processes (see Theorem 4.5 in [75]) the restriction
of the random measurep to (0; T] � E � A admits ~p� = ( � d 1 + d2) ~p as compensator
under Px;a

�;T . We set q� := p � ~p� . and we denote byEx;a
�;T the expectation operator

under Px;a
�;T . Previous considerations are formalized in the following Lemma, which

is a direct consequence of Lemma 2.3.2.

Lemma 3.3.1. Let assumptions(Hh � Q) and (H � 0) hold. Then, for every (x; a) 2
E � A and � 2 V, under the probability Px;a , the process(L �

t )t � 0 is a martingale.
Moreover, for every time T > 0, L �

T is square integrable, and, for everyPT 
 E 
 A-
measurable functionH : 
 � [0; T] � E � A ! R such that

Ex;a
hRT

0

R
E � A jHs(y; b)j2 ~p(ds dy db)

i
< 1 , the process

R�
0

R
E � A Hs(y; b) q� (ds dy db)

is a Px;a
�;T -martingale on [0; T].

We aim at extending the previous construction to the in�nite horizon, in order
to get a suitable probability measure on (
 ; F1 ). We have the following result.

Proposition 3.3.2. Let assumptions (Hh � Q) and (H � 0) hold. Then, for every
(x; a) 2 E � A and � 2 V, there exists a unique probabilityPx;a

� on (
 ; F1 ), under
which the random measure~p� in (3.38) is the compensator of the measurep in (3.33)
on (0; 1 ) � E � A. Moreover, for any time T > 0, the restriction of Px;a

� on (
 ; FT )
is given by the probability measurePx;a

�;T in (3.40).

Proof. For simplicity, in the sequel we will drop the dependence ofPx;a and Px;a
� on

(x; a), which will be denoted respectively by P and P� .

We notice that FTn = � (T1; E1; A1; :::; Tn ; En ; An ) de�nes an increasing family
of sub � -�elds of F1 such that F1 is generated by

S
n FTn . The idea is then to



112
Chapter 3. Optimal control of Piecewise Deterministic Markov

Processes and constrained BSDEs with nonnegative jumps

provide a family f P�
ngn of probability measures on (
 ; FTn ) under which ~p� is the

compensator of the measurep on (0; Tn ] � E � A, and which is consistent (i.e.,
P�

n+1

�
�
FTn

= P�
n ). Indeed, if we have at disposal such a family of probabilities, we

can naturally de�ne on
S

n FTn a set function P� verifying the desired property, by
setting P� (B ) := P�

n (B ) for every B 2 FTn , n � 1. Finally, to conclude we would
need to show thatP� is countably additive on

S
n FTn , and therefore can be extended

uniquely to F1 .

Let us proceed by steps. For everyn 2 N, we set

dP�
n := L �

Tn
dP on (
 ; FTn ); (3.41)

where L � is given by (3.39). Notice that, for every n 2 N, the probability P�
n is well

de�ned. Indeed, recalling the boundedness properties of� and � 0, we have

L �
Tn

= e
RTn

0

R
A (1� � r (b)) � 0 (db) dr

nY

k=1

(� Tk (Ak ) d1(Tk ; Ek ; Ak ) + d2(Tk ; Ek ; Ak ))

� (jj � jj1 )n e� 0 (A ) Tn ; (3.42)

and sinceTn is exponentially distributed (see (3.17)), we get

E
�
L �

Tn

�
� (jj � jj1 )n E

h
e� 0 (A ) Tn

i
< 1 :

Then, arguing as in the proof of the Girsanov theorem for point process (see, e.g.,
the comments after Theorem 4.5 in [75]), it can be proved that the restriction of the
random measurep to (0; Tn ] � E � A admits ~p� = ( � d 1 + d2) ~p as compensator under
P�

n . Moreover, f P�
ngn is a consistent family of probability measures on (
 ; FTn ),

namely
P�

n+1

�
�
FTn

= P�
n ; n 2 N: (3.43)

Indeed, taking into account de�nition (3.41), it is easy to see that identity (3.43) is
equivalent to

E
�
L �

Tn
jFTn � 1

�
= L �

Tn � 1
; n 2 N: (3.44)

By Corollary 3.6, Chapter II, in Revuz and Yor [ 111], and taking into account
the estimate (3.42), it follows that the process (L �

t^ Tn
)t � 0 is a uniformly integrable

martingale. Then, identity (3.44) follows from the optional stopping theorem for
uniformly integrable martingales (see, e.g., Theorem 3.2, Chapter II, in [111]).

At this point, we de�ne the following probability measure on
S

n FTn :

P� (B ) := P�
n (B ); B 2 FTn ; n 2 N: (3.45)

In order to get the desired probability measure on (
 ; F1 ), we need to show thatP�

in (3.45) is � -additive on
S

n FTn : in this case,P� can indeed be extended uniquely
to F1 , see Theorem 6.1 in Jacod and Protter [78].

Let us then prove that P� in (3.45) is countably additive on
S

n FTn . To this end,
let us introduce the product space ~E N

� := ( E � A � [0; 1 ) [ f (� ; � 0; 1 )g)N, with
associated Borel� -algebra ~EN


� . For every n 2 N, we de�ne the following probability
measure on (~E n

� ; ~En

� ):

Q�
n (A) := P�

n (! : � n (! ) 2 A); A 2 ~E n
� ; (3.46)
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where� n = ( T1; E1; A1; :::; Tn ; En ; An ). The consistency property (3.43) of the family
(P�

n )n implies that

Q�
n+1 (A � ~E � ) = Q�

n+1 (A); A 2 ~E n
� : (3.47)

Let now de�ne

A := f A � ~E � � ~E � � ::: : A 2 ~E n
� ; n � 0g;

Q� (A � ~E � � ~E � � :::) := Q�
n (A); A 2 ~E n

� ; n � 0: (3.48)

By the Kolmogorov extension theorem for product spaces (see Theorem 1.1.10 in
Strook and Varadhan [126]), it follows that Q� is � -additive on A. Then, collecting
(3.45), (3.46) and (3.48), it is easy to see that the� -additivity of Q� on A implies
the � -additivity of P� on

S
n FTn .

Finally, we need to show that

P�
�
�
FT

= L �
T P 8 T > 0;

or, equivalently, that

E[L �
T  ] = E� [ ] 8 FT -measurable function:

To this end, �x T > 0, and let  be a FT ^ Tn -measurable bounded function. In
particular,  is FT ^ Tm -measurable, for everym � n. Since by de�nition P�

�
�
FTn

=
L �

Tn
P; n 2 N; we have

E� [ ] = E[L �
Tm

 ]

= E[E[L �
Tm

 jFT ^ Tm ]]

= E[ E[L �
Tm

jFT ^ Tm ]]

= E[ L �
T ^ Tm

] 8m � n:

SinceL �
T ^ Tm

�!
m!1

L �
T a.s., and (L �

s )s2 [0; T ] is a uniformly integrable martingale, by

Theorem 3.1, Chapter II, in [111], we get

E� [ ] = lim
m!1

E[L �
T ^ Tm

 ] = E[L �
T  ]; 8 2

[

n

FT ^ Tn :

Then, by the monotone class theorem, recalling that
W

n FT ^ Tn = FW
n FT ^ Tn

(see,
e.g., Corollary 3.5, point 6, in He, Wang and Yan [73]), we get

E� [ ] = E[L �
T  ]; 8 2

_

n

FT ^ Tn = FW
n FT ^ Tn

= FT :

This concludes the proof. �

Finally, for every x 2 E, a 2 A and � 2 V, we introduce the dual functional cost

J (x; a; � ) := Ex;a
�

� Z 1

0
e� � t f (X t ; I t ) dt

�
; (3.49)

and the dual value function

V � (x; a) := inf
� 2 V

J (x; a; � ); (3.50)

where � > 0 in (3.49) is the discount factor introduced in Section 3.2.2.
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3.4. Constrained BSDEs and the dual value function representation

In this section we introduce a BSDE with a sign constrain on its martingale
part, for which we prove the existence and uniqueness of a maximal solution, in
an appropriate sense. This constrained BSDE is then used to give a probabilistic
representation formula for the dual value function introduced in (3.50).

Throughout this section we still assume that (Hh � Q) , (H � 0) and (H f ) hold.
The random measuresp, ~p and q, as well as the dual control setting 
 ; F; (X; I ); Px;a ,
are the same as in Section 3.3.1. We recall thatF = ( Ft )t> 0 is the augmentation
of the natural �ltration generated by p, and that PT , T > 0, denotes the� -�eld of
F-predictable subsets of [0; T] � 
.

For any (x; a) 2 E � A we introduce the following notation.

� L 2
x,a (F� ), the set of F� -measurable random variables� such that Ex;a

�
j� j2

�
<

1 ; here � > 0 is an F-stopping time.

� S1 the set of real-valued c�adl�ag adapted processesY = ( Yt )t> 0 which are
uniformly bounded.

� S2
x,a (0, T) , T > 0, the set of real-valued c�adl�ag adapted processesY =

(Yt )06 t6 T satisfying

jjY jjS2
x,a (0, T) := Ex;a

�
sup

06 t6 T
jYt j2

�
< 1 :

� L 2
x,a (0, T ), T > 0, the set of real-valued progressive processesY = ( Yt )06 t6 T

such that

jjY jj2
L 2

x,a (0, T) := Ex;a
� Z T

0
jYt j2 dt

�
< 1 :

We also de�ne L 2
x,a,loc := \ T > 0L 2

x,a (0, T ).

� L 2
x,a (q; 0, T ), T > 0, the set of PT 
 B(E) 
 A-measurable mapsZ : 
 �

[0; T] � E � A ! R such that

jjZ jj2
L 2

x,a (q;0, T ) := Ex;a
hZ T

0

Z

E � A
jZ t (y; b)j2 ~p(dt dy db)

i

= Ex;a
hZ T

0

Z

E
jZ t (y; I t )j2 � (X t ; I t ) Q(X t ; I t ; dy) dt

i

+ Ex;a
hZ T

0

Z

A
jZ t (X t ; b)j2 � 0(db) dt

i
< 1 :

We also de�ne L 2
x,a,loc (q) := \ T > 0L 2

x,a (q; 0, T ).

� L 2(� 0), the set of A-measurable maps : A ! R such that

j j2L 2 (� 0 ) :=
Z

A
j (b)j2 � 0(db) < 1 :



3.4. Constrained BSDEs and the dual value function representation 115

� L 2
x,a (� 0; 0, T ), T > 0, the set ofPT 
 A-measurable mapsW : 
 � [0; T] �

A ! R such that

jW j2L 2
x,a (� 0 ;0, T ) := Ex;a

� Z T

0

Z

A
jWt (b)j2 � 0(db) dt

�
< 1 :

We also de�ne L 2
x,a,loc (� 0) := \ T > 0L 2

x,a (� 0; 0, T ).

� K 2
x,a (0, T ), T > 0, the set of nondecreasing c�adl�ag predictable processes

K = ( K t )06 t6 T such that K 0 = 0 and Ex;a
�
jK T j2

�
< 1 . We also de�ne

K 2
x,a,loc := \ T > 0K 2

x,a (0, T ).

We are interested in studying the following family of BSDEs with partially nonneg-
ative jumps over an in�nite horizon, parametrized by ( x; a): Px;a -a.s.,

Y x;a
s = Y x;a

T � �
Z T

s
Y x;a

r dr +
Z T

s
f (X r ; I r ) dr � (K x;a

T � K x;a
s ) (3.51)

�
Z T

s

Z

A
Z x;a

r (X r ; b) � 0(db) dr �
Z T

s

Z

E � A
Z x;a

r (y; b) q(dr dy db); 0 6 s 6 T < 1 ;

with

Z x;a
s (X s� ; b) > 0; ds 
 dPx;a 
 � 0(db); -a.e. on [0; 1 ) � 
 � A; (3.52)

where � is the positive parameter introduced in Section 3.2.2.

We look for a maximal solution (Y x;a ; Z x;a ; K x;a ) 2 S1 � L 2
x,a,loc (q) � K 2

x,a,loc to
(3.51)-(3.52), in the sense that for any other solution (~Y ; ~Z; ~K ) 2 S1 � L 2

x,a,loc (q) �
K 2

x,a,loc to (3.51)-(3.52), we haveY x;a
t > ~Yt , Px;a -a.s., for all t > 0.

Proposition 3.4.1. Let Hypotheses(Hh � Q) , (H � 0) and (Hf) hold. Then, for
any (x; a) 2 E � A, there exists at most one maximal solution(Y x;a ; Z x;a ; K x;a ) 2
S1 � L 2

x,a, loc (q) � K 2
x,a, loc to the BSDE with partially nonnegative jumps (3.51)-

(3.52).

Proof. Let (Y; Z; K ) and (Y 0; Z 0; K 0) be two maximal solutions of (3.51)-(3.52). By
de�nition, we clearly have the uniqueness of the componentY . Regarding the other
components, taking the di�erence between the two backward equations we obtain:
Px;a -a.s.

0 = � (K t � K 0
t ) �

Z t

0

Z

A
(Zs(X s; b) � Z 0

s(X s; b)) � 0(db) ds

�
Z t

0

Z

E � A
(Zs(y; b) � Z 0

s(y; b)) q(ds dy db); 0 6 t 6 T < 1 ;

that can be rewritten as
Z t

0

Z

E � A
(Zs(y; b) � Z 0

s(y; b)) p(ds dy db) = � (K t � K 0
t ) (3.53)

+
Z t

0

Z

E
(Zs(y; I s) � Z 0

s(y; I s)) � (X s; I s) Q(X s; I s; dy) ds; 0 6 t 6 T < 1 :
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The right-hand side of (3.53) is a predictable process, therefore it has no totally
inaccessible jumps (see, e.g., Proposition 2.24, Chapter I, in [79]); on the other
hand, the left side is a pure jump process with totally inaccessible jumps. This
implies that Z = Z 0, and as a consequence the componentK is unique as well. �

In the sequel, we prove by a penalization approach the existence of the maximal
solution to (3.51)-(3.52). In particular, this will provide a probabilistic representation
of the dual value function V � introduced in Section 3.3.2.

3.4.1. Penalized BSDE and associated dual control problem. Let us intro-
duce the family of penalized BSDEs on [0; 1 ) associated to (3.51)-(3.52), parametrized
by the integer n > 1: Px;a -a.s.,

Y n;x;a
s = Y n;x;a

T � �
Z T

s
Y n;x;a

r dr +
Z T

s
f (X r ; I r ) dr

� n
Z T

s

Z

A
[Z n;x;a

r (X r ; b)] � � 0(db) dr �
Z T

s

Z

A
Z n;x;a

r (X r ; b) � 0(db) dr

�
Z T

s

Z

E � A
Z n;x;a

r (y; b) q(dr dy db); 0 6 s 6 T < 1 ; (3.54)

where [z]� = max( � z;0) denotes the negative part ofz.

We shall prove that there exists a unique solution to equation (3.54), and provide
an explicit representation to (3.54) in terms of a family of dual control problems. To
this end, we start by considering, for �xed T > 0, the family of BSDEs on [0; T]:
Px;a -a.s.,

Y T;n;x;a
s = � �

Z T

s
Y T;n;x;a

r dr +
Z T

s
f (X r ; I r ) dr

� n
Z T

s

Z

A
[Z T;n;x;a

r (X r ; b)] � � 0(db) dr �
Z T

s

Z

A
Z T;n;x;a

r (X r ; b) � 0(db) dr

�
Z T

s

Z

E � A
Z T;n;x;a

r (y; b) q(dr dy db); 0 6 s 6 T; (3.55)

with zero �nal cost at time T > 0.

Remark 3.4.2. The penalized BSDE (3.55) can be rewritten in the equivalent form:
Px;a -a.s.,

Y T;n;x;a
s =

Z T

s
f n (X r ; I r ; Y T;n;x;a

r ; Z T;n;x;a
r ) ds �

Z T

s

Z

E � A
Z T;n;x;a

r (y; b) q(dr dy db);

s 2 [0; T], where the generatorf n is de�ned by

f n (x; a; u;  ) := f (x; a) � �u �
Z

A

�
n [ (a)] � +  (b)

	
� 0(db); (3.56)

for all ( x; a; u;  ) 2 E � A � R � L 2(� 0).

We notice that, under Hypotheses(Hh � Q) , (H � 0) and (Hf) , f n is Lipschitz
continuous in  with respect to the norm of L 2(� 0), uniformly in ( x; a; u), i.e., for



3.4. Constrained BSDEs and the dual value function representation 117

every n 2 N, there exists a constantL n , depending only onn, such that for every
(x; a; u) 2 E � A � R and  ;  0 2 L 2(� 0),

jf n (x; a; u;  0) � f n (x; a; u;  )j 6 L n j �  0jL 2 (� 0 ) :

For every integer n > 1, let Vn denote the subset of elements� 2 V valued in
(0; n].

Proposition 3.4.3. Let Hypotheses(Hh � Q) , (H � 0) and (Hf) hold. For every
(x; a; n; T ) 2 E � A � N � (0; 1 ), there exists a unique solution(Y T;n;x;a ; Z T;n;x;a ) 2
S1 � L 2

x,a (q; 0, T ) to (3.55). Moreover, the following uniform estimate holds:Px;a -
a.s.,

Y T;n;x;a
s 6

M f

�
; 8 s 2 [0; T]: (3.57)

Proof. The existence and uniqueness of a solution (Y T;n;x;a ; Z T;n;x;a ) 2 S2
x,a (0, T ) �

L 2
x,a (q; 0, T ) to (3.55) is based on a �xed point argument, and uses integral repre-

sentation results for F-martingales, with F the natural �ltration (see, e.g., Theorem
5.4 in [75]). This procedure is standard and we omit it (similar proofs can be found
in the proofs of Theorem 3.2 in [131], Proposition 3.2 in [12], Theorem 3.4 in [28]).
It remains to prove uniform estimate (3.57). To this end, let us apply Itô's formula
to e� � r Y T;n;x;a

r betweens and T. We get: Px;a -a.s.

Y T;n;x;a
s =

Z T

s
e� � (r � s) f (X r ; I r ) dr �

Z T

s

Z

E � A
e� � (r � s) Z T;n;x;a

r (y; b) q(dr dy db)

�
Z T

s

Z

A
e� � (r � s) f n[Z T;n;x;a

r (X r ; b)] � + Z T;n;x;a
r (X r ; b)g � 0(db) dr; s 2 [0; T]:

(3.58)

Now for any � 2 Vn , let us introduce the compensated martingale measureq� (ds dy db)
= q(ds dy db) � (� s(b) � 1) d1(s; y; b) ~p(ds dy db) under Px;a

� . Taking the expectation
in (3.58) under Px;a

� , conditional to Fs, and sinceZ T;n;x;a is in L 2
x,a (q; 0; T ), from

Lemma 3.3.1 we get that,Px;a -a.s.,

Y T;n;x;a
s

= � Ex;a
�

� Z T

s

Z

A
e� � (r � s) f n[Z T;n;x;a

r (X r ; b)] � + � r (b) Z T;n;x;a
r (X r ; b)g � 0(db) dr

�
�
�Fs

�

+ Ex;a
�

� Z T

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
; s 2 [0; T]: (3.59)

From the elementary numerical inequality: n[z]� + �z > 0 for all z 2 R, � 2 (0; n],
we deduce by (3.59) that, for all � 2 Vn ,

Y T;n;x;a
s 6 Ex;a

�

� Z T

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
; s 2 [0; T]:

Therefore, Px;a -a.s.,

Y T;n;x;a
s 6 Ex;a

�

� Z 1

s
e� � (r � s) jf (X r ; I r )j dr

�
�
�Fs

�
6

M f

�
; s 2 [0; T]:
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�

Proposition 3.4.4. Let Hypotheses(Hh � Q) , (H � 0) and (Hf) hold. Then, for
every (x; a; n) 2 E � A � N, there exists a unique solution(Y n;x;a ; Z n;x;a ) 2 S1 �
L 2

x,a, loc (q) to (3.54).

Proof. Uniqueness.Fix n 2 N, (x; a) 2 E � A, and consider two solutions (Y 1; Z 1) =
(Y 1;n;x;a ; Z 1;n;x;a ), (Y 2; Z 2) = ( Y 2;n;x;a ; Z 2;n;x;a ) 2 S1 � L 2

x,a,loc (q) of (3.54). Set
�Y = Y 2 � Y 1, �Z = Z 2 � Z 1. Let 0 6 s 6 T < 1 . Then, an application of Itô's
formula to e� 2 � r j �Yr j2 betweens and T yields: Px;a -a.s.,

e� 2 � s j �Ysj2 = e� 2 � T j �YT j2

� 2n
Z T

s

Z

A
e� 2 � r �Yr f [Z 2

r (X s; b)] � � [Z 1
r (X s; b)] � g� 0(db) dr

� 2
Z T

s

Z

A
e� 2 � r �Yr �Zr (X s; b) � 0(db) dr

� 2
Z T

s

Z

E � A
e� 2 � r �Yr �Zr (y; b) q(dr dy db)

�
Z T

s

Z

E � A
e� 2 � r j �Zr (y; b)j2 p(dr dy db): (3.60)

Notice that

� n
Z T

s

Z

A
e� � (r � s) �Yr f [Z 2

r (X r ; b)] � � [Z 1
r (X r ; b)] � g� 0(db) dr

=
Z T

s

Z

A
e� � (r � s) �Yr f Z 2

r (X r ; b) � Z 1
r (X r ; b)g � "

r � 0(db) dr

� "
Z T

s

Z

A
e� � (r � s) �Yr f Z 2

r (X r ; b) � Z 1
r (X r ; b)g1fj �Yr j6 1g �

� 1f [Z 2
r (X r ;b)] � =[ Z 1

r (X r ;b)] � ; j �Z r (X r ;b)j6 1g � 0(db) dr

� "
Z T

s

Z

A
e� � (r � s) 1fj �Yr j> 1g 1f [Z 2

r (X r ;b)] � =[ Z 1
r (X r ;b)] � ; j �Z r (X r ;b)j> 1g � 0(db) dr;

where � " : R+ � 
 � A is given by

� "
r (b) = � n

[Z 2
r (X r ; b)] � � [Z 1

r (X r ; b)] �

�Zr (X r ; b)
1f Z 2

r (X r ;b)] � � [Z 1
r (X r ;b)] � 6=0 g (3.61)

+ " 1fj �Yr j6 1g 1f [Z 2
r (X r ;b)] � =[ Z 1

r (X r ;b)] � ; j �Z r (X r ;b)j6 1g

+ " ( �Yr ) � 1 ( �Zr (X x;a
r ; b)) � 1 1fj �Yr j> 1g 1f [Z 2

r (X x;a
r ;b)] � =[ Z 1

r (X x;a
s ;b)] � ; j �Z r (X x;a

r ;b)j> 1g;

for arbitrary " 2 (0; 1). In particular, � " is a P 
 A-measurable map satisfying
� "

r (b) 2 ["; n ], dr 
 dPx;a 
 � 0(db)-almost everywhere. Consider the probability
measurePx;a

� " on (
 ; F1 ), whose restriction to (
 ; FT ) has Radon-Nikodym density:

L � "

s := E
� Z �

0

Z

E � A
(� "

t (b) d1(t; y; b) + d2(t; y; b) � 1) q(dt dy db)
�

s
(3.62)
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for all 0 6 s 6 T, where E(�)s is the Dol�eans-Dade exponential. The existence of
such a probability is guaranteed by Proposition 3.3.2. From Lemma 3.3.1 it follows
that ( L � "

s )s2 [0; T ] is a uniformly integrable martingale. Moreover, L � "

T 2 L p (FT ),
for any p > 1. Under the probability measure Px;a

� " , by Girsanov's theorem, the
compensator ofp on [0; T] � E � A is (� "

s (b) d1(s; y; b) + d2(s; y; b)) ~p(ds dy db). We
denote by q� "

(ds dy db) := p(ds dy db) � (� "
s (b) d1(s; y; b) + d2(s; y; b)) ~p(ds dy db) the

compensated martingale measure ofp under Px;a
� " . Therefore equation (3.60) becomes:

Px;a -a.s.,

e� 2 � s j �Ysj2 6 e� 2 � T j �YT j2 � 2
Z T

s

Z

A
e� 2 � r �Yr �Zr (X s; b) q� "

(ds dy db) + 2
"
�

� 0(A);

for all " 2 (0; 1). Moreover, from the arbitrariness of " , we obtain

e� 2 � s j �Ysj2 6 e� 2 � T j �YT j2 � 2
Z T

s

Z

A
e� 2 � r �Yr �Zr (X s; b) q� "

(ds dy db): (3.63)

From Lemma 3.3.1, we see that the stochastic integral in (3.63) is a martingale, so
that, taking the expectation Ex;a

� " , conditional on Fs, with respect to Px;a
� " , we achieve

e� 2 � s j �Ysj2 6 e� 2 � T Ex;a
� " [j �YT j2jFs]: (3.64)

In particular, ( e� 2 � s j �Ysj2)t> 0 is a submartingale. Since�Y is uniformly bounded, we
see that (e� 2 � s j �Ysj2)t> 0 is a uniformly integrable submartingale, thereforee� 2 � s j �Ysj2

! � 1 2 L 1(
 ; F; Px;a
� " ), as s ! 1 . Using again the boundedness of�Y , we obtain

that � 1 = 0, which implies �Y = 0. Finally, plugging �Y = 0 into (3.60) we conclude
that �Z = 0.

Existence. Fix ( x; a; n) 2 E � A � N. For T > 0, let (Y T;n;x;a ; Z T;n;x;a ) = ( Y T ; Z T )
denote the unique solution to the penalized BSDE (3.55) on [0; T].
Step 1. Convergence of(Y T )T . Let T; T0 > 0, with T < T 0, and s 2 [0; T]. We have

jY T 0

s � Y T
s j2 6 e� 2 � (T � s) Ex;a

� "

h
jY T 0

T � Y T
T j2jFs

i
T !1�! 0; (3.65)

where the convergence result follows from (3.57). Let us now consider the sequence
of real-valued c�adl�ag adapted processes (Y T )T . It follows from (3.65) that, for any
t > 0, the sequence (Y T

t (! ))T is Cauchy for almost every ! , so that it converges
Px;a -a.s. to someFt -measurable random variableYt , which is bounded from the
right-hand side of (3.57). Moreover, using again (3.65) and (3.57), we see that, for
any 0 6 S < T ^ T0, with T; T0 > 0, we have

sup
06 t6 S

jY T 0

t � Y T
t j 6 e� � (T ^ T 0� S) M f

�
T;T 0!1

�! 0: (3.66)

In other words, the sequence (Y T )T > 0 convergesPx;a -a.s. to Y uniformly on compact
subsets ofR+ . Since eachY T is a c�adl�ag process, it follows that Y is c�adl�ag, as well.
Finally, from estimate (3.57) we see that Y is uniformly bounded and therefore
belongs toS1 .

Step 2. Convergence of(Z T )T . Let S; T; T0 > 0, with S < T < T 0. Then, applying
It�o's formula to e� 2 � s jY T 0

t � Y T
t j2 between 0 andS, and taking the expectation, we
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�nd

Ex;a
� Z S

0

Z

E � A
e� 2 � r jZ T 0

r (y; b) � Z T
r (y; b)j2 ~p(dr dy db)

�

= e� 2 � S Ex;a
h
jY T 0

S � Y T
S j2

i
� j Y T 0

0 � Y T
0 j2

� 2n Ex;a
� Z S

0

Z

A
e� 2 � r (Y T 0

r � Y T
r ) f [Z 2

r (X r ; b)] � � [Z 1
r (X r ; b)] � g� 0(db) dr

�

� 2Ex;a
� Z S

0

Z

A
e� 2 � r (Y T 0

r � Y T
r ) (Z T 0

r (X r ; b) � Z T
r (X r ; b)) � 0(db) dr

�
:

Recalling the elementary inequality bc6 b2 + c2=4, for any b; c 2 R, we get

Ex;a
� Z S

0

Z

E � A
e� 2 � r jZ T 0

r (y; b) � Z T
r (y; b)j2 ~p(dr dy db)

�

6 e� 2 � S Ex;a
h
jY T 0

S � Y T
S j2

i
+ 4( n2 + 1) � 0(A) Ex;a

� Z S

0
e� 2 � r jY T 0

r � Y T
r j2 dr

�

+
1
4

Ex;a
� Z S

0

Z

A
e� 2 � r j[Z 2

r (X r ; b)] � � [Z 1
r (X r ; b)] � j2 � 0(db) dr

�

+
1
4

Ex;a
� Z S

0

Z

A
e� 2 � r jZ T 0

r (X r ; b) � Z T
r (X r ; b)j2 � 0(db) dr

�
:

Multiplying the previous inequality by e2 � s , and recalling the form of the compen-
sator ~p, we get

1
2

Ex;a
� Z S

0

Z

E � A
e� 2 � r jZ T 0

r (y; b) � Z T
r (y; b)j2 ~p(dr dy db)

�

6 e� 2 � S Ex;a
h
jY T 0

S � Y T
S j2

i
+ 4( n2 + 1) � 0(A) Ex;a

� Z S

0
e� 2 � r jY T 0

r � Y T
r j2 dr

�

T;T 0!1
�! 0;

where the convergence to zero follows from estimate (3.66). Then, for anyS > 0,
we see that (Z T

j[0; S])T >S is a Cauchy sequence in the Hilbert spaceL 2
x,a (q; 0; S).

Therefore, we deduce that there exists~Z S 2 L 2
x,a (q; 0; S) such that (Z T

j[0; S])T >S

converges to ~Z S in L 2
x,a (q; 0; S), i.e.,

Ex;a
� Z S

0

Z

E � A
e� 2 � r jZ T

r (y; b) � ~Z S
r (y; b)j2 ~p(dr dy db)

�
T !1�! 0:

Notice that ~Z S0

j[0; S] = ~Z S, for any 0 6 S 6 S0 < 1 . Indeed, ~Z S0

j[0; S], as ~Z S, is the

limit in L 2
x,a (q; 0; S) of (Z T

j[0; S])T >S . Hence, we de�neZs = ~Z S
s for all s 2 [0; S] and

for any S > 0. Observe that Z 2 L 2
x,a,loc (q). Moreover, for any S > 0, (Z T

j[0; S])T >S

converges toZ j[0; S] in L 2
x,a (q; 0; S), i.e.,

Ex;a
� Z S

0

Z

E � A
e� 2 � r jZ T

r (y; b) � Zr (y; b)j2 ~p(dr dy db)
�

T !1�! 0: (3.67)
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Now, �x S 2 [0; T] and consider the BSDE satis�ed by (Y T ; Z T ) on [0; S]: Px;a -a.s.,

Y T
t = Y T

S � �
Z S

t
Y T

r dr +
Z S

t
f (X r ; I r ) dr

� n
Z S

t

Z

A
[Z T

r (X r ; b)] � � 0(db) dr �
Z S

t

Z

A
Z T

r (X r ; b) � 0(db) dr;

�
Z S

t

Z

E � A
Z T

r (y; b) q(dr dy db); 0 6 t 6 S:

From (3.67) and (3.66), we can pass to the limit in the above BSDE by letting
T ! 1 keeping S �xed. Then we deduce that (Y; Z) solves the penalized BSDE
(3.54) on [0; S]. SinceS is arbitrary, it follows that ( Y; Z) solves equation (3.54) on
[0; 1 ). �

The penalized BSDE (3.54) can be represented by means of a suitable family of
dual control problems.

Lemma 3.4.5. Let Hypotheses(Hh � Q) , (H � 0) and (Hf) hold. Then, for every
(x; a; n) 2 E � A � N, Px;a -a.s., the solution (Y n;x;a ; Z n;x;a ) to (3.54) admits the
following explicit representation:

Y n;x;a
s = ess inf

� 2 Vn
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
; s > 0: (3.68)

Proof. Fix n 2 N, and for any � 2 Vn , let us introduce the compensated martingale
measureq� (ds dy db) = q(ds dy db) � (� s(b) � 1) d1(s; y; b) ~p(ds dy db) under Px;a

� . Fix
T > s and apply Itô's formula to e� � r Y n;x;a

r betweens and T. Then we obtain:

Y n;x;a
s = e� � (T � s) Y n;x;a

T +
Z T

s
e� � (r � s) f (X r ; I r ) dr

�
Z T

s

Z

A
e� � (r � s) f n[Z n;x;a

r (X r ; b)] � + � r (a) Z n;x;a
r (X r ; b)g � 0(db) dr

�
Z T

s

Z

E � A
e� � (r � s) Z n;x;a

r (y; b) q� (dr dy db); s 2 [t; T ]: (3.69)

Taking the expectation in (3.69) under Px;a
� , conditional to Fs, and since by Propo-

sition 3.4.4 Z n;x;a is in L 2
loc,x,a (q), we get from Lemma 3.3.1 that, Px;a -a.s.,

Y n;x;a
s = Ex;a

�

�
e� � (T � s) Y n;x;a

T +
Z T

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
(3.70)

� Ex;a
�

� Z T

s

Z

A
e� � (r � s) f n[Z n;x;a

r (X r ; b)] � + � r (a) Z n;x;a
r (X r ; b)g � 0(db) dr

�
�
�Fs

�
:

From the elementary numerical inequality: n[z]� + �z > 0 for all z 2 R, � 2 (0; n],
we deduce by (3.70) that, for all � 2 Vn ,

Y n;x;a
s 6 Ex;a

�

�
e� � (T � s) Y n;x;a

T +
Z T

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
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6 Ex;a
�

�
e� � (T � s) Y n;x;a

T +
Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
:

Since Y n;x;a is in S1 by Proposition 3.4.4, sendingT ! 1 , we obtain from the
conditional version of Lebesgue dominated convergence theorem that

Y n;x;a
s 6 Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
;

for all � 2 Vn . Therefore,

Y n;x;a
s 6 ess inf

� 2 Vn
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
: (3.71)

On the other hand, for " 2 (0; 1), let us consider the process� " 2 Vn de�ned by:

� "
s (b) = n 1f Z n;x;an

s (X s� ;b)6 0g+ " 1f 0<Z n;x;a
s (X s� ;b)< 1g+ " Z n;x;a

s (X s� ; b) � 1 1f Z n;x;a
s (X s� ;b)> 1g

(notice that we can not take � s(b) = n1f Z n
s (X s� ;b)6 0g, since this process does not

belong to Vn because of the requirement of strict positivity). By construction, we
have

n[Z n
s (X s� ; b)] � + � "

s (b) Z n
s (X s� ; b) 6 "; s > 0; b 2 A;

and thus for this choice of � = � " in (3.70):

Y n;x;a
s > Ex;a

� "

�
e� � (T � s) Y n;x;a

T +
Z T

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�

� "
1 � e� � (T � s)

�
� 0(A):

Letting T ! 1 , since f is bounded by M f and Y n;x;a is in S1 , it follows from the
conditional version of Lebesgue dominated convergence theorem that

Y n;x;a
s > Ex;a

� "

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
�

"
�

� 0(A);

> ess inf
� 2 Vn

Ex;a
�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
�

"
�

� 0(A):

From the arbitrariness of " , together with (3.71), this is enough to prove the required
representation of Y n;x;a . �

Let us de�ne

K n;x;a
t := n

Z t

0

Z

A
[Z n;x;a

s (X s; b)] � � 0(db) ds; t > 0:

The following a priori uniform estimate on the sequence (Z n;x;a ; K n;x;a )n> 0 holds.

Lemma 3.4.6. Assume that hypotheses(Hh � Q) , (H � 0) and (Hf) hold. For every
(x; a; n) 2 E � A � N, and for every T > 0, there exists a constantC depending only
on M f , � and T such that

jjZ n;x;a jj2
L 2

x,a (q;0; T ) + jjK n;x;a jj2
K 2

x,a (0; T ) 6 C: (3.72)
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Proof. In what follows we shall denote by C > 0 a generic positive constant de-
pending on M f , � and T, which may vary from line to line. Fix T > 0 and apply
Itô's formula to jY n;x;a

r j2 between 0 andT. Noticing that K n;x;a is continuous and
� Y n;x;a

r =
R

E � A Z n;x;a
r (y; b) p(f r gdy db), we get: Px;a -a.s.,

Ex;a �
jY n;x;a

0 j2
�

= Ex;a �
jY n;x;a

T j2
�

� 2Ex;a
� Z T

0
jY n;x;a

r j2 dr
�

� 2Ex;a
� Z T

s
Y n;x;a

r dK n;x;a
r

�
+ 2Ex;a

� Z T

0
Y n;x;a

r f (X r ; I r ) dr
�

� 2Ex;a
� Z T

0

Z

A
Y n;x;a

r Z n;x;a
r (X r ; b) � 0(db) dr

�

� Ex;a
� Z T

0

Z

E � A
jZ n;x;a

r (y; b)j2 ~p(dr dy db)
�

:

Set now CY := M f
� : Recalling the uniform estimate (3.57) onY n , and using elemen-

tary inequalities, we get

Ex;a
� Z T

0

Z

E � A
jZ n;x;a

s (y; b)j2 ~p(ds dy db)
�

6 C2
Y + 2 T C2

Y + 2 T CY M f + 2 CY T Ex;a �
jK n;x;a

T j
�

+
CY

�
T � 0(A) + � C Y Ex;a

� Z T

0

Z

A
jZ n;x;a

r (X s; b)j2 � 0(db) dr
�

; (3.73)

for any � > 0. At this point, from relation (3.54), we obtain:

K n;x;a
T = Y n;x;a

0 � Y n;x;a
T � �

Z T

0

Z

A
Y n;x;a

s ds

+
Z T

0
f (X s; I s)ds +

Z T

0

Z

A
Z n;x;a

s (X s; b) � 0(db) ds

+
Z T

0

Z

E � A
Z n;x;a

s (y; b) q(ds dy db): (3.74)

Then, using the inequality 2bc6 1
� b2 + �c 2, for any � > 0, and taking the expected

value we have

2Ex;a �
jK n;x;a

T j
�

6 2 � C Y T + 2 M f T +
T
�

� 0(A)

+ � Ex;a
� Z T

0

Z

A
jZ n;x;a

s (X s; b)j2 � 0(db) ds
�

: (3.75)

Plugging (3.75) into (3.73), we get

Ex;a
� Z T

0

Z

E � A
jZ n;x;a

s (y; b)j2 ~p(ds dy db)
�

6 C + CY (2 T � + � )
Z T

0

Z

A
jZ n;x;a

s (X s; b)j2 � 0(db) ds:
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Hence, choosing� + 2 T � = 1
2 CY

, we get

1
2

Ex;a
� Z T

0

Z

E � A
jZ n;x;a

s (y; b)j2 ~p(ds dy db)
�

6 C;

which gives the required uniform estimate for (Z n;x;a ), and also (K n;x;a ) by (3.74).
�

3.4.2. BSDE representation of the dual value function. In order to prove
the main result of this section we give the following preliminary result.

Lemma 3.4.7. Assume that Hypotheses(Hh � Q) , (H � 0) and (Hf) hold. For every
(x; a) 2 E � A, let (Y x;a ; Z x;a ; K x;a ) 2 S1 � L 2

x,a, loc (q) � K 2
x,a, loc be a solution to

the BSDE with partially nonnegative jumps (3.51)-(3.52). Then,

Y x;a
s 6 ess inf

� 2 V
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
; 8 s > 0: (3.76)

Proof. Let (x; a) 2 E � A, and consider a triplet (Y x;a ; Z x;a ; K x;a ) 2 S1 � L 2
x,a,loc (q)�

K 2
x,a,loc satisfying (3.51)-(3.52). Applying Itô's formula to e� � r Y x;a

r betweens and
T > s , and recalling that K x;a is nondecreasing, we have

Y x;a
s 6 e� � (T � s) Y x;a

T +
Z T

s
e� � (r � s) f (X r ; I r ) dr

�
Z T

s

Z

A
e� � (r � s) Z x;a

r (X r ; b) � 0(db) dr

�
Z T

s

Z

E � A
e� � (r � s) Z x;a

r (y; b) ~q(dr dy db); 0 6 s 6 T < 1 : (3.77)

Then for any � 2 V, let us introduce the compensated martingale measureq� (ds dy db) =
q(ds dy db) � (� s(b) � 1) d1(s; y; b) ~p(ds dy db) under Px;a

� . Taking expectation in (3.77)
under Px;a

� , conditional to Fs, and recalling that Z x;a is in L 2
x,a,loc (q), we get from

Lemma 3.3.1 that, Px;a -a.s.,

Y x;a
s 6 Ex;a

�

�
e� � (T � s) Y x;a

T +
Z T

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�

� Ex;a
�

� Z T

s

Z

A
e� � (r � s) � r (a) �Z x;a

r (X r ; b) � 0(db) dr
�
�
�Fs

�
: (3.78)

Furthermore, since � is strictly positive and Z x;a satis�es the nonnegative constraint
(3.52), from inequality (3.78) we get

Y x;a
s 6 Ex;a

�

�
e� � (T � s) Y x;a

T +
Z T

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�

6 Ex;a
�

�
e� � (T � s) Y x;a

T +
Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
:
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Finally, sending T ! 1 and recalling that Y x;a is in S1 , the conditional version of
Lebesgue dominated convergence theorem yields

Y x;a
s 6 Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�

for all � 2 V, and the conclusion follows from the arbitrariness of� 2 V, . �

Now we are ready to state the main result of the section.

Theorem 3.4.8. Under Hypotheses(Hh � Q) , (H � 0) and (Hf) , for every (x; a) 2
E � A, there exists a unique maximal solution(Y x;a ; Z x;a ; K x;a ) 2 S1 � L 2

x,a, loc (q) �
K 2

x,a, loc to the BSDE with partially nonnegative jumps (3.51)-(3.52). In particular,

(i) Y x;a is the nondecreasing limit of (Y n;x;a )n ;

(ii) Z x;a is the weak limit of (Z n;x;a )n in L 2
x,a, loc (q);

(iii) K x;a
s is the weak limit of (K n;x;a

s )n in L 2(Fs), for any s > 0;

Moreover, Y x;a has the explicit representation:

Y x;a
s = ess inf

� 2 V
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
; 8 s > 0: (3.79)

In particular, setting s = 0 , we have the following representation formula for the
value function of the dual control problem:

V � (x; a) = Y x;a
0 ; (x; a) 2 E � A: (3.80)

Proof. Let (x; a) 2 E � A be �xed. From the representation formula (3.68) it
follows that Y n

s > Y n+1
s for all s > 0 and all n 2 N, since by de�nition Vn � Vn+1

and (Y n )n are c�adl�ag processes. Moreover, recalling the boundedness off , from
(3.68) we see that (Y n )n is lower-bounded by a constant which does not dependn.
Then (Y n;x;a )n 2 S1 converges decreasingly to some adapted processY x;a , which is
moreover uniformly bounded by Fatou's lemma. Furthermore, for everyT > 0, the
Lebesgue's dominated convergence theorem insures that the convergence of (Y n;x;a )n

to Y also holds inL 2(0; T ).

Let us �x T > 0. By the uniform estimates in Lemma 3.4.6, the sequence
(Z n;x;a

j[0; T ])n is bounded in the Hilbert space L 2
x,a (q; 0; T ). Then, we can extract a

subsequence which weakly converges to someZ T in L 2
x,a (q; 0; T ). Let then de�ne

the following mappings

I 1
� := Z 7�!

Z �

0

Z

E � A
Zs(y; b) q(ds dy db)

L 2
x,a (q; 0; T ) �! L 2(F� );

I 2
� := Z (X s; �) 7�!

Z �

0

Z

A
Zs(X s; b) � 0(db) ds

L 2
x,a (� 0; 0; T ) �! L 2(F� );

for every stopping time 0 6 � 6 T. We notice that I 1
� (resp. I 2

� ) de�nes a linear con-
tinuous operator (hence weakly continuous) fromL 2

x,a (q; 0; T ) (resp. L 2
x,a (� 0; 0; T ))
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to L 2(F� ). Therefore I 1
� Z n;x;a

j[0; T ] (resp., I 2
� Z n;x;a

j[0; T ](X; �)) weakly converges to I 1
�

~Z T

(resp., I 2
�

~Z T (X; �)) in L 2(F� ). Since

K n;x;a
� = Y n;x;a

� � Y n;x;a
0 � �

Z �

0
Y n;x;a

r dr +
Z �

0
f (X r ; I r ) dr

�
Z �

0

Z

A
Z n;x;a

r (X r ; b) � 0(db) dr

�
Z �

0

Z

E � A
Z n;x;a

r (y; b) q(dr dy db); 8 � 2 [0; T];

we also have the following weak convergence inL 2(F� ):

K n;x;a
� * ~K T

� := Y x;a
� � Y x;a

0 � �
Z �

0
Y x;a

r dr +
Z �

0
f (X r ; I r ) dr

�
Z �

0

Z

A
Z x;a

r (X r ; b) � 0(db) dr

�
Z �

0

Z

E � A
Z x;a

r (y; b) q(dr dy db); 8 � 2 [0; T]:

Since the process (K n;x;a
s )s2 [0; T ] is nondecreasing and predictable andK n;x;a

0 = 0, the

limit process ~K T
� on [0; T] remains nondecreasing and predictable withEx;a

h
j ~K T

T j2
i

<

1 and ~K T
0 = 0. Moreover, by Lemma 2.2. in Peng [104], ~K T

� and ~Y T
� are c�adl�ag,

therefore ~K T
� 2 K 2

x,a (0; T ) and ~Y T
� 2 S1 .

Then we notice that ~Z T 0

j[0; T ] = ~Z T , ~K T 0

j[0; T ] = ~K T , for any 0 6 T 6 T0 < 1 .

Indeed, for i = 1 ; 2, I i ~Z T 0

j[0; T ], as I i ~Z T , is the weak limit in L 2(Fs) of (I i Z n;x;a
j[0; T ])n> 0,

while ~K T 0

j[0; T ], as ~K T , is the weak limit in L 2(Fs) of (K n;x;a
j[0; T ])n> 0, for every s 2 [0; T].

Hence, we de�ne Z x;a
s = ~Z T

s , K x;a
s = ~K T

s for all s 2 [0; T] and for any T > 0.
Observe that Z x;a 2 L 2

x,a,loc (q) and K x;a 2 K 2
x,a,loc . Moreover, for any T > 0,

for i = 1 ; 2, (I i Z n;x;a
j[0; T ])n> 0 weakly converges toI i Z x;a

j[0; T ] in L 2(Fs), and (K n;x;a
j[0; T ])n> 0

weakly converges toK x;a
j[0; T ] in L 2(Fs), for s 2 [0; T]. In conclusion, we have:Px;a -

a.s.,

Y x;a
s = Y x;a

T � �
Z T

s
Y x;a

r dr +
Z T

s
f (X r ; I r ) dr � (K x;a

T � K x;a;�
s )

�
Z T

s

Z

A
Z x;a

r (X r ; b) � 0(db) dr

�
Z T

s

Z

E � A
Z x;a

r (y; b) q(dr dy db); 0 6 s 6 T:

SinceT is arbitrary, it follows that ( Y x;a ; Z x;a ; K x;a ) solves equation (3.51) on [0; 1 ).

To show that the jump constraint (3.52) is satis�ed, we consider the functional
G : L 2

x,a (� 0; 0; T ) ! R given by

G(V (�)) := E
� Z T

0

Z

A
[Vs(b)] � � 0(db) ds

�
; 8 V 2 L 2

x,a (� 0; 0; T ):
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Notice that G(Z n;x;a (X; �)) = Ex;a
�
K n;x;a

T =n
�
, for any n 2 N. From uniform estimate

(3.72), we see thatG(Z n;x;a (X; �)) ! 0 as n ! 1 . Since G is convex and strongly
continuous in the strong topology ofL 2

x,a (� 0; 0; T ), then G is lower semicontinuous in
the weak topology ofL 2

x,a (� 0; 0; T ), see, e.g., Corollary 3.9 in Brezis [19]. Therefore,
we �nd

G(Z x;a (X; �)) 6 lim inf
n!1

G(Z n;x;a (X; �)) = 0 ;

which implies the validity of jump constraint (3.52) on [0 ; T], and the conclusion
follows from the arbitrary of T.

Hence, (Y x;a ; Z x;a ; K x;a ) is a solution to the constrained BSDE (3.51)-(3.52) on
[0; 1 ).

It remains to prove the representation formula (3.79) and the maximality prop-
erty for Y x;a . Firstly, since by de�nition Vn � V for all n 2 N, it is clear from
representation formula (3.68) that

Y n;x;a
s = ess inf

� 2 Vn
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�

> ess inf
� 2 V

Ex;a
�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr

�
�
�Fs

�
;

for all n 2 N, for all s > 0. Moreover, beingY x;a the pointwise limit of Y n;x;a , we
deduce that

Y x;a
s > ess inf

� 2 V
Ex;a

�

� Z 1

s
e� � (r � s) f (X r ; I r ) dr jFs

�
; s > 0: (3.81)

On the other hand, Y x;a satis�es the opposite inequality (3.76) from Lemma 3.4.7,
and thus we achieve the representation formula (3.79).

Finally, to show that Y x;a is the maximal solution, let consider a triplet
( �Y x;a ; �Z x;a ; �K x;a ) 2 S1 � L 2

x,a,loc (q) � K 2
x,a,loc solution to (3.51)-(3.52). By Lemma

3.4.7, (�Y x;a ; �Z x;a ; �K x;a ) satis�es inequality (3.76). Then, from the representation
formula (3.79) it follows that �Y x;a

s 6 Y x;a
s , 8 s > 0, Px;a -a.s., i.e., the maximal-

ity property holds. The uniqueness of the maximal solution directly follows from
Proposition 3.4.1. �

3.5. A BSDE representation for the value function

Our main purpose is to show how maximal solutions to BSDEs with nonnegative
jumps of the form (3.51)-(3.52) provide actually a Feynman-Kac representation to
the value function V associated to our optimal control problem for PDMPs. We
know from Theorem 3.4.8 that, under Hypotheses(Hh � Q) , (H � 0) and (Hf) , there
exists a unique maximal solution (Y x;a ; Z x;a ; K x;a ) on (
 ; F; F; Px;a ) to (3.51)-(3.52).
Let us introduce a deterministic function v : E � A ! R as

v(x; a) := Y x;a
0 ; (x; a) 2 E � A: (3.82)

Our main result is as follows:
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Theorem 3.5.1. Assume that Hypotheses(Hh � Q) , (H � 0) , and (Hf) hold. Then
the function v in (3.82) does not depend on the variablea:

v(x; a) = v(x; a0); 8a; a0 2 A;

for all x 2 E . Let us de�ne by misuse of notation the functionv on E by

v(x) = v(x; a); 8x 2 E;

for any a 2 A. Then v is a (discontinuous) viscosity solution to (3.26).

To conclude that v(x) actually provides the unique solution to (3.26) (and there-
fore coincides with the value functionV by Theorem 3.2.6), we need to use a compari-
son theorem for viscosity sub and supersolutions to the fully nonlinear integro-partial
di�erential equations of HJB type. To this end, we introduce the following additional
condition on Q and � .

(H � Q')

(i) sup(x;a )2 E � A
R

E jy � xj � (x; a) Q(x; a; dy) < 1 ;

(ii) 9 c; C > 0: for every  2 W 1; 1 (E ),  (0) = 0, for every K � E compact
set, and x1; x2 2 E, a 2 A,

�
�
�
Z

K + x1

 (y � x1) � (x1; a) (Q(x1; a; dy) �
Z

K + x2

 (y � x2) � (x2; a) Q(x2; a; dy)
�
�
�

6 cjjr  jj1 jj x1 � x2jj ;

and
�
�
�
Z

K c+ x1

 (y � x1) � (x1; a) Q(x1; a; dy) �
Z

K c+ x2

 (y � x2) � (x2; a) Q(x2; a; dy)
�
�
�

6 Cjjr  jj1 jj x1 � x2jj :

Corollary 3.5.2. Let Hypotheses(Hh � Q) , (H � 0) , (H � Q') and (Hf) hold, and
assume thatA is compact. Then the value functionV of the optimal control problem
de�ned in (3.25) admits the Feynman-Kac representation formula:

V (x) = Y x;a
0 ; (x; a) 2 E � A:

Moreover, the value functionV coincides with the dual value functionV � de�ned in
(3.50), namely

V (x) = V � (x; a) = Y x;a
0 ; (x; a) 2 E � A: (3.83)

Proof. Under the additional assumption (H � Q') , a comparison theorem for viscos-
ity super and subsolutions for elliptic IPDEs of the form (3.26) holds, see Theorem
IV.1 in Sayah [123]. Then, it follows from Theorem 3.5.1 that the function v in
(3.82) is the unique viscosity soluton to (3.26), and it is continuous. In particular,
by Theorem 3.2.6, v coincides with the value function V of the PDMPs optimal
control problem, which admits therefore the probabilistic representation (3.5.2). Fi-
nally, Theorem 3.4.8 implies that the dual value function V � coincides with the value
function V of the original control problem, so that (3.83) holds. �

The rest of the chapter is devoted to prove Theorem 3.5.1.
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3.5.1. The identi�cation property of the penalized BSDE. For every n 2 N
let us introduce the deterministic function vn de�ned on E � A by

vn (x; a) = Y n;x;a
0 ; (x; a) 2 E � A: (3.84)

We investigate the properties of the function vn . Firstly, it straightly follows from
(3.84) and (3.57) that

jvn (x; a)j 6
M f

�
; 8 (x; a) 2 E � A:

Moreover, we have the following result.

Lemma 3.5.3. Under Hypotheses(Hh � Q) , (H � 0) and (Hf) , for any n 2 N, the
function vn is such that, for any (x; a) 2 E � A, we have

Y n;x;a
s = vn (X s; I s); s > 0 dPx;a 
 ds -a.e. (3.85)

Remark 3.5.4. When the pair of Markov processes (X; I ) is the unique strong
solution to some system of stochastic di�erential equations, (X; I ) often satis�es
a stochastic ow property, and the fact that Y n;x;a

s is a deterministic function of
(X s; I s) straight follows from the uniqueness of the BSDE (see, e.g., Remark 2.4
in Barles, Buckdahn and Pardoux [10]). In our framework, we deal with the local
characteristics of the state process (X; I ) rather than with the stochastic di�erential
equation solved by it. As a consequence, a stochastic ow property for (X; I ) is no
more directly available. The idea is then to prove the identi�cation (3.85) using an
iterative construction of the solution of standard BSDEs. This alternative approach
is based on the fact that, whenf does not depend ony; z, the desired identi�cation
follows from the Markov property of the state process (X; I ), and it is inspired by
the proof of the Theorem 4.1. in El Karoui, Peng and Quenez [53].

Proof. Fix ( x; a; n) 2 E � A � N. Let (Y n ; Z n ) = ( Y n;x;a ; Z n;x;a ) be the solution
to the penalized BSDE (3.54). From Proposition 3.4.4 we know that there exists a
sequence (Y n;T ; Z n;T )T = ( Y n;T;x;a ; Z n;T;x;a )T in S1 � L 2

x,a,loc (q) such that, when
T goes to in�nity, ( Y n;T )T convergesPx;a -a.s. to (Y n ) and (Z n;T )T converges to
(Z n ) in L 2

x,a,loc (q). Let now �x T; S > 0, S < T , and consider the BSDE solved by
(Y n;T ; Z n;T ) on [0; S]:

Y n;T
t = Y n;T

S � �
Z S

t
Y n;T

r dr +
Z S

t
f (X r ; I r ) dr

� n
Z S

t

Z

A
[Z n;T

r (X r ; b)] � � 0(db) dr �
Z S

t

Z

A
Z n;T

r (X r ; b) � 0(db) dr;

�
Z S

t

Z

E � A
Z n;T

r (y; b) q(dr dy db); 0 6 t 6 S:

Then, it follows from Proposition 3.4.3 that there exists a sequence (Y n;T;k ; Z n;T;k )k =
(Y n;T;k;x;a ; Z n;T;k;x;a )k in L 2

x,a (0, S) � L 2
x,a (q; 0, S) converging to (Y n;T ; Z n;T ) in

L 2
x,a (0, S) � L 2

x,a (q; 0, S), such that (Y n;T;0; Z n;T;0) = (0 ; 0) and

Y n;T;k +1
t = Y n;T;k

S � �
Z S

t
Y n;T;k

r dr +
Z S

t
f (X r ; I r ) dr
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� n
Z S

t

Z

A
[Z n;T;k

r (X r ; b)] � � 0(db) dr �
Z S

t

Z

A
Z n;T;k

r (X r ; b) � 0(db) dr;

�
Z S

t

Z

E � A
Z n;T;k +1

r (y; b) q(dr dy db); 0 6 t 6 S:

Let us de�ne
vn;T (x; a) := Y n;T

0 ; vn;T;k (x; a) := Y n;T;k
0 :

We start by noticing that, for k = 0, we have, Px;a -a.s.,

Y n;T;1
t = Ex;a

� Z S

t
f (X r ; I r ) dr

�
�
�Ft

�
; t 2 [0; S]:

Then, from the Markov property of ( X; I ) we get

Y n;T;1
t = vn;T;1(X t ; I t ); dPx;a 
 dt -a.e. (3.86)

Furthermore, identi�cation (3.86) implies

Z n;T;1
t (y; b) = vn;T;1(X t � ; I t � ) � vn;T;1(y; b); (3.87)

where (3.87) has to be understood as an equality (almost everywhere) between el-
ements of the spaceL 2

x,a (q; 0, S). At this point we consider the inductive step:
1 6 k 2 N, and assume that,Px;a -a.s.,

Y n;T;k
t = vn;T;k (X t ; I t )

Z n;T;k
t (y; b) = vn;T;k (y; b) � vn;T;k (X t � ; I t � ):

Then

Y n;T;k +1
t = Ex;a

�
vn;T;k

� (X S; I S) � �
Z S

t
vn;T;k (X r ; I r ) dr +

Z S

t
f (X r ; I r ) dr

� n
Z S

t

Z

A
[vn;T;k (X t ; b) � vn;T;k (X t ; I t )] � � 0(db) dr

�
Z S

t

Z

A
vn;T;k (X t ; b) � vn;T;k (X t ; I t ) � 0(db) dr

�
�
�Ft

�
; 0 6 t 6 S:

Using again the Markov property of (X; I ), we achieve that

Y n;T;k +1
t = vn;T;k +1 (X t ; I t ); dPx;a 
 dt -a.e. (3.88)

Then, applying the Itô formula to jY n;T;k
t � Y n;T

t j2 and taking the supremum of t
between 0 andS, one can show that

Ex;a
�

sup
06 t6 S

�
�
�Y n;T;k

t � Y �;n;T
t

�
�
�
2
�

! 0 ask goes to in�nity.

Therefore, vn;T;k (x; a) ! vn;T (x; a) as k goes to in�nity, for all ( x; a) 2 E � A, from
which it follows that

Y n;T;x;a
t = vn;T (X t ; I t ); dPx;a 
 dt -a.e. (3.89)

Finally, from (3.66) we have that (Y n;T;x;a )T convergesPx;a -a.s. to (Y n;x;a ) uniformly
on compact sets ofR. Thus, vn;T (x; a) ! vn (x; a) as T goes to in�nity, for all ( x; a) 2
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E � A, and this gives the requested identi�cation Y n;x;a
t = vn (X t ; I t ), dPx;a 
 dt -

a.e. �

Remark 3.5.5. By Proposition 3.4.1, the maximal solution to the constrained BSDE
(3.51)-(3.52) is the pointwise limit of the solution to the penalized BSDE (3.54).
Then, as a byproduct of Lemma 3.5.3 we have the following identi�cation for v:
Px;a -a.s.,

v(X s; I s) = Y x;a
s ; (x; a) 2 E � A; s > 0: (3.90)

3.5.2. The non-dependence of the function v on the variable a. We claim
that the function v in 3.82 does not depend on its last argument:

v(x; a) = v(x; a0); a; a0 2 A; for any x 2 E: (3.91)

We recall that, by (3.80) and (3.82), v coincides with the value function V � of the
dual control problem introduced in Section 3.3.2. Therefore, (3.91) holds if we prove
that V � (x; a) does not depend ona. This is insured by the following result.

Proposition 3.5.6. Assume that Hypotheses(Hh � Q) , (H � 0) and (Hf) hold. Fix
x 2 E, a; a0 2 A, and � 2 V. Then, there exists a sequence(� " )" 2 V such that

lim
" ! 0+

J (x; a0; � " ) = J (x; a; � ): (3.92)

Proof. See Section 3.5.4. �

Identity (3.92) implies that

V � (x; a0) � J (x; a; � ) x 2 E; a; a0 2 A;

and by the arbitrariness of � one can conclude that

V � (x; a0) � V � (x; a) x 2 E; a; a0 2 A:

In other words V � (x; a) = v(x; a) does not depend ona, and (3.91) holds.

3.5.3. Viscosity properties of the function v. Taking into account (3.91), by
misuse of notation, we de�ne the function v on E by

v(x) := v(x; a); 8x 2 E; for any a 2 A: (3.93)

We shall prove that the function v in (3.93) provides a viscosity solution to (3.26).
We separate the proof of viscosity subsolution and supersolution properties, which
are di�erent. In particular the supersolution property is more delicate and should
take into account the maximality property of Y x;a .

Remark 3.5.7. Identity (3.90) in Remark 3.5.5 gives

v(X s) = Y x;a
s ; 8x 2 E; s > 0; for any a 2 A: (3.94)

Proof of the viscosity subsolution property to (3.26).

Proposition 3.5.8. Let assumptions (Hh � Q) , (H � 0) and (Hf) hold. Then, the
function v in (3.93) is a viscosity subsolution to(3.26).
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Proof. Let �x 2 E , and let ' 2 C1(E ) be a test function such that

0 = ( v� � ' )(�x) = max
x2 E

(v� � ' )(x): (3.95)

By the de�nition of v� (�x), there exists a sequence (xm )m in E such that

xm ! �x and v(xm ) ! v� (�x)

when m goes to in�nity. By the continuity of ' and by (3.95) it follows that

 m := ' (xm ) � v(xm ) ! 0;

when m goes to in�nity. Let � be a �xed positive constant and � m := inf f t > 0 :
j� (t; x m ) � xm j > � g. Let moreover (hm )m be a strictly positive sequence such that

hm ! 0 and
 m

hm
! 0;

when m goes to in�nity.

We notice that there exists M 2 N such that, for every m > M , hm ^ � m = hm .
Let us introduce �� := inf f t > 0 : j� (t; �x) � �xj > � g. Clearly �� > 0. We show that
it does not exists a subsequence� nk of � n such that � nk ! � 0 2 [0; �� ). Indeed, let
� nk ! � 0 2 [0; �� ). In particular j� (� nk ; �x) � �xj > � . Then, by the continuity of � it
follows that j� (� 0; �x) � �xj > � , and this is in contradiction with the de�nition of � � .

Let now �x a 2 A, and let Y xm ;a be the unique maximal solution to (3.51)-
(3.52) under Pxm ;a. We apply the Itô formula to e� �t Y xm ;a

t between 0 and� m :=
� m ^ hm ^ T1, whereT1 denotes the �rst jump time of ( X; I ). Using the identi�cation
(3.94), from the constraint (3.52) and the fact that K is a nondecreasing process it
follows that Pxm ;a-a.s.,

v(xm ) 6 e� �� m v(X � m ) +
Z � m

0
e� �r f (X r ; I r ) dr

�
Z � m

0
e� �r

Z

E
(v(y) � v(X r )) ~q(dr dy);

where ~q(dr dy) = p(dr dy) � � (X r ; I r ) Q(X r ; I r ; dy) dr . In particular

v(xm ) 6 Exm ;a
�
e� �� m v(X � m ) +

Z � m

0
e� �r f (X r ; I r ) dr

�
:

Equation (3.95) implies that v 6 v� 6 ' , and therefore

' (xm ) �  m 6 Exm ;a
�
e� �� m ' (X � m ) +

Z � m

0
e� �r f (X r ; I r ) dr

�
:

At this point, applying Itô's formula to e� �r ' (X r ) between 0 and� m , we get

�
 m

hm
+ Exm ;a

� Z � m

0

1
hm

e� �r [� ' (X r ) � L I r ' (X r ) � f (X r ; I r )] dr
�

6 0; (3.96)

where L I r ' (X r ) =
R

E (' (y) � ' (X r )) � (X r ; I r ) Q(X r ; I r ; dy). Now we notice that,
Pxm ;a-a.s., (X r ; I r ) = ( � (r; x m ); a) for r 2 [0; � m ]. Taking into account the continuity
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of the map (y; b) 7! � ' (y) � L b' (y) � f (y; b), we see that for any" > 0,

�
 m

hm
+ ( " + � ' (xm ) � L a' (xm ) � f (xm ; a)) Exm ;a

�
� m e� � � m

hm

�
6 0; (3.97)

Let f T1 (s) denote the distribution density of T1 under Pxm ;a, see (3.34). Taking
m > M , we have

Exm ;a
�

g(� m )
hm

�
=

1
hm

Z hm

0
s e� � s f T1 (s) ds +

hm e� � h m

hm
Pxm ;a[T1 > h m ]

=
1

hm

Z hm

0
s e� � s (� (� (r; x m ); a) + � 0(A)) e�

Rs
0 (� (� (r;x m );a)+ � 0 (A )) dr ds

+ e� � h m e�
Rh m

0 (� (� (r;x m );a)+ � 0 (A )) dr : (3.98)

By the boundedness of� and � 0, it is easy to see that the two terms in the right-hand
side of (3.98) converge respectively to zero and one whenm goes to in�nity. Thus,
passing into the limit in (3.97) as m goes to in�nity, we obtain

� ' (�x) � L a' (�x) � f (�x; a) 6 0:

From the arbitrariness of a 2 A we conclude that v is a viscosity subsolution to
(3.26) in the sense of De�nition 3.2.5. �

Proof of the viscosity supersolution property to (3.26).

Proposition 3.5.9. Let assumptions (Hh � Q) , (H � 0) , and (Hf) hold. Then, the
function v in (3.93) is a viscosity supersolution to(3.26).

Proof. Let �x 2 E , and let ' 2 C1(E ) be a test function such that

0 = ( v� � ' )(�x) = min
x2 E

(v� � ' )(x): (3.99)

Notice that we can assume w.l.o.g. that �x is strict minimum of v� � ' . As a matter
of fact, one can subtract to ' a positive cut-o� function which behaves as jx � �xj2

when jx � �xj2 is small, and that regularly converges to 1 asjx � �xj2 increases to 1.

Then, for every � > 0, we can de�ne

0 < � (� ) := inf
x=2 B (�x;� )

(v� � ' )(x): (3.100)

We will show the result by contradiction. Assume thus that

H ' (�x; '; r ' ) < 0:

Then by the continuity of H , there exists � > 0, � (� ) > 0 and " 2 (0; � (� )� ] such
that

H ' (y; '; r ' ) 6 � ";

for all y 2 B (�x; � ) = f y 2 E : j �x � yj < � g. By de�nition of v� (�x), there exists a
sequence (xm )m taking values in B (�x; � ) such that

xm ! �x and v(xm ) ! v� (�x)

when m goes to in�nity. By the continuity of ' and by (3.99) it follows that

 m := v(xm ) � ' (xm ) ! 0;
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when m goes to in�nity. Let �x T > 0 and de�ne � := � ^ T, where � = inf f t > 0 :
X t =2 B (�x; � )g.

At this point, let us �x a 2 A, and consider the solutionY n;x m ;a to the penalized
(3.54), under the probability Pxm ;a. Notice that

Pxm ;af � = 0g = Pxm ;af X 0 =2 B (�x; � )g = 0 :

We apply the Itô formula to e� �t Y n;x m ;a
t between 0 and� . Then, proceeding as in

the proof of Lemma 3.4.5 we get the following inequality:

Y n;x m ;a
0 > inf

� 2 Vn
Exm ;a

�

�
e� �� Y n;x m ;a

� +
Z �

0
e� �r f (X r ; I r ) dr

�
: (3.101)

Since Y n;x m ;a converges decreasingly to the maximal solutionY xm ;a to the con-
strained BSDE (3.51)-(3.52), and recalling the identi�cation (3.94), inequality (3.101)
leads to the corresponding inequality forv(xm ):

v(xm ) > inf
� 2 V

Exm ;a
�

�
e� �� v(X � ) +

Z �

0
e� �r f (X r ; I r ) dr

�
:

In particular, there exists a strictly positive, predictable and bounded function � m

such that

v(xm ) > Exm ;a
� m

�
e� �� v(X � ) +

Z �

0
e� �r f (X r ; I r ) dr

�
�

"
2�

: (3.102)

Now, from equation (3.99) and (3.100) we get

' (xm ) +  m > Exm ;a
� m

�
e� �� ' (X � ) + � e � �� 1f � 6 T g +

Z �

0
e� �r f (X r ; I r ) dr

�
�

"
2 �

:

At this point, applying Itô's formula to e� �r ' (X r ) between 0 and� , we get

 m + Exm ;a
� m

� Z �

0
e� �r [� ' (X r ) � L I r ' (X r ) � f (X r ; I r )] dr � � e � �� 1f � 6 T g

�

+
"
2

> 0; (3.103)

where L I r ' (X r ) =
R

E (' (y) � ' (X r )) � (X r ; I r ) Q(X r ; I r ; dy). Noticing that, for r 2
[0; � ],

� ' (X r ) � L I r ' (X r ) � f (X r ; I r ) 6 � ' (X r ) � inf
b2 A

f L b' (X r ) � f (X r ; b)g

= H ' (X r ; '; r ' )

6 � ";

from (3.103) we obtain

0 6  m +
"

2�
+ Exm ;a

� m

�
� "

Z �

0
e� �r dr � � e � �� 1f � 6 T g

�

=  m �
"

2 �
+ Exm ;a

� m

h� "
�

� �
�

e� �� 1f � 6 T g +
"
�

e� �� 1f �>T g

i

6  m �
"

2 �
+

"
�

Exm ;a
� m

h
e� �� 1f �>T g

i
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=  m �
"

2 �
+

"
�

Exm ;a
� m

h
e� �T 1f �>T g

i

6  m �
"

2 �
+ e� �T :

Letting T and m go to in�nity we achieve the contradiction: 0 6 � "
2 � . �

3.5.4. Proof of Proposition 3.5.6. We start by giving a technical result. In the
sequel, � n1 ;n2 and � n1 ;n2 will denote respectively the random sequences (Tn1 ; En1 ; An1 ;
Tn1+1 ; En1+1 ; An1+1 ; :::; Tn2 ; En2 ; An2 ) and (Tn1 ; An1 ; Tn1+1 ; An1+1 ; :::; Tn2 ; An2 ), n1;
n2 2 N n f 0g, n1 � n2, where (Tk ; Ek ; Ak )k� 1 denotes the sequence of random
variables introduced in Section 3.3.1.

Lemma 3.5.10. Assume that Hypotheses(Hh � Q) , (H � 0) and (Hf) hold. Let
� n : 
 � R+ � (R+ � A)n � A ! (0; 1 ), n > 1 (resp. � 0 : 
 � R+ � A ! (0; 1 )),
be someP 
 B((R+ � A)n ) 
 A-measurable maps, uniformly bounded with respect to
n (resp. a boundedP 
 A-measurable map). Let moreoverg : 
 � A ! (0; 1 ) be a
boundedA-measurable map, and set

� t (b) = � 0
t (b) 1f t6 T1g +

1X

n=1

� n
t (� 1;n ; b) 1f Tn <t 6 Tn +1 g; (3.104)

� 0
t (b) = g(b) 1f t6 T1g + � 0

t (b) 1f T1<t 6 T2g +
1X

n=2

� n� 1
t (� 2;n ; b) 1f Tn <t 6 Tn +1 g: (3.105)

Fix x 2 E, a; a0 2 A. Then, for every n > 1, for every B((R+ � E � A)n )-measurable
function F : (R+ � E � A)n ! R,

Ex;a 0

� 0

�
F (� 1;n )jFT1

�
=

Ex;a
�

�
1f T1>� g F (�; �; �; � 1;n� 1)

�

Px;a
� (T1 > � )

�
�
�
�
� = T1 ;� = X 1 ; � = A 1

: (3.106)

Proof of the Lemma. Taking into account (3.36), (3.37), and (3.105), we have:
for all r > T1,

Px;a 0

� 0 [T2 > r; E 2 2 F; A2 2 CjFT1 ]

=
Z 1

r

Z

F
exp

�
�

Z s

T1

� (� (t � T1; E1; A1); A1) dt �
Z s

T1

Z

A
� 0

t (b) � 0(db) dt
�

�

� � (� (s � T1; E1; A1); A1) Q(� (s � T1; E1; A1); A1; dy) ds

+
Z 1

r

Z

C
exp

�
�

Z s

T1

� (� (t � T1; E1; A1); A1) dt �
Z s

T1

Z

A
� 0

t (b) � 0(db) dt
�

�

� � 0
s (b) � 0(db) ds; (3.107)

and, for all r > Tn , n > 2,

Px;a
� 0 [Tn+1 > r; E n+1 2 F; An+1 2 CjFTn ]

=
Z 1

r

Z

F
exp

�
�

Z s

Tn

� (� (t � Tn ; En ; An ); An ) dt
�

�

� exp
�

�
Z s

Tn

Z

A
� n� 1

t (� 2;n ; b) � 0(db) dt
�

�



136
Chapter 3. Optimal control of Piecewise Deterministic Markov

Processes and constrained BSDEs with nonnegative jumps

� � (� (s � Tn ; En ; An ); An ) Q(� (s � Tn ; En ; An ); An ; dy) ds

+
Z 1

r

Z

C
exp

�
�

Z s

Tn

� (� (t � Tn ; En ; An ); An ) dt
�

�

� exp
�

�
Z s

Tn

Z

A
� n� 1

t (� 2;n ; b) � 0(db) dt
�

� n� 1
s (� 2;n ; b) � 0(db) ds: (3.108)

We will prove identity (3.106) by induction. Let us start by showing that (3.106)
holds in the casen = 2, namely that, for every B((R+ � E � A)2)-measurable function
F : (R+ � E � A)2 ! R,

Ex;a 0

� 0

�
F (� 1;2)jFT1

�
=

Ex;a
�

�
1f T1>� g F (�; �; �; � 1;1)

�

Px;a
� (T1 > � )

�
�
�
�
� = T1 ;� = X 1 ; � = A 1

: (3.109)

From (3.107) we get

Ex;a 0

� 0

�
F (� 1;2)jFT1

�
= Ex;a 0

� 0 [F (T1; E1; A1; T2; E2; A2)jFT1 ]

=
Z 1

T1

Z

E
F (T1; E1; A1; s; y; A1)�

� exp
�

�
Z s

T1

� (� (t � T1; E1; A1); A1) dt �
Z s

T1

Z

A
� 0

t (b) � 0(db) dt
�

�

� � (� (s � T1; E1; A1); A1) Q(� (s � T1; E1; A1); A1; dy) ds

+
Z 1

T1

Z

A
F (T1; E1; A1; s; � (s � T1; E1; A1); b)�

� exp
�

�
Z s

T1

� (� (t � T1; E1; A1); A1) dt �
Z s

T1

Z

A
� 0

t (b) � 0(db) dt
�

� 0
s (b) � 0(db) ds:

On the other hand,

Px;a
� (T1 > � ) = exp

�
�

Z �

0
� (� (t � �; �; � ); � ) dt �

Z �

0

Z

A
� 0

t (b) � 0(db) dt
�

;

and

Ex;a
�

�
1f T1>� g F (�; �; �; � 1;1)

�
= Ex;a

�

�
1f T1>� g F (�; �; �; T 1; E1; A1)

�

=
Z 1

�

Z

E
1f s>� g F (�; �; �; s; y; � )�

� exp
�

�
Z s

0
� (� (t � �; �; � ); � ) dt �

Z s

0

Z

A
� 0

t (b) � 0(db) dt
�

�

� � (� (s � �; �; � ); � ) Q(� (s � �; �; � ); �; dy ) ds

+
Z 1

�

Z

A
1f s>� g F (�; �; �; s; � (s � �; �; � ); b)�

� exp
�

�
Z s

0
� (� (t � �; �; � ); � ) dt �

Z s

0

Z

A
� 0

t (b) � 0(db) dt
�

� 0
s (b) � 0(db) ds:

Therefore,

Ex;a
�

�
1f T1>� g F (�; �; �; � 1;1)

�

Px;a
� (T1 > � )
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= exp
� Z �

0
� (� (t � �; �; � ); � ) dt +

Z �

0

Z

A
� 0

t (b) � 0(db) dt
�

�

�
Z 1

�

Z

E
1f s>� g F (�; �; �; s; y; � )�

� exp
�

�
Z s

0
� (� (t � �; �; � ); � ) dt �

Z s

0

Z

A
� 0

t (b) � 0(db) dt
�

�

� � (� (s � �; �; � ); � ) Q(� (s � �; �; � ); �; dy ) ds

+ exp
� Z �

0
� (� (t � �; �; � ); � ) dt +

Z �

0

Z

A
� 0

t (b) � 0(db) dt
�

�

�
Z 1

�

Z

A
1f s>� g F (�; �; �; s; � (s � �; �; � ); b)�

� exp
�

�
Z s

0
� (� (t � �; �; � ); � ) dt �

Z s

0

Z

A
� 0

t (b) � 0(db) dt
�

� 0
s (b) � 0(db) ds

=
Z 1

�

Z

E
1f s>� g F (�; �; �; s; y; � )�

� exp
�

�
Z s

�
� (� (t � �; �; � ); � ) dt �

Z s

�

Z

A
� 0

t (b) � 0(db) dt
�

�

� � (� (s � �; �; � ); � ) Q(� (s � �; �; � ); �; dy ) ds

+
Z 1

�

Z

A
1f s>� g F (�; �; �; s; � (s � �; �; � ); b)�

� exp
�

�
Z s

�
� (� (t � �; �; � ); � ) dt �

Z s

�

Z

A
� 0

t (b) � 0(db) dt
�

� 0
s (b) � 0(db) ds;

and (3.109) follows.

Assume now that (3.106) holds forn � 1, namely that, for every B((R+ � E �
A)n� 1)-measurable function F : (R+ � E � A)n� 1 ! R,

Ex;a 0

� 0

�
F (� 1;n� 1)jFT1

�
=

Ex;a
�

�
1f T1>� g F (�; �; �; � 1;n� 2)

�

Px;a
� (T1 > � )

�
�
�
�
� = T1 ;� = X 1 ; � = A 1

: (3.110)

We have to prove that (3.110) implies that, for every B((R+ � E � A)n )-measurable
function F : (R+ � E � A)n ! R,

Ex;a 0

� 0

�
F (� 1;n )jFT1

�
=

Ex;a
�

�
1f T1>� g F (�; �; �; � 1;n� 1)

�

Px;a
� (T1 > � )

�
�
�
�
� = T1 ;� = X 1 ; � = A 1

: (3.111)

Using (3.108), we get

Ex;a 0

� 0

�
F (� 1;n )jFT1

�

= Ex;a 0

� 0

h
Ex;a 0

� 0
"

�
F (� 1;n )jFTn � 1

� �
�FT1

i

= Ex;a 0

� 0

� Z 1

Tn � 1

Z

E
F (� 1;n� 1; s; y; An� 1)�

� exp
�

�
Z s

Tn � 1

� (� (t � Tn� 1; En� 1; An� 1); An� 1) dt
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�
Z s

Tn � 1

Z

A
� n� 2

t (� 1;n� 1; b) � 0(db) dt
�

�

� � (� (s � Tn� 1; En� 1; An� 1); An� 1) Q(� (s � Tn� 1; En� 1; An� 1); An� 1; dy) ds

+
Z 1

Tn � 1

Z

A
F (� 1;n� 1; s; � (s � Tn� 1; En� 1; An� 1); b)�

� exp
�

�
Z s

Tn � 1

� (� (t � Tn� 1; En� 1; An� 1); An� 1) dt

�
Z s

Tn � 1

Z

A
� n� 2

t (� 1;n� 1; b) � 0(db) dt
�

� n� 2
s (� 1;n� 1; b) � 0(db) ds

�
�
�
�FT1

�
:

(3.112)

At this point we observe that the term in the conditional expectation in the right-
hand side of (3.112) only depends on the random sequence �1;n� 1. For any sequence
of random variables (Si ; Wi ; Vi ) i 2 [1;n� 1] with values in ([0; 1 ) � E � A)n� 1, Si � 1 � Si

for every i 2 [1; n � 1], we set

 (S1; W1; V1; :::; Sn� 1; Wn� 1; Vn� 1) :=
Z 1

Sn � 1

Z

E
F (S1; W1; :::; Vn� 1; Sn� 1; Wn� 1; s; y; Vn� 1)�

� exp
�

�
Z s

Sn � 1

� (� (t � Sn� 1; Wn� 1; Vn� 1); Vn� 1) dt

�
Z s

Sn � 1

Z

A
� n� 2

t (S1; V1; :::; Sn� 1; Vn� 1; b) � 0(db) dt
�

�

� � (� (s � Sn� 1; Wn� 1; Vn� 1); Vn� 1) Q(� (s � Sn� 1; Wn� 1; Vn� 1); Vn� 1; dy) ds

+
Z 1

Sn � 1

Z

A
F (S1; W1; V1; :::; Sn� 1; Wn� 1; Vn� 1; ; s; � (s � Sn� 1; Wn� 1; Vn� 1); b)�

� exp
�

�
Z s

Sn � 1

� (� (t � Sn� 1; Wn� 1; Vn� 1); Vn� 1) dt

�
Z s

Sn � 1

Z

A
� n� 2

t (S1; V1; :::; Sn� 1; Vn� 1; b) � 0(db) dt
�

�

� � n� 2
s (S1; V1; :::; Sn� 1; Vn� 1; b) � 0(db) ds:

Identity (3.112) can be rewritten as

Ex;a 0

� 0

�
F (� 1;n )jFT1

�
= Ex;a 0

� 0

h
 (� 1;n� 1)

�
�
�FT1

i
: (3.113)

Then, by applying the inductive step (3.110), we get

Ex;a 0

� 0

�
F (� 1;n )jFT1

�

= Ex;a 0

� 0

h
 (� 1;n� 1)

�
�
�FT1

i

= ( Px;a
� [T1 > � ]) � 1 Ex;a

�

�
1f T1>� g  (�; �; �; � 1;n� 2)

� �
�
�
�
� = T1 ;� = X 1 ; � = A 1

: (3.114)
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Since

 (�; �; �; � 1;n� 2)

=
Z 1

Tn � 2

Z

E
F (�; �; �; � 1;n� 2; s; y; An� 2)�

� exp
�

�
Z s

Tn � 2

� (� (t � Tn� 2; En� 2; An� 2); An� 2) dt �
Z s

Tn � 2

Z

A
� n� 2

t (� 1;n� 2; b) � 0(db) dt
�

�

� � (� (s � Tn� 2; En� 2; An� 2); An� 2) Q(� (s � Tn� 2; En� 2; An� 2); An� 2; dy) ds

+
Z 1

Tn � 2

Z

A
F (�; �; �; � 1;n� 2; s; � (s � Tn� 2; En� 2; An� 2); b)�

� exp
�

�
Z s

Tn � 2

� (� (t � Tn� 2; En� 2; An� 2); A1) dt �
Z s

Tn � 2

Z

A
� n� 2

t (� 1;n� 2; b) � 0(db) dt
�

�

� � n� 2
s (� 1;n� 2; b) � 0(db) ds

= Ex;a
� [F (�; �; �; � 1;n� 1)jFTn � 2 ];

identity (3.114) can be rewritten as

Ex;a 0

� 0

�
F (� 1;n )jFT1

�

= ( Px;a
� [T1 > � ]) � 1 Ex;a

�

�
1f T1>� g Ex;a

� [F (�; �; �; � 1;n� 1)jFTn � 2 ]
� �
�
�
�
� = T1 ;� = X 1 ; � = A 1

=
Ex;a

�
�
1f T1>� g F (�; �; �; � 1;n� 1)

�

Px;a
� (T1 > � )

�
�
�
�
� = T1 ; � = E1 ; � = A 1

: (3.115)

This concludes the proof of the Lemma. �

Proof of Proposition 3.5.6. We start by noticing that,

J (x; a; � ) = Ex;a
� [F (T1; E1; A1; T2; E2; A2; :::)] ;

where

F (T1; E1; A1; T2; E2; A2; :::)

=
Z 1

0
e� �t f (X t ; I t ) dt

=
Z T1

0
e� �t f (� (t; X 0; I 0); I 0) dt +

1X

n=2

Z Tn

Tn � 1

e� �t f (� (t � Tn� 1; En� 1; An� 1); An� 1) dt:

(3.116)

We aim at constructing a sequence of controls (� " )" 2 V such that

J (x; a0; � " ) = Ex;a 0

� " [F (T1; E1; A1; T2; E2; A2; :::)]

�!
" ! 0

Ex;a
� [F (T1; E1; A1; T2; E2; A2; :::)] = J (x; a; � ): (3.117)

Since� 2 V, then there exists aPx;a -null set N such that � admits the representation

� t (b) = � 0
t (b) 1f t6 T1g +

1X

n=1

� n
t (T1; A1; T2; A2; :::; Tn ; An ; b) 1f Tn <t 6 Tn +1 g (3.118)
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for all ( !; t ) 2 
 � R+ , ! =2 N, for some � n : 
 � R+ � (R+ � A)n � A ! (0; 1 ),
n > 1 (resp. � 0 : 
 � R+ � A ! (0; 1 )) P 
 B((R+ � A)n ) 
 A-measurable maps,
uniformly bounded with respect to n (resp. boundedP 
 A-measurable map), see,
e.g., De�nition 26.3 in [35].

Let �B (a; ") be the closed ball centered ina with radius " . We notice that
" 7! � 0( �B (a; ")) de�nes a nonnegative, right-continuous, nondecreasing function,
satisfying

� 0( �B (a; 0)) = � 0(f ag) � 0; � 0( �B (a; ")) > 0 8" > 0:

If � 0(f ag) > 0, we seth(" ) = " for every " > 0. Otherwise, if � 0(f ag) = 0, we de�ne
h as the right inverse function of " 7! � 0( �B (a; ")), namely

h(p) = inf f " > 0 : � 0( �B (a; ")) � pg; p � 0:

From Lemma 1.37 in [73] the following property holds:

8p � 0; � 0( �B (a; h(p))) � p: (3.119)

At this point, we introduce the following family of processes, parametrized by" :

� "
t (b) =

1
"

1
� 0( �B (a; h(" )))

1f b2 �B (a;h(" )) g1f t6 T1g + � 0
t (b) 1f T1<t 6 T2g

+
1X

n=2

� n� 1
t (T2; A2; :::; Tn ; An ; b) 1f Tn <t 6 Tn +1 g: (3.120)

With this choice, for all r > 0,

Px;a 0

� " (T1 > r; E 1 2 F; A1 2 C)

=
Z 1

r

Z

F
exp

�
�

Z s

0
� (� (t; x; a 0); a0) dt �

s
"

�
� (� (s; x; a0); a0) Q(� (s; x; a0); a0; dy) ds

+
Z 1

r

Z

C
exp

�
�

Z s

0
� (� (t; x; a 0); a0) dt �

s
"

�
1
"

1
� 0( �B (a; h(" )))

1f b2 �B (a;h(" )) g � 0(db) ds:

(3.121)

To prove (3.117), it is enough to show that, for everyk > 1,

Ex;a 0

� " [ �F (� 1;k )] �!
" ! 0

Ex;a
� [ �F (� 1;k )]; (3.122)

where

�F (S1; W1; V1; :::; Sk ; Wk ; Vk ) =
Z S1

0
e� �t f (� (t; X 0; I 0); I 0) dt

+
kX

n=2

Z Sn

Sn � 1

e� �t f (� (t � Sn� 1; Wn� 1; Vn� 1); Vn� 1) dt;

(3.123)

for any sequence of random variables (Sn ; Wn ; Vn )n2 [1;k] with values in ([0; 1 ) � E �
A)n , with Sn� 1 � Sn for every n.

As a matter of fact, the remaining term

R("; k ) := Ex;a 0

� "

� Z 1

Tk

e� �t f (� (t � Tn� 1; En� 1; An� 1); An� 1) dt
�
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converges to zero, uniformly in" , as k goes to in�nity. To see it, we notice that

jR("; k )j �
M f

�
Ex;a 0

� "

h
e� �T k

i
=

M f

�
Ex;a 0

h
L � "

Tk
e� �T k

i
; (3.124)

where,L � is the Dol�eans-Dade exponential local martingale de�ned in (3.39). Taking
into account (3.120) and (3.119), we get

Ex;a 0
h
L � "

Tk
e� �T k

i
� Ex;a 0

"
eT1 � 0 (A ) e� T1

1
"

"2 L ��
Tk

e� �T k

#

�
4
e2 Ex;a 0

"
eT1 � 0 (A )

T2
1

L ��
Tk

e� �T k

#

where

�� (t; b) := 1 f t6 T1g + � 0
t (b) 1f T1<t 6 T2g +

1X

n=2

� n� 1
t (T2; A2; :::; Tn ; An ; b) 1f Tn <t 6 Tn +1 g:

Since �� 2 V, by Proposition 3.3.2 there exists a unique probability Px;a 0

�� on (
 ; F1 )
such that its restriction on (
 ; FTk ) is L ��

Tk
Px;a 0

. Then (3.124) reads

jR("; k )j �
4M f

� e2 Ex;a 0

��

"
eT1 � 0 (A )

T2
1

e� �T k

#

; (3.125)

and the conclusion follows by the Lebesgue dominated convergence theorem.

Let us now prove (3.122). By Lemma 3.5.10, taking into account (3.121), we
achieve

Ex;a 0

� " [ �F (� 1;k )]

= Ex;a 0

� "

h
Ex;a 0

� "

h
�F (� 1;k )

�
�
� FT1 ]

i

= Ex;a 0

� "

"
Ex;a

�
�
1f T1>� g

�F (s; y; b;� 1;k� 1)
�

Px;a
� (T1 > � )

�
�
�
�
s= T1 ; y= X 1 ; b= A 1

#

=
Z 1

0

Z

E

Ex;a
�

�
1f T1>s g

�F (s; y; a0; � 1;k� 1)
�

Px;a
� (T1 > s )

�

� exp
�

�
Z s

0
� (� (t; x; a 0); a0) dt �

s
"

�
� (� (s; x; a0); a0) Q(� (s; x; a0); a0; dy) ds

+
Z 1

0

Z

A

Ex;a
�

�
1f T1>s g

�F (s; � (s; x; a0); b;� 1;k� 1)
�

Px;a
� (T1 > s )

�

� exp
�

�
Z s

0
� (� (t; x; a 0); a0) dt �

s
"

�
1
"

1
� 0( �B (a; h(" )))

1f b2 �B (a;h(" )) g � 0(db) ds:

(3.126)

At this point, we set

' (s; y; b) :=
Ex;a

�
�
1f T1>s g

�F (s; y; b;� 1;k� 1)
�

Px;a
� (T1 > s )

; s 2 [0; 1 ); y 2 E; b 2 A: (3.127)

Notice that, for every (y; b) 2 E � A,

�F (s; y; b;� 1;k� 1) =
Z s

0
e� �t f (� (t; X 0; I 0); I 0) dt +

Z T1

s
e� �t f (� (t � s; y; b); b) dt
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+
k� 1X

n=2

Z Tn

Tn � 1

e� �t f (� (t � Tn� 1; En� 1; An� 1); An� 1) dt;

so that

j' (s; y; b)j �
M f

�
: (3.128)

Identity (3.126) becomes

Ex;a 0

� " [ �F (� 1;k )]

=
Z 1

0

Z

E
' (s; y; a0) exp

�
�

Z s

0
� (� (t; x; a 0); a0) dt �

s
"

�
�

� � (� (s; x; a0); a0) Q(� (s; x; a0); a0; dy) ds

+
Z 1

0

Z

A
' (s; � (s; x; a0); b) exp

�
�

Z s

0
� (� (t; x; a 0); a0) dt �

s
"

�
�

�
1
"

1
� 0( �B (a; h(" )))

1f b2 �B (a;h(" )) g � 0(db) ds

=: I 1(" ) + I 2(" ):

Using the change of variables = " z , we have

I 1(" ) =
Z 1

0

Z

E
f " (z; y) � (� (" z; x; a0); a0) Q(� (" z; x; a0); a0; dy) dz;

I 2(" ) =
Z 1

0

Z

A
g" (z; b) � 0(db) dz;

where

f " (z; y) := " ' (" z; y; a0) exp
�

�
Z " z

0
� (� (t; x; a 0); a0) dt � z

�
;

g" (z; b) := ' (" z; � (" z; x; a0); b) exp
�

�
Z " z

0
� (� (t; x; a 0); a0) dt � z

�
�

�
1

� 0( �B (a; h(" )))
1f b2 �B (a;h(" )) g:

Exploiting the continuity properties of � , Q, � and f , we get

I 2(" ) �!
" ! 0

' (0; x; a); (3.129)

where we have used that� (0; x; b) = x for every b 2 A. On the other hand, from the
estimate (3.128), it follows that

jf " (z; y)j �
M f

�
e� z ":

Therefore

jI 1(" )j �
M f

�
" jj � jj1

Z 1

0
e� z dz =

M f

�
" jj � jj1 �!

" ! 0
0: (3.130)

Collecting (3.130) and (3.129), we conclude that

Ex;a 0

� " [ �F (� 1;k )] �!
" ! 0

' (0; x; a): (3.131)
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Recalling the de�nitions of ' and �F given respectively in (3.127) and (3.123), we see
that

' (0; x; a)

= ( Px;a
� (T1 > 0)) � 1 Ex;a

�

h
1f T1> 0g

�F (0; x; a; � 1;k� 1)
i

= Ex;a
�

h
�F (0; x; a; � 1;k� 1)

i

= Ex;a
�

� Z T1

0
e� �t f (� (t; x; a ); a) dt +

kX

n=2

Z Tn � 1

Tn � 2

e� �t f (� (t � Tn� 1; En� 1; An� 1); An� 1) dt
�

= Ex;a
�

h
�F (� 1;k )

i
;

and this concludes the proof. �





Chapter 4

BSDEs driven by a
general random
measure, possibly non
quasi-left-continuous

4.1. Introduction

Backward stochastic di�erential equations have been deeply studied since the
seminal paper Pardoux and Peng [98]. In [98], as well as in many subsequent
papers, the driving term was a Brownian motion. BSDEs with a discontinuous
driving term have also been studied, see, among others, Buchdahn and Pardoux
[21], Tang and Li [128], Bares, Buckdahn and Pardoux [10], El Karoui and Huang
[50], Xia [131], Becherer [12], Carbone, Ferrario and Santacroce [22], Cohen and
Elliott [ 26], Jeanblanc, Mania, Santacroce and Schweizer [80], Confortola, Fuhrman
and Jacod [29].

In all the papers cited above, and more generally in the literature on BSDEs,
the generator (or driver) of the backward stochastic di�erential equation, usually
denoted byf , is integrated with respect to a measuredA, whereA is a nondecreasing
continuous (or deterministic and right-continuous as in [26]) process. The general
case, i.e.A is a right-continuous nondecreasing predictable process, is addressed in
this chapter. It is worth mentioning that Section 4.3 in [ 29] provides a counter-
example to existence for such general backward stochastic di�erential equations.
For this reason, the existence and uniqueness result (Theorem 4.4.1) is not a trivial
extension of known results. Indeed, in Theorem 4.4.1 we have to impose an additional
technical assumption, which is violated by the counter-example presented in [29] (see
Remark 4.4.3(ii)). This latter assumption reads as follows: there exists" 2 (0; 1)
such that (notice that � A t � 1)

2L 2
y j� A t j2 � 1 � "; P-a.s.; 8 t 2 [0; T]; (4.1)

145
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where L y is the Lipschitz constant of f with respect to y. As mentioned earlier, in
[26] the authors study a class of BSDEs with a generatorf integrated with respect to
a deterministic (rather than predictable) right-continuous nondecreasing processA,
even if this class is driven by a countable sequence of square-integrable martingales,
rather than just a random measure. They provide an existence and uniqueness result
for this class of BSDEs, see Theorem 6.1 in [26], where the same condition (4.1) is
imposed (see Remark 4.4.3(i)). However, the proof of Theorem 6.1 in [26] relies
heavily on the assumption that A is deterministic, and it can not be extended to the
case whereA is predictable, which therefore requires a completely di�erent proof.

The results obtained in this chapter can be particularly useful in the study of
control problems related to piecewise deterministic Markov processes by means of
BSDEs methods, see Remark 4.4.5.

The chapter is organized as follows: in Section 4.2 we introduce the random
measure � and we �x the notation. In Section 4.3 we provide the de�nition of
solution to the backward stochastic di�erential equation and we solve it in the case
where f = f (t; ! ) is independent of y and z (Lemma 4.3.6). Finally, in Section 4.4
we prove the main result (Theorem 4.4.1) of this chapter, i.e. the existence and
uniqueness for our backward stochastic di�erential equation.

4.2. Preliminaries

Consider a �nite time horizon T 2 (0; 1 ), a Lusin space (E; E), and a �ltered
probability space (
 ; F; (Ft )t � 0; P), with ( Ft )t � 0 right-continuous. We denote by P
the predictable � -�eld on 
 � [0; T]. In the sequel, given a measurable space (G; G),
we say that a function on the product space 
 � [0; T] � G is predictable if it is
P 
 G-measurable.

Let � be an integer-valued random measure onR+ � E . In the sequel we use a
martingale representation theorem for the random measure� , namely Theorem 5.4 in
Jacod [75]. For this reason, we suppose that (Ft )t � 0 is the natural �ltration of � , i.e.
the smallest right-continuous �ltration in which � is optional. We also assume that
� is a discrete random measure, i.e. the sections of the setD = f (!; t ) : � (!; f tg �
E ) = 1 g are �nite on every �nite interval. However, the results of this chapter
(in particular, Theorem 4.4.1) are still valid for more general random measure� for
which a martingale representation theorem holds (see Remark 4.4.4 for more details).

We denote by � the (Ft )t � 0-compensator of� . Then, � can be disintegrated as
follows

� (!; dt dx ) = dAt (! ) � !;t (dx); (4.2)

where A is a right-continuous nondecreasing predictable process such thatA0 = 0,
and � is a transition probability from (
 � [0; T]; P) into ( E; E). We suppose, without
loss of generality, that � satis�es � (f tg � dx) � 1 identically, so that � A t � 1.
We de�ne Ac as Ac

t = A t �
P

0<s � t � As, � c(dt dx) = 1 J c � E � (dt; dx), � d(dt dx) =
� (dt dx) � � c(dt dx) = 1 J � E � (dt; dx), where J = f (!; t ) : � (!; f tg � dx) > 0g.

We denote by B(E) the set of all Borel measurable functions onE. Given a
measurable functionZ : 
 � [0; T] � E ! R, we write Z !;t (x) = Z (!; t; x ), so that
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Z !;t , often abbreviated asZ t or Z t (�), is an element ofB(E). For any � � 0 we also
denote by E� the Dol�eans-Dade exponential of the process�A , which is given by

E�
t = e� A t

Y

0<s � t

(1 + � � As) e� � � A s : (4.3)

4.3. The backward stochastic di�erential equation

The backward stochastic di�erential equation driven by the random measure�
is characterized by a triple (�; �; f ), where � > 0 is a positive real number, and:

� � : 
 ! R, the terminal condition , is an FT -measurable random variable
satisfying E[E�

T j� j2] < 1 ;

� f : 
 � [0; T] � R � B(E) ! R, the generator, is such that:
(i) for any y 2 R and Z : 
 � [0; T] � E ! R predictable

=) f (!; t; y; Z !;t (�)) predictable;
(ii) for some nonnegative constantsL y ; L z, we have

jf (!; t; y 0; � 0) � f (!; t; y; � )j � L y jy0� yj

+ L z

� Z

E

�
�
�
� �

0(x) � � (x) � � A t (! )
Z

E

�
� 0(z) � � (z)

�
� !;t (dz)

�
�
�
�

2

� !;t (dx)

+ � A t (! )
�
1 � � A t (! )

�
�
�
�
�

Z

E
(� 0(x) � � (x)) � !;t (dx)

�
�
�
�

2� 1=2

; (4.4)

for all ( !; t ) 2 
 � [0; T], y; y0 2 R, �; � 0 2 L 2(E; E; � !;t (dx));
(iii) E[(1 +

P
0<t � T j� A t j2)

RT
0 E�

t jf (t; 0; 0)j2 dAt ] < 1 .

Remark 4.3.1. The measurability condition (i) on f is somehow awkward, however
it seems to be unavoidable. Indeed, we notice that the same condition is imposed
in [29], assumption (2.8), and a similar condition is imposed in [27], assumption
(3.2). We also observe that at page 4 of [29], the authors provide some examples of
assumptions onf which imply the measurability condition (i) above (see in particular
assumption (2.10) in [29]). �

Given (�; �; f ), the backward stochastic di�erential equation takes the following form

Yt = � +
Z

(t;T ]
f (s; Ys� ; Zs(�)) dAs �

Z

(t;T ]

Z

E
Zs(x) ( � � � )(ds dx); 0 � t � T: (4.5)

De�nition 4.3.2. For every � � 0, we de�ne H2
� (0; T) as the set of pairs (Y; Z)

such that:

� Y : 
 � [0; T] ! R is an adapted c�adl�ag process satisfying

kYk2
H2

�;Y (0;T ) := E
� Z

(0;T ]
E�

t jYt � j2 dAt

�
< 1 ; (4.6)

� Z : 
 � [0; T] � E ! R is a predictable process satisfying

kZ k2
H2

�;Z (0;T ) := E
� Z

(0;T ]
E�

t

Z

E

�
�Z t (x) � Ẑ t

�
�2 � (dt dx)
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+
X

0<t � T

E�
t

�
�Ẑ t

�
�2�

1 � � A t
�
�

< 1 ; (4.7)

where

Ẑ t =
Z

E
Z t (x) � (f tg � dx); 0 � t � T:

For every (Y; Z) 2 H2
� (0; T), we denote

k(Y; Z)k2
H2

� (0;T ) := kYk2
H2

�;Y (0;T ) + kZ k2
H2

�;Z (0;T ) :

Remark 4.3.3. (i) Notice that the space H2
� (0; T), endowed with the topology

induced by k � kH2
� (0;T ) , is an Hilbert space, provided we identify pairs of processes

(Y; Z); (Y 0; Z 0) satisfying k(Y � Y 0; Z � Z 0)kH2
� (0;T ) = 0.

(ii) Suppose that there exists  2 (0; 1] such that � A t � 1 �  , for all t 2 [0; T],
P-a.s.. ThenZ belongs toH2

�;Z (0; T) if and only if
p

E� Z is in L 2(
 � [0; T] � E; P 

E; P 
 � (dt dx)), i.e.

E
� Z

(0;T ]
E�

t

Z

E

�
�Z t (x)

�
�2 � (dt dx)

�
< 1 :

�

De�nition 4.3.4. A solution to equation (4.5) with data ( �; �; f ) is a pair (Y; Z) 2
H2

� (0; T) satisfying equation (4.5). We say that equation (4.5) admits a unique
solution if, given two solutions (Y; Z); (Y 0; Z 0) 2 H2

� (0; T), we have (Y; Z) = ( Y 0; Z 0)
in H2

� (0; T).

Remark 4.3.5. Notice that, given a solution (Y; Z) to equation (4.5) with data
(�; �; f ), we have (recalling that � � 0, so that E�

t � 1)

E
� Z

(0;T ]

Z

E

�
�Z t (x) � Ẑ t

�
�2 � (dt dx) +

X

0<t � T

�
� Ẑ t

�
�2�

1 � � A t
�
�

= kZ k2
H2

0;Z (0;T ) � k Z k2
H2

�;Z (0;T ) < 1 :

This implies that the process (Z t 1[0;T ](t)) t � 0 belongs toG2(� ), see (3.62) and Propo-
sition 3.71-(a) in Jacod's book [77]. In particular, the stochastic integralR

(t;T ]

R
E Zs(x) ( � � � )(ds dx) in (4.5) is well-de�ned, and the process

M t :=
Z

(0;t ]

Z

E
Zs(x)( � � � )(ds dx); t 2 [0; T];

is a square integrable martingale (see Proposition 3.66 in [77]). �

Lemma 4.3.6. Consider a triple (�; �; f ) and suppose thatf = f (!; t ) does not
depend on(y; � ). Then, there exists a unique solution(Y; Z) 2 H2

� (0; T) to equation
(4.5) with data (�; �; f ). Moreover, the following identity holds:

E
�
E�

t jYt j2
�

+ � E
� Z

(t;T ]
E�

s (1 + � � As) � 1 jYs� j2 dAs

�
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+ E
� Z

(t;T ]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds dx) +

X

t<s � T

E�
s

�
�Ẑs

�
�2�

1 � � As
�
�

= E
�
E�

T j� j2
�

+ 2 E
� Z

(t;T ]
E�

s Ys� f s dAs

�
� E

� X

t<s � T

E�
s jf sj2 j� Asj2

�
; (4.8)

for all t 2 [0; T].

Proof. Uniqueness.It is enough to prove that equation (4.5) with data ( �; 0; 0) has
the unique (in the sense of De�nition 4.3.4) solution (Y; Z) = (0 ; 0). Let (Y; Z) be a
solution to equation (4.5) with data ( �; 0; 0). Since the stochastic integral in (4.5) is a
square integrable martingale (see Remark 4.3.5), taking the conditional expectation
with respect to Ft we obtain, P-a.s.,Yt = 0, for all t 2 [0; T]. This proves the claim for
the componentY and shows that the martingaleM t :=

R
(0;t ]

R
E Zs(x)( � � � )(ds dx) =

0, P-a.s., for all t 2 [0; T]. Therefore, the predictable bracket hM; M i T = 0, P-a.s.,
where we recall that (see Proposition 3.71-(a) in [77])

hM; M i T =
Z

(0;T ]

Z

E

�
�Z t (x) � Ẑ t

�
�2 � (dt dx) +

X

0<t � T

�
�Ẑ t

�
�2�

1 � � A t
�
:

This concludes the proof, sincekZ k2
H2

�;Z (0;T ) � E
�
E�

T hM; M i T
�

= 0.

Identity (4.8). Let (Y; Z) be a solution to equation (4.5) with data (�; �; f ). From
Itô's formula applied to E�

s jYsj2 it follows that (recall that dE�
s = � E�

s� dAs)

d(E�
s jYsj2) = E�

s� djYsj2 + jYs� j2 dE�
s + � E�

s � jYsj2

= E�
s� djYsj2 + jYs� j2 dE�

s + ( Es � E�
s� ) djYsj2

= E�
s djYsj2 + jYs� j2 dE�

s

= 2 E�
s Ys� dYs + E�

s (� Ys)2 + � E�
s� jYs� j2 dAs

= 2 E�
s Ys� dYs + E�

s (� Ys)2 + � E�
s (1 + � � As) � 1 jYs� j2 dAs; (4.9)

where the last equality follows from the identity E�
s� = E�

s (1+ � � As) � 1. Integrating
(4.9) on the interval [t; T ], we obtain

E�
t jYt j2 = E�

T j� j2 + 2
Z

(t;T ]
E�

s Ys� f s dAs � 2
Z

(t;T ]
E�

s Ys�

Z

E
Zs(x) ( � � � )(ds dx)

�
X

t<s � T

E�
s (� Ys)2 � �

Z

(t;T ]
E�

s (1 + � � As) � 1 jYs� j2 dAs: (4.10)

Now, notice that

� Ys =
Z

E
Zs(x) ( � � � )( f sg � dx) � f s � As: (4.11)

Thus

j� Ysj2 =

�
�
�
�

Z

E
Zs(x) ( � � � )( f sg � dx)

�
�
�
�

2

+ jf sj2j� Asj2
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� 2f s� As

Z

E
Zs(x) ( � � � )( f sg � dx): (4.12)

Plugging (4.12) into (4.10), we �nd

E�
t jYt j2 + �

Z

(t;T ]
E�

s (1 + � � As) � 1 jYs� j2 dAs

+
X

t<s � T

E�
s

�
�
�
�

Z

E
Zs(x) ( � � � )( f sg � dx)

�
�
�
�

2

= E�
T j� j2 + 2

Z

(t;T ]
E�

s Ys� f s dAs � 2
Z

(t;T ]
E�

s Ys�

Z

E
Zs(x) ( � � � )(ds dx)

�
X

t<s � T

E�
s jf sj2 j� Asj2 + 2

X

t<s � T

E�
s f s � As

Z

E
Zs(x) ( � � � )( f sg � dx): (4.13)

Notice that

E
� X

t<s � T

E�
s

�
�
�
�

Z

E
Zs(x) ( � � � )( f sg � dx)

�
�
�
�

2�

= E
� Z

(t;T ]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds; dx) +

X

t<s � T

E�
s

�
� Ẑs

�
�2�

1 � � As
�
�
: (4.14)

We also observe that the two stochastic integrals

M 1
t :=

Z

(0;t ]
E�

s Ys�

Z

E
Zs(x) ( � � � )(ds dx)

M 2
t :=

X

0<s � t

E�
s f s � As

Z

E
Zs(x) ( � � � )( f sg � dx)

are martingales. Therefore, taking the expectation in (4.13) and using (4.14), we
end up with (4.8).

Existence. Consider the martingale ~M t := E[� +
R

(0;T ] f s dAsjFt ], t 2 [0; T]. Let M

be a right-continuous modi�cation of ~M . Then, by the martingale representation
Theorem 5.4 in [75] and Proposition 3.66 in [77] (noting that M is a square integrable
martingale), there exists a predictable processZ : 
 � [0; T] � E ! R such that

E
� Z

(0;T ]

Z

E

�
�Z t (x) � Ẑ t

�
�2 � (dt dx) +

X

0<t � T

�
� Ẑ t

�
�2�

1 � � A t
�
�

< 1

and

M t = M 0 +
Z

(0;t ]

Z

E
Zs(x) ( � � � )(ds dx); t 2 [0; T]: (4.15)

Set

Yt = M t �
Z

(0;t ]
f s dAs; t 2 [0; T]: (4.16)

Using the representation (4.15) ofM , and noting that YT = � , we see thatY satis�es
(4.5). When � > 0, it remains to show that Y satis�es (4.6) and Z satis�es (4.7).
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To this end, let us de�ne the increasing sequence of stopping times

Sk = inf
n

t 2 (0; T] :
Z

(0;t ]
E�

s jYs� j2 dAs

+
Z

(0;t ]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds dx) +

X

0<s � t

E�
s

�
�Ẑs

�
�2�

1 � � As
�

> k
o

with the convention inf ; = T. Computing the Itô di�erential d(E�
s jYsj2) on the

interval [0; Sk ] and proceeding as in the derivation of identity (4.8), we �nd

E

2

4
Z

(0;Sk ]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds dx) +

X

0<s � Sk

E�
s

�
� Ẑs

�
�2�

1 � � As
�
3

5

+ � E

" Z

(0;Sk ]
E�

s (1 + � � As) � 1 jYs� j2 dAs

#

� E
h
E�

Sk
jYSk j2

i
+ 2E

" Z

(0;Sk ]
E�

s Ys� f s dAs

#

: (4.17)

Let us now prove the following inequality (recall that we are assuming� > 0)

E�
t

� Z

(t;T ]
jf sj dAs

� 2

�
�

1
�

+ �
X

t<s � T

j� Asj2
� Z

(t;T ]
E�

s jf sj2 dAs: (4.18)

Set, for all s 2 [0; T],

�As :=
�
2

Ac
s +

X

0<r � s; � A r 6=0

� p
1 + � � A r � 1

�
;

As := �
�
2

Ac
s �

X

0<r � s; � A r 6=0

p
1 + � � A r � 1
p

1 + � � A r
:

Denote by �E (resp. E) the Dol�eans-Dade exponential of the process �A (resp. A).
Using Proposition 6.4 in [77] we see that

1 = Es
�Es; ( �Es)2 = E�

s ; 8 s 2 [0; T]: (4.19)

Then, we conclude that

E�
t

� Z

(t;T ]
jf sj dAs

� 2

= E�
t

� Z

(t;T ]
Es�

�Es� jf sj dAs

� 2

�
�

1
�

+ �
X

t<s � T

j� Asj2
� Z

(t;T ]
E�

s jf sj2 dAs;

where we used the inequalityE�
s� � E�

s (which follows from (4.3)) and

E�
t

Z

(t;T ]
(Es� )2 dAs = E�

t
(Et )

2 � (ET )2

�
+ E�

t �
X

t<s � T

(Es� )2 j� Asj2

1 + � � As

�
1
�

+ �
X

t<s � T

j� Asj2;
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where the last inequality follows from 1
1+ � � A s

� 1 and identities (4.19). Now, using
(4.16) and (4.18) we obtain

E�
t jYt j2 = E�

t

�
�
�
�E

�
� +

Z

(t;T ]
f s dAs

�
�
�Ft

� �
�
�
�

2

� 2E
�
E�

t j� j2
�
�Ft

�
+ 2 E

�
E�

t

� Z

(t;T ]
jf sj dAs

� 2�
�
�Ft

�

� 2E
�
E�

T j� j2 +
�

1
�

+ �
X

0<s � T

j� Asj2
� Z

(0;T ]
E�

s jf sj2 dAs

�
�
�Ft

�
: (4.20)

Denote by mt a right-continuous modi�cation of the right-hand side of (4.20). We
see thatm = ( mt )t2 [0;T ] is a uniformly integrable martingale. In particular for every
stopping time S with values in [0; T], we have, by Doob's optional stopping theorem,

E
h
E�

S jYS j2
i

� E [mS] � E [mT ] < 1 : (4.21)

Notice that (1 + � � As) � 1 � 1
1+ � P-a.s. Using the inequality 2ab � a 2 + 1

 b2 with

 = �
2(1+ � ) , and plugging (4.21) (with S = Sk ) into (4.17), we �nd the estimate

�
2(1 + � )

E

" Z

(0;Sk ]
E�

s jYs� j2 dAs

#

+ E

2

4
Z

(0;Sk ]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds dx) +

X

0<s � Sk

E�
s

�
�Ẑs

�
�2�

1 � � As
�
3

5

� 2E
�
E�

T j� j2
�

+ 2 E
��

1
�

+ �
X

0<s � T

j� Asj2
�� Z

(0;T ]
E�

s jf sj2 dAs

��
:

From the above inequality we deduce that

E

" Z

(0;Sk ]
E�

s jYs� j2 dAs

#

+ E
� Z

(0;Sk ]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds dx) +

X

0<s � Sk

E�
s

�
�Ẑs

�
�2�

1 � � As
�
�

� c(� )

0

@E
h
E�

T j� j2
i

+ E

2

4
�

1
�

+ �
X

0<s � T

j� Asj2
� Z

(0;T ]
E�

s jf sj2 dAs

3

5

1

A ; (4.22)

where c(� ) = 2 + 4(1+ � )
� . Setting S = lim k Sk we deduce

E

" Z

(0;S]
E�

s jYs� j2 dAs

#

+ E
� Z

(0;S]
E�

s

Z

E

�
�Zs(x) � Ẑs

�
�2 � (ds dx) +

X

0<s � S

E�
s

�
�Ẑs

�
�2�

1 � � As
�
�

< 1 ; P-a.s.,
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which implies S = T, P-a.s., by the de�nition of Sk . Letting k ! 1 in (4.22), we
conclude that Y satis�es (4.6) and Z satis�es (4.7), so that (Y; Z) 2 H2

� (0; T). �

4.4. Main result

Theorem 4.4.1. Suppose that there exists" 2 (0; 1) such that

2L 2
y j� A t j2 � 1 � "; P-a.s.; 8 t 2 [0; T]: (4.23)

Then there exists a unique solution(Y; Z) 2 H2
� (0; T) to equation (4.5) with data

(�; �; f ), for every � satisfying

� �

L 2
y

L̂ 2
z;t

+
2 L̂ 2

z;t

1� � +2 L̂ 2
z;t � A t

1 � � A t

�
L 2

y

L̂ 2
z;t

+
2 L̂ 2

z;t

1� � +2 L̂ 2
z;t � A t

� ; P-a.s.; 8 t 2 [0; T]; (4.24)

for some � 2 (0; " ) and strictly positive predictable process(L̂ z;t )t2 [0;T ] given by

L̂ 2
z;t = max

�
L 2

z + �;
(1 � � ) L yp

2(1 � � ) � 2L y � A t

�
: (4.25)

Remark 4.4.2. (i) Notice that when condition (4.23) holds the right-hand side of
(4.24) is a well-de�ned nonnegative real number, so that there always exists some
� � 0 which satis�es (4.24).

(ii) Observe that in Theorem 4.4.1 there is no condition onL z, i.e. on the Lipschitz
constant of f with respect to its last argument. �

Proof of Theorem 4.4.1. The proof is based on a �xed point argument that we
now describe. Let us consider the function � : H2

� (0; T) ! H2
� (0; T), mapping (U; V)

to (Y; Z) as follows:

Yt = � +
Z

(t;T ]
f (t; Us� ; Vs) dAs �

Z

(t;T ]

Z

E
Zs(x) ( � � � )(ds dx); (4.26)

for all t 2 [0; T]. By Lemma 4.3.6 there exists a unique (Y; Z) 2 H2
� (0; T) satisfying

(4.26), so that � is a well-de�ned map. We then see that ( Y; Z) is a solution in
H2

� (0; T) to the BSDE (4.5) with data ( �; �; f ) if and only if it is a �xed point of �.

Let us prove that � is a contraction when � is large enough. Let (U i ; V i ) 2
H2

� (0; T), i = 1 ; 2, and set (Y i ; Z i ) = �( U i ; V i ). Denote �Y = Y 1 � Y 2, �Z = Z 1 � Z 2,
�U = U1 � U2, �V = V 1 � V 2, �f s = f (s; U1

s� ; V 1
s ) � f (s; U2

s� ; V 2
s ). Notice that

�Yt =
Z

(t;T ]

�f s dAs �
Z

(t;T ]

Z

E

�Zs(x) ( � � � )(ds; dx); 0 � t � T: (4.27)

Then, identity (4.8), with t = 0, becomes (noting that E[E�
0 j �Y0j2] is nonnegative)

� E
� Z

(0;T ]
E�

s (1 + � � As) � 1 j �Ys� j2 dAs

�

+ E
� Z

(0;T ]
E�

s

Z

E

�
� �Zs(x) � �̂Zs

�
�2 � (ds dx) +

X
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E�
s

�
� �̂Zs

�
�2�

1 � � As
�
�
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� 2E
� Z

(0;T ]
E�

s
�Ys� �f s dAs

�
� E

� X

0<s � T

E�
s j �f sj2 j� Asj2

�
: (4.28)

From the standard inequality 2ab � 1
� a2 + �b 2, 8 a; b2 R and � > 0, we obtain, for

any strictly positive predictable processes (cs)s2 [0;T ] and (ds)s2 [0;T ],

2E
� Z

(0;T ]
E�

s
�Ys� �f s dAs

�
� E

� Z

(0;T ]

1
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E�
s j �Ys� j2 dAc
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�

+ E
� X
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1
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�

+ E
� Z
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cs E�
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s

�
+ E

� X

0<s � T

ds E�
s j �f sj2 � As

�
:

Therefore (4.28) becomes
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1
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s j �Ys� j2 dAc
s

�
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�2 � (ds dx) +

X

0<s � T

E�
s

�
� �̂Zs

�
�2�
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� E
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s j �f sj2 dAc
s

�
+ E

� X

0<s � T

�
ds � � As

�
E�

s j �f sj2 � As

�
: (4.29)

Now, by the Lipschitz property (4.4) of f , we see that for any predictable process
(L̂ z;s)s2 [0;T ], satisfying L̂ z;s > L z, P-a.s. for everys 2 [0; T], we have

j �f sj2 � 2L 2
y j �Us� j2+2 L̂ 2

z;s

� Z

E

�
� �Vs(x) � �̂Vs

�
�2 � s(dx)+1 f � A s 6=0 g

1 � � As

� As

�
� �̂Vs

�
�2

�
; (4.30)

for all s 2 [0; T]. For later use, �x � 2 (0; " ) and take (L̂ z;s)s2 [0;T ] given by (4.25).
Notice that the two components inside the maximum in (4.25) are nonnegative (the
�rst being always strictly positive, the second being zero if L y = 0) and uniformly
bounded, as it follows from condition (4.23). Plugging inequality (4.30) into (4.29),
and using the following identity for �Z (and the analogous one for�V )
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;

we obtain
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+ E
� X
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Set bs := min( � � 1
cs

; � (1 + � � As) � 1 � 1
ds

) and as := 2 L̂ 2
z;s max(cs; ds � � As),

s 2 [0; T]. Then, inequality (4.31) can be rewritten as (recalling that L̂ z;s > 0)

E
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L̂ 2
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as E�
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+ E
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s

Z

E
j �Vs(x)j2 � c(ds dx)

�
+ E

� X
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as E�
s

� dj �Vsj2 � j �̂Vsj2
�
�
: (4.32)

It follows from (4.32) that � is a contraction if:

(i) there exists � 2 (0; 1) such that as � � , P-a.s. for everys 2 [0; T];

(ii)
L 2

y

L̂ 2
z;s

� bs, P-a.s. for everys 2 [0; T].

Let us prove that (i) and (ii) hold. Condition (i) is equivalent to ask that there exists
� 2 (0; 1) such that, for all s 2 [0; T],

cs �
1 � �

2 L̂ 2
z;s

; ds �
1 � �

2 L̂ 2
z;s

+ � As; P-a.s.

Then we choose� = � , where � 2 (0; " ) was �xed in the statement of the theorem,
and cs; ds given by

cs =
1 � �

2 L̂ 2
z;s

; ds =
1 � �

2 L̂ 2
z;s

+ � As; (4.33)

for all s 2 [0; T], so that (i) holds true. Concerning (ii), we have, for all s 2 [0; T],

min
�

� �
1
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; � (1 + � � As) � 1 �
1
ds

�
�

L 2
y

L̂ 2
z;s

;
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which becomes

� �
L 2

y

L̂ 2
z;s

+
1
cs

; � �

L 2
y

L̂ 2
z;s

+ 1
ds

1 � � As

�
L 2

y

L̂ 2
z;s

+ 1
ds

� ; (4.34)

where for the last inequality we need to impose the additional condition

1 � � As

�
L 2

y

L̂ 2
z;s

+
1
ds

�
> 0:

This latter inequality can be rewritten as

L 2
y � As < L̂ 2

z;s

�
1 �

� As

ds

�
=

(1 � � ) L̂ 2
z;s

1 � � + 2 L̂ 2
z;s � As

; (4.35)

where the last equality follows from the de�nition of ds in (4.33). From (4.25), and
since in particular

L̂ 2
z;s �

(1 � � ) L yp
2(1 � � ) � 2L y � As

>
(1 � � ) L 2

y � As

1 � � � 2L 2
y j� Asj2

; P-a.s.; 8 s 2 [0; T];

it follows that inequality (4.35) holds. Finally, concerning (4.34), we begin noting
that

L 2
y

L̂ 2
z;s

+
1
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<

L 2
y

L̂ 2
z;s

+ 1
ds

1 � � As

�
L 2

y

L̂ 2
z;s

+ 1
ds

� ;

as it can be shown using (4.33). Now, let us denote
L 2

y

L̂ 2
z;s

+ 1
ds

1 � � As

�
L 2

y

L̂ 2
z;s

+ 1
ds

� = Hs(L̂ 2
z;s);

where, for everys 2 [0; T],

Hs(`) =
hs(`)

1 � � As hs(`)
; hs(`) =

L 2
y

`
+

2`
1 � � + 2 ` � As

; ` > 0:

Notice that Hs attains its minimum at ` �
s = (1� � ) L yp

2(1� � )� 2 L y � A s
. This explains the ex-

pression of the second component inside the maximum in (4.25). In conclusion, given
(L̂ z;s)s2 [0; T ] as in (4.25) we obtain a lower bound for� from the second inequality
in (4.34), which corresponds to (4.24). �

Remark 4.4.3. (i) In [ 26] the authors study a class of BSDEs driven by a countable
sequence of square-integrable martingales, with a generatorf integrated with respect
to a right-continuous nondecreasing processA as in (4.5). Similarly to our setting,
A is not necessarily continuous, however in [26] it is supposed to bedeterministic
(instead of predictable). Theorem 6.1 in [26] provides an existence and uniqueness
result for the class of BSDEs studied in [26] under the following assumption (2L 2

y;t
corresponds toct and � A t corresponds to � � t in the notation of [ 26]):

2L 2
y;t j� A t j2 < 1; 8 t 2 [0; T]; (4.36)
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whereL y;t is a measurable deterministic function uniformly bounded such that (4.4)
holds with L y;t in place of L y . As showed at the beginning of the proof of Theorem
6.1 in [26], if (4.36) holds (and A is as in [26]), then there exists " 2 (0; 1) such that

2L 2
y;t j� A t j2 � 1 � "; 8 t 2 [0; T]: (4.37)

This proves that when condition (4.36) holds then (4.37) is also valid, since in our
setting we can takeL y;t � L y .

(ii) Section 4.3 in [29] provides a counter-example to existence for BSDE (4.5) whenA
is discontinuous, as it can be the case in our setting; the rest of the paper [29] studies
BSDE (4.5) with A continuous. Let us check that the counter-example proposed in
[29] does not satisfy condition (4.23). In [29] the processA is a pure jump process
with a single jump of sizep 2 (0; 1) at a deterministic time t 2 (0; T]. The Lipschitz
constant of f with respect to y is L y = 1

p . Then

2L 2
y j� A t j2 = 2

if t is the jump time of A, so that condition (4.23) is violated. �

Remark 4.4.4. Suppose that � is an integer-valued random measure onR+ � E
not necessarily discrete. Then� can still be disintegrated as follows

� (!; dt dx ) = dAt (! ) � !;t (dx);

where A is a right-continuous nondecreasing predictable process such thatA0 = 0,
but � is in general only a transition measure (instead of transition probability) from
(
 � [0; T]; P) into ( E; E). Notice that when � is discrete one can choose� to be a
transition probability, therefore � (E ) = 1 and � (f tg � E ) = � A t (a property used
in the previous sections). When� is not discrete, let us suppose that� d can be
disintegrated as follows

� d(!; dt dx ) = � A t (! ) � d
!;t (dx); � d

!;t (E ) = 1 ; (4.38)

where � d is a transition probability from (
 � [0; T]; P) into ( E; E). In particular
� d(f tg � E ) = � A t . Then, when (4.38) and a martingale representation theorem for
� hold, all the results of this chapter are still valid and can be proved proceeding
along the same lines. As an example, (4.38) holds when� is the jump measure of a
L�evy process, indeed in this case �A t is identically zero. �

Remark 4.4.5. As an application of the results presented in this chapter, suppose
that � is the jump measure of a piecewise deterministic Markov processX with
values in E . We follow the notation introduced in [ 35], Chapter 2, Section 24 and
26. Denoted by (Tn )n the jump times of the processX , the random measure� can
be written as

� (dt dx) =
1X

n=1

� (Tn ; X Tn ) (dt dx):

Moreover, according to (26.2) in [35], the compensator of� has the form

� (!; dt dx ) = ( � (X t � (! )) dt + dp�
t (! )) P(X t � (! ); dx); (4.39)
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where P : �E � E ! E and � : E ! R+ are respectively the transition probability
measure and the jump rate of the processX , and

p�
t =

1X

n=1

1f t � Tn g 1f X Tn � 2 � g

is the process counting the number of jumps ofX from the active boundary � � @E
(for the precise de�nition of � see page 61 in [35]).

From (4.39) we see that decomposition (4.2) for� holds with dAt (! ) = � (X t � (! ))
dt + dp�

t (! ) and � !;t (dx) = P(X t � (! ); dx). In particular, A is predictable (not
deterministic) and discontinuous, with jumps � A t = 1 f X t � 2 � g. In this case condition
(4.23) can be written as

L y <
1

p
2

: (4.40)

The fact that the above condition is only on L y , rather than on L z, is particularly
important in the study of control problems related to PDMPs by means of BSDEs
methods. This latter turns out to be technically involved and is the subject of a work
in progress by the author, where the methodology developed in Chapter 3 is extended
in suitable way to the case of PDMPs on a state space with boundary. Here, we just
say that when control problems are considered thenL y = 0 and condition (4.40) is
automatically satis�ed. We also emphasize that, as expected, the main di�culties
arise from the presence of discontinuities at the boundary of the domain. �



Chapter 5

Weak Dirichlet
processes with jumps

5.1. Introduction

The present chapter extends stochastic calculus via regularization to the case
of jump processes, and carries on the investigations of the so called weak Dirichlet
processes in the discontinuous case. This calculus will be applied in Chapter 6,
where we provide the identi�cation of the solution of a forward backward stochastic
di�erential equation driven by a random measure, when the underlying process is of
weak Dirichlet type.

Stochastic calculus via regularization was essentially known in the case of contin-
uous integrators X , see e.g. Russo and Vallois [116], [117], with a survey in [121].
In this case a fairly complete theory was developed, see for instance Itô formulae for
processes with �nite quadratic (and more general) variations, stochastic di�erential
equations, Itô-Wentzell type formulae in Flandoli and Russo [63], and generalizations
to the case of Banach space type integrators given in Di Girolami and Russo [44].
The notion of covariation [X; Y ] (resp. quadratic variation [X; X ]) for two processes
X; Y (resp. a processX ) has been introduced in the framework of regularizations
(see Russo and Vallois [119]) and of discretizations as well (see F•ollmer [66]). Even
if there is no direct theorem relating the two approaches, they coincide in all the
examples considered in the literature. IfX is a �nite quadratic variation continuous
process, an Itô formula has been proved for the expansion ofF (X t ), when F 2 C2,
see [119]; this constitutes the counterpart of the related result for discretizations,
see [66]. Moreover, for F of class C1 and X a reversible semimartingale, an Itô
expansion has been established in Russo and Vallois [120].

When F is less regular thanC1, the Itô formula can be replaced by a Fukushima-
Dirichlet decomposition for X weak Dirichlet process(with respect to a given �ltra-
tion ( Ft )). The notion of Dirichlet process is a familiar generalization of the concept
of semimartingale, and was introduced by [66] and Bertoin [14] in the discretization
framework. The analogue of the Doob-Meyer decomposition for a Dirichlet process

159
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is that it is the sum of a local martingale M and an adapted processA with zero
quadratic variation. Here A is the generalization of a bounded variation process.
However, requiring A to have zero quadratic variation imposes thatA is continuous,
see Lemma 5.3.9; since a bounded variation process with jumps has a non zero �nite
quadratic variation, the generalization of the semimartingale in the jump case is not
necessarily represented by the notion of Dirichlet process. A natural generalization
should then at least include the possibility that A is a bounded variation process
with jumps. The concept of (Ft )-weak Dirichlet process was later introduced in
Errami and Russo [58] and Gozzi and Russo [71] for a continuous processX , and
applications to stochastic control were considered in Gozzi and Russo [70]. Such a
process is de�ned as the sum of a local martingaleM and an adapted processA
such that [A; N ] = 0 for every continuous local martingale N . This notion turns
out to be a correct generalization of the semimartingale notion in the discontinuous
framework, and is extended to the case of jumps processes in the signi�cant work
Coquet, Jakubowsky, M�emin and Slomi�nsky [ 30], by using the discretizations tech-
niques. In the continuous case, a chain rule was established forF (t; X t ) when F
belongs to classC0;1 and X is a weak Dirichlet process, see [71]. Such a process is
indeed again a weak Dirichlet process (with possibly no �nite quadratic variation).
Towards calculus in the jump case only few steps were done in [119], Russo and
Vallois [118], and several other authors, see Chapter 15 of the book of Di Nunno,
�ksendal and Proske [45] and references therein. For instance no Itô type formulae
have been established in the framework of regularization and in the discretization
framework only very few chain rule results are available forF (X ), when F (X ) is not
a semimartingale. In that direction two peculiar results are available: the expan-
sion of F (X t ) when X is a reversible semimartingale andF is of classC1 with some
H•older conditions on the derivatives (see Errami, Russo and Vallois [59]) and a chain
rule for F (X t ) when X is a weak Dirichlet (c�adl�ag) process and F is of classC1, see
[30]. The work in [59] has been continued by several authors, see e.g. Eisenbaum
[47] and references therein, expanding the remainder making use of local time type
processes. A systematic study of that calculus was missing and in this chapter we
�ll out this gap.

Let us now go through the description of the main results of the chapter. As we
have already mentioned, our �rst basic objective consists in developing a calculus via
regularization in the case of �nite quadratic variation c�adl�ag processes. To this end,
we revisit the de�nitions given by [ 119] concerning forward integrals (resp. covaria-
tions). Those objects are introduced as u.c.p. (uniform convergence in probability)
limit of the expressions of the type (5.12) (resp. (5.13)). That convergence en-
sures that the limiting objects are c�adl�ag, since the approximating expressions have
the same property. For instance a c�adl�ag processX will be called �nite quadratic
variation process whenever the limit (which will be denoted by [X; X ]) of

[X; X ]ucp
" (t) :=

Z

]0; t ]

(X ((s + ") ^ t) � X (s))2

"
ds; (5.1)
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exists u.c.p. In [119], the authors introduced a slightly di�erent approximation of
[X; X ] when X is continuous, namely

C" (X; X )( t) :=
Z

]0; t ]

(X ((s + ") � X (s))2

"
ds: (5.2)

When the u.c.p. limit of C" (X; X ) exists, it is automatically a continuous process,
since the approximating processes are continuous. For this reason, whenX is a jump
process, the choice of approximation (5.2) would not be suitable, since its quadratic
variation is expected to be a jump process. In that case, the u.c.p. convergence of
(5.1) can be shown to be equivalent with a notion of convergence which is associated
with the a.s. convergence (up to subsequences) in measure ofC" (X; X )( t) dt, see
Section 5.4. Both formulations will be used in the development of the calculus.

For a c�adl�ag �nite quadratic variation process X , we establish, via regularization
techniques, an Itô formula for C1;2 functions of X . This is the object of Proposition
5.5.1, whose proof is based on an accurate separation between the neighborhood of
"big" and "small" jumps, where speci�c tools are used, see for instance the prelim-
inary results Lemma 5.3.11 and Lemma 5.3.12. Another signi�cant instrument is a
Lemma of Dini type in the case of c�adl�ag functions, see Lemma 5.3.15. Finally, from
Proposition 5.5.1 easily follows an Itô formula under weaker regularity conditions on
F , see Proposition 5.5.2. We remark that a similar formula was stated in [59], using
a discretization de�nition of the covariation, when F is time-homogeneous.

The second target of the chapter consists in investigating weak Dirichlet jump
processes. Contrarily to the continuous case, the decompositionX = M + A is
generally not unique. We introduce the notion ofspecial weak Dirichlet processwith
respect to some �ltration ( Ft ). Such a process is a weak Dirichlet process admitting
a decompositionX = M + A, where M is an (Ft )-local martingale and where the
\orthogonal" process A is predictable. The decomposition of a special weak Dirichlet
process is unique, see Proposition 5.6.8. Such a process constitutes a generalization
of the notion of semimartingale in the framework of weak Dirichlet processes. We
remark that a continuous weak Dirichlet process is a special weak Dirichlet.

Two signi�cant results are Theorem 5.6.14 and Theorem 5.6.26. They both
concern expansions ofF (t; X t ) where F is of classC0;1 and X is a weak Dirichlet
process of �nite quadratic variation. Theorem 5.6.14 states that F (t; X t ) will be
again a weak Dirichlet process, however not necessarily of �nite quadratic variation.
Theorem 5.6.26 concerns the cases whenX and (F (t; X t )) t are special weak Dirichlet
processes. A �rst signi�cant step in this sense was done in [30], where X belongs
to a bit di�erent class of special weak Dirichlet jump processes (of �nite energy)
and F does not depend on time and has bounded derivative. They show thatF (X )
is again a special weak Dirichlet process. In [30] the underlying process has �nite
energy, which requires a control of the expectation of the approximating sequences
of the quadratic variation. On the other hand, our techniques do not require that
type of control. Moreover, the integrability condition (5.134) that we ask on F (t; X t )
in order to get the chain rule in Theorem 5.6.26 is automatically veri�ed under the
hypothesis on the �rst-order derivative considered in [30], see Remark 5.6.25. In
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some cases a chain rule may hold even whenF is only continuous if we know a priori
some information of (F (t; X t )). This is provided by Proposition 5.6.28 and does not
require any assumption on the c�adl�ag processX . This applies for instance to the
case whenX is a pure jump process, see Remark 5.6.30.

In the present chapter we also introduce a subclass of weak Dirichlet processes,
called particular , see De�nition 5.6.16. Those processes inherit some of the semi-
martingales features: as in the semimartingale case, the particular weak Dirichlet
processes admit an integral representation (see Proposition 5.6.19) and a (unique)
canonical decomposition holds whenjxj 1fj x j> 1g � � 2 A+

loc: Under that conditions,
those particular processes are indeed special weak Dirichlet processes, see Proposi-
tion 5.6.18 and 5.6.19.

The chapter is organized as follows. In Section 5.2 we introduce the notations
and we recall some basic results on the stochastic integration with respect to integer-
valued random measures associated to c�adl�ag processes. In Section 5.3 we give
some preliminary results to the development of the calculus via regularization with
jumps; additional comments and technical results on calculus via regularizations in
the discontinuous framework are reported in Section 5.4. Section 5.5 is devoted to
the proof of a C1;2 Itô formula for c�adl�ag processes. Finally, Section 5.6 concerns
the study of weak Dirichlet processes, and presents the expansions ofF (t; X t ) for X
weak Dirichlet, when F is of classC0;1.

5.2. Preliminaries and basic notations

In what follows, we are given a probability space (
 ; F; P), a positive horizon T
and a �ltration F = ( Ft )t � 0. Given a topological spaceE, in the sequelB(E) will
denote the Borel � -�eld associated with E . P (resp. ~P = P 
 B(R)) will designate
the predictable � -�eld on 
 � [0; T] (resp. on ~
 = 
 � [0; T] � R). Analogously,
we set O (resp. ~O = O 
 B(R)) the optional � -�eld on 
 � [0; T] (resp. on ~
).
The symbols Ducp and Lucp will denote the space of all adapted c�adl�ag and c�agl�ad
processes endowed with the u.c.p. (uniform convergence in probability) topology.
By convention, any c�adl�ag process de�ned on [0; T] is extended onR+ by continuity.

We will also indicate by A (resp A loc) the collection of all adapted processes with
integrable variation (resp. with locally integrable variation), and by A+ (resp A+

loc)
the collection of all adapted integrable increasing (resp. adapted locally integrable)
processes. The signi�cance of locally is the usual one which refers to localization by
stopping times, see e.g. (0.39) of Jacod's book [77].

We will indicate by C1;2 (resp. C0;1) the space of all functions

u : [0; T] � R ! R; (t; x ) 7! u(t; x )

that are continuous together their derivatives @t u, @xu, @xx u (resp. @xu). C1;2 is
equipped with the topology of uniform convergence on each compact ofu, @xu, @xx u,
@t u; C0;1 is equipped with the same topology on each compact ofu and @xu.
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5.2.1. C�adl�ag processes and the associated random measures. The concept
of random measure allows a very tractable description of the jumps of a c�adl�ag pro-
cess. We recall here the main de�nitions and some properties that we will extensively
use in the following; for a more detailed discussion on this topic and the unexplained
notations see Appendices A and B.

For any X = ( X t ) adapted real valued c�adl�ag process on [0; T], we call jump
measure ofX the integer-valued random measure onR+ � R de�ned as

� X (!; dt dx ) :=
X

s2 ]0; T ]

1f � X s (! )6=0 g � (s; � X s (! )) (dt dx): (5.3)

Remark 5.2.1. The jump measure � X acts in the following way: for any positive
function W 2 ~O we have

X

s2 ]0; T ]

1f � X s 6=0 gWs(�; � X s) =
Z

]0;T ]� R
Ws(�; x) � X (�; ds dx):

In the sequel we will make often use of the following assumption on the processes
X : X

s2 ]0; T ]

j� X sj2 < 1 ; a.s. (5.4)

Adapting the de�nition of locally bounded process stated before Theorem 15,
Chapter IV, in [ 110], to the processes indexed by [0; T], we can state the following.

De�nition 5.2.2. A process (X t )t2 [0; T ] is locally bounded if there exists a se-
quence of stopping times (� n )n� 1 in [0; T] [ f + 1g increasing to 1 a.s., such that
(X � n ^ t 1f � n > 0g)t2 [0; T ] is bounded.

Remark 5.2.3.

(i) Any c�agl�ad process is locally bounded, see the lines above Theorem 15,
Chapter IV, in [ 110].

(ii) Let X be a c�adl�ag process satisfying condition (5.4).
Set (Yt )t2 [0; T ] = ( X t � ;

P
s<t j� X sj2)t2 [0; T ]. The processY is c�agl�ad, there-

fore locally bounded by item (i). In particular, we can �x a sequence of
stopping times (� n )n� 1 in [0; T] [ f + 1g increasing to 1 a.s., such that
(Y� n ^ t 1f � n > 0g)t2 [0; T ] is bounded.

Proposition 5.2.4. Let p = 1 ; 2. Let X be a real-valued c�adl�ag process on[0; T]
satisfying X

s2 ]0; T ]

j� X sjp < 1 ; a.s.

Then Z

]0; t ]� R
jxjp 1fj x j� 1g � X (ds dx) 2 A+

loc: (5.5)

Proof. Set Yt =
P

s<t j� X sjp. The processY is c�agl�ad, therefore locally bounded;
in particular, we can �x a sequence of stopping times (� n )n� 1 in [0; T] [ f + 1g
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increasing to 1 a.s., such that (Y� n ^ t 1f � n > 0g)t2 [0; T ] is bounded. Fix � = � n , and let
M such that supt2 [0; T ] jYt^ � 1f �> 0gj � M . We have

E

" Z

]0; t ^ � ]� R
jxjp 1fj x j� 1g � X (ds; dx)

#

= E

"
X

0<s<t ^ �

j� X sjp 1fj � X s j� 1g 1f �> 0g + j� X t^ � jp 1fj � X t ^ � j� 1g 1f �> 0g

#

� M + 1 ;

and thus (5.5) holds. �

Corollary 5.2.5. Let X be a c�adl�ag process satisfying condition (5.4). Then

x 1fj x j� 1g 2 G2
loc(� X ): (5.6)

In particular the stochastic integral
Z

]0; t ]� R
x 1fj x j� 1g (� X � � X )(ds dx) (5.7)

is well-de�ned and de�nes a purely discontinuous square integrable local martingale.

Proof. Property (5.6) is a direct application of Proposition 5.2.4 with p = 2, and
Lemma B.21-2. The second part of the result follows by (5.6) and Theorem B.22. �

Remark 5.2.6. Let ' : 
 � [0; T] � R ! R be a ~P-measurable function andA a
~P-measurable subset of 
 � [0; T] � R, such that

j' j 1A � � X 2 A+
loc; (5.8)

j' j2 1A c � � X 2 A+
loc: (5.9)

Then the process' belongs toG1
loc(� X ).

As a matter of fact, (5.8) and Proposition B.18 give that ' 1A belongs toG1
loc(� X ).

On the other hand, (5.9), together with Lemma B.21-2), implies that ' 1A c belongs
to G2

loc(� X ) � G1
loc(� X ).

Proposition 5.2.7. Let X be a c�adl�ag process on[0; T] satisfying condition (5.4),
and let F be a function of classC1;2. Then

j(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )j 1fj x j� 1g � � X 2 A+
loc:

Proof. Let ( � n )n� 1 be the sequence of stopping times introduced in Remark 5.2.3-
(ii) for the process Yt = ( X t � ;

P
s<t j� X sj2). Fix � = � n , and let M such that

supt2 [0; T ] jYt^ � 1f �> 0gj � M . So, by an obvious Taylor expansion, taking into account
Remark 5.2.1, we have

E

" Z

]0; t ^ � ]� R
j(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )j 1fj x j� 1g � X (ds; dx)

#

= E

2

4
X

0<s � t^ �

[F (s; X s) � F (s; X s� ) � @xF (s; X s� ) � X s]

3

5



5.2. Preliminaries and basic notations 165

= E

2

4
X

0<s � t^ �

(� X s)2 1f �> 0g

Z 1

0
[@2

xx F (s; X s� + a � X s) � @2
xx F (s; X s� )] da

3

5

� 2 sup
y2 [� M; M ]

t 2 [0 ; T ]

j@2
xx F j(t; y)�

� E

"
X

0<s<t ^ �

j� X sj2 1fj � X s j� 1g 1f �> 0g + j� X � j2 1fj � X � j� 1g 1f �> 0g

#

� 2 sup
y2 [� M; M ]

t 2 [0 ; T ]

j@2
xx F j(t; y) � (M + 1) ;

and this concludes the proof. �

Proposition 5.2.8. Let X be a c�adl�ag process on[0; T] satisfying condition (5.4),
and let F be a function of classC0;1. Then

j(F (s; X s� + x) � F (s; X s� )j2 1fj x j� 1g � � X 2 A+
loc; (5.10)

jx @xF (s; X s� )j2 1fj x j� 1g � � X 2 A+
loc: (5.11)

Proof. Proceeding as in the proof of Proposition 5.2.7, we consider the sequence
of stopping times (� n )n� 1 de�ned in Remark 5.2.3-(ii) for the process Yt = ( X t � ;P

s<t j� X sj2). Fix � = � n , and let M such that supt2 [0; T ] jYt^ � 1f �> 0gj � M . For
any t 2 [0; T], we have

E

" Z

[0; t ^ � ]� R
j(F (s; X s� + x) � F (s; X s� )j2 1fj x j� 1g � X (ds; dx)

#

� sup
y2 [� M; M ]

t 2 [0 ; T ]

j@xF j2(t; y )�

� E

"
X

s<t ^ �

j� X sj2 1fj � X s j� 1g1f �> 0g + j� X � j2 1fj � X � j� 1g 1f �> 0g

#

� sup
y2 [� M;M ]

t 2 [0 ; T ]

j@xF j2(t; y ) � (M + 1) ;

and

E

" Z

[0; t ^ � ]� R
jx @xF (s; X s� )j2 1fj x j� 1g � X (ds; dx)

#

= E

" Z

[0; t ^ � ]� R
jxj2 j@xF j2(t; X s� ) 1fj x j� 1g � X (ds; dx)

#

� sup
y2 [� M; M ]

t 2 [0 ; T ]

j@xF j2(t; y )�

� E

"
X

s<t ^ �

j� X sj2 1fj � X s j� 1g 1f �> 0g + j� X � j2 1fj � X � j� 1g 1f �> 0g

#
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� sup
y2 [� M; M ]

t 2 [0 ; T ]

j@xF j2(t; y ) � (M + 1) :

�

5.3. Calculus via regularization with jumps

Let f and g be two functions de�ned on R, and set

I � ucp("; t; f; dg ) =
Z

]0; t ]
f (s)

g((s + ") ^ t) � g(s)
"

ds; (5.12)

[f; g ]ucp
" (t) =

Z

]0; t ]

(f ((s + ") ^ t) � f (s))( g((s + ") ^ t) � g(s))
"

ds: (5.13)

Notice that the function I � ucp("; t; f; dg ) is c�adl�ag and admits the decomposition

I � ucp("; t; f; dg ) =
Z (t � " )+

0
f (s)

g(s + ") � g(s)
"

ds +
Z t

(t � " )+

f (s)
g(t) � g(s)

"
ds:

(5.14)

De�nition 5.3.1. Let X be a c�adl�ag process and Y be a process belonging to
L 1([0; T]) a.s. Suppose that there exists a process (I (t)) t2 [0; T ] such that
(I � ucp("; t; Y; dX )) t2 [0; T ] converges u.c.p. to (I (t)) t2 [0; T ], namely

lim
" ! 0

P
�

sup
0� s� t

jI � ucp("; t; Y; dX ) � I (t)j > �
�

= 0 for every � > 0:

Then we will set
R

]0; t ] Ys d� X s := I (t). That process will be called the forward
integral of Y with respect to X .

Remark 5.3.2. In [119] a very similar notion of forward integral is considered:

I � RV ("; t; f; dg ) =
Z

R
f t ](s)

gt ](s + ") � gt ](s)

"
ds;

with

f t ] =

8
<

:

f (0+ ) if x � 0;
f (x) if 0 < x � t;
f (t+ ) if x > t:

The u.c.p. limit of I � RV ("; t; f; dg ), when it exists, coincides with that of the process
I � ucp("; t; f; dg ). As a matter of fact, the processI � RV ("; t; f; dg ) is c�adl�ag and can
be rewritten as

I � RV ("; t; f; dg ) = I � ucp("; t; f; dg ) � f (0+ )
1
"

Z "

0
[g(s) � g(0+ )] ds: (5.15)

In particular

sup
t2 [0; T ]

[I � ucp("; t; f; dg ) � I � RV ("; t; f; dg )] = f (0+ )
1
"

Z "

0
[g(s) � g(0+ )] ds;
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and therefore

lim sup
" ! 0

sup
t2 [0; T ]

[I � RV ("; t; f; dg ) � I � ucp("; t; f; dg )] = 0 :

Proposition 5.3.3. Let A be a c�adl�ag predictable process andY be a process be-
longing to L 1([0; T]) a.s. Then the forward integral

Z

]0; �]
Ys d� As;

when it exists, is a predictable process.

Proof. SinceA is a c�adl�ag process,A(t) = A(t+), and it follows from decomposition
(5.14) that the processI � ucp("; t; f; dg ) is predictable. By de�nition, the u.c.p sto-
chastic integral, when it exists, is the u.c.p. limit of I � ucp("; t; f; dg ) and it de�nes in
particular a c�adl�ag process. Since the u.c.p. convergence preserves the predictability,
the claim follows. �

De�nition 5.3.4. Let X; Y be two c�adl�ag processes. Suppose the existence of a
process (�( t)) t � 0 such that [X; Y ]ucp

" (t) converges u.c.p. to (�( t)) t � 0, namely

lim
" ! 0

P
�

sup
0� s� t

j[X; Y ]ucp
" (t) � �( t)j > �

�
= 0 for every � > 0;

Then we will set [X; Y ]t := �( t). That process will be calledthe covariation between
X and Y . In that case we say that the covariation betweenX and Y exists, and we
symbolize it again by [X; Y ], if the sequence [X; Y ]ucp

" (t) converges u.c.p. to some
process (�( t)) t � 0, namely

lim
" ! 0

P
�

sup
0� s� t

j[X; Y ]ucp
" (t) � �( t)j > �

�
= 0 for every � > 0;

and in this case [X; Y ]t := �( t).

De�nition 5.3.5. We say that a pair of c�adl�ag processes (X; Y ) admits all its mutual
brackets if [X; X ], [X; Y ], [Y; Y] exist.

De�nition 5.3.6. We say that a c�adl�ag process X is �nite quadratic variation if
[X; X ] exists.

Remark 5.3.7. Let X , Y be two c�adl�ag processes.

(1) By de�nition [ X; Y ] is necessarily a c�adl�ag process.

(2) [X; X ] is an increasing process.

(3) [X; X ]c denotes the continuous part of [X; X ].

Forward integrals and covariations generalize Itô integrals and the classical square
brackets of semimartingales.

Proposition 5.3.8. Let X; Y be two c�adl�ag semimartingales, M 1; M 2 two c�adl�ag
local martingales, H; K two c�adl�ag adapted process. Then

(i) [ X; Y ] exists and it is the usual bracket.
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(ii)
R

]0; �] H d � X is the usual stochastic integral
R

]0; �] Hs� dX s.

(iii)
� R�

0 Hs� dM 1
s ;

R�
0 K s� dM 2

s

�
is the usual bracket and equals the processR�

0 Hs� K s� d[M 1; M 2]s.

Proof. Items (i) and (ii) are consequences of Proposition 1.1 in [119] and Remark
5.3.2. Item (iii) follows from (i) and the corresponding properties for classical brack-
ets of local martingales, see Theorem 29, Chapter 2 of [110]. �

Lemma 5.3.9. Suppose thatX is a c�adl�ag, �nite quadratic variation process. Then

(i) 8s 2 [0; T], �[ X; X ]s = (� X s)2;

(ii) [ X; X ]s = [ X; X ]cs +
P

t � s(� X t )2 8s 2 [0; T]; a.s.
In particular

P
s� T j� X sj2 < 1 a.s.

Remark 5.3.10. Condition (5.4) holds for instance in the case of processesX of
�nite quadratic variation.

Proof. (i) Since X has �nite quadratic variation, [ X; X ]ucp
" converges u.c.p. to

[X; X ]. This implies the existence of a sequence ("n ) such that [X; X ]ucp
" n converges

uniformly a.s. to [X; X ]. We �x a realization ! outside a suitable null set, which
will be omitted in the sequel. Let  > 0. There is "0 such that

"n < " 0 ) j [X; X ]s � [X; X ]ucp
" n

(s)j � ; 8s 2 [0; T]: (5.16)

We �x s 2]0; T]. Let "n < " 0. For every � 2 [0; s[, we have

j[X; X ]s � [X; X ]ucp
" n

(s � � )j � : (5.17)

We need to show that the quantity

j[X; X ]s � [X; X ]s� � � (� X s)2j (5.18)

goes to zero, when� ! 0. For " := "n < " 0, (5.18) this is smaller or equal than

2 + j[X; X ]ucp
" (s) � [X; X ]ucp

" (s � � ) � (� X s)2j

= 2  +

�
�
�
�
1
"

Z s

s� " � �
(X (t+ " )^ s � X t )2 dt �

1
"

Z s� �

s� " � �
(X s� � � X t )2 dt � (� X s)2

�
�
�
�

� 2 +
1
"

Z s� �

s� " � �
(X s� � � X t )2 dt + jI ("; �; s )j; 8� 2 [0; s[;

where

I ("; �; s ) =
1
"

Z s� "

s� " � �
(X t+ " � X t )2 dt +

1
"

Z s

s� "
[(X s � X t )2 � (� X s)2] dt:

At this point, we have, , 8s 2 [0; T],

j[X; X ]s � [X; X ]s� � � (� X s)2j � 2 +
1
"

Z s� �

s� " � �
(X s� � � X t )2 dt + jI ("; �; s )j:

We take the lim sup� ! 0 on both sides to get, sinceX is left continuous at s,

j�[ X; X ]s � (� X s)2j � 2 +
1
"

Z s

s� "
(X s� � X t )2 dt +

1
"

Z s

s� "
j(X s � X t )2 � (� X s)2j dt;
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for " := "n < " 0. We take the limit when n ! 1 and we get

j�[ X; X ]s � (� X s)2j � 2;

and this concludes the proof of (i).

(ii) We still work �xing a priori a realization ! . Set Ys = [ X; X ]s, s 2 [0; T].
SinceY is an increasing c�adl�ag process, it can be decomposed as

Ys = Y c
s +

X

t � s

� Yt ; 8s 2 [0; T]; a.s.

and the result follows from point (i). In particular, setting s = T, we get

a.s. 1 > [X; X ]T = [ X; X ]cT +
X

s� T

(� X s)2 �
X

s� T

(� X s)2:

�

We now state and prove some fundamental preliminary results, that we will
deeply use in the sequel.

Lemma 5.3.11. Let Yt be a c�adl�ag function with values in Rn . Let � : Rn � Rn ! R
be an equicontinuous function on each compact, such that� (y; y) = 0 for every
y 2 Rn . Let 0 � t1 � t2 � ::: � tN � T . We have

NX

i =1

1
"

Z t i

t i � "
1]0; s](t) � (Y(t+ " )^ s; Yt ) dt " ! 0�!

NX

i =1

1]0; s](t i ) � (Yt i ; Yt i � ); (5.19)

uniformly in s 2 [0; T].

Proof. Without restriction of generality, we consider the case n = 1. Let us �x
 > 0. Taking into account that � is equicontinuous on compacts, by de�nition of
left and right limits, there exists � > 0 such that, for every i 2 f 1; :::; N g,

` < t i ; u > t i ; j` � t i j � �; ju � t i j � � )j � (Yu ; Y` ) � � (Yt i ; Yt i � )j < ; (5.20)

`2 < ` 1 < t i ; j`1 � t i j � �; j`2 � t i j � � )j � (Y`1 ; Y`2 )j

= j� (Y`1 ; Y`2 ) � � (Yt i � ; Yt i � )j < : (5.21)

Since the sum in (5.19) is �nite, it is enough to show the uniform convergence ins
of the integrals on ]t i � "; t i ], for a �xed t i 2 [0; T], namely that

I ("; s) :=
1
"

Z t i

t i � "
1]0; s](t) � (Y(t+ " )^ s; Yt ) dt � 1]0; s](t i ) � (Yt i ; Yt i � ) (5.22)

converges to zero uniformly ins, when " goes to zero. Let thus �x t i 2 [0; T], and
choose" < � . We distinguish the cases (i), (ii), (iii), (iv) concerning the position of
s with respect to t i .

(i) s < t i � " . (5.22) vanishes.

(ii) s 2 [t i � "; t i [. By (5.21) we get

jI ("; s)j �
1
"

Z t i

t i � "
j� (Ys; Yt )j dt � :
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(iii) s 2 [t i ; t i + "[. By (5.20) we get

jI ("; s)j �
1
"

Z t i

t i � "
j� (Y(t+ " )^ s; Yt ) � � (Yt i ; Yt i � )j dt � :

(iv) s � t i + ". By (5.20) we get

jI ("; s)j �
1
"

Z t i

t i � "
j� (Yt+ " ; Yt ) � � (Yt i ; Yt i � )j dt � :

Collecting all the cases above, we see that

lim sup
" ! 0

sup
s2 [0; T ]

jI ("; s)j � ;

and letting  go to zero we get the uniform convergence. �

Lemma 5.3.12. Let X be a c�adl�ag (c�agl�ad) real process. Let  > 0, t0; t1 2 R and
I = [ t0; t1] be a subinterval of[0; T] such that

j� X t j2 �  2; 8t 2 I: (5.23)

Then there is "0 > 0 such that

sup
a; t2 I

j a � t j� " 0

jX a � X t j � 3:

Proof. We only treat the c�adl�ag case, the c�agl�ad one is a consequence of an obvious
time reversal argument. Also in this proof a realization ! will be �xed, but omitted.
According to Lemma 1, Chapter 3, in [16], applied to [t0; t1] replacing [0; 1], there
exist points

t0 = s0 < s 1 < ::: < s l � 1 < s l = t1

such that for every j 2 f 1; :::; lg

sup
d; u 2 [sj � 1 ; sj [

jX d � X u j < : (5.24)

SinceX is c�adl�ag, we can choose"0 such that, 8j 2 f 0; :::; l � 1g,

jd � sj j � "0 ) j X d � X sj � j � ; (5.25)

ju � sj j � "0 ) j X u � X sj j � : (5.26)

Let t 2 [sj � 1; sj [ for somej and a such that jt � aj � " for " < " 0. Without restriction
of generality we can taket < a . There are two cases.

(i) a; t 2 [sj � 1; sj [. In this case, (5.24) gives

jX a � X t j < :

(ii) sj � 1 � t < s j � a. Then,

jX a � X t j � j X a � X sj j + jX sj � X sj � j + jX sj � � X t j � 3;

where the �rst absolute value is bounded by (5.26), the second by (5.23)
and the third by (5.25).

�
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Remark 5.3.13. Let I = [ t0; t1] � [0; T], let " > 0. Let t 2 ]t0; t1 � " ] and s > t .
We will apply Lemma 5.3.12 to the couple (a; t), where a = ( t + ") ^ s. Indeed a 2 I
becausea � t + " � t1:

Proposition 5.3.14. Let (Z t ) be a c�adl�ag process,(Vt ) be a bounded variation pro-
cess. Then[Z; V ]s exists and equals

X

t � s

� Z t � Vt ; 8s 2 [0; T]:

In particular, V is a �nite quadratic variation process.

Proof. We need to prove the u.c.p convergence to zero of

1
"

Z

]0; s]
(Z(t+ " )^ s � Z t )(V(t+ " )^ s � Vt ) dt �

X

t � s

� Z t � Vt : (5.27)

As usual the realization ! 2 
 will be �xed, but often omitted. Let ( t i ) be the
enumeration of all the jumps of Z (! ) in [0; T]. We have

lim
i !1

j� Z t i (! )j = 0 :

Indeed, if it were not the case, it would existsa > 0 and a subsequence (t i l ) of (t i )
such that j� Z t i l

j � a. This is not possible since a c�adl�ag function admits at most
a �nite number of jumps exceeding any a > 0, see considerations below Lemma 1,
Chapter 2 of [16].

At this point, let  > 0 and N = N ( ) such that

n � N; j� Z tn j � : (5.28)

We introduce

A("; N ) =
N[

i =1

]t i � "; t i ]; B ("; N ) =
N[

i =1

]t i � 1; t i � " ]; (5.29)

and we decompose (5.27) into

I A ("; N; s ) + I B 1("; N; s ) + I B 2("; N; s ) (5.30)

where

I A ("; N; s ) =
1
"

Z

]0; s]\ A (";N )
(Z(t+ " )^ s � Z t )(V(t+ " )^ s � Vt ) dt

�
NX

i =1

1]0; s[(t i ) � Z t i � Vt i ;

I B 1("; N; s ) =
1
"

Z

]0; s]\ B (";N )
(Z(t+ " )^ s � Z t )(( V(t+ " )^ s � Vt ) dt;

I B 2(N; s) = �
1X

i = N +1

1]0; s[(t i ) � Z t i � Vt i :
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Applying Lemma 5.3.11 to Y = ( Y 1; Y 2) = ( Z; V ) and � (y1; y2) = ( y1
1 � y1

2)(y2
1 � y2

2)
we get

I A ("; N; s ) !
" ! 0

0;

uniformly in s. On the other hand, for t 2 ]t i � 1; t i � " [ and s > t , by Remark 5.3.13
we know that (t + " ) ^ s 2 [t i � 1; t i ]. Therefore Lemma 5.3.12 withX = Z , applied
successively to the intervalsI = [ t i � 1; t i ] implies that

jI B 1("; N; s )j =
1
"

Z

]0; s]\ B (";N )
jZ(t+ " )^ s � Z t jjV(t+ " )^ s � Vt j dt

� 3 
1
"

Z

]0; s]\ B (";N )
jV(t+ " )^ s � Vt j dt

� 3 
Z

]0; s]
jV(t+ " )^ s � Vt j

dt
"

= 3 
Z

]0; s]

dt
"

Z

]t; (t+ " )^ s]
dkVkr

= 3 
Z

]0; s]
dkVkr

Z

[( r � " )+ ; r [

dt
"

� 3  jjV jjT ;

where r 7! k Vkr denotes the total variation function of V . Finally, concerning
I B 2(N; s), by (5.28) we have

jI B 2(N; s)j � 
1X

i = N +1

1]0; s[(t i ) j� Vt i j �  jjV jjT :

Therefore, collecting the previous estimations we get

lim sup
" ! 0

sup
s2 [0; T ]

jI A ("; N; s ) + I B 1("; N; s ) + I B 2(N; s)j � 4  jjV jjT ;

and we conclude by the arbitrariness of > 0. �

Finally we give a generalization of Dini type lemma in the c�adl�ag case.

Lemma 5.3.15. Let (Gn ; n 2 N) be a sequence of continuous increasing functions,
let G (resp. F ) from [0; T] to R be a c�adl�ag (resp. continuous) function. We set
Fn = Gn + G and suppose thatFn ! F pointwise. Then

lim sup
n!1

sup
s2 [0; T ]

jFn (s) � F (s)j � 2 sup
s2 [0; T ]

jG(s)j:

Proof. Let 0 = t0 < t 1 < ::: < t m = T such that t i = i
m ; i = 0 ; :::; m. Let  > 0.

Let us �x m 2 N such that �
�
F; 1

m

�
�  , where � (F; �) denotes the modulus of

continuity of F . If s 2 [t i ; t i +1 ], 0 � i � m � 1, we have

Fn (s) � F (s) � Fn (t i +1 ) � F (s) + G(s) � G(t i +1 ): (5.31)

Now

Fn (t i +1 ) � F (s) � Fn (t i +1 ) � F (t i +1 ) + F (t i +1 ) � F (s)
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� �
�

F;
1
m

�
+ Fn (t i +1 ) � F (t i +1 ): (5.32)

From (5.31) and (5.32) it follows

Fn (s) � F (s) � Fn (t i +1 ) � F (t i +1 ) + G(s) � G(t i +1 ) + �
�

F;
1
m

�

� 2jjGjj1 + �
�

F;
1
m

�
+ jFn (t i +1 ) � F (t i +1 )j; (5.33)

where jjGjj1 = sups2 [0; T ] jG(s)j. Similarly,

F (s) � Fn (s) � � 2jjGjj1 � �
�

F;
1
m

�
� j Fn (t i ) � F (t i )j: (5.34)

So, collecting (5.33) and (5.34) we have8s 2 [t i ; t i +1 ]

jFn (s) � F (s)j � 2jjGjj1 + �
�

F;
1
m

�
+ jFn (t i ) � F (t i )j + jFn (t i +1 ) � F (t i +1 )j:

Consequently,

sup
s2 [0; T ]

jFn (s) � F (s)j � 2jjGjj1 + �
�

F;
1
m

�
+

mX

i =1

jFn (t i ) � F (t i )j: (5.35)

Recalling that Fn ! F pointwise, taking the lim sup in (5.35) we get

lim sup
n!1

sup
s2 [0; T ]

jFn (s) � F (s)j � 2jjGjj1 + �
�

F;
1
m

�
:

SinceF is uniformly continuous and m is arbitrarily big, the result follows. �

5.4. Additional results on calculus via regularization

For every functions f; g de�ned on R, let now set

~I � ("; t; f; dg ) =
Z

]0; t ]
f (s)

g(s + ") � g(s)
"

ds; (5.36)

C" (f; g )( t) =
1
"

Z

]0; t ]
(f (s + ") � f (s))( g(s + ") � g(s)) ds: (5.37)

De�nition 5.4.1. Assume that X; Y are two c�adl�ag processes. We say that the
forward integral of Y with respect to X exists in the pathwise sense, if there exists
some process (I (t); t � 0) such that, for all subsequences ("n ), there is a subsequence
("nk ) and a null set N with

8! =2 N; lim
k!1

j ~I � ("nk ; t; Y; dX )( ! ) � I (t)( ! )j = 0 8t � 0; a.s.

De�nition 5.4.2. Let X; Y be two c�adl�ag processes. the covariation betweenX and
Y (the quadratic variation of X ) exists in the pathwise sense, if there exists a c�adl�ag
process (�( t); t � 0) such that, for all subsequences ("n ) there is a subsequence ("nk )
and a null set N :

8! =2 N; lim
k!1

jC" n k
(X; Y )( t)( ! ) � �( t)( ! )j = 0 8t � 0; a.s.
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Proposition 5.4.3. Let X; Y be two c�adl�ag processes. Then

I � ucp("; t; Y; dX ) = ~I � ("; t; Y; dX ) + R1("; t ) (5.38)

[X; Y ]ucp
" (t) = C" (X; Y )( t) + R2("; t ); (5.39)

where
Ri ("; t )( ! ) �!

" ! 0
0 i = 1 ; 2; 8t 2 [0; T]; 8! 2 
 : (5.40)

Moreover, if X is continuous, then the convergence in(5.40) holds u.c.p.

Proof. We �x t 2 [0; T]. Let  > 0. The de�nition of right continuity in t insures
that there exists � > 0 small enough such that

jX (t) � X (a)j �  if a � t < �; a > t;

jY (t) � Y (a)j �  if a � t < �; a > t:

We start proving (5.38). From decomposition (5.14) and the de�nition of ~I � ("; t; Y; dX )
we get

I � ucp("; t; Y; dX ) � ~I � ("; t; Y; dX ) =
1
"

Z t

(t � " )+

Y(s) [X (t) � X (s)] ds

�
1
"

Z t

(t � " )+

Y(s) [X (s + ") � X (s)] ds

=
1
"

Z t

(t � " )+

Y(s) [X (t) � X (s + ")] ds =: R1("; t ):

Choosing" < � we get
jR1("; t )j �  jjY jj1 ;

and since is arbitrary, we conclude that R1("; t ) ! 0 as " goes to zero, for every
t 2 [0; T].

It remains to show (5.39). To this end we evaluate

[X; Y ]ucp
" (t) � C" (X; Y )( t) =

1
"

Z t

(t � " )+

[X (t) � X (s)] [Y (t) � Y (s)] ds

�
1
"

Z t

(t � " )+

[X (s + ") � X (s)] [Y (s + ") � Y (s)] ds

=: R2("; t ):

We have

R2("; t ) =
1
"

Z t

(t � " )+

[X (t) � X (s)] [Y (t) � Y (s)] ds

�
1
"

Z t

(t � " )+

[X (s + ") � X (s)] [Y (t) � Y (s)] ds

+
1
"

Z t

(t � " )+

[X (s + ") � X (s)] [Y (t) � Y (s)] ds

�
1
"

Z t

(t � " )+

[X (s + ") � X (s)] [Y (s + ") � Y (s)] ds
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=
1
"

Z t

(t � " )+

[X (t) � X (s + ")] [Y (t) � Y (s)] ds

+
1
"

Z t

(t � " )+

[X (s + ") � X (s)] [Y (t) � Y (s + ")] ds:

Choosing" < � , the absolute value of previous expression is smaller than

2 (jjY jj1 + jjX jj1 ):

Since is arbitrary, R2("; t ) ! 0 as" goes to zero, for everyt 2 [0; T].
Suppose now thatX is continuous. The expression ofR2("; t ) can be uniformly (in
t) bounded by 2� (X; " ) kYk1 , where � (X; �) denotes the modulus of continuity of X ;
on the other hand R1("; t ) � 2� (X; " ) kYk1 ; 8t 2 [0; T]. This concludes the proof of
Proposition 5.4.3. �

Corollary 5.4.4. Let X; Y be two c�adl�ag processes.

1) If the stochastic integral of Y with respect to X exists, then it exists in the
pathwise sense. In particular, there is a null setN and, for any sequence
("n ) # 0, a subsequence("nk ) such that

~I � ("nk ; t; Y; dX )( ! ) �!
k!1

 Z

]0; t ]
Ys d� X s

!

(! ) 8t 2 [0; T]; 8! =2 N: (5.41)

2) If the covariation between X and Y exists, then it exists in the pathwise
sense. In particular, there is a null setN and, for any sequence("n ) # 0, a
subsequence("nk ) such that

C" n k
(X; Y )( t)( ! ) �!

k!1
[X; Y ]t (! ) 8t 2 [0; T]; 8! =2 N: (5.42)

Proof. The result is a direct application of Proposition 5.4.3. �

Lemma 5.4.5. Let g : [0; T] ! R be a c�agl�ad process, X be a c�adl�ag process such
that the quadratic variation of X exists in the pathwise sense, see De�nition 5.4.2.
Setting (improperly) [X; X ] = � , we have

Z s

0
gt (X (t+ " )^ s � X t )2 dt

"
" ! 0�!

Z s

0
gt d[X; X ]t u.c.p. (5.43)

Proof. We have to prove that

sup
s2 [0; T ]

�
�
�
�

Z s

0
gt (X (t+ " )^ s � X t )2 dt

"
�

Z s

0
gt d[X; X ]t

�
�
�
�

P�! 0 as" goes to zero: (5.44)

Let "n be a sequence converging to zero. Since [X; X ] exists in the pathwise sense,
there is a subsequence"nk , that we still symbolize by "n , such that

C" n (X; X )( t) n!1�! [X; X ]t 8t 2 [0; T] a.s. (5.45)

Let N be a null set such that

C" n (X; X )( !; t ) n!1�! [X; X ]t (! ) 8t 2 [0; T]; 8! =2 N: (5.46)
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From here on we �x ! =2 N. We have to prove that

sup
s2 [0; T ]

�
�
�
�

Z s

0
gt (X (t+ " n )^ s � X t )2 dt

"n
�

Z s

0
gt d[X; X ]t

�
�
�
�

n!1�! 0: (5.47)

We will do it in two steps.

Step 1. We consider �rst the case of a c�agl�ad process (gt ) with a �nite number
of jumps.

Let us �x  > 0, " > 0. We enumerate by (t i ) i � 0 the set of jumps of X (! ) on
[0; T], union f Tg. Without restriction of generality, we will assume that the jumps
of (gt ) are included in f t i gi � 0. Let N = N (! ) such that

1X

i = N +1

j� X t i j
2 �  2;

1X

i = N +1

j� gt i j = 0 : (5.48)

We de�ne

A("; N ) =
N[

i =1

]t i � "; t i ]

B ("; N ) = [0 ; T] n A("; N ):

The term inside the supremum in (5.44) can be written as

1
"

Z

]0; s]
gt (X (t+ " )^ s � X t )2 dt �

Z

]0; s]
gt d[X; X ]t = J1(s; ") + J2(s; ") + J3(s; ");

where

J1("; N; s ) =
1
"

Z

]0; s]\ A (";N )
gt (X (t+ " )^ s � X t )2 dt �

NX

i =1

1]0; s](t i ) (� X t i )
2 gt i ;

J2("; N; s ) =
1
"

Z

]0; s]\ B (";N )
gt (X t+ " � X t )2 dt

�
Z

]0; s]
gt d[X; X ]ct �

1X

i = N +1

1]0; s](t i ) (� X t i )
2 gt i ;

J3("; N; s ) =
1
"

Z

]0; s]\ B (";N )
gt

�
(X (t+ " )^ s � X t )2 � (X t+ " � X t )2�

dt:

Applying Lemma 5.3.11 to J1("; N; s ), with Y = ( Y 1; Y 2) = ( t; X ) and � (y1; y2) =
gy1

2
(y2

1 � y2
2)2, we get

lim
" ! 0

sup
s2 [0; T ]

jJ1("; N; s )j = 0 : (5.49)

Concerning J3("; N; s ), we have

jJ3("; N; s )j

=

�
�
�
�

Z s

0
gt 1B (";N ) (t) (X t+ " � X t )2 dt

"
�

Z s

0
gt 1B (";N ) (t) (X (t+ " )^ s � X t )2 dt

"

�
�
�
�

�
jjgjj1

"

� Z s

s� "
1B (";N ) (t) ( jX t+ " � X t j2 + jX s � X t j2)

dt
"

�
:
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We recall that

B ("; N ) =
N[

i =1

]t i � 1; t i � " ]:

From Remark 5.3.13 it follows that, for every t 2]t i � 1; t i � " ] and s > t , (t + " ) ^
s 2 [t i � 1; t i ]. Therefore Lemma 5.3.12 applied successively to the intervals [t i � 1; t i ]
implies that

lim sup
" ! 0

sup
s2 [0; T ]

jJ3("; N; s )j � 18 2 jjgjj1 : (5.50)

It remains to evaluate the uniform limit of J2("n ; N; s). We start by showing that,
for �xed s 2 [0; T], we have the pointwise convergence

J2("n ; N; s) =
1
"n

Z

]0; s]\ B (" n ;N )
gt (X t+ " n � X t )2 dt

�
Z

]0; s]
gt d[X; X ]ct �

1X

i = N +1

1]0; s](t i ) (� X t i )
2 gt i

!
n!1

0; 8s 2 [0; T]: (5.51)

We prove now that

dt
"n

1B (" n ;N ) (t) (X t+ " n � X t )2 ) d
� 1X

t i � t
i = N +1

(� X t i )
2 + [ X; X ]ct

�
: (5.52)

It will be enough to show that, 8s 2 [0; T],
Z s

0

dt
"n

1B (" n ;N ) (t) (X t+ " n � X t )2 ! n!1

1X

t i � s
i = N +1

(� X t i )
2 + [ X; X ]cs: (5.53)

By (5.45) and Lemma 5.3.9, we have
Z s

0
(X t+ " n � X t )2 dt

"n

n!1�! [X; X ]cs +
X

t i � s

(� X t i )
2 8s 2 [0; T]: (5.54)

On the other hand, we can show that
Z s

0

dt
"n

1A(" n ;N ) (t) (X t+ " n � X t )2 n!1�!
NX

t i � s
i =1

(� X t i )
2 8s 2 [0; T]: (5.55)

Indeed
�
�
�
Z s

0

dt
"n

1A(" n ;N ) (t) (X t+ " n � X t )2 �
NX

t i � s
i =1

(� X t i )
2
�
�
�

�
�
�
�
Z s

0

dt
"n

1A(" n ;N ) (t) (X (t+ " n )^ s � X t )2 �
NX

t i � s
i =1

(� X t i )
2
�
�
�

+
�
�
�
Z s

0

dt
"n

1A(" n ;N ) (t) (X (t+ " n )^ s � X t )2 �
Z s

0

dt
"n

1A(" n ;N ) (t) (X t+ " n � X t )2
�
�
�
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for all s 2 [0; T]. The �rst addend converges to zero by Lemma 5.3.11 applied
to Y = X and � (y) = ( y1 � y2)2. The second one converges to zero by similar
arguments as those we have used to prove Proposition 5.4.3. This establishes (5.55).
Subtracting (5.54) and (5.55), we get (5.53), and so (5.52).

We remark that the left-hand side of (5.52) are positive measures. Moreover, we
notice that t 7! gt (! ) is � -continuous, where� is the measure on the right-hand side
of (5.52). At this point, Portmanteau theorem and (5.52) insure that J2("n ; N; s)
converges to zero asn goes to in�nity, for every s 2 [0; T].

Finally, we control the convergence ofJ2("n ; N; s), uniformly in s. We make use
of Lemma 5.3.15. We set

Gn (s) =
1
"n

Z

]0; s]
1B (" n ;N ) (t) (X t+ " n � X t )2 gt dt;

F (s) =
Z

]0; s]
gt d[X; X ]ct ;

G(s) = �
1X

i = N +1

1]0; s](t i ) (� X t i )
2 gt i :

By (5.51), Fn := Gn + G converges pointwise toF as n goes to in�nity. Since Gn is
continuous and increasing,F is continuous and G is c�adl�ag, Lemma 5.3.15 implies
that

lim sup
n!1

sup
s2 [0; T ]

jJ2("n ; N; s)j � 2 2 jjgjj1 : (5.56)

Collecting (5.49), (5.50) and (5.56), it follows that

lim sup
n!1

sup
s2 [0; T ]

�
�
�
�

Z s

0
gt (X (t+ " n )^ s � X t )2 dt

"n
�

Z s

0
gt d[X; X ]t

�
�
�
� � 20 2 jjgjj1 :

Since is arbitrarily small, (5.47) follows.

Step 2. We treat now the case of a general c�agl�ad process (gt ).

Let us �x  > 0, " > 0. Without restriction of generality, we can write gt =
g;BV

t + g
t ; where g;BV

t is a process with a �nite number of jumps and g
t is such

that j� g
t j �  for every t 2 [0; T]. From Step 1, we have

I 1;n
s :=

Z s

0
g;BV

t (X (t+ " n )^ s � X t )2 dt
"n

�
Z s

0
g;BV

t d[X; X ]t (5.57)

converges to zero, uniformly ins, as n goes to in�nity. Concerning ( g
t ), by Lemma

5.3.12 we see that there exists �"0 = �"0( ) such that

sup
a; t2 I

j a � t j� �" 0

jg
a � g

t j � 3: (5.58)

At this point, we introduce the c�agl�ad process

gk;
t =

2k � 1X

i =0

g
i 2� k T 1]i 2� k T;(i +1)2 � k T ](t); (5.59)
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where k is such that 2� k < �"0. From (5.59), taking into account (5.58), we have

jg
t � gk;

t j = jg
t 1]i 2� k T;(i +1)2 � k T ](t) � g

i 2� k j � 3 8 t 2 [0; T]: (5.60)

We set

I 2;n
s :=

Z s

0
(g

t � gk;
t ) (X (t+ " n )^ s � X t )2 dt

"n
�

Z s

0
(g

t � gk;
t ) d[X; X ]t :

From (5.60)

sup
s2 [0; T ]

jI 2;n
s j � 3 �

with

� = sup
n2 N;s2 [0; T ]

�
�
�
�

Z s

0
(X (t+ " n )^ s � X t )2 dt

"n

�
�
�
� + [ X; X ]T : (5.61)

Notice that � is �nite, since the term inside the absolute value in (5.61) converges
uniformly by Step 1 with g = 1. On the other hand, by de�nition, ( gk;

t ) has a �nite
number of jumps, therefore from Step 1 we get that

I 3;n
s =

Z s

0
gk;

t (X (t+ " n )^ s � X t )2 dt
"n

�
Z s

0
gk;

t d[X; X ]t (5.62)

converges to zero, uniformly ins, as n goes to in�nity. Finally, collecting all the
terms, we have

lim sup
n!1

sup
s2 [0; T ]

�
�
�
�

Z s

0
gt (X (t+ " n )^ s � X t )2 dt

"n
�

Z s

0
gt d[X; X ]t

�
�
�
�

� lim sup
n!1

sup
s2 [0; T ]

jI 1;n
s j + lim sup

n!1
sup

s2 [0; T ]
jI 2;n

s j + lim sup
n!1

sup
s2 [0; T ]

jI 3;n
s j

� 3  � : (5.63)

and since is arbitrarily small, the result follows. �

Remark 5.4.6. Let X be a c�adl�ag processes. From Corollary 5.4.4 2) and Lemma
5.4.5 with g = 1, the following properties are equivalent:

� X is a �nite quadratic variation process;

� [X; X ] exists in the pathwise sense.

Proposition 5.4.7. Let X; Y be two c�adl�ag processes. The following properties are
equivalent.

(i) [ X; X ], [X; Y ], [Y; Y] exist in the pathwise sense;

(ii) For all ("n ) # 0 there is ("nk ) and a null set N such that, 8! =2 N,

dC" n k
(X; Y )( ! ) �!

k!1
d[X; Y ](! ) weakly,

dC" n k
(X; X )( ! ) �!

k!1
d[X; X ](! ) weakly,

dC" n k
(Y; Y)( ! ) �!

k!1
d[Y; Y](! ) weakly.
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(iii) For every c�agl�ad process (gt ),

lim
" ! 0

Z s

0
gt

(X (( t + " ) ^ s) � X (t)) ( Y (( t + " ) ^ s) � Y (t))
"

dt

=
Z s

0
gt d[X; Y ]t u.c.p.,

lim
" ! 0

Z s

0
gt

(X (( t + " ) ^ s) � X (t))2

"
dt

=
Z s

0
gt d[X; X ]t u.c.p.,

lim
" ! 0

Z s

0
gt

(Y (( t + " ) ^ s) � Y (t))2

"
dt

=
Z s

0
gt d[Y; Y]t u.c.p.

Proof. Without loss of generality, we �rst reduce to the caseg � 0. Using polarity
arguments of the type

[X + Y; X + Y ]t = [ X; X ]t + [ Y; Y]t + 2 [X; Y ]t
[X + Y; X + Y ]ucp

" (t) = [ X; X ]ucp
" (t) + [ Y; Y]ucp

" (t) + 2 [ X; Y ]ucp
" (t);

we can reduce to the caseX = Y.

(i) implies (iii) by Lemma 5.4.5.

(i) follows from (iii) choosing g = 1 and Corollary 5.4.4 2).

(i) implies (ii) by Portmanteau theorem. �

Remark 5.4.8. Let X; Y be two c�adl�ag processes. The equivalence (i)) (iii) in
Proposition 5.4.7 with g = 1 implies that the following are equivalent:

� (X; Y ) admits all its mutual brackets;

� [X; X ], [X; Y ], [Y; Y] exist in the pathwise sense.

Proposition 5.4.9. Let X be a �nite quadratic variation process. The following are
equivalent.

(i) X is a weak Dirichlet process;

(ii) X = M + A, [A; N ] = 0 in the pathwise sense for everyN continuous
local martingale.

Proof. (i) ) (ii) obviously. Assume now that (ii) holds. Taking into account
Corollary 5.4.4 2), it is enough to prove that [A; N ] exists. Now, we recall that,
wheneverM and N are local martingale, [M; N ] exists by Proposition 5.3.8. Let N
be a continuous local martingale. By Remark 5.4.6, [X; X ] and [N; N ] exist in the
pathwise sense. By additivity and item (ii), [X; N ] = [ M; N ] exists in the pathwise
sense. By Remark 5.4.8, (X; N ) admits all its mutual brackets. Finally, by bilinearity

[A; N ] = [ X; N ] � [M; N ] = 0 :
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�

5.5. Itô formula for C1;2 functions

5.5.1. The basic formulae. We start with the Itô formula for �nite quadratic
variation processes in the sense of calculus via regularizations.

Proposition 5.5.1. Let X be a �nite quadratic variation c�adl�ag process and F :
[0; T] � R ! R a function of class C1;2. Then we have

F (t; X t ) = F (0; X 0) +
Z t

0
@sF (s; X s) ds +

Z t

0
@xF (s; X s) d� X s

+
1
2

Z t

0
@2

xx F (s; X s� ) d[X; X ]cs

+
X

s� t

[F (s; X s) � F (s; X s� ) � @xF (s; X s� ) � X s]: (5.64)

Proof. SinceX is a �nite quadratic variation process, by Lemma 5.4.5, taking into
account De�nition 5.4.2 and Corollary 5.4.4-2), for a given c�adl�ag process (gt ) we
have Z s

0
gt (X (t+ " )^ s � X t )2 dt

"
" ! 0�!

Z s

0
gt � d[X; X ]t u.c.p.

Setting gt = 1 and gt = @2
xx F (t; X t )

2 , there exists a positive sequence"n such that

lim
n!1

Z s

0
(X (t+ " n )^ s � X t )2 dt

"n
= [ X; X ]s; (5.65)

lim
n!1

Z s

0

@2
xx F (t; X t )

2
(X (t+ " n )^ s � X t )2 dt

"n
=

Z

]0; s]

@2
xx F (t; X t � )

2
d[X; X ]t ; (5.66)

uniformly in s, a.s. Let then N be a null set such that (5.65), (5.66) hold for every
! =2 N.

In the sequel we �x  > 0, " > 0, and ! =2 N, and we enumerate the jumps of
X (! ) on [0; T] by (t i ) i � 0. Let N = N (! ) such that

1X

i = N +1

j� X t i (! )j2 �  2: (5.67)

From now on the dependence on! will be often neglected. The quantity

J0("; s) =
1
"

Z s

0
[F (( t + " ) ^ s; X (t+ " )^ s) � F (t; X t )] dt; s 2 [0; T] (5.68)

converges toF (s; X s) � F (0; X 0) uniformly in s. As a matter of fact, setting Yt =
(t; X t ), we have

J0("; s) =
1
"

Z

[0; s[
F (Y(t+ " )^ s) dt �

1
"

Z

[0; s[
F (Yt ) dt

=
1
"

Z

["; s + " [
F (Yt^ s) dt �

1
"

Z

[0; s[
F (Yt ) dt
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=
1
"

Z

[s; s+ " [
F (Yt^ s) dt �

1
"

Z

[0; " [
F (Yt ) dt

= F (Ys) �
1
"

Z

[0; " [
F (Yt ) dt

�!
" ! 0

F (Ys) � F (Y0) uniformly in s. (5.69)

As in (5.29), we de�ne

A("; N ) =
N[

i =1

]t i � "; t i ]; (5.70)

B ("; N ) =
N[

i =1

]t i � 1; t i � " ] = [0 ; T] n A("; N ): (5.71)

J0("; s) can be also rewritten as

J0("; s) = JA ("; N; s ) + JB ("; N; s ); (5.72)

where

JA ("; N; s ) =
1
"

Z s

0
[F (( t + " ) ^ s; X (t+ " )^ s) � F (t; X t )] 1A(";N ) (t) dt; (5.73)

JB ("; N; s ) =
1
"

Z s

0
[F (( t + " ) ^ s; X (t+ " )^ s) � F (t; X t )] 1B (";N ) (t) dt: (5.74)

Applying Lemma 5.3.11 with n = 2 to Y = ( Y 1; Y 2) = ( t; X ) and � (y1; y2) =
F (y1

1; y2
1) � F (y1

2; y2
2), we have

JA ("; N; s ) =
NX

i =1

1
"

Z t i

t i � "
[F (( t + " ) ^ s; X (t+ " )^ s) � F (t; X t )] dt

" ! 0�!
NX

i =1

1]0; s](t i ) [F (t i ; X t i ) � F (t i ; X t i � )] uniformly in s: (5.75)

Concerning JB ("; N; s ), it can be decomposed into the sum of the two terms

JB 1("; N; s ) =
1
"

Z s

0
[F (( t + " ) ^ s; X (t+ " )^ s) � F (t; X (t+ " )^ s)] 1B (";N ) (t) dt;

JB 2("; N; s ) =
1
"

Z s

0
[F (t; X (t+ " )^ s) � F (t; X t )] 1B (";N ) (t) dt:

Expanding in time we get

JB 1("; N; s ) = JB 10("; s) + JB 11("; N; s ) + JB 12("; N; s ) + JB 13("; N; s ); (5.76)

where

JB 10("; s) =
Z s

0
@t F (t; X t )

(t + " ) ^ s � t
"

dt;

JB 11("; N; s ) = �
NX

i =1

Z t i

t i � "
@t F (t; X t )

(t + " ) ^ s � t
"

dt;
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JB 12("; N; s ) =
Z s

0
R1("; t; s ) 1B (";N ) (t)

(t + " ) ^ s � t
"

dt;

JB 13("; N; s ) =
Z s

0
R2("; t; s ) 1B (";N ) (t)

(t + " ) ^ s � t
"

dt;

and

R1("; t; s ) =
Z 1

0
[@t F (t + a (( t + " ) ^ s � t); X (t+ " )^ s) � @t F (t; X (t+ " )^ s)] da;

(5.77)

R2("; t; s ) = @t F (t; X (t+ " )^ s) � @t F (t; X t ): (5.78)

A Taylor expansion in space up to second order gives

JB 2("; N; s ) = JB 20("; s) + JB 21("; s) + JB 22("; N; s ) + JB 23("; N; s ); (5.79)

where

JB 20("; s) =
1
"

Z s

0
@xF (t; X t ) (X (t+ " )^ s � X t ) dt; (5.80)

JB 21("; s) =
1
"

Z s

0

@2
xx F (t; X t )

2
(X (t+ " )^ s � X t )2 dt;

JB 22("; N; s ) = �
1
"

NX

i =1

Z t i

t i � "

h
@xF (t; X t ) (X (t+ " )^ s � X t )

+
@2

xx F (t; X t )
2

(X (t+ " )^ s � X t )2
i

dt;

JB 23("; N; s ) =
Z s

0
R3("; t; s ) 1B (";N ) (t)

(X (t+ " )^ s � X t )2

"
dt;

and

R3("; t; s ) =
Z 1

0
[@2

xx F (t; X t + a(X (t+ " )^ s � X t )) � @2
xx F (t; X t )] da: (5.81)

Let us consider the term JB 22("; N; s ). Applying Lemma 5.3.11 with n = 2 to
Y = ( Y 1; Y 2) = ( t; X ) and � (y1; y2) = @xF (y1

2; y2
2)(y2

1 � y2
2) + @2

xx F (y1
2; y2

2)(y2
1 � y2

2)2,
we get

lim
" ! 0

JB 22("; N; s )

= �
NX

i =1

1]0; s](t i )
�
@xF (t i ; X t i � ) (X t i � X t i � ) +

@2
xx F (t i ; X t i � )

2
(X t i � X t i � )2

�

(5.82)

uniformly in s. Moreover, the term JB 10("; N; s ) can be in

JB 10("; s) =
Z s

0
@t F (t; X t ) dt + JB 100("; s) + JB 1000("; s); (5.83)

with

JB 100("; s) =
Z s

s� "
@t F (t; X t )

s � t
"

dt; (5.84)
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JB 1000("; s) = �
Z s

s� "
@t F (t; X t ) dt: (5.85)

At this point we remark that identity (5.72) can be rewritten as

J0("; s) = JA ("; N; s ) +
Z s

0
@t F (t; X t ) dt

+ JB 100("; s) + JB 1000("; s) + JB 11("; N; s ) + JB 12("; N; s ) + JB 13("; N; s )

+ JB 20("; s) + JB 21("; s) + JB 22("; N; s ) + JB 23("; N; s ): (5.86)

Passing to the limit in (5.86) on both the left-hand and right-hand sides, uniformly
in s, as " goes to zero, taking into account convergences (5.69), (5.75), (5.82), we get

F (s; X s) � F (0; X 0)

=
Z s

0
@t F (t; X t ) dt +

NX

i =1

1]0; s](t i )
�
F (t i ; X t i ) � F (t i ; X t i � )

�

�
NX

i =1

1]0; s](t i )
�
@xF (t i ; X t i � ) (X t i � X t i � ) �

@2
xx F (t i ; X t i � )

2
(X t i � X t i � )2

�

+ lim
" ! 0

(JB 20("; N; s ) + JB 21("; s) + L("; N; s )) ; (5.87)

where the previous limit is intended uniformly in s, and we have set

L ("; N; s ) := JB 100("; s) + JB 1000("; s) + JB 11("; N; s ) + JB 12("; N; s )

+ JB 13("; N; s ) + JB 23("; N; s ):

We evaluate previous limit uniformly in s, for every ! =2 N. Without restriction of
generality it is enough to show the uniform convergence ins for the subsequence"n

introduced in (5.65)-(5.66), when n ! 1 .

According to (5.66), we get

lim
n!1

JB 21("n ; s) =
Z

]0; s]

@2
xx F (t; X t � )

2
d[X; X ]t ; (5.88)

uniformly in s.

We now should discussJB 12("n ; N; s), JB 13("n ; N; s) and JB 23("n ; N; s). In
the sequel, � (f; �) will denote the modulus of continuity of a function f , and by I l

the interval [ t l � 1; t l ], l � 0. Since (t+ " )^ s� t
" � 1 for every t; s, by Remark 5.3.13 we

get

1B (";N ) (t) jR1("; t; s )j � � (@t F; " ) ;

1B (";N ) (t) jR2("; t; s )j � �
�

@t F; sup
l

sup
t;a2 I l

j t � a j� "

jX a � X t j)
�

;

1B (";N ) (t) jR3("; t; s )j � �
�

@2
xx F; sup

l
sup

t;a2 I l
j t � a j� "

jX a � X t j)
�

:
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Considering the two last inequalities, Lemma 5.3.12 applied successively to the in-
tervals I l implies

1B (";N ) (t) jR2("; t; s )j � � (@t F; 3 );

1B (";N ) (t) jR3("; t; s )j � � (@2
xx F; 3 ):

Then, using again (t+ " n )^ s� t
" � 1, we get

sup
s2 [0; T ]

jJB 12("n ; N; s)j � � (@t F; " n ) � T;

sup
s2 [0; T ]

jJB 13("n ; N; s)j � � (@t F; 3 ) � T;

sup
s2 [0; T ]

jJB 23("n ; N; s)j � � (@2
xx F; 3 ) � sup

n2 N;s2 [0; T ]
[X; X ]ucp

" n
(s); (5.89)

where we remark that the supremum in the right-hand side of (5.89) is �nite taking
into account (5.65). Therefore

lim sup
n!1

sup
s2 [0; T ]

jJB 23("n ; N; s)j = � (@2
xx F; 3 ) � sup

n2 N;s2 [0; T ]
[X; X ]ucp

" n
(s); (5.90)

lim sup
n!1

sup
s2 [0; T ]

jJB 13("n ; N; s)j = � (@t F; 3 ) � T; (5.91)

while
lim

n!1
sup

s2 [0; T ]
jJB 12("n ; N; s)j = 0 : (5.92)

Let now consider the termsJB 100("n ; s), JB 1000("n ; s) and JB 11("n ; N; s).

sup
s2 [0; T ]

jJB 100("n ; s)j � sup
y 2 KX (! )� [0; T ]

j@t F (y)j � "n ;

sup
s2 [0; T ]

jJB 1000("n ; s)j � sup
y 2 KX (! )� [0; T ]

j@t F (y)j � "n ;

sup
s2 [0; T ]

jJB 11("n ; N; s)j � sup
y 2 KX (! )� [0; T ]

j@t F (y)j N � "n ;

where KX (! ) is the (compact) set f X t (! ); t 2 [0; T]g. So, it follows

lim
n!1

sup
s2 [0; T ]

jJB 100("n ; s)j

= lim
n!1

sup
s2 [0; T ]

jJB 1000("n ; s)j

= lim
n!1

sup
s2 [0; T ]

jJB 11("n ; N; s)j = 0 : (5.93)

Taking into account (5.93), (5.91), (5.90), and (5.88), we see that

lim sup
n!1

sup
s2 [0; T ]

jL ("n ; N; s)j = � (@2
xx F; 3 ) � sup

n2 N;s2 [0; T ]
[X; X ]ucp

" n
(s) + � (@t F; 3 ) � T:

(5.94)

Recalling that JB 20("; s) in (5.80) is the "-approximation of the forward integralRt
0 @xF (s; X s) d� X s, to conclude it remains to show that

sup
s2 [0; T ]

�
�JB 20("n ; s) � J (s)

�
� �!

n!1
0 a.s.; (5.95)
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where

J (s) = F (s; X s) � F (0; X 0) �
Z

]0; s]
@t F (t; X t ) dt �

X

t � s

[F (t; X t ) � F (t; X t � )]

+
X

0<t � s

�
@xF (t; X t � ) (X t � X t � ) +

@2
xx F (t; X t � )

2
(X t � X t � )2

�

�
1
2

Z

]0; s]
@2

xx F (t; X t � ) d[X; X ]t : (5.96)

In particular this would imply that
R

]0; s] @xF (t; X t ) d� X t exists and equalsJ (s).
Taking into account (5.86), we have

JB 20("n ; s) = J0("n ; s) � JA ("n ; N; s) �
Z s

0
@t F (t; X t ) dt

� L ("n ; N; s) � JB 21("n ; s) � JB 22("n ; N; s): (5.97)

Taking into account (5.96) and (5.97), we see that the term inside the absolute value
in (5.95) equals

J0("n ; s) � (F (s; X s) � F (0; X 0))

� JA ("n ; N; s) +
NX

i =1

1]0; s](t i )[F (t i ; X t i ) � F (t i ; X t i � )]

� JB 22("n ; N; s)

�
NX

i =1

1]0; s](t i )
�
@xF (t i ; X t i � ) (X t i � X t i � ) +

@2
xx F (t i ; X t i � )

2
(X t i � X t i � )2

�

� JB 21("n ; s) +
1
2

Z

]0; s]
@2

xx F (t; X t � ) d[X; X ]t

� L ("n ; N; s)

+
1X

i = N +1

1]0; s](t i )
h
F (t i ; X t i ) � F (t i ; X t i � ) � @xF (t i ; X t i � ) (X t i � X t i � )

�
@2

xx F (t i ; X t i � )
2

(X t i � X t i � )2
i
:

Taking into account (5.69), (5.75), (5.82), (5.92), (5.94),we have

lim sup
n!1

sup
s2 [0; T ]

jJB 20("n ; s) � J (s)j

� lim sup
n!1

sup
s2 [0; T ]

jL ("n ; N; s)j

+ sup
s2 [0; T ]

n 1X

i = N +1

1]0; s](t i )
�
�
�F (t i ; X t i ) � F (t i ; X t i � ) � @xF (t i ; X t i � ) � X t i

�
@2

xx F (t i ; X t i � )
2

(� X t i )
2
�
�
�
o
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= lim sup
n!1

sup
s2 [0; T ]

jL ("n ; N; s)j

+ sup
s2 [0; T ]

(� X s)2

2

1X

i = N +1

1]0; s](t i )
�
�
�
Z 1

0
@2

xx F (t i ; X t i � + a(� X t i )) da � @2
xx F (t i ; X t i � )

�
�
�

� � (@t F; 3 ) � T + � (@2
xx F; 3 ) sup

n2 N;s2 [0; T ]
[X; X ]ucp

" n
(s) +  2 sup

y2 KX (! )� [0; T ]
j@2

xx F (y)j;

(5.98)

where the last term on the right-hand side of (5.98) is obtained using (5.67). Since
 is arbitrarily small, we conclude that

lim
n!1

sup
s2 [0; T ]

jJB 20("n ; s) � J (s)j = 0 ; 8! =2 N:

This concludes the proof of the Itô formula. �

From Proposition 5.5.1, Proposition 5.3.8-ii), and by classical Banach-Steinhaus
theory (see, e.g., [46], Theorem 1.18 pag 55) forF -type spaces, we have the following.

Proposition 5.5.2. Let F : [0; T] � R ! R be a function of classC1 such that
@xF is H•older continuous with respect to the second variable for some� 2 [0; 1[. Let
(X t )t2 [0; T ] be a reversible semimartingale, satisfying moreover

X

0<s � t

j� X sj1+ � < 1 a.s.

Then

F (t; X t ) = F (0; X 0) +
Z t

0
@sF (s; X s) ds +

Z t

0
@xF (s; X s� ) dX s

+
1
2

[@xF (�; X ); X ]t + J (F; X )( t);

where

J (F; X )( t) =
X

0<s � t

�
F (s; X s) � F (s; X s� ) �

@xF (s; X s) + @xF (s; X s� )
2

� X s

�
:

Remark 5.5.3.

(i) Previous result can be easily extended to the case whenX is multidimen-
sional.

(ii) When F does not depend on time, previous statement was the object of
[59], Theorem 3.8, example 3.3.1. In that case however, stochastic integrals
and covariations were de�ned by discretizations means.

(iii) The proof of Proposition 5.5.2 follows the same lines as the one of Theorem
3.8. in [59].
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5.5.2. Itô formula related to random measures. The object of the present
section is to reexpress the statement of Proposition 5.5.1 making use of the jump
measure � X associated with a c�adl�ag process X , recalled in Section 5.2.1. The
compensator of� X (ds dy) is called the L�evy system of X , and will be denoted by
� X (ds dy) (for more details see Chapter II, Section 1, in [79]); we also de�ne

�̂ X
t = � X (f tg; dy) for every t 2 [0; T]: (5.99)

Corollary 5.5.4. Let X be a �nite quadratic variation c�adl�ag process and F :
[0; T] � R ! R a function of class C1;2. Then we have

F (t; X t ) = F (0; X 0) +
Z t

0
@sF (s; X s) ds +

Z t

0
@xF (s; X s) d� X s

+
1
2

Z t

0
@2

xx F (s; X s) d[X; X ]cs

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� )) 1f x � 1g (� X � � X )(ds dx)

�
Z

]0; t ]� R
x @xF (s; X s� ) 1f x � 1g (� X � � X )(ds dx)

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )) 1f x> 1g � X (ds dx)

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )) 1f x � 1g � X (ds dx):

(5.100)

Proof. We set

Ws(x) = ( F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )) 1fj x j� 1g;

K s(x) = ( F (s; X s� + x) � F (s; X s� )) 1fj x j� 1g;

Ys(x) = x @xF (s; X s� )1fj x j� 1g:

By Propositions 5.2.7, jW j � � X belongs to A+
loc, while Proposition 5.2.8 insures

that K 2 � � X and Y 2 � � X belong to A+
loc. Then, Proposition B.18 implies that

W 2 G1
loc(� X ) and that the stochastic integral W � (� X � � X ) can be decomposed as

W � � X � W � � X . On the other hand, sinceK; Y belong to G2
loc(� ) (see Lemma B.21-

2.) By Theorem B.22 it follows that K; Y belong to G1
loc(� X ) and that moreover

K � (� X � � X ), Y � (� X � � X ) are purely discontinuous square integrable local
martingales. �

5.6. About weak Dirichlet processes

5.6.1. Basic de�nitions. We consider again the �ltration ( Ft )t � 0 introduced at
Section 5.2, which will be, without further mention, the underlying �ltration.

De�nition 5.6.1. Let X be an (Ft )-adapted process. We say thatX is (Ft )-
orthogonal if [X; N ] = 0 for every N continuous local (Ft )-martingale.
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Remark 5.6.2. Basic examples of (Ft )-orthogonal processes are purely discontinu-
ous (Ft )-local martingales, see Theorem A.6.

Proposition 5.6.3. If M is a purely discontinuous(Ft )-local martingale, then

[M; M ]t =
X

s� t

(� M s)2:

Proof. The result follows from Theorem 5.2, Chapter I, in [79], and Proposition
5.3.8-(i). �

De�nition 5.6.4. We say that an (Ft )-adapted processX is a Dirichlet process if
it admits a decomposition X = M + A, where M is a local martingale and A is a
�nite quadratic variation process with [ A; A ] = 0.

De�nition 5.6.5. We say that X is an (Ft )-adapted weak Dirichlet process if it
admits a decompositionX = M + A, where M is a local martingale and the process
A is (Ft )-orthogonal.

De�nition 5.6.6. We say that an (Ft )-adapted processX is a special weak Dirichlet
process if it admits a decomposition of the type above such that, in addition, A is
predictable.

Remark 5.6.7. Obviously, a Dirichlet process is a special weak Dirichlet process.

Proposition 5.6.8. Let X be a special weak Dirichlet process of the type

X = M c + M d + A; (5.101)

where M c is a continuous local martingale, andM d is a purely discontinuous local
martingale. Supposing thatA0 = M d

0 = 0 , the decomposition (5.101) is unique.
In that case the decompositionX = M c + M d + A will be called the canonical
decompositionof X .

Proof. Assume that we have two decompositionsX = M c + M d + A = M c0
+ M d0

+
A0, with A and A0 predictable, verifying [A; N ] = [ A0; N ] = 0 for every continuous
local martingale N . We set ~A = A � A0, ~M c = M c � M c0

and ~M d = M d � M d0
. By

linearity, ~M c + ~M d + ~A = 0. We have

0 = [ ~M c + ~M d + ~A; ~M c]

= [ ~M c; ~M c] + [ ~M d; ~M c] + [ ~A; ~M c]

= [ ~M c; ~M c];

therefore ~M c = 0 since ~M c is a continuous martingale. It follows in particular that
~A is a predictable local martingale, hence a continuous local martingale, see e.g., the
point 2) of the Remarks after De�nition 7.11 in [ 73]. In particular

0 = [ ~M d; ~M d] + [ ~A; ~M d] = [ ~M d; ~M d]

and, since ~M d
0 = 0, we deduce that ~M d = 0 and therefore ~A = 0. �



190 Chapter 5. Weak Dirichlet processes with jumps

Remark 5.6.9. Every (Ft )-special weak Dirichlet process is of the type (5.101).
Indeed, every local martingaleM can be decomposed as the sum of a continuous
local martingale M c and a purely discontinuous local martingaleM d, see Theorem
4.18, Chapter I, in [79].

Corollary 5.6.10. Let X be an(Ft )-special weak Dirichlet process. Then, for every
t 2 [0; T],

(i) [ X; X ]t = [ M c; M c]t +
P

s� t (� X t )2;

(ii) [ X; X ]ct = [ M c; M c]t .

Proof. (ii) follows from (i). Concerning (i), by the bilinearity of the covariation,
and by the de�nitions of purely discontinuous local martingale (see Remark 5.6.2)
and of special weak Dirichlet process, we have

[X; X ]t = [ M c; M c]t + [ M d; M d]t

= [ M c; M c]t +
X

s� t

(� M d
s )2

= [ M c; M c]t +
X

s� t

(� X s)2;

where the second equality holds because of Proposition 5.6.3. �

We give a �rst relation between semimartingales and weak Dirichlet processes.

Proposition 5.6.11. Let S be an(Ft )-semimartingale which is a special weak Dirich-
let process. ThenS is a special semimartingale.

Proof. Let S = M 1 + V such that M 1 is a local martingale and V is a bounded
variation process. Let moreoverS = M 2 + A, where a predictable (Ft )-orthogonal
process. Then 0 = V � A + M , where M = M 2 � M 1. So A is a predictable
semimartingale. By Corollary 8.7 in [73], A is a special semimartingale, and so by
additivity S is a special semimartingale as well. �

5.6.2. Stability of weak Dirichlet processes under C0;1 transformation. We
begin with the C1;2 stability.

Lemma 5.6.12. Let X = M + A be a c�adl�ag weak Dirichlet process of �nite quadratic
variation and F : [0; T] � R ! R be aC1;2 real-valued function. Then

F (t; X t ) = F (0; X 0) +
Z t

0
@xF (s; X s� ) dMs

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� ))1fj x j� 1g (� X � � X )(ds dx);

�
Z

]0; t ]� R
x @xF (s; X s� ) 1fj x j� 1g (� X � � X )(ds dx);

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� ))1fj x j> 1g � X (ds dx)
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+ � F (t); (5.102)

where

� F (t) :=
Z t

0
@sF (s; X s) ds +

Z t

0
@xF (s; X s) d� As +

Z t

0
@2

xx F (s; X s) d[X; X ]cs

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� ))1fj x j� 1g � X (ds dx):

(5.103)

Remark 5.6.13. Taking into account Proposition 5.3.3, we can observe that, ifA
is predictable, then � F is a predictable process for anyF 2 C1;2.

Proof. Expressions (5.102)-(5.103) follow by Corollary 5.5.4, in particular by (5.100).
We remark that, since M is a local martingale and @xF (s; X s) is a c�adl�ag process,
by Proposition 5.3.8-(ii) we have

Z t

0
@xF (s; X s) d� X s =

Z t

0
@xF (s; X s) d� M s +

Z t

0
@xF (s; X s) d� As

=
Z t

0
@xF (s; X s� ) dMs +

Z t

0
@xF (s; X s) d� As:

�

Theorem 5.6.14. Let X = M + A be a c�adl�ag weak Dirichlet process of �nite
quadratic variation. Then, for every F : [0; T] � R ! R of classC0;1, we have

F (t; X t ) = F (0; X 0) +
Z t

0
@xF (s; X s� ) dMs

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� )) 1fj x j� 1g (� X � � X )(ds dx)

�
Z

]0; t ]� R
x @xF (s; X s� ) 1fj x j� 1g (� X � � X )(ds dx)

+
Z

]0; t ]� R
(F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )) 1fj x j> 1g � X (ds dx) + � F (t);

(5.104)

where � F : C0;1 ! Ducp is a continuous linear map, such that its restriction to C1;2

is given by (5.103). Moreover, for every F 2 C0;1, it ful�lls the following properties.

(a) [� F ; N ] = 0 for every N continuous local martingale.

(b) If A is predictable, then� F is predictable.

In particular point (a) implies that F (s; X s) is a weak Dirichlet process whenX is
a weak Dirichlet process.

Proof. In agreement with (5.104) we set

� F (t) := F (t; X t ) � F (0; X 0) �
Z t

0
@xF (s; X s� ) dMs (5.105)
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�
Z

]0; t ]� R
f F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )g 1fj x j> 1g � X (ds dx)

�
Z

]0; t ]� R
f F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )g 1fj x j� 1g (� X � � X )(ds dx):

We need �rst to prove that C0;1 � F 7! � F (t) is continuous with respect to
the u.c.p. topology. For this we �rst observe that the map F 7! F (t; X t ) �
F (0; X 0) ful�lls the mentioned continuity. Moreover, if F n ! F in C0;1, thenRt

0 (@xF n � @xF )(s; X s� ) dMs converges to zero u.c.p. since@xF n (s; X s� ) converges
to @xF (s; X s� ) in Lucp, see Chapter II Section 4 in [110].

Let us consider the second line of (5.105). For almost all �xed! , the process
X has a �nite number of jumps, si = si (! ); 1 � i � N (! ), larger than one. Let
F n ! F in C0;1. Since the map is linear we can suppose thatF = 0.

sup
0<t � T

�
�
�
�

Z

]0; t ]� R

�
F n (s; X s� (! ) + x) � F n (s; X s� (! ))

� x @xF n (s; X s� (! ))
	

1fj x j> 1g � X (!; ds dx )

�
�
�
�

�
Z

]0; T ]� R
jF n (s; X s� (! ) + x) � F n (s; X s� (! ))

� x @xF n (s; X s� (! )) j 1fj x j> 1g � X (!; ds dx )

=
N (! )X

i =1

jF n (si ; X si (! )) � F n (si ; X si � (! )) � � X si (! ) @xF n (si ; X si � (! )) j 1fj � X si (! )j> 1g

!
n!1

0:

This shows in particular that
Z

]0; �]� R
f F n (s; X s� (! ) + x) � F n (s; X s� (! )) � x @xF n (s; X s� (! ))g1fj x j> 1g � X (!; ds dx )

! 0 u.c.p.

and so the map de�ned by the second line in (5.105) is continuous.

Finally, the following proposition exploits the continuity properties of the last
term in (5.105), and allows to conclude the continuity of the map � F : C0;1 ! Ducp.

Proposition 5.6.15. The map

I : C0;1 ! Ducp

g 7!
Z

]0;�]� R
Gg (s; X s� ; x) 1fj x j� 1g (� X � � X )(ds dx);

where

Gg (s; �; x ) = g(s; � + x) � g(s; � ) � x @� g(s; � ); (5.106)

is continuous.
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Proof (of the Proposition). We consider the sequence (� l ) l � 1 of increasing stopping
times introduced in Remark 5.2.3-(ii) for the processYt = ( X t � ;

P
s<t j� X sj2). Since


 = [ l f ! : � l (! ) > T g a.s., the result is proved if we show that, for every �xed� = � l ,

g 7! 1f �>T g(! )
Z

]0; �]� R
Gg(s; X s� ; x) 1fj x j� 1g (� X � � X )(ds dx)

is continuous. Let gn ! g in C0;1. Then Ggn
! Gg in C0([0; T] � R2). Since the

map is linear we can suppose thatg = 0. Let "0 > 0. We aim at showing that

P
�

sup
t2 [0; T ]

�
�
�
�1f �>T g(! )

Z

]0; t ]� R
Ggn

(s; X s� ; x) 1fj x j� 1g (� X � � X )(ds dx)

�
�
�
� > " 0

�

�!
n!1

0: (5.107)

Let W n
s (x) (resp. by Ŵ n

s ) denote the random �eld Ggn
(s; X s� ; x) 1fj x j� 1g (resp. the

process
R

R Ggn
(s; X s� ; x) 1fj x j� 1g �̂ X (dx)), and de�ne

I n
t :=

Z

]0; t ]� R
W n

s (x) ( � X � � X )(ds dx):

(5.107) will follow if we show that

P
�

sup
t2 [0; T ]

jI n
t^ � j > " 0

�
�!

n!1
0: (5.108)

For every process� = ( � t )t , we indicate the stopped process at� by � �
t (! ) :=

� t^ � (! ) (! ): We have

(jW n j2 � � X ) � 2 A+ : (5.109)

As a matter of fact, let M such that supt2 [0; T ] jYt^ � 1f �> 0gj � M . Recalling Remark
5.2.1, an obvious Taylor expansion yields

E

" Z

]0; t ^ � ]� R
jW n

s (x)j2 � X (ds; dx)

#

� 2 sup
y2 [� M; M ]

t 2 [0 ; T ]

j@xgn j2(t; y )�

� E

"
X

0<s<�

j� X sj2 1fj � X s j� 1g 1f �> 0g + j� X � j2 1fj � X � j� 1g 1f �> 0g

#

� 2 sup
y2 [� M; M ]

t 2 [0 ; T ]

j@xgn j2(t; y ) � (M + 1) : (5.110)

It follows that W n 1[0; � ] 2 G2(� X ) (see e.g. Lemma B.21-1., and consequently, by
Proposition 3.66 of [77],

I n
t^ � is a purely discontinuous square integrable martingale: (5.111)
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On the other hand, W n 2 G2
loc(� X ), and by Theorem 11.12, point 3), in [73], it

follows that

hI n ; I n i t =
Z

]0; t ]� R
jW n

s (x)j2 � X (ds dx) �
X

0<s � t

jŴ n
s j2 �

Z

]0; t ]� R
jW n

s (x)j2 � X (ds dx):

(5.112)
Taking into account (5.111), we can apply Doob inequality. Using estimates (5.110),
(5.112) and (5.111), we get

P

"

sup
t2 [0; T ]

jI n
t^ � j > " 0

#

�
1
"2

0
E

�
jI n

T ^ � j2
�

=
1
"2

0
E [hI n ; I n i T ^ � ]

�
2 (M + 1)

"2
0

sup
y2 [� M; M ]

t 2 [0 ; T ]

j@xgn j2(t; y ):

Therefore, since@xgn ! 0 in C0 as n goes to in�nity,

lim
n!1

P

"

sup
t2 [0; T ]

jI n
t^ � j > " 0

#

= 0 :

�

We continue the proof of Theorem 5.6.14. The restriction of the map �F to C1;2

is given by (5.103), taking into account (5.105) and Lemma 5.6.12. It remains to
prove items (a) and (b).

(a) We have to prove that, for any continuous local martingale N , we have
�
F (�; X ) �

Z �

0
@xF (s; X s� ) dMs

�
Z

]0; �]� R
f F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )g 1fj x j> 1g � X (ds dx)

�
Z

]0; �]� R
f F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� )g 1fj x j� 1g (� X � � X )(ds dx); N

�

= 0 :

We set

Yt =
Z

]0; t ]� R
Ws(x) 1fj x j� 1g (� X � � X )(ds dx);

Z t =
Z

]0; t ]� R
Ws(x) 1fj x j> 1g � X (ds dx):

with
Ws(x) = F (s; X s� + x) � F (s; X s� ) � x @xF (s; X s� ):

SinceZ is a bounded variation process (X has almost surely a �nite number of jumps
larger than one) and N is continuous, Proposition 5.3.14 insures that

[Z; N ] = 0 :
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By Proposition 5.2.8, W 21fj x j� 1g � � X 2 A+
loc, therefore W 1fj x j� 1g belongsG2

loc(� X )
as well, see Lemma B.21-2. In particular, by Theorem B.22-(iii),Y is a purely discon-
tinuous (square integrable) local martingale. Recalling that an (Ft )-local martingale,
null at zero, is a purely discontinuous martingale if and only if it is (Ft )-orthogonal
(see Remark 5.6.2), from Proposition 5.3.8-(i) we have

[Y; N] = 0 :

From Proposition 5.3.8-(iii), and the fact that [ M; N ] is continuous, it follows that
� Z �

0
@xF (s; X s� ) dMs; N

�
=

Z �

0
@xF (s; X s� ) d [M; N ]s :

Therefore it remains to check that

[F (�; X ); N ]t =
Z �

0
@xF (s; X s� ) d [M; N ]s : (5.113)

To this end, we evaluate the limit of

1
"

Z t

0
(F ((s + ") ^ t; X (s+ " )^ t ) � F (s; X s)) ( N (s+ " )^ t � Ns) ds

=
1
"

Z t

0
(F ((s + ") ^ t; X (s+ " )^ t ) � F ((s + ") ^ t; X s)) ( N (s+ " )^ t � Ns) ds

+
1
"

Z t

0
(F ((s + ") ^ t; X s) � F (s; X s)) ( N (s+ " )^ t � Ns) ds

=: I 1("; t ) + I 2("; t ):

Concerning the term I 1("; t ), it can be decomposed as

I 1("; t ) = I 11("; t ) + I 12("; t ) + I 13("; t );

where

I 11("; t ) =
1
"

Z t

0
@xF (s; X s) (N (s+ " )^ t � Ns)(X (s+ " )^ t � X s) ds;

I 12("; t ) =
1
"

Z t

0
(@xF ((s + ") ^ t; X s) � @xF (s; X s)) �

� (N (s+ " )^ t � Ns)(X (s+ " )^ t � X s) ds;

I 13("; t ) =
1
"

Z t

0

� Z 1

0
(@xF ((s + ") ^ t; X s + a(X (s+ " )^ t � X s))

� � @xF ((s + ") ^ t; X s)) da
�

(N (s+ " )^ t � Ns)(X (s+ " )^ t � X s) ds:

Notice that the brackets [X; X ], [X; N ] and [N; N ] exist. Indeed, [X; X ] exists by
de�nition, and [ N; N ] exists by Proposition 5.3.8-(i). Concerning [X; N ], it can be
decomposed as

[X; N ] = [ M; N ] + [ A; N ];

where [M; N ] exists by Proposition 5.3.8-(i) and [A; N ] = 0 by assumption, sinceA
comes from the weak Dirichlet decomposition ofX .
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Then, from Corollary 5.4.4-2) and Proposition 5.4.7-(iii) we have

I 11("; t ) �!
" ! 0

Z t

0
@xF (s; X s� ) d[M; N ]s u.c.p. (5.114)

At this point, we have to prove the u.c.p. convergence to zero of the remaining terms
I 12("; t ), I 13("; t ), I 2("; t ). First, since @xF is uniformly continuous on each compact,
we have

jI 12("; t )j � �
�

@xF

�
�
�
�
[0; T ]� KX

; "
� q

[X; X ]ucp
" [N; N ]ucp

" ; (5.115)

where KX is the (compact) set f X t (! ) : t 2 [0; T]g. When " goes to zero, the mod-
ulus of continuity component in (5.115) converges to zero a.s., while the remaining
term u.c.p. converges to

p
[X; X ]t [N; N ]t by de�nition. Therefore,

I 12("; t ) �!
" ! 0

0 u.c.p. (5.116)

Let us then evaluate I 13(t; " ). Since [X; X ]ucp
" , [N; N ]ucp

" u.c.p. converge, there
exists of a sequence ("n ) such that [X; X ]ucp

" n , [N; N ]ucp
" n converge uniformly a.s. re-

spectively to [X; X ], [N; N ]. We �x a realization ! outside a null set. Let  > 0. We
enumerate the jumps ofX (! ) on [0; T] by (t i ) i � 0. Let M = M (! ) such that

1X

i = M +1

j� X t i j
2 �  2:

We de�ne

A("n ; M ) =
N[

i =1

]t i � "; t i ]

B ("n ; M ) = [0 ; T] n A("n ; M ):

The term I 13("n ; t) can be decomposed as the sum of two terms:

I A
13("n ; t) =

MX

i =1

Z t i

t i � " n

ds
"n

1]0; t ](s) (X (s+ " n )^ t � X s)(N (s+ " n )^ t � Ns)�

�
Z 1

0
(@xF ((s + "n ) ^ t; X s + a(X (s+ " n )^ t � X s)) � @xF ((s + "n ) ^ t; X s)) da;

I B
13("n ; t) =

1
"n

Z

]0; t ]
(X (s+ " n )^ t � X s)(N (s+ " n )^ t � Ns) RB ("n ; s; t; M ) ds;

with

RB ("n ; s; t; M ) =

1B (" n ;M ) (s)
Z 1

0
[@xF ((s + "n ) ^ t; X s + a(X (s+ " n )^ t � X s)) � @xF ((s + "n ) ^ t; X s)] da:

By Remark 5.3.13, we have for everys, t,

RB ("n ; s; t; M ) � �
�

@xF

�
�
�
�
[0; T ]� KX

; sup
l

sup
r;a 2 [t l � 1 ; t l ]

j r � a j� " n

jX a � X r j
�

;
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so that Lemma 5.3.12 applied successively to the intervals [t l � 1; t l ] implies

RB ("n ; s; t; M ) � �
�
@xF

�
�
[0; T ]� KX ; 3

�
:

Then

jI B
13("n ; t)j � �

�
@xF

�
�
[0; T ]� KX ; 3

� q
[N; N ]ucp

" n (T) [X; X ]ucp
" n (T);

and we get

lim sup
n!1

sup
t2 [0;T ]

jI B
13("n ; t)j � �

�
@xF

�
�
[0; T ]� KX ; 3

� p
[N; N ]T [X; X ]T : (5.117)

Concerning I A
13("n ; t), we apply Lemma 5.3.11 toY = ( Y 1; Y 2; Y 3) = ( t; X; N )

and

� (y1; y2) = ( y2
1 � y2

2) (y3
1 � y3

2)
Z 1

0
[@xF (y1

1; y2
2 + a(y2

1 � y2
2)) � @xF (y1

1; y2
2)] da:

Then I A
13("n ; t) converges uniformly in t 2 [0; T], as n goes to in�nity, to

MX

i =1

1]0; t ](t i ) (X t i � X t i � )(N t i � N t i � )
Z 1

0
[@xF (t i ; X t i � + a(X t i � X t i � )) � @xF (t i ; X t i � )] da:

(5.118)
In particular, (5.118) equals zero sinceN is a continuous process. Then, recalling
(5.117), we have

lim sup
n!1

sup
t2 [0; T ]

jI 13("n ; t)j � � (@xF; 3 )
p

[N; N ]T [X; X ]T ;

and, by the arbitrariness of  , we conclude that

lim sup
n!1

sup
t2 [0; T ]

jI 13("n ; t)j = 0 : (5.119)

It remains to show the u.c.p. convergence to zero ofI 2("; t ), as " ! 0. To this
end, let us write it as the sum of the two terms

I 21("; t ) =
1
"

Z t

0
(F (s + "; X s) � F (s; X s)) ( N (s+ " )^ t � Ns) ds;

I 22("; t ) =
1
"

Z t

0
(F ((s + ") ^ t; X s) � F (s + "; X s)) ( N (s+ " )^ t � Ns) ds:

Concerning I 21("; t ), it can be written as

I 21("; t ) =
Z

]0; t ]
J" (r ) dNr (5.120)

with

J" (r ) =
Z

[( r � " )+ ; r [

F (s + "; X s) � F (s; X s)
"

ds:

Since J" (r ) ! 0 pointwise, it follows from the Lebesgue dominated convergence
theorem that Z T

0
J 2

" (r ) dhN; N i r
P�! 0 as" ! 0: (5.121)
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