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Abstract

In the present document we treat three different topics related to stochastic
optimal control and stochastic calculus, pivoting on the notion of backward stochastic
differential equation (BSDE) driven by a random measure.

The three first chapters of the thesis deal with optimal control for different classes
of non-diffusive Markov processes, in finite or infinite horizon. In each case, the value
function, which is the unique solution to an integro-differential Hamilton-Jacobi-
Bellman (HJB) equation, is probabilistically represented as the unique solution of
a suitable BSDE. In the first chapter we control a class of semi-Markov processes
on finite horizon; the second chapter is devoted to the optimal control of pure jump
Markov processes, while in the third chapter we consider the case of controlled piece-
wise deterministic Markov processes (PDMPs) on infinite horizon. In the second and
third chapters the HJB equations associated to the optimal control problems are fully
nonlinear. Those situations arise when the laws of the controlled processes are not
absolutely continuous with respect to the law of a given, uncontrolled, process. Since
the corresponding HJB equations are fully nonlinear, they cannot be represented by
classical BSDEs. In these cases we have obtained nonlinear Feynman-Kac repre-
sentation formulae by generalizing the control randomization method introduced in
Kharroubi and Pham (2015) for classical diffusions. This approach allows us to re-
late the value function with a BSDE driven by a random measure, whose solution
has a sign constraint on one of its components. Moreover, the value function of the
original non-dominated control problem turns out to coincide with the value function
of an auxiliary dominated control problem, expressed in terms of equivalent changes
of probability measures.

In the fourth chapter we study a backward stochastic differential equation on
finite horizon driven by an integer-valued random measure p on Ry X E, where F is a
Lusin space, with compensator v(dt dz) = dA; ¢(dx). The generator of this equation
satisfies a uniform Lipschitz condition with respect to the unknown processes. In
the literature, well-posedness results for BSDEs in this general setting have only
been established when A is continuous or deterministic. We provide an existence
and uniqueness theorem for the general case, i.e. when A is a right-continuous
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nondecreasing predictable process. Those results are relevant, for example, in the
framework of control problems related to PDMPs. Indeed, when p is the jump
measure of a PDMP on a bounded domain, then A is predictable and discontinuous.

Finally, in the two last chapters of the thesis we deal with stochastic calculus
for general discontinuous processes. In the fifth chapter we systematically develop
stochastic calculus via regularization in the case of jump processes, and we carry
on the investigations of the so-called weak Dirichlet processes in the discontinuous
case. Such a process X is the sum of a local martingale and an adapted process
A such that [N, A] = 0, for any continuous local martingale N. Given a function
u:[0,T] x R — R, which is of class C%! (or sometimes less), we provide a chain rule
type expansion for u(t, X;), which constitutes a generalization of It6’s lemma being
valid when u is of class C12. This calculus is applied in the sixth chapter to the theory
of BSDEs driven by random measures. In several situations, when the underlying
forward process X is a special semimartingale, or, even more generally, a special
weak Dirichlet process, we identify the solutions (Y, Z,U) of the considered BSDEs
via the process X and the solution uw to an associated integro-partial differential
equation.

Key words: Backward stochastic differential equation (BSDE), stochastic optimal
control, Hamilton-Jacobi-Bellman equation, nonlinear Feynman-Kac formula, con-
strained BSDE, random measures and compensators, pure jump processes, piecewise
deterministic Markov processes, semi-Markov processes, stochastic calculus via reg-
ularization, weak Dirichlet processes.



Résumé

Dans le présent document on aborde trois divers themes liés au controle et au cal-
cul stochastiques, qui s’appuient sur la notion d’équation différentielle stochastique
rétrograde (EDSR) dirigée par une mesure aléatoire.

Les trois premiers chapitres de la these traitent des problemes de controle op-
timal pour différentes catégories de processus markoviens non-diffusifs, a horizon
fini ou infini. Dans chaque cas, la fonction valeur, qui est I'unique solution d’une
équation intégro-différentielle de Hamilton-Jacobi-Bellman (HJB), est représentée
comme 'unique solution d’une EDSR appropriée. Dans le premier chapitre, nous
controlons une classe de processus semi-markoviens a horizon fini; le deuxieéme chapitre
est consacré au controle optimal de processus markoviens de saut pur, tandis qu’au
troisieme chapitre, nous examinons le cas de processus markoviens déterministes
par morceaux (PDMPs) & horizon infini. Dans les deuxieéme et troisieme chapitres
les équations d’HJB associées au controle optimal sont complétement non-linéaires.
Cette situation survient lorsque les lois des processus controlés ne sont pas absol-
ument continues par rapport a la loi d’'un processus donné. Etant les équations
d’HJB correspondantes completement non-linéaires, ces équations ne peuvent pas
étre représentées par des EDSRs classiques. Dans ces cadre, nous avons obtenu
des formules de Feynman-Kac non linéaires en généralisant la méthode de la ran-
domisation du controle introduite par Kharroubi et Pham (2015) pour les diffusions
classiques. Ces techniques nous permettent de relier la fonction valeur du probleme
de controle a une EDSR dirigée par une mesure aléatoire, dont une composante de la
solution subit une contrainte de signe. En plus, on démontre que la fonction valeur
du probleme de controle originel non dominé coincide avec la fonction valeur d’un
probleme de controle dominé auxiliaire, exprimé en termes de changements mesures
équivalentes de probabilité.

Dans le quatrieme chapitre, nous étudions une équation différentielle stochas-
tique rétrograde a horizon fini, dirigée par une mesure aléatoire & valeurs entiéres p
sur Ry x E, ou E est un espace lusinien, avec compensateur de la forme v(dt dz) =
dA; ¢(dx). Le générateur de cette équation satisfait une condition de Lipschitz uni-
forme par rapport aux inconnues. Dans la littérature, I'existence et unicité pour des
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EDSRs dans ce cadre ont été établis seulement lorsque A est continu ou déterministe.
Nous fournissons un théoreme d’existence et d’unicité méme lorsque A est un proces-
sus prévisible, non décroissant, continu a droite. Ce résultat s’applique, par exemple,
au cas du controle lié aux PDMPs. En effet, quand p est la mesure de saut d'un
PDMP sur un domaine borné, A est prévisible et discontinu.

Enfin, dans les deux derniers chapitres de la theése nous traitons le calcul stochas-
tique pour des processus discontinus généraux. Dans le cinquieme chapitre, nous
développons le calcul stochastique via régularisations des processus a sauts qui
ne sont pas nécessairement des semimartingales. En particulier nous poursuivons
I’étude des processus dénommés de Dirichlet faibles, dans le cadre discontinu. Un
tel processus X est la somme d’une martingale locale et d’un processus adapté A
tel que [N, A] = 0, pour toute martingale locale continue N. Pour une fonction
u:[0,T] x R — R de classe C%! (ou parfois moins), on exprime un développement
de u(t, X;), dans Desprit d’une généralisation du lemme d’It6, lequel vaut lorsque u
est de classe C12. Le calcul est appliqué dans le sixieme chapitre & la théorie des
EDSRs dirigées par des mesures aléatoires. Dans de nombreuses situations, lorsque
le processus sous-jacent X est une semimartingale spéciale, ou plus généralement,
un processus de Dirichlet spécial faible, nous identifions les solutions des EDSRs
considérées via le processus X et la solution v d’une équation aux dérivées partielles
intégro-différentielle associée.

Mots clés: Equations différentielles stochastiques rétrogrades (EDSR), controle op-
timal stochastique, équations d’Hamilton-Jacobi-Bellman, formule de Feynman-Kac
non linéaire, EDSR avec contraintes, mesures aléatoires et compensateurs, proces-
sus de saut pur, processus markoviens déterministes par morceaux, processus semi-
markoviens, calcul stochastique via régularization, processus de Dirichlet faibles.
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Introduction

In the present introductory chapter we provide a general overview of the sub-
sequent chapters of the doctoral dissertation. All the main results of the thesis are
here recalled; for the sake of brevity, we will do not set out the technical assumptions
in detail, instead we refer to later chapters for the precise statements. We also give
only general references, while a detailed analysis on the technical aspects will be
developed in the body of the document.

Brief overview and general references on optimal control problems,
BSDEs and discontinuous stochastic processes

In this Ph.D. thesis we deal with stochastic processes and the associated optimal
control problems. We consider stochastic dynamical systems, where a random noise
affects the system evolution. Introducing a functional cost which depends on the
state and on the control variable, we are interested in minimizing its expected value
over all possible realizations of the noise process. There exists a large literature on
stochastic control problems of this type; we mention among others the monographs
by Krylov [89], Bensoussan [13], Yong and Zhou [132], Fleming and Soner [65],
Pham [107]. In the present work we focus on optimal control problems of stochastic
processes with jumps. An important class of those processes is determined starting
from the so-called marked point processes. Marked point processes are related to
the martingale theory by means of the concept of compensator, which describes the
local dynamics of a marked point process. Martingale methods in the theory of point
processes go back to Watanabe [130], who discovered the martingale characterization
of Poisson processes, but the first systematic treatment of a general marked point
process using martingales was given by Brémaud [18]. The martingale definition of
compensator gives the basis to construct a martingale calculus which has the same
power as It6 calculus for diffusions, see Jacod’s book [77].

In the past few years, many different methods have been developed to solve
optimal control problems of the type mentioned above. In our work we consider the
approach based on the theory of backward stochastic differential equations, BSDEs
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2 Introduction

for short. BSDEs are stochastic differential equations with a final condition rather
than an initial condition. This subject started with the paper [98] by Pardoux
and Peng, where the authors first solved general nonlinear BSDEs driven by the
Wiener process. Afterwards, a systematic theory has been developed for diffusive
BSDEs, see for instance El Karoui and Mazliak [52], El Karoui, Peng and Quenez
[63], Pardoux [96], [97]. Many generalizations have also been considered where
the Brownian motion was replaced by more general processes. Backward equations
driven by a Brownian motion and a Poisson random measure have been studied for
instance in Tang and Li [128], Barles, Buckdahn and Pardoux [10], Royer [113],
Kharroubi, Ma, Pham and Zhang [87], Oksendal, Sulem and Zhang [94], in view
of various applications including stochastic maximum principle, partial differential
equations of nonlocal type, quasi-variational inequalities and impulse control. There
are instead few results on BSDEs driven by more general random measures, among
which we recall for instance Xia [131], Jeanblanc, Mania, Santacroce and Schweizer
[80], Confortola, Fuhrman and Jacod [29]. In most cases, the authors deal with
BSDEs with jumps with a random compensator which is absolutely continuous with
respect to a deterministic measure, that can be reduced to a Poisson measure by a
Girsanov change of probability, see for instance Becherer [12], Crépey and Matoussi
[33], Kazi-Tani, Possamai and Zhou [83], [84].

I. Feynman-Kac formula for nonlinear HJB equations

I1.1. State of the art. We fix our attention on BSDEs whose random dependence
is guided by a forward Markov process, typically a solution of a stochastic differential
equation. Those equations are commonly called forward BSDEs; since Peng [1071]
and Pardoux and Peng [99], it is well-known that forward BSDEs provide a prob-
abilistic representation (nonlinear Feynman-Kac formula) for a class of semilinear
parabolic partial differential equations. Let T' < co be a finite time horizon and con-
sider the filtered space (2, F,F = (J)sc(0, 77, P), where IF is the canonical P-completed
filtration associated with a d-dimensional Brownian motion W' = (W;).cpo,77- We
suppose F = Fp. Let t € [0,T] and x € R™; a forward-backward stochastic differen-
tial equation on [t,T] is a problem of the following type:
Xy =a+ [b(r,X;)dr + [ n(r, X:)dW, (1)
Yo =g(Xr) + [ 10, X0, Yy, Zy)dr — [ Z,dW,

where b: [0,7] x R* — R™, n: [0,T] x R* — R™4 [:[0,T] x R* x R x R? —
R, and g: R — R are Borel measurable functions. Then, it is well-known that,
under suitable assumptions on the coefficients, the above forward-backward equation
admits a unique solution {(X5*, Y5", ZL%), ¢t < s < T} for any (¢,z) € [0,T] x R™.
Moreover, Yf’m is deterministic, therefore we can define the function

o(t,x) =Y, for all (t,z) € [0,T] x R",
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which turns out to be a viscosity solution to the following partial differential equation:

{‘gft’(t, x) + Lo(t,z) + l(t,x,v(t, x),n" (t,2)Dyv(t, x)) =0, (t,z)€[0,T)xR",
o(T,z) = g(z), z eR",

where the operator £ is given by
1
Lv = (b, D,v) + itr(n nTDiv). (2)

Let us now consider the following fully nonlinear PDE of Hamilton-Jacobi-Bellman
(HJB) type

0 1
3: + Zlelg (<h(CL‘, a), Dyv) + itr(oaT(x, a)D2v) + f(z, a)> = 0, (3)

on [0,T) x R%, together with the terminal condition
U(Ta l‘) = g(:E), T € Rd7

where A is a subset of RY, and h: R*x A - R™", 0: R* x A - R™? f:R"x A — R
are Borel measurable functions. As it is well-known, see for example Pham [107],
the above equation is the dynamic programming equation of a stochastic control
problem whose value function is given by

T
olt.o) = swpE| [ X 00 4 g(x57)], (1)

where X% is the controlled state process starting at time ¢ € [0,7] from = € R,
which evolves on [t,T] according to the stochastic equation

S S
Xboo = g4 / h(X55 o, )dr + / o(XE5 o) dW,, (5)
t t

where « is a predictable control process valued in A. Notice that, if o(x) does not
depend on a € A and oo?(z) is of full rank, then the above HJB equation can be
written as

4 (ggT(gf)D )—i—F(:U o (.CC)va) = 0, (6)

where F'(x,z) = sup,ecalf(z,a) + (0(x,a), z)] is the §-Fenchel-Legendre transform of
fand f(x,a) = ol (x) (oo (x)) " h(z,a) is a solution to o (x)0(x,a) = h(z,a). Then,
since F' depends on o D, v, from [99] we know that the semilinear PDE @ admits a
nonlinear Feynman-Kac formula through a Markovian forward-backward stochastic
differential equation.

Starting from Peng [103], the BSDEs approach to the optimal control problem
has been deeply investigated in the diffusive case; we mention for instance [107],
Ma and Yong [93], [132], and [53]. However, all those results require that only
the drift coefficient of the stochastic equation depends on the control parameter and
that ool (x) is of full rank, so that the HJB equation is a second-order semilinear
partial differential equation and the nonlinear Feyman-Kac formula is obtained as
we explained above. The general case with possibly degenerate controlled diffusion
coefficient o(x,a), associated to a fully nonlinear HJB equation, has only recently
been completely solved by Kharroubi and Pham [88]. We also mention that a first
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step in this direction was made by Soner, Touzi, and Zhang [124], where however the
theory of second-order BSDEs (2BSDEs) was used rather than the standard theory
of backward stochastic differential equations. 2BSDEs are backward stochastic dif-
ferential equations formulated under a non-dominated family of singular probability
measures, so that their theory relies on tools from quasi-sure analysis. On the other
hand, according to [88], it is enough to consider a backward stochastic differential
equation with jumps, where the jumps are constrained to be nonpositive, formulated
under a single probability measure, as in the standard theory of BSDEs.

Let us describe informally the approach presented in [88], which we will call
control randomization method; for greater generality and precise statements we refer
to the original paper of Kharroubi and Pham. In [88] the forward-backward system
associated to the HJB equation is constructed as follows: the forward equation,
starting at time ¢ € [0,7] from (r,a) € R? x A, evolves on [t,T] according to the
system of equations

S S
X =[x g s [ axee 1) aw,,
t t

“:a—i—/ts/A(b—I:’“)u(drdb).

Its form is deduced from the controlled state dynamics randomizing the state
process X% i.e., introducing, in place of the control «, a pure-jump (uncontrolled)
process I, driven by a Poisson random measure p on Ry x A independent of W,
with intensity measure A(db)dt, where \ is a finite measure on (A, B(A)), with full
topological support. W and p are defined on a filtered probability space (2, F, F,P),
where F is the completion of the natural filtration generated by W and p themselves.
Regarding the backward equation, as expected, it is driven by the Brownian motion
W and the Poisson random measure p, namely it is a BSDE with jumps with terminal
condition g(X7 B2 and generator f(XP™® I as it is natural from the expression
of the HJB equation. The backward equation is also characterized by a constraint on
the jump component, which turns out to be a crucial aspect of the theory introduced
in [88], and requires the presence of an increasing process K in the BSDE. This latter
process is reminiscent of the one arising in the reflected BSDE theory, see El Karoui
et al. [51], where however K has to fulfill the Skorohod condition, namely is only
active to prevent Y from passing below the obstacle. In conclusion, the backward
stochastic differential equation has the following form:

Yst,m,a _ g(Xtma / thma Ita)dT+Ktma Ktma

_/ ZL5 AW, — / /Lt‘“ w(dr db), t<s<T,as. (7)
together with the jump constraint
Lz;,x,a(b) <0, dP ® ds @ A(db) a.e. (8)

Notice that the presence of the increasing process K in the backward equation does
not guarantee the uniqueness of the solution. For this reason, as in the theory of
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reflected BSDEs, in [88] the authors look only for the minimal solution (Y, Z, L, K)
to the above BSDE, in the sense that for any other solution (Y, Z, L, K) we must
have Y < Y. The existence of the minimal solution is based on a penalization
approach and on the monotonic limit theorem of Peng [104].

The nonlinear Feynman-Kac formula becomes
o(t,z,a) = Y (t,z,a) € [0,T] x R? x A.

Observe that the value function v should not depend on a, but only on (¢,z). The
function v turns out to be independent of the variable a, as a consequence of the
A-nonpositive jump constraint. Indeed, the constraint implies that

t+h
EU" /@@Xﬁﬂ@—v@xyﬂﬁﬂﬁxﬁmszo
t A

for any h > 0. If v is continuous, by sending h to zero in the above equality divided
by h (and by dominated convergence theorem), we can obtain from the mean-value
theorem that

/fv@¢u5>—0@ﬁnan+xgw):o,
A

from which we see that v does not depend on a. However, it is not clear a priori
that the function v is continuous, therefore, in [88], the rigorous proof relies on fine
viscosity solutions arguments and on mild conditions on A and A, as the assumptions
that the interior set of A is connected and that A is the closure of its interior. In the
end, in [88] it is proved that the function v does not depend on the variable a in the
interior of A and that the viscosity solution to equation admits the probabilistic
representation formula

o(t,z) = Y™ (t,x) €[0,T] x R?
for any a in the interior of A.
In [88] another probabilistic representation is also provided, called dual repre-
sentation, for the solution v to . More precisely, let V be the set of predictable

processes v: 2 x [0,7] x A — (0, 00) which are essentially bounded, and consider the
probability measure P equivalent to P on (€2, Fr) with Radon-Nikodym density:

dp”
=Ly = <// vs(b) — )i dsdb))
Fi

dPp
where &;(+) is the Doléans-Dade exponential, and fi(ds db) is the compensated ran-
dom measure p(ds db) — \(db) ds. Notice that W remains a Brownian motion under
P¥, and the effect of the probability measure P, by Girsanov’s Theorem, is to change
the compensator A(db) ds of p under P to v4(b) A(db) ds under P”. The dual repre-
sentation reads:

T
U@@ZYﬁWZSwWP@$%+/f@?ﬂ@Wq, (9)
t

vev

where [E¥ denotes the expectation with respect to P”.

The control randomization method has been applied to many cases in the frame-
work of optimal switching and impulse control problems, see Elie and Kharroubi



6 Introduction

[54], [55], [56], Kharroubi, Ma, Pham and Zhang [87], and developed with exten-
sions and applications, see Cosso and Chokroun [25], Cosso, Fuhrman and Pham
[31], and Fuhrman and Pham [67]. In all the above mentioned cases the controlled
processes are diffusions constructed as solutions to stochastic differential equations
of It6 type.

Differently to the diffusive framework, the BSDE approach to optimal control
of non-diffusive processes is not very traditional. Indeed, there exists a large liter-
ature on optimal control of marked point processes (see Brémaud [18], Elliott [57]
as general references), but there are relatively few results on their connections with
BSDEs. This gap has been partially filled by Confortola and Fuhrman [28] in the
case of optimal control for pure jump processes, where a probabilistic representation
for the value function is provided by means of a BSDE driven by a suitable ran-
dom measure. In [28] conditions are imposed to guarantee that the set of controlled
probability laws is absolutely continuous with respect to the law of a given, uncon-
trolled, process. This gives a natural extension to the non-diffusive framework of the
well-known diffusive case where only the drift coefficient of the stochastic equation
depends on the control parameter.

In Chapter [1f we extend the approach of [28] to the optimal control problem
of semi-Markov processes. For a semi-Markov process X, the Markovian structure
can be recovered by considering the pair of processes (X,#), where 65 denotes the
duration period in the state X up to moment s. However, the pair (X, 6) is not
pure jump. This prevents to apply in this context the results of [28], and requires
an ad hoc treatment.

We are also interested in the more general case when the laws of the controlled
processes form a non-dominated model, and consequently the HJB equation is fully
nonlinear. Indeed, non-diffusive control problems of this type are very frequent
in applications, even when the state space is finite. In Chapter [2| we provide a
Feynman-Kac representation formula for the value function of an optimal control
problem for pure jump Markov processes, in a general non-dominated framework.
Chapter [3|is then devoted to generalize previous results to the case of a control
problem for piecewise deterministic Markov processes. This latter class of processes
includes in particular the family of semi-Markov processes. The results in Chapters
and [3| are achieved adapting the control randomization method developed in [88]
for classical diffusions.

In the next paragraphs we describe the contents of Chapters [I]

I1.2. Optimal control of semi-Markov processes. In Chapter [1| we study
optimal control problems for a class of semi-Markov processes, and we provide a
Feynman-Kac representation formula for the value function by means of a suitable
class of BSDEs.

A semi-Markov process on a general state space E can be seen as a two dimen-
sional, time-homogeneous, process (X, 8s)s>0, strongly Markovian with respect to
its natural filtration F. The pair (X, 05)s>0 is associated to a family of probability
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measures P> for z € E, ¥ € [0,00), such that P*?(Xy = 2,69 = 9) = 1. The
process (X, 0) is constructed starting from a jump rate function A(z,?) and a jump
measure A — Q(z,9, A) on E, depending on = € E and ¢ > 0. If the process starts
from (x,7) at time ¢ = 0, then the distribution of its first jump time 7y under P*?

) PO (T) > 5) = exp (_ /19 A, ) dr) , (10)

and the conditional probability that X is in A immediately after a jump at time
T, = sis

945

P (X7, € ATy = 5) = Q(x, 5, A).
The component 6, called the age process, is defined as

0. — Oy + s itX, =X, VO<p<s, p,seR,
| s—sup{p: 0<p<s, X, # X} otherwise.

We notice that the component X alone is not a Markov process. The existence
of a semi-Markov process of the type above is a well known fact, see for instance
Stone [125]. Our main restriction is that the jump rate function A is uniformly
bounded, which implies that the process X is non explosive. Denoting by T, the
jump times of X, we consider the marked point process (T, X7, ) with the associated
integer-valued random measure p(dtdy) = 3, <1 0(1, x4, ) on (0,00) x E, where §
indicates the Dirac measure. The compensator p of p has the form p(dsdy) =
AMXs—,0s—) Q(Xs—, 05—, dy) ds.

We focus on optimal intensity-control problem for the semi-Markov process in-
troduced above. This is formulated in a classical way by means of a change of
probability measure, see e.g. El Karoui [49], Elliott [57], Brémaud [18]. In our
formulation we admit control actions that can depend not only on the state process
X but also on the length of time 8 the process has remained in that state. This
approach can be found for instance in Chitopekar [24] and in [125]. The class of
admissible control processes, denoted by A, contains all the predictable processes
(us)sefo, 7] With values in U. For every fixed ¢ € [0, T] and (x,9) € E x [0,00), we
define the value function of the optimal control problem as

T—t

V(t,z,9) = (11)1fA Eﬁ? [/ I(t+ s, Xs,0s,us)ds + g(Xp_¢,070_4) |,
€ 0

where g,l are given real functlons Here IE denotes the expectation with respect

to another probability P"}, depending on ¢ and on the control process u, and con-

u t )
structed in such a way that the compensator under ]P’ﬁ? is r(t + s, Xs—, 05—, y, us)

AMXs—,05-) Q(Xs—,0s—,dy) ds, where r is some given measurable function.

Our approach to this control problem consists in introducing a family of BSDEs
parametrized by (¢,z,9) € [0,7] x E x [0,00), on [0, T — t]:

St g y) Q(XT t79T t) f t+07 XOWHOWZU’t () d0'7
S (11)
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where ¢(dsdy) denotes the compensated random measure p(ds dy) — p(dsdy). The
generator of is the Hamiltonian function:

Fovw0,2)) = inf {1600, + [ 20)(r(s..0..0) = 1) M) Qa0 ) }
ue E

(12)

Under appropriate assumptions, the previous optimal control problem has a so-

lution, and the corresponding value function and optimal control can be represented

by means of the solution to the BSDE . In order to prove the existence of an

optimal control we need to require that the infimum in the definition of f is achieved.
We define the (possibly empty) sets

F(S,$,’l9, Z()) = { welU: f(sa L, 197 Z()) = l(s,x,ﬂ,u)
+ [ 0.0 - DA Q. dy) | (13)
and we assume that the following condition holds.

Hypothesis 1. The sets I' in are non empty; moreover, for every fixed t € [0, T

and (x,1) € S, one can find a predictable process u*»®?(-) with values in U satisfying
wh e Dt + 5, X, 05—, Z257()),  P"-as. Vs € [0, T 1. (14)

Theorem 2. Assume that Hypothesis[1] holds. Then, under suitable measurability
and integrability conditions on v, | and g, w*»>Y(:) is an optimal control for the
control problem starting from (x,9) at time zero with time horizon T —t. Moreover,
Ybﬁﬁ coincides with the value function, i.e.

Yo' = J(t 2,9, 0" 50 ().

At this point we solve a nonlinear variant of the Kolmogorov equation for the
process (X, 60) by means of the BSDEs approach. The integro-differential infinitesi-
mal generator associated to the process (X, #) (which is time-homogeneous, Markov,
but not pure jump) has the form

L, 9) = Dyi(, 0)+ / (5, 0) (. )] Az, 9) Qa9 dy),  (x,9) € Ex[0,00).

K

The differential term dy does not allow to study the associated nonlinear Kolmogorov
equation proceeding as in the pure jump Markov processes framework considered in
[28]. On the other hand, the two dimensional Markov process (X5, 6s)s>0 belongs
to the larger class of piecewise deterministic Markov processes (PDMPs) introduced
by Davis in [35], and studied in the optimal control framework by several authors,
see Section [[.4] below and references therein. Taking into account the specific struc-
ture of the semi-Markov processes, we present a reformulation of the Kolmogorov
equation which allows us to consider solutions in a classical sense. Indeed, since the
second component of the process (X, 0s)s>0 is linear in s, we introduce the formal
directional derivative operator

(Dv)(t. 2, 9) 1= lim 2T+ ) —vlt, 2, 9)
T o h

9
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and we consider the following nonlinear Kolmogorov equation

Du(t,xz,9) + Lo(t,x,9) + f(t,z,9,v(t, z,9),v(t,-,0) —v(t,z,9)) =0,
tel0, T,z € E,¥e[0,00), (15)
(T, z,9) = g(x,0),

where

L, 9) = / [0(9,0) — b(z, O] Az, 9) Qa, 0. dy), (.)€ E x [0, 00).

E

We look for a solution v such that the map ¢ — v(¢, z,t 4+ ¢) is absolutely continuous
on [0,77, for all constants ¢ € [T, +00). While it is easy to prove well-posedness of
under boundedness assumptions on f and g, we show that there exists a unique
solution under much weaker conditions related to the distribution of the process
(X, 0). This is achieved by defining a formula of It type, involving the directional
derivative operator D, for the composition of the process (X, 05)s>0 with functions
v smooth enough. In conclusion we have the following result.

Theorem 3. Under suitable measurability and integrability conditions on f and g,
the nonlinear Kolmogorov equation has a unique solution v(t,z,9). Moreover,
for every fixed t € [0, T, for every (x,¥) € E x [0, o0) and s € [0, T — ],

Y3 = v(t + 5, X, 6,-), (16)
Zj,’tﬂ(y) = U(t+$,y,0) —U(t+S,X$_,95_)’ (17)

. . 9
s0 that in particular v(t,z,9) = Yy

At this point, we go back to the original control problem and we observe that
the associated Hamilton-Jacobi-Bellman equation has the form with f given by
the Hamiltonian function . Then, taking into account Theorems |2| and (3, we are
able to identify the HJB solution v(t, x, ), constructed probabilistically via BSDEs,
with the value function.

Corollary 4. Assume that Hypothesis[1 holds. Then, under suitable measurability
and integrability conditions on r, | and g, the value function coincides with v(t,z,1),
1.€.

J(t,2,9,u" b0 () = v(t,z,9) = Y.

I.3. Optimal control of pure jump processes. In Chapter [2] we study a clas-
sical finite-horizon optimal control problem for continuous-time pure jump Markov
processes. For the value function of this problem, we prove a nonlinear Feynman-Kac
formula by extending in a suitable way the control randomization method in [88].

We consider controlled pure jump Markov processes taking values in a Lusin
space (E,&). They are obtained starting from a rate measure A(x, a, B) defined for
r € E, a€ A B € &, where A is a space of control actions equipped with its o-
algebra A. These Markov processes are controlled by choosing a feedback control law,
namely a measurable function « : [0,00) X E — A, such that a(t,z) € A is the control
action selected at time ¢ if the system is in state . The controlled Markov process X
is then simply the one corresponding to the rate transition measure A(x, a(t, z), B).
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We denote by P4 the corresponding law, where t, x are the initial time and starting
point. For convenience, we base this “weak construction” on the well-posedness of
the martingale problem for multivariate (marked) point processes studied in Jacod
[75]. Indeed, on a canonical space €2, we define an E-valued random variable Fy and
a marked point process (T}, Ep)n>1 with values in E x (0, oo, with corresponding
random measure
pldtdy) =Y 1r, <o} Oz, ) (dE dy).
n>1

The process X is constructed by setting X; = E,, for every t € [T},, T, +1). Moreover,
for all s > 0 we define F5 = G5V o(Ey), where G; denotes the o-algebra generated by
the marked point process up to time ¢ > 0. Then, according to Theorem 3.6 in [75],
the law PL” is the unique probability measure on (£2, ) such that its restriction
to Fp is the Dirac measure concentrated at x, and the (F;);>o-compensator of the
measure p is the random measure (X, a(s, Xs_), dy) ds.

The value function of the corresponding control problem with finite time horizon
T > 0 is defined as:

T
V(t,x) = supEL” [/ f(s, Xs,a(s,Xs))ds+g(Xr)|, te€[0,T],zeE, (18)
a t
where E5” denotes the expectation with respect to P4*, and f,g are given real
functions, defined respectively on [0,7] x E x A and on F, and representing the

running cost and the terminal cost. We consider the case when the costs f ad g are
bounded and
sup  A(z,a, F) < oo. (19)
(z,a)EEXA
The optimal control problem is associated to the following first-order fully nonlinear
integro-differential HJB equation on [0, T x E:

_%(tv l‘) = SUDgeA (fE(U(ta y) - U(t, x)) )\(l', a, dy) =+ f(t’ z, a)) ) (20)
(T, x) = g(x).

Notice that the integral operator in the HJB equation allows for easy notions of
solutions, that avoid the use of the theory of viscosity solutions. Indeed, under
suitable measurability assumptions, a bounded function v : [0, 7] x E — R is a
solution to if the terminal condition holds, holds almost surely on [0, 77,
and t — v(t,x) is absolutely continuous in [0, T7.

For the HJB equation we present a classical result on existence and unique-
ness of the solution and the identification property with the value function V. The
compactness of the space of control actions A, usually needed to ensure the exis-
tence of an optimal control (see Pliska [108]), is not asked here. This is possible by
using a different measurable selection result requiring however lower-semicontinuity
conditions, that may be found for instance in Bertsekas and Shreve [15]. We have
the following result.

Theorem 5. Assume that \ has the Feller property and satisfies , and that f, g
are bouded and lower-semicontinuous functions. Then there exists a unique solution
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v € LSCy([0,T] x E) to the HIB equation, and it coincides with the value function
V.

At this point, in order to relate the value function V(¢,x) to an appropriate
BSDE, we implement the control randomization method in [88] in the pure jump
framework. Finding the correct formulation required some efforts; in particular we
could not mimic the works on control randomization in the diffusive framework,
where the controlled process is defined as the solution to a stochastic differential
equation.

In a first step, for any initial time ¢ > 0 and starting point x € E, we replace
(X5, a(s, Xs)) by an (uncontrolled) Markovian pair of pure jump stochastic processes
(X, I5), in such a way that the process I is a Poisson process with values in the space
of control actions A, with an intensity measure \o(db) which is arbitrary but finite
and with full support. The construction of such a pair of pure jump processes relies
on the well-posedness of the martingale problem for marked point processes recalled
before, and is obtained by assigning a rate transition measure on E X A of the form:

Ao(db) 65 (dy) + Az, a, dy) 64(db).

Next we formulate an auxiliary optimal control problem where we control the
intensity of the process I: for any predictable, bounded and positive random field
v4(b), by means of a theorem of Girsanov type we construct a probability measure
P, under which the compensator of I is the random measure v (b) Ao(db) dt (under
PL™ the law of X also changes) and then we maximize the functional

T
ELe [g(XT) i / F(s, X, 1) ds} ,
t

over all possible choices of the process v. Following the terminology of [88], this
will be called the dual control problem. Its value function, denoted V*(¢, z,a), also
depends a priori on the starting point a € A of the process I, and the family {]P’fj‘r’“} v
is a dominated model.

At this point, we can introduce a BSDE that represents V*(¢,x,a). It is an
equation on the time interval [¢t,T] of the form

T
Y;t,z,a — g(XT) + / f(?“, XT, Ir) dr + K;;x,a B Kz,x,a

T T
- / / Z5%(y, b) q(dr dy db) — / / Zp (X, b) Ao(db) dr,  (21)
s ExA s A

with unknown triple (Y4®a Zt@a H8:4) where q is the compensated random mea-
sure associated to (X,I), Z is a predictable random field and K a predictable in-
creasing cadlag process, where we additionally add the sign constraint

Zb5 (X, b) < 0. (22)

Under the previous conditions, this equation has a unique minimal solution (Y, Z, K)
in a certain class of processes, and a dual representation formula holds.
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Theorem 6. For all (t,z a) [0, T] x E x A there ezists a unique minimal solution
(Ytoa zboa gtea) 4o [21)-([22). Moreover, for all s € [t,T), Y has the explicit

representation: Pb%%-q.s.,

T
Vit = esssup B [g<XT> + / fr, Xo 1) dr
ve S

S"s] , seT]. (23

In particular, setting s = t, we have the following representation formula for the
value function of the dual control problem:

V*(t,x,a) = Y™, (t,z,a) €10,T] x E x A. (24)

The proof of this result relies on a penalization approach and a monotonic passage
to the limit. More precisely, we introduce the following family of BSDEs with jumps
indexed by n > 1 on [¢, T):

an,t,a:,a — XT / f r, XT,I )dr+Kntma Kn7t71‘a (25)

// Zb% (4 b) q(dr dy db) — //Z””“XT,b))\o(db)d
ExA

where K™% is the nondecreasing process defined by

Kntea / / 22559 (X, )] Ao(db) dr.
t A

Here [u]T denotes the positive part of u. The existence and uniqueness of a solution
(ynbwa zntra) 4o the BSDE (25) relies on a standard procedure, based on a fixed
point argument and on integral representation results for martingales. Notice that
the use of the filtration (F)¢>o introduced above is essential, since it involves appli-
cation of martingale representation theorems for multivariate point processes (see
e.g. Theorem 5.4 in [75]). The first component of this solution turns out to satisfy

ffs] | (26)

where V" denotes the subset of controls ¥ bounded by n. Since the sets V' are nested,
we have that (Y™4%@), increasingly converges to Y4 as n goes to infinity. Together
with uniform estimates on (Z™4%a K™6&:4), this allows a monotonic passage into
the limit and gives the existence of the minimal solution to the constrained BSDE
—. Finally, from , by control-theoretic considerations we also get the dual
representation formula for the minimal solution Y%@,

T
}/Sn,t,x,a — ess %up ]Eltj,m,a |:Q(XT) +/ f(r’ X, Ir) dr
vevn S

At this point, we need to relate the original optimal control problem with the
dual one.

We start by proving that the dual value function does not depend on a. To
this end, denoted v™(t,z,a) := Y;""™* and ©(t,x,a) := V*(t, z,a), we consider the

penalized HJB equation in the integral form satisfied by Y5
—0p"(t,x,a) = [ (V" (t,y,a) —v"(t,z,a)) Mz, a,dy)
+f(t,x,a +an (t,z,b) — v"(t, z,a)] T Ao (db), (27)

v'(Twa) = g(x).
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Passing to the limit in (27)) when n goes to infinity, taking into account that o is
right-continuous, we get

/ [B(t, 2, b) — B(t, 2, )] Ao (db) = 0
A

and by further arguments this finally allows to conclude that o(t, z,a) = (¢, x).

Then, going back to the penalized HJB equation and passing to the limit,
we see that ¥ is a classical supersolution of . In particular v is greater than
the unique solution to the HJB equation. By control-theoretic considerations we
also prove that v is smaller than the value function V. We conclude that the value
function of the dual optimal control problem coincides with the value function of the
original control problem.

Theorem 7. Let v be the unique solution to the Hamilton-Jacobi-Bellman equation
provided by Theorem @ Then for every (t,x,a) € [0, T] x E x A, the nonlinear
Feynman-Kac formula holds:

o(t,x) = V(t,z) =Y, ™"

In particular, the value function V' of the optimal control problem defined in
and the dual value function V* defined in coincide.

I.4. Optimal control of PDMPs. In Chapter [3|we prove that the value function
in an infinite-horizon optimal control problem for piecewise deterministic Markov
processes (PDMPs) can be represented by means of an appropriate constrained
BSDE. As in Chapter [2| this is obtained by suitably extending the control ran-
domization method in [88]. Compared to the pure jump case, the PDMPs context
is more involved and requires different techniques. In particular, the presence of the
controlled flow in the PDMP’s dynamics and the corresponding differential operator
in the HJB equation suggest to use the theory of viscosity solutions. In addition,
we consider discounted infinite-horizon optimal control problems, where the payoff
is a cost to be minimized. Such problems are very traditional for PDMPs, see e.g.
Davis [35], Costa and Dufour [32], Guo and Hérnandez-Lerma [72]; moreover the
finite-horizon case can be brought back to the infinite-horizon case by means of a
standard transformation, see Chapter 3 in [35]. The infinite-horizon character of the
optimal control problems complicates the tractation via the BSDE techniques, since
it leads to deal with BSDEs over an infinite time horizon as well.

We consider controlled PDMPs on a general measurable state space (E, €). These
processes are obtained starting from a continuous deterministic flow ¢°(t, ), (t,z) €
[0, o0) x E, depending on the choice of a function 5(t) taking values on the space
of control actions (A, A), and from a jump rate A(z,a) and a transition measure
Q(x,a,dy) on E, depending both on (x,a) € E x A. We select the control strategy
among the set of piecewise open-loop policies, i.e., measurable functions that depend
only on the last jump time and post jump position. This kind of approach is habitual
in the literature, see for instance Almudevar [1], Davis [34], Bauerle and Rieder [11],
Lenhart and Yamada [91], Dempster [40]. Roughly speaking, at each jump time 7T},,
we choose an open loop control «,, depending on the initial condition X7, to be
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used until the next jump time. A control « in this class of admissible control laws,
denoted by A,g, has the explicit form

oo
o = Zan(t_Tn7XTn>1[Tn,Tn+1)(t)7 (28)
n=1
and the controlled process X is

Xt - ¢an(t - T’naXTn)7 te [Tnv Tn+1).

For any x € E and o € Agq, PZ indicates the probability measure such that, for every
n > 1, the conditional survivor function of the jump time T),+; and the distribution
of the post jump position X, ., on {7}, < oo} are

PL(Th+1 > s|Fr,) = exp <—/ Mo (r — Tn, X1,), 00 (1 — Ty X1,)) dr> ,
]P)Z(XTvH»l € B| ‘ranv Tn+1) = Q(QS%L(TnJrl - TmXTn)aan(TnJrl - Tn7XTn)?B)'

The corresponding value function, depending on x € E, is defined as:

V(z)= inf EZ [ / ¢0s f(Xs,as)ds} (29)
a€EAqq 0
: T > —ds (o7
:a&fadﬁa/o e 1o (s—Tn,XTn),ozn(s—Tn,XTn))1[Tn7Tn+1)(s)ds],

neN

where E? indicates the expectation with respect to P%,, f is a given real function on
E x A representing the running cost, and 6 € (0, o0) is a discounting factor. We
assume that A and f are bounded functions, uniformly continuous, and @) is a Feller
stochastic kernel.

When E is an open subset of R?, and h(z,a) is a bounded Lipschitz continu-
ous function, ¢*(t,z) is defined as the unique solution of the ordinary differential
equation

z(t) = h(z(t),a(t)), =(0)=z¢€ E.

In this case, according to Davis and Farid [36], under the compactness assumption for
the space of control actions A, the value function V' is the unique continuous viscosity
solution on [0, co) X E to the fully-nonlinear, integro-differential HJB equation

dv(x) = sup <h(a?, a) - Vo(z) + Az, a)/

acA E

(v() — v(z)) Q(a.a, dy>) re B (30)

Our main goal is to represent the value function V' (z) by means of an appropriate
backward stochastic differential equation. To this end, we implement the control
randomization method in the PDMPs framework. The first step consists in replacing,
for any starting point x € F, the state trajectory and the associated control process
(Xs,as) by an uncontrolled PDMP (X, I5). The process (X, I) takes values on
E x A, and is constructed in a canonical way by assigning a new triplet of local
characteristics. The compensator corresponding to (X, I) is the random measure

p(ds dy db) = \o(db) 05 (dy) ds + Az, a) Q(z,a,dy) d,(db) ds.
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In particular, I is a Poisson process with values in the space of control actions A,
with an arbitrary intensity Ao(db) finite and with full topological support. For any
fixed starting point (z,a) in E'x A, P** denotes the unique solution to the martingale
problem for marked point processes on E x A, corresponding to p and (z,a). The
trajectories of the process X are then constructed as above, with the help of the
deterministic flow associated to the vector field h.

At this point, we define a dual control problem, where we control the intensity of
the process I. To this end, we consider the class of predictable, bounded and positive
random fields 14(b), and we construct a probability measure P,’* under which the
compensator of I is the random measure vs(db) Ao(db) ds. The dual control problem
consists then in minimizing over all admissible v the functional

J(z,a,v) = B2 Uoo e %% f(X,, I,) ds| . (31)
0

The dual value function V*(x,a) = inf,cy J(x, a,v) can be represented by means of
a BSDE over infinite horizon, of the form

T T
Y=Y -6 / Y% dr + / X, L) dr — (K7* — K1) (32)
s s

T T
- [ |z sandr - [ [ zeenardyds), 0<s<T <,
s A s ExA

with the sign constraint

ZPM(Xs—,b) = 0. (33)
Under suitable conditions, equation — has a unique maximal (not minimal
since the payoff is a cost to be minimized) solution (Y, Z, K) in a certain class of
processes, and Y admits a dual representation formula.

Theorem 8. For every (x,a) € E X A, there exists a unique mazximal solution to the
BSDE with partially nonnegative jumps —. Moreover, Y*2 has the explicit
representation:

oo
Y = ess i\r71f ED @ {/ e 0r=%) £(X,, 1)) dr’?s] , Vs>=0. (34)
ve s

In particular, setting s = 0, we have the following dual representation formula:
V¥z,a) =Yy, (x,a) € Ex A. (35)
The proof of this result relies as usual on a penalization approach and a mono-
tonic passage to the limit. However, since we deal with infinite-horizon equations, we
need to implement an additional approximating step, where we introduce a family

of penalized BSDEs depending on a finite horizon 7' > 0. More precisely, for n > 1,
we consider the following family of penalized BSDEs on [0, c0):

T T
szn,x,a _ Y;’x’a _ 5/ }/Tn,w,a dr + / f(Xr7 Ir) dr
s s

n / ' /A (209X, )]~ Ao(db) drr — / ! /A 209X, b) No(db) dr
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T
[ [ zeewmaaraga, 0<s<T <o, (36)
ExA

where [z]” = max(—z,0) denotes the negative part of z. In order to study the well-
posedness of equation , we introduce a second family of penalized BSDEs, also
parametrized by 7' > 0, and with zero final cost:

y e — 5/ YT’”C“dr+/ f(Xo, 1) dr
—n/ /ZT”“XT,b)] Ao (db) dr
— / / ZImea( X b) Ao(db) dr
s A

T
[ [ Zreegnaaragan, o<s< (37)
ExA

The existence of a unique solution (YT’”, Z T’”) to (37) is a well known fact, and relies
as usual on fixed point arguments. We prove that the sequence (YT)T>0 converges
P*%a.s. to some process Y, uniformly on compact subsets of R, and that, for any
S > 0, the sequence (Z™7T o, S])T>S converges to some process Z ”\[07 s] in a suitable
sense. This allows to pass to the limit in , and, the time S being arbitrary, to
conclude that (Y™, Z™) is the unique solution to . The process Y satisfies the
dual representation formula:

Y»*% = essinf E¢ [/ e (=9 f(X,, I,) dr

veyn

S] , 8§20, (38)

where V" denotes the subset of controls ¥ bounded by n.

By we see that (Y™), increasingly converges to Y as n goes to infinity.
Moreover we provide uniform estimates on (Z"[jy g, K"|jp, )n for every S > 0.
Then we monotonically pass into the limit in and we get the existence of the
(unique) maximal solution (Y, Z, K) to the constrained BSDE (32))-(33), for which
we also prove the dual representation formula ([34)).

Finally, we show that the maximal solution to — at the initial time also
provides a Feynman-Kac representation of the value function of our original
optimal control problem for PDMPs. To this end we introduce the deterministic
real function on £ x A

v(z,a) = Y5 (39)
We have the following result.
Theorem 9. The function v in does not depend on the variable a:
v(z,a) =v(z,d'), Va,d €A,
for all x € E. Let us define
v(x) =v(z,a), VreE,
for any a € A. Then v is a viscosity solution to .



Introduction 17

Notice that the concept of viscosity solution we use does not require continuity
properties; this is usually called discontinuous viscosity solution.

The fact that the function v in is independent on its last component (which
is a consequence of the A-nonnegative constrained jumps) has a key role in the
derivation of the viscosity solution properties of v, and the proof of this feature
constitutes a relevant task. Differently from [88] and the related papers in the
diffusive context, this is obtained exclusively by means of control-theoretic techniques
and relies on the identification formula . By avoiding the use of viscosity theory
tools, no additional hypothesis is required on the space of controls A, which can
therefore be very general. The non-dependence of v on a is a consequence of the
following result.

Proposition 10. Fiz z € E, a,a’ € A, and v € V. Then, there exists a sequence
(v%)e €V such that

lim J(x,d,v°) = J(x,a,v). (40)
e—0t
Indeed identity implies that V*(z,a’) < J(z,a,v), foreveryx € E, a,d’ € A.
By the arbitrariness of v it follows that

V*(z,d) < V*(z,a)

and, exchanging the roles of a and o', this allows to conclude that V*(z,a) = v(z, a)
does not depend on a.

Once we get that V* (and therefore v) does not depend on a, we show that it
actually provides a viscosity solution to the HJB equation . Differently to the
previous literature, we give a direct proof of the viscosity solution property of v,
which avoid to resort to a penalized HJB equation. This is achieved by generalizing
to the setting of the dual control problem the classical proof that allows to derive
the HJB equation from the dynamic programming principle. As a preliminary step,
we need to give an identification result of the following form.

Lemma 11. The function v is such that, for any (z,a) € E x A, we have

Yot = 0(X,, 1), 520 dPT@ds -ace. (1)

Identification is proved by showing an analogous result for Y, and using
the convergence of Y™ to Y provided in Theorem This result follows from the
Markov property of the state process (X, I), and relies on an iterative construction
of the solution of standard BSDEs inspired by El Karoui, Peng and Quenez [53].

Finally, to conclude that v(z) actually gives the unique solution to the HJB
equation we need to use a comparison theorem for viscosity sub and supersolutions
to the equation . Under an additional assumption on A and @ (see condition
(HAQ?)), and the compactness of A, the above mentioned comparison theorem
insures that v is the unique viscosity solution to , which coincides therefore to
the value function V. This yields in particular the nonlinear Feynman-Kac formula
for V', as well as the equality between the value functions of the primal and the dual
control problems.



18 Introduction

Corollary 12. Assume that A is compact, and that Hypothesis (HAQ?) holds. Then
the value function V' of the optimal control problem defined in (29) admits the non-
linear Feynman-Kac representation formula:

V(z) =Y, (z,a) € ExA.

Moreover, V(x) = V*(z,a).

II. BSDEs driven by general random measures, possibly non
quasi-left continuous

As we have already mentioned, BSDEs with discontinuous driving terms have
been considered by many authors, among which Barles, Buckdahn and Pardoux [10],
El Karoui and Huang [50], Xia [131], Becherer [12], Carbone, Ferrario, Santacroce
[22], Cohen and Elliott [26], Jeanblanc, Mania, Santacroce and Schweizer [80], Con-
fortola, Fuhrman and Jacod [29]. In all the papers cited above, and more generally
in the literature on BSDEs, the generator of the backward stochastic differential
equation, usually denoted by f, is integrated with respect to a measure dA, where
A is a nondecreasing continuous (or deterministic and right-continuous as in [26])
process. In Chapter [4) we provide an existence and uniqueness result for the general
case, i.e. when A is a right-continuous nondecreasing predictable process..

More precisely, consider a finite horizon 7' > 0, a Lusin space (£, €) and a filtered
probability space (2, F, (Ft)i>0,P), with (F;)s>0 right continuous. We denote by P
the predictable o-field on 2 x [0, T]. In Chapter [4| we study the backward stochastic
differential equation

Y; =&+ f(s,Ys_,Zs(-))dAS—/ / Zs(x) (n—v)(ds,dz), 0<t<T, (42)
(t,7] tT)JE

where p is an integer valued random measure on R x F with compensator v(dt, dz) =
dAs ¢i(dx), with A a right-continuous nondecreasing predictable process such that
Ap =0, and ¢ is a transition probability from (Q x [0, T], P) into (E, £). We suppose,
without loss of generality, that v satisfies v({t} xdz) < 1 identically, so that AA; < 1.

For such general BSDE the existence and uniqueness results were at disposal
only in particular frameworks, see e.g. [26] for the deterministic case, and counter-
examples were provided in the general case, see Section 4.3 in [29]. For this reason,
the existence and uniqueness result is not a trivial extension of known results, and
we have to impose an additional technical assumption, which is of course violated
by the counter-example presented in [29].

Let us give some definitions. For any § > 0, &° denotes the Doléans-Dade
exponential of the process SA, namely

&) = M T (1+BAaA)e P22 (43)
0<s<t
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By H%(O,T) we indicate the set of pairs (Y, Z) such that Y: Q x [0,7] — R is an
adapted cadlag process satisfying

Y2 = E 8y, 12dA 44
V12, o = E| [, e ] <o (1)

and Z: Q x [0,7] x E — R is a predictable random field satisfying

2 — B AL
12062 ,0) = E[/(QT] Et/E]Zt(m)—Zt| v(dt, dz)
+ Y Ef|Zt|2(1—AAt)} < oo, (45)

0<t<T

where

Zy = /EZt(SC) v({t} x dz), 0<t<T.

Definition 13. A solution to equation with data (8,¢, f) is a pair (Y, Z) €
H% (0,T) satisfying equation . We say that equation admits a unique solu-
tion if, given two solutions (Y, Z),(Y',Z’) € H%(O,T), we have (Y, Z) = (Y',Z') in
H3(0,7).

Notice that, given a solution (Y, Z) to equation with data (8,¢, f), the
process (Z197(t))i=0 belongs to the space §2(y) introduced in Jacod’s book [77].
In particular, the stochastic integral f(th] J5 Zs(x) (1 — v)(ds,dx) in is well-
defined, and the process M; := f(O,t] J5 Zs(x) (1 — v)(ds,dz), t € [0,T], is a square
integrable martingale.

Suitable measurability and integrability conditions are imposed on £ and on f,
and f is also asked to verify a uniform Lipschitz condition of the form:

|f(w,t, 9, ¢") = fw, t,y,0)] < Lyly' —y

2
+LZ< /E ('(z) = ((z) = AAi(w) /E (€'(2) = C(2)) bup(dz)| Gui(dz)

2\ 1/2
+AL() (1= Aw) | [ (@) = ¢(@) dusldo) ) 7 (46)

for some L, L, > 0. As usual, in order to prove the well-posedness of the BSDE ({42))
we give a preliminary result, where the existence and uniqueness of the equation is
provided where f does not depend on (y, ().

Lemma 14. Consider a triple (3,€, f) and suppose that f = f(w,t) does not depend
on (y,C). Then, there exists a unique solution (Y,Z) € H%(O,T) to equation
with data (B,€, ). Moreover, the following identity holds:

E[e] [vi|?] + BE[/( &5 (14 BAA,)™" rYS_PdAS]

t,T)
+EU ef/ |Zy(w) — Zs|* v(ds, do) + 55\28}2(1—AA8)]
(t,T) E

t<s<T
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— Elef i)+ 28] [ etV faa) -5 ¥ elInPaAL] 4

(th} t<s<T
for all t € [0,T].

The proof of Lemma is based on the martingale representation theorem for
marked point processes given in [75]. In order to prove the existence and uniqueness
results we take into account that M; := f(t 1] J5 Zs(y) (n — v)(dsdy) is a square

integrable martingale if and only if Z € G2 (), and that

512 512
(M, M)y = / / Zu(@) — 2 v(dtdz) + Y |22 (1 - A4y,
017/ E 0<t<T
see Theorem [B.22). Properties of the Doléans-Dade exponential &7 are also ex-
ploited, in particular we use that deb = B 85, dA, and that 85, =& (1+BAA)™L.

Identity plays a fundamental role to get our main result, which reads as
follows.

Theorem 15. Suppose that there exists € € (0,1) such that
2L [AA < 1—c¢, P-a.s., Vt € [0,T). (48)
Then there exists a unique solution (Y,Z) € H%(O,T) to equation with data
(8,&, f), for every B such that
B> B P-as., Vtel0,T),

where (Bt)te[O,T] s a strictly positive predictable process depending only on e, AA,
L. and L.

The proof of Theorem [15|is based on Lemma, and is quite technical. Notice
that in [26] the same condition is imposed. As mentioned earlier, in that paper
the authors study a class of BSDEs with a generator f integrated with respect to
a deterministic (rather than predictable) right-continuous nondecreasing process A,
and provide an existence and uniqueness result for this class of BSDEs. However, the
proof in [26] relies heavily on the assumption that A is deterministic, and can not be
extended to the case where A is predictable, which therefore requires a completely
different procedure.

II.1. Motivation and future applications. The results in Theorem [I5] could
be employed to solve, by means of the BSDEs theory, optimal control problems of
PDMPs on state spaces with boundary. We recall that the BSDEs approach to
optimal control for PDMPs is implemented in Chapter [3] by means of the control
randomization method. However, in that chapter only the case of PDMPs taking
values in open state spaces is considered. Indeed in those cases the compensator
v(dsdy) = dAs ¢i(dy) of the random measure associated to the PDMP is quasi-
left continuous, and a fairly complete theory was developed in the literature for
BSDEs driven by such random measures. On the contrary, PDMP’s jumps at the
boundary of the domain correspond to predictable discontinuities for the process A.
BSDEs driven by random measures of this type belong to the class of equations (42))
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mentioned before, for which, to our knowledge, Theorem constitutes the only
general well-posedness result at disposal in literature.

More precisely, consider a PDMP X on a general state space E with boundary
OF. The jump dynamics of X in the interior of the domain is described by the
transition probability measure @) : Ex& — E and the jump rate measure A : F — R4
introduced in Chapter [3] In addition, a forced jump occurs every time the process
reaches the active boundary I' € OF (for the precise definition of I' see page 61 in
[35]). In this case, the process immediately jumps back to the interior of the domain
accordingly to a transition probability measure R : OF x € — E. The compensator
of the integer-valued random measure associated to X then admits the form

B(ds dy) = M(X,_) Q(X,_, dy) ds + R(X,_,dy) dp},

where
oo
Py = Z Lis>my Lixq, _ery
n=1

is the process counting the number of jumps of X from the active boundary I' € OF.
In particular, the compensator can be rewritten as

ﬁ(dS dy) = dAS ¢(XS—7 dy)a
where ¢(Xs—, dy) = Q(Xs—,dy) Lix,_epy + R(Xs-.dy) 1(x,_er}, and
As = MNXs-) ds + dp;,

is a predictable and discontinuous process, with jumps AAs = 17x, ry-

In this context condition in Theorem 15| reads

1

V2
This is the only additional condition required in order to have a unique solution to
a BSDE of the form driven by the random measure associated to a PDMP. In
particular, Theorem does not impose any condition on L., i.e. on the Lipschitz
constant of f with respect to its last argument. This is particularly important in the
study of control problems related to PDMPs by means of BSDEs methods: in this
case indeed L, = 0 and condition is automatically satisfied. This fact opens to
the possibility of extending the control randomization method developed in Chapter

also in the case of optimal control of PDMPs with bounded domain. This will be
the subject of a future work.

L, < (49)

ITI. Weak Dirichlet processes and BSDEs driven by a random
measure

ITI.1. State of the art. Stochastic calculus via regularization was essentially known
in the case of continuous integrators X, see e.g. Russo and Vallois [116], [117]. A
survey on basic elements of the calculus, can be found in Russo and Vallois [121];
it applies mainly in the case when X is not a semimartigale. In the framework of
calculus via regularizations, a complete theory has been developed. In particular
stochastic differential equations were studied, Ito6 formulae for processes with finite
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quadratic (and more general) variations were provided. In Flandoli and Russo [63]
were given [to-Wentzell type formulae, and generalizations to the case of Banach
space type integrators are considered for instance in Di Girolami and Russo [44].
The notion of covariation [X, Y] (resp. quadratic variation [X, X]) for two processes
X,Y (resp. a process X) has been introduced in the framework of regularizations
(see Russo and Vallois [119]) and of discretization as well (see Follmer [66]). For
instance, if X is a finite quadratic variation continuous process, an It6 formula has
been proved for the expansion of F(X;), when F € C?, see [119]. When F is of class
C! and X a reversible semimartingale, an It6 expansion was established in Russo
and Vallois [120]. An important notion in calculus via regularizations is the one of
Dirichlet process (with respect to a given filtration (¥;)). The notion of Dirichlet
process is a generalization of the concept of semimartingale, and was introduced by
[66] and Bertoin [14] in the discretization framework. The analogue of the Doob-
Meyer decomposition for a Dirichlet process is that it is the sum of a local martingale
M and an adapted process A with zero quadratic variation. Here A is the general-
ization of a bounded variation process. The concept of (F;)-weak Dirichlet process
(or simply weak Dirichlet process) was later introduced in Errami and Russo [58]
and Gozzi and Russo [71] and applications to stochastic control were considered in
Gozzi and Russo [70]. Such a process is defined as the sum of a local martingale M
and an adapted (F;)-orthogonal process A, in the sense that [A, N] = 0 for every
continuous local martingale N. An (F;)-weak Dirichlet process constitutes a natural
generalization of the notion of the one of (J;)-Dirichlet process. An useful chain rule
was established for F(¢, X;) when F belongs to class C%! and X is a weak Dirichlet
process (with finite quadratic variation), see [T1]. Such a process is indeed again a
weak Dirichlet process (with possibly no finite quadratic variation).

As far as calculus via regularizations when X is a cadlag integrator process only a
few steps were done: we refer in particular to [119], Russo and Vallois [118], and the
book of Di Nunno, @Oksendal and Proske [45], see Chapter 15 and references therein.
For instance no Ito type formulae have been established and in the discretization
framework only few chain rule results are available for F'(X), when F(X) is not a
semimartingale. In that direction two peculiar results are available: the expansion
of F(X;) when X is a reversible semimartingale and F is of class C! with some
Holder conditions on the derivatives (see Errami, Russo and Vallois [59]) and a
chain rule for F(X;) when X is a weak Dirichlet (cadlag) process and F' is of class
C1, see Coquet, Jakubowsky, Mémin and Slominsky [30]. The work in [59] has
been continued by several authors, see e.g. Eisenbaum [47] and references therein,
expanding the remainder making use of local time type processes.

In fact, the notion of (F;)-Dirichlet process does not fit to the framework of cal-
culus with respect to jump processes. Indeed, requiring a process A to be of zero
quadratic variation imposes that A is continuous. On the other hand, a bounded
variation process with jumps has a non zero finite quadratic variation, so the general-
ization of the semimartingale is not necessarily represented by the notion of Dirichlet
process. The property of weak Dirichlet process turns out to be a correct general-
ization of the one of semimartingale in the discontinuous framework. This concept



Introduction 23

was extended to the case of jumps processes in the significant work [30], by using
the discretizations techniques.

ITI.2. Stochastic calculus via regularization and weak Dirichlet processes
with jumps. In Chapter [5] we extend, in a systematic way, stochastic calculus via
regularizations to the case of jump processes, and we carry on the investigations of
the so called weak Dirichlet processes in the discontinuous case.

The first basic objective consists in developing a calculus via regularization in
the case of finite quadratic variation cadlag processes. To this end, we revisit the
definitions given by [119] concerning forward integrals (resp. covariations). Let X
and Y be two cadlag processes. The stochastic integral fo Y, d~ X and the covari-
ation [Y, X| are defined as the uniform convergence in probability (u.c.p.) limit of
the expressions

X((s+e)At)— X(s)

I P, t,Y,dX) = Y (s) ds, (50)
(0,1 ¢
s [ OO YOIX A0 =X6)
(0,4] €

That convergence ensures that the limiting objects are cadlag, since the approxi-
mating expressions have the same property. For instance a cadlag process X will be
called finite quadratic variation process whenever the limit (which will be denoted
by [X, X]) of

[X, X]gcp(t) e / (X((S + 8) A t) - X(S))Q ds (52)

(0,1] €

exists u.c.p. In [119], the authors introduced a slightly different approximation of
[X, X] when X is continuous, namely

C.(X, X)(¢) ::/ (X5 +) = X()* ;o (53)

(0,1 €

When the u.c.p. limit of C.(X, X) exists, it is automatically a continuous process,
since the approximating processes are continuous. For this reason, when X is a jump
process, the choice of approximation would not be suitable, since its quadratic
variation is expected to be a jump process. In that case, the u.c.p. convergence of
can be shown to be equivalent with a notion of convergence which is associated
with the a.s. convergence (up to subsequences) in measure of C.(X, X)(t) dt. Both
formulations will be used in the development of the calculus.

For a cadlag finite quadratic variation process X, we establish, via regularization
techniques, an It6 formula for C'%? functions of X of the following form.

Proposition 16. Let X be a finite quadratic variation cadlag process and F : [0, T x
R — R a function of class C%2. Then

t t
F(t, Xy) —F(O,X0)+/ 8SF(3,XS)ds+/ O, F (s, X)d™ X,
0 0
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/ ) d[X, X

Y1 F(s,Xo-) = 0o F (s, Xoo) A X.]. (54)

s<t

From Proposition will easily follow an Itd6 formula under weaker regularity
conditions on F'. Notice that a similar formula was stated in [59], using a discretiza-
tion definition of the covariation, when F' is time-homogeneous.

Proposition 17. Let F : [0, T] x R — R be a function of class C' such that 0, F is
Hélder continuous with respect to the second variable for some X € [0, 1). Let (X3)
be a reversible semimartingale, satisfying

Z IAX 1T <00 as.

0<s<t
Then

t t
F(t,Xt):F(O,XO)—I—/ 83F(3,Xs)ds—|—/ 8$F(3,XS,)dXS+%[&TF(-,X), X1,
0 0

+ J(F, X)(t),
where
JEX)H =3 [F(&XS) e x, ) X —I;amF(s,Xs_) AXL
0<s<t

The proof of Proposition is based on an accurate separation between the
neighborhood of ”big” and ”small” jumps, where specific tools are used. To this
end, a fundamental role is played by the two following lemmata, the second one
based on Lemma 1, Chapter 3, in Billingsley [16].

Lemma 18. Let Y; be a cadlag function with values in R™. Let ¢ : R x R” — R
be a uniformly continuos function on each compact, such that ¢(y,y) = 0 for every
yeR™ Let 0 <t <ta < ... <ty <T. We have

N

N .
1 7
Zg/t Lo, 5 (t) (Y(t4e)nss Y1) dtH—? 21]0 o (ti) o(Ye;, Ve, ), (55)

uniformly in s € [0, T.

Lemma 19. Let X be a cadlag (caglad) real process. Let v > 0, to, t1 € R and
I = [to, t1] be a subinterval of [0, T'] such that
IAX; > <~% Vtel. (56)
Then there is eg > 0 such that
sup | X, — Xi| < 3v.

a,tel
la—t|<eg

Another significant tool for our scopes is a Lemma of Dini type in the case of
cadlag functions, which reads as follows.
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Lemma 20. Let (G, n € N) be a sequence of continuous increasing functions, let
G (resp. F) from [0, T] to R be a cadlag (resp. continuous) function. We set
F, = G, + G and suppose that F,, — F pointwise. Then

limsup sup |F,(s)— F(s)] <2 sup |G(s)|.
n—oo  sel0,T] s€[0, T

The second target of the chapter consists in investigating weak Dirichlet jump
processes. Contrarily to the continuous case, the decomposition X = M + A is
generally not unique. We introduce the notion of a special weak Dirichlet process
with respect to some filtration (F). Such a process is a weak Dirichlet process
admitting a decomposition

X =M+ M+ A, (57)

where M€ is a continuous local martingale, M is a purely discontinuous local martin-
gale, and A is an (F)-orthogonal, predictable process. Supposing that Ay = Mg’ =0,
the decomposition is unique. In that case the decomposition will be called
the canonical decomposition of X. We remark that a continuous weak Dirichlet
process is special weak Dirichlet.

In the sequel we will denote by X the jump measure associated to X, and by vX
its compensator. We will also indicate by D““? the set of all adapted cadlag processes
equipped with the topology of the uniform convergence in probability (u.c.p.), by
A (resp Ajoc) the collection of all adapted processes with integrable variation (resp.
with locally integrable variation), and by A1 (resp Ag .) the collection of all adapted
integrable increasing (resp. adapted locally integrable) processes.

We start by giving an expansion of F(t, X;) where F is of class C%! and X is
a cadlag weak Dirichlet process of finite quadratic variation. The process (F(t, X¢))
turns out to be again a weak Dirichlet process, however not necessarily of finite
quadratic variation.

Theorem 21. Let X = M + A be a cadlag weak Dirichlet process of finite quadratic
variation. Then, for every F : [0,T] x R — R of class C%!, we have

t
F(t, X,) = F(0, Xo) + / 0, F (s, X, ) dM, (58)
0
+ / (F(s, Xoo + ) = F(s, X)) Lja<1y (0 — v (ds do)
(0, xR
- / 10 F (s, Xs-) Lyjz<1} (X — v%)(ds dx)
(0,t] xR N
+ / (F(S,XS_ + (L’) — F(S,XS_) — :L'axF(S,XS_)) 1{\x\>1} IU,X(CZS dl’) + FF(t),
(0,¢]xR

where TF : CO1 — DUP js q continuous linear map, such that, for every F € CO,
it fulfills the following properties.

(a) [I'F,N] =0 for every N continuous local martingale.
(b) If A is predictable, then 'Y is predictable.
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Starting from Theorem [2I] we are able to provide an analogous chain rule when
X and (F(t,X;)) are both special weak Dirichlet processes. This constitutes our
main result. We make use of the following conditions.

(59)

loc?

/( ] ’F(t,Xt_ + .’L') - F(t, Xt_) - x@mF(t,Xt_)] 1{|x‘>1} IUX(dt d.ilf) S .A+
0, xR

J o o ¥ ) < A7 (60)
X

Theorem 22. Let X be a special weak Dirichlet process of finite quadratic variation
with its canonical decomposition X = M€ + M% + A. Assume that condition
holds. Then, for every F :[0,T] x R — R of class C%', we have

(1) Y, = F(t, Xy) is a special weak Dirichlet process, with decomposition Y =
MY + AF | where

t
MF :F(O,X0)+/ O F (s, Xs) d(M€ 4+ M%),
0

+/ (F(s,Xs +x)— F(s,Xs_) — 20, F(s,Xs_)) (1 —v™)(ds dx),
(0,¢]xR

and AT : €Ol — D%P js q linear map such that, for every F € C%1, AF js
a predictable (F;)-orthogonal process.

(2) If in addition condition holds, M reduces to

t
M} = F(0, Xo) +/O 0. F (s, X) dM¢
+ / (F(s, X +2) — F(s, Xs_)) (45 — v5)(ds dx).
(0,¢]xR

We remark that a first important step in this sense was done in [30], where X
belongs to a bit different class of special weak Dirichlet jump processes (of finite
energy) and F' does not depend on time and has bounded derivative. In [30] the
authors show that F'(X) is again a special weak Dirichlet process. There the un-
derlying process has finite energy, which requires a control of the expectation of the
approximating sequences of the quadratic variation. On the other hand, our tech-
niques do not require that type of control. Moreover, the integrability condition
that we ask on F'(t, X;) in order to get the chain rule in Theorem [22|is automatically
verified under the hypothesis on the first-order derivative considered in [30].

In some circumstances a chain rule may hold even when F' is only continuous if
we know a priori some information of (F'(¢, X;)). No assumption are required in this
case on the cadlag process X.

Proposition 23. Let X be an adapted cadlag process. Let F : [0,T] x R — R be a
continuous function such that the following holds.

(i) F(t,X;) = By + A}, where B has bounded variation and A’ is a continuous
(F¢)-orthogonal process;

(ii) f(O,~]><]R‘F<8’XS_ +x) — F(s, X )| X (dsdx) € A;f

loc*
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Then F(t, Xy) is a special weak Dirichlet process with decomposition

F(t,X;) = F(0, Xp) +/ (F(s,Xo_+x)—F(s, Xs_)) (u* —v5)(dsdx) + AT (1),

(0,t]xR
(61)
where AY is a predictable (F;)-orthogonal process.

Finally, we also introduce a subclass of weak Dirichlet processes, called partic-
ular. A particular weak Dirichlet process X admits a decomposition X = M + A,
where M is an (;)-local martingale, and A =V + A’, with V' a bounded variation
adapted process and A’ a continuous adapted process (F;)-orthogonal process such
that A{, = 0. Those processes inherit some of the semimartingales features: as in
the semimartingale case, the particular weak Dirichlet processes admit a (unique)
canonical decomposition when f(O,-]xR 2] 1{|g>1) #(dtdz) € A;f . and an integral

representation holds. Under that condition, those particular processes are indeed
special weak Dirichlet processes.

ITI1.3. Application to BSDEs driven by a random measure. In Chapter [6]
we apply the stochastic calculus developed in Chapter [5, and we provide an identifi-
cation result for the solution of a forward backward stochastic differential equation
driven by a random measure, when the underlying process X is of weak Dirichlet
type. Indeed, given a solution (Y, Z,U) to this forward BSDE, often Y appears to
be of the type u(t, Xy) where u is a deterministic function; by using the stochastic
calculus with respect to weak Dirichlet processes, we are able to identify also Z and
U in terms of u.

More precisely, fix a finite time horizon T > 0 and let (2, &, (F¢)¢>0, P) be a given
filtered probability space, where (F;);>¢ satisfies the usual conditions. We will focus
on general BSDEs of the type

Yi— ¢+ / (s, Yoo, Z,)dCs + / F(s, e Yau, Us(e)) A(ds de)
(¢, 17 (¢, TIxR

— / ZsdMg — Us(e) (u —v)(dsde). (62)
(t,T) (t, T]xR

Here p is a random measure on [0, 7] x R with compensator v. Besides p and v
appear three driving random elements: a continuous martingale M, a non-decreasing
adapted continuous process ¢, and a predictable random measure A on [0,7] x R,
equipped with the usual product o-fields. The other data of equation are a
square integrable random variable £, and two measurable functions g : © x [0,7] x
RZ SR, f:Qx[0,T] xR® = R.

The Brownian context of Pardoux-Peng [99] appears as a particular case, setting
uw=A=0, (s =s. There M is a standard Brownian motion and ¢ is measurable
with respect to the Brownian o-field at terminal time. In that case the unknown
can be reduced to (Y, Z), since U can be arbitrarily chosen. Another important
subcase of arises when only the purely discontinuous driving term appears,
i.e. M and ( vanish. A significant example is represented by BSDEs driven by the
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random measure associated to a pure jump process, as in Chapter[2], or to a piecewise
deterministic Markov process, as in Chapter [3]

When the random dependence of f and ¢ is provided by a Markov solution X of
a forward SDE, and £ is a real function of X at the terminal time T', equation
becomes a forward BSDE. As we have recalled in Section [} this generally constitutes
a stochastic representation of a partial integro-differential equation (PIDE). Indeed,
solutions of forward BSDEs generate solutions of PIDEs in the viscosity sense. More
precisely, for each given couple (¢,z) € [0, T] X R, consider an underlying process X
given by the solution X% of an SDE starting at z at time t. Let (Y4 Z6 UH®)
be a family of solutions of the forward BSDE. In that case, under reasonable general
assumptions, the function v(t,x) := Y;t’z is a viscosity solution of the related PIDE.
A demanding task consists in characterizing the pair (Z,U) := (Z%*,U%*), in term of
v; this is generally called the identification problem of (Z,U). In the continuous case,
this was for instance the object of Fuhrman and Tessitore [68]: the authors show
that if v € C%!, then Z, = 9,v(s, X,); under more general assumptions, they also
associate Z with a generalized gradient of v. At our knowledge, in the discontinuous
case, the problem of the identification of the martingale integrands pair (Z,U) has
not been deeply investigated, except for particular situations, as for instance the
purely discontinuous case treated in Confortola and Fuhrman [28].

In Chapter [6] we discuss the mentioned identification problem in a quite general
framework by means of the calculus related to weak Dirichlet processes. When Y is
a deterministic function v of a special semimartingale X (or more generally a special
weak Dirichlet process with finite quadratic variation), related in a specific way to
the random measure p, we apply the chain rule in Theorem [22]in order to identify
the pair (Z,U).

We fix an integer-valued random measure p on [0, 7] X R, with compensator v.
We suppose, without loss of generality, that v satisfies v({t} x dx) < 1 identically.
We set

D = {(w,t) : p(w,{t} x R) > 0},
J ={(w,t) : v(w,{t} x R) > 0},
K ={(w,t) : v(w, {t} x R) = 1}.
We will ask the following condition on .
Hypothesis 24.

(i) D = K U (U,[[T]]) up to an evanescent set, where (T7),, are totally inac-
cessible times such that [T¢]] N [[T%]] = 0, n # m.
(ii) For every predictable time S such that [[S]] C K, v({S},de) = pu({S}, de)

a.s.

With respect to a generic process X, we will consider the following assumption
in relation to u.

Hypothesis 25. X = X’ + XP, where X? is a cadlag predictable process satisfying
{AXP #0} C J, and X' is a cadlag quasi-left continuous adapted process satisfying
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{AX?# 0} C D. Moreover, there exists a predictable measurable map 7 : 2x]0, T]x
R — R such that

AX} (w) Lo, 7 (t) = Y(w,t,-)  dPpu(ds,de)-a.e. (63)
The hypothesis below will concern a pair of processes (X,Y).

Hypothesis 26. X is a special weak Dirichlet process of finite quadratic variation,
satisfying condition (60)). Y; = v(t, X;) for some (deterministic) function v : [0, 7] x
R — R of class C%! such that F' = v and X verify condition .

We have the following result.

Proposition 27. Let p satisfy Hypothesis[24 Let X be a process verifying Hypoth-
esis E 25 with decomposition X = X' + XP, where 7 is the predictable process which
relates i and X' in agreement with ( . Let (Y, Z,U) be a solution to the BSDE
such that the pair (X,Y) satisfies Hypothesis with corresponding function
v. Let X¢ denote the continuous local martingale M€ of X given in the canonical
decomposition (57). If Us — (v(s, Xs— +7(s,-)) — v(s, Xs_)) € G2 (1), then the pair
(Z,U) fulfills

d(X¢ M)

d(M)s

Us — (v(s, Xs— +7(s,)) —v(s,Xs-)) =ls1x(s) dPv(dsde)-ae., (65)

where | is a predictable process.

Zs = 0yv(s, Xs) dP d{M)s-a.e., (64)

In the purely discontinuous framework, i.e. when in the BSDE M and ¢
vanish, we make use of the chain rule in Proposition which allows, for a
general cadlag process X, to express v(t, X;) without requiring any differentiability
on v. In particular Proposition does not ask X to be a special weak Dirichlet
process, provided we have some a priori information on the structure of v(t, X;). We
need the following condition on a pair of processes (X,Y).

Hypothesis 28.
(i) Y = B+ A, with B a bounded variation process and A’ a continuous
(F¢)-orthogonal process;

(ii) Y; = v(t, X;) for some continuous deterministic function v : [0,7] x R — R,
satisfying the integrability condition

/( | l(t, Xo— + ) — v(t, X )| p™ (dt dz) € A, (66)
0, ]xR

The identification in that case reads as follows.

Proposition 29. Let u satisfy Hypothesis [2f Let X wverify Hypothesis with
decomposition X = X + XP, where 7 is the predictable process which relates ji and
X' in agreement with (63)). Let (Y,U) be a solution to the BSDE with M =0
and ¢ = 0, such that (X,Y) satisfies Hypothesis with corresponding function v.
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If in addition Us — (v(s, Xs— + 7(s,)) — v(s, X)) € G2.(n), then there exists a
predictable process ls such that

Us — (v(s, Xs— +7(s,7)) —v(s,Xs-)) = s 1x(s) dPv(dsde)-a.e. (67)

We remark that in most of the literature on BSDEs, the measures v, A and (
of equation are non-atomic in time. As we have underlined in Chapter 4l a
challenging case arises when one or more of those predictable processes have jumps
in time. Our approach to the identification problem also applies to forward BSDEs
presenting predictable jumps. As an example, we provide an identification result for
a BSDE driven by the random measure p associated to a PDMP taking values in a
bounded real interval.

Further remarks and future developments of the thesis

We take the occasion to emphasize that every proof reported in the thesis is new;
on the other hand, when a known result is needed, we give references to where a
proof can be found. We also underline that Chapter [1|is based on Bandini and
Confortola [4], Chapter [2on Bandini and Fuhrman [7], Chapter [3]on Bandini [3],
Chapter @] on Bandini [2], Chapters [5| and @ respectively on Bandini and Russo
[9] and [8].

Some challenging issues arising in this work are left for future research. First of
all, as recalled in Section our existence and uniqueness result for BSDEs driven
by general, possibly non quasi-left continuous, random measures opens to the pos-
sibility of studying optimal control problems for PDMPs with bounded state spaces
by means of BSDEs techniques. This could allow to provide nonlinear Feynman-
Kac representation formulae for the value functions of those control problems. In
particular, combining ideas from Chapters [3| and 4] it might turn out that the value
function of the optimal control problem of a PDMP with a bounded state space solves
a backward stochastic differential equation with constrained jumps. Notice that it
would be interesting to apply to this context the identification results obtained in
Chapter [6] which are already conceived for BSDEs driven by random measures with
possible predictable jumps. Another challenging development might consist in ex-
tending the results obtained in Chapter 2| to a non-Markovian pure jump framework.
Optimal control problems for non-Markovian stochastic differential equations driven
by a Brownian motion have been recently studied with the BSDEs techniques by
means of the control randomization approach, see Fuhrman and Pham [67]. In this
context the constrained BSDE characterizing the value function can be seen as a
path-dependent version of the HJB equation. Notice that the control randomization
method does not rely on the path-dependent HJB equation associated by dynamic
programming principle to the value function in the non-Markovian context. This
allows to circumvent delicate issues of dynamic programming (as originally studied
in El Karoui [49] for general non-Markovian stochastic control problems), viscosity
solutions and comparison principles for fully nonlinear path-dependent PDEs, as re-
cently studied in Peng [106], Ekren, Keller, Touzi and Zhang [48] and Tang and
Zhang [127], see also Fabbri, Gozzi and Swiech [61] for HJB equations in infinite
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dimension arising typically for stochastic systems with delays. This suggests in par-
ticular an original approach to derive the HJB equation for the value function of
stochastic control problem from the BSDE representation, hence without dynamic
programming principle. The generalization of these results to the jump case has not
yet been investigated, and could be obtained by mixing the methodology in [67] with
the specific theory for optimal control of pure jump processes developed in Chapter
Finally, we emphasize that the chain rule type expansions provided in Chapter
may be helpful to get verification theorems for stochastic optimal control prob-
lems of general jump processes. In the diffusive context, this was done in Gozzi and
Russo [70] which treated optimal control problems of continuous processes without
control in the diffusion. Those verification theorems have the advantage of requiring
less regularity of the value function than the classical ones, which need instead C!
regularity in time and C? in space (see e.g. Fleming and Soner [65]), and they can
be applied also to problems with pathwise optimality and optimality in probabil-
ity. It would be also judicious to generalize our results of Chapters [5| and [6] to the
case of path-dependent cadlag processes. In the case of path-dependent continuous
processes, a first step for extending the chain rules of Chapter |5 was done in [43].






Chapter 1

Optimal control of
semi-Markov processes
with a BSDE approach

1.1. Introduction

In this chapter we study optimal control problems for a class of semi-Markov
processes using a suitable class of backward stochastic differential equations, driven
by the random measure associated to the semi-Markov process itself.

Let us briefly describe our framework. Our starting point is a semi-Markov pure
jump process X on a general state space E. It is constructed starting from a jump
rate function A\(x,?) and a jump measure A — Q(z,9, A) on E, depending on x € E
and ¥ > 0. Our approach is to consider a semi-Markov pure jump process as a two
dimensional time-homogeneous and strong Markov process {(Xs, 05), s > 0} with its
natural filtration F and a family of probabilities P*? for 2 € E, 9 € [0, 00) such that
P> (X = 2,00 = ) = 1. If the process starts from (z,4) at time ¢ = 0 then the
distribution of its first jump time 7} under P*V is described by the formula

P=Y (T} > 5) = exp (—/
9

and the conditional probability that the process is in A immediately after a jump at
time T7 = s is

J+s

Az, ) dr) : (1.1)

P> (X7, € A|T) = 5) = Q(z, 5, A).
X, is called the state of the process at time s, and 6, is the duration period in this

state up to moment s:

0. 0o + s itX, =X, VO<p<s, p,seR,
T s—sup{p: 0<p<s, X, # X5} otherwise.

We note that X alone is not a Markov process. We limit ourselves to the case

of a semi-Markov process X such that the survivor function of 77 under P*C is

33
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absolutely continuous and admits a hazard rate function A as in . The holding
times of the process are not necessarily exponentially distributed and can be infinite
with positive probability. Our main restriction is that the jump rate function \ is
uniformly bounded, which implies that the process X is non explosive. Denoting by
T, the jump times of X, we consider the marked point process (1,, X7, ) and the
associated random measure p(dt dy) = >, 61, x,, ) on (0,00) x E, where § denotes
the Dirac measure. The dual predictable projection p of p (shortly, the compensator)
has the following explicit expression

Blds dy) = A(Xo—, 05-) Q(Xo—, 05—, dy) ds.

In Section we address an optimal intensity-control problem for the semi-
Markov process. This is formulated in a classical way by means of a change of
probability measure, see e.g. El Karoui [49], Elliott [57] and Brémaud [18]. We
define a class A of admissible control processes (us)gco, 77; for every fixed t € [0, T
and (z,9) € E x [0,00), the cost to be minimized and the corresponding value
function are

T—t
J(t,x,9,u(r)) = Eizf [/ Ut + s, Xs,0s,us)ds + g(Xp—t,00—4) |,
0

v(t,z,9) = u(i-?éq J(t,xz,9,u(-)),

where g¢,! are given real functions. Here Eﬁf denotes the expectation with respect

to another probability P27, depending on ¢ and on the control process u and con-

u, t ’
structed in such a way that the compensator under Piif equals r(t+s, Xs—, 05—, y, us)
AMXs—,05—) Q(Xs—,05—,dy) ds, for some function r given in advance as another da-
tum of the control problem. Since the process (Xs,60s)s>0 we want to control is
time-homogeneous and starts from (z,?) at time s = 0, we introduce a temporal
translation which allows to define the cost functional for all ¢ € [0,7]. For more
details see Remark [.3.2

Our approach to this control problem consists in introducing a family of BSDEs
parametrized by (t,z,9) € [0,T] x E X [0,00):

T—t
vi'+ [zt atde iy
T—t o
= g(Xp—¢,0r—¢) + / f(t +0,X5,00, 2, ()) do, (1.2)

€ [0, T — t], where the generator is given by the Hamiltonian function f defined
for every s € [0, T, (z,9) € E x [0, +00), z € L2(E, &, X(z,9) Q(x,9, dy)), as

f(s,z,9,2(-)) = inf {l(s,x,ﬁ,u) + /Ez(y)(r(s,x,ﬁ,y,u) — Dz, 9) Q(x, 9, dy) }

uelU
(1.3)
Under appropriate assumptions we prove that the optimal control problem has a
solution and that the value function and the optimal control can be represented by
means of the solution to the BSDE (|1.2]).
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Backward equations driven by random measures have been studied in many
papers, within Tang and Li [128], Barles, Buckdahn and Pardoux [10], Royer [114],
Kharroubi, Ma, Pham and Zhang [87], Xia [131], and more recently Becherer [12],
Crépey and Matoussi [33], Kazi-Tani, Possamai and Zhou [84], [83], Confortola and
Fuhrman [27], [28]. In many of them, among which [128], [10], [114] and [87], the
stochastic equations are driven by a Wiener process and a Poisson process. A more
general result on BSDEs driven by random measures is given by [131], but in this case
the generator f depends on the process Z in a specific way and this condition prevents
a direct application to optimal control problems. In [12], [33], [84], [83], the authors
deal with BSDEs with jumps with a random compensator more general than the
compensator of a Poisson random measure; here are involved random compensators
which are absolutely continuous with respect to a deterministic measure, that can be
reduced to a Poisson measure by a Girsanov change of probability. Finally, in [27]
have been recently studied BSDEs driven by a random measure related to a pure
jump process, and in [28] the pure jump Markov case is considered.

Our backward equation is driven by a random measure associated to a
two dimensional Markov process (X, 6), and his compensator is a stochastic random
measure with a non-dominated intensity as in [28]. Even if the associated process
is not pure jump, the existence, uniqueness and continuous dependence on the data
for the BSDE can be deduced extending in a straightforward way the results
in [28].

Concerning the optimal control of semi-Markov processes, the case of a finite
number of states has been studied in Chitopekar [24], Howard [74], Jewell [81], Osaki
[95], while the case of arbitrary state space is considered in Ross [112], Gihman and
Skorohod [69], and Stone [125]. As in [24] and in [125], in our formulation we
admit control actions that can depend not only on the state process but also on
the length of time the process has remained in that state. The approach based on
BSDEs is classical in the diffusive context and is also present in the literature in
the case of BSDEs with jumps, see as instance Lim and Quenez [92]. However,
it seems to us be pursued here for the first time in the case of the semi-Markov
processes. It allows to treat in a unified way a large class of control problems, where
the state space is general and the running and final cost are not necessarily bounded.
We remark that, comparing with [125], the controlled processes we deal with have
laws absolutely continuous with respect to a given, uncontrolled process; see also a
more detailed comment in Remark below. Moreover, in [125] optimal control
problems for semi-Markov processes are studied in the case of infinite time horizon.

In Section [1.4] we solve a nonlinear variant of the Kolmogorov equation for the
process (X, #0), with the BSDEs approach. The process (X, 6) is time-homogeneous
and Markov, but is not a pure jump process. In particular it has the integro-
differential infinitesimal generator

Lap(,9) = Dytpl, 9) + /E [0y, 0)—p(a, 9)] Az, 9) Q(a, 0, dy),  (2,9) € Ex[0,00).

The additional differential term 0y does not allow to study the associated nonlinear
Kolmogorov equation proceeding as in the pure jump Markov processes framework
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(see [28]). On the other hand, the two dimensional Markov process (Xs,s)s>0
belongs to the larger class of piecewise-deterministic Markov processes (PDMPs)
introduced by Davis in [35], and studied in the optimal control framework by several
authors, within Davis and Farid [36], Vermes [129], Dempster [40], Lenhart and
Yamada [91]. Moreover, we deal with a very specific PDMP: taking into account
the particular structure of semi-Markov processes, we present a reformulation of the
Kolmogorov equation which allows us to consider solutions in a classical sense. In
particular, we notice that the second component of the process (X, 05)s>0 is linear
in s. This fact suggests to introduce the formal directional derivative operator

(Dv)(t. 2, 9) 1= lim 2T+ ) —vlt, 2, 9)
T o h ,

and to consider the following nonlinear Kolmogorov equation

Dv(t7 x’ 19) + Lv(t’ x’ 19) + f(t7 :L" ,"9’ U(t’ 'r’ 19)7 U(t7 Yy 0) - /U(t7 l’? ,19)) = 07
te[0,T],z€ E,¥€[0,00), (1.4)
U(T7$719) = 9(1'319)7

where

L, 9) = / W(y,0) — (e, D) Az 9) Qz, 0. dy),  (2.9) € E x [0, 00).

E

Then we look for a solution v such that the map ¢ — v(¢,z,t + ¢) is absolutely
continuous on [0,77], for all constants ¢ € [T, +00). The functions f, g in
are given. While it is easy to prove well-posedness of under boundedness
assumptions, we achieve the purpose of finding a unique solution under much weaker
conditions related to the distribution of the process (X,6): see Theorem [[.4.7, To
this end we need to define a formula of It6 type, involving the directional derivative
operator D, for the composition of the process (X, 0s)s>0 with functions v smooth
enough (see Lemma below).

We construct the solution v by means of a family of BSDEs of the form . By the
results above there exists a unique solution (Y;ﬁ, Zf’tﬁ) sefo,7—¢ and the estimates
on the BSDEs are used to prove well-posedness of . As a by-product we also
obtain the representation formulae

v(t,z,9) = Yoﬁﬂ, stfjﬁ = v(t+s, X5, 05), Z“g(y) = v(t+s,y,0)—v(t+s, Xs—,0s—),

s,t
which are sometimes called, at least in the diffusive case, non linear Feynman-Kac
formulae.
Finally we can go back to the original control problem and observe that the associated
Hamilton-Jacobi-Bellman equation has the form where f is the Hamiltonian
function . By previous results we are able to identify the HJB solution v(¢, z, 1),
constructed probabilistically via BSDEs, with the value function.

1.2. Notation, preliminaries and basic assumptions

1.2.1. Semi-Markov Jump Processes. We recall the definition of a semi-Markov
process, as given, for instance, in [69]. More precisely we will deal with a semi-
Markov process with infinite lifetime (i.e. non explosive). Suppose we are given
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a measurable space (F,€&), a set  and two functions X : Q x [0,00) — E, 0 :
2 x [0,00) — [0,00). For every ¢t > 0, we denote by F; the o-algebra o((X5s,0;s), s €
[0,%]). We suppose that for every z € E and 9 € [0,00), a probability P*? is given
on (€, F[p,«)) and the following conditions hold.

(1) &€ contains all one-point sets. A denotes a point not included in E.
(2) P*Y(Xg = 2,00 =9) = 1 for every z € E, 9 € [0,00).
)

(3) For every s, p > 0 and A € € the function (z, ¥) — P*Y(X, € A, s < p) is
& @ Bt-measurable.

(4) For every 0 <t < s,p >0, and A € €& we have P*V(X, € A, 0, < p|F;) =
PXebi(X, € A, 0, < p), P*V-as.

(5) All the trajectories of the process X have right limits when F is given the
discrete topology (the one where all subsets are open). This is equivalent
to require that for every w € 2 and ¢ > 0 there exists § > 0 such that
Xs(w) = Xi(w) for s € [t,t+ 4]

(6) All the trajectories of the process a are continuous from the right piecewise
linear functions. For every w € Q, if [«, 3) is the interval of linearity of
0.(w) then O4(w) = 0y (w)+s—a and Xy (w) = Xg(w); if B is a discontinuity
point of #.(w) then g4 (w) = 0 and Xg(w) # Xs_(w).

(7) For every w € € the number of jumps of the trajectory t — X;(w) is finite
on every bounded interval.

X, is called the state of the process at time s, 0, is the duration period in this state
up to moment s. Also we call X the phase and 65 the age or the time component of
a semi-Markov process. X is a non explosive process because of condition (7). We
note, moreover, that the two-dimensional process (X, 0) is a strong Markov process
with time-homogeneous transition probabilities because of conditions (2), (3), and
(4). It has right-continuous sample paths because of conditions (1), (5) and (6), and
it is not a pure jump Markov process, but only a PDMP.

The class of semi-Markov processes we consider in the chapter will be described
by means of a special form of joint law R under P*? of the first jump time 77, and
the corresponding position X7,. To proceed formally, we fix Xg = 2 € E and define
the first jump time

Ty =inf{p > 0: X, # z},

with the convention that T} = +oo if the indicated set is empty.

We introduce S := E x [0, +00) an we denote by 8 the smallest o-algebra containing
all sets of € ® B([0, +00)). (Here and in the following B(A) denotes the Borel o-
algebra of a topological space A). Take an extra point A ¢ E and define Xoo(w) = A
for all w € Q, so that X7, : @ — E U {A} is well defined. Then on the extended
space S U {(A, c0)} we consider the smallest o-algebra, denoted by 8!, containing
{(A, 00)} and all sets of € ® B([0, +00)). Then (Xp,, T1) is a random variable with
values in (S U {(A, co)},8). Tts law under P> will be denoted by R(z,,").

We will assume that R is constructed from two given functions denoted by A and
Q. More precisely we assume the following.
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Hypothesis 1.2.1. There exist two functions
A:S —[0,00) and Q : S x € — [0, 1]
such that
(i) (z,9) — A(z,?) is S-measurable;
(i) supp)es Az, 9) < C € RT;

)
(iii) (z,9) — Q(z,9,A) is 8-measurable VA € &;
(iv) A~ Q(z,9,A) is a probability measure on € for all (z, ) € S.

We define a function H on E X [0, 00| by
H(z,s) :=1— ¢ JoA@ndr, (1.5)

Given A and @, we will require that for the semi-Markov process X we have, for
every (z,9) € Sand for A€ €, 0<c<d< o0,

1 d d
R(x,9,A % (¢,d)) = 1—H(«T?9)/ Q(%S,A)%H(%ﬁ‘f‘s) ds

_ /CdQ(x,s,A) Az, 0+ ) exp < /:+SA(:E,T) dr) ds, (1.6)

where R was described above as the law of (X7, 71) under P*?. The existence of
a semi-Markov process satisfying is a well known fact, see for instance [125]
Theorem 2.1, where it is proved that X is in addition a strong Markov process. The
nonexplosive character of X is made possible by Hypothesis (ii).

We note that our data only consist initially in a measurable space (E, &) (&
contains all singleton subsets of E), and in two functions \, @ satisfying Hypothesis
The semi-Markov process X can be constructed in an arbitrary way provided

(L.6) holds.

Remark 1.2.2.

(1) Note that (1.6) completely specifies the probability measure R(x,d,+) on
(S U {(A, 00)},8): indeed simple computations show that, for s > 0,

PY(T) € (s,00]) = 1 — R(z,9, E x (0, s])

= exp (- /ﬁM Az, 7) dr) 7 (1.7)

PP Ty =o00) = R(z,9,{(A,00)}) =exp (= [y Az, r)dr).

and we clearly have

Moreover, the kernel R is well defined, because H (z,9) < 1 for all (x,9) € S
by Hypothesis (ii).
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(2)

The data A and ) have themselves a probabilistic interpretation. In fact if
in (1.7) we set ¥ = 0 we obtain

PO(T} > s) = exp <_ /O Ma,r) dr> - H(z,s). (1.8)

This means that under P*0 the law of T} is described by the distribution
function H, and
OH
< (x, 0

Az, 9) = (@9 .

1— H(z,9)

Then A(z,9) is the jump rate of the process X given that it has been in
state x for a time 4.
Moreover, the probability Q(z,s,-) can be interpreted as the conditional
probability that X7, is in A € € given that 71 = s; more precisely,

P*( Xy € A, Ty < oo |Th) = Q(z, Ty, A) 17y oo, P*Y — q.s.

In [69] the following observation is made: starting from Ty = ¢ define
inductively T,,41 = inf{s > T,, : X5 # X, }, with the convention that
Thi1 = oo if the indicated set is empty; then, under the probability P,
the sequence of the successive states of the semi-Markov X is a Markov
chain, as in the case of Markov processes. However, while for the latter the
duration period in the state depends only on this state and it is necessarily
exponentially distributed, in the case of a semi Markov process the duration
period depends also on the state into which the process moves and the
distribution of the duration period may be arbitrary.

In [69] is also proved that the sequence (Xr,,T5)n>0 is a discrete-time
Markov process in (S U {(A, co)}, 8°) with transition kernel R, provided
we extend the definition of R making the state (A, co) absorbing, i.e. we
define

R(A, o0, S) =0, R(A, oo, {(A, 00)}) = 1.

Note that (X7, T, )n>0 is time-homogeneous.

This fact allows for a simple description of the process X. Suppose one
starts with a discrete-time Markov process (7, &n)n>0 in S with transition
probability kernel R and a given starting point (x,9) € S (conceptually,
trajectories of such a process are easy to simulate). One can then define a
process Y in F setting Y; = Zgzo Enliry s (t), where N = sup{n >0 :
Tn < 00}. Then Y has the same law as the process X under P%7.

We stress that (1.5 limits ourselves to deal with a class of semi-Markov
processes for which the survivor function 7; under P*°? admits a hazard
rate function A.

g



Chapter 1. Optimal control of semi-Markov processes with a BSDE
40 approach

1.2.2. BSDESs driven by a Semi-Markov Process. Let be given a measurable
space (E, £), a transition measure () on E and a given positive function A, satisfying
Hypothesis Let X be the associated semi-Markov process constructed out of
them as described in Section We fix a deterministic terminal time T > 0 and
a pair (z,9) € S, and we look at all processes under the probability P*?. We denote
by F the natural filtration (J)c0,00) of X. Conditions 1, 5 and 6 above imply
that the filtration J is right continuous (see [18], Appendix A2, Theorem T26).
The predictable o-algebra (respectively, the progressive o-algebra) on Q x [0, co) is
denoted by P (respectively, by Prog). The same symbols also denote the restriction

to Q x [0, T.
We define a sequence (7},),>1 of random variables with values in [0, o], setting
To(w) =0, Thyi(w)=inf{s > T,(w): Xs(w) # X7, (w)}, (1.9)

with the convention that T,,11(w) = oo if the indicated set is empty. Being X a
jump process we have T),(w) < Tp41(w) if Th41(w) < 0o, while the non explosion of
X means that T}, 41 (w) — co. We stress the fact that (7),),>1 coincide by definition
with the time jumps of the two dimensional process (X, 0).

For w € Q we define a random measure on ([0, o) x E, B[0, co) ® &) setting
p(w, C) = Z 1{(Tn(w),XTn(w))€C}’ Ce 'B[O, OO) ® E. (110)
n=1

The random measure A(Xs_,0s—) Q(Xs—,0s—,dy) ds is called the compensator, or
the dual predictable projection, of p(ds,dy). We are interested in the following
family of backward equations driven by the compensated random measure ¢(ds dy) =
p(dsdy) — M Xs_,05_) Q(X,_,0s_,dy) ds and parametrized by (z,9): P*V-as.,

T T
YS+/ / Zy(y) q(dr dy) = (X7, eT)+/ F(r, X0, %, Z,() ) dr, s 0, T)
s E s
(1.11)
We consider the following assumptions on the data f and g.

Hypothesis 1.2.3.
(1) The final condition g : S — R is 8-measurable and E** {|g(XT, 9T)|2} < 0.

(2) The generator f is such that
(i) for every s € [0, T], (z,9) € S, r € R, f is a mapping

f(s,2,9,m,0) : L2(B, €, Mx,9) Q(x,9,dy)) — R;

(ii) for every bounded and &-measurable z : E — R the mapping

(573371977‘) Hf(S,.’E,Q?ﬂ“,Z(')) (112)

is B([0, T]) ® 8 ® B(R)-measurable.

(117) There exist L > 0, L' > 0 such that for every s € [0, T], (x,9) € S,
rr €R, 2,2 € L2HE, & Nx,9) Q(x,9,dy)) we have

|f(8’ l’,ﬁ,?“, Z()) - f(S,$,19,T/, Z/())’
1/2
<Lr—7r|+L </E |2(y) fz'(y)‘z)\(x,ﬂ)Q(:c,ﬁ, dy)) . (1.13)
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(iv) We have
T
E2? U £ (s, Xs,05,0,0)]* ds| < co. (1.14)
0
Remark 1.2.4. Assumptions (i), (ii), and (iii) imply the following measurability
properties of f(s, Xs,0s,Ys, Zs(+)):
e if Z € £L2%(p), then the mapping
(W, s,y) = f(s, Xs— (W), 05— (W), ¥, Zs(w, "))
is P ® B(R)-measurable;

e if, in addition, Y is a Prog-measurable process, then
(w,8) = f(s, Xs— (W), bs—(w), Ys(w), Zs(w, )
is Prog-measurable.
O

We introduce the space M®? of the processes (Y, Z) on [0, T] such that Y is
real-valued and Prog-measurable, Z : Q) x E — R is P ® E-measurable, and

T T
(Y, 2)|20s = B [/O Ya2ds + /0 /E Zo(y) P A(Xa, 0) Q(Xs, 0s, dy) ds
< 0.

The space M®? endowed with this norm is a Banach space, provided we identify
pairs of processes whose difference has norm zero.

Theorem 1.2.5. Suppose that Hypothesis[1.2.9 holds for some (z,9) € S.

Then there exists a unique pair (Y,Z) in M®Y which solves the BSDE . Let
moreover (Y', Z') be another solution in M*V to the BSDE associated with
the driver f' and final datum g'. Then

T
sup Ex,l? UY; _ Y;”Z] +Ex,19 |:/ ’Y; o Y;/’2d8:|
s€[0,T] 0

LE [ / [ 12.0) = ZU) PACK..0) QX 02, ds}
< CE™ [|g(X7) — ¢/ (X7)|?]

T
+ CE®? [/ |f(s, Xs, 0, Y., ZL(-) — f’(s,XS,OS,YS’,Z;(-))|2ds} , (1.15)
0
where C is a constant depending on T, L, L.

Remark 1.2.6. The construction of a solution to the BSDE (| is based on the
integral representation theorem of marked point process martmgales (see, e.g., [35]),
and on a fixed-point argument. Similar results of well-posedness for BSDEs driven
by random measures can be found in literature, see, in particular, the theorems given
in [28], Section 3, and in [12]. Notice that these results can not be a priori straight
applied to our framework: in [12] are involved random compensators which are
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absolutely continuous with respect to a deterministic measure, instead in our case
the compensator is a stochastic random measure with a non-dominated intensity;
[28] apply to BSDEs driven by a random measure associated to a pure jump Markov
process, while the two dimensional process (X,0) is Markov but not pure jump.
Nevertheless, under Hypothesis Theorem 3.4 and Proposition 3.5 in [28] can
be extended to our framework without additional difficulties. The proofs turn out
to be very similar to those of the mentioned results, and we do not report them here
to alleviate the presentation. O

1.3. Optimal control of semi-Markov processes

1.3.1. Formulation of the problem. In this section we consider again a mea-
surable space (E, £), a transition measure () and a function \ satisfying Hypothesis
1.2.1] The data specifying the optimal control problem we will address to are an
action (or decision) space U, a running cost function [, a terminal cost function g,
a (deterministic, finite) time horizon 7' > 0 and another function r specifying the
effect of the control process. We define an admissible control process, or simply a
control, as a predictable process (us) sefo,7) With values in U. The set of admissible
control processes is denoted by A. We will make the following assumptions:

Hypothesis 1.3.1.

(1) (U,U) is a measurable space.

(2) The function r : [0, T] x S x ExU — Ris B([0, T]) ® S ® € ® U-measurable
and there exists a constant C}. > 1 such that,

0<r(t,z,d,y,u) < Cp, tel0,T], (z,9) € S, ye E,uecl. (1.16)
(3) The function g : S — R is 8-measurable, and for all fixed ¢t € [0, T,
ol [yg(XT,t,aT,t)ﬂ <o,  V(z,9) €S (1.17)

(4) The function [ : [0, T] x S x U — R is B(]0 T]) ® § ® U-measurable and
there exists a > 1 such that, for every fixed ¢ € [0, T, for every (z,9) € S

and u(-) € A,
infyep U(t, 2,0, u) > oo;
]E:E,'ﬁ |: (;T_t |1nquUl(t+ 87X57087u)‘2 dS] < 0, (118)

> [f()T_t 1t + S7XS7987U’8)‘ d3:|a < 0.

To any (t,x,9) € [0, T] x S and any control u(-) € A we associate a probability

measure Pi’f by a change of measure of Girsanov type, as we now describe. Recalling
the definition of the jump times T, in (1.9)), we define, for every fixed ¢ € [0, T7,

Lt = exp <//(1—r(t+a,Xmea,y,ua)>A(Xa,eam(xa,emdy)da)-
0JE

: H T(t+Tn,XTn,79Tn,,XTn,UTn),

n>1:T,<s
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for all s € [0, T — t], with the convention that the last product equals 1 if there are
no indices n > 1 satisfying T,, < s. As a consequence of the boundedness assumption
on  and A it can be proved, using for instance Lemma 4.2 in [27], or [18] Chapter
VIII Theorem T11, that for every fixed t € [0, T] and for every v > 1 we have

E™? [|Lh ] <00,  E®Y[LL_,] =1, (1.19)

and therefore the process L! is a martingale (relative to P* and F). Defining a prob-
ability ]P’ﬁ:f(dw) =LY, (w)P%?(dw), we introduce the cost functional corresponding

tou(-) € A as
T—t
J(t,z,9,u(-) = E;¢ [/ (t+s,Xs,0s,us)ds + g(X7—t,07-4) | , (1.20)
0

where E*¥ denotes the expectation under Pif Taking into account (1.17)),
and , and using Holder inequality it is easily seen that the cost is finite for
every admissible control. The control problem starting at (x,d) at time s = 0
with terminal time s = T — ¢ consists in minimizing J(t,z,?,-) over A. We finally
introduce the value function

’U(t,x,ﬁ) = u(lr)léﬂ J(t,x,ﬁ,u(-)), te [07 T]7 (.’E,ﬂ) €S

The previous formulation of the optimal control problem by means of change of
probability measure is classical (see e.g. [49], [57], [18]). Some comments may be
useful at this point.

Remark 1.3.2.

1. The particular form of cost functional (1.20]) is due to the fact that the
time-homogeneous Markov process (X5, 0s), satisfies

P (Xo =1, 60 ="1) = 1;
the introduction of the temporal translation in the first component allows
us to define J (¢, z,9,u(-)) for all t € [0, T.

2. We recall (see e.g. [18], Appendix A2, Theorem T34) that a process u is
F-predictable if and only if it admits the representation

uS(w) = Z ug’”) (w) 1(Tn(w)7Tn+1(w)] (S)

n=0

where for each (w, s) — u (w) is Fpo, 7,] @B (R T )-measurable, with Fjg 1, =

o(Ti, X1, 0 < i< n) (seee.g. [18], Appendix A2, Theorem T30). Thus the
fact that controls are predictable processes admits the following interpreta-
tion: at each time 7}, (i.e. immediately after a jump) the controller, having
observed the random variables T;, X7,, (0 < i < n), chooses his current
action, and updates her/his decisions only at time 7}, ;1.

3. It can be proved (see [75] Theorem 4.5) that the compensator of p(ds dy)
under Piif is

T(t + 87 XS*’ 05*7 y? uS) A(XS*’ 08*) Q(XS*7 98*’ dy) ds’
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whereas the compensator of p(ds dy) under P*¥ was A\(X,_,0,_) Q(Xs_, 0s_, dy)
ds. This explains that the choice of a given control u(-) affects the stochastic
system multiplying its compensator by r(t + s, z, 0, y, us).

4. We call control law an arbitrary measurable function u : [0, T] x S — U.

Given a control law one can define an admissible control u setting ugs =
u(s, Xs—,0s-).
Controls of this form are called feedback controls. For a feedback control the
compensator of p(dsdy) is r(t + s, Xs—,0s—,y,u(s, Xs—,05_)) M Xs_,0s_)
Q(Xs—,0s—,dy) ds under ]P’if Thus, the process (X,#) under the opti-
mal probability is a two-dimensional Markov process corresponding to the
transition measure

r(t+ s,z,9,y,u(s, x,9)) Nz, 9) Q(z, 9, dy)

instead of A(z,9) Q(x, ¥, dy). However, even if the optimal control is in the
feedback form, the optimal process is not, in general, time-homogeneous
since the control law may depend on time. In this case, according to the
definition given in Section the process X under the optimal probability
is not a semi-Markov process.

O

Remark 1.3.3. Our formulation of the optimal control should be compared with
another approach (see e.g. [125]). In [125] is given a family of jump measures
on E {Q(x,b,-), b € B} with B some index set endowed with a topology. In the
so called strong formulation a control u is an ordered pair of functions (X, 3) with
N:S — Rt B:S — B such that

N and 3 are 8§ — measurable;
Vo e E, 3t(x) >0: fot(x) N(z,r)dr < oo;
Q(, 8, A) is BT-measurable VA € €.

If A is the class of controls which satisfies the above conditions, then a control
u= (N, B) € A determines a controlled process X" in the following manner. Let

H%z,s) :=1—¢ Jo N@ndr vy oy e g,

and suppose that (X{,04) = (x,9). Then at time 0, the process starts in state z
and remains there a random time 57 > 0, such that

H%(x,9+ s) — H"(z,9)
1— Hu(z,9)
At time Sy the process transitions to the state X§g , where
P {XY € AlSi} = Q(x, B(x, S1), A).
The process stays in state Xg for a random time Sz > 0 such that
P=Y {8y < s|S1, X4 } = H"(XY,,s)
and then at time S; + S5 transitions to Xgl 1Sy where

]}D%ﬁ {Xg1+5'2 S A|Sl7 Xgl, 52} = Q(Xng(Xg'lv 52)7A)

Px’ﬁ {Sl < 8} =

(1.21)
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We remark that the process X constructed in this way turns out to be semi-Markov.

We also mention that the class of control problems specified by the initial data
N and f is in general larger that the one we address in this chapter. This can be
seen noticing that in our framework all the controlled processes have laws which
are absolutely continuous with respect to a single uncontrolled process (the one
corresponding to r = 1) whereas this might not be the case for the rate measures
N(z,9)Q(x, B(x,9),A) when u = (N, 8) ranges in the set of all possible control
laws. O

1.3.2. BSDEs and the synthesis of the optimal control. We next proceed to
solve the optimal control problem formulated above. A basic role is played by the
BSDE: for every fixed t € [0, T], P*-a.s.

T—t
Ysmtﬁ—l—/ / q(do dy)
T—t 9
— g(Xp—1, 07— + / f<t+a, X,,0,, 2% (-))do—, (1.22)

Vs € [0, T — t], with terminal condition given by the terminal cost ¢ and generator
given by the Hamiltonian function f defined for every s € [0, T], (z,9) € S, z €
LA(E, €, Nz, 9) Q(x, 7, dy)), as

f(s,z,9,2(")) = iglfj { I(s,z,9,u) +/ z(y)(r(s,z, 9, y,u) — D)A\(z,9)Q(x, ¥, dy) }

" (1.23)
In the superscript (x, ) denotes the starting point at time s = 0 of the process
(X, 0s)s>0, while the dependence of Y and Z on the parameter ¢ is related to the
temporal horizon of the considered optimal control problem. For every ¢t € [0 T,
we look for a process Y;?gﬂ(w) adapted and cadlag and a process fo(w, y) P®E-
measurable satisfying the integrability conditions

T—t

Exﬁ |:/ :|
T—t

e [/ / Z‘ftﬁ A X5, 05) Q(Xs, 05, dy) ds| < oo.

One can verify that, under Hypothesis |1 on the optimal control problem, all
the assumptions of Hypothesis hold true for the generator f and the terminal
condition g in the BSDE ((1.22)). The only non trivial verification is the Lipschitz
condition , which follows from the boundedness assumption . Indeed, for
every s € [0, T, (z,9) € S, 2, 2/ € L*(E, &, \(x,9) Q(z,9,dy)),

[ #0)rs..0.9.0) = 1) A, 9) Qo 9. dy)

2
0
Yo

< /E |2(0) — 2/ ()] ({5, 2.9y, ) — 1) Mz 0) Q(a, 9, dy)
+ /Ez’(y)(r(s,x,ﬁ,y,u) — 1) Mz, 9) Q(x, 9, dy)
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1/2
< (Cr+ 1) (M 9) Q(a, 0, B)) 2 ( [ 1) =2 2w Q(a:,ﬁ,dw)

+ / () (s, 2.9, y, 1) — 1) Mz, 0) Q. 0, dy),
K

so that, adding [(s,z,9,u) on both sides and taking the infimum over v € U, it
follows that

1/2
f(s, 2,9, 2) (/ | (y)‘z)\(w,'ﬁ)Q(x,ﬁ,dy)> + f(s,2,9,2"), (1.24)

where L := (C; + 1) sup(, ycs v/ A(@,¥) exchanging 2 and 2’ roles we obtain (1.13)).

Then by Theorem [1.2.5] for every fixed ¢ € [0, T, for every (z,9) € S, there
exists a unique solution of ( - ftﬂ,Zi;ﬁ)se[QT_ﬂ, and YO"’ft’ﬁ is deterministic.
Moreover, we have the following result:

Proposition 1.3.4. Assume that Hypotheses hold. Then, for everyt € [0, T,
(z,9) € S, and for every u(-) € A,

Yo < It 9, ul)).

Proof. We consider the BSDE ([1.22) at time s = 0 and we apply the expected
value ]Eif associated to the controlled probability Pif Since the Pi:f-compensator
of p(dsdy) is

r(t+ 8, Xo—yOs—,y,us) M(Xs—,0s—) Q(Xs—, 05—, dy) ds, we have that

=[] ) dsdyﬂ
[ -
—Ey [ / -
=)

T—t
Y& = B9 [g(Xpy, 67_)] + [ /0 Pt + 5, X0, 00, 250() ds]

t/
t / (X, 0) Q(Xs, s, dy) ds]
i

25 () 1t + . X, Our 1) — 1 A(Xs02) QX 1, dy) ds]

Then

T—t
_Eizf [/ / thﬂ t+ s, Xs, 05,9, us) — 1] M X, 65) Q(Xs, 05, dy) ds} )

Adding and subtracting Eﬁt [fo Ut + s, X, 05, us) ds} on the right side we obtain
the following relation:

Yz)ﬁﬁ :J(t7 z, v, u())

T—t
+EDY [/ £+ 5, X000, Z2()) = Ut 4 5, X, 05,u5)| ds]
0
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T—t
~E U /Z;i;?(.) [r(t+ 5, X, 05,9, us) — 1] A(Xs, 05) Q(Xs, 05, dy) ds]
0 E
(1.25)

By the definition of the Hamiltonian function f, the two last terms are non positive,
and it follows that
Yo < J(ta,9,ul),  Vu() € A.

We define the following, possibly empty, set:
L(s,z,9,2(:)) = {u ceU: f(s,z,9,2(+)) = (s, z,9,u)

+ / 2(y) (r(5,2,0, 9, u) — 1) Az, 9) Q(z, 9, dy);
E

s€0,T], (z,9) € S, z € LA(E, & Nz, 9) Q(z, 9, dy)) } (1.26)

In order to prove the existence of an optimal control we need to require that the
infimum in the definition of f is achieved. Namely we assume that

Hypothesis 1.3.5. The sets I' introduced in (|1.26)) are non empty; moreover, for
every fixed t € [0, T] and (z,9) € S, one can find an F-predictable process u*>%?(-)
with values in U satisfying

U:tw’ﬁ € F(t + s, X8—7 05—7 Zxﬂg(‘))) Pxﬂ_a's‘ Vs € [07 T— t]' (127)

s,t

Theorem 1.3.6. Under Hypothesis |1.3.1] and [1.3.5 for every fized t € [0, T] and
(z,9) € S, u*"Y(.) € A is an optimal control for the control problem starting from

(z,7) at time zero with time horizon T —t. Moreover, Yoﬁﬁ coincides with the value
function, i.e. Y(ft’ﬁ = J(t, z, ﬁ,u*tvzvﬂ(.)).

Proof. It follows immediately from the relation ((1.25) and from the definition of
the Hamiltonian function f. g

We recall that general conditions can be formulated for the existence of a process
uw* Y (.) satisfying (1.27)), hence of an optimal control; this is done by means of an
appropriate selection theorem, see e.g. Proposition 5.9 in [28].

We end this section with an example where the BSDE ((1.22)) can be explicitly
solved and a closed form solution of an optimal control problem can be found.

Example 1.3.7. We consider a fixed time interval [0, 7' and a state space consisting
of three states: E = {z1,z2,23,24}. We introduce (T}, &,)n>0 setting (7o, &) =
(0,z1), (Th,&n) = (4o00,21) if n > 3 and on (71,&) and (T3,&) we make the
following assumptions: &; takes values xo with probability 1, & takes values 3, x4
with probability 1/2. This means that the system starts at time zero in a given state
1, jumps into state xo with probability 1 at the random time 77 and into state x3
or x4 with equal probability at the random time T5. It has no jumps after. We take
U = [0, 2] and define the function r specifying the effects of the control process as
r(xy,u) =r(re,u) =1, r(zs,u) = u, r(xg,u) =2 —u, u € U.
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Moreover, the final cost g assumes the value 1 in (z,9) = (24,7 — T3) and zero
otherwise, and the running cost is defined as i(s, z,9,u) = %* A(z,9), where o > 0
is a fixed parameter. The BSDE we want to solve takes the form:

T
Ys+/s /EZa(y)p(dady)—g(XT, or)
T

+ inf {2 [ Zo(y) r(y,w) Q(Xy, 0p, dy) S AN(Xy, 0p)do (1.28)
[, }

uel0,2] | 2

that can be written as

Ys + Z ZTn(XTn) 1{S<Tn<T} — Q(XT, HT)

n>1

T . au
+ /S uel%f:Q] {7 + Za(@)} A@1,9 + 0)ljo<o<iaT} dO

T . au u u
+ /S uelf%)f,é] {7 + ZO-(CL':})E + Zg($4)(1 — 5)} )\(.172, g — Tl)l{T1<0'<T2/\T} dO’.

It is known by [29] that BSDEs of this type admit the following explicit solution
(1/87 ZS(‘))SE[O,T}:

Y, = y0(5)1{3<T1} + yl(sa I, 51) 1{T1<3<T2} + y2(87 15, &2, T, 51) 1{T2<S}7
Zs(y) = ZO(S’y) 1{s<T1} + Zl(Sa valvé-l) 1{T1<S<T2}a ye k.

To deduce 3° and 3! we reduce the BSDE to a system of two ordinary differential
equation. To this end, it suffices to consider the following cases:

e we Qsuch that T' < T (w) < Ta(w): (1.28]) reduces to
T
WO (s) = / nt) {5 +2"(0.22) } Aw1,9 +0) do
T
—/ 220, 22) Mz1,9 + 0) do

T
- / (4(0,0,22) — 4°(0)) A1, 9 + o) dor; (1.29)
o w e Qsuch that 71 (w) < T < Ta(w), s > T1: (1.28) reduces to
yl(S’Tlagl)

T au u u
= inf {— + 2! T, &)= + 2 T 1—— -T
/S uel%,ﬂ{ 5 2 (0,23, 1,51)2+z (0,24, T1,61)( 2)})\(&,0 1) do

T
= / (2" (0,24, T1, &) A (o + 2 (0, 23, T, £0))] M1, 0 — TY) do

T
= / (1A Q) =y (0, T1, &) A&, 0 — Th) do. (1.30)

Solving ([1.29) and (1.30) we obtain
y’(s) = (1A a) (1 _ e [ M@ 9+0) da)
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T
— (1Aa)eJ: Mo+ da/ Aa1, 0 + o) elo Mar0+2)dz o= [ Mazz=0) dz g1,

S
y'(s,T1,61) = (1 A a) (1 e ffA(a,a—mda) ;
moreover,

(5, T2, &, T, &) = Lieo=as}>

20(s, 1) = 20(s, 23) = 20(s,24) = 0,

0 1

$,8,T9) — 0(3),
2 (s, m2,T1,&1) =0,

37$2) (
) =
f A&, o—Th)do
S)x37T17€1) (]- A a) ( s 1) )
)

Zl

y(
(
(
2 (s, w1, Ty, &
(
(

Zl S $4,T1,€1 == 1+Z (8 x37T1 51)

where 2° and z! are obtained respectively from y2, y* and y', y° by subtraction.
The optimal cost is then given by Yy = °(0). The optimal control is obtained during
the computation of the Hamiltonian function: it is the process ugs = 2 1(T1’T2](8) if
a < 1, and the process us = 0 if @ > 1 (both are optimal if o = 1).

1.4. Nonlinear variant of Kolmogorov equation

Throughout this section we still assume that a semi-Markov process X is given.
It is constructed as in Section by the rate function A and the measure ) on F,
and (X, #) is the associated time-homogeneous Markov process. We assume that A

and @ satisfy Hypothesis

It is our purpose to present here some nonlinear variants of the classical backward
Kolmogorov equation associated to the Markov process (X, #) and to show that their
solution can be represented probabilistically by means of an appropriate BSDE of
the type considered above.

We will suppose that two functions f and g are given, satisfying Hypothesis
and that moreover g verifies, for every fixed ¢ € [0, T,

E®% ||g(X7_s,07_¢)|*| < 0. (1.31)
We define the operator
S0 0)i= [ [90.0) = U A=A Qe ddy), €S, (132)

for every measurable function ¢ : S — R for which the integral is well defined.
The equation

T
v(t,x,ﬂ)zg(ﬂc,19+T—t)+/ Lo(s,z,0+s—t)ds
t

T
—l—/ f(s,z,94+s—tv(s,x,0+s—1t),v(s,-,0) —v(s,z, 0 +s—1t))ds, (1.33)
t
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t €0, T], (z,9) € S, with unknown function v : [0, T] x S — R will be called the
nonlinear Kolmogorov equation.

Equivalently, one requires that for every « € E and for all constant ¢ € [T, +00),

t — v(t,z,t + c) is absolutely continuous on [0, T, (1.34)
and
{ Du(t,z,9) + Lo(t,z,9) + f(t,z,9,v(t, z,9),v(t,-,0) —v(t,z,9)) =0 (1.35)
o(T, z,9) = g(x,9),
where D denotes the formal directional derivative operator
(Dv)(t, 3, ) 1= lim S8 0+ ) = ot 2, 9) (1.36)

hl0 h

In other words, the presence of the directional derivative operator allows us
to understand the nonlinear Kolmogorov equation in a classical sense. In
particular, the first equality in is understood to hold almost everywhere on
[0, T'] outside of a dt-null set of points which can depend on (z,¥).

Under appropriate boundedness assumptions we have the following result:

Lemma 1.4.1. Suppose that f and g verify Hypothesis and that (1.31)) holds;

suppose, in addition, that
swp —(lgla, )] + £(t2,9,0,0)] ) < oo. (1.37)
tel0,TY, (z,9)eS

Then the nonlinear Kolmogorov equation (1.33|) has a unique solution v in the class
of measurable bounded functions.

Proof. The result follows as usual from a fixed-point argument, that we only sketch.
Let us define a map I' setting v = I'(w) where

T
U(t,l’,’ﬁ):g(l',’ﬂ—l-T—t)—F/ Lw(57$719+5_t)d8
t

T
+/ f(s,z,9+s—t,w(s,z,9+s—1t),w(s,-0)—w(s,z,d+s—1t))ds.
t

Using the Lipschitz character of f and Hypothesis ii), one can show that, for
some 3 > 0 sufficiently large, the above map is a contraction in the space of bounded
measurable real functions on [0, 7] x S endowed with the supremum norm:
[olle := sup  sup e 7D fo(t,z, 9)].
0<t<T (z,0)€S

The unique fixed point of I' gives the required solution. O

Our goal is now to remove the boundedness assumption . To this end we
need to define a formula of It type for the composition of the process (X, 0s)s>0
with functions v smooth enough defined on [0, 7] x S. Taking into account the
particular form of , and the fact that the second component of the process
(Xs, 0s)s>0 is linear in s, the idea is to use in this formula the directional derivative

operator D given by ((1.36)).
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Lemma 1.4.2 (A formula of It6 type). Let consider functions v : [0, T] x S — R
such that

(i) Ve € E,Vce [-T, +0), the map t — v(t,x,t+c) is absolutely continuous
on [0, T, with directional derivative D given by (|1.36]);

(i) for fized t € [0, T, {u(t+s,5,0) — v(t+5, X, 0, ), s € [0, T—t], y € B}
belongs to L} (p).

loc

Then PV -a.s., for every t € [0, T},

T—t T—t
(T, Xp—t,0r—4) — v(t,z,0) = Dv(t—i—s,Xs,@S)ds—i-/ Lo(t+ s, Xs,05)ds

0 0
T—t
+/0 [E(v(tJrs,y,O)—v(t+s,Xs_,6?s—)) q(ds, dy),
(1.38)

where the stochastic integral is a local martingale.

Proof. We proceed by reasoning as in the proof of Theorem 26.14 in [35]. We
consider a function v : [0, T'] x S — R satisfying (i) and (ii), and we denote by IV
the number of jumps in the interval [0, t|:

N, = Z Lir,<)-

n>1
We have
U(T, XT, 9T) — U(O, x, 19) = ’U(T, XT, GT) — U(TNT s XTNT N QTNT)
Nt
+ Z {U(Tn7 XTn? 9Tn) - /U(Tn*:h XT",1 ) ngfl)}
n=2

+ U(Tl, XTI,HTI) — 1)(0, x, 19)

Noticing that X7, = Xr,_, for all n € [1, Nr|, Xr = X7, and that 67, = 0 for
all n € [1, Np|, 0, =9+ T, and 07, =T, —T,,—; for all n € [2, N7|, we have

o(T, X, 07) — v(0,2,9) = I + IT + ITI,

where
I= (U(Tl,XTl,O) — U(Tl,XTl_, 0T1_)) + (U(Tl,x,ﬂ + Tl) - U(0,$,19)) =TI+ I”,
Nt
11 =" (u(Ty, X1,,,0) — (T, X1, 01, )
n=2

Nt
+ Z(U(Tn> XTn,an - Tnfl) - U(Tnfla XTnflaO)))
n=2

= IT' + 11",
II1T = (T, X7,T — Tn) — v(Tn, X1y, 0).
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Let H denote the P ® E-measurable process
H(y) = v(s,y,0) —v(s, Xs—, 0s—),
with the convention Xo_ = Xj, 6y = 9. We have
I'+1r'= Y (u(Ty,Xr,,0) — 0(Th, X1,_,07,_))

n>1.T,<T
- Y Hp(Xn) //H p(ds, dy).
n>1:To<T

On the other hand, since v satisfies (i) and recalling the definition of the direc-
tional derivative operator D,

"+ 11"+ 111
Ty _
_ / lim v(0+ hs,x,9 + hs) —v(0,z,9) s
0 h—0 h
+ Z / Th—+ h(s - )a XTn—l79Tn—1 + h(s - Tnfl)) - U(Tn*]-?XTnfl’eTnfl) ds
h—)O h

n>2:T,<T Tn-1

n /T . U(TNT + h(s - TNT)? XTNT70TNT =+ h(s - TNT)) - U(TNT7 XTNT79TNT)

lim ds

TNT h—0 h

T
= / Du(s, X4, 05) ds.
0

Then P*Y-a.s.,
(T, Xr,ar) —v(0,z,9)

/ Du(s, X, 0 ds+/ / v(s,y,0) —v(s, Xs—,0s_)) p(ds,dy)

/DvsXs,H)ds—l—/ Lo(s, Xs,05)ds
0

/ / o(s,9,0) — v(s, X, 05)) q(ds, dy),

where the second equality is obtained using the identity ¢(dtdy) = p(dtdy) —
AMXi—, 0i—) Q(Xi—,0:—,dy) dt together with the definition (1.32)) of the operator
L.

Finally, applying a shift in time, i.e. considering for every ¢t € [0, T'] the differ-
ential of the process v(s + t, X5, 0s—) with respect to s € [0, T' — t], the previous
formula becomes: P*V-a.s., for every t € [0, T,

T—t T—t
o(T —t, Xp,07) —v(t,z,9) = ; Du(s+t, X5, 05) ds+/0 Lou(s+t,Xs,05)ds

T—t
F[ [  t0) = vl X, 00) alds,dy)
0 E

where the stochastic integral is a local martingale thanks to condition (ii). O
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We will call (.38 the It6 formula for v(t+s, -, -) o (Xs, 0s)s¢o, 7—y- In differential

notation:
dv(t+ s, Xs—,0s_) = Dv(t + s, Xs—,0s_)ds + Lo(t + s, Xs—,0s_) ds
b [ 0l 5.0) = olt 4 5, X, 00) a(ds dy),
E
Remark 1.4.3. With respect to the classical It6 formula, we underline that in (1.38)
we have

- the directional derivative operator D instead of the usual time derivative;

- the temporal translation in the first component of v, i.e. we consider the
differential of the process
v(t+s, Xs—,0s_) with respect to s € [0, T—t]. Indeed, the time-homogeneous
Markov process (X, 0s),- satisfies

P> ( Xy =z, Oy = 9) = 1,

and the temporal translation in the first component allows us to consider
dv(t, Xy, 0;) for all t € [0, T7.

g

We go back to consider the Kolmogorov equation (|1.33]) in a more general setting.
More precisely, on the functions f, g we will only ask that they satisfy Hypothesis

for every (x,9) € S and that (1.31)) holds.

Definition 1.4.4. We say that a measurable function v : [0, 7] x.S — R is a solution
of the nonlinear Kolmogorov equation (1.33)), if, for every fixed ¢ € [0, T], (z,9) € S,

LB [T [ lo(t + 5,3, 0) = 0(t + 5, X, 0) 2 (X, 05) QX 0, dy) ds| <
003

2. E=Y [fOTft lv(t + s,XS,GS)\st} < 00;

3. (1.33]) is satisfied.

Remark 1.4.5. Condition 1. is equivalent to the fact that v(t + s,y,0) — v(t +
s, Xs_,05_) belongs to £2(p). Conditions 1. and 2. together are equivalent to the
fact that the pair

{v(t+ s,Xs,05), v(t + s,y,0) —v(t+s,Xs-,0s_); s€[0, T —t], y € E}

belongs to the space M*?; in particular they hold true for every measurable bounded
function wv. O

Remark 1.4.6. We need to verify the well-posedness of equation ([1.33]) for a func-
tion v satisfying the condition 1. and 2. above. We start by noticing that, for every
(z,9) € S, P*-as.,

T T
/ / (s, 4,0) — v(s, Xs, 0)]* M X, 05) Q(Xs, 05, dy) ds—l—/ lu(s, Xs,0,)|* ds < co.
o JE 0
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By the law ([1.7)) of the first jump it follows that the set {w € Q@ : Th(w) > T}
has positive P*Y probability, and on this set we have X, (w) = z, 0, (w) = ¥ + s.
Taking such an w we get

T
/ / [u(s,y,0) — v(s, 2,9+ 8)|> A(z,9 + 5) Q(z,9 + s,dy) ds

0o JE

T
+/ lu(s, 9+ 5)|*ds < 00, ¥(z,9) € S.

0
Since sup(, g)es Az, ) < oo by assumption, Holder’s inequality implies that
T
| et +5) ds
0

T
< / / lv(s,y,0) —v(s,z, 9+ s)| Mz, 9+ s) Q(x,¥ + s,dy) ds
0 E

T 1/2
c(/ / lv(s,y,0) —v(s,x,ﬁ+s)|2 Az, 0+ 8) Q(z, 9 + s,dy) ds>
0o JE

for some constant ¢ and for all (z,9) € S. Similarly, since

E®* [/OT \f(s,XS,HS,O,O)Fds < 00,
and arguing again on the jump time 77, we deduce that
/OT |f(s,z, 0+ 3,0,0)\2 ds < o0, Y(z,9) € S
finally, from the Lipschitz conditions on f we can conclude that

T
/’VQ@0+&w&aﬂ+@mmnm—w&aw+@n@
0

T T
< </ |f(s,z,9+ s, 0,0)|2d5> + ca </ |v(8,$,19+s)|2ds)
0

1/2
e </ / [0(s,9,0) = v(s, 2,9 + 5)[* Mx,9 + 5) Q(x,9 + 5,dy) ds>

1/2 1/2

for some constants ¢;, i = 1,2, 3, and for all (z,9) € S. Therefore, all terms occurring
in equation (|1.33)) are well defined. O

For every fixed ¢t € [0, T] and (x,9) € S, we consider now a BSDE of the form
) T—t
Yo +/ / q(dr dy) = g(X7—¢,07—)

+/ f<t+r X, 0, ,Wﬁ,zﬁf(.)) dr, s € [0, T —1]. (1.39)
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Then there exists a unique solution (Y.fﬁ, Zz’tﬁ(-)) sel0,7—¢], in the sense of Theorem

and Yoﬁﬂ is deterministic. We are ready to state the main result of this section.

Theorem 1.4.7. Suppose that f, g satisfy Hypothesis for every (x,9) € S
and that (1.31) holds. Then the nonlinear Kolmogorov equation (1.33) has a unique
solution v(t,z,V) in the sense of Definition [1.4.4)
Moreover, for every fized t € [0, T|, for every (x,9) € S and s € [0, T — t] we
have
Y = u(t+ 5, X, 0,), (1.40)

fo(y) =ov(t+s,9,0) —v(t+ s, Xs—,0s_), (1.41)
so that in particular v(t,z,9) = Yoaft’ﬁ.
Remark 1.4.8. The equalities ((1.40) and ([1.41)) are understood as follows.

e P*Y_as., equality holds for all s € [0, T — t]. The trajectories of
(Xs) se[0,T—¢] are piecewise constant and cadlag, while the trajectories of
(0s)sefo, 7—) are piecewise linear in s (with unitary slope) and cadlag; more-
over the processes (Xs)ep0,7—g and (0s)sejo, 7—¢ have the same jump times
(Th)n>1- Then the equality is equivalent to the condition

T—t
Eac,ﬁ |:/
0

e The equality (1.41]) holds for all (w, s,y) with respect to the measure
M Xs—(w), 05— (@) Q(Xs— (W), b5 (w), dy) P (dw)ds, i.e.,

sz:ﬁ;ﬁ - U(t + 5, X, 98)

2
ds] =0.

2

T—t
B0 | [0 ][220 = ot 500 0lt-4 5. X80 ACX002) QX B s

g

Proof. Uniqueness. Let v be a solution of the nonlinear Kolmogorov equation
. It follows from equality itself that for every x € E and every 7 €
[T, +00), t — v(t,x,t + 7) is absolutely continuous on [0, T|. Indeed, applying in
the change of variable 7 := 1 — t, we obtain Vt € [0, T], V7 € [-T, +0),

T
v(t,z,t+7) :g(x,T—i—T)—i—/ Lu(s,z,s+7)ds
¢

T
+ / f(s,z, s +1,0(s,2,84+7),0(s,-,0) —v(s,z,s+ 7)) ds.
t
Then, since by assumption the process v(t + s,y,0) — v(t + s, Xs_,05_) belongs to
L2%(p), we are in a position to apply the It6 formula (1.38) to the process v(t +
5,Xs ,05),s€[0, T —t]. We get: P*’-as.,

v(t—l—s,XS_,QS_)—v(t,a:,ﬁ)—i—/ Dv(t—l—r,XT,Hr)dr—i—/ Lo(t+r, X,,0.)dr
0 0
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—i—/OS/E(U(t—i—T,y,O)—v(t—l—r,XT,HT))q(dr,dy), se 0, T —1.

We know that v satisfies (1.35]); moreover the process X has piecewise constant
trajectories, the process 6 has linear trajectories in s, and they have the same time
jumps. Then, P*Y-as.,

Du(t+ s, Xs—,0s—) + Lo(t + s, Xs—,05_)
+ f(t+ s, Xs—yOs—,0(t + 8, Xs—,0s_),0(t +5,-,0) —v(t + 5, Xs_,05_)) =0,
for almost s € [0, T' — t]. In particular, P*?-a.s.,
v(t+ s, Xs—, 05—

=o(t,x,¥) + // v(t+r,y,0) —v(t+r, X,—,0,_)) q(dr,dy)

—/ ft+r X, 00,0t + s, Xs,05),v(t +7r,y,0)—v(t+r X,,0.))dr,
0

for s € [0, T'—t]. Since v(T, z 19) = g(z, ) for all (z,¥) € S, by simple computations
we can prove that, Vs € [0, T —

T—t
o(t + 5, X, 0 / / o(t +7,,0) — v(t + 7, X, 6,_)) a(dr, dy)
- Q(XTfta 0T7t)

T—t
+/ f+r X ar,0(t+7,X,,0,),0(t+r,y,0) —v(t+r, X,,0,))dr.
S

Since the pairs (Y., Z27 (-))sepo,r—q and (u(t + 5, Xo—, 0s) ,0(t + 5,,0) — v(t +
8, Xs—,0s-))sefo, 7—y are both solutions to the same BSDE under P?Y they coincide
as members of the space M*V. It follows that equalities (T.40]) and - ) hold. In

particular, v(t, x,9) = }/Oxtﬁ, and this yields the uniqueness of the solution.

Ezistence. We proceed by an approximation argument, following the same lines
of the proof of Theorem 4.4 in [28]. We recall that, by Theorem for every

fixed t € [0, T], the BSDE (1.39) has a unique solution (thﬁ,Zm (-))se[o’T,t] for
every (z,v¥) € S; moreover, Yoﬁﬂ is deterministic, i.e., there exists a real number,
denoted by v(t, z,1), such that IE’)x’ﬁ(Yoaflg19 = v(t,z,9)) = 1. At this point, we set
f"=(fAn)V(—n)and ¢" = (g An) V (—n) as the truncations of f and g at level
n. By Lemma for t € [0, T, (z,9) € S, equation

T
v (t,x, ) =g (x, 9+ T — 1) —|—/ Lo"(s,z, 0+ s—t)ds (1.42)
t

T
+ / s,z 9+ s—t,v"(s,z,9+ s —1t),0"(s,-,0) —v"(s,z,9 + s —t)) ds.
t

admits a unique bounded measurable solution v™. In particular, the first part of the
proof yield the following identifications:

vt @, 9) = YT,
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Un(t + S; XS—') 98—) - }/::t’ﬁ7n7
V(4 5,9,0) — 0"t + 5, Xoo, 05 ) = 227 (y),

in the sense of Remark where (Y;f’n, Zﬁf’n(d) sclo,7—4 1s the unique solution
to the BSDE

y 0 0. /T ! / Zm KV, n d
s,t Tdy)
(XT—t7 HT—t) / fn (t +r, Xra 91‘7 }/';3"97”7 er,;fﬂ’n()) d?",
s

for all s € [0, T — t]. Recalling (1.39) and applying Theorem we deduce that,

for some constant c,

T—t
0 x,09 z,9,m )2 9 z,9 z,9,n 2
sup B2 [l v e we | [ - v a)
s€[0, T—] 0

+ R [ / o 125 ) = 250 )AL 00 QUK 1) ds}

< B [|g(X_t,07—t) — g™ (X1 s, 071)|*]

+ B [/Tt F(t+ 8. Xe 00,V 207 () = [t + s,Xs,9&3’550725&6('))’%}
o 0 (1.43)

where the two final terms tend to zero by monotone convergence. In particular ((1.43))
yields

[o(t, 2, 0) — o™ (1,2, 9)]* = Y5 = Yo" < sup B Y - YR 0,
sel0, T—t

and therefore v is a measurable function. At this point, applying the Fatou Lemma

we get
T—t 2
E*Y [ / ds}
0
Z5(y) — o(t + 5,y,0) + v(t + s, Xy, 05)

E'rz’é / /
0 E
2
:|

T—t
< lim inf E*Y [/
n—oo
—v"(t+s,y,0) + 0" (t + s, X5, 05)

T—t
ds]

2
25 y) - 250 )| AKX, 0) QUG 6, dy) ds] =0

Y5 —w(t + s, X, 0,)

* MK, 0) Q(X,, 6, dy) ds]

VI — o (t + s, X, 0,)

+ hm 1nf E*Y

* A(X,,0,) Q(Xs, 0s, dy) ds}

— liminfE ”—Y”"
n—oo

T t
+ lim inf E*? [/ /
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by (1.43]). The above calculations show that ((1.40|) and (1.41)) hold. Moreover, they
imply that

T—t
B0 | [0 ot s, X000 P
0

T—t
LR [/ / 0t + 5,1,0) — (t + 5, X, 03)> A(Xs, 05) Q(Xs, 0s, dy) ds
0 F

T—t 9 2
=E>7 [ / V| ds]
0 K
T—t
+ Em,ﬂ |:/ /
0 E
< 00,
that accords to requirement of Definition [T.4.4]

It remains to show that v satisfies ([1.33). This would follow from a passage to
the limit in ((1.42)), provided we show that

2
Z;:,’tﬂ(y)‘ )‘(XSa ‘93) Q(XSa Os, dy) d5:|

T T
/ Lo"(s,x,0+s—1)ds —>/ Lv(s,z,0+ s —1t)ds, (1.44)
t t

and
T
/ s,z 0+ s—t,0"(s,z,0+s—1t),0"(s,-,0) —v"(s,z,9+ s —1))ds
t

T
— / f(s,z,94+s—tv(s,x,0+s—1t),v(s,-,0) —v(s,z,0+s—1t))ds. (1.45)
t
To prove (|1.44)), we observe that

Eacﬁ

T—t T—t
/ Lo(t+ s, Xs—,0s) ds—/ Lo (t+ s, Xs—,05—)ds
0 0

T—t
_ g /0 /E<Z§;f — Z57) M X, 05) Q( X, 05, dy) ds

< (T — )2 sup /A(z, 9)-

(z.9)
T—t 1/2

: (Ew U / ‘ng — Z5)™ N(Xs, 05) Q(X, 05, dy) ds]) -0,
0 E

by (1.43). Then, for a subsequence (still denoted v™) we get

Tt T—t
/ Lo"(t + s, Xs,05) ds — / Lo(t + s, X, 05) ds, PV a.s.
0 0
Recalling the law (1.7]) of the first jump T3, we see that the set {w € Q: T1(w) > T'}

has positive P*Y probability, and on this set we have X,_(w) = z, 0,_(w) = 9 + s.
Choosing such an w we have

T—t T—t
/ Lo (t+ s,z,9 + s)ds —>/ Lo(t+ s,z,9 + s)ds,
0 0
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i.e., by a translation of ¢ in the temporal line,

T T
/ Lo"(s,x,0+s—t)ds —>/ Lu(s,xz,9+ s —t)ds.
t t
To show (|1.45)), we compute

Tt
W[ / Pt 5, Xo, 00, Y37 Z37) = [+ 5, X, 00, YT, 20507 ds
0

|

T—t
< Ex,ﬂ |:/ ’f(t + S,Xsa 987 Ytsw,tﬂgv Z:,’tﬁ) - fn(t + 37Xs, 9371/;?757797 Z:”tﬂ)‘ d3:|
0

T—t
+ E=Y [/ ds] .
0

The first integral term in the right-hand side tends to zero by monotone convergence.
At this point, we notice that f™ is a truncation of f, and therefore it satisfies the
Lipschitz condition with the same constants L, L', independent of n. This
yields the following estimate for the second integral:

T—t
L E=Y [ / ds]
0

Tt N . 1/2
—{—LEm’ﬂ |:/0' (/E‘ ZS7§9(y) — Z ’19’ (y) )\(Xs,gs) Q(Xs>987dy)> d8:|

s,t
T—t 2 1/2
<L <(T —t)E®Y [/ dsD
0
1/2

+L <(T — ) E™Y [ /O o /E \ijf(y) - Z?f’”(y)f MXs, 05) Q(Xs, 05, dy) ds} ) :

Fr(t+ 5, X, 0, Y5 Z50) — fR(t + 5, X5, 05, Y, 250

z,9 z,9,n
Yii —Ysi

:

9 z,9,n
Yoi —Ysi

which tends to zero, again by (1.43)). Considering a subsequence (still denoted v™)
we get, P*V-as.,

T—t
/ S+ 5, X, 050" (E+ 5, X, 65), 0" (t + 5,9,0) — 0" (t + 5, X5, 65)) ds
0
T—t
— / flt+ s, Xs,05,0(t+ s, Xs,05),v(t+ s,y,0) —v(t + s, Xs,05)) ds.
0
Choosing also in this case an w in the set {w € Q: T} (w) > T}, we find
T—t
/ fft+s,x2,0+s,0"(t+ s, 2,9+ s), 0" (t + s,9,0) — 0" (t + s, 2,9 + s)) ds
0
T—t
— / fE+s,z,9+s,0(t+s,2,9+s),v(t+s,y,0) —v(t+s,z,9+s))ds,
0

and a change of temporal variable allows to prove that ([1.33]) holds, and to conclude
the proof. ]
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We finally introduce the Hamilton-Jacobi-Bellman (HJB) equation associated to
the control problem considered in Section for every t € [0, T and (x,9) € S,

T
v(t,x,ﬁ)—g(x,ﬂ—i—T—t)—i—/ Lou(s,xz,0+s—1t)ds
t

T
—I—/ f(s,x, 9+ s—t,v(s,-,0) —v(s,z,9+ s —1t))ds, (1.46)
t

where £ denotes the operator introduced in (1.32)), f is the Hamiltonian function
defined by ([1.23)) and g is the terminal cost. Since ([1.46)) is a nonlinear Kolmogorov
equation of the form ([1.33)), we can apply Theorem 1.4.2 and conclude that the value

function and an optimal control law can be represented by means of the HJB solution
v(t,xz, ).

Corollary 1.4.9. Let Hypotheses|1.5.1 and |1.53.5 hold. For every fized t € [0, T,
for every (x,9) € S and s € [0, T — t], there exists a unique solution v to the HJB

equation (1.46)), satisfying

v(t+S7XS—aGS—) = }/L:tjﬂv

vt +5,9,0) —v(t + 5, X, 0,-) = Z(y),

where the above equalities are understood as explained in Remark [1.4.8,
In particular an optimal control is given by the formula

u:t@’ﬂ € F(t + s, XS,, 037’ U(t + S5, 0) - U(t + s, XS*, 98*))7
while the value function coincides with v(t,x,v), i.e.

J(t,2, 9,00 () = v(t,z,9) = Y.



Chapter 2

Constrained BSDEs
representation of the
value function for
optimal control of pure
jump Markov processes

2.1. Introduction

In this chapter we prove that the value function in a classical optimal control
problem for pure jump Markov processes can be represented by means of an appro-
priate backward stochastic differential equation, that we introduce and for which we
prove an existence and uniqueness result.

We start by describing our setting in an informal way. A pure jump Markov
process X in a general measurable state space (E, ) can be described by means of
a rate transition measure, or intensity measure, v(t,z, B) defined for t > 0, z € E,
B € £. The process starts at time ¢ > 0 from some initial point x € E and stays
there up to a random time 77 such that

P(T} > s) =exp <— / v(r,z, E) dT) , s >t.
t

At time T7, the process jumps to a new point X7, chosen with probability (condi-
tionally to Th) v(T1,z,-)/v(T1,x, E) and then it stays again at X7, up to another
random time 75 such that

S
P(Ty > s | Th, X1,) = exp <—/ I/(T‘,XTl,E)dT>, s> 1Ty,
Ty

and so on.
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A controlled pure jump Markov process is obtained starting from a rate measure
Az, a, B) defined for x € E, a € A, B € &, i.e., depending on a control parameter
a taking values in a measurable space of control actions (A, A). A natural way to
control a Markov process is to choose a feedback control law, which is a measurable
function a : [0,00) x B — A. a(t,x) € A is the control action selected at time
t if the system is in state x. The controlled Markov process X is simply the one
corresponding to the rate transition measure \(z, a(t,z), B). Let us denote by P5”
the corresponding law, where ¢,z are the initial time and starting point.

We note that an alternative construction of (controlled or uncontrolled) Markov
processes consists in defining them as solutions to stochastic equations driven by
some noise (for instance, by a Poisson process) and with appropriate coefficients
depending on a control process. In the context of pure jump processes, our approach
based on the introduction of the controlled rate measure A(z,a, B) often leads to
more general results and it is more natural in several contexts.

In the classical finite horizon control problem one seeks to maximize over all
control laws « a functional of the form

T
J(t,x,a) = EL* {/t f(s, Xs,a(s, Xs))ds + g(X7) |, (2.1)

where a deterministic finite horizon T' > 0 is given and f, g are given real functions,
defined on [0, 7] x E'x A and E, representing the running cost and the terminal cost,
respectively. The value function of the control problem is defined in the usual way:

V(t,z) =sup J(t, x, a), tel[0,T], z €E. (2.2)

We will only consider the case when the controlled rate measure A and the costs
f,g are bounded. Then, under some technical assumptions, V is known to be the
unique solution on [0,7] x E to the Hamilton-Jacobi-Bellman (HJB) equation

—%(t,l‘) = SUPges (fE(’U(tvy) —v(t,2)) Mz, a,dy) + f(t,z, a)) ) (2.3)
o(T, x) = g(x), ’

and if the supremum is attained at some «(t,x) € A depending measurably on (¢, x)
then « is an optimal feedback law. Note that the right-hand side of is an
integral operator: this allows for easy notions of solutions to the HJB equation, that
do not in particular need the use of the theory of viscosity solutions.

Our purpose is to relate the value function V (¢, z) to an appropriate BSDE. We
wish to extend to our framework the theory developed in the context of classical
optimal control for diffusion processes, constructed as solutions to stochastic differ-
ential equations of Ito type driven by Browian motion, where representation formulae
for the solution to the HJB equation exist and are often called non-linear Feyman-
Kac formulae. The majority of those results requires that only the drift coefficient
of the stochastic equation depends on the control parameter, so that in this case
the HJB equation is a second-order semi-linear partial differential equation and the
non-linear Feyman-Kac formula is well known, see e.g. El Karoui, Peng and Quenez
[63]. Generally, in this case the laws of the corresponding controlled processes are
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all absolutely continuous with respect to the law of a given, uncontrolled process, so
that they form a dominated model.

A natural extension to our framework could be obtained imposing conditions
implying that the set of probability laws {ng}a, when « varies over all feedback
laws, is a dominated model. This is the point of view taken in Confortola and
Fuhrman [28], where an appropriate BSDE is introduced and solved and a Feyman-
Kac formula for the value function is proved in a restricted framework. This approach
is also considered in Chapter [I] in the case of controlled semi-Markov processes and
in Confortola and Fuhrman [27] in a non-Markovian context.

In the present chapter we want to consider the general case when {]P’ij}a is not
a dominated model. Even for finite state space E, by a proper choice of the measure
Az, a, B) it is easy to formulate quite natural control problems for which this is the
case.

In the context of controlled diffusions, probabilistic formulae for the value func-
tion for non-dominated models have been discovered only in recent years. We note
that in this case the HJB equation is a fully non-linear partial differential equation.
To our knowledge, there are only a few available techniques. One possibility is to
use the theory of second-order BSDESs, see for instance Cheridito, Soner, Touzi and
Victoir [23], and Soner, Touzi and Zhang [124]. Another possibility relies on the
use of the theory of G-expectations, see e.g. Peng [105]. Both theories have been
largely developed by several authors. In this chapter we rather follow another ap-
proach which is presented in the paper Kharroubi and Pham [88] and was predated
by similar results concerning optimal switching or optimal impuse control problems,
see Elie and Kharroubi [54], [55], [56], Kharroubi, Ma, Pham and Zhang [87], and
followed by some extensions and applications, see Fuhrman and Pham [67], Cosso
and Choukroun [25], and Cosso, Fuhrman and Pham [31]. It consists in a control
randomization method (not to be confused with the use of relaxed controls) which
can be described informally as follows, in our framework of controlled pure jump
Markov processes.

We note that for any choice of a feedback law « the pair of stochastic processes
(X5, a(s, Xs)) represents the state trajectory and the associated control process.
In a first step, for any initial time ¢ > 0 and starting point z € E, we replace
it by an (uncontrolled) Markovian pair of pure jump stochastic processes (X, Is),
possibly constructed on a different probability space, in such a way that the process
I is a Poisson process with values in the space of control actions A with an intensity
measure \g(da) which is arbitrary but finite and with full support. Next we formulate
an auxiliary optimal control problem where we control the intensity of the process
I: for any predictable, bounded and positive random field 14(a), by means of a
theorem of Girsanov type we construct a probability measure P, under which the
compensator of [ is the random measure v4(a) A\g(da) dt (under P, the law of X also
changes) and then we maximize the functional

E, [go@ + " fs, X 1) ds] ,
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over all possible choices of the process v. Following the terminology of [88], this
will be called the dual control problem. Its value function, denoted V*(¢, z,a), also
depends a priori on the starting point a € A of the process I (in fact we should write
PL™ instead of P, but in this discussion we drop this dependence for simplicity)
and the family {P,}, is a dominated model. As in [88] we are able to show that the
value functions for the original problem and the dual one are the same: V(t,z) =
V*(t,z,a), so that the latter does not in fact depend on a. In particular we have
replaced the original control problem by a dual one that corresponds to a dominated
model and has the same value function. Moreover, we can introduce a well-posed
BSDE that represents V*(¢,z,a) (and hence V (¢, x)). It is an equation on the time
interval [t,T] of the form

T
Y = g(XT)+/ f(TaXTaIr)dr“‘KT_Ks

_/ST/E; Z.(y, b) q(drdydb)—/sT/AZr(Xr, b) Ao(db) dr,  (2.4)

with unknown triple (Y, Z, K) (depending also on (t,x,a)), where ¢ is the compen-
sated random measure associated to (X, I), Z is a predictable random field and K a
predictable increasing cadlag process, where we additionally add the sign constraint

Zy(X,_,b) <0. (2.5)

It turns out that this equation has a unique minimal solution, in an appropriate
sense, and that the value of the process Y at the initial time represents both the
original and the dual value function:

Yi=V(t,x) =V*(t, z,a). (2.6)

This is the desired BSDE representation of the value function for the original control
problem and a Feyman-Kac formula for the general HJB equation (2.3)).

The chapter is organized as follows. Section is essentially devoted to lay
down a setting where the classical optimal control problem is solved by means
of the corresponding HJB equation . We first recall the general construction of
a Markov process given its rate transition measure. Having in mind to apply tech-
niques based on BSDEs driven by random measures we need to work in a canonical
setting and use a specific filtration, see Remark Therefore the construction
we present is based on the well-posedness of the martingale problem for multivariate
(marked) point processes studied in Jacod [75] and it is exposed in detail. This
general construction is then used to formulate in a precise way the optimal control
problem for the jump Markov process and it is used again in the subsequent section
when we define the pair (X, ) mentioned above. Still in Section we present
classical results on existence and uniqueness of the solution to the HJB equation
and its identification with the value function v. These results are similar to
those in Pliska [108], a place where we could find a clear and complete exposition
of all the basic theory and to which we refer for further references and related re-
sults. We note that the compactness of the space of control actions A, together with
suitable upper-semicontinuity conditions of the coefficients of the control problem,
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is one of the standard assumptions needed to ensure the existence of an optimal
control, which is usually constructed by means of an appropriate measurable selec-
tion theorem. Since our main aim was only to find a representation formula for
the value function we wished to avoid the compactness condition. This was made
possible by the use of a different measurable selection result, that however requires
lower-semicontinuity conditions. Although this is not usual in the context of maxi-
mization problems, this turned out to be the right condition that allows to dispense
with compactness assumptions and to prove well-posedness of the HJB equation and
a verification theorem. A small variation of the proofs recovers the classical results
in [108], and even with slightly weaker assumptions: see Remark for a more
detailed comparison.

In Section we start to develop the control randomization method: we in-
troduce the auxiliary process (X, ) and formulate the dual control problem under
appropriate conditions. Finding the correct formulation required some efforts; in
particular we could not mimic the approach of previous works on control randomiza-
tion mentioned above, since we are not dealing with processes defined as solutions
to stochastic equations.

In Section we introduce the constrained BSDE — and we prove,
under suitable conditions, that it has a unique minimal solution (Y, Z, K) in a cer-
tain class of processes. Moreover, the value of Y at the initial time coincides with
the value function of the dual optimal control problem. This is the content of the
first of our main results, Theorem [2.4.3l The proof relies on a penalization ap-
proach and a monotonic passage to the limit, and combines BSDE techniques with
control-theoretic arguments: for instance, a “penalized” dual control problem is also
introduced in order to obtain certain uniform upper bounds. In [88], in the context
of diffusion processes, a more general result is proved, in the sense that the genera-
tor f may also depend on (Y, Z); similar generalizations are possible in our context
as well, but they seem less motivated and in any case they are not needed for the
applications to optimal control.

Finally, in Section we prove the second of our main results, Theorem [2.5.1
It states that the initial value of the process Y in — coincides with the value
function v(t,z). As a consequence, the value function is the same for the original
optimal control problem and for the dual one and we have the non-linear Feynman-

Kac formula (2.6)).

The assumptions in Theorem are fairly general: the state space E and
the control action space A are Borel spaces, the controlled kernel A is bounded and
has the Feller property, and the cost functions f,g are continuous and bounded.
No compactness assumption is required. When F is finite or countable we have
the special case of (continuous-time) controlled Markov chains. A large class of
optimization problems for controlled Markovian queues falls under the scope of our
result.

In recent years there has been much interest in numerical approximation of the
value function in optimal control of Markov processes, see for instance the book Guo
and Hérnandez-Lerma [72] in the discrete state case. The Feynman-Kac formula



Chapter 2. Constrained BSDEs representation of the value function for
66 optimal control of pure jump Markov processes

can be used to design algorithms based on numerical approximation of the
solution to the constrained BSDE —. Numerical schemes for this kind of
equations have been proposed and analyzed in the context of diffusion processes, see
Kharroubi, Langrené and Pham [86], [85]. We hope that the results in the present
chapter may be used as a foundation for similar methods in the context of pure jump
processes as well.

2.2. Pure jump controlled Markov processes

2.2.1. The construction of a jump Markov process given the rate tran-
sition measure. Let F be a Borel space, i.e., a topological space homeomorphic
to a Borel subset of a compact metric space (some authors call it a Lusin space);
in particular, £ could be a Polish space. Let & denote the corresponding Borel
o-algebra.

We will often need to construct a Markov process in E with a given (time de-
pendent) rate transition measure, or intensity measure, denoted by v. With this
terminology we mean that B +— v(t,z, B) is a nonnegative measure on (E, &) for
every (t,z) € [0,00) x E and (t,x) — v(t,x, B) is a Borel measurable function on
[0,00) x E for every B € €. We assume that

sup v(t,z,E) < 0. (2.7)

t>0,z€E

We recall the main steps in the construction of the corresponding Markov process.
We note that allows to construct a non-explosive process. Since v depends on
time the process will not be time-homogeneous in general. Although the existence
of such a process is a well known fact, we need special care in the choice of the cor-
responding filtration, since this will be crucial when we solve associated BSDEs and
implicitly apply a version of the martingale representation theorem in the sections
that follow: see also Remark below. So in the following we will use an explicit
construction that we are going to describe. Many of the techniques we are going to
use are borrowed from the theory of multivariate (marked) point processes. We will
often follow [75], but we also refer the reader to the treatise Brandt and Last [17]
for a more systematic exposition.

We start by constructing a suitable sample space to describe the jumping mech-
anism of the Markov process. Let €' denote the set of sequences w’' = (tn, en)n>1
in ((0,00) x E) U {(c0,A)}, where A ¢ E is adjoined to E as an isolated point,
satisfying in addition

tn <tnit; th <00 = t, <tlpii- (2.8)

To describe the initial condition we will use the measurable space (E, &). Finally,
the sample space for the Markov process will be Q = E x €. We define canonical
functions T), : @ — (0,00], E,, : Q — E U {A} as follows: writing w = (e,w’) in the
form w = (e, t1,e1,t9,€2,...) we set for ¢ > 0 and for n > 1

Th(w) = ty, E,(w) = ep, Too(w) = lim tp, To(w) =0, Ep(w) =e.

n—o0
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We also define X : Q x [0,00) = E U {A} setting

X, = 1[0,T1}(t) Eoy+ anl 1(Tn,Tn+1](t) E, for t < Ty,
A for t > Tyo.

Xt = ]-[0,T1](t) EO + ZTLZI ]'(Tn,TnJrl}(t) En for ¢ < TOO, Xt =Afort Z Too

In 2 we introduce for all ¢t > 0 the o-algebras §; = o(N(s, A) : s € (0,t], A € &),
i.e. generated by the counting processes defined as N(s, A) = >, - 11, <s1B,ea.

To take into account the initial condition we also introduce the filtration F =
(F)e=0, where Fyp = € @ {0,'}, and for all t > 0 F, is the o-algebra generated
by Fy and G;. F is right-continuous and will be called the natural filtration. In
the following all concepts of measurability for stochastic processes (adaptedness,
predictability etc.) refer to F. We denote by Fo, the o-algebra generated by all
the o-algebras F;. The symbol P denotes the o-algebra of F-predictable subsets of
[0,00) x €.

The initial distribution of the process X will be described by a probability mea-
sure p on (E,&). Since Fg = {A x Q' : A € &} is isomorphic to &, p will be
identified with a probability measure on ¥y, denoted by the same symbol (by abuse
of notation) and such that u(A x Q') = u(A).

On the filtered sample space (£2,F) we have so far introduced the canonical

marked point process (1, Ey)n>1. The corresponding random measure p is, for any
w € Q, a o-finite measure on ((0,00) x £, B((0,00)) ® €) defined as

plw,dsdy) =Y 17, (<00 ST (), B (w)) (d5 dY),

n>1

where 0y, denotes the Dirac measure at point k € (0,00) x E.

Now let v denote a time-dependent rate transition measure as before, satisfying
(2.7). We need to introduce the corresponding generator and transition semigroup
as follows. We denote by By(E) the space of E-measurable bounded real functions
on E and for ¢ € By(FE) we set

L) = [ 00) = ola)) vitady),  t20.0EE
For any T' € (0,00) and g € By(E) we consider the Kolmogorov equation on [0, 7| x E:

8—2(8, x) + Lsv(s,z) =0,
S gt 29

It is easily proved that there exists a unique measurable bounded function v : [0, T x
E such that v(T,:) = g on E and, for all x € E, s — v(s,z) is an absolutely
continuous map on [0, 7] and the first equation in holds for almost all s € [0, 7]
with respect to the Lebesgue measure. To verify this we first write in the
equivalent integral form

T
v(s,x) = g(x) —|—/ Lyv(r,x)dr, s€[0,T), z € E.
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Then, noting the inequality |Lid(z)| < 2supycp [¢(y)| subcpm yer V(L Y, E), a so-
lution to the latter equation can be obtained by a standard fixed point argument
in the space of bounded measurable real functions on [0, 7] x E endowed with the
supremum norm.

This allows to define the transition operator Py : By(E) — By(E), for 0 < s <
T, letting Psr[g](z) = v(s, x), where v is the solution to with terminal condition
g € 'Bb<E)
Proposition 2.2.1. Let hold and let us fiz t € [0,00) and a probability measure
won (E,E).

(1) There exists a unique probability measure on (0, F), denoted by Pb*, such
that its restriction to Fy is p and the F-compensator (or dual predictable
projection) of the measure p under P is the random measure p(ds dy) =
L1y (s) v(s, X, dy) ds. Moreover, P*(Ty, = 00) = 1.

(2) In the probability space {Q, Foo,PH*} the process X has distribution u at
time t and it is Markov on the time interval [t,00) with respect to F with
transition operator Psp: explicitly, for every t < s < T and for every
g € By(E),

E"[g(X7) | 5] = Parlg)(Xs), P —aus.
Proof. Point 1 follows from a direct application of [75], Theorem 3.6. The non-
explosion condition P4# (T, = 0o) = 1 follows from the fact that X is bounded.

To prove point 2 we denote v(s,z) = Psplg](z) the solution to the Kolmogorov
equation (2.9) and note that

(T, X7) — v(s, X) / I (r, Xy) dr—i—/ST/ (r,y) —v(r, X,)) p(dr dy).

This identity is easily proved taking into account that X is constant among jump
times and using the definition of the random measure p. Recalling the form of the
F-compensator p of p under PH* we have, P -a.s.,

Et’”[f(&T}vary)— ( +—)) p(dr dy) ‘9:}
(r, X

= B fior) Jp(vlry) = vlr X, ) pldr dy) | 5
B foiy Jp(v(r9) = 0. X)) v(r. X, dy) dr | 5]
= Eb# f(s,T] Lrv(r, Xr) dr | H’S}

and we finally obtain
E“* [g(XT) | Fs] = Perlg)(Xs) = E*[o(T, Xr) | Fs] — v(s, Xs)
— E# [fT (g%(r, X))+ Lyo(r, XT)> dr | :fs} —0.

s

O

In the following we will mainly consider initial distributions p concentrated at
some point x € E, i.e. u = d,. In this case we use the notation P“® rather than
P49 . Note that, PH®-a.s., we have Ty > t and therefore X = x for all s € [0, ].
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Remark 2.2.2. Since the process X is F-adapted, its natural filtration FX =
(F7)i>0 defined by FX = o(X, : s € [0,1]) is smaller than F. The inclusion may be
strict, and may remain such if we consider the corresponding completed filtrations.
The reason is that the random variables E,, and E,; introduced above may coincide
on a set of positive probability, for some n, and therefore knowledge of a trajectory
of X does not allow to reconstruct the trajectory (7, Ey,).

In order to have ¥, = FX up to Pb*-null sets one could require that v(t, z, {z}) =
0, i.e. that T, are in fact jump times of X, but this would impose unnecessary
restrictions in some constructs that follow.

Clearly, the Markov property with respect to F implies the Markov property with
respect to FX as well.

2.2.2. Optimal control of pure jump Markov processes. In this section we
formulate and solve an optimal control problem for a Markov process with a state
space E, which is still assumed to be a Borel space with its Borel o-algebra €. The
other data of the problem will be another Borel space A, endowed with its Borel
o-algebra A and called the space of control actions; a finite time horizon, i.e. a
(deterministic) element T € (0, 00); two real valued functions f and g, defined on
[0,T7] x E x A and F and called running and terminal cost functions respectively;
and finally a measure transition kernel A from (E x A,& ® A) to (E,&): namely
B +— A(z,a,B) is a nonnegative measure on (F, &) for every (z,a) € E x A and
(z,a) — Az, a, B) is a Borel measurable function for every B € €. We assume that
) satisfies the following condition:

sup  A(z,a, F) < oo. (2.10)
reF,acA

The requirement that A(z,a, {z}) =0 for all z € F and a € A is natural in many
applications, but it is not needed. The kernel A depending on the control parameter
a € A plays the role of a controlled intensity measure for a controlled Markov process.
Roughly speaking, we may control the dynamics of the process by changing its jump
intensity dynamically. For a more precise definition, we first construct 2, F =
(Ft)t>0, Foo as in the previous paragraph. Then we introduce the class of admissible
control laws A, as the set of all Borel-measurable maps «: [0,7] x E — A. To any
such a we associate the rate transition measure v*(t,z,dy) := Az, a(t, z), dy).

For every starting time ¢ € [0, 7] and starting point « € E, and for each o € Aq,
we construct as in the previous paragraph the probability measure on (2, F), that
will be denoted ]P’f);x, corresponding to ¢, to the initial distribution concentrated at x
and to the the rate transition measure v®. According to Proposition under P5”
the process X is Markov with respect to F and satisfies X; = x for every s € [0,T7;
moreover, the restriction of the measure p to (¢,00) x E admits the compensator
AMX,_, afs, X,_), dy)ds. Denoting by E5” the expectation under P5” we finally
define, for t € [0, T|, x € FE and « € A,g, the gain functional

T
J(t,x,a) = BL* [/t f(s, Xg,a(s, Xs))ds + g(X7) |, (2.11)
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and the value function of the control problem

V(t,x) = sup J(t,x,q). (2.12)
a€Aqq

Since we will assume below that f and g are at least Borel-measurable and bounded,
both J and V are well defined and bounded.

Remark 2.2.3. In this formulation the only control strategies that we consider are
control laws of feedback type, i.e., the control action a(t,x) at time ¢ only depends
on t and on the state x for the controlled system at the same time. This is a natural
and frequently adopted formulation. Different formulations are possible, but usually
the corresponding value function is the same and, if an optimal control exists, it is
of feedback type.

Remark 2.2.4. All the results that follows admit natural extensions to slightly
more general cases. For instance, A might depend on time, or the set of admissible
control actions may depend on the present state (so admissible control laws should
satisfy a(t,z) € A(z), where A(z) is a given subset of A) provided appropriate
measurability conditions are satisfied. We limit ourselves to the previous setting in
order to simplify the notation.

Let us consider the Hamilton-Jacobi-Bellman equation (for short, HJB equa-
tion) related to the optimal control problem: this is the following nonlinear integro-
differential equation on [0,7] x E:

_%(m) = sup (Lot @) + f(t,2,a)), (2.13)
acA
i) = g@), (2.14)

where the operator £% is defined by

@ o(x) = /E (6(y) — 6(2)) Mz, a, dy) (2.15)

for all (t,z,a) € [0, T] x E x A and every bounded Borel-measurable function ¢ :
E — R

Definition 2.2.5. We say that a Borel-measurable bounded function v : [0,T] x
E — R is a solution to the HJB equation if the right-hand side of is Borel-
measurable and, for every r € E, holds, the map t — v(t,x) is absolutely
continuous in [0,T] and holds almost everywhere on [0,T] (the null set of
points where it possibly fails may depend on x).

In the analysis of the HJB equation and the control problem we will use the
following function spaces, defined for any metric space S:

(1) Cp(S) ={¢: S — R continuous and bounded},
(2) LSCy(S) ={¢: S — R lower semi-continuous and bounded}.
(3) USCy(S) ={¢ : S — R upper semi-continuous and bounded}.
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Cy(S), equipped with the supremum norm ||¢||~, is a Banach space. LSCy(S) and
USCy(S) are closed subsets of Cp(S), hence complete metric spaces with the induced
distance.

In the sequel we need the following classical selection theorem. For a proof we
refer for instance to Bertsekas and Shreve [15], Propositions 7.33 and 7.34, where a
more general statement can also be found.

Proposition 2.2.6. Let U be a metric space, V a metric separable space. For
F:UxV —R set
F*(u) = sup F(u,v), ue U.
veV

(1) If F e USCy(UXV) and V is compact then F* € USCy(U) and there exists
a Borel-measurable ¢ : U — V' such that

F(u,p(u)) = F*(u), uel.

(2) If F € LSCy(U x V) then F* € LSCy(U) and for every e > 0 there exists
a Borel-measurable ¢. : U — V' such that

F(u,pc(u)) > F*(u) — €, uel.

Next we present a well-posedness result and a verification theorem for the HJB
equation in the space LSCy([0,T] x E), Theorems [2.2.7/and [2.2.10| below. The use of
lower semi-continuous bounded functions was already commented in the introduction
and will be useful for the results in Section A small variation of our arguments
also yields corresponding results in the class of upper semi-continuous functions,
which are more natural when dealing with a maximization problem, see Theorems
[2.2.8] and [2.2.17] that slightly generalize classical results. We first formulate the
assumptions we need.

A is a Feller transition kernel. (2.16)

We recall that this means that for every ¢ € Cy(E) the function (z,a) — [5 ¢(y)
A(z, a,dy) is continuous (hence it belongs to Cy(E x A) by (2.10)).

Next we will assume either that
fe€LSCL[0,T] x Ex A), ge LSCy(E), (2.17)
or

feUSCy([0,T]xExA), geUSCy(E) and A is a compact metric space. (2.18)

Theorem 2.2.7. Under the assumptions (2.10), (2.16]), (2.17) there exists a unique
solution v € LSCy([0,T] x E) to the HIB equation (in the sense of Definition[2.2.5).

Proof. We first make a change of unknown function setting (¢, ) = e *uv(t, z),
where A := sup,cp qea A2, a, E) is finite by (2.10)). It is immediate to check that v

is a solution to (2.13)-(2.14)) if and only if ¥ is a solution to

—@(t, z) = sup (LE0(t, @) + e Mf(t,z,a) + Ad(t, z)) (2.19)
ot acA
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= 21613 (/E ot y) Mz, a, dy) + (A — N, a, E))o(t, ) + e M f(t, a)> ,

(T, z) = e Mg(x). (2.20)

The notion of solution we adopt for (2.19)-(2.20) is completely analogous to Defi-
nition and need not be repeated. We set I';(t,z) := j;T SUPgea Vi(S, z,a)ds

where
vo(t, x,a) = /Ef)(t,y) Mz, a,dy) + (A — XNz, a, E))o(t, x) + e Mft x,a) (2.21)

and note that solving (2.19)-(2.20) is equivalent to finding o € LSCy([0,T] x E)
satisfying
o(t,x) = g(z) + Ts(t, ), tel0,T],z€E.
We will prove that 0 — g + I'; is a well defined map of LSCy([0,T] x E) into itself
and it has a unique fixed point, which is therefore the required solution.
Fix 0 € LSCy([0,T] x E). It follows easily from that 5 is bounded and,

if sup,eca v5(+, -, a) is Borel-measurable, I'; is bounded as well. Next we prove that
~v5 and I'; are lower semi-continuous. Note that (z,a) — A — A(z,a, E) continuous
and nonnegative (this is the reason why we introduced the equation for 0), so

(t,x,a) = (A= Az, 0, E))i(t,x) + e M f(t,7,a)
is in LSCy(]0,T] x E x A). Since A is Feller, it is known that the map

(t,:r,a)H/Ef)(t,y) Az, a,dy) (2.22)

is continuous when o € Cy([0,7] x E) (see [15], Proposition 7.30). For general
v € LSCy([0,T] x E), there exists a uniformly bounded and increasing sequence
On € Cu([0,T] x E) such that v, — o pointwise (see [15], Lemma 7.14). From
the Fatou Lemma we deduce that the map is in LSCy([0,T] x E x A) and
we conclude that 73 € LSCy([0,T] x E x A) as well. Therefore sup,c 7 (-, -, a),
which equals the right-hand side of , is lower semi-continuous and hence Borel-
measurable. To prove lower semi-continuity of I'y suppose (¢, z,) — (t,x); then

t

T (tn, 20) — Talt, ) = / SUP Y5 (5, a1, ) ds
tn aEA

T
+ [ Gupa(s,m0,0) = supa(s.z.a)) ds
t a€A acA

T
>t — tal lslleo + / (Sup¥5(5, s @) — SUP Y35, 2, a)) ds.
t acEA acA

By the Fatou Lemma

T
liminf T5(t,, x,) — Ty(t, ) > / lim inf (sup 73 (8, Zn, a) — supvs(s, z,a)) ds > 0,
t

n—o0 n—oo (IEA acA

where in the last inequality we have used the lower semi-continuity of sup,c 4 i (-, -, @).
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Since we assume that g € LSCy(E) we have thus checked that © — g + I'y; maps
LSCy(]0,T] x E) into itself. To prove that it has a unique fixed point we note the
easy estimate based on (2.10)), valid for every o', 0" € LSCy([0,T] x E):

|Supa€A Yo! (ta z, a) — SUDge A Vo (tv z, a)’ < SUPge A h/f)' (tv z, a) - Yo (tv z, a)’
< supgea ([0t y) = 0" (8, y)| Mz, a, dy) + |0 (t, 2) — 0" (t, 2)| \(z, a, E))
<O — e

By a standard technique one proves that a suitable iteration of the map v — g+ I';
is a contraction with respect to the distance induced by the supremum norm, and
hence that map has a unique fixed point. O

Theorem 2.2.8. Under the assumptions (2.10), (2.16)), (2.18) there exists a unique
solution v € USCy([0,T] x E) to the HIB equation.

Proof. The proof is almost the same as in the previous Theorem, replacing LSCY
with USC}, with obvious changes. We introduce 9, v and 'y as before and we
prove in particular that vz € USCy([0,7] x E x A). The only difference is that
we can not immediately conclude that sup,c 4 vs(, -, @) is upper semi-continuous as
well. However, at this point we can apply point 1 of Proposition choosing
U=[0,T]xE,V =Aand F = v; and we deduce that in fact sup,c 4 vs (-, ,a) €
USCy([0,T] x E). The rest of the proof is the same. O

Corollary 2.2.9. Under the assumptions ([2.10), ,if f € Gp([0,T] x E x A),
g € Cy(E) and A is a compact metric space then the solution v to the HJB equation
belongs to Cy([0,T] x E).

The Corollary follows immediately from the two previous results. We proceed to
a verification theorem for the HJB equation.

Theorem 2.2.10. Under the assumptions (2.10)), (2.16)), (2.17) the unique solution
v € LSCy([0,T] x E) to the HIB equation coincides with the value function V.

Proof. Let us fix (¢,z) € [0,T] x E. As in the proof of Proposition we have
the identity

ava dr—l—/ / v(r,y) —o(r, X,—)) p(dr dy),
¢ Or 1)

g(XT) - U(tv Xt) =
which follows from the absolute continuity of ¢t — v(¢, z), taking into account that
X is constant among jump times and using the definition of the random measure p.
Given an arbitrary admissible control o € A,q we take the expectation with respect
to the corresponding probability PL". Recalling that the compensator under P** is
L ,00) (8)A(Xs—, a(s, Xs-), dy) ds we obtain
T o

EL [9(X1)] —v(t, X;) = t 5, (r Xp)dr

/t T]/ (ryy) —o(r, Xon)) M(Xr—, a(r, Xr—), dy) dr
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T
= / <6U(r, X,) + L%(T’Xr)v(r, XT)> dr.
t 87"

Adding E5* ftT f(r, X, a(r, X)) dr to both sides and rearranging terms we obtain

T
olt,) = It ) B [ {3< X,) + L5y, X,) + £, X alr, Xm} dr.
t

or
(2.23)
Recalling the HJB equation and taking into account that X has piecewise constant
trajectories we conclude that the term in curly brackets {...} is nonpositive and
therefore we have v(t,xz) > J(t, z, «) for every admissible control.

Now we recall that in the proof of Theorem we showed that the function
~vs defined in (2.21)) belongs to LSCy([0,T] x E x A). Therefore the function

F(t,x,a) == eMy(t, x,a) = LEv(t,z) + f(t,z,a) + Av(t, z)

is also lower semi-continuous and bounded. Applying point 2 of Proposition [2.2.6
with U = [0,7] x E and V = A we see that for every ¢ > 0 there exists a Borel-
measurable ae : [0,7] x E — A such that F(t,z,ac(t,x)) > infaeq F(t,x,a) — € for
all t € [0,T], x € E. Taking into account the HJB equation we conclude that for
every x € E we have

L%ﬁ(t’x)v(t,m) + f(t,z, a(t,x)) > —g:(t, x)—e€

for almost all t € [0,7]. Noting that a. is an admissible control and choosing
a = a¢ in we obtain v(t,x) < J(t,x, ) + €(T — t). Since we know that
v(t,x) > J(t,z,a) for every a € A,q we conclude that v coincides with the value
function V. O

Theorem 2.2.11. If assumptions (2.10), (2.16]), (2.18) hold, then the unique solu-
tion v € USCy([0,T] x E) to the HIB equation coincides with the value function V.
Moreover there exists an optimal control «, which is given by any function satisfying

£ it ) + f(tw.0ft,2)) = sup (Cgo(t.o) + flt.za)). (224)
ac

Proof. We proceed as in the previous proof, but we can now apply point 2 of
Proposition to the function F' and deduce that there exists a Borel-measurable
a:]0,T] x E — A such that holds. Any such control « is optimal: in fact we
obtain for every x € F,

Loyt 2) + f(t @, alt, x) = — = (£, )

v
“ a1
for almost all ¢ € [0,7] and so v(t,z) = J(t, x, ). O
Remark 2.2.12. As already mentioned, Theorems [2.2.8] and [2.2.11] are similar to
classical results: compare for instance [108], Theorems 10, 12, 13, 14. In that paper
the author solves the HJB equations by means of a general result on nonlinear semi-
groups of operators, and for this he requires some more functional-analytic structure,
for instance he embeds the set of decision rules into a properly chosen topological
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vector space. He also has more stringent conditions of the kernel A, for instance
Az, a, B) should be strictly positive and continuous in (z,a) for each fixed B € €.

2.3. Control randomization and dual optimal control problem

In this section we start to implement the control randomization method. In the
first step, for any initial time ¢ > 0 and starting point x € E, we construct an
(uncontrolled) Markovian pair of pure jump stochastic processes (X, I) with values
in E x A, by specifying its rate transition measure A as in below. Next we
formulate an auxiliary optimal control problem where, roughly speaking, we optimize
a cost functional by modifying the intensity of the process I over a suitable family.
This “dual” control problem will be studied in Section [2.4] by an approach based on
BSDEs. In Section [2.5| we will prove that the dual value function coincides with the
one introduced in the previous section.

2.3.1. A dual control system. Let E, A be Borel spaces with corresponding Borel
o-algebras £, A and let A be a measure transition kernel from (E x A,& ® A) to
(E, &) as before. As another basic datum we suppose we are given a finite measure
Ao on (A, A) with full topological support, i.e., it is strictly positive on any non-
empty open subset of A. Note that since A is metric separable such a measure can
always be constructed, for instance supported on a dense discrete subset of A. We
still assume , so we formulate the following assumption:

(HN) Ao is a finite measure on (A4, A) with full topological support and \ satisfies

sup  A(z,a, E) < oo. (2.25)
r€E,acA

We wish to construct a Markov process as in section but with state space
E x A. Accordingly, let ' denote the set of sequences w’ = (ty, €, an)n>1 contained
in ((0,00) x Ex A)U{(0c0, A, A")}, where A ¢ E (respectively, A’ ¢ A) is adjoined
to E (respectively, to A) as an isolated point, satisfying (2.8]) In the sample space
Q=ExAxQ wedefine T, : Q@ — (0,00], B, : @ = EU{A}, A, : Q — AU{A'}, as
follows: writing w = (e, a,w’) in the form w = (e, a, t1,e1,t2, €2, ...) we set for t > 0
and for n > 1

Thn(w) = ty, Too(w) = limy, 00 tn, To(w) =0,
E,(w) = ep, Ap(w) = ap, Ep(w) = e, Ap(w) = a.
We also define processes X : Q x [0,00) = EU{A}, I : Q x [0,00) = AU{A'}
setting
Xt = 1jo,1,(t) Eo + Z L, 1) () By It = 19,7y (t) Ao + Z Lo, Tpin) () Ans
n>1 n>1
fort < To, X; = A and I; = A’ for t > T,

In Q we introduce for all ¢ > 0 the o-algebras §; = o(N(s,B) : s € (0,t],B €
€ ® A) generated by the counting processes N(s,B) = > 1 11,<s1(E, 4,)ep and
the o-algebra F; generated by Fy and G¢, where Fy := € @ A ® {0,Q'}. We still
denote F = (F4)¢>0 and P the corresponding filtration and predictable o-algebra. By
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abuse of notation we also denote by the same symbol the trace of P on subsets of
the form [0, T'] x Q or [t,T] x €2, for deterministic times 0 <t < T < oc.

The random measure p is now defined on (0,00) X E x A as

pldsdydb) = 1(1, <0} 07,4, } (ds dy db). (2.26)
neN

By means of A and )\ satisfying assumption (H\) we define a (time-independent)
rate transition measure on E x A given by

A(z,a;dy db) = Nz, a,dy) 64(db) + Ao(db) 6 (dy). (2.27)

and the corresponding generator L:
Lo(x,a) = /E A(gp(y, b) — ¢(x,a)) Az, a; dy db) (2.28)
X

- / (o 0) — ol 0)) Az 0, dy) + / ((z,b) — (x. a)) Ao(db),
E

A
for all (z,a) € E x A and every function ¢ € By(E x A).

Given any starting time ¢ > 0 and starting point (z,a) € E x A, an application of
Proposition provides a probability measure on (2, F,), denoted by P»*%, such
that (X, I) is a Markov process on the time interval [t,00) with respect to F with
transition probabilities associated to £. Moreover, P44 a.s., X, = x and I, = a for
all s € [0,t]. Finally, the restriction of the measure p to (¢t,00) x E x A admits as
F-compensator under P%®% the random measure

p(dsdydb) := Ao(db) 0yx,_y(dy) ds + AN(Xs—, Is—, dy) o7, (db) ds.
We denote ¢ := p — p the compensated martingale measure associated to p.

Remark 2.3.1. Note that A(x,a;{z,a}) = Ao({a}) + Az, a,{z}). So even if we
assumed that A(z,a,{z}) = 0, in general the rate measure A would not satisfy the
corresponding condition A(z,a; {z,a}) = 0. We remark that imposing the additional
requirement that A\o({a}) = 0 is too restrictive since, due to the assumption that
Ao has full support, it would rule out the important case when the space of control
actions A is finite or countable.

2.3.2. The dual optimal control problem. We introduce a dual control problem
associated to the process (X, I) and formulated in a weak form. For fixed (¢, z,a),
it consists in defining a family of probability measures {Pf}m’a, v € V} in the space
(2,F ), all absolutely continuous with respect to P%®@ whose effect is to change
the stochastic intensity of the process (X, I) (more precisely, under each PL™% the
compensator of the associated point process takes a desired form), with the aim of
maximizing a cost depending on f,g. We note that {IP’f,’x7a, v € V} is a dominated
family of probability measures. We proceed with precise definitions.

We still assume that (HA) holds. Let us define
V = {v:Qx[0,00) x A— (0,00), P® A-measurable and bounded}.
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For every v € V, we consider the predictable random measure
p”(ds dy db) := vs(b) Ao(db) dyx,_y(dy) ds + NM(Xs—, Is—, dy) dg7,_1(db) ds.  (2.29)

Now we fix t € [0,T], x € E, a € A and, with the help of a theorem of Girsanov
type, we will show how to construct a probability measure on (€2, Fo,), equivalent to
PH@a under which p” is the compensator of the measure p on (0,7] x E x A. By
the Radon-Nikodym theorem one can find two nonnegative functions dy, ds defined
on Q x [0, 00) x E x A, measurable with respect to P ® € ® A such that

No(db) 6yx,_y(dy)dt = ds(t,,b) p(dt dy db)
X, T, dy) g,y (db)dt = da(t,,b) f(dt dy db),
dl(tvyab) + dg(t,]/, b) = 1 ﬁ(dt dy db) —a.e.

and we have dp” = (vdy + da) dp. For any v € 'V, consider then the Doléans-Dade
exponential local martingale L” defined setting LY = 1 for s € [0, ¢] and

LY =exp (/ / log (v (b) di(r,y,b) + da(r,y,b)) p(dr dy db)
t JEXA

_ /t ) /A (v (b) — 1)Ao(db) dr)

_ efts S 4 (L=vr (D)) Ao (db) dr H (VT"(ATL) dl(TnyEnnAn) + dQ(Tn,EnyAn))
n>1:T,<s

for s € [t,T]. When L” is a true martingale, i.e., E"®%[LY] = 1, we can define
a probability measure PL™® equivalent to P»™% on (€, Fo) setting Pi""(dw) =
LY (w)P"%(dw). By the Girsanov theorem for point processes ([75], Theorem 4.5)
the restriction of the random measure p to (0,7] x E x A admits p” = (vd; + d2) p
as compensator under P5*%. We denote by E5™ the expectation operator under
PL™® and by ¢” := p — p¥ the compensated martingale measure of p under PL™.
The validity of the condition E**% [L%] = 1 under our assumptions, as well as other
useful properties, are proved in the following proposition.

Lemma 2.3.2. Let assumption (HX) hold. Then, for everyt € [0,T], x € E and
v €V, under the probability Pv™* the process LV is a martingale on [0,T] and LY. is
square integrable.

In addition, for every P @ & ® A-measurable function H : Q x [t,T]x Ex A — R
such that EH®¢ [ftT S | Hs(y, )2 p(ds dy db)} < 00, the process

/ H(y, b) q" (ds dy db)
t JExXA

is a PL""-martingale on [t,T).

Proof. The first part of the proof is inspired by Lemma 4.1 in [88]. In particular,
since v is bounded and Ao(A) < oo, we see that

sp=ew ([ [ o)~ 1P2o(an) as)
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is bounded. Therefore, from Theorem 8, see also Theorem 9, in [109], follows the
martingale property of LY together with its uniform integrability. Concerning the
square integrability of L%, set £(x,A) := 2In(zA + 1 — ) — In(x?X + 1 — X), for any
x >0 and A € [0,1]. From the definition of L” we have (recalling that da(s,y,b) =
1- dl(Sa Y, b))

T
L% (2 = L% S% exp (/ /E Ae(us(b),dl(s,y, b)) p(ds dy db)> < LYy SY,
t X

where the last inequality follows from the fact that ¢ is nonpositive. This entails
that L% is square integrable.

Finally, let us fix a predictable function H such that

T
£ [ / / \Hs(y,b)\2ﬁ(dsdydb)}<oo.
t ExA

The process [, [5, 4 Hs(y,b) ¢"(dsdydb) is a Py™%local martingale, and the uni-
form integrability follows from the Burkholder-Davis-Gundy and Cauchy Schwarz
inequalities, together with the square integrability of L. O

To complete the formulation of the dual optimal control problem we specify the
conditions that we will assume for the cost functions f, g:

(Hfg) feBy([0,T] x Ex A) and g € By(E).

For every t € [0,T], z € E, a € A and v € V we finally introduce the dual gain
functional

T
J(t,z,a,v) = E';a:,a [g(XT) —i—/ f(s, X, Is)ds] ,
t
and the dual value function

V*(t,x,a) =sup J(t,z,a,v). (2.30)
veV

Remark 2.3.3. Let us denote by {S,,} (resp. {R,}) the jump times of I (resp. of X),
and by p!(dsdb) = ", 0(Sn.Is, ) (ds db) (resp. pX(dsdy) =5, O(Rp.Xr,) (dsdy))

the corresponding random measure on (0,00) x A (resp. on (0,00) x E).

An interpretation of the dual optimal control problem can be given as follows:
under P%%¢

(i) the times {S,} e {R,} are disjoint;
(ii) the compensators of the random measures p!(ds db) and ™ (ds dy) are
il (dsdb) = Xo(db) 1pppr, yds, i~ (dsdy) = N Xe—, Lo—,dy) Lyzx, yds. (2.31)

In particular, the effect of choosing v is to change the intensity of the I-component.

To prove point (i), let us introduce the P-measurable process H : Q x Ry x E x
A — Ry defined by

Hy(w,y,b) = (y — Xs-(0))*(b — Li-(w))*. (2.32)
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We have

Et,m,a

Z HTn (XTn7ITn )] = Etﬂ&a [/ / Hs(% Isf) )‘(Xsf> Isf> dy) d8:|
n 0 E

+ Eb®e [ /0 - /A Hy(Xs_,b) \o(db) ds]

=0.

Recalling ([2.32)), previous equality reads

EX N (AXg,)? (AlL,)?

n

=0,

i.e., for all n € N,
(AX7,)* (AI7,)* =0 PH*%as,
Therefore the jump times of X and [ are disjoint.
Let now consider point (ii). Since, by (i), the jump times {Sy }n>1 and {Ry }n>1

are disjoint, for any F-predictable processes K : @ xRy x E — R4 and J : Q xRy x
A — Ry, we have

> Kg,(Xr,) Z Kr,(Xr,), Z Js,(Is,) =Y Jr,(I,)

where
KS(Q) = Ky(y) Liyzx, 1 js(b) Js(b) Liptr,_y-
In particular, since Ky(X,_) =0 and Js(I,_) = 0 for all s € [0, T, we get

> Kr, (XR")] = Eh™ Z Kr, (XT")]

= Eb®e / /K YA X ,IS_,dy)ds}

_ Rt /0 /EKS(y) Lyrx, 3 M X, I, dy) ds] (2.33)

Et,x,a

and

Et,x,a

> Js,(s,)

= R Z an (ITn)]

= EH®e / / b) Ao(db) d }
— Ebze / / Js(b) 1{(,;&[3_} )\Q(db) d8:| . (2.34)
L/ 0 A

Identities (2.34]) and (2.33)) show the validity of (2.31)) under P“®2.
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2.4. Constrained BSDE and the dual value function representation

In this section we introduce a BSDE, with a sign constrain on its martingale
part, and prove existence and uniqueness of a minimal solution, in an appropriate
sense. The BSDE is then used to give a representation formula for the dual value
function introduced above.

Throughout this section we assume that the assumptions (H\) and (Hfg) are
satisfied and we use the randomized control setting introduced above: Q,F, X, Pt%:¢
as well as the random measures p, p, ¢ are the same as in subsection For any
(t,z,a) € [0, T] x E x A, we introduce the following notation.

e L2()\g), the set of A-measurable maps 1) : A — R such that
Whaay = [ WO () <.

° Lf’x@(fﬂ), the set of F-measurable random variable X such that E-®¢ UX\Q] <
00; here 7 is an F-stopping time with values in [t, T7.

. Sf,x,a the set of real valued cadlag adapted processes Y = (Y;)i<s<r such
that

|]Y||§?xa .= EH©a [ sup |Ys|2] < 00.

t<s<T

o L7, .(q), the set of P® & ®.A-measurable maps Z : Q x [t,T] x Ex A — R
such that

12122 = B [T Jpea 1260y D) Blds dy b)|
=B | [1 [ |20 ) P A, Loy dy) ds + [ [4126(Xo, D)2 Ao(db) ds| < o.

. Kf,x,a the set of nondecreasing predictable processes K = (Kjg)i<s<r €
Sf,x,a with K; = 0, with the induced norm

IKIZs =B [k,

We are interested in studying the following family of BSDEs parametrized by (¢, z, a):
Phoa_a s,

T
Vi = g0+ [ X ) dr o+ K — R
T
- / / 7255y, b) q(dr dy db)
s ExA

T
- / / ZL%( X, b) Ao(db) dr, s € [t,T], (2.35)
s A
with the sign constraint
Z55( X, b) <0, ds @ dP"** @ \g(db) — a.e. on [t,T] x Q x A. (2.36)

This constraint can be seen as a sign condition imposed on the jumps of the corre-
sponding stochastic integral.
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Definition 2.4.1. A solution to the equation ([2.35)-(2.36) is a triple (Y, Z,K) €
Sf’x’a X Ltz’x’a(q) X Kf’x’a that satisfies (2.35))-(12.36).
A solution (Y, Z, K) is called minimal if for any other solution (Y, Z, K) we have,
Pheags,
Y, <Y,  seltT]
Proposition 2.4.2. Under assumptions (H\) and (Hfg), for any (t,x,a) € [0, T]|x
ExA, if there exists a minimal solution on (0, F,F,Pt%%) to the BSDE ([2.35])-(2.36)),

then it is unique.

Proof. Let (Y, Z,K) and (Y’', Z’, K') be two minimal solutions of (2.35])-(2.36)). The
component Y is unique by definition, and the difference between the two backward
equations gives: Ph%%a.s.

[ @y -z pardyan
t ExA

S
=K; - K. +/ / (Ze(y, Ir—) — Z/(y, L)) N( Xy, L,_dy)dr, Vt<s<T.
t E

The right hand is a predictable process, in particular it has no totally inaccessible
jumps (see, e.g., Proposition 2.24, Chapter I, in Jacod and Shiryaev [79]), while the
left side is a pure jump process with totally inaccessible jumps. This implies the
uniqueness of the component Z, and as a consequence the component K is unique
as well. O

We now state the main result of the section.

Theorem 2.4.3. Under the assumptions (H\) and (Hfg), for all (t,x,a) € [0, T]| x
E x A there exists a unique minimal solution Y% to (2.35)-(2.36). Moreover, for
all s € [t,T], YI™® has the explicit representation.:

T
Y20 = esssup B [g<XT> e ar
vev s

:ﬂ] . seltT). (2.37)

In particular, setting s = t, we have the following representation formula for the
value function of the dual control problem:

V*(t,x,a) = Y™, (t,z,a) € [0,T] x E x A. (2.38)

The rest of this section is devoted to prove Theorem [2.4.3] To this end we will
use a penalization approach presented in the following subsections. Here we only
note that for the solvability of the BSDE the use of the filtration F introduced above
is essential, since it involves application of martingale representation theorems for
multivariate point processes (see e.g. Theorem 5.4 in [75]).

2.4.1. Penalized BSDE and associated dual control problem. Let us con-
sider the family of penalized BSDEs associated to (2.35)-(2.36|), parametrized by the
integer n > 1: P4%%.a.s,,

T
Vet — g(Xr)+ [0 X0, L) dr O - K
S
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T
- / / 2049y, b) g(dr dy db)
s ExA
T
- / / Zmha(X, ) Ao(db) dr, s € [t,T], (2.39)
s A

where K™ is the nondecreasing process in Kf’x,a defined by

s =n /:/A[Z]}(Xr,b)]* Ao(db) dr-.

Here we denote by [u]' the positive part of u. The penalized BSDE ([2.39) can be
rewritten in the equivalent form: P“®%-a.s.,

st,t,aaa = XT / fn T, Xra Ir; Zn7t7xa(X7"7 >) ds

/ / Zmhma(y b) q(dr dy db), s € [t,T).
ExA

where the generator f™ is defined by
Fritaaw) = ftaa)+ [ RO~ o0} dld), (240

for all (t,2,a) in [0, T] x E x A, and ¢ € L%()\g). We note that under (H\) and
(Hfg) f™ is Lipschitz continuous in 1 with respect to the norm of LZ(\g), uniformly
in (t,z,a), i.e., for every n € N there exists a constant L,, depending only on n such
that for every (¢,z,a) € [0, T] x E x A and v, ¥’ € L2(\o),

[f* (@, a,0) — (@, 0,9)] < L [ — 9|2,

The use of the natural filtration F allows to use well known integral representation
results for F-martingales (see, e.g., Theorem 5.4 in [75]) and we have the following
proposition, whose proof is standard and is therefore omitted (similar proofs can be
found in [131] Theorem 3.2, [12] Proposition 3.2, [28] Theorem 3.4).

Proposition 2.4.4. Let assumptions (HX) and (Hfg) hold. For every initial con-
dition (t,z,a) € [0, T] x E x A, and for every n € N, there exists a unique solution

(yboe, ZQ’W’“)SE[LT] € S .o x L? a(q) satisfying the penalized BSDE (2.39).

Next we show that the solution to the penalized BSDE provides an ex-
plicit representation of the value function of a corresponding dual control problem
depending on n. This is the content of Lemma [2.4.5] which will allow to deduce some
estimates uniform with respect to n.

For every n > 1, let V"* denote the subset of elements v € V that take values in

(0, n].
Lemma 2.4.5. Let assumptions (H\) and (Hfg) hold. For alln > 1 and s € [t, T,

T
st,t,x,a = esssup EY |:g(XT) + / f(T, X, Ir) dr
veyn S

?s} , Pboe g5, (2.41)
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Proof. We fix n > 1 and for any v € V" we introduce the compensated martingale
measure ¢”(ds dy db) = q(ds dy db) — (vs(b) — 1) dl(s y, b) p(ds dy db) under P;"". We
see that the solution (Y, Z™) to the BSDE satisfies: Pb%%a.s.,

Y = g(Xyp) /erT,I dr—i—/ /{nZ” (X, 0T = vp(b) Z2( X, b)} Ao(db) dr

_// Z"(y,b) ¢" (dr dy db), s € [t,T). (2.42)
s ExA

By taking conditional expectation in (2.42)) under PL™* and applying Lemma
we get, for any s € [¢,T],

T
st,tma = [E¥ I:g(XT)—i—/ f(r,Xr,IT)dr
S

3"5] (2.43)

-l

PL"" a.s. From the elementary numerical inequality: nfu]®™ — vu > 0 for all u € R,
v € (0,n], we deduce by ([2.43) that

T
. U /A{”[Z? B, BT = v (b) Z5T (X, 0)} Ao(db) dr

T
Y5 > ess sup B [g(XT) +/ for, Xy, I,) dr
veyn s

3"5} . (2.44)

On the other hand, for € € (0, 1), let us consider the process v € V" defined by

vs(b) =nligneeacy, pyzop T €l1czrtmax, p<oy

— e ZPM N (X D) g, _yeay
By construction, we have
n[ZPH0( X, b)]T — v5(D) Z;”’x’“(Xs_, b)<e, selt,T],be A,
and thus for the choice of v = v¢ in ([2.43)):

ypbet g Et“[ (X7) + / f(r, X, L) dr

sz] T eTIAo(A)]

< esssupE? [g<XT> + / F(r X, I,) dr
veyn s

3“5} + €T Mo (A)].

Together with (2.44]), this is enough to prove the required representation of Y. Note
that we could not take v4(b) = nlizn(x,_ p)>0}, since this process does not belong to
V" because of the requirement of strict positivity. O

2.4.2. Limit behavior of the penalized BSDEs and conclusion of the proof
of Theorem As a consequence of the representation (2.41)) we immediately
obtain the following estimates:

Lemma 2.4.6. Let assumptions (H\) and (Hfg) hold. There exists a constant C,
depending only on T, f, g, such that for any (t,z,a) € [0, T] x E x A and n > 1,

Pt’ ’ —a.S.,
n,t,x,a n+1,t,z,a
st77 <Ys alydy ,

<, s e [t,T].
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Proof. For fixed s € [t, T], the almost sure monotonicity of Y% follows from the
representation formula , since by definition V* C V**!: moreover, the same
formula shows that we can take C' = ||g||occ + T'||f||cc- Finally, these inequalities
hold for every s € [t, T outside a null set, since the processes Y% are cadlag. [

Moreover, the following a priori uniform estimate on the sequence (Y™h%:
zntza gntaay holds:

Lemma 2.4.7. Let assumptions (HX) and (Hfg) hold. For all (t,x,a) € [0, T] x
E x A and n € N, there exists a positive constant C' depending only on T, f,g such
that

”Yn,t,z,a| ‘éfx ) + HZn,t,:p,a‘ |it2x (@ + ”Kn,t,x,a < C/. (245)

|2
2
Kt,x,a

Proof. In the following we omit for simplicity of notation the dependence on (¢, x, a)
for the triple (Y™t®e Zntza gntza)  The estimate on Y™ follows immediately
from the previous lemma:

— Et,x,a

" sup |Y["[?

s€[t,T]

< 02 (2.46)

Ik
2
St,x,a

Next we notice that, since K™ is continuous, the jumps of Y™ are given by the
formula

AP = [ 22w pl{s)dy ).
ExA
The It6 formula applied to |Y;*|? gives:
dYPE = 2V dvr 4 |AYP
= —2V" f(X,_,I,_)dr —2Y" dK"

tovm / 27y, b) q(dr dy db) + 2Y™ / 27X, b) Mo(db) dr
ExA A

" / 120y, B2 p({r) dy db). (2.47)
ExA

Integrating (2.47)) on [s, T, for every s € [t, T], and recalling the elementary inequal-
ity 2ab < %az + 0b? for any constant 6 > 0, and that

T T
o [ |/ Zf(Xr—,b)P)\o(db)dT]<Et’x’a [ || 1z e dyan)|.
s A s ExA
(2.48)

we have:

T
Etea [D/S‘Q] + EtT.a |:/ / |Z,7f(y, b)|2ﬁ(dr dy db):|
s ExA

< EY [1g(X7) ]

1 r r
+ EEW’“ [/ | f(r, Xr,Ir)|2dT':| + BEbL®A [/ Y;"|2dr]

T A T T
220 ge | [0 22000 lardyan)| 4w | [ e
Y s ExA s
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1
+ 7Et,x,a sup |Y'sn|2
(6%

+ aE"" [|Kf — KPP*], s €t T, (2.49)
s€[t,T]

for some «, 3,7 > 0, Now, from the equation (2.39)) we obtain:
T
Kp =K = ¥ =g(¥r) = [ f0.X 1)ar

T
+ / Z(X,,b) Ao(db) dr

b

T
+/ / ZM(y,b) q(drdydb), se€[t,T).
ExA

T 2
] / / 20, b)q(drdydm]
s ExA
T
— oo U / 27y, b)!%(drdydb)}
s ExA
T
_ gten [/ [ 1z, bw(drdydb)}
s ExA

that can be proved applying the Ito formula as before to the square of the martingale
w [ [ 4 20y, b) q(drdydb), u € [s,T] (or by considering its quadratic varia-
tion). Recalling again ([2.48)) we see that there exists some positive constant B such
that

Next we note the equality

Et,z,a

Bbee [|Kp — K7

T
< B(Et’”‘*“ (1Y 2] + BN [|g(X)[?] + o { / |f(r, X, )| dr
T
| gt [/ / \Zf(y,b>|2ﬁ<drdydb>]), selt,T). (2.50)
s ExA

Plugging (2.50) into (2.49)), and recalling the uniform estimation (2.46) on Y, we
get

(1 o aB) Et,x,a Ust‘Q]

+ (1 — [aB+ TA?Y(A)D DR [/ST/EXAM;}(% b)|2ﬁ(drdydb)]
1 T

< (1+aB)EY [|g(Xr)[?] + <aB + 5) EbH®e [/ |f(r, X, I)|? dr]

02 t,x,a 4 n|2
e pEe | [Pl selT)
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Hence, by choosing « € (0, %), v > Tlea 5 8> 0, and applying Gromwall’s lemma

to s — E4*4 [|Y"?], we obtain:

T
sup EW00 [[Y7[2] 4 Eboe [ / / 27y, b>|2ﬁ<dsdydb>}
t ExA

s€ft, T
T

< (E [lg(XD)2] + Ebo { / |f<s,Xs,Is>\2ds} ; 02) L (25D
t

for some C’ > 0 depending only on 7', which gives the required uniform estimate for
(Z™) and also (K™) by (12.50]). O

We can finally present the conclusion of the proof of Theorem

Proof. Let (t,z,a) € [0,T] x E x A. We first show that (Y",Z", K™) (we omit
the dependence on (¢, x,a) for simplicity of notation) solution to (2.39)) converges in
a suitable way to some process (Y, Z, K) solution to the constrained BSDE ([2.35])-
(2.36). By Lemma m (Y™),, converges increasingly to some adapted process

Y, which moreover satisfies E/%@ SUDPse[r,7] |Y5]2} < 0o by the uniform estimate

for (Y™), in Lemma and Fatou’s lemma. Furthermore, by the dominated
convergence theorem, we also have E fOT |Y;* —Y;|2dt — 0. Next, we prove that there
exists (Z, K) € Ltz,x’a(q) X Kf’x’a with K predictable, such that

(i) Z is the weak limit of (Z"),, in Lf’x,a(q);

(ii) K is the weak limit of (K2), in L, ,(F-), for any stopping time 7 valued
in [t T);

(iii) PH®9-a.s.,

Ys = g(X7) / for, Xy, L) dr + Kp — K

/ /E><A (y, b) qldr dy db) - / / (X, b) Ao(db) dr, s € [t,T7,

with
Zs(Xs—,b0) <0, ds ® dP"** @ \g(db) — a.e.

Let define the following mappings from Lf’x,a(q) to Lf’x’a("f.r):

It Zl—)// Zs(y,b) q(ds dy db),
t ExA

I? Z»—>/ /Zs(Xs,b)/\o(db)ds,
t A

for each F-stopping time 7 with values in [¢, T]. We wish to prove that I} Z™ and I2Z"
converge weakly in Ltz’x’a(ff'}) to I'Z and I2Z respectively. Indeed, by the uniform
estimates for (Z"), in Lemma there exists a subsequence, denoted (Z"*)y,
which converges weakly in Lf,x’a(q). Since I; and I are linear continuous operators
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they are also weakly continuous so that we have I'Z™ — I'Z and 122™ — I?Z
weakly in Ltz’x’a(fr'}) as k — oo. Since we have from (12.39))

r
K;_Ik = _}/;-nk +}/;nk - / f(T, Xr,Ir) dr
t

[ [zt ms@ars [z ardy ),
t A t ExA

we also obtain the weak convergence in fo a(Fr) as k — o0

K" K, = —Y,+Y,— /err,I)d

// (X, b) Ao(db) dr—i—// (y,b) q(dr dy digR.52)
ExA

Arguing as in Peng [104], proof of Theorem 2.1, Kharroubi, Ma, Pham and Zhang
[87] Lemma 3.5, Essaky [60] Theorem 3.1, we see that K inherits from K™ the
properties of having nondecreasing paths and of being square integrable and pre-
dictable. Finally, from Lemma 2.2 in [104] it follows that K and Y are cadlag, so
that K ¢ K2 andY”“GStxa

Notice that the processes Z and K in are uniquely determined. In-
deed, if (Z,K) and (Z', K') satisfy , then the predictable processes Z and
7' coincide at the jump times and can be identified almost surely with respect to
p(w, ds dy db)P"®%(dw) (a similar argument can be found in the proof of Proposi-
tion to which we refer for more details). Finally, recalling that the jumps of
p are totally inaccessible, we also obtain the uniqueness of the component K. The
uniqueness of Z and K entails that all the sequences (Z™),, and (K™),, respectively
converge (in the sense of points (i) and (ii) above) to Z and K.

It remains to show that the jump constraint (2.36) is satisfied. To this end, we
consider the functional on Lf x,a(d) given by

G: 7 — Ef“[// I+ Xo(db) ds

From uniform estimate (2.45), we see that G(Z") — 0 as n — oo. Since G is
convex and strongly contlnuous in the strong topology of Lt x,a(d), then G is lower

t,x,a

semicontinuous in the weak topology of Lt’x’a(q), see, e.g., Corollary 3.9 in Brezis
[19]. Therefore, we find
G(Z) < liminf G(Z") =0,
n—oo
from which follows the validity of the jump constraint - on [t,T]. We have
then showed that (Y, Z, K) is a solution to the constrained BSDE - ([2-36). It
remains to prove that this is the minimal solution. To this end, fix n € N and

consider a triple (Y, Z,K) € St x,a X Lf’x’a(q) X Kf’x’a satisfying (22.35)-(2.36)). For
any v € V", by introducing the compensated martingale measure ¢”, we see that the

solution (Y, Z, K) satisfies: P»®%-a.s.,

T
Y, = g(Xr)+ / fr X, 1) dr + Ky — K, (2.53)
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T
—/ / Z(y, b) ¢” (dr dy db) — / /Vr r(Xr, b) Ao(db)dr s € [t,T].
s ExA

By taking the expectation under P5™* in (2.53), recalling Lemma and that K
is nondecreasing, we have

Y, > E [ (X7) + / f(r, X, I dr] [/ /VT (X, b) \o(db) dr

> B {g(XT)—F / f(r,Xr,IT)dr] s e, (2.54)

since v is valued in (0, n] and Z satisfies constraint (2.36). As v is arbitrary in V",
we get from the representation formula that Yy > Y, Vs € [t,T], Vn € N.
In particular, Y, = lim, ,o, Y < Y, i.e., the minimality property holds. The
uniqueness of the minimal solution straightly follows from Proposition

To conclude the proof, we argue on the limiting behavior of the dual representa-
tion for Y™ when n goes to infinity. Since V" C V, it is clear from the representation

(2.41)) that, for all n and s € [t, T},
3"3] .

?S] . (2.55)

T
Y < esssup EV [gom + / F(r X0 1) dr
veyV s

Moreover, being Y the pointwise limit of Y, we deduce that

T
Y, = hm Y] < esssupE” [ (XT)+/ f(r, Xy, 1) dr
vev s

On the other hand, for any v € V, introducing the compensated martingale measure
¢” under P” as usual, we see that (Y, Z, K) satisfies

Ys = g(X7) / f(r, X, L) dr + K1 — K (2.56)

/ | 2w vy ¢ rdyan) - / [ 2.0 Do dr, s e k1,
ExA s A
Arguing in the same way as in (2.54)), we obtain
]

so that Yy > esssup,cyEY [g(XT) + fSTf(r, X, I.)dr ‘ 9:5} by the arbitrariness of
v € V. Together with (2.55)) this gives the required equality.

T
Y, > E [g<XT>+ / Fra X0, 1) dr

2.5. A BSDE representation for the value function

In this section we conclude the last step in the method of control randomiza-
tion and we show that the minimal solution to the constrained BSDE ([2.35)-(12.36))



2.5. A BSDE representation for the value function 89

actually provides a non-linear Feynman-Kac representation of the solution to the
Hamilton-Jacobi-Bellman (HJB) equation (2.13)-(2.14]), that we re-write here:

ov

—a(t,x) = sup (Lo(t,x) + f(t,z,a)), (T, z) = g(x).
acA

As a consequence of the dual representation in Theorem it follows that the
value function of the original optimal control problem can be identified with the
dual one, which in particular turns out to be independent on the variable a.

For our result we need the following conditions:

sup  A(z,a,FE) < oo, (2.57)
zeFE,acA
A is a Feller transition kernel, (2.58)
fe Cb([O,T] X E x A), g c Cb(E) (2.59)

We note that these assumptions are stronger that those required in Theorem |2.2.
and therefore they imply that there exists a unique solution v € LSCy(]0,T] x E)
to the HJB equation in the sense of Definition If, in addition, A is a compact
metric space then v € C3([0,T] x E) by Corollary

Let us consider again the Markov process (X, ) in E x A constructed in Section
with corresponding family of probability measures P*®“ and generator £ in-

troduced in (2.28]). Since (2.57))-(2.59) are also stronger than (H\) and (Hfg), by
Theorem there exists a unique solution to the BSDE (2.35))-(2.36)).

Our main result is as follows:

Theorem 2.5.1. Assume (2.57)), (2.58)), (2.59). Let v be the unique solution to
the Hamilton-Jacobi-Bellman equation provided by Theorem [2.2.7. Then for every
(t,x,a) €10, T] x E x A,

u(t,x) = Ytt’x’a,
where Y5% s the first component of the minimal solution to the constrained BSDE
with nonpositive jumps (2.35))-(2.36)).

More generally, we have P4%%-q.s.,
v(s, Xg) = Y5 s€et,T].

Finally, for the value function V of the optimal control problem defined in ([2.12])
and the dual value function V* defined in (2.30) we have the equalities

V(t,x) =v(t,z) =Y = V*(t,z,a).

In particular, the latter functions do not depend on a.

The rest of this section is devoted to prove Theorem [2.5.1

2.5.1. A penalized HJB equation. Let us recall the penalized BSDE associated

to (2.35)-(2.36): Pt*4%-a.s.,

T T
YIhee — g(Xp) + / F(r, X 1,) ds — / / 2054y, b) q(dr dy db)  (2.60)
S s ExA
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T
+ / / (n[Zm00(X,, b)]* — Z0bo9(X, b)) o(db)dr, s € [t,T).
s A

Let us now consider the parabolic semi-linear penalized integro-differential equation,
of HJB type: for any n > 1,

%(t,x, a) + /A{n [v™(t, z,b) — v"(t,z,a)]" — (V" (t,2,b) — v"(t,2,a))} Xo(db)
+Lo"(t,x,a) + f(t,z,a) =0 on [0, T) X E x A, (2.61)
v (T,z,a) = g(z) on E x A, (2.62)

The following lemma states that the solution of (2.61)-(2.62]) can be represented
probabilistically by means of the solution to the penalized BSDE ({2.60)):

Lemma 2.5.2. Assume (2.57)), (2.58), (2.59)). Then there exists a unique function
v € Cp([0,T] x E x A) such that t — v™(t,z,a) is continuously differentiable on

[0,T] and (2.61))-(2.62) hold for every (t,x,a) € [0, T) X E x A.
Moreover, for every (t,x,a) € [0, T| x E x A and for every n € N,
yRbre = y"(s, X, Is) (2.63)
Zmh0(y b) = v"(s,y,b) —v"(s, Xs_, I,_), (2.64)

(to be understood as an equality between elements of the space Sf,x,a X Ltz’x,a(q)) 50

that in particular v"(t, x,a) = Y;""™°,

Proof. We first note that v™ € Cy([0,7] x E x A) is the required solution if and
only if

T T
v"(t,z,a) = g(x) +/ Lo"(s,x,a)ds +/ (s, z,a,0" (s, 2z, ) —v" (s, z,a))2.65)
t t

fort € [0,,T), z € E, a € A, where f"(t,z,a,) is the map defined in ([2.40). We
use a fixed point argument, introducing a map I' from Cy([0,7] x E x A) to itself
setting v = I'(w) where

T T
v(t,z,a) = g(x) +/t Lw(s,x,a)ds +/t (s, z,a,w(s,x,-) —w(s,x,a))ds.

Using the boundedness assumptions on A and A it can be shown by standard argu-
ments that some iteration of the above map is a contraction in the space of bounded
measurable real functions on [0, 7] x E x A endowed with the supremum norm and
therefore the map I' has a unique fixed point, which is the required solution v™.

We finally prove the identifications ([2.63)-(2.64)). Since v" € Cy(]0, T]x Ex A) we
can apply the Itd formula to the process v(s, X5, I5), s € [t, T], obtaining, Pt®%a.s.,

S a n
V" (s, Xg, Is) = 0" (t,x,a) +/ <av (r, Xp, I) + Lfv”(r, X,«,L«)> dr
t T

+/t /E><A(vn<r’y,b)_vn(r’XT_’IT—» q(drdydb), s € [t,T].
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Taking into account that v" satisfies (2.61)-(2.62) and that (X, ) has piecewise
constant trajectories, we obtain P“%%a.s.,

o
or
for almost all r € [t,T]. It follows that, P“®%a.s.,

(’l“, XT7 IT) + LU”(T, XT7 IT) + fn(ra XT7 ITa Un(rv XT7 ) - ,Un(r’ XT7 IT)) = Oa

v'(s, X5, 1) = v"(t,z,a) / o, Xp, Iny0"™ (r, Xy, ) — 0" (1, X, 1)) drr

// "(r,y,b) —o(r, Xo—, Ir)) q(drdydb), s € [t,T].
ExA

Since v"(T, z,a) = g(z) for all (z,a) € E x A, simple passages show that

v (s, Xs,Is) = g(Xr)+ / o, Xp, Ly (r, Xy 2) — 0" (1, Xy 1)) drr

// “(r,y,b) —o(r, Xo, 1)) q(dr dydb), s € [t,T].
ExA

Thus the pairs (Yo", Z85%(y b)) and (v"(s, Xs, I5), v™(s,y,b) —v" (s, Xe_, I,_))
are both solutions to the same BSDE under P»*%, and thus they coincide as mem-
bers of the space Stz’x’a X Ltz’x’a(q). The required equalities (2.63))-(2.64]) follow. In

particular we have that v"(t,z,a) = Ytn’t’x’a. O

2.5.2. Convergence of the penalized solutions and conclusion of the proof.
We study the behavior of the functions v™ as n — oo. To this end we first show that
they are bounded above by the solution to the HJB equation.

Lemma 2.5.3. Assume (2.57)), (2.58), (2.59). Let v denote the solutzon to the
HJB equation as provided by Theorem (2.2. ja d v™ the solution to - as
provided in Lemma[2.5.4 Then, for all (t,z,a) € [0, T] x E x A cmd n > 1,

v(t,z) > v"(t,x,a).

Proof. Let v : [0, T] x E — R be a solution to the HJB equation. As in the proof
of Proposition we have the identity

T o0
9(Xr) —v(t, Xy) = t gT(T,XT)dr—&—/tT] /EXA(U(r,y)—U(T,XT_))p(drdydb),

which follows from the absolute continuity of ¢t — v(¢, ), taking into account that
X is constant among jump times and using the definition of the random measure p
defined in and the fact that v depends on t,x only. Since v is a solution to
the HJB equation we have, for all z € E a € A,

_g:(t, z) > L4o(t, @) + f(t,2,a) = /E(v(uy) —vo(t,2)) Mz, a,dy) + f(t, 2, a),

almost surely on [0,7]. Taking into account that (X,I) has piecewise constant
trajectories we obtain

o(X0) — v(t, X,) < /tT] /E () = (5 X)) plr dy ) (2.66)
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/ / viry) 7‘XW(Xrafmdy)dr—/ff(r,XmIr)dr.

Then, for any n > 1 and v € V" let us consider the probability PL™* introduced
above and recall that under P;™® the compensator of the random measure p(dr dy db)

is p¥(dr dy db) = v-(b) Ao(db) 6¢x,_y(dy) dr + N(Xo—, I,—, dy) dg7,_1(db) dr. Noting
that v(r,y) — v(r, X,—) is predictable, taking the expectation in (2.66)) we obtain

EL=a(g(Xp)] - v(t,z) < —E4®e / J(r, X, 1) dr.

Since v € V" was arbitrary, and recalling (2.41)), we conclude that

T
o(t,z) > sup EY [g<XT>+ / f(nXmIr)dT] — (1, ,a).
vevn t

O

From Lemma we know that v"(¢,z,a) = Y;n’t’w’a, and from Lemma we
know that v™ (¢, x,a) is monotonically increasing and uniformly bounded. Therefore
we can define

o(t,z,a) := lim v"(t,x,a), te[0,T],z€ E,ac A

n—oo

v is bounded, and from Lemma [2.5.3] we deduce that ¥ < v. As an increasing
limit of continuous functions, v is lower semi-continuous. Further properties of v are
proved in the following lemma. In particular, (or (2.68)) means that v is a
supersolution to the HJB equation.

Lemma 2.5.4. Assume (2.57)), (2.58)), (2.59) and let v be the increasing limit of v™.
Then v does not depend on a, i.e. v(t,x,a) = v(t,x,b) for every t € [0,T], z € E
and a,b € A. Moreover, setting v(t,x) = 0(t, z,a) we have

T)(t,x)—ﬁ(t’,x)z/t (£%5(s, ) + f (5,2, a)) ds (2.67)

for0<t<t <T,zr€FE,aec A More generally, for arbitrary Borel-measurable
a:[0,T] - A we have

tl
olta) ~o(t0) = [ (€570(s0) + f(s,7,0(5) ds (2.68)
t
for0<t<t <T,x€FE anda € A.

Proof. v" satisfies the integral equation (2.65)), namely
’Un(t,l‘ a = / / S Y, a (S,QZ‘, (1)) )‘(‘Tvaa dy) ds
—i—/ f(s,z,a)ds + n/ / [v"(s,x,b) — v"(s,2,a)]" Xo(db) ds.
t t Ja
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Since v" is a bounded sequence in Cy([0,7] x E x A) converging pointwise to o,
setting ¢t = 0, dividing by n and letting n — co we obtain

/ / s,2,b0) — (s, z, )]t Ao(db) ds = 0. (2.69)

Next we claim that v is right-continuous in ¢t on [0,7), for fixed z € E, a € A. To
prove this we first note that, neglecting the term with the positive part [...]"T we
have

t/
V(' xz,a) — V" (t,z,a) / / (s,y,a) —v"(s,x,a)) ANz, a,dy) ds

- f(s,:c,a) ds
¢

< Co(t' —t), (2.70)

for some constant Cy > 0 and for all 0 < ¢ <t < T and n > 1, where we have used
again the fact that v™ is uniformly bounded. Now fix ¢t € [0,T). Since, as already
noticed, v is lower semi-continuous we have v(t,z,a) < liminfy); (s, z,a). The
required right continuity follows if we can show that o(t,z,a) > limsup; (s, z, a).
Suppose not. Then there exists s; | ¢ such that v(sg,z,a) tends to some limit
[ > v(t). It follows that v(sg,z,a) — v(t,z,a) > Cy(sy — t) for some k sufficiently
large, and therefore also v"(sg,z,a) — v"(t,z,a) > Cy(sy —t) for some n sufficiently
large, contradicting . This contradiction shows that v is right-continuous in ¢
on [0,7).

Then it follows from ) that [,[o(t,z,b) — 0(t,2,a)]" Ao(db) = 0 for every
reE ac A tel0,T)]. Therefore there exists B C A (dependent on t,z,a) such
that B is a Borel set with A\o(B) = 0, and

o(t,z,a) > o(t,x,b), v ¢ B. (2.71)

Since Ag has full support, B cannot contain any open ball. So given an arbitrary
b € A we can find a sequence b,, — b, b, ¢ B. Writing with b, instead of ¥’ and
using the lower semi-continuity of o we deduce that o(¢,x,a) > liminf,, o(¢, z, b,) >
o(t,z,b). Since a and b were arbitrary we finally conclude that v(¢,z,a) = v(t, z, b)
for every t € [0,T], z € E and a,b € A, so that 0(t,z,a) does not depend on a and
we can define v(t,z) = v(t, z, a).

Passing to the limit as n — oo in the first inequality of we immediately
obtain , so it remains to prove ED Let A(v) denote the set of all Borel-
measurable « : [0,7] — A such that @ holds, namely for every 0 <t <t < T,
r€FE, acA,

6(t,x)—17(t’,x)>/t /Eﬁ(s,y))\(x,a(s),dy)ds

t/

—/ (s, z) Mz, a(s), E)ds + f(s,x,a(s))ds. (2.72)

t t




Chapter 2. Constrained BSDEs representation of the value function for
94 optimal control of pure jump Markov processes

Suppose that a,, € A(v), a : [0,T] — A is Borel-measurable and oy, (t) — ay(t) for
almost all ¢ € [0,7]. Note that

/ o(t,y) Mz, a,dy) = lim [ 0" (t,y,a)\(z,a,dy) (2.73)
E n—o0 E

and the latter is an increasing limit. Since v" € Cy([0,T] x E x A) and X is Feller, for
any n > 1 the functions in the right-hand side of are continuous in (¢, z,a) (see
e.g. [15], Proposition 7.30) and therefore the left-hand side is a lower semicontinuous
function of (¢, x,a). It follows from this and the Fatou Lemma that

[ [ aamas <[] [ st 5w )] a

n—0o0

n—o0

tl
< liminf/ /v(s,y))\(:c,an(s),dy)ds.
t JE

Using this inequality and the continuity and boundedness of the maps a — \(z, a, E),
a — f(t,z,a) we see that assuming the validity of inequality (2.72]) for «,, implies
that it also holds for «, hence o € A(?).

Next we note that A(0) contains all piecewise constant functions of the form «(t)
= Zle ail[ti,ti+1)(t) with k> 1,0=¢t <ta<...<tgr1 =17, a; € A: indeed, it is
enough to write down with [¢,t") = [t;, t;i+1) and sum up over i to get for
a(-) and therefore conclude that «a(-) € A(v). Since we have already proved that the
class A(v) is stable under almost sure pointwise limits it follows that A(v) contains
all Borel-measurable functions « : [0,7] — A as required. O

We are now ready to conclude the proof of our main result.
Proof of Theorem [2.5.1. We will prove the inequality

u(t,x) > V(t,x), te[0,T],x € E, (2.74)

where ¥ = lim,,_oc v" was introduced before Lemma Since we know that
v < w and, by Theorem v =V it follows from that v = v = V. Passing
to the limit as n — oo in and recalling all the other equalities follow
immediately.

To prove we fix t € [0,T], x € E and a Borel-measurable map « : [0,7] x
E — A, ie. an element of Ag,g, the set of admissible control laws for the primal
control problem, and denote by PL” the associated probability measure on (2, F),
for the controlled system started at time ¢ from point x, as in section We will
prove that v(t,x) > J(t,z,a), the gain functional defined in (2.11). Recall that in
2 we had defined a canonical marked point process (1), E,)n>1 and the associated
random measure p. Fix w € § and consider the points T}, (w) lying in (¢, 7], which we
rename S;; thus, t < 57 < ...S; < T, for some k (also depending on w). Recalling
that o(T,x) = g(x) we have

k

Q(XT) - @(t, $) = g(XT) - T}(Sk?XSk) + Z[@(S%st‘) - E(S%Xsi—)]
=1
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k
+Z['D(Si7XSi*) - T}(Si—lﬂ X5i71)] + T}(Sl?XSH*) - ﬁ(tax)‘

=2
P4"-a.s we have Xg,_ = X5, , (2<i<k)and Xg,_ =z, so we obtain
k
9(Xr) —o(t,z) = g(Xr) = 0(Sk, Xs,) + Y_[0(S;, Xs,) — 0(Si, Xs, )]
i=1

Z (Si, Xs, ) —0(Si_1, Xs, )] + 0(S1,z) — 0(t, ).

The first sum can be written as
k

S [o(S;, Xs,) — 0(5;, X, / [ s, = 065 X )] (s ).

i=1

while the other can be estimated from above by repeated applications of -,
taking into account that X is constant in the intervals (¢, S1], (Si—1,Si] (2 <i < k)
and (Sg,T):

T}(Siv X5i71) - T)(Si—h XS;l)

S.

v a(s,Xs; 1) _

< [ (T ol X ) £ Xl X)) ds
i—1

S;
—— [ (£ 0, X+ £ Xl X)) ds
Si—1

for 2 < i < k and similar formulae for the intervals (¢, S1], and (Sg,T]. We end up
with

9(X1) —0(t, x) / / [0(s,y) Xs—)]p(ds dy)
_/t (L%uxs) s S)+f(8,Xs,oz(s,XS))> .

Recalling that the compensator of the measure p under P5” is AMXs—, a(s, Xs-), dy)
ds 1[00)(8) we have, taking expectation,

T T
E/ /Ems,y)—@(s,xs_ﬂp(dsdy)=Eif / LH5(s, X, ds,
t t

which implies, by the previous inequality,

T
BL7lo(Xr)] — olt,x) < ~EL* [ f(s, Xuva(s, X)) ds
t
and so v(t,x) > J(t,z,a). Since o € A,q was arbitrary we conclude that v(t,z) >
V(t,z).
g






Chapter 3

Optimal control of
Piecewise
Deterministic Markov

Processes and
constrained BSDEs
with nonnegative

jumps

3.1. Introduction

The aim of the present chapter is to prove that the value function in an infinite-
horizon optimal control problem for piecewise deterministic Markov processes (PDMPs)
can be represented by means of an appropriate backward stochastic differential equa-
tion. Piecewise deterministic Markov processes, introduced in Davis [35], evolve
through random jumps at random times, while the behavior between jumps is de-
scribed by a deterministic flow. We consider optimal control problems of PDMPs
where the control acts continuously on the jump dynamics and on the deterministic
flow as well.

Let us start by describing our setting in an informal way. Let E be a Borel space
and € the corresponding o-algebra. A PDMP on (FE, ) can be described by means
of three local characteristics, namely a continuous flow ¢(t, z), a jump rate A(x), and
a transition measure Q(z,dy), according to which the location of the process at the
jump time is chosen. The PDMP dynamic can be described as follows: starting from
some initial point © € E, the motion of the process follows the flow ¢(¢,z) until a
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random jump 717, verifying

P(T; > ) = exp ( /0 A((r, z)) dr) . s>0.

At time T} the process jumps to a new point X7, selected with probability Q(x, dy)
(conditionally to T1), and the motion restarts from this new point as before.

Now let us introduce a measurable space (A,A), which will denote the space of
control actions. A controlled PDMP is obtained starting from a jump rate A(x,a)
and a transition measure Q(z,a,dy), depending on an additional control parameter
a € A, and a continuous flow ¢°(¢, ), depending on the choice of a measurable
function 5(t) taking values on (A, A). A natural way to control a PDMP is to chose
a control strategy among the set of piecewise open-loop policies, i.e., measurable
functions that depend only on the last jump time and post jump position. We can
mention Almudevar [1], Bauerle and Rieder [11], Costa and Dufour [32], Davis [35],
[34], Dempster [40], as a sample of works that use this kind of approach. Roughly
speaking, at each jump time 7T;,, we choose an open loop control «,, depending on
the initial condition X7, to be used until the next jump time. A control « in the
class of admissible control laws A, has the explicit form

oy = Z Ckn(t — Tn,XTn> 1[Tn,Tn+1)(t)7 (3.1)
n=1

and the controlled process X is
X =9 (t —Tn, Epn), te [Ty, Thi1).

We denote by PZ the probability measure such that, for every n > 1, the conditional
survivor function of the jump time 7,41 and the distribution of the post jump
position X7, ,, are

PE(Tpi1 > 5| 91,) = exp <— A (¢ — T X, ) con(r — Tn,XTn»dr) ,
T,
]P)g(XTn_H € B’ EFTna Tn+1) = Q((Z)an(Tn-l—l - TnyXTn)van(Tn—l—l - Tn,XTn),B),

on {T,, < oo}.
In the classic infinite-horizon control problem one wants to minimize over all
control laws « a functional cost of the form

J(z,a) = EZ UOOO €08 F( Xy, o) ds} (3.2)

where E? denotes the expectation under P%, f is a given real function on F x A
representing the running cost, and § € (0, o) is a discounting factor. The value
function of the control problem is defined in the usual way:
V(z)= inf J(z,«a), xz€ E. (3.3)
a€Aqq

Let now E be an open subset of R%, and h(z,a) be a bounded Lipschitz contin-
uous function such that ¢*(¢,x) is the unique solution of the ordinary differential
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equation
z(t) = h(z(t),a(t)), z(0)==z¢€E.

We will assume that A and f are bounded functions, uniformly continuous, and @) is
a Feller stochastic kernel. In this case, V is known to be the unique viscosity solution
on [0, co) x E of the Hamilton-Jacobi-Bellman (HJB) equation

dv(x) = sup (h(m, a) - Vu(z) + Az, a) / (v(y) —v(x)) Q(z, a, dy)> , x€k.

a€A E

(3.4)
The characterization of the optimal value function as the viscosity solution of the
corresponding integro-differential HJB equation is an important approach to tackle
the optimal control problem of PDMPs, and can be found for instance in Davis and
Farid [36], Dempster and Ye [41], [42]. Alternatively, the control problem can be
reformulated as a discrete-stage Markov decision model, where the stages are the
jumps times of the process and the decision at each stage is the control function that
solves a deterministic optimal control problem. The reduction of the optimal control
problem to a discrete-time Markov decision process is exploited for instance in [1],
[11], [32], [35), [34).

In the present chapter our aim is to represent the value function V' (z) by means
of an appropriate BSDE. We are interested in the general case when {PZ%},, is a non-
dominated model, which, roughly speaking, reflects the fully non-linear character
of the HJB equation. This basic difficulty has prevented the effective use of BSDE
techniques in the context of optimal control of PDMPs until now. In fact, we believe
that this is the first time that this difficulty is coped with and this connection is
established. It is our hope that the great development that BSDE theory has now
gained will produce new results in the optimization theory of PDMPs. In the context
of diffusions, probabilistic formulae for the value function for non-dominated models
have been discovered only in the recent year. In this sense, a fundamental role is
played by [88], where a new class of BSDEs with nonpositive jumps is introduced in
order to provide a probabilistic formula, known as nonlinear Feynman-Kac formula,
for fully nonlinear integro-partial differential equations, associated to the classical
optimal control for diffusions. This approach was later applied to many cases within
optimal switching and impulse control problems, see Elie and Kharroubi [54], [55],
[56], Kharroubi, Ma, Pham and Zhang [87], and developed with extensions and
applications, see Cosso and Chokroun [25], Cosso, Fuhrman and Pham [31], and
Fuhrman and Pham [67]. In all the above mentioned cases the controlled processes
are diffusions constructed as solutions to stochastic differential equations of It6 type
driven by a Brownian motion.

We wish to extend to the PDMPs framework the theory developed in the context
of optimal control for diffusions. The fundamental idea behind the derivation of the
Feynman-Kac representation, borrowed from [88], concerns the so-called randomiza-
tion of the control, that we are going to describe below in our framework. A first
step in the generalization of this method to the non-diffusive processes context was
done in Chapter [2] where a probabilistic representation for the value function asso-
ciated to an optimal control problem for pure jump Markov processes was provided.
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As in the pure jump case, also in the PDMPs framework the correct formulation of
the randomization method requires some efforts, and can not be modelled on the
diffusive case, since the controlled processes are not defined as solutions to stochas-
tic differential equations. In addition, the presence of the controlled flow between
jumps in the PDMP’s dynamics makes the treatment more difficult and suggests to
use the viscosity solution theory. Finally, we notice that we consider PDMPs with
state space F with no boundary. This restriction is due to the fact that the presence
of the boundary induces technical difficulties on the study of the associated BSDE,
which would be driven by a non quasi-left continuous random measure, see Remark
For such general BSDEs the existence and uniqueness results were at disposal
only in particular frameworks, see e.g. [26] for the deterministic case, and counter-
examples were provided in the general case, see Section 4.3 in [29]. Only recently this
problem was faced and solved in a general context in [2], were a technical condition
is provided in order to achieve existence and uniqueness of the BSDE, see Chapter
The mentioned condition turns out to be verified in the case of control problems
related to PDMPs with discontinuities at the boundary of the domain, see Remark
This fact opens to the possibility to apply the BSDEs techniques also in this
context, which is left as a future development of the method.

Let us now informally describe the randomization method in the PDMPs frame-
work. The first step, for any starting point x € F, consists in replacing the state
trajectory and the associated control process (X, as) by an (uncontrolled) PDMP
(X, I5), in such a way that I is a Poisson process with values in the space of control
actions A, with an intensity Ag(db) which is arbitrary but finite and with full sup-
port, and X is suitably defined. In particular, the PDMP (X, T) is constructed in a
different probability space by means of a new triplet of local characteristics and takes
values on the enlarged space E x A. Let us denote by P%® the corresponding law,
where (z,a) is the starting point in E x A. Then we formulate an auxiliary optimal
control problem where we control the intensity of the process I: for any predictable,
bounded and positive random field v4(b), by means of a theorem of Girsanov type,
we construct a probability measure P;* under which the compensator of I is the
random measure v¢(db) A\o(db) dt (under Py* the law of X is also changed) and we
minimize the functional

J(z,a,v) = E2° [/Oo e %% f(X,, I,) ds| . (3.5)
0

over all possible choices of v. This will be called the dual control problem. Notice
that the family {P,"*}, is a dominated model. One of our main results states that the
value function of the dual control problem, denoted as V*(z,a), can be represented
by means of a well-posed constrained BSDE. The latter is an equation over an infinite
horizon of the form

Yo =y 5/ Y”dr+/ (X, L) dr — (K5 — K5%) (3.6)

//ZI“XT,b/\Odbdr—// Z5y, b)q(drdydb), 0<s<T < oo,
ExA
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with unknown triplet (Y*%, Z%% K*%) where ¢ is the compensated random mea-
sure associated to (X, 1), K™ is a predictable increasing cadlag process, Z%% is a
predictable random field, where we additionally add the sign constraint

Z5%(X,_,b) > 0. (3.7)

The reference filtration is now the canonical one associated to the pair (X, ). We
prove that this equation has a unique maximal solution, in an appropriate sense,
and that the value of the process Y% at the initial time represents the dual value
function:

Yy = V*(z,a). (3.8)
Our main purpose is to show that the maximal solution to - at the ini-
tial time also provides a Feynman-Kac representation to the value function of
our original optimal control problem for PDMPs. To this end, we introduce the
deterministic real function on E x A

v(x,a) =Yy, (3.9)

and we prove that v is a viscosity solution to (3.4)). By the uniqueness of the solution
to the HIB equation (3.4) we conclude that the value of the process Y at the initial
time represents both the original and the dual value function:

Yy =V (z,a) = V(z). (3.10)

Identity (3.10) is the desired BSDE representation of the value function for the
original control problem and a Feynman-Kac formula for the general HJB equation

(3-4)-

Formula can be used to design algorithms based on the numerical ap-
proximation of the solution to the constrained BSDE —, and therefore to
get probabilistic numerical approximations for the value function of the addressed
optimal control problem. In the recent years there has been much interest in this
problem, and numerical schemes for constrained BSDEs have been proposed and
analyzed in the diffusive framework, see [86], [85]. We hope that our results may be
used to get similar methods in the PDMPs context as well.

The chapter is organized as follows. Section is dedicated to define a set-
ting where the optimal control is solved by means of the corresponding HJB
equation . We start by recalling the construction of a PDMP given its local
characteristics. In order to apply techniques based on BSDEs driven by general ran-
dom measures, we work in a canonical setting and we use a specific filtration. The
construction is based on the well-posedness of the martingale problem for multivari-
ate marked point processes studied in Jacod [75], and is the object of Section
This general procedure is then applied in Section to formulate in a precise way
the optimal control problem we are interested in. At the end of Section [3.2.2] we
recall a classical result on existence and uniqueness of the viscosity solution to the
HJB equation , and its identification with the value function V', provided by
Davis and Farid [36].

In Section we start to develop the control randomization method. Given
suitable local characteristics, we introduce an auxiliary process (X, ) on E x A by
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relying on the construction in Section and we formulate a dual optimal con-
trol problem for it under suitable conditions. The formulation of the randomized
process is very different from the diffusive framework, since our data are the local
characteristics of the process rather than the coefficients of some stochastic differ-
ential equations solved by it. In particular, we need to choose a specific probability
space under which the component I (independent to X) is a Poisson process.

In Section we introduce the constrained BSDE — over infinite hori-
zon. By a penalization approach, we prove that under suitable assumptions the
above mentioned equation admits a unique maximal solution (Y, Z, K) in a certain
class of processes. Moreover, the component Y at the initial time coincides with the
value function V* of the dual optimal control problem. This is the first of our main
results, and is the object of Theorem [3.4.8

Finally, in Section [3.5] we prove that the initial value of the maximal solution
Y®% to — provides a viscosity solution to . This is the second main
result of the paper, which is stated in Theorem As a consequence, by means
of a comparison theorem for sub and supersolutions to first-order integro-partial
differential equations, we get the desired nonlinear Feynman-Kac formula, as well as
the equality between the value functions of the primal and the dual control problems,
see Corollary The proof of Theorem [3.5.1] is based on arguments from the
viscosity theory, and combines BSDEs techniques with control-theoretic arguments.
A relevant task is to derive the key property that the function v in does not
depend on a, as consequence of the A-nonnegative constrained jumps.

Recalling the identification in Theorem [3.4.8] we are able to give a direct proof
of the non-dependence of v on a by means of control-theoretic techniques, see Propo-
sition and the comments below. This allows us to consider very general spaces
A of control actions. Moreover, differently to the previous literature, we provide a
direct proof of the viscosity solution property of v, which does not need to rely on a
penalized HJB equation. This is achieved by generalizing to the setting of the dual
control problem the proof that allows to derive the HJB equation from the dynamic

programming principle, see Propositions and

3.2. Piecewise Deterministic controlled Markov Processes

3.2.1. The construction of a PDMP given its local characteristics. Given
a topological space F', in the sequel B(F') will denote the Borel o-field associated
with F, and by C(F') the set of all bounded continuous functions on F. The Dirac
measure concentrated at some point x € I’ will be denoted 4.

Let (E,€&) be a Borel measurable space. We will often need to construct a
PDMP in E with a given triplet of local characteristics (¢, \, Q). We assume that
¢ :Rx EF — FE is a continuous function, A : £ — R, is a nonnegative continuous
function satisfying

sup A(z) < oo, (3.11)
ek
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and that @ maps E into the set of probability measures on (F, ), and is a stochastic
Feller kernel, ie., for all v € Cy(E), the map = — [Lv(y)Q(z,dy) (z € E) is
continuous.

We recall the main steps of the construction of a PDMP given its local charac-
teristics. The existence of a Markovian process associated with the triplet (¢, A, Q)
is a well known fact (see, e.g., [35], [32]). Nevertheless, we need special care in
the choice of the corresponding filtration, since this will be crucial when we solve
associated BSDEs and implicitly apply a version of the martingale representation
theorem in the sections that follow. For this reason, in the following we will use an
explicit construction that we are going to describe. Many of the techniques we are
going to use are borrowed from the theory of multivariate (marked) point processes.
We will often follow [75], but we also refer the reader to the treatise [77] for a more
systematic exposition.

We start by constructing a suitable sample space to describe the jumping mech-
anism of the Markov process. Let ' denote the set of sequences w' = (t, €n)n>1
in ((0,00) x E) U {(c0,A)}, where A ¢ E is adjoined to E as an isolated point,
satisfying in addition

tn < tpyt; th <0 = t, <tpti- (3.12)

To describe the initial condition we will use the measurable space (E,&). Finally,
the sample space for the Markov process will be Q = E x €. We define canonical
functions T, : Q — (0,00], E,, : Q@ — EU{A} as follows: writing w = (e,w’) in the
form w = (e, t1,e1,t9,e2,...) we set for ¢ > 0 and for n > 1

Th(w) = ty, E,(w) = ey, Too(w) = nh—>Igo tn, To(w) =0, Ep(w) =e.

We also introduce the counting process N (s, B) = ) . 17,<s1E,eB, and we define
the process X : 2 x [0, o0) = E'U A setting

_ i <
X, = { ot —T,, Ey) if T,, <t <Tpsq, forn € N, (3.13)

A ift > T.

In © we introduce for all ¢ > 0 the o-algebras G = o(N(s,B) : s € (0,t], B€ ). To
take into account the initial condition we also introduce the filtration F = (F;):>0,
where Fy = € @ {0, Q'}, and for all ¢ > 0 F; is the o-algebra generated by Fy and
G;. F is right-continuous and will be called the natural filtration. In the following all
concepts of measurability for stochastic processes (adaptedness, predictability etc.)
refer to F. We denote by F, the o-algebra generated by all the o-algebras F;. The
symbol P denotes the o-algebra of F-predictable subsets of [0, 00) x €.

On the filtered sample space (2,F) we have so far introduced the canonical
marked point process (T, Ey,)n>1. The corresponding random measure p is, for any
w € Q, a o-finite measure on ((0,00) x E, B(0,00) ® &) defined as

p(w,dsdy) = Z L7 (w) <00} O(Th (w), En (w)) (A5 dY), (3.14)
neN
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where ), denotes the Dirac measure at point k € (0,00) x E. For notational conve-
nience the dependence on w will be suppressed and, instead of p(w, ds dy), it will be
written p(ds dy).

Proposition 3.2.1. Assume that (3.11) holds, and fixr x € E. Then there exists a
unique probability measure on (2, Foo), denoted by P*, such that its restriction to Fo
s 0z, and the F-compensator of the measure p under P* is the random measure

Bldsdy) = 1z, 70) () M&(s — T, En)) Q((s — T, En), dy) ds.
neN

Moreover, P*(To, = 00) = 1.

Proof. The result is a direct application of Theorem 3.6 in [75]. The fact that,
P*-a.s., Too = oo follows from the boundedness of A, see Proposition 24.6 in [35]. O

For fixed z € E, the sample path of the process (X¢) in (3.13]) under P* can be
defined iteratively, by means of (¢, A, @), in the following way. Set

F(s,x) = exp (—/0 Ap(r,x)) dr) ,
we have
P*(Ty > s) = F(s,x), (3.15)
P*(Xr, € B|T1) = Q(z, B), (3.16)

on {T} < oo}, and, for every n > 1,

S

P*(Ty41 > s|Fr,) = exp <— MNo(r—T,, X1,)) dr> , (3.17)
Tn
]P)x(XTn+1 S B| I, Tn-‘rl) = Q((ZJ(TH-H — T, XTn)7 B)? (318)
on {T,, < oo}.

Proposition 3.2.2. In the probability space {Q, Foo,P*} the process X has distri-
bution 6, at time zero, and it is a homogeneous Markov process, i.e., for any x € E,
nonnegative times t, s, t < s, and for every bounded measurable function f,

E*[f(Xtts) | Ft] = Ps(f(X2)), (3.19)
where P, f(x) := E*[f(Xy)].
Proof. From (3.17)), taking into account the semigroup property ¢(t + s,x) =
o(t, ¢(s,2)), we have

P‘B(TnJrl >t+s | :}'t) 1{t€[Tn7Tn+1)}
P*(Tny1 >t + 5|97, )
]P)x(Tn‘f'l > t | ?Tn) {te[Tann+1)}

t+s
= exXp (—/ )\(¢(T — Tn, XTn)) d’l”) 1{t€[Tn,Tn+1)}
t

= exp <_/0 /\(Qﬁ(?“ +t—"Thn, XTn)) dT‘) l{tG[Tn,Tn+1)}
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—exp (= [ M6 X)) Ve 1
= F(s, X¢) Lier, 10 41)}- (3.20)
Hence, denoting Ny = N(t, E), it follows from that
P*(Tn,41 >t +s|Ft) = F(s, Xv);

in other words, conditional on F, the jump time after ¢ of a PDMP started at x has
the same distribution as the first jump time of a PDMP started at X;. Since the
remaining interarrival times and postjump positions are independent on the past,
we have shown that holds for every bounded measurable function f. g

Remark 3.2.3. In the present chapter we restrict the analysis to the case of PDMPs
on a domain E with no boundary. This choice is motivated by the fact that the
presence of jumps at the boundary of the domain would induce discontinuities in
the compensator of the random measure associated to the process. Since we have
in mind to apply techniques based on BSDEs driven by the compensated random
measure associated to the PDMP (see Section , this fact would considerably
complicates the tractation.

More precisely, consider a PDMP on a state space E with boundary OF. In this
case, when the process reaches the boundary, a forced jump occurs and the process
immediately goes back to the interior of the domain. According to (26.2) in [35],
the compensator of the counting measure p in admits the form

p(dsdy) = MXs—) Q(Xs—, dy) ds + dpi R(Xs—, dy),

where
oo
e =D Leomy Lixy, ery
n=1

is the process counting the number of jumps of X from the active boundary I' € OF
(for the precise definition of I' see page 61 in [35]), and R : OE x &€ — E is the
transition probability measure describing the distribution of the process after the
forced jumps. In particular, the compensator p can be rewritten as

ﬁ(ds dy) = dAS ¢(XS—7 dy)a

where ¢(XS—7 dy) = Q(XS—7 dy) 1{XS_EE}+R(XS—7 dy) I{XS_EF}7 and AS = )\<XS—) ds
+dp? is a predictable and discontinuous process, with jumps

AAs =1(x, ery-

The presence of these discontinuities in the compensator induces very technical dif-
ficulties in the study of the associated BSDE, see Chapter [4 The above mentioned
case is left as a future improvement of the theory.
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3.2.2. Optimal control of PDMPs. In the present section we aim at formulating
an optimal control problem for piecewise deterministic Markov processes, and to
discuss its solvability. The PDMP state space E will be an open subset of R¢, and
€ the corresponding o-algebra. In addition, we introduce a Borel space A, endowed
with its o-algebra A, called the space of control actions. The additional hypothesis
that A is compact is not necessary for the majority of the results, and will be
explicitly asked whenever needed. The other data of the problem consist in three
functions f, h and X on E x A, and in a probability transition @ from (E x A,E®A)
to (E, &), satisfying the following conditions.

(HhAQ)
(i) h: E x A E is a bounded, uniformly continuous, function satisfying
Vo, 2’ € E, and Va,d' € A, |h(x,a) — h(z',a’)| < Ly, (|Jz — 2| + |a — d'|),
Ve € FE and Va € A, |h(z,a)] < Mp,

where L, and M, are constants independent of a,a’ € A, z,2’ € E.

(i) A: E x A+~ RT is a nonnegative bounded uniformly continuous function,
satisfying
sup Az, a) < oo. (3.21)
(r,a)eExA
(iii) @ maps Ex A into the set of probability measures on (F, £), and is a stochas-
tic Feller kernel. i.e., for allv € Cy(E), the map (z,a) — [pa v(y) Q(x, a, dy)
is continuous (hence it belongs to Cy(E x A)).

(Hf) f:FE x A+~ RT is a nonnegative bounded uniformly continuous function. In
particular, there exists a positive constant My such that

0< f(z,a) < My, VexeFE acA

The requirement that Q(z,a,{z}) = 0 for all z € E, a € A is natural in many
applications, but here is not needed. h, A and Q depend on the control parameter
a € A and play respectively the role of and controlled drift, controlled jump rate and
controlled probability transition. Roughly speaking, we may control the dynamics
of the process by changing dynamically its deterministic drift, its jump intensity and
its post jump distribution.

Let us give a more precise definition of the optimal control problem under study.
To this end, we first construct Q, F = (F)i>0, Fx as in the previous paragraph.

We will consider the class of piecewise open-loop controls, first introduced in
Vermes [129] and often adopted in this context, see for instance [35], [32], [I]. Let
X be the (uncontrolled) process constructed in a canonical way from a marked point
process (T),, E,) as in Section The class of admissible control law A,4 is the
set of all Borel-measurable maps « : [0, o0) x E — A, and the control applied to X
is of the form:

=Y on(t—Tn, Bn) g, 1) (1) (3.22)
n=1



3.2. Piecewise Deterministic controlled Markov Processes 107

In other words, at each jump time 7;,, we choose an open loop control «,, depending
on the initial condition F,, to be used until the next jump time.

By abuse of notation, we define the controlled process X : Q x [0, co) - EU{A}
setting

Xe =9 (t —Tn,Epn), te€[Tn, Tni1) (3.23)
where ¢°(t, x) is the unique solution to the ordinary differential equation

#(t) = h(z(t), B(t)), z(0) =z € E.

with 8 an A-measurable function. Then, for every starting point x € E and for each
a € Agg, by Proposition there exists a unique probability measure on (Q, Fo ),
denoted by PZ, such that its restriction to Fy is d,, and the F-compensator under

P? of the measure p(dsdy) is
p*(dsdy) = Z 17, 7o) (8) A(Xs, an(s — T, En)) Q(Xs, on(s — T, En), dy) ds.
n=1

According to Proposition under PZ the process X in (3.23)) is Markovian with
respect to F.

Denoting by E? the expectation under P%, we finally define, for x € E and
a € Agqg, the functional cost

J(z,a) = EZ [/ e %% f(Xs, o) ds (3.24)
0
and the value function of the control problem
V(z)= inf J(z,a), (3.25)
a€Aqq

where 0 € (0, 00) is a discounting factor that will be fixed from here on. By the
boundedness assumption on f, both J and V are well defined and bounded.

Let us consider the Hamilton-Jacobi-Bellman equation (for short, HJB equation)
associated to the optimal control problem: this is the following elliptic nonlinear
equation on [0, co) x E:

HY(z,v, Dv) =0, (3.26)

where

HY(z,v,p) = sup {51} — h(z,aq) .p_/

a€A E

(000) = 9 A 0) Qe asd) — [(z.0) ).
Remark 3.2.4. The HJB equation (3.26]) can be rewritten as
dv(z) =sup{L(z) + f(z,a)} =0, (3.27)
acA
where £ is the operator depending on a € A defined as

L%(x) := h(z,a) - Vv(z) + Az, a) /E(U(y) —v(z)) Q(x,a,dy). (3.28)
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Let us recall the following facts. Given a locally bounded function z : £ —
R, we define its lower semicontinuous (l.s.c. for short) envelope z., and its upper
semicontinuous (u.s.c. for short) envelope z*, by

ze(z) = ligrgigfz(y), 2 (x) = hr;lj;jlp z(y), forallx € E.
yeE yeE

Definition 3.2.5. Viscosity solution to (3.26]).
(i) A locally bounded u.s.c. function w on F is called a wviscosity supersolution
(resp. wviscosity subsolution) of if
HY(xo, w(x0), Dp(x0)) = (resp. <) 0.
for any z¢ € E and for any ¢ € C!(E) such that
(4~ ¢)(z0) = min(u — ) (resp. max(u - ).

(ii) A function z on F is called a wiscosity solution of (3.26]) if it is locally
bounded and its u.s.c. and l.s.c. envelopes are respectively subsolution and

supersolution of ((3.26)).

The HJB equation (3.26)) admits a unique continuous solution, which coincides
with the value function V in (3.25)). The following result is stated in Theorem 7.5 in
[36].

Theorem 3.2.6. Let (HhAQ) and (Hf) hold, and assume that A is compact. Then
the value function V' of the PDMPs optimal control problem is the unique continuous

viscosity solution of ((3.26]).

3.3. Control randomization and dual optimal control problem

In this section we start to implement the control randomization method. In the
first step, for an initial time ¢ > 0 and a starting point x € F, we construct an
(uncontrolled) Markovian pair of PDMPs (X, I) by specifying its local characteris-
tics, see (3.29)-(3.30)-(3.31)) below. Next we formulate an auxiliary optimal control
problem where, roughly speaking, we optimize a functional cost by modifying the
intensity of the process I over a suitable family.

This dual problem is studied in Section [3.4] by means of a suitable class of BSDEs.
In Section [3.5] we will show that the same class of BSDEs provides a probabilistic
representation of the value function introduced in the previous section. As a byprod-
uct, we also get that the dual value function coincides with the one associated to the
original optimal control problem.

3.3.1. A dual control system. Let E still denote an open subset of R? with o-
algebra &€, and A be a Borel space with corresponding o-algebra A. Let moreover
h, A and @ be respectively two real functions on F x A and a probability transition
from (E'x A, E®A), satisfying (HhAQ) as before. We denote by ¢(, x, a) the unique
solution to the ordinary differential equation

(t) = h(z(t),a), x(0)=z€FE, ac A.
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In particular, ¢(t,x,a) corresponds to the function ¢®(t,z), introduced in Section
when 5(t) = a. Let now introduce another finite measure \g on (A, A) satis-
fying the following assumption:

(HXo) Ao is a finite measure on (A, A) with full topological support.

The existence of such a measure is guaranteed by the fact that the space A is metric
separable. We define

btz a) = (o(t,x,a) a), (3.29)
Mz,a) = Az, a)+ Ao(A), (3.30)
O, a, dydb) = Az, a)Q (x’%dy)xf;(f;)HO(db)éz(dy)' (3.31)

We wish to construct a PDMP (X, ) as in Section but with enlarged state
space E x A and local characteristics (¢, A, Q).

Firstly, we need to introduce a suitable sample space to describe the jump mech-
anism of the process (X, 1) on E x A. Accordingly, we set ' as the set of sequences
W' = (tn, en, an)n>1 contained in ((0, 0o) x Ex A)U{(co, A, A")}, where A ¢ E (resp.
A’ ¢ A) is adjoined to E (resp. to A) as an isolated point, satisfying (3.12). In the
sample space Q = Q' x F x A we defined the random variables T}, : Q@ — (0, oc],
E,:Q— EU{A}, A, :Q — AU{A’}, as follows: writing w = (e, a,w’) in the form
w = (e,a,t1,e1,ay,ta, ez, az,...) we set for t > 0 and for n > 1

Th(w) = ty, Too(w) = li_)m tn, To(w) =0,
En(w) = ep, Ap(w) = ap, Ep(w) = e, Ap(w) = a.
We define the process (X, 1) on (E x A)U{A, A’} setting

(X 1) { (b(t — Ty, By An), Ap) i T, <t < Tyyq, forn €N,
) t =

(A, AY) if > T (3.32)

In Q we introduce for all ¢ > 0 the o-algebras §; = o(N(s,B) : s € (0,t],B €
€ ® A) generated by the counting processes N(s, A) = > _n171,<s1E,ca and the
o-algebra F; generated by Fy and G, where Fp = € @ A ® {0,Q'}. We still denote
by F = (Ft)t>0 and P the corresponding filtration and predictable o-algebra. The
random measure p is now defined on (0, co) X E x A as

pldsdydb) =" 17, g, 4,3 (ds dy db). (3.33)
neN
Given any starting point (z,a) € E x A, by Proposition there exists a unique
probability measure on (2, Fo), denoted by P*®, such that its restriction to Fy is
d(z,a) and the F-compensator of the measure p(dsdy db) under P*“ is the random
measure
Pldsdydb) = 1ir, 7,41)(8) M@ (s — T, En,y Ap), An, dy db) ds,

neN

where

A(z,a,dydb) = Nz, a) Q(x, a,dy) 6a(db) + No(db) d.(dy), V(z,a) € E x A.
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We indicate by ¢ = p — p the compensated martingale measure associated to p.

As in Section the sample path of a process (X,I) with values in E x
A, starting from a fixed initial point (z,a) € E x A at time zero, can be defined
iteratively by means of its local characteristics (h, A, @) in the following way. Set

F(s,z,a) = exp <— /S(A(qﬁ(r, z,a),a) + Ao(A)) dr) ,
0
we have
P*YTy > s) = F(s,x,a), (3.34)
P> (X7, € B, Iy, € C|Ty) = Q(x, B x C), (3.35)

on {11 < oo}, and, for every n > 1,

P*(Typy1 > s|TFp,) =exp (— /8 Mo(r — T, X1, I1,), IT,) + Ao (A)) d’r) ,
" (3.36)
P*(Xr,,, € B,Ir,,, € C|Fr1,, Tnt1) = Q(¢(Tns1 — Tn, X1, Ir,), Ity , B % O),
(3.37)
on {T,, < oo}.

Finally, an application of Proposition provides that (X,I) is a Markov
process on [0, co) with respect to F. For every real function taking values in F x A,
the infinitesimal generator is given by

Lop(x,a) izh(fv,a)-chp(fma)Jr/E(sO(y,a)—w($,a))k(w,a)Q(w,a,dy)

+ /A (o(2,B) — p(x, a)) Ao(db).

For our purposes, it will be not necessary to specify the domain of the previous
operator (for its formal definition we refer to Theorem 26.14 in [35]); in the sequel
the operator L will be applied to test functions with suitable regularity.

3.3.2. The dual optimal control problem. We now introduce a dual optimal
control problem associated to the process (X, I'), and formulated in a weak form. For
fixed (z,a), we consider a family of probability measures {P’*, v € V} in the space

(Q, Foo), whose effect is to change the stochastic intensity of the process (X, I).

Let us proceed with precise definitions. We still assume that (HhAQ), (H)\p)
and (Hf) hold. We recall that F = (F);>0 is the augmentation of the natural
filtration generated by p in (3.33). We define

V={rv:Qx]0,00) x A— (0, c0) P® A-measurable and bounded}.
For every v € V, we consider the predictable random measure
p”(ds dy db) = vs(b) Ao(db) 0yx,_y(dy) ds
+ M X I5-) Q(Xs—, Is—, dy) 647, y(db) ds. (3.38)
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In particular, by the Radon Nikodym theorem one can find two nonnegative functions
dy, dy defined on Q x [0, 00) x Ex A, P® & ® A, such that
Ao(db) 0rx, y(dy)dt = di(t,y,b)p(dtdy db)
A(‘Xrt—7 It—7 dy) 5{It_}(db) dt = d2(t7y7b)ﬁ(dt dy db)7
di(t,y,b) +da(t,y,b) = 1,  p(dtdydb) — a.e.

and we have dp¥ = (vdy + d2) dp. For any v € V, consider then the Doléans-Dade
exponential local martingale L” defined setting

LY = exp < [ t0(en(8) ds(r.0.8) + oG5 ey

//VT —1)\0db)d>

= el Jamr®Xo@rdr T (1 (Ay) dy(Ty, Eny An) + do(Tn, En, Ay)),
n>1:T,<s

(3.39)

for s > 0. When (LY )t>0 is a true martingale, for every time 7" > 0 we can define a
probability measure IP 7 equivalent to P** on (£2, Ir) setting

i%(dw) = L7 (w) P*%(dw). (3.40)
By the Girsanov theorem for point processes (see Theorem 4.5 in [75]) the restriction
of the random measure p to (0,7] x E x A admits p¥ = (v dj + d2) p as compensator
under P77, We set ¢” := p — p”. and we denote by E’7. the expectation operator

under P77, Previous considerations are formalized in the following Lemma, which
is a direct consequence of Lemma, [2.3.2

Lemma 3.3.1. Let assumptions (HhAQ) and (H)\g) hold. Then, for every (z,a) €
E x A and v € V, under the probability P*®, the process (LY )i>0 is a martingale.
Moreover, for every time T > 0, LY. is square integrable, and, for every Pr® & ® A-
measurable function H : Q x [0,T] x E x A — R such that

E®a UOT fExA |H,(y,b)|? p(ds dy db)| < oo, the process fo fExA s(y,0) ¢”(ds dy db)

is a P7-martingale on [0, T).

We aim at extending the previous construction to the infinite horizon, in order
to get a suitable probability measure on (£, F,). We have the following result.

Proposition 3.3.2. Let assumptions (HhAQ) and (H\g) hold. Then, for every
(x,a) € E x A and v € V, there exists a unique probability Py on (Q, Fs), under

which the random measure p” in (3.38]) is the compensator of the measure p in (3.33))
on (0, 00) x E'x A. Moreover, for any time T > 0, the restriction of Py on (2, Fr)

is given by the probability measure Pi’% in (3.40)).

Proof. For simplicity, in the sequel we will drop the dependence of P*% and P}’ on
(z,a), which will be denoted respectively by P and P”.

We notice that Fp, = o(Th, E1, A1, ..., Ty, Epn, Ay) defines an increasing family
of sub o-fields of F such that F is generated by |J,, Fr,. The idea is then to



Chapter 3. Optimal control of Piecewise Deterministic Markov
112 Processes and constrained BSDEs with nonnegative jumps

provide a family {P%}, of probability measures on (£2,F7, ) under which p” is the
compensator of the measure p on (0, T,,] x E x A, and which is consistent (i.e.,
Py H}?T = P¥). Indeed, if we have at disposal such a family of probabilities, we
can naturally define on (J,, I7, a set function P verifying the desired property, by
setting PY(B) := P¥(B) for every B € Fr,, n > 1. Finally, to conclude we would
need to show that P” is countably additive on J,, I, and therefore can be extended
uniquely to Fuo.
Let us proceed by steps. For every n € N, we set
dP;, = Ly, dP on (Q,J7,), (3.41)

where LY is given by (3.39). Notice that, for every n € N, the probability P¥ is well
defined. Indeed, recalling the boundedness properties of v and Ay, we have
L8, = el Ta(ve @) ot dr [ (V5. (Ax) di(Te, Ex, Ag) + do (T, Ex, Ar))
k=1
< (|[pfoe)™ e T, (3.42)
and since T, is exponentially distributed (see (3.17))), we get
E[L%,] < (IWlle)" E [T ] < oo,

Then, arguing as in the proof of the Girsanov theorem for point process (see, e.g.,
the comments after Theorem 4.5 in [75]), it can be proved that the restriction of the
random measure p to (0,7,] x E x A admits p¥ = (v dy + dz2) p as compensator under
P¥. Moreover, {P/},, is a consistent family of probability measures on (Q2,Fr, ),
namely

IP’;;H}?TW =P/, neN. (3.43)

Indeed, taking into account definition , it is easy to see that identity is
equivalent to

E[L% |Fr,_,] =LY% . neN (3.44)
By Corollary 3.6, Chapter II, in Revuz and Yor [111], and taking into account
the estimate , it follows that the process (L{,r )i>0 is a uniformly integrable
martingale. Then, identity follows from the optional stopping theorem for
uniformly integrable martingales (see, e.g., Theorem 3.2, Chapter I, in [I11]).

At this point, we define the following probability measure on |J,, I, :
P"(B):=P/(B), BeJFp, neN. (3.45)

In order to get the desired probability measure on (2, F ), we need to show that P¥
in is o-additive on |J,, Fr,: in this case, P” can indeed be extended uniquely
to Fo, see Theorem 6.1 in Jacod and Protter [78].

Let us then prove that P” in is countably additive on |J,, F7;,. To this end,
let us introduce the product space EX := (E x A x [0, 00) U {(A, A’,00) DN, with
associated Borel o-algebra EIX@. For every n € N, we define the following probability
measure on (EZ, SZ®):

QU(A) =P/ (w:m,(w) € A), AcER, (3.46)
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where 7,, = (11, E1, Ay, ..., Ty, En, Ay). The consistency property of the family
(PY),, implies that
Qy1(Ax Ex) =Qppq(A), AeER. (3.47)
Let now define
A:={AXxExxExx..: Ac EX, n>0},
QY(Ax Ea x Ea x...) :=QY(A), AeE%,n>0. (3.48)

By the Kolmogorov extension theorem for product spaces (see Theorem 1.1.10 in
Strook and Varadhan [126]), it follows that Q¥ is o-additive on A. Then, collecting
(3.45), (3.46) and (3.48)), it is easy to see that the o-additivity of Q¥ on A implies
the o-additivity of P on {J,, Fr,,.

Finally, we need to show that

|y, =Ly P VT >0,

or, equivalently, that
E[L% ] = EY[¢)] Vi Fp-measurable function.

To this end, fix T" > 0, and let ¢ be a I, 1, -measurable bounded function. In
particular, 1 is a7, -measurable, for every m > n. Since by definition P =

I,
L7 P,n € N, we have

n

E"[¢] = E[LT,, ¢]

[
[E[L7,, ¥|FraT, ]
[
[

YE[LT, |Frar,,]]
¢LT/\T | Vm>n.

E
E
E

5)

Since Li 7. — LY as., and (L
Theorem 3.1, Chapter I1, in [117], we get

E¥[y] = %EHOO]E[L%ATm Y] =E[LTv], Vo€ U FraT, -

seo,7] 18 a uniformly integrable martingale, by

Then, by the monotone class theorem, recalling that \/, Frarm, = I, Frar, (see,
e.g., Corollary 3.5, point 6, in He, Wang and Yan [73]), we get

E'[] = B[LY ), Vo € \/ Fraz, = Fy gp0r, = Fr.
This concludes the proof. O

Finally, for every x € E, a € A and v € V, we introduce the dual functional cost

J(z,a,v) :=E> [/ e_‘”f(Xt,It)dt , (3.49)
0
and the dual value function
V*(z,a) := inf J(z,a,v), (3.50)
vev

where 6 > 0 in (3.49) is the discount factor introduced in Section
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3.4. Constrained BSDEs and the dual value function representation

In this section we introduce a BSDE with a sign constrain on its martingale
part, for which we prove the existence and uniqueness of a maximal solution, in
an appropriate sense. This constrained BSDE is then used to give a probabilistic
representation formula for the dual value function introduced in .

Throughout this section we still assume that (HhAQ), (H)¢) and (Hf) hold.
The random measures p, p and ¢, as well as the dual control setting Q, F, (X, I), P*2,
are the same as in Section We recall that F = ()0 is the augmentation
of the natural filtration generated by p, and that P, T" > 0, denotes the o-field of
F-predictable subsets of [0, T] x €.

For any (z,a) € E x A we introduce the following notation.
. L,z(,a(ﬂ“}), the set of F;-measurable random variables ¢ such that E¢ [|¢|?] <
o0; here 7 > 0 is an F-stopping time.

e S the set of real-valued cadlag adapted processes Y = (Y;);>0 which are
uniformly bounded.

° Si,a(O,T)7 T > 0, the set of real-valued cadlag adapted processes Y =
(Yi)o<t<r satisfying

V1l 0my = B | sup, 12| <o

o<t<T

e L2 (0, T), T >0, the set of real-valued progressive processes Y = (Y;)o<t<r

such that
2 T
V18 o m = B0 | [ 1P at] < .
We also define Li,a,loc = ﬂT>0L)2(,a(O, T).

. Li,a(q; 0, T), T > 0, the set of Pr ® B(E) ® A-measurable maps Z : Q X
[0, T] x E x A — R such that

T
2 . TTx,a 2 ~
121, o, my = 2 [ 1zt ity an)]
T
—5o | [ [ 12 10 A1) QX T dy) ]
0 E
T
+]Ef”»a[/ /\Zt(Xt,b)PAo(db) dt} < 0.
0 A

We also define L2 (q) := ﬂT>0L,2(7a(q; 0, T).

x,a,loc

e L2()\g), the set of A-measurable maps 1) : A — R such that

[¥l3200) ‘:/AW(b)IZAo(db) < 0.
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. Li’a(/\o; 0, T), T > 0, the set of Pr ® A-measurable maps W : Q x [0, T| x
A — R such that

T
Wz o0, —EMU /Ath(b)y?AO(db)dt < o0.
0

We also define Lx aloc(A0) == NrsoL2 4 (A0; 0, T).

e K2 a(0,T), T"> 0, the set of nondecreasing cadlag predictable processes
K = (Ki)o<i<r such that Ko = 0 and E*® [|K7|?] < co. We also define
K = mT>0K)2{’a(O, T)

x,a,loc

We are interested in studying the following family of BSDEs with partially nonneg-
ative jumps over an infinite horizon, parametrized by (x,a): P*%a.s.,

yEe = vz /Yw+/ J(X0, 1) dr — (" — K2) (350)

/ /Z‘T“Xr,b ) Ao(db) dr—/ / Z7%y, b)q(drdydb), 0<s<T < oo,
ExA

with
ZP(Xs—,b) =0, ds ® dP** ® A\o(db),-a.e. on [0, 00) x 2 x A, (3.52)

where 0 is the positive parameter introduced in Section [3.2.2
We look for a mazimal solution (Y**, Z%%, K™%) € 8° x L2 _ 1,.(q) XK , joc t0
- (:52), in the sense that for any other solution (Y, Z, K) € SOo X Lx aloc(d) X

xaloc to (3.51)-(3.52), we have ¥;"* > >Y;, PP%as., for all t >

Proposition 3.4.1. Let Hypotheses (HhAQ), (HXg) and (Hf) hold. Then, for
any (x, ) € E x A, there exists at most one maximal solution (Y5 Z%% K%%) €
S>® x L? (q) x K? to the BSDE with partially nonnegative jumps (3.51))-
B59).

a:aloc z,a,loc

Proof. Let (Y, Z,K) and (Y’', Z', K') be two maximal solutions of (3.51)-(3.52). By
definition, we clearly have the uniqueness of the component Y. Regarding the other
components, taking the difference between the two backward equations we obtain:
P*%-a.s.

0 = ~i-w- [ t [ (B0 ) = 24050 Ao s

t
[ ] @b - Zgyadsdyan, 0<t<T <o,
ExA

that can be rewritten as

/ /E (Z4(00) = Z4( D) s dy ) = (0 — K (3.53)

t
+/ / (Zo(y, 1) — Z.(y, I)) M(Xs, 1) Q(X, Iy, dy) ds, 0 <t < T < oo,
0 E
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The right-hand side of is a predictable process, therefore it has no totally
inaccessible jumps (see, e.g., Proposition 2.24, Chapter I, in [79]); on the other
hand, the left side is a pure jump process with totally inaccessible jumps. This
implies that Z = Z’, and as a consequence the component K is unique as well. [

In the sequel, we prove by a penalization approach the existence of the maximal
solution to (3.51))-(3.52)). In particular, this will provide a probabilistic representation
of the dual value function V* introduced in Section B3.3.21

3.4.1. Penalized BSDE and associated dual control problem. Let us intro-
duce the family of penalized BSDEs on [0, co) associated to (3.51)-(3.52)), parametrized
by the integer n > 1: P®%-a.s.,

T T
st,x,a _ Y%L,x,a _ 5/ Y'Tn,m,a dr + / f(XT, Ir) dr
s s

T T
—n/ /[Zﬁ’m’a(Xr,b)]/\o(db) dr—/ /Zﬁ’x’“(Xr,b) Ao (db) dr
s A s A
T
—/ / Z5y,b) q(drdydb), 0<s<T < oo, (3.54)
ExA

where [z]” = max(—z,0) denotes the negative part of z.

We shall prove that there exists a unique solution to equation (3.54)), and provide
an explicit representation to (3.54)) in terms of a family of dual control problems. To
this end, we start by considering, for fixed T" > 0, the family of BSDEs on [0, T7:
P*%a.s.,

T T
Y;T,n,z,a _ —(5/ KT,n,x,a d?“—|—/ f(X’mIr) dr
—n/ /ZT””C“XT,b)] Ao(db) dr—/ /ZT”“X,,,b)AO(db)d
/ / ZInwa(y b) q(drdydb), 0< s < (3.55)
ExA

with zero final cost at time 7" > 0.

Remark 3.4.2. The penalized BSDE (3.55)) can be rewritten in the equivalent form:
P*%-a.s.,

T T
Y—ST,n,x,a _ / fn(Xr; Im Y;ﬂT,n,x,a’ ZZ’,n,x,a) ds _/ / Zg,nw,a(y, b) q(dr dy db),
s ExA
€ [0, T], where the generator f" is defined by
Mz, a,u,v) = f(x,a) — du — /A {n[¥(a)]” +¥(b)} Ao(db), (3.56)
)

for all (z,a,u,) € E x A x R x L2()\g).

We notice that, under Hypotheses (HhAQ), (H)\g) and (Hf), f™ is Lipschitz
continuous in ¢ with respect to the norm of L2()\g), uniformly in (z,a,u), i.e., for
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every n € N, there exists a constant L,, depending only on n, such that for every
(r,a,u) € Ex A xR and v, ¢ € LZ(\g),

|f"(:z:,a,u,w/) - fn(l‘»a,ua¢)| < LTLW} - w/|L2(A0)‘

For every integer n > 1, let V" denote the subset of elements v € V valued in

(0, n].

Proposition 3.4.3. Let Hypotheses (HhAQ), (H)o) and (Hf) hold. For every
(z,a,m,T) € Ex AxNx (0, 00), there exists a unique solution (Y Tma zTnwa) ¢
S % Lia(q;O, T) to (3.55). Moreover, the following uniform estimate holds: P¥-
a.s.,
M

yImwe < Tf Vselo,T). (3.57)
Proof. The existence and uniqueness of a solution (Y 7'm®a, zT:n@.a) ¢ Si,a(O, T) x
Lia(q; 0, T) to (3.55)) is based on a fixed point argument, and uses integral repre-
sentation results for F-martingales, with F the natural filtration (see, e.g., Theorem
5.4 in [75]). This procedure is standard and we omit it (similar proofs can be found
in the proofs of Theorem 3.2 in [I31], Proposition 3.2 in [12], Theorem 3.4 in [28]).
It remains to prove uniform estimate (3.57)). To this end, let us apply It6’s formula
to e 9" YTT’”’:E’“ between s and T'. We get: P*%-a.s.

T
vimea = [Ce00o px,, 1) dr—/ [ et gineay, ) gtar dy ab
E><A

/ / —0(r=9) fp[zlmme (X, b)]” + ZI™( X, b)} Ao(db) dr, s € [0, T).
(3.58)
Now for any v € V", let us introduce the compensated martingale measure ¢”(ds dy db)
= q(dsdy db) — (vs(b) — 1) d(s,y,b) p(ds dy db) under P,*. Taking the expectation
in (3.58) under Py, conditional to J, and since Z7"™%¢ is in Li,a(q;O,T), from
Lemma |3.3.1| we get that, P*%a.s.,
|

YTnxa
[/ / (r=5) {n[ 2T ( X, b)]” + vy (b) Z1™®%( X, b)} Ao(db) drr
3"5], se o, T). (3.59)

+E§“[/ e~ TS)f(Xr,IT)dr

From the elementary numerical inequality: n[z]~ + vz > 0 for all z € R, v € (0, n],
we deduce by (3.59) that, for all v € V",

T
Y;T,n,af:,a < Eiﬁva |:/ 6_5 (T—S) f(XT,Ir) dr s:| 5 s E [07 T]
S

Therefore, P*%-a.s.,

v cmpe | [Tt ok ) <

M
3"5] <=L selo, 7).
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O

Proposition 3.4.4. Let Hypotheses (HhAQ), (HXo) and (Hf) hold. Then, for
every (z,a,n) € E x A x N, there exists a unique solution (Y% Z™5%) € S* x

Lia,loc(q) to "

Proof. Uniqueness. Fixn € N, (z,a) € Ex A, and consider two solutions (Y1, Z!) =
(Yl,n,x,ajzl,n,m,a)’ (Y2,ZZ) — <Y2,n,m,a7z2,n,:p,a) € S™® x L)2caloc ) of _ Set
Y=Y2-Y',Z=22-27' Let 0 < s <T < oo. Then, an application of It&’s
formula to e=297|Y;|? between s and T yields: P*%a.s.,

67263|Ys‘2 — 6726T|YT‘2
T —_
“an / / 20T, {[Z2(X0 b)) — [Z1(X0, b))} Ao(db) dr
s A
T —_ —
—2/ /e‘ZéTYTZ,,(XS,b) Ao(db) dr
s A
T —_ —_
3 / / e~297F, Z,(y,b) q(dr dy db)
s ExA
T —_
- / / 297 Z,(y, ) p(dr dy db). (3.60)
s ExA

Notice that
T
cn [ [ IR0~ (2HC5 ) ) No(a) dr
s A
T
= / / e 0= Y, {Z2(X,,b) — Z (X, b)} v Ao(db) dr

_a/ / YA Z2 (X, b) = ZH(Xe, )} gy, 1y -
z2(x, 0] =120 (05 0)] 12, (X, by <1y Ao(db) dr

T
—0(r—s
- / /Ae U L5 o1y L2200 =22 ) 20 6 )1y Mo (D)
where ¢ : Ry x Q x A is given by

Z2(X,, b)) - [ZH(X,, b))
vp(b) = _p £ X, B) (X[ b)( ) L{z2(X, b))~ —[Z1(X,b)]~ 0} (3.61)

+e 1{|m<1} Lizzx, 01~ —[Zl(xr, =12 (X, b)|<1}
+e (V) 7 (Zr(X00) 7 1y, oy Lizz e b)) =(28 (X2 1)) 120 (X2 5) |51}
for arbitrary ¢ € (0, 1). In particular, v° is a P ® A-measurable map satisfying

vi(b) € [g, n], dr @ dP"* ® A\o(db)-almost everywhere. Consider the probability

T

measure P72" on (2, ), whose restriction to (2, F7) has Radon-Nikodym density:

L] =¢& (/0 /EXA(Vf(b) di(t,y,b) +da(t,y,b) — 1) q(dtdy db)> (3.62)

s
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for all 0 < s < T, where £(-)s is the Doléans-Dade exponential. The existence of
such a probability is guaranteed by Proposition [3.3.2] From Lemma it follows
that (L’S’S)SG[QT] is a uniformly integrable martingale. Moreover, Ly € LP(JFr),
for any p > 1. Under the probability measure P7.", by Girsanov’s theorem, the

Ve

compensator of p on [0, T] x E x A is (v5(b) d1(s,y,b) +da(s,y,b)) p(ds dy db). We

S
denote by ¢*° (ds dy db) := p(ds dy db) — (vZ(b) d1(s,y,b) + da(s,y,b)) p(ds dy db) the
compensated martingale measure of p under PJ:*. Therefore equation becomes:
P*C-a.s.,
T
e 2NV < e Y] - 2/ / e 2" Y, Z,(X4,b) ¢ (ds dy db) +2§A0<A>,
s A
for all £ € (0, 1). Moreover, from the arbitrariness of e, we obtain

T
20572 < =20 T 72 — 2/ / 2V, Z(Xo b) g (dsdydb).  (3.63)
s A

From Lemma we see that the stochastic integral in (3.63) is a martingale, so

xT,a

that, taking the expectation E;:*, conditional on Fs, with respect to P}.*, we achieve
e 20|V < e T ERY |V |F ). (3.64)

In particular, (e=29%|Y;|?);>0 is a submartingale. Since Y is uniformly bounded, we
see that (e72%%|Y;|?)¢=0 is a uniformly integrable submartingale, therefore e=2%%|Y;|?
— €xo € LI(Q,S'", P7:"), as s — oo. Using again the boundedness of Y, we obtain
that &, = 0, which implies Y = 0. Finally, plugging ¥ = 0 into (3.60]) we conclude
that Z = 0.

Eristence. Fix (z,a,n) € E x AxN. For T > 0, let (YTmwa ghnzae)y — (yT 7T)
denote the unique solution to the penalized BSDE ({3.55)) on [0, T7].
Step 1. Conwvergence of (YT)p. Let T,T" > 0, with T < T’, and s € [0, T]. We have

Y VIR < TR v - Y] =, (3.65)
where the convergence result follows from . Let us now consider the sequence
of real-valued cadlag adapted processes (Y1)p. It follows from that, for any
t > 0, the sequence (Y,I(w))r is Cauchy for almost every w, so that it converges
P*%a.s. to some F;-measurable random variable Y;, which is bounded from the
right-hand side of . Moreover, using again (3.65)) and (3.57]), we see that, for
any 0 < S <TAT', with T, 7" > 0, we have

_ _oy My 71—
sup \Y}T/—Ytnge §(TAT'—8) 24 f 1, 00

3.66
0<t<S d (3.66)

In other words, the sequence (Y7)7+¢ converges P*%-a.s. to Y uniformly on compact
subsets of R,.. Since each Y7 is a cadlag process, it follows that Y is cadlag, as well.
Finally, from estimate we see that Y is uniformly bounded and therefore
belongs to S°°.

Step 2. Convergence of (Z7)y. Let S, T, T' > 0, with S < T < T’. Then, applying
1té’s formula to 6_268|Y;T, —Y;"|? between 0 and S, and taking the expectation, we
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find
S
B [/ / e2“|Z?’<y,b>—Z?(y,bﬂ?ﬁ(drdydb)]
0 ExA

= e 20557 ||y — v P - v - v
S

onE"e [ [ [ e o =Y ) 120005 Do dr]
0 A

e | [ ’ [ ) (2 06— ZE Gt e ]

Recalling the elementary inequality be < b + ¢*/4, for any b, ¢ € R, we get
s
= [/ / e 2|21 (y,0) = Z] (v, b)I* Bldr dy dbﬂ
0 JExA

S
< e—Z&SEx,a |:|Yg’ o Yg‘z] +4(n2 + 1) )\O(A) E®a [/ 6—257“ |Y;ﬂT/ . Y;T‘Q d?“:|
0
1 S
+4 B [ / / e 20T |[Z2(X,,b)]” — [Z}H( X, b)]7|* Ao(db) dr]
0o JA

1 S :
+E [/ /N“\ZTT (Xr,b)—Z?(Xr,b)mo(db)dr].
0 A

24s

Multiplying the previous inequality by e“°%, and recalling the form of the compen-

sator p, we get
1 S —20r ! D
Lo U / e 20| ZT (y,b)—Z?<y,b)|2p(drdydb)]
0 ExA

S
< e 20 SpT.a [‘Yg/ _ Yg|2} +4(n2 + 1) )\O(A) Ex:@ |:/ e—20r ’YTT/ B YTT|2 dr
0

T,7'—o00
—

0,

where the convergence to zero follows from estimate (3.66). Then, for any S > 0,
we see that (Zf[FO’ S])T>S is a Cauchy sequence in the Hilbert space Lia(q;O, S).
Therefore, we deduce that there exists Z° € Li’a(q;O, S) such that (Zﬁ) S])T>S
converges to Z°5 in Li’a(q; 0, S), i.e.,

S
Ex,a |:/ / 6_267” ’Z;F(y, b) — Zf(y, b)‘zﬁ(dr dy db):| Ti;o O
0 JExA

Notice that Z‘% 5 = Z5, for any 0 < S < 8 < co. Indeed, Z‘% 5] @8 75, is the
limit in Li,a(q; 0, S) of (Zﬁ), S])T>S' Hence, we define Z, = Z for all s € [0, S] and
for any S > 0. Observe that Z € L2 (q). Moreover, for any S > 0, (Zﬁ) S])T>S

x,a,loc

converges to Z|y g| in Lia(q; 0, S), i.e.,

S
E>4 [ / / e 201 2] (y,b) — Ze(y,b)|? ﬁ(drdydb)] =0 (3.67)
0 JExA
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Now, fix S € [0, T] and consider the BSDE satisfied by (YT, ZT) on [0, S]: P%%-a.s
S S
1/itT = YST_(S/ }/TTCZT-I-/ f(XmIr)dT
t t

—n /t ’ /A (ZT(X,,0)]” Ao(db) dr — /t ’ /A ZT (X, b) Xo(db) dr,

S
[ [ Ztwbedraga,  o<i<s
t ExA

From (3.67) and (3.66]), we can pass to the limit in the above BSDE by letting
T — oo keeping S fixed. Then we deduce that (Y, Z) solves the penalized BSDE

(3.54]) on [0, S]. Since S is arbitrary, it follows that (Y, Z) solves equation (3.54)) on
[0, 00). O

The penalized BSDE (3.54) can be represented by means of a suitable family of
dual control problems.

Lemma 3.4.5. Let Hypotheses (HhAQ), (H\g) and (Hf) hold. Then, for every
(z,a,n) € E x Ax N, P*q.s., the solution (Y™ Z™%%) to (3.54) admits the
following explicit representation:

o0
Y% = essinf B¢ [/ e (=9 f(X,, I,) dr
vevn s

] . s>0. (3.68)

Proof. Fixn € N, and for any v € V", let us introduce the compensated martingale
measure q”(ds dy db) = q(ds dy db) — (vs(b) — 1) di(s,y,b) p(ds dy db) under P;*. Fix
T > s and apply Ité’s formula to e 0" ¥, between s and T. Then we obtain:

T
Y*Sn,x,a = e —6(T-s) Yn$a+/ 676(1"75) f(XT7[T> dr
/ [ €T @z D) vila) 287 (X, D) Aol dr

_ / / 00— gnaagy by M (drdydd), st T (3.60)
ExA

Taking the expectation in (3.69) under P;“, conditional to Fs, and since by Propo-

sition Z™%% is in L120c x,a(@); we get from Lemma that, P¥®-a.s.,

T
Yoe = e [e“Ts) Yoo 4 / e 00=3) £(X,, 1) dr } (3.70)

From the elementary numerical inequality: n[z]~ + vz > 0 for all z € R, v € (0, n],
we deduce by (3.70) that, for all v € V™,
)

_gra [/ / (=) {2079 (X,, )] + vp(a) 200X, b)} Mo(db) dr

T
an,a:,a < E]:s,a [66 (T—s) Y{f’x’a + / e® (r=s) f(XT7 Ir) dr
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).

Since Y™ is in S*° by Proposition [3.4.4] sending T" — oo, we obtain from the
conditional version of Lebesgue dominated convergence theorem that

-l

ffs] . (3.71)

[e.9]
< Epe [e—w—w Yyt + / e U f(X,, L) dr
S

ynee g Eg,a |:/ 6—5(7"—8) f(Xr,Ir) dr

s

for all v € V™. Therefore,

[o¢]
Y% L ess inf B2? [ / e 00=s) f(X,, 1) dr
S

veyn

On the other hand, for £ € (0, 1), let us consider the process v* € V" defined by:

vi(0) = nligmeanx, pcoyte Loczmee(x, py<1y € 25 (Xom, )7 Lignmaix,_ 51y

(notice that we can not take vs(b) = nlizn(x, <o}, since this process does not
belong to V" because of the requirement of strict positivity). By construction, we
have

T
Y:gn,oaa > E,gj’sa [6—5 (T—s) Y;},w,a +/ e—é(r—s) f(Xra Ir) dr
s

n[Zg(Xs—,b)]” +1v5(b) Z(Xs-,b) <&, s20,b€ A4,
1 — = 0(T'—s)
S — W)}

and thus for this choice of v = v in (3.70)):
.|
d

Letting T" — oo, since f is bounded by My and Y™*% is in 8°°, it follows from the
conditional version of Lebesgue dominated convergence theorem that

o0
/ e 0 (r=s) f(Xy, L) dr

S

Z/E

e s e ]

o
> essinf E%® [ / e 00=s) f(X,, 1) dr ?S} —Z20(A).
veyn s )
From the arbitrariness of €, together with (3.71)), this is enough to prove the required
representation of Y% O

Let us define
¢
kP [ (e ) s s, e>o
0o JA

The following a priori uniform estimate on the sequence (Z™%%, K"™%%),~q holds.

Lemma 3.4.6. Assume that hypotheses (HhAQ), (H)\y) and (Hf) hold. For every
(x,a,n) € Ex AxN, and for every T > 0, there exists a constant C' depending only
on My, 6 and T such that

12V gm0 < © @
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Proof. In what follows we shall denote by C > 0 a generic positive constant de-
pending on My, § and T, which may vary from line to line. Fix 7" > 0 and apply
Ito’s formula to |¥;""%|? between 0 and T. Noticing that K™% is continuous and

AV = [y 4 28y, ) pl{r} dy db), we get: P-as.

T
Ez,a [|Yv0n,x,a|2] — Ez,a [|Y;,x,a|2] o QE:p,a |:/0 |Y71n,m,a|2 dT:|
T T
— 2E®¢ [ / ;e dKﬁ’x’“] + 2E™¢ [ / K”’x’“f(Xr,Ir)dr]
0

_ ge [/ / W@znw(xr,b)xo(db)dr}

[/ [zl tardyan)

Set now Cy := %. Recalling the uniform estimate (3.57) on Y, and using elemen-
tary inequalities, we get

T
EPe [ / / 209 (y, B p(ds dydb)}
0 ExA

<CY +2TCy +2T Cy My +2Cy TE™ [| K]
C T
+20T 20(4) +a Oy B U / 28X, )2 Ao(db) dr |, (3.73)
0 JA
for any « > 0. At this point, from relation (3.54]), we obtain:

T
K;,x,a _ Yon,x,a_y%z,x,a_(s/ / Y*Sn,a:,a ds
A
T T
+ / F(Xo, 1)ds + / / 200X, b) Ao(db) ds
0 0 A
T
+/ / Z"%(y,b) q(ds dy db). (3.74)
0 ExA

Then, using the inequality 2bc < %bz + B¢?, for any B > 0, and taking the expected
value we have

T
2ES [|K™|] < 26Cy T+2M;T + 5 M)

T
T,a n,r,a 2
+BE UO /A\zs (X, D)2 Ao(db) ds| . (3.75)

Plugging (3.75)) into (3.73), we get

T
E [ / / iz, b)!%(dsdydb)]
0 ExA

T
<C+Cy (2Tﬁ+a)/ /]Z;L"’”’“(Xs,b)|2)\o(db)ds.
0 A
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Hence, choosing a + 27T 3 = ﬁ, we get

1 T
e[ ]z P asaan| < c.
2 0 JExA

which gives the required uniform estimate for (Z™%%), and also (K™*®) by (3.74).
([l

3.4.2. BSDE representation of the dual value function. In order to prove
the main result of this section we give the following preliminary result.

Lemma 3.4.7. Assume that Hypotheses (HhAQ), (H)\) and (Hf) hold. For every
(z,a) € E x A, let (Y™, Z%° K% € 8 x L? (q) x K? be a solution to

z,a,loc z,a,loc

the BSDE with partially nonnegative jumps 1)1D Then,

o
Y. <essinf E)¢ [/ e 0(r=s) f(Xy, 1) dr
S

veV

Cﬂ} Vs3>0 (3.76)

Proof. Let (x,a) € ExA, and consider a triplet (Y%, Z%¢ K%%) € §°xL2 (q)x

x,a,loc

K2 . loc satisfying (3:51)-(352). Applying It6’s formula to e=°" Y™ between s and
T > s, and recalling that K*® is nondecreasing, we have

T
VS [ 0 ar
S

T
- / / e~ 0(r=s) Zza( X b) Ao (db) dr
s A
T
— / / e (=9 z2a(y b) G(dr dy db), 0<s<T < oc. (3.77)
s ExA

Then for any v € 'V, let us introduce the compensated martingale measure ¢”(ds dy db) =
q(ds dy db) — (vs(b) —1) d1 (s, y,b) p(ds dy db) under P;;*. Taking expectation in
under P, conditional to JF, and recalling that Z%¢ is in Li,a,loc(q), we get from
Lemma that, P*%a.s.,

3.

T
. [ / / e 0=y, (a) Z2( X, b) Ao (db) dr 98]. (3.78)
s A

T
I [6‘5(T—S)Y$’“+ / 00 f(X,, ) dr
S

s

Furthermore, since v is strictly positive and Z*% satisfies the nonnegative constraint

(3.52)), from inequality (3.78) we get
?s}

7.

T
yoe g Eg,a |:€—5(T_s) Y;,a +/ 6—5(7"—8) f(Xr;Ir) dr
s

s

v

< EX° |:€6(Ts) Y;’a + / e 0 (r=s) f(Xo, 1) dr
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Finally, sending 7" — oo and recalling that Y% is in S°°, the conditional version of
Lebesgue dominated convergence theorem yields
:fs]

Yor < ERC { / e U f(X,, 1) dr
for all v € V, and the conclusion follows from the arbitrariness of v € V, . O

Now we are ready to state the main result of the section.

Theorem 3.4.8. Under Hypotheses (HhAQ), (HXo) and (Hf), for every (z,a) €
E x A, there exists a unique mazimal solution (Y, Z%* K%%) € 8% x Lx aloc(@) X

Ka: aloc 0 the BSDE with partially nonnegative jumps --- In particular,
(i) Y®2 is the nondecreasing limit of (Y™"%),,;
(il) Z%* is the weak limit of (Z™"%), in Lw aloc(@);
(iil) K5 is the weak limit of (K&, in L*(F), for any s > 0;

Moreover, Y*% has the explicit representation:

Y% = ess 1\171f E> {/ e 0=%) £(X,, I,) dr
ve s

In particular, setting s = 0, we have the following representation formula for the
value function of the dual control problem:

V¥z,a) =Yy, (x,a) € Ex A. (3.80)

Proof. Let (z,a) € E x A be fixed. From the representation formula it
follows that Y* > Y*! for all s > 0 and all n € N, since by definition V* c v+l
and (Y"),, are cadlag processes. Moreover, recalling the boundedness of f , from
(3.68) we see that (Y™),, is lower-bounded by a constant which does not depend n.
Then (Y™®%), € S* converges decreasingly to some adapted process Y*® which is
moreover uniformly bounded by Fatou’s lemma. Furthermore, for every 7' > 0, the

Lebesgue’s dominated convergence theorem insures that the convergence of (Y™%%),
to Y also holds in L2(0, T).

Let us fix T" > 0. By the uniform estimates in Lemma the sequence

(Zﬁox;])n is bounded in the Hilbert space L ,(q;0, T). Then, we can extract a

subsequence which weakly converges to some ZT in L2 a(q;0, T). Let then define
the following mappings

1. ’ S
Il = 7z — /0 /EXA Z(y,b) q(ds dy db)
(57)

L)zc,a(q;ou T) — L2

I? = Z(Xs,") +— // (X5, D) Xo(db) ds
2a(2;0,T) — L*&F

for every stopping time 0 < 7 < T. We notice that IT1 (resp. I2) defines a linear con-
tinuous operator (hence weakly continuous) from Li,a(q; 0, T) (resp. Lz’a()\o; 0,T))
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to L2(F,). Therefore IlZ‘T[LOZ;] (resp., IZZGOHC;} (X,-)) weakly converges to I}Z7T

(resp., I2Z7(X,-)) in L%(F,). Since

r T
K:"z’a _ YTn’m’a _ }/On,z,a _ 5/0 }/Tn,.T,a dr _|_/0 f(XraIr) dr

_ / / 219X, b) Mo(db) dr
0 A
- / / 204y, b) q(dr dy db), ¥ 7 € [0, T,
ExA

we also have the following weak convergence in L2(F,):

T

_ /0 /A Z5%(X,,b) Ao(db) dr

[ [ zewbadragan, v o 1)
ExA

Koo« KT =y y e 5/ Y“dr—i—/er,I

Since the process (K¢™") selo,7) is nondecreasing and predictable and Kj™* =0, the
limit process K7 on [0, T] remains nondecreasing and predictable with E#¢ [\f(% \2] <

0o and K = 0. Moreover, by Lemma 2.2. in Peng [104], K! and Y are cadlag,
therefore K € K2 2(0, T) and YT € S,

Then we notice that Zfo = =77, Kﬁo/ 7 = = KT forany 0 < T < T < .
Indeed, for i = 1,2, I' Z \[0 L

as I' ZT | is the weak limit in L2(F) of (I° Z"[Loxq‘f])nw,
while K\[o 77 @ s KT is the weak limit in L2(F,) of (Kﬁoxﬁ)nw, for every s € [0, T).
Hence, we define Z2* = ZI', K@* = KT for all s € [0, T] and for any T > 0.
Observe that Z%* € anloc( ) and K™ € Kxaloc Moreover, for any 7' > 0,

for i = 1,2, (I f[lox;})nm weakly converges to I' Zﬁo‘?T] in L?(J,), and (Kﬁ(’)f’;})n%
weakly converges to K", in L?(J,), for s € [0, T]. In conclusion, we have: P®-

a.s.,

|[0 7]

N 5/ Y”dr—i—/ F(Xp L) dr — (K3 — K220)

/ /Z“ X, b) Ao(db) dr

—// 22y, b) q(drdydb), 0<s<T.
ExA

Since T is arbitrary, it follows that (Y2, Z%® K™%) solves equation (3.51]) on [0, c0).

To show that the jump constraint (3.52)) is satisfied, we consider the functional
G: Li (A0;0, T) — R given by

GV [// “Xo(db)ds|, VYV €L, (A0, T).
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Notice that G(Z™%%(X,-)) = E** [K;""/n], for any n € N. From uniform estimate
(3-72), we see that G(Z™**(X,-)) — 0 as n — co. Since G is convex and strongly
continuous in the strong topology of Li’a()\o; 0, T), then G is lower semicontinuous in
the weak topology of Li’a()\o; 0, T), see, e.g., Corollary 3.9 in Brezis [19]. Therefore,
we find

GZ7HX, ) < Hminf GZB(X, 1)) = 0,

which implies the validity of jump constraint (3.52) on [0, T], and the conclusion
follows from the arbitrary of T.

Hence, (Y%, Z%* K*®®) is a solution to the constrained BSDE (3.51)-(3.52)) on
[0, 00).

It remains to prove the representation formula (3.79) and the maximality prop-
erty for Y*%. Firstly, since by definition V* C V for all n € N, it is clear from

representation formula (3.68) that
?s}

al

for all n € N, for all s > 0. Moreover, being Y% the pointwise limit of Y"™%% we
deduce that

[e.9]
Y% = essinf ED° [/ e =9 f(X,, I,) dr
vevn s

> essinf EJ [/ e 00=s) £(X,., 1) dr

veV

Y% > essinf B2 [ / e 009 f(X,. I, dr|3"s] , 5>0. (3.81)

vev
On the other hand, Y*® satisfies the opposite inequality (3.76)) from Lemma m
and thus we achieve the representation formula ([3.79)).

Finally, to show that Y*® is the maximal solution, let consider a triplet
(Yma, zza K24) ¢ S x Lia’loc(q) X Ki,a’loc solution to ([3.51)-(3.52). By Lemma
3.4.7, (Yo Zwa K%) satisfies inequality . Then, from the representation
formula it follows that Y7 < Y% Vs > 0, P®%a.s., i.e., the maximal-
ity property holds. The uniqueness of the maximal solution directly follows from

Proposition O

3.5. A BSDE representation for the value function

Our main purpose is to show how maximal solutions to BSDEs with nonnegative
jumps of the form — provide actually a Feynman-Kac representation to
the value function V' associated to our optimal control problem for PDMPs. We
know from Theorem [3.4.8| that, under Hypotheses (HhAQ), (H)o) and (Hf) , there
exists a unique maximal solution (Y*%, Z%% K®%) on (Q, F,F,P*%) to —.

Let us introduce a deterministic function v: £ x A — R as
v(z,a) =Yy, (z,a) € E x A. (3.82)

Our main result is as follows:
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Theorem 3.5.1. Assume that Hypotheses (HhAQ), (H\o), and (Hf) hold. Then
the function v in does not depend on the variable a:
v(z,a) =v(z,d"), Va,d € A,
for all x € E. Let us define by misuse of notation the function v on E by
v(z) =v(z,a), VxeE,
for any a € A. Then v is a (discontinuous) viscosity solution to .

To conclude that v(z) actually provides the unique solution to (and there-
fore coincides with the value function V' by Theorem, we need to use a compari-
son theorem for viscosity sub and supersolutions to the fully nonlinear integro-partial
differential equations of HJB type. To this end, we introduce the following additional
condition on @ and .

(HAQ’)
(1) sup(za)emxa [p [y — 2l Az, 0) Qz, 0, dy) < oo;
(ii) 3 ¢,C > 0: for every ¢ € WH(E), 4(0) = 0, for every K C E compact
set, and z1,20 € E, a € A,

’ /K+;c1 V(y —x1) M1, a) (Q(x1,a,dy) — /

bly — 2) A2, 0) Q(wa, a, dy)
K+xo

< c|[Villool|ar — 2],

and
[ vl o) Ao Qurady) < [ by - m2) Mea ) Qlas,ady)
Ke+x1

Ke¢+axo
< O VY|sl|lz1 — z2.

Corollary 3.5.2. Let Hypotheses (HhAQ), (HXo), (HAQ’) and (Hf) hold, and
assume that A is compact. Then the value function V' of the optimal control problem
defined in (3.25) admits the Feynman-Kac representation formula:

V(z)=Yy", (z,a) € Ex A.

Moreover, the value function V' coincides with the dual value function V* defined in

B50), namely
V(z) =V*(z,a) =Yy, (z,a)€E x A. (3.83)

Proof. Under the additional assumption (HAQ”), a comparison theorem for viscos-
ity super and subsolutions for elliptic IPDEs of the form holds, see Theorem
IV.1 in Sayah [123]. Then, it follows from Theorem that the function v in
(3.82)) is the unique viscosity soluton to (3.26)), and it is continuous. In particular,
by Theorem v coincides with the value function V' of the PDMPs optimal
control problem, which admits therefore the probabilistic representation . Fi-
nally, Theorem [3.4.8|implies that the dual value function V* coincides with the value
function V of the original control problem, so that holds. O

The rest of the chapter is devoted to prove Theorem [3.5.1
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3.5.1. The identification property of the penalized BSDE. For every n € N
let us introduce the deterministic function v™ defined on E x A by
v (z,a) = Yy""",  (z,a) € E x A. (3.84)

We investigate the properties of the function v™. Firstly, it straightly follows from

(B54) and (8.57) that
M
v (z,a)] < =,
Moreover, we have the following result.

Lemma 3.5.3. Under Hypotheses (HhAQ), (H\g) and (Hf), for any n € N, the
function v™ is such that, for any (x,a) € E x A, we have

Y0 = "X, Is), s>=0 dP"* ®ds -a.e. (3.85)

V(z,a) € E x A.

Remark 3.5.4. When the pair of Markov processes (X,I) is the unique strong
solution to some system of stochastic differential equations, (X, I) often satisfies
a stochastic flow property, and the fact that Yy"™" is a deterministic function of
(X, Is) straight follows from the uniqueness of the BSDE (see, e.g., Remark 2.4
in Barles, Buckdahn and Pardoux [10]). In our framework, we deal with the local
characteristics of the state process (X, I) rather than with the stochastic differential
equation solved by it. As a consequence, a stochastic flow property for (X, I) is no
more directly available. The idea is then to prove the identification using an
iterative construction of the solution of standard BSDEs. This alternative approach
is based on the fact that, when f does not depend on y, z, the desired identification
follows from the Markov property of the state process (X, I), and it is inspired by
the proof of the Theorem 4.1. in El Karoui, Peng and Quenez [53].

Proof. Fix (z,a,n) € E x Ax N. Let (Y", Z") = (Y™®®, Z™"%) be the solution
to the penalized BSDE . From Proposition we know that there exists a
sequence (YT znT)p = (ynlwa znlaa), in §% x Li,a,loc(q) such that, when
T goes to infinity, (Y™T)7 converges P*%a.s. to (Y") and (Z™T)7r converges to
(Z™) in L% , 10c(q)- Let now fix T,8 > 0, S < T, and consider the BSDE solved by

(YT znT) on [0, S):

S S
VAR /t vl dr + /t F(Xe, 1) dr
S S
—n / / (ZT (X, b)]™ Ao(db) dr — / / Z™MT (X, b) Ao(db) dr,
t A t A

S
[z whearaga),  o<i<s.
t ExA
Then, it follows from Proposition that there exists a sequence (Y™ Tk ZmTk) =
(ynTkwa znTkza), in L,z(,a(O,S) X L,z(,a(q,O,S) converging to (Y™, Z™T) in
L2.(0,S) x L2 ,(q,0,8), such that (Y™10, Z"T0) = (0,0) and

S S
7RI (A (5/ YTk gy —i—/ f(Xo, 1) dr
t t
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S S
—n / / [z TR (X, b)) Ao(db) dr — / / zMTR (X, b) Ao(db) dr,
t A t A

S
[ ] mtwbearaga,  o<iss.
t ExA

Let us define
vn’T(x,a) — }/bn’T) Un,T,k:(x’a) — Ybn,T,k.

We start by noticing that, for £k = 0, we have, P*%-a.s.,
S
Ytn,T,l = E*@ [/ f(Xr,Ir)dr‘fﬂ] , telo, 9]
t

Then, from the Markov property of (X, ) we get

YT = Tl X,, L), dPP @ dt -ae. (3.86)
Furthermore, identification ([3.86) implies
2T (g, b) = o (X L) = 0" (g, b), (3.87)

where (3.87) has to be understood as an equality (almost everywhere) between el-
ements of the space Li,a(q; 0,S). At this point we consider the inductive step:
1 < k € N, and assume that, P%%-a.s.,

O O
Z:,T,k(y, b) _ Uﬂ,TJﬂ(y’ b) o Q}n’T’k(Xt—y It—)'
Then

S S
Y;‘,n7T7k+1 = [E®¢ |:Ug7T7k(XS, IS) - 5/ Un’T’k(Xra IT‘) dr + / f(Xra Ir) dr
t t

S
-n / / [Tk (X4, b) — 0 TR (X, 1) Ao(db) dr
t A

S
- / / o™ TR (X, b) — o TR (X, 1) Ao(db) dr‘fﬂ}, 0<t<8S.
t A

Using again the Markov property of (X, I), we achieve that
YR = o TR (X L), dPT @ dt -ae, (3.88)
Then, applying the It6 formula to \Y;”’T’k — Y;f”’T|2 and taking the supremum of ¢

between 0 and S, one can show that

2
E*¢ [ sup ’YtnTk — Y{s’n’T‘ ] — 0 as k goes to infinity.
0<t<S

Therefore, v (x,a) — v™7T (z,a) as k goes to infinity, for all (z,a) € E x A, from
which it follows that

},tn,T,x,a _ UH,T(Xt7 It)7 dP** ® dt -a.e. (389)

Finally, from (3.66]) we have that (Y™7"%) converges P¥?-a.s. to (Y"%%) uniformly
on compact sets of R. Thus, v™7 (x,a) — v"(x,a) as T goes to infinity, for all (z,a) €
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E x A, and this gives the requested identification Y;"** = v"(Xy, I), dP™* ® dt -
a.e. 0

Remark 3.5.5. By Proposition[3.4.1] the maximal solution to the constrained BSDE

(13.51)-(3.52)) is the pointwise limit of the solution to the penalized BSDE (3.54)).
Then, as a byproduct of Lemma we have the following identification for wv:

P*C-a.s.,
_ vTa
Sy+£s) — ) ’ 9 = Y- .
v(Xs, 1) = Y (z,0) EE XA, s3>0 (3.90)

3.5.2. The non-dependence of the function v on the variable a. We claim
that the function v in does not depend on its last argument:
v(z,a) =v(z,d'), a,a’ €A, foranyz€E. (3.91)

We recall that, by (3.80) and (3.82]), v coincides with the value function V* of the
dual control problem introduced in Section Therefore, (3.91]) holds if we prove
that V*(x,a) does not depend on a. This is insured by the following result.

Proposition 3.5.6. Assume that Hypotheses (HhAQ), (HXg) and (Hf) hold. Fix
x € FE,a,d € A, and v € V. Then, there exists a sequence (V°). € V such that

lim J(x,d,1v°) = J(x,a,v). (3.92)

e—0t

Proof. See Section 3.5.41 O

Identity implies that

V*(z,d') < J(z,a,v) x€E, a,d €A,
and by the arbitrariness of v one can conclude that

V*(x,d) < V*(z,a) x€E, a,d € A.
In other words V*(z,a) = v(z,a) does not depend on a, and holds.
3.5.3. Viscosity properties of the function v. Taking into account , by
misuse of notation, we define the function v on E by

v(z) :=v(z,a), VzxekE, foranyacA. (3.93)

We shall prove that the function v in provides a viscosity solution to ([3.26)).
We separate the proof of viscosity subsolution and supersolution properties, which
are different. In particular the supersolution property is more delicate and should
take into account the maximality property of Y%,

Remark 3.5.7. Identity (3.90) in Remark gives
v(Xs) =Y VreFE s>0, foranyacA. (3.94)

Proof of the viscosity subsolution property to (3.26).

Proposition 3.5.8. Let assumptions (HhAQ), (HXg) and (Hf) hold. Then, the
function v in (3.93)) is a viscosity subsolution to (3.20)).
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Proof. Let Z € E, and let ¢ € C*(E) be a test function such that
0= (" ~ $)(7) = max(v”  )(a). (3.95)
By the definition of v*(Z), there exists a sequence (), in E such that
T — T and v(xy,) — v (T)
when m goes to infinity. By the continuity of ¢ and by it follows that

Y = @(Tm) — v(zm) = 0,

when m goes to infinity. Let n be a fixed positive constant and 7, := inf{t > 0
|p(t, X)) — x| = n}. Let moreover (hy,)m be a strictly positive sequence such that

hom, —>0andh——>0

m
when m goes to infinity.

We notice that there exists M € N such that, for every m > M, hy, A Ty = by
Let us introduce 7 := inf{t > 0 : |¢(¢t,z) — | > n}. Clearly 7 > 0. We show that
it does not exists a subsequence 7,,, of 7, such that 7,, — 7 € [0, 7). Indeed, let
Tn, — 70 € [0, 7). In particular |¢(7,,,Z) — Z| = n. Then, by the continuity of ¢ it
follows that |¢(70,Z) — | = n, and this is in contradiction with the definition of 7.

Let now fix a € A, and let Y*™% be the unique maximal solution to (3.51)-
under P*m% We apply the It6 formula to e~ Y,*™ between 0 and 6,, :=
Tm A hm ATy, where T denotes the first jump time of (X, ). Using the identification
, from the constraint and the fact that K is a nondecreasing process it
follows that P*m%a.s.,

Om,
o(Em) < € u(Xg,) + / " (X, 1) dr
0

_ /09’" o /E (o) — v(Xy)) d(dr dy),

where ¢(dr dy) = p(dr dy) — \N( X, I,) Q(X,, I, dy) dr. In particular

Om
V(X)) < EFm [6_59"1 v(Xa,,) +/ e f(X,, I, dr] .
0

Equation (3.95)) implies that v < v* < ¢, and therefore

Om
o(Tm) — Ym < EFm™° [669’” o(Xyp,,) + / e 0" f(X,, 1) dr] .
0

or

At this point, applying It6’s formula to e °" (X, ) between 0 and 6,,, we get

Om,
B Zi;nl +ET [/0 hl e’ [0 p(X;) — LITSO(XT’) — f(Xr, 1) dr} <0, (3.96)
where £ (X, f (o(y)

r) = p(X )))\(XT,IT)Q(XT,L«,dy). Now we notice that,
Prmt-as., (Xr, Ir) = (¢(r,

m),a) for r € [0, 6,,]. Taking into account the continuity
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of the map (y,b) — d o(y) — Lo(y) — f(y,b), we see that for any € > 0,

—060m,
— I 4 (e 4 5 p(wm) — £%(2m) — f(2m, a) B [97"6] <0, (397

o, by,
Let fr,(s) denote the distribution density of 77 under P*™® see (3.34]). Taking
m > M, we have

O 1 [l hup =0 Tm
Eme [g(h)} = h/ s fry(s) ds + Ziﬁw’"’“[ﬂ > hin]

0
hm s
- / S e (\(G(r ), @) + Ao(A)) e~ o A@lram)a)txo(A)) dr g
m JO
h

4 e hm o= i AB(ram),a) Ao (A)) dr (3.98)

By the boundedness of A and \g, it is easy to see that the two terms in the right-hand
side of (3.98) converge respectively to zero and one when m goes to infinity. Thus,
passing into the limit in (3.97) as m goes to infinity, we obtain

5 (T) — L (7) — f(7,a) < 0.
From the arbitrariness of a € A we conclude that v is a viscosity subsolution to

(3.26]) in the sense of Definition O

Proof of the viscosity supersolution property to (3.26)).

Proposition 3.5.9. Let assumptions (HhAQ), (H)\y), and (Hf) hold. Then, the
function v in (3.93)) is a viscosity supersolution to (3.26)).

Proof. Let 7 € E, and let ¢ € C*(E) be a test function such that
0= (v — ¢)(z) = min(v, - p)(@). (3.99)

Notice that we can assume w.l.o.g. that Z is strict minimum of v, — . As a matter
of fact, one can subtract to ¢ a positive cut-off function which behaves as |z — Z|?
when |z — Z|? is small, and that regularly converges to 1 as |z — Z|? increases to 1.

Then, for every n > 0, we can define

0<Bn)i= inf (v.—)(@) (3.100)

We will show the result by contradiction. Assume thus that

H?(Z,¢,Vp) <0.
Then by the continuity of H, there exists n > 0, 5(n) > 0 and & € (0, 5(n)d] such
that

Hlp(yv 2 VQP) < —&,
for all y € B(z,n) = {y € E : |z — y| < n}. By definition of v.(Z), there exists a
sequence (Z,)nm taking values in B(Zz,n) such that

T — T and v(xy,) — v.(T)
when m goes to infinity. By the continuity of ¢ and by (3.99)) it follows that
Ym = () — @(zm) = 0,
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when m goes to infinity. Let fix 7' > 0 and define 6 := 7 AT, where 7 = inf{t > 0 :
At this point, let us fix a € A, and consider the solution Y"™%m:% to the penalized
(3.54]), under the probability P*m“. Notice that
prmt{r =0} = P**{ Xy ¢ B(z,n)} = 0.

We apply the Ité formula to e~ Y™ between 0 and 6. Then, proceeding as in
the proof of Lemma [3.4.5] we get the following inequality:

0
Yyt > iggiEfm“l[e_59}g“L”ﬂ<+t/“efﬁrj()ﬂwl})dr}. (3.101)
veyn 0

Since Y™*m® converges decreasingly to the maximal solution Y*™% to the con-

strained BSDE (3.51))-(3.52]), and recalling the identification (3.94)), inequality (3.101))

leads to the corresponding inequality for v(x,,):
0
V(X)) = in%Effm’“ |:669 v(Xp) +/ e o f(Xr,Ir)dr] .
ve 0

In particular, there exists a strictly positive, predictable and bounded function v,
such that

%
o) > B o) + [P pa] - 50 a0
0

Now, from equation (3.99) and (3.100]) we get

0
_ _ —&r €
P(wm) +ym > B [ " o(Xo) + Be ™ Lipery + / e f(Xr,md’“] BETS
0

At this point, applying It6’s formula to e~%" ¢(X,.) between 0 and 6, we get

6
i + B | [ () — £ 6 — FOX T dr = B 1 e
0
R (3.103)

where L7 p(X,) = [L(¢(y) — ¢(X:)) MX,, I) Q(X,, I, dy). Noticing that, for r €

580(X7«) - LIT(P(XT) - f(Xra Ir) < 5§0(X7«) - bigg{LbQD(Xr) - f(Xra b)}

= H?(X;,9, Vo)
g —&,
from (3.103)) we obtain
0
€
0 < Ym + 275 + Egr’rz’a |:—€/ 6_5T dr — 66_60 1{T<T}:|
0
€ € _ € _
= I 55 + Ejm° [(3 - 5) e 661{T<T} + 5€ o 1{T>T}:|

€ € Tm,a | ,—00
< Ym— 23 + 5 Em [6 1{T>T}i|
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€ _
= Tm — ﬁ + < 5 Exm,a [e or 1{7'>T}]
< Ym — ﬁ +e
Letting T" and m go to infinity we achieve the contradiction: 0 < —55. U

3.5.4. Proof of Proposition We start by giving a technical result. In the
sequel, IT™"2 and I'™"2 will denote respectively the random sequences (1, En,, An,,
Tn1+1, En1+17 An1+1, veey Tn2, Enz, Ang) and (Tn1 y An1 y Tn1+1, An1+1, ceny TnQ, Anz), ni,
ny € N\ {0}, n1 < no, where (T}, Ej, Ag)r>1 denotes the sequence of random
variables introduced in Section [3.3.1]

Lemma 3.5.10. Assume that Hypotheses (HhAQ), (H)\o) and (Hf) hold. Let
O xRy x (Ry x A" x A — (0, 0), n>1 (resp. 9 : Q xRy x A — (0, 0)),
be some P @ B((Ry x A)") ® A-measurable maps, uniformly bounded with respect to
n (resp. a bounded P ® A-measurable map). Let moreover g : Q x A — (0, c0) be a
bounded A-measurable map, and set

v (b) = vy ?(b) Loycry + Z v (02" 0) 1y, <<ty (3.104)

n=1

vi(b) = g(b0) Ligeryy + 0 (0) Lmycremsy + o8 T2 0) Lz coeryyy- (3.105)
n=2
Fizxz € E, a,d’ € A. Then, for everyn > 1, for every B((Ry x E x A)™)-measurable
function F': (Ry x E x A)" - R,

El‘?a [1{T1>7'} F(Ta X5 57 Hlm_l)]

E , [ (Hl n)|3~ ] Pg’a(Tl > T)

14

(3.106)

T=T1,x=X1,{=A1

Proof of the Lemma. Taking into account (3.36)), (3.37)), and (3.105)), we have:
for all r > T,

Pma T2 >, EQEFA2€C|?T1]

/ /exp< NGt — Th, By, Ay), Ay) dt—/Tl/ut )\o(db)d>

8 — Tl, El,Al) Al) Q(¢(8 — Tl, El,Al), Al, dy) ds

+/r [ <—/TlA(¢<t—T1,E1,A1>,A1)dt—/Tj/Au?(b)Ao(db)cIQ-

V2(b) Ao(db) ds, (3.107)
and, for all r > T,,, n > 2,
Px/a n+1 >, En+1 S F An+1 € C|§Tn]

1%

/ /exp( / (¢(tTn,En,An),An)dt>.
exp( /n/ L2 b) Xo(db) dt)
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)\ TﬂJEnuA ) A )Q((b(S_TﬂJEnaAn)?ATL?dy) dS
ex

/ / (= [ A6t~ T B ). A0y i)
exp( / / LI2™ b) Mo(db) dt> 1127 b) Ag(db) ds. (3.108)

We will prove identity (3.106) m ) by induction. Let us start by showing that (3.106))
holds in the case n = 2, namely that, for every B((R, x E x A)?)-measurable function

F: (R xExA? >R

E’ajs,a [1{Tl>7—} F(Ta X 67 HLl)]

B3 [Fr ] - O

1%

From (|3.107) we get
E;" [FITY)[In] = B [F(Th, Er, A1 Ty, Ea, A2)|97]

l/

/ / TlaElaAlas yaAl)
e

GXp< /T1 )\(qb(t*Tl,El,Al) A1 dt/Tl/ Vt )\o(db) dt)
“AMo(s —Tn, Er, Av), A1) Q(o(s — T, B, Av), A, dy) ds

+/ /F(ThElaAlaS?d)(S_T17E17A1)7b)'
T

(3.109)

T=T1,x=X1,{=A1

- exp < )\(qb(t - Tl, El, Al) A1 dt — / / Vt )\o(db) dt) (b) Ao(db) ds.
Ty T
On the other hand,

PEA(T) > 1) = exp (— [ et - ga- [ [ o) dt) |

and
ED [y sry F(7,x 6T | = BE [Liny 5y F(7, %06, T1, By, Ay

/ /1{s>T}FTX £, 8,9, )
exp (— [ xot-rxo.0a- [ [ v?(b)&(db)dt)

S_TaX 5) 5) Q(¢( -7, X)g) 6) dy) dS
/ /1{5>7—}F Ty X585 85 ¢( - T X?g)a )

.exp<—/0 Aot —7,x,€), € dt—//ut ) Ao(db) dt> O(b) Ao(db) ds.

Therefore,

Egﬂ []—{Tl >T} F(T7 X 57 Hl’l)]
]P’ﬁ’a(Tl > 7')
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—exp</TA(¢(t—Tx, , dt+//ut ) Mo(db) dt>
/ /1{s>T}FTX€78y§)
exp< /(]A(gb(t—T,x, , dt—//z/t ) Ao(db) d >

Ao(s — 7, x,€),6) Qe(s — 7, x, §), €, dy) ds

+exp</0T)\(¢( —7,% &), dt+//ut ) Ao(db) d )

' / /Al{s>‘l'} F(77X7§787¢(8_T7X’§)7b)‘

exp< / MGt — 73, €),€) dt — / / 2O(b) Ao(db) dt> O(b) Ao(db) ds
/ / Lasr F(7, 06,5, 3,€):
-exp(—/T Mot — 7%, ), & dt—//z/t ) Ao(db) dt)

A0 = 7, x,€),§) Qs — 7, x,€), €, dy) ds
+/ /A1{8>T} F(T>Xa£783¢(S_TaX7£)7b)'

exp <— | et -rxo.0d— [ [ po @ dt) V2(6) NoldB) s,

and ([3.109)) follows.

Assume now that (3.106)) holds for n — 1, namely that, for every B((Ry x E x
A)"~1)-measurable function F': (Ry x E x A)"~1 = R,
Elw/a [1{T1>7'} F(T7 X5 ga HLTL_Q)]

Pg,a(Tl > T) 7=T1,x=X1,§=41
We have to prove that (3.110)) implies that, for every B((R4 x E x A)™)-measurable
function F': (R x E x A)" - R
Eg,a [1{Tl>7—} F(Ta X5 ga Hlm_l)]
P”ﬁ’“ (Tl > T)

Em;a/ [F(Hlm—l) ’EFTJ —

v

(3.110)

Ela/t;a/ [F(Hl,n) ‘S:Tl] —

Using ([3.108), we get
B [PV, ]
—Ey" By [P, ] |97

, e’}
= Ei;a |:/ / F(Hlm_la's?yyAnfl)'
Th-1JFE

* €Xp ( - / )\((b(t - Tn—17 En—17 An—1)7 An—l) dt
Tn 1

(3.111)

T=T1,x=X1,{=A1
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/ / (b1 ) Ag(db) dt)

n 17En 1)A ) An 1)Q(¢(S_Tn 17En 17An—1)7An—1ady)d3
/ / (T s, (s — Tn-1, En—1, An_1),b)-
TL 1

Y ( / /\(Qﬁ(t - TnflaEnflyAnfl)aAnfl)dt

/ / 2(rbmt b) Ao(db) dt) 2@ b) Ao (db) ds
Th—1

o]
(3.112)

At this point we observe that the term in the conditional expectation in the right-
hand side of only depends on the random sequence II»"~1. For any sequence
of random variables (S;, Wi, V;)ic[1,n—1) with values in ([0, 0o) x E'x AnlS 1 <8
for every i € [1, n — 1], we set

(S1, Wi, Vi, oo, Spet, W1, Vit) o=

/ / SI7W17-~- Vn lasn 17Wn 1,95, y:Vn 1)
n 1
- €xXp < / )‘(Qb(t - Snfla anly anl)y anl) dt

/ / Slavb Sn—lavn—bb) )\O(db) dt)
n 1
. )\(d)(s - n 17Wn 1’Vn 1) Vn—l)Q(¢(5 - Sn—17Wn—1)Vn—1))Vn—17dy) ds

+/ / F(Slana‘/l)~-'7Sn—1aWn—1aVn—la)Sa¢(3_Sn—laWn—laVn—l)vb)'
n—1 A
* €Xp < / )\(Qb(t - Snfla anly anl)y anl) dt

/ / 2(81, Vs ey Sn—1, Vi_1,b) Ao(db) dt)‘
Sn—1

v 2(S1, Vi, ooy Sty Vo1, b) Ao(db) ds.
Identity can be rewritten as

E%Y [FOT'™)|Fq,] = E5Y [w(ﬂl’”*l)‘ffﬂ} . (3.113)

Then, by applying the inductive step , we get

B [P,

=By [p )|, |

= (PpO[Ty > 7)) EDC [1{T1>T} (T, X, &, Hl’"‘Q)] (3.114)

T=T1,x=X1,§{=A1
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Since

CICPI N ey

/ / Flron 6172 5.y, Ay )
7L2

exp( / Mot —Tn—2, Bn_2,Ap_2), Ap_2)dt — / / 2(01m=2 b) Ao(db) dt)
Tn 2 n 2
- Tn—27 En—Za An—?)a An—Q) Q(¢(S - Tn—Za En—27 An—Q)a An—27 dy) ds

- A(o(s
+ / / F(T7 X5 5’ Hl’n727 S, QZ)(S - Tn—?a E’I’L—27 An—?)a b)
Tn72

-exp(—/ Mo(t — T2, En—2, Ap—2), A1) dt — / / 2(rhn—2 b))\o(db)dt>
Thn—2 Th—2
v 2(0E2 b)) Mo (db) ds

= El{?a [F(T7 X7 67 Hl’n_l) |3'Tn,2]7
identity (3.114]) can be rewritten as
E5® [FIITY™)|Fr

= (B)°[Ty > 7)) Ep° [1{T1>T} E’ﬁ’“[F(T,X,S,Hl’”_l)lrfn2]]

T=T1,x=X1,§=A1

Ega [1{T1 >7} F(T, X5 57 HLnil)]
= T.a . (3.115)
Py (T > 7) =T, x=E1,{=A1
This concludes the proof of the Lemma. O

Proof of Proposition We start by noticing that,
J(ZL‘, a, V) = Ei’a [F(Tl, El, Al, TQ, EQ, AQ, )] s
where

F(Tb E17 A17T27E27 A27 )

= / e Ot f(Xy, ) dt
0

Ty e Tn
= / 6_6tf(d)(t,X0,Io),Io) dt + Z/ e_étf(qs(t - TnflaEnflaAnfl)>An71) dt.
0 n=2"Tn-1

(3.116)
We aim at constructing a sequence of controls (%), € V such that
J(z,d',v°) = L [F(T1, By, A1, Ty, Bz, As, ...)]
= ED [F(Th, B, A1, T, Es, Ao, ...)] = J(z,a,v). (3.117)

Since v € V, then there exists a P*%-null set N such that v admits the representation

ve(b) = 10 (0) Lperyy + D (T, Ar, Toy Az, oo Ty Any D) Lz cter gy (3:118)

n=1
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for all (w,t) € Q@ x R4, w ¢ N, for some v" : Q x Ry x (Ry x A)" x A — (0, 00),
n>1 (resp. 10 : Q xRy x A— (0, 0)) P B((Ry x A)") ® A-measurable maps,
uniformly bounded with respect to n (resp. bounded P ® A-measurable map), see,
e.g., Definition 26.3 in [35].

Let B(a,e) be the closed ball centered in a with radius e. We notice that
e — Mo(B(a,¢)) defines a nonnegative, right-continuous, nondecreasing function,
satisfying ) )

Mo(B(a,0)) = N({a}) >0, Xo(B(a,e)) >0 Ve>D0.
If A\o({a}) > 0, we set h(e) = ¢ for every € > 0. Otherwise, if A\g({a}) = 0, we define
h as the right inverse function of & — \g(B(a,¢)), namely
h(p) = inf{e > 0: \o(B(a,€)) > p}, p > 0.
From Lemma 1.37 in [73] the following property holds:
¥p =0, Xo(B(a,h(p))) = p. (3.119)

At this point, we introduce the following family of processes, parametrized by &:

1 1
vi (b) = - ml{beé(a,h(a))}l{tgﬂ} + 1 (0) Lyry <oy

+ Z YTy, As, ..., Ty A, 0) L, ciem 1) (3.120)

With this choice, for all r >0,
]P’xa T1>7‘E1€FA1€C)

/ / exp ( / (p(t,x,a),d’) dt — z> MNo(s,x,a’),d" ) Q(p(s,z,d"),d ,dy)ds

N s\ 1 1 )
+/T /Cexp (—/0 )\(¢(t,l‘,a),a)dt—€) gml{bEB(a,h(E))} )\O(db) ds.

(3.121)
To prove (3.117)), it is enough to show that, for every k > 1,
EL [F(ITF)] — BSO[F(ITF)), (3.122)
e—0

where

_ Sl
F(Sl, Wi, Vi, ..., Sk, W, Vk) = / 6_5tf(¢(t, Xo, Io), Io) dt
0

+Z/ 7&,]0 t_ n— 17 n— 17Vn 1) Vn 1)dt
TL 1
(3.123)

for any sequence of random variables (S, Wi, Vi) ne1,1) With values in ([0, co) x £ x
A)", with S,,_1 < S, for every n.

As a matter of fact, the remaining term

R(E, k) = ]E:Vc,sa’ |:/T 75tf((f)( n 1,En_1,An_1),An_1)dt
k
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converges to zero, uniformly in €, as k goes to infinity. To see it, we notice that

M / _ M / Ve —
[R(e, k)| < =L E [e 5Tk} = —Lgee [LTk e 5Tk] , (3.124)
where, L is the Doléans-Dade exponential local martingale defined in (3.39)). Taking
into account (3.120) and (3.119), we get

eT12o(A) o—Th 1

4 eT1Xo(A)
< Sped O

v —0T},
LTk, e c

Ex,a’ [L%Z e—(STk] < Ex,a’ :

v —0T},
E Ly, e ]

where

D(t, b) = 1{t<T1} =+ Vto(b) 1{T1<th2} + Z ygl_l(TQ7 AQ, ceey Tn, An, b) 1{Tn<t<Tn+1}'

n=2
Since v € V, by Proposition there exists a unique probability IP’f—f’a, on (2,F)
such that its restriction on (€2, Fr, ) is L%C P#% . Then ([3.124) reads

4M;
0 e?

|R(e, k)| < D

T1 Ao(A)
€ 8T,
e k] , (3.125)

and the conclusion follows by the Lebesgue dominated convergence theorem.

Let us now prove (3.122). By Lemma |3.5.10] taking into account (3.121f), we
achieve

By (F(ITH)
- B [ELS [F(Hl”“)‘ Fr,]]
E [1{T1>r} F(s,vy,b, Hl’k_l)]
Pﬁja(Tl > T) s=T1,y=X1,b=A1

B /OO/ Eg,a [1{T1>s} F(S,y,a/,ﬂl’k_l)] ‘
o JE Py(Ty > s)

. Em,a/

VS

€

N /OO/ EL° [1{T1>s} F(s,¢(s,x,d'),b, Hl’k_l)]
0 A ]P’i’a(Tl > S)

- exp ( /OS MNo(t,x,a’),a") dt — S) MNo(s,x,a"),d") Q(p(s,x,d"),d ,dy)ds

s 1 1
: — | At a,d)d)dt -2 1, o(db) ds.
exp ( /(; (¢( y Ly @ )7 a ) 6) c )\0(3(&, h(E))) {beB(a,h(e))} O( )(38126)
At this point, we set
]EI%’a [1{T1>S} F(Sa Y, b7 Hl,k_l)]
IP"E’”(Tl > S) ’
Notice that, for every (y,b) € E x A,

©(s,y,b) := sel0,00),yc E,be A (3.127)

s Ty
F(s,y,b,Hl’kl)—/ e5tf(¢(t,X0,Io),Io)dt+/ e U f(p(t — s,1,b),b) dt
0 s
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+ Z/ 75tf n 17En—17An—1)7A"_1) dt’

T'n 1

so that
M
[o(s,9.0) < =L, (3.128)

Identity ([3.126]) becomes
Ej: [F(IT)

e e

(s,w,d"),a") Q(¢(s,x,a’),d,dy)ds

/ / (s,2,a),b) exp (— /Os MNo(t,z,a’),d)dt — Z) .
1

= m Live B(a,n(e))} Mo(db) ds
= I1( )+12( )

Using the change of variable s = ¢ z, we have

:/OOO/Efs(Zay) )\(525(52,11}‘7@,)’@/)Q(gb(sZ?x,al)’a/’dy) dZ,
:/0 [496<zab)A0(db)dz,

foz ) = 2 ple 2y, ) exp (— | ettaa.ayat - z) ,

where

ge(2,b) == (e 2z, (e z,2,a’),b) exp <— /OEZ No(t,z,a"),d")dt — z) :

1
L Blah(e-
)\0( (a h(e))) {b€B(a,h(¢))}

Exploiting the continuity properties of A\, Q, ¢ and f, we get
1 12
2(€)H—0>S0(07m7a>7 (3 9)

where we have used that ¢(0,x,b) = z for every b € A. On the other hand, from the

estimate (3.128]), it follows that

M —z
fe(em)l < =5he e
Therefore v - v
I(e)| < —L e ||/\|]oo/ e ?dz = —L e||A||sc — 0. (3.130)
(5 0 (S e—0

Collecting (3.130]) and (3.129)), we conclude that
E%Y [F(IIM)] — (0,2, a). (3.131)
e—0
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Recalling the definitions of ¢ and F' given respectively in (3.127) and (3.123)), we see
that

¢(0,2,a)
= (PL(Ty > 0)) EL” [1ry0) (0, 20,471

1
e f(¢(t,x,a) dt+Z / e f(p(t — T, En—1, An_1), An—1) dt

= Epe [P

and this concludes the proof. O






Chapter 4

BSDEs driven by a
general random
measure, possibly non
quasi-left-continuous

4.1. Introduction

Backward stochastic differential equations have been deeply studied since the
seminal paper Pardoux and Peng [98]. In [98], as well as in many subsequent
papers, the driving term was a Brownian motion. BSDEs with a discontinuous
driving term have also been studied, see, among others, Buchdahn and Pardoux
[21], Tang and Li [128], Bares, Buckdahn and Pardoux [10], El Karoui and Huang
[50], Xia [131], Becherer [12], Carbone, Ferrario and Santacroce [22], Cohen and
Elliott [26], Jeanblanc, Mania, Santacroce and Schweizer [80], Confortola, Fuhrman
and Jacod [29].

In all the papers cited above, and more generally in the literature on BSDEs,
the generator (or driver) of the backward stochastic differential equation, usually
denoted by f, is integrated with respect to a measure dA, where A is a nondecreasing
continuous (or deterministic and right-continuous as in [26]) process. The general
case, i.e. A is a right-continuous nondecreasing predictable process, is addressed in
this chapter. It is worth mentioning that Section 4.3 in [29] provides a counter-
erample to existence for such general backward stochastic differential equations.
For this reason, the existence and uniqueness result (Theorem is not a trivial
extension of known results. Indeed, in Theorem [£.4.1] we have to impose an additional
technical assumption, which is violated by the counter-example presented in [29] (see
Remark [4.4.3{ii)). This latter assumption reads as follows: there exists ¢ € (0,1)
such that (notice that AA; < 1)

2L [AAf* < 1—¢,  Pas,Vte|0,T], (4.1)

145
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where L, is the Lipschitz constant of f with respect to y. As mentioned earlier, in
[26] the authors study a class of BSDEs with a generator f integrated with respect to
a deterministic (rather than predictable) right-continuous nondecreasing process A,
even if this class is driven by a countable sequence of square-integrable martingales,
rather than just a random measure. They provide an existence and uniqueness result
for this class of BSDEs, see Theorem 6.1 in [26], where the same condition is
imposed (see Remark [4.4.3(i)). However, the proof of Theorem 6.1 in [26] relies
heavily on the assumption that A is deterministic, and it can not be extended to the
case where A is predictable, which therefore requires a completely different proof.

The results obtained in this chapter can be particularly useful in the study of
control problems related to piecewise deterministic Markov processes by means of
BSDEs methods, see Remark

The chapter is organized as follows: in Section we introduce the random
measure 4 and we fix the notation. In Section we provide the definition of
solution to the backward stochastic differential equation and we solve it in the case
where f = f(t,w) is independent of y and z (Lemma [£.3.6). Finally, in Section
we prove the main result (Theorem of this chapter, i.e. the existence and
uniqueness for our backward stochastic differential equation.

4.2. Preliminaries

Consider a finite time horizon 7" € (0, 00), a Lusin space (F, ), and a filtered
probability space (2, F, (F¢)t>0,P), with (F;)¢>0 right-continuous. We denote by P
the predictable o-field on © x [0, 7. In the sequel, given a measurable space (G, 9),
we say that a function on the product space Q2 x [0,7] x G is predictable if it is
P ® G-measurable.

Let i be an integer-valued random measure on R} x E. In the sequel we use a
martingale representation theorem for the random measure p, namely Theorem 5.4 in
Jacod [75]. For this reason, we suppose that (F;):>0 is the natural filtration of y, i.e.
the smallest right-continuous filtration in which p is optional. We also assume that
p is a discrete random measure, i.e. the sections of the set D = {(w,t): p(w, {t} x
E) = 1} are finite on every finite interval. However, the results of this chapter
(in particular, Theorem are still valid for more general random measure p for
which a martingale representation theorem holds (see Remark for more details).

We denote by v the (F;);>o-compensator of p. Then, v can be disintegrated as
follows
v(w,dtdr) = dA(w) dui(dx), (4.2)
where A is a right-continuous nondecreasing predictable process such that Ag = 0,
and ¢ is a transition probability from (2x [0, 7], P) into (E, £). We suppose, without
loss of generality, that v satisfies v({t} x dz) < 1 identically, so that AA4; < 1.
We define A¢ as Af = Ay — > g,y AAs, vo(dtdz) = 1jexpr(dt,dz), vi(dtdr) =
v(dtdz) — ve(dtdz) = 1 xpv(dt,dr), where J = {(w,t): v(w, {t} x dx) > 0}.

We denote by B(E) the set of all Borel measurable functions on E. Given a
measurable function Z: Q x [0,T] x E — R, we write Z,(z) = Z(w,t,x), so that
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Z 1, often abbreviated as Z; or Z(-), is an element of B(E). For any 8 > 0 we also
denote by &7 the Doléans-Dade exponential of the process BA, which is given by

&) = M T (1 +BAA) e PAA (4.3)

0<s<t
4.3. The backward stochastic differential equation

The backward stochastic differential equation driven by the random measure p
is characterized by a triple (3, &, f), where 8 > 0 is a positive real number, and:

e £: Q) — R, the terminal condition, is an Fr-measurable random variable
satisfying E[Eg\fp] < 00;
o [:Qx]0,T] xR x B(E)— R, the generator, is such that:
(i) for any y € R and Z: Q x [0,T] x E — R predictable
= f(w,t,y, Z,+(-)) predictable;
(ii) for some nonnegative constants Ly, L., we have

|f(w,t, 9, ¢) = flw,t,y,0)] < Lyly' — vy
2

+ Lz(/E ¢'(x) = C(x) — AAy(w) /E (C/(Z) — C(Z))¢w,t(dZ) G (da)

2\ 1/2
+A&@M1—A&@mté«%w—cm»%am») , (4.4)

for all (w,t) € 2 x [0,T], y,5/ €R, (,{’ € L*(E, &, ¢, 1(d));
(i) E[(1+ Y geicr |AAL?) JEED|£(£,0,0)|?dA,] < oo.

Remark 4.3.1. The measurability condition (i) on f is somehow awkward, however
it seems to be unavoidable. Indeed, we notice that the same condition is imposed
in [29], assumption (2.8), and a similar condition is imposed in [27], assumption
(3.2). We also observe that at page 4 of [29], the authors provide some examples of
assumptions on f which imply the measurability condition (i) above (see in particular
assumption (2.10) in [29]). O

Given (3,¢&, f), the backward stochastic differential equation takes the following form

Y = e+ f(s,Y;_,ZS(-))dAS—/ / Zy(x) (n—v)(dsdz), 0<t<T. (45)
(¢,T] tT)JE

Definition 4.3.2. For every § > 0, we define ]HI%(O,T) as the set of pairs (Y, Z)
such that:

e V:Qx[0,T] — R is an adapted cadlag process satisfying

Y2 = E ey, |2dA ; 4.6
Y125, o [Awlﬁt| ] <o (16)

e 7:Qx[0,T] x E— R is a predictable process satisfying

7|2 = E 85/2 — Z)?v(dtd
1212 o L&ﬂ 120 - 2 viaras)
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0<t<T

where

Z; = / Zi(x)v({t} xdz), 0<t<T.
E
For every (Y, Z) € H%(O T), we denote
H(Y, Z)HH2 0,7) HYHH2 (0,7) + HZHH2 Z(o T)

Remark 4.3.3. (i) Notice that the space HB(O,T), endowed with the topology
induced by || - HH% (0,r)» is an Hilbert space, provided we identify pairs of processes

(v, 2), (v, Z') satistying [[(Y ~Y", Z = Z')]luz 0.r) = 0.

(ii) Suppose that there exists v € (0,1] such that A4, < 1 —~, for all ¢t € [0,T7,
P-a.s.. Then Z belongs to H% 2(0,7) if and only if VEAZ isin L2(2x [0,T] x E,P®

&, P®v(dtdr)), i.e
E[/ ef/ |Zi(2)|” v(dt dx)| < oo.
(0,7 E

Definition 4.3.4. A solution to equatlon with data (3, 5 f) is a pair (Y, Z) €
HQ(O,T ) satisfying equation . We say that equation admits a unique
solution if, given two solutions (Y, 2),(Y' 7" e H%(O,T), we have Y, 2)= ("2
in H3(0,7).

O

Remark 4.3.5. Notice that, given a solution (Y Z) to equation (4.5) with data
(8,&, f), we have (recalling that 5 > 0, so that 8 >1)

[/ /\Zt “(dtde) + Y |Z)P(1 - A4y
0.7 0<t<T
= ”ZHH(Q)’Z(O,T) < HZHHQB,Z(OI) < 00.
This implies that the process (Zi1j 71(t))i>0 belongs to §(y), see (3.62) and Propo-

sition 3.71-(a) in Jacod’s book [77]. In particular, the stochastic integral
f(t 7 Iz Zs(x) (1 — v)(dsdzx) in ([.5) is well-defined, and the process

M, = /Ot/ W(dsdz), te0,T],

is a square integrable martingale (see Proposition 3.66 in [77]). O

Lemma 4.3.6. Consider a triple (8,&, f) and suppose that f = f(w,t) does not
depend on (y,(). Then, there exists a unique solution (Y, Z) € H%(O,T) to equation
(4.5) with data (B,&, f). Moreover, the following identity holds:

E[¢? Y]] +6E[ [ erasan) e paa,
(7]
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+E[/ 85/ |Zo(2) = Zo| vids dz) + > 85\25\2(1—AA5)]
(t,T) E

t<s<T
— E[e51eP] + m[/ e8Y. J, dAs} - E[ A |AAS|2], (48)
T t<s<T

for all t € [0,T].
Proof. Uniqueness. It is enough to prove that equation (4.5) with data (8,0, 0) has
the unique (in the sense of Definition [4.3.4)) solution (Y, Z) = (0,0). Let (Y, Z) be a
solution to equation (4.5) with data (5, 0,0). Since the stochastic integral in (4.5) is a
square integrable martingale (see Remark [4.3.5)), taking the conditional expectation

with respect to F; we obtain, P-a.s., Y; = 0, for all ¢ € [0, T]. This proves the claim for
the component Y and shows that the martingale M; := f(o q J5 Zs(x)(p—v)(ds dz) =

0, P-a.s., for all ¢t € [0,T]. Therefore, the predictable bracket (M, M)r = 0, P-a.s.,
where we recall that (see Proposition 3.71- ( ) in [77])

/OT]/ | Z4(2) *u(dtdz) + Z 12" (1 — AA).

o<t<T

This concludes the proof, since HZHH2 < E[Eg(M, M)T] =0.

z(0.T)

Identity (4.8). Let (Y, Z) be a solution to equation (4.5) with data (53,&, f). From
Ito’s formula applied to &% [Ys|? it follows that (recall that d€2 = B €7 dA,)

d(EVi?) = €2_d|V[? + |Vo_ [P de? + AEE AY,|?
= &P d|Y ] + |V P dEP + (&, — €5 ) d|v,)?
= EJd|Y,* + Y, |* de]
=280 Y. dY, + & (AY.)? + BE] |V [*dA,
=280V, dY, + P (AY,)? + BEL (14 BAA) T Y. |?dA,,  (4.9)

where the last equality follows from the identity 857 =& (1+BAA,)~!. Integrating
(4.9) on the interval [t, T'], we obtain

el = el vz [ elvi a2 [ elve [ ZG@) - vasa
t,T] (t,T E

)

— Y EHAY)? =B | &F(1+BAA)T Y, [P dA.. (4.10)
t<s<T (t,T]

Now, notice that
AY; = / —v)({s} xdzx)— fs AA;. (4.11)
Thus

2
AV, = \ [ 2@ = 0)(ts} x )| +15PI6AP
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- 2fSAAS/ Zs(z) (p—v)({s} x dx). (4.12)
E
Plugging (4.12) into (4.10), we find

eV i+ €0 (1+ BAAY) Y, P dA,

(t.7]
+ > &l

2

() (= v)({s} x dz)

t<s<T
= 8?\5!2+2/ ey, fsdAs—z/ 851@_/ Zy(z) (1 — v)(ds dz)
(t,17 (t,T)
> ELIfPIAALP +2 D> eﬂfsAA/ (1 —v)({s} x dz). (4.13)
t<s<T t<s<T

Notice that

{4l

2:|
t<s<T

:E[/ af/ |Zo(x) — Z|" v(ds, dzx) + > 022 (1— aAy) | (414)
(t,T) E

t<s<T

() (= v)({s} x dz)

We also observe that the two stochastic integrals

- B S axr
M, ._/Ot]e YS_/ v)(ds dz)
-y eﬁfsAA/ @) (= v)({s} x do)

0<s<t
are martingales. Therefore, taking the expectation in (4.13|) and using (4.14), we
end up with (4.8)).
Ezistence. Consider the martingale M; := E[¢ + f(o m s dAs|F], t € [0,T]. Let M

be a right-continuous modification of M. Then, by the martingale representation
Theorem 5.4 in [75] and Proposition 3.66 in [77] (noting that M is a square integrable
martingale), there exists a predictable process Z: Q x [0,7] x E — R such that

[/o:r]/’zt “u(dtdr) + > |Z,* (1 - A4y

0<t<T
and
M; = M —l—/ / v)(dsdz), telo, T (4.15)
(0,4]
Set
Yi=M,— | fidA,,  tel0,T]. (4.16)
(0,¢]

Using the representation (4.15)) of M, and noting that Y7 = £, we see that Y satisfies
(4.5). When 8 > 0, it remains to show that Y satisfies (4.6) and Z satisfies (4.7)).
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To this end, let us define the increasing sequence of stopping times

S = inf{t € (0, T :/( ]ef Yo_|?dA,
0,t

+/ eg/ Zu(a) — 2o vldsde) + Y 8|2, (1~ AAL) > k)
(Ovt] E 0<s<t

with the convention inf() = 7. Computing the Itd differential d(8§ |Y5|?) on the
interval [0, Si| and proceeding as in the derivation of identity (4.8)), we find

E / ef/\zs(m)—zsfy(dsdxH S &z (1- AAY)
(0,5%] FE

0<s<S

+BE| [ el pad) Y. P,
(O7Sk]

<E[ef, Vs, [*] + 2B . (4.17)

/ 3V, f,dA,
(Ovsk’}

Let us now prove the following inequality (recall that we are assuming 5 > 0)

55(/ | fs| dA )2 < <1+B > a4 !2)/ &0\ fo|? dAs. (4.18)
t 7] S S = ﬁ S (] s s s

t<s<T 2
Set, for all s € [0, T7,
Ay = gAg + > (V1+BAA -1,
0<r<s, AA,#0
A - —éAC— Z V1+BAA, -1
N 2 0<r<s,AA,#0 1+ ’BAAT

Denote by & (resp. &) the Doléans-Dade exponential of the process A (resp. A).
Using Proposition 6.4 in [77] we see that

1 =¢8,&, (&) =¢8F

s

Vs e |0, T). (4.19)

Then, we conclude that

2 2
8?(/ \fs|dAs> - 85(/ es_es|fs|dAs>
(t,T} (t,T]

1
= AA? el 1,12 dA,,
§<B+ﬂ2| |>/(T]s\f!

t<s<T 2

where we used the inequality Ef_ <&l (which follows from (4.3)) and

&2 — (&) AA?
gtﬁ/(\ T](§37)2 dAs — Etﬁ (—t) (—T) 4 Efﬂ Z (§57)2 | |
t,

'8 t<s<T 1+ B AAS
1

< 3+ > 1AALP

t<s<T
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where the last inequality follows from m < 1 and identities (4.19). Now, using

(4.16]) and (4.18]) we obtain
7

E[§+ o dA,
2
2E[ef [£2]5] +2E[8§</ \fs|dAs> ]:ﬂ]
(7]

(th]
B 2 l AA 2>
2E[8T|§r +<ﬁ+ﬂ S a4, /(O

0<s<T

Denote by m; a right-continuous modification of the right-hand side of (4.20). We
see that m = (my)¢cp 7] is a uniformly integrable martingale. In particular for every
stopping time S with values in [0, T'], we have, by Doob’s optional stopping theorem,

2
el = ¢f

IN

IN

X\ ful? dA, fﬂ]- (4.20)
17

)

k [82|YS|2} < E[mg] < E[mg] < oc. (4.21)
Notice that (1 + BAAg) ™1 > ﬁ P-a.s. Using the inequality 2ab < vya? + %b2 with
V= z(ﬁﬁ)v and plugging (4.21)) (with S = S) into (4.17)), we find the estimate

B / 8 2
P g e8lY,_|? dA,
2(1+08) [ (0,5%] ¥a|

+ E / Sf/]Zs(x)—23|2u(dsdx)+ S &z (1- aaA)
(0,5k] E

0<s<Sk
1
< 2E[el |¢? +2E[<+/3 \AASP)( 8§\fsr2dAs)].
(€5 1€ ALY /m

From the above inequality we deduce that

/ Y- |? dA,
(Ovsk]

+E[/ 85/ |Zo(z) — Z|* vids da) + Y 85|Zs\2(1—AAS)}
(0,5k] E

0<s<Sk

E

B 1¢e)2 l 2 8 2
<c(@) (E[er] 48| (G40 3 aap) [ efinfan ), a2)

/8 0<s<T

)

where ¢(f8) =2+ %. Setting S = limy, Si, we deduce

| eimefaa,
(0,5]

+E[/ af/ |Zy(@) = Z| v(dsda) + Y €8|Z,°(1 - AA)
(0,5] E

0<s<S

E

< oo, P-as.,
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which implies S = T, P-a.s., by the definition of Si. Letting k& — oo in (4.22)), we
conclude that Y satisfies (4.6) and Z satisfies (4.7)), so that (Y, Z) € H%(O,T). O

4.4. Main result

Theorem 4.4.1. Suppose that there exists € € (0,1) such that
2L [AA < 1-—c¢, P-a.s., Vt € [0,T). (4.23)
Then there exists a unique solution (Y,Z) € H%(O,T) to equation (4.5) with data
(B,&, f), for every B satisfying
L2 212,
1- 5+2£§7t AA,

1- A7+ 2 )
t 1-0+212 , AA,

B > P-a.s., ¥Vt € [0,T7, (4.24)

for some ¢ € (0,¢) and strictly positive predictable process (ﬁz,t)te[O,T] given by
. 1-6)L
L?, = max <L§, + 6, (=9 L, ) (4.25)
’ 21— 0) — 2L, AA,

Remark 4.4.2. (i) Notice that when condition (4.23]) holds the right-hand side of
(4.24)) is a well-defined nonnegative real number, so that there always exists some

B > 0 which satisfies (4.24]).

(ii) Observe that in Theorem there is no condition on L, i.e. on the Lipschitz
constant of f with respect to its last argument. O

Proof of Theorem [4.4.1. The proof is based on a fixed point argument that we
now describe. Let us consider the function ® : H%(O, T)— ]HI%(O, T), mapping (U, V)
o (Y, Z) as follows:

Y, = £+ f(t, Us—, V) dAs —/ / Zs(x) (p—v)(dsdzx), (4.26)
(t,T] t,T|JE

for all ¢t € [0, T]. By Lemma there exists a unique (Y, Z) € ]HI% (0,T) satisfying
(4.26]), so that ® is a well-defined map. We then see that (Y, Z) is a solution in
H%(O, T) to the BSDE (4.5)) with data (53,¢&, f) if and only if it is a fixed point of ®.

Let us prove that ® is a contraction when 3 is large enough. Let (U LV e
H%(0,T), i = 1,2, and set (Y7, Zi) =®(U, VY. Denote Y =Y —-Y2 Z =27'— 72

U=U'-U% V=V -V2% f,=f(s, UL, V) — f(s, U2, V2). Notice that
Y, = fsdAs / / v)(ds,dz), 0<t<T. (4.27)
(t,T] 4,7
Then, identity (4.8)), with ¢ = 0, becomes (noting that E[8€|}70|2] is nonnegative)

m@[/ 5 (1+ BAA) |V, |2dAs}

A

|:/0T]86/‘Z ~ Z[ vdsdz) + Y e8| Z*(1- A4

0<s<T
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< 21@[ / efysfsdAs} —E[ 3 e§|fs|2|AAs|2]. (4.28)
(0,17

0<s<T

From the standard inequality 2ab < éa2 +ab®, Va,b € R and a > 0, we obtain, for
any strictly positive predictable processes (cs)se(o,r] and (ds)sefo,775

o8] [ v faa]<u| [ Letnpaa]
(0,7 0,1] Cs

+E[ > dic‘lf \YS—IQAAS]

0<s<T ®

+EU c38§3|f5|2dA§]+E[ > d &Y fP AA,
(0,71

. 0<s<T

Therefore (4.28) becomes

1 \ c
£ fy (- 2 et

+E| ¥ (/3(1+,3AA5>1—;8) €217, A

0<s<T
+EU 85/ |Zo(2) — Z| vidsde) + Y 8§\ZS|2(1—AAS)]
0,T] 0<s<T
< E[/ s &8 |fs\2dA§] +E[ > (ds— AA,) Sf|f5\2AAS]. (4.29)
(0,17 0<s<T

Now, by the Lipschitz property (4.4]) of f, we see that for any predictable process
(Lz,s)sejo,r); satisfying L, s > L., P-a.s. for every s € [0, T, we have

B _ - 1—
yfngzL;\Us_y%rzL? (/ |Vi() V Gs(dw) +1gAn, 20} AA \v\) (4.30)

for all s € [0, T]. For later use, fix § € (0,¢) and take (Lz,s)se[o,T] given by (4.25)).
Notice that the two components inside the maximum in are nonnegative (the
first being always strictly positive, the second being zero if L, = 0) and uniformly
bounded, as it follows from condition . Plugging mequahty (4.30) into (4.29)),
and using the following identity for Z (and the analogous one for V)

~

UOT]EB/’Z ~aPuasan + Y 2P0 an)]

0<s<T
_ EUOT gﬂ/ \Z(x) 2 C(dsdx)] +E[O<;T8B Z2 - 1Z] )}

we obtain

B foy (0= 2o
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1

+E[ > (stpaa) -

0<s<T

+E[/0Tgﬁ/ | Z,(z)[2 c(dsdx)] +E[ S° e8P - |2, )}

0<s<T
2
< 2LyE[/(0T

)

) €17 AAS]

6585|Us|2dA§}+2E[/ cs L2, 65/ Vi(z)[? cdsdm)]
(0,7

+2L§E[ > (ds — AAy) gf\US_PAAS]

0<s<T
+ 2E[ S (de— DAY E2 28 (T2 - I‘%Q)]- (4.31)
0<s<T

Set by := min(f8 — é,ﬁ(l + BAA)TL — d—ls) and ag = 2[2275 max(cs,ds — AAs),
s € [0, T]. Then, inequality (&.31)) can be rewritten as (recalling that L, ¢ > 0)

EU bsef|ﬁ_|2dA§}+E[ > bsef\Y_FAAS]
(0.7]

0<s<T
+E[/ ef/ \Zs(m)|2uc(dsd:z:)} +IE[ 3 af(@qz}ﬁ)]
(0,7] E 0<s<T

L2 _
< E Y eﬂUSQdAC]+E[
< [ /M 73 0 20, a4 )

0<s<T

e8] [ ael [ 1P| 18] 5 el (WR-R) @)

0<s<T

2

&8 U,_|? AAS}

It follows from (4.32)) that ® is a contraction if:
(i) there exists a € (0,1) such that as < «, P-a.s. for every s € [0, T;
[0, T1.

(11) L2 S

Let us prove that (i) and (ii) hold. Condition (i) is equivalent to ask that there exists
€ (0,1) such that, for all s € [0, T7,
l1-«a l-—«a

cs < —— s <
202,

s, P-a.s.
Z,8
Then we choose a = §, where ¢ € (0,¢) was fixed in the statement of the theorem,
and cg, ds given by
1-6 1-6

Cs = ——, =

) ;
212, 212

2,8

s» (4.33)
for all s € [0, T, so that (i) holds true. Concerning (ii), we have, for all s € [0, 77,
2
Ly
Lz,

min (6~ 801+ pAA) "~ ) >

Y
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which becomes

L2 1
L 1 P2, T
B2 =tt— B2 T (4.34)
Lz,s Cs 1-— AAS(ﬁgys + CTS)
where for the last inequality we need to impose the additional condition
L2 1
1—AAS<Ay+> > 0.
L2, ds
This latter inequality can be rewritten as
. AA 1—4)L?
LIAA, < L§S<1 — > = ( )A = (4.35)
’ ds 1—6+2L2 AA,

where the last equality follows from the definition of ds in (4.33)). From (4.25)), and

since in particular
72 (1—0) Ly, (1—-6)L2AA,
=TT /201 -96) - 2L, AA, 1-0—-2L2|AA[?

it follows that inequality (4.35) holds. Finally, concerning (4.34)), we begin noting
that

P-a.s., Vs € [0, T,

2
2 Ly 1
L 1 L2, ds

+ —<
L2 '
as it can be shown using (4.33)). Now, let us denote

where, for every s € [0, T,
2
hs_w) hs(e) = & + 2€ )
1—AAghs(l) l 1—0+20AA;
(1-0) Ly

V2(1=8)—2Ly AA,
pression of the second component inside the maximum in . In conclusion, given
(L..s) sclo,7] as in we obtain a lower bound for § from the second inequality
in , which corresponds to (4.24)). O

Remark 4.4.3. (i) In [26] the authors study a class of BSDEs driven by a countable
sequence of square-integrable martingales, with a generator f integrated with respect
to a right-continuous nondecreasing process A as in . Similarly to our setting,
A is not necessarily continuous, however in [26] it is supposed to be deterministic
(instead of predictable). Theorem 6.1 in [26] provides an existence and uniqueness
result for the class of BSDEs studied in [26] under the following assumption (2 L%;,t
corresponds to ¢; and AA; corresponds to Ay, in the notation of [26]):

2L |AAP < 1, Vte|o, T, (4.36)

Hs(e) = ?>0.

Notice that H, attains its minimum at ¢ = . This explains the ex-
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where L, ; is a measurable deterministic function uniformly bounded such that (|4.4])
holds with L, ; in place of L,. As showed at the beginning of the proof of Theorem
6.1 in [26], if (4.36)) holds (and A is as in [26]), then there exists € € (0, 1) such that

2L2, |AAP < 1-¢,  Vtelo, T (4.37)

This proves that when condition (4.36)) holds then (4.37)) is also valid, since in our
setting we can take L, ; = L.

(ii) Section 4.3 in [29] provides a counter-example to existence for BSDE when A

is discontinuous, as it can be the case in our setting; the rest of the paper [29] studies

BSDE (4.5) with A continuous. Let us check that the counter-example proposed in

[29] does not satisfy condition . In [29] the process A is a pure jump process

with a single jump of size p € (0,1) at a deterministic time ¢ € (0,7]. The Lipschitz
1

constant of f with respect to y is L, = > Then

2L |AA = 2
if ¢ is the jump time of A, so that condition (4.23) is violated. O

Remark 4.4.4. Suppose that p is an integer-valued random measure on Ry x E
not necessarily discrete. Then v can still be disintegrated as follows

v(w,dtdr) = dA(w) ¢ t(dx),

where A is a right-continuous nondecreasing predictable process such that Ay = 0,
but ¢ is in general only a transition measure (instead of transition probability) from
(2 x [0,T],P) into (E,E). Notice that when p is discrete one can choose ¢ to be a
transition probability, therefore ¢(F) = 1 and v({t} x E) = AA; (a property used
in the previous sections). When g is not discrete, let us suppose that v can be
disintegrated as follows

viw,dtdr) = AA(w) ¢l (d), oL, (E) = 1, (4.38)

where ¢? is a transition probability from (Q x [0,7T],P) into (E,€&). In particular
v¢({t} x E) = AA;. Then, when and a martingale representation theorem for
w1 hold, all the results of this chapter are still valid and can be proved proceeding
along the same lines. As an example, holds when g is the jump measure of a
Lévy process, indeed in this case AA; is identically zero. O

Remark 4.4.5. As an application of the results presented in this chapter, suppose
that p is the jump measure of a piecewise deterministic Markov process X with
values in E. We follow the notation introduced in [35], Chapter 2, Section 24 and
26. Denoted by (T},), the jump times of the process X, the random measure p can
be written as

p(dtdr) = 87, xy, ) (dt dz).

n=1

Moreover, according to (26.2) in [35], the compensator of ;1 has the form

v(w,dtdzr) = (MX—(w)) dt + dpi (w)) P(Xi— (w), dx), (4.39)
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where P: E x € — E and X : E — R are respectively the transition probability
measure and the jump rate of the process X, and

o
pi = Z Li>moy Yxr, _er}

n=1
is the process counting the number of jumps of X from the active boundary I' C OF
(for the precise definition of I" see page 61 in [35]).

From (4.39)) we see that decomposition (4.2)) for v holds with dA;(w) = M X;—(w))
dt + dpj(w) and ¢y ¢(dr) = P(Xi—(w),dz). In particular, A is predictable (not
deterministic) and discontinuous, with jumps AA4; = 1 {X,_er}- In this case condition

(4.23]) can be written as
1

7
The fact that the above condition is only on L,, rather than on L., is particularly
important in the study of control problems related to PDMPs by means of BSDEs
methods. This latter turns out to be technically involved and is the subject of a work
in progress by the author, where the methodology developed in Chapter|3|is extended
in suitable way to the case of PDMPs on a state space with boundary. Here, we just
say that when control problems are considered then L, = 0 and condition is
automatically satisfied. We also emphasize that, as expected, the main difficulties
arise from the presence of discontinuities at the boundary of the domain. (|

L, < (4.40)



Chapter 5

Weak Dirichlet
processes with jumps

5.1. Introduction

The present chapter extends stochastic calculus via regularization to the case
of jump processes, and carries on the investigations of the so called weak Dirichlet
processes in the discontinuous case. This calculus will be applied in Chapter [6]
where we provide the identification of the solution of a forward backward stochastic
differential equation driven by a random measure, when the underlying process is of
weak Dirichlet type.

Stochastic calculus via regularization was essentially known in the case of contin-
uous integrators X, see e.g. Russo and Vallois [116], [117], with a survey in [121].
In this case a fairly complete theory was developed, see for instance It6 formulae for
processes with finite quadratic (and more general) variations, stochastic differential
equations, It6-Wentzell type formulae in Flandoli and Russo [63], and generalizations
to the case of Banach space type integrators given in Di Girolami and Russo [44].
The notion of covariation [X, Y] (resp. quadratic variation [X, X]) for two processes
X,Y (resp. a process X) has been introduced in the framework of regularizations
(see Russo and Vallois [119]) and of discretizations as well (see Follmer [66]). Even
if there is no direct theorem relating the two approaches, they coincide in all the
examples considered in the literature. If X is a finite quadratic variation continuous
process, an Ito formula has been proved for the expansion of F(X;), when F € C?,
see [119]; this constitutes the counterpart of the related result for discretizations,
see [66]. Moreover, for F' of class C! and X a reversible semimartingale, an Ito
expansion has been established in Russo and Vallois [120].

When F is less regular than C!, the It6 formula can be replaced by a Fukushima-
Dirichlet decomposition for X weak Dirichlet process (with respect to a given filtra-
tion (3%)). The notion of Dirichlet process is a familiar generalization of the concept
of semimartingale, and was introduced by [66] and Bertoin [14] in the discretization
framework. The analogue of the Doob-Meyer decomposition for a Dirichlet process

159
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is that it is the sum of a local martingale M and an adapted process A with zero
quadratic variation. Here A is the generalization of a bounded variation process.
However, requiring A to have zero quadratic variation imposes that A is continuous,
see Lemma [5.3.9; since a bounded variation process with jumps has a non zero finite
quadratic variation, the generalization of the semimartingale in the jump case is not
necessarily represented by the notion of Dirichlet process. A natural generalization
should then at least include the possibility that A is a bounded variation process
with jumps. The concept of (F;)-weak Dirichlet process was later introduced in
Errami and Russo [58] and Gozzi and Russo [71] for a continuous process X, and
applications to stochastic control were considered in Gozzi and Russo [70]. Such a
process is defined as the sum of a local martingale M and an adapted process A
such that [A, N] = 0 for every continuous local martingale N. This notion turns
out to be a correct generalization of the semimartingale notion in the discontinuous
framework, and is extended to the case of jumps processes in the significant work
Coquet, Jakubowsky, Mémin and Slominsky [30], by using the discretizations tech-
niques. In the continuous case, a chain rule was established for F'(¢, X;) when F'
belongs to class C%! and X is a weak Dirichlet process, see [71]. Such a process is
indeed again a weak Dirichlet process (with possibly no finite quadratic variation).
Towards calculus in the jump case only few steps were done in [119], Russo and
Vallois [118], and several other authors, see Chapter 15 of the book of Di Nunno,
(ksendal and Proske [45] and references therein. For instance no It6 type formulae
have been established in the framework of regularization and in the discretization
framework only very few chain rule results are available for F'(X), when F'(X) is not
a semimartingale. In that direction two peculiar results are available: the expan-
sion of F(X;) when X is a reversible semimartingale and F is of class C* with some
Holder conditions on the derivatives (see Errami, Russo and Vallois [59]) and a chain
rule for F/(X;) when X is a weak Dirichlet (cadlag) process and F is of class C!, see
[30]. The work in [59] has been continued by several authors, see e.g. Eisenbaum
[47] and references therein, expanding the remainder making use of local time type
processes. A systematic study of that calculus was missing and in this chapter we
fill out this gap.

Let us now go through the description of the main results of the chapter. As we
have already mentioned, our first basic objective consists in developing a calculus via
regularization in the case of finite quadratic variation cadlag processes. To this end,
we revisit the definitions given by [119] concerning forward integrals (resp. covaria-
tions). Those objects are introduced as u.c.p. (uniform convergence in probability)
limit of the expressions of the type (resp. ) That convergence en-
sures that the limiting objects are cadlag, since the approximating expressions have
the same property. For instance a cadlag process X will be called finite quadratic
variation process whenever the limit (which will be denoted by [X, X]) of

X, X]uer(t) ;:/ (X((s+e)nt) = X7 (5.1)

10, ¢] <
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exists u.c.p. In [119], the authors introduced a slightly different approximation of
[X, X] when X is continuous, namely

CL(X, X)(t) ::/ (X((s+0) = X()? ) (5.2)

10, 1] €

When the u.c.p. limit of C.(X, X) exists, it is automatically a continuous process,
since the approximating processes are continuous. For this reason, when X is a jump
process, the choice of approximation would not be suitable, since its quadratic
variation is expected to be a jump process. In that case, the u.c.p. convergence of
can be shown to be equivalent with a notion of convergence which is associated
with the a.s. convergence (up to subsequences) in measure of C.(X, X)(t)dt, see
Section 5.4} Both formulations will be used in the development of the calculus.

For a cadlag finite quadratic variation process X, we establish, via regularization
techniques, an It6 formula for C12 functions of X. This is the object of Proposition
whose proof is based on an accurate separation between the neighborhood of
"big” and ”small” jumps, where specific tools are used, see for instance the prelim-
inary results Lemma and Lemma Another significant instrument is a
Lemma of Dini type in the case of cadlag functions, see Lemma 5.3.15] Finally, from
Proposition easily follows an It6 formula under weaker regularity conditions on
F', see Proposition We remark that a similar formula was stated in [59], using
a discretization definition of the covariation, when F' is time-homogeneous.

The second target of the chapter consists in investigating weak Dirichlet jump
processes. Contrarily to the continuous case, the decomposition X = M + A is
generally not unique. We introduce the notion of special weak Dirichlet process with
respect to some filtration (F;). Such a process is a weak Dirichlet process admitting
a decomposition X = M + A, where M is an (F;)-local martingale and where the
“orthogonal” process A is predictable. The decomposition of a special weak Dirichlet
process is unique, see Proposition Such a process constitutes a generalization
of the notion of semimartingale in the framework of weak Dirichlet processes. We
remark that a continuous weak Dirichlet process is a special weak Dirichlet.

Two significant results are Theorem and Theorem [5.6.26f They both
concern expansions of F(t, X;) where F is of class C%! and X is a weak Dirichlet
process of finite quadratic variation. Theorem states that F'(t, X;) will be
again a weak Dirichlet process, however not necessarily of finite quadratic variation.
Theorem [5.6.26] concerns the cases when X and (F(t, X;)); are special weak Dirichlet
processes. A first significant step in this sense was done in [30], where X belongs
to a bit different class of special weak Dirichlet jump processes (of finite energy)
and F' does not depend on time and has bounded derivative. They show that F(X)
is again a special weak Dirichlet process. In [30] the underlying process has finite
energy, which requires a control of the expectation of the approximating sequences
of the quadratic variation. On the other hand, our techniques do not require that
type of control. Moreover, the integrability condition that we ask on F'(t, Xy)
in order to get the chain rule in Theorem [5.6.26[ is automatically verified under the
hypothesis on the first-order derivative considered in [30], see Remark In
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some cases a chain rule may hold even when F' is only continuous if we know a priori
some information of (F'(t, X;)). This is provided by Proposition and does not
require any assumption on the cadlag process X. This applies for instance to the
case when X is a pure jump process, see Remark

In the present chapter we also introduce a subclass of weak Dirichlet processes,
called particular, see Definition [5.6.16 Those processes inherit some of the semi-
martingales features: as in the semimartingale case, the particular weak Dirichlet
processes admit an integral representation (see Proposition and a (unique)
canonical decomposition holds when |z| 1,51y * 1 € .Al'g .- Under that conditions,
those particular processes are indeed special weak Dirichlet processes, see Proposi-

tion [(.6.18 and [5.6.19

The chapter is organized as follows. In Section [5.2] we introduce the notations
and we recall some basic results on the stochastic integration with respect to integer-
valued random measures associated to cadlag processes. In Section we give
some preliminary results to the development of the calculus via regularization with
jumps; additional comments and technical results on calculus via regularizations in
the discontinuous framework are reported in Section Section [5.5] is devoted to
the proof of a C'2 Ité formula for cadlag processes. Finally, Section concerns
the study of weak Dirichlet processes, and presents the expansions of F (¢, X;) for X
weak Dirichlet, when F is of class C%!.

5.2. Preliminaries and basic notations

In what follows, we are given a probability space (2, F,P), a positive horizon T’
and a filtration F = (F;)¢>0. Given a topological space E, in the sequel B(E) will
denote the Borel o-field associated with E. P (resp. P = P ® B(R)) will designate
the predictable o-field on Q x [0,7T] (resp. on Q = Q x [0,T] x R). Analogously,
we set O (resp. O = O ® B(R)) the optional o-field on Q x [0,7] (resp. on ).
The symbols D“P and L““? will denote the space of all adapted cadlag and caglad
processes endowed with the u.c.p. (uniform convergence in probability) topology.
By convention, any cadlag process defined on [0, T is extended on R by continuity.

We will also indicate by A (resp Ajoc) the collection of all adapted processes with
integrable variation (resp. with locally integrable variation), and by A™ (resp Afgc)
the collection of all adapted integrable increasing (resp. adapted locally integrable)
processes. The significance of locally is the usual one which refers to localization by

stopping times, see e.g. (0.39) of Jacod’s book [77].
We will indicate by C2 (resp. C%1) the space of all functions

u:[0, T xR—=R, (tz)—u(t )

that are continuous together their derivatives Osu, Opu, Opzu (vesp. Opu). CY? is
equipped with the topology of uniform convergence on each compact of u, O, u, Oy, u,
Oyu; CY1 is equipped with the same topology on each compact of u and 9 u.
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5.2.1. Cadlag processes and the associated random measures. The concept
of random measure allows a very tractable description of the jumps of a cadlag pro-
cess. We recall here the main definitions and some properties that we will extensively
use in the following; for a more detailed discussion on this topic and the unexplained
notations see Appendices [A] and

For any X = (X;) adapted real valued cadlag process on [0, T, we call jump
measure of X the integer-valued random measure on Ry x R defined as

p (wydtde) = Liax,w)£0) O(s ax, ) (dE dz). (5.3)
s€]0,T)

Remark 5.2.1. The jump measure pX acts in the following way: for any positive
function W € O we have

Z 1{AXS7£O}WS('7AXS):/ Wi, z) i (-, ds da).
5€]0,7T) 10,T]xR

In the sequel we will make often use of the following assumption on the processes
X:
Z |AX|* < 00, as. (5.4)
s€]0,T)
Adapting the definition of locally bounded process stated before Theorem 15,
Chapter IV, in [110], to the processes indexed by [0, T'], we can state the following.

Definition 5.2.2. A process (Xi)cp, 7] is locally bounded if there exists a se-
quence of stopping times (7,)p>1 in [0, T] U {400} increasing to oo a.s., such that
(Xrnt 1z, >0} )tefo, 7] is bounded.
Remark 5.2.3.
(i) Any caglad process is locally bounded, see the lines above Theorem 15,
Chapter IV, in [110].
(ii) Let X be a cadlag process satisfying condition (5.4)).
Set (Yy)ieo, 11 = (Xt > gey |AX]?)seqo, 71- The process Y is caglad, there-
fore locally bounded by item (i). In particular, we can fix a sequence of
stopping times (7,),>1 in [0, 7] U {400} increasing to oo a.s., such that
(Yr, At iz, >0} )telo, 7] 18 bounded.
Proposition 5.2.4. Let p = 1,2. Let X be a real-valued cadlag process on [0, T
satisfying
Z |AX P < o0, a.s.
s€]0, T
Then

/M ol Ly ¥ (dsd) € A (5.5)
] x

Proof. Set Y; = > _,|AX,|P. The process Y is caglad, therefore locally bounded;
in particular, we can fix a sequence of stopping times (7,)p>1 in [0, T] U {+o0}
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increasing to oo a.s., such that (Y7, a¢ 117, >0})tepo, 1) is bounded. Fix 7 = 7, and let

M such that supycpo, 77 [Yinr 1ir>0y| < M. We have

B[ ol ey (s, o)
10, tAT]XR
=E| Y [AXPlyax.<y Lrsop + 1AXiar P 1ax,. <1y Lo}
0<s<tAT
< M+1,
and thus (5.5 holds. O
Corollary 5.2.5. Let X be a cadlag process satisfying condition (5.4). Then
xl{\x|§1} € 9120c(:uX)' (56)
In particular the stochastic integral
/ T 1fjz1<1} (,uX — VX)(ds dx) (5.7)
10,t] xR

is well-defined and defines a purely discontinuous square integrable local martingale.

Proof. Property (5.6) is a direct application of Proposition with p = 2, and
Lemma 2. The second part of the result follows by (5.6) and Theorem O

Remark 5.2.6. Let ¢ : @ x [0,T] xR — R be a P-measurable function and A a
P-measurable subset of Q x [0, T] x R, such that

o] 1a* ™ € A, (5.8)
o2 1ge % € A (5.9)

Then the process ¢ belongs to Gi ().

As a matter of fact, (5.8]) and Proposition give that ¢ 14 belongs to G C(,uX ).
On the other hand, (5.9)), together with Lemma 2), implies that ¢ 14c belongs
t0 G (1) C Sie(u™).
Proposition 5.2.7. Let X be a cadlag process on [0, T satisfying condition (5.4)),
and let F be a function of class C12. Then

[(F(8, Xs— +2) = F(8, Xs—) =10 F (8, Xs5-)| Ljg<1} * s e At

loc”

Proof. Let (7,)n,>1 be the sequence of stopping times introduced in Remark
(ii) for the process V; = (X;—, > ,;|AX,[?). Fix 7 = 7,, and let M such that
supyeo, 77 |Yenr 1ir>0y| < M. So, by an obvious Taylor expansion, taking into account

Remark we have

E

/}o tAT]XR (F(s, Xsm +2) = F(s, Xs-) = 20 F (5, Xs-)| Lja<ay 1 (ds, da)

=E| > [F(s,Xs) = F(s,Xs) — 0:F (s, X, ) AX,]

0<s<tAT
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1
“E| S (AX) 1y / 02, F (s, Xy + aAX,) — 0% F(s, X,_)] da
0<s<tAT 0
<2 sup |8§xF|(t> y)

ye[_Mv M]
te(0, T

E| Y IAX Ljax. <y Loy + 1AXA? 1jax, <13 Lo}

0<s<tAT

y€[7M7M]
te(0, T

and this concludes the proof. O

Proposition 5.2.8. Let X be a cadlag process on [0, T| satisfying condition (5.4)),
and let F be a function of class CO'. Then

[(F (s, Xoo +2) — F(8, Xoo ) Lyjai<ay * 1 € Al (5.10)
|$ 8IF(S,XS_)‘2 1{|:c|§1} * MX S Aﬂ;c. (511)

Proof. Proceeding as in the proof of Proposition we consider the sequence
of stopping times (73,),>1 defined in Remark (ii) for the process YV; = (X;—,
>ect [AX?). Fix 7 = 75, and let M such that sup,ejo 7 [Yiar 1{rs03l < M. For
any t € [0,T], we have

E

/[0 tAT]XR |(F (s, Xo— +2) — F(s, XS—)‘Z 1{\x|§1} ,uX(ds, d:z)]

< sup |8xF|2(ta y)
ye[_M7 M]
tefo, T)

-E

> IAX P Lgax, <yl + IAX? 1ax, <y 1{T>0}]

S<EAT

< sup |0.FP(t,y) - (M +1),
te(0, T

and

E

/[0 tATIXR [ 00 F (5, X ) [* Lgjaj<ay 17 (ds, da:)]

=K

/[0 tAT]XR | 05 F 2 (, Xom) Lyjaj<ay 0™ (ds, da:)]
5 T| X

< sup [0 F(t y)-
ye[fMa M]
te[0, T

-E [ Z |AX,|? Liax, <1y Lgrsoy + |AX? Lyax, <1y 1{’7’>0}]

S<INT
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< sup (8. F]X(t,y) - (M +1).

yE[—M, M]
telo, T
O
5.3. Calculus via regularization with jumps
Let f and g be two functions defined on R, and set
(et fdg) = [ f(s) LEFDADZI0) 4 (512)
10, ] €
we s+e)ANt)— f(s s+¢e)ANt)—g(s
Py ST LUES (O TR IU R I
10, 1] €
Notice that the function I7%P(e,t, f,dg) is cadlag and admits the decomposition
(t—e)+ - t —
[=5P(c. £, £, dg) :/ £(s) g(s+¢) —g(s) ds+/ £(s) 9t) —9(s) .
0 c (t—€)+ €
(5.14)

Definition 5.3.1. Let X be a cadlag process and Y be a process belonging to
L([0, T7]) a.s. Suppose that there exists a process (I(f));e[o, ) such that
(I74P(e,t,Y,dX))iepo, 1) converges u.c.p. to (I(t))ieo, 7], namely

lim P ( sup [I7"P(g,t,Y,dX) — I(t)] > a) =0 for every a > 0.
e—0 0<s<t

Then we will set f]o g Ysd X5 =1 (t). That process will be called the forward
integral of Y with respect to X.

Remark 5.3.2. In [I19] a very similar notion of forward integral is considered:

t}(s +e) - gt}(s)
€

IRV (e,t, f, dg) — / fy(s) 2 ds,
R

with
f(04) ifz <0,
fo=4q flx) f0<z<Ht,

The u.c.p. limit of I=%V (¢, t, f, dg), when it exists, coincides with that of the process
I7%P(e,t, f,dg). As a matter of fact, the process 1%V (e, t, f,dg) is cadlag and can
be rewritten as

IVt fidg) = Tt . dg) — £(04) 2 /0 lo(s) — 9(0:)]ds. (515)

In particular

—uc, — 1
sup [I p(£7t7f7dg) -1 RV(€7t7f7dg)] :f(o'f')*
te[o, T €

/ 9(s) — 9(0.)] ds,



5.3. Calculus via regularization with jumps 167

and therefore

limsup sup [I~7V(e,t, f,dg) — I7“P(e,t, f,dg)] = 0.
e—=0  ¢€[0,T)

Proposition 5.3.3. Let A be a cadlag predictable process and Y be a process be-
longing to L*([0, T]) a.s. Then the forward integral

/ Yod A,
]07']

when it exists, is a predictable process.

Proof. Since A is a cadlag process, A(t) = A(t+), and it follows from decomposition
that the process I7"P(e,t, f,dg) is predictable. By definition, the u.c.p sto-
chastic integral, when it exists, is the u.c.p. limit of I7%P(e, ¢, f,dg) and it defines in
particular a cadlag process. Since the u.c.p. convergence preserves the predictability,
the claim follows. O

Definition 5.3.4. Let X,Y be two cadlag processes. Suppose the existence of a
process (I'(t))i>0 such that [X, Y] () converges u.c.p. to (I'(t))s>0, namely

lim P ( sup |[X,Y]¢P(t) —T'(t)| > a) =0  forevery a>0,
e—0 0<s<t

Then we will set [X, Y], := I'(t). That process will be called the covariation between
X and Y. In that case we say that the covariation between X and Y exists, and we
symbolize it again by [X,Y7], if the sequence [X,Y]!? (t) converges u.c.p. to some
process (I'(t))¢>0, namely

lim P < sup |[X,Y]¢P(t) —T(t)| > a) =0 for every a >0,
e—0 0<s<t
and in this case [X,Y]; := ['(¢).
Definition 5.3.5. We say that a pair of cadlag processes (X, Y') admits all its mutual
brackets if [X, X], [X,Y], [Y,Y] exist.
Definition 5.3.6. We say that a cadlag process X is finite quadratic variation if
[X, X] exists.
Remark 5.3.7. Let X, Y be two cadlag processes.

(1) By definition [X,Y] is necessarily a cadlag process.

(2) [X,X] is an increasing process.

(3) [X, X]¢ denotes the continuous part of [ X, X].

Forward integrals and covariations generalize It6 integrals and the classical square
brackets of semimartingales.

Proposition 5.3.8. Let X,Y be two cadlag semimartingales, MY, M? two cadlag
local martingales, H, K two cadlag adapted process. Then

(i) [X,Y] exists and it is the usual bracket.
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(ii) f]o ] H d~ X is the usual stochastic integral f]o ] H, dX;.

(iii) [ [y Ho— dM, [y Ks— dMZ] is the usual bracket and equals the process
JoHo Ko d[M, M),

Proof. Items (i) and (ii) are consequences of Proposition 1.1 in [119] and Remark
Item (iii) follows from (i) and the corresponding properties for classical brack-
ets of local martingales, see Theorem 29, Chapter 2 of [110]. O

Lemma 5.3.9. Suppose that X is a cadlag, finite quadratic variation process. Then
(i) Vs € [0, T], A[X,X]s = (AX,)%
(i) [X, X]s = [X, X]S 4+ 2 (AX;)? Vs € [0, T), as.
In particular 3, r |IAX,|? < o0 as.

Remark 5.3.10. Condition ([5.4)) holds for instance in the case of processes X of
finite quadratic variation.

Proof. (i) Since X has finite quadratic variation, [X, X]¢” converges u.c.p. to
[X, X]. This implies the existence of a sequence (e,,) such that [X, X]¢.? converges
uniformly a.s. to [X, X]. We fix a realization w outside a suitable null set, which
will be omitted in the sequel. Let v > 0. There is ¢ such that

en <o = |[X, X]s — [X, X]ZP(s)| <y, Vs e[0, T (5.16)
We fix s €]0, T]. Let e, < g9. For every 6 € [0, s[, we have
|[X, X]s = [X, X577 (s = 6)[ <. (5.17)

We need to show that the quantity
X, XTs — [X, X]s5-6 — (AX;)?| (5.18)
goes to zero, when § — 0. For € := ¢g,, < g, (5.18)) this is smaller or equal than

2 + |[X, X]EP(s) — [X, X]¢(s — 6) — (AX,)?|
5—0

1 [ 1
2 [ Ko X2 =1 [ (- X - (A
€ Js—e—4 € Js—e—4§
1 s—0
< 2y + 5/ (Xo_s — X)2dt + |I(e, 6, s)|, Vo €0, s|,
s—e—0
where
1 S—e€ 9 1 S 9 9
I(E, 5, S) = — (Xt+5 — Xt) dt + — [(XS - Xt) - (AXS) ]dt
€ Js—e—6 € Js—e
At this point, we have, , Vs € [0, T,
1 s—0
X, X]s — [X, X]s—s — (AX)? < 29 + 5/ (Xo—s — Xp)2dt + |I(e, 0, s)|.
s—e—0

We take the lim sups_,, on both sides to get, since X is left continuous at s,

1 [ 1 [*
AL X~ (AXJH <2942 [ (G- XPdre L [ (X=X - (AXP] e,
S—¢€ S—

€



5.3. Calculus via regularization with jumps 169

for € := g, < g9. We take the limit when n — oo and we get
|ALX, X5 — (AXS)2’ < 2y,
and this concludes the proof of (i).
(ii) We still work fixing a priori a realization w. Set Y; = [X, X],, s € [0, T7.
Since Y is an increasing cadlag process, it can be decomposed as
Y, =Y+ > AY, Vse[0,T], as.
t<s
and the result follows from point (i). In particular, setting s = T', we get
as. 00 > [X,X|r = [X, X]5+ > (AX,)? > ) (AX,)?
s<T s<T
O

We now state and prove some fundamental preliminary results, that we will
deeply use in the sequel.

Lemma 5.3.11. Let Y; be a cadlag function with values in R™. Let ¢ : R x R™ — R

be an equicontinuous function on each compact, such that ¢(y,y) = 0 for every
yeR? Let 0<t; <te <...<ty <T. We have
al 1 bi e—0 al
D2 B 60T 1) e =3 D @) o0 Ti) (19)
i=1 i

uniformly in s € [0, T.

Proof. Without restriction of generality, we consider the case n = 1. Let us fix
~v > 0. Taking into account that ¢ is equicontinuous on compacts, by definition of
left and right limits, there exists 6 > 0 such that, for every i € {1,..., N},

L < Liy w > t, |£ - ti| < 57 |u - ti| <94 :>|¢(Yu7)/€) - gb(}/tmyzz*)‘ <7, (520)

by <y <t [l =t <6, [le —ti]| <6 =[0(Yey, Ye,)]

- ’¢(Y€17Y52) - (ﬁ(Y;fi—’ Y;fz—ﬂ <7 (5-21)

Since the sum in ([5.19)) is finite, it is enough to show the uniform convergence in s
of the integrals on |t; — €, t;], for a fixed ¢; € [0, T, namely that

1[4
I(Ev 3) = g /t 1]0,8] (t) ¢(Yv(t+6)/\sv Y;f) dt — 1]0, s] (tl) d)(}/tm }/;/z_) (5'22)

i—¢€
converges to zero uniformly in s, when ¢ goes to zero. Let thus fix ¢; € [0, T, and
choose € < §. We distinguish the cases (i), (ii), (iii), (iv) concerning the position of
s with respect to t;.

(i) s<ti—e. vanishes.
(i) s € [ti — By we get

I
(e.5)] < / 6(¥s, Yol dt < 7.
t

i—¢&
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(iii) s € [t;, t; +¢[. By (5.20) we get

1[4
Hesl <7 [ 100ane Y = 0¥ Y )l de < 7,
i—€

(iv) s > t; +e. By (5.20) we get

1 [t
I(e,s) <t / 6(Yise, Vo) — 6(Ye, Vi)l dt < .
t

€ Jt,—e
Collecting all the cases above, we see that

limsup sup |I(e,s)| <7,
e—0  s€[0,T]

and letting v go to zero we get the uniform convergence. O

Lemma 5.3.12. Let X be a cadlag (caglad) real process. Let v > 0, tg, t1 € R and
I = [to, t1] be a subinterval of [0, T] such that

IAX;|? <2, Vtel (5.23)
Then there is eg > 0 such that

sup | X, — Xi| < 3v.
a,tel
la—t|<eq

Proof. We only treat the cadlag case, the caglad one is a consequence of an obvious
time reversal argument. Also in this proof a realization w will be fixed, but omitted.
According to Lemma 1, Chapter 3, in [16], applied to [tg, t1] replacing [0, 1], there
exist points

to=5<81<..<8_1<8 ="M
such that for every j € {1,...,1}

sup | Xg— Xyl <. (5.24)

d,uG[ijl,Sj[
Since X is cadlag, we can choose ¢y such that, Vj € {0, ..., [ — 1},
’d—8j| <e = ’Xd_Xs]-—‘ <7, (5.25)
lu—sj| <eo = [Xu— X <. (5.26)

Let t € [sj_1, s;[ for some j and a such that |[t—a| < € for e < gg. Without restriction
of generality we can take ¢t < a. There are two cases.

(i) a, t € [sj—1, sj[. In this case, gives
| X — Xi| <.
(ii) sj—1 <t < s; <a. Then,
1 Xo — Xo| < [Xo = X + [Xs; — X | + | X;— — Xo| <3,

where the first absolute value is bounded by ([5.26)), the second by ([5.23|)
and the third by (5.25).
U
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Remark 5.3.13. Let I = [to, t1] C [0, T, let € > 0. Let t €]to, t1 — €] and s > t.
We will apply Lemma [5.3.12|to the couple (a,t), where a = (t+¢) As. Indeed a € T
because a <t + ¢ < t1.

Proposition 5.3.14. Let (Z;) be a cadlag process, (V) be a bounded variation pro-
cess. Then [Z,V]s exists and equals

ZAZt AV;, Vs 0, T].
t<s

In particular, V' is a finite quadratic variation process.

Proof. We need to prove the u.c.p convergence to zero of

1
: /}0 lssons = 200asap =Vt = Y A7, AV, (5.27)
S t<s

As usual the realization w € Q will be fixed, but often omitted. Let (¢;) be the
enumeration of all the jumps of Z(w) in [0, T]. We have

lim |AZ;, (w)| = 0.

11— 00

Indeed, if it were not the case, it would exists a > 0 and a subsequence (¢;,) of (t;)
such that |AZt¢l| > a. This is not possible since a cadlag function admits at most
a finite number of jumps exceeding any a > 0, see considerations below Lemma 1,
Chapter 2 of [16].

At this point, let v > 0 and N = N(v) such that
n>N, |AZ,| <7 (5.28)

We introduce

-

N
A(€, N) = U]tz - E,ti], B(E, N) = }ti_l,tz‘ - E], (529)
=1

=1

and we decompose ([5.27)) into

I4(e,N,s)+ 1Ipi(e,N,s) + Ipa(e, N, s) (5.30)
where
1
IA(E,N, 8) = - / (Z(tJrs)/\s - Zt)(V(tJre)/\s - Vt) dt
€ J]o, sjnA(e,N)

N
- Z 1]0,5[(ti) Ath AWz?
=1

1
Ipy (57N7 3) =~ / (Z(t+s)/\s - Zt)((‘/(t+5)/\s - %) dt,
€ J]o,s)nB(e,N)
Ipa(N,s) == > iy g(t:) AZy, AV,

i=N+1
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Applying Lemma [5.3.11{to Y = (Yl, Y2) = (Z,V) and ¢(y1,y2) = (y% —y%)(y% —y%)
we get
IA(57 N) S) — 07
e—0

uniformly in s. On the other hand, for t €]t;_1, t; — €[ and s > t, by Remark |5.3.13
we know that (t +¢) A's € [ti—1, t;]. Therefore Lemma [5.3.12| with X = Z, applied
successively to the intervals I = [t;_1, t;] implies that

1
Tpi(e, N, s)] = - / Zions — ZellViesopns — Vil dt
€ J)o,s)nB(e,N)

1
§37/ Vitreyns — Vil dt
10,s]NB(e,N)

9
dt
<37 /} | Viereyns = Vil —

0,
dt
—sy [ L[,
10,s] € Jlt, (t+e)As]

dt
=3y [ AV, / dt
10, 5] [(r—e)*,r[ &

< 34| [V]Ir,

where 7 — ||V, denotes the total variation function of V. Finally, concerning

Ipa(N.s), by (5.28) we have

Ip2(N,8)| <v Yy g(ta) [AVL] < v [IV]Ir
i=N-+1

Therefore, collecting the previous estimations we get

limsup sup [la(e,N,s)+ Ipi(e,N,s)+ Ipa(N,s)| < 4v||V]|r,
e—0  s€[0,T]

and we conclude by the arbitrariness of v > 0. 0

Finally we give a generalization of Dini type lemma in the cadlag case.

Lemma 5.3.15. Let (G, n € N) be a sequence of continuous increasing functions,
let G (resp. F') from [0, T] to R be a cadlag (resp. continuous) function. We set
F, = G, + G and suppose that F,, — F pointwise. Then

limsup sup |F,(s)— F(s)| <2 sup |G(s)|.
n—oo  sel0,7) s€[0, T

Proof. Let 0 =ty < t; < ... < t, =T such that ¢t; = %, 1 =0,...,m. Let v > 0.
Let us fix m € N such that § (F, %) <, where p(F,-) denotes the modulus of
continuity of F. If s € [t;, ti+1], 0 <i < m — 1, we have

F,(s) — F(s) < Fp(tit1) — F(s) + G(s) — G(ti41)- (5.31)
Now

F(tivr) — F(s) < Fa(tiv1) — F(tiv1) + F(tiv1) — F(s)
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< (F ;) b Ba(tinn) — Fltian). (5.32)
From and it follows
Fu(s) — F(s) < Fu(tip1) — F(tis1) + G(s) — Gltis1) + 6 <F ;)
< A6 +8 (. o) + 1 Faltinn) = Flt)l (5.33)
where [[Gloo = Supacp 71 [G(9)]. Similarly,
F) = Fule) 2 -2Gll 3 (£ L) = IRae) = Fla)l - (530

So, collecting (5.33)) and (5.34) we have Vs € [t;, ti+1]

Fa(s) = PO < 206 +6 (B ) 4 1P = FI+ Falti) ~ Pt

Consequently,
sup_[F(s) ~ F(5) < 2l + 6 7 )+Z\F F)l. (53
s€[0,T]
Recalling that F,, — F' pointwise, taking the lim sup in we get
1
limsup sup |F,(s) — F(s)] <2||G||loc + 9 <F, ) :
n—oo  s[0,7] m

Since F' is uniformly continuous and m is arbitrarily big, the result follows. O

5.4. Additional results on calculus via regularization

For every functions f, g defined on R, let now set

~(e,t, f,dg) /f HE) 9s+e)=9(s) ;o (5.36)

Ce(fi9)(t) =2 /]Ot] (f(s+2) = f(s))(g(s + &) — g(s)) ds. (5.37)

Definition 5.4.1. Assume that X,Y are two cadlag processes. We say that the
forward integral of Y with respect to X exists in the pathwise sense, if there exists
some process (I(t),t > 0) such that, for all subsequences (&), there is a subsequence
(€n,,) and a null set N with

Yw ¢ N, klim I (en,, 1, Y,dX)(w) — I(t)(w)] =0 vVt >0, a.s.
—00

Definition 5.4.2. Let X, Y be two cadlag processes. the covariation between X and
Y (the quadratic variation of X ) exists in the pathwise sense, if there exists a cadlag
process (I'(¢),t > 0) such that, for all subsequences (e,,) there is a subsequence (g, )
and a null set N:

Vg N, lm |G, (X Y)(B)@) ~THW)] =0 >0, as.
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Proposition 5.4.3. Let X,Y be two cadlag processes. Then

I7P(e,t,Y,dX) = I (e,t,Y,dX)+ Ry(e, 1) (5.38)
XYUP (1) = Co(X,Y)(t) + Rale, 1), (5.39)
where
Ri(e,t)(w) = 0 i=1,2, Vte|0, T], Vw € Q. (5.40)
E—r

Moreover, if X is continuous, then the convergence in (5.40) holds u.c.p.

Proof. We fix t € [0, T]. Let v > 0. The definition of right continuity in ¢ insures
that there exists § > 0 small enough such that

|IX(t) — X(a)| <y if a—t<d,a>t,

Y(t)—Y(a)| <y if a—t<d, a>t.
We start proving ([5.38)). From decomposition ([5.14)) and the definition of I~ (e,t,Y,dX)
we get

- 1 [t

[P (e, 1, Y, dX) — I~ (e,£,Y,dX) = + / Y (s) [X(£) — X(s)] ds
(

& J(t—e)t

9

¢
_ 1/ V() [X(t) = X(s+2)|ds = Ra(c, t).
& J(t—e)+
Choosing € < § we get
[Ri(e,t)| < v 1Y ]|os,

and since 7 is arbitrary, we conclude that Rj(e,t) — 0 as € goes to zero, for every
t €0, T].

It remains to show . To this end we evaluate

(X, Y]EP(t) — Ce(X, Y)(t) = i/(t | [X () = X(s)] [Y(t) = Y(s)] ds

- é /<:€>+ [(X(s+e) = X(s)][Y(s+¢e) —Y(s)]ds
= RQ(&“,LL).
‘We have
&@ﬂziA)MW—X@HW@—Y@MS
1 t
—EAEMw@+@—X@myw—Y@mm
1 t
_i/( (X(s+¢e)—X(s)][Y(s+¢e)—Y(s)]ds

~+
|
o
~
+
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_! / [X(£) = X (s + )] [V (t) — Y(s)] ds
(

€ J(t—e)+
b2 [ X - XY ) - Vis+)ds
€ J(t—e)+

Choosing € < §, the absolute value of previous expression is smaller than
29 (1Y oo + [1Xlo0)-

Since 7 is arbitrary, Ra(e,t) — 0 as € goes to zero, for every t € [0, T.

Suppose now that X is continuous. The expression of Ry(e,t) can be uniformly (in
t) bounded by 2p(X, ¢) ||Y ||, where p(X, ) denotes the modulus of continuity of X;
on the other hand Ry(e,t) < 2p(X,¢) ||Y]|c0, ¥t € [0,T]. This concludes the proof of

Proposition [5.4.3 O
Corollary 5.4.4. Let X,Y be two cadlag processes.

1) If the stochastic integral of Y with respect to X exists, then it exists in the
pathwise sense. In particular, there is a null set N and, for any sequence
(en) 4 0, a subsequence (ey, ) such that

k—o0

I (en,,t,Y,dX)(w) — ( st_Xs> (w) Vtel0o,T], Vwe¢ N.  (5.41)
0,1]

2) If the covariation between X and Y exists, then it exists in the pathwise
sense. In particular, there is a null set N and, for any sequence (€,) ] 0, a
subsequence (e, ) such that

Ce,, (X,Y)(t)(w) k—> [X,Y], (w) Vtel0,T], Vw¢N. (5.42)
—00
Proof. The result is a direct application of Proposition O

Lemma 5.4.5. Let g : [0, T] — R be a caglad process, X be a cadlag process such
that the quadratic variation of X exists in the pathwise sense, see Definition |5.4.5.
Setting (improperly) [X, X] =T, we have

S dt S
/ 9t (X(t4e)ns — Xy)? = - / gt d[X, Xy u.cp. (5.43)
0 0

Proof. We have to prove that

S dt S
sup /O 9t (X(tJrs)/\s_Xt)2 8_/0 gt d[X7 X]t

s€[0,T)

250 ase goes to zero. (5.44)

Let €, be a sequence converging to zero. Since [X, X| exists in the pathwise sense,
there is a subsequence ¢, , that we still symbolize by &, such that

n—oo

C., (X, X)(t) — [X,X]y Vtel0,T]as. (5.45)
Let N be a null set such that
Co (X, X)(w,t) =3 [X, X]s(w) Vtel0,T], Vw ¢ N. (5.46)

n
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From here on we fix w ¢ N. We have to prove that

S dt S
/0 g (Xpaenyns — X2 20— /0 adlX, X],

€n

sup
s€[0,T)

=% 0. (5.47)

We will do it in two steps.

Step 1. We consider first the case of a caglad process (g:) with a finite number
of jumps.

Let us fix v > 0, € > 0. We enumerate by (¢;);>o the set of jumps of X (w) on

[0, T'], union {T'}. Without restriction of generality, we will assume that the jumps
of (g¢) are included in {¢;};>0. Let N = N(w) such that

doAX,P <2 > |Agul =0 (5.48)
i=N+1 i=N+1
We define
N
A(e,N) = [Jlti—e, ti]
=1

B(e,N) = [0, T]\ A(e, N).
The term inside the supremum in ([5.44) can be written as
1
2’5/] }gt (X(t+s)As_Xt)2dt_/] }gtd[X,X]t = Jl(s, 5)—|—J2(S, 6)+J3($, 6),
0,s 0,s

where

1

Ji(e, N, s) / = X2t = 1 (h) (AX)2 g,
é_ ]OS]OASN) X(tre)n ¢ ; 0,5 (t) (AX,)? g

1
Jo(e, N, s) / ¢ (Xipe — Xy)? dt
10 s]ﬂB(aN)

- /]0 XX 10 (A%, g,

1=N+1
1
J3(8, N, S) = / gt [(X(t—i-s)/\s — Xt)2 — (XtJra — Xt)z] dt.
10, sjNB(e,N)

Applying Lemma [5.3.11| to Ji(e, N, s), with Y = (Y1, Y?) = (¢, X) and ¢(y1,%2) =
9y (i — 13)%, we get
lim sup |Ji(e, N, s)| =0. (5.49)
£05¢(0, 7]

Concerning Js(g, N, s), we have
‘J3 (67 N: 8)|

dt

dt 5
2 /0 9t 1e,n) () (X(p4eins — Xi)? -

= ’/0 9t 18(e,n) () (Xtge — Xt) P

lleo 5 "
= : J (/ L (t) ([ Xere — X + | Xs — Xif?) 5) .
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We recall that
N

B(e,N) = |Jlti-1, ti — €.
i=1
From Remark [5.3.13| it follows that, for every t €]t;—1,t; — €| and s > t, (t +¢€) A
s € [ti—1, t;]. Therefore Lemma |5.3.12| applied successively to the intervals [t;_1, t;]
implies that

limsup sup |J3(g, N, s)| < 1892 |g||oo- (5.50)
e—0  s€[0,T]

It remains to evaluate the uniform limit of Ja(ey,, N, s). We start by showing that,
for fixed s € [0, T], we have the pointwise convergence

1
J2(€n, N, 8) = — / gt (Xt+5n — ‘th)2 dt
€n J)0, s)NB(en,N)
[ wdX XY ) (A% g
10, ] i=N+1
— 0, Vselo,T]. (5.51)
We prove now that
dt = .
e ®) (Krvey = X = 4 (AX 2+ XXE). 652)
Lt
It will be enough to show that, Vs € [0, T,
S dt =
| S im0 Kese, = X0 e > (AP + XX (559)
0 <n <s
iilzéu
By (5.45) and Lemma we have
s dt n—o0o
/ (Xiye, — X1)? — =X XIS+ D (AX)? Vse o, T). (5.54)
0 n t;<s
On the other hand, we can show that
S dt N
| Etaeni® e, = X025 3K Vse0.TL (5.5
0 €n .
=
Indeed
S dt ol
[ O Ko, = X = Y (03
=y
s dt al
< [ S taten ) Kreyne = %07 = (A%
n t?;<s
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for all s € [0, T]. The first addend converges to zero by Lemma applied
to Y = X and ¢(y) = (y1 — y2)?. The second one converges to zero by similar
arguments as those we have used to prove Proposition m This establishes .
Subtracting and , we get , and so .

We remark that the left-hand side of are positive measures. Moreover, we
notice that ¢ — ¢¢(w) is p-continuous, where p is the measure on the right-hand side
of . At this point, Portmanteau theorem and insure that Jo(ey,, N, s)
converges to zero as n goes to infinity, for every s € [0, T1.

Finally, we control the convergence of Jy(ep, N, s), uniformly in s. We make use
of Lemma [5.3.175 We set
1

Gn(s) = = o ]1B(z-:n,N)(t) (Xtte, — Xo)? g dt,

F(s) = /] X X
0,s

o0
G(s) = — Y 1y 4(t) (AXy,)? gy,
i=N+1
By (5.51)), F,, := G,, + G converges pointwise to F' as n goes to infinity. Since G, is
continuous and increasing, F' is continuous and G is cadlag, Lemma [5.3.15] implies
that

limsup sup [a(en, N 8)] < 292 [lgllo. (5.56)
n—oo  s€l0,T]
Collecting (j5.49), (5.50) and (5.56)), it follows that

S dt S
/o gt (X(t+sn)/\s - Xt)2 P /0 g d[X, Xt

n

limsup sup < 207* |9 |-

n—oo  sel0,7)

Since 7 is arbitrarily small, (5.47)) follows.

Step 2. We treat now the case of a general caglad process (g¢).

Let us fix v > 0, ¢ > 0. Without restriction of generality, we can write g, =

97 BV 4 gy, where g; BV is a process with a finite number of jumps and g/ is such
that |Ag/| <~ for every ¢t € [0, T]. From Step 1, we have
S dt S
1= [ Ko = X0? == [ apxxy o7
n

converges to zero, uniformly in s, as n goes to infinity. Concerning (g;'), by Lemma
5.3.12| we see that there exists &g = €g(7y) such that

sup g2 —g/| < 3. (5.58)
a, tel
la—t|<&g

At this point, we introduce the caglad process

2k—1

k?
9" = Z 9ia-k ig—n, (i 1)2-47) (), (5.59)
i=0
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where k is such that 27% < &5. From (5.59), taking into account (5.58), we have

k7
9 = 97 = 19{ Yio-r 1, (i41)2-k 1y (t) — 9]y <3y V[0, T]. (5.60)
We set

n S dt S
Ig’ 1:/0 (92 - Qfﬁ) (X(t+€n)/\s - Xt)2 - —/0 (g? - Qfﬁ)d[Xa Xl

From (5.60)

sup |
s€[0,T]
with
= sup (X(t+€n)/\s - X)) — |+ [X, X]r. (5.61)
neN,s€[0, 7] | Jo €n

Notice that I" is finite, since the term inside the absolute value in ([5.61]) converges
uniformly by Step 1 with g = 1. On the other hand, by definition, (g;"") has a finite
number of jumps, therefore from Step 1 we get that

n S dt S
3 = /0 05 (Kpanpns — X2 & /0 gk dIX, X, (5.62)

€n

converges to zero, uniformly in s, as n goes to infinity. Finally, collecting all the
terms, we have

S dt S
/o 9t (X(penyns — Xe)* — — /0 g d[X, Xt

€n

limsup sup
n—oo  sel0,T]

<limsup sup [I}"|+limsup sup [I2"|+limsup sup |I>"

n—oo  sel0,7) n—oo  sel0,T] n—oo  sel0,T]
< 34T (5.63)
and since -y is arbitrarily small, the result follows. (|

Remark 5.4.6. Let X be a cadlag processes. From Corollary 2) and Lemma
with g = 1, the following properties are equivalent:

e X is a finite quadratic variation process;

e [X, X] exists in the pathwise sense.

Proposition 5.4.7. Let X,Y be two cadlag processes. The following properties are
equivalent.

(i) [X,X], [X,Y], [Y,Y] exist in the pathwise sense;
(ii) For all (en) | O there is (en,) and a null set N such that, Vw ¢ N,
dCEnk ( )

(w) —> d[X,Y](w) weakly,
dC., (X, X)(w) —> d[X, X](w) weakly,
(

Eny,

dCe,, (Y,Y)(w) = dlY,Y](w) weakly.
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(iii) For every caglad process (gt),

ii_% Os 0 (X((t+e)Ns)— X(t))E(Y((t +e)As)=Y(t) 0

S
Z/ 9t d[X, Y]t u.cp.,
0

b [ K A9 - X@P
e—=0 Jo g

:/Osgtd[X,X]t u.c.p.,
S (Y((t+e)As)—Y(1)?

lim gt
e—0 0

:/ g dlY, Y], u.c.p.
0

dt

3

Proof. Without loss of generality, we first reduce to the case g > 0. Using polarity
arguments of the type

X+Y,X+Y], =X, X;+ Y, Y];+2[X,Y]
(X +Y, X+ Y[EP(t) = [X, X]ZP() + [V, YIEP (@) + 2 [X, Y]EP (1),
we can reduce to the case X =Y.

(i) implies (iii) by Lemma [5.4.5

(i) follows from (iii) choosing g = 1 and Corollary 2).

(i) implies (ii) by Portmanteau theorem. O
Remark 5.4.8. Let X,Y be two cadlag processes. The equivalence (i) = (iii) in
Proposition [5.4.7 with ¢ = 1 implies that the following are equivalent:

e (X,Y) admits all its mutual brackets;
e [X,X], [X,Y], [Y,Y] exist in the pathwise sense.

Proposition 5.4.9. Let X be a finite quadratic variation process. The following are
equivalent.

(i) X is a weak Dirichlet process;

(i) X = M+ A, [A,N] = 0 in the pathwise sense for every N continuous
local martingale.

Proof. (i) = (ii) obviously. Assume now that (ii) holds. Taking into account
Corollary 2), it is enough to prove that [A, N| exists. Now, we recall that,
whenever M and N are local martingale, [M, N] exists by Proposition Let N
be a continuous local martingale. By Remark [X, X] and [N, N]| exist in the
pathwise sense. By additivity and item (ii), [X, N] = [M, N] exists in the pathwise
sense. By Remark[5.4.8] (X, N) admits all its mutual brackets. Finally, by bilinearity

[A,N] = [X,N] — [M,N] =0.
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5.5. It6 formula for C'? functions

5.5.1. The basic formulae. We start with the It6 formula for finite quadratic
variation processes in the sense of calculus via regularizations.

Proposition 5.5.1. Let X be a finite quadratic variation cadlag process and F :
[0, T] x R — R a function of class C*2. Then we have

t ¢
F(t, Xy) :F(O,Xo)—l—/ 0sF (s, Xs) ds+/ 0 F(s,Xs)d™ X
0

/ ) d[X, X

+ [ F(s,Xs-) — 0:F (s, Xo-) A X (5.64)

s<t

Proof. Since X is a finite quadratic variation process, by Lemma taking into
account Definition and Corollary 2), for a given cadlag process (g;) we
have

8 dt <0
/Ogt(X(t+a)/\s_Xt)2 = /gt— [X, X]: u.c.p.

02, F(t, X)
2

Setting g; = 1 and ¢y = , there exists a positive sequence ¢, such that

) s dt
Hm [ (X(en)ns — X;)? = =[X, X]s, (5.65)
n—oo [q En
o [TO5F(t Xy) o dt 82 F(t, X;_)
nlg)go i 5 (X(tenyns — Xt) o= /]0 ; S d[X, X, (5.66)

uniformly in s, a.s. Let then N be a null set such that (5.65]), (5.66]) hold for every
w ¢ N.
In the sequel we fix v > 0, ¢ > 0, and w ¢ N, and we enumerate the jumps of
X(w) on [0, T] by (ti)i>0. Let N = N(w) such that
> AX, (w)]P <A (5.67)
i=N+1

From now on the dependence on w will be often neglected. The quantity
1 S
Jole, 5) = 2 / F((t+2) A s, Xyons) — F(t X)Jdt, s€[0.T]  (5.68)
0

converges to F(s, Xs) — F(0, Xo) uniformly in s. As a matter of fact, setting Y; =
(t, X;), we have

1 1
JO(E, S) = / F(}/(t+€)/\s) dt - = F(E) dt
[0, s [0, 5[
1 1
- / F(Yips)dt — = F(Y;)dt
e, s+el [0, s
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—2 [ a1 [ Fopa
€ [s, ste[ € [0, e[

ORI (oL
€ JIoel
— F(Ys) — F(Yy) uniformly in s. (5.69)
e—
As in (5.29)), we define
N
A(87 N) = U]tl — &, t’L]) (570)
i=1
N
B(e,N) = [ Jlti-1, ti — ] = [0, T\ A(e, N). (5.71)
i=1
Jo(e, s) can be also rewritten as
Jo(e, s) = Ja(e, N, s) + Jg(e, N, s), (5.72)
where
1 S
Ja(e, N, s) = 5/0 [F((t 4 ) As, Xppeyns) — F(t, Xo)] Laeny(t) dt, (5.73)
1 S
Jple Nos) = - /O F((t+2) A5, Xpropns) — F(t, X)) Lpe (£) dt. (5.74)

Applying Lemma [5.3.11] with n = 2 to ¥ = (Y1, Y?) = (t,X) and ¢(y1,92) =
F(yi,v?) — F(yd,y3), we have

N N
1 7
JAE N 5 =Y g/t F((t+ ) A 5, Xpsopns) — F(t, X0)] dt
i=1 i€

N
=8N o, (t) [F(ti, X4) — F(ti, X¢, )] uniformly in 5. (5.75)
=1

Concerning Jp(e, N, s), it can be decomposed into the sum of the two terms

1 S

Jpi(e, N, s5) = 5/0 [F((t+e) Asy Xipreyns) — F(t, Xgens)] Lpe,n (1) dt,
1 S

JB?(€7 N, S) = 5/0 [F(t7 X(tJrE)/\s) - F(t7 Xt)] 1B(E,N)(t) dt.

Expanding in time we get

JBl(E, N, 8) = J310(€, S) + J311(€, N, S) + J312(€, N, s) + J313(€, N, S), (5.76)

where
§ t ANs—1
T, 5) = / 8,F(t, Xt)(“)gsdt,
0
Nt (t+e)As—t
J N = — OF(t, X;)—F——dt
(e, N, s) > L F(t, Xi) - ;

i=1/ti—¢
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5 t+e)ANs—t
Jpi2(e, N, s) = / Ri(e, t, 8) 1pe,n) (1) (tre)ns—t )5 dt,
0
5 t+e)ANs—t
Toua(es Vo) = [ Rt ) Ly () L=
0

and
1
Ri(e, t, s) = /0 [OiF(t+a((t+e)As—1), Xipens) = OF (t, Xigeyns)] da,
(5.77)
Ra(e, t, 5) = Ol (t, X(14e)ns) — OcF(t, Xy). (5.78)
A Taylor expansion in space up to second order gives

Jpa2(e, N, s) = Jpao(e, s) + Jp21(e, s) + Jpaa(e, N, s) + Jpas(e, N, s), (5.79)

where
1 S
J320(€7 S) = 6/ 8xF(t, Xt) (X(t+e)As — Xt) dt, (580)
0
1 [®0% F(t, X
Jp21(g, 5) = / Oag (1, Xi) (X(t4e)ns — Xy)? dt,
€ Jo 2
1L [h
Jpaa(e, N, s) = — ;/t,-—a [&:F(t, Xt) (X(te)ns — Xt)
02, F(t, X
3 Bl (= X2
5 (X s Xt)2
Jpas(e, N, s) :/ R3(e, t, 8) 1p(e,n)(t) (t+a)A€ dt,
0
and

1
R3(57 i S) = / [6§zF(ta Xt + a<X(t+£)/\s - Xt)) - ag%:cF(ta Xt)] da. (5'81)
0

Let us consider the term Jpoa(e, N, s). Applying Lemma [5.3.11 with n = 2 to
Y =(YLY?) = (t,X) and ¢(y1,y2) = 0o F(y2,53) (7 — ¥3) + 02 F (y3, ¥3) (Wi — 13)°,
we get

lim JBQQ(E, N, 8)
e—0

N
0% F(t;, X;.
== To.g(t) [@F(ti, Xip ) (Xpy — X)) + W(Xti - Xi-)°
i=1
(5.82)
uniformly in s. Moreover, the term Jpio(e, N, s) can be in
S
Jpio(e, s) = / 8tF(t, Xt) dt + JBl(]/(E, 8) + JB1o~ (e, 8), (5.83)
0
with
5 s—t
JBlO/ (6, S) = @tF(t,Xt) dt, (5.84)
S—¢€ €
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S
Tpior(e, ) = — / OB (1, X,) dt. (5.85)
S—¢&
At this point we remark that identity (5.72)) can be rewritten as

Jo(e,s) = Ja(e, N, s) —|—/ O F (t, Xy)dt
0
+ JBlo/(e, S) + JBl()//(E, S) + JBH(S,N, S) + J312(€, N, S) + JBlg(E,N, S)
+ JBQ()(E, S) + JBgl(&?, S) + JBQQ(e, N, S) + J323(6,N, S). (5.86)

Passing to the limit in ([5.86]) on both the left-hand and right-hand sides, uniformly
in s, as € goes to zero, taking into account convergences (5.69), (5.75)), (5.82)), we get

F(s, Xs) — F(0, Xp)

s N
= [(0F(t Xt + Y 0.0t [Pt Xe) ~ F(t, X, )]
0 i=1

N
0% F(t;, Xe_
= T t) [0uF s X0 (3%, - i) = e M)
=1
+ii_r>l(l)(J320(E, N, s) + Jpai(e, s) + L(e, N, s)), (5.87)

where the previous limit is intended uniformly in s, and we have set
L(e,N,s) := Jpio (e, 8) + Jpro (g, s) + Jp11(e, N, s) + Jpia(e, N, s)
+ JBlg(E, N, S) + JBzg(E, N, 8).

We evaluate previous limit uniformly in s, for every w ¢ N. Without restriction of
generality it is enough to show the uniform convergence in s for the subsequence ¢,

introduced in (5.65))-(5.66]), when n — oo.
According to (5.66)), we get
02, F(t, X; )

I n8) = Yo 2t2) i X1, .
Jim Jom(en, ) = [ LS dx X, (589

uniformly in s.

We now should discuss Jpi2(en, N, s), Jis(en, N, s) and Jpas(en, N, s). In
the sequel, p(f,-) will denote the modulus of continuity of a function f, and by I;
the interval [t;—1, ¢;], [ > 0. Since %

get

< 1 for every t, s, by Remark 5.3.13| we

1B(5,N)(t) |R1(57 t S)| <p (atF’ 5)7

L) (8) [Ra(e, &, )| <p(0F, sup sup X, - X)),
! t,a€l]
[t—al<e

LN ()| Rs(e, t, s) Sp(ﬁixF, sup sup | X, — Xﬂ)).
L tael
lt—al<e
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Considering the two last inequalities, Lemma [5.3.12] applied successively to the in-
tervals I; implies

Lpe,n () [Ra(e, B, 5)| < p(0iF, 37),
1B(6,N)(t) |R3(5¢ t, 8)| < p(aiacF7 3'7)

(t+en)A\s—t
€

sup |Jp12(en, N, s)| < p(OiF, n) - T,

Then, using again <1, we get

s€[0,T]

sup |Jpis(en, N, s)| < p(OF, 37) - T,
s€[0, T

sup |Jpas(en, N, s)| < p(07,F, 37) - sup  [X, X]iP(s), (5.89)
s€[0,T] neN,se(0, T

where we remark that the supremum in the right-hand side of (5.89) is finite taking
into account (5.65)). Therefore

limsup sup |JB23(5n7 N, S)| = Io(a:%xFa 3’7) © Sup [Xv X]gsp(s)v (590)
n—oo  se(0,T] neN,se(0, T
limsup sup |Jgis(en, N, s)| = p(0:F, 3v) - T, (5.91)

n—oo  sel0,7]

while

lim sup |Jpia(en, N, s)| =0. (5.92)
=00 5¢(0,T)

Let now consider the terms Jpio/(en, S), Jp107(€n, s) and Jp11(en, N, s).

sup |Jpio(en, 8)| < sup |0 F (y)| - €n,
s€[0, T y €KX (w)x[0,T]
sup |Jpio7(en, 8)| < sup |0 F(y)| - €n,
s€[0, T y € KX (w)x[0,T]
sup |<]Bll(5n, Na S)| < sup |8tF(y)‘ N - €n,
s€[0,T) y € KX (w)x[0,T]

where KX (w) is the (compact) set {X;(w), t € [0, T]}. So, it follows

lim sup |Jpio(en, )|
n=00 s 0, T)

= lim sup [|Jpior(en, s)|
n=00 510, 7]

= lim sup |Jpii(en, N, s)| =0. (5.93)

=90 50, T
Taking into account (5.93)), (5.91)), (5.90), and (5.88]), we see that
limsup sup |L(en, N, s)| = p(07,F, 37) - sup  [X, X]2%(s) + p(OF, 37) - T.
n—oo  s€(0, T neN,s€(0, T
(5.94)

Recalling that Jpag(e, s) in (5.80) is the e-approximation of the forward integral
fg 0. F (s, Xs)d™ X5, to conclude it remains to show that

sup | Jp20(en, ) — J(s)] — 0 a.s., (5.95)
s€[0,T] n—00
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where
J(s) = F(s, Xs) — F(0, Xq) — O F(t, Xy)dt — Z [F(t, X;) — F(t, X;_)]
10, s] t<s
0% F(t, X,_
+ Z [@F(t, X ) (Xi— X)) + m(2t) (X, — Xt_)Q}
0<t<s
5 [ B X)X X (5.96)
10, 5]

In particular this would imply that f]o . 0. F(t, Xy)d~ X; exists and equals J(s).
Taking into account (5.86|), we have

T530(Ens 8) = Jo(Ens5) — Ja(ems N, 8) — / OF(t, X,) dt
0
— L(en, N, s) — Jpo1(en, 8) — Jp22(en, N, s). (5.97)

Taking into account ([5.96)) and (5.97]), we see that the term inside the absolute value
in (5.95) equals

Jo(en, s) — (F(s, Xs) — F(0, Xo))
N

- JA(5n7 N, S) + Z 1]0,8] (ti)[F<ti7 Xti) - F(tiv Xti—)]
=1
- J322(8n7 N7 ‘9)

aga:F(tiv Xti*)

X, — X, )?
5 (Xp, — Xi,)

N
=) 140 4(t) [BIF(t,-, Xe—) (X, — X, ) +
=1

1
e s) 4y [ OF( X dX. X,
10, 5]

— L(en, N, s)

+ 3 1.4(t) [F(ti, X)) — Flty, Xi, ) — 0 F(ts, X, ) (Xy, — Xz, )
i=N+1

8§mF(ti’ Xti_)

R

Taking into account (5.69), (5.75), (5.82), (5.92)), (5.94),we have

(Xti - Xti—)2 :

limsup sup |Jp2o(en, s) — J(9)]
n—oo  sel0, T

<limsup sup |L(en, N, s)|
n—oo  s€(0, 7]

+ sup { Z 1]075}(@')

s€0,T] ;N1

_ a%xF(t;’ Xti_) (AXti)Q‘}

F(tia Xti) - F(tiﬂ Xti—) - 8IF(ti7 Xti_) AXti
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= limsup sup |L(en, N, s)|
n—oo  sel0,7]

AX,)?
+ sup ( ) 1]0 g(t F(ti, X¢,— +a(AXy,)) da — D2 F(t;, Xti—)’
s€[0,T) N1
<p(OF, 37) - T+ p(02,F, 37) sup [X,X|“P(s)+~% sup |02, F(y)l,

neN,se(0,T] yeKX (w)x[0, T
(5.98)

where the last term on the right-hand side of ([5.98)) is obtained using (5.67]). Since
~ is arbitrarily small, we conclude that

lim sup |J320(5na ) - J(S)| = 07 Vw ¢ N.

N0 sel0,T]
This concludes the proof of the It6 formula. O
From Proposition Proposition ii), and by classical Banach-Steinhaus
theory (see, e.g., [46], Theorem 1.18 pag 55) for F-type spaces, we have the following.

Proposition 5.5.2. Let F' : [0, 7] x R — R be a function of class C* such that
O, F is Hélder continuous with respect to the second variable for some A € [0, 1[. Let
(Xt)telo,m) be a reversible semimartingale, satisfying moreover

Z IAX T < oo as.

0<s<t

Then

t t

F(t, X)) = F(0, Xp) +/ GSF(S,XS)der/ 0:F (s, Xs—)dXs
0 0
1
+ 5 [aﬂ?F('vX)v X]t + J(F,X)(t),

where

0 F (s, Xs) + 0 F (s, Xs—
2

JEX)t) = [F(S,XS)—F(S,XS_)— )AXS

0<s<t
Remark 5.5.3.
(i) Previous result can be easily extended to the case when X is multidimen-
sional.

(ii) When F' does not depend on time, previous statement was the object of
[59], Theorem 3.8, example 3.3.1. In that case however, stochastic integrals
and covariations were defined by discretizations means.

(iii) The proof of Proposition follows the same lines as the one of Theorem
3.8. in [59].
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5.5.2. It6 formula related to random measures. The object of the present

section is to reexpress the statement of Proposition making use of the jump

measure pX associated with a cadlag process X, recalled in Section m The

compensator of pX (dsdy) is called the Lévy system of X, and will be denoted by
X(ds dy) (for more details see Chapter II, Section 1, in [79]); we also define

X =vX({t}, dy) for every t € [0, T). (5.99)

Corollary 5.5.4. Let X be a finite quadratic variation cadlag process and F :
[0, T] x R — R a function of class C*2. Then we have

t t
F(t,Xt):F(O,X0)+/ asF(s,Xs)ds+/ O F (s, Xs)d™ X,
0

/ ) d[X, X

/ (F(s, Xs— +7) — F(s, Xs5-)) Liz<1) (u™ — ) (ds dx)

10, 8] xR -

_ / 20, F (5, Xoo) Lgery (1 — v%)(ds da)
10, ¢]xR B

+ / (F(s, Xs— +7) = F(8,Xs-) =10, F (5, X5-)) L z>1 u~ (ds dx)
10, ¢} xR

+ / (F (s, Xs— +2) = F(s, Xs-) —20:F (8, Xs-)) 1 (o<1} vX (ds dz).
10, ¢} xR N
(5.100)

Proof. We set

Wg(x) = (F(S,Xs_ + x) - F(S,XS_) — l‘axF(S,XS_)) 1{\x|§1}7
K(r) = (F(s, Xs— +2) — F(s, Xs-)) 1{jz<1}>
Yi(z) = m@xF(s,Xs,)lﬂﬂq}.

By Propos1t10ns ]W\ * X belongs to A .» while Proposition insures
that K2 « ,u and Y2 * X belong to Atc. Then Proposition implies that
W e 9106( X) and that the stochastic integral W  (uX — %) can be decomposed as
WX —W s X, On the other hand, since K, Y belong to 910C( ) (see Lemma
2.) By Theorem it follows that K, Y belong to Gi (u*) and that moreover
K x (u* —vX), Y « (MX — vX) are purely discontinuous square integrable local
martingales. g

5.6. About weak Dirichlet processes

5.6.1. Basic definitions. We consider again the filtration (F;);>¢ introduced at
Section which will be, without further mention, the underlying filtration.

Definition 5.6.1. Let X be an (JF;)-adapted process. We say that X is (JFy)-
orthogonal if [X, N] = 0 for every N continuous local (J%)-martingale.
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Remark 5.6.2. Basic examples of (J;)-orthogonal processes are purely discontinu-
ous (F;)-local martingales, see Theorem [A.6

Proposition 5.6.3. If M is a purely discontinuous (F;)-local martingale, then

(M, M]; = (AM,)*.

s<t

Proof. The result follows from Theorem 5.2, Chapter I, in [79], and Proposition
5.3.8(i). O

Definition 5.6.4. We say that an (F;)-adapted process X is a Dirichlet process if
it admits a decomposition X = M + A, where M is a local martingale and A is a
finite quadratic variation process with [A, A] = 0.

Definition 5.6.5. We say that X is an (F;)-adapted weak Dirichlet process if it
admits a decomposition X = M + A, where M is a local martingale and the process
A is (Fy)-orthogonal.

Definition 5.6.6. We say that an (J;)-adapted process X is a special weak Dirichlet
process if it admits a decomposition of the type above such that, in addition, A is
predictable.

Remark 5.6.7. Obviously, a Dirichlet process is a special weak Dirichlet process.

Proposition 5.6.8. Let X be a special weak Dirichlet process of the type
X =M+ M4 A, (5.101)

where M€ is a continuous local martingale, and M% is a purely discontinuous local
martingale. Supposing that Ay = Mél = 0, the decomposition 1S unique.
In that case the decomposition X = M + M®* + A will be called the canonical
decomposition of X.

Proof. Assume that we have two decompositions X = M¢+ M4+ A = M + M? +
A’ with A and A’ predictable, verifying [A, N] = [A’, N] = 0 for every continuous
local martingale N. We set A= A — A’, M¢ = M¢— M and M4 = M%— M?. By
linearity, M€+ M%+ A = 0. We have

0=[M°+ M+ A M
= [M®, M°) + [M?, M) + [A, M€]
= [M¢, M,
therefore M€ = 0 since M€ is a continuous martingale. It follows in particular that

A is a predictable local martingale, hence a continuous local martingale, see e.g., the
point 2) of the Remarks after Definition 7.11 in [73]. In particular

0 — (NI, N1%) + [, N2) = (37", 37

and, since Mg = 0, we deduce that M9 = 0 and therefore A = 0. U



190 Chapter 5. Weak Dirichlet processes with jumps

Remark 5.6.9. Every (F;)-special weak Dirichlet process is of the type (5.101)).
Indeed, every local martingale M can be decomposed as the sum of a continuous

local martingale M¢ and a purely discontinuous local martingale M?, see Theorem
4.18, Chapter I, in [79].

Corollary 5.6.10. Let X be an (F;)-special weak Dirichlet process. Then, for every
t e o0, T,

(i) [X7 X]t = [Mcv Mc]t + Zsﬁt(AXt)2;

(i) [X,X]§ = [M€, M.
Proof. (ii) follows from (i). Concerning (i), by the bilinearity of the covariation,

and by the definitions of purely discontinuous local martingale (see Remark [5.6.2))
and of special weak Dirichlet process, we have

[X7X]t = [McvMC]t + [Md7Md]t
= [M¢, M+ ) (AM)?

s<t

= [M° M+ ) (AX,),

s<t
where the second equality holds because of Proposition [5.6.3 O
We give a first relation between semimartingales and weak Dirichlet processes.

Proposition 5.6.11. Let S be an (F;)-semimartingale which is a special weak Dirich-
let process. Then S is a special semimartingale.

Proof. Let S = M' + V such that M! is a local martingale and V is a bounded
variation process. Let moreover S = M? + A, where a predictable (F})-orthogonal
process. Then 0 = V — A + M, where M = M? — M'. So A is a predictable
semimartingale. By Corollary 8.7 in [73], A is a special semimartingale, and so by
additivity S is a special semimartingale as well. O

5.6.2. Stability of weak Dirichlet processes under C%! transformation. We
begin with the C'? stability.

Lemma 5.6.12. Let X = M+A be a cadlag weak Dirichlet process of finite quadratic
variation and F : [0,T] x R = R be a CY? real-valued function. Then

t
F(t, X,) = F(0, Xo) + / 0, F (s, X, ) dM,
0
+/ (F(s, Xs— +2) = F(s, Xs-))1ja|<1} (1 — X)) (ds dzx),
10, ¢} xR
- / 20 F (s, Xs—) 1yjz<1} (™ — v¥)(ds dz),
10, ¢} xR -

+/ (F(S,XS, + .%') - F(S7XS,) - .’IL‘@;BF(S,XS,))1{|$|>1} N’X(ds d.%')
10, ¢} xR
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+ T8 (1), (5.102)

where

/anX ds+/8FsX dA+/ )d[X, X

/}0 t]XR(F(S yXs— + ) — F(s,X5-) — 20 F (s, X5 ))1{|m|<1}u (ds dx).
(5.103)

Remark 5.6.13. Taking into account Proposition [5.3.3] we can observe that, if A
is predictable, then I''" is a predictable process for any F € C12.

Proof. Expressions ((5.102))-(5.103)) follow by Corollary in particular by (5.100)).

We remark that, since M is a local martingale and 0,F(s, Xs) is a cadlag process,
by Proposition [5.3.8}(ii) we have

t t t
/ 0,F (s, X.)d~ X, = / B, F (s, X.) d— M, + / 0, F (s, X.) d~ A,
0 0 0

t ¢
= /8xF(S,XS_)dMS—|-/ 0. F(s,Xs)d™ As.
0 0
]

Theorem 5.6.14. Let X = M + A be a cadlag weak Dirichlet process of finite
quadratic variation. Then, for every F :[0,T] x R — R of class C%', we have

t
F(t, X;) = F(0, Xo) +/ 0o F (s, X, ) dM,
0
[P X 1) = (. X)Ly (% = ) (ds do)
10, ¢} xR
— / 20 F (s, Xs—) 1qjz<1} (™ = v™)(ds dx)
10, t]xR -

+ / (F(S, Xsf + ZL‘) — F(S, Xsf) — l‘axF(S, XS,)) 1{|x\>1} ,LLX(dS dl‘) + FF(t),
10, ¢} xR
(5.104)

where TF : CO1 — DU js q continuous linear map, such that its restriction to C12
is given by (5.103). Moreover, for every F € CY1, it fulfills the following properties.

(a) [TF, N] =0 for every N continuous local martingale.
(b) If A is predictable, then T'F is predictable.

In particular point (a) implies that F (s, Xs) is a weak Dirichlet process when X is
a weak Dirichlet process.

Proof. In agreement with ([5.104)) we set

I7(t) := F(t, X;) — F(0, Xo) — /t O F (s, Xs_) dM, (5.105)
0
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_ / {F(8, Xoe +2) — F(8, Xa_) — 20, F (s, Xo_)} Lyjapony 1 (ds d)
10, ¢} xR

- / {F(s, X5 +2) = F(5,Xs-) =10 F(5, X5 )} Lyjzj<1y (u® — v¥)(ds dzx).
10, t]xR N

We need first to prove that C%! > F s T'F(t) is continuous with respect to
the u.c.p. topology. For this we first observe that the map F — F(t, X;) —
F(0,X,) fulfills the mentioned continuity. Moreover, if F* — F in C%!, then
fg(@xF" — 0y F) (s, Xs_) dMs converges to zero u.c.p. since 0, F"(s, Xs_) converges
to 0, F (s, Xs—) in L, see Chapter II Section 4 in [110].

Let us consider the second line of . For almost all fixed w, the process
X has a finite number of jumps, s; = s;(w),1 < i < N(w), larger than one. Let
F™ — F in C%'. Since the map is linear we can suppose that F' = 0.

sup
0<t<T

/ (F"(s5, Xoo () + ) — F"(s, Xo— ()
10, ] xR
— 20, F" (5, Xs— (w)) } Lija|>1} 1 (w, ds dx)

<[ X @)+ ) - s X (@)
10, T]xR

0. F" (5, Xo ()] 1oy 1 (w, ds )

N(w)
= D IF (51, X, (@) = F™ (81, Xsi- (W) = AXo, (@) 8 F" (81, X, ()] Ljax,, @)1}
i=1

— 0.
n—oo

This shows in particular that

/ {F" (5, Xs—(w) + ) = F"(5, X5 (w)) — 20 F" (5, Xs—(w))} Lfjz|>1} p (w, ds de)
10, - ]xR
— 0 u.c.p.

and so the map defined by the second line in (5.105]) is continuous.

Finally, the following proposition exploits the continuity properties of the last
term in ([5.105)), and allows to conclude the continuity of the map I'" : €01 — Duep,

Proposition 5.6.15. The map
1:C% — Dpur

g = G7 (37 Xs—, [l?) 1{\x|§1} (MX - VX)(dS d.%'),
10, xR

where
GI (57 3 33) = 9(87 §+$) - 9(375) - xafg(sv 5)7 (5106)

15 continuous.
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Proof (of the Proposition). We consider the sequence (7;);>1 of increasing stopping
times introduced in Remark (ii) for the process Y; = (X;—, Y, |AX,[?). Since
Q =Uj{w: my(w) > T} a.s., the result is proved if we show that, for every fixed 7 = 7,

g 1prory(©) [0 G Ko @) gy (v (s )
L%

is continuous. Let g” — g in C%!. Then G9" — GY in C°(]0, T] x R?). Since the
map is linear we can suppose that g = 0. Let g > 0. We aim at showing that
P( sup 1{T>T}(w>/ G9" (s, Xomy @) Ljjgi<ay (W — v¥)(dsdz)| > 80)
te[o, T 10, 8] xR

— 0. (5.107)

n—o0

Let W(z) (resp. by W) denote the random field G9" (s, X,_, x) L{jz)<1} (resp. the
process [ G9" (s, Xs_, x) Lja)<1} X (dx)), and define

e / Wi(z) (X — o) (ds dz).
10, ] xR

(5.107)) will follow if we show that

P( sup |If\,] >e0) — O. (5.108)
t€[0, 7] n—00

For every process ¢ = (¢¢)¢, we indicate the stopped process at 7 by ¢](w) :=
Pinr(w)(w). We have

(W25 5 X)T e AT, (5.109)

As a matter of fact, let M such that sup,cp 77 [Yiar 1{r>0)| < M. Recalling Remark
an obvious Taylor expansion yields

E / W (@) 1X (ds, da)
10, tAT]XR

<2 sup |0.9"(t y)
ye[vaM]
teo, T)

B Y IAX P Igax < oy + AX P 1ax <y Lo

0<s<T
<2 sup |dug"[(t,y) - (M +1). (5.110)

ye[_Ma M]
te[0, T]

It follows that W™ 15 1 € G2(uX) (see e.g. Lemma 1., and consequently, by
Proposition 3.66 of [77],

I}, is a purely discontinuous square integrable martingale. (5.111)
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On the other hand, W" € G2 (u%), and by Theorem 11.12, point 3), in [73], it
follows that

mez/ \mwwﬂwww—Z|MWs/ W (2)]2 o (ds da).
10, ¢} xR 0<s<t 10, ¢} xR
(5.112)

Taking into account (5.111)), we can apply Doob inequality. Using estimates ((5.110]),
(5.112) and (5.111)), we get

1
P[WPU%A>%]S2EU$Mﬂ
te(0, T) €0
1
— SB[, )]
0
2(M +1
<2 - ) sup 029" (¢, )
60 yE[—M,M]
te0, T

Therefore, since 9,¢"™ — 0 in CY as n goes to infinity,

lim P | sup |[[x,] >¢e0| =0.
n=00 g0, T

O
We continue the proof of Theorem 5.6.14L The restriction of the map I'*' to C'12

is given by ([5.103)), taking into account ([5.105) and Lemma |5.6.12} It remains to

prove items (a) and (b).

(a) We have to prove that, for any continuous local martingale N, we have

[F(~,X) - / 0, F (s, X,_) dM,
0
_/ {F('S?XS* —I—CL') - F('S?XS*) - :EaIF(‘S’XS*)} 1{|;t\>1} MX(dS d$)
10, xR

_AJ ] R{F(S,Xs_ +xz)— F(s,Xs-) —x 0, F(s,Xs_)} L{jaj<1) (MX _ VX)(ds dz), N
, X

=0.
We set
Y; = / Ws(x) Lijz)<1} (uX — I/X)(ds dx),
10,t] xR
Zt = / WS(SE) 1{‘$|>1} ,uX(dS dl’)
10, ¢} xR
with

Ws(z) = F(s,Xs— +2) — F(s,Xs5—) — 20, F (s, Xs5-).
Since Z is a bounded variation process (X has almost surely a finite number of jumps
larger than one) and N is continuous, Proposition [5.3.14] insures that

[Z,N] = 0.
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By Proposition W21{‘x|§1} * pX € Afgc, therefore W1y, <1y belongs 91200(,“)()

as well, see Lemma 2. In particular, by Theorem (iii), Y is a purely discon-
tinuous (square integrable) local martingale. Recalling that an (F;)-local martingale,
null at zero, is a purely discontinuous martingale if and only if it is (F;)-orthogonal

(see Remark [5.6.2), from Proposition [5.3.8} (i) we have
Y. N] =0.
From Proposition [5.3.8}(iii), and the fact that [M, N] is continuous, it follows that

[/ 8xF(s,XS)dMS,N} = / 0. F(s,Xs—)d[M,N],.
0 0
Therefore it remains to check that
[F(-,X),N]; = / 0. F(s,Xs—)d[M,N],. (5.113)
0

To this end, we evaluate the limit of

1

t
2 [P0 A X ) = F(5,X00) (Vi = N s

1

t
- 8/0 (F((s + &) At X(speyn) = F((s +2) AL, X)) (N(sse)ne — Ns) ds

1 t
+ z /0 (F((s+e) Nt, Xs) — F(s, Xs)) (N(spe)at — Ns) ds
=:Ii(g, t) + Iz(e, t).
Concerning the term I (e, t), it can be decomposed as

11(8, t) = 111(6, t) + [12(8, t) + 113(8, t),

where

1 t
Lii(e, t) = 5/0 0. F (s, X5) (N(s+z-:)/\t - NS)(X(S+€)/\t — X,)ds,
1 t

Lio(e, 1) = €/ (OuF((5+ ) A1, Xa) — DaF (5, Xs))-
0
’ (N(s+5)At - Ns)(X(s+s)/\t - Xs) ds,
1 t 1
nae, )= 2 [ ([ @O+ At X+ alXrn = X

SOuF (s +€) A X)) (Nigyne = Vo) (Ko = X2) s

Notice that the brackets [X, X], [X, N] and [N, N]| exist. Indeed, [X, X] exists by
definition, and [N, N] exists by Proposition [5.3.8}(i). Concerning [X, N], it can be
decomposed as

[X’N] = [MaN] + [A,N],
where [M, N] exists by Proposition [5.3.8}(i) and [A, N] = 0 by assumption, since A
comes from the weak Dirichlet decomposition of X.
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Then, from Corollary 2) and Proposition (iii) we have

t
In(e ) = | 8eF(s, Xo ) dIM, N e (5.114)

At this point, we have to prove the u.c.p. convergence to zero of the remaining terms
Lia(e,t), Lis(e,t), Io(e,t). First, since 0, F is uniformly continuous on each compact,
we have

Ts(e, 0] < p(0:F o) VIX XTI, NET, (5.15)

[0, T]xKX
where K¥ is the (compact) set {X;(w) : t € [0, T]}. When & goes to zero, the mod-

ulus of continuity component in (5.115)) converges to zero a.s., while the remaining
term u.c.p. converges to /[X, X];[N, N]; by definition. Therefore,

Lia(e, t) — 0 u.c.p. (5.116)

Let us then evaluate I13(t, €). Since [X, X]¢?, [N, N]¢? u.c.p. converge, there
exists of a sequence (g,,) such that [X, X|e?, [N, N]zF converge uniformly a.s. re-
spectively to [X, X], [IV, N]. We fix a realization w outside a null set. Let v > 0. We

enumerate the jumps of X (w) on [0, T| by (¢;)i>0. Let M = M (w) such that

Z |AXti|2 < '72-
i=M+1
We define
N

Alen, M) = U It; — e, t]

B(en, M) = [O T\ A(ep, M).
The term I13(gp, t) can be decomposed as the sum of two terms:
I{(en, t Z/ — 1]0 1(8) (X(sten)nt = Xs) (N(sten)nt — Ns)-

/ (0:F((s +en) Nty Xs + a(X(sqenne — Xs)) — 0= F((s +en) A t, Xs)) da,
0
1

(e, t) = — [0 ) (X(stemnt — Xs) Nistenynt — Ns) RP (e, 5,, M) ds,
with
RB(gna S, ta M) =

1

1B(an,M)(S) / [0:F((s +en) N t, X + a(X(s+an)/\t — X)) — 0 F((s + &) N t, X)] da.
0

By Remark [5.3.13] we have for every s, t,

RB(e,,s,t, M) < p(&mF

,sup  sup \XQ—XTO,
0,T]xKX 1 ra€lti_1,t]

|r—al<en
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so that Lemma |5.3.12| applied successively to the intervals [t;_1, ¢;] implies
RB(en, s,t, M) < p(@mF‘[QT]XKX,S’y).
Then

(e )] < p(00F g1y, 37) VIV, NJEP(T) [X, X]57(T),
and we get

limsup sup ’Ig(gn,t)‘ < P(azF‘[o T]><KX’37) \/[N, Nlr [X, X]r. (5.117)
n—oo  tel0,T) ’

Concerning I{}(e,, t), we apply Lemma [5.3.11to Y = (Y1, Y2 Y?3) = (¢, X, N)

and
1
S, 2) = (5 — 2) (5 — o) /0 0. (5, o2 + aly? — 32)) — 0uF(yl, 32)] da

Then I{}(e,,t) converges uniformly in ¢ € [0, T], as n goes to infinity, to

M 1
Z 1}0,15] (tl) (th‘_th‘)(Nti_Nti)/ [aIF(ti7 Xti*'i_a(th‘_Xti*))_axF(ti’ Xti*)] da.
i=1 0

(5.118)
In particular, (5.118)) equals zero since N is a continuous process. Then, recalling

(5.117)), we have

limsup sup |113(5n7 t)’ < p(axF,3’7)\/[N, N}T [Xa X]Ta
n—00 tg[QT}

and, by the arbitrariness of 7, we conclude that

limsup sup |[i3(en, t)] = 0. (5.119)
n—oo  tel0,T]

It remains to show the u.c.p. convergence to zero of Is(g, t), as e — 0. To this
end, let us write it as the sum of the two terms

1 t
(e, ) = = [ (P54 2.X0) = F(5. X)) (N = N s,

Iooe, £) = i/ot(F((s FE) A LX) — Fs+ e Xa)) (Nspone — No) ds.

Concerning Is1 (e, t), it can be written as
L(e, t) = / J-(r)dN, (5.120)
10,1]

with
F(s+¢e,Xs)— F(s, Xy)

Je(r) :/ ds.
j [(r—e) 4.7 e

Since J¢(r) — 0 pointwise, it follows from the Lebesgue dominated convergence
theorem that

T
/ J2(r)d(N, N), 50 as € — 0. (5.121)
0
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Therefore, according to [82], Problem 2.27 in Chapter 3,

lim sup |I21(e,t)| =0. (5.122)
e=04c0,7)

As far as Is(e, t) is concerned, we have
1 t
e, 1)) < 8/ F(t,X,) — F(s + e, X,)| [N, — N, ds
t—e

< 2p(F‘[O,T]><KX’€) 1N ]oo

and we get

limsup sup |I22(e,t)| =0. (5.123)
e—=0  t€[0,T]

This concludes the proof of item (a).

(b) Let F™ be a sequence of 12 functions such that F" — F and 9, F™ — 0, F,
uniformly on every compact subset. From Lemma [5.6.12, the process I'*"(¢) in

(5.103) equals
/8F (s, Xs) ds—i—/@F”sX dA+/a2F"sX)d[X,X]g

/[Ot] R(Fn(s X +2) — F (8, X5 ) —x 0, F" (s, X ))1{|x\§1}l/x(dsdx),
X

which is predictable, see Remark [5.6.13] Since, by Theorem [5.6.14} point (a), the
map ' : O — D¥P is continuous, I'!" converges to I'" w.c.p. Then I'F is
predictable because it is the u.c.p. limit of predictable processes. O

5.6.3. A class of particular weak Dirichlet processes. The notion of Dirichlet
process is a natural extension of the one of semimartingale only in the continuous
case. Indeed, if X is a cadlag process, which is also Dirichlet, then X = M + A’
with [A"; A'] = 0, and therefore A" is continuous because of Lemma This
class does not include all the cadlag semimartingale S = M + V, perturbed by a
zero quadratic variation process A’. Indeed, if V' is not continuous, S + A’ is not
necessarily a Dirichlet process, even though X is a weak Dirichlet process. Notice
that, in general, it is even not a special weak Dirichlet process, since V is generally
not predictable.

We propose then the following natural extension of the semimartingale notion in
the weak Dirichlet framework.

Definition 5.6.16. We say that X is an (F;)-particular weak Dirichlet process if it
admits a decomposition X = M+ A, where M is an (F;)-local martingale, A = V+ A’
with V being a bounded variation adapted process and A’ a continuous adapted (F;)-
orthogonal process such that Af, = 0.

Remark 5.6.17.

(1) A particular weak Dirichlet process is a weak Dirichlet process. Indeed by
Proposition [5.3.14] we have [V, N] = 0, so
[A/+WN] = [AlvN] + [V7N} =0.
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(2) There exist processes that are special weak Dirichlet and not particular
weak Dirichlet. As a matter of fact, let for instance consider the determin-
istic process Ay = lgnjo,7](t). Then A is predictable and [A, N] = 0 for
any NN continuous local martingale, since, the fact that A; = 0 dP dt a.e.
implies that [A, N]¢” = 0. Moreover, since A is totally discontinuous, it
can not have bounded variation, so that A is special weak Dirichlet but not
particular weak Dirichlet.

In Propositions [5.6.18] [5.6.19| and Corollary [5.6.22| we extend some properties

valid for semimartingales to the case of particular weak Dirichlet processes.

Proposition 5.6.18. Let X be an (F;)-adapted cadlag process satisfying assumption
(5.4). X is a particular weak Dirichlet process if and only if there exist a continuous
local martingale M€, a predictable process o = o + A’, where o° is predictable with
bounded variation, A’ is an (Ft)-adapted continuous orthogonal process, ag =A)=
0, and

X = M+ a+ (zlgcy) * (07X =) + (@ 1ggsay) # o~ (5.124)

In this case,

Aa; = (/ xﬁff(dq;)) , telo, 1], (5.125)
/<1
where 0 has been defined in ((5.99).

Proof. If we suppose that decomposition ([5.124]) holds, then X is a particular weak
Dirichlet process satisfying

X = M—I—V—I—A/, M = Mc—l—(:c 1{\x|§l}) *(IU,X—VX), V = as—i—(x 1{|x|>1})*l/x

Conversely, suppose that X = M +V + A’ is a particular weak Dirichlet process. Since
S = M +V is a semimartingale, by Theorem 11.25 in [73], it can be decomposed as

S =9°+ aS + (I‘ 1{‘$|§1}) * (/LS — I/S) + ($ 1{|z\>1}) * HS. (5.126)

In (5.126) p° is the jump measure of S and v° is the associated Lévy system, S¢ is
a continuous local martingale, and o is a predictable process with finite variation

such that aaq =0 and
Aaf = / 0 (dr) | .
|z|<1

Consequently, since A’ is adapted and continuous, with Af, = 0, we have
X=8+A =8+ (" +A) + (x1jz<y) * (0" =) + (@ Ljgs1y) = 1™

and ([5.124) holds with o = a® + A’ and M¢ = S¢. The process « is (F;)-orthogonal.
Indeed, for every (F;)-local martingale N, [A’, N] = 0 and [, N] = 0 by Proposition
5.3.14l On the other hand, since Aa = Aa®, (5.125)) follows. OJ

The following condition on X will play a fundamental role in the sequel:

@] Loy * X € A

loc*

(5.127)
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Proposition 5.6.19. Let X be an (F;)-particular weak Dirichlet process verifying
condition (5.4). X is a special weak Dirichlet process if and only if (5.127) holds.

Proof. Suppose the validity of (5.127). We can decompose

(@ Laps1y) * 1~ = (@ Lgapsry) * (W5 =) + (@ 1gjas1y) 5 0~
Using the notation of ([5.124]), by additivity we get
X=M+A M=M+M' A=a+(@lysy) vy, (5.128)

X — %), In particular M and A are well-defined.

where M =z * (u

Since the process o+ (z 1y, >1}) x X is predictable, given a local martingale N,
[A, N] = 0 by Proposition and again from the fact that (z 1f;>1y) * vX has
bounded variation. Consequently X is a special weak Dirichlet process.

Conversely, let X = M +V + A’ be a particular weak Dirichlet process, with V/
bounded variation. We suppose that X is a special weak Dirichlet process. Since
[A’, N] = 0 for every continuous local martingale, then by additivity X — A’ is still a
special weak Dirichlet process, A’ being continuous adapted. But X — A"’ = M +V
is a semimartingale, and by Proposition it is a special semimartingale. By
Corollary 11.26 in [73],

4

loc?

2] Lja1y * p° € A
where 19 is the jump measure of S. On the other hand, since A’ is continuous, p°
coincides with X and (5.127) holds. ]

We recall the following result on the stochastic integration theory, for a proof see

Proposition

Proposition 5.6.20. Let W € Gioc(u), and define M = ﬁOt}XR Wi(z) (uX —
vX)(dsdx). Let moreover (Z;) be a predictable process such that

D" Z2|AMI? € A (5.129)
s<-

Then fo ZsdMZ is a local martingale and equals
/ ZoWa() (i — v5)(ds da). (5.130)
10,-] xR

Remark 5.6.21. Recalling that \/[M, M] € A" _ for any local martingale M (see,
e.g. Theorem 2.34 and Proposition 2.38 in [77]), condition (5.129) is verified for
instance if Z is locally bounded.

Remark 5.6.22. Let X be a finite quadratic variation process of the type ((5.124)).
Let F:[0,7] x R — R be a C%!-real valued function with partial derivative 0, F.
Then, formula ((5.104)) in Theorem [5.6.14| can be rewritten as

t
F(t,Xt)—F(O,X0)+/ 0, F (s, X,) dM?
0
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[P X ) = B X)) gy (6 = ) (s do)
10, ¢} xR

+ / (F(s, Xs— +2) = F(8, Xs-) =20 F (5, Xs-)) 1|1} p (ds dx) +TF(t).
o (5.131)
Indeed, setting
Mtd = / X 1{\x|§1}(IU'X — VX)(dS dﬂ?),
[0,t] xR

by Propositions [5.6.20] taking into account Remark [5.6.21] we have

t
/ O F (s, X ) dM? = / 10, F (s, Xs—) 1yjz<1} (n™ — v (ds dz).
0 10,e] xR N

5.6.4. Stability of special weak Dirichlet processes under C%! transfor-
mation. At this point, we investigate the stability properties of the class of special
weak Dirichlet processes. We start with an important property.

Proposition 5.6.23. Let X be an (Fy)-special weak Dirichlet process with its canon-
ical decomposition X = M€+ M+ A. We suppose that conditions (5.4)), (5.127))
are verified. Then

Mé = / z (X — v (dt d). (5.132)
10,s] xR

Proof. Taking into account assumption , Corollary together with condi-
tion (5.127)) insures that the right-hand side of is well-defined. By definition,
it is the unique purely discontinuous local martingale whose jumps are indistinguish-
able from

/xux({t},dx) —/LEVX({t},dLE).
R R
It remains to prove that
AME = / x X ({t}, dx) — / zvX({t},dz), up to indistinguishability. (5.133)
R R
We have

AME = AX; — AA;, t >0,

Being A predictable, AA = P(AA), see Corollary Now, by Corollary 1.29 in
[77], for any local martingale L starting from zero, P(AL) = 0; so for any predictable
time 7 we have

AA; Loy = E [AX 1oy |Fr]
=E |:/R :IZ‘MX({T},dx) 1{T<oo}

:/ zvX({r},dx) Lircoo} @5,
R

|
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where for the latter equality we have used Proposition b). Previous arguments
make use of a small abuse of terminology. In order to get them rigorous one can take
Q,, € F-_ such that U,Q, U{T < o0} = {7 < o0} a.s.

The Predictable Section Theorem (see e.g. Proposition insures that AA;
and [ xvX({t},dz) are indistinguishable. Since AX; = [ = u™ ({t},dz), by addi-
tivity, ((5.133)) is established. O

Lemma 5.6.24. Let X be a cadlag process satisfying condition (5.127)). Let also
F:[0,T] xR = R be a function of class C%' such that

/ ‘F(t, Xt_ —|—.%') —F(t, Xt_) —.ZL‘@mF(t, Xt_ﬂ 1{|x|>1} MX(dt dl’) S ‘Al—ic_)c' (5134)
10, ] xR
Then
/ :EaxF(t, Xt7)1{|z‘>1} HX(dt d:C) S .AngC, (5.135)
10, | xR
/ Pt X+ ) — F(t, X0)| Lgapony o (dt do) € AT (5.136)
10, ] xR

Remark 5.6.25. Condition ([5.134]) is automatically verified if X is a cadlag process
satisfying (5.127) and F : [0,T] x R — R is a function of C* class with d, F bounded.

Proof. Condition (5.127)) together the fact that the process (0, F(t, X¢—)) is locally
bounded implies ((5.135]); then condition ([5.136)) follows from (5.135)) and (5.134). O

Theorem 5.6.26. Let X be an (F;)-special weak Dirichlet process of finite quadratic
variation with its canonical decomposition X = M°+M%+A. Assume that condition

5.134) holds. Then, for every F :[0,T] x R — R of class C%', we have

(1) Y, = F(t, Xy) is an (Fy)-special weak Dirichlet process, with decomposition
Y = MF + AF, where

t
M} = F(0, Xo) +/0 O F (5, X,)d(M® + M%),
+ / (F(s, Xom + ) = F(s, Xs-) = 2 0. F (s, X)) (0 = v¥)(ds dz),
10, ¢} xR

and AF : €Ol — D%P s q linear map such that, for every F € C%', AF is
a predictable (F;)-orthogonal process.

(2) If moreover condition (5.127) holds, M* reduces to

t
M} = F(0, Xo) +/O 0. F (s, X,)dM¢
+ / (F(s, X +2) — F(s, Xs_)) (45 — vX)(ds dx).
10, ] xR

Proof. (1) For every F of class C%!, we set
A =1F 4yl (5.137)
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where T'Y' has been defined in Theorem [5.6.14] and
v = / (F(s, Xs— +x) = F(s, Xs-) — 2 0:F (8, Xs-)) 1251} vX(ds dx),
10, ] xR

which is well defined by assumption (5.134]).

The map F +— AY is linear since F — I'' and F +— VI are linear. Given
F € C%' AF is an (J})-orthogonal process by Theorem [5.6.14) point (a), taking

into account that [VF, N] =0 by Proposition_5.3.14 Using decomposition (5.137)),
Theorem [5.6.14} point (b), and the fact that V is predictable, it follows that Af is

predictable.
(2) It remains to show that

t
/ OuF (s, Xs_)dM2 = / x 0 F (s, Xo ) (X — %) (dsdx).
0 10,e] xR

This follows from Proposition [5.6.20] and Proposition [5.6.23] taking into account
Remark [5.6.27] 0

Remark 5.6.27. In Theorem [5.6.26| condition ((5.127)) is verified for instance if X

is a particular weak Dirichlet process, see Proposition [5.6.19

5.6.5. The case of special weak Dirichlet processes without continuous
local martingale. We end this section by considering the case of special weak
Dirichlet processes with canonical decomposition X = M + A where M = M? is a
purely discontinuous local martingale. In particular there is no continuous martingale
part. In this framework, under the assumptions of Theorem if assumption
in verified, then item (2) of the theorem says that

F(t,X;) = F(0, X) +/ (F(s, Xs_ +2)—F(s,X,_)) (1 —v %) (dsdx) + AL (t).

10, ¢} xR
(5.138)
Since in the above formula no derivative appears, a natural question appears: is it
possible to state a chain rule (5.138)) when F' is not of class C%1? 7
Indeed we have the following result, which does not suppose any weak Dirichlet

structure on X.

Proposition 5.6.28. Let X be an adapted cadlag process. Let F : [0,T] x R — R
be a continuous function such that the following holds.

i) F(t, X;) = By + A}, where B has bounded variation and A’ is a continuous
t
(F¢)-orthogonal process;
(ii) fi07 xR |F(s,Xs_ +x) — F(s, X, )| p*(dsdz) € A;f

loc*

Then F(t, Xy) is an (F;)-special weak Dirichlet process with decomposition

F(t,X;) = F(0, Xo) +/ (F(s, X, +1z)—F(s,X,)) (u — %) (dsdx) + AF(t),

10, ] xR
(5.139)
and AT is a predictable (F;)-orthogonal process.



204 Chapter 5. Weak Dirichlet processes with jumps

Remark 5.6.29.

(i) We remark that assumption (i) in Proposition implies that
Yos<r [F (8, Xs— + AX) — F(s, X5 )| <00 as.

(ii) Condition (i) is always verified if (F'(s,Xs)) is a bounded variation pro-
cess. Indeed, in this case By = Y. ., AF(s,X;) and A} = F(t,X;) —
>t AF(s,X;). The process A’ is continuous by definition, and is (F;)-
orthogonal being of finite variation, see Proposition Moreover, since
(F(t, X;)) is of finite variation, the same holds for B.

Proof. By item (i) of Remark 5.6.29] the process Y; = >s<t AF (s, X) has bounded
variation. Then, by item (ii) of Remark [5.6.29} one can always decompose F'(t, X;)
as

F(t,X;) = B, + A,

where B and A’ are respectively the bounded variation process and the continuous,
(F;)-orthogonal process, given by

By =) AF(s,X,), (5.140)
s<t
Ap =By =Y AF(s,X,) + Aj. (5.141)
s<t

Recalling the definition of the jump measure x4~ , and using condition (i), we get

By=F(t, X +AXy) — F(t, X;)

= / (F(s,Xs_ +x)— F(s,Xs_)) ™ (ds dx)
10, ] xR

— [ (P X )~ P, X)) (0 — 0¥ (dsda)
10, ¢} xR

+/ (F(s, X, +x)— F(s,Xs_)) v¥(dsdz).
10,t] xR

Finally, decomposition holds with
AP (1) = A + / (F(s, X, +a)— F(s,Xs_))v¥(dsdz). (5.142)

10,t] xR

The process A" in (5.142)) is clearly predictable. The (J})-orthogonality property of
AF follows from the orthogonality of A’ and by Proposition [5.3.14] noticing that the
integral term in (5.142) is a bounded variation process. ]

Remark 5.6.30. Let (X;) be a pure jump process, in the sense that X; = Xy +
>0 <s<t AX,, with a finite number of jumps on each compact. This happens for
instance when X is generated by a marked point process (T}, 81,) (see e.g. Chapter
III, Section 2 b., in [77]), where (T},), are increasing random times such that

T, €]0, o[, lim T, = +oo.

n—o0
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In that case, for any function F of C° class, we have

F(t, X¢) = F(0, Xo) + Y _(F(s, Xo— + AX,) — F(s, X)),

s<t

so that item (i) in Proposition 5.6.28 holds with B, = F(0, Xo) + > _ <, (F(s, Xs— +
AX) — F(s, X5_)), A} = 0. We suppose moreover that

(it’ / |F'(s, Xs— +7) — F(5, X5 )[1{2>1} p~(dsdz) € AF
10, ] xR

loc”

In that case also item (ii) of Proposition [5.6.28| holds.

Indeed taking into account Definition and Remark (i), we consider
a localizing sequence (7,),>1 for the process (X;_), which is locally bounded. Fix

7 =7y, and let M such that sup,cpo, 77 [X (1 )ar Lir>0y| < M. We have as.

0<s<TAT

Y lgaxi<iy | F(s, Xoo + AX,) = F(s, X,-)|

= Y gaxien Loy IF(s, Xoo + AX,) — F(s, X,_)]
0<s<TAT
<2 Sup ‘F(say” 1{7’>0} < 00.
0<s<rAT YE[-(M+1), (M+1)]

When X fulfills condition (5.127)), condition (ii)’ holds for instance if z +— F(t,z)
has linear growth, uniformly in ¢.






Chapter 6

Special weak Dirichlet
processes and BSDEs
driven by a random
measure

6.1. Introduction

This chapter considers a forward BSDE driven by a random measure, when the
underlying forward process X is a special semimartingale, or even more generally,
a special weak Dirichlet process. Given a solution (Y, Z,U), often Y appears to be
of the type u(t, X;) where u is a deterministic function. In this chapter we identify
Z and U in terms of u, by applying the stochastic calculus with respect to (special)
weak Dirichlet processes developed in Chapter

Given some filtration (), we recall that a special weak Dirichlet process is
a process of the type X = M + A, where M is a (F;)-local martingale and A is
a (F;)-predictable orthogonal process, see Definition When A has bounded
variation, then X is a special (J;)-semimartingale. The decomposition of a special
weak Dirichlet process is unique, see Proposition[5.6.8] A significant result of Chapter
is the chain rule stated in Theorem concerning the expansion of F(t, X3),
where X is a special weak Dirichlet process of finite quadratic variation and F' is
of class C%1. If we know a priori that F(¢, X;) is the sum of a bounded variation
process and a continuous (J;)-orthogonal process, then the chain rule only requires
F to be continuous; in that case no assumptions are required on the cadlag process

X, see Proposition [5.6.28

As we have already mentioned, we will focus on forward BSDEs, which constitute
a particular case of BSDEs in its general form. BSDEs have been deeply studied
since the seminal paper [98] by Pardoux and Peng. In [98], as well as in many
subsequent papers, the standard Brownian motion is the driving process (Brownian

207
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context) and the concept of BSDE is based on a non-linear martingale representation
theorem with respect to the corresponding Brownian filtration. A recent monograph
on the subject is Pardoux and Rascanu [100]. BSDEs driven by processes with
jumps have also been investigated: two classes of such equations appear in the
literature. The first one relates to BSDEs where the Brownian motion is replaced by
a general cadlag martingale M, see, among others, Buckdahn [20], El Karoui and
Huang [50], Carbone, Ferrario and Santacroce [22]. An alternative version of BSDEs
with a discontinuous driving term is the one associated to an integer-valued random
measure j, with corresponding compensator v. In this case the BSDE is driven
by a continuous martingale M and a compensated random measure p — v. In that
equation naturally appears a purely discontinuous martingale which is a stochastic
integral with respect to u—v, see, e.g., Xia [131], Buckdahn and Pardoux [21], Tang
and Li [128]. A recent monograph on BSDEs driven by Poisson random measures is
Delong [39]. Connections between the martingale and the random measure driven
BSDEs are illustrated by Jeanblanc, Mania, Santacroce and Schweizer [80].

In this chapter we will focus on BSDEs driven by random measures (we will use
the one-dimensional formalism for simplicity). Besides p and v appear three driving
random elements: a continuous martingale M, a non-decreasing adapted continuous
process ¢ and a predictable random measure A on  x [0,7] x R, equipped with
the usual product o-fields. Given a square integrable random variable &, and two
measurable functions §: Q x [0,7] x R? = R, f: Q x [0,T] x R® — R, the equation
takes the following form:

Y, =¢ +/ g(s, Ys_, Zs)d(s +/ f(s, e, Ys—, Us(e)) A(ds de)
1t T It, T]xR

—/ ZsdMs — Us(e) (u — v)(dsde). (6.1)
1t, T It, TIxR

As we have anticipated before, the unknown of is a triplet (Y, Z,U) where
Y, Z are adapted and U is a predictable random field. The Brownian context of
Pardoux-Peng appears as a particular case, setting y = A = 0, (s = s. There M
is a standard Brownian motion and £ is measurable with respect to the Brownian
o-field at terminal time. In that case the unknown can be reduced to (Y, Z), since U
can be arbitrarily chosen. Another significant subcase of arises when only the
purely discontinuous driving term appears, i.e. M and ¢ vanish; under this simpler
structure the related BSDE can be approached by an iterative method: a significant
example is represented by BSDEs driven by a marked point process, as in Confortola,
Fuhrman and Jacod [29].

When the random dependence of f and ¢ is provided by a Markov solution X of
a forward SDE, and £ is a real function of X at the terminal time 7', then the BSDE
is called a forward BSDE, the one that we have anticipated at the beginning.
This generally constitutes a stochastic representation of a partial integro-differential
equation (PIDE). In the Brownian case, when X is the solution of a classical SDE
with diffusion coefficient o, then the PIDE reduces to a semilinear parabolic PDE.
If v:]0,7] x R x R is a classical (smooth) solution of the mentioned PDE, then
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Ys = v(s, Xs), Zs = o(s, Xs) Ozv(s, Xs), generate a solution to the forward BSDE,
see e.g. [99] and Peng [101], [102]. In the general case when the forward BSDEs are
also driven by random measures, similar results have been established, for instance by
Barles, Buckdahn and Pardoux [10], for the jump-diffusion case, and by Confortola
and Fuhrman [28], for the purely discontinuous case, i.e. when no Brownian noise
appears. In the context of martingale driven forward BSDEs, a first approach to the
probabilistic representation has been carried on in Laachir and Russo [90].

Conversely, solutions of forward BSDEs generate solutions of PIDEs in the vis-
cosity sense. More precisely, for each given couple (¢,2) € [0, T] x R, consider an
underlying process X given by the solution X% of an SDE starting at = at time
t. Let (Y4®, Z4% U%%) be a family of solutions of the forward BSDE. In that case,
under reasonable general assumptions, the function v(¢,z) := Ytt’x is a viscosity so-
lution of the related PIDE. A demanding task consists in characterizing the couple
(Z,U) := (Z"*,Ub*), in terms of v; this is generally called the identification problem
of (Z,U). In the continuous case, this was for instance the object of Fuhrman and
Tessitore [68]: the authors show that if v € C%!, then Z; = 0,v(s, X;); under more
general assumptions, they also associate Z with a generalized gradient of v. At our
knowledge, in the discontinuous case, the problem of the identification of the mar-
tingale integrands pair (Z, U) has not been deeply investigated, except for particular
situations, as for instance the one treated in [28].

In the present chapter we discuss the mentioned identification problem in a quite
general framework by means of the calculus related to weak Dirichlet processes.
When Y is a deterministic function v of a special semimartingale X, related in a
specific way to the random measure u, we apply the chain rule in Theorem [5.6.26)
in order to identify the pair (Z,U). This is the object of Proposition The
result remains valid if X is a special weak Dirichlet process with finite quadratic
variation. In the purely discontinuous framework, i.e. when in the BSDE M
and ¢ vanish, we make use of the chain rule in Proposition[5.6.28 which, for a general
cadlag process X, allows to express v(t, X;) without requiring any differentiability
on v. In particular Proposition does not ask X to be a special weak Dirichlet
process, provided we have some a priori information on the structure of v(¢, X;). The
identification in that case is stated in Proposition We remark that in most of
the literature on BSDESs, the measures v, A and ( of equation are non-atomic in
time. A challenging case arises when one or more of those predictable processes have
jumps in time. Well-posedness of BSDEs in that case has been partially discussed
in Bandini [2] in the purely discontinuous case, and in a slightly different context
by Cohen and Elliott [26], for BSDEs driven by a countable sequence of square-
integrable martingales. Our approach to the identification problem also applies to
forward BSDEs presenting predictable jumps.

The chapter is organized as follows. In Section [6.2] we fix the notations. In
Section [6.3] we introduce a class of stochastic processes X related in a specific way to
a given integer-valued random measure p, and we provide some technical results on
the related stochastic integration. Section [6.4] is devoted to solve the identification
problem.
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6.2. Notations

In what follows, we are given a probability space (Q2,F,P) a positive horizon
T and a filtration (J%)¢>0, satisfying the usual conditions. Let F = Fp. Given
a topological space E, in the sequel B(E) will denote the Borel o-field associated
with E. P (resp. P = P ® B(R)) will denote the predictable o-field on € x [0, 7]
(resp. on © = Q x [0,T] x R). Analogously, we set O (resp. O = O ® B(R))
as the optional o-field on Q x [0,7] (resp. on ). Moreover, F will be o-field
F ® B([0,T] x R), and we will indicate by F¥ the completion of F with the P-null
sets. We set FF = ¥ B(]0,T] x R). By default, all the stochastic processes will
be considered with parameter ¢ € [0, T'|. By convention, any cadlag process defined
on [0, T is extended to R4 by continuity.

A bounded variation process X on [0, 7' will be said to be with integrable vari-
ation if the expectation of its total variation is finite. A (resp. Ajoe) will denote
the collection of all adapted processes with integrable variation (resp. with locally
integrable variation), and A™ (resp .Afgc) the collection of all adapted integrable in-
creasing (resp. adapted locally integrable) processes. The significance of locally is
the usual one which refers to localization by stopping times, see e.g. (0.39) of Jacod’s
book [77].

We will indicate by C%! the space of all functions
u: [0, T]xR—=R, (t,z)— ut,x)
that are continuous together their derivative d,u. C%! is equipped with the topology

of uniform convergence on each compact of u and J,u.

The concept of random measure will be extensively used throughout the chapter.
We refer the reader to Appendices[A]and [B] where we have summarized the concepts
needed in the following on the general theory of stochastic processes and on the
stochastic integration with respect to random measures.

6.3. A class of stochastic processes X related in a specific way to an
integer-valued random measure u

Let p be an integer-valued random measure on [0, 7] xR, and v a ”good” version
of the compensator of p, as constructed in Proposition c). Set
D = {(w,1) : plw, {t} x R) > 0},
J ={(w,t) : v(w,{t} x R) > 0},
K ={(w,t) : v(w, {t} xR) =1}.
Remark 6.3.1. D is a thin set, J is the predictable support of D, and K is the

largest predictable subset of D, see Proposition and Theorem [B.10] The defini-
tion of predictable support of a random set is recalled in Definition

We formulate now an assumption on a generic cadlag process X which will be
related in the sequel to the integer-valued random measure u.
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Hypothesis 6.3.2. X = X’ + XP where X' (resp. XP) is a cadlag quasi-left
continuous adapted process (resp. cadlag predictable process).

Proposition 6.3.3. Let X be a cadlag adapted process fulfilling Hypothesis [6.3.3.
Then the two properties below hold.
(1) AXP1raxizoy =0 and AX? Liaxrzo0y =0, up to an evanescent set.

(ii) {AX # 0} is the disjointed union of the random sets {AXP # 0} and
{AX" #£0}.

Proof. (i) Recalling Propositions [A.17] (resp. [A.19)), there exist a sequence of pre-
dictable times (T7), (resp. totally inaccessible times (77),,) that exhausts the jumps
of XP (resp. X*). On the other hand, AX% = 0 a.s. for every n, see Proposition

(resp. AX;p =0 a.s. for every n, see Dneﬁnition , so that
AXZ 1{AXP;£0} == AXZ 1Un[[T5]] == 0,
AXP 1{AX7'7£0} - AXp 1U7L[[T7il]] — 0

(ii) From point (i) we get
{AX #0} = {(AX" + AXP) £ 0}
= {(AX" 1{axr—oy + AXPLaxr201) # 0}
= {AX "I axr—g # 0} U{AXP 3 0}
= {AX" £ 0} U{AXP #£0}.
0

Proposition 6.3.4. Let X be a cadlag adapted process satisfying Hypothesis[6.3.9
Then the properties below hold.

(1) {(w,t) : vX¥(w, {t} xR) >0} = {AXP £ 0};

(2) {AXP # 0} is the largest predictable subset of {AX # 0} (up to an evanes-
cent set).

Proof. (1) {AX # 0} is the support of the random measure ¥ (see e.g. Proposition
. By Theorem the predictable support of {AX # 0} is given by {(w,1?) :
v ({t} x R) > 0}.

On the other hand, by Proposition[6.3.3}(ii), {AX # 0} is the disjointed union of
{AXP #£ 0} and {AX? # 0}. Since X* is a cadlag quasi-left continuous process, by
Proposition @ we know that the predictable support of {AX? # 0} is evanescent.
By Definition [A25] of predictable support, taking into account the additivity of the
predictable projection operator, P (1{ A X;,go}) = l{axrz0}, and this concludes the
proof.

(2) By Proposition [6.3.3}(ii),
{AX? #£0} C {AX #0}. (6.2)




Chapter 6. Special weak Dirichlet processes and BSDEs driven by a
212 random measure

Since {(w,t) : vX({t} x R) = 1} is the largest predictable subset of {AX # 0} (see
again Theorem [B.10)), it follows from point (1) and (6.2)) that {AX? # 0} coincides
with {(w,t) : vX({t} x R) = 1}. O

Remark 6.3.5. We remark that item (2) in Proposition has an interest in
itself but will not be used in the sequel.

Proposition 6.3.6. Let X satisfy Hypothesis with decomposition X = X'+ XP.
Let moreover (Sy)n be a sequence of predictable times exhausting the jumps of XP.
Then

vX({S,}, dx) = X ({Sn},dz) for any n, a.s. (6.3)
Remark 6.3.7. Since {AXP # 0} is a predictable thin set (see Definition |A.4)),

the existence of a sequence of predictable times exhausting the jumps of X? is a
well-known fact, see Proposition and Definition for the definition of an
exhausting sequence.

Proof. Let us fix n and let (E,,), be a sequence of measurable subsets of R which
is a m-class generating B(R). Since X' is a cadlag quasi-left continuous adapted
process and S, is a predictable time, then Ang = 0 a.s., see Definition This
implies that AXg = AX gn a.s. by Hypothesis Consequently, for every m we
have

lp, (AXE ) =1p,(AXg,) :/RlEm(x) X ({Sn},dx) as. (6.4)

On the other hand, by Proposition b) and (6.4)) we have

[ 1e.@ v (8u)d0) = | [ 16,60 (S0} )]s,

—E [1Em(AX§n)‘3"Sn,]
= 1Em(AXgn) a.s.,

where the latter equality follows from Corollary By (6.4), there exists a P-
measurable null set N,,, such that

/ 1g, () vX({Sn},dz) = / 1g, (z) X ({S,}, dz) for every w ¢ N,.
R R
Define N = U,;,N;,,, then
/ 1g, (x) v ({Sn},dz) = / 1, (z) ™~ ({S,}, dz) for every m and w ¢ N.
R R

Then the claim follows by a monotone class argument, see Theorem 21, Chapter 1,
in Dellacherie and Meyer [38]. O

We now recall an important notion of measure associated with pu, given in formula
(3.10) in [77].
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Definition 6.3.8. Let (Q,) be a partition of  constituted by elements of O. ME
denotes the o-finite measure on (Q, f;'"P), such that for every W : Q — R positive,
bounded, FP-measurable function,

M, (Wlg )=E[Wlg *pur|. (6.5)
Remark 6.3.9. Formally speaking we have ME(dw,ds, de) = dP(w) p(w, ds, de).

In the sequel we will formulate the following assumption for a generic cadlag
process Y with respect to the random measure pu.

Hypothesis 6.3.10. Y is a cadlag adapted process satisfying {AY # 0} C D.
Moreover, there exists a P-measurable map 7 : 2x]0, T| x R — R such that

AY(w) Lo, () = F(w, t, ) dME-a.e. (6.6)

Example 6.3.11. Theorem 3.89 in [77] states an It6 formula which transforms a
special semimartingale X into a special semimartingale F'(X;) through a C? function
F : R — R. There the process Y = X is supposed to fulfill Hypothesis [6.3.10

Remark 6.3.12. Let us suppose that p is the jump measure of a cadlag process X.
Hypothesis 6.3.10| holds for Y = X | with 5(t,w, z) = x.

The role of Hypothesis is clarified by the following proposition.

Proposition 6.3.13. Let Y be a cadlag adapted process satisfying Hypothesis[6.3.10
Then, there ezists a null set N such that, for every Borel function ¢ : [0, T| xR — R
satisfying ¢(s,0) = 0 for every s € [0, T|, we have

Z (s, AYs(w)) :/ o(s,9(w, s,e)) u(w,dsde), w ¢ N. (6.7)

0Zs<T 10, T]xR

Proof. Taking into account that {AY # 0} C D and the fact that ¢(s,0) = 0, it
will be enough to prove that

5, AY;(w))1p(w,s) = s,%(w, s, e w,dsde), wé¢N, (6.8
3 el AT ) Lo AT]XRM 3w, s,0) plwr dsde), w g N, (6.8)

for every Borel function ¢ : [0, T] x R — R,

Let (I)m be a sequence of subsets of [0, T] x R, which is a 7-system generating
B([0, T]) ® B(R). Setting o, (s,x) =11, (s, ), for every m we will show that

> en(s A 1060 = [ s iCs )l dsde), as (69)
0<s<T J0, T]xR

As a matter of fact, consider a bounded, (J;)-measurable function ¢ : Q — R,.
Identity holds if we show that the expectations of both sides against ¢ are
equal. We write

E[o /]0 ﬂwam(s,a(-,s,e»u(-,dsde)]
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_ / dP(w) p(w, ds de) (w) pm (s, 7(w, 5, €))
Qx]0, T]xR

= / dME(w,S,@) (Z)(CU) gom(S,:}’(UJ,S,G))
Qx]0, T)xR

_ / AME (w0, 5, ) (@) o (s, AYs(w)
Qx]0,T)

_ / dP(w) p(w, ds de) $(w) om (s, AY;(w))
Qx]0, T)xR

_/QdI[D(w)¢(w) Z 1p(w, s) em(s, AYs(w /55 (w)(dx)

0<s<T

_E[¢ > 1l s) em(s, AYL) |,

0<s<T

where we have used the form of y given by (B.3). Therefore, there exists a P-null
set N,,, such that

> nls AV pws) = [ s, iCse) plwndsde), g N,
0<s<T 10, TR
Define N = U, N, then for ¢ = ¢, for every m we have
S nls AV 10(5) = [ pn(sitose)awdsde), w .
0<s<T 10, T]xR

By a monotone class argument (see Theorem 21, Chapter 1, in [38]) the identity
holds for every measurable bounded function ¢ : [0, T] x R — R, and therefore for
every positive measurable function ¢ on [0, 7] x R as well. O

We consider an additional assumption on a generic adapted process Z.

Hypothesis 6.3.14. Z is a cadlag predictable process satisfying {AZ #£ 0} C J.

We have the following result.

Proposition 6.3.15. Assume that X satisfies Hypothesis[0.3.3, with decomposition
X = X'+ XP, where X (resp. XP) fulfills Hypothesis 5.3.1!3 (resp. Hypothesis
6.3.14). Then, there exists a null set N such that, for every Borel function ¢ :
[0, T] x R — Ry satisfying ¢(s,0) =0, s € [0, T, we have, for every w ¢ N,

[ s edsdn) = [ pls s o) pwdsde) + VHw), (6.10)
10, T]xR 10, T)xR
with VP (w) = 3 oo cr (5, AXE(w)). In particular,

/ o(s,z) i (w,ds dz) > / o(s,¥(w, s,e)) p(w,dsde) for every w ¢ N.
10, T|xR 10, T|xR

(6.11)
Identity (6.10) still holds true when ¢ : [0, T] x R — R and the left-hand side is
finite.
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Proof. Let ¢ : [0, T] x R — R. Taking into account Proposition [6.3.3}(i) and the
fact that ¢(s,0) = 0, we have, for almost all w,

S (s, AXL(w)

0<s<T
= Y o(s, AXH(w) + AXE(W)) Liaxr—o}(w, 5)
0<s<T
+ Z (s, AX(w) + AXP(w)) Traxeop(w; s)
0<s<T
= Z @(&AX;(W)) 1{AXp=O}(waS)+ Z 90(87AX§(W>) 1{AX3’750}(°')78)
0<s<T 0<s<T
= Y (s, AXLw) + > @(s, AXP(w)).
0<s<T 0<s<T

By Proposition [6.3.13| applied to Y = X?, there exists a null set N such that, for
every w ¢ N, previous expression gives

| s dsdo)
10, T|xR

:/}mmw(s,%w,s?e))u(wydsde>+ D (s, AXP(w)).

0<s<T

The second part of the statement holds decomposing ¢ = ¢ — ™. |

Remark 6.3.16. The result in Proposition [6.3.15|still holds true if ¢ is a real-valued
random function on Q x [0, T x R.

We will make the following assumption on p.
Hypothesis 6.3.17.

(i) D = K U (Uy[[T!]]) up to an evanescent set, where (7)), are totally inac-
cessible times such that [[TE]] N [[TE]] = 0, n # m;

(ii) for every predictable time S such that [[S]] C K, v({S},de) = u({S}, de)

a.s.

Remark 6.3.18. Hypothesis|6.3.17}(i) implies that J = K, up to an evanescent set,
see Proposition [B

Remark 6.3.19. Let v denote the compensator of p.
(i) v admits a disintegration of the type
v(w,dsde) = dAs(w) ¢(w, s, de), (6.12)

where ¢ is a random measure from (Q x [0, 7], P) into (R, B(R)) and A is a
right-continuous nondecreasing predictable process, such that Ay = 0, see

BI).
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(ii) Given v in the form (6.12), then the process A is continuous if and only if
D = Uy,[[T?]], where (T?),, are totally inaccessible times, see, e.g., Assump-
tion (A) in [29]. In this case it follows that J = K = (), and consequently
Hypothesis trivially holds.

For instance A in is continuous when g is a Poisson random
measure, see, e.g., Chapter II, Section 4.b in [79].

We are ready to state the main result of the section.

Proposition 6.3.20. Let yu satisfy Hypothesis[6.3.17. Assume that X satisfies Hy-
pothesis‘b’.b’.% with decomposition X = X'+ XP, where X' (resp. XP) fulfills Hy-

pothesis 6.3.1?] (resp. Hypothesis |6.3.14). Let ¢ : Q x [0, T] x R — Ry such that
o(w,s,0) =0 for every s € [0, T, up to indistinguishability, and assume that there

exists a P-measurable subset A of Q x [0, T x R satisfying

ol Lax ™ € Af ., ol Lacx p™ € AL (6.13)
Then
[ et (5 =) dsdn) = [ (s i) (u - v)dsde) as. (6.10)
10,¢] xR 10, ] xR

Remark 6.3.21. Under condition (6.13), Remark and inequality (6.11) in
Proposition [6.3.15| imply that o(s,z) € GL _(uX) and ¢(s,5(s,e)) € GL (1). In
particular the two stochastic integrals in (6.14)) are well-defined.

Proof. Clearly the result holds if we show that ¢ verifies (6.14) under one of the
two following assumptions:

(i) || % p* € A}

loc?

(i) Jof2 % u¥ € Af

loc®

By localization arguments, it is enough to show it when |p|*u™ € A, [p?xu™ € AT,
Below we will consider the first case, the second case will follow from the first one
by approaching ¢ with (s, ) 1.c|z)<1/e lsepo, 1) in L£2(X), and taking into account
the fact that u*X, restricted to e < |z| < 1/e, is finite, since u~ is o-finite.

Let us define

Mt ::/ (,O(',S,SC) (HX_VX)(dex)u
10, ] xR

N, = / o5, 5,€)) (1 — v)(ds de). (6.15)
10, ] xR

Notice that the processes M and N are purely discontinuous local martingales, see
e.g. Definition We have to prove that M and IV are indistinguishable. To this
end, by Corollary it is enough to prove that AM = AN, up to an evanescent
set. Observe that

AM, = /R o(r5,2) (15— 1¥)({s}, da)
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- /R o(rs,2) (1= 15(,8)) (@ — vX)({s}, da)

T /R o(5,2) 1 (- 8) (X — ) ({s}, da), (6.16)
and
AN, = /R (5,70 5,€)) (1 — v)({s}, de)
- /R (25,702 5,)) 1y(8) (1 — ) ({s}, de)
+ /R (5,302 5.0)) (1— 15 5)) (4 — v)({s}, de). (6.17)
By definition of J, for every w and every s we have

v(w,{s},de) (1 —1;5(w,s)) =0. (6.18)

Moreover, since J is a predictable thin set, there exists a sequence of predictable
times (R,,), with disjoint graphs, such that J = U, [[R;]]. We recall that Hypothesis
6.3.17-(i) implies that J = K up to an evanescent set, see Remark By this
fact, and taking into account Hypothesis (ii), there exists a null set N, such
that, for every n € N, w ¢ N,

:u(w7 {Rn(w)}7 de) 1J(w7 S) = I/(UJ, {Rn(w)}a de) 1J(OJ, S)'

By additivity, it follows that for every w ¢ N, for every s € [0, T,
p(w, {s},de) 1;(w,s) = v(w,{s},de) 1;(w,s). (6.19)

On the other hand, {AX? # 0} C J by Hypothesis [6.3.14, Recalling that
{AXP #£0} = {(w,s) : vX({s} x R) > 0} (see Proposition (1), for almost every
w, for every s € [0, T, we have

VX(wa {8}7 dm) 1](6&), 3) = VX(W7 {8}7 d.’E) 1{AXP7$D}(W7 S)a (620)
so that

X (w, {s},dz) (1 —1;(w,s)) = v~ (w, {s},dz) (1 - Liaxrzoy(w,8)) = 0.  (6.21)

Now notice that there always exists a sequence of predictable times exhausting the
jumps of X7, see Remark[6.3.7 By means of Proposition we can prove, similarly
as we did in order to establish (6.19), that for every w ¢ N (N possibly enlarged),
for every s € [0, T,

,UX(W7 {5}7 dw) I{AXpyéo}(w? 3) = VX(wv {5}7 d:L') 1{AXP7£0} (wa 3)' (6-22)

Finally, we notice that pu*(w,{s} dz)1;(w,s) = p*(w,{s} dx)1niaxro}(w,s).
Taking into account that X' is a cadlag quasi-left continuous process, by Defini-
tion we have

JN{AX # 0} = (Un[[Ra]] N {AX" # 0}) U (Un[[Ra]l N {AXP # 0})
= Un[[Rn]] N {AXP 7 0} = {AXP # 0}
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This implies for every w ¢ N, and for every s € [0, T7,
/’LX (OJ, {5}7 dl’) 1J(wa 3) = :U’X (w7 {S}a dl‘) 1JO{AX¢O} (OJ, 5)
= IU’X (w? {8}7 dIE) 1{AX1’7$O} (wa S)‘ (623)

Collecting (6.20]), (6.22) and (6.23) we conclude that for every w ¢ N, for every
s €0, T,

pX (w, {s},dz) 15 (w, s) = v¥(w, {s},dz) 15(w, s). (6.24)
Therefore, for every w ¢ N, for every s € [0, T, taking into account (6.18]), (6.19),
(6.21)), (6.24]), expressions (6.16|) and (6.17)) become

AM, — /R o(s,2) (1— 15(s)) ¥ ({s}, da), (6.25)

AN, = /R 2(5,7(5,€) (1 = 15(5)) u({s}, de). (6.26)

Now let us prove that, for every s € [0, T], AMg(w) = ANs(w) for every w ¢ N,
namely up to an evanescent set. Set

vs(w, t,z) == p(w,t,x) (1 —15(w,t)) 1{5}(75),
then AM, and AN, can be rewritten as

AMw) = [ it i it da),
[0, T]xR

AN = [ pentii(nte) p.dide).
[0, TTxR

Then, Proposition |6.3.15| applied to the process ¢, implies that (possibly enlarging
the null set N),

/ @s(wﬂf, -T) MX(w,dtdl‘) = / gps(t,’?(w,t, 6))u(w,dtde) _|_V4Ps(w)
10, T]xR 10, T)xR

for every w ¢ N, or, equivalently, that

/ (@, 5,2) X (w, {5}, di) = / (@, 5,7(w, 5, €)) plw, {5}, de) + V¥ (w),
R R
for every w ¢ N, where

Vs (w) = ngs(w,t, AXP(w)) = o(w, s, AXP(w)) IJCQ{AXP#)}(QJ, s). (6.27)
t<T

Recalling that {AXP = 0} C J by Hypothesis|6.3.14] it straightly follows from ((6.27))
that V¥s(w) is zero. In particular, up to an evanescent set, we have

[ olesi) 1w (s}, da) = [ ol 55,00 e {5}, de)
in other words AM = AN up to an evanescent set, and this concludes the proof. [

We end the section focusing on the case when X is of jump-diffusion type.
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Lemma 6.3.22. Let u satisfy Hypothesis[6.3.17. Let N be a continuous martingale,
and B an increasing predictable cadlag process, with By = 0, such that {AB # 0} C
J. Let X be a process which is solution of equation

t t
Xt:Xo—i—/ b(s,XS_)st—i-/ U(S,Xs)dN5+/ (s, Xs—,€) (n—v)(dsde),
0 0 10, ] xR

(6.28)
for some given Borel functions b,o : [0, T] x R - R, and v : [0, T] x R xR — R
such that

t
/ |b(s, Xs—)| dBs < o0 a.s., (6.29)
0
t
/ l0(s, X) [N, N]s < oo as., (6.30)
0
(@, 5,€) 1 (5, Xo— (@), €) € Gheo(n). (6.31)
Then X satisfies Hypothesis with decomposition X = X + XP, where
X! = / v(s, Xs—,€) (1 —v)(ds de), (6.32)
10,t] xR
t t
XP = Xo+ / b(s, X ) dB, + / o(s, X,) dN,. (6.33)
0 0

Moreover, the process X* fulfills Hypothesis|6.3.10| with ¥(w, s, €) = v(s, Xs_(w), ) (1—
1k (w, s)), and the process XP satisfies Hypothesis|6.3.14).

Proof. Since N is continuous, it straight follows from (6.33)) that
AXP = b(s, X,_) AB,. (6.34)

We remark that X in has the same expression as [N defined in where the
integrand ¢(w, s,¥(w, s, €)) is replaced by (s, Xs—(w), e). We recall that Hypothesis
(i) implies that J = K up to an evanescent set, see Remark Similarly
as for , we get

AXI = /R 2(8, Xaor) (1— 1x(s)) ({3}, de). (6.35)

Since by Hypothesis [6.3.17 D \ K = U,[[T¢]], (T%), being a sequence of totally
inaccessible times with disjoint graphs, (6.35)) can be rewritten as

AX(w) = (s, Xs— (W), Bs(w)) 1y, rig(w; s).- (6.36)

We can easily show that the process X satisfies Hypothesis[6.3.2] namely X? and
X are respectively a cadlag predictable process and a cadlag quasi-left continuous
adapted process. The fact that XP? is predictable straight follow from . Con-
cerning X, let S be a predictable time; it is enough to prove that Ang lis<cocy =0

a.s., see Deﬁnition Identity gives
AXE(w) 1ig<oop = V(S Xg—(w), Bs(w)) 1y, grigy(w, S(w)) 1s<o0}- (6.37)

Since the graphs of the totally inaccessible times T} are disjoint, Ly, (w, S(w))
Ls<oo} = D_p Lmip(w, S(w)) 1{s<oc}, and the conclusion follows by the definition
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of a totally inaccessible time, taking into account that S is a predictable time, see

Remark [A_T5]
The process XP in (6.33]) satisfies Hypothesis [6.3.14] Indeed, by (6.34])) we have
{AX? £0} C {AB#0} C J = K. (6.38)
Finally, we show that the process X' in (6.32) fulfills Hypothesis [6.3.10] with
Flw,s,e) = v(s, Xs_(w),e) (I — 1x(w,s)). First, the fact that {AX? # 0} C D

directly follows from (6.35). To prove AX:(w) = F(w,s,"), dME(w,s)—a.e. it is
enough to show that

E [ / (e, ds de) [3(w, s, ¢) — sz(w)r] ~o.
10, T]xR

To establish this, we see that by the structure of u it follows that
E / p(w,ds de) |5(w, s,e) — AXH(w)]
10, T)xR

= Y E[1p(,s) (s 8s() — AXI()I]

s€]0, T
which vanishes taking into account (6.36)). O

6.4. Application to BSDEs

6.4.1. About BSDESs driven by an integer-valued random measure. Let p
be an integer-valued random measure defined on [0,7] x R. Let M be a continuous
process with My = 0. Let (F;) be the canonical filtration associated to p and M,
and suppose that M is an (F;)-local martingale. Let §: Q x [0, T] x R? — R and
f:Qx[0,T] x R> - R be two measurable functions. The domain of f (resp. §)
is equipped with the o-field F ® B([0, T] x R3) (resp. F @ B([0, T] x R?)). Let A
be a predictable random measure on [0, 7] x R. Let ¢ be a non-decreasing adapted
continuous process, and £ a square integrable random variable. v will denote a
”good” version of the dual predictable projection of p in the sense of Proposition
In particular, v(w, {t} x R) <1 identically.

We consider now the general BSDE

Y, =¢ —|—/ g(s, Ys—, Zs)d(s +/ f(s, e, Ys—, Us(e)) A(ds de)
1t, T 1t, TIxR

_ / 7, dM, — Us(e) (1 — v)(ds de) (6.39)
1t, T 1t, TIxR

which constitutes equation (6.1)) of the Introduction.

Remark 6.4.1. A general BSDE of type (6.39)) is considered for instance in Xia
[131] (see formula (1.1)), with the following restrictions on the random measures A
and v:

A([0, T] x R) is a bounded random variable, A([0, ¢] x R) is continuous w.r.t. ¢,
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v([0, t] x R) is continuous w.r.t. t. (6.40)

The author proves (see Theorem 3.2 in [131]) that under suitable assumptions on
the coefficients (¢, f, §) there exists a unique triplet of processes (Y, Z,U) € L2({N) x
L2(M) x L2(u), with E[supte[o,ﬂ Yﬂ < 00, satisfying BSDE (6.39)), where

L2CN) : = {(Yt)te[m optional : E[/OTYSZ dgs} +E[/OTY3A(ds,R)] < oo},

T
L2(M) : = {(Zt)te[o,T] predictable : IE[/ 72 d(M)S} < oo},
0

and £2(u) is the space introduced in (B.20)).

In the sequel we will consider stochastic processes related to the random measure
w in the following way.

Hypothesis 6.4.2. X is an adapted cadlag process verifying Hypothesis with
decomposition X = X* + XP, where X* (resp. XP) fulfills Hypothesis [6.3.10| with
some predictable process 4 (resp. fulfills Hypothesis [6.3.14), with respect to the

random measure fi.

We consider some important examples.

Example 6.4.3. Let us focus on the BSDE

Y;f = g(XT) + f(S, XS7 YSv ZSa US()) ds
1t, 7]

— / ZsdWg — Us(e) (u — v)(dsde), (6.41)
1t, T It, TIxR

which constitutes a particular case of the BSDE (6.39). This is considered for in-
stance in Barles, Buckdahn and Pardoux [10]. Here W is a Brownian motion and
u(dsde) is a Poisson random measure with compensator

v(dsde) = \(de) ds, (6.42)

where X is a Borel o-finite measure on R\ {0} and
/(1 A le]2) A(de) < +o0. (6.43)
R

Poisson random measures have been introduced for instance in Chapter II, Section
4.b in [79]. The process X appearing in (6.41]) is a Markov process satisfying the
SDE
dXs =b(Xs)ds + o(X,)dW, + / V(Xs—,e) (p—v)(dsde), selt,T], (6.44)
R
where b : R — R, ¢ : R — R are globally Lipschitz, and v : Rx R — R is a
measurable function such that, for some real K, and for all e € R,

{w<x,e>rsz<<we\>, z €R,

6.45
[v(z1,e) —y(xe,€)| < K |x1 — 22| (LA le]) z1, z2 € R, (6.45)
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For every starting point € R and initial time ¢ € [0, T, there is a unique solution
to denoted X* (see [10], Section 1). Moreover, modulo suitable assumptions
on the coefficients (g, f), it is proved that the BSDE admits a unique solution
(Y, Z,U) € 82 x L2 x £2(u), see Theorem 2.1 in [10], where

§2. — {(Yt)te[o,T} adapted cadlag : H sup |Y;
t€[0,7)

L2 = {(Zt)te[O,T] predictable : E[/ Z? ds] < oo},
0

L2(p) : = {(Us('))se[o,T} predictable random fields :

2
E[/W]XR|U5(6)| v(ds de)] < oo}.

When X = X% the solution (Y, Z) of (6.41)) is denoted (Y*, Z%*). In [10] it is
proved that

u(t,z) =Y, (t,z) €0, T] x R, (6.46)
satisfies Yo = u(s, X0) for every (t,z) € [0, T] x R, s € [t, T). O

Lemma 6.4.4. Let p and X be respectively the Poisson random measure and the
stochastic process satisfying the SDE in Example . Then i satisfies Hy-
pothesis and X fulfills Hypothesis with respect to p, with decomposition
X = X'+ XP, where

Xi= [ X (uv(dsde), (6.47)
10, xR
t t
X? = / b(X,)ds + / o (Xs) dW,s. (6.48)
0 0
In particular X' satisfies Hypothesis with 5 (w, s,e) = y(Xs— (w), €).

Proof. Our aim is to apply Lemma We start by noticing that v in is
in the form with A; = s. Therefore Hypothesis is verified, see Remark
6.3.19-(ii). On the other hand, the process X satisfies the stochastic differential
equation , which is a particular case of (6.28|) when By = s, Ny = W, and
b, o, ~v are time homogeneous. b and o verify , since they have linear
growth. Condition can be verified using the characterization of 9110C(u) in
Theorem In that context, setting W(w,s,e) = y(s, Xs—(w), ), we get W =0,
and we have to verify that [W/[*1gy <1y * v + |[W[lgw =1} * v belongs to Aj5_. This
follows from and .

Then, by Lemma X verifies Hypothesis with decomposition X =
X4+ XP where X? and XP? are given respectively by (6.47)) and (6.48]). Moreover, the
process X' fulfills Hypothesis with J(w, s,e) = v(Xs—(w), €), and the process
XP satisfies Hypothesis O
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When ¢ and M vanish, BSDE ([6.39) turns out to be driven only by a purely

discontinuous martingale, and becomes

Vi =¢6+ f(s, w, e, Ys_, Us(e)) A(ds de) — / Us(e) (u— v)(dsde). (6.49)
1t,T] 1t, TIxR

Below we consider two significant cases, given respectively in Examples and
0.4. 7]

Example 6.4.5. In Confortola and Fuhrman [28] the authors study a BSDE driven
by an integer-valued random measure p associated to a given pure jump Markov
process X, of the form

Y = g(X7) + f(s, X, Yo, Us(+)) ds —/ Us(e) (n = v)(dsde).  (6.50)
1t,T] It, TIxR

The underlying process X is generated by a marked point process (1), (,), where
(T,)n are increasing random times such that 7T, €0, oco[, where either the times
(T,)n are a finite number or lim,_, 7T}, = 400, and (,, are random variables in R,
see e.g. Chapter III, Section 2 b., in [77]. This means that X is a cadlag process
such that X; = ¢, for t € [T}, Tp41][, for every n € N. In particular, X has a finite
number of jumps on each compact. The associated integer-valued random measure g
is the sum of the Dirac measures concentrated at the marked point process (T}, (),
and can be written as

p(dsde) = > Lix,_zx,)0(sx,)(dt de). (6.51)
s€[0, T

Given a measure y in the form (6.51)), it is related to the jump measure pX in the
following way: for every Borel subset A of R,

/ 1a(e — Xs—) u(dsde) = / 1a(z) X (ds dz). (6.52)
10, T]xR 10, T)xR

This is for instance explained in Example 3.22 in [77]. The pure jump process X
then satisfies the equation

X=X+ 3 AX, = X, +/ (e — Xo ) u(ds de). (6.53)
0<s<t 10,¢]xR
The compensator of u(dsde) is
v(dsde) = X(s, X5, de) ds, (6.54)
where A the is the transition rate measure of the process satisfying

sup  A(t,z,R) < oo, (6.55)
tel0,T], zeR

see Section 2.1 in [28].

Under suitable assumptions on the coefficients (g, f), Theorem 3.4 in [28] states
that the BSDE (6.50)) admits a unique solution (Y, U) € £2x £2(u), where £2(p) and
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L2 are the spaces introduced in Example Theorem 4.4 in [28] shows moreover
that there exists a measurable function u : [0, T] x R — R such that

Ve€ E, t— u(t,e) is absolutely continuous on [0, T, (6.56)
u(s, Xs) € £2 and u(s,e) — u(s, Xs_) € L*(u), s€ [0, T), (6.57)
and the unique solution of the BSDE (6.50)) can be represented as
Ys =u(s, Xs), se€]0,T], (6.58)
Us(e) = u(s,e) —u(s, Xs—), A(s,Xs_,de)ds-a.e. se€]0,T]. (6.59)
([

Lemma 6.4.6. Let X and p be respectively a pure jump Markov process and the
corresponding integer-valued random measure as in Example[6.4.5. Then u satisfies

Hypothesis and X fulfills Hypothe with decomposition X = X*, XP =
6.5.10

0. In particular, X* satisfies Hypothesis |6.3.10| with (w, s,e) = e — X4 (w).

Proof. Since v in (6.54) is in the form (6.12) with A; = s, Hypothesis [6.3.17] is
verified, see Remark [6.3.19(ii).

The process X* = X satisfies (6.53)). Recalling the relation ((6.52]) between p and
uX, the continuity of the above mentioned process A also implies that X = X' is
quasi-left continuous, see Corollary Finally, by definition of u we have

E / i(dsde) (e — X ) — AX,|| =0,
10, T]xR
therefore X* satisfies Hypothesis [6.3.10| with (w, s,€) = e — X (w). O

We start now describing the second example. In the recent paper Bandini [2], one
studies the existence and uniqueness for a BSDE driven by a purely discontinuous
martingale of the form

Yomet [ F(s, Yoo, Us() dAs - / Us(e) (4 — v)(dsde).  (6.60)
¢, 7] J¢, TIxR

Here p(dsde) is an integer-valued random measure with compensator v(dsde) =
dAs ¢s(de), where ¢ is a probability kernel and A is a right-continuous nondecreasing
predictable process, such that Us(R) = AA; < 1 for every s. For any positive

constant 3, &7 will denote the Doléans-Dade exponential of the process SA. We
consider the weighted spaces

T
L%(A) = {adapted cadlag processes (Ys)se(o, 775 s.t.E[/O &8y, |2 dA,] < oo},
9%(/;) = {predictable processes (Us(-))sejo, 1], S-t-

Ul|? ::]E/ &8 \Us(e) — U, |? v(ds de) + e U2 (1 — AAL)] < oo}
1Vl =E[ . E010e) = Uil wlds de Se};ﬂ 102 )] < oo}
A solution to equation with data (8,€, f) is a pair (Y,Z) € L%(A) X 9%(/;)
satisfying equation . We say that equation admits a unique solution in
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L%(A) X 9%(;1) if, given two solutions (Y,U), (Y',U’), we have Y; = Y/ dP ® dA;-a.e.
and ||U — U’||§%(M) = 0 (in particular ||U — U’Hgg(u) =0).

In [2] one requires suitable assumptions on the triplet (f,¢,3). In particular f is
of Lipschitz type in the third and fourth variable and £ is a square integrable random
variable with some weight. Moreover, the following technical assumption has to be
fulfilled: there exists € €]0, 1] such that

2Ly 2 [AA? <1—¢, P-as., Vtel0,T], (6.61)

where L, is the Lipschitz constant of f with respect to y. Under these hypotheses,
for 8 large enough, it can be proved that there exists a unique solution (Y,U) €
L3(A) x G3(p) to BSDE (6.60)), see Theorem 4.1 in [2].

At this point some comments may be useful. Two random fields U and U’ in
G2 _(u) will be said to be equal if U = U’ ML-a. e. (i.e., dP(w) v(w, dt de)-a.e.).

Uniqueness in Theorem 4.1 in [2] means the following: if (Y,U), (Y',U’) are
solutions of the BSDE , then Y = Y’ and, by Proposition there is a
predictable process (I;) such that Ui(e) — U/(e) = l; 1k (t), dPv(dt de)-a.e. In other
words, given a solution (Y,Uy) of BSDE , the class of all solutions will be
given by the pairs (Y,U), where U = [ 1x + Uy for some predictable process (I;). In
particular, if K = (), then the second component of the BSDE solution is unique in
the smaller space £2(u).

Example 6.4.7. Let us now consider a particular case of BSDE , namely a
BSDE driven by the integer-valued random measure u associated to a given Markov
process X, of the form

Y= g(Xr)+ [ f(s Xoo, Yo, Us()) dA, — Us(e) (1 — v)(ds de). (6.62)
It, T 1t, TIxR

We assume that X is a piecewise deterministic Markov process (PDMP) associated
to the random measure p, with values in the interval ]0,1[. Such a process has
random jumps (7,), and a deterministic motion between jumps according to a drift
h :]0, 1[— R which is Lipschitz continuous. When the process reaches the boundary,
it will instantaneously jump inside the interval. We will follow the notations in Davis
[35], Chapter 2, Sections 24 and 26. For every = €]0,1[, we will express by t.(x)
the first time such that the process X starting at x reaches 0 or 1. The behavior
of X is described by a triplet of local characteristics (h, A, P), where h is the drift
introduced before, A :]0, 1[— R is a measurable function satisfying

sup |A(z)] < oo, (6.63)
z€]0,1]

and P is a probability transition measure on [0, 1] x B(]0, 1), such that
for some € > 0, P(x, B:) =1 for x € {0,1}, where B. = {z €]0,1[: t.(z) > €}.
(6.64)
Set Ny = > cnli>7,. By Proposition 24.6 in [35], under conditions (6.63) and

(6.64) we have
E[N] < oo VteR,. (6.65)



Chapter 6. Special weak Dirichlet processes and BSDEs driven by a
226 random measure

Notice that the PDMP X verifies the equation

t
Xt:Xo—i—/ h(X.)ds+ Y AX,. (6.66)
0

0<s<t

In particular X admits a finite number of jumps on each compact interval. By (26.9)
n [35], the random measure p is

pldsde) = 1ix,, o, 10T, xp,) (dsde) = Y 1ix, 2x.}0(s, x,)(ds de), (6.67)

neN 0<s<t

which is of the type of (6.51]). This implies the validity of (6.52)), so that can

be rewritten as

t
Xy :X0+/ h(XS)ds—i—/ (e — Xs—) pu(dsde).
0 10, ¢]%x]0,1{

In the following, by abuse of notations, u will denote the trivial extension of previous
measure to the real line. In particular can be reexpressed as

t
X, = Xo+ / h(X,)ds + / (e — Xo ) u(ds de). (6.68)
0 10, ¢} xR

The knowledge of (h, A, P) completely specifies the dynamics of X, see Section
24 in [35]. According to (26.2) in [35], the compensator of 1 has the form

v(dsde) = (AN Xs-)ds + dp;) P(Xs—, de), (6.69)
where
i = Z Li>m,y Yixg, €01} (6.70)
n=1

is the process counting the number of jumps of X from the boundary of its domain.

From we can choose Ay and ¢s(de) such that dA; = N X,—)ds + dp
and ¢s(de) = P(Xs_,de). In particular, A is predictable (not deterministic) and
discontinuous, with jumps

AA(w) = os(w,R) = Apg(w) = 1ix, (w)efo,1}}- (6.71)
Consequently, 7;(w,R) > 0 if and only if 7;(w,R) = 1, so that
J={(@0): (@, R) > 0} = {(,0) : (w, R) = 1} = K, (6.72)
and
K = {(w,t) : X¢—(w) € {0,1}}. (6.73)
]

Lemma 6.4.8. Let X be the PDMP process considered in Example[6.4.7. Then

A) i le — X_|v(dsde) € A
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Proof. We start by noticing that

/ le — Xs_|v(dsde) < 0o as.
10, T]xR
Indeed

/ le— X | v(dsde) = / e — X | (MXo_) ds + dp’) P(Xs_, de)
10, T) xR 10, T]x]0, 1

< Alloo (T + p7)-
For every ¢ € [0, T the jumps of the process

Yt::/ le — Xs_|v(dsde)
10, ] xR

are given by

AY} = / |€ - Xt,| ﬁt(de) S ﬁt(R) S 1.
10,1]

Since Y; has bounded jumps, it is a locally bounded process and therefore it belongs
to A;" , see for instance the proof of Corollary at page 373 in [110]. O

loc?

Lemma 6.4.9. Let y and X be respectively the random measure and the associated
PDMP satisfying equation (6.68) in Ezample[6.4.7. Assume in addition that there
exists a function B : {0,1} —]0,1[, such that

Xs = 0B(Xs—) on {(w,s): Xs_(w) €{0,1}}, (6.74)

and

P(z, de) = dg(,)(de) ass. (6.75)
Then . satisfies Hypothesis and X fulfills Hypothesis[6.4.9 with decomposition
X = X'+ XP, with

X! = / (e — Xs—) (n—v)(dsde), (6.76)
10, t] xR

XV =Xo+ /t h(Xs) ds +/ (/ (e — Xs—) P(X,s—, de)) (M Xs—)ds + dpi).
’ o (6.77)
In particular X* satisfies Hypothesis with
Y(w;s,€) = (e = X5 () Lix, - w)elo,1pp (w; 8)-

Proof. Let us prove that Hypothesis (1) holds. We recall that the measure
1 was characterized by . We define p¢ := plje, and v¢ := v1lje. v is the
compensator of u¢, see paragraph b) in [76]. Taking into account , and
, we have

vé(dsde) = \(Xs-) P(Xs—,de) ds. (6.78)

By Remark [6.3.19}(ii) we see that D N.J¢ = U, [[T%]], (T})» totally inaccessible times.
On the other hand, since by (6.72) J = K, we have D = K U (D N J¢), therefore

Hypothesis 6.3.17+(i) holds.
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Let now consider Hypothesis [6.3.17}(ii). Taking into account (6.73)), we have to
prove that for every predictable time S such that [[S]] C {(w,?) : X¢—(w) € {0,1}},

v({S}, de) = u({S},de) as. (6.79)

Let S be a predictable time satsifying [[S]] C {(w,t) : X;—(w) € {0,1}}. By (6.67),
pn({S},de) = dx(de), while from we get v({S}, de) = P(Xs—, de) . Therefore
identity (6.79)) can be rewritten as

P(Xg_, de) =dxg(de) as. (6.80)

Previous identity holds true under assumptions ((6.74) and (6.75]), and so Hypothesis
6.3.17+(ii) is established.

In order to prove the validity of Hypothesis [6.4.2] we will make use of Lemma
6.3.22l We recall that the process X satisfies the stochastic differential equation

(6.68]), which gives, taking into account Lemma
t
X = Xo —|—/ h(Xs)ds —|—/ (/ (e — Xs) P(Xs, de)) AMXs) ds
0 10,4] \JR

+ /]0’ ; (B(Xs—) — Xs—) dpi + / (e — Xs-) (n —v)(dsde). (6.81)

10, ¢} xR

We can show that previous equation is a particular case of . Indeed, we recall
that, by and , the support of the measure dp* is included in K. We
set By = s+ p*(s) and b(s,z) = (h(z) + [z(e — 2) A(z) P(z, de)) 1xe(s) + (B(z) —
x) 1k (s). The reader can easily show that the sum of the first, second, and third
integral in the right hand-side of equals f(f b(s, Xs—) dBs, provided we show

that [ [b(s, X,_)| dB, is finite a.s. In fact we have
A%@X@ma
< [ mexas
'ﬁéﬂké“‘xg)MXsW”XsﬂkﬂK4$+%MXg)—XSﬂK@)M%
= [ ot
‘ﬁéﬂﬁé@—XslﬂXswkHMXsNK4@+1mg)u&+@w@)

t
g/ |h(Xs)|ds—|—/ /|e—XS|1/(ds, de). (6.82)
0 10,4 Jr

Recalling Lemma [6.4.8] and taking into account that h is locally bounded, we get
that [, [b(s, Xs—)| dBs belongs to A}l . Then, setting Ny = 0 and (s, z,e) = e — x,
we see that X is a solution to equation ((6.28)).

Then, by Lemma [6.3.22] X satisfies Hypothesis with decomposition X =
X'+ XP, where X and XP are given respectively by (6.76]) and (6.77). Moreover, the
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process X' fulfills Hypothesis [6.3.10| with ¥(w, s,€) = (e — Xs_(w)) (1 — 1x(w, s)) =
(e—Xs—(w)) Lx, (w)eo,1[} (W, 8), and the process XP satisfies Hypothesis|6.3.14 [

6.4.2. Identification of the BSDE’s solution. We consider the following as-
sumption on a couple (X,Y) of adapted processes.

Hypothesis 6.4.10. X is a special weak Dirichlet process of finite quadratic vari-
ation, satisfying condition (5.127)). Y; = v(¢, X;) for some (deterministic) function
v:[0,T] x R — R of class C%! such that F = v and X verify condition (5.134)).

Let us remark the following facts.

Proposition 6.4.11. Assume that X is a process satisfying Hypothesis with
decomposition X = X' + XP, where X* (resp. XP) fulfills Hypothesis (resp.
Hypothesis , with respect to p, with corresponding 4. Let in addition v :
[0,7] x R — R be a function of class C*.

(a) If > scr |AX,|? < ¢ a.s., then

"U(S,Xs_ + ’7(8, 6)) — ’U(S,)(s_)‘2 1{|’y(s,e)|§l} * W€ ‘Afc_)c' (683)
(b) If X and F = v satisfy conditions (5.127)) and (5.134)), then
‘U(S,XS_ + "~)/(S, 6)) — ’U(S,XS_N 1{|’y(s,e)|>l} * € ‘Aﬂ_)c' (684)

(¢) If X and F = v satisfy conditions (5.127)) and (5.134)), and moreover
D os<T |AX|? < o0 a.s., then

U(SaXs— +’?(576)) - U(S’XS—) S 9lloc(lu’)'

Proof. Ttem (a) follows by Proposition and inequality (6.11)) in Proposition
6.3.15, with p(w,s,z) = |v(s, Xs— (w) + x) — v(s, Xs— (w))[* 1{jz1<1}, allowing ¢ also
depending on w.

Item (b) is a consequence of (5.127: and (5.134)) together with Lemma |5.6.24
and inequality (6.11)) in Proposition [6.3.15 with ¢(w, s, z) = |v(s, Xs—(w) + z) —
v(8, Xs—(w))| 1fjz>1}, allowing ¢ also depending on w.

Finally, item (c) is a direct consequence of items (a), (b), and Remark with
olw, s,e) =v(s, Xs—(w) +7(w, s,e)) —v(s, Xs—(w)) and A = {(w, s,€) : |F(w, s,€)| >
1}. O

Proposition 6.4.12. Let p satisfy Hypothesis[6.3.17. Let X be a process verifying
Hypothesis with decomposition X = X'+ XP, where 7 is the predictable process
which relates p and X° in agreement with Hypothesis |6.5.10, Let (Y, Z,U) be a
solution to the BSDE (6.39) such that the pair (X,Y) satisfies Hypothesis
with corresponding function v. Let X¢ denote the continuous local martingale M€ of
X given in the canonical decomposition .

Then, the pair (Z,U) fulfills

d(X°, M),

Zt = am’l)(t,Xt) d<M>t

dP d{M);-a.e., (6.85)
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/ Hay(e) (1 — v)(dsde) =0, ¥ teo, T], as., (6.86)
10, ] xR
with
Hg(e) :=Uq(e) — (v(s, Xs— +7(s,€)) —v(s, Xs-)). (6.87)
If, in addition, H € G2 _(u),
/ |Hy(e) — Hy 1 (s)>v(dsde) =0 aus. (6.88)
10, T xR

Remark 6.4.13. Since the pair (X,Y’) in Proposition satisfies Hypothesis
6.4.10, then X and v in the statement satisfy and . By Proposition
6.4.11}(c) it follows that v(s, Xs—+7(s,e))—v(s, Xs_) € Gl (). Since U € G2 .(u) C
Gpoc (1), this yields H € Gl _(u).

Proof. By assumption, X is a special weak Dirichlet process satisfying condition
5.127), and F = v is a function of class C%! satisfying the integrability condition
5.134). So we are in the condition to apply Theorem [5.6.26| to v(t, X;). We get

v(t, X¢) =v(0, Xo) + A) t]XR(v(s,Xs, + ) —v(s, Xs_)) (X — v¥)(ds dz)

+ 0xv(s, Xs) dXs + A%(1), (6.89)
10,1]
where AV : C%! — DU is a map such that, for every v € C%!, AY is a predictable
orthogonal process. We set
o(s,z) = v(s, Xs— + ) —v(s, Xs_).
Since X is of finite quadratic variation and verifies 5.12?#, and X and F = v

satisfy , by Proposition and Lemma @ we see that the process ¢
verifies condition with A = {|z| > 1}. Moreover ¢(s,0) = 0. Since pu verifies
Hypothesis [6.3.17] and X verifies Hypothesis [6.4.2], we can apply Proposition [6.3.20]
to ¢(s,z). Identity becomes

v(t, X¢) =v(0, Xo) + /]0 t]XR(’U(s,XS_ +7(s,e)) —v(s, Xs—)) (u—v)(dsde)

+ O,v(s, Xg) dXS + AV (). (6.90)
10,1]
At this point we recall that the process Y; = v(t, X;) fulfills the BSDE ([6.39)),
which can be rewritten as

Yt:YO—i—/ zdes+/ Us(e) (i — v)(ds de)
10,4 0, 6] xR

—/ g(s, Ys_, Zs)d(s —/ f(s, e, Ys_, Us(e)) A(ds de). (6.91)
10,1]

10, ] xR
By Proposition the uniqueness of decomposition yields identity ((6.86))
and

/ ZsdMg = O,v(s, X) dX?. (6.92)
10, ¢] 10, ¢]
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In particular, from (6.92)) we get

0= / ZudM, — | 0uo(s, X,) dXE, M)
10, ¢] 10, ¢]
d(xe, M),
— [ ZdMy,— | (s, Xo) DL goag,
/M ), [ oewto, X e oy

= A)}t] (ZS — Oyv(s, Xs) m> d(M)s,

that gives identification ([6.85)).
If in addition we assume that H € G2 (u), the predictable bracket at time ¢ of

loc

the purely discontinuous martingale in identity (6.86|) is well-defined, and equals
[ @ - )P vdsde) + Y P 0®) k() (693)
10, 8] xR s€]0, t]

see Theorem identity (B.25]), and Remark The conclusion follows from
the fact that under Hypothesis we have J = K up to an evanescent set, see

Remark [6.3.18] O

We apply now previous result to the case of Example We start with a
preliminary result.

Lemma 6.4.14. Let p and X be respectively the Poisson random measure and the
stochastic process satisfying the SDE i Example . Letwu: [0, T]xR —R
be a function of C%' class such that x +— Oyu(s,x) has linear growth, uniformly in
s. Then condition holds for X and F = u.

Proof. We have
/ [u(s, Xs— + ) —u(s, Xs-) — 2 0pu(s, Xs- )| 1|51} p~ (ds dx)
10, ] xR

= Z u(s, Xs) —u(s, Xs—) — Oru(s, Xs—) AXq] 1{|AX5\>1}

0<s<-
1 1
< Z [AX | Tgjax,|>1} </ lagcu(s,Xs_%—aAXs)]da—i-/ |8xu(s,Xs_)|da>
0<s<- 0 0
<2C Y X |AX ] Igax. sy + D IAXP Clyax, s
0<s<- s<t
=2C / | X | 2] Ljapsry 1™ (ds da) + Y JAX P Lax, 1 (6.94)
}07’}XR s<-
Since X is of finite quadratic variation, the second term in the right-hand side of
(6.94) is in ‘Al—gc if and only if

> IAX P € A

loc? (6.95)
s€]0, ]
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see Proposition with p = 2. Since by (6.44) AX, = [ v(Xs—,e) u(dsde), we

have

2
doIAX P =D ‘/V(Xs—ve)u(dé‘d@) 2/ V(X €)[* ulds de),
5€]0, | s€lo,] VR 10,]xR
and (6.95)) reads
/ (Xo_, o) u(ds de) € AT (6.96)
10,-] xR

Condition holds because |y(z,e)] < K (1 A le]) for every z € R, [o(1 A

le|?) A(de) < oo (see, respectively, (6.45) and (6.43))), and taking into account the
fact that the integrand in is locally bounded.

Finally, the first term in the right-hand side of (6.94) belongs to Afg . since X
is locally bounded (see e.g. the lines above Theorem 15, Chapter IV, in [110]) and
X satisfies (5.127)). The conclusion follows. O

We are ready to give the identification result in the framework of Example [6.4.3]

Corollary 6.4.15. Let (Y, Z,U) € 82 x £ x L%(u1) be the unique solution to the
BSDE (6.41)). If the function u defined in (6.46) is of class C%' such that x
Ozu(t, z) has linear growth, uniformly in t, then the process (Z,U) satisfies

Zy = Opu(t, X,) dPdt-ae., (6.97)
/ Hg(e) (u—v)(dsde) =0, Vt €0, T], a.s. (6.98)
10, ] xR
where
Hs(e) :=Usg(e) — (u(s, Xs— + (s, Xs—,€)) —u(s, Xs_)). (6.99)
If in addition H € G2 (),
Us(e) = u(s, Xs— + (s, Xs—,€)) —u(s, Xs—) dP\(de)ds-a.e. (6.100)

Proof. We aim at applying Proposition [6.4.12] By Lemma L satisfies Hy-
pothesis and X fulfills Hypothesis [6.4.2| with decomposition X = X’ 4+ XP,
where X' satisfies Hypothesis [6.3.10| with J(s,e) = (s, Xs_,e). Moreover, since
X is a special semimartingale, it is of finite quadratic variation and holds
because of Corollary 11.26 in [73]. By Lemma condition holds for X
and F' = u, which implies that Hypothesis is verified.

We can then apply Proposition since X¢ =M =W, gives ,
while (6.86)-(6.87) with Y(s,e) = ~(s,Xs_,e) yield (6.98)-(6.99). If in addition
H € $%(p), since H = 0 (v is absolutely continuous with respect to the Lebesgue
measure), ((6.88) yields

/]0 o PN ds =0, (6.101)
,T]x

and (6.100f) follows. ]
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Remark 6.4.16. When the BSDE ([6.41) is driven only by a standard Brownian
motion, an identification result for Z analogous to (6.97) has been established by
[68], even supposing only that f is Lipschitz with respect to Z.

Let us now consider a BSDE driven only by a purely discontinuous martingale,
of the form ((6.49). We formulate the following assumption for a couple of adapted
processes (X,Y).

Hypothesis 6.4.17.

(i) Y = B+ A, with B a bounded variation process and A’ a continuous
(F¢)-orthogonal process;

(i1) Y; = v(t, X;) for some continuous deterministic function v : [0,7] x R — R,
satisfying the integrability condition

/ ot X + ) — o(t, Xo_)| 15X (dt dr) € AT (6.102)
10, -]xR

We have the following result.

Proposition 6.4.18. Let u satisfy Hypothesis[6.3.17. Let X verify Hypothesis[6.4.2
with decomposition X = X'+ XP, where 7 is the predictable process which relates

and X* in agreement with Hypothesis|6.3.1(0] Let (Y,U) be a solution to the BSDE
(6.49), such that (X,Y") satisfies Hypothesis |6.4.17 with corresponding function v.

Then, the process U satisfies

/ Hg(e) (p—v)(dsde) =0 V¥t €]0, T], as., (6.103)
10,t] xR
with

Hg(e) :=Ug(e) — (v(s, Xs— +7(s,€)) — v(s, Xs—)). (6.104)
If in addition H € G (1),

A) ; () = L Li(5) o(dsde) =0 as (6.105)
ST x

Remark 6.4.19. The assumption of continuity for v(¢, z) in Hypothesis [6.4.17}(ii) is
somehow restrictive since it can be relaxed with respect to . However our purpose is
to illustrate the methodology and the assumption of continuity simplifies the proof.

Proof. By assumption, the couple (X,Y) satisfies Hypothesis [6.4.17| with corre-
sponding function v. We are then in the condition to apply Proposition [5.6.2§] to
v(t, Xy). We get
ot X)) = (0, Xo) + / (0(s, Xoo +2) — v(s, Xs)) (4 — %) (ds d) + A" (2),

10,t]xR

(6.106)

where AV is a predictable (F;)-orthogonal process. Set

o(s,z) = v(s, Xs— + ) —v(s, Xs_).
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By condition (ii) in Hypothesis [6.4.17] the process ¢ verifies condition (6.13) with
A=Qx]0, T] xR. Moreover ¢(s,0) = 0. Since u verifies Hypothesis|6.3.17, and X

verifies Hypothesis we can apply Proposition to (s, z). Identity

becomes

v(t, X3) = v(0, Xo) + / (v(s, Xs— +7(s,€)) —v(s, Xs-)) (u— v)(dsde) + A" (t).
e (6.107)

At this point we recall that the process Y; = v(t, X;) fulfills the BSDE , which

can be rewritten as

Y: :Yo—i-/ Us(e) (u — v)(dsde) —/ f(s, e, Ys_, Us(e)) A(ds de).
10, t]xR 10, ] xR ( )
6.108

By Proposition the uniqueness of decomposition (6.107)) yields identity (6.86)).
If in addition we assume that H € G2 (p), the predictable bracket at time ¢ of the

purely discontinuous martingale in identity (6.86)) is well-defined, and equals

/ |Hy(e) — HyLy(s)Pv(dsde) + 3 [H*(1 - 05(R)) Ly(s),  (6.109)
10, ] xR 5€]0, ]

see Theorem identity (B.25), and Remark [B.23| The conclusion follows from
the fact that under Hypothesis [6.3.17 we have J = K, see Remark [6.3.18 O

Previous result can be applied to the framework of Example We start with
a preliminary observation.

Lemma 6.4.20. Let X, p be respectively the pure jump Markov process and the
corresponding integer-valued random measure in Example . Let u : [0, T] x

R — R be a continuous function satisfying (6.56]), (6.57) and (6.58). If we set
Y = u(t, Xy), then (X,Y) satisfies Hypothesis with corresponding function u.

Proof. From (6.53)) and the fact that u is continuous, it follows that
u(t, Xy) = u(0, Xo) + > _(u(s, Xe + AX,) — u(s, X,_)). (6.110)
s<t
Obviously Y; = u(t, X;) has a finite number of jumps on each compact. We have
Dos<t |uls, Xs— + AX) —u(s, X5 )| < oo as. for every t € Ry. Therefore, condi-
tion (i) in Hypothesis [6.4.17| holds with B = u(0, Xo) + >, (u(s, Xs— + AX;) —
u(s, Xs-)), A =0.
To verify the validity of condition (ii) of Hypothesis [6.4.17| with corresponding
function v = u, we have to show that (6.102)) holds with v = u. Denoting ||A||c =

SUPye(o, 77, zeR IA(t,z,R)|, by (6.52) we have

E

/}m s, Xow 4 ) = uls, X,)| ¥ (ds o)
,T]%

=E [/}o,T]XR lu(s,e) —u(s, Xs—)| u(ds de)]
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=E / lu(s,e) —u(s, Xs—)| A(s, Xs—, de) ds
10, T]xR
< T[|N|LL2 —u(s, Xo)||¥e
< TN flu(s. ) — u(s, XOIE2,)
and the conclusion follows since u(s,e) — u(s, Xs—) € £2(u) by (6.57). O

We have the following identification result in the framework of Example [6.4.5

Corollary 6.4.21. Let (Y,U) € L£? x £2(u) be the unique solution to the BSDE
(6.50) and X, u respectively the process and the function appearing in Example .
Assume moreover that u is continuous. Then the process U satisfies

Uile) = u(t,e) —u(t, Xs—) dPA(t, Xi—, de)dt-a.e. (6.111)

Proof. We aim at applying Proposition By Lemma u satisfies Hy-
pothesis [6.3.17] and X fulfills Hypothesis [6.4.2| with decomposition X = X*, X? = 0,

where X? satisfies Hypothesis [6.3.10| with 7(s,e) = e — X,_. Moreover, by Lemma
6.4.20, (X,Y") satisfies Hypothesis [6.4.17| with corresponding function v = u. We
can then apply Proposition We have

Hy(e) :==Ug(e) — (u(s, Xo— +7(s,€)) — u(s, Xs-))
= Us(e) — (u(s,e) —u(s, Xs-)), (6.112)

which belongs to £2(1), and therefore to G2(u). Since moreover H = 0 (v is abso-
lutely continuous with respect to the Lebesgue measure), (6.105)) yields

/]0 _— |Hy(e)|? M(s, Xs_, de)ds = 0, a.s. (6.113)
T %

and (6.111]) follows. O

Finally, we apply previous results to Example [6.4.7]

Lemma 6.4.22. Let (Y,U) € £2 x G%(u) be a solution to the BSDE and X,
u respectively the process and the function appearing in Example[6.4.7. Assume that
Y: = u(t, X;) for some continuous function u : [0, T| x R — R. Then (X,Y) satisfies
Hypothesis with corresponding function v = u.

Proof. Since the process X has a finite number of jumps on each compact, the same
holds for Y; = u(t, X;). We set

By:= ) AY, A;:=Y;-B. (6.114)
0<s<t
Obviously B has bounded variation, and the process A’ is continuous by definition.

Since Y satisfies by assumption BSDE (6.62)), for every local continuous martingale
N we have

[Y,N]; = f(s, Xs—, Y5, Us(+)) d[A, N]s — [/ Us(e) (n—v)(dsde), N
10,¢] 10, xR

(6.115)
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Since A is a predictable increasing process, therefore has bounded variation, [4, N| =
0 by Proposition 3.13 in [9]. The second term in (6.115]) is zero because
f]O,-]XR Us(e) (u — v)(dsde) is a purely discontinuous martingale. Therefore (6.115])

vanishes. Recalling that B has bounded variation, it also follows that [B, N] = 0,
so that A’ is a continuous (F;)-orthogonal process, and condition (i) in Hypothesis

[6.4.17 holds.

It remains to show that u(t, X;) satisfies condition (6.102)) with v = u. Since u
is continuous, we have

/]o e lu(s, Xo_ +x) —u(s, Xe_ )| p~ (dsdz) = Z lu(s, Xs) — u(s, Xs)|

0<s<-

= |AY]. (6.116)
s<-

The process Y takes values in the image of [0, T'] x [0, 1] with respect to u, which is
a compact set. Therefore the jumps of Y are bounded, and (6.116]) belongs to A"

loc?

see for instance the proof of Corollary at page 373 in [110]. O

Corollary 6.4.23. Let (Y,U) € £2 x G%*(u) be a solution to the BSDE ([6.62),
and X the piecewise deterministic Markov process with local characteristics (h, \, P)
appearing in Fxample . Assume that Yy = u(t, X¢) for some continuous function
u. Assume in addition that there exists a function B :{0,1} — R, such that

Xs =P(Xs—) on{(w,s): Xs—(w) €{0,1}}, (6.117)
and that

P(m, de) 1{16{0,1}}(8) = 5/3(@ (de) (6.118)
Then the process U satisfies

/ Hg(e) (u—v)(dsde) =0 Vt €0, T),a.s., (6.119)
10, ¢} xR

where
H(e) := (Us(e) — (uls, €) —uls, Xs)) Lix,_ejo,ay (s) + Us(€) 1ix,_efo,133(5)-
If in addition Hy(e) € G2 (),
Us(e) = u(s,e) —u(s, Xs—) dPANXs-) P(Xs—, de) ds-a.e. (6.120)
Remark 6.4.24. If H € G2 (u), the value of Uy(-) can be chosen on K = {(w, s) :

loc

Xs—(w) € {0,1}} as an arbitrary P-measurable process, see Proposition

Proof. We will apply Proposition [6.4.18] By Lemma o satisfies Hypothesis
and X fulfills Hypothesis with decomposition X = X°® 4+ XP, where
X' satisfies Hypothesis [6.3.10] with §(w,s,e) = (e — Xs—(w)) 1{x,_(w)ejo,173(w; ).
Moreover, by Lemma Hypothesis holds for (X,Y). We are then in
condition to apply Proposition Identity yields

/ Hq(e)(n—v)(dsde) =0 Vte|0,T], as., (6.121)
10, ] xR
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where
H(e) == Us(e) — [u(s, Xs— +7(s,€)) — u(s, Xs_)]
— U() — [u(s Xo + (e — Xo ) Lx,_cony()) — (s, X))
= [Us(e) = (u(s, e) — uls, Xs ) Lyx,_epoap (s) + Us(e) 1ix,_eqo13(s),
= [Us(e) — (u(s,e) —u(s, Xs—))] 1xe(s) + Us(e) 1x(s), (6.122)
where in the latter equality we use the fact that K = {(w, s) : Xs_(w) € {0,1}}.

It remains to prove (6.120)). We recall that v¢ := v 1 e verifies v¢(ds de) = \(X)
P(X,,de)ds by (6.78)). We set v¢ := v1y; since J = K, we have

vi(dsde) = v(dsde) 1k (s) = P(X,_, de) dp’ = da(x,_)(de) dpj. (6.123)

If H,(e) belongs to G2 (1), recalling identity (B.32) in Remark identity ([6.105))
and (|6.122)) yield

_ €2VCS€ Se—AS SZVdse
O_A)’T}XR!HS( )|Fve(dsd H/m,:m’H( ) — Hy 1 (s)2 v (ds de)
2/ Us(e) — (u(s, e) — u(s, X ))|> v°(ds de)
10, T] xR

+ / \Us(e) — Us 15 (5)|? v¥(ds de). (6.124)
10, T] xR

Taking into account condition (6.123]), (6.71)) and (6.73)), we have

Uslk(s) = | Us(e)v'({s}de) = [ Us(e)) dp(x, )(de) 1k (s) = Us(B(Xs-)) 1 (s).
R R

Consequently

/]0 IRCACR 0, 15c(s) 2 v (ds de)
,T)x

_ / Usle) — U4 1 () 050x. . (de) dpfs = 0.
10, T|xR
Therefore ((6.124]) gives simply

0= / \Usg(e) — (u(s,e)) —u(s, X )| M(X;) P(Xs, de) ds,
10, T|xR

and (|6.120f) follows. O

Remark 6.4.25. In all the considered examples, the underlying process X was a
Markov process which is a semimartingale. However, in the literature there are
plenty of examples that are not semimartingales, even in the continuous case.

Let X be a solution of an SDE with distributional drift, see e.g. Flandoli, Russo
and Wolf [64], Russo and Trutnau [115], Flandoli, Issoglio and Russo [62], of the
type

dX, = B(X,) dt + dW,, (6.125)
for a class of Schwartz distributions 5. In particular in the one-dimensional case 3
is allowed to be the derivative of any continuous function. In this case X is not a
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semimartingale but only a Dirichlet process, so that, for v € C%!, v(t, X;) is a weak
Dirichlet process. Forward BSDEs related to a forward process X solving
have been studied for instance in Russo and Wurzer [122], when the terminal type
is random.



Appendiz A

Recalls on the general
theory of stochastic
processes

In this chapter we recall the main definitions and some properties of general
theory of stochastic processes that we extensively use in our work; for a complete
discussion on this topic we refer to Jacod and Shiryaev [79], Jacod [77] and He,
Wang and Yan [73].

In what follows, we are given a probability space (Q2,F,P), a positive horizon
T and a filtration (F;);>0, satisfying the usual conditions. A random set will be a
subset of Q x [0, T] U {oc}, and [[1,7']] will denote the stochastic interval {(w,t) :
t €10, T)U{oo}, 7(w) <t < 7/(w)} associated to two stopping times 7,7’. For a
stopping time 7 taking values in [0, 7] U {co}, F,_ will denote the o-field generated
by Fo and the events A N {t < 7}, where ¢t € [0, T] and A € F;, see (0.30) of [77].
We will denote by P (resp. P = P ® B(R)) the predictable o-field on Q x [0,T]
(resp. on = Q x [0,7] x R). Analogously, we set O (resp. O = O ® B(R)) as
the optional o-field on € x [0, 7] (resp. on €2). In the sequel, a random set will
be called predictable (resp. optional) if its restriction to Q x [0, T is P-measurable
(resp. O-measurable). Moreover, a stochastic process which is P-measurable (resp.
O-measurable) will be called predictable (resp. optional).

We will also denote by A (resp. Ajoc) the collection of all adapted processes with
integrable variation (resp. with locally integrable variation), and by A™ (resp AIOC)
the collection of all adapted integrable increasing (resp. adapted locally integrable)
processes. The significance of locally is the usual one which refers to localization by
stopping times, see e.g. (0.39) of [77].

Definition A.1 (Definition 1.30, Chapter I, in [79]). A random set A is called to
be thin if it is of the form A = U,[[T,]], where (T},) is a sequence of stopping times;
if moreover the sequence (T),) satisfies [[T,,]] N [[T)]] = 0 for all n # m, it is called
an exhausting sequence for A.

239
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Remark A.2. Any optional random set whose sections are at most countable is
thin in the sense of Definition see the comments below Definition 1.30, Chapter
I, in [79].

Definition A.3 (Definition 1.15, [73]). Let (Q,F,P) be a probability space, let G
be a sub-o-field of F. A random variable ¢ is called to be o-integrable with respect
to G if there exists Q, € G, 2, 1 Q a.s. such that each £ 1, is integrable.

Definition A.4 (Definition 7.39 in [73]). An optional process X = (X3) is said to
be thin if {AX # 0} is a thin set. A typical example of thin optional process is the
jump AX of an adapted cadlag process X.

Definition A.5 (Definition 7.33, in [73]). Let M and N be two local martingales.
If [M, N] =0, we say that M and N are mutually orthogonal.

The notion of purely discontinuous martingales appears for instance Definition
7.21, in [73]. Below we recall a useful characterization of such processes given in
Theorem 7.34, in [73], the comments above and obvious localization arguments.

Theorem A.6. Let M be a local martingale with Mo = 0. Then M is purely
discontinuous if and only if it is orthogonal to every continuous local martingale.

Definition A.7 (Definition 1.10, Chapter I, in [79]). A random set A is called
evanescent if the set {w: 3t € [0, T)U{oo} with (w,t) € A} is P-null; two E-valued
processes are called indistinguishable if the random set {X # Y} = {(w, ) : Xy(w) #
Yi(w)} is evanescent, i.e., if almost all the paths of X and Y are the same.

Theorem A.8 (Theorem 4.18, Chapter I, in [79]). Any local martingale M admits
a unique (up to indistinguishability) decomposition
M = M°+ M*

where Mg =0, M€ is a continuous local martingale and M® is a purely discontinuous
local martingale.

In the sequel H>? (resp. 3{120’?) will stand for the set of square integrable (resp.
locally square integrable) purely discontinuous martingales.

Corollary A.9 (Corollary 4.19, Chapter I, in [79]). Let M and N be two purely dis-
continuous local martingales having the same jumps AM = AN (up to an evanescent
set). Then M and N are indistinguishable.

Proposition A.10 (Proposition 2.4-(a) and Proposition 2.6, Chapter I, in [79]). If
X is a predictable process, then AX is predictable. If moreover T is a stopping time,
then X:1(7 <0y s Fr—-measurable.

A.1. Predictable and totally inaccessible stopping times

Definition A.11 (Definition 2.7, Chapter I, in [79]). A predictable time is a map-
ping 7 : Q — [0, T] U {oo}, such that the stochastic interval [[0, 7[[ is predictable.



A.1. Predictable and totally inaccessible stopping times 241

Remark A.12. If 7 is a predictable (finite) time, then [[7]] € P, see e.g. the
comments after Definition 2.7, Chapter I, in [79].

Proposition A.13 (Proposition 2.18-(b), Chapter I, in [79]). If X and Y are two
predictable processes satisfying X = Y: a.s. on {1 < oo} for all predictable times T,
then X andY are indistinguishable.

Definition A.14 (Definition 2.20, Chapter I, in [79]). A stopping time 7 is called
totally inaccessible if P(7 =S < oco) = 0 for all predictable time S.

Remark A.15. It straight follows from Definition that
1[[Ti]](w,Tp(w)) 1{Ti<OO,Tp<OO} =0 a.s. (A1)

for any totally inaccessible time 7" and predictable time T7.
Indeed, taking the expectation of the left-hand side of (A.1]) we get

E [1[[Tz”<,Tp()) 1{Ti<OO,Tp<OO}j| = IP’(w e T’(w) = Tp(w) < OO) =0.

Lemma A.16 (Lemma 2.23, Chapter I, in [79]). If A is a predictable thin set, then
A admits an exhausting sequence of predictable times, namely there is a sequence
(T},) of predictable times whose graphs are pairwise disjoint, such that A = Uy[[T},]].

Proposition A.17 (Proposition 2.24, Chapter I, in [79]). If X is a cadlag pre-
dictable process, there is a sequence of predictable times that exhausts the jumps of
X. Furthermore, AX; =0 a.s. on {1 < oo} for all totally inaccessible time T.

Definition A.18 (Definition 2.25, Chapter I, in [79]). A cadlag process X is quasi-
left continuous if AX; = 0 a.s. on the set {7 < oo} for every predictable time
T.

Proposition A.19 (Proposition 2.26, Chapter I, in [79]). Let X be a cadlag adapted
process. X is quasi-left continuous if and only if there is a sequence of totally inac-
cessible times that erhausts the jumps of X.

Theorem A.20 (Theorem 4.21, [73]). For any adapted cadlag process X = (X;)
there exists a sequence (Ty,)y, of strictly positive stopping times satisfying the following
conditions:

(i) {AX # 0} C U[[T0]];

(ii) each T, is predictable or totally inaccessible;

(iiD) [[TW]] N [[Tn]] = 0 for every m # n.
Theorem A.21 (Theorem 5.2, [T3]). Let X be a measurable process such that for
every predictable time 7, X, is o-integrable with respect to F,_. Then there exists

a unique predictable process, called predictable projection, denoted by PX, such that
for every predictable time T we have

E [XT 1{T<OO}’SFT—:| =PX; 1{7'<oo} a.s.
Lemma A.22 (Lemma 1.37 in [77]). Let A be an increasing predictable process with

Ay = 0. Then there exists a sequence of increasing stopping times (T,,), such that,
Th(w) T 400, and Ap, v < n for each n.
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Lemma A.23. Let A be a predictable process such that sup,<,, |A| < 0o a.s. Yu > 0.
Then, for every predictable time T taking values in 10, T| U {+o0}, we have that
A7 1r o0y 18 o-integrable with respect to Fr—.

Proof. Weset A} = sup,<; As. A" is a predictable and increasing process. Moreover
Ap = 0. By Lemma there exists a sequence of stopping times (7},), such that
T, T 7 =inf{t: A} = oo} = o0, with A7, < n for each n. Let Q, = {T,, > 7}N{7 <
oo}. Clearly U,Q, = {7 < co}. Moreover

n>Allg, € L.
By Theorem 56, Chapter IV, in [37], ©2,, € F._, so the result follows. O

Corollary A.24. Let A be a predictable process such that sup,<, |A:| < oo a.s.
Vu € [0, T|. Then its predictable projection exists and PA = A.

Proof. Let 7 be a predictable time. By (1.5) in [77], A-1{; <o is Fr_-measurable.
This, together with Lemma gives

E [AT 