N. H. Abel, Precis d'une theorie des fonctions elliptiques, Journal Fur Die Reine Und Angewandte Mathematik, vol.4, pp.309-348, 1829.

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, OUP Oxford, 1992.

J. P. Aubin, Viability theory. Systems & Control: Foundations & Applications, 1991.
URL : https://hal.archives-ouvertes.fr/inria-00636570

N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, 1975.

S. Bello, E. Díaz, J. Malagón-rojas, M. Romero, and V. Salazar, Medicion del impacto económico del dengue en Colombia: una aproximación a los costos médicos directos en el periodo, Biomédica, issue.3, pp.31110-113, 2000.

J. A. Bisset-lazacano, M. M. Rodríguez, J. L. San-martín, J. E. Romero, and R. Montoya, Evaluaci??n de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador, Revista Panamericana de Salud P??blica, vol.26, issue.3, pp.229-234, 2009.
DOI : 10.1590/S1020-49892009000900007

F. Brauer and C. Castillo-chávez, Mathematical models in population biology and epidemiology, volume 40 of Texts in Applied Mathematics, 2001.

D. Cardona, B. Salguero, and L. S. Sepulveda, Dinámica del VIH-SIDA en Cali, Revista de Salud Pública, vol.13, issue.5, pp.772-777, 2011.

C. Castillo-chavez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics, vol.1, pp.33-50, 1993.

N. Chitnis, J. M. Hyman, and J. M. Cushing, Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model, Bulletin of Mathematical Biology, vol.101, issue.Suppl. 4, pp.1272-1296, 2008.
DOI : 10.1007/s11538-008-9299-0

A. Costero, J. D. Edman, T. W. Clark, and G. G. Scott, Life Table Study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico Fed Only Human Blood Versus Blood Plus Sugar, Journal of Medical Entomology, vol.35, issue.5, 1998.
DOI : 10.1093/jmedent/35.5.809

D. J. Daley and J. Gani, Epidemic modelling: an introduction, volume 15 of Cambridge Studies in Mathematical Biology, 1999.
DOI : 10.1017/CBO9780511608834

E. De-la-pava, B. Salguero, and A. Alzate, Modelo matemático del riesgo anual de infección tuberculosa en Cali, Revista Panamericana de Salud Pública, vol.11, issue.3, pp.166-171, 2002.

O. Mundial-de and L. Salud, Dengue y dengue hemorrágico, p.2014

M. , D. Lara, and L. Doyen, Sustainable Management of Natural Resources: Mathematical Models and Methods, volume 15 of Environmental Science and Engineering, 2008.

L. Doyen and C. Béné, Sustainability of fisheries through marine reserves: a robust modeling analysis, Journal of Environmental Management, vol.69, issue.1, pp.1-13, 2003.
DOI : 10.1016/S0301-4797(03)00004-5

URL : https://hal.archives-ouvertes.fr/hal-00716683

L. Doyen and V. Martinet, Sustainability of an economy with an exhaustible resource: A viable control approach, Resource and Energy Economics, vol.29, issue.1, pp.17-39, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01186925

W. H. Fleming and R. W. , Deterministic and Stochastic Optimal Control, 1975.
DOI : 10.1007/978-1-4612-6380-7

W. Herbert and . Hethcote, The mathematics of infectious diseases, SIAM Review, vol.42, pp.599-653, 2000.

H. Lee-hyewon and M. Levine, Determining the threshold for acceptability of an ICER when natural health units are used, Journal of population therapeutics and clinical pharmacology, vol.19, issue.2, pp.234-238, 2012.

S. Lenhart, J. T. Workman, . Chapman, /. Hall, B. Crc et al., Optimal Control Applied to Biological Models, Mathematical and Computational Biology, 2007.

M. Y. Li and L. Wang, A Criterion for Stability of Matrices, Journal of Mathematical Analysis and Applications, vol.225, issue.1, pp.249-264, 1998.
DOI : 10.1006/jmaa.1998.6020

L. E. López, A. Muñoz, G. Olivar-tost, and J. Betancourt, Modelo matemático para el control de la transmisión del dengue, Revista de Salud Pública, vol.14, pp.512-523, 2012.

C. , C. Mccluskey, and P. Vanden-driessche, Global analysis of two tuberculosis models, Journal of Dynamics and Differential Equations, vol.16, issue.1, pp.139-166, 2004.

F. Méndez, M. Barreto, J. F. Arias, G. Rengifo, J. Muñoz et al., Human and mosquito infections by dengue viruses during and after epidemics in a dengue-endemic region of Colombia, Am J Trop Med Hyg, vol.74, issue.4, pp.678-683, 2006.

J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, Numerical Analysis, pp.105-116, 1978.
DOI : 10.1137/0111030

J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain Journal of Mathematics, vol.20, issue.4, pp.857-872, 1990.
DOI : 10.1216/rmjm/1181073047

L. M. Ocampo and I. Duarte, Modelo para la din??mica de transmisi??n de la toxoplasmosis cong??nita, Revista de Salud P??blica, vol.12, issue.2, pp.317-326, 2010.
DOI : 10.1590/S0124-00642010000200015

K. Okosun, O. Rachidb, and N. Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, Biosystems, vol.111, issue.2, p.1002588, 2012.
DOI : 10.1016/j.biosystems.2012.09.008

O. Panamericana-de and L. Salud, Sistematización de lecciones aprendidas en proyectos de comunicación para impactar en conductas (COMBI) en dengue en la Región de las Américas, 2011.

M. A. Patterson and A. V. Rao, GPOPS-II, ACM Transactions on Mathematical Software, vol.41, issue.1, pp.1-1, 2014.
DOI : 10.1145/2558904

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 1995.
DOI : 10.1201/9781420035339

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko, The Mathematical Theory of Optimal Processes, 1962.

A. V. Rao, D. A. Benson, C. Darby, M. A. Patterson, C. Francolin et al., Algorithm 902, ACM Transactions on Mathematical Software, vol.37, issue.2, pp.221-2239, 2010.
DOI : 10.1145/1731022.1731032

J. H. Rojas, Boletin epidemiológico de enfermedades transmitidas por vectores, 2015.

L. Santacoloma, B. Chavez, and H. L. Brochero, Estado de la susceptibilidad de poblaciones naturales del vector del dengue a insecticidas en trece localidades de Colombia, Biomédica, vol.32, issue.3, pp.333-343, 2012.

D. L. Smith, F. E. Mckenzie, R. W. Snow, and S. I. Hay, Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control, PLoS Biology, vol.28, issue.3, p.42, 2007.
DOI : 10.1371/journal.pbio.0050042.t002

D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott et al., Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens, PLoS Pathogens, vol.3, issue.4, p.1002588, 2012.
DOI : 10.1371/journal.ppat.1002588.s001

D. C. Sorensen, Newton???s Method with a Model Trust Region Modification, SIAM Journal on Numerical Analysis, vol.19, issue.2, pp.409-426, 1982.
DOI : 10.1137/0719026

W. Thomas, Longitudinal studies of aedes aegypti (diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency, Journal of Medical Entomology, vol.37, issue.1, pp.89-101, 2000.

H. D. Toro, M. M. Mesa, and D. A. Prieto, Modelo de simulación para la transmisión del VIH y estrategias de control basadas en diagnóstico, Revista de Salud Pública, vol.16, issue.1, pp.139-152, 2014.

W. Walter, Ordinary Differential Equations. Graduate Texts in Mathematics, 1998.

H. Yang, H. Wei, and X. Li, Global stability of an epidemic model for vector-borne disease, Journal of Systems Science and Complexity, vol.20, issue.2, pp.279-292, 2010.
DOI : 10.1007/s11424-010-8436-7