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RESUME iii

Réesumé

Cette thése a pour obijectif la construction de schémas d'ordre élevé ethpsitsdiour le trans-

port d'un traceur dans les écoulements a surface libre, en deux ou trois dimensions.

On souhaite en particulier obtenir des schémas robustes, qui gardent au niveau discret les propriétés
mathématiques de I'équation de transport avec une faiblesdin numérique, et les utiliser sur

des cas industriels.

Dans ce travail deux méthodes numériques sont envisagées : une méthodes auXinidu(viEs

et une méthode aux résidus distribués (RD). Dans les deux cas, I'équation de transport est résolue
avec une approche découplée, qui est la solution la plus avantageuse en termes de précision et de
co(ts de calcul. Pour ce qui concerne la méthode aux volMmsedes équations de Saint-Venant
couplées a I'équation du transport sont d'abord résolues avec un schéma dit vertex-centred ou le
Wix numérique est approximé avec un solveur de Riemann appelé Harten-Lax-Van Leer-Contact
[142]. A partir de cette approche, une formulation découplée est proposeée. Cette derniére permet
de résoudre I'équation du transport avec un pas de temps plus grand que celui de la formulation
couplée. Cette idée a été d'abord proposée pour d'autres schémas dans [13]. Pour augmenter
l'ordre de précision en espace, la technique MUSCL [93] est utilisée avec l'approche découplée.
Finalement, la problématique des zones seches est abordée. Dans le cas de la méthode aux résidus
distribués, les équations de Saint-Venant sont résolues avec une méthode ¥tdigaiton fait

appel aux résidus distribués seulement pour discrétiser I'équation du transport, en se focalisant sur
les problémes non stationnaires. L'équation de continuiMdie discrétisée est employée pour
garantir la conservation de la masse et le principe du maximum. Pour obtenir des schémas d'ordre
deux dans les problémes non stationnaires, un schéma prédicteur-correcteur [117] est utilisé, en
I'adaptant au cas de concentration moyennée sur la verticale. Une version d'ordre 1 mais peu dif-
fusive, est aussi présentée dans ce travail. De plus, un schéma localement implicite, completement
nouveau, est aussi formulé pour pouvoir traiter le probléme des bancs découvrants.

Les deux techniques sont validées d'abord sur des cas simples, pour évaluer l'ordre de précision
des schémas et ensuite sur des cas plus complexes p¥ar iggiautres propriétés numériques.

Les résultats montrent que les nouveaux schémas sont a la fois précis et conservatifs, tout en gar-
dant la monotonie comme le prévoient les démonstrations. Un cas d'application industriel est aussi
présenté en conclusion.

De plus, le schéma prédicteur-correcteur RD est adapté au cas 3D. Ceci ne présente aucun probléme
théorique nouveau par rapport au cas 2D. Les propriétés de base des schémas sont validées sur des
cas test préliminaires.

Mots-clés:

schéma de convection - transport scalaire - ordre élevé - résidus distribués - prédicteur correcteur -
volumesvhis-bancs découvrants
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ABSTRACT v

Abstract

The purpose of this thesis is to build higher order and lddssilie schemes for pollutant trans-

port in free surfac®dws. We aim at schemes which are robust, with low numeritaisitbn and

which respect the main mathematical properties of the advection equation. The goal is industrial
environmental applications.

Two techniques are tested in this work: a classiode volume (FV) method and a residual dis-
tribution (RD) technique combined with\&ite element method. For both methods we propose

a decoupled approach since it is the most advantageous in terms of accuracy and computational
time.

Concerning therst technique, a vertex-centr&éhite volume method is used to solve the aug-
mented shallow water system where the numentied is computed through an Harten-Lax-Van
Leer-Contact Riemann solver [142]. Starting from this solution, a decoupled approach is formu-
lated and is preferred since it allows the use of a larger time step for the advection of a tracer. The
idea was inspired by Audusse and Bristeau [13]. The MUSCL [93] technique is used for the second
order extension in space. The wetting and drying problem is also analysed and a possible solution
is presented.

In the second case, the shallow water system is entirely solved usivgitdelement technique

and the residual distribution method is applied to the solution of the tracer equation, focusing on
the case of time-dependent problems. However, for compatibility reasons the resolution of the
continuity equation must be considered in the numerical discretization of the tracer. In order to
get second order schemes for unsteady cases a predictor-corrector scheme [117] id/isted. A
order but less dlusive version of the predictor-corrector scheme is also introduced. Moreover, we
present a new locally semi-implicit version of the residual distribution method which, in addition

to good properties in terms of accuracy and stability, has the advantage to cope with dry zones.
The two methods arérst validated on academic test cases with analytic solutions in order to as-
sess the order of the schemes. Then more complex cases are addressed to test the robustness of the
schemes and their performance undékedéntVw conditions. Finally a real industrial test case

for which real data are available is carried out.

An extension of the predictor-corrector residual distribution schemes to the 3D case is presented
as avnal contribution. Even in this case the RD technique is completely compatible withithe
element framework used for the Navier-Stokes equations, thus its extension to the 3D case does
not present any extra theoretical problem. The method is tested on preliminary cases.

Keywords:

advection schemes - pollutant transport - high order - residual distribution - predictor corrector
scheme Vhite volumes - wetting and drying phenomena
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Chapter 1

Introduction

Les équations de transport régissent un grand nombre de phénomeénes physiques. En
hydraulique, la propagation des polluants ou d'autres traceurs peut étre un example
de phénomene caractérisé par la convection. Des actions pour réduire ou maitriser les
risques liés a la pollution sont de plus en plus demandées par la loi et les entreprises
doivent répondre a ces\vé Pour ce faire, des outils numériques robustes et a la pointe

de I'état de I'art sont nécessaires pour garantivdailité des études.

Dans ce cadre, l'objectif de la thése est d'améliorer les schémas numériques pour la
convection des traceurs dans les écoulements a surface libre. L'équation de transport
est trés connue et étudiée depuis longtemps, mais sa discrétisation comporte toujours
des d¥s numériques intéressants. En particulier, des études plus approfondies sont a
mener sur le probléme de la précision et de la monotonie du schéma. Dans cette thése,
deux méthodes numeériques sont explorées pour modéliser le transport d'un scalaire
passif dans uide : une méthode aux voluméss et une méthode aux résidus
distribués. Pour chaque approche, les stratégies adoptées pour diminuasitndi
numérique ou pour augmenter l'ordre de précision du schéma sont détaillées. Les
conditions de monotonie de chaque schéma sont établies en suivant des méthodes clas-
siques ou alternatives. Finalement, le probléeme des bancs découvrants est aussi abordé
avn de pouvoir résoudre des cas réels.

La thése s'articule en huit chapitres. Le Chapitre 2 présente les équations a résoudre et
leurs propriétés mathématiques. Dans le Chapitre 3 un état de I'art sur les méthodes
pour les problemes de transport dgtro au lecteur, en regard des choix numeériques

qui ont marqué ce travail. Le Chapitre 4 est dédié a la description du modéle VF tandis
gue le Chapitre 5 s'occupe du modele RD. Dans les deux cdserescdis avec les
schémas existants sont soulignées. L'analyse des résultats numériques obtenus avec les
deux techniques fait I'objet du Chapitre 6. Le Chapitre 7 montre I'extension du schéma
RD au cas 3D avec des résultats préliminaires. Les conclusions et les perspectives de
travail sont présentées dans le Chapitre 8.
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1.1 Context and motivations

The transport equation arises in a wide range of natural phenomena. Pollution propagation studies
as well as water quality studies for ecological modelling are typical applications where the convec-
tion plays an important role.

These studies are asked for more and more, due to the increasing attention on environmental prob-
lems. The legislation is more demanding so that industries and engineering departments have to
be able to handle these issues. Forecast of pollutant plumes, monitoring of biological transform
process in water and remediation projects of polluted waters are part of possible legislative re-
quirements for environmental protection.

In these cases, in situ data collection and numerical simulations are fundamental tools to study
these problems. It is even more important to have a reliable numerical tool when some data are
not available or when several scenarios have to be produced.

The shallow water equations, or the Navier-Stokes equations, augmented by one (or more) scalar
conservation equation(s) for the transport of a passive tracer(s) are used to model these phenomena.
The conservative scalar transport equation, combined with the continuity equation of the shallow
water system, makes up the non conservative equation. This padéaédiial equation is well

known and has been widely studied. However, there are still some challengiogitais in its
discretization. TheseXlculties are intrinsically related to the applications considered. For exam-
ple, it is important to have high order methods or methods with low numeritak#@in when the

goal is to predict pollutant values on long distances. At the same time, when only advection is
involved, it is important that the concentration values obtained are strictly bounded and that the
mass of solute is perfectly conserved. Finally, in real river or coastal applications, the method used
must be able to handle wetting and drying processes.

1.2 Objectives of the thesis

This thesis aims at improving the convection schemes for scalar transport in free ¥éawace

The modelling Eorts focus on the increase of the order of accuracy of the schemes and on alter-
native strategies to decrease the numeridaliglon. In literature, plenty of works can be found

on second order accurate schemes and in this thesis two existing techniques are considered and
tailored to our spe¥ft problem. Moreover, the focus is also kept on the conservation of the mass
and on the monotonicity which are the other essential numerical requirements analysed in this
work. The wetting and drying problem with respect to the tracer variable is not often addressed in
the literature. This problem is studied here with larger attention and some possible solutions are
then described.

The schemes presented in this thesis are implemented in the Telemac,sy$tiemis an open
source software for free surfadéws [1]. The software was initially developed at EDF R&D and

only some of them are currently available in théaial version of the code
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now is managed by an international consortium of users and developers. The hydrodynamic equa-
tions are mainly solved by\ite element method. The latter, as well as other numerical strategies
used in the Telemac system are described in [82]. HoweVeiteavolume kernel was also intro-

duced for the solution of the shallow water equations. The advection schemes already existing in
the software will be used in some test cases for comparison purpose. Telemac-2D is the name used
for the part of the code solving the shallow water equations, while Telemac-3D refers to the code
solving the Navier-Stokes equations.

1.3 Contents of the thesis

TheVrst numerical method used in the present work ¥nde volume (FV) method. This family

of schemes is known to be conservative and thus the mass conservation issue does not deserve
too much attention in this case, as the conservation is intrinsicall\wedtisn order to correctly

model the scalar transport, the Harten-Lax-Van Leer-Contact [142] Riemann solver has been im-
plemented. The structure of the solution obtained with this solver, allows to decouple the tracer
equation from théMid equations. Thus the tracer equation andWiel equations are not solved

at the same time. This solution is also adopted in [13] for another kind of solver. Decoupling the
pollutant equation allows on one hand to diminish the numeriddligibn of the scheme and on

the other hand to reduce the computational costs. The decoupled algorithm is based on a mono-
tonicity criteria and under particulafdw conditions the decoupled solution can fall back to the
coupled solution in order to Ml the monotonicity.

To increase the spatial accuracy the Monotonic Upstream Scheme for Conservation Laws (MUSCL)
[93] has been used. This technique is very popular among FV schemes. However in case of 2D un-
structured mesh, there is no unique and right way to apply this method but rather an hodgepodge
of possibilities. For this reason a deeper review on this technique has been done in the state of the
art chapter. The main problem is that the theorems available for the 1D case have not been gener-
alized yet to the 2D. Thus the monotonicity in this case is not strictly guaranteed and this is still
an open issue, even if it does not arise in our numerical experiments. Even though, the decoupled
algorithm is used also for the second order case, yielding interesting results.

Finally, the dry bed problem for tracer is analysed with respect to the choice of dgataoneter,
necessary to compute the concentration variable. A minimum requirement i8/etetai avoid

the violation of the maximum principle in regions with very small water depths.

Major éJorts are made in the development of the other numerical method, a residual distribu-
tion (RD) scheme. Unlike the FV method, the RD method is only used for the conservative scalar
transport equation, while thédid equations are solved bywaite element technique. The exist-

ing residual distribution method used for the scalar advection equation is tailored to the depth-
averaged tracer equation. It is worth noticing that the RD schemes have been already adapted to
scalar conservation laws [5, 48, 118] yet here another method is derived in order to be compatible
with the continuity equation, discretized with a FE technique.
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The dJort made to adapt the scheme to the depth-averaged context has a deeper motivation: ap-
plying the same formulation to the 3D. Indeed, as we will see, for the Navier-Stokes equations a
sigma transformation is used to handle the free surface evolution anthiteeelement method

to discretize th&Vid equations. Thanks to these two features, a straightforward relation can be
established between the 2D and the 3D continuity equations. This holds true also for the tracer
equations. We just limit ourselves to say that the 2D water depthich appears in the tracer
equation can be directly replaced by the variable 3Dwhich represents the height of a layer of
elements.

The already existing N [125] and PSI [136] schemes are reformulated in order to be compatible with
the discretizedviid continuity equation. These two schemes were already implemented in the code
Telemac-2D, however their theoretical formulation is recalled to stress the concept of monotonicity
and mass conservation, useful also for the next steps.

Then, the focus is kept on the second order schemes for time dependent problems. In particular, the
predictor-corrector scheme [117] is adapted to the depth-averaged equatic.ofder version

of the predictor-corrector scheme is also considered since characterized by low nunuescah di

even if only\rst order accurate. For both thest and the second order schemes, an enhanced new
version is presented. The latter is based on the possibility to iterate the corrector step increasing the
accuracy of the results, without spoiling neither mass conservation nor monotonicity. The strategy
adopted to preserve the maximum principle ldedént from the one used by classical RD schemes
and leads to a new monotonicity condition.

In order to cope with wetting and drying problems, a new locally implicit RD scheme is presented.
The main novelty of this scheme is that for every point of the domain a local impliditoest is

used to solve the tracer equation. This approach allows to have an implicit scheme characterized
by unconditional stability at the wet/dry front. In addition, no division by water depths needs to

be performed to obtain the concentration. This feature makes the scheme very robust. However,
its drawback is represented by the need to solve a linear system, which is expensive in terms of
computational time. Even in this case, the accuracy problem is addressed with particular attention.
All the schemes presented are tested and compared on several cases. First, the accuracy is computed
on simple tests with analytical solution: the steady advection and the unsteady advection. Then,
the schemes are compared on more complex cases, where the ad¥eddtisrvariable in space

and in time. The rotating cone, where a tracer represented by a gaussian function is transported
under a rotational velocityeld, is a typical test case for convection schemes. The dam break over
wet bed and an open chann&w between bridge piers are also useful to check the mass conser-
vation as well as the monotonicity of the solution. The results show that the strategies adopted to
improve the precision of the schemes ateient and that the mass is always perfectly conserved,

as well as the maximum principle is preserved. The comparison of the schemes is completed by
data on the computational times and the number of iterations is detailed for every scheme. To test
the ability to deal with wetting and drying phenomena, we consider the dam break over dry bed
and the Thacker test case. Results show that the scheméketigady appropriate to these prob-
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lems. Finally, a real test case with wetting and drying is presented to validate the locally implicit
scheme on industrial applications. The numerical results are compared to real data.

The last part of this thesis is dedicated to the applications of the 2D predictor-corrector schemes
to the 3D case. As already said in the introduction, a series of discrete relations between the 2D
continuity equation and the 3D continuity equation make the schemes perfectly compatible to the
3D case without any additional theoretical problem. The validation is done on few preliminary
case studies.

1.4 Structure of the thesis

The structure of the thesis has been designed to methodically present the problems tackled in this
work.

In Chapter 2 the continuous equations and their corresponding mathematical properties are intro-
duced. The aim is to establish the foundations of the numerical model and to introduce a part of
the notations.

Chapter 3 presents the state of the art on the numerical models for transport problems. The liter-
ature review gradually introduces the numerical choices done in this work, showing the already
existing techniques in the literature.

In Chapter 4 the vertex-centred FV scheme is presented, stressirigetieacks between a classi-

cal coupled scheme and the decoupled version proposed in this work. The second order extension
and the wet/dry treatment is also detailed.

The Chapter 5 shows how the RD schemes have been tailored to the depth-averaged transport
equation. In particular, the new predictor-corrector schemes are described and the corresponding
monotonicity conditions are derived.

The Chapter 6 gathers the tests necessary to validate the numerical schemes. Every test checks a
particular property of the scheme and a global comparison of the various scheblagdsto the

reader.

Chapter 7 shows the extension of the predictor-corrector scheme to the 3D case. Two numerical
tests are given as preliminary validation of the scheme.

In Chapter 8 conclusions and perspectives of this thesis are presented.
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Chapter 2

Governing equations and main
properties

L'objectif de ce chapitre est d'introduire les équations qu'on souhaite résoudre et leurs
propriétés mathématiques.

Le systeme de Saint-Venant couplé avec une loi de conservation scalaire est établi suiv-
ant une meéthode classique a partir des équations de Navier-Stokes. Les hypothéses de
base et le domaine de validité des équations sont rappalde hien iden¥er le type

de phénomeénes qu'on cherche a modéliser.

De la méme maniére on introduit synthétiquement certains aspects mathématiques
qui sont nécessaires dans la suita de guider la construction du modéle numérique.

En particulier, on parle d'hyperbolicité, de stabilité et de principe du maximum. L'étude
de I'hyperbolicité permet aussi de bieWméles conditions aux limitesva d'avoir

un probléme bien posé.

Le chapitre se termine par une série de solutions exactes qui sont ensuite utilisées dans
la validation numérique des schémas.



8 CHAPTER 2: GOVERNING EQUATIONS AND MAIN PROPERTIES

This chapter presents the main characteristics of the equations solved in this work with the methods
presented in the next chapters. The assumptions, as well as the limitations and the mathematical
properties of the equations are fundamental in the construction of the numerical model. Indeed,
the numerical modelling choices will also b&fded according to these properties, in order to seek

the correct physical solutions of the equations. A part of the notations used in this work is also
introduced in this chapter.

2.1 Augmented two dimensional shallow water equations

We call the augmented 2D shallow water (SW) equations, the system formed by the classical shal-
low water equations for thedid augmented by one (or more) scalar conservation equations for
the transport of a passive tracer(s), which is (are) dissolved or contained/fidh&he concept

of passive tracers includes various substances that will be detailed later in the text. However, in
this work we often speak about pollutant since pollution phenomena and water quality problems
are among the most common industrial applications for which these equations are studied.

We Wrst present th&iid equations and then the tracer equations.

2.1.1 Shallow water system

A large class of natural phenomena can be described by the 2D shallow water systédodthe

wave in rivers, the dam break waves, the river and the stM@éans. However, the assumptions

made to obtain the equations have to be considered in the numerical modelling of these phenomena.
The SW system is also called Saint-Venant system, since Jean-Claude Barré de Saint-Venant is the
name of the French engineer who published the equations furdh#me in 1871 in the “Comptes

rendus des séances de I'Académie des sciences” [17]. The equations are the result of the integral
over the vertical direction of the Navier-Stokes equations. This involves a series of new “depth-
averaged” quantities, like velocities and concentrations (if any). The derivation of the equations

is done under several assumptions, which limit the kind of phenomena that can be tackled. These
assumptions establish a range of validity of the equations. The main assumptions are [49]:

a thin layer ofWiid is considered: the horizontal length scale is much grater than the vertical
length scale. This implies also that the depth oilie (h) is small compared to the wave
length () or the free surface curvature, o< L . This explains why we can also speak
about long waves;

the Wiid is incompressible : = const, where is theWiid density;

the dJects of boundary friction and turbulence can be accounted for through resistance laws
analogous to those used for steady Stdits;

the average channel bed slope is much less than unity, like the slop&Midisairface;

the vertical component of acceleration of the water particles has a negligdgean the
pressure;
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the pressure distribution is hydrostatic, so water depth and pressure are directly correlated.
This assumption is a result of the previous one, indeed vertical accelerations must be negli-
gible to have an hydrostatic pressure distribution;

the impermeability condition is applied on the bottom and on the free surface. This implies
that there is no transfer of water mass through these boundarie$\iithparticles on these
boundaries will always remain part of them.

This assumptions make the equations suitable to describe rivers and estuaries, coastal regions and
even oceans. In particular they are useful for hydraulic studies on rivers where the spatial and
the time scales can be very large (hundreds of kilometers for the space and several days for the
time) and thus the depth-averaged quantities are appropriate variables. The numerical methods
developed in this work focus on these kinds of industrial applications, but they can also be extended
to the three-dimensional cases and so to the Navier-Stokes equations, as we will see in Chapter (7).
The formulation of the SW equations starts from the Navier-Stokes equations, which are made up

by:
the incompressible continuity equation which represents the mass conservation:

@uU @V, @W_
@x+ @y+ @z 0 (2.1)

whereU = (U;V; W) is the velocity vector with the relative y; z components.

the momentum equations, which express the conservation of momentum aloqy the
directions:

@y, UQU+ VQU+ W@U: 1gp+ 4 U+ Fy

@t @x @y @z

X
@/4. U@/+ V@/+ W@/: 1gp+ 4V + Fy (2.2)

@t @x %/ @z y
Qw, ,ew,  e@w,  eW_ 1@p

§] + W=
@t @x @y @z @z

g+ 4W+F,

wheret is the time,p is the pressure, is the co& cient of kinematic viscosity is the
acceleration of gravityk = ( Fx;Fy;F;) are the external forces amtl is the laplacian
operator4d = % + @% + %. Note that we considafiids with constant coécient of
dynamic viscosity, hence we have the siivigdi term 4 U. The latter is obtained from
1y (2 ) with ,the coXcient of dynamic viscosity (equal to) and the shear-stress

tensor.

The set of equations isdeed on 1 = [0;t;] R3® R*,where isthe computational
domain and; is aVhite time. It is completed by the appropriate initial and boundary conditions
on , the boundary of the computational domain.

Note that in the above equations the density of\il has already been considered constant.
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We start by the integration with respectmf the continuity equation, between the bottans
b(x;y) and the free surface= s(x;y;t).

ZS
@u, @v, @w

Cox @y @Zdz=0 (2:3)

This leads to: Z @U Z, Qv
Wj,= Wj,=p+ —dz+ —dz=0 2.4
Jz=s Jz=b b @X b @y ( )

To make explicit th&rst two terms, we apply now the impermeability condition on the boundaries.
This corresponds to the following kinematic condition:

d @ @ @ @

— (xy;z;t)= —+U—+V_—+W_— = 2.

dt (ayizit) @t U@x @y @z 0 (2:5)
where represents the function for a boundary given by the surfdgey; z;t) = 0.
For the free surface we havéx;y;z;t) z s(x;y;t) =0 while for the bottom (x;y;z;t)
Z b(x;y) =0. Applying the kinematic condition to the free surface\id:

@s @s @s

@t+ U@er V@y w . =0 (2.6)

And on the bottom we get:

@b . @b
U@X+ @y z=b 0 ( )

Plugging Equations (2.6) and (2.7) into Equation (2.4) we obtain:

@s, @s A @s @b . @b *@u *@V, _
@t+ U@x+ V@y . U@x+ V@y Z:b+ . @Xdz+ ) @ydz—o (2.8)

For the last two terms of the above equation we use the Leibnitz rule:

Z, z z
@u S@V @ S . @s .. @b
—dz+ —dz=—= Udz Uj=s— + Ujy=p—
b @X b @y @y, l=s@x” “1=Pax
@ S . @s ... @b
+ = Vdz Vj;=s— *+ Vj=p— 2.9
@y, Jz s@y Jz b@y (2.9)
In this way, the Equation (2.8) simy@s into:
Z Z
@s @ ° @ °
—+ = Udz+ = V dz=0 2.10
@t @x, @y (2-10)

We recall that is independent of andh = s bis the water depth, then we Wee the new
depth-averaged velocities:

u:% Uudz ; v:% Vdz (2.11)
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and we get the depth-averaged continuity equation:

@h_@hu)  @hv) _

2.12
et @x @y (-12)
The equation can be written in a compact form using the divergence operator,
@h
— + hu) = 2.1
ot (hw=0 (2.13)

whereu = ( u; V) is the depth-averaged velocity vector with the relatiyg components.

We consider now the assumption that states that the vertical component of acceleration is negligi-

ble:
dw _ Qw (@AW (@AW @W_
= = @t+ U @X+ v @y+ W @Z_o (2.14)

From the equation of momentum alomgneglecting the viscosity and the external force, we thus
Vnd:

@p_
@z
We use now the dynamic condition on the free surface:

g (2.15)

P(X;Y; Z; t)jz=sxy) = Patm =0 (2.16)

wherepam is the atmospheric pressure, which is taken equal to zero. Equation (2.15) now becomes:

p= g(s 2 (2.17)
The dlUerentiation of the pressure with respecktandy gives:

@p_ @s . @p.  @s
@x J@x ' @y Jay (2.18)

Now we consider the two remaining momentum equations and we integrate them along the vertical
as done before. For simplicity we only perform the derivation for the equationxalong

z z
S @U @U @U @u > 1l@p

— +W— dz= + 4U+ Fy dz 2.19
, @ “ex 'ey Ve:®T , ex ' (2.19)
The integral of théfst term on the left-hand side (LHS) gives:
S@uU hu . s b
= &Yy, 9% ;.2 (2.20)

b @t @t @t @t
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while for the advection terms we obtain:

Zs @UU @VU @WUu

b @x @y @z

@ ° @s @b
dz @szu dz  U?j,- S@+sz b@x
+gyb(u+u u(v+V v)dz

. . s . . b
Ujz=sVjz= sgy"' Ujz=bV]z= bgy

+ Ujz=sWjz=s  Ujz=pWjz=p (2.21)

Using the dehition of depth-averaged velocities the equation is rearranged in the form:
z

s @uu, @Vu, @WU @huz) @hu) _ @s @s .
Ujz=s Ujz=s— + Vjz=s— Wjz=5s
., @x @y @z @x = @x le=s@x’ Viz=sgy
) . @b . @b )
Uz: Uzz —_— V2: - WZ:
+ sz J b@x+ J b@y Jz=b
+§yb(u WV v)dz (2.22)

We note that the last term on the LHS of this equation is not zero in general. It represents the
dispersion terms which correspond to an additiondlgion. These terms are added to the stress
tensor.

For the pressure gradient term on the right-hand side (RHS), using the Equation (2.17), we get:

Z
1@p. |, @s

LT @x g@x (2.23)

while for the dlusion terms we have:
Z z z
1 1S 1 S 1 1
—r dz= - r dz= —r dz+ - sng+ — pnp (2.24)
b b b

where ¢ and , represent the stress at the surface and the bottom, multiplied by the respective
normals. Here we have just considered that density does not change alotigve have used the
Leibnitz's rule. Neglecting for the moment the last two terms of Equation (2.24), we write:

1 Zs 1

—r . rudz =-=r (hru=r (hr(u) (2.25)
Finally for the external forces we simply have:

z

S
Fy dz = hFy (2.26)
b
since we consider that they are constant along the vertical.

Combining Equations (2.20),(2.22),(2.23),(2.25) and (2.26) and considering the impermeability con-
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ditions on the bottom and on the surface, we obtain:

@hu) @s
ot @>Sh u?) + —)ghuv)— gh@x+ hFx + 1 (h er (U)) (2.27)

where ¢ represents theleective duusion which takes into account the turbulent viscosity and the
dispersion. The corresponding depth-averaged momentum equatiory aong

@hv) @, o _ @s
ot —)Shuv)+ i) = gh@y+ hFy+ 1 (h o (V) (2.28)

Adding the friction terms on the LHS, we end up with the system written in conservative form:

@h, @hu) , @hv) _
@t @x @y

h 2 2

@@”t) >gth)+ —)ghuv) = ghgi g”“m:g;"z FhE + 1 (h o (W)
hv @ @s n2v. u2+ v

@@) )ghuv)+ @ hv?) = gh@y gT + hFy+ 1 (h er (V)

(2.29)
wheren is the Manning roughness c6eient. We can perform a further development on the
surface gradient term: we assume thdedentiability of the water depth, which is:

h @h_ @ 12 (2.30)

@xX @x 2
Moving this term on the LHS, neglecting th&asion term and possible external forces, the con-
servative form of the inviscid shallow water equations can be written in the following vectorial
compact form:

@, @GL), @)

@t @x @y oY) on [0;t] (2.31)

with U = [h; hu; hv]T the vector of the conservative variablégU) andH (U) the two vectors
of convectivaNixes and5(U ) the source term.  R? is the space domain over which equations
exist.[0; t; ] is the time interval over which equations are solved.

2 3 2
hu hv
G(U):g hu2+;ghzé;H(U)=§ hU\i é

huv hV2+ Eghz
2 -
2 . 3 .y o g e

_ b % o St g h3 é

SW)=4 gy, +5) Sirb= 8= o 1 flie

gh(Se, + St,) ’ he
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whereSy is the gradient of the bottom ar@l is the friction term. Note that the source term of the
continuity equation is null yet it can beldérent from zero in presence of some sources or sinks. In
this case it will be callesce

These are the equations that we consider along all this work: they are non linear pdetiahtal
equations of hyperbolic type.

The evolutionary equations (2.31) need initial conditions on the water depth and on the velocities:

h(0;x;y) = h%(x;y) (2.32a)
u(0;x;y) = u®(x;y) (2.32b)

Since the equations are solved in a limited geometrical domain, in order to obtain a well-posed
problem we add boundary conditions to the system. The number of physical conditions depends
on the type of boundaries and on the nature of\Ww. In this work we only consider two types

of boundaries: solid walls and liquid boundaries.

For solid walls we prescribe a slip or impermeability condition:

u n=0 (2.33)

with n the unit normal to the wall boundary.

For liquid boundaries, according to the kind/éfv (subcritical or supercritical) and to the sign of

u n (inlet or outlet boundary), we prescribe zero, one or two boundary conditions.

As is well known [83], the number of conditions to impose is related to the eigenvalues of the
Jacobian matrix, which will be introduced in Section 2.2, where this topic will be appropriately
discussed.

2.1.2 Pollutant transport equation

The pollutant transport equation is a passive scalar transport equation. An important assumption
is that the pollutant is passive. It means that the pollutant canMieimce theMid properties

(e.g. the density), thus cannoVirence hydrodynamics. Dynamic interactions with Wibev are

not considered whereas in case of an active scalar the buoydecis avill i'ence the/dw
dynamics in a coupled manner.

In real applications, the passivity assumption can be considered true for pollutant propagation at
large spatial scales (like in rivers), where the vertical mixing is assumed to be pevfatd)(end

a depth-averaged concentration is taken into account. It is thus important for numerical models
to predict the right concentration after large distances. Examples of phenomena that cannot be
represented are the temperature or density $ftations.

One or more equations, according to the number of pollutants considered, are added to the Navier-
Stokes equations which are then integrated along tregiable, as done before.
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The conservative form of the equation is:

@@f C)+r (CU cr C) = Fsource (2.34)

whereC is the concentration,c is the dUusion coX cient (molecular or turbulent) of the pollu-
tant andFsource IS the source term (creation/destruction). Following the same procedure used in
Section 2.1.1, the integration along the vertical gives:

@

@{hc)+ r (hcu) r (h ¢r €) = cyeeSCE (2.35)
we remember that in this case the depth-averaged concentratiovinisaiby:
1 Zs
c= - Cdz (2.36)
h y

The other terms of equation (2.35) are: the source value of the poltytarthe Vow sourcesce

the dilusion co& cient of the pollutant, ;. which in this case takes also dispersion into account.
Solving the conservative form with respect to the unknbw(guantity of pollutant) can be useful

to ensure the mass conservation yet it can be complicated to ensure the monotonicity. This property
will be introduced later, however writing and solving the equation in its non conservative form can
be interesting to better point out this property (for 0):

(Csce C)sce

@C+urc 1r (h ¢r )= h

@t h
Since the purpose of this work is to improve the numerical modelling of the convection terms,
the dilusion term will be discarded for the moment and we will only deal with the equivalent
simpliVed forms:

(2.37)

g{hcﬂ r (hcu) = cgeesSCE (2.38a)
@c _ (csce C©)sce
Vet T (2.38b)

Equation (2.38a) is written in conservative form while Equation (2.38b) is written in non conserva-
tive form, in the depth-averaged context. We note that we deal with a paitkdatitial equation

which is non linear if we consider the conservative form while it is a classical linear advection
equation if we only look at the non conservative form. Indeed, the velocity does not depend on the
concentration and the non linearity arises from the velocity and the water depth terms.

In order to deal with the compact vectorial form, the whole system can be rewritten like (2.31) but
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in this case the unknown vectorlis = [ h; hu; hv; h(:]T while theWix and source terms are:

2 3 2 3
hu hv
1
24 Toh? huv
Gu)= § M9 2.y = 1 (2.39)
huv hv? + éghz
hcu hcv
2 3
2 3
" # " # n2y” wzr v
h(Sp, + S 4
suy=§ 9 ( 0 Sf ) Iiip= % g = =§ ,phs é (2.40)
gh(So, + S,) So, S, n°v u2+ v2
CsceSCE h%

The depth-averaged variables of the problem are sketched in Figure 2.1.
Even in this case we need some initial and boundary conditions to have a well-posed problem. As

Figure 2.1: Sketch of depth-averaged quantities in shallow \Aéates:

initial condition we will impose:
c0;xy) = (%) (2.41)

The conditions to enforce on boundaries will be studied in the next chapter, according to the sign
of the characteristic curves.

2.2 Mathematical and numerical properties

We present in this section the main properties of the augmented SW system. These properties will
be useful to guide the numerical modelling in the next chapters. In particular, they will be helpful
to establish a series of conditions that the discrete solution needs to satisfy.
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The theoretical notions introduced in this section are limited to our interest and we do not claim to
do a general review of the theoretical aspects of hyperbolic conservations laws, for which several
bibliographic references are suggested along the text.

2.2.1 Hyperbolicity and stability

The augmented SW system is an hyperbolic system formed by non linear pbdiehtiial equa-
tions. The system (2.31) can be written in a quasi-linear form [142]:

@

@ _
a A(U)— B(U)@y— S(V) (2.42)

whereA (U) = @(U) andB(U) = @”U) are the jacobian matrices corresponding toWees
G(U) andH(U).

2 3 2 3
1 0 O 0 010
u2 2u 0 O% E uv Vv u 0%
A(U) = and B(U) =
()= g u o ) a® v vuo
c O u vc O c v

wherea = P gh is the celerity. Then, following the classical procedure [142] we introduce the
vector =( y; y)and the matrix:

K(;U)=AU) x+BU)y (2.43)
which has four real eigenvalues for any given direction
1()=u a 2)= 4()=u 3()=u+a (2.44)

whereu = yu+ v is the velocity along the direction We also note that( ) = u has
multiplicity two.

Thus the system is hyperbolic since the eigenvalues are all real. We note that if we only consider
the hydrodynamic equations and a positive water depth, we can say that the sysiittlis
hyperbolic. Indeed wend that the eigenvalues are real and distingt€ > < 3).

The eigenvalues are also called characteristic speeds and ineytkde characteristigelds. The

nature of the characteristields is useful to the study of the solution behaviour. For the augmented
shallow water system w¢nd that 1 and 3 are genuinely nonlinear while; and 4 are linearly
degenerat®elds.

If the Veld is linearly degenerate then shocks or rarefaction waves will not be generated. Thus
the possible discontinuity onor onc will just be transported, like in the linear case. In this case
they are called contact discontinuities. It is possible to show that along the contact discontinuities
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the velocityu and the water depth will remain constant [142]. On the contrary, the genuinely
nonlinearVelds could generate shocks or rarefaction waves. In this case, the quantities which are
conserved along the characteristic curves are the veloaityl the concentratioa

All these properties will be useful later in Chapter 4, to justify some numerical choiced/nitthe
volume scheme.

As mentioned in section 2.1.1, the sign of the eigenvalues is important to impose the right boundary
conditions. The general rule is that only the information coming from the exterior must be imposed
as a physical boundary condition [83]. The scheme used in the interior domain will naturally
provide the missing information.

We consider a boundary and its inward pointing vector normal to the edge( ny;ny). An

inVow boundary corresponds to n > 0 while an ouv¥sw boundary correspondsto n < 0.

The behaviour of the system is determined by the propagation of waves with the following speed
[83]:

ni=u n a (2.45a)
n2=U n (2.45b)
n3=uU n+a (2.45c¢)
na=U n (2.45d)

We recall that the nature of théw, i.e. supercritical or subcriticédw, depends on the Froude
number:Fr = % A supercritical (or torrentiaNéw is characterized bjyj > ¢, thus in case of

an invéw we Vnd that all four characteristics are entering the domain, so we need four boundary
conditions at the iddw. On the contrary, at the outlet all the characteristics leave the domain so
no condition must be applied. The subcritical@vial) V@w is characterized bjyij < c. At the

inlet we only have one characteristic leaving the domain, thus three boundary conditions must be
imposed. At the outlet three characteristics leave the domain so that only one condition must be
enforced at the boundary.

In practice we will see that less conditions are imposed if we consider a local 1D problem on the
boundary.

In order to complete the set of information at the boundary, the concept of Riemann invariants is
fundamental. As we know [82, 142], it is possible to show that along the curves represented by the
equations:

dx dx
a—u+a a—u (2.46)
we will have: d ) d )
+
du+za) o, du_2)_, (2.47)

dt dt
Thus the quantitiesl + 2a andu  2a are invariant along the characteristics curves. Missing
information can be obtained through these quantities.
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It is now useful to split the system into the hydrodynamic part and the tracer part to introduce
concepts like the stability and the maximum principle, which are derived ikxaiit way for

linear and non linear equations.

The term stability can have ldérent meanings and can be introduced idedéent ways. To start,
stability can be expressed with respect to initial conditions and it can be shown that [10, 116, 119],
for Equation (2.38Db), the following principle of energy conservation holds for the solution:

jic(iicz = jic%i2 (2.48)

wherejj( )jj_ 2 denotes the standatd® norm on , in the continuum:
z
iQiice= ()% (2.49)

Then, the energy stability implies the inequality :
jic®iie Ji i (2.50)

This inequality states that energy cannot grow in time, since it would lead to instabilities, while it
corresponds to the presence of a dissipative phenomenon [10, 116, 119].

For the shallow water system it is simpler to consider the energy equation, obtained from the
continuity and the momentum equations alongndy:

E(txy) = %hjuzj " %gh2+ ghb (2.51)

which is the sum of the kinetic energy and the potential energy. We know [28] that this equation
veriVes the following inequality:

@E 1.5

—+ E)+ —gh 0 2.52

aut " WB*r (uzgh) (252)
This scalar inequality guarantees that a stabilizing dissipative mechanism determines the structure
of the solution [119]. Therefore it is often associated to the system in order to avoid unphysical
solutions of the problem. We recall that for smooth solutions, the inequality (2.52) becomes an
equality. In addition, it can be shown that Equation (2.51) ensures the existericé-stability
for the unknowns of the system (like the water depth) [12].

2.2.2 Solutions

The SW system admits classical smooth solutions yet the non linear character of the equations can
lead to singularities. Thus, even if the initial data are smooth, the non linear equations develop
discontinuities, called shocks or hydraulic jumps, \Winée time.

For this reason, in general, it is necessary to pass through an integral form and the entropy notions
are employed to identify a unique physical solution to the problem. The notion of entropy weak



20 CHAPTER 2: GOVERNING EQUATIONS AND MAIN PROPERTIES

solution is thus introduced to simplify the problem and to deal with discontinuities.
However, in the case of non conservative tracer transport equations we fall into the framework of
the linear case, thus discontinuities will not be generated if the initial conditioasu@smooth.

2.2.3 Maximum principle

The maximum principle is well established for the scalar transport equations, while its derivation
in case of a non linear system is not trivial.

In this case, it is thus convenient to consider separately the hydrodynamics and the pollutant
transport. In this way, the maximum principle is rigorously derived for the variable concentration.
However, it seems to be logical, for an hyperbolic system, to construct numerical methods which
producel.! stable solutions without spurious oscillations when discontinuities are present.

For the homogeneous case of the scalar equation (2.38b), the initial data are simply propagating in
space-time, thus we have:

inf (x;y)  cx;y:;t)  supcd(x;y) (2.53)

This inequality expresses the maximum principle. Solutions that respect the maximum principle
are also called monotone solutions.

For the heterogeneous case with a constant sayggg) 6 0, a maximum principle can be
formulated for avhite timet; < 1 as:

inf C(x;y) + tr inf csce(X;Y) (X yits)  supc’(X;y) + t; SUPCsce(X;Y) (2.54)

2.2.4 Classes of exact solutions

For the sake of clarity, we analy¥est the tracer equation and then the shallow water system. For
the tracer equation, exact solutions can be found [10, 116, 146]. For the homogeneous case, we can

show that:
dc _ @c+ @c+ @c_

dt~ et "ex ‘ey
onx(t), that is the curve which salfss the following ordinary dierential equation:

0 (2.55)

8

< d—x u(x;t)
dt ! (2.56)
(Xo;Yo) = Xo

wherex = x(t) = Xg+ utis called a characteristic curve. Equation (2.55) means that the quantity
cis constant along the characteristic curves. In this way, the PDE (2.38b) has been transformed into
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the ODE (2.55). The solution is thus constant along the characteristics and can be written as:
c(xy;t) = (xo) (2.57)

Initial datac® will be propagated in space-time aloug 1) 2 R?  R.
For the heterogeneous case with constant source tggg® 0 andsupgz jCsce(X;Y)j < 1 ,itis
still possible to/nd exact solutions:
z t
c(x;y;t) = ¢(xo) + . Csce(X(S); Y(s)) ds (2.58)

with (x(s);y(s)) respecting the ODE (2.56).

For the shallow water equations, a number of analytical solutions can be found in literature, see
for example the review [55]. We recall here some of them which will be used, coupled with the
tracer equation, in Chapter 7 for the numerical tests.

Lake at rest

The presence of the bottom source term in the momentum equation characterizes a series of steady
state solutions where the unknown values are not constant on the domain. The presence of this
term requires the respect of the property called well-balanceness [72], also known as C-property
[25]. A typical example to explain this property is the lake at rest test case. It is characterized by a
quiescentVvw over a nonMt bathymetry. A numerical scheme able to preserve the steady state of

a lake at rest at the discrete level is said to be well-balanced [72]. Indeed we have:

h+ b= const u=0 (2.59)

It is easy to check that from a numerical point of view, the preservation of this steady state corre-
sponds to a balance between Wi terms and the bottom terms sources, which is not trivial since
their discretizations are often decoupled.

The exact solution is obtained integrating the equations (2.29) over an arbitrary control volume,
imposingu = v=0. Ifs(x;y;t =0) = s% 8(x;y) 2 , the exact solution is:

[SOGy; 1) uly;t); vy )] =[s% 0,01 8(x;y) 2 t O (2.60)

As we can see this solution is independent of the bottom.

We note that this test can be useful also in presence of pollutants, indeed the numerical scheme must
be able to preserve the equilibrium for the concentration of pollutant. The initial concentfation

has to be kept constant along all the simulation:

c(xy;t=0)= & 8(x;y)2 t 0 (2.61)

Wet dam-break: Stoker solution
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The solution for a wet dam-break on a frictionl&®s bottom was presented in 1957 by Stoker
[135]. Itis the generalization of the Ritter solution for a dry dam-break. The test aims to reproduce
the unsteady behaviour of a dam-break wave, which is solution of a Riemann problem where the
three characteristic waves appear: the rarefaction wave, the contact wave Wiiek deconstant

region and the shock wave. The test is in fact 1D but it is common to use it even in 2D since the
complete wave structure solution can be checked. Adding the tracer is thus interesting as the jump
in the concentration is transported at the speed of the intermediatzone. Setting some initial
conditions of the type:

. ( .
h = he !f X Xo U=0 o= & ff X  Xo
hg if X>Xo cg if X>Xxog

wherexg is the location of the dam, the exact solution is given by:
8 8 _
E h, S % - !fx Xa(t)

ghe ifxa(t) x xg(t)
2 g gh. cm ifxg(t) x Xc(t)
' : if xc(t) X

4
5 ght 0 L
gj 2t u(t; x) =
g
hr

h(t;x) =

O N why O

2 (P——
With xa(t) = X0 t" GPL,Xa (1) = xo+ t 2" Gh.  3cm andxc(t) = xo+ t2L I cm)

ch 9hr '
Cm = pngsqution of 8c2 ghr pm ’+ 2 +ghg (cm ghr)®=0.
To retrieve this solution the method of characteristics can be used.
For the tracer the solution is [142]:
( .
qey= & Xt (2.62)

cg If x=t>u

whereu is the velocity in the intermediait zone (contact discontinuity) \deed by the interval
[xs;Xc].
Dry dam-break: Ritter solution
Wetting and drying interfaces can often create numerical instabilities in the scheévrst.ekam-
ple of exact solution of this problem is the dry dam-break. Ritter proposed an analytical solution in
1892 [124] for the ideal case WMkt bottom and without friction. In this case the initial condition
is:
hy if X Xo c if X Xo

h= i u=0 c= )
0 if x>xo 0 if x>xo
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and the corresponding analytical solution for hydrodynamics is:

8 8
2 he 2 0 if X Xa(t)
hx)= _ & Pghp 2 ? tx)= _ 2 x4+ PR
X)= S g gn. o5t u(t;x) = S 3 ~t g | Xa(t) x  xg(t)
0 "0 if xg(t) X

(2.63)
with xa (t) = Xo tp gh. andxg (t) = X+ 2tIO gh, . In this case the contact discontinuity, thus
the tracer, will move with the wet/dry front and the solution is:

c if x=t wu
t) = 2.64
cxit) 0 if xst>u ( )

whereu is the speed of a wet/dry front equalup + 2 P gh, [142].

Thacker's 2D periodic oscillations

The Thacker's test case is useful to check the ability of the scheme to handle wetting and drying
phenomena in a true 2D case. It has been presented by Thacker in [139] and two families of exact
solutions have been found. Here we consider only one of the two solutions developed by Thacker:
the radially-symmetrical paraboloid. The test shows nonlinear periodic oscillations in a basin with
a frictionless paraboloid topography. The initial solution corresponds to the exact solution at time
t = 0, then the free surface oscillates with moving wet/dry boundaries and goes back to the initial
position after one period. The accuracy of the scheme can also Yedvdmndeed, the decrease

of the free surface with time corresponds to the amount of numeridasidin produced by the
scheme.

The topography is daed by the function:

r2

z(r)= hg 1 P

, p . . .
withr = (x L=2)2 (y L=2)?, hgisthe water depth at the central point of the domain for
a zero elevation and is the distance from the central point to the zero elevation of the shoreline.
L is the length of the square basin. The exact solution is:

!
P—— !
1 A? r2 1 A?
h(rt)=hg —— 1 —
()= ho 1 Acos(t) a2 (L Acos(t))? z(r)
1 1 L
N L -
u(x;y;t) 1 Acosit) 2 X 3 Asin(lt )
1 1 L
vty o+ L -
v(X;y;t) 1 Acosit) 2 y 3 Assin('t )

- 2 2
where the frequency is = %p 8ghp, A = 82+ :2; andrg is the distance from the central point to
0

the point where the shoreline is initially located. Even in this case we add a solute concentration,
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which will move with the water surface, see also [103]. The initial condition for the tracer is:

r
c(r; 0) = cpex —

wherecy is an arbitrary constant value of tracer ang (x L=2)2 (y L=2)2. Even if we do

not have the analytical solution for the solute, we know that after every period themioould

be the same as the initial one. In this case, several properties can be checked on the numerical
scheme for the tracer: the monotonicity, the conservation, the ability to cope with dry zones.

2.3 Summary

In this chapter we hav¥frst presented the equations for the transport of pollutants on shallow
water Vows. Then the main mathematical properties for Whev and for the tracer have been
analyzed in order to guide our numerical choices. The major challenges in the discretization of the
shallow water system are the conservation of the water mass, the ability to capture a shock wave,
and the positivity of the water depth, in particular in presence of wetting and drying phenomena.
For the scalar transport, a perfect conservation of the solute mass is required and in addition the
maximum principle must be strictly guaranteed in order to respect the physics of the problem. Since
in this case contact discontinuities are present, the numerldagion produced by the numerical
scheme is an important parameter to consider.Uggeon the results can be verywifential and
according to its amount it can lead to a wrong interpretation of the problem. For this reason, we
will look to this numerical aspect with a particular attention, showing that second order schemes
in space and in time are essential for environmental engineering problems.

All these requirements are not trivial. In addition, these properties must be kept even in presence
of dry zones. This is the hardest task and as we will see in the next chapter, only few existing
schemes, as far as we know, are able to handle wetting and drying interfaces and strictly enforce
the other properties at the same time.



Chapter 3

State of the art

Ce chapitre présente I'état de I'art des méthodes numériques utilisées pour modéliser
le transport passif dans UNide.

Le chapitre est structuré en fonction des choix de modélisation faits dans le présent
travail. Pour cette raison, le probléme de la discrétisation de I'équation d'un traceur
couplée ou découplée est abordé en premier et illustré a travers des travaux existants.
Ensuite, la question de la précision dans la prédiction du transport des traceurs est
présentée en deux parties. Dans la premiere partie, des méthodes numériques qui sont
de premier ordre mais qui béreéent d'une diusion numérique relativement faible

sont analysées, en soulignant les avantages et les inconvénients par rapport aux pro-
priétés numeériques de I'équation en question. Dans la deuxieme partie, des méthodes
conservatives d'ordre élevé sont présentées. L'analyse de ces méthodes est construite
autour de deux points principaux. Le premier concerne les techniques existantes pour
obtenir des schémas d'ordre élevé pour une loi de conservation quelconque. Le deux-
ieme point prend en compte les applications de ces méthodes a I'équation d'un traceur.
De nombreux travaux sont mentionnés pour montrer I'état d'avancement de ces méth-
odes.

Pour conclure, le probleme des bancs découvrants en présence d'un traceur est présenté
et les techniques déja existantes qui permettent de prendre en compte ces phénoménes
sont décrites.
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A diUerent number of numerical models can be used to represent shallow\datercoupled

with solute transport. It is common to choose a numerical technique according to its numerical
properties and to the properties of the equations that we want to discretize. Some methods can be
very accurate but not conservative, others can be conservative and very accurate but not monotone,
etc.

We consider eulerian methods where the values of the unknowns \@medienVxed points of

the domain. The latter is discretized by a triangulation where triangles can be regular (constant
height and constant base) or irregular. A domain made up by irregular triangles is also called
unstructured mesh. In this work two numerical methods are chosen, based on the mathematical
constraints presented in Chapter 2: a residual distribution methodémittavolume technique.

This chapter aims at giving an overview of these two methods and other alternative techniques
for the depth-averaged scalar transport. The chapter is structured in order to deal with the main
numerical choices made in this work for which an appropriate literature review is provided.

Thus theVrst subject is related to the choice of a coupled or a decoupled discretization for the
scalar transport, which is independent of the numerical method used. Then the accuracy problem
is addressed in the two following sections. In Y&t one, Section 3.2, a series of low order but

low diUusion methods are discussed as possible alternative to solve tracer problems, stressing their
advantages and drawbacks. In the second one, Section 3.3, the state of the art for conservative
methods used in the present work is presented, investigating two problems: how to achieve high
accuracy and how to apply existing methods to the passive scalar transport in shiallewTo
conclude, a review of schemes able to handle wetting and drying phenomena in the presence of
tracers is presented.

This chapter does not claim to be exhaustive and various references are given for the interested
reader who desires to examine these topics in depth.

3.1 Coupled and decoupled discretization

One of thevrst modelling choices for the solution of the augmented SW equations is related to the
coupling or decoupling of the scalar transport equation.

This issue is addressed in several papers tfereint numerical methods, see for example Audusse

and Bristeau [13], Cea and Vazquez-Cenddn [39], Murillo et al. [L0¥hiter volume methods

and Dawson and Proft [50, 51] for discontinuous Galerkin methods. This choice is particularly im-
portant since decoupling these equations can be advantageous with respect to the precision and the
computational cost, depending on the method used. Yet, in this case, the Xajdtiel$ are the
conservation of mass and the respect of the maximum principle. These last properties are instead
easier to enforce in the case of a coupled discretization.

In general, the decoupled algorithm consists of sequentially solving the set of pberahtal
equations (split into hydrodynamics and tracers), using a knwmnpattern for the solute trans-
port. This means that at every time step Wisv equations ar&tst solved and then the solute
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conservative equation is solved, given the velodiljd and the water depth. This technique is
used for example in [22, 69, 152], and its use i8/pety the fact that, by déition, in the case of
passive tracers, the concentration of the solute doesVWitntce th&/dw behaviour. In addition,

when the passive scalar represents sediment, the decoupled technique is legitimized also by the
diUerent time scales for thaw and for the sediment transport.

Decoupling the tracer equation means also that the numerical scheme for the tracer cdugd-be di

ent from the numerical method for the hydrodynamics (e.g. use of a FV scheme for hydrodynamics
and a FE method for tracers). Wied a series of papers [39, 69, 102, 105] where possible solutions
to decouple the SW equations from the tracer equation are explored. It appears that often, when
using the decoupled strategy, a convenient choice is to solve the non conservative solute equation
with Lagrangian, semi-Lagrangian or particle techniques, like in [69]. These techniques have the
advantage of being very precise, but in most cases, when combined with the continuity equation,
are not conservative. In addition, when solving the non conservative equation (2.37), the water
depth disappears in the convective part of the equation, so the mass conservation property is not
explicit and consequently is not Veed in the numerical resolution. The works of Chertock and
Kurganov [42], Chertock et al. [43] are examples of hybrid methods wWhiteavolumes are used

for the hydrodynamics and particle methods for the tracers. The authors show that solutions for
tracers are improved using the hybrid method owing to the accuracy given by the particle method.
However, the mass conservation property is noMeeti

In order to keep explicitly this property in the resolution process, it can be interesting to decouple
the equations and solve the conservative tracer equation instead of the non conservative one. In
this case a major challenge is to consistently take into account the continuity equationvigidthe

such that mass conservation and monotonicity are strictly enforced. In [102], the decoupled tracer
equation is solved with an upwind FV method, where the average discrete advection velocity to
compute théNixes needs to be madid in order to have conservatiVxes. The authors show in
various test cases that the decoupled treatment leads to unrealistic oscillations, and they conclude
that this technique can lead to inaccurate solutions and numerical instabilities in the case of rapidly
varyingVws or complex situations [102].

Oscillations shown in [102] might be related to the fact that there lacks compatibility between the
discretized continuity equation and the solute one. This is indeed a necessary condition when de-
coupling the equations, as explained in [39].

A similar Wix treatment, for the uncoupled algorithm, is proposed also in [105] where, in partic-
ular, a Roe-type FV upwirdix is used. Even in this case, results show that the solution found
according to the uncoupled formulation is not bounded and does not follow the correct pattern at
any time [105]. Furthermore, it appears that the uncoupled approach is the least accurate in the
case of unsteady conditions for solute transport with reaction terms.

Another limit of some decoupled algorithms where the transport discretized equation is not con-
sistent with the continuity equation, is that these schemes are not able to preserve uniform initial
solute pr&es in irregular geometries or unsteatw conditions, see for example [35].
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Begnudelli and Sanders [22] also use an uncoupled approach: in their work, the scalar transport
equations are updated after a corrector step is used to solVéwhequations. In this case, some
overshoots and undershoots are produced in presence of wet/dry fronts, which usually need special
numerical treatment.

We conclude that in most papers the decoupled solution is discarded since, if not well handled,
it can cause oscillations, hence unphysical results. For these reasons, the coupled formulation is
the most popular and it corresponds to the classical way to solve equations in most publications
concerning shallow wataws and solute transport (see [23, 97, 102-105, 113]).

This is the case for most FV methods, which are usually formulated with the conservative equa-
tions. The scalar transport equation simply represents an additional equation, where the convective
Wixes can be treated at the same time step as the other equations and with the same numerical dis-
cretization. A consequence of this choice is that the time step, governed by the mesh size and
the eigenvalues of the system, must be the same for all the equations. This can be too restric-
tive for the tracer transport, according to the chosen discretization. This point has been stressed by
Audusse and Bristeau [13] and also by [103]. Indeed, for a classical explicit FV scheme, the Courant
Friedrichs Lewy (CFL) condition isvilenced by the eigenvaluas+ a, while for the stability of

the tracer equation we just need to look at the eigenvalué follows that for subcriticaléws the
diUerence between the necessary humber of time steps for the hydrodynamics and for the tracer
transport can be very large. In this case, decoupling the equations as is done in [13] allows one to
solve the tracer equation with the maximum possible time step. Hence, using an explicit scheme in
time, the numerical diusion decreases since for explicit schemes it increases with decreasing time
steps. Finally, the Central Processing Unit (CPU) cost also diminishes with respect to a coupled
algorithm. These ideas will be then adapted to the FV scheme used in this work.

Murillo et al. [103], in the framework of a coupled scheme, try to develop a method to apply the
largest possible time step compatible with the stability of the system, considering the positivity of
the water depth and of the concentration. The authors have the same time step problem when the
dilusion term is large compared to the advection one.

The linking between the scalar transport and hydrodynamics has been analysed also in [39], where
one of the most important conclusions is that a conservative scheme for the scalar transport equa-
tion has to consider the way in which the hydrodynamics equations, in particular the continuity
equation, have been solved. This idea is also the basis of the approach used in this work, especially
when the residual distribution (RD) method is applied to the conservative scalar equation, using
a decoupled approach. The article presented by Cea and Vazquez-Cendén [39] codgpangs di
kinds of FV schemes used to solve the tracer equation: coupled and decoupled schemes with dif-
ferent formulations of the convectiVéxes, in the case dfst and second order discretizations. In
particular, we note that an upwind scheme for the tracer, which does not take into account the dis-
cretization of the continuity equation is not suitable because it generates oscillations in the solute
provMes, and moreover it is not able to preserve a spatial constant concentration. These conclu-
sions are true for any order of discretization and they explain the behaviour of results shown in
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[102],[106]. In addition, the authors show that this type of scheme does not conserve mass.
Concerning the coupled and decoupled approach, Cea and Vazquez-Cendon [39] demonstrate that
the two approaches can be equivalent in absence of source terms and under a particular choice of
the non conservative variable transported by the convexe In any case the decoupled ap-
proach, if well formulated, represents a valid solution to model the depth-averaged scalar transport.
Contrary to the explicit FV case, when using semi-implicit schemes for hydrodynamics, decoupling
the tracer equation is useful to keep accurate and bounded solutions for tracer at a low cost for the
hydrodynamic part (which often represents the most expensive side of the whole computation).
Indeed, the semi-implicit method for hydrodynamics allows one to choose large time steps for long
computations, so the CPU cost is smaller than that of an explicit scheme. It follows that the hy-
drodynamic time step could be too large for the tracer stability, so the tracer equation is solved
through a sub-iteration system which enables obtaining physical and bounded solutions. A similar
philosophy will be adopted for the RD scheme used in this work, whose details will be given in
Chapter 5.

3.2 First order schemes with low numerical diusion

Beyond high-order schemes, other solutions can be considered in order to improve the accuracy
of transport schemes. Indeed, numerical results for the advection of discontinudas pam be
disappointing despite the use of an high-order scheme. Representing a discontinuity over a mesh
can be a very dicult task independent of the numerical method used. This is often one of the
reasons for which techniques called "anti-dissipative' schemes [57] are developed in the framework
of FV schemes. However, even for the transport of smooth initidigs;ovevnd in the literature

a series of schemes which afst order in space and time but with very low numericdldiion

with respect the classical FV or FE methods.

3.2.1 Method of characteristics

The method of characteristics is a typical example of such a scheme. This method can be very
accurate in spite of the low convergence rate. The idea of applying this lagrangian method to
transport quantities in the eulerian framework comes from Courant et al. [46kiterdiUerence
schemes. The popularity of the method is due to its simplicity. For each point of the mesh, the
method consists of two steps [82]:

1. Wnding the foot of the characteristic by tracing the trajectory that passes by the interested
point at timet"*1 ;

2. using an arbitrary interpolation at the arrival time.

However, one K culty is the trajectory construction in the mesh and the parallelization of this
technique can be a veryXicult issue, though it has been resolved. On the other hand, this method
gets rid of the typical severe time step condition that is necessary for classical methods applied
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to the transport equations. The unconditional stability is one of the most important advantage,
together with the respect of the monotonicity condition.

Unfortunately, the two steps of the method do not lead to a mass conservative scheme because of
the interpolation of the function at the foot of characteristic.

The latter is the major drawback that eliminates this method from the list of possible candidates
for pollutant transport in shallow water.

3.2.2 Eulerian-Lagrangian localized adjoint method

To solve the mass conservation problem, a weak formulation of the method of characteristics was
Vrst proposed by Benque et al. [24], then studied in other reports at EDF (Electricité de France)
[78, 79]. The method is also known as ELLAM (Eulerian-Lagrangian localized adjoint method), a
name given in the work presented by Celia, Russel and his collaborators [27, 41, 150], who also
proposed a good overview and revision of the method in [127].

The key idea is the application of the weak formulation in space and time, which is responsable for
the advection of the test functions (beyond that of the transported quantitiesyndlHermulation

of the scheme is conservative but a product of test functions at'tfrhend at timet" appear and

its computation represents a technical problem since the functions are basedrentdneshes.

The integral can be computed with Gauss points, as done in [80], but in this way the number of
Gauss points becomes a parameter whitiénces the mass conservation of the method. At the
same time the method allows getting very accurate results close to exact solutions. Indéwdl, the
conservative form of the scheme is a linear system which, to be solved, needs the inversion of a
mass-matrix composed of the product of test functions atttiffe This particular mass-matrix

that contains time information is the key point that reduces th&/@iei diUusion of the scheme.
However, thisvnal linear system of the technique breaks monotonicity.

Hence, the violation of the maximum principle prevents the use of this method for scalar transport
application inv@ws.

3.2.3 Anti-dissipative transport schemes

The Va/fe method is presented in [59] as an anti-dissipative transport scheme. This scheme seems
to be a valid alternative for transport problems thus we deem it is necessary to mention it. The
method is based on the construction of an anti-dissip&ixeand is the result of previous works

[57, 58]. The procedure used in this work could seem similar to the Monotonic Upwind Scheme
for Conservation Law (MUSCL) approach since in the present method the reconstruction step is
a key point. However, the authors clarify that it is not the same approach since in this case the
reconstructions are piecewise-constant instead of piecewise-linear.

The main idea is to reduce the numericaldiion by dividing the problem into two steps. In the

Vrst step the transverse reconstruction is applied in order to diminishlthsidn which appears

when the velocity/eld is not aligned with the mesh ifgansversaliUusion (see Figure 3.1). In the
second, the problem of thengitudinaldiUusion which appears when the velocitgid is aligned
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with the mesh is addressed. In this caséshorder transport scheme that respects of some max-

Figure 3.1: Numerical dision produced by an upwind scheme.= (1;0) aligned with the
mesh: longitudinal diusion (on the leftju = (1 ; 1) not aligned with the mesh: longitudinal and
transverse diusion (on the right).

imum principles can be used to perform the transport of the reconstructeld,plike in a 1D
problem.

The results for the pure transport case are better than second order FV schemes and spurious os-
cillations do not appear. We note that the convergence rate for the scheme is about 0.75, which
corvrms the low order of the scheme despite its good behaviour in terms of accuracy (in the sense
of low numerical diusion).

The authors also show the extension of the scheme to the multicomponent Euler equations with
a non divergent velocityeld in 3D. The results show the good accuracy of the algorithm but the

eX ciency of such a method is not rigorously proven [59].

Another family of anti-dissipative schemes is represented byitite volume MPDATA (multidi-
mensional positive dite advection transport algorithm) [131], which stems from previous works

in the context olvnite diUerence schemes, like [130]. Even if this class of schemes is ndtstuly

order, we introduce them here due to similarities with [59] in the basic philosophy.

The scheme is formulated for an aribitrary FV method with a fully unstructured polyhedral hybrid
mesh. In [131] the main idea is to compensate for the truncation error of the FV upwind scheme
by reusing the same upwind algorithm but with a pseudo velocity after the leading (dissipative)
truncation error of thevrst step. The derivation of the pseudo velocity is thus fundamental and
applies to many FV schemes with various control volurvaitiens. Choosing a median dual FV
approach facilitates the MPDATA since the evaluation of the anti-truncation-error pseudo veloc-
ity is easier. The authors show that asymptotic second order convergence rates are obtained for
the standard algorithm. As the basic algorithm preserves the sign but not the monotonicity of the
transported variables, a non oscillatory option is introduced to handle this problem. The latter
is briewy recalled and a test case is performed showing that the monotone MPDATA is the most
accurate scheme compared to other classical methods. For the non oscillatory opiiwe, rite

of convergence of the scheme is not computed. The scheme is applied to solve the elementary
advection equation, however its good numerical features make it a possible option for pollutant
transport problems.
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3.3 Conservative high order schemes

As previously stated, major challenge when solving the pollutant transport equation is high accu-
racy, which is expected as well as maintaining other properties like conservation of the mass and
respect of the maximum principle. For industrial applications, it is essential to have an accurate
prediction of the pollutant path for long distances (order of hundred kilometers), typical of rivers.
In this case, the numericalldision as well as the order of accuracy of the scheme, play a funda-
mental role. Thus, a natural choice is to increase the space and time accuracy of the scheme.
We recall that the local truncation error of a numerical scheme represents the discretization error,
which is generated by the spgcinumerical scheme, due to the truncation of théite Taylor se-
ries to form the discrete algorithm [95]. WedeL }, as an operator acting on the discrete solution
Ch = Ch(Xn:th), in the formLp(cy) = 0, wherexp = (X; 150X 50 Xi+r) andty = (t7; ")
are the discretizations of space and time witmdr the integer numbers that e the size of
the stencil (support) of the numerical method. The local truncation erroviedes [62]:

Lh(c(Xn;th))

= T (3.1)

wherec(xh; th) is the exact solution of the PDE computed at the discrete pagint;,) and t =
t"*1 " is the discrete time step. If, for a¥sciently smoothsolution of the PDE, we have:

( ttx)=0( tP+ x9 (3.2

where X is the average mesh size, then we will say that the scheme is p-th order accurate in time
and g-th order accurate in space. The error, using the harmonic analysis of Fourier applied to the
modiVed equation (i.e. the equation which is exactly solved by the numerical method) can also be
interpreted as dlusion and dispersion errors (see [96, 146]).

For pollutant transport problems in hydraulic applications, a requirement ceéxelden order to

have discrete agreement between numerical solutions and real data. It is necessary to reduce the
signMcant impact of numerical dusion on the results. For industrial applications it would be
suitable to have numerical methods that are at least second order accurate in space and in time, to
handle steady and unsteady problems. Higher order methods are not considered for the moment,
due to the prohibitive computational cost and the lack of a robust mathematical theory, which is
necessary for industrial applications to strictly keep true the numerical properties of the equations
at the discrete level.

3.3.1 Finite volumes schemes

The FV methods are widely used to solve the SW system and also the tracer equation. In this case,
a complete literature review would be quite cumbersome, and our analysis focuses on the existing
techniques used to get second order accurate schemes in the FV context. To start, the overview
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is done for scalar conservation laws and system of conservation laws (e.g. Euler equations, Saint-
Venant equations...). Then, only the application of second order techniques to the depth-averaged
scalar transport is presented.

The FV method is intrinsically conservative and is well adapted to studying discontinuous solu-
tions: these are the main advantages which made it so popular for conservation laws [95, 146].
Given a triangulatiorT,, of the geometrical domain, the method consists of integrating the equa-
tions over the elements of the domain, over a single time step. The result is an average value of the
solution over the cell, which thus creates natural discontinuities between the cells/ientéem

on the contour of the cell (usually called interfal), which is equal and contrary to thix

term of the nearby cell. For this reason the method is naturally conservative. Uststgoader
numericalWix and a fully explicit scheme the general discretization of a conservative system like
(2.31) is as follows (see Figure 3.2):

Figure 3.2: lllustration of#nite volume method for a 2D unstructured domain.

urtt =yl X i F'(UNS U5 ng)  iFN (U Ugni)+  tS] (3.3)
j

whereU ! is the spatial average value over the calitimen (U {‘*1 is the spatial average at time
n+1); the index states a generic neighbouripind j is equal to% with Lj the length of
the interfacej andK; the surface area of the céfi™ (U '; U ', njj ) is the interface numericaltix
between andj, computed along the normaj; to the interfaceF"(U['; Ug;n;) represents the
boundaryWix along the normah;, whereU ¢ is aVctitious state, necessary to impose boundary
conditions. Finally5; is the average source term of gell
The values used to compute Wixes are taken at the interface betweamdj and in the case of
Vrst order schemes, they correspond to the average values of tharaill so a unique interface
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value is used for every interface of the cell. Equation (3.3) should in general satisfy a CFL condition
[45, 46] for stability reasons.

3.3.1.1 Second order techniques

For the Godunov theorem, linear schemes can not be monotone and second (or higher) order accu-
rate at the same time. Thus, to overcome this theorem and to improve the acciaity wblume

schemes, the values at the interfaces between cells are reconstructed considering piecewise linear
approximations and then limited usingn linearfunctions (called limiters) of the data themselves.
These functions make the scheme non linear even if the equation to solve is linear (e.g. the scalar
linear transport equation), and they are necessary to avoid oscillatory solutions.

When solving the augmented SW system, it is important to use a general method that guaran-
tees the preservation of a convex invariant domail, @s described in [28]. Indeed a second

order scheme, satisfying a half original CFL condition, will be able to preserve a convex invariant
domain, if:

the numericaMix of the rst order scheme preserves a convex invariant domain under a
CFL condition. This means that the scheme itself, under a CFL condition, preserves a convex
invariant domainU" 2 D 8i! UM! 2D 8i,

the reconstruction also preserves a convex invariant domain:
Ui 2D8i) Uiy 2 D8i,whereU;,;- are the reconstructed values at the
interfaces of the ceil

In multidimensional cases, it is moreXdiult to check the second condition, while st condi-
tion is easily veived if we have a/st order monotone scheme.
In a 1D framework we caX; .1 -, the interface point between celandi + 1, andi +1=2 i +
1=2+, the left and the right side of the interface, respectively. The reconstructed states are second
order in the sense that for some smooth functign), we haveU;,; -, = U(Xjs1 =)+ O( x?)
andUjs1 =2+ = U(Xj41=2) + O( x?). With these reconstructed values (caligd in 2D) the
scheme (3.3) becomes:

Xoi

urtt =up i F(UT;Ung)  iF(UKUg )+ tS] (3.4)

j=1
For one dimensional scalar equations, in the case of second order schemes, an option to enforce the
maximum principle is to use the Minmod limiter. In 1D cases the way to apply the linear recon-
struction and the limiters is well #aed, owing to the reduced dimensionality of the problem, and
it is based on a robust theory which guarantees the preservation of some important properties (e.qg.
the maximum principle).
On the other hand, in 2D unstructured domaissyeratechniques have been proposed during
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the last 30 years to perform the linear reconstruction and to limit the interface values. The large
number of available techniques and the lack oh@ueprocedure is related toldérent reasons:

the theorems for the 1D cases have not been completely extended to the 2D cases; criteria to apply
limiters change depending on the type of numenta used; use of cell-centred or vertex-centred
scheme generateddrences in gradient computations and consequently on limiting approaches.
In addition, several kinds of limiters can be chosen: Minmod, van Albada, Superbee and many oth-
ers [92, 137]. All of them haveldirent characteristics in terms of the stability (or monotonicity)
region, and thé&/nal solution can be more or less smoothed by the limiter. It follows that strictly
preserving the maximum principle in convection problems can be vEmryutti The fact that in

many papers describing pollutant transport in shallow wedevs, the monotonicity of the solu-

tion is not strictly veried or ensured might then be related to these reasons.

The MUSCL (Monotonic Upwind Scheme for Conservation Law) technique Vssthmethod

known in the literature to achieve second order accuracy Mifle diUerence schemes and has

then been extended ¥hite volumes schemes. Even if this method has usually been attributed
to van Leer [149], we remember that itMsstly due to N.E. Kolgan [93]. Kolgan conceived the
gradient reconstruction and the slope limiter when he was at the Central Aerodynamical National
Laboratory near Moscow, but since he died young his work wasn't noticed outside his laboratory.
This was later acknowledged by van Leer [65].

The method is the most popular in industrial codes, since it is Wxible, simples and easier to
implement than other high order methods like ENO [75], WENO [100] or Discontinuous Galerkin
methods [129].

The MUSCL method with limiters can be applied to 1D scalar cases very eadily: tability

and the Total Variation Diminishing (TVD) condition have been proven [109, 148], and the method
results are gectively second order accurate. Clear explanations and examples can also be found
in [95, 146]. For the one-dimensional scalar case, the method consists of the evaluation of the edge
value through the appropriate computation of the upwind and downwind slope in a way that the
TVD property or the maximum principle have been/field. Hence the approach consists of two
steps: in tha/rst step a cell gradient is computed while in the second step the gradient \echodi

by some limiter functions in order to guarantee the maximum principle or the TVD property.

The extension of the gradient reconstruction to the 2D case is straightforward when using carte-
sian meshes and applying the procedure to each direction, yet it has been shown that the TVD
stability condition reduces the method t¥iat order scheme [70]. This problem was overcome by
Spekreijse [134], who proposed positiveXaients schemes.

TheVrst attempts to generalize the 1D monotone reconstruction to the multidimensional case over
unstructured grids were made by Barth and Jespersen [18], Batten et al. [19], Hubbard [87], Liu
[99]. All of these studies deal with cell-centred FV schemes (except Barth who also show some re-
sults for a vertex-centred scheme), where the reconstructed gradients are limited impéesarg di
conditions in order to respecti@calmaximum principle. ThesdJerts aimed at generalizing the
one-dimensional technique to the 2D case.
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In [18], the idea is t&/nd the largest admissible value for the limiter while invoking a monotonicity
principle stating that values of the linearly reconstructed function must not exceed the maximum
and minimum neighbouring centroid values (including the cell itself). For a reconstruction of the
type:

U(X;y)a = U(Xo;Yo)a + ar ua 4ra (3.5)

whereu(X; y)a is the variable to limi{xo; yo) is the centroid of the cell,is the limiter and 4 is
the distance from the centroid to the poitthe requirement is that:

ui" o uGcy)a U (36)
with uf™™ andu® the minimum and the maximum values of the cell itself and the neighbouring
cells. In [87], Hubbard tries to take into account to the maximum the multidimensionality of the
problem, improving the old limiting techniques. Limited gradient operators are constructed by
constraining the gradients to lie within a "Maximum principle region' and a cell-centred scheme is
used, for which an exact gradient operator for linear data can\éeede The region is constructed
using the inequality:

min(ux  Ug;0) rok ru max(ug Ug;0) (3.7)

wherer g is the vector from the centroid of cell O to the midpoint of the edge between cells 0 and

k. The inequality ensures the desired properties: no new extrema and sign preservation of the re-
constructed variables. Besides the gradient computation, the cell-centred scheme is advantageous
also because it does not need a further correction of the reconstructed values to enforce mass con-
servation. On the contrary, this is not true in a vertex-centred framework, as explained in [112].
Perthame and Qiu [112], in 1994, proposed a variant of the classical MUSCL approach in a vertex-
centred FV framework. The novelty of their method consists of using interpolation rather than
slope reconstruction and the robustness of the approach is proven through numerical tests where
stability and the non-negativity of some variables (pressure and density, since they solve the Euler
equations) are veved. Because of interpolation, the solution is represented by piece-wise constant
subcell functions, which dictate the limitation to perform on the reconstructed value in order to
guarantee a conservation constraint. We note that in this case the interpolated values are placed
at the vertex of the control volume (and not at the mid point of the interfaces) since a simple in-
terpolation of the numericalix is performed using the vertex values. Due to the vertex-centred
framework, a supplementary correction of the interpolated values is necessary for conservation
reasons. This is due to some geometrical aspects, since the centre of mass of the vertex-centred
celli does not correspond to the node of the mesh used to indicate th¢famth which then the
gradients are computed). In [14], the correction of the second order values has been transposed for
a classical case where slopes are computed to approximate the gradient at the middle point of the
interface. The correction is successful since mass is conserved and the positivity of the interested
values is preserved too.
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More recently other studies [26, 33, 36, 44, 86, 94] of MUSCL methods for unstructured grids ap-
peared in the literature.

The work of Berthon [26] focuses on the application of a variant of the classical MUSCL technique
in a vertex-centred FV framework. Since the method is used on the Euler equations, the preserva-
tion of invariant domains and the satisfaction of a set of entropy inequalities is analysed in detalil
in the gradient reconstruction step. The authors present a scheme which turns out to be the same
asin[112], even if the procedure to reconstruct and to limit the interface valueeiierti

To write the second order scheme as a relevant average of states obtaingdthyrder scheme,

a particular geometrical framework is considered: the classical dual cell of a vertex-centred context
is decomposed in sub-cells. The paper aims to prove that the solution given by the second-order 2D
scheme is able to guarantee the preservation of a convex set and the satisfaction of the discrete form
of the entropy inequalities, if a relevant CFL condition and a special limitation process are applied.
Theoretical and numerical proofs are given in the paper. Demanding tests show the robustness of
the scheme proposed, stressing the positivity of pressure and density, yet the non-oscillatory char-
acter of the solution is not controlled by the proposed technique.

BuUard and Clain [33] propose two new MUSCL techniques for cell-centred FV schemes. The
methods are based on a mesh assumption: the barycenter of a triangle is always contained by a
convex set déned by the barycenters of the three neighboring volumes.

The Wrst technique proposed is called thenoslopenethod as only one gradient is used per el-
ement, which means that the three values reconstructed at the interfaces are generated by the
same gradient. The novelty with respect to the classical monoslope approach is that the gradient is
constructed ironly one procedur& he technique consists of optimizing the slope under the TVD
constraint, hence the slope is the result of the minimizing procedure. A new variable is introduced
and d&/ned at the interface: it is called the reference variable since it represents the reference
reconstructed value at the intersection between the segment joining the barycenters and the line
containing the edge of the cell. The reference variable is equal for the two nearhyaselis) (

In the minimization procedure, the objective is for the reconstructed values the be as equal as pos-
sible to the reference values, respecting the TVD condition.

The second technigue proposed for the MUSCL approachu#tislopemethod since a terent

slope is provided for each interface of the same triangle. In this case two requirements have to be
satid/ed: the reconstruction must be consistent for linear functions and the slope has to vanish in
case of a local extremum at pointFor both techniques, the authors consider two ways Voeale

the interface values: the midpoint of the interface or the intersection point between the interface
and the segment linking the two barycenters of the two triangles. A large number of tests are pre-
sented and the techniques are tested for the scalar advection equation and for the Euler equations
for diUerent kinds of meshes and forldrent initial conditions (continuous and discontinuous
functions). Due to the large number of combinations of limiters and of types of reconstruction
methods, it is & cult to retain a unique general conclusion from the test cases. However, the most
important conclusions are:
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using the midpoint for reconstructed values always gives better accuracy but it does not
always guarantee the stability of the scheme;

multislope methods seem to provide smaller errors, time consumption is reduced and imple-
mentation seems easier;

multislope methods can be directly generalized to 3D, whereas for the monoslope method
complementary studies are necessary;

in general, the new monoslope technique is more accurate than the classical monoslope
method

A simpliVed multislope method based on these ideas ([33]) has been presented by Hou et al. [86].
The main dierence is that the upstream and downstream slopes are computed with &esimpli
formula that needs fewer computational steps since it involves fewer intermediate variables. Thus
the merit of the method is mainly in terms ok eiency. The method is then tested with classical

test cases for the shallow water equations, showing good performance.

A very interesting work is the one of Calgaro et al. [36], which is based on a previous work of
Clain and Clauzon [44] in which the! stability is proven for @ell-centredV scheme using the
MUSCL technique under a spéciCFL condition.

Showing the preservation of this property solving scalar hyperbolic problems in the case of second
order schemes using the MUSCL techinque is quite complicated. The typical procedure to show
that a scheme respects the maximum principle and tHat istable, implies that all of the coef-
\cients used for the reconstruction belongQdl]. This is also known as the convexity property

and entails a restriction on the time step, so an appropriate CFL condition.

Following this philosophy, the work [44] aims at generalizingLthestability for schemes which
employ the MUSCL technique over unstructured grids. \Waerequirement fol.* stability is

the convexity property, déed asy; = (1 ij JUi + jj uj with ;2 [0; 1] and strictly related

to the limiter used. The second requirement for nonlinear stability is the inversion sign property.
The authors propose also a new multislope technique that is also detailed in [33]. The main ad-
vantage is to deal with one-dimensional problems regardless of the space dimension of the contol
volume (2D or 3D). The main approach of the technique is represented by the use of barycentric
coordinates.

In order to deal with the method proposed, a geometrical restriction is necessary: the domain
should be an convex triangulation, which means that the barycenter of the control volume has

to be inside the triangle formed by the barycenters of the neighbouring elements (as in [33]).

With this assumption and the two previous requirements/ thestability is demonstrated for a
multislope MUSCL approach for scalar transport advection on a cell-centred FV scheme with an
appropriate CFL condition, which isifienced by geometrical parameters linked to the mesh.
Calgaro et al. [36] follow the same steps but in the caseveftax-centregcheme in order to
simulate incompressibi®ws with a high density ratio.
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Again, the maximum principle is saitsd with an appropriate CFL condition. The derivation is
done for two types of control volumes: thiest is obtained joining the barycenters of the nigh-
bouring triangles that share the noidwith the middle points of the edge of triangles; the second

one is obtained by joining the barycenters of all the triangles surrounding the node

TheWrst control volume, even if less simple to implement, should be preferred in the case of fully
unstructured grids since the corresponding CFL condition has no geometric restrictions on the
mesh [36]. On the contrary, for the second kind of control volume, stability is obtained with geom-
etry restrictions on the mesh and it is not possible by using generic mesh generation to respect the
geometrical constraints that guarantee the maximum principle [36].

The CFL conditions for the two kinds of schemes could appear very restrictive, but the authors
claim that they have the same order of magnitude of other schemes able to preserve the maximum
principle at second order. The scheme presented shows a very good rate of convergence in numeri-
cal tests, guaranteeing at the same time the respect of the maximum principle, even using a relaxed
CFL condition. To conclude, we stress that the proofs demonstrated in [36] work for any discrete
divergence free velocield.

A very recent and important improvement to multislope MUSCL methods was shown by Le Touze
et al. [94]. In this work the limitations related to the mesh topology necessary to respect the max-
imum principle in the case of cell-centred schemes are overcome while the latter is still preserved
thanks to the positivity coécients theory. The method is thus suitable for general unstructured
meshes and farell-centredrV schemes. The work is inspired by ideas presented in [33] where the
multislope MUSCL techniques still have some limits. In particular, the authors show how the most
accurate method (i.e. the one that considers the middle point of the interfal fmsmputation)

of [33] cannot guarantee the stability. The authors also wish to extend the method to other kinds
of elements that are not triangles or tetrahedrons.

The application of the MUSCL technique with the correspondidgreint limiting procedures to

scalar transport in shalloWdws is quite common [23, 39, 104]. For example, Benkhaldoun et al.
[23] use the MUSCL technique combined with a non homogeneous Riemann solver (SRNH) to solve
the shallow water equations for pollutants on unstructured grids. The resolution method is cou-
pled and a cell-centred scheme is used. The accuracy of the scheme is augmented by an adaptivity
procedure that allows ¥aing the mesh where necessary using an error indicator. In this work

the cell gradient is computed through a minimization method that takes into account the values of
the neighbouring cells. Then the reconstructed values are corrected using the VanAlbada and also
the Minmod limiter to preserve the TVD property. The authors say that the VanAlbada is prefer-
able since the solution is less smoothed than that of the Minmod limiter. Despite its accuracy, the
VanAlbada limiter produces negative results for the pollutant concentration when tested in a pure
advection test. This is a typical example where the maximum principle is not guaranteed with the
classical MUSCL technigue. However, most of the time this problem is not visible in the numerical
results.

Second order discretizations of the depth-averaged scalar transport have been analysed in [104],
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for a cell centred scheme, on an unstructured grid. The paper considers the adveosomdi
phenomena for tracers, under steady and unst@adyconditions. The authors use a fully explicit
upwind method for the advection part, wheféxes are based on the Jacobian matrix, while an
implicit method is used for the diision term (which only involves the tracer equation). The ex-
tension to second order is achieved through the MUSCL-Hancock method, for the convection part.
Two diUerent limiting gradient techniques are used and then compared in the test cases.

The inMience of the source terms on the stability condition is analysed and included inttie de

tion of the maximum time step. The respect of the maximum principle for the tracer is another issue
discussed in the paper. In this case, duoient technique is proposed to avoid unbounded values

of concentration for the second order case. In particular, second order accuracy can be achieved for
the tracer variables, while the hydrodynamic scheme is reducédttorder. The numerical tests

show the qualitative improvement for the second order schemes, under wAhogsnditions.

Other second order discretizations for the solute transport in shallow Waterare tested in [39]

in the framework of a Roe-type FNMix. The authors compare thredJdient high-order discretiza-

tions for the non conservative varialddransported by the convectiwixes: one is a centred
discretization, another is the centred discretization where a dissipative term is added for stability
reasons (presented in [40]), and the last one is given by the Gamma scheme [91]. Numerical tests
show that the centred high order discretization produces strong oscillations in the solution, as ex-
pected. The other two high order discretizations show good behaviour and the results are more
accurate than th&rst order cases. The leasthdéive scheme is the Gamma scheme and the dis-
continuous pryle of tracers are qualitatively better when using this scheme.

The Harten-Lax-van Leer Contact (HLLC) Riemann solver is very popular in the framework of
FV schemes. The solver has been presented in [143, 144], and the application to the SW system
is described in [142]. The HLLC solver is a riodiion of the HLL solver, which is a two-wave

model insX cient for correct solute transport modeling. In the HLLC scheme the missing contact
and shear waves are included in the structure of the solution. Due to its popularity it has also
been extended to turbulelw applications [21], to Magnetohydrodynamics equations [74], to
two-phaseMw [141] and to the Navier-Stokes equations [115].

Other works using the HLLC RS in shallow wateémws are [98], where dynamically adaptive
quadtree grids are used and [101], where the classical formulation is extended to include source
terms.

Second order extensions of FV schemes using an HLLC RS, have been presented in [85, 86, 132, 133].
These works concern mainly the problem of wetting and drying phenomena, as well as the well-
balanced property, for second order schemes. For passive scalar transport, a sesitivity analysis for
MUSCL schemes using HLLC RS is presented in [73].

Canestrelli and Toro [37] use a FV FORCE-Contact scheme to discretize the augmented shallow
water system in a coupled way. In the paper, the authors show the impact of the restoration of the
Contact wave on the solution. Indeed, more accurate results are reached with the presented model,
for the \rst, second and third order case. Here the higher orders are obtained with the ADER
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approach presented in [63], and the theoretical rates of convergence dmaedin numerical

tests. In addition a comparison with thest order HLLC scheme is also presented, showing that

the FORCE-contact model is slightly better in terms of accuracy. The paper stresses the importance
of capturing the contact or shear waves when linearly degenerate charactaidsiplay an im-

portant role in the physical phenomenon.

Higher order methods more than second-order like the WENO scheme are alternatives that we do
not consider here. There are several reasons for which these schemes are not implemented in in-
dustrial codes for real life problems. One is the high computational cost, which increases with the
order select and with the multidimensionality of the problem. Another motivation is that, often,
the shock capturing technique is hardly compatible with the higher order techniques. Improve-
ments in thisvVeld can be found in [63, 64], where the WENO reconstruction technique is used in
the framework of the one-step ADER approach, initially proposed in [145] by Toro and his collab-
orators. In particular, the application of the ADER approach to solve pollutant transport problems
is presented in [140].

3.3.2 Residual distribution schemes

The RD technique is less popular and less developed than the FV and FE methods. This is due
to the very limited formal understanding available with respect to the other classical techniques
[120]. However, due to the good properties (especially the linearity preservation condition) shown
by this method, the scieMi community continues to remain interested in future developments of

this technique, which have been conducted in the recent years mainly by a team working at the
research centre INRIA-Bordeaux.

Works concerning the discretization of the SW equations using RD methods have been carried out
mainly by Ricchiuto and his co-workers [118-122, 128], while other previous works, with almost
non-conservative RD schemes, are [68, 88]. In fact, most of the time, the method has been used for
the discretization of the Euler equations rather than the Saint-Venant equations.

The overview given in this section focuses on the existing techniques to achieve second (or higher)
order schemes in space and in time, for a general conservation law. It is worth noticing that up to
now this technique, as far as we know, has not yet been used for pollutant transport problems in
shallow wateMdws, except in [111] and here. However, as for FV method, it should be quite easy
to use the method proposed, for example in [121], for solvingaiglecaugmented SW system,

yet no papers appear on this topic. However, this is not the approach chosen in this work.

In the framework of the RD method, the solution is approximated in the piecewise \limie&r
nim@in
element space over an arbitrary unstructured geix;y;t) = c(xi;vi;t) i(x;y) where
[
npoin is the total number of nodes in the mestx;;y;i;t) is the time dependent nodal value of
the solution at nodé and (x;y) is the piecewise linear shape function that hésadérom the

classical properties of lineB* FE basis functions.
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The integration of the scalar advection equation (2.38b) (without sources) over a single time step,
using an explicit time integration, leads to the following form:
n+l _— n tx E
G =46 < i (3.8)
S .
T3i
whered is the nodal value at tima andc’** is the nodal value at tima + 1, S; represents

the area of the cell around the pointequal to % and ,E is the splitting residual at node
T3i
computed for every element that contains the niodled then summed up.

The quantity E, called the residual, is computed as:

z

E=  u rc,dxdy (3.9)
E

By construction, the consistency relation:

X
E= T (3.10)
i2T
is satised. Another fundamental relation i§ = ; T, where ; represents the distribution

coeX cient. The way to distribute the residual to the nodes (i.e. through the distributi¥ciems)
inVences a series of properties of the scheme like the positivity, the linearity preservation and the
multidimensional character. HencdéJdient schemes with ldérent properties can be created with

a dilerent residual distribution.

Every property characterizes the solution in a certain way and they aky beéealled here below

[54]:

Positivity. A scheme of the form:

X
= E( ) with 0 (3.11)
j2T

and able to respect the maximum principle, under the time step condition:

X X

S t 0 82Ty (3.12)

T3ij2T
is said to be positive. This property is thus related to the non-oscillatory character of the

solutions.

Linearity Preserving. A scheme is linearity preserving if its distributioX cemts ; are
uniformly boundedvith respect to the solution and the data of the problem:

[ i<C < E.q 0 .
;anh(rjnZE%XJ il<C< 1 8 =;on 6, (3.13)
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whereC is a constant. Linearity preserving schemes satisfy by construction the necessary
condition for second order accuracy, hence this property is related to the accuracy of the
scheme.

Genuinely Multidimensional Upwind procedure: multidimensional upwind schemes only
send portions of E to downstream nodes. This property corresponds to the generalization
of the 1D upwind idea. It is related to the stability of the scheme.

The origin of these schemes traces back to Ni [107] and Roe [125], who, in 1987, proposed the name
of Wictuation splitting schemes. In [125], the upwind treatment of the scalar convection equation
was generalized in two space dimensionShde the multidimensional upwind character of these
schemes. In the same work, also the most succ&ssfudrder scheme was introduced. It is the

N (narrow) scheme, also known as the optimurst order scheme, since among st order

schemes it is the leastidlisive. The scheme is positive, multidimensional upwind and linear be-
cause of the Godunov theorem, it is limited to be onlyret order accuracy.

However, due to its properties, the scheme plays an important role in the construction of second
order schemes.

3.3.2.1 Second order techniques

In the RD scheme, the truncation error i%ded following a variational approach, see for example
[2, 8, 54]. From the consistency analysis it is possible to show that, in two spaces, a RD scheme
veriVes the truncation error estimate:

X X
TE(wh) = " i(wn) = O( x¥) (3.14)
i2Th T3i

provided that the following condition is met:
i(wh) = O( x**') 8i2TandT 2T (3.15)

with ' a smooth compact function2 C§() ,wy thek th order accurate continuous piecewise
polynomial of degrek 1 interpolant ofw, a smooth exact solution of the PDE. This condition
guarantees formally that the scheme ha©dn x¥) error [54].

The N scheme only presernv@$ x1) and does not guarantee the LP property since the distribu-

tion coeX cients are unbounded, but it can be the basis for a second order scheme.

Indeed, in order to obtain bounded distribution Xo&ents and thus meet the condition =

O( x3), the non linear limiter PSI is introduced. The original PSI scheme was presented in 1994
by Struijs [136] in his PhD, and it met a large success (see [110, 125, 126]) due to its good per-
formance, which is better than FV schemes, especially on irregular grids [54] for steady scalar
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problems. The scheme is related to the N scheme since the limiter is applied on the distribution
coeX cients of the N scheme.

Later, a more general framework to construct non lirigaited second order schemes was pre-
sented in [7, 8, 110]. In the RD method, the limiter is used in a compldtehgdi manner than in

the FV method. In this case, the role of the limiter is to bound thé @eats and to preserve the
positivity of theVrst order scheme c¥eients, while in the FV context the limiter is used to limit

the slopes and so to avoid oscillations in the solution.

This technique, which is the one commonly used in practice, has been known for a very long time
(1995), and improved constructions have not been published since then [54].

In the RD framework th¥tst order scheme is critically important in the construction of the second
order one. Beyond the N scheme, the Lax—Friedrichs scheme is often used as basis for the construc-
tion of a limited non linear variant [3, 117, 121, 122].

However, all these formulations, which are based on the prototype (3.8) alsirdyder accu-

rate in time dependent problems. This is due ténaonsistencin the spatial discretization [54],

which is independent of the order of the time discretization. Essentially, whatever the choice of
the discretization of the time derivative, the scheme has a discretization error bour@éd oy

[120]. This can be demonstrated performing a time continuous consistency analysis (see [54, 118]).
To overcome this issue, several solutions have been tested based on a new concept of residual. The
diUerence consists of including the time derivative in the computation of the residual, which thus
becomes a space-time residual. This operation is necessary to recover second order accuracy in
space and it leads to the formation of a mass-matrix of the time derivative, exactly like in the FE
context, except that in this case the problemr@deen formulated using a variational approach.

The various approaches proposed to solve time dependent problems can\tezldtatiziee fam-

ilies of schemes:

space-time schemes,
implicit in space schemes,
explicit predictor-corrector schemes.

Schemes proposed in [47, 48, 54] and the more recent versions [89, 128] belowsta s,
Each element in the mesh\des a prism in space-time. In this case the problem is solved comput-
ing a space-time residual on the prism, which corresponds to [54]:
Z Z Z
SEE Qg " @

= oo = @+u rc, dxdydt= . @+u rc, dxdydt
(3.16)

Then, the fractions of Pe are distributed to the nodes Bf through the distribution co¢-
cients, like in the steady case, respecting the multidimensional character. Finally the solution is
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found solving the system: X
n+l =2
Pe” " =0 (3.17)

n+l =2,

Pe 3i

The extension of the multidimensional upwind scheme in the space-time context, yields a CFL
condition, called the past-shield condition. This condition, for prismatic space-time elements, is
exactly equivalent to the time step restriction ensuring the local positivity of the N scheme with
trapezium integration [54].

The resulting scheme is quite expensive from a computational point of view, due to the very re-
stricting time-marching condition coupled to the solution of a non linear system at every iteration.

In [123] a better condition for the time step is presented, andrthkbcost is comparable to that of

an unconditionally implicit second order Runge-Kutta scheme.

The second approach for time dependent problem is represented by implicit space schemes. They
deal with unsteady problemé4stly discretizing in time the residual and then applying the spatial
discretization. Schemes belonging to this family have been presented in [6, 38, 118]. The space-time
residual can be recast as [118]:

= S g @yt gy b (3.18)
3 P27 2 2

Then the splitting is operated following the same design criteria for steady problems: positiv-

ity, multidimensional upwind and linearity preservation for the second order case. The accuracy

analysis for time problems [54, 118] shows that the scheme respects an error estimate of the type
(Wh;ts) = O( x?),if ;(wp)= O( x%. Hence, even for unsteady cases, the non linear limiter

is applied on positive linear schemes to obtain bounded distributidtcergs.

However, as for the steady case, the condition fdwy,) is only necessary and notXuaient to

get the desired convergence rate, since other stability conditions are necessary.

Once the splitting is completed, a set of non linear algebraic equations has to be wmm;ﬁb:

X
E=0 (3.19)

T3i
The formulation of the N scheme in this implicit in time framework then helps to construct the PSI
version for time dependent problems.

The monotonicity condition is derived from the N scheme and corresponds to the past-shields
condition of [54]. The non linear system obtained when the! are applied can be solved through

non linear solvers like the Newton-Raphson method [6] or through an explicit pseudo-time iterative
procedure [47, 48, 123]. The latter seems to converge faster in terms of CPU time [61], however the
implicit in space formulation is tied down by the non linear system.

It is worth noting that for the two families of schemes presented, the restrictive stability constraints
can sometimes be removed when using a two-layer formulation, see [6, 47, 123].

The genuinely explicit schemes, like the predictor-corrector, represent another approach to handle
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unsteady problems. The predictor-corrector scheme is a very attractive alternative since the non
linear system that characterizes the other methods disappears and is replaced by a two time step
explicit scheme. It follows that thénal scheme is cheaper and@ent.

This method is the most recent with respect to the other schemes for time dependent problems: it
was initially published in 2010 by Ricchiuto and Abgrall [117], then applied to the SW system in
[121] andVnally combined with an ALE formulation [11]. A discontinuous RD based version of
the predictor-corrector scheme is also presented in [151].

The genuinely explicit RD approach consists of the two steps:

8 Z
- P
3 jsij td'q = Courq
T3 ST
n+l o n (3.20)
-Bjsijc'r1t(:'= I Chtch+}u rcﬂ+}u rc
|

The unknown is initially approximated with a classical scheme for steady problem and then it is
corrected in the second step. This formulation stems from a complex construction, detailed in [117],
which is bridy recalled here:

1. formulation of a bubble stabilized Galerkin scheme;

2. construction of a modéd semi-discrete residual guaranteeing that the overall accuracy is
not reduced. In particular, the authors show that for a second order schereeader
semi-discrete operator isXuaient;

3. RK time step formulation, consistent with the semi-discrete residual;

4. mass lumping to avoid the inversion of a mass-matrix.

Obviously, as for the other families of time dependent schemes, the distributiocieateof ex-
pression (3.20) must be uniformly bounded. Thus they can be generated by the limitation of positive
Vrst order schemes, like the Lax Friedrichs or the N scheme, in order to have a positive second order
scheme. Otherwise, other non positi#st order schemes can be used if the goal is simply to have

a second order scheme (not monotone).

Concerning the stability of the scheme, the authotsma that a Fourier analysis on structured
triangulation is under way to have better estimates of the computational time step and the stability
(or positivity) of the various RD formulations is currently being investigated. However, for the
scalar homogeneous case, the theory of positivé @ests [54, 134] can be applied and precise
conditions can be found to bound the numerical solution [121].

To conclude, the conservation issue for RD schemes\y bddressed. Conservative formulations

of RD schemes for systems of (or scalar) non linear conservation laws, are linked to the compu-
tation (and the existence) of conservative linearization of the multidimenstédrghcobian over

the mesh cells. This problem was investigated in a series of papers [5, 48, 118, 123]. The classical
solution is to compute the residual througkactmean values Jacobians. In [48], this procedure
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is called linearization-based RD. Unfortunately such a procedure can b tadt dir impossible

to implement. This is the case for the shallow water system. Thust golution is presented

in [5], where the exact mean values Jacobians are replaced by approximated values obtained from
adaptive quadrature of the quasi-linear form. With this approach, it is also possibl &ccorre-

sponding Lax Wendtdtheorem for RDS and to show that these schemes converge to the correct
weak solutions with some assumptions and for a certain (large) number of Gauss points.

Another solution, which became the most popular, is to use a contour integration based RD
[48, 118, 123]. Such a procedure is easier and less expensive than the previous one. It consists
of approximating directly the contour integral of the convectiges over the boundaries of an
element. This technique is in general the one used for SW discretization.

3.4 Coping with dry zones

Wetting and drying phenomena are very common in nature, especially in rivers characterized by
strongly variable discharge amioding events. The numerical simulation of these phenomena
can be a d cult task for the most common eulerian models, and this explains the large number of
papers dedicated to this problem [15, 16, 30, 32, 34, 71, 76, 84, 98].

The main dX culty is to preserve a positive water depth in covered and uncovered areas, maintain-
ing a conservative scheme. In this case, the bed source term can play an important role, implying
positive and negative bed slopes, which have a domindedt®n theVsbw. Another undesired

elect is the appearance of unphysical high velocities at the interface, which result from division by
very small water depths.

For these reasons, special numerical approaches are necessary at wet/dry fronts.

The numerical challenge for the tracer transport is not only the respect of the positivity but also
the respect of the maximum principle for these areas. As for the velocities, unbounded values can
appear in the solute concentration after the division of the conserved quaatity the water

depthh.

In the literature, we onlywnd a few papers concerning this issue, unlike the number of papers
dedicated to the water depth positivity.

Murillo et al. [103] propose a conservative model which ensures bounded values of concentration in
all situations and avoids negative water depths. The authors use a cell-centred FV scheme applied
to the whole augmented SW system. Based on a Ro&ym®mputation, a spéd modMcation

is proposed to avoid negative water depths and concentrations. In particular, a conservative redis-
tribution of the solute masd&ixes is performed to enforce the respect of the maximum principle.
However, the wetting and drying approach implies a very restrictive time step condition, increas-
ing the computational time. To overcome this problem, the authorsttedbe updatingVixes in

cells that have negative water ma¥xes.

The numerical results show good behaviour of the scheme for various dry test cases: mass is con-
served and bounded values of tracers are obtained.
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Begnudelli and Sanders [22] also apply a FV scheme that includes a Roe's approximate Riemann
solver. Here the tracer equation is solved after the hydrodynamic computation, and the update of
the concentration is parameter dependent. For values higher than thd calue, the division

hc=his performed, while for lower values, the concentration is set equal to the concentration in
neighbouring wet cells. For several wet cells, the cell with the largest volume is chosen. In case of
zero wet cells, the concentration is set to a reference value. Mass is conserved since the quantity
hcis not changed.

A diUerent approach is proposed by Hervouet et al. [81]. A new algorithm, which combines the
best properties of implicit FE and explicit FV is constructed to deal with dry zones and is formu-
lated for the water depths but also for tracers and sediments. This scheme has been called NERDS
(N-Edge-based Residual Distribution Scheme). The main idea consists of three steps [81]:

1. The FBMIxes are transformed intdixes between points, using the method published in
[114];

2. Starting from depths at tinmg theWixes are transferred to points, the depths are accordingly
updated provided that the depths remain positive, otherwisdhilies are provisionally
limited, with a part kept for a further iterationThe transfer is completed by a loop on the
edges of the triangles until there is no more possible water to transfer;

3. When noMix can be transferred without triggering negative depths, the remaiftirgs
are left over and considered as non physical.

The advantage of this method is that it gets rid of the CFL condition, considering the total mass
Wix which has to be transferred in a single time step.

In order to extend the algorithm to the tracer, the conservative tracer equation and the continuity
equation are treated at the same time, i.e. water is transferred with the tracer inside. Mass conser-
vation is obvious for this technique, and surprisingly there is no risk of division by zero and the
maximum principle is obeyed. The idea has been adapted for parallelism. The drawback is that the
method is based on the N schewides, and so far no further idea has been issued to get a second
order in space.

3.5 Summary

In this chapter the state of the art of scalar transport models in shallow iéater has been pre-

sented. When considering pollutant transport phenomena, several numerical modelling choices are
possible, and the main options have been analysed in this chapter.

The advantages and disadvantages of a coupled and a decoupled discretization have been presented
by analysing a range of studies dedicated to this topic. The result is that the two discretizations are
possible and they can be more or less suitable, depending on the numerical method used for the
discretization of the equations.

Then, the issue of the accuracy in the prediction of the tracers transport has been tackled in two
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diUerent parts. In th&fst part, somé&/#st order numerical methods with low numericaldsion

have been presented. Among these method¥deome possible candidates for the solution of

the depth-averaged tracer equation.

In the second part, conservative and second order accurate methods have been presented. Since
these are the methods used in the remainder of this work, an in-depth analysis has been provided
for the reader. In particular, cutting-edge studies of second order techniques have been introduced,
showing the progression of these techniques from the 80's to today.

Finally, the problem of wetting and drying phenomena in the presence of tracers has been ad-
dressed, presenting the studies available in the literature that analyse this issue.
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Chapter 4

A second orderVnite volume scheme
with larger time step

Dans ce chapitre un schéma aux volunvas, formellement d'ordre deux et carac-

térisé par un grand pas de temps est présenté.

D'abord la solution du systéme de Saint-Venant couplé avec une loi de conservation
scalaire, qui se base sur un solveur de type HLLC, est décrite pour le schéma d'ordre
un. Ainsi, la positivité de la hauteur d'eau et de la concentration sont montrées.
L'analyse de I'équation du traceur simple permet de montrer que la positivité, ainsi
que la monotonie de la solution, demandent un pas de temps qui est plus grand par
rapport a celui qui est nécessaire pour résoudre le systeme de Saint-Venant.

Pour cette raison, la solution de I'équation du traceur est découplée de I'nydrodynamique,
avn d'exploiter le plus grand pas de temps admissible, avec d&ésésrar les colts

de calcul et la diusion numérique.

La méthode utilisée pour la reconstruction d'ordre deux est ensuite introduite, pour
les variables hydrodynamiques et pour le traceudéi@nts limiteurs sont choisis en
fonction des propriétés mathématiques, pour chaque variable.

L'algorithme utilisé pour découpler traceur et hydrodynamique est aussi détaillé.

Envn, le probleme des bancs découvrants et une ébauche de solution sont présentés
dans la derniére partie du chapitre.
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In this chapter &/nite volume (FV) method used to model the pollutant transport is presented. First

of all, the coupled solution of the augmented SW system is introduced in the cadestobaer

scheme. The computation of tiéxes is based on the HLLC approximate Riemann Solver (RS),
which is suitable when contact discontinuities are present.

Then, the decoupled scheme for the solute equation is deduced and presented in section 4.1.3. This
choice allows to decrease the CPU time and to reduce the numetgsibdi of the scheme.

The scheme is conservative by construction and the details on the monotonicity condition are given
in Section 4.1.4.

Section 4.2 describes the application of the MUSCL technique to obtain second order accurate
in space solutions. Even in this case, the decoupled solution for passive scalar transport is used
without technical problems related to the second order extension.

However, the monotonicity condition is no more strictly guaranteed for the second order case.

In Section 4.3, the implementation details on the algorithm used to compute the solution of the
augmented SW system are given to the reader.

Finally, Section 4.4 presents the analysis of the dry bed cases, showing a possible solution to deal
with these phenomena.

4.1 First order scheme

The shallow water system is discretized using a vertex-centred approach that approximates the
solution on the nodes of the mesh around which the control volume is built.

A triangulation T, is performed on the computational domain, which is dividel itriangular
subdomains. Every control volume is calledand it is associated to the nodelt is de/ned

joining the centers of mass of the trianglessurrounding the vertex, for this reason we deal

with a vertex-centred/nite volume approach.

According to this approach, we will use the following notations (see Figure 4.1):

K is the contol volume centered at the nadendjK j its area;
j the edge between the cels andK;
lij the length of j ;
nj = (nx; ny) the outward unit normal to the edge; with the relativex; y components.

For the vertex located at the boundary, the cell is completed by joining the center of mass of the
triangle adjacent to the boundary with the middle of the boundary edge, see Figure 4.2. In this case:

i is the length of the boundary segment;

n; is the outward unit normal to the boundary segment.

The vertex-centred approach leads to additional pre-processing but is less sensitive to mesh quality
with respect to the cell-centred approach [60]. In addition, in case of discretizatidbusiodi
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Figure 4.1: Vertex-centered approach.

Figure 4.2: Vertex-centred control volume for a boundary cell.

terms, the vertex-centred approach is accurate compared to other cell-centred schemes [77]. Finally,
this approach is compatible with the FE methods of Telemac-2D as the control uluimegse

of FV) is equivalent t§;, the surface of the cell around poinbbtained by the mass-lumping on

the mass matrix (see Chapter 5).

The augmented shallow water equations (2.31) are spatially integrated over every control volume
K and the Gauss theorem is applied:

Z @ Z Z
oVt (GUNHHUN = SU)dV (4.1)
Ki i i

Ki

where ; is the contour of the cell; andny; ny are the components of the outward normal vector.
Thanks to the rotational invariance property, which states B@&l) n [G(U);H(U)] =
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T 1G(T(U)) [142], Equation (4.1) can be recast as:
z Z z

@ _
= iF(U)d— S(U)av (4.2)

Ki

K

In this way a local 1D Riemann problem is recovered at every interface of the control volumes.
We recall that a Riemann problem is/Aded as:

poe: & L GFU) _g

ot @x (4.3)

with initial conditions (IC):

U if x<O
IC: U(x;0)= - _ (4.4)
Ur if x>0
where the partial dierential equation (PDE) expresses a conservation law with tigoatit initial
discontinuous conditions: stands for left an® stands for right. Working in the space-time frame
[Ki] [t";t"*1], the Vhal discretization of the augmented SW equations (2.31), using an Euler
scheme in time, gives:
Xoi
uptt = Ul j F(UN UM ng)  F(UT; UG n)+  tS) (4.5)
j=1

whereU " is the spatial average of the conservative variables atfithen the cellK; andU !
is the spatial average of the conservative variables attfirirethe cellK;. F(U;;U;;n; ) is the
interpolation of the normal component of the intercell numeid along the edgejj; j =
tl;; 5jKij; m; is the number of edges in the céliU '; U g; n;) is the numericalix betweertJ ;
andU ¢, which is aVctive state used to weakly impose the boundary conditips,  tl;5Kjj,
see Figure 4.2.
The system is stable under the CFL condition [45] issued from the stability analysis of the linearized
scalar equation and then adapted to the SW equations:

CFL Xi
maxiot, (;ai + juij)

(4.6)
whereg; is the celerity (equal tcp) ghi), x; is the width of the cell crossed by the wave arnisla
threshold value. The value 6fF L must be in the rangf®; 1].

To compute the numeric&iix we use an HLLC approximate Riemann solver [142]. The HLLC
Wix is based on the exact integral relations issued from the exact solution of the Riemann problem
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(see Figure 4.3). It is\eed as:

% Fo; if 0 S

Fo; if S 0 S
EFR; if S 0 SR
" Fr; if 0 Sg

FUUng) = ! S

Looking at the 1D casé&,(U; UJ-”; nj ) is also calledr;,; -, since is theWix at the interface
between the cell and the celi + 1. Formula (4.7) means that we have 4 possible solutions for
the Wix, according to the wave speésfis with K = L; ;R which stands for left, star and right.
Integration over appropriate control volume gives:

Figure 4.3: HLLC approximate Riemann solver and solutions in the 4 regions: left, left star, right
star, right (on the left); approximate HLM@x (on the right).

F L = FL + SL(U L U|_) (48)
FRZFL+S(UR U|_) (49)
F R = FR + SR(U R UR) (4.10)

The wave speeds ; S ; Sg are computed with appropriate formulas which will be sgedilater.
Note that manipulating equations (4.8) ,(4.10) and using condliterS we Vnd the approximate
states, necessary to compute (4.7):

2 3

1

SK Uk S

U = h —_ ; 411

< =he Tog gwé (4.11)
Ck

with K = L;R.
Before estimating the wave speeds, we recall some basic conditions that are enforced to solve the
algebraic problem. These conditions are issued from the exact Riemann problem and correspond
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to:
hL:hR:h
Uu,=Ur=1

(4.12)

which means that water depth and normal component of velocity are conserved along the con-
tact discontinuity (in the star region). While, the tangential velocity components, as well as the
concentration, are kept constant along the other two waves:

VL=VL VR=VR (4.13)

CL=C CRrR=Cr

In addition, it is convenient to assume tt&t = u , that is the water particle speed in the star
region. There are several possibilities to evaluate the wave speeds; we choose here the suggestions
given in [142] and we compute:

S:SLhR(UR Sr) Srhi(uL  S)
hr(Uur  Sr) he(ue )

S_=u. aq and Sgr=Ugr+ arGR (4.14)

where the co¥cientsq. and ggr assume dierent formulations depending on the presence of a
shock or a refracted wave. This distinction is made compagn@iK = L;R) with h .

8
< I;L ~if 'h hg; rarefaction
= DELL—— 4.15
%= 2 0Bt b >hy; o shock (#.15)

K

Thus the wave speed estimates are based on water depth and water particle velocity in the star
region. These are obtained from an approximate-state Riemann solver where the water depth is
derived from the depth positivity condition that wéd also in the exact Riemann solver. This
conditionis( U)eit = 2(a. + ar) > ur UL [142]. Expressions for and consequently for

u are:
_ (he+hg)  1(ur u)(he + hRr)

h a s (4.16)
_ (ue+ur) (hr hy)(a. + ar)
u = 5 h. + he (4.17)

It is worth noticing that if one of the two states is dry, e.g. the right water depth is zero, the wave
speeds estimates are mti:

SS=u a and S =u =u_+2a (4.18)

indeed in this case the right shock wave is absent and the left rarefaction wave is present together
with the contact wave which coincides with the tail of the rarefaction. For a review of approximate
RS we address the reader to [142].
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In order to complete the description of the FV scheme for the SW equations, we deal now with the

boundary terms antfhally with the source terms.

As written in Equation (4.5), the external statég, need to be prescribed in order to satisfy the

boundary conditions through th&ix computation. They represent the estimation of the solution

on a ghost cell, described through the local coordinates. Again we recover the one-dimensional

framework after rotation of the variables and a local 1D Riemann problem can be solved. The

ghost states are thus\deed by: 2 3
hi

Ue= 2 hup, iza (4.19)
hv;

whereh; is the water depth at the boundary nadbup, hv; are the states associated to the normal
and tangential direction on the nodeWe note that the conditions are applied on&esa estimate
of 8"*1 is obtained solving Equation (4.5):

ﬁn+1

ot = § (4.20)
F]Vn+1

The treatment of boundary conditions is inspired by [31] and it is just¥priecalled here.
The slip boundary condition for wall boundaries is weakly enforced setting:

2 o 3
Ue= § sun’::l 2 (4.21)
ﬁth

The water depth and the tangential component of velocity are thus equal to the values obtained at
the node by (4.5).

For liquid boundaries, as we are in the one-dimensional case, we consider that in case of subcritical
Vows, we will prescribe one condition at the inlet and one condition at the outlet. For supercritical
Vows, we will prescribe two conditions at the inlet and nothing at the outlet. The Froude number

is computed for the local variables and is related to the normal component of the velocity. In
general, in cases of a missing boundary condition, the set of boundary conditions is completed
thanks to the Riemann invariants, which are constant along the characteristics. For tracers the
theory of characteristics is still considered and the boundary treatment for these terms is described
in Section 4.1.5.

The presence of the geometry source terms in the momentum equation must be carefully treated.
Indeed, non trivial steady states have to be preserved by the numerical scheme, thus a right balance
between thaNix term and the source term is necessary. Schemes able to guarantee this condition
are known as well-balanced and th&dulty is to preserve at the same time other properties like

the positivity of the water depth. In the present scheme the well known hydrostatic reconstruction
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[15] is employed to solve this problem. This solution is suitablrfband second order schemes
and guarantees also the non negativity of the water depth.

Finally the friction source term of the momentum equation is integrated through a semi-implicit
formulation.

4.1.1 Unsteady tracer advection benchmark

For the sake of clarity, we introduce now a numerical test which will be considered all along this
work to gradually show the results and thus the improvements obtained with the schemes pre-
sented in this thesis. We hope that this choice sWaplihe theoretical framework, translating in

a uniqueVow of ideas the theoretical concepts and their impact on numerical results.

Hence, we give here the details about the mesh and the variables of the problem. We consider a rect-
angular channel with 8ét bottom characterized by a steady stafe @T= @t= 0. The rectan-

gular domain i m long andl m large. It is made up by 6,876 irregular triangles with an average
mesh size equal @02 m. The hydrodynamic initial conditions atg = u(0;x) = (1 ;0) m=s

andh® = 1 m. Thus at the inlet of the domain we impose a discharge eqdattt=s and at the

outlet we impose a water depth equaltm. the solution is trivial since water depth and velocities

are equal to the initial conditions (and to the boundary conditions). Regarding the tracer, we set

the following initial tracer prdle:

cog(2r) ifr 025
0 otherwise

(x;y) = with r = P (x 05)2+(y 05)2

Free boundary conditions are set on the open boundaries. The duration of thé teskle case

is suitable since the exact solution for tracer is computed with the theory of characteristics and
the numerical diusion produced by the scheme is represented by the diminishing of the initial
maximum value. In Figure 4.4 we show the initial solution and the exact solution at the section
y = 0:5m afterls. InVgure 4.5 we show the pte obtained at the end of the simulation,
compared to the analytical solution. As we can see, the resultliside due to the low order

of the scheme and to the excessive numeritalsion. This preliminary result will be improved
using the decoupled solution and increasing the order of accuracy of the scheme.

4.1.2 Positivity of the scheme

It is easy to show that the HLLC solver is able to preserve the positivity of the water height and of
the tracer concentration under the classical CFL condition and this Wy beiealled here. We are
interested in showing that olnite volume scheme is positively conservative in the sense that the
water height, but also the concentration, remain positive throughout the computational process.
This has been demonstrated in the case of the Euler equations, for the Godunov's method, the
HLLE-Method [66] and the HLLC Method [20]; here we follow the same reasoning for the Saint-
Venant system.
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Figure 4.4: Unsteady tracer advection benchmark: initiégend exact solution 3t= 0:5m.

Figure 4.5: Unsteady tracer advection benchmark: results for the HLLC scheme at section
y=0:5m.

First of all, we recall that the solution of a conservation law:

poe: & . @U) _g
ot (@fj f x< 0 (4.22)
IC: U(x;0)= - "

Ur if x>0

attimet"*? can be seen as solution of two Riemann problems solved at each cell inigffage:
andx; 1o, see Figure 4.6. Let's take the interfgce-,, we can write:

Xj+1=2

tx)= R — =2,
U tx) t tn

Ut Ul if X <x<Xiq (4.23)
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Figure 4.6: Riemann problems at the interfaggs., andx; -, of a cell.

fort" t t"*1, whereR is the approximate Riemann solution. This is possible until time
t"*1 is under a CFL conditio®:5 [28] which is necessary to avoid interaction between solutions
(crossing wave speeds) in the intemiak X < X j+1 . Thereby:

Ui if xst< X (4.24)

. _ Xi
Ujyp If x=t> 27';1

R(x=t;Ui;Uj+1) =

where Xj; = Xjz1=» Xj 1=2.- TO compute the solution over the aelvith an HLLC approximate
Riemann solveR Nc  we have to take:

Z, Z 1
1 I I+
Ut = RO UD pUNdcor — T RMOeER UT UL o (4.25)
i [
which is equivalent to:
t
urt = ol — (R R (4.26)

Clearly, update valued {‘*1 are derived from a convex averaging process of the states that are
solution of the Riemann problem at the cell interfaces. Hence, an approximate Riemann solver
leads to a positively conservative scheme if and only if all the states generated are physically real
[66]. The seG of these admissible states is:

82 3 9

G= g ug;h> 0andc > 0 (4.27)
34 hv 3
. hC 1

For the water depth we require thaft U2 andU%; U, are positive, wher&? = h, the \rst
component of the vectdd . For assumption on the initial condition this is true & and U3.
Let's consider the star states, we require that 0 (sinceh | = h R).
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From (4.11) we have: !

S u

h.=h, (4.28)

Positivity is satiged because:
SL < S sinceS is an average velocity betwe8n andSg;
SL <u_ sinceS. = u. a.gwithg O.
For the tracer, we have to demonstrate tfat), ; (hc). ; (hc)r ; (hc)r] are positive. The left

and right states are positive by assumption and in the star region we will have a single Value of
but two diUerent values of. We know that:

(hg, =h Y ¢ =hg
LS (4.29)
(ho)r = hr SRR = ho '
SR S

Sinceh is positive under the CFL conditiofhc) | and (hc) r are also positive. Indeed, the
positivity is anyway subjected to the CFL condition (4.24). In practice this condition is not used
and the CFL condition is instead: CEL x

t AU Ung) (4.30)
with CFL = 0:9anda(U;; Ui+ ) the maximum local speed. For the shallow water system the
maximum speed is evaluatedraaxiot, ( ;@i + juij) where is a threshold value. This condition
allows to avoid the interaction between solutions over the cell, thatiso, X Xj41=0. This
is sX cient because in practice the solution is updated with formula (4.26), so we Wndesoon
the linesx = Xj41 -0 andXx = X; 1-o.
In the presence of a ndfét bottom, the non-negativity of the water depth is guaranteed by the
hydrostatic reconstruction [15], which is used to take into account the geometric source terms and

to preserve th€-property.

4.1.3 Decoupling the tracer equation

The decoupling of the tracer equation follows the ideas of Audusse and Bristeau [13], who proposed
a two time step kinetic scheme for pollutant transport. These ideas can be straightforwardly applied
to this scheme, providing that for a positive star wave speed we will have a positive water mass
Wix and for a negative star wave speed we will have a negative wateMidnass
We focus on the tracer equation and we look at the one-dimensional prdbfepeing the tracer
WIX):

(ho)M™*t = (ho)! —)t((Fi‘il > F*) (4.31)
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TheWix for tracer given by (4.7) can be written as:
Fiio = FiiioGin = (4.32)

wherec; ;1 - is equal tag; or ¢+1 , depending on the speed S*:

(
Ci if S 0
. o= 4.33
Ci+1=2 Gt if S <0 ( )

This formulation shows clearly the upwind in the treatment of the tracer and this choice is equiv-

alent to: (
G it FL_ 0
Ciyrmp = _ A (4.34)
Gi+1 it Fi1,<0

The study of th&x function Fil+1 —, shows that a positive star wave speed implies a po$itixe
for water depth, so expressions (4.33) and (4.34) are equivalent.

We give in the following the proof, considering the 4 possible ca¥®x ofiven by formula (4.7).
For simplicityF,%, _, will be calledF¢ with K = L;L ;R ;R according to the case.

We consider the expression (4.7):

ForS. 0. Inthis caseFl_1 = (hu)_. SinceS. 0, using (4.14) wend that alsau. 0.
It follows thatF1 OforS, 0.

ForS. 0 S the expression for the water maasx is equal to:

FiL=F'+s Ul Ut
SLu
=Fl+S. hh =—— h
L L L SL S L
S, up
=h. u+S. ——=— S
L L L SL S L

Sinceh, 0, we prove that the quantity inside the squared brackets is positive. This
guantity is rewritten as:

u (S S)+S (S u) S (S S)_S (S u)
SL S S|_ S

SinceS,. 0 S forassumption, then the denominator is certainly negative. The numer-
ator is also negative sin€e is positive while&S_  u_ is negativeS, u_ = a; g_using
Equation (4.14). Hende! 0forS, 0 S.
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ForS 0 Sy we wantto show thaF! < 0sinceS < 0. We have:

FL=F:+Sg UL U

= F3+ h h
R+ Sr hr S S R
SR UR
= h + S S
R UR R S, S R

Sincehgr 0, the term in the squared bracket must be negative. The latter, after some
algebraic simplications becomes:

S (SR UR)
S S

The denominator is positive for assumption siice 0 Sg. The numerator is negative
sinceS 0andSg ar = arOg is positive. Hence! 0OforS, 0 S.

ForSg 0, we want to show that the numerical water m&¥s is negative (or null) again.
This is true sinc6g ~ O0means thatir 0. The latter implie§} = (hu)g thusF! 0
and the proof is achieved.

We take now the upwind formulation (4.34) and going back to the 2D formulation we write:
FYUi;Upng)= F 6+ F! g (4.35)
with F* = max(0; F (U;; Uj;nj)) andF = min(0 ; F (U;; Uj; njj ). Taking the outward nor-

mal as referencé&;* represents the outgoinyixes and= the ingoingWixes. Thus the scheme
for tracer becomes:

t X
(ho)!™* = (ho)f K FY (U Upsni)a + FL (UG Usni g (4.36)
i=1
We deduce that: 0 1
Xoi
(oIt @ T F (U g )l A (4.37)
|

j=1
This means that the positivity of the tracer will be ensured if:
FY¥(Ui;Upsni)lj > 0 (4.38)
1

t
o
| KlJ:

Physically it means that the maximum time step is the one that causes a cell to be emptied by
exiting Wixes. This condition is less restrictive than Equation (4.6) and thus advantageous for the
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tracer transport.

Inspired by the work of [13], we disconnect the hydrodynamic part from the transport and we use
an algorithm that computes hydrodynamics and tracer transport in parallel but Whkthedit time

steps. Hence, the tracer solution is decoupled yet it is still dependent on the hydrodynamics through
condition (4.38). Indeed, the idea is that the tracer is updated only when the above condition is not
fulMled, which can happen after several hydrodynamic time steps. Hence, the computational cost
for the solution of the augmented SW system is decreased. In addition, as we deal with explicit
schemes in time, taking the maximum time step admissible for the tracer transport allows to reduce
the numerical diusion which is larger for a coupled solution.

In order to clearly show theleect of the decoupled scheme, we show the results obtained with the
decoupled scheme for the unsteady advection test case. Figure 4.7 compares the decoupled solution
to the coupled solution for the unsteady tracer advection benchmark. We see that the numerical
dilusion is reduced by the decoupled scheme, indeed the maximum value of the tracer at the end
of the simulation is larger than the one of the coupled scheme. To explain this improvement, we
recall that a numerical scheme produces a numerical error at every discrete time step. When using
explicit schemes for advection it is important to exploit the maximum admissible time step in order
to reduce this numerical error. This is realised by the decoupled algorithm.

Figure 4.7: Unsteady tracer advection benchmark: results for the coupled and the decoupled HLLC
scheme at sectign=0:5m.

The choice of a decoupled solution is related to the fact that the transport phenomena are regulated
by the velocity of thé/w and not by the speed waves, as the hydrodynamic system. Indeed, as
we have seen in Chapter 2 the eigenvalue corresponding to the transportis\jste for the
hydrodynamic system they ate  a. The case of stead¥w (h = const andy = const) shows

clearly that the new condition for the positivity of the tracer is less limiting than the classical one.
Indeed it becomest  min WX(JUPJ) [13]. Details on the algorithm will be given later.

For this FV scheme the hydrodynamics can be too restrictive for the tracer equation, which is thus
solved after some hydrodynamic steps with the minimum number of time step necessary. This is
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strictly related to the explicit discretizations in time used here.

It is worth noticing that this situation is exactly the contrary of what happens for RD schemes,

as we will see later in the Section 5.1.2. Indeed, when using FE schemes on hydrodynamics and
RD schemes on tracer, the latter are more constraining than hydrodynamics. Hence, sub-iterations
within the hydrodynamic steps are used to solve the tracer equation.

4.1.4 Monotonicity analysis

The theory of positive cofcient [134] is used to guarantee the respect of the maximum principle.
Indeed, the theorem on the positivity of #agents [146] for a linear advection equation establishes
that, considering a numerical scheme given by:

X
= (4.39)
k
then the scheme will be monotone if and only if:

X
b =1 andb; 0; 8k (4.40)
K

cJ“(k) are the concentration values on the nop@g involved in the sumby are their coX cients
andk is an integer which represents the support (or the stencil) of the scheme. Dividing Equation
(4.36) byn™** we obtain:
0 1
nl _ O hn NPT [ A
T e o PR U gl
i j=1

t X

hin+1Ki j:1

c FU (U Ung)ly g (4.41)
The second term on the RHS is surely positive and the positivity Bfsherm is ensured through

condition (4.38), thus the discrete maximum principle is respected. In the proof we assume that
hin+1 is positive, which is the case when using the present scheme.

4.1.5 Boundaries and sources

We now add to the basic formulation (4.36) the boundary terms and the sources. For the theory of
characteristics, if the boundary is an inlet it will be necessary to prescribe a boundary condition for
the tracer, while if the boundary is an outlet, then no condition is necessary.

For convention, we consider the outward normal to the boundary, hence the botgary, .4

will be positive at the outlet and negative at the inlet. Thus the equation becomes:

(ho)M** =(he)f! FY(Ui;Upsni)a + FL (U Ung)g

t 1+ 1
E FooundC * FooungCoound i
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Source terms are added following the same philosophy: a positive source of water mass carries in
the tracer source while a negative source (sink term) carries away the existing value of tracer. The
scheme with boundaries and sources is:
n+1 n t X 1+ 1
(hc i =( ho); K7| F (Ui;Uj;nij )& + F (Ui;Uj;nij )C] Iij
j=1

Uopas (4.43)

. 1 ,
K7i boundC + FpoundCbound i

t
+ e SCE Csce + SCQ G
i

These additional terms modify the previous positivity and monotonicity condition, which now
reads as follows:
0 1

t g
hin K. @ Fl (Ui;Uj;nij )Iij + Fblo+und|i sc§ A>0 (4.44)
i .
i=1

Indeed, only the coécient ofc could represent a problem for the positivity. All the othencoe
cients are instead positive and do not need any additional condition.

4.2 Second order scheme

To improve the accuracy of thaite volume scheme, the values at the interfaces between cells are
reconstructed considering piecewise linear approximations. The reconstruction is second order in
the sense that for a smooth functioifx) we have:

U(Xi+1=2) + O( x?) (4.45)

Uis1=2

and
Uis1 =2+ = U(Xj41=2) + O( X2) (4.46)
Given theVrst orderWix and the reconstructed valugg the scheme is now:
Xoi
uptt = up jFUP U ng)  iF(UN UG n)+  tS] (4.47)
j=1
From theory [28] we know that if under a CFL condition the numeiga preserves a convex
invariant domairD and if the reconstruction also preserves this invariant domain, then under the
half original CFL condition, the second-order scheme also preserves this invariant domain.
In practice, as mentioned in Chapter 3 it iX dult to verify that the reconstruction preserves the
invariant domain. On the other hand, as in ¥wst order case, the CFL condition can be relaxed.

To perform the reconstruction, we use herawdtislopeMUSCL technique since dgirent value
of slope is used for every interface of the same control volume. The reconstruction technique is
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used to approximate the primitive variabis = [ﬁ; 0;¢:¢]" and not the conservative ones. The
approximation oW is initially done with a linear reconstruction and then is corrected in order
to ensure the conservation of the mass in the volume, as done in [112]. The control K@lume
is divided in smaller triangles jj , each of which contains the interfacg . The variables are
reconstructed at the poil which is located in the middle of the interfacg. The variables at

Figure 4.8: Control volumes and subtriangles for reconstruction.

the interface are computed as [14]:
Wi=wi+PM rW; (4.48)

whereP;M is the vector between the poin® and M. The gradient W j Is estimated as
follows. Firstly we calculate the gradient over the triangle to which the point M belongs. This is
calledr WM =r W T and it is calculated using linear P1 functions,

X
r W _ Wir (4.49)
12Ty
where
. Ny
iin g (4.50)

with jTyj surface of the trianglle andn, the inward normal to the point The second step consists
in computing a nodal gradient, that can be approximated as a weighted sum of the gradients of the
elements surrounding the point

JTair W

Ty 2i JTki

P
rwW, = 8! (4.51)

The latter is necessary to extrapolate the gradient at the opposite side of the point M:

rWomi=2r W, r Wy (4.52)
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Finally a limiter is used to avoid oscillations:

r Wy = lim(r Wysr W) (4.53)
We use the Minmod limiter [92] for water depth and concentration:
(
. 0 if sign(a)é sign(b
lim(&; B minmod = gn(@)6 sign(b) (4.54)

sign(a)min jaj;jbj  otherwise

This limiter is strict compared to other classical limiters and it has been shown that it generates
more numerical diusion than other limiters. It is used in this case since water depths and concen-
trations must be strictly positive. Then the van Albada limiter [56, 147] is used for velocities:

(
. 0 if sign(a)é sign(b)
@b _ 4.55
m(a; B)vanaibada % otherwise s

where is a small positive bias of the order ok®, see [56]. This limiter is less strict. Indeed,
numerical tests have shown that using this limiter for the concentration variables can produce
negative values of concentration. An example is also given in [23].
Once obtaine(WiJl = [ﬁ%  0j ;% ;€ 7, we modify the water depth and the concentration in
order to guarantee the conservation of the mass. Indeed we need to have:

!
. . X . . . .
iKi jfiy = jKijj hi = jKijhi (4.56)
j2K; j2K;

X

with
fj 2 min(f}; hi); max(hi ;i) (4.57)

This is achieved with the correction [112]:
fj =mi+ FRE h)e (R hy) (4.58)
where we have used the notatian = max(a;0) anda = min( a;0). The only possible choice

for is: p !
anKiniji(ﬁﬁ hi)

. =min 1 — (4.59)
| i2x, K j(AE - hp)
A similar correction is done for tracers, thus:
|
X - - X - .. - -
iKijifiy & = iKiji hic = jKijhig (4.60)
j2K; j2K;

Through this correction we are able to prove the conservation and the positivity of the second order
scheme. Note that the reconstruction of the variables at the interfaces does not prevent to decouple
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the tracer solution, which becomes:

(he)** = (ho)! F2 (U Uisng )8 + FH (Ui Uiing g (4.61)

t i
K
In this case, the solution obtained with the second order decoupled scheme for the unsteady tracer
advection benchmark case is shown in Figure 4.9. The improvement obtained using the linear
reconstruction is very clear. The tracermis closer to the exact solution than the other previous

schemes. The theoretical condition (4.38) is now computed withixes based on reconstructed

Figure 4.9: Unsteady tracer advection benchmark: results at sectiédh5 m for the coupled
version of theVrst order HLLC, the decoupled version of st order HLLC, the decoupled
version of the second order HLLC.

states: |

Fl (Ui Yjisn;)>0 (4.62)
j=1
The whole procedure described here to obtain the reconstructed éjaige®t siX cient to strictly
ensure the monotonicity principle. This is mainly related to the fact that we cannot prove that the
reconstructed values are generated by a convex sum of the neighbouring values, whibh is de
tively dependent on the way to compute the gradients, on the limiters used and their properties, as
explained in [36].
The boundary and source terms are treated like inteeorder case without technical problems.

4.3 General resolution algorithm

The algorithm used to compute the solutions of the system fovt8ieand the second order FV
scheme will be detailed. We remark that the tracer time step will not be directly calculated with
formula (4.38) but it will be simply the sum of several hydrodynamic time steps until the condition
expressed by (4.38) will not be trespassed. So, the test for the positivity of the tracer is a key point
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in the algorithm. Compared to the one proposed by Audusse [13], the algorithm is just adapted to

our hydrodynamic computation where tiéxes are calculated in al#irent way and some details
are added to the description. We dalsuperscript) the step indicator for the hydrodynamic part
andk the one for the tracer part. The indexepresents instead the nodef the computational
domain.

The algorithm consists of:

1. Initialization
Seti =0,k =0;
Set the initial conditions on variablfs hu; hv]° andc®;
SetlFy (Ui;Uj;ni )] 20=0,(Sce, X% hi* = hi;

2. Hydrodynamic computation and update

Take into account the boundary conditiofis; u; vp]' andc;
Start from[h; hu; hv]' and compute the time steptiCFL necessary for stability;

Compute the hydrodynamMixes[F "MV (U;; U; ; njj )]' for internal and boundary
nodes;

Update the hydrodynamic valus hu; hv]'*! considering sources if present;
3. Tracer computation

Compute the cumulated madéxes:

[FY (Ui Uy 1% =[FY (Ui Uy )
+ tep [FMUGUn)IT + [FMUG Y 50 )]

Note that here again and+ indicate the negative and the posithéxes;

Compute cumulated sources if present:

(Sco® =(scel M+ ti. (sce '+ sce ),

Test based on the positivity condition (4.44):

Note that the test should be positive at least at\isd iteration, since th&fst time
step issued by the CFL condition iXsient to satisfy the positivity of the tracer.

() The testis false: update the tracer
Update the tracer withWixes of the old time step:
X tr +:5i LkA Lk tr i1k
[F7 Ui Ysng)l™ " ~tg =+ FR (U Upsng )]

Ki '
j=1

[hc]i;k+1 :[hc]i 1:k

1 T
t sce ! Mege + scR
i

i l;kC: 1k

i L1k
G
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[F¥ (Ui Upsn I =t RPN Uy )]s
Scd** = tiscdX
Sethitlk+l = i d+lk+l = di-
k=k+1,i=i+1;
Go to hydrodynamic computation;

(b) The testis true: continue the hydrodynamic computation
Set(hc)i+l;k — ( hc)i;k hi+1;k — hi;k Ci+1;k — Ci;k.
i=i+1;

Go to hydrodynamic computation;

We point out that in case of subcritiocdws we will hava >> k . Indeed, foFr << 1the ratio
betweeru + jaj andjuj is high. On the other hand, for supercritiv@ws Er > 1), we will have

i ' Kk, sincgaj is less important.

The drawback of the algorithm is that the hydrodynamic variables and the tracer are not updated
at the same time during the intermediate time steps.

4.4 Coping with dry zones

Wetting and drying phenomena arexdiult to solve: during these transient periods the scheme
must preserve the positivity of the water depth and must respect the maximum principle for the
tracer concentration.

To deal with these situation$fst of all, we d&he a parameter for the detection of a dry node.
The threshold value for the water depthviged to ;, = 10 6. Before computing the interface
numericalMixes, the water deptlis andh; (or h; andh;; if reconstructed) are compared to the
threshold value. Three situations are possible:

Both values of water depth are smaller than the threshold value. In this case the velocities,
which are computed as the fracti@#, are directly set to zero. In addition, the numerical
Wixes for the three scalar components are not computed and they are directly set to zero.

One of two water depths is smaller than the threshold value. Only one vector state will have
velocities set to zero. However, this condition X cient to create &Vix between the two
cells, so the three scaMiixes are computed.

Both values of water depth are greater than the threshold value. This is the typical wet case,
which does not present any problem.

Thus in general we have: 8
<

(4.63)
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Note that the choice of, is critical because Wnally states which value of water depth can orig-
inate a water masédx. Numerical simulations often lead to values which avgémced by ma-

chine precision and by truncation errors, this could be critical in some situations like the detection
of dry nodes. Moreover, even if velocities do not need to respect the maximum principle as a tracer,
division by zero must be avoided and unphysical values can be obtained according to the chosen
threshold values. The latter alsdrences the space advancement of the velocity front: increasing
the value of ,, the front moves back respect to the exact solution, while it moves forward and it
overcomes the exact solution jfis too small.

After several tests, a good compromise seems tg bel0 © : the solution with this threshold
shows a good agreement with the analytical solution and velocity does not have unphysical values.
However, we recognize that this choice is not an optimal solution, but it allows to cope with this
problem without spoiling the mass conservation of the scheme (the water depth itself is not in-
volved in the procedure).

In a similar way, a threshold valug is used with respect to the variable concentration. For con-
centration this condition can be more harmful, as we will see.

As for velocities, we compute the valugbf)"*! and then obtairt*! in this way:

8

< (ho)"*t
"= hn+1

-0 if h< ¢

(4.64)

TheVrst natural idea is to choosg = =10 6.

We immediately remark that in this case the cUtv@lue inNMiences the concentration and thus

the mass balance of the scheme.

We present now two situations to show that the chojce= 1, = 10 © could create a problem.
TheWrst case represents a cell which has a wet left neighbour and a dry right neighbdlguisee

4.10). The second case is a dry cell with a left wet neighbour and a dry right neighb&gufsee

4.11). To simplify the problem we analyze the coupled one step algorithm for the 1D case and then
we generalize to the larger time-step algorithm and the 2D case. In both cases initial velocity is

Figure 4.10: Drying of a wet cell.

set to zero and a constant solute concentration is present in wet cells. For dry cells we initially
consider thah = 0 exactly. We look to the update of cell
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Figure 4.11: Wetting of a dry cell.

The upwind scheme for tracer is:
t
(ho)M** = (ho)! — FlioG+ Fta Fi,6 1 F oG (4.65)

In the Vst caseWixes are null at the left interface while at the right interface they are non null.
Thus the scheme reduces to:

t
1
(hco)?** = (he) X Fi’;lzzci (4.66)
Recalling the continuity equatid1|1“+1 = hf —f( Fisi—» Fi 1= , the last equation can be
rewritten as: a1 .
hn h' h!
gt = L d+ - T c (4.67)
i i
We caIIh_L’E1 = r and we recast the equation as:
"t =rc+@ nd =4 (4.68)

Theoretically, the emptying of a wet cell does not represent a problem: maximum principle is
respected and no oscillations are created.

However if the scheme generaté$! <  then we will haved"*! = 0. First of all this is not
correct sincaa:i”"1 should begl! as shown by Equation (4.68). Second, the correction done on tracer
will spoil the mass conservation. This problem can be circumvented if the mass balance at the
following step will take into consideration the valire)"*! (before division by"*1) and not the

non conservative variabté+1 obtained with Equations (4.64) multipliedtsy** . However, this

trick entails then the violation of the maximum principle, as shown for the next case.

Analysing the second situation (Figure 4.11), Equation (4.65) in this case becomes:

t
(he)M™! = (he)!" + —~ F5 G 1 (4.69)

that is also: -
n+l _ hin n hi hin n

G = hi”"l - hi”” G' 1 (4.70)
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or also (remember th&tt and alsac; are null at timen):
=+l nNd i =d, (4.71)

So, even this case is theoretically well handled by a simple upwind scheme.
We suppose again that at time-1 the water depth in is smaller thany , while ini 1 the water
depth is bigger thany, . So,cin+1 is set to zero, like velocities. Then, at time step2, the values
of h; will increase, but we suppose that it will continue toHSé’2 < . Again concentrations
and velocities will be then set to zero, even if the scheme reads as:

(ho)f ™ = hM*t ™t + (2 hPt g (4.72)
hence(hc)in+2 6 0 and errors can thus cumulate over several time steps.
As stated before, to have a correct mass balance, the scheme could take into consideration the latter
value of the conservative varialtie, used to update the solution. Otherwise, computing the mass
at the end of the time step with the non conservative varigblé andh"** will spoil the mass
balance.
On the other hand, choosing to update the solution using the conservative variable will create
unbounded concentration values, indeed at time2 the scheme will produce:

n+1
n+2 _ (hCi
i - n+2
hi

+(1 )t (4.73)

with r = hM1=p"*2_ The coXcient ofg ; is bounded betweef®; 1], but (hc)"** is not
bounded, so we cannot ensure that the sum of the twi cieats will respect the maximum prin-

ciple. Itis easy to generalize this problem when we use the larger time step algorithm. Oscillations
could be even greater due to the fact that several hydrodynamic iterations are done and the fraction
h?—'nl can be bigger than the one obtained with the one step algorithm.

In order to deal with the maximum principle and the mass conservation problems, a very simple
solution for the wet/dry interface with tracer is proposed.

The basic idea is that eveWyix able to create a non-null water depth, inclutted 10 ©, will also
transport a quantity of solute, according to the upwind scheme (4.65). For this reason we choose
to diminish the threshold value and ¥ ¢ <  and in particular we take, = 10 * which
corresponds also to the machine precision. Takjng 1 allows to be numerically consistent

with the continuity equation and th#&ix computation, that is avoidedhf <  orh; < .

Considering again the second situation (wetting of a dry cell) we will exactly respect equations
(4.69) and (4.70) to eventuayd c,”*l = ¢ 1, atevery wet/dry interface. This proves that the
maximum principle will be respected, depending on the threshold and so on the machine precision.
Then, we also choose to 8t' = ¢"if h < . The latter has a consequence in case of drying

of a wet zone: the algorithm will continue to detect tracer values in the space ftére<
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(which is thus theoretically dry). This choice allows to not spoil the conservation of the mass.

It will be later shown in the numerical tests (Chapter 6) that the problem linked to the maximum
principle is no longer observed with the new choice;af

To sum up, the new condition is:

8
2 (hC ir']+1

Cin+1 — hin+1
>

th (4.74)

o it h< g

with =10 14,

4.5 Summary

This chapter presents the FV model used in this thesis. The theoretical property of positivity for
the water depth and concentration has been shown under a classical CFL condition. Concerning
the scalar transport, the main idea is the decoupling of the transport equation when employing
an HLLC approximate Riemann solver. The decoupling is possible thanks to the properties of the
HLLC solver. The decoupled algorithm is described and it considers also boundary terms and
sources, with respect to the one presented by [13]. These additional terms are included in the
monotonicity condition.

The second order extension is achieved using a MUSCL approach, for hydrodynamics and for
tracers. In this case the theoretical stability is not strictly preserved; however as we will show
later the solution remains stable. Even in this case the decoupled algorithm is used to reduce the
numerical duusion.

For dry zones problems, an analysis clearly shows which solutions must be avoided and which
ones must be preferred with respect to a duparameter.
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Chapter 5

New residual distribution
predictor-corrector schemes for time
dependent problems

L'objectif de ce chapitre est de présenter la formulation des schémas aux résidus dis-
tribués pour la solution de I'équation découplée du traceur.

La méthode utilisée pour la solution de I'équation de continuitédie est détaillée
puisqu'elle représente une étape préalable a la discrétisation de I'équation du traceur.
Les schémas de type résidus distribués pour la solution de I'équation stationnaire du
traceur sont ensuite présentés a partir d'une formulation variationnelle du probleme.
Ainsi, les propriétés numériques des schémas telles que la conservation, la précision et
la monotonie sont énonceées et établies.

A partir de cette formulation, les schémas aux résidus distribués appropriés pour les
cas non stationnaires et les propriétés numeérigues correspondantes sont aussi décrites
de maniére systématique. En particulier, trois typeérdnts de schémas sont con-
struits : un schéma semi-implicite, un schéma prédicteur-correcteur d'ordre un et un
autre d'ordre deux. Lesldirences et les ressemblances entre ces schémas et les sché-
mas classiques RD, seront mises en évidence.

LaVin du chapitre est dédiée aux problémes des bancs découvrants qui sont gérés avec
une formulation semi-implicite locale.
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In this chapter we present the residual distribution (RD) method applied to the scalar transport
equation in the shallow water context.

Unlike theVnite volume method presented in the previous chapter, here the RD method is only ap-
plied to discretize the tracer equation: the solution of the equation is decoupled with respect to the
shallow water system but a compatibility with the discretized continuity equation is guaranteed.
Details on this choice are given in Section 5.1, where the formulation of some explicit transport
schemes for steady problems is also included. In particular, the N scheme Wtstllider accu-

rate and the PSI scheme which is second order accurate in space are presented.

Section 5.2 focuses on the formulation of the scheme in case of unsteady problems. For these
problems three tlerent solutions are shown: a semi-implicit scheme, which will be also useful
to cope with wetting and drying problems\est order predictor-corrector scheme and a second
order predictor-corrector scheme. The numerical properties of these schemes, like positivity and
monotonicity, are then analyzed in Section 5.3.

The monotonicity analysis also allows to formulate and to solve the problem through an iterative
scheme, which is introduced in Section 5.4. The latter allows improving the accuracy of the basic
scheme and it is a novelty with respect to classical RDS.

Finally, the wetting and drying problem is presented in Section 5.5. In this case,lacaby
semi-implicit predictor-corrector scheme is introduced to cope with this problem.

5.1 Preliminaries

The formulation of the residual distribution model only concerns the scalar transport equation
which is thus solved with a decoupled approach.

This choice is related toldérent causes. On one hand, this work has been realized in an open
source hydroinformatic system, called Telemac, where the shallow water equations can be solved
by aVhite element (FE) kernel or\éite volume one. The solutiorJered by thevhite element

method guarantees all the numerical properties stated in Chapter 2 and several tests have shown
that this method is veryXcient,Véxible and it has a computational cost which is lower than other
classical numerical methods [82]. In particular, large time steps can be used to solve the system
of equations since, in general, it is not submitted to a strict CFL condition like the explicit FV
schemes. In addition, a semi-implicit method can be employed on velocities and on water depth,
giving more accurate results. The FE formulation of the continuity equation is compatible with
the RD formulation of the tracer equation. This explains why the decoupled approach has been
preferred to the coupled approach.

On the other hand, this choice is more challenging since, as discussed in Chapter 3, the decoupled
modeling of the scalar transport implies some special numerical tricks. In particular, the continuity
equation has to be considered to enforce the mass conservation and the monotonicity.

The reader may consult the work of Hervouet [82] for details about the solution of the SW system
using a FE method.
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5.1.1 Continuity equation

We present here the discretization of the continuity equation, which will be necessary in the tracer
equation. For simplicity, the source term will be neglected for the moment and considered later on.
In the Vnite element context, the continuity equation is transformed into a weak fd@ish by
multiplying with test functions from an appropriate spa&é and then applying integration by
parts. Using the FE method, we empldynite dimensional spadé". Then we consider that the
variables of the problem are approximated with lineaRile element basis functioris;, such
n@in
that for example the water depth function is equahto h;' ,h wherenpoin is the number
of points in the domain (see for example [67, 153]).
In this work the Bubnov-Galerkin technique is employed: test functions and the basis functions be-
long to the sam¥nhite dimensional space. However, for the sake of clarity, test and basis functions
will always be distinguished.
For every degree of freeddrmwe want to solve:
Z Z
@h .
i—d + ir (hu)d =0 0 i Np (5.2)
@t
whereN}, represents the number of degrees of freedom. For mass conservation it is important to
avoid the splitting of the divergence term, thus integrating by parts we obtain:
Z Z Z
@h .
i—d + ihu nd hu r ;d =0 0 i Nj (5.2)
@t

This integration by parts will allow tohd a strict proof of mass conservation at discrete level. Itis
not done in the literature of RD schemes, where the conservation issUersndly addressed.
Using an explicit discretization in time and projecting the functions onto the basis, the equation
leads to the following matrix form:

M
—#H”” H") = cVv1 (5.3)

whereM is the mass matridl "*1  H" is the vector of dimensiampoin containing the unknown
h"*1: CV1is the right-hand side vector of dimensiopoin, which contains the boundakixes,
the sources and the other explicit terms. In particular we have:

z
Mij = 'j id (5.4)
CV1=BM1U"+ BM2V"+ TB1 (5.5)
with: z
s @
BM1 = ';h"—'d (5.6)

@x
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4
1 @
BM 2ij = jhn@d (5-7)
4
TB1l= ih"u” nd (5.8)

Another discrete version of the continuity equation can be obtained introducing a Crank-Nicholson
-scheme for the treatment of the velocitgid:

z @h z
i@9+ ir h YWw*r+@ Yyua" d=0 0 i N, (5.9
which in a discrete matrix form becomes:
M(H“” H™ BM1uUu"™' BM2Vv"™ =cCvi (5.10)

t

with BM 1, BM 2, CV 1 the appropriate vectors, function 6fand1l Y.

The termTB1 is given explicitly as boundary conditions on liquid boundaries and is zero on
solid boundaries (impermeability condition). Equation (5.3) (or Equation (5.10)) is then combined
with the other two discretized momentum equations and in this way a linear system of the form
AX = B is solved. Hence,\4st approximation ofh"*1; u"*1;v"*1]is obtained.

We note that performing a mass-lumpinglarEquation (5.10) becomes:

iit(Hn+1 H") BM1U"™ BM2v™ =cCv1 (5.11)
whereS; is obtained by the mass-lumping and it is the surface of the cell around the point of the

meshi, called volume of basigsee Figure 5.1), equal to Sr=3 with Sy the area of the triangle.
T3i
We now recast the continuity equation in dJdrent form, which will be useful for the tracer

equation. We déne a vector of moded water depths, so that:
MH "1 = pn*t (5.12)

whereD is the diagonal obtained by the mass-lumpind/of In this way we can deal with the
following form:

i‘t HHAST U OAVAT (5.13)

even if Equation (5.3) (or (5.10)) is not solved with mass-lumping. To simplify nothtians,
replaced by; from here on out.
The RHS term is: 7 7

CV] = hu" r d ihu" nd (5.14)

Computing the integrals over the singular triangular elemé&nthe internal boundary integrals
eliminate each others thanks to the continuous polynomial test functions, while they have to be
computed on open boundaries. This also means that no mass is gained or lost in single internal



5.1 PRELIMINARIES 81

Figure 5.1: Integral of basis functions for the pnint

elements. Performing the integral over a triangular element, onlyrdigerm ofCV 1; needs to
be computed. We ¥ee this term asiodal\Wix:
z
i = hu" r i dT (5.15)
-
In case of semi-implicit treatment of velocities, the n&dalis:

Z
T
whereucony = Yu™t +(1  Yu",
An important property of the nodakxes is:

X
=0 (5.17)

i2T

Indeed, thanks to the properties of the test functions we have:

X
i(x;y)=1 8T 2T (5.18)
i2T
from which we infer: Z X
hu r idT=0 (5.19)
T i27
We also recall that ;jr = ﬁ wheren; is the inward pointing vector normal to the edge

of T opposite td, scaled by the length of the edge. From property (5.17) we also infer that for
every triangle we will always have three possible\@pmations: two positive nod&kixes and

one negativéMix; two negative nodaNixes and a positive one; a zero nod&ak and twoWixes

of opposite sign. This characteristic will be exploited to transform the WMdsak ; into Wixes
between two points in the same eIemeﬂt, which will be then assembled considering the neigh-
bouring elements sharing the same edge. In this way we obtain for every segment of the domain a
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singular value oW, called jj . The transformation of; into I is explained in [114] and it is
done following the so called “nearest projection method". Here we just recall the main formula:

8
2 ifjij>jjiandjij>j«j

TEo o+ > jaiand] > (5.20)
0 otherwise

where+ and are chosen in order to store a positive value fdfxagoing from node to nodej .
Note that in formula (5.20)j; k are the local node humbers in the elemgnt

The sameNixes can be obtained through aJdient method, which will be useful to relate the
scheme to the RD classical schemes. This method consists in computingdroimtermediary

Wix, called [ and then thevhalWix . The main formula is [82]:

N =max(min(  i; j);0) (5.21)
Here theWixes betweenh andj are locaMixes sincé andj are the local node numbers, so that
we have 6 localixes for every element. Then we use the formula:

i - (5.22)

where+ and are chosen like in the previous case (a positive valu§ oheans that th&\ix is
going from i to j). We note that formula (5.22) and (5eXaftlygive the same values og .
Finally J is transformed into an assemblédl, j; , considering the contribution of the nearby
elements. Equation (5.13) can be rewritten with the Vieves:
n+l nmy X
S| (hl hl ) +

n ij t b=0 (5.23)

i
The %Jm ovey represents the sum over all the neighbquo$ pointi andb is the boundaryMx:
b = ihu nd . Note that in presence of sources we will hage in the RHS.
Equation (5.13) and Equation (5.23) are the same but recasterentiwvay. ThéVixes between
points of Equation (5.23) are directly used by the scheme called NERDS [81]. The NERD scheme
solves the continuity equation in a particular way which allows to get rid of the stability condi-
tion on the time step and to preserve the positivity of the water depths, as already explained in
Chapter 3. Indeed, in the hydrodynamic part, Equation (5.3) (or (5.149) slved regardless
of the positivity of depth. Then, a posteriori, the NERD scheme is used to give a set of positive
h"*1 andWixes j that exactly solve Equation (5.23). In case of wet cases, formulation (5.3) and
(5.23) are equivalent, however very smalledences arise in the valuestof'! and in the mass
balance, which is exact at the machine precision when the NERD scheme is employed. Probably
the diUerences are due to the linear solvers used for the solution of Equation (5.3). Thus, for mass
conservation reasons, once the SW system is solved, only the continuity equation is played again
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using the form (5.23), before solving the tracers equations. The proof of mass conservation is ob-
tained taking Equation (5.23) and summing over all the points of the domain, obtaining at discrete
level:
nkoin ry(oin
Sih™t  sh' =t b (5.24)
i=1 i=1
The equation states that the variation of mass in the domain can be generated only by the presence
of boundaryWixes (or possibly sources). Itis important to note that the intéixes j; eliminate

each other.

5.1.2 Explicit schemes for steady problems

We present in this section the discretization of the tracer equation suitalstedolyproblems.

Two diUerent explicit schemes are formulated: the N and the PSI scheme. Their numerical proper-
ties are introduced as well.

The tracer equation is discretized following the same steps used for the continuity equation.

For every degree of freeddarwe have:

z z
@ne it (hewyd=0 0 i N (5.25)
@t
An integration by parts gives:
Z z
h
@94 heu nd heu r id =0 (5.26)
@t
In accordance to the continuity equation, for the tracer equation (5.26) we choose to have:
z X
hcu r d = ij C,T (5.27)

i
wherec;j is a quantity to be déned, which represents the tracer carried by\tiges j; . Per-
forming a mass-lumping or) the discrete tracer equation reads as:

Si (h{Hl Cin+1t h|nC|n) N X

j Ci? + B Coound = 0 (5.28)

j
Coound iS the boundary concentration, carried by the boundany.
It is worth to notice that for the tracer equation, a boundary value is necessary at the inlet for any
kind of V@ws (torrential omMdvial), for the theory of characteristics. In order to have a correct mass
balance, ingoin§fixes are multiplied by the boundary value of tracer, while outg@ings are
multiplied by the values on the boundaries given by the scheme:

B Chound = MIN( b5 0)Chound + Max( by; O)Cin (5.29)
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The intermediate value of concentration i¥ded choosing an upwind value, that is:

(
¢ if O
= G "o (5.30)
Cjn if ij <0

Hence, Equation (5.28) can be rewritten as:

(hf™ ™ hig) X

Si
t

max( i ;0)c' + min( i ;O)qn +min( by; 0)cphoung+max(h; 0)c' =0
j
(5.32)
Before the next step, we note that this scheme is conservative since, summing over all the nodes of
the domain we have:
rRoin rRoin
Si hin+l Cin+1 Si hrcin = t b Coound (5.32)
i=1 i=1

Then we plug the discrete continuity equation (5.23) into the tracer equation (5.31) tohplace
with h"*1 we get:
0 1

min( {;0)(c! ¢) min(b;0)(Coouna A (5.33)

Sih:‘]+l ]

j

Let us suppose thaf'*! is positive for the moment. Note that¥ad Equation (5.33) we also use

the fact that [! = max( [¥;0)+ min( [';0). We add the superscript to theWixes j (which

are computed as we have explained in the previous section) since, as we will see hereafter, this
scheme corresponds to the N scheme. Equation (5.33) can be rewritten with a residual distribution
formalism as:

0 1

t X X .
W@ N g+ min(b;0)(Coouna  G)A (5.34)
i T3ij=1

n+1

G

=Cin

=]

where  represents the sum over all the triangles which contains the inadej represents in
T3i

this case the local neighbours on a triangle. Alternatively, Equation (5.34) can be rewritten as:

) |
S=d — " N T4 minh;0)(Goowa ) (5.35)
i T3i

N= L (5.36)
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T is the residual, which represents the total malssto distribute to the nodes within an element.
It stems from the passage between the conservative tracer equation and the non conservative form:
it corresponds to the derence between the divergence term integrated by parts (5.27) and the
divergence term of the continuity equation, integrated by parts and multiplied bydeed it is:

T — z n n — X% T X% T An
= h(C G )Ur i dT = i C{; i G
T i=1 j=1 i=1 j=1
PSP X3 X
= max( {;0)c! +min( {;0)d" max( ;0)+min( {;0) ¢
i=1j=1 i=1 j=1
X% ; T. n n xR N ¢-n
= min( ;00 q)= i@ qg)
i=1 j=1 i=1 j=1
(5.37)
and N is the contribution received by nodef elemenfT :
N X N ¢An N T/an
i = i (G q\) = (c")
= {(d" <)
where, according to the classical notations of the RD methods, we have:
T =max(0; ;) ; =min(0; i) (5.39)
and =)
g
Gn = P (5.40)

21
The scheme (5.35) is conservative, however now we deal with the non conservative form and thus
the sum over all the nodes of the domain will give:

0 1
X in
sh*t "t = t@ T+ min(b;0)(Goouna A (5.41)
i=1 T2Th i=1

in

In order toVnd the mass balance (5.32) it is necessary to use again the discrete continuity equation
yet the Equation (5.41) is useful to directly check the mass conservation when solving a hon con-
servative form of the tracer equation.

For second order accurate schemes, the distributiobobeets must be bounded with respect to

the solution and the data of the problem, in order to guarantee {tatO(h3) [54]. It should be
remarked that the N scheme (5.35) is it order accurate as shown by the fact that tleare

in general unbounded.
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Formula (5.21) guarantees the Local Extremum Diminishing property (see [54, 119]) for the semi-
discrete scheme:

o S G (5.42)

T3ij=1
Indeed, it leads to positive or null values {?f Another fundamental relation which will be often
used in this work is:

; N n X X3 N /AN n X N T
min( ,;0)(d"  ¢') = i (G G)= i (5.43)
j T3ij=1 T3i

From Equation (5.33), the time step condition necessary to guarantee the monotonicity can be
computed. We use the theory of positive Xoients schemes recalled also in Chapter 4: the
coeX cients oft; andg; must be in the rang®; 1] and their sum must be equaltoThis also means
to have aconvexsum of the neighbouring values. Hence, in Equation (5.33) only tKeieog of
¢ could create a problem. Imposing the positivity of this<aoent we obtain:

¢ . hin+1 S

~;min( N\;0) min(b;0) (5-44)

The value$** (orh! if the criterion depends o) are then substituted with®" (or hs@t ) jf
we are iterating within an hydrodynamic time step. Indeed, the discrete continuity equation (5.23)
is satided at any intermediate time level, provided that the water depths at the intermediate level
are linearly interpolated betwedt and hin+1 . If nsubis the number of sub-iterations within the
hydrodynamic time step tcas andisub is the i-th iteration, we will have:

0 1
Cteas 1 gX

h_end = hstart N
! ! nsub S j I

+ hA (5.45)

(nsub isub) h! + isub h!"**
nsub

hend = (5.46)

We consider now again the equation (5.35) and we observe that if we do not change the total
residual T over an element, thelglees can be moded without spoiling the mass conserva-
tion. Indeed the relation | = i T = Tis always fullled at element level and thus

i2T i2T
Equation (5.41) holds true foltudirent kinds of distribution coecients. We choose to use the PSI
distribution, for which the scheme reads as follows:

!

t X .
It = PSU T + min(b; 0)(coound ) (5.47)
Sih; T3i

The distribution co¥ cients of the PSI schemé,S' , have the fundamental property to be bounded
between 0 and 1, and of providing discretizationXadents of the same sign as those of the N
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scheme. Indeed they are computed using [54, 121]:

o; N
psi - pMaX(O 1) _ n. opsi 50 (5.48)

' max(0; N)
j2T
where ; is a constant. This limiter allows to increase the accuracy and to keep the positivity of the
coeX cients of the scheme, indeed it leads to a second order scheme in space (see [54]). The scheme
can also be written with the assembidikes:
0 1

X
@ min( {°5;0(d ) min(b;0)(chouna GNA  (5.49)
j

gt =

+

where the £'3! come from the limitation of the[! at elementary level.

The results obtained on the unsteady tracer advection benchmark presented in Chapter 4, Section
4.1.1 are shown in Figure 5.2. As we can see there is only a sligterdie between these two
schemes which are onWrst order accurate in time dependent problems. Indeed, thMeprare
smeared with respect to the exact solution. However, this is a well known behaviour for these RD
schemes and we will see how to improve these poor results on the next section.

Figure 5.2: Unsteady tracer advection benchmark: results at seetiorb m for the N and PSI
scheme.

Sources are added in the scheme as boundary terms in the conservative formulation (5.31):

SCQ Csce = Max( scq; 0)Csce + Min( scq; 0)Csce (5.50)
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Then plugging the continuity equation into the conservative formulation, the N scheme becomes:

t X
Ol =y ST min( )';0)(d )
tI | ¢ (5.51)
Wmin(h;O)(Cbound ')+ Wmax(scq;o)(cSce )

To formulate the PSI scheme with source terms it ¥cgnt to replace ' with [S'. Hence,

sources are also included in the time step condition:

¢ o hin+l S

~ymin( };0)  min(h;0) + max(sca;0) (5.52)

5.2 Distribution schemes for time dependent problems

Following the ideas of the RD theory, the schemes presented in the previous section are extended to
the unsteady cases. Among the various forms suitable for the time dependent problems presented
in Chapter 3, the semi-implicit formulation and then the predictor-corrector schemes are studied
in this work.

The semi-implicit formulation represents tHest attempt to overcome the accuracy limitations of

the N and the PSI schemes. Actually, a simple semi-implicitness is not enough to have second order
scheme in time, if not associated with the upwind of the derivative in time [54]. However, such a
formulation results interesting for tackling wetting and drying problems.

A Vst order form of the predictor-corrector scheme is introduced, beforentidesecond order

form. Both schemes are based on the ideas of Ricchiuto and Abgrall [117]. Adapting these schemes
to the tracer equation in the shallow water context represents a novelty in the literature.

5.2.1 Semi-implicit formulation

We present in this section a semi-implicit formulation of the N scheme which will be useful for the
wetting and drying problems. In addition, it represents algishattempt to face unsteady cases.
We start by changing the time integration scheme for the semi-discrete conservative equation

(sce= 0 for the moment):

h X
@@? = C|T i BiChound (5.53)

i

where the values; have still to be déned.
The fully discrete version is obtained introducing an intermediate value of concentration:

At =@ )"+ ™ 2](0:1] (5.54)
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gt

_ P
andadding t ;g

j and tbic'"" on both sides:
0 1 0 1
n+l \n+1 n X n+ n+ A X n+ n A
Si hi G Sih; C,n + t@ ¢ i hCi =+ t@ (c Gj ) i

J , (5.55)
+ tbi Cin+ Chound
Developing the termg'*  of the LHS we obtain:
0 1
n+1 n X n+ n A +
Fc G =+ t@ (¢ ) A+ th(d Chound ) (5.56)
i
N+l P P
whereF = Sh/"" + t p it b andG = Shi' (1 )t poi b
Using the continuity equation:
0 1
n — ph+l t X A
hi' = hi™= + §@ i +h (5.57)
| .
j
and the d¥hition of h*
0 1
n n+ t X A
M=nh" o+ @ +n (5.58)

which is also:
h'™ =@  )hM+ h]*

we obtain the tracer equation in the form:
0 1
X
shi™t ™ sh™ =+ t@ (¢ ) j+b(c  Couna)A (559
j

We do a semi-implicit upwind; is equal tac't if j IS positive andtj is equal tocjn+ if
is negative. Then we also consider that for positive boundary terms, which are the oMtigang
we will have a value of,oung €qual toc"* . Indeed, for outgoinguxes there is nothing special to
do, since the information is provided in the interior by the numerical scheme. On the contrary, the
ingoingWixes will be multiplied by the prescribed valyg,ng. So wevnd:

0 1
X

shtt Mt =+ 1@ ¢ " min( ;0) min(b;0) Goouna ¢ A
i

(5.60)
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Developing again the terne8" we obtain:

X
Sihin+1 (Cin+l CI!’l): t min( i ;0) Cjn+1 Cn+1
j X
(@ ) min( ;0 ¢ d (5.61)
i
t min(b;0) Coound Cin+1 +(1 )c!

These operations generate a linear system. Using the notation introduced in section 5.1.2, in par-
ticular Equation (5.43), the scheme can also be recast as a so called space-time N scheme (proposed
in [6] for the scalar and the Euler equations), which reads as follows:

X
N=o0 82T (5.62)

T3i

where the valueg'*! are the solution of the system and:

n+1 n
Ve ST ST T ) ey N (563

P

with St the area of triangld (we remember that S;y=3 = S;). Note that boundary terms are
T3i

neglected here for simplicity.

We insist on the new notation:; represents the splitting residual where the derivative in time is
included, while  represents the splitting residual of the spatiates.

The equation above, which for= 0:5 corresponds to the N scheme (5.35) with the trapezium
scheme in time, is thérst step to achieve second order scheme in time for unsteady problems. The
importance of this scheme lies in the fact that it is a positivity preserving scheme (choosing the ap-
propriate time condition) and on this basis, a space-time limited scheme with boundeibcte

can be obtained.

As for the steady case, wénd for every triangle a residual, which in this case will be called
space-time residuaince it includes also the derivative in time:

X X n+1 n
T=T =TT S Ghq ) T@)r @) 664
i2T i2T

Again we stress the derence betweenT and T, respectively the space-time residual and the
space residual.
The formulation of the N splitting residual with the assembled sp@tiaés is (boundaries are
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omitted here):

: N+l en X
{“vassz%h{”l TSe@ ) min Mo @
X j (5.65)
+ min N 0 C!'1+1 C_n+1

. ij o ] i
i
Note that in the last formula we already have consideredtixes contribution given by all trian-
gles around the point except for th&fst term in the RHS. Putting the implicit terms of equation
(5.61) in the left hand side and the explicit terms in the right hand side, we obtain a linear system
of the form:
AC"l = BC"+ D (5.66)

whereC"*1 is the vector of the unknowns at tif&"1 andC" is the vector of the known variables
at timet". The matrices are respectively:

0 1
X
Aj =sh™t + 1@ min( j;0) min(b;0)A (5.67a)
j
Ai = i it 0 5.67b
i tmin( j,0) 0 L ( )
X
Bi =Sih*? @ ) t@ min( ij;0) min(k;0)A (5.67c)
j
Bj = (1 ) tmin( j;0) (5.67d)
D; = tmin(ky; 0)Chound (5.67¢)

As we know, this form of semi-implicit N schem#&fist order accurate in a time dependent problem
(see[119]). Indeed, even if the space-time N contributions are introduced to overcome the accuracy
limitations, they do not allow to overcome the Godunov's theorem. Therefore, in order to increase
the accuracy, a non linear scheme is necessary to combine the non-oscillatory character of the
discrete solution and higher accuracy even in time-dependent problems [122],[118].
This means that we have to use the so-called PSI limiter:

PSI = pmax(©@ ) (5.68)

max(0; N
i2T

where N are the distribution coécient of the semi-implicit N scheme:

N
N — i

N=_L (5.69)

The uniformly bounded PSI distribution ¢o@ents are sXicient to guarantee the formal satisfac-
tion of aO(h?) error bound (see [54],[118],[122]) even in case of unsteady problems. This ensures
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a consistent spatial accuracy, which is combined to a second order time accuracy. We recall that
the space-time residual is:

X X s Al @
= M= T e ) N+ M@ B70)
i2T i2T
and the space-time PSI scheme is:
PSl=0 8i2Tj (5.71)

T3i

where the values af*l are the solution of the fully non linear system and:
PSI = PSI T (5.72)

Itis clear that for time dependent problems, the PSI limiter introduces a non-linearity in the scheme
which requests a non linear solver like the Newton Raphson method to solve Equation (5.71) . The
high computational cost, the stability and the convergence issues related to the Newton-Raphson
method make this option unsuitable. This is why we prefer to turn to an explicit two time steps
scheme.

5.2.2 First order predictor-corrector formulation

The upwinding of the derivative in time or the proliferation of mass-matrix to get consistent for-
mulation allowing to recover second order of accuracy in space and in time, has been pointed out
in the last decades from the teams working on RDS [38, 52, 117, 118]. The lack of constraints on
the construction of these matrices allows maryedent formulations [117]; at least four of them

are listed and recalled in [117]. For all the formulations, the formation of the mass matrices for the
time derivatives implies their inversion to seek solutions at timel. To avoid this additional

cost, a class of genuinely explicit scheme based on Runge-Kutta time integration, with high order
mass lumping, has been proposed in [117].

Our Vrst attempt to construct second order accurate schemes is inspired by ideas presented in this
paper. For the sake of clarity, we recall that for a scalar advection equation:

@+u rc=0 (5.73)

the Runge-Kutta 2 (RK2) with a Globally Lumped explicit formulation is [117, 121]:

8
¢ c P
G 4 -
5 J5i) n rizT i (C") 674
20 G - P oo |

|
t Tii2T
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where X o
(o} : 1
iRK 22) _ mT 14 > ( (c)+ (c) (5.75)

1) t
j2T

TheVrst step consists of a classical explicit RD scheme, which can be the N, the PSI or any other
classical RD scheme. The upwind on the derivative in time appears in the corrector step, combined
to a semi-implicit scheme (withalready set to 1/2) on the space residya).

The main ingredients to end up with this formulation are [117]:

recast the RD discretization as a stabilized Galerkin scheme;
use a shifted time discretization in the stabilization operator;

apply high order mass lumping on the Galerkin component of the discretization.

In our case, since the RD formulation is employed to solve the non conservative discrete equation
which makes use of the discrete continuity equation (5.35), the equations (5.74) and (5.75) have to
be modi/ed. In addition, we remember that several formulations are possible for (5.75) and in our
Vrst attempt we end up with a veryldérent form of (5.75).

To recover a similar scheme for the tracer equation, we look for a predictor-corrector scheme of
this type:

8 ¢ c P .
3 Sihinﬂit' = iPSI T min(k; 0)(Coound )
T3i
C-n+l y P . (576)
.B S hin+l % = . iPSI T min(k; 0)(Chound Cln)
|
where:
| |
X X S '
PSI T _ Psl N - PsI ghin+lqtqn+ PSI () (5.77)
i2T i2T

Note that when summing over2 T, PS' (c)= N ().
As we can see the latter id#irent from (5.75), since in particular the predictiois only used to
estimate the derivative in time while in (5.75) it also necessary to estimate a semi-implicit residual.
In particular we would have:

T _ X N = X %hirwl G tCin + % PSI (¢+ PS (c) (5.78)

i2T i2T

The problem is that using the space-time residual (5.78) in Equation (5.76) will spoil the mass
conservation, which is related to the tehfi! that multiplies the mass matrix and the derivative
in time.
To prove the mass conservation of the two steps scheme (5.76), we want that the sum of both steps
summed over all points gives the right conservation (i.e. like in the explicit schemes for steady
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cases). Doing this operation with our scheme (5.76\nae

ngoin On+1 o X nRoin
S - -o= T(c" min(B; 0) (Goound ') (5.79)

i=1 all T i=1
which corresponds exactly to the classical explicit PSI (or N) scheme, which are mass conservative.
The drawback of this scheme is that it is not second order in space and in time and thus a priori it
will give unsatisfactory results.
In the meantime, the limitation operated by the PSI limiter on the derivative in time has a real
elect on the numerical dusion in unsteady cases. For this reason we have chosen to take into
consideration this variant of the classical second order predictor-corrector scheme in case of un-
steady problems. Numerical tests (see also [111]) prove that the amplitude error is lower than the
one obtained with the classicdist order explicit schemes, but the form of the solution is quite
deformed due to the fact that the scheme is basedFoh T(c") which is not balanced with

PSI T(c).

Results in Chapter 7 will show th& eiency of this scheme in spite of the low rate of convergence.
We give here afrst example of results for the unsteady tracer advection benchmark case 4.1.1.
Figure 5.3 compares the new predictor-corrector scheme to the N and the PSI scheme. As we can
see, the numerical diision is largely reduced by the new scheme. This improvement proves the
eX ciency of thevrst order predictor-corrector scheme.

Figure 5.3: Unsteady tracer advection benchmark: results at seetiorb m for the N, the PSI
and the Predictor-Correctdfst order scheme.
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TheVhal scheme containing sources is:

; P
% shr G 9 CPST i) <)
o) o
Cn+l | +nF1)ax(scq )(C c') (5.80)
% S,hn+l tCI = . iPSI T min(b: 0)(Coound ")
|

+max(scq;0)(c° )

5.2.3 Second order predictor-corrector scheme

We show here how to apply the second order predictor-corrector scheme to the pollutant transport
equation in shallow¥ws. Three main steps are necessary:

1. choose the explicit second order scheme in space (5.47) as predictor to approximate the value
of ¢ (or possibly théfst order scheme (5.35));

2. construct two possib\&st order in time mass-conservative corrector schemes: one with the

upwind ofh/"*t &7 °i , which corresponds to (5.77) and one with the upwn‘mf(gp

3. average the two variants in order to obtain a second order in time corrector step.

As before, choosing an explicit second order scheme in spdoe ¢o means solving:

pn+1 G q_ X s - n
S ——— = i min(k; 0)(Coouna  Gi') (5.81)
T3i
which corresponds to the PSI scheme.
For the corrector step, we construct nowrst order scheme in time but performing the upwind of
the derivative in time on the terin! ** gt
reads as follows:
i g X b1
Sih! s | (5.82)
T3i

and neglecting the boundary terms. The corrector thus

where the T is the new space-time residual, constructed in order to be conservative, thus with
the factorh"*! on the time derivative:

X S . !
T _ ?Thi’”lc' tCP + PSUT(E) (5.83)
i2T
and s N
iN: ?Thinﬂ G tC| + iPSI T(Cn) (5.84)

If we try now to construct a corrector step which includes\res ofc , considering expression
(5.41) we wilvnd that the only possibility in order to guarantee the conservation of the mass is to
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change the residual in:

T:X Sihn
3 |

) n
CI tCI + iPSI T(C) (585)

i2T

The average of these two possible schemes, will always give a conservative scheme which consists
in taking:

X : ! 3 !
T - Sih:'lcl C:q +(l )Sihp+l C| C:q + iPSI T(Cn)+(1 ) iPSI T(C)
o7 3 t 3 t
(5.86)
which is equivalent to:
T X St G C PSI T/.n PSI T
= =N ot e+ )| (c) (5.87)
i2T
and with:
N_ Stopan G ¢ PSI T PSI T
i = ?hi " cH+@ ) (c) (5.88)

Note that expression (5.88) is exactly the same as (5.70) owtsgkaown and it replaces'** .
The complete scheme includes also the boundary terms, so the corrector step becomes:

n+1 c X

Sihin+1 Clitl = iPSI T b (Coouna (1 )yaoci) (5.89)

TheVnal scheme reads as follows:

8 - =
EShUE = T ST min(h;0) (G )
T3i
. g+l ) P _
-B Sihinl% - Tai iIDSI T(c";c) min(h;0)(coouna (1 )" c;)
[

(5.90)
with T computed with Equation (5.37)" as in Equation (5.87), anfiS' computed using (5.68)
and (5.36) in combination with (5.38) in the predictor step, while (5.68) and (5.69) in combina-
tion with (5.88) in the corrector step. This scheme will be called second order predictor-corrector
scheme.
The second order discretization of the space time residual, together with the limitation given by the
PSI limiter, allows to improve the convergence of the scheme with respecitsttbeder scheme
(5.76). However, for a given mesh, tHdedénce between the two schemes can be negligible, as we
can see in Figure 5.4 where the RD schemes presented until now are compared. Results show that
both the predictor-corrector schemes improve the precision, thus the numerical results are closer to
the exact solution and a largeUgrence exists between the N or the PSI scheme and the predictor-
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corrector schemes.

Figure 5.4: Unsteady tracer advection benchmark: results at seetiorb m for the N, the PSI,
the Predictor-Correctdrrst order scheme (PC1) and the Predictor-Corrector second order scheme
(PC2).

In presence of sources terms the scheme reads as follows:

n P
%S.h{‘*lc o= P T min(h;O)coums )
I
+max(sca;0)(Csce Cf')
ne1 G 1 I P psi 1. in(b: n
g Sih! s (c;c) min(h;0)(Coounda (L ) ;)
I

+max(scq;0)(csce (1 )"  c;)
(5.91)

5.3 Monotonicity

In this section we present the monotonicity analysis for the three distribution schemes presented
in 5.2. We remember that it is common to use the theory of positivity ceats schemes [54, 134]

to guarantee a monotone solution, i.e. a solution limited between the local maximum and the

minimum values. The objective is thus to respect the maximum principle. Enforcing the positivity

implies a condition on the temporal step which is usually id&atias the so called CFL condition.

We will see that in some cases this theory is natadant since the positivity of the cleients

cannot be strictly guaranteed whatever the time-step. We thus enforce the monotonicity in a dif-

ferent way, in order to circumvent this theorem.

5.3.1 Semi-implicit formulation

The semi-implicit formulation leads to a linear system to solve, thus we wafdttprove that the
system (5.66) is solvable and that the monotonicity is guaranteed.
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The system is solvable becauseAhmatrix is non singular and it is a L-matrix, i&; > 08i and
Aj < Oforj 6 i. We consider thus at (5.67a) and (5.67b) and'steshow thatA is a L-matrix.
This is easy to prove singg is the sum of positive terms whifg; is negative thanks to the term
min( jj ;0).
Then to prove that the matrix is not singular we can show that A has a positive dominant diagonal.
Indeed: X
JAii ] JAjj>0
jsi
since:
0 1

X X
st o+ 1@ min( ;0) min(h;0)A tmin( j;0)> 0
i j
The monotonicity is ensuredBf is a matrix with positive elements. A CFL condition can be found
to ensure the positivity d8;; :

. 1 5 Sihp**

(L ) jmin( j;0)+min(h;0)

(5.92)

Then we can state that the scheme is monotone under this CFL condition. We note that this
condition is slightly better than the one found in [6, 54] for the scalar case, which is with our

notation: 1 s 1
. T D
bRy .99

j2T
wherec; are the positive coécients which correspond to[j\‘ in our case. Indeed the authors
say in [6] that this condition is certainly not optimal and computations with CFL greater than one
have shown that monotonicity is preserved. In order to show that our condition is larger than the
latter, we omit the depth and the boundaries in our formula, theivxve = 0:5 and we consider

a regular mesh (all the triangles have the same area). Condition (5.93) becomes:

.2 _St
Zp— )
b Tr;nl'lgi?) I’J\‘ (5.94)
j2T
and our condition (5.92) becomes:
P P
Sr=3 ) St
te 2PTP g = SRR (5.95)
T3ij21 T3ij21

In the worst situation we will have two positixixes for every triangle (the celis emptying),
thus t, = t1 and in the best situation we will have only one positWees in one triangle,
thus t, = n t; wheren is the number of triangles around the point Thus if we have for
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example 7 triangles around the painbur time step can be 7 times larger theny. In addition if
we consider an unstructured mesh with irregular triangles, the fz%mTtg_rST in t1 will be very
) |

. . P . .
restrictive with respectto Sy = S3V¢'%9¢ > min Srin to.
T3i ol

5.3.2 First order predictor-corrector scheme

In case of &frst order predictor-corrector scheme, the solution is approximated by a two time step
explicit scheme and the theory of positivity azents can be easily used.

A Vst approach consists in taking advantage of the known stability condition for the predictor
step which is given by equation (5.44) and only study the stability of the corrector step. Once
established the time step condition on the corrector, the minimum time-step between the predictor
and the corrector will be chosensal condition.

We rewrite the corrector step as:

n+1

n+1 G G X PSlN T - n
Si hi 71: = N i mln(h ; O)(Cbound Cl ) (596)
T3i i
X T C ch _
= i ghjn+1 % + iPSI (c") min(k ; 0)(Chound C|n)
T3i
0 L (5.97)
X T : ! X
= i @ghjm'l (ﬂt(\qn + iIJ?SI (c! Cjn)A min(k; 0)(Coound  C")
T3i j
(5.98)

We make explicit the cofcients of every variable:

X S X X
Sihin+1 C!‘]+l — (1 i)?hin+l Ci + t i PSI A

i 1
ESi T3i j

0 1 3

4X ST n+1 X PSIA ; 5 '
+ i @?hi t : +min( b;0)° d t min(1y; 0)Coound
T3i j

And we arrive at the restrictive condition:
. Sr=3h"*t
t =min P il !

T3 }J?S' min(k; 0)
i

(5.99)

Note that the boundary term has been included in the denominator for security reasons. This con-
dition is surely too restrictive and indeed we &4 a larger condition using aldérent method.
The second approach takes into consideration in the analysis also the predictor step, in order to
eliminate the dependence onand uses the assembMiikes j; to replace the elementayixes
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R .
j - Using the notations of section 5.1.2, especialfy ™ = ) min( i'j\"e';O)(q G ), we write:
J:
0 1
X S S .
Shi™ g™ g o=t i@%hi”“ o tCP + o min( 30 A
T3i j=1

t min(b;0) (Coouna ')

Note that for security reasons we takl since they are larger tharf’>'. The demonstration
works also for 5’5' . Then we set:

X _ST

¢ a
'3

et G = gt th" (5.100)
T3i

P
wheref; represents the PSI reduction on the derivative in times §1. i%T andf; 2 [0; 1].
T3i

This simplvcation is possible since thdddrencec  ¢" has the same sign on all the elements

around node. Then we set:

0 1
X x3 Neel X
t i @ min( i o)(g dHA =t j (min( ;0)(d" o) (5.101)
T3i j=1 j
where jj 2 [0; 1] takes into account the limitation applied on the two nearby elements which
share the edge .

We do the same simpftation on the other terms and we obtain:

X
siht*td™ =gh™tg  fish™ (¢ ) t i ¢ ¢ min( [';0)
j (5.102)

tmin(b;0) (Coound ')

which, considering tha‘i—tcn is the result of the predictor step, becomes:
2 3

X
Sh*t et =sh™te £ t4  min( };0)(d" ) min(b;0)(Coouna  ')O
j
X
t ij Cjn Cin min( i,j\l;o) t min(h; 0) (Coound Cin)
j

(5.103)
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Even in this case we have used th¥#xes at the predictor step but it is just for security reasons.
We now sum the predictor and the corrector step and we obtain:

X
shi*te*t =shf* '+t (1 fi+ )min( {50(d o)
] (5.104)
+ t(fi  2)min(b;0)(Coouna Q')

Studying the caécients of all values af, we see that they are all positive except the one§ of
which could create a problem:

X
Shi*t+ t @ fi+ j)min( };0+ t@2 fi)min(b;0)>0 (5.105)
j

We note that the coécient(1 f; + j)and2 f; are positive and not larger than 2. We thus

arrive at the criterion:

t< # (5.106)

P . N .
2 min( } ;0) +min( I; 0)
j
We note that this condition is less restrictive than (5.99), like in the case of a semi-implicit scheme.
The criterion can also be written in functiontdf, using the continuity equation:

Sih!
max( §;0) min( [¥;0)+max(h;0) min(h;0)
j

t< P (5.107)

Provided the time step (5.106), we ¥ad that the predicted values naturally respects:

n 4 cmin n 4 gmax
% G C'T (5.108)

wherec™™ = min (¢';c') andc™ = max; (¢'; ¢'). This condition will be useful later.

If sources are present, then the time step condition (5.106) becomes:

Shf*t

t< # (5.109)

2 P min( }¥;0)+min(h;0) max(sca;0)
]
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5.3.3 Second order predictor-corrector scheme

We use again the same approach to study the monotonicity of the second order scheme. We start
rewriting the corrector in the following way:

0 1
X - X3 .
Shi™ g™ g o=t i@%h{‘” ST e@ )7 min( oG A
0 T3i 1 j=1
X X . N;el A n
t @ min( {°0(g  ©) thi (Goounda (@ )" ¢;) (5.110)
T3i j=1
We set: X s N o
;S G tq' = fishrt 49 = (5.111)

T3i
. o P
wheref; represents the PSI reduction on the derivative in time: §1. iSTT andf; 2 [0; 1].
T3i
This simplVcation is possible since thdddirencec  ¢" has the same sign on all the elements

around node. Then we set:

0 1
X x ; N;el n mA X ; N n n
1 )t i@ min( 5o gHA= 1 )t j (min( ;0)(¢ o)
T3i j=1 j
(5.112)
where j 2 [0; 1] takes into account the limitation applied on the two nearby elements which
share the edgeé .
We do the same simptiation on the other terms and we obtain:
X
Sih* "t =gh™¢  fiShM™ (g ) t i G G min( [';0)
X
a )t i ¢ o min( {\;0) (5.113)
j
tmin(k;0) (Coouna (1 ) Cin Ci)

Looking at coX cients ofc in equation (5.113), we see that onlyXoients ofc; andc may be
negative. Indeed these ¢oaents are, respectively:

P
shi*t  fish!™ + t ; jmin( };00+ tmin(b;0)= a

fShT +@ )t ymin( N0)+@ ) tmin(h;0)= &
i il i ij )

We see that the two conditions are not compatible and nothing guarantesmﬁﬂt fiS; hin+1
is positive. So, we conclude that we carviud a time step condition for the corrector step which
ensures the positivity of the two cdeients at the same time.
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However, if we consider that is issued by the predictor step with a time step given by (5.44), we
can say that the sum of the ceients ofc!' andc; is certainly positive, as we have:

0 1
X
a+a"=sh"+ t@  min( };0)+min(b;0)A (5.114)
j
Taking j =1, which is the worst case, it becomes:
0 1
X
a +a'= Sihin+l + t@ min( {J\I,O) +min( h’O)A (5.115)

J

We know thatc andc” are included in the rangee™"; ¢™], with ¢™ = min (g ;c) and
i

" = max (¢ ;c), thus we write:
j

c = Cmin + cmax min
i

=]
|

C| - len + Cmax len

with and inthe range [0,1] and we want ¥nd the solutions under which:

ac +a'd =(a +a")erae (5.116)
with: ¢2Ver89¢ = ¢min 4 gmax  cmin and in the range [0,1]. The idea is that the Xaéent
of ¢®®"@9€ is the sum of; andc! coex cients, so that we are sure that the sum of alXogients
giving c'** remains 1. 1£7*"9 is included in the rangie™" ; c@] then the monotonicity of

c"*1 can be demonstrated.

From (5.116) we get:
a + an
T a +an
We must thus ensure that:

0 a +a" a+a"

will be positive if:a + a" Oanditwil belessthadif: a + a" a + a", ie.if
@ )a+(@1 ya" 0. So we have tdhd a condition ort; , i.e. on depending on and
then we shall have the same conditionfor ) depending orfl ). Only the positivity of
is then to be studied. We are sure thatill be positive if:
0 1

X

S ihM™t +( YEish™ +[ + @ )@t min( Y;00+ tmin(b;0A 0
j
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We now assume that the time step is chosen with the condition:

1 SihM

t 5—Pp
2 jmn  N;0  min(h;0)

This is the classical condition for the N scheme, divided, lwhich also corresponds to (5.106).
The positivity will be thus ensured if:

Sih*t
S Mt +( )fisiht*t [ + @ )]IT'
If the worst case happens whign= 0 and we must have:
r
2
If the worst case happens whign= 1 and we must have:
n+1 Si hin+1 n+1
Sih [ + (1 )]T"'( ) Sih;
We can use the property:
h-n+1 1 h!‘]+1 h-n+1 1+ _
| | |

2

and we get a stronger condition if we repl&fé* by hM**! 1+

Nl

[+ @ lp*( ) 1+

2
which is:
a+2)
2
and we arrive at:
1 1
1 — 1+ —
2
The condition for 1 will give in the same way:
1 1
1 1 — 1 1 1+ —
@ )15 @ ) 1+
or: 1 1
1+ 1) 1+ — 1+ 1) 1 ——
(1 145 ( 15

We arrive thus at two conditions:



5.4 ITERATIVE PREDICTOR-CORRECTOR SCHEMES 105

8 1 1
< 1 A 1+ 4+

2 2 (5.117)
1+( 1) 1+ 4+ 1+( 1) 1 5=

We translate now conditions (5.117) into limitationanTo simplify the problem, we restrict to

the case = 1=2. It gives: 8
2 _ 2
° (1
>
-2 1 1+
3
Which for symmetry reason we rather combine in the form:
8
<2 1 2
2
— — 4+ —
3 3 3
This is equivalent to: 8
< 20 ™ ¢ o2dh M
ocmin @0 ogmax @ (5.118)
(i C +
3 3 ! 3 3

This limitation will be performed after the predictor step in order to ensure the monotonicity of the
Vhal valuec"*! . To sum up we can conclude that:
Given a time step t such that:

1 SihMt

t Z—p (5.119)

2 jmn  N;0  min(;0)

and choosing = 1=2 for the corrector step, the approximate discrete soluﬁéh respects the
maximum principle, under the following conditions gn

8 .
<2 ™ ¢ 2 ™
ocmin - @n ogmax @ (5.120)
I C +
3 3 ! 3 3

wherec™ = max; (c'; ') andc™" = min (c;c"). Again the criterion (5.119) can be adapted

to the source terms in the following way:

pn+l
¢ 1 = Sih (5.121)

2 ;min  N:;0  min(h;0)+max(sce;0)

5.4 lIterative predictor-corrector schemes

Both theVrst order and the second order predictor-corrector schemes can take advantage of a
further improvement: an iterative procedure can be applied on the corrector step.
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The idea consists in using once the basic predictor - corrector scheme and then correcting the value
of the corrector, replaying the corrector step for a certain number of time.

For theVrst order predictor-corrector scheme it is necessary to consider the condition (5.108) which
ensures the monotonicity of*1 . This condition which is already naturally sa&sl byc , will be

enforced on the initial values provided by Wist corrector step. At every iteration we can choose

as new prediction:

] al + Cmin n 4 cmax
& =min max ¢ 17 5 ;C'n 5

(5.122)

wherek is thek th iteration ando:‘ s the value computed by the corrector step at iteration
k 1. The equation to solve iteratively is:

ot o _ X

sy P T(E¢) b (@ons ) (5.123)

T3i

As the iterationk increasesg¥*! tends toc"*!. Up to now, the number of iterations is arbitrary

and in test cases we will show that after a low number of iterations the scheme converges.

We show in Figure 5.5 the results for the unsteady tracer advection benchmark 4.1.1 with the
Vst order iterative predictor-corrector scheme, using 5 supplementary corrections. The iterative
procedure increases the maximum value of the tracgronproving the global results, even if

we see that in some points of the solution some values are overestimated.

Figure 5.5: Unsteady tracer advection benchmark: results at sectiah:5 m for the N, the
PSI, the Predictor-Correctarst order scheme (PC1), the Predictor-Corrector second order scheme
(PC2) and the Predictor-Correcust order scheme using 5 iterations (PC1-5it).

To achieve the iterative procedure for the second order scheme, it is important to use the condition
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(7.45) in order to correct the solution at every step. The new prediction is chosen as:
¢ =max min ¢ L2d" MM od oM

2cmax  ¢h pcmin - en

= in ¢; + + = 124
c,k max min ¢, 3 3 3 5 )
wherecX is the value at iteratiok. Then we solve:
k+1 X
C !
Si h:‘|+l |tC|k - iPSl T (Cn : Ck) b Coound (1 ) Cin C=( (5125)

T3i

Even in this case the solution is improved after few iterations. The results for the unsteady tracer
advection benchmark 4.1.1 are shown in Figure 5.6. We see that in this case there is a better
agreement between numerical solution and theoretical solution, even if the maximum value of
tracer is smaller than the one obtained with the PC1-5it.

Figure 5.6: Unsteady tracer advection benchmark: results at sgctioh:5 m for the N, the

PSI, the Predictor-Correctarst order scheme (PC1), the Predictor-Corrector second order scheme
(PC2), the Predictor-Correctdrst order scheme using 5 iterations (PC1-5it) and the Predictor-
Corrector second order scheme using 5 iterations (PC2-5it).

Note that in the iterative procedure the source terms can be added as done in previous cases without
problems.

5.5 Coping with dry zones

To deal with dry zones a local semi-implicit formulation of the classical RDS is presented.
The problem of wet/dry interface is numerically challenging, as we have explained in Chapter 3.
The recurring problem when using schemes presented in the previous section, is that the time step
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is water depth dependent:
fh

g
f represents in general an area (of a cell or triangle)cargbresents the sum ofixes which
empties a cell, including boundaries and sources. In case of dry zones, we thus obtain a zero time

(5.126)

step as minimum value and the scheme will not work.

A common solution used to treat this problem is to make use of albudlae of the water depth,
below which the computation of the concentration (or velocities) is avoided and zero values are put
instead as solution. In particular this solution is also used for FV schemes presented in this work.
Here we would like to construct a scheme for dry zones which is completely water depth free, that
is a scheme with a time step computation independent on the value of the water depth. In this way
the scheme does not need a cutparameter, which can create instabilities. The general idea is to
avoid situations in which a division by a zero water depth arises.

The new idea used in this work, consists in exploiting the unconditional stability of the implicit
scheme to face the wet/dry interface and to keep the accuracy of the predictor-corrector explicit
schemes in the wet zones. The method is presented in two steps:

Formulation of docalsemi-implicit scheme fateadyproblems

Formulation of docalsemi-implicit predictor-corrector scheme torsteadyproblems (the
upwind of the derivative in time is included in the local semi-implicit formulation)

5.5.1 Local semi-implicit N scheme

We Wrst transform the global semi-implicit scheme presented in section 5.2.1 into a local semi-
implicit scheme, where the choice @t local, i.e. locally chosen for every point. To do this, special
attention is required on the upwind choice whevai@g ¢ . The derivation is done starting from

the conservative Equation (5.59), explicitfiy and with a local ;:

X
Sihin+1 ic|n+1 Sihin+1 icin -+ t (1 i)Cin + iCn+1 C,T i
j (5.127)

+ th (1 i)cin+ iCin+1 Cbound

Note that here we omit the superscript N gn but we consider that we deal withWixes. In order
to devhec; we choose;c™ +(1  j)q!'if j is positive (froni toj)and ;'™ +(1  j)c
if jj is negative. Accordingly we also consider that for ingoing boundary tarms0 we will
have icI”*l +(1 i)c'. Thus the scheme reads as follows:
X h i
ST A (Gl gt @ g gt @ )G min( ;0)
j
tmin(h;0) Coouna (il + (@1 D))
(5.128)
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And in presence of sources becomes:
X h i
Shi™ (d*t d)=  t T +@ g it @ ) min ;0)
i
tmin(b;0) Coound  ( iCin+l +(1 i)Cin)
+ tmax(sce;0) Cse (i +(1 )
(5.129)

Putting the implicit terms of (5.128) in the left-hand side and explicit terms in the right-hand side,
the equation can again be written in the form of a linear system:

AC"! = BC"+ D (5.130)
where the matrices are:
0 1
, X
Aj =ShM™ T+ 1@ min( j;0) min(k;0)A (5.131a)
j
Aj = tmin( j,0) 0 1 (5.131b)
X
Bi =SihM™ '+ @1 ) t@ min( ;0) min(h;0)A (5.131c)
j
Bj= (@ ) tmin( j,;0) (5.131d)
D; = t min(ly; 0)Cphound (5.131e)

5.5.1.1 Monotonicity analysis

As for the global semi-implicit scheme, the stability of the scheme is given by the positBijty of

We obtain a stability condition:
¢ 1 D Sih!
1 i max( ji;0)+max(h;0)
j

(5.132)

Sources do not add theoretical problems if well taken into account, thus the time step condition

becomes:
) 1 5 Sih!
1 i max( ji;0)+max(h;0) min(sca;0)
j

(5.133)
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Note that we have transformelexﬂ‘+1 " into h{! thanks to the continuity equation:
0 1

X
ShM™ i=gh" @1 ) t@  +hpA (5.134)
j

5.5.1.2 Choosing the local semi-implicitation
Formula (5.132) gives rise to an interesting question: which |ozah we choose?
The minimum acceptable time step for every point is obtained wher:

Sihf!
max( ji;0) + max(h;0)

tstan(i) = P (5.135)
j
and it can be increased by the implicitation.
The goal is to do the whole processnirsub-steps, wittn an arbitrary parameter. Indeed it is
necessary to get the same time step for all points.

We thus would like to have:

. t
1, tstan(i) = ncas (5.136)

where tcas represents the time-step chosen for hydrodynamics. Bounding tkeieaéto 0, we
Vnd:

=max 01 1 tsn() (5.137)

tcas

The latter tends to give Oiif is large enough or n‘% " tsan(i), except in the wet/dry front
where tgap(i) =0, s0 ; = 1. The scheme is thus stabilised on dry zones by a full implicitation.
In completely wet steady cases, folarge enough, the scheme falls into the classical N explicit
scheme.

Once the ; are computed, we can solve equation (5.128) enfording %

5.5.1.3 Local semi-implicit PSI scheme

We write now a variation of this scheme in order to fall into the PSI scheme in case of wet steady
state. To do this we consider Equation (5.128) and we take the term on the LHS:

X h i
t i@ g d™ @ g min( ;0) (5.138)

i
j
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which is rewritten it in the equivalent form:

X h [

t i@t o) (g™t M+ min( i;0) (5.139)
j

then we split it into two parts, withj; changed into 5’3' for the last term, since it does not spoil
the mass conservation:

X h i X
t i@t g (@t d) min( ;0 t o ( Ymin( §5';0) (5.140)
j j
This change involves a change in the matrix B, while the other matrices will not change. In partic-
ular we will have:

X X
Bi =Sih!™ ' (1 i) t( min(b;0)+ t min( £5;0) ; t  min( j;0)
j j
(5.141a)
Bj =  tmin( §';0)+ ; tmin( j;0) (5.141b)

Sincemin( {5';0)  min( j ;0) the monotonicity analysis can be done replacifi§' with

in the matrixB. ThenBj andBj; are equal t@; andBj; of (5.131) and the same monotonicity
condition can be used. The local parametés chosen again with formula (5.137) and the linear
system is solved choosing = %

We have now obtained a local semi-implicit scheme able to deal with dry zones and also able to
fall back into a classical PSI scheme in case of steady wet cases.

The new goal is to construct a scheme which is still capable to tackle dry zones but which is also
suitable for the unsteady cases. We thus would like to apply the local method to the predictor-
corrector scheme.

5.5.2 Local semi-implicit predictor-corrector scheme

To build a semi-implicit predictor-corrector scheme, we use the local semi-implicit scheme (5.128)
as predictor step, to giveMast approximation of:{‘*l denoted; .

Then we would like to construct a local corrector step where the derivative in time is upwinded
and limited thanks to the PSI limiter.

To do this thevrst step consists in writing a semi-implicit corrector, splitting the original derivative
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in time:
sh™ (@ )= sh't (@ )
X
t (jC:jn+1 iCin+1)+((1 j)Cjn (1 i)Cin) min( i ;O)
j
tmin(b;0) coouna (it +(@ )
(5.142)

The second steps consists in choosing the space-time residual over which applying the PSI limiter.
Since we want to avoid non-linearities, we choose to limit the derivative in time and the explicit
Wixes. Thus we end up with this kind of corrector:

X
Sh™ (™t )=t (7 i d™)min( ;0)
j

t PS' T tmin(b;0) couna (i@ D))
(5.143)

where the space-time residual is :

X X o XX
T - N ST h*t G Cln+ @ g @ HG min( ;0

i2T i2T i=1 j=1
(5.144)
TheVhal predictor-corrector scheme reads:
G ph i
%S.h”*l G = t g +@ Y i @ )G min( ;0)
i
tmin(b;0) (Coouna  (iG + (1 i)c')
n+l .|n+1 G _ P psi 1 P vl vy
g Sih! = | t(g™ gthymin( ;0)
t T2i i
tmin(b;0) Chouna  ( ic|n+1 +(1 iah)
(5.145)

The scheme presented here is similar tovits¢ order predictor-corrector scheme, since the space
time residual does not correspond to a second order discretization in time of the\iipatagince
only the explicit part is upwinded.
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Considering additional sources ttieal scheme becomes:
h

e n P !
S|hn+l i Gi tC| - t g +@ g @ ) min( ;0)
j
tmin(h;0) (Coouna  (iG +(1  §)")
+ tmax(sca;0)(csce (iG +(1  i)dY)
N A P P n+1 N+1 Yy i )
Sih: DI Pst T t (g i )ymin( j ;0)
t T2i j

tmin(b;0) Coouna  (iGF+(@L )
+ tmax(scq;0) Csce ( iC|n+1 +(1 |)Cln)
(5.146)

5.5.2.1 Monotonicity analysis

We now study the monotonicity of the corrector step without sources, taking into account the
limitation (likef; and j; ) that stems from the PSI limiter:

a”+1 ”+1 + a]n+1 =4 d ¢ djncjn + d'c t min(k ; 0)Chound
where:
‘ X
a"™l=ghM™ " t; min( §;0) t;min(h;0) (5.147a)
n+l X i |
a =t j min( jj ;0) (5.147b)
j
d = Sh'? x fighM*t i (5.147c¢)
d"= § t (1 j)min( ;0) (5.147d)
J 0 1
1 X
d" = f;Sh™ T +@ ) t@ i min( j;0)+min(b;0)A (5.147e)

i

The system is solvable since, like in the previous casA, iteitrix, made up by; on the diagonal
and a; on the extra-diagonal terms, is non singular and it is a L-matrixAg. > 0 8i and
Aj < Oforj & i, thanks to the stability condition of the predictor step.
Only the co& cients oft] could be negative, indeed the extra derivative in time with the limitation
given by the PSI limiter could be a problem. This<adent is:
0 1
+1 i X
fiSi hin T+ (1 i)t @ i min( i ;0)+min( b; O)A (5.148)
j



114 CHAPTER 5: NEW RD PC SCHEMES FOR TIME DEPENDENT PROBLEMS

If f; =1, weVnd the previous condition, (5.132), on the time step. Yet, in thi§;camad also be

zero, thus in order to keep the positivity, the value,as considered.

As for the second order predictor-corrector scheme, an average value of concecitf&8fithis
introduced to guarantee the monotonicity of the scheme. The demonstration follows the same steps
of the predictor-corrector schemes.

We can show that, for a time step chosen so that:

11 Sihgtart
tstab < = !
stab 21

! (5.149)
i
max( {;0) +max(h;0)
j
the approximate discrete solutioﬁ’l+1 respects the maximum principle under the following con-
dition ong; :
1 i 1

g+ d™ q o<cp<el+ (™ ) (5.150)
wherec™ = max; (¢'; ¢") andc™ = min; (c"; c"). The proof is reported in Appendix A.
This statement is true also in presence of sources, but the time step to consider is:

11 Sihstart

= ! 5.151

tstab <

max( };0) +max(h;0) min(sca;0)
j

5.5.2.2 A correct sum of coécients

TheVnal value ofc’*! is monotone only if the sum of the interpolation ¥axents is equal to 1.
However, the last term on the RHS of Equation (5.144) could create problems in the global balance
of coeX cients ofc after the reduction operated by the PSI limiter. Indeed, before the PSI reduction,

the balance ofL j)CJn (1 )¢ isensured by the term jcj”"l ici””. This does not hold
true after the PSI reduction. To have a right balance of cmats, the solution consists in applying
the limiter only on the terms which can be balanced. Thus, dencfirg min(1 il ),
we replace:

PSEDS NN

@ g @ »Hg min( ;0)

i=1 j=1
by:
PSP

. XSXB’ .
j ¢ g min( j;0)+ @ » g @ ) min( ;0

i=1 j=1 i=1 j=1
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n
G

R R

Only the term i c]”
i=1j=1

reduced by the PSI limiter, while the rest of the term will not be reduced by the PSI limiter. In this

way we have a correct sum of ¢beients and the monotonicity is not spoiled.

min( jj ;0) is kept in the space time residual in order to be

5.5.2.3 lIterative local semi-implicit predictor-corrector scheme

As for the explicit predictor-corrector schemes, an iterative procedure can be employed, thanks
to the requirements on; to ensure the monotonicity. In this case, at every iteration, the new
prediction is:

‘ A+ Cmin ¢ + gmax
= mi = :
G min  max ¢, > ; >

(5.152)

where in this cas€ is the value computed by thést corrector step and the equation to solve is:

k+1 X X
c ck .
Shttta t L= P T(Emey ot (gt ™ )min( 50)
T3i j (5.153)

tmin(b;0) Gouna (it +(1 )
5.5.2.4 Choosing the local semi-implicitation

The admissible time step condition for the explicit scheme is:

Si hiStaI"[

tstan(i) = ! (5.154)

max( };0) +max(h;0) min(sce;0)
]
For the semi-implicit scheme this value is locally divideilby ;), and for the predictor-corrector
approach it is divided by 2. The goal is now to do the whole locally semi-implicit, predictor-
corrector process im sub-steps, thus we prescribe:

1 tstab(i) — t

! 1
R . (5.155)
which yields to:
‘=max 01 %tatb(') (5.156)

We show in Figure 5.7 the results obtained for the unsteady advection test case, using the local
semi-implicit predictor-corrector scheme, with 5 iterations on the corrector step and choosing the
half of the number of iterations of the PC1. As we can see results are quite similar to the results
obtained with thévrst order predictor-corrector scheme.
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Figure 5.7: Unsteady tracer advection benchmark: results at secto®:5 m for the N,

the PSI, the Predictor-Correctdrst order scheme (PC1), the Predictor-Corrector second order
scheme (PC2), the Predictor-Correbtst order scheme using 5 iterations (PC1-5it), the Predictor-
Corrector second order scheme using 5 iterations (PC2-5it) and the Locally Implicit Predictor cor-
rector Scheme with 5 iterations (LIPS-5it).

5.5.2.5 Optimisation

At every new correction, the massofadded at the previous correction is removed by the term

Sihi”+1 (¢ ¢')= tinthe RHS. A consequence is that only the monotonicity is requested
for intermediatec; , mass conservation is not mandatory. This allows to solve only partially the
intermediate linear system. In practice we do only one iteration of the Jacobi iterative solver. It
consists in writing a matriA in the formA = D + E, splitting the diagonal¥) and the extra-
diagonal termsH). Solving the system:

AX = B (5.157)

with an initial gues °, the \rrst iteration of the Jacobi method reads:

B EX©

X*t=
D

(5.158)
given our matrices, such an iteration keeps the monotonicity.

5.6 Summary

In this chapter the RD schemes have been tailored to the depth-averaged scalar transport equation
showing the compatibility with the discretized continuity equation of\th&l. The main ingre-

dients of the RD schemes, like the concept of positive schemes and of limited non linear schemes
are used here. Howeverldrences with respect to the classical RD formulation arise due to the
depth-averaged context (e.g. the conservation issue is not treated like in classical RD schemes).
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The chapter focuses then on accurate schemes for unsteady problems where the upwinding of the
derivative in time plays the most important role for accuracy. \riseand second order predictor-
corrector schemes are the schemes suitable for time dependent problems. The preservation of the
monotonicity has been shown for both schemes and yieldsratit time step conditions with
respect to the classical predictor-corrector RD schemes presented in [117] where the theoretical
monotonicity is not deeply discussed, even if the results shown are monotone. In addition, the
iterative version of the predictor-corrector schemes improves the accuracy and represents a new
contribution in the development of schemes for unsteady tracer transport.

A new locally semi-implicit scheme is presented to solve the wetting and drying problems. This
scheme tries to mix the good properties in terms of accuracy of the predictor-corrector schemes and
the unconditional stability of the implicit scheme. Even in this case an enhanced iterative version
is build. An optimisation is proposed to avoid the resolution of a linear system at every iteration.
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Chapter 6

VeriVcation and validation of the
numerical schemes

Ce chapitre présente la validation des nouveaux schémas proposés dans cette these.
Une batterie de cas tests a été choisie pour valideltaedtes propriétés numériques

des schémas.

Dans un premier temps on estime les ordres de convergence des schémas pour des
problémes stationnaires et non stationnaires. Ensuite, des cas plus complexes comme
la convection d'un piM gaussien dans un champ rotationel, une rupture de barrage

sur fond mouillé ou encore un canal avec des piles de pont, sont utilisés pdaur véri

la monotonie de la solution et la conservation de la masse. Les résultats obtenus par
les nouveaux schémas sont assez satisfaisants et comparables a ceux obtenus dans
[13, 117]. Ces résultats montrent gaeivement les nouveaux schémas sont plus pré-

cis et assurent au niveau discret la conservation de la masse et la monotonie.

Le traitement des zones avec des bancs découvrants est testé avec une rupture de bar-
rage sur fond sec et avec le test de Thacker. Dans les deux cas, les schémas se montrent
appropriés a ce type de problemes.

Des comparaisons en termes de nombre d'itérations ou temps de calcul, sont aussi ef-
fectuées de maniére systématiquie de donner une idée deX'eacité des schémas.
L'inWience du maillage sur la solution pour les schémas aux VF et aux RD est aussi
soulignée dans le premier cas test.

Le chapitre se termine avec un cas réel ou les résultats numériques sont comparés a
des mesures. Le but de ce dernier test est la validation d'un des schémas sur un cas
industriel.
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The aim of this chapter is the vidation and validation of the numerical schemes presented in the
previous chapters. We recall that Wedtion is the process of determining that a model implemen-
tation accurately represents the developer's conceptual description of the model and the solution to
the model while validation is the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model [108, 138].
Since in this work hydrodynamics (i.e. the SW equations) is solved with a FE method or a FV
method, some terences could appear on hydrodynamic results (e.g. on vel@bity) which

could then iWdence the results of the advection schemes for tracers.

For this reason, in several tests we consider stéahconditions, where there are ndJdrences

on the velocities between the FE and the FV results. This allows to better compare the FV schemes
and the RD schemes for tracer. Under stéaidy conditions, the tracer exact solution can be easier
computed and hence the order of accuracy of the scheme is assessed for a case of steady concen-
tration (@ c=@t0) and unsteady concentration. In these tests, various kinds of mesh will be used

in order to show the dierent behaviour of the two families of methods.

The behaviour of the schemes under more complex veldlitg is checked with several tests: the
rotating cone, the wet and dry dam break and an open chafvelbetween bridge piers. The

latter, together with the Thacker test case, is useful to show the ability of the scheme to deal with
wetting and drying phenomena.

Finally, we present a real test case where the numerical solution is compared to real data.

We establish here the nomenclature used for tberdint schemes:

N scheme: presented in Chapter 5, Section 5.1.2;
PSI scheme: presented in Chapter 5, Section 5.1.2;

PC1 scheme: it is the predictor-corrector scheme presented in Chapter 5, Section 5.2.2. Note
that this scheme is called PC1-#it when the iterative version is used (# will be the number of
supplementary iterations). For example PC1-5it i¥tsieorder predictor-corrector scheme

with 5 supplementary iterations on the corrector step;

PC2 scheme: it is the predictor-corrector scheme presented in Chapter 5, Section 5.2.3. Even
in this case the acronym PC2-#it is used for the iterative version;

LIP scheme (or LIPS): it is the locally implicit predictor-corrector scheme presented in Chap-
ter 5, Section 5.5.2;

HLLC 1 scheme: it is the decoupled scheme presented in Chapter 4, Section 4.1.3;

HLLC 2 scheme: it is the second order version of the decoupled scheme presented in Chapter
4, Section 4.2.

If not specically indicated, the CFL number for FV schemes has been set to 0.9 for all the tests
presented here.
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6.1 VerlMcation

6.1.1 Lake at rest with constant solute

This test represents the numerical validation for the preservation of constant soMes quer

quiescent water. Taking into account an irregular bathymetry, the test also validates the property

of well-balanceness of the scheme. Indeed, in absence of velocities, the scheme must guarantee the
equilibrium between the momentuvidix term and the bathymetry source terms, without creating
spurious oscillations of water depths or velocities.

The computational domain is a square basin of dimenglp29) (0; 20) m? made up by regular

triangles with average length3 m. All the boundaries are considered as solid. The bathymetry is
described by a very irregular function which varies sharply, see Figure 6.1.

Figure 6.1: Lake at rest with constant solute: bathymetry.

The initial conditions are:

sO%(x;y) =41 m

uf(x;y) =0 m=s (6.1)

(x;y) =5 g=n?
The test is performed for 300 s. As shown in Table 6.1, all the schemes proposed in this work
are able to preserve constant tracenes over time and the mass of the sol@@1(7142 g) is
conserved at the machine precision.
For each test presented in this chapter, a mass balance is computed at every time step. The error on
the mass is equal to:

M = Mstart + Min Meng (6.2)

Mstart = R (hc)" d is the mass at the beginning of the time stdp, = tR hcu nd is

the mass introduced (and leaved) by th%boundaries during the time step (the sign is negative when
the quantity leaves the domaiMleng =  (hc)"*? d is the mass at the end of the time step.

The relative error is also computed:

T max(iMstart J; 1M endi; IMin ) ©2)
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At the end of the computation,\¥nal mass balance is evaluated. In this ddgg;; corresponds
to the mass at the beginning of the computation Bhgly corresponds to the mass at the end of
the computation. The terid;, contains the cumulated tracer bounda¥xes.

Table 6.1: Relative mass error for the lake at rest with constant solute.
scheme rel
N 02 10
PSI 02 101
PC1 02 10 15
PC2 02 10 %
LIP 04 10 15
HLLC1| 02 101
HLLC2| 02 10 15

6.1.2 Steady tracer advection

This test has two goals: on the one hand it is useful to show the spatial convergence of the schemes
in steady cases, on the other hand it emphasizesltieeatit behaviour of the schemes obatent

meshes. We consider a steady-stdig in a frictionless channel where the pollutant is released at

the inlet.

To perform the convergence study we choose a rectangular domain with dimg@sions1 m]

made up by irregular triangles, see Figure 6.2. The unstructured grid has been progregsaatly re

Figure 6.2: Steady tracer advection: unstructured grid used for the convergence study.
=[2 m 1m]land x=1=10m

considering several average element sizes, 1/10 m, 1/20 m, 1/40 m, 1/60 m and 1/80 m. In
general for unstructured mesh, the reference mesh size is computed with the following formula:

(6.4)

where is the area of the computational domain ahabl is the number of elements.
The hydrodynamic steady conditions &re 1 m andu = (2 ; 0) m/s; they are imposed as initial
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Table 6.2: Steady tracer advection: order of accuracy.

x | #el | On | Onic 1 | Opsi | OHie 2
0.1 440
0.05 | 1749| 0.95 0.53 1.84 1.43
0.025| 6876| 0.95 0.75 1.7 1.57
0.016| 16739 1.01 0.79 1.16 1.63

0.0125 26842 -0.46 1.19 1.52 1.59

and boundary conditions. Since the truncation error analysis holds true for smooth solutions, we
choose the following boundary inlet tracer Wiex

Coound = C(x =0;y) = & M sin(y )? g=I

At the outlet we leave a free boundary condition for the tracer. The duration of the test is setto 2,5
s such that at th&nhal time,t; , all schemes have converged to the steady solution.
The exact solution given by the method of characteristics is simply:

cex = C(x;y) = & Msin(y)?g=l

To measure the accuracy of the numerical schemes, we talké tioem of the error in space:
S
iz =

X

(Cex(tr)  Chum (tf))?

npoin
po i2Th

wherenpoin is the total number of nodesyy is the exact solutiort, m, is the numerical solution

andt; is theVnal time. The convergence rates of theetlent schemes and the tracer es

obtained at the end of the simulation at the transversal sektmr2 m are shown in Figure 6.3.

This test is important to assess the order of the already existing schemes (N and PSI) and of the
new schemes. For the new RD schemes, which are more appropriate for time dependent problems,
we just want to verify that in steady cases they are able to revert to the PSI scheme. The curves are
exactly superimposed for the PSI, PC1, PC2 and LIP scheme. Thus they are not shown. The choice
of the number of sub-stemsfor the locally implicit scheme (see Section 5.5.2.4) is not trivial and

in general it must be related to the arbitrary time step chosen to solve the hydrodynamics.

In this case, to choose the parametgvrstly we consider that in wet cases we are not interested

in having ; =1 and we prefer to have = 0 in steady cases, in order to recover the PSI scheme.
Then, in order to be comparable to the other RD schenigshosen so as the number of iterations

is the same as the N and the PSI scheme. Hence, in this way, the results of the LIP schemes are
equal to the results of the PSI scheme.

The tracer proles shown in Figure 6.3 agree with the convergence rates, indeed thelWnestedi
schemes are the HLLC 1 and the N, while the HLLC 2 and the PSI are the most accurate.

The order of convergence for théJdient schemes are shown in Table 6.2. The N and the HLLC
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Figure 6.3: Steady tracer advection: convergence-rate (top) and tradbes pteectiox =2 m
for the case x = 1=40 (bottom).

1 converge to the theoretical order, indeed the measured accuracy is around 0.95. However, the
N scheme shows a strange behaviour in the mata@ mesh, for which we compute a slope of

-0.46. In this case further investigations would be necessary to justify this result. For the second
order schemes, results are quite satisfactory, since the convergence rates tend to 2, the theoretical
value. However the maximum values of slopes are 1.84 for the PSI scheme and 1.63 for the HLLC
2.

The schemes are also compared in terms of number of time steps necessary to compute the solution
in the time interval[0; 2:5] s. Results are written in Table 6.3 for the mesh with = 1 =40 m.

There is a large terence between the second order RD schemes and the second order FV schemes.
RD schemes, regardless of the order of accuracy, always have the same number of time steps, which
is smaller than the one used by the FV schemes. Hence the RD schemes axeieoramed less

time consuming than FV schemes. The CPU tinesifor the RD schemes while it &s for the
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Table 6.3: Steady tracer advection: number of time-steps for the advection schemes.

| N | HLLC 1| PSI| HLLC 2
iterations| 950/ 1183 | 950| 3550

HLLC 2, for the mesh with x = 1=40m. For this case the dérence seems not so large yet

the case is very simple. We will see that for more complex cased drertie in the CPU time
increases.

On the other hand, it is worth noticing the improvement brought by the decoupled algorithm HLLC

1 when considering also hydrodynamics. The tracer needs 1183 iterations, while hydrodynamics is
solved with 3350 iterations. The present HLLC 1 represents thus an improvement with respect to
the coupled version. For the second order version the positivity condition is more restrictive and
the number of time steps for hydrodynamics and the tracer transport is the same.

On the other hand, the RD schemes are even moc@eat since the hydrodynamic part is solved

with very few iterations, thanks to the absence of CFL condition and thus the possibility to take an
arbitrary time step. As exampletcas = 0:05s for the mesh with x = 1=40m.

The same test has been performed owagalarmesh (see Figure 6.4), with an average element
size ofl=40 m. The results can be veryudirent as Figure 6.5 shows. In this case, in addition to the
smooth inlet boundary function:

Coound = C(x =0;y) = & M sin(y )? g=I

a discontinuous function has also been tested:

1g=l if 0;4m vy 0;6m

c(x=0;y) =
( ) 0g=l otherwise

For the smooth and the discontinuous function, the results obtained with the RD schemes are in
agreement with the exact solution, see Figure 6.5. On the contrary, the results obtained with the FV
schemes are moreldlisive and the maximum values of tracer are smaller than the values obtained

in the completely unstructured mesh, shown in Figure 6.3.

The behaviours of the scheme can be explained analysing the alignment of the velocity vector to
the edge of the elements. Indeed, the veldditd which isu = (2;0) is perfectly aligned with

the edges of the triangles. This situation is particularly favorable for the RD schemes, which are
able to reproduce the exact solution. Indeed thi¥goration corresponds to the so called 1-target
case (we have one downstream node and two upstream nodes) [54], in which both the N and the
PSI scheme are linearity preserving and thus second order accurate in space. It means that the
residual T is always given to the only downstream node and, since the velocity is aligned to the
edge, no transversalldision is produced by the advection scheme. This result holds for any kind

of advected function (smooth or discontinuous).
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On the contrary, this mesh is inconvenient for FV because, as we use a vertex-centred scheme,
the control volumes are distorted and an\é@ial Wix is developed along faces which cross the
diagonals of the squares.
We suppose that the use of a cell-centred method, in this particular case (with regular mesh and
constant horizontal velocities) could probably improve the results in terms of transvieusabi
Indeed, where the face element is aligned with velocities we will havégrfaces, so the scheme
should be less dusive. However, this kind of scheme has not been tested yet.

Finally the conservation of mass is W through a mass balance. The relative error at the end

Figure 6.4: Steady tracer advection: regularmesf2 m 1m]Jand x =1=40m

of the computation is abod *° for all the RD and FV schemes.

6.1.3 Unsteady tracer advection benchmark

This test was already presented in Chapter 4 and it is here recalled in order to measure the accu-
racy of the schemes and to give a more detailed comparison of all the schemes. The domain is a
rectangular channel ¢0;2) (0; 1) m? made up by irregular triangles (as the one of Figure 6.2).
The convergence test is performed on a serigg@tinstructured meshes, like in the steady case.
The mesh sizes are, from the coarsest to/ttest: 1=10 m, 1=20 m, 1=40 m, 1=80 m, 1=160 m.

The water depth in the channel is constant and equdl io, and theVdw rate is 1 M=s. The
simulation time is set t& s. The initial tracer prole is described by the function:

cog(2r)g=m* ifr 0:25

p
Axy) = withr = (x 05)2+ 0:5)2 m
(y) 0g=n? otherwise ( yrly )

In Figure 6.6 we show the rates of convergence for all schemes, the orders of accuracy are displayed
in Table 6.4 and Figure 6.7 shows the tracevipsoobtained at the end of the simulation at the
sectiony = 0:5 for the mesh witth = 1=40m.

Figure 6.6 shows that the HLLC 1, the N and the PSI schemes are thelugisedichemes with

a rate of convergence lower than one. This behaviour is normal since all these schevrss are
order in space and in time, hence they are not suitable for time dependent problems like this one.
On the contrary the new schemes introduced in this work occupy the region with lower magnitude



6.1 VERIFICATION 127

Figure 6.5: Steady tracer advection: results at sectiah m for the advection of a discontinuous
function (top) and a continuous function (bottom) over a regular grid.

error and according to the scheme chosen, the slope is between 1 and 2. Analyzing the Figure 6.6
we note that the average convergence rates for the PC1 and the PC1-5it are about 1. Indeed, both
schemes are onhfrst order accurate in time. However, we note that they are more accurate than

the N and the PSI and they give a better estimate of the maximum tracer value, as shown in Figure
6.7. The reason is related to the upwind of the derivative in time which is done in the PC schemes
while it is absent in the N and PSI schemes.

In addition, comparing the scheme without iteration (PC1) and the scheméwitiupplementary
iterations on the corrector steps (PC1-5it), we note that the maximum value of tracer increases
thanks to the supplementary iterations.

We consider now the PC2 and the PC2-5it. The convergence rate of these schemes is more regular:
the PC2 gives a slope of about 1.4, while the PC2-5it tends to 1.7. These schemes are formally
second order accurate in space and in time, however their convergence rate is less than two. In



128 CHAPTER 6: VERIFICATION AND VALIDATION OF THE NUMERICAL SCHEMES

Figure 6.6: Unsteady tracer advection benchmark: convergence-rates.

Table 6.4: Unsteady tracer advection benchmark: order of accuracy.

X #el | Oy | Oxiic 1| Opsi | Oxiic 2 | Opc1 | Opca sit | Opc2 | Opc2 sit | Oup
0.1 440
0.05 1749 | 0.19 0.15 0.2 0.73 0.69 1.21 0.63 1.00 1.17
0.025 | 6876 | 0.36 0.31 0.36 1.52 1.35 0.86 1.15 1.48 -0.16
0.0125| 26842| 0.52 0.5 0.52 1.15 1.07 1.04 1.43 1.64 0.92

0.00625 112480 0.67 0.67 0.67 1.15 1.09 0.86 1.48 1.67 0.91

[117] slopes of approximately 1.6 are obtained for predictor-corrector schemes similar to the one
presented in this work. We thus believe that our results are in accordance with [117].

The number of iterations enforced on the corrector step is arbitrary, however in Figure 6.8 we
show the convergence histories of th@norm of the concentration, in function of the number

of supplementary iterations. As we can see, after very few iterations, the scheme converges and
the error remains stable. Indeed, for this test t&seiterations are s<icient to obtain the most
accurate result.

We analyse here the convergence rate for the HLLC 2. This scheme is second order in space yet
Vst order in time, since the time discretization is done with the Euler scheme. We note that two
diUerent second order in time schemes were tested in this case. In particular, the Heun's method
and the Newmark's method were considered. However, their use didw@rnioe the accuracy of
the results, thus they are not retained in the other tests. The reasons of this discrepancy are not
clear at the moment and they should be investigated more in depth. The maximum slope showed
in Figure 6.6 is equal to 1.5, while it is equal to 1.15 for the mdsédemeshes. In this case the
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Figure 6.7: Unsteady tracer advection benchmark: tracdepratt; =1 s and fory = 0:5m.

error in time is bigger than the error in space, thus the scheme is not able to reproduce the second
order rate. However the results are clearly better with respect to the HLLC 1.

Finally the convergence study for the LIP scheme is more complicated due to the local implicitation
coeXcient. In order to compare this scheme to the others, the paramleterbeervxed to obtain

the same number of iteration of the PSI scheme. As we can see the rate of convergence is almost 1
and this agrees with the formal accuracy of the scheme. However, as for the PC1, for a given mesh
size the error is smaller than the error produced by the N and the PSI thanks to the upwind of the
derivative in time.

Concerning the monotonicity, we observe that all schemes presented give a monotone solution.
Figure 6.9 shows the results obtained with the HLLC schemes when using the coupled and the
decoupled formulation. The mesh sizéMed at x = 1=40 m and the prMes are obtained

at the sectiory = 0:5 m. For both thewst and the second order schemes, we note that the
decoupled formulation proposed in this work allows to decrease the numetioaladi of the
coupled formulation. The decoupled formulation is also convenient from a computational point of
view, indeed for th&frst order case the decoupled scheme updates the tracer in 191 iterations while
the coupled one needs 1143 iterations (see Table 6.5).

In Table 6.6 we show the variation of the ratio between the hydrodynamic time steps and the
transport time steps according to various Froude numbers, fofsherder HLLC. The test is
performed on the meshx = 1=40 m and the water depth varies in order to recovedaient
Froude number. It is clear that the ratio between the hydrodynamic time step and the transport
time step decreases when the Froude number grows up. These results are similar to the one shown
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Figure 6.8: Unsteady tracer advection benchmark: convergence for the PC2 scheme.

Table 6.5: Unsteady tracer advection benchmark: number of time-steps for the FV schemes.
HLLC 1| HLLC 2

hydrodynamics 1143 1143
tracer 191 381

in [13]. The comparison in terms of number of iterations for all schemes is presented in Table 6.7.

Table 6.6: Unsteady tracer advection benchmark: hydrodynamic and transport iteratidderfor di
ent Froude numbers, for the HLLC 1.

Fr | hydrodynamic iterations transport iterations
0.66 720 231
0.95 580 188
1.42 480 235

It is worth noticing that even if the number of time steps is the same for the PC1 (or PC2) and the
PC1-5it (or PC2-5it), the computational time is larger when more iterations are added. Examples
about the CPU time will be more clear for complex cases, indeed in this test, due to the simple
conditions and the short duration, the computational timksir both the PC2 and the PC2-5it.

In this test the FV and RD schemes which \&nst order accurate in space and in time, have
approximately the same time step, thus the total number of iterations are equal.

6.1.4 Rotating cone

The rotating cone case is &diult test because the velocity varies in space: the tracer is submitted
to a rotational velocity/eld. For this test we do not solve the Saint-Venant system, but just the
tracer equation, using a constant value of water depth. The aim is to show how much the numerical
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Figure 6.9: Unsteady tracer advection benchmark: tracdepror the coupled and the decoupled
HLLC scheme at sectign= 0:5m.

Table 6.7: Unsteady case: number of time-steps for the advection schemes.
| N | HLLC 1] PSI| HLLC 2| PC1| PC1-5it| PC2| PC2-5it| LIP
iterations| 180| 191 | 180| 381 | 396| 396 | 396| 396 | 180

scheme is dlusive in a time dependent case. The maximum value of the cone after one rotation
can be considered a good indicator of the numerit¢halgion. The velocity/eld is constant in time
and equal to:

u(x;y)= (y 10:05)m=s

v(x;y)=(x 10:05) m=s

The initial condition for the tracer is a Gaussian function:

(x 15)2+(y 10:2)?]
Cxy)= e 2

g=l

which bounds the solution between 0 and 1. The problem is solved on a square domain of dimen-
sions[20:1  20:1] m? and formed by squares of side 0.3 m split into two triangles. After one
period the cone is again at the initial position but the maximum value is diminished due to the
numerical duusion produced by the schemes.

The maximum and the minimum values are presented in Table 6.8. The better estimates of the
maximum are obtained with the LIP scheme, the PC1-5it and the PC2-5it schemes. However the
Vst two schemes are onlrst order accurate in time and the good estimate of the maximum is
mostly due to the upwind of the derivative in time.

Again, the improvement brought by the new RD schemes presented in this work is clear. Con-
cerning the FV schemes, we note that the HLLC 2 computes a maximum which is about the triple
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Table 6.8: Rotating cone test: minimum and maximum values of concentration.
\ HLLCl\ N \ PSI \ HLLCZ\ PC2 \ PC1 \ PC2—5it\ PC1—5it\ LIP
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1361 0.1794 0.2134 0.4695 O.SOBJ 0.5334 0.6451| 0.7630| 0.7860

Min(c)
Max(c)

obtained with the HLLC 1. Hence the improvement is great. The ratio between the maximum value
obtained withVrst and second order schemes, is the same for FV and RD schemes. Maximum and
minimum values are never trespassed during the simulation.

TheVnal provies of every scheme are reported in Figure 6.10. We observe that the PC1, the PC2 and
the PC2-5it schemes are comparable with the HLLC 2. However, the PC1-5it and the LIP schemes
are dé/itively the schemes which estimate the maximum more precisely.

6.1.5 Wet dam break with pollutant

The dam break over wet bed \4st of all, an interesting test for the hydrodynamics because the
solution is characterized by thredJdrent states: the rarefaction wave; a constant regivhete

by the contact wave and the shock wave where the water depth changes abruptly. In this test
the tracer (initially upstream of the dam) is transported at the speed of the intermediate constant
region, called the star region [142].

The aim is thus to check that the tracer is transported with the good velocity and that the contact
discontinuity is well captured by the schemes. Then, we also wish to verify that the numerical
dissipation on the contact discontinuity reduces with the new FV and RD schemes.

The analytical solution for this test was given by Stoker [135] Y&frcal wave on horizontal bed.

The computational domain is a rectangular channel wiltf0Om x  1000m andO m

y  500m, the grid is regular, made up by rectangles with =20 mand y ' 25m, split

into triangles. The initial condition for the water depth is:

(

hy =1m if x Om
hg =02m if x> 0m

ho =

The initial velocities are zero and the initial tracer concentration is equal to:

(
Q0 c. =0:7¢g=l if x Om
cr =0:5¢g=l if x> 0m

The duration of the simulation is 240 s and we use a CFL equal to 0.8 for the FV schemes.

The results obtained for the N, PC1-5it, PC2-5it, LIPS and for the HLLC1 and HLLC2 are shown in
Figure 6.11.

Among theVrst order schemes, the N scheme leads to a badly smeared solution, which is instead
more accurate if we use the HLLC 1 scheme, known to reproduce contact discontinuities. We note
that the solution obtained with the PSI scheme is not shown since it is superimposed to the solution
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Figure 6.10: Rotating cone: isolines for the tracafigg@ = 0 :05). From top left to right bottom:
exact solution, HLLC 1, N, PSI, HLLC 2, PC2, PC1, PC2-5it, PC1-5it, LIPS.
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Figure 6.11: Wet dam break: solutions for the contact discontinuity computed with the numerical
schemes at tim240s at the channel axis.

obtained with the N scheme.

Among the new schemes, the HLLC 2 and the PC1-5it are the most accurate schemes while the
PC2-5it and the LIP scheme are slightly less accurate and lideedces between these schemes

are observed in Figure 6.11. We conclude that the new schemes are more appropriate to represent
contact discontinuities with very small numericdldsion. In order to better appreciate th&un

ence of the decoupled algorithm for the FV schemes, we show in Figure 6.12, the results obtained
with the coupled and the decoupled scheme foMiseand the second order schemes. We observe

that the numerical diusion is decreased by the decoupled algorithm, however,theedices are

smaller for the second order scheme. In table 6.9 we write the number of hydrodynamic steps and

Figure 6.12: Wet dam break: solutions solution at the channel axis at time 240 s for the contact
discontinuity computed with the HLLC schemes (left) and the RD schemes (right).
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Table 6.9: Wet dam break: number of hydrodynamics time steps and transport time step for the
HLLC schemes.
HLLC 1| HLLC 2
Hydrodynamics steps 209 221
Transport steps 30 109

Table 6.10: Wet dam break: number transport time step for the RD schemes.
| N | PC1| PC1-5it| PC2| PC2-5it| LIP
iterations| 70| 140| 140 | 140| 140 | 140

transport steps. The new algorithm allows to save CPU time with respect to a fully coupled reso-
lution and it also improves the accuracy of the scheme since the largest allowable time step (which
produces the least numericaldsion) is chosen for the transport equation.

Concerning the RD schemes, we also observe the improvement brought by the iterative version of
the schemes: Figure 6.12 shows thlerginces between the PC1 and the PC1-5it as well as between
the PC2 and the PC2-5it. The supplementary iterations induce less humélisardifor both

the PC1 and the PC2.

The number of time steps for the RD schemes are written in table 6.10. For FE hydrodynamics is
solved choosing tcas = 3 s and for the LIP scheme we choose again to have the same number of
time steps of the second order PC schemes. Comparing Table 6.9 and Table 6.10, it is noted that in
this case, the RD schemes are slightly more demanding in term of number of time steps than the
FV schemes.

6.1.6 Dry dam break with pollutant

The analytical solution for a dry dam break wastly proposed by Ritter [124]. The water depth
is characterized by a single rarefaction zone, associatgdtou, a_ (for a left wet state). In
this region the water depth pvte gradually changes into null water depth. The velocityvjgro
jumps from the maximum values to zero where the water depth becomes zero.

In this problem the contact discontinuity has a sp8ad= u_ + 2a, which corresponds to the
wet/dry front. The tracer, which is present in the wet domain, will thus travel with the wet/dry
front. The position of the front is very Xicult to compute and it is important to have the correct
values of concentration and the right mass balance, even @.

The aim of this test is to assess the ability of the schemes to conserve the mass of tracer and to
preserve the maximum principle during transient periods characterized by wet/dry interfaces.
The computational domain is a rectangular channel of dimenglpi$) (0; 0:45) m? which

is composed by irregular triangles with an average mesh si2®®m. The dam is located at
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X =8 m. The initial conditions for the wet part of the domain, on the left of the dam, are:

8

2 hy =0:4m

S U= 0 m=s (6.5)
c =1 g=l

All the variables are set to zero in the dry part, on the right of the dam:

8

Pe hg =0m

S Ur= 0 m=s (6.6)
cr=0 g=|

The duration of the test 5 s.

In this case, we only compare the schemes able to handle dry states that are the HLLC 1, the HLLC
2 and the LIP scheme. Wfgure 6.13 the results obtained with these schemes are plotted. The FV
schemes seems more appropriate to solve this problem than the RD schemes. Indeed the water
depth prde is better approximated, since there is a smooth transition into zero. However, the
second order HLLC exhibits a very small oscillation in the front. Even the velocifie isdetter
estimated with the FV schemes.

On the contrary, the FE schemes cannot reproduce the continuous water dafehapobthey

show instead a jump ih preceded by some oscillations. For the FE scheme weéget 0:01s,

in order to get enough accurate results for hydrodynamics. Since in this case the tracer solution
is generated by the wet/dry front advancement, the choice of the paramietethe LIP scheme

is not so signfcant. Indeed, at the wet/dry interface the LIP scheme is characterized=by,

hence takingh = 1 is enough in this case to get correct solutions. The total number of time-steps
for the hydrodynamics and the LIP scheme is thus 150.

The solutions obtained with theldérent schemes for the tracer, can be easily\jedtconsider-

ing the results obtained for hydrodynamics. The wet/dry front, thus the trac®tepris better
estimated with the FV schemes. The traceMpreomputed by the LIP scheme is far from the
analytical solution, however, the monotonicity of the tracer is strictly ensured. We prove with this
test that the LIP scheme is perfectly able to handle dry problems.

The HLLC 2 is less accurate in the prediction of the wet/dry front than the HLLC 1. The rea-
son is not very clear at the moment and further investigations should be done to understand this
behaviour. However we consider that both schemes are able to treat the wetting and drying inter-
faces.

The comparison of the time-steps Yost and second order solutiono for FV is done in Table 6.11.
Even for the dry dam break is clear the advantage of a decoupled solution for the tracer transport,
when using the HLLC solver.

Regarding the FV schemes, we recall the formula for the dry interfaces introduced at Chapter 4.
We note that computing = hc=hif h >  with = 10 8, the results show small oscillation

(cmax = 1:14) at the wet/dry front which indicate a slight loss of monotonicity. Using instead
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Figure 6.13. Dry dam break: numerical and exact solutions at the channel txis Bi5 s.
Solutions are computed with FE and FV schemes. From top to bottom: water depth, velocity,
concentration.

r =10 1% the maximum value obtained respects the monotonicityx(= 1).
The mass conservation is checked for all schemes and the relative errors are at the machine
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Table 6.11: Dry dam break: number of hydrodynamics time steps and transport time step for the
HLLC schemes.
HLLC 1| HLLC 2
Hydrodynamics steps 500 600
Transport steps 165 531

precision.
6.1.7 Thacker test case with tracer

This test assesses the ability of the scheme to handle wetting and drying phenomena. As described
in Chapter 2, the solution was published by Thacker [139]. The test shows nonlinear periodic
oscillations in a basin with a frictionless paraboloid topography. The initial solution corresponds to
the exact solution at time= 0, then the free surface oscillates with moving wet/dry boundaries
and goes back to the initial position after one period. The duration of the simulation is set to 1000
s and one period is about 237,77 s. The accuracy of the scheme can ald¢eteindded, the
decrease of the free surface with time corresponds to the amount of numedicabdiproduced

by the scheme.

The computational domain is a square of dimeng®80 4000]m? and itis made up by squares

of side25 m split into triangles. The parameters used for this testrgre: 20 m, ro = 1200 m,

a = 1500 m andL = 4000 m. The addition of the tracer variable which moves with the water
surface was proposed in [103] and we consider the same set of parameter. The initial condition for
the tracer is:

c(r; 0) = coexp g=l

r
200rg
wherecy = 100 andr = (x L=2)2 (y L=2)2
To compare the FV results to the RD results, we choose to enforce for the LIP scheme the same
number of iterations of th¥rst and the second order scheme. Thédint number of iterations,
with the corresponding CPU time, are shown in table 6.12. For theUdredi combinations of

time steps and sub-time steps can be chosen since hydrodynamic is solvable with a theoretically
arbitrary time step. In this case, a good compromise is representedb® s for hydrodynamics.

Thus to have the same number of iterations of FV schemes, we choose=oh¢e be comparable
with the Wrst order scheme and then= 2 to be comparable with the second order scheme.

First of all, we stress again the largelatience of iterations between hydrodynamics and transport

Table 6.12: Thacker test case: number of iterations for the advection schemes.

HLLC 1| HLLC2 |LIPn=1|LIPn=2
Hydrodynamic iterations 4515 4520 500 500
Transport iterations 571 1077 500 1000
CPU times 55s | 1min4ls 26s 30s

for the HLLC schemes. This juds the decoupled approach. Second, we note that the CPU time
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is almost the double for the second order HLLC scheme. This is related to the reconstruction of
the interface states, done for every cell, which is very time consuming. Then, we note that the
diUerence of CPU time for the LIP with= 1 or n = 2 is negligible, while it is very large if
compared to the HLLC 2. This example highlights theiency in terms of computational costs of

the LIP scheme.

In Figure 6.14 we plot the evolution of the water depth in the central point of the domain, which is
the one with the maximum value. We note that the maximum decreases with time for all schemes,
which is normal because of the numericahdiion. The variation after 4 periods is limited to about

4 m for the HLLC 1, which is the mostldisive. For the FE scheme, the maximum variation of the
water depth i3 m, while for the HLLC 2, the most accurate scheme, we \dmdya dierence of

1 m, which is a very good result.

On the contrary, the phase error seems more pronounced for FV schemes, especially for the HLLC
1 for which the phase error increases largely with time. Figure 6.15 shows the tracer and water

Figure 6.14: Thacker test case: evolution of the maximum water depth in the centre of the domain.

depth prdles obtained after 4 periods on the central axis of the domain. All schemes show a good
agreement with the theoretical solution for tracer and the values obtained also agree with the water
depth prdves. The maximum and minimum values are respected along all the simulation and the
maximum values of concentration after 4 periods are shown in Table 6.13. As expected, the second
order HLLC is more accurate then thisst order version and indeed we observe that the exact
solution and the computed solution are almost superimposed.

For the LIP schemes, there is nbedtence among the solution obtained with 1 and the one
obtained withn = 2. This behaviour is normal since, regardless, @t the wet/dry interfaces

will be equal to 1 everywhere.

The schemes are mass conservative: the relative error at the end of the computatiorli® &bout

A global comparison of the advection schemes is shown in Figure 6.16. As for the water depth, the
most dlusive scheme is the HLLC 1, while the most accurate is the HLLC 2. The LIP is between
the HLLC 1 and the HLLC 2. Results demonstrate that these schemes are suitable for problems
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Figure 6.15: Thacker test case: tracer and water depdepad the central axis of the domain for
the HLLC 1 (top left), HLLC 2 (top right), LldiP= 1 (bottom left), LIFh = 2 (bottom right).

Table 6.13: Thacker test case with tracer: maximum values of concentrations at after 4 periods.

HLLC 1| HLLC 2| LIPSnh =1 | LIPSn =2
Max | 99.6241 99.8773 99.703 99.703

with wetting and drying phenomena.

To conclude, we show in Table 6.14 the variations of the maximum values accordingto the
parameter for the HLLC scheme. The values are computed forgherder scheme. As we can
see, big oscillations can be producegif n (we remember that, = 10 ©).

6.2 Validation

6.2.1 Open channélw between bridge piers with pollutant

This test simulates th&w in a channel with two cylindrical piers. A pollutant plume is released in
the central part of the inlet. It is almost a steady case, yet the water depth varies rapidly during the
initial transient period and Von Karman eddies appear behind the piers, with detachment. Thus, it
is a good benchmark for the conservation of the tracer mass and it is slightly more complex than
the previous tests.

The channel is 28.5 m long and 20 m wide with two bridge piers positioned atabo(t 5;4)
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Figure 6.16: Thacker test case: numerical and exact solutions for the trsteeafteo 4 periods at
the central axis.

Table 6.14: Thacker test case with tracer: maximum and minimum values of concentration accord-
ing to diUerent  after 1 period.
tr Max(c) | Min(c)
10 8 265 0

10 © 174 0
10 7 100 0
10 13| 100 0

andP, = ( 5; 4), and aradius of 2 m. Note that2 [ 14;14:5]andy 2 [ 10;10] The
channel section is trapezoidal (see the bottom in the Figure 6.17) and the minimum value of the
bottom is equal to -4 m in the main channel.

At the inlet of the channel, we impose as upstream boundary conditds discharge equal to

Figure 6.17: Open chanidiw between bridge piers with pollutant: topography of the channel
with the cylindrical piers sketch.

62 m3=s, while at the outlet a null free surface is imposed, which is also the initial condition.
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Table 6.15: Open chanveélw between bridge piers with pollutant: mass balance for tbereint
schemes.
HLLC2 PC2 PC2-5it
Mstart [0] 0 0 0
M eng [0] 215.7882| 180.3672| 180.2682
Min [g] 215.7882| 180.3672| 180.2682
v [9] 0.4831E-12-0.1931E-08-0.2969E-08
rel [/] 0.2238E-14-0.1070E-10-0.1647E-10

The tracer is released with a concentratiod ¢fl at the inletfor 2m y 2 m, while at the
outlet we leave a free boundary condition. The duration of the simulation is set to 200 s.
For this test we use a completely irregular mesh composed by unstructured triangles (see Figure
6.18).
In Figure 6.19 we show the results obtained with some of the most accurate new schemes:

Figure 6.18: Open channiiw between bridge piers with pollutant: unstructured mesk.
[28B5m 20m]Jand x=0:5m

HLLC 2, PC2, PC2-5it. The PC1, PC1-5it and the LIP are approximately equal to the PC2 and PC2-
5it, thus they are not shown. It is worth noticing that we try in this case to have the same velocity
Veld for the FV and FE schemes, so that the advection schemes for tracers are comparable. How-
ever, better results on velocities where the von Karman eddies appear can be obtained with the FE
solver as shown later on. In Figure 6.19 it can be shown that the HLLC 2 is tdasiveliwith
respect to the PC schemes, in particular the transverdasidn is highly pronounced after the
bridge piers. Comparing the PC2 and the PC2-5it, we note again that the quality of the results is
improved by the PC2-5it: the isolines are closest and the plume is slightfedion the transver-
sal direction.

We show in Table 6.15 tMaal mass balance for the various schemes and we note that all schemes
are mass conservative.

The eddies behind the piers can be better represented choosing appropriate options for the ad-
vection of velocities in the FE solver. In this case the tracer is distributed in a compldéegndi
way. Figure 6.20 shows théJdrence between the PSI scheme, whithsisorder in time, and the
PC2-5it, which is second order in time.
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Figure 6.19: Open chaniveéiw between bridge piers with pollutant; isolines for the tracer (
0:05). From top to bottom: HLLC2, PC2, PC2-5it.

Figure 6.20: Open chanhgiw between bridge piers with pollutant; isolines:(0 :05) for the
PSI scheme (left) and the PC2-5it scheme (right).
6.2.2 Real river with tracer injection

In this test case we evaluate the robustness Xtogeecy and the accuracy of the new LIP scheme
on areal study case.
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A tracer is released in a river with an irregular topography (Figure 6.21), whev@éwheften

changes its path between the minor bed and the major bed, according to the season and the meteo-
rological events. Several small islands are present along the river channel. Hence, the wetting and
drying phenomena occur often on these zones, as well as on the major bed.

The tracer is released through seven source points in the upstream part of the river and a series of
data measures is available in order to compare the numerical results.

The river is approximately 40 km long and the computational domain is discretized with an un-
structured grid, made up by 1,281,717 elements that correspond to 652,412 nodes. The mesh has an
average mesh size4Mm and decreases o7 m in the zones with the source points. The Strickler

coeX cients K 5) areVixed after a calibration study and siXJdirent zones are ideltid withK ¢

in the range22; 40m*=3s 1. A Ww rate is imposed at the inlet while the free surface is set on

the outlet through a stage-discharge curve, which is part of the measuremeni@witate used

is equal to87 m3=s while the free surface at the outlet varies in the rafGf912 62:4939]m
according to the computedw rate. The initial condition corresponds to the steady condition,
previously computed with the calibration study.

A constant quantity of tracer is injected along all the duration of the simulation, through seven
sources. Th&w rate of every source &3 m3=s and the value of tracer at the source is

Csce = 1 0=l
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A sketch of the river with the tracer sources is given in Figure 6.22. Concerning the measurements,

Figure 6.22: Real river with tracer injection: sketch of the inlet part of the river with seven tracer
source points.

the value of concentration of tracer has been assessed itUsiemti sections along the river. The
distance of the sections from the sources is marked in Table 6.16 and for each section 10 gauges
have been placed in the river but only 5 were used to measure the tracer concentrations (the other
were used for velocities). The duration of the simulation is 43 hours and 40 minutes.

Table 6.16: Real river with tracer injection: distance from the sources points.

Section| Distance [km]
1 0.3
2
35
55
6.5
10

O wWN

It can be complicated to evaluate the reliability of the tracer advection scheme in real cases since
there are a lot of uncertainties and errors related to the data used to build the model, as well as to
the data used to compare the numerical results. In addition, in order to obtain the most accurate
tracer results, the hydrodynamic model should be the most accurate as possible to give correct
prediction of velocities and water depths. Indeed, for convection dominated problems, the accurate
velocity Velds are very important. This is part of the calibration study and it is not addressed in
this work. However, it is worth noticing that the calibration was quitédlilt, since the data used

for the topography dated from several years ago, thus they were not synchronized with the data
used for calibration. This, as we will see, could have a large impact on the results in case of rivers
characterized by intense sediment transport.

Once the hydrodynamic calibration done, the model is run withas = 4 s. This time step

does not iflence the hydrodynamic which remains steady. For the LIP scheme, we choose to set
n = 8, while the number of correction is set to 0, since this case is almost steady for the tracer. The
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parameten has been set after a sensitivity study, where the results obtained Wétedt values

of n have been compared.

The results obtained with the LIP scheme are compared to measures and to the results obtained with
the NERD scheme, which is the only FE scheme able to cope with wetting and drying problems.
Some comparisons are shown in Figures 6.23, 6.24 and 6.25. We note that the new scheme is really
more accurate than the NERD scheme. Near the sources, the LIP scheme is able to reduce the
transversal diusion, indeed the maximum value can be distinct untiMtse river junction. Figure

Figure 6.23: Real river with tracer injection: comparison between the results obtained with the
NERD scheme (left) and the new LIP scheme (right) near the source.

6.24 shows the upstream part of the river. We observe that aftdrsthisland the plume occupies
almost all the section in case of the NERD scheme. On the contrary, the plume is concentrated
in the central part of the river for the LIP scheme. Finally, Figure 6.24 shows the plume after
approximately 15 kilometers, in a region where two islands and a bridge are present. Even in this
case we observe a stronggelience between the two schemes: the LIP scheme is the leesiveli
scheme. In Figure 6.26, the numerical results obtained with the LIP scheme are compared to the
data in the six sections. We consider that the error on the measures can be eg@ctof the
measure itself and it is represented by the error bar in the graphic. The results obtained with the
NERD scheme are also included in the plot. RB and LB indicates respectively right bank and left
bank.

We focus the attention on the results obtained with the LIP scheme. We observe the results for the
Vst section. Itis the closest to the source and the maximum modeled value is quite small compared
to the observed value. It is possible that in this section which is only 300 m far from the source,
the 3D dJects are dominant and so the concentrations are not mixed yet. In this case, the data are
strongly inenced by the vertical position of the gauge. However the global trend indicates that
the plume is present above all in the central/right part of the domain and this is well captured by
the model. Finally we also note that for the probe number 7 the measure is not shown since it was
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Figure 6.24: Real river with tracer injection: comparison between the results obtained with the
NERD scheme (left) and the new LIP scheme (right) in the upstream part of the river.

Figure 6.25: Real river with tracer injection: comparison between the results obtained with the
NERD scheme (left) and the new LIP scheme (right) in the downstream part of the river.

outside of the range of physical validity.

In the second section there is still quite a largdedénce between numerical results and data. The
model indicates a strong activity in the right part of the domain, while the plume is almost absent
in the left part. Measurements reveal an opposite behaviour with a peak of tracer in the left part.
In this case, the section is placed just after an island which occupies the middle of the domain. The
mainVWw obtained by the hydrodynamic results is positioned to the right of the island, with high
velocities, while to the left of the island water depths are very small. We conclude that probably
the main discharge has not been well captured by the model.

Starting from section number 3, the results agree better with the data. Indeed, the main trend of
data is well represented and also the estimates of the maximum values are closer to the maximum
measured, especially in section number 4 and 5.
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Comparing the LIP scheme to the NERD scheme, it is clear that the maximum of tracer is globally
better estimates with the LIP scheme. This case validates the scheme in case of industrial purpose.
Indeed, the main properties of the scheme, like monotonicity and mass conservationVate veri
even in this complex case. In order to deal with these kinds of studies, it was essential to parallelize
the scheme, which has been run on several processors. The computational times are reported in
table 6.17.

The FV schemes have not been used in this test since they have not been parallelized. Due to the

Table 6.17: Real river with tracer injection: computational timé3dr 40 m of physical time on
8 CPU.

Scheme Time

LIP.h=1 5h28m
LIP,n=2 5h50m
LIP,n=8 8h18m

large domain and the long duration of the simulation, it was not possible to use them on a single
CPU.

6.3 Summary

In this chapter the numerical schemes have beeVa@rand validated. The convergence rates
have been computed for every numerical schemes, showing that the new schemes presented in this
thesis are more accurate. It has been shown that the numetitaiath is strongly reduced by

the new schemes, which are able to preserve the maximum principle and to conserve the mass at
the same time. The dérences between the RD schemes and FV schemes in terms of accuracy and
computational costs have been shown. The ability of the schemes to handle wetting and drying
phenomena is assessed on several tests and the results show that the new locally semi-implicit
scheme and the FV schemes are suitable for these problems.

An industrial case is performed with the locally semi-implicit scheme, which is the best candidate
to solve industrial problems at the moment.
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Figure 6.26: Real river with tracer injection: comparison between numerical results and data in 7
diUerent sections.



Chapter 7

Residual distribution schemes in three
dimensions and validation

Dans ce chapitre les schémas RD sont formulés pour des problémes 3D. L'extension au
3D est assez simple, grace a la compatibilité entre I'équation de continMitéddu

et I'équation conservative du traceur. De plus, en 3D les volumes d'eau autour des
points peuvent étre interprétés comme des hauteurs d'eau en 2D. Les schémas N et PSI
sont introduits d'abord, et les schémas prédicteur correcteur d'ordre un et deux sont
présentés ensuite. Les propriétés obtenues en 2D sont conservées en 3D, avec des con-
ditions de monotonie similaires.

Les schémas sont testés sur des cas simples qui visehkaladmonotonie de la so-

lution et la conservation de la masse. La précision des schémas est évaluée de maniére
qualitative et d'autres cas tests seraient nécessaires pour avoir une validation compléte
des ces nouveaux schémas.
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7.1 Three dimensional formulation

The explicit predictor-corrector schemes introduced in Chapter 5 can be directly adapted to a three
dimensional (3D) case. This is due to the fact that, in 3D free sWag the varying volumes
around points play the role of the varying depth in 2D. The Navier-Stokes equations are solved
using avhite element method as far the 2D case and the discretization of the continuity equation
is presented, in order to deal with the tracer equation. The N and the PSI explicit schemes are later
formulated for a 3D case aMially the predictor-corrector schemes are introduced.

The locally implicit predictor-corrector scheme could be adapted to the 3D case as well and this
step is foreseen after this thesis.

7.1.1 Preliminaries

To solve the Navier-Stokes equations, a sigma transform on the free surface is used. We recall here
some basic notions related to this transformation, which are further analyzed in [53, 82]. We limit
ourselves to the fundamental expressions useful to deal with the 3D tracer transport equation. For
this reason, the solution of the continuity equation is detailed.
As in the 2D case, the tracer equation is decoupled fronvdite equations and the Bubnov-
Galerkin technique is used again to discretize the equations\iiiteeelements are in this case
prisms made up by 6 nodes and characterized by 3 vertical quadrangular sides. The bilinear basis
functions' ; can be broken down as = ' " Y, where' [ is the horizontal basis function which
depends only on coordinatesandy, while" ' is the vertical basis function which depends only
on coordinatez. We note that the horizontal basis function corresponds to the one used in 2D,
presented in Chapter 5. The properties of the lineaRé element basis functions are thus un-
changed for the vertical and the horizontal directions. This notion will be useful for the resolution
of the continuity equation.
A sigma transform (as well as a generalised sigma transform) is used in order to deal with the prob-
lem of the free surface evolution with time. Indeed, with the sigma transform a change of variable
is done so that the bottom elevation is zero and the free surface elevation is equal to 1. The new
variablez is thus d&nhed as: ; b 2z b

z = s b = e (7.1
In case of a generalised sigma transform this is done layer by layer and we have:

Z Zp Z Zp

z = = 7.2
Zip+1 Zip z ( )

wherezj, is the bottom elevation of laygr at pointi, zjy+1 is the elevation of the top of the layer

ip at pointi and z is the height of layeip, dev/ned by z = @ZZ The transformed domain

is called and considering an unstructured 2D mesh, the corresponding 3D mesh is made up by
prisms whose basis are the 2D triangles. The boundary of the transformed domain in

The advection part of the Navier-Stokes equations (and of the tracer equation) is solved, to take
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into account the movement of the mesh due to the free surface evolution, in the transformed mesh.
As a matter of fact the relocalisation is naturally done in this mesh. Thenuhsidh step and the
pressure-continuity step are solved on the real mesh, in a further fractional step.

The choice of solving the advection in the transformed mesh implies that some terms of the original
partial diUerential equations are madid by the new variable . The advection equations are thus
rewritten in order to deal with this issue.

In addition, in the new mesh the velocity vector igetient from the one on the real mesh. Indeed
itisdevnedasd = (U ;V ;W )whereU = U,V =V andW 6 W sinceO:th 6 (;i

Note thatw takes into account the movement of the mesh which triggers the relocalisation.

As the advection terms of the Navier-Stokes equations are treated the transformed mesh, it is

necessary to compute at every time step the vertical velocity:

_ dz _ @z+ U@+V@Z+W@Z

- et Vax Vay Ve (7:3)

The velocityWw appears in the continuity equation U = 0 written in the transformed mesh
(further details can be found in [82]):

! #
1 @z+ @ zU) N @ zV) N @ zW )

z @t @x  yzy @Y iz ¢ @z iy

=0 (7.4)

Hence, multiplying the equation by a test function on the transformed domaamd integrating
by  we obtain:

Z " #
1 @z+ @ zU) N @ zV) N @ zW )

z @t @x yiz it @y Xz @z Xyt

id =0

(7.5)
Discretized as such, the equation whose unknowi isor zW leads to a system that is ill-
conditioned (since there are more unknowns than equations). To overcome this problem we choose
as unknown the variable zW for which we give a spedt devnition. This particular deénition
allows to get the compatibility with the RD schemes used for tracer advection. In this way Equation
(7.5) is recast using the divergence operator and then is integrated by parts in order to p¥ain
solving:
Z Z z

( 2™z ;d =t zU r ;d t zU n ;d 0 i Np

(7.6)
whereNy, represents the number of degrees of freedom. The unknowns are the averay¢ of
along the vertical of each prism, thus the problem is well-posed. Equation (7.6) is striathdsatis
by zwW .
In order to be consistent with the 2D continuity equatiorg on the RHS of Equation (7.6) is
chosen at time". The continuity equation can also be written distinguishing the vertical and the
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horizontal gradients of the test functions:

z z Z
@i _i n+1 ny @i @i
zZW @zd = tz ( z z") ;d z U@X+V@)) d

+ zU n ;d

(7.7)

Now we assume that the boundary integral is known (through the imposition of boundary con-
ditions), so that the RHS of the above equation is known and the only unknown is on the LHS.
The idea is to simplify the LHS, using the fact that= ' ¥ and thus @1 = ih@‘v and to
compute at every layép, the average of zW . The details about the computation of this terms
can be found in [82]. After manipulation, we arrive at a series of linear systems, one per plane,
whose form is:

ngein2  Z h ' _ i 1 Z
Plda zwi,, zwh ., = — 2™t 2" d
j=1 2D 7
@; @;
+ z U=—L+Vv=—->) d
7 @x @y)
zU n ;d
lig
(7.8)
where: 7
j 1 Zip
ZW 41 = . [ zW ( z )]j dz (7.9)

ip Zp 1oz
npoin 2 indicates the number of points on the 2D mesh, as welpgdndicates the 2D domain and

liq is the liquid boundary (on solid boundary tiéx is zero for the impermeability condition).
We show now that Equation (7.8) can be rewritten similarly as Equation (5.23). At Bodation
(7.8) can be recast as:

v v _ Si n+1 n X h
p+i=2  ip =2~ 4 Z i Db (7.10)

The sum ovey represents the sum over all the neighbguo$ pointi on the 2D domain. Then:

};J 1= = ZW :p 1= are the assembled vertidMxes at point computed for the layers
upper and below the nodesolution of Equation (7.8);

R
S = i d isthe volume of the test functions around the poiimt 3D obtained by the

mass-lumping;

fj‘ are the horizontal assembl@dxes, which stem from the assembly of the intermediary
Wixes computed on every prisrd}‘P . As in 2D we have: E‘;P = l'and
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N — H . . H — R @ i R @ i
i = max(min(a;; a&);0) with a = p ZUGLdP P zV@dP andP
the prism on the transformed mesh;

b = zU n

lig

d isthe boundary term

Reorganising the terms we obtain:

Si n+1 n v v X h _
5 4 Zi + a2 p 1=t j +h=0 (7.11)

or in a more compact form:
S X
St A (f+ )+h=0 (7.12)
j

with = };”1 pforj =ip+1=2or j = };) 1=, forj =ip  1=2. Note that herg
indicates the horizontal as well as the vertical neighbours of hoiée note that respect to the

2D case (Equation (5.23)), Equation (7.12) presents two additiees(the vertical ones) and the
variableh is replaced by z. Once the Navier-Stokes equations are solved, the tracer equation is

solved.

7.1.2 Explicit schemes for steady problems

Firstly we d&he the two explicivrst order schemes in time, the N and the PSI. The basis to apply
the RD schemes in 3D dealing witN@te element formulation, were already established by Janin

[90] and Hervouet [82]. Their work ®res how to build the N and the PSI schemes and it is just
recalled here to simplify the explanations on the application of the predictor-corrector schemes in
3D.

However, unlike the 2D case, the initial derivation for the 3D case was based on the direct dis-
cretization of the non conservative continuous transport equation. We present here a formulation
based instead on the conservative equation, where the divergence term is integrated by parts, as
done for the continuity equation. This operation allows to do exactly the same passages done for
the 2D case, whelg the 2D water depth is replaced by, the height of a layer in 3D. The mass

conservation for the tracer on the transformed mesh is written as:
Z Z
( z"tcntt Z2"CMd  + t zCU nd =0 (7.13)

which is equivalent to:

Z Z
( z"tcntt z2"CMd + t r zCud =0 (7.14)
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For every degree of freedamwe solve:

Z Z
( z"tcntt z"¢c™) ;d + t r zCUd =0 (7.15)

As for the continuity equation, we integrate by parts and we obtain:

Z Z Z
( z"cmt  Z"eM L d t zCUr ;d + . zCU nd =0

(7.16)

We perform a mass-lumping on thest term of the LHS and we get:

Z

( z"tcnt z"c") ;d s "ttt z"ch (7.17)

In order to employ th&Vixes of the continuity equation, we choose:

z X

zCU T d = (I+ )G (7.18)

J

Note thatj includes the vertical and the horizontal neighboursarfidC;; is still a general value
of C, in the rangdC;; Cj].
Finally the last term of Equation (7.16) becomes as in 2D:

4

These boundarWixes are treated like in the 2D case: therefore the indilings are multiplied by
the boundary value of tracer, while outgoivigixes are multiplied by the values on the boundaries
given by the scheme. This is summarised as:

B Cpound = Min( by; 0)Cpoung + Max(ky; 0)Ci (7.20)

The conservative equation now reads as:
2 3
X
S Z"™eMt e+ t4 (P + Y)Cy +min(b;0)Chouna + Max(bi;0)CiS =0

J (7.21)

We now repeat all the passages done in 2D, which means that we choose an upwind value for the
variableC;j , that isC; if j is leaving the nodeandC; if j is entering ini. Then the value of
z" in Equation (7.21) is replaced by"*! by the use of the discrete continuity equation (7.12).
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Hence, we obtain:

0 1
n+1 n t @X ; hN . n n X ; ViN . n ny A
! j j
t o
Wmm(hno)(cbound ch)
(7.22)

where irj“N (and }J(;N) correspond to thef (and V) of the continuity equation (7.12). The
superscripN has been added since the scheme obtained corresponds to the N scheme. Indeed this
equation is equivalent to:

wherlg P is the space residual computed on the pidm N are the distribution coécients

and represents the sum over all the prism containing the modée space residual is equal
P 3i
to:

P X% N n n
i=1 j=1
In the 3D case the computation of ¥agents ,’J\‘ is more complicated than for the 2D case; their
expressions can be found in [82]. The derivation for prisms was presented by Janin [90], based on
the work of Bourgois et al. [29] for tetrahedral meshes. As in 2D, the main characteri%‘{if

that they are positive or null. The expression for the N distributioX cants is:
N= L (7.25)

where N is the contribution received by nodef the prismP :

N X N n n N P
i = i (G C)= (7.26)
i
Note that expression (7.22) and expression (7.23) are related by:
; hN . n n X ; ViN . n n X N P
min( " ;O)(C G+ min( i ;0)(C ) = i (7.27)
j j P 3i
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As in the 2D case, the N and the PSI scherderdliin the distribution of the residual to the
nodes of the prism. The PSI scheme \41dd as:

1
2N+l Cin+ Cin - X

S t PSP+ min(b; 0)(Coouna  Cf) (7.28)
P 3i
with the PSI limiter equal to:
psi _ pmax(0; N
. = 7.29
! max(0; N (7.29)
i2P

The scheme can also be written directly using t,f\%' , which are reduced respect to tH}é. The
conservation is therefore guaranteed:

X% N n n X% PSI n n
i (G G)= i~ (G C) (7.30)
i=1 j=1 i=1 j=1
Both schemes are subject to a monotonicity condition, determined by the study of the positive
coeX cients. The time step condition for the N scheme is equal to:

S zn+1
t P B N . (7.32)
N min(b;0)
P 3ij=1
For the PSI scheme we obtain:
X n+1
t Si 2 (7.32)
P P PSI ;
i min(h; 0)
P 3ij=1

It is worth noticing that the time step for the PSI scheme will be larger than the one for the N
scheme and the stability of the PSI scheme can be ensured also @iy the

In this section we have shown that the work done in 2D to show that the RD schemes are conser-
vative and monotone, is equivalent in 3D if we repladey z (it is mandatory taking them at

the same time).

7.1.3 Predictor-corrector schemes

The predictor-corrector schemes can be built in 3D, once the compatibility between the 2D and the
3D formulations has been shown for the explicit N and PSI schemes. Inde&ibrthelene in 2D

to show that the predictor-corrector schemes are monotone and conservative, hold true in 3D. This
is mainly due to the fact that the advection schemes are based on the conservative tracer equations
where the divergence form is treated with an integration by parts as it is done for the continuity
equation, in 2D as well as in 3D.
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7.1.3.1 First order predictor-corrector scheme

TheVrst order predictor-corrector scheme is:

8
cC Ccn P .
3 S zn+1'7t' = PSIP(Cc")  min(b;0)(Cphouna CI")
P 3i
N+l p (7.33)
.B S z"1 7C' . G = iPSI P (C";C ) min(b;0)(Chounda  C")
P 3i

The PSiI distribution coecients are retrieved with Equation (7.29), but we insist on the fact that the
space residual® (C") is diUerent from the space-time residudl (C";C ). Indeed the space
residual is computed with Equation (7.24) and the contributidnare computed with formula

(7.26). The space time residual is instead equal to:
X s C. cn XX
N (o o e R e j(chocn (7.34)

i2P 6 t i=1j=1

whereSy is the surface of the triangle which is the basis of the prism. We also have:

X
P(che)= N (7.35)
i2P
with: ”
"= %T S O tC' e o) (7.36)
Since the monotonicity analysis is based on the study of the positiXeierds and on the idea

that the PSI limiter operates a reduction of the type:
iPSI = iN iPSI : iPSI 2 [0’ 1] (737)

then, the results obtained for the 2D case can be straightforwardly applied to the 3D case.
The time step criterion to preserve the monotonicity is written as:

: n+1
Si 2 i (7.38)

P : P '
2 min( {™;0)+  min( §;0)+min(h;0)
j j

The iterative version of the scheme presented in Chapter 5, Section 5.4, is also possible in 3D.
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7.1.3.2 Second order predictor-corrector scheme

The second order predictor-corrector scheme reads as:

8 n
. ! P
E Si Zn+1¥ - iPSI P(Cn) min(h;o)(cbound Cin)
P3i
n+1l
! . P
O PSI P(CMC ) min(biO)Cooma (L )G C))
P3i
(7.39)
with:
P n X P n X X6 n n X6 XG n n
(C") = in (C7) = i (G CY)= i (G CY) (7.40)
i2P i2P j=1 i=1 j=1
and
X
P(ch.c)= N (7.41)
i2P
X s c. cn X X0
= % Zn+1 ! t ! + (1 ) ij (Cl Cjn) + ij (Cl CJ )
i2P i=1 j=1 i=1 j=1
(7.42)
As before, the contributions of the N scheme are:
S c. Cnh x6 X6
w(ChC)= T M I ) (@ ) (G Q) (743)
j=1 i=1
Given the following time step:
: n+l
¢ 1 p 32 (7.44)

2 " minC {700 " min( }¥;0)  min(a;0)
j ]

and choosing = 1=2in Equation (7.39), the scheme preserves the monotonicity under the follow-

ing conditions orC : 8
< 2Cin Cmax Ci Zcin Cmin
2cmin P 2cmax  Cn (7.45)
+ C +
3 3 ! 3 3

whereC™3 = max; (C"; C") andC™" = min; (C";C"). The iterative version of the second-
order scheme can be straightforwardly applied to the 3D case.
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7.2 VerNMcation and validation of the 3D RD schemes

The Wrst and second order predictor-corrector schemes are validated on simple test cases which
aim to check the mass conservation property and the monotonicity. The accuracy of the schemes
is only qualitatively assessed. The two test cases are issued from the 2D examples yet in this case
thez coordinate is added. The nomenclature presented in Chapter 6 is maintained in this Chapter.

7.2.1 Rotating cone

The test is the same as in Chapter 6 for the 2D and in this case the variabl®teed denstant

along the vertical. The test allows to assess the preservation of the maximum principle and to
evaluate the numericaldision of the scheme.

The mesh is the same as the 2D case, with six planes added on the vertical direction. The velocity
Veld is unchanged and the initial distribution of the tracer function is:

[(x 15)2+(y 10:2)?]
2

Co(x;y)=e 8ip

Results are observed after 1 period of rotation, like in 2D. The maximum and the minimum values
obtained with the 3D schemes are shown in Table 7.1. As we can see, the general trend observed
in 2D is reproduced also in 3D, showing that the predictor-corrector schemes are more accurate
than the N and the PSI scheme. In particular, iterating on the corrector step, the accuracy of the
standard predictor-corrector scheme is increased. Even if the third dimension is Naasigimi

Table 7.1: Rotating cone test: minimum and maximum values of concentration.
N \ PSI \ PC2 \ PC1 \ PCZ—5it\ PC1-5it

Min(C) | 0.0 0.0 0.0 0.0 0.0 0.0

Max(C) 0.1794 0.2134 0.4934 0.5074‘ 0.6512| 0.7204

this case, the test is a preliminary requisite for more complex cases.

7.2.2 Open channélw between bridge piers with pollutant

The test is issued from the 2D test case presented in Chapter 6. It is mainly used in order to assess
monotonicity and the mass conservation of the numerical schemes.

The 2D geometry is unchanged avice horizontal layers are added in the vertical direction (see

the mesh in Figure 7.1). The topography and/ve conditions are the same as the 2D. The tracer

is released with a concentrationbf/l at the inletfor 2m 'y 2 m (for every layer), while

at the outlet we leave a free boundary condition. The duration of the simulation is set to 200 s.
Figure 7.2 shows some slices on the computational domain and two of them are chosen to analyse
the results, the slice at = 1 m and the slice ak = 13:05m. Figure 7.3 shows the results
obtained with the N, PSI, PC1, PC2, PC1-5it and PC2-5it for the glice all m. The isolines are

traced for the concentration variable and we observe that the number of isolines gradually increases
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Figure 7.1: Open chaniiw between bridge piers with pollutant;: 3D mesh.

Figure 7.2: Open chann&w between bridge piers with pollutant: location of the slices.

from N to PSI, as well as from PSI to PC1 or PC2, for which the maximum value of concentration

is equal to 0.6 after the bridge piers. The PC1 and PC2 show however very similar results, almost
identical. We note that the maximum value is better estimated with the PC1-5it and the PC2-5it.
Figure 7.4 shows the results obtained with the N, PSI, PC1, PC2, PC1-5it and PC2-5it for the slice at
x = 13:075m. Even in this case the numericaldsion is strongly reduced with the new schemes,

in particular we note that the iterated version of the PC1 and the PC2 improve the results obtained
with the other schemes. The mass balance is computed as in the 2Mgggeis the mass at

the beginning of the time stepl;, is the mass introduced (and leaved) by the boundaries during
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Figure 7.3: Open chann&w between bridge piers with pollutant: results obtained with the nu-
merical schemes for the slicexat 1 m.

Figure 7.4: Open chann&w between bridge piers with pollutant: results obtained with the nu-
merical schemes for the slicexat 13:075m.

the time step (the sign is negative when the quantity leaves the dorkigy,is the mass at the
end of the time step. Table 7.2 shows that all schemes are mass conservative. The maximum and
minimum values are never exceeded during the simulation, hence the monotonicity is preserved.

7.3 Summary

In this chapter the 2D predictor-corrector schemes are applied to 3D geometries. Firstly the discrete
continuity equation is presented in 3D. This allows linking\thite element technique used in 2D

to the one used in 3D. Then, the explicit schemes for steady problems are presented, showing that
the extension to 3D of the schemes is straightforward, since the volumes around points in 3D
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Table 7.2: Open channdw between bridge piers with pollutant: mass balance for tbereint
schemes.

M start [g] M end [g] Min [g] M [g]

N 0 198.46000198.4600 0.1413213E-08
PSI 0 186.1082 186.1082 -0.4176970E-05
PC1 0 187.8549 187.8549 0.2701256E-08

PC1-5it 0 185.3122 185.3122 0.2616304E-08
PC2 0 187.8683 187.86838 0.3092794E-08
PC2-5it 0 185.3041 185.3041 0.1630582E-08

are equivalent to the water depth in 2D. Formulations are thus very similar, even concerning the
monotonicity condition. Finally, therst order and the second order predictor-corrector schemes
are written in 3D, as well as their monotonicity condition. These schemes are assessed on two
simple tests: the rotating cone and the open chardwlbetween bridge piers. These cases allows
verifying the monotonicity of the schemes and the mass conservation. More complicated tests are
necessary to complete the validation of these schemes, which seem very promising.



Chapter 8

Conclusions and future work

Dans cette these des nouveaux schémas de convection pour le transport scalaire dans
un écoulement a surface libre ont été proposés.

Les diérentes problématiques liées a la discretisation de I'équation de transport avec
des méthodes aux volun\ss et aux résidus distribués ont été exposées. Concernant

les schémas VF, une amélioration est trouvée en utilisant un schéma découplé avec un
solveur HLLC. Cette solution permet de réduirelasitbn numérique et d'alléger les

colts de calcul. De plus la technigue MUSCL est utilisée pour augmenter |'ordre en
espace du schéma.

L'application des schémas RD au transport scalaire dans le cadre des équation de
Saint-Venant représente une nouveauté. Les techniques pour améliorer l'ordre dans
des cas non stationnaires sont appliquées avec succés. De plus des améliorations pour
augmenter la précision des schémas sont développées. Par rapport aux schémas exis-
tants, les conditions de monotonie des schémas &&n¢mlies. Pour traiter des cas

réels avec des bancs découvrants, un nouvau schéma RD localement implicite est aussi
proposeé.

Les diérents schémas sont testés sur une série de cas tests et les résultats montrent qu'
ils sont &ectivement beaucoup plus précis, avec cependant des ordres de convergence
assez variés. En particulier, le schéma adapté aux bancs découvrants n'est pas d'ordre
deux et un systéme linéaire doit étre résolu.

Les schémas RD 2D sont facilement adaptés au cas 3D. Cette extension est validée
sur des cas préliminaires simples mais leurs bonnes propriétés en font des schémas
prometteurs sur des cas plus complexes.

Des études sont en cours pour améliorer encore le caractére upwind des schémas ou
pour s'dranchir de systémes linéaires a résoudre.
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8.1 Concluding remarks

In this thesis, advanced numerical schemes for convection problems have been developed and
assessed. The focus is kept on two numerical methodgniteevolumes and the residual distri-
bution.

For theVnite volume HLLC scheme, the major novelty consists in decoupling the tracer equation
from the hydrodynamic equations, obtaining bett¥icency in terms of accuracy and numerical

costs. To increase the space accuracy a MUSCL scheme has also been introduced in the decoupled
formulation.

The application of the residual distribution schemes to the depth-averaged transport equation rep-
resents a novelty for this family of schemes, even if they have been already applied to the shallow
water equations. The existing schemes are reformulated in order to be compatible with the dis-
cretized continuity equation. Derent strategies to reduce the numericiudion in time depen-

dent problems have been studied and compared in this work. A new iterative procedure has been
introduced to enhance the accuracy of the scheme. For the schemes proposed in this thésis, speci
monotonicity conditions have been found and proved. These conditiondJarerdifrom the one
proposed in the literature, due to the depth-averaged context andter@di monotonicity anal-

ysis. In order to treat real cases, a new locally implicit scheme able to deal with wetting and drying
phenomena has been proposed and the number of linear systems that really need to be solved has
been reduced. The locally implicit scheme scheme has the properties that were specially looked for
in this thesis:

free surface context;

mass conservation;

monotonicity;

unconditional stability even in dry zones;

compatibility with domain decomposition parallelism.

It can thus be considered as the best candidate for industrial application.

A number of test cases are presented to validate and compare the new convection schemes. Re-
sults show that these schemes are suitable to steady and unsteady transport problems. In addition
the schemes are all mass conservative and they preserve the maximum principle, which is very
important in convection phenomena. The dam-break with dry bed and the Thacker test case are
presented to validate the schemes in case of wetting and drying problems, in presence of tracers.
A good agreement between the numerical results and the exact solution is shown. An industrial
case of a real river characterized by wetting and drying phenomena is carried out to check the
robustness of the code under real conditions. In general, the numerical results agree with the
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experimental data, showing in particular that the scheme is able to capture with accuracy the max-
imum measured values of tracer.

An overall comparison between the FV and the RD methods shows that the RD schemes are more
eX cient than the FV schemes for the same degree of accuracy. However, in terms of precision
the schemes are comparable. The extra value of the new RD schemes is Yoarspaaionicity
condition which is not too much restrictive.

The application of the RD schemes to the 3D case is also presented in this work. As explained, the
3D extension does not present issues from a theoretical and numerical point of view. The validation

is done on preliminary test cases.

The new RD schemes presented here improve the existing N, PSI and NERD schemes. This is also
an advancement in the Telemac system and the new schemes have already been used in a real
study which could not be done before due to numeridalsion problems.

8.2 Perspectives

The numerical schemes presented in this thesis could be improved in various ways.

For the FV schemes, other formulations (like [33]) to apply the limiter should be taken into account.
Then, second order schemes in time (other than the Newmark and the Heun method) should also
be tested in order to avoid spoiling the second order space accuracy. This point should be addressed
with particular attention to the cost of second order discretization techniques. Regarding mono-
tonicity, an appropriate condition when using the MUSCL technique could be found following the
ideas of Calgaro et al. [36]. In addition, in order to apply the scheme on real cases the paralleliza-
tion should be done.

For the RD schemes, additional work would be necessary to improve the local implicit formulation
for wetting and drying phenomena. The solution of a linear system represents at the moment a
drawback for this scheme in terms of CPU time. It would be suitable to replace the linear system
by a completely explicit scheme, still able to cope with wetting and drying problems. Besides, the
scheme is still not perfectly second order in space and in time. This is another drawback which
should be improved. Other improvements concern thus a better upwinding (so far only the explicit
part of theWixes is upwinded), or optimisation, e.g. by avoiding to solve a linear system.

To better improve the accuracy of the second order RD schemes, third order schemes, as proposed
in [4] could be tailored to the depth-averaged transport. Yet in this case even more attention should
be focused on the monotonicity which is still a problem for these schemes.

A possible improvement of existing schemes could be obtained exploiting the good accuracy prop-
erties when the edges of the mesh are aligned withWtive An adaptive mesh which follows the

VWw paths could thus mainly reduce the numericabgion.

For the 3D case, the model should be tested on several and more complex cases, whersiafso di
and turbulence are involved. In general, the behaviour of the scheme should be checked coupling
the convection to the other possible phenomena lidasitbn, reaction, adsorption or other more
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complex kinetic models which should be appropriate modeled.
Finally, the extension of the locally implicit scheme for wetting and drying phenomena should also
be adapted to the 3D and tested, it was not done here for lack of time.



Appendix A

Monotonicity of the semi implicit
predictor-corrector scheme

To demonstrate the monotonicity ¢f** , we introduce:

G =Cmin + (Cmax Cmin)

Cin =Cmin + (Cmax Cmin)

(A.1a)
(A.1b)

with and in the rangd0; 1], sincec; andc” are included in the rande™" ; ¢"#]. We want

to prove that:
d C| + dncn - (d + dn)claver

with:
d =Sih™™t i fighMtt
1
1 i X
d"=f;ish™ +@ ) t@ i min( i ;0) + min( by; 0)A

J

enforcingd<d + d” < 1andc®®" in the ranggc™" ; cmax].
And we denote:
0 1

X
=d +d" =sh™ "+@ ) t@  min( j;0)+min(h;0)A
j

It eventually yields:

@ f)ShM™ T+ (FiSshMt T+ ShM*l iy= caver

(A.2)

(A.3a)

(A.3b)

(A.4)

(A.5)
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or, using d¥hitions (A.1):

c:iaver: Sihin+1 i Cmin + (Cmax Cmin) +Sihin+l i Cmin + (Cmax Cmin)

fisihin+1 i Cmin + (Cmax Cmin) fiSihinJrl i Cmin + (Cmax c:min)

(A.6)
which is:
h [
, Shi*t i+ (@ f)shMt T+ fighMt _
len + (Cmax lel’l ) - Ciaver
(A.7)
We thus need to have:
0<  +( )4 St < (A.8)
If > the positivity of  + ( )(1 fi)Sihi”+1 " is ensured. Hence to show that this
guantity is less than the worst situation happens whén= 0, in which case we get:
+( )Sih!*t i< (A.9)
which is also:
Sih™ i< (@ )+ SihMt (A.10)
Now, we assume that the time step was chosen so that:
1 1 S hstart
tstab < 57— = ! (A.11)
| max( {;0) + max(h;0)
j
which gives the property:
1 ,
> 1 3 ST (A.12)
Hence, the most demanding condition is:
1
< 4+ _ A.l
Now we analyse the case< , for which we just need to ensure the positivity of the term
+( 1 f)S h{”l ", The worst condition is again = 0, which corresponds to:
0<  +( )Sthi*t (A.14)

The stronger condition is again obtained with the minimum

5 < (A.15)
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Hence, the general condition which must be ensured is:

< (A.16)

+ —
2

NI =

—<
2
This condition corresponds to:
1 1
g+ 5 A Q@ <cp<cl+ o™ ) (A.17)

Here below, we also show that this property is already ensureg Wwihen using a semi-implicit
predictor. Indeed the predictor step is:

X
Sihin+l (¢ )= t g+ J-)cjn i (1 i)' min( j;0)
i (A.18)
tmin(b;0) (Coouna  (iG +(1 )a")

The latter is equivalent to:

h i
Si hin+1 "+ i t( min( j;0) min(b;0)) (¢ C|n) t min(k; 0) (Chound C|n)
X

t ig+@ g g min( ij;0)
(A.19)
Denoting = t( min( ;,;0) min(k;0)), we can write:
@ )< sh™ '+ g shT T+ < (@™ ) (A20)
that is:

n

d

(€™ ) <c; <cl+ > )  (A21)

+
Sihin+1 T Sihin+1 B

The maximum ofw(c’“i” c¢) is obtained with the maximum of.

Under condition (A.11), the maximumgg— which is less thaf. Hence we get:

1 . 1
d'+ > g oq <cj<ci+ E(Cimax ¢ (A.22)

which is exactly the condition (A.17), found for the corrector, but also the condition found to do
iterations on tha/st order predictor corrector scheme.



172 APPENDIX A: MONOTONICITY OF THE SEMI IMPLICIT PC SCHEME




Bibliography

[1] URLhttp://opentelemac.org/

[2] R. Abgrall. Toward the Ultimate Conservative Scheme: Following the Qimsmnal of
Computational Physic&67(2):277-315, March 2001. ISSN 00219991. doi: 10.1006/jcph.2000.
6672. URDttp://linkinghub.elsevier.com/retrieve/pii/S0021999100966725

[3] R. Abgrall. Essentially non-oscillatory Residual Distribution schemes for hyperbolic prob-
lems. Journal of Computational Physjc214(2):773-808, May 2006. ISSN 00219991.
doi: 10.1016/j.jcp.2005.10.034. iiRL/linkinghub.elsevier.com/retrieve/pii/
S0021999105004730

[4] R. Abgrall, G. Baurin, P. Jacq, and M. Ricchiuto. Some examples of high order simu-
lations parallel of inviscid®ws on unstructured and hybrid meshes by residual distri-
bution schemes. Computers & Fluids61:6-13, May 2012. ISSN 00457930. doi: 10.
1016/j.comyiid.2011.05.014. URLp://linkinghub.elsevier.com/retrieve/pii/
S0045793011001848

[5] Rémi Abgrall and Timothy Barth. Residual distribution schemes for conservation laws via
adaptive quadratur&SIAM Journal on Scieiti Computing24(3):732—769, 2003. Uik
/lepubs.siam.org/doi/abs/10.1137/S106482750138592X

[6] Rémi Abgrall and Mohamed Mezine. Construction of second order accurate monotone and
stable residual distribution schemes for unstéatily problems.Journal of Computational
Physics188(1):16-55, June 2003. ISSN 00219991. doi: 10.1016/S0021-9991(03)00084-6. URL
http://linkinghub.elsevier.com/retrieve/pii/S0021999103000846

[7] Rémi Abgrall and Mohamed Mezine. Construction of second-order accurate monotone and
stable residual distribution schemes for steady problémsnal of Computational Physijcs
195(2):474-507, April 2004. ISSN 00219991. doi: 10.1016/).jcp.2003.00022/ URL
linkinghub.elsevier.com/retrieve/pii/S0021999103005400

[8] Rémi Abgrall and Philip L. Roe. High orddictuation schemes on triangular meshes.
Journal of Sciertc Computing 19(1-3):3-36, 2003. URIp://link.springer.com/
article/10.1023/A:1025335421202



174 BIBLIOGRAPHY

[9] F. Angrand, A. Dervieux, J.A. Désidéri, and R. Glowinski, editdusnerical methods for
the Euler Equations faliid dynamics SIAM, 1985.

[10] V. I Arnold.Lectures on Partial Derential EquationsPHASIS, Moskva, 1997. ISBN 978-5-
7036-0035-1.

[11] L. Arpaia, M. Ricchiuto, and R. Abgrall. An ALE Formulation for Explicit Runge—Kutta
Residual DistributionJournal of Scientc Computing63(2):502-547, May 2015. ISSN 0885-
7474, 1573-7691. doi: 10.1007/s10915-014-991(hGp:MRK.springer.com/10.
1007/s10915-014-9910-5.

[12] Emmanuel Audussdlodélisation hyperbolique et analyse humérique pour les écoulements
en eaux peu profondeBhD thesis, Université Paris VI Pierre et Marie Curie, 2004.

[13] Emmanuel Audusse and Marie-Odile Bristeau. Transport of Pollutant in Shallow Water. A
Two Time Steps Kinetic MethoBSAIM: Mathematical Modelling and Numerical Analysis
37(2):389-416, March 2003. ISSN 0764-583X, 1290-3841. doi: 10.1051/m2an:2003034. URL
http://www.esaim-m2an.org/10.1051/m2an:2003034 .

[14] Emmanuel Audusse and Marie-Odile Bristeau. A well-balanced positivity preserving
“second-order” scheme for shallow waiémws on unstructured meshedournal of Com-
putational Physic206(1):311-333, June 2005. ISSN 00219991. doi: 10.1016/j.jcp.2004.12.016.
URLhttp://linkinghub.elsevier.com/retrieve/pii/S0021999104005157

[15] Emmanuel Audusse, Frangois Bouchut, Marie-Odile Bristeau, Rupert Klein, and Benoit
Perthame. A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for
Shallow Water FlowsSIAM Journal on Scieit Computing25(6):2050—-2065, January 2004.
ISSN 1064-8275, 1095-7197. doi: 10.1137/S106482750343h0p0/ehlRE.siam.
org/doi/abs/10.1137/S1064827503431090 .

[16] Andrea Balzano. Evaluation of methods for numerical simulation of wetting and dry-
ing in shallow watenMdw models. Coastal Engineering34(1-2):83-107, July 1998. ISSN
03783839. doi: 10.1016/S0378-3839(98)0001 &ttp:lRkinghub.elsevier.com/
retrieve/pii/S0378383998000155

[17] A.J.C. Barré de Saint Venant. Théorie du mouvement non-permanent des eaux, avec appli-
cation aux crues des riviéres et a l'introduction des marées dans I€ortiptes Rendus des
séances de I'Académie des Sciences, Fa&)id47-154, 1871.

[18] Timothy Barth and Dennis Jespersen. The design and application of upwind schemes on
unstructured meshes. ATth Aerospace Sciences Meefingerican Institute of Aeronautics
and Astronautics, January 1989. doi: 10.2514/6.1989-36&ttd/Ricc.aiaa.org/
doi/abs/10.2514/6.1989-366



BIBLIOGRAPHY 175

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

P. Batten, C. Lambert, and D. M. Causon. POSITIVELY CONSERVATIVE HIGH-
RESOLUTION CONVECTION SCHEMES FOR UNSTRUCTURED ELEMAf&T&-

tional Journal for Numerical Methods in EngineeyiG§(11):1821-1838, June 1996. ISSN
0029-5981, 1097-0207. doi: 10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.(
CO;2-E. URhttp://doi.wiley.com/10.1002/%28SIC1%291097-0207%2819960615%
2939%3A11%3C1821%3A%3AAID-NME929%3E3.0.CO%3B2-E

P. Batten, N. Clarke, C. Lambert, and D. M. Causon. On the choice of wavespeeds for the
HLLC Riemann solvelSIAM Journal on Sciemt Computing18(6):1553-1570, 1997. URL
http://epubs.siam.org/doi/abs/10.1137/S1064827593260140

P. Batten, M.A. Leschziner, and U.C. Goldberg. Average-State Jacobians and Implicit Meth-
ods for Compressible Viscous and Turbulent Flowsurnal of Computational Physijcs
137(1):38-78, October 1997. ISSN 00219991. doi: 10.1006/jcph.1997.5188. URL
/Ninkinghub.elsevier.com/retrieve/pii/S0021999197957934

Lorenzo Begnudelli and Brett F. Sanders. Unstructured Grid Finite-Volume Algorithm
for Shallow-Water Flow and Scalar Transport with Wetting and Dryidgurnal of Hy-

draulic Engineering 132(4):371-384, April 2006. ISSN 0733-9429, 1943-7900. doi: 10.
1061/(ASCE)0733-9429(2006)132:4(371)httptRascelibrary.org/doi/10.1061/
%28ASCE%290733-9429%282006%29132%3A4%28371%29

Fayssal Benkhaldoun, Imad Elmahi, and Mohammed Seaid. Well-bal4nitedol-

ume schemes for pollutant transport by shallow water equations on unstructured meshes.
Journal of Computational Physic26(1):180-203, September 2007. ISSN 00219991.
doi: 10.1016/j.jcp.2007.04.005. httRl/linkinghub.elsevier.com/retrieve/pii/
S0021999107001490

J.-P. Benque, G. Labadie, and J. Ronat. Une méthode d'é€nientsur la résolution
des équations de Navier-Stokes couplées a une équation thermidqerecéedings of 4th
International Symposium ovhite element methods f&id mechanics problem$okyo,
Japan, July 1982.

Alfredo Bermudez and Maria Elena Vazquez-Cendén. Upwind methods for hyperbolic con-
servation laws with source term&Computers & Fluids23(8):1049-1071, November 1994.
ISSN 00457930. doi: 10.1016/0045-7930(94)90004th:iRkinghub.elsevier.
com/retrieve/pii/0045793094900043

Christophe Berthon. Robustness of MUSCL schemes for 2D unstructured dasimed.
of Computational Physic218(2):495-509, 2006. bfRi.//www.sciencedirect.com/
science/article/pii/S0021999106001161

P. Binning and M.A. Celia. A forward patrticle tracking Eulerian—Lagrangian Localized
Adjoint Method for solution of the contaminant transport equation in three dimensions.



176 BIBLIOGRAPHY

Advances in Water Resourc@$(2):147-157, February 2002. ISSN 03091708. doi: 10.
1016/S0309-1708(01)00051-3.htyRLIinkinghub.elsevier.com/retrieve/pii/
S0309170801000513

[28] Frangois Bouchulonlinear Stability of Finite Volume Methods for Hyperbolic Conservation
Laws Frontiers in Mathematics. Birkh&user Basel, Basel, 2004. ISBN 978-3-7643-6665-0 978-
3-7643-7792-2. URttp://link.springer.com/10.1007/b93802

[29] G. Bourgois, H. Deconinck, P.L. Roe, and R. Struijs. Multidimensional upwind schemes
for scalar advection on tetrahedral meshes. In Hirsch et al., ediarputational Fluid
DynamicsElsevier Science Publisher, 1992.

[30] Scott F. Bradford and Brett F. Sanders. Finite-Volume Model for Shallow-Water
Flooding of Arbitrary Topography. Journal of Hydraulic Engineeringl28(3):289—
298, March 2002. ISSN 0733-9429, 1943-7900. doi: 10.1061/(ASCE)0733-9429(2002)
128:3(289). URAMttp://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%
282002%29128%3A3%28289%29

[31] M.O. Bristeau and B. Coussin. Boundary conditions for the shallow water equations solved
by kinetic schemes. Report no 4282, INRIA, 2001.

[32] P. Brufau, P. Garcia-Navarro, and M. E. Vazquez-Cendén. Zero mass error using unsteady
wetting—drying conditions in shalloWdws over dry irregular topographyinternational
Journal for Numerical Methods in Flujd&5(10):1047-1082, August 2004. ISSN 0271-2091,
1097-0363. doi: 10.10@2729. URAhttp://doi.wiley.com/10.1002/fld.729

[33] Thierry Blard and Stéphane Clain. Monoslope and multislope MUSCL methods for
unstructured meshes.Journal of Computational Physic229(10):3745-3776, May 2010.
ISSN 00219991. doi: 10.1016/j.jcp.2010.01.026tpuUMbkinghub.elsevier.com/
retrieve/pii/S0021999110000495

[34] Shintaro Bunya, Ethan J. Kubatko, Joannes J. Westerink, and Clint Dawson. A wetting and
drying treatment for the Runge—Kutta discontinuous Galerkin solution to the shallow water
equationsComputer Methods in Applied Mechanics and Engineer@8{17-20):1548-1562,
April 2009. ISSN 00457825. doi: 10.1016/j.cma.2009.01.008p:MiRkinghub.
elsevier.com/retrieve/pii/S0045782509000383

[35] J. Burguete, Pilar Garcia-Navarro, and J. Murillo. Preserving bounded and conservative solu-
tions of transport in one-dimensional shallow-waféw with upwind numerical schemes:
Application to fertigation and solute transport in rivehsternational journal for numerical
methods inMids 56(9):1731-1764, 2008. btRL//onlinelibrary.wiley.com/doi/
10.1002/fld.1576/abstract



BIBLIOGRAPHY 177

[36] Caterina Calgaro, Emile Chane-Kane, Emmanuel Creusé, and Thierry Goutiosta--
bility of vertex-based MUSCVhite volume schemes on unstructured grids: Simulation
of incompressibl&dws with high density ratios.Journal of Computational Physjic229
(17):6027-6046, August 2010. ISSN 00219991. doi: 10.1016/j.jcp.2010.04tG84. URL
/llinkinghub.elsevier.com/retrieve/pii/S0021999110002214

[37] Alberto Canestrelli and Eleuterio F. Toro. Restoration of the contact surface in FORCE-type
centred schemes |I: Homogeneous two-dimensional shallow water equatdvasices in
Water Resourced7:88-99, October 2012. ISSN 03091708. doi: 10.1016/j.advwatres.2012.03.
019. URIbttp://linkinghub.elsevier.com/retrieve/pii/S0309170812000747

[38] D. Caraeni and L. Fuchs. Compact third-order multidimensional upwind discretization for
steady and unsteadfw simulationsComputers & Fluid84(4-5):419-441, May 2005. ISSN
00457930. doi: 10.1016/j.ct¥ih2004.03.002. URttp://linkinghub.elsevier.
com/retrieve/pii/S0045793004000416

[39] L. Cea and M.E. Vazquez-Cenddn. UnstructMre volume discretisation of bed fric-
tion and convectivéNix in solute transport models linked to the shallow water equa-
tions. Journal of Computational Physic231(8):3317-3339, April 2012. ISSN 00219991.
doi: 10.1016/j.jcp.2012.01.007.iiRL/linkinghub.elsevier.com/retrieve/pii/
S0021999112000289

[40] L. Cea and M. E. Vazquez-Cenddn. Unstructividtk volume discretization of two-
dimensional depth-averaged shallow water equations with porositernational Jour-
nal for Numerical Methods in Fluidsages 903—-930, 2009. ISSN 02712091, 10970363. doi:
10.10024.2107. URhttp://doi.wiley.com/10.1002/fld.2107

[41] Michael A. Celia, Thomas F. Russell, Ismael Herrera, and Richard E. Ewing. An
Eulerian-Lagrangian localized adjoint method for the advectibasibn equation. Ad-
vances in Water Resourcds3(4):187-206, December 1990. ISSN 03091708. doi: 10.
1016/0309-1708(90)90041-2. hitRL/linkinghub.elsevier.com/retrieve/pii/
0309170890900412

[42] Alina Chertock and Alexander Kurganov. On a hybviite-volume-particle method.
ESAIM: Mathematical Modelling and Numerical AnaJ\&#¢6):1071-1091, November 2004.
ISSN 0764-583X, 1290-3841. doi: 10.1051/m2an:20040%ip:/MRiw.esaim-m2an.
0rg/10.1051/m2an:2004051.

[43] Alina Chertock, Alexander Kurganov, and Guergana Petrova. Finite-Volume-Particle Meth-
ods for Models of Transport of Pollutant in Shallow Waleurnal of Scieriic Computing
27(1-3):189-199, June 2006. ISSN 0885-7474, 1573-7691. doi: 10.1007/s10915-005-9060-x. UR
http://link.springer.com/10.1007/s10915-005-9060-x



178

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Stephane Clain and Vivien Clauzon? Lstability of the MUSCL methods. URLtps:
//hal.archives-ouvertes.fr/hal-00329588/

R. Courant, K.O. Friedrichs, and H. Lewy. On the partigrdntial equations of mathemat-
ical physicslBM Journal (11):215-234, 1967.

Richard Courant, Eugene Isaacson, and Mina Rees. On the solution of nonlinear hyperbolic
diUerential equations bynite diUerencesCommunications on Pure and Applied Mathemat-

ics 5(3):243-255, August 1952. ISSN 00103640, 10970312. doi: 10.1002/cpa.3160050303. URL
http://doi.wiley.com/10.1002/cpa.3160050303

A. Csik and H. Deconinck. Space-time residual distribution schemes for hyperbolic con-
servation laws on unstructured line¥nite elements.International Journal for Numeri-

cal Methods in Fluids10(3-4):573-581, September 2002. ISSN 0271-2091, 1097-0363. doi:
10.10024.315. URDbttp://doi.wiley.com/10.1002/fld.315

Arpad Csik, Mario Ricchiuto, and Herman Deconinck. A Conservative Formulation of the
Multidimensional Upwind Residual Distribution Schemes for General Nonlinear Conserva-
tion Laws. Journal of Computational Physjick79(1):286-312, June 2002. ISSN 00219991.
doi: 10.1006/jcph.2002.7057. btRL//linkinghub.elsevier.com/retrieve/pii/
S0021999102970579

J.A. Cunge, F.M.Jr. Holly, and A. Verweractical aspects of computational river hydraulics
Pitman Advanced Publishing Program, London, 1980.

Clint Dawson and Jennifer Proft. Coupling of continuous and discontinuous Galerkin meth-

ods for transport problem&omputer Methods in Applied Mechanics and Engineetfiig
(29-30):3213-3231, May 2002. ISSN 00457825. doi: 10.1016/S0045-7825(02)00257-8. URL
http://linkinghub.elsevier.com/retrieve/pii/S0045782502002578

Clint Dawson and Jennifer Proft. Discontinuous and coupled continuous/discontinuous
Galerkin methods for the shallow water equationSomputer Methods in Applied Me-
chanics and Engineerind91(41-42):4721-4746, September 2002. ISSN 00457825. doi:
10.1016/S0045-7825(02)00402-4. htifRAlinkinghub.elsevier.com/retrieve/
pii/S0045782502004024.

P. De Palma, G. Pascazio, G. Rossiello, and M. Napolitano. A second-order-accurate mono-
tone implicitWictuation splitting scheme for unsteady probledwurnal of Computational
Physics208(1):1-33, September 2005. ISSN 00219991. doi: 10.1016/j.jcp.2004.11.023. URL
http://linkinghub.elsevier.com/retrieve/pii/S002199910400484X

Astrid DecoeneHydrostatic model for three-dimensional free surféfives and numerical
schemes Theses, Université Pierre et Marie Curie - Paris VI ; Laboratoire Jacques-Louis
Lions, May 2006. URittps://tel.archives-ouvertes.fr/tel-00180003



BIBLIOGRAPHY 179

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Herman Deconinck and Mario Ricchiuto. Residual Distribution Schemes: Foundations and
Analysis. In Erwin Stein, René de Borst, and Thomas J. R. Hughes, Editgcéopedia of
Computational Mechanicgdohn Wiley & Sons, Ltd, Chichester, UK, October 2007. ISBN 0-
470-84699-2 978-0-470-84699-5 0-470-09135-5 978-0-470-09h@p:7dbiRiley.
com/10.1002/0470091355.ecm054

Olivier Delestre, Carine Lucas, Pierre-Antoine Ksinant, Frédéric Darboux, Christian La-
guerre, T.-N.-Tuoi Vo, Francois James, and Stéphane Cordier. SWASHES: a compilation
of shallow water analytic solutions for hydraulic and environmental studies: ANALYTIC
SOLUTIONS FOR SHALLOW WATER EQUATIONE&rnational Journal for Numerical
Methods in Fluids72(3):269-300, May 2013. ISSN 02712091. doi: D3RR/ URL
http://doi.wiley.com/10.1002/fld.3741

A. Dervieux and G. VijayasundararNumerical methods for the Euler EquationsVibid
dynamics chapter On numerical schemes for solving Euler equations of Fluid Dynamics,
pages 121-144. In Angrand et al. [9], 1985.

Bruno Després and Frédéric Lagoutiere. Contact discontinuity capturing schemes for linear
advection and compressible gas dynamizsirnal of Scieniic Computing 16(4):479-524,
2001. URDttp://link.springer.com/article/10.1023/A:1013298408777

Bruno Després and Frédéric Lagoutiere. Generalized Harten formalism and longitudinal
variation diminishing schemes for linear advection on arbitrary grieiSAIM: Mathemat-

ical Modelling and Numerical Analysi35(06):1159-1183, 2001. hifl/journals.
cambridge.org/abstract_S0764583X01001522 .

Bruno Després, Emmanuel Labourasse, and Frédéric Lagoutiere. Viidnengthod for
multicomponentdws on unstructured meshedacques-Louis Lions Report RO726Q7.
URLhttp://www.ann.jussieu.fr/~lagoutie/Papiers/vofire.pdf

Boris Diskin and James L. Thomas. Comparison of Node-Centered and Cell-Centered Un-
structured Finite-Volume Discretizations: Inviscid Flux@dAA Journal 49(4):836—854,

April 2011. ISSN 0001-1452, 1533-385X. doi: 10.2514/1.J050B8@://&Rlaiaa.
org/doi/abs/10.2514/1.J050897

JPi Dobes, Mario Ricchiuto, and Herman Deconinck. Implicit space—time residual distribu-
tion method for unsteady laminar viscouwsw. Computers & Fluids34(4-5):593-615, May
2005. ISSN 00457930. doi: 10.1016AMmh8903.09.007. URttp://linkinghub.
elsevier.com/retrieve/pii/S0045793004000337

Michael Dumbser. Advanced numerical methods for hyperbolic equations and applications.
Lecture notes, 2011.



180 BIBLIOGRAPHY

[63] Michael Dumbser and Martin Kaser. Arbitrary high order non-oscillatmite volume
schemes on unstructured meshes for linear hyperbolic systemmal of Computational
Physics221(2):693-723, February 2007. ISSN 00219991. doi: 10.1016/j.jcp.2006.06.043. URL
http://linkinghub.elsevier.com/retrieve/pii/S0021999106003123

[64] Michael Dumbser, Martin Kaser, Vladimir A. Titarev, and Eleuterio F. Toro. Quadrature-
free non-oscillatorynite volume schemes on unstructured meshes for nonlinear hyperbolic
systemsJournal of Computational Physi@26(1):204-243, September 2007. ISSN 00219991.
doi: 10.1016/j.jcp.2007.04.004. iRl linkinghub.elsevier.com/retrieve/pii/
S0021999107001520

[65] Denys Dutykh. Modélisation mathématique des tsunamidPhD thesis, Ecole nor-
male supérieure de Cachan, 2007. Uttbs://tel.archives-ouvertes.fr/
tel-00194763/ .

[66] B Einfeldt, C.D Munz, P.L Roe, and B Sjogreen. On Godunov-type methods near low den-
sities. Journal of Computational Physjc32(2):273—-295, February 1991. ISSN 00219991.
doi: 10.1016/0021-9991(91)90211-httpRMlinkinghub.elsevier.com/retrieve/
pii/0021999191902113.

[67] A. Ern and J.L. Guermondheory and Practice of Finite Elemergplied Mathematical
Sciences. Springer New York, 2004. ISBN 9780387205748 p4JRiooks.google.
fr/books?id=CCjm79FbJbcC.

[68] P. Garcia-Navarro, M.E. Hubbard, and A. Priestley. Genuinely Multidimensional Upwind-
ing for the 2D Shallow Water Equationdournal of Computational Physjcd21(1):79-93,
October 1995. ISSN 00219991. doi: 10.1006/jcph.1995.118@p:/URkinghub.
elsevier.com/retrieve/pii/S0021999185711801

[69] P. Garcia-Navarro, E. Playan, and G. Zapata. Solute transport modeling in oWévand
applied to fertigationJournal of Irrigation and Drainage Engineerjig@6(1):33—40, 2000.

[70] Jonathan B. Goodman and Randall J. LeVeque. On the accuracy of stable schemes for 2D
scalar conservation lawslathematics of Computatipd5(171):15-15, September 1985. ISSN
0025-5718. doi: 10.1090/S0025-5718-1985-079064itt/AdiRly.ams.org/jourcgi/
jour-getitem?pii=S0025-5718-1985-0790641-4

[71] Olivier Gourgue, Richard Comblen, Jonathan Lambrechts, Tuomas Karna, Vincent Legat,
and Eric Deleersnijder. Yx-limiting wetting—drying method folMhite-element shallow-
water models, with application to the Scheldt Estuafyglvances in Water Resourcgg2
(12):1726-1739, December 2009. ISSN 03091708. doi: 10.1016/j.advwatres.2009.09.005. URL
http://linkinghub.elsevier.com/retrieve/pii/S0309170809001493



BIBLIOGRAPHY 181

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

(8]

(81]

J. M. Greenberg and A. Y. Leroux. A well-balanced scheme for the numerical processing of
source terms in hyperbolic equatiol®AM Journal on Numerical Analys&3(1):pp. 1-16,
1996. ISSN 00361429. UfRL://www.jstor.org/stable/2158421

Vincent Guinot and Carole Delenne. MUSCL schemes for the shallow water sensitivity
equations with passive scalar transpo@omputers & Fluidss9:11-30, April 2012. ISSN
00457930. doi: 10.1016/j.cdkith2012.02.001. URttp://linkinghub.elsevier.
com/retrieve/pii/S004579301200045X

K. F. Gurski. An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynam-
ics. SIAM Journal on Sciemi Computing25(6):2165—-2187, January 2004. ISSN 1064-8275,
1095-7197. doi: 10.1137/S10648275024073@%:IsEubs.siam.org/doi/abs/10.
1137/S1064827502407962

Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy. Uniformly high
order accurate essentially non-oscillatory schemesgpolitnal of Computational Physigdd
(2):231-303, August 1987. ISSN 00219991. doi: 10.1016/0021-9991(87)90@R1-3. URL
/Ninkinghub.elsevier.com/retrieve/pii/0021999187900313

Mourad Heniche, Yves Secretan, Paul Boudreau, and Michel Leclerc. A two-dim&hsional

nite element drying-wetting shallow water model for rivers and estugkibsances in Water
Resource23(4):359-372, January 2000. ISSN 03091708. doi: 10.1016/S0309-1708(99)00031-7.
URLhttp://linkinghub.elsevier.com/retrieve/pii/S0309170899000317

R. Herbin and F. Hubert. Benchmark on discretization schemes for anisottiysiori
problems on general grids. In R. Eymard and J.-M. Hérard, eftoite, volumes for com-

plex applications V: proceedings of the 5th International Symposium on Finite Volumes for
Complex Applicationpages 659-692. ISTE ; Wiley, London : Hoboken, NJ, 2008.

J.-M. Hervouet. Application de la méthode des charactéristiques en formulation faible a la
résolution des equations d'advection bidimensionnelles sur des maillages grilles. Technical
report HE-43/92-41, EDF R&D, 1992.

J.-M. Hervouet. Characteristics and mass conservation. New developments in Telemac-2D.
Technical report HE-43/92-41, EDF R&D, 1992.

J.-M. Hervouet. The weak form of the method of characteristics, an amazing advection
scheme. IProceedings of XXth TELEMAC-MASCARET User Conferenckazl3i@he,
Germany, 16-18 October 2013.

J-M Hervouet, E. Razadrakoto, and C. Villaret. Dealing with dry zones in free surface
VWws: a new class of advection schemes. In International Association of Hydraulic En-
gineering and Research, Congress, Eric M Valentine, C. J Apelt, International Association
for Hydro-Environment Engineering and Research, Congress, International Association for



182

BIBLIOGRAPHY

[82]

(83]

[84]

[85]

(86]

[87]

(88]

[89]

Hydro-Environment Engineering and Research, Hydrology and Water Resources Sympo-
sium, and National Conference on Hydraulics in Water Engineering, edtoceedings of

the 34th IAHR World Congress 33rd Hydrology and Water Resources Symposium, 10th Con-
ference on Hydraulics in Water Engineering: balance and uncertainty - water in a changing
world, 26 June - 1 July 2011, Brisbane Austrédimgineers Australia, 2011. ISBN 978-0-
85825-868-6.

Jean-Michel HervouetHydrodynamics of Free Surface Flowshn Wiley & Sons, Ltd,
Chichester, UK, April 2007. ISBN 978-0-470-31962-8 978-0-470-03558t0://d&L
wiley.com/10.1002/9780470319628 .

Charles Hirsch.Numerical computation of internal and exterivaiws: fundamentals of
computationalid dynamics Elsevier/Butterworth-Heinemann, Oxford ; Burlington, MA,
2nd ed edition, 2007. ISBN 978-0-7506-6594-0.

M. S. Horritt. Evaluating wetting and drying algorithmsVoite element models of shallow
water Vow. International Journal for Numerical Methods in Engineeribf(7):835-851,
November 2002. ISSN 0029-5981, 1097-0207. doi: 10.1002/nme.58H://ddiRL
wiley.com/10.1002/nme.529 .

Jingming Hou, Qiuhua Liang, Franz Simons, and Reinhard Hinkelmann. A 2D well-
balanced shallowd¥w model for unstructured grids with novel slope source term treat-
ment. Advances in Water Resourcé:107-131, February 2013. ISSN 03091708. doi:
10.1016/j.advwatres.2012.08.003. HitRl/linkinghub.elsevier.com/retrieve/
pii/S0309170812002230.

Jingming Hou, Qiuhua Liang, Hongbin Zhang, and Reinhard Hinkelmann. Multis-
lope MUSCL method applied to solve shallow water equatiddemputers & Mathe-

matics with Applications68(12):2012-2027, December 2014. ISSN 08981221. doi: 10.
1016/j.camwa.2014.09.018. WRp://linkinghub.elsevier.com/retrieve/pii/
S0898122114004672

M.E. Hubbard. Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes
on Unstructured Grids. Journal of Computational Physic$55(1):54—74, October 1999.
ISSN 00219991. doi: 10.1006/jcph.1999.6328ttpJRinkinghub.elsevier.com/
retrieve/pii/S0021999199963295

M.E. Hubbard and M.J. Baines. Conservative Multidimensional Upwinding for the Steady
Two-Dimensional Shallow Water Equationslournal of Computational Physic$38(2):
419-448, December 1997. ISSN 00219991. doi: 10.1006/jcph.1997.5828: URL
/Ninkinghub.elsevier.com/retrieve/pii/S002199919795823X

M.E. Hubbard and M. Ricchiuto. Discontinuous upwind residual distribution: A route to
unconditional positivity and high order accuradggomputers & Fluids16(1):263—-269, July



BIBLIOGRAPHY 183

2011. ISSN 00457930. doi: 10.1016AMmh3®10.12.023. URItp://linkinghub.
elsevier.com/retrieve/pii/S0045793010003798

[90] J.-M. Janin. Conservativité et positivité dans le module de transport scalaire écrit en éléments
Vnis. Application a TELEMAC-3D. Technical report HE-42/95/054/a, EDF R&D, 1996.

[91] H. Jasak, H.G. Weller, and A.D. Gosman. High resolution NWDetticing scheme for ar-
bitrarily unstructured mesheternational Journal for Numerical Methods in Flui8$(2):
431-449, September 1999. ISSN 0271-2091, 1097-0363. doi: 10.1002/(SICI)1097-0363(1999093
31:2<431::AID-FLD884>3.0.CO;2-T. hifRL/doi.wiley.com/10.1002/%28SIC1%
291097-0363%2819990930%2931%3A2%3C431%3A%3AAID-FLD884%3E3.0.C0%3B2-T

[92] Friedemann Kemm. A comparative study of TVD-limiters-well-known limiters and an intro-
duction of new onesinternational Journal for Numerical Methods in Fluiég(4):404—-440,
October 2011. ISSN 02712091. doi: 10@R%7. URDbttp://doi.wiley.com/10.
1002/fld.2357 .

[93] N.E. Kolgan. Application of the minimum-derivative principle in the constructiomicd-
diUerence schemes for numerical analysis of discontinuous solutions in gas dynamics. Tech-
nical Report 3(6):68-77, Uchenye Zapiski TsaGl (Sci. Notes Central Inst.Aerodyn), 1972.

[94] C. Le Touze, A. Murrone, and H. Guillard. Multislope MUSCL method for general unstruc-
tured meshesJournal of Computational Physi@&84:389-418, March 2015. ISSN 00219991.
doi: 10.1016/}.jcp.2014.12.032. kiRl linkinghub.elsevier.com/retrieve/pii/
$0021999114008493

[95] Randall J. LeVequerinite volume methods for hyperbolic probler@ambridge texts in
applied mathematics. Cambridge University Press, Cambridge ; New York, 2002. ISBN 978-
0-521-81087-6 978-0-521-00924-9.

[96] Randall J. LeVequeinite dlerence methods for ordinary and partidletiential equations:
steady-state and time-dependent problegasiety for Industrial and Applied Mathematics,
Philadelphia, PA, 2007. ISBN 978-0-89871-629-0.

[97] Shuangcai Li and Christopher J.UWBu Fully-Coupled Modeling of Shallow Water Flow
and Pollutant Transport on Unstructured Gri@&ocedia Environmental Sciendes2098—
2121, 2012. ISSN 18780296. doi: 10.1016/j.proenv.2012.012g0/lldKhghub.
elsevier.com/retrieve/pii/S1878029612002010

[98] Qiuhua Liang and Alistair G.L. Borthwick. Adaptive quadtree simulation of shithows
with wet—dry fronts over complex topographyomputers & Fluid88(2):221-234, February
2009. ISSN 00457930. doi: 10.1016AMmh3908.02.008. URttp://linkinghub.
elsevier.com/retrieve/pii/S0045793008000479



184 BIBLIOGRAPHY

[99] Xu-Dong Liu. A Maximum Principle Satisfying My¥dation of Triangle Based Adapative
Stencils for the Solution of Scalar Hyperbolic Conservation LaM#4 Journal on Numeri-
cal Analysis30(3):701-716, June 1993. ISSN 0036-1429, 1095-7170. doi: 10.1137/0730034. URL
http://epubs.siam.org/doi/abs/10.1137/0730034

[100] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted Essentially Non-oscillatory
Schemeslournal of Computational Physid45(1):200-212, November 1994. ISSN 00219991.
doi: 10.1006/jcph.1994.1187. biRd://linkinghub.elsevier.com/retrieve/pii/
S0021999184711879

[101] J. Murillo and P. Garcia-Navarro. Augmented versions of the HLL and HLLC Riemann
solvers including source terms in one and two dimensions for shaNiw applica-
tions. Journal of Computational Physi@&31(20):6861-6906, August 2012. ISSN 00219991.
doi: 10.1016/j.jcp.2012.06.031.AtR1/linkinghub.elsevier.com/retrieve/pii/
S0021999112003464

[102] J. Murillo, J. Burguete, P. Brufau, and P. Garcia-Navarro. Coupling between shallow wa-
ter and soluteVww equations: analysis and management of source terms in IBP.
ternational Journal for Numerical Methods in Flyid®(3):267-299, 2005. UiRp:
/lonlinelibrary.wiley.com/doi/10.1002/fld.992/abstract

[103] J. Murillo, P. Garcia-Navarro, J. Burguete, and P. Brufau. A conservative 2D model of inunda-
tion Vw with solute transport over dry bethternational journal for numerical methods in
Wiids 52(10):1059-1092, 2006. ttiRt/onlinelibrary.wiley.com/doi/10.1002/
fld.1216/abstract

[104] J. Murillo, P. Garcia-Navarro, and J. Burguete. Analysis of a second-order upwind method
for the simulation of solute transport in 2D shallow wafékv. International Journal for
Numerical Methods in Fluid56(6):661-686, February 2008. ISSN 02712091, 10970363. doi:
10.10024.1546. URhttp://doi.wiley.com/10.1002/fld.1546

[105] J. Murillo, P. Garcia-Navarro, and J. Burguete. Conservative numerical simulation of multi-
component transport in two-dimensional unsteady shallow wager Journal of Computa-
tional Physics228(15):5539-5573, August 2009. ISSN 00219991. doi: 10.1016/j.jcp.2009.04.039.
URLhttp://linkinghub.elsevier.com/retrieve/pii/S0021999109002290

[106] J. Murillo, P. Garcia-Navarro, and J. Burguete. Conservative numerical simulation of multi-
component transport in two-dimensional unsteady shallow viater Journal of Computa-
tional Physics228(15):5539-5573, August 2009. ISSN 00219991. doi: 10.1016/j.jcp.2009.04.039.
URLhttp://linkinghub.elsevier.com/retrieve/pii/S0021999109002290

[107] R.-H. Ni. A multiple grid scheme for solving the Euler equattdAA Journal (20):1565—
1571, 1981.



BIBLIOGRAPHY 185

[108] Naomi Oreskes, Kristin Shrader-Frechette, Kenneth Belitz, et ¥tatlen, validation, and
corMrmation of numerical models in the earth scien@=ence263(5147):641-646, 1994.

[109] Stanley Osher. Convergence of Generalized MUSCL SclgAMsIournal on Numerical
Analysis 22(5):947-961, October 1985. ISSN 0036-1429, 1095-7170. doi: 10.1137/0722057. URL
http://epubs.siam.org/doi/abs/10.1137/0722057

[110] Henri Paillére Multidimensional Upwind Residual Distribution Schemes for the Euler and
Navier-Stokes Equations on Unstructured GrielsD thesis, Université Libre de Bruxelles,
1995.

[111] Sara Pavan, Riadh Ata, and Jean-Michel Hervouet. Finite volume schemes and residual
distribution schemes for pollutant transport on unstructured gri@avironmental Earth
Sciences74(11):7337-7356, December 2015. ISSN 1866-6280, 1866-6299. doi: 10.1007/
$12665-015-4760-5. WRp://link.springer.com/10.1007/s12665-015-4760-5

[112] B. Perthame and Y. Qiu. A variant of van Leer's method for multidimensional system of
conservation lawslournal of Computational Physjd€.2(1):370-381, 1994.

[113] Marco Petti and Silvia Bosa. Accurate shock-captifiitg volume method for advection-
dominatedVw and pollution transport. Computers & Fluids36(2):455-466, February
2007. ISSN 00457930. doi: 10.1016AMmh3905.11.008. URtip://linkinghub.
elsevier.com/retrieve/pii/S0045793006000387

[114] Leo Postma and Jean-Michel Hervouet. Compatibility betvwetenvolumes andnite ele-
ments using solutions of shallow water equations for substance transpemational Jour-
nal for Numerical Methods in Fluids3(9):1495-1507, March 2007. ISSN 02712091, 10970363.
doi: 10.100%4.1373. URhttp://doi.wiley.com/10.1002/fld.1373

[115] L. Remaki, O. Hassan, and K. Morgan. New limiter and gradient reconstruction
method for HLLCVWhite volume scheme to solve Navier-Stokes equationsTE@CO-
MAS, theVith European Congress on Computational in Fluid Dynamics, Lisbon, Bortugal
pages 14-17, 2010. URtp://www.bcamath.org/documentos_public/archivos/
publicaciones/CFD2010_Hllc.pdf

[116] Michael Renardy and Robert C. Rogéys.introduction to partial dierential equations
Number 13 in Texts in applied mathematics. Springer, New York, 2nd ed edition, 2004. ISBN
978-0-387-00444-0.

[117] M. Ricchiuto and R. Abgrall. Explicit Runge—Kutta residual distribution schemes for time de-
pendent problems: Second order cdsarnal of Computational Physji@29(16):5653-5691,
August 2010. ISSN 00219991. doi: 10.1016/j.jcp.2010.04.00@p:/NRkinghub.
elsevier.com/retrieve/pii/S0021999110001786



186 BIBLIOGRAPHY

[118] M. Ricchiuto, R. Abgrall, and H. Deconinck. Application of conservative residual
distribution schemes to the solution of the shallow water equations on unstructured
meshes. Journal of Computational Physica22(1):287-331, March 2007. ISSN 00219991.
doi: 10.1016/j.jcp.2006.06.024. iRl linkinghub.elsevier.com/retrieve/pii/
S0021999106002853

[119] Mario RicchiutoContributions to the development of residual discretizations for hyperbolic
conservation laws with application to shallow watéws PhD thesis, Université Libre de
Bruxelles, Faculté de Sciences Appliquées, 2005.

[120] Mario Ricchiuto.Contributions to the development of residual discretizations for hyper-
bolic conservation laws with application to shallow wa&t#wvs PhD thesis, Université
Sciences et Technologies-Bordeaux I, 2011. htjRLtel.archives-ouvertes.fr/
tel-00651688/ .

[121] Mario Ricchiuto. An explicit residual based approach for shallow Waves. Journal of
Computational Physic280:306—344, January 2015. ISSN 00219991. doi: 10.1016/j.jcp.2014.09.
027. URIhttp://linkinghub.elsevier.com/retrieve/pii/S0021999114006639

[122] Mario Ricchiuto and Andreas Bollermann. Stabilized residual distribution for shallow water
simulations.Journal of Computational Physj@28(4):1071-1115, 2009. Rt/ www.
sciencedirect.com/science/article/pii/S0021999108005391

[123] Mario Ricchiuto, Arpad Csik, and Herman Deconinck. Residual distribution for general time-
dependent conservation lawdournal of Computational Physjc209(1):249-289, October
2005. ISSN 00219991. doi: 10.1016/j.jcp.2005.03.00%: MiRkinghub.elsevier.
com/retrieve/pii/S002199910500118X

[124] A. Ritter. Die fortpanzung der wasserwelleBeitschrift des Vereines Deuscher Ingenjeure
36(33):947-954, 1892.

[125] P. L. Roe. Linear advection schemes on triangular meshes. Technical report coa 8720, Cran-
Veld Institute of Technology, 1987.

[126] P. L. Roe and D. Sidilkover. Optimum Positive Linear Schemes for Advection in Two and
Three DimensionsSIAM Journal on Numerical Analys9(6):1542—-1568, December 1992.
ISSN 0036-1429, 1095-7170. doi: 10.1137/0729088tp:EHubs.siam.org/doi/
abs/10.1137/0729089.

[127] Thomas F. Russell and Michael A. Celia. An overview of research on Eulerian—Lagrangian
localized adjoint methods (ELLAMAdvances in Water Resourc25(8-12):1215-1231, Au-
gust 2002. ISSN 03091708. doi: 10.1016/S0309-1708(02)001d¢p:Flitkrighub.
elsevier.com/retrieve/pii/S0309170802001045



BIBLIOGRAPHY 187

[128] Domokos Sarmany, M. E. Hubbard, and Mario Ricchiuto. Unconditionally stable space—time
discontinuous residual distribution for shallow-watdws. Journal of Computational
Physics 253:86-113, 2013. URIlp://www.sciencedirect.com/science/article/
pii/S0021999113004816.

[129] Chi-Wang Shu. Discontinuous Galerkin methods: general approach and shimitigrical
Solutions of Partial Derential Equationgages 149-201, 2009. UfR://eaton.math.
rpi.edu/csums/Papers/PorousMedia/DGReview_Shu.pdf .

[130] Piotr K. Smolarkiewicz. A fully multidimensional positiv&dee advection transport al-
gorithm with small implicit duusion. Journal of Computational Physics4(2):325-362,
May 1984. ISSN 00219991. doi: 10.1016/0021-9991(84)901att®//IdKhghub.
elsevier.com/retrieve/pii/0021999184901219

[131] Piotr K. Smolarkiewicz and Joanna Szmelter. MPDATA: An edge-based unstructured-grid
formulation. Journal of Computational Physj&06(2):624—-649, July 2005. ISSN 00219991.
doi: 10.1016/j.jcp.2004.12.021. AtR1/linkinghub.elsevier.com/retrieve/pii/
S0021999105000082

[132] Lixiang Song, Jianzhong Zhou, Jun Guo, Qiang Zou, and Yi Liu. A robust well-balanced
Vhite volume model for shallow wat&dws with wetting and drying over irregular ter-
rain. Advances in Water Resource®l(7):915-932, July 2011. ISSN 03091708. doi:
10.1016/j.advwatres.2011.04.017. R#Rl/linkinghub.elsevier.com/retrieve/
pii/S0309170811000819.

[133] Lixiang Song, Jianzhong Zhou, Qingging Li, Xiaoling Yang, and Yongchuan Zhang. An
unstructuredvnite volume model for dam-bredlods with wet/dry fronts over complex
topographylnternational Journal for Numerical Methods in Flyigia(8):960-980, November
2011. ISSN 02712091. doi: 10MDR2307. URhttp://doi.wiley.com/10.1002/fld.

2397.

[134] Stefan Spekreijse. Multigrid solution of monotone second-order discretizations of hyperbolic
conservation lawsMathematics of Computatipd9(179):135-135, September 1987. ISSN
0025-5718. doi: 10.1090/S0025-5718-1987-089025848/ARlv.ams.org/jourcgi/
jour-getitem?pii=S0025-5718-1987-0890258-9

[135] J. J. Stokewater Waves: the Mathematical Theory with Applicatitmgrscience Publish-
ers, New York, USA, 1957.

[136] R. Struijs.A Multi-Dimensional Upwind Discretization Method for the Euler Equations on
Unstructured GridsPhD thesis, University of Delft, Netherlands, 1994.

[137] P. K. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation
Laws. SIAM Journal on Numerical Analysil(5):995-1011, October 1984. ISSN 0036-1429,



188 BIBLIOGRAPHY

1095-7170. doi: 10.1137/0721062. hdRlepubs.siam.org/doi/abs/10.1137/
0721062

[138] Ben H Thacker, Scott W Doebling, Francois M Hemez, Mark C Anderson, Jason E Pepin, and
Edward A Rodriguez. Concepts of modelVeation and validation. Technical report, Los
Alamos National Lab., Los Alamos, NM (US), 2004.

[139] William Carlisle Thacker. Some exact solutions to the nonlinear shallow-water wave equa-
tions. Journal of Fluid Mechanic407(-1):499, June 1981. ISSN 0022-1120, 1469-7645. doi:
10.1017/S0022112081001882. htiRi/www.journals.cambridge.org/abstract_
$0022112081001882

[140] V A Titarev and E F Toro. Ader schemes for shallow water equations with pollutant trans-
port. InProceedings of the XXIX Convegno di Idraulica e Costruzioni ldraylades 909—
914, 2004.

[141] S.A. Tokareva and E.F. Toro. HLLC-type Riemann solver for the Baer—Nunziato equations
of compressible two-pha¥éw. Journal of Computational Physi@29(10):3573—-3604, May
2010. ISSN 00219991. doi: 10.1016/j.jcp.2010.01.0t6:MiRkinghub.elsevier.
com/retrieve/pii/S0021999110000318

[142] E. F. ToroShock-capturing methods for free-surface shaibms John Wiley, Chichester ;
New York, 2001. ISBN 978-0-471-98766-6.

[143] E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-
Riemann solver. Shock Waves4(1):25-34, July 1994. ISSN 0938-1287, 1432-2153. doi:
10.1007/BF01414629. bfRt://link.springer.com/10.1007/BF01414629

[144] E.F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL Riemann
Solver. Report coa 9204, Department of Aerospace Science, College of AeronaMidd, Cran
Institute of Technology, 1992.

[145] E.F. Toro, R.C. Millington, and L.A.M. Nej@hdunov Methods: Theory and Applications.
Edited Revievehapter Towards Very High—Order Godunov Schemes, pages 905-937. Kluwer
Academic/Plenum Publishers, 2001.

[146] Eleuterio F. ToroRiemann Solvers and Numerical Methods for Fluid DynarSiggnger
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-540-25202-3 978-3-540-49834-6. URL
http://link.springer.com/10.1007/b79761

[147] G. D.van Albada, B. van Leer, and W. W. Jr. Roberts. A comparative study of computational
methods in cosmic gas dynamiéstronomy and Astrophysick08(1):76—-84, 1982.

[148] Bram van Leer. Towards the ultimate conservatierdnce scheme. |l. Monotonicity and
conservation combined in a second-order schedweirnal of Computational Physick4



BIBLIOGRAPHY 189

(4):361-370, March 1974. ISSN 00219991. doi: 10.1016/0021-9991(74)9001®-9. URL
/Ninkinghub.elsevier.com/retrieve/pii/0021999174900199

[149] Bram van Leer. Towards the ultimate conservatiderdince scheme. V. A second-order
sequel to Godunov's methodournal of Computational Physi&2(1):101-136, July 1979.
ISSN 00219991. doi: 10.1016/0021-9991(79)90145k¢tth: MliRkinghub.elsevier.
com/retrieve/pii/0021999179901451

[150] Hong Wang, Richard E. Ewing, and Michael A. Celia. Eulerian-Lagrangian localized ad-
joint methods for reactive transport with biodegradatioMumerical Methods for Par-
tial DiUerential Equations11(3):229-254, May 1995. ISSN 0749-159X, 1098-2426. doi:
10.1002/num.1690110305. hifpl//doi.wiley.com/10.1002/num.1690110305

[151] Andrzej Warzyski, Matthew E. Hubbard, and Mario Ricchiuto. Runge—Kutta Residual Dis-
tribution SchemesJournal of Sciertc Computing62(3):772—-802, March 2015. ISSN 0885-
7474, 1573-7691. doi: 10.1007/s10915-014-987%p:MRk.springer.com/10.
1007/s10915-014-9879-0.

[152] Weiming Wu, Dalmo A. Vieira, and Sam S. Y. Wang. One-Dimensional Numerical Model
for Nonuniform Sediment Transport under Unsteady Flows in Channel Netwotksal of
Hydraulic Engineeringl30(9):914-923, September 2004. ISSN 0733-9429, 1943-7900. doi: 10.
1061/(ASCE)0733-9429(2004)130:9(914)httptRascelibrary.org/doi/10.1061/
%28ASCE%290733-9429%282004%29130%3A9%28914%29

[153] O.C. Zienkiewicz and R.L. Taylorhe Finite Element Method: Solid mechanRsferex
collection. Mecanica y materiales. Butterworth-Heinemann, 2000. ISBN 9780750650557. URL
https://books.google.fr/books?id=MhgBfMWFVHUC .



	Introduction
	Context and motivations

	Governing equations and main properties

