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RÉSUMÉ iii

Résumé
Cette thèse a pour objectif la construction de schémas d'ordre élevé et peu diUusifs pour le trans-

port d'un traceur dans les écoulements à surface libre, en deux ou trois dimensions.

On souhaite en particulier obtenir des schémas robustes, qui gardent au niveau discret les propriétés

mathématiques de l'équation de transport avec une faible diUusion numérique, et les utiliser sur

des cas industriels.

Dans ce travail deux méthodes numériques sont envisagées : une méthodes aux volumesVnis (VF)

et une méthode aux résidus distribués (RD). Dans les deux cas, l'équation de transport est résolue

avec une approche découplée, qui est la solution la plus avantageuse en termes de précision et de

coûts de calcul. Pour ce qui concerne la méthode aux volumesVnis, les équations de Saint-Venant

couplées à l'équation du transport sont d'abord résolues avec un schéma dit vertex-centred où le

Wux numérique est approximé avec un solveur de Riemann appelé Harten-Lax-Van Leer-Contact

[142]. A partir de cette approche, une formulation découplée est proposée. Cette dernière permet

de résoudre l'équation du transport avec un pas de temps plus grand que celui de la formulation

couplée. Cette idée a été d'abord proposée pour d'autres schémas dans [13]. Pour augmenter

l'ordre de précision en espace, la technique MUSCL [93] est utilisée avec l'approche découplée.

Finalement, la problématique des zones sèches est abordée. Dans le cas de la méthode aux résidus

distribués, les équations de Saint-Venant sont résolues avec une méthode élémentsVnis, et on fait

appel aux résidus distribués seulement pour discrétiser l'équation du transport, en se focalisant sur

les problèmes non stationnaires. L'équation de continuité duWuide discrétisée est employée pour

garantir la conservation de la masse et le principe du maximum. Pour obtenir des schémas d'ordre

deux dans les problèmes non stationnaires, un schéma prédicteur-correcteur [117] est utilisé, en

l'adaptant au cas de concentration moyennée sur la verticale. Une version d'ordre 1 mais peu dif-

fusive, est aussi présentée dans ce travail. De plus, un schéma localement implicite, complètement

nouveau, est aussi formulé pour pouvoir traiter le problème des bancs découvrants.

Les deux techniques sont validées d'abord sur des cas simples, pour évaluer l'ordre de précision

des schémas et ensuite sur des cas plus complexes pour vériVer les autres propriétés numériques.

Les résultats montrent que les nouveaux schémas sont à la fois précis et conservatifs, tout en gar-

dant la monotonie comme le prévoient les démonstrations. Un cas d'application industriel est aussi

présenté en conclusion.

De plus, le schéma prédicteur-correcteur RD est adapté au cas 3D. Ceci ne présente aucun problème

théorique nouveau par rapport au cas 2D. Les propriétés de base des schémas sont validées sur des

cas test préliminaires.

Mots-clés:

schéma de convection - transport scalaire - ordre élevé - résidus distribués - prédicteur correcteur -

volumesVnis-bancs découvrants
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ABSTRACT v

Abstract

The purpose of this thesis is to build higher order and less diUusive schemes for pollutant trans-

port in free surfaceWows. We aim at schemes which are robust, with low numerical diUusion and

which respect the main mathematical properties of the advection equation. The goal is industrial

environmental applications.

Two techniques are tested in this work: a classicalVnite volume (FV) method and a residual dis-

tribution (RD) technique combined with aVnite element method. For both methods we propose

a decoupled approach since it is the most advantageous in terms of accuracy and computational

time.

Concerning theVrst technique, a vertex-centredVnite volume method is used to solve the aug-

mented shallow water system where the numericalWux is computed through an Harten-Lax-Van

Leer-Contact Riemann solver [142]. Starting from this solution, a decoupled approach is formu-

lated and is preferred since it allows the use of a larger time step for the advection of a tracer. The

idea was inspired by Audusse and Bristeau [13]. The MUSCL [93] technique is used for the second

order extension in space. The wetting and drying problem is also analysed and a possible solution

is presented.

In the second case, the shallow water system is entirely solved using theVnite element technique

and the residual distribution method is applied to the solution of the tracer equation, focusing on

the case of time-dependent problems. However, for compatibility reasons the resolution of the

continuity equation must be considered in the numerical discretization of the tracer. In order to

get second order schemes for unsteady cases a predictor-corrector scheme [117] is used. AVrst

order but less diUusive version of the predictor-corrector scheme is also introduced. Moreover, we

present a new locally semi-implicit version of the residual distribution method which, in addition

to good properties in terms of accuracy and stability, has the advantage to cope with dry zones.

The two methods areVrst validated on academic test cases with analytic solutions in order to as-

sess the order of the schemes. Then more complex cases are addressed to test the robustness of the

schemes and their performance under diUerentWow conditions. Finally a real industrial test case

for which real data are available is carried out.

An extension of the predictor-corrector residual distribution schemes to the 3D case is presented

as aVnal contribution. Even in this case the RD technique is completely compatible with theVnite

element framework used for the Navier-Stokes equations, thus its extension to the 3D case does

not present any extra theoretical problem. The method is tested on preliminary cases.

Keywords:

advection schemes - pollutant transport - high order - residual distribution - predictor corrector

scheme -Vnite volumes - wetting and drying phenomena
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Chapter 1

Introduction

Les équations de transport régissent un grand nombre de phénomènes physiques. En

hydraulique, la propagation des polluants ou d'autres traceurs peut être un example

de phénomène caractérisé par la convection. Des actions pour réduire ou maîtriser les

risques liés à la pollution sont de plus en plus demandées par la loi et les entreprises

doivent répondre à ces déVs. Pour ce faire, des outils numériques robustes et à la pointe

de l'état de l'art sont nécessaires pour garantir laVabilité des études.

Dans ce cadre, l'objectif de la thèse est d'améliorer les schémas numériques pour la

convection des traceurs dans les écoulements à surface libre. L'équation de transport

est très connue et étudiée depuis longtemps, mais sa discrétisation comporte toujours

des déVs numériques intéressants. En particulier, des études plus approfondies sont à

mener sur le problème de la précision et de la monotonie du schéma. Dans cette thèse,

deux méthodes numériques sont explorées pour modéliser le transport d'un scalaire

passif dans unWuide : une méthode aux volumesVnis et une méthode aux résidus

distribués. Pour chaque approche, les stratégies adoptées pour diminuer la diUusion

numérique ou pour augmenter l'ordre de précision du schéma sont détaillées. Les

conditions de monotonie de chaque schéma sont établies en suivant des méthodes clas-

siques ou alternatives. Finalement, le problème des bancs découvrants est aussi abordé

aVn de pouvoir résoudre des cas réels.

La thèse s'articule en huit chapitres. Le Chapitre 2 présente les équations à résoudre et

leurs propriétés mathématiques. Dans le Chapitre 3 un état de l'art sur les méthodes

pour les problèmes de transport est oUert au lecteur, en regard des choix numériques

qui ont marqué ce travail. Le Chapitre 4 est dédié à la description du modèle VF tandis

que le Chapitre 5 s'occupe du modèle RD. Dans les deux cas, les diUérences avec les

schémas existants sont soulignées. L'analyse des résultats numériques obtenus avec les

deux techniques fait l'objet du Chapitre 6. Le Chapitre 7 montre l'extension du schéma

RD au cas 3D avec des résultats préliminaires. Les conclusions et les perspectives de

travail sont présentées dans le Chapitre 8.



2 CHAPTER 1: INTRODUCTION

1.1 Context and motivations

The transport equation arises in a wide range of natural phenomena. Pollution propagation studies

as well as water quality studies for ecological modelling are typical applications where the convec-

tion plays an important role.

These studies are asked for more and more, due to the increasing attention on environmental prob-

lems. The legislation is more demanding so that industries and engineering departments have to

be able to handle these issues. Forecast of pollutant plumes, monitoring of biological transform

process in water and remediation projects of polluted waters are part of possible legislative re-

quirements for environmental protection.

In these cases, in situ data collection and numerical simulations are fundamental tools to study

these problems. It is even more important to have a reliable numerical tool when some data are

not available or when several scenarios have to be produced.

The shallow water equations, or the Navier-Stokes equations, augmented by one (or more) scalar

conservation equation(s) for the transport of a passive tracer(s) are used to model these phenomena.

The conservative scalar transport equation, combined with the continuity equation of the shallow

water system, makes up the non conservative equation. This partial diUerential equation is well

known and has been widely studied. However, there are still some challenging diX culties in its

discretization. These diX culties are intrinsically related to the applications considered. For exam-

ple, it is important to have high order methods or methods with low numerical diUusion when the

goal is to predict pollutant values on long distances. At the same time, when only advection is

involved, it is important that the concentration values obtained are strictly bounded and that the

mass of solute is perfectly conserved. Finally, in real river or coastal applications, the method used

must be able to handle wetting and drying processes.

1.2 Objectives of the thesis

This thesis aims at improving the convection schemes for scalar transport in free surfaceWows.

The modelling eUorts focus on the increase of the order of accuracy of the schemes and on alter-

native strategies to decrease the numerical diUusion. In literature, plenty of works can be found

on second order accurate schemes and in this thesis two existing techniques are considered and

tailored to our speciVc problem. Moreover, the focus is also kept on the conservation of the mass

and on the monotonicity which are the other essential numerical requirements analysed in this

work. The wetting and drying problem with respect to the tracer variable is not often addressed in

the literature. This problem is studied here with larger attention and some possible solutions are

then described.

The schemes presented in this thesis are implemented in the Telemac system1, which is an open

source software for free surfaceWows [1]. The software was initially developed at EDF R&D and

1only some of them are currently available in the oX cial version of the code
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now is managed by an international consortium of users and developers. The hydrodynamic equa-

tions are mainly solved by aVnite element method. The latter, as well as other numerical strategies

used in the Telemac system are described in [82]. However, aVnite volume kernel was also intro-

duced for the solution of the shallow water equations. The advection schemes already existing in

the software will be used in some test cases for comparison purpose. Telemac-2D is the name used

for the part of the code solving the shallow water equations, while Telemac-3D refers to the code

solving the Navier-Stokes equations.

1.3 Contents of the thesis

TheVrst numerical method used in the present work is aVnite volume (FV) method. This family

of schemes is known to be conservative and thus the mass conservation issue does not deserve

too much attention in this case, as the conservation is intrinsically satisVed. In order to correctly

model the scalar transport, the Harten-Lax-Van Leer-Contact [142] Riemann solver has been im-

plemented. The structure of the solution obtained with this solver, allows to decouple the tracer

equation from theWuid equations. Thus the tracer equation and theWuid equations are not solved

at the same time. This solution is also adopted in [13] for another kind of solver. Decoupling the

pollutant equation allows on one hand to diminish the numerical diUusion of the scheme and on

the other hand to reduce the computational costs. The decoupled algorithm is based on a mono-

tonicity criteria and under particularWow conditions the decoupled solution can fall back to the

coupled solution in order to fulVll the monotonicity.

To increase the spatial accuracy the Monotonic Upstream Scheme for Conservation Laws (MUSCL)

[93] has been used. This technique is very popular among FV schemes. However in case of 2D un-

structured mesh, there is no unique and right way to apply this method but rather an hodgepodge

of possibilities. For this reason a deeper review on this technique has been done in the state of the

art chapter. The main problem is that the theorems available for the 1D case have not been gener-

alized yet to the 2D. Thus the monotonicity in this case is not strictly guaranteed and this is still

an open issue, even if it does not arise in our numerical experiments. Even though, the decoupled

algorithm is used also for the second order case, yielding interesting results.

Finally, the dry bed problem for tracer is analysed with respect to the choice of a cut-oUparameter,

necessary to compute the concentration variable. A minimum requirement is identiVed to avoid

the violation of the maximum principle in regions with very small water depths.

Major eUorts are made in the development of the other numerical method, a residual distribu-

tion (RD) scheme. Unlike the FV method, the RD method is only used for the conservative scalar

transport equation, while theWuid equations are solved by aVnite element technique. The exist-

ing residual distribution method used for the scalar advection equation is tailored to the depth-

averaged tracer equation. It is worth noticing that the RD schemes have been already adapted to

scalar conservation laws [5, 48, 118] yet here another method is derived in order to be compatible

with the continuity equation, discretized with a FE technique.
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The eUort made to adapt the scheme to the depth-averaged context has a deeper motivation: ap-

plying the same formulation to the 3D. Indeed, as we will see, for the Navier-Stokes equations a

sigma transformation is used to handle the free surface evolution and theVnite element method

to discretize theWuid equations. Thanks to these two features, a straightforward relation can be

established between the 2D and the 3D continuity equations. This holds true also for the tracer

equations. We just limit ourselves to say that the 2D water depthh which appears in the tracer

equation can be directly replaced by the variable 3D� z which represents the height of a layer of

elements.

The already existing N [125] and PSI [136] schemes are reformulated in order to be compatible with

the discretizedWuid continuity equation. These two schemes were already implemented in the code

Telemac-2D, however their theoretical formulation is recalled to stress the concept of monotonicity

and mass conservation, useful also for the next steps.

Then, the focus is kept on the second order schemes for time dependent problems. In particular, the

predictor-corrector scheme [117] is adapted to the depth-averaged equation. AVrst order version

of the predictor-corrector scheme is also considered since characterized by low numerical diUusion,

even if onlyVrst order accurate. For both theVrst and the second order schemes, an enhanced new

version is presented. The latter is based on the possibility to iterate the corrector step increasing the

accuracy of the results, without spoiling neither mass conservation nor monotonicity. The strategy

adopted to preserve the maximum principle is diUerent from the one used by classical RD schemes

and leads to a new monotonicity condition.

In order to cope with wetting and drying problems, a new locally implicit RD scheme is presented.

The main novelty of this scheme is that for every point of the domain a local implicit coeX cient is

used to solve the tracer equation. This approach allows to have an implicit scheme characterized

by unconditional stability at the wet/dry front. In addition, no division by water depths needs to

be performed to obtain the concentration. This feature makes the scheme very robust. However,

its drawback is represented by the need to solve a linear system, which is expensive in terms of

computational time. Even in this case, the accuracy problem is addressed with particular attention.

All the schemes presented are tested and compared on several cases. First, the accuracy is computed

on simple tests with analytical solution: the steady advection and the unsteady advection. Then,

the schemes are compared on more complex cases, where the advectionVeld is variable in space

and in time. The rotating cone, where a tracer represented by a gaussian function is transported

under a rotational velocityVeld, is a typical test case for convection schemes. The dam break over

wet bed and an open channelWow between bridge piers are also useful to check the mass conser-

vation as well as the monotonicity of the solution. The results show that the strategies adopted to

improve the precision of the schemes are eX cient and that the mass is always perfectly conserved,

as well as the maximum principle is preserved. The comparison of the schemes is completed by

data on the computational times and the number of iterations is detailed for every scheme. To test

the ability to deal with wetting and drying phenomena, we consider the dam break over dry bed

and the Thacker test case. Results show that the schemes are eUectively appropriate to these prob-
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lems. Finally, a real test case with wetting and drying is presented to validate the locally implicit

scheme on industrial applications. The numerical results are compared to real data.

The last part of this thesis is dedicated to the applications of the 2D predictor-corrector schemes

to the 3D case. As already said in the introduction, a series of discrete relations between the 2D

continuity equation and the 3D continuity equation make the schemes perfectly compatible to the

3D case without any additional theoretical problem. The validation is done on few preliminary

case studies.

1.4 Structure of the thesis

The structure of the thesis has been designed to methodically present the problems tackled in this

work.

In Chapter 2 the continuous equations and their corresponding mathematical properties are intro-

duced. The aim is to establish the foundations of the numerical model and to introduce a part of

the notations.

Chapter 3 presents the state of the art on the numerical models for transport problems. The liter-

ature review gradually introduces the numerical choices done in this work, showing the already

existing techniques in the literature.

In Chapter 4 the vertex-centred FV scheme is presented, stressing the diUerences between a classi-

cal coupled scheme and the decoupled version proposed in this work. The second order extension

and the wet/dry treatment is also detailed.

The Chapter 5 shows how the RD schemes have been tailored to the depth-averaged transport

equation. In particular, the new predictor-corrector schemes are described and the corresponding

monotonicity conditions are derived.

The Chapter 6 gathers the tests necessary to validate the numerical schemes. Every test checks a

particular property of the scheme and a global comparison of the various schemes is oUered to the

reader.

Chapter 7 shows the extension of the predictor-corrector scheme to the 3D case. Two numerical

tests are given as preliminary validation of the scheme.

In Chapter 8 conclusions and perspectives of this thesis are presented.



6 CHAPTER 1: INTRODUCTION



Chapter 2

Governing equations and main

properties

L'objectif de ce chapitre est d'introduire les équations qu'on souhaite résoudre et leurs

propriétés mathématiques.

Le système de Saint-Venant couplé avec une loi de conservation scalaire est établi suiv-

ant une méthode classique à partir des équations de Navier-Stokes. Les hypothèses de

base et le domaine de validité des équations sont rappelés aVn de bien identiVer le type

de phénomènes qu'on cherche à modéliser.

De la même manière on introduit synthétiquement certains aspects mathématiques

qui sont nécessaires dans la suite aVn de guider la construction du modèle numérique.

En particulier, on parle d'hyperbolicité, de stabilité et de principe du maximum. L'étude

de l'hyperbolicité permet aussi de bien déVnir les conditions aux limites aVn d'avoir

un problème bien posé.

Le chapitre se termine par une série de solutions exactes qui sont ensuite utilisées dans

la validation numérique des schémas.
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This chapter presents the main characteristics of the equations solved in this work with the methods

presented in the next chapters. The assumptions, as well as the limitations and the mathematical

properties of the equations are fundamental in the construction of the numerical model. Indeed,

the numerical modelling choices will also be deVned according to these properties, in order to seek

the correct physical solutions of the equations. A part of the notations used in this work is also

introduced in this chapter.

2.1 Augmented two dimensional shallow water equations

We call the augmented 2D shallow water (SW) equations, the system formed by the classical shal-

low water equations for theWuid augmented by one (or more) scalar conservation equations for

the transport of a passive tracer(s), which is (are) dissolved or contained in theWuid. The concept

of passive tracers includes various substances that will be detailed later in the text. However, in

this work we often speak about pollutant since pollution phenomena and water quality problems

are among the most common industrial applications for which these equations are studied.

WeVrst present theWuid equations and then the tracer equations.

2.1.1 Shallow water system

A large class of natural phenomena can be described by the 2D shallow water system: theWood

wave in rivers, the dam break waves, the river and the streamWows. However, the assumptions

made to obtain the equations have to be considered in the numerical modelling of these phenomena.

The SW system is also called Saint-Venant system, since Jean-Claude Barré de Saint-Venant is the

name of the French engineer who published the equations for theVrst time in 1871 in the “Comptes

rendus des séances de l'Académie des sciences” [17]. The equations are the result of the integral

over the vertical direction of the Navier-Stokes equations. This involves a series of new “depth-

averaged” quantities, like velocities and concentrations (if any). The derivation of the equations

is done under several assumptions, which limit the kind of phenomena that can be tackled. These

assumptions establish a range of validity of the equations. The main assumptions are [49]:

� a thin layer ofWuid is considered: the horizontal length scale is much grater than the vertical

length scale. This implies also that the depth of theWuid (h) is small compared to the wave

length (L ) or the free surface curvature, soh << L . This explains why we can also speak

about long waves;

� theWuid is incompressible :� = const, where� is theWuid density;

� the eUects of boundary friction and turbulence can be accounted for through resistance laws

analogous to those used for steady stateWow;

� the average channel bed slope is much less than unity, like the slope of theWuid surface;

� the vertical component of acceleration of the water particles has a negligible eUect on the

pressure;
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� the pressure distribution is hydrostatic, so water depth and pressure are directly correlated.

This assumption is a result of the previous one, indeed vertical accelerations must be negli-

gible to have an hydrostatic pressure distribution;

� the impermeability condition is applied on the bottom and on the free surface. This implies

that there is no transfer of water mass through these boundaries. TheWuid particles on these

boundaries will always remain part of them.

This assumptions make the equations suitable to describe rivers and estuaries, coastal regions and

even oceans. In particular they are useful for hydraulic studies on rivers where the spatial and

the time scales can be very large (hundreds of kilometers for the space and several days for the

time) and thus the depth-averaged quantities are appropriate variables. The numerical methods

developed in this work focus on these kinds of industrial applications, but they can also be extended

to the three-dimensional cases and so to the Navier-Stokes equations, as we will see in Chapter (7).

The formulation of the SW equations starts from the Navier-Stokes equations, which are made up

by:

� the incompressible continuity equation which represents the mass conservation:

@U
@x

+
@V
@y

+
@W
@z

= 0 (2.1)

whereU = ( U; V; W) is the velocity vector with the relativex; y; z components.

� the momentum equations, which express the conservation of momentum along thex; y; z

directions:

@U
@t

+ U
@U
@x

+ V
@U
@y

+ W
@U
@z

= �
1
�

@p
@x

+ � 4 U + Fx

@V
@t

+ U
@V
@x

+ V
@V
@y

+ W
@V
@z

= �
1
�

@p
@y

+ � 4 V + Fy

@W
@t

+ U
@W
@x

+ V
@W
@y

+ W
@W
@z

= �
1
�

@p
@z

� g + � 4 W + Fz

(2.2)

wheret is the time,p is the pressure,� is the coeX cient of kinematic viscosity,g is the

acceleration of gravity,F = ( Fx ; Fy ; Fz) are the external forces and4 is the laplacian

operator,4 = @2

@x2 + @2

@y2 + @2

@z2 . Note that we considerWuids with constant coeX cient of

dynamic viscosity, hence we have the simpliVed term� 4 U . The latter is obtained from
1
� r (2� � ) with � , the coeX cient of dynamic viscosity (equal to�� ) and� the shear-stress

tensor.

The set of equations is deVned on
 T = 
 � [0; t f ] � R3 � R+ , where
 is the computational

domain andt f is aVnite time. It is completed by the appropriate initial and boundary conditions

on � , the boundary of the computational domain.

Note that in the above equations the density of theWuid has already been considered constant.
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We start by the integration with respect toz of the continuity equation, between the bottomz =

b(x; y) and the free surfacez = s(x; y; t ).

Z s

b

� @U
@x

+
@V
@y

+
@W
@z

�
dz = 0 (2.3)

This leads to:

wjz= s � wjz= b +
Z s

b

@U
@x

dz +
Z s

b

@V
@y

dz = 0 (2.4)

To make explicit theVrst two terms, we apply now the impermeability condition on the boundaries.

This corresponds to the following kinematic condition:

d
dt

 (x; y; z; t ) =
@ 
@t

+ U
@ 
@x

+ V
@ 
@y

+ W
@ 
@z

= 0 (2.5)

where represents the function for a boundary given by the surface (x; y; z; t ) = 0 .

For the free surface we have (x; y; z; t ) � z � s(x; y; t ) = 0 while for the bottom (x; y; z; t ) �

z � b(x; y) = 0 . Applying the kinematic condition to the free surface weVnd:

�
@s
@t

+ U
@s
@x

+ V
@s
@y

� W
�

z= s
= 0 (2.6)

And on the bottom we get: �
U

@b
@x

+ V
@b
@y

� W
�

z= b
= 0 (2.7)

Plugging Equations (2.6) and (2.7) into Equation (2.4) we obtain:

�
@s
@t

+ U
@s
@x

+ V
@s
@y

�

z= s
�

�
U

@b
@x

+ V
@b
@y

�

z= b
+

Z s

b

@U
@x

dz +
Z s

b

@V
@y

dz = 0 (2.8)

For the last two terms of the above equation we use the Leibnitz rule:

Z s

b

@U
@x

dz +
Z s

b

@V
@y

dz =
@

@x

Z s

b
U dz � Ujz= s

@s
@x

+ Ujz= b
@b
@x

+
@
@y

Z s

b
V dz� V jz= s

@s
@y

+ V jz= b
@b
@y

(2.9)

In this way, the Equation (2.8) simpliVes into:

@s
@t

+
@

@x

Z s

b
U dz +

@
@y

Z s

b
V dz = 0 (2.10)

We recall thatb is independent oft and h = s � b is the water depth, then we deVne the new

depth-averaged velocities:

u =
1
h

Z s

b
Udz ; v =

1
h

Z s

b
V dz (2.11)
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and we get the depth-averaged continuity equation:

@h
@t

+
@(hu)

@x
+

@(hv)
@y

= 0 (2.12)

The equation can be written in a compact form using the divergence operator,r� :

@h
@t

+ r � (hu) = 0 (2.13)

whereu = ( u; v) is the depth-averaged velocity vector with the relativex; y components.

We consider now the assumption that states that the vertical component of acceleration is negligi-

ble:
dW
dt

=
@W
@t

+ U
@W
@x

+ V
@W
@y

+ W
@W
@z

= 0 (2.14)

From the equation of momentum alongz, neglecting the viscosity and the external force, we thus

Vnd:
@p
@z

= � �g (2.15)

We use now the dynamic condition on the free surface:

p(x; y; z; t )jz= s(x;y ) = patm = 0 (2.16)

wherepatm is the atmospheric pressure, which is taken equal to zero. Equation (2.15) now becomes:

p = �g (s � z) (2.17)

The diUerentiation of the pressure with respect tox andy gives:

@p
@x

= �g
@s
@x

;
@p
@y

= �g
@s
@y

(2.18)

Now we consider the two remaining momentum equations and we integrate them along the vertical

as done before. For simplicity we only perform the derivation for the equation alongx.

Z s

b

�
@U
@t

+ U
@U
@x

+ V
@U
@y

+ W
@U
@z

�
dz =

Z s

b

�
�

1
�

@p
@x

+ � 4 U + Fx

�
dz (2.19)

The integral of theVrst term on the left-hand side (LHS) gives:

Z s

b

@U
@t

dz =
@(hu)

@t
� Ujz= s

@s
@t

+ Ujz= b
@b
@t

(2.20)
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while for the advection terms we obtain:
Z s

b

�
@UU
@x

+
@V U
@y

+
@WU

@z

�
dz =

@
@x

Z s

b
U2 dz � U2jz= s

@s
@x

+ U2jz= b
@b
@x

+
@
@y

Z s

b
(u + U � u)(v + V � v) dz

� Ujz= sV jz= s
@s
@y

+ Ujz= bV jz= b
@b
@y

+ Ujz= sW jz= s � Ujz= bW jz= b (2.21)

Using the deVnition of depth-averaged velocities the equation is rearranged in the form:

Z s

b

�
@UU
@x

+
@V U
@y

+
@WU

@z

�
dz =

@(hu2)
@x

+
@(hu)

@x
� Ujz= s

�
Ujz= s

@s
@x

+ V jz= s
@s
@y

� W jz= s

�

+ Ujz= b

�
Ujz= b

@b
@x

+ V jz= b
@b
@y

� W jz= b

�

+
@
@y

Z s

b
(U � u)(V � v)dz (2.22)

We note that the last term on the LHS of this equation is not zero in general. It represents the

dispersion terms which correspond to an additional diUusion. These terms are added to the stress

tensor.

For the pressure gradient term on the right-hand side (RHS), using the Equation (2.17), we get:

�
Z s

b

1
�

@p
@x

= � hg
@s
@x

(2.23)

while for the diUusion terms we have:
Z s

b

1
�

r � � dz =
1
�

Z s

b
r � � dz =

1
�

r �
Z s

b
� dz +

1
�

� sns +
1
�

� bnb (2.24)

where� s and � b represent the stress at the surface and the bottom, multiplied by the respective

normals. Here we have just considered that density does not change alongz and we have used the

Leibnitz's rule. Neglecting for the moment the last two terms of Equation (2.24), we write:

1
�

r �
� Z s

b
� r U dz

�
=

1
�

r � (h� r u) = r � (h� r (u)) (2.25)

Finally for the external forces we simply have:

Z s

b
Fx dz = hFx (2.26)

since we consider that they are constant along the vertical.

Combining Equations (2.20),(2.22),(2.23),(2.25) and (2.26) and considering the impermeability con-
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ditions on the bottom and on the surface, we obtain:

@(hu)
@t

+
@

@x
(hu2) +

@
@y

(huv) = � gh
@s
@x

+ hFx + r � (h� er (u)) (2.27)

where� e represents the eUective diUusion which takes into account the turbulent viscosity and the

dispersion. The corresponding depth-averaged momentum equation alongy is:

@(hv)
@t

+
@

@x
(huv) +

@
@y

(hv2) = � gh
@s
@y

+ hFy + r � (h� er (v)) (2.28)

Adding the friction terms on the LHS, we end up with the system written in conservative form:

@h
@t

+
@(hu)

@x
+

@(hv)
@y

= 0

@(hu)
@t

+
@

@x
(hu2) +

@
@y

(huv) = � gh
@s
@x

+ g
n2u

p
u2 + v2

h
1
3

+ hFx + r � (h� er (u))

@(hv)
@t

+
@

@x
(huv) +

@
@y

(hv2) = � gh
@s
@y

+ g
n2v

p
u2 + v2

h
1
3

+ hFy + r � (h� er (v))

(2.29)

wheren is the Manning roughness coeX cient. We can perform a further development on the

surface gradient term: we assume the diUerentiability of the water depth, which is:

h
@h
@x

=
@

@x

�
1
2

h2
�

(2.30)

Moving this term on the LHS, neglecting the diUusion term and possible external forces, the con-

servative form of the inviscid shallow water equations can be written in the following vectorial

compact form:

@U
@t

+
@G(U )

@x
+

@H (U )
@y

= S(U ) on 
 � [0; t f ] (2.31)

with U = [ h; hu; hv]T the vector of the conservative variables,G(U ) andH (U ) the two vectors

of convectiveWuxes andS(U ) the source term.
 � R2 is the space domain over which equations

exist.[0; t f ] is the time interval over which equations are solved.

G(U ) =

2

6
6
4

hu

hu2 +
1
2

gh2

huv

3

7
7
5 ; H (U ) =

2

6
6
4

hv

huv

hv2 +
1
2

gh2

3

7
7
5

S(U ) =

2

6
4

0

� gh(S0x + Sf x )

� gh(S0y + Sf y )

3

7
5 ; r b =

"
S0x

S0y

#

; Sf =

"
Sf x

Sf y

#

=

2

6
6
4

n2u
p

u2 + v2

h
4
3

n2v
p

u2 + v2

h
4
3

3

7
7
5
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whereS0 is the gradient of the bottom andSf is the friction term. Note that the source term of the

continuity equation is null yet it can be diUerent from zero in presence of some sources or sinks. In

this case it will be calledsce.

These are the equations that we consider along all this work: they are non linear partial diUerential

equations of hyperbolic type.

The evolutionary equations (2.31) need initial conditions on the water depth and on the velocities:

h(0; x; y) = h0(x; y) (2.32a)

u (0; x; y) = u 0(x; y) (2.32b)

Since the equations are solved in a limited geometrical domain, in order to obtain a well-posed

problem we add boundary conditions to the system. The number of physical conditions depends

on the type of boundaries and on the nature of theWow. In this work we only consider two types

of boundaries: solid walls and liquid boundaries.

For solid walls we prescribe a slip or impermeability condition:

u � n = 0 (2.33)

with n the unit normal to the wall boundary.

For liquid boundaries, according to the kind ofWow (subcritical or supercritical) and to the sign of

u � n (inlet or outlet boundary), we prescribe zero, one or two boundary conditions.

As is well known [83], the number of conditions to impose is related to the eigenvalues of the

Jacobian matrix, which will be introduced in Section 2.2, where this topic will be appropriately

discussed.

2.1.2 Pollutant transport equation

The pollutant transport equation is a passive scalar transport equation. An important assumption

is that the pollutant is passive. It means that the pollutant cannot inWuence theWuid properties

(e.g. the density), thus cannot inWuence hydrodynamics. Dynamic interactions with theWow are

not considered whereas in case of an active scalar the buoyancy eUects will inWuence theWow

dynamics in a coupled manner.

In real applications, the passivity assumption can be considered true for pollutant propagation at

large spatial scales (like in rivers), where the vertical mixing is assumed to be perfect (inVnite) and

a depth-averaged concentration is taken into account. It is thus important for numerical models

to predict the right concentration after large distances. Examples of phenomena that cannot be

represented are the temperature or density stratiVcations.

One or more equations, according to the number of pollutants considered, are added to the Navier-

Stokes equations which are then integrated along thez variable, as done before.
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The conservative form of the equation is:

@
@t

(�C ) + r � (�C U � �� C r C) = Fsource (2.34)

whereC is the concentration,� C is the diUusion coeX cient (molecular or turbulent) of the pollu-

tant andFsource is the source term (creation/destruction). Following the same procedure used in

Section 2.1.1, the integration along the vertical gives:

@
@t

(hc) + r � (hcu) � r � (h� cr c) = cscesce (2.35)

we remember that in this case the depth-averaged concentration is deVned by:

c =
1
h

Z s

b
Cdz (2.36)

The other terms of equation (2.35) are: the source value of the pollutant,csce; theWow source,sce;

the diUusion coeX cient of the pollutant,� c which in this case takes also dispersion into account.

Solving the conservative form with respect to the unknownhc (quantity of pollutant) can be useful

to ensure the mass conservation yet it can be complicated to ensure the monotonicity. This property

will be introduced later, however writing and solving the equation in its non conservative form can

be interesting to better point out this property (forh > 0):

@c
@t

+ u � r c �
1
h

r � (h� cr c) =
(csce � c)sce

h
(2.37)

Since the purpose of this work is to improve the numerical modelling of the convection terms,

the diUusion term will be discarded for the moment and we will only deal with the equivalent

simpliVed forms:

@
@t

(hc) + r � (hcu) = cscesce (2.38a)

@c
@t

+ u � r c =
(csce � c)sce

h
(2.38b)

Equation (2.38a) is written in conservative form while Equation (2.38b) is written in non conserva-

tive form, in the depth-averaged context. We note that we deal with a partial diUerential equation

which is non linear if we consider the conservative form while it is a classical linear advection

equation if we only look at the non conservative form. Indeed, the velocity does not depend on the

concentration and the non linearity arises from the velocity and the water depth terms.

In order to deal with the compact vectorial form, the whole system can be rewritten like (2.31) but
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in this case the unknown vector isU = [ h; hu; hv; hc]T while theWux and source terms are:

G(U ) =

2

6
6
6
6
6
4

hu

hu2 +
1
2

gh2

huv

hcu

3

7
7
7
7
7
5

; H (U ) =

2

6
6
6
6
6
4

hv

huv

hv2 +
1
2

gh2

hcv

3

7
7
7
7
7
5

(2.39)

S(U ) =

2

6
6
6
6
4

sce

� gh(S0x + Sf x )

� gh(S0y + Sf y )

cscesce

3

7
7
7
7
5

; r b =

"
S0x

S0y

#

; Sf =

"
Sf x

Sf y

#

=

2

6
6
4

n2u
p

u2 + v2

h
4
3

n2v
p

u2 + v2

h
4
3

3

7
7
5 (2.40)

The depth-averaged variables of the problem are sketched in Figure 2.1.

Even in this case we need some initial and boundary conditions to have a well-posed problem. As

Figure 2.1: Sketch of depth-averaged quantities in shallow waterWows.

initial condition we will impose:

c(0; x; y) = c0(x; y) (2.41)

The conditions to enforce on boundaries will be studied in the next chapter, according to the sign

of the characteristic curves.

2.2 Mathematical and numerical properties

We present in this section the main properties of the augmented SW system. These properties will

be useful to guide the numerical modelling in the next chapters. In particular, they will be helpful

to establish a series of conditions that the discrete solution needs to satisfy.
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The theoretical notions introduced in this section are limited to our interest and we do not claim to

do a general review of the theoretical aspects of hyperbolic conservations laws, for which several

bibliographic references are suggested along the text.

2.2.1 Hyperbolicity and stability

The augmented SW system is an hyperbolic system formed by non linear partial diUerential equa-

tions. The system (2.31) can be written in a quasi-linear form [142]:

@U
@t

+ A (U )
@U
@x

+ B (U )
@U
@y

= S(U ) (2.42)

whereA (U ) = @G (U )
@U andB (U ) = @H (U )

@U are the jacobian matrices corresponding to theWuxes

G(U ) andH (U ):

A (U ) =

2

6
6
6
6
4

0 1 0 0

a2 � u2 2u 0 0

� uv v u 0

� uc c 0 u

3

7
7
7
7
5

and B (U ) =

2

6
6
6
6
4

0 0 1 0

� uv v u 0

a2 � v2 v u 0

� vc 0 c v

3

7
7
7
7
5

wherea =
p

gh is the celerity. Then, following the classical procedure [142] we introduce the

vector� = ( � x ; � y) and the matrix:

K (�; U ) = A (U )� x + B (U )� y (2.43)

which has four real eigenvalues for any given direction� :

� 1(� ) = u� � a � 2(� ) = � 4(� ) = u� � 3(� ) = u� + a (2.44)

whereu� = � xu + � yv is the velocity along the direction� . We also note that� (� ) = u� has

multiplicity two.

Thus the system is hyperbolic since the eigenvalues are all real. We note that if we only consider

the hydrodynamic equations and a positive water depth, we can say that the system isstrictly

hyperbolic. Indeed weVnd that the eigenvalues are real and distinct (� 1 < � 2 < � 3).

The eigenvalues are also called characteristic speeds and they deVne the characteristicVelds. The

nature of the characteristicVelds is useful to the study of the solution behaviour. For the augmented

shallow water system weVnd that� 1 and� 3 are genuinely nonlinear while� 2 and� 4 are linearly

degenerateVelds.

If the � Veld is linearly degenerate then shocks or rarefaction waves will not be generated. Thus

the possible discontinuity onv or onc will just be transported, like in the linear case. In this case

they are called contact discontinuities. It is possible to show that along the contact discontinuities
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the velocityu and the water depthh will remain constant [142]. On the contrary, the genuinely

nonlinearVelds could generate shocks or rarefaction waves. In this case, the quantities which are

conserved along the characteristic curves are the velocityv and the concentrationc.

All these properties will be useful later in Chapter 4, to justify some numerical choices of theVnite

volume scheme.

As mentioned in section 2.1.1, the sign of the eigenvalues is important to impose the right boundary

conditions. The general rule is that only the information coming from the exterior must be imposed

as a physical boundary condition [83]. The scheme used in the interior domain will naturally

provide the missing information.

We consider a boundary and its inward pointing vector normal to the edgen = ( nx ; ny). An

inWow boundary corresponds tou � n > 0 while an outWow boundary corresponds tou � n < 0.

The behaviour of the system is determined by the propagation of waves with the following speed

[83]:

� n1 = u � n � a (2.45a)

� n2 = u � n (2.45b)

� n3 = u � n + a (2.45c)

� n4 = u � n (2.45d)

We recall that the nature of theWow, i.e. supercritical or subcriticalWow, depends on the Froude

number:F r = ju j
a . A supercritical (or torrential)Wow is characterized byju j > c , thus in case of

an inWow weVnd that all four characteristics are entering the domain, so we need four boundary

conditions at the inWow. On the contrary, at the outlet all the characteristics leave the domain so

no condition must be applied. The subcritical (orWuvial) Wow is characterized byju j < c . At the

inlet we only have one characteristic leaving the domain, thus three boundary conditions must be

imposed. At the outlet three characteristics leave the domain so that only one condition must be

enforced at the boundary.

In practice we will see that less conditions are imposed if we consider a local 1D problem on the

boundary.

In order to complete the set of information at the boundary, the concept of Riemann invariants is

fundamental. As we know [82, 142], it is possible to show that along the curves represented by the

equations:
dx
dt

= u + a
dx
dt

= u � a (2.46)

we will have:
d(u + 2a)

dt
= 0

d(u � 2a)
dt

= 0 (2.47)

Thus the quantitiesu + 2a and u � 2a are invariant along the characteristics curves. Missing

information can be obtained through these quantities.
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It is now useful to split the system into the hydrodynamic part and the tracer part to introduce

concepts like the stability and the maximum principle, which are derived in a diUerent way for

linear and non linear equations.

The term stability can have diUerent meanings and can be introduced in diUerent ways. To start,

stability can be expressed with respect to initial conditions and it can be shown that [10, 116, 119],

for Equation (2.38b), the following principle of energy conservation holds for the solution:

jjc(t)jjL 2 = jjc0jjL 2 (2.48)

wherejj (�)jjL 2 denotes the standardL 2 norm on
 , in the continuum:

jj (�)jjL 2 =
Z



(�)2d
 (2.49)

Then, the energy stability implies the inequality :

jjc(t)jjL 2 � jj c0jjL 2 (2.50)

This inequality states that energy cannot grow in time, since it would lead to instabilities, while it

corresponds to the presence of a dissipative phenomenon [10, 116, 119].

For the shallow water system it is simpler to consider the energy equation, obtained from the

continuity and the momentum equations alongx andy:

E(t; x; y ) =
1
2

hju 2j +
1
2

gh2 + ghb (2.51)

which is the sum of the kinetic energy and the potential energy. We know [28] that this equation

veriVes the following inequality:

@E
@t

+ r � (uE) + r � (u
1
2

gh2) � 0 (2.52)

This scalar inequality guarantees that a stabilizing dissipative mechanism determines the structure

of the solution [119]. Therefore it is often associated to the system in order to avoid unphysical

solutions of the problem. We recall that for smooth solutions, the inequality (2.52) becomes an

equality. In addition, it can be shown that Equation (2.51) ensures the existence of aL 1-stability

for the unknowns of the system (like the water depth) [12].

2.2.2 Solutions

The SW system admits classical smooth solutions yet the non linear character of the equations can

lead to singularities. Thus, even if the initial data are smooth, the non linear equations develop

discontinuities, called shocks or hydraulic jumps, in aVnite time.

For this reason, in general, it is necessary to pass through an integral form and the entropy notions

are employed to identify a unique physical solution to the problem. The notion of entropy weak
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solution is thus introduced to simplify the problem and to deal with discontinuities.

However, in the case of non conservative tracer transport equations we fall into the framework of

the linear case, thus discontinuities will not be generated if the initial conditions onc are smooth.

2.2.3 Maximum principle

The maximum principle is well established for the scalar transport equations, while its derivation

in case of a non linear system is not trivial.

In this case, it is thus convenient to consider separately the hydrodynamics and the pollutant

transport. In this way, the maximum principle is rigorously derived for the variable concentration.

However, it seems to be logical, for an hyperbolic system, to construct numerical methods which

produceL 1 stable solutions without spurious oscillations when discontinuities are present.

For the homogeneous case of the scalar equation (2.38b), the initial data are simply propagating in

space-time, thus we have:

inf



c0(x; y) � c(x; y; t ) � sup



c0(x; y) (2.53)

This inequality expresses the maximum principle. Solutions that respect the maximum principle

are also called monotone solutions.

For the heterogeneous case with a constant sourcecsce(x;t ) 6= 0 , a maximum principle can be

formulated for aVnite timet f < 1 as:

inf



c0(x; y) + t f inf



csce(x; y) � c(x; y; t f ) � sup



c0(x; y) + t f sup



csce(x; y) (2.54)

2.2.4 Classes of exact solutions

For the sake of clarity, we analyzeVrst the tracer equation and then the shallow water system. For

the tracer equation, exact solutions can be found [10, 116, 146]. For the homogeneous case, we can

show that:
dc
dt

=
@c
@t

+ u
@c
@x

+ v
@c
@y

= 0 (2.55)

on x (t), that is the curve which satisVes the following ordinary diUerential equation:

8
<

:

dx
dt

= u(x ; t)

(x0; y0) = x 0

(2.56)

wherex = x (t) = x 0 + ut is called a characteristic curve. Equation (2.55) means that the quantity

c is constant along the characteristic curves. In this way, the PDE (2.38b) has been transformed into
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the ODE (2.55). The solution is thus constant along the characteristics and can be written as:

c(x; y; t ) = c0(x 0) (2.57)

Initial datac0 will be propagated in space-time along(u ; 1) 2 R2 � R.

For the heterogeneous case with constant source termscsce 6= 0 andsupR2 jcsce(x; y)j < 1 , it is

still possible toVnd exact solutions:

c(x; y; t ) = c0(x 0) +
Z t

0
csce(x(s); y(s))ds (2.58)

with (x(s); y(s)) respecting the ODE (2.56).

For the shallow water equations, a number of analytical solutions can be found in literature, see

for example the review [55]. We recall here some of them which will be used, coupled with the

tracer equation, in Chapter 7 for the numerical tests.

Lake at rest

The presence of the bottom source term in the momentum equation characterizes a series of steady

state solutions where the unknown values are not constant on the domain. The presence of this

term requires the respect of the property called well-balanceness [72], also known as C-property

[25]. A typical example to explain this property is the lake at rest test case. It is characterized by a

quiescentWow over a nonWat bathymetry. A numerical scheme able to preserve the steady state of

a lake at rest at the discrete level is said to be well-balanced [72]. Indeed we have:

h + b = const u = 0 (2.59)

It is easy to check that from a numerical point of view, the preservation of this steady state corre-

sponds to a balance between theWux terms and the bottom terms sources, which is not trivial since

their discretizations are often decoupled.

The exact solution is obtained integrating the equations (2.29) over an arbitrary control volume,

imposingu = v = 0 . If s(x; y; t = 0) = s0, 8(x; y) 2 
 , the exact solution is:

[s(x; y; t ); u(x; y; t ); v(x; y; t )] = [ s0; 0; 0] 8(x; y) 2 
 t � 0 (2.60)

As we can see this solution is independent of the bottom.

We note that this test can be useful also in presence of pollutants, indeed the numerical scheme must

be able to preserve the equilibrium for the concentration of pollutant. The initial concentrationc0

has to be kept constant along all the simulation:

c(x; y; t = 0) = c0 8(x; y) 2 
 t � 0 (2.61)

Wet dam-break: Stoker solution
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The solution for a wet dam-break on a frictionlessWat bottom was presented in 1957 by Stoker

[135]. It is the generalization of the Ritter solution for a dry dam-break. The test aims to reproduce

the unsteady behaviour of a dam-break wave, which is solution of a Riemann problem where the

three characteristic waves appear: the rarefaction wave, the contact wave which deVnes a constant

region and the shock wave. The test is in fact 1D but it is common to use it even in 2D since the

complete wave structure solution can be checked. Adding the tracer is thus interesting as the jump

in the concentration is transported at the speed of the intermediateWat zone. Setting some initial

conditions of the type:

h =

(
hL if x � x0

hR if x > x 0
u = 0 c =

(
cL if x � x0

cR if x > x 0

wherex0 is the location of the dam, the exact solution is given by:

h(t; x ) =

8
>>>><

>>>>:

hL
4
9g

� p
ghL � x� x0

2t

� 2

c2
m
g

hR

u(t; x ) =

8
>>>><

>>>>:

0 if x � xA (t)
2
3

� x� x0
t +

p
ghL

�
if xA (t) � x � xB (t)

2
� p

ghL � cm
�

if xB (t) � x � xC (t)

0 if xC (t) � x

with xA (t) = x0 � t
p

ghL , xB (t) = x0 + t
�
2
p

ghL � 3cm
�

andxC (t) = x0 + t
2c2

m (
p

ghL � cm )
c2

m � ghR
,

cm =
p

ghm solution of� 8c2
m ghR

� p
ghL � cm

� 2 +
�
c2

m + ghR
�

(cm � ghR )2 = 0 .

To retrieve this solution the method of characteristics can be used.

For the tracer the solution is [142]:

c(x; t ) =

(
cL if x=t � u�

cR if x=t > u �
(2.62)

whereu� is the velocity in the intermediateWat zone (contact discontinuity) deVned by the interval

[xB ; xC ].

Dry dam-break: Ritter solution

Wetting and drying interfaces can often create numerical instabilities in the scheme. AVrst exam-

ple of exact solution of this problem is the dry dam-break. Ritter proposed an analytical solution in

1892 [124] for the ideal case withWat bottom and without friction. In this case the initial condition

is:

h =

(
hL if x � x0

0 if x > x 0
u = 0 c =

(
cL if x � x0

0 if x > x 0
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and the corresponding analytical solution for hydrodynamics is:

h(t; x ) =

8
><

>:

hL
4
9g

� p
ghL � x� x0

2t

� 2

0

u(t; x ) =

8
><

>:

0 if x � xA (t)
2
3

� x� x0
t +

p
ghL

�
if xA (t) � x � xB (t)

0 if xB (t) � x
(2.63)

with xA (t) = x0 � t
p

ghL andxB (t) = x0 + 2 t
p

ghL . In this case the contact discontinuity, thus

the tracer, will move with the wet/dry front and the solution is:

c(x; t ) =

(
cL if x=t � u�

0 if x=t > u �
(2.64)

whereu� is the speed of a wet/dry front equal touL + 2
p

ghL [142].

Thacker's 2D periodic oscillations

The Thacker's test case is useful to check the ability of the scheme to handle wetting and drying

phenomena in a true 2D case. It has been presented by Thacker in [139] and two families of exact

solutions have been found. Here we consider only one of the two solutions developed by Thacker:

the radially-symmetrical paraboloid. The test shows nonlinear periodic oscillations in a basin with

a frictionless paraboloid topography. The initial solution corresponds to the exact solution at time

t = 0 , then the free surface oscillates with moving wet/dry boundaries and goes back to the initial

position after one period. The accuracy of the scheme can also be veriVed. Indeed, the decrease

of the free surface with time corresponds to the amount of numerical diUusion produced by the

scheme.

The topography is deVned by the function:

zf (r ) = � h0

�
1 �

r 2

a2

�

with r =
p

(x � L=2)2 � (y � L=2)2, h0 is the water depth at the central point of the domain for

a zero elevation anda is the distance from the central point to the zero elevation of the shoreline.

L is the length of the square basin. The exact solution is:

h(r; t ) = h0

 p
1 � A2

1 � A cos(!t )
� 1 �

r 2

a2

�
1 � A2

(1 � A cos(!t ))2 � 1
� !

� zf (r )

u(x; y; t ) =
1

1 � A cos(!t )

�
1
2

!
�

x �
L
2

�
A sin(!t )

�

v(x; y; t ) =
1

1 � A cos(!t )

�
1
2

!
�

y �
L
2

�
A sin(!t )

�

where the frequency is! = 1
a

p
8gh0, A = (a2 � r 2

0 )
(a2+ r 2

0 ) andr0 is the distance from the central point to

the point where the shoreline is initially located. Even in this case we add a solute concentration,
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which will move with the water surface, see also [103]. The initial condition for the tracer is:

c(r; 0) = c0exp
�

�
r

200r0

�

wherec0 is an arbitrary constant value of tracer andr = ( x � L=2)2 � (y � L=2)2. Even if we do

not have the analytical solution for the solute, we know that after every period the proVle should

be the same as the initial one. In this case, several properties can be checked on the numerical

scheme for the tracer: the monotonicity, the conservation, the ability to cope with dry zones.

2.3 Summary

In this chapter we haveVrst presented the equations for the transport of pollutants on shallow

water Wows. Then the main mathematical properties for theWow and for the tracer have been

analyzed in order to guide our numerical choices. The major challenges in the discretization of the

shallow water system are the conservation of the water mass, the ability to capture a shock wave,

and the positivity of the water depth, in particular in presence of wetting and drying phenomena.

For the scalar transport, a perfect conservation of the solute mass is required and in addition the

maximum principle must be strictly guaranteed in order to respect the physics of the problem. Since

in this case contact discontinuities are present, the numerical diUusion produced by the numerical

scheme is an important parameter to consider. Its eUect on the results can be very inWuential and

according to its amount it can lead to a wrong interpretation of the problem. For this reason, we

will look to this numerical aspect with a particular attention, showing that second order schemes

in space and in time are essential for environmental engineering problems.

All these requirements are not trivial. In addition, these properties must be kept even in presence

of dry zones. This is the hardest task and as we will see in the next chapter, only few existing

schemes, as far as we know, are able to handle wetting and drying interfaces and strictly enforce

the other properties at the same time.



Chapter 3

State of the art

Ce chapitre présente l'état de l'art des méthodes numériques utilisées pour modéliser

le transport passif dans unWuide.

Le chapitre est structuré en fonction des choix de modélisation faits dans le présent

travail. Pour cette raison, le problème de la discrétisation de l'équation d'un traceur

couplée ou découplée est abordé en premier et illustré à travers des travaux existants.

Ensuite, la question de la précision dans la prédiction du transport des traceurs est

présentée en deux parties. Dans la première partie, des méthodes numériques qui sont

de premier ordre mais qui bénéVcient d'une diUusion numérique relativement faible

sont analysées, en soulignant les avantages et les inconvénients par rapport aux pro-

priétés numériques de l'équation en question. Dans la deuxième partie, des méthodes

conservatives d'ordre élevé sont présentées. L'analyse de ces méthodes est construite

autour de deux points principaux. Le premier concerne les techniques existantes pour

obtenir des schémas d'ordre élevé pour une loi de conservation quelconque. Le deux-

ième point prend en compte les applications de ces méthodes à l'équation d'un traceur.

De nombreux travaux sont mentionnés pour montrer l'état d'avancement de ces méth-

odes.

Pour conclure, le problème des bancs découvrants en présence d'un traceur est présenté

et les techniques déjà existantes qui permettent de prendre en compte ces phénomènes

sont décrites.



26 CHAPTER 3: STATE OF THE ART

A diUerent number of numerical models can be used to represent shallow waterWows coupled

with solute transport. It is common to choose a numerical technique according to its numerical

properties and to the properties of the equations that we want to discretize. Some methods can be

very accurate but not conservative, others can be conservative and very accurate but not monotone,

etc.

We consider eulerian methods where the values of the unknowns are deVned onVxed points of

the domain. The latter is discretized by a triangulation where triangles can be regular (constant

height and constant base) or irregular. A domain made up by irregular triangles is also called

unstructured mesh. In this work two numerical methods are chosen, based on the mathematical

constraints presented in Chapter 2: a residual distribution method and aVnite volume technique.

This chapter aims at giving an overview of these two methods and other alternative techniques

for the depth-averaged scalar transport. The chapter is structured in order to deal with the main

numerical choices made in this work for which an appropriate literature review is provided.

Thus theVrst subject is related to the choice of a coupled or a decoupled discretization for the

scalar transport, which is independent of the numerical method used. Then the accuracy problem

is addressed in the two following sections. In theVrst one, Section 3.2, a series of low order but

low diUusion methods are discussed as possible alternative to solve tracer problems, stressing their

advantages and drawbacks. In the second one, Section 3.3, the state of the art for conservative

methods used in the present work is presented, investigating two problems: how to achieve high

accuracy and how to apply existing methods to the passive scalar transport in shallowWows. To

conclude, a review of schemes able to handle wetting and drying phenomena in the presence of

tracers is presented.

This chapter does not claim to be exhaustive and various references are given for the interested

reader who desires to examine these topics in depth.

3.1 Coupled and decoupled discretization

One of theVrst modelling choices for the solution of the augmented SW equations is related to the

coupling or decoupling of the scalar transport equation.

This issue is addressed in several papers for diUerent numerical methods, see for example Audusse

and Bristeau [13], Cea and Vázquez-Cendón [39], Murillo et al. [102] forVnite volume methods

and Dawson and Proft [50, 51] for discontinuous Galerkin methods. This choice is particularly im-

portant since decoupling these equations can be advantageous with respect to the precision and the

computational cost, depending on the method used. Yet, in this case, the major diX culties are the

conservation of mass and the respect of the maximum principle. These last properties are instead

easier to enforce in the case of a coupled discretization.

In general, the decoupled algorithm consists of sequentially solving the set of partial diUerential

equations (split into hydrodynamics and tracers), using a knownWow pattern for the solute trans-

port. This means that at every time step theWow equations areVrst solved and then the solute
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conservative equation is solved, given the velocityVeld and the water depth. This technique is

used for example in [22, 69, 152], and its use is justiVed by the fact that, by deVnition, in the case of

passive tracers, the concentration of the solute does not inWuence theWow behaviour. In addition,

when the passive scalar represents sediment, the decoupled technique is legitimized also by the

diUerent time scales for theWow and for the sediment transport.

Decoupling the tracer equation means also that the numerical scheme for the tracer could be diUer-

ent from the numerical method for the hydrodynamics (e.g. use of a FV scheme for hydrodynamics

and a FE method for tracers). WeVnd a series of papers [39, 69, 102, 105] where possible solutions

to decouple the SW equations from the tracer equation are explored. It appears that often, when

using the decoupled strategy, a convenient choice is to solve the non conservative solute equation

with Lagrangian, semi-Lagrangian or particle techniques, like in [69]. These techniques have the

advantage of being very precise, but in most cases, when combined with the continuity equation,

are not conservative. In addition, when solving the non conservative equation (2.37), the water

depth disappears in the convective part of the equation, so the mass conservation property is not

explicit and consequently is not veriVed in the numerical resolution. The works of Chertock and

Kurganov [42], Chertock et al. [43] are examples of hybrid methods whereVnite volumes are used

for the hydrodynamics and particle methods for the tracers. The authors show that solutions for

tracers are improved using the hybrid method owing to the accuracy given by the particle method.

However, the mass conservation property is not veriVed.

In order to keep explicitly this property in the resolution process, it can be interesting to decouple

the equations and solve the conservative tracer equation instead of the non conservative one. In

this case a major challenge is to consistently take into account the continuity equation for theWuid

such that mass conservation and monotonicity are strictly enforced. In [102], the decoupled tracer

equation is solved with an upwind FV method, where the average discrete advection velocity to

compute theWuxes needs to be modiVed in order to have conservativeWuxes. The authors show in

various test cases that the decoupled treatment leads to unrealistic oscillations, and they conclude

that this technique can lead to inaccurate solutions and numerical instabilities in the case of rapidly

varyingWows or complex situations [102].

Oscillations shown in [102] might be related to the fact that there lacks compatibility between the

discretized continuity equation and the solute one. This is indeed a necessary condition when de-

coupling the equations, as explained in [39].

A similar Wux treatment, for the uncoupled algorithm, is proposed also in [105] where, in partic-

ular, a Roe-type FV upwindWux is used. Even in this case, results show that the solution found

according to the uncoupled formulation is not bounded and does not follow the correct pattern at

any time [105]. Furthermore, it appears that the uncoupled approach is the least accurate in the

case of unsteady conditions for solute transport with reaction terms.

Another limit of some decoupled algorithms where the transport discretized equation is not con-

sistent with the continuity equation, is that these schemes are not able to preserve uniform initial

solute proVles in irregular geometries or unsteadyWow conditions, see for example [35].
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Begnudelli and Sanders [22] also use an uncoupled approach: in their work, the scalar transport

equations are updated after a corrector step is used to solve theWow equations. In this case, some

overshoots and undershoots are produced in presence of wet/dry fronts, which usually need special

numerical treatment.

We conclude that in most papers the decoupled solution is discarded since, if not well handled,

it can cause oscillations, hence unphysical results. For these reasons, the coupled formulation is

the most popular and it corresponds to the classical way to solve equations in most publications

concerning shallow waterWows and solute transport (see [23, 97, 102–105, 113]).

This is the case for most FV methods, which are usually formulated with the conservative equa-

tions. The scalar transport equation simply represents an additional equation, where the convective

Wuxes can be treated at the same time step as the other equations and with the same numerical dis-

cretization. A consequence of this choice is that the time step, governed by the mesh size and

the eigenvalues of the system, must be the same for all the equations. This can be too restric-

tive for the tracer transport, according to the chosen discretization. This point has been stressed by

Audusse and Bristeau [13] and also by [103]. Indeed, for a classical explicit FV scheme, the Courant

Friedrichs Lewy (CFL) condition is inWuenced by the eigenvaluesu� + a, while for the stability of

the tracer equation we just need to look at the eigenvalueu� . It follows that for subcriticalWows the

diUerence between the necessary number of time steps for the hydrodynamics and for the tracer

transport can be very large. In this case, decoupling the equations as is done in [13] allows one to

solve the tracer equation with the maximum possible time step. Hence, using an explicit scheme in

time, the numerical diUusion decreases since for explicit schemes it increases with decreasing time

steps. Finally, the Central Processing Unit (CPU) cost also diminishes with respect to a coupled

algorithm. These ideas will be then adapted to the FV scheme used in this work.

Murillo et al. [103], in the framework of a coupled scheme, try to develop a method to apply the

largest possible time step compatible with the stability of the system, considering the positivity of

the water depth and of the concentration. The authors have the same time step problem when the

diUusion term is large compared to the advection one.

The linking between the scalar transport and hydrodynamics has been analysed also in [39], where

one of the most important conclusions is that a conservative scheme for the scalar transport equa-

tion has to consider the way in which the hydrodynamics equations, in particular the continuity

equation, have been solved. This idea is also the basis of the approach used in this work, especially

when the residual distribution (RD) method is applied to the conservative scalar equation, using

a decoupled approach. The article presented by Cea and Vázquez-Cendón [39] compares diUerent

kinds of FV schemes used to solve the tracer equation: coupled and decoupled schemes with dif-

ferent formulations of the convectiveWuxes, in the case ofVrst and second order discretizations. In

particular, we note that an upwind scheme for the tracer, which does not take into account the dis-

cretization of the continuity equation is not suitable because it generates oscillations in the solute

proVles, and moreover it is not able to preserve a spatial constant concentration. These conclu-

sions are true for any order of discretization and they explain the behaviour of results shown in



3.2 FIRST ORDER SCHEMES WITH LOW NUMERICAL DIFFUSION 29

[102],[106]. In addition, the authors show that this type of scheme does not conserve mass.

Concerning the coupled and decoupled approach, Cea and Vázquez-Cendón [39] demonstrate that

the two approaches can be equivalent in absence of source terms and under a particular choice of

the non conservative variable transported by the convectiveWux. In any case the decoupled ap-

proach, if well formulated, represents a valid solution to model the depth-averaged scalar transport.

Contrary to the explicit FV case, when using semi-implicit schemes for hydrodynamics, decoupling

the tracer equation is useful to keep accurate and bounded solutions for tracer at a low cost for the

hydrodynamic part (which often represents the most expensive side of the whole computation).

Indeed, the semi-implicit method for hydrodynamics allows one to choose large time steps for long

computations, so the CPU cost is smaller than that of an explicit scheme. It follows that the hy-

drodynamic time step could be too large for the tracer stability, so the tracer equation is solved

through a sub-iteration system which enables obtaining physical and bounded solutions. A similar

philosophy will be adopted for the RD scheme used in this work, whose details will be given in

Chapter 5.

3.2 First order schemes with low numerical diUusion

Beyond high-order schemes, other solutions can be considered in order to improve the accuracy

of transport schemes. Indeed, numerical results for the advection of discontinuous proVles can be

disappointing despite the use of an high-order scheme. Representing a discontinuity over a mesh

can be a very diX cult task independent of the numerical method used. This is often one of the

reasons for which techniques called `anti-dissipative' schemes [57] are developed in the framework

of FV schemes. However, even for the transport of smooth initial proVles, weVnd in the literature

a series of schemes which areVrst order in space and time but with very low numerical diUusion

with respect the classical FV or FE methods.

3.2.1 Method of characteristics

The method of characteristics is a typical example of such a scheme. This method can be very

accurate in spite of the low convergence rate. The idea of applying this lagrangian method to

transport quantities in the eulerian framework comes from Courant et al. [46], forVnite diUerence

schemes. The popularity of the method is due to its simplicity. For each point of the mesh, the

method consists of two steps [82]:

1. Vnding the foot of the characteristic by tracing the trajectory that passes by the interested

point at timetn+1 ;

2. using an arbitrary interpolation at the arrival time.

However, one diX culty is the trajectory construction in the mesh and the parallelization of this

technique can be a very diX cult issue, though it has been resolved. On the other hand, this method

gets rid of the typical severe time step condition that is necessary for classical methods applied
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to the transport equations. The unconditional stability is one of the most important advantage,

together with the respect of the monotonicity condition.

Unfortunately, the two steps of the method do not lead to a mass conservative scheme because of

the interpolation of the function at the foot of characteristic.

The latter is the major drawback that eliminates this method from the list of possible candidates

for pollutant transport in shallow water.

3.2.2 Eulerian-Lagrangian localized adjoint method

To solve the mass conservation problem, a weak formulation of the method of characteristics was

Vrst proposed by Benque et al. [24], then studied in other reports at EDF (Electricité de France)

[78, 79]. The method is also known as ELLAM (Eulerian-Lagrangian localized adjoint method), a

name given in the work presented by Celia, Russel and his collaborators [27, 41, 150], who also

proposed a good overview and revision of the method in [127].

The key idea is the application of the weak formulation in space and time, which is responsable for

the advection of the test functions (beyond that of the transported quantities). TheVnal formulation

of the scheme is conservative but a product of test functions at timetn+1 and at timetn appear and

its computation represents a technical problem since the functions are based on diUerent meshes.

The integral can be computed with Gauss points, as done in [80], but in this way the number of

Gauss points becomes a parameter which inWuences the mass conservation of the method. At the

same time the method allows getting very accurate results close to exact solutions. Indeed, theVnal

conservative form of the scheme is a linear system which, to be solved, needs the inversion of a

mass-matrix composed of the product of test functions at timetn+1 . This particular mass-matrix

that contains time information is the key point that reduces the artiVcial diUusion of the scheme.

However, thisVnal linear system of the technique breaks monotonicity.

Hence, the violation of the maximum principle prevents the use of this method for scalar transport

application inWows.

3.2.3 Anti-dissipative transport schemes

The VoVre method is presented in [59] as an anti-dissipative transport scheme. This scheme seems

to be a valid alternative for transport problems thus we deem it is necessary to mention it. The

method is based on the construction of an anti-dissipativeWux and is the result of previous works

[57, 58]. The procedure used in this work could seem similar to the Monotonic Upwind Scheme

for Conservation Law (MUSCL) approach since in the present method the reconstruction step is

a key point. However, the authors clarify that it is not the same approach since in this case the

reconstructions are piecewise-constant instead of piecewise-linear.

The main idea is to reduce the numerical diUusion by dividing the problem into two steps. In the

Vrst step the transverse reconstruction is applied in order to diminish the diUusion which appears

when the velocityVeld is not aligned with the mesh i.e.transversediUusion (see Figure 3.1). In the

second, the problem of thelongitudinaldiUusion which appears when the velocityVeld is aligned
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with the mesh is addressed. In this case, aVrst order transport scheme that respects of some max-

Figure 3.1: Numerical diUusion produced by an upwind scheme.u = (1 ; 0) aligned with the
mesh: longitudinal diUusion (on the left).u = (1 ; 1) not aligned with the mesh: longitudinal and
transverse diUusion (on the right).

imum principles can be used to perform the transport of the reconstructed proVle, like in a 1D

problem.

The results for the pure transport case are better than second order FV schemes and spurious os-

cillations do not appear. We note that the convergence rate for the scheme is about 0.75, which

conVrms the low order of the scheme despite its good behaviour in terms of accuracy (in the sense

of low numerical diUusion).

The authors also show the extension of the scheme to the multicomponent Euler equations with

a non divergent velocityVeld in 3D. The results show the good accuracy of the algorithm but the

eX ciency of such a method is not rigorously proven [59].

Another family of anti-dissipative schemes is represented by theVnite volume MPDATA (multidi-

mensional positive deVnite advection transport algorithm) [131], which stems from previous works

in the context ofVnite diUerence schemes, like [130]. Even if this class of schemes is not trulyVrst

order, we introduce them here due to similarities with [59] in the basic philosophy.

The scheme is formulated for an aribitrary FV method with a fully unstructured polyhedral hybrid

mesh. In [131] the main idea is to compensate for the truncation error of the FV upwind scheme

by reusing the same upwind algorithm but with a pseudo velocity after the leading (dissipative)

truncation error of theVrst step. The derivation of the pseudo velocity is thus fundamental and

applies to many FV schemes with various control volume deVnitions. Choosing a median dual FV

approach facilitates the MPDATA since the evaluation of the anti-truncation-error pseudo veloc-

ity is easier. The authors show that asymptotic second order convergence rates are obtained for

the standard algorithm. As the basic algorithm preserves the sign but not the monotonicity of the

transported variables, a non oscillatory option is introduced to handle this problem. The latter

is brieWy recalled and a test case is performed showing that the monotone MPDATA is the most

accurate scheme compared to other classical methods. For the non oscillatory option, theVnal rate

of convergence of the scheme is not computed. The scheme is applied to solve the elementary

advection equation, however its good numerical features make it a possible option for pollutant

transport problems.
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3.3 Conservative high order schemes

As previously stated, major challenge when solving the pollutant transport equation is high accu-

racy, which is expected as well as maintaining other properties like conservation of the mass and

respect of the maximum principle. For industrial applications, it is essential to have an accurate

prediction of the pollutant path for long distances (order of hundred kilometers), typical of rivers.

In this case, the numerical diUusion as well as the order of accuracy of the scheme, play a funda-

mental role. Thus, a natural choice is to increase the space and time accuracy of the scheme.

We recall that the local truncation error of a numerical scheme represents the discretization error,

which is generated by the speciVc numerical scheme, due to the truncation of the inVnite Taylor se-

ries to form the discrete algorithm [95]. We deVneL h as an operator acting on the discrete solution

ch = ch(xh ; th), in the formL h(ch) = 0 , wherexh = ( x i � l ; :::; x i ; :::; x i + r ) andth = ( tn ; tn+1 )

are the discretizations of space and time withl andr the integer numbers that deVne the size of

the stencil (support) of the numerical method. The local truncation error is deVned as [62]:

� =
L h(c(xh ; th))

� t
(3.1)

wherec(xh ; th) is the exact solution of the PDE computed at the discrete point(xh ; th) and� t =

tn+1 � tn is the discrete time step. If, for a suX cientlysmoothsolution of the PDE, we have:

� (� t; x ) = O(� tp + � xq) (3.2)

where� x is the average mesh size, then we will say that the scheme is p-th order accurate in time

and q-th order accurate in space. The error, using the harmonic analysis of Fourier applied to the

modiVed equation (i.e. the equation which is exactly solved by the numerical method) can also be

interpreted as diUusion and dispersion errors (see [96, 146]).

For pollutant transport problems in hydraulic applications, a requirement can beVxed in order to

have discrete agreement between numerical solutions and real data. It is necessary to reduce the

signiVcant impact of numerical diUusion on the results. For industrial applications it would be

suitable to have numerical methods that are at least second order accurate in space and in time, to

handle steady and unsteady problems. Higher order methods are not considered for the moment,

due to the prohibitive computational cost and the lack of a robust mathematical theory, which is

necessary for industrial applications to strictly keep true the numerical properties of the equations

at the discrete level.

3.3.1 Finite volumes schemes

The FV methods are widely used to solve the SW system and also the tracer equation. In this case,

a complete literature review would be quite cumbersome, and our analysis focuses on the existing

techniques used to get second order accurate schemes in the FV context. To start, the overview
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is done for scalar conservation laws and system of conservation laws (e.g. Euler equations, Saint-

Venant equations...). Then, only the application of second order techniques to the depth-averaged

scalar transport is presented.

The FV method is intrinsically conservative and is well adapted to studying discontinuous solu-

tions: these are the main advantages which made it so popular for conservation laws [95, 146].

Given a triangulationTh of the geometrical domain, the method consists of integrating the equa-

tions over the elements of the domain, over a single time step. The result is an average value of the

solution over the cell, which thus creates natural discontinuities between the cells, and aWux term

on the contour of the cell (usually called interfaceWux), which is equal and contrary to theWux

term of the nearby cell. For this reason the method is naturally conservative. Using aVrst order

numericalWux and a fully explicit scheme the general discretization of a conservative system like

(2.31) is as follows (see Figure 3.2):

Figure 3.2: Illustration of aVnite volume method for a 2D unstructured domain.

U n+1
i = U n

i �
X

j

� ij Fn (U n
i ; U n

j ; n ij ) � � i Fn (U n
i ; U n

e ; n i ) + � tSn
i (3.3)

whereU n
i is the spatial average value over the celli at timen (U n+1

i is the spatial average at time

n + 1 ); the indexj states a generic neighbour ofi , and� ij is equal to� tL ij
jK i j

with L ij the length of

the interfaceij andK i the surface area of the cell.Fn (U n
i ; U n

j ; n ij ) is the interface numericalWux

betweeni andj , computed along the normaln ij to the interface;Fn (U n
i ; U n

e ; n i ) represents the

boundaryWux along the normaln i , whereU e is aVctitious state, necessary to impose boundary

conditions. FinallySi is the average source term of celli .

The values used to compute theWuxes are taken at the interface betweeni andj and in the case of

Vrst order schemes, they correspond to the average values of the celli andj , so a unique interface
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value is used for every interface of the cell. Equation (3.3) should in general satisfy a CFL condition

[45, 46] for stability reasons.

3.3.1.1 Second order techniques

For the Godunov theorem, linear schemes can not be monotone and second (or higher) order accu-

rate at the same time. Thus, to overcome this theorem and to improve the accuracy ofVnite volume

schemes, the values at the interfaces between cells are reconstructed considering piecewise linear

approximations and then limited usingnon linearfunctions (called limiters) of the data themselves.

These functions make the scheme non linear even if the equation to solve is linear (e.g. the scalar

linear transport equation), and they are necessary to avoid oscillatory solutions.

When solving the augmented SW system, it is important to use a general method that guaran-

tees the preservation of a convex invariant domain (D), as described in [28]. Indeed a second

order scheme, satisfying a half original CFL condition, will be able to preserve a convex invariant

domain, if:

� the numericalWux of theVrst order scheme preserves a convex invariant domain under a

CFL condition. This means that the scheme itself, under a CFL condition, preserves a convex

invariant domain:U n
i 2 D 8 i ! U n+1

i 2 D 8 i .

� the reconstruction also preserves a convex invariant domain:

U i 2 D 8 i ) U i +1 =2� 2 D 8 i , whereU i +1 =2� are the reconstructed values at the

interfaces of the celli .

In multidimensional cases, it is more diX cult to check the second condition, while theVrst condi-

tion is easily veriVed if we have aVrst order monotone scheme.

In a 1D framework we callx i +1 =2 the interface point between celli andi + 1 , andi + 1=2� , i +

1=2+ , the left and the right side of the interface, respectively. The reconstructed states are second

order in the sense that for some smooth functionU(x), we haveUi +1 =2� = U(x i +1 =2) + O(� x2)

and Ui +1 =2+ = U(x i +1 =2) + O(� x2). With these reconstructed values (calledUij in 2D) the

scheme (3.3) becomes:

U n+1
i = U n

i �
m iX

j =1

� ij F(U n
ij ; U n

ji ; n ij ) � � i F(U n
i ; U n

e ; n i ) + � tSn
i (3.4)

For one dimensional scalar equations, in the case of second order schemes, an option to enforce the

maximum principle is to use the Minmod limiter. In 1D cases the way to apply the linear recon-

struction and the limiters is well deVned, owing to the reduced dimensionality of the problem, and

it is based on a robust theory which guarantees the preservation of some important properties (e.g.

the maximum principle).

On the other hand, in 2D unstructured domains,severaltechniques have been proposed during
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the last 30 years to perform the linear reconstruction and to limit the interface values. The large

number of available techniques and the lack of auniqueprocedure is related to diUerent reasons:

the theorems for the 1D cases have not been completely extended to the 2D cases; criteria to apply

limiters change depending on the type of numericalWux used; use of cell-centred or vertex-centred

scheme generates diUerences in gradient computations and consequently on limiting approaches.

In addition, several kinds of limiters can be chosen: Minmod, van Albada, Superbee and many oth-

ers [92, 137]. All of them have diUerent characteristics in terms of the stability (or monotonicity)

region, and theVnal solution can be more or less smoothed by the limiter. It follows that strictly

preserving the maximum principle in convection problems can be very diX cult. The fact that in

many papers describing pollutant transport in shallow waterWows, the monotonicity of the solu-

tion is not strictly veriVed or ensured might then be related to these reasons.

The MUSCL (Monotonic Upwind Scheme for Conservation Law) technique is theVrst method

known in the literature to achieve second order accuracy withVnite diUerence schemes and has

then been extended toVnite volumes schemes. Even if this method has usually been attributed

to van Leer [149], we remember that it isVrstly due to N.E. Kolgan [93]. Kolgan conceived the

gradient reconstruction and the slope limiter when he was at the Central Aerodynamical National

Laboratory near Moscow, but since he died young his work wasn't noticed outside his laboratory.

This was later acknowledged by van Leer [65].

The method is the most popular in industrial codes, since it is moreWexible, simples and easier to

implement than other high order methods like ENO [75], WENO [100] or Discontinuous Galerkin

methods [129].

The MUSCL method with limiters can be applied to 1D scalar cases very easily: theL 1 stability

and the Total Variation Diminishing (TVD) condition have been proven [109, 148], and the method

results are eUectively second order accurate. Clear explanations and examples can also be found

in [95, 146]. For the one-dimensional scalar case, the method consists of the evaluation of the edge

value through the appropriate computation of the upwind and downwind slope in a way that the

TVD property or the maximum principle have been fulVlled. Hence the approach consists of two

steps: in theVrst step a cell gradient is computed while in the second step the gradient is modiVed

by some limiter functions in order to guarantee the maximum principle or the TVD property.

The extension of the gradient reconstruction to the 2D case is straightforward when using carte-

sian meshes and applying the procedure to each direction, yet it has been shown that the TVD

stability condition reduces the method to aVrst order scheme [70]. This problem was overcome by

Spekreijse [134], who proposed positive coeX cients schemes.

TheVrst attempts to generalize the 1D monotone reconstruction to the multidimensional case over

unstructured grids were made by Barth and Jespersen [18], Batten et al. [19], Hubbard [87], Liu

[99]. All of these studies deal with cell-centred FV schemes (except Barth who also show some re-

sults for a vertex-centred scheme), where the reconstructed gradients are limited imposing diUerent

conditions in order to respect alocalmaximum principle. These eUorts aimed at generalizing the

one-dimensional technique to the 2D case.
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In [18], the idea is toVnd the largest admissible value for the limiter while invoking a monotonicity

principle stating that values of the linearly reconstructed function must not exceed the maximum

and minimum neighbouring centroid values (including the cell itself). For a reconstruction of the

type:

u(x; y)A = u(x0; y0)A + � A r uA � 4 rA (3.5)

whereu(x; y)A is the variable to limit,(x0; y0) is the centroid of the cell,� is the limiter andrA is

the distance from the centroid to the pointA; the requirement is that:

umin
A � u(x; y)A � umax

A (3.6)

with umin
A andumax

A the minimum and the maximum values of the cell itself and the neighbouring

cells. In [87], Hubbard tries to take into account to the maximum the multidimensionality of the

problem, improving the old limiting techniques. Limited gradient operators are constructed by

constraining the gradients to lie within a `Maximum principle region' and a cell-centred scheme is

used, for which an exact gradient operator for linear data can be deVned. The region is constructed

using the inequality:

min(uk � u0; 0) � r 0k � r u � max(uk � u0; 0) (3.7)

wherer0k is the vector from the centroid of cell 0 to the midpoint of the edge between cells 0 and

k. The inequality ensures the desired properties: no new extrema and sign preservation of the re-

constructed variables. Besides the gradient computation, the cell-centred scheme is advantageous

also because it does not need a further correction of the reconstructed values to enforce mass con-

servation. On the contrary, this is not true in a vertex-centred framework, as explained in [112].

Perthame and Qiu [112], in 1994, proposed a variant of the classical MUSCL approach in a vertex-

centred FV framework. The novelty of their method consists of using interpolation rather than

slope reconstruction and the robustness of the approach is proven through numerical tests where

stability and the non-negativity of some variables (pressure and density, since they solve the Euler

equations) are veriVed. Because of interpolation, the solution is represented by piece-wise constant

subcell functions, which dictate the limitation to perform on the reconstructed value in order to

guarantee a conservation constraint. We note that in this case the interpolated values are placed

at the vertex of the control volume (and not at the mid point of the interfaces) since a simple in-

terpolation of the numericalWux is performed using the vertex values. Due to the vertex-centred

framework, a supplementary correction of the interpolated values is necessary for conservation

reasons. This is due to some geometrical aspects, since the centre of mass of the vertex-centred

cell i does not correspond to the node of the mesh used to indicate the celli (from which then the

gradients are computed). In [14], the correction of the second order values has been transposed for

a classical case where slopes are computed to approximate the gradient at the middle point of the

interface. The correction is successful since mass is conserved and the positivity of the interested

values is preserved too.
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More recently other studies [26, 33, 36, 44, 86, 94] of MUSCL methods for unstructured grids ap-

peared in the literature.

The work of Berthon [26] focuses on the application of a variant of the classical MUSCL technique

in a vertex-centred FV framework. Since the method is used on the Euler equations, the preserva-

tion of invariant domains and the satisfaction of a set of entropy inequalities is analysed in detail

in the gradient reconstruction step. The authors present a scheme which turns out to be the same

as in [112], even if the procedure to reconstruct and to limit the interface values is diUerent.

To write the second order scheme as a relevant average of states obtained by aVrst-order scheme,

a particular geometrical framework is considered: the classical dual cell of a vertex-centred context

is decomposed in sub-cells. The paper aims to prove that the solution given by the second-order 2D

scheme is able to guarantee the preservation of a convex set and the satisfaction of the discrete form

of the entropy inequalities, if a relevant CFL condition and a special limitation process are applied.

Theoretical and numerical proofs are given in the paper. Demanding tests show the robustness of

the scheme proposed, stressing the positivity of pressure and density, yet the non-oscillatory char-

acter of the solution is not controlled by the proposed technique.

BuUard and Clain [33] propose two new MUSCL techniques for cell-centred FV schemes. The

methods are based on a mesh assumption: the barycenter of a triangle is always contained by a

convex set deVned by the barycenters of the three neighboring volumes.

TheVrst technique proposed is called themonoslopemethod as only one gradient is used per el-

ement, which means that the three values reconstructed at the interfaces are generated by the

same gradient. The novelty with respect to the classical monoslope approach is that the gradient is

constructed inonly one procedure. The technique consists of optimizing the slope under the TVD

constraint, hence the slope is the result of the minimizing procedure. A new variable is introduced

and deVned at the interface: it is called the reference variable since it represents the reference

reconstructed value at the intersection between the segment joining the barycenters and the line

containing the edge of the cell. The reference variable is equal for the two nearby cells (i andj ).

In the minimization procedure, the objective is for the reconstructed values the be as equal as pos-

sible to the reference values, respecting the TVD condition.

The second technique proposed for the MUSCL approach is amultislopemethod since a diUerent

slope is provided for each interface of the same triangle. In this case two requirements have to be

satisVed: the reconstruction must be consistent for linear functions and the slope has to vanish in

case of a local extremum at pointi . For both techniques, the authors consider two ways to deVne

the interface values: the midpoint of the interface or the intersection point between the interface

and the segment linking the two barycenters of the two triangles. A large number of tests are pre-

sented and the techniques are tested for the scalar advection equation and for the Euler equations

for diUerent kinds of meshes and for diUerent initial conditions (continuous and discontinuous

functions). Due to the large number of combinations of limiters and of types of reconstruction

methods, it is diX cult to retain a unique general conclusion from the test cases. However, the most

important conclusions are:
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� using the midpoint for reconstructed values always gives better accuracy but it does not

always guarantee the stability of the scheme;

� multislope methods seem to provide smaller errors, time consumption is reduced and imple-

mentation seems easier;

� multislope methods can be directly generalized to 3D, whereas for the monoslope method

complementary studies are necessary;

� in general, the new monoslope technique is more accurate than the classical monoslope

method

A simpliVed multislope method based on these ideas ([33]) has been presented by Hou et al. [86].

The main diUerence is that the upstream and downstream slopes are computed with a simpliVed

formula that needs fewer computational steps since it involves fewer intermediate variables. Thus

the merit of the method is mainly in terms of eX ciency. The method is then tested with classical

test cases for the shallow water equations, showing good performance.

A very interesting work is the one of Calgaro et al. [36], which is based on a previous work of

Clain and Clauzon [44] in which theL 1 stability is proven for acell-centredFV scheme using the

MUSCL technique under a speciVc CFL condition.

Showing the preservation of this property solving scalar hyperbolic problems in the case of second

order schemes using the MUSCL techinque is quite complicated. The typical procedure to show

that a scheme respects the maximum principle and that isL 1 stable, implies that all of the coef-

Vcients used for the reconstruction belong to[0; 1]. This is also known as the convexity property

and entails a restriction on the time step, so an appropriate CFL condition.

Following this philosophy, the work [44] aims at generalizing theL 1 stability for schemes which

employ the MUSCL technique over unstructured grids. TheVrst requirement forL 1 stability is

the convexity property, deVned asuij = (1 � � ij )ui + � ij uj with � ij 2 [0; 1] and strictly related

to the limiter used. The second requirement for nonlinear stability is the inversion sign property.

The authors propose also a new multislope technique that is also detailed in [33]. The main ad-

vantage is to deal with one-dimensional problems regardless of the space dimension of the contol

volume (2D or 3D). The main approach of the technique is represented by the use of barycentric

coordinates.

In order to deal with the method proposed, a geometrical restriction is necessary: the domain

should be an� convex triangulation, which means that the barycenter of the control volume has

to be inside the triangle formed by the barycenters of the neighbouring elements (as in [33]).

With this assumption and the two previous requirements, theL 1 stability is demonstrated for a

multislope MUSCL approach for scalar transport advection on a cell-centred FV scheme with an

appropriate CFL condition, which is inWuenced by geometrical parameters linked to the mesh.

Calgaro et al. [36] follow the same steps but in the case of avertex-centredscheme in order to

simulate incompressibleWows with a high density ratio.
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Again, the maximum principle is satisVed with an appropriate CFL condition. The derivation is

done for two types of control volumes: theVrst is obtained joining the barycenters of the nigh-

bouring triangles that share the nodei with the middle points of the edge of triangles; the second

one is obtained by joining the barycenters of all the triangles surrounding the nodei .

TheVrst control volume, even if less simple to implement, should be preferred in the case of fully

unstructured grids since the corresponding CFL condition has no geometric restrictions on the

mesh [36]. On the contrary, for the second kind of control volume, stability is obtained with geom-

etry restrictions on the mesh and it is not possible by using generic mesh generation to respect the

geometrical constraints that guarantee the maximum principle [36].

The CFL conditions for the two kinds of schemes could appear very restrictive, but the authors

claim that they have the same order of magnitude of other schemes able to preserve the maximum

principle at second order. The scheme presented shows a very good rate of convergence in numeri-

cal tests, guaranteeing at the same time the respect of the maximum principle, even using a relaxed

CFL condition. To conclude, we stress that the proofs demonstrated in [36] work for any discrete

divergence free velocityVeld.

A very recent and important improvement to multislope MUSCL methods was shown by Le Touze

et al. [94]. In this work the limitations related to the mesh topology necessary to respect the max-

imum principle in the case of cell-centred schemes are overcome while the latter is still preserved

thanks to the positivity coeX cients theory. The method is thus suitable for general unstructured

meshes and forcell-centredFV schemes. The work is inspired by ideas presented in [33] where the

multislope MUSCL techniques still have some limits. In particular, the authors show how the most

accurate method (i.e. the one that considers the middle point of the interface forWux computation)

of [33] cannot guarantee the stability. The authors also wish to extend the method to other kinds

of elements that are not triangles or tetrahedrons.

The application of the MUSCL technique with the corresponding diUerent limiting procedures to

scalar transport in shallowWows is quite common [23, 39, 104]. For example, Benkhaldoun et al.

[23] use the MUSCL technique combined with a non homogeneous Riemann solver (SRNH) to solve

the shallow water equations for pollutants on unstructured grids. The resolution method is cou-

pled and a cell-centred scheme is used. The accuracy of the scheme is augmented by an adaptivity

procedure that allows reVning the mesh where necessary using an error indicator. In this work

the cell gradient is computed through a minimization method that takes into account the values of

the neighbouring cells. Then the reconstructed values are corrected using the VanAlbada and also

the Minmod limiter to preserve the TVD property. The authors say that the VanAlbada is prefer-

able since the solution is less smoothed than that of the Minmod limiter. Despite its accuracy, the

VanAlbada limiter produces negative results for the pollutant concentration when tested in a pure

advection test. This is a typical example where the maximum principle is not guaranteed with the

classical MUSCL technique. However, most of the time this problem is not visible in the numerical

results.

Second order discretizations of the depth-averaged scalar transport have been analysed in [104],
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for a cell centred scheme, on an unstructured grid. The paper considers the advection-diUusion

phenomena for tracers, under steady and unsteadyWow conditions. The authors use a fully explicit

upwind method for the advection part, whereWuxes are based on the Jacobian matrix, while an

implicit method is used for the diUusion term (which only involves the tracer equation). The ex-

tension to second order is achieved through the MUSCL-Hancock method, for the convection part.

Two diUerent limiting gradient techniques are used and then compared in the test cases.

The inWuence of the source terms on the stability condition is analysed and included in the deVni-

tion of the maximum time step. The respect of the maximum principle for the tracer is another issue

discussed in the paper. In this case, an eX cient technique is proposed to avoid unbounded values

of concentration for the second order case. In particular, second order accuracy can be achieved for

the tracer variables, while the hydrodynamic scheme is reduced toVrst order. The numerical tests

show the qualitative improvement for the second order schemes, under variousWow conditions.

Other second order discretizations for the solute transport in shallow waterWows are tested in [39]

in the framework of a Roe-type FVWux. The authors compare three diUerent high-order discretiza-

tions for the non conservative variablec transported by the convectiveWuxes: one is a centred

discretization, another is the centred discretization where a dissipative term is added for stability

reasons (presented in [40]), and the last one is given by the Gamma scheme [91]. Numerical tests

show that the centred high order discretization produces strong oscillations in the solution, as ex-

pected. The other two high order discretizations show good behaviour and the results are more

accurate than theVrst order cases. The least diUusive scheme is the Gamma scheme and the dis-

continuous proVle of tracers are qualitatively better when using this scheme.

The Harten-Lax-van Leer Contact (HLLC) Riemann solver is very popular in the framework of

FV schemes. The solver has been presented in [143, 144], and the application to the SW system

is described in [142]. The HLLC solver is a modiVcation of the HLL solver, which is a two-wave

model insuX cient for correct solute transport modeling. In the HLLC scheme the missing contact

and shear waves are included in the structure of the solution. Due to its popularity it has also

been extended to turbulentWow applications [21], to Magnetohydrodynamics equations [74], to

two-phaseWow [141] and to the Navier-Stokes equations [115].

Other works using the HLLC RS in shallow waterWows are [98], where dynamically adaptive

quadtree grids are used and [101], where the classical formulation is extended to include source

terms.

Second order extensions of FV schemes using an HLLC RS, have been presented in [85, 86, 132, 133].

These works concern mainly the problem of wetting and drying phenomena, as well as the well-

balanced property, for second order schemes. For passive scalar transport, a sesitivity analysis for

MUSCL schemes using HLLC RS is presented in [73].

Canestrelli and Toro [37] use a FV FORCE-Contact scheme to discretize the augmented shallow

water system in a coupled way. In the paper, the authors show the impact of the restoration of the

Contact wave on the solution. Indeed, more accurate results are reached with the presented model,

for the Vrst, second and third order case. Here the higher orders are obtained with the ADER
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approach presented in [63], and the theoretical rates of convergence are conVrmed in numerical

tests. In addition a comparison with theVrst order HLLC scheme is also presented, showing that

the FORCE-contact model is slightly better in terms of accuracy. The paper stresses the importance

of capturing the contact or shear waves when linearly degenerate characteristicVelds play an im-

portant role in the physical phenomenon.

Higher order methods more than second-order like the WENO scheme are alternatives that we do

not consider here. There are several reasons for which these schemes are not implemented in in-

dustrial codes for real life problems. One is the high computational cost, which increases with the

order select and with the multidimensionality of the problem. Another motivation is that, often,

the shock capturing technique is hardly compatible with the higher order techniques. Improve-

ments in thisVeld can be found in [63, 64], where the WENO reconstruction technique is used in

the framework of the one-step ADER approach, initially proposed in [145] by Toro and his collab-

orators. In particular, the application of the ADER approach to solve pollutant transport problems

is presented in [140].

3.3.2 Residual distribution schemes

The RD technique is less popular and less developed than the FV and FE methods. This is due

to the very limited formal understanding available with respect to the other classical techniques

[120]. However, due to the good properties (especially the linearity preservation condition) shown

by this method, the scientiVc community continues to remain interested in future developments of

this technique, which have been conducted in the recent years mainly by a team working at the

research centre INRIA-Bordeaux.

Works concerning the discretization of the SW equations using RD methods have been carried out

mainly by Ricchiuto and his co-workers [118–122, 128], while other previous works, with almost

non-conservative RD schemes, are [68, 88]. In fact, most of the time, the method has been used for

the discretization of the Euler equations rather than the Saint-Venant equations.

The overview given in this section focuses on the existing techniques to achieve second (or higher)

order schemes in space and in time, for a general conservation law. It is worth noticing that up to

now this technique, as far as we know, has not yet been used for pollutant transport problems in

shallow waterWows, except in [111] and here. However, as for FV method, it should be quite easy

to use the method proposed, for example in [121], for solving thecoupledaugmented SW system,

yet no papers appear on this topic. However, this is not the approach chosen in this work.

In the framework of the RD method, the solution is approximated in the piecewise linearVnite-

element space over an arbitrary unstructured grid:ch(x; y; t ) =
npoinP

i
c(x i ; yi ; t) i (x; y) where

npoin is the total number of nodes in the mesh,c(x i ; yi ; t) is the time dependent nodal value of

the solution at nodei and  i (x; y) is the piecewise linear shape function that beneVts from the

classical properties of linearP1 FE basis functions.
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The integration of the scalar advection equation (2.38b) (without sources) over a single time step,

using an explicit time integration, leads to the following form:

cn+1
i = cn

i �
� t
Si

X

T 3 i

� E
i (3.8)

wherecn
i is the nodal value at timen and cn+1

i is the nodal value at timen + 1 , Si represents

the area of the cell around the pointi , equal to
P

T 3 i

T
3 and � E

i is the splitting residual at nodei ,

computed for every element that contains the nodei and then summed up.

The quantity� E , called the residual, is computed as:

� E =
Z

E
u � r ch dxdy (3.9)

By construction, the consistency relation:

X

i 2 T

� E
i = � T (3.10)

is satisVed. Another fundamental relation is� T
i = � i � T , where� i represents the distribution

coeX cient. The way to distribute the residual to the nodes (i.e. through the distribution coeX cients)

inWuences a series of properties of the scheme like the positivity, the linearity preservation and the

multidimensional character. Hence diUerent schemes with diUerent properties can be created with

a diUerent residual distribution.

Every property characterizes the solution in a certain way and they are brieWy recalled here below

[54]:

� Positivity. A scheme of the form:

� E
i =

X

j 2 T

� E
ij (cn

i � cn
j ) with � E

ij � 0 (3.11)

and able to respect the maximum principle, under the time step condition:

Si � � t
X

T 3 i

X

j 2 T

� E
ij � 0 8i 2 Th (3.12)

is said to be positive. This property is thus related to the non-oscillatory character of the

solutions.

� Linearity Preserving. A scheme is linearity preserving if its distribution coeX cients� i are

uniformly boundedwith respect to the solution and the data of the problem:

max
T 2T h

max
j 2 T

j� j j < C < 1 8 � E ; ch ; c0
h (3.13)
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whereC is a constant. Linearity preserving schemes satisfy by construction the necessary

condition for second order accuracy, hence this property is related to the accuracy of the

scheme.

� Genuinely Multidimensional Upwind procedure: multidimensional upwind schemes only

send portions of� E to downstream nodes. This property corresponds to the generalization

of the 1D upwind idea. It is related to the stability of the scheme.

The origin of these schemes traces back to Ni [107] and Roe [125], who, in 1987, proposed the name

of Wuctuation splitting schemes. In [125], the upwind treatment of the scalar convection equation

was generalized in two space dimensions, deVning the multidimensional upwind character of these

schemes. In the same work, also the most successfulVrst order scheme was introduced. It is the

N (narrow) scheme, also known as the optimumVrst order scheme, since among theVrst order

schemes it is the least diUusive. The scheme is positive, multidimensional upwind and linear be-

cause of the Godunov theorem, it is limited to be only ofVrst order accuracy.

However, due to its properties, the scheme plays an important role in the construction of second

order schemes.

3.3.2.1 Second order techniques

In the RD scheme, the truncation error is deVned following a variational approach, see for example

[2, 8, 54]. From the consistency analysis it is possible to show that, in two spaces, a RD scheme

veriVes the truncation error estimate:

TE(wh) :=
X

i 2T h

' i

X

T 3 i

� i (wh) = O(� xk ) (3.14)

provided that the following condition is met:

� i (wh) = O(� xk+1 ) 8i 2 T andT 2 Th (3.15)

with ' a smooth compact function' 2 Ck
0 (
) , wh thek � th order accurate continuous piecewise

polynomial of degreek � 1 interpolant ofw, a smooth exact solution of the PDE. This condition

guarantees formally that the scheme has anO(� xk ) error [54].

The N scheme only preservesO(� x1) and does not guarantee the LP property since the distribu-

tion coeX cients are unbounded, but it can be the basis for a second order scheme.

Indeed, in order to obtain bounded distribution coeX cients and thus meet the condition� i =

O(� x3), the non linear limiter PSI is introduced. The original PSI scheme was presented in 1994

by Struijs [136] in his PhD, and it met a large success (see [110, 125, 126]) due to its good per-

formance, which is better than FV schemes, especially on irregular grids [54] for steady scalar



44 CHAPTER 3: STATE OF THE ART

problems. The scheme is related to the N scheme since the limiter is applied on the distribution

coeX cients of the N scheme.

Later, a more general framework to construct non linearlimited second order schemes was pre-

sented in [7, 8, 110]. In the RD method, the limiter is used in a completely diUerent manner than in

the FV method. In this case, the role of the limiter is to bound the coeX cients and to preserve the

positivity of theVrst order scheme coeX cients, while in the FV context the limiter is used to limit

the slopes and so to avoid oscillations in the solution.

This technique, which is the one commonly used in practice, has been known for a very long time

(1995), and improved constructions have not been published since then [54].

In the RD framework theVrst order scheme is critically important in the construction of the second

order one. Beyond the N scheme, the Lax–Friedrichs scheme is often used as basis for the construc-

tion of a limited non linear variant [3, 117, 121, 122].

However, all these formulations, which are based on the prototype (3.8) are onlyVrst order accu-

rate in time dependent problems. This is due to aninconsistencyin the spatial discretization [54],

which is independent of the order of the time discretization. Essentially, whatever the choice of

the discretization of the time derivative, the scheme has a discretization error bounded byO(� x)

[120]. This can be demonstrated performing a time continuous consistency analysis (see [54, 118]).

To overcome this issue, several solutions have been tested based on a new concept of residual. The

diUerence consists of including the time derivative in the computation of the residual, which thus

becomes a space-time residual. This operation is necessary to recover second order accuracy in

space and it leads to the formation of a mass-matrix of the time derivative, exactly like in the FE

context, except that in this case the problem hasnotbeen formulated using a variational approach.

The various approaches proposed to solve time dependent problems can be classiVed in three fam-

ilies of schemes:

� space-time schemes,

� implicit in space schemes,

� explicit predictor-corrector schemes.

Schemes proposed in [47, 48, 54] and the more recent versions [89, 128] belong to theVrst class.

Each element in the mesh deVnes a prism in space-time. In this case the problem is solved comput-

ing a space-time residual on the prism, which corresponds to [54]:

� P n +1 =2
E =

Z

P n +1 =2
C

�
@ch
@t

+ u � r ch

�
dx dy dt =

Z

E

Z t+1

t

�
@ch
@t

+ u � r ch

�
dx dy dt

(3.16)

Then, the fractions of� P n +1 =2
E are distributed to the nodes ofE through the distribution coeX -

cients, like in the steady case, respecting the multidimensional character. Finally the solution is
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found solving the system: X

P n +1 =2
E 3 i

� P n +1 =2
E = 0 (3.17)

The extension of the multidimensional upwind scheme in the space-time context, yields a CFL

condition, called the past-shield condition. This condition, for prismatic space-time elements, is

exactly equivalent to the time step restriction ensuring the local positivity of the N scheme with

trapezium integration [54].

The resulting scheme is quite expensive from a computational point of view, due to the very re-

stricting time-marching condition coupled to the solution of a non linear system at every iteration.

In [123] a better condition for the time step is presented, and theVnal cost is comparable to that of

an unconditionally implicit second order Runge-Kutta scheme.

The second approach for time dependent problem is represented by implicit space schemes. They

deal with unsteady problemsVrstly discretizing in time the residual and then applying the spatial

discretization. Schemes belonging to this family have been presented in [6, 38, 118]. The space-time

residual can be recast as [118]:

� h =
ST

3

X

j 2 T

(cn+1
i � cn

i ) +
� t
2

� h(cn+1
h ) +

� t
2

� h(cn
h ) (3.18)

Then the splitting is operated following the same design criteria for steady problems: positiv-

ity, multidimensional upwind and linearity preservation for the second order case. The accuracy

analysis for time problems [54, 118] shows that the scheme respects an error estimate of the type

� (wh ; t f ) = O(� x2), if � i (wh) = O(� x4). Hence, even for unsteady cases, the non linear limiter

is applied on positive linear schemes to obtain bounded distribution coeX cients.

However, as for the steady case, the condition for� i (wh) is only necessary and not suX cient to

get the desired convergence rate, since other stability conditions are necessary.

Once the splitting is completed, a set of non linear algebraic equations has to be solved toVndcn+1
i :

X

T 3 i

� E
i = 0 (3.19)

The formulation of the N scheme in this implicit in time framework then helps to construct the PSI

version for time dependent problems.

The monotonicity condition is derived from the N scheme and corresponds to the past-shields

condition of [54]. The non linear system obtained when the� P SI are applied can be solved through

non linear solvers like the Newton-Raphson method [6] or through an explicit pseudo-time iterative

procedure [47, 48, 123]. The latter seems to converge faster in terms of CPU time [61], however the

implicit in space formulation is tied down by the non linear system.

It is worth noting that for the two families of schemes presented, the restrictive stability constraints

can sometimes be removed when using a two-layer formulation, see [6, 47, 123].

The genuinely explicit schemes, like the predictor-corrector, represent another approach to handle
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unsteady problems. The predictor-corrector scheme is a very attractive alternative since the non

linear system that characterizes the other methods disappears and is replaced by a two time step

explicit scheme. It follows that theVnal scheme is cheaper and eX cient.

This method is the most recent with respect to the other schemes for time dependent problems: it

was initially published in 2010 by Ricchiuto and Abgrall [117], then applied to the SW system in

[121] andVnally combined with an ALE formulation [11]. A discontinuous RD based version of

the predictor-corrector scheme is also presented in [151].

The genuinely explicit RD approach consists of the two steps:

8
>><

>>:

jSi j
c�

i � cn
i

� t
= �

P

T 3 i
� i

Z

T
u � r cn

h

jSi j
cn+1

i � c�
i
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= �
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h

� t
+

1
2

u � r cn
h +

1
2

u � r c�
h

� (3.20)

The unknown is initially approximated with a classical scheme for steady problem and then it is

corrected in the second step. This formulation stems from a complex construction, detailed in [117],

which is brieWy recalled here:

1. formulation of a bubble stabilized Galerkin scheme;

2. construction of a modiVed semi-discrete residual guaranteeing that the overall accuracy is

not reduced. In particular, the authors show that for a second order scheme aVrst order

semi-discrete operator is suX cient;

3. RK time step formulation, consistent with the semi-discrete residual;

4. mass lumping to avoid the inversion of a mass-matrix.

Obviously, as for the other families of time dependent schemes, the distribution coeX cient of ex-

pression (3.20) must be uniformly bounded. Thus they can be generated by the limitation of positive

Vrst order schemes, like the Lax Friedrichs or the N scheme, in order to have a positive second order

scheme. Otherwise, other non positiveVrst order schemes can be used if the goal is simply to have

a second order scheme (not monotone).

Concerning the stability of the scheme, the authors aX rm that a Fourier analysis on structured

triangulation is under way to have better estimates of the computational time step and the stability

(or positivity) of the various RD formulations is currently being investigated. However, for the

scalar homogeneous case, the theory of positive coeX cients [54, 134] can be applied and precise

conditions can be found to bound the numerical solution [121].

To conclude, the conservation issue for RD schemes is brieWy addressed. Conservative formulations

of RD schemes for systems of (or scalar) non linear conservation laws, are linked to the compu-

tation (and the existence) of conservative linearization of the multidimensionalWux jacobian over

the mesh cells. This problem was investigated in a series of papers [5, 48, 118, 123]. The classical

solution is to compute the residual throughexactmean values Jacobians. In [48], this procedure
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is called linearization-based RD. Unfortunately such a procedure can be too diX cult or impossible

to implement. This is the case for the shallow water system. Thus, aVrst solution is presented

in [5], where the exact mean values Jacobians are replaced by approximated values obtained from

adaptive quadrature of the quasi-linear form. With this approach, it is also possible toVnd a corre-

sponding Lax WendroUtheorem for RDS and to show that these schemes converge to the correct

weak solutions with some assumptions and for a certain (large) number of Gauss points.

Another solution, which became the most popular, is to use a contour integration based RD

[48, 118, 123]. Such a procedure is easier and less expensive than the previous one. It consists

of approximating directly the contour integral of the convectiveWuxes over the boundaries of an

element. This technique is in general the one used for SW discretization.

3.4 Coping with dry zones

Wetting and drying phenomena are very common in nature, especially in rivers characterized by

strongly variable discharge andWooding events. The numerical simulation of these phenomena

can be a diX cult task for the most common eulerian models, and this explains the large number of

papers dedicated to this problem [15, 16, 30, 32, 34, 71, 76, 84, 98].

The main diX culty is to preserve a positive water depth in covered and uncovered areas, maintain-

ing a conservative scheme. In this case, the bed source term can play an important role, implying

positive and negative bed slopes, which have a dominant eUect on theWow. Another undesired

eUect is the appearance of unphysical high velocities at the interface, which result from division by

very small water depths.

For these reasons, special numerical approaches are necessary at wet/dry fronts.

The numerical challenge for the tracer transport is not only the respect of the positivity but also

the respect of the maximum principle for these areas. As for the velocities, unbounded values can

appear in the solute concentration after the division of the conserved quantityhc by the water

depthh.

In the literature, we onlyVnd a few papers concerning this issue, unlike the number of papers

dedicated to the water depth positivity.

Murillo et al. [103] propose a conservative model which ensures bounded values of concentration in

all situations and avoids negative water depths. The authors use a cell-centred FV scheme applied

to the whole augmented SW system. Based on a Roe-typeWux computation, a speciVc modiVcation

is proposed to avoid negative water depths and concentrations. In particular, a conservative redis-

tribution of the solute massWuxes is performed to enforce the respect of the maximum principle.

However, the wetting and drying approach implies a very restrictive time step condition, increas-

ing the computational time. To overcome this problem, the authors redeVne the updatingWuxes in

cells that have negative water massWuxes.

The numerical results show good behaviour of the scheme for various dry test cases: mass is con-

served and bounded values of tracers are obtained.



48 CHAPTER 3: STATE OF THE ART

Begnudelli and Sanders [22] also apply a FV scheme that includes a Roe's approximate Riemann

solver. Here the tracer equation is solved after the hydrodynamic computation, and the update of

the concentration is parameter dependent. For values higher than the cut-oU value, the division

hc=h is performed, while for lower values, the concentration is set equal to the concentration in

neighbouring wet cells. For several wet cells, the cell with the largest volume is chosen. In case of

zero wet cells, the concentration is set to a reference value. Mass is conserved since the quantity

hc is not changed.

A diUerent approach is proposed by Hervouet et al. [81]. A new algorithm, which combines the

best properties of implicit FE and explicit FV is constructed to deal with dry zones and is formu-

lated for the water depths but also for tracers and sediments. This scheme has been called NERDS

(N-Edge-based Residual Distribution Scheme). The main idea consists of three steps [81]:

1. The FEWuxes are transformed intoWuxes between points, using the method published in

[114];

2. Starting from depths at timen, theWuxes are transferred to points, the depths are accordingly

updated provided that the depths remain positive, otherwise theWuxes are provisionally

limited, with a part kept for a further iteration. The transfer is completed by a loop on the

edges of the triangles until there is no more possible water to transfer;

3. When noWux can be transferred without triggering negative depths, the remainingWuxes

are left over and considered as non physical.

The advantage of this method is that it gets rid of the CFL condition, considering the total mass

Wux which has to be transferred in a single time step.

In order to extend the algorithm to the tracer, the conservative tracer equation and the continuity

equation are treated at the same time, i.e. water is transferred with the tracer inside. Mass conser-

vation is obvious for this technique, and surprisingly there is no risk of division by zero and the

maximum principle is obeyed. The idea has been adapted for parallelism. The drawback is that the

method is based on the N schemeWuxes, and so far no further idea has been issued to get a second

order in space.

3.5 Summary

In this chapter the state of the art of scalar transport models in shallow waterWows has been pre-

sented. When considering pollutant transport phenomena, several numerical modelling choices are

possible, and the main options have been analysed in this chapter.

The advantages and disadvantages of a coupled and a decoupled discretization have been presented

by analysing a range of studies dedicated to this topic. The result is that the two discretizations are

possible and they can be more or less suitable, depending on the numerical method used for the

discretization of the equations.

Then, the issue of the accuracy in the prediction of the tracers transport has been tackled in two
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diUerent parts. In theVrst part, someVrst order numerical methods with low numerical diUusion

have been presented. Among these methods, weVnd some possible candidates for the solution of

the depth-averaged tracer equation.

In the second part, conservative and second order accurate methods have been presented. Since

these are the methods used in the remainder of this work, an in-depth analysis has been provided

for the reader. In particular, cutting-edge studies of second order techniques have been introduced,

showing the progression of these techniques from the 80's to today.

Finally, the problem of wetting and drying phenomena in the presence of tracers has been ad-

dressed, presenting the studies available in the literature that analyse this issue.
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Chapter 4

A second orderVnite volume scheme

with larger time step

Dans ce chapitre un schéma aux volumesVnis, formellement d'ordre deux et carac-

térisé par un grand pas de temps est présenté.

D'abord la solution du système de Saint-Venant couplé avec une loi de conservation

scalaire, qui se base sur un solveur de type HLLC, est décrite pour le schéma d'ordre

un. Ainsi, la positivité de la hauteur d'eau et de la concentration sont montrées.

L'analyse de l'équation du traceur simple permet de montrer que la positivité, ainsi

que la monotonie de la solution, demandent un pas de temps qui est plus grand par

rapport à celui qui est nécessaire pour résoudre le système de Saint-Venant.

Pour cette raison, la solution de l'équation du traceur est découplée de l'hydrodynamique,

aVn d'exploiter le plus grand pas de temps admissible, avec des bénéVces sur les coûts

de calcul et la diUusion numérique.

La méthode utilisée pour la reconstruction d'ordre deux est ensuite introduite, pour

les variables hydrodynamiques et pour le traceur. DiUérents limiteurs sont choisis en

fonction des propriétés mathématiques, pour chaque variable.

L'algorithme utilisé pour découpler traceur et hydrodynamique est aussi détaillé.

EnVn, le problème des bancs découvrants et une ébauche de solution sont présentés

dans la dernière partie du chapitre.
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In this chapter aVnite volume (FV) method used to model the pollutant transport is presented. First

of all, the coupled solution of the augmented SW system is introduced in the case of aVrst order

scheme. The computation of theWuxes is based on the HLLC approximate Riemann Solver (RS),

which is suitable when contact discontinuities are present.

Then, the decoupled scheme for the solute equation is deduced and presented in section 4.1.3. This

choice allows to decrease the CPU time and to reduce the numerical diUusion of the scheme.

The scheme is conservative by construction and the details on the monotonicity condition are given

in Section 4.1.4.

Section 4.2 describes the application of the MUSCL technique to obtain second order accurate

in space solutions. Even in this case, the decoupled solution for passive scalar transport is used

without technical problems related to the second order extension.

However, the monotonicity condition is no more strictly guaranteed for the second order case.

In Section 4.3, the implementation details on the algorithm used to compute the solution of the

augmented SW system are given to the reader.

Finally, Section 4.4 presents the analysis of the dry bed cases, showing a possible solution to deal

with these phenomena.

4.1 First order scheme

The shallow water system is discretized using a vertex-centred approach that approximates the

solution on the nodes of the mesh around which the control volume is built.

A triangulationTh is performed on the computational domain, which is divided inN triangular

subdomains. Every control volume is calledK i and it is associated to the nodei . It is deVned

joining the centers of mass of the trianglesTi surrounding the vertexi , for this reason we deal

with a vertex-centredVnite volume approach.

According to this approach, we will use the following notations (see Figure 4.1):

� K i is the contol volume centered at the nodei andjK i j its area;

� � ij the edge between the cellsK i andK j ;

� l ij the length of� ij ;

� n ij = ( nx ; ny) the outward unit normal to the edge� ij with the relativex; y components.

For the vertex located at the boundary, the cell is completed by joining the center of mass of the

triangle adjacent to the boundary with the middle of the boundary edge, see Figure 4.2. In this case:

� l i is the length of the boundary segment;

� n i is the outward unit normal to the boundary segment.

The vertex-centred approach leads to additional pre-processing but is less sensitive to mesh quality

with respect to the cell-centred approach [60]. In addition, in case of discretization of diUusion
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Figure 4.1: Vertex-centered approach.

Figure 4.2: Vertex-centred control volume for a boundary cell.

terms, the vertex-centred approach is accurate compared to other cell-centred schemes [77]. Finally,

this approach is compatible with the FE methods of Telemac-2D as the control volume (K i in case

of FV) is equivalent toSi , the surface of the cell around pointi obtained by the mass-lumping on

the mass matrix (see Chapter 5).

The augmented shallow water equations (2.31) are spatially integrated over every control volume

K i and the Gauss theorem is applied:

Z

K i

@U
@t

dV +
Z

� i

(G(U )nx + H (U )ny)d� =
Z

K i

S(U )dV (4.1)

where� i is the contour of the cellK i andnx ; ny are the components of the outward normal vector.

Thanks to the rotational invariance property, which states thatF(U ) � n � [G(U ); H (U )] =
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T � 1G(T (U )) [142], Equation (4.1) can be recast as:

Z

K i

@U
@t

dV +
Z

� i

F(U )d� =
Z

K i

S(U )dV (4.2)

In this way a local 1D Riemann problem is recovered at every interface of the control volumes.

We recall that a Riemann problem is deVned as:

PDE:
@U
@t

+
@F(U )

@x
= 0 (4.3)

with initial conditions (IC):

IC: U (x; 0) =

(
U L if x < 0

U R if x > 0
(4.4)

where the partial diUerential equation (PDE) expresses a conservation law with two diUerent initial

discontinuous conditions:L stands for left andR stands for right. Working in the space-time frame

[K i ] � [tn ; tn+1 ], the Vnal discretization of the augmented SW equations (2.31), using an Euler

scheme in time, gives:

U n+1
i = U n

i �
m iX

j =1

� ij F(U n
i ; U n

j ; n ij ) � � i F(U n
i ; U n

e ; n i ) + � tSn
i (4.5)

whereU n+1
i is the spatial average of the conservative variables at timetn+1 in the cellK i andU n

i

is the spatial average of the conservative variables at timetn in the cellK i . F(U i ; U j ; n ij ) is the

interpolation of the normal component of the intercell numericalWux along the edge� ij ; � ij =

� tl ij =jK i j; mi is the number of edges in the cell.F(U n
i ; U n

e ; n i ) is the numericalWux betweenU i

andU e, which is aVctive state used to weakly impose the boundary condition,� i = � tl i =jK i j,

see Figure 4.2.

The system is stable under the CFL condition [45] issued from the stability analysis of the linearized

scalar equation and then adapted to the SW equations:

� t �
CFL � x i

maxi 2T h (�; a i + ju i j)
(4.6)

whereai is the celerity (equal to
p

ghi ), � x i is the width of the cell crossed by the wave and� is a

threshold value. The value ofCFL must be in the range[0; 1].

To compute the numericalWux we use an HLLC approximate Riemann solver [142]. The HLLC

Wux is based on the exact integral relations issued from the exact solution of the Riemann problem



4.1 FIRST ORDER SCHEME 55

(see Figure 4.3). It is deVned as:

F(U n
i ; U n

j ; n ij ) =

8
>>>><

>>>>:

FL ; if 0 � SL

F � L ; if SL � 0 � S�

F � R ; if S� � 0 � SR

FR ; if 0 � SR

; (4.7)

Looking at the 1D case,F(U n
i ; U n

j ; n ij ) is also calledF i +1 =2 since is theWux at the interface

between the celli and the celli + 1 . Formula (4.7) means that we have 4 possible solutions for

theWux, according to the wave speedsSK with K = L; � ; R which stands for left, star and right.

Integration over appropriate control volume gives:

Figure 4.3: HLLC approximate Riemann solver and solutions in the 4 regions: left, left star, right
star, right (on the left); approximate HLLCWux (on the right).

F � L = FL + SL (U � L � U L ) (4.8)

F � R = F � L + S� (U � R � U � L ) (4.9)

F � R = FR + SR (U � R � U R ) (4.10)

The wave speedsSL ; S� ; SR are computed with appropriate formulas which will be speciVed later.

Note that manipulating equations (4.8) ,(4.10) and using conditionu� = S� weVnd the approximate

states, necessary to compute (4.7):

U � K = hK

�
SK � uK

SK � S�

�

2

6
6
6
6
4

1

S�

vK

cK

3

7
7
7
7
5

; (4.11)

with K = L; R .

Before estimating the wave speeds, we recall some basic conditions that are enforced to solve the

algebraic problem. These conditions are issued from the exact Riemann problem and correspond
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to:
h� L = h� R = h�

u� L = u� R = u�
(4.12)

which means that water depth and normal component of velocity are conserved along the con-

tact discontinuity (in the star region). While, the tangential velocity components, as well as the

concentration, are kept constant along the other two waves:

v� L = vL v� R = vR

c� L = cL c� R = cR
(4.13)

In addition, it is convenient to assume thatS� = u� , that is the water particle speed in the star

region. There are several possibilities to evaluate the wave speeds; we choose here the suggestions

given in [142] and we compute:

S� =
SL hR (uR � SR ) � SRhL (uL � SL )

hR (uR � SR ) � hL (uL � SL )

SL = uL � aL qL and SR = uR + aRqR (4.14)

where the coeX cientsqL and qR assume diUerent formulations depending on the presence of a

shock or a refracted wave. This distinction is made comparinghK (K = L; R ) with h� .

qK =

8
<

:

1 if h� � hK ; rarefactionr
1
2

h
(h � + hK )h�

h2
K

i
if h� > h K ; shock

(4.15)

Thus the wave speed estimates are based on water depth and water particle velocity in the star

region. These are obtained from an approximate-state Riemann solver where the water depth is

derived from the depth positivity condition that weVnd also in the exact Riemann solver. This

condition is(� u)crit = 2( aL + aR ) > u R � uL [142]. Expressions forh� and consequently for

u� are:

h� =
(hL + hR )

2
�

1
4

(uR � uL )(hL + hR )
aL + aR

(4.16)

u� =
(uL + uR )

2
�

(hR � hL )(aL + aR )
hL + hR

(4.17)

It is worth noticing that if one of the two states is dry, e.g. the right water depth is zero, the wave

speeds estimates are modiVed:

SL = uL � aL and S� L = u� = uL + 2aL (4.18)

indeed in this case the right shock wave is absent and the left rarefaction wave is present together

with the contact wave which coincides with the tail of the rarefaction. For a review of approximate

RS we address the reader to [142].
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In order to complete the description of the FV scheme for the SW equations, we deal now with the

boundary terms andVnally with the source terms.

As written in Equation (4.5), the external states,U e, need to be prescribed in order to satisfy the

boundary conditions through theWux computation. They represent the estimation of the solution

on a ghost cell, described through the local coordinates. Again we recover the one-dimensional

framework after rotation of the variables and a local 1D Riemann problem can be solved. The

ghost states are thus deVned by:

U e =

2

6
4

hi

hun

hvt

3

7
5 (4.19)

wherehi is the water depth at the boundary nodei , hun , hvt are the states associated to the normal

and tangential direction on the nodei . We note that the conditions are applied once aVrst estimate

of eU n+1 is obtained solving Equation (4.5):

~U n+1 =

2

6
6
4

ehn+1

fhu
n+1

fhv
n+1

3

7
7
5 (4.20)

The treatment of boundary conditions is inspired by [31] and it is just brieWy recalled here.

The slip boundary condition for wall boundaries is weakly enforced setting:

U e =

2

6
6
4

ehi
n+1

� ghun
n+1

fhvt
n+1

3

7
7
5 (4.21)

The water depth and the tangential component of velocity are thus equal to the values obtained at

the node by (4.5).

For liquid boundaries, as we are in the one-dimensional case, we consider that in case of subcritical

Wows, we will prescribe one condition at the inlet and one condition at the outlet. For supercritical

Wows, we will prescribe two conditions at the inlet and nothing at the outlet. The Froude number

is computed for the local variables and is related to the normal component of the velocity. In

general, in cases of a missing boundary condition, the set of boundary conditions is completed

thanks to the Riemann invariants, which are constant along the characteristics. For tracers the

theory of characteristics is still considered and the boundary treatment for these terms is described

in Section 4.1.5.

The presence of the geometry source terms in the momentum equation must be carefully treated.

Indeed, non trivial steady states have to be preserved by the numerical scheme, thus a right balance

between theWux term and the source term is necessary. Schemes able to guarantee this condition

are known as well-balanced and the diX culty is to preserve at the same time other properties like

the positivity of the water depth. In the present scheme the well known hydrostatic reconstruction
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[15] is employed to solve this problem. This solution is suitable forVrst and second order schemes

and guarantees also the non negativity of the water depth.

Finally the friction source term of the momentum equation is integrated through a semi-implicit

formulation.

4.1.1 Unsteady tracer advection benchmark

For the sake of clarity, we introduce now a numerical test which will be considered all along this

work to gradually show the results and thus the improvements obtained with the schemes pre-

sented in this thesis. We hope that this choice simpliVes the theoretical framework, translating in

a uniqueWow of ideas the theoretical concepts and their impact on numerical results.

Hence, we give here the details about the mesh and the variables of the problem. We consider a rect-

angular channel with aWat bottom characterized by a steady stateWow
@h
@t

=
@u
@t

= 0 . The rectan-

gular domain is2 m long and1 m large. It is made up by 6,876 irregular triangles with an average

mesh size equal to0:02 m. The hydrodynamic initial conditions areu 0 = u(0; x ) = (1 ; 0) m=s

andh0 = 1 m. Thus at the inlet of the domain we impose a discharge equal to1 m3=s and at the

outlet we impose a water depth equal to1 m. the solution is trivial since water depth and velocities

are equal to the initial conditions (and to the boundary conditions). Regarding the tracer, we set

the following initial tracer proVle:

c0(x; y) =

(
cos2(2�r ) if r � 0:25

0 otherwise
with r =

p
(x � 0:5)2 + ( y � 0:5)2

Free boundary conditions are set on the open boundaries. The duration of the test is1 s. The case

is suitable since the exact solution for tracer is computed with the theory of characteristics and

the numerical diUusion produced by the scheme is represented by the diminishing of the initial

maximum value. In Figure 4.4 we show the initial solution and the exact solution at the section

y = 0 :5 m after 1 s. In Vgure 4.5 we show the proVle obtained at the end of the simulation,

compared to the analytical solution. As we can see, the result is diUusive due to the low order

of the scheme and to the excessive numerical diUusion. This preliminary result will be improved

using the decoupled solution and increasing the order of accuracy of the scheme.

4.1.2 Positivity of the scheme

It is easy to show that the HLLC solver is able to preserve the positivity of the water height and of

the tracer concentration under the classical CFL condition and this is brieWy recalled here. We are

interested in showing that ourVnite volume scheme is positively conservative in the sense that the

water height, but also the concentration, remain positive throughout the computational process.

This has been demonstrated in the case of the Euler equations, for the Godunov's method, the

HLLE-Method [66] and the HLLC Method [20]; here we follow the same reasoning for the Saint-

Venant system.
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Figure 4.4: Unsteady tracer advection benchmark: initial proVle and exact solution aty = 0 :5 m.

Figure 4.5: Unsteady tracer advection benchmark: results for the HLLC scheme at section
y = 0 :5 m.

First of all, we recall that the solution of a conservation law:

PDE:
@U
@t

+
@F(U )

@x
= 0

IC: U (x; 0) =

(
U L if x < 0

U R if x > 0

(4.22)

at timetn+1 can be seen as solution of two Riemann problems solved at each cell interface:x i +1 =2

andx i � 1=2, see Figure 4.6. Let's take the interfacex i +1 =2, we can write:

U (t; x ) = R
� x � x i +1 =2

t � tn ; U n
i ; U n

i +1

�
if x i < x < x i +1 (4.23)
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Figure 4.6: Riemann problems at the interfacesx i +1 =2 andx i � 1=2 of a cell.

for tn � t � tn+1 , whereR is the approximate Riemann solution. This is possible until time

tn+1 is under a CFL condition0:5 [28] which is necessary to avoid interaction between solutions

(crossing wave speeds) in the intervalx i < x < x i +1 . Thereby:

R (x=t; U i ; U i +1 ) =

(
U i if x=t < � � x i

2� t

U i +1 if x=t > � x i +1
2� t

(4.24)

where� x i = x i +1 =2 � x i � 1=2. To compute the solution over the celli , with an HLLC approximate

Riemann solverR hllc , we have to take:

U n+1
i =

1
� x i

Z i

i � 1
2

R hllc (x=t; U n
i � 1; U n

i )dx +
1

� x i

Z i + 1
2

i
R hllc (x=t; U n

i ; U n
i +1 )dx (4.25)

which is equivalent to:

U n+1
i = U n

i �
� t
� x

(Fhllc
i + 1

2
� Fhllc

i � 1
2
) (4.26)

Clearly, update valuesU n+1
i are derived from a convex averaging process of the states that are

solution of the Riemann problem at the cell interfaces. Hence, an approximate Riemann solver

leads to a positively conservative scheme if and only if all the states generated are physically real

[66]. The setG of these admissible states is:

G =

8
>>>><

>>>>:

2

6
6
6
6
4

h

hu

hv

hc

3

7
7
7
7
5

; h > 0 andc > 0

9
>>>>=

>>>>;

(4.27)

For the water depth we require thatU1
L ,U1

R and U1
� R ,U1

� L are positive, whereU1 = h, theVrst

component of the vectorU . For assumption on the initial condition this is true forU1
L andU1

R .

Let's consider the star states, we require thath� > 0 (sinceh� L = h� R ).
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From (4.11) we have:

h� L = hL

 
SL � uL

SL � S�

!

(4.28)

Positivity is satisVed because:

� SL < S � sinceS� is an average velocity betweenSL andSR ;

� SL < u L sinceSL = uL � aL q with q � 0.

For the tracer, we have to demonstrate that[(hc)L ; (hc)L � ; (hc)R� ; (hc)R ] are positive. The left

and right states are positive by assumption and in the star region we will have a single value ofh�

but two diUerent values ofc. We know that:

(hc)L � = hL

� SL � uL

SL � S�

�
cL = h� cL

(hc)R� = hR

� SR � uR

SR � S�

�
cR = h� cR

(4.29)

Sinceh� is positive under the CFL condition,(hc) � L and (hc) � R are also positive. Indeed, the

positivity is anyway subjected to the CFL condition (4.24). In practice this condition is not used

and the CFL condition is instead:

� t �
CFL � x

a(U i ; U i +1 )
(4.30)

with CFL = 0 :9 anda(U i ; U i +1 ) the maximum local speed. For the shallow water system the

maximum speed is evaluated asmaxi 2T h (�; a i + ju i j) where� is a threshold value. This condition

allows to avoid the interaction between solutions over the cell, that isx i � 1=2 � x � x i +1 =2. This

is suX cient because in practice the solution is updated with formula (4.26), so we look toWuxes on

the linesx = x i +1 =2 andx = x i � 1=2.

In the presence of a non-Wat bottom, the non-negativity of the water depth is guaranteed by the

hydrostatic reconstruction [15], which is used to take into account the geometric source terms and

to preserve theC-property.

4.1.3 Decoupling the tracer equation

The decoupling of the tracer equation follows the ideas of Audusse and Bristeau [13], who proposed

a two time step kinetic scheme for pollutant transport. These ideas can be straightforwardly applied

to this scheme, providing that for a positive star wave speed we will have a positive water mass

Wux and for a negative star wave speed we will have a negative water massWux.

We focus on the tracer equation and we look at the one-dimensional problem (F 4 being the tracer

Wux):

(hc)n+1
i = ( hc)n

i �
� t
� x

(F 4
i +1 =2 � F 4

i � 1=2) (4.31)
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TheWux for tracer given by (4.7) can be written as:

F 4
i +1 =2 = F 1

i +1 =2ci +1 =2 (4.32)

whereci +1 =2 is equal toci or ci +1 , depending on the speed S*:

ci +1 =2 =

(
ci if S� � 0

ci +1 if S� < 0
(4.33)

This formulation shows clearly the upwind in the treatment of the tracer and this choice is equiv-

alent to:

ci +1 =2 =

(
ci if F 1

i +1 =2 � 0

ci +1 if F 1
i +1 =2 < 0

(4.34)

The study of theWux functionF 1
i +1 =2 shows that a positive star wave speed implies a positiveWux

for water depth, so expressions (4.33) and (4.34) are equivalent.

We give in the following the proof, considering the 4 possible cases ofWux, given by formula (4.7).

For simplicityF 1
i +1 =2 will be calledF 1

K with K = L; L � ; R� ; R according to the case.

We consider the expression (4.7):

� ForSL � 0. In this caseF 1
L = ( hu)L . SinceSL � 0, using (4.14) weVnd that alsouL � 0.

It follows thatF 1 � 0 for SL � 0.

� ForSL � 0 � S� the expression for the water massWux is equal to:

F 1
� L = F 1

L + SL
�
U1

� L � U1
L

�

= F 1
L + SL

�
hL

�
SL � uL

SL � S�

�
� hL

�

= hL

�
uL + SL

�
SL � uL

SL � S�

�
� SL

�

SincehL � 0, we prove that the quantity inside the squared brackets is positive. This

quantity is rewritten as:

uL (SL � S� ) + SL (SL � uL ) � SL (SL � S� )
SL � S�

=
S� (SL � uL )

SL � S�

SinceSL � 0 � S� for assumption, then the denominator is certainly negative. The numer-

ator is also negative sinceS� is positive whileSL � uL is negative:SL � uL = � aL qL using

Equation (4.14). Hence,F 1 � 0 for SL � 0 � S� .
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� ForS� � 0 � SR we want to show thatF 1 < 0 sinceS� < 0. We have:

F 1
� R = F 1

R + SR
�
U1

� R � U1
R

�

= F 1
R + SR

�
hR

�
SR � uR

SR � S�

�
� hR

�

= hR

�
uR + SR

�
SR � uR

SR � S�

�
� SR

�

SincehR � 0, the term in the squared bracket must be negative. The latter, after some

algebraic simpliVcations becomes:

S� (SR � uR )
SR � S�

The denominator is positive for assumption sinceS� � 0 � SR . The numerator is negative

sinceS� � 0 andSR � aR = aRqR is positive. HenceF 1 � 0 for SL � 0 � S� .

� ForSR � 0, we want to show that the numerical water massWux is negative (or null) again.

This is true sinceSR � 0 means thatuR � 0. The latter impliesF 1
R = ( hu)R thusF 1 � 0

and the proof is achieved.

We take now the upwind formulation (4.34) and going back to the 2D formulation we write:

F 4(Ui ; Uj ; n ij ) = F 1+ ci + F 1� cj (4.35)

with F + = max(0 ; F (Ui ; Uj ; n ij )) andF � = min(0 ; F (Ui ; Uj ; n ij )) . Taking the outward nor-

mal as reference,F + represents the outgoingWuxes andF � the ingoingWuxes. Thus the scheme

for tracer becomes:

(hc)n+1
i = ( hc)n

i �
� t
K i

m iX

j =1

�
F 1+ (Ui ; Uj ; n ij )ci + F 1� (Ui ; Uj ; n ij )cj

�
l ij (4.36)

We deduce that:

(hc)n+1
i � cn

i

0

@hn
i �

� t
K i

m iX

j =1

F 1+ (Ui ; Uj ; n ij )l ij

1

A (4.37)

This means that the positivity of the tracer will be ensured if:

hn
i �

� t
K i

m iX

j =1

F 1+ (Ui ; Uj ; n ij )l ij > 0 (4.38)

Physically it means that the maximum time step is the one that causes a cell to be emptied by

exiting Wuxes. This condition is less restrictive than Equation (4.6) and thus advantageous for the
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tracer transport.

Inspired by the work of [13], we disconnect the hydrodynamic part from the transport and we use

an algorithm that computes hydrodynamics and tracer transport in parallel but with diUerent time

steps. Hence, the tracer solution is decoupled yet it is still dependent on the hydrodynamics through

condition (4.38). Indeed, the idea is that the tracer is updated only when the above condition is not

fulVlled, which can happen after several hydrodynamic time steps. Hence, the computational cost

for the solution of the augmented SW system is decreased. In addition, as we deal with explicit

schemes in time, taking the maximum time step admissible for the tracer transport allows to reduce

the numerical diUusion which is larger for a coupled solution.

In order to clearly show the eUect of the decoupled scheme, we show the results obtained with the

decoupled scheme for the unsteady advection test case. Figure 4.7 compares the decoupled solution

to the coupled solution for the unsteady tracer advection benchmark. We see that the numerical

diUusion is reduced by the decoupled scheme, indeed the maximum value of the tracer at the end

of the simulation is larger than the one of the coupled scheme. To explain this improvement, we

recall that a numerical scheme produces a numerical error at every discrete time step. When using

explicit schemes for advection it is important to exploit the maximum admissible time step in order

to reduce this numerical error. This is realised by the decoupled algorithm.

Figure 4.7: Unsteady tracer advection benchmark: results for the coupled and the decoupled HLLC
scheme at sectiony = 0 :5 m.

The choice of a decoupled solution is related to the fact that the transport phenomena are regulated

by the velocity of theWow and not by the speed waves, as the hydrodynamic system. Indeed, as

we have seen in Chapter 2 the eigenvalue corresponding to the transport is justu� while for the

hydrodynamic system they areu� � a. The case of steadyWow (h = const andq = const) shows

clearly that the new condition for the positivity of the tracer is less limiting than the classical one.

Indeed it becomes� t � min
�

� x
max i 2T h (�; jun

i j)

�
[13]. Details on the algorithm will be given later.

For this FV scheme the hydrodynamics can be too restrictive for the tracer equation, which is thus

solved after some hydrodynamic steps with the minimum number of time step necessary. This is
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strictly related to the explicit discretizations in time used here.

It is worth noticing that this situation is exactly the contrary of what happens for RD schemes,

as we will see later in the Section 5.1.2. Indeed, when using FE schemes on hydrodynamics and

RD schemes on tracer, the latter are more constraining than hydrodynamics. Hence, sub-iterations

within the hydrodynamic steps are used to solve the tracer equation.

4.1.4 Monotonicity analysis

The theory of positive coeX cient [134] is used to guarantee the respect of the maximum principle.

Indeed, the theorem on the positivity of coeX cients [146] for a linear advection equation establishes

that, considering a numerical scheme given by:

cn+1
i =

X

k

bkcn
j (k) (4.39)

then the scheme will be monotone if and only if:

X

k

bk = 1 andbk � 0; 8k (4.40)

cn
j (k) are the concentration values on the nodesj (k) involved in the sum;bk are their coeX cients

andk is an integer which represents the support (or the stencil) of the scheme. Dividing Equation

(4.36) byhn+1
i we obtain:

cn+1
i =

cn
i

hn+1
i

0

@hn
i �

� t
K i

m iX

j =1

F 1+ (Ui ; Uj ; n ij )l ij

1

A �
� t

hn+1
i K i

m iX

j =1

F 1� (Ui ; Uj ; n ij )l ij cn
j (4.41)

The second term on the RHS is surely positive and the positivity of theVrst term is ensured through

condition (4.38), thus the discrete maximum principle is respected. In the proof we assume that

hn+1
i is positive, which is the case when using the present scheme.

4.1.5 Boundaries and sources

We now add to the basic formulation (4.36) the boundary terms and the sources. For the theory of

characteristics, if the boundary is an inlet it will be necessary to prescribe a boundary condition for

the tracer, while if the boundary is an outlet, then no condition is necessary.

For convention, we consider the outward normal to the boundary, hence the boundaryWux F 1
bound

will be positive at the outlet and negative at the inlet. Thus the equation becomes:

(hc)n+1
i =( hc)n

i �
� t
K i

m iX

j =1

�
F 1+ (Ui ; Uj ; n ij )ci + F 1� (Ui ; Uj ; n ij )cj

�
l ij

�
� t
K i

�
F 1+

boundci + F 1�
boundcbound

�
l i

(4.42)
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Source terms are added following the same philosophy: a positive source of water mass carries in

the tracer source while a negative source (sink term) carries away the existing value of tracer. The

scheme with boundaries and sources is:

(hc)n+1
i =( hc)n

i �
� t
K i

m iX

j =1

�
F 1+ (Ui ; Uj ; n ij )ci + F 1� (Ui ; Uj ; n ij )cj

�
l ij

�
� t
K i

�
F 1+

boundci + F 1�
boundcbound

�
l i

+
� t
K i

�
sce+

i csce + sce�
i ci

�

(4.43)

These additional terms modify the previous positivity and monotonicity condition, which now

reads as follows:

hn
i �

� t
K i

0

@
m iX

j =1

F 1+ (Ui ; Uj ; n ij )l ij + F 1+
boundl i � sce�

i

1

A > 0 (4.44)

Indeed, only the coeX cient ofcn
i could represent a problem for the positivity. All the other coeX -

cients are instead positive and do not need any additional condition.

4.2 Second order scheme

To improve the accuracy of theVnite volume scheme, the values at the interfaces between cells are

reconstructed considering piecewise linear approximations. The reconstruction is second order in

the sense that for a smooth functionU(x) we have:

Ui +1 =2� = U(x i +1 =2) + O(� x2) (4.45)

and

Ui +1 =2+ = U(x i +1 =2) + O(� x2) (4.46)

Given theVrst orderWux and the reconstructed valuesUij the scheme is now:

U n+1
i = U n

i �
m iX

j =1

� ij F(U n
ij ; U n

ji ; n ij ) � � i F(U n
i ; U n

e ; n i ) + � tSn
i (4.47)

From theory [28] we know that if under a CFL condition the numericalWux preserves a convex

invariant domainD and if the reconstruction also preserves this invariant domain, then under the

half original CFL condition, the second-order scheme also preserves this invariant domain.

In practice, as mentioned in Chapter 3 it is diX cult to verify that the reconstruction preserves the

invariant domain. On the other hand, as in theVrst order case, the CFL condition can be relaxed.

To perform the reconstruction, we use here amultislopeMUSCL technique since a diUerent value

of slope is used for every interface of the same control volume. The reconstruction technique is
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used to approximate the primitive variablesŴ = [ ĥ; û; v̂; ĉ]T and not the conservative ones. The

approximation ofW is initially done with a linear reconstruction and then is corrected in order

to ensure the conservation of the mass in the volume, as done in [112]. The control volumeK i

is divided in smaller triangles,K ij , each of which contains the interface� ij . The variables are

reconstructed at the pointM which is located in the middle of the interface� ij . The variables at

Figure 4.8: Control volumes and subtriangles for reconstruction.

the interface are computed as [14]:

Ŵ 1
ij = W i + P i M � r Ŵ ij (4.48)

whereP i M is the vector between the pointsPi and M . The gradientr Ŵ ij is estimated as

follows. Firstly we calculate the gradient over the triangle to which the point M belongs. This is

calledr Ŵ M = r Ŵ
�
�
Tk

and it is calculated using linear P1 functions, i :

r Ŵ
�
�
Tk

=
X

i 2 Tk

W i r  i (4.49)

where

r  i jTk =
n i

2jTk j
(4.50)

with jTk j surface of the trianglek andn i , the inward normal to the pointi . The second step consists

in computing a nodal gradient, that can be approximated as a weighted sum of the gradients of the

elements surrounding the pointi :

r Ŵ i =

P
Tk 2 i jTk jr Ŵ

�
�
TkP

Tk 2 i jTk j
(4.51)

The latter is necessary to extrapolate the gradient at the opposite side of the point M:

r Ŵ mi = 2 r Ŵ i � r Ŵ M (4.52)
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Finally a limiter is used to avoid oscillations:

r Ŵ ij = lim(r Ŵ M ; r Ŵ mi ) (4.53)

We use the Minmod limiter [92] for water depth and concentration:

lim(a; b)minmod =

(
0 if sign(a)6= sign(b)

sign(a) min
�
jaj; jbj

�
otherwise

(4.54)

This limiter is strict compared to other classical limiters and it has been shown that it generates

more numerical diUusion than other limiters. It is used in this case since water depths and concen-

trations must be strictly positive. Then the van Albada limiter [56, 147] is used for velocities:

lim(a; b)vanAlbada=

(
0 if sign(a)6= sign(b)
a(b2+ � )+ b(a2+ � )

a2+ b2+2 � otherwise
(4.55)

where� is a small positive bias of the order of� x3, see [56]. This limiter is less strict. Indeed,

numerical tests have shown that using this limiter for the concentration variables can produce

negative values of concentration. An example is also given in [23].

Once obtainedŴ 1
ij = [ ĥ1

ij ; ûij ; v̂ij ; ĉ1
ij ]T , we modify the water depth and the concentration in

order to guarantee the conservation of the mass. Indeed we need to have:

X

j 2 K i

jK ij jĥij =

 
X

j 2 K i

jK ij j

!

hi = jK i jhi (4.56)

with

ĥij 2
�

min( ĥ1
ij ; hi ); max(ĥ1

ij ; hi )
�

(4.57)

This is achieved with the correction [112]:

ĥij = hi + � +
i (ĥ1

ij � hi )+ � � �
i (ĥ1

ij � hi ) � (4.58)

where we have used the notationa+ = max( a; 0) anda� = min( a; 0). The only possible choice

for � is:

� �
i = min

 

1;

P
j 2 K i

jK ij j(ĥ1
ij � hi ) �

P
j 2 K i

jK ij j(ĥ1
ij � hi ) �

!

(4.59)

A similar correction is done for tracers, thus:

X

j 2 K i

jK ij jĥij ĉij =

 
X

j 2 K i

jK ij j

!

hi ci = jK i jhi ci (4.60)

Through this correction we are able to prove the conservation and the positivity of the second order

scheme. Note that the reconstruction of the variables at the interfaces does not prevent to decouple
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the tracer solution, which becomes:

(hc)n+1
i = ( hc)n

i �
� t
K i

m iX

j =1

�
F 1+ (Uij ; Uji ; n ij )ĉij + F 1� (Uij ; Uji ; n ij )ĉji

�

(4.61)

In this case, the solution obtained with the second order decoupled scheme for the unsteady tracer

advection benchmark case is shown in Figure 4.9. The improvement obtained using the linear

reconstruction is very clear. The tracer proVle is closer to the exact solution than the other previous

schemes. The theoretical condition (4.38) is now computed with theWuxes based on reconstructed

Figure 4.9: Unsteady tracer advection benchmark: results at sectiony = 0 :5 m for the coupled
version of theVrst order HLLC, the decoupled version of theVrst order HLLC, the decoupled
version of the second order HLLC.

states:

hn
i �

� t
K i

m iX

j =1

F 1+ (Uij ; Uji ; n ij ) > 0 (4.62)

The whole procedure described here to obtain the reconstructed valuesĉij is not suX cient to strictly

ensure the monotonicity principle. This is mainly related to the fact that we cannot prove that the

reconstructed values are generated by a convex sum of the neighbouring values, which is deVni-

tively dependent on the way to compute the gradients, on the limiters used and their properties, as

explained in [36].

The boundary and source terms are treated like in theVrst order case without technical problems.

4.3 General resolution algorithm

The algorithm used to compute the solutions of the system for theVrst and the second order FV

scheme will be detailed. We remark that the tracer time step will not be directly calculated with

formula (4.38) but it will be simply the sum of several hydrodynamic time steps until the condition

expressed by (4.38) will not be trespassed. So, the test for the positivity of the tracer is a key point
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in the algorithm. Compared to the one proposed by Audusse [13], the algorithm is just adapted to

our hydrodynamic computation where theWuxes are calculated in a diUerent way and some details

are added to the description. We calli (superscript) the step indicator for the hydrodynamic part

andk the one for the tracer part. The indexi represents instead the nodei of the computational

domain.

The algorithm consists of:

1. Initialization

� Seti = 0 , k = 0 ;

� Set the initial conditions on variables[h; hu; hv]0 andc0;

� Set[Ftr (Ui ; Uj ; n ij )] � 1;0 = 0 , (Sce) � 1;0
i , hi;k

i = hi
i ;

2. Hydrodynamic computation and update

� Take into account the boundary conditions:[hb; ub; vb]i andck
b;

� Start from[h; hu; hv]i and compute the time step� t i
CF L necessary for stability;

� Compute the hydrodynamicWuxes[F h;hu;hv (Ui ; Uj ; n ij )] i for internal and boundary

nodes;

� Update the hydrodynamic values[h; hu; hv]i +1 considering sources if present;

3. Tracer computation

� Compute the cumulated massWuxes:

[F tr (Ui ; Uj ; n ij )] i;k =[ F tr (Ui ; Uj ; n ij )] i � 1;k

+ � t i
CF L

�
[F h(Ui ; Uj ; n ij )]+ ;i + [ F h(Ui ; Uj ; n ij )] � ;i

�

Note that here again� and+ indicate the negative and the positiveWuxes;

� Compute cumulated sources if present:

(Sce) i;k
i = ( Sce) i � 1;k

i + � t i
CF L (sce� ;i

i + sce+ ;i
i );

� Test based on the positivity condition (4.44):

Note that the test should be positive at least at theVrst iteration, since theVrst time

step issued by the CFL condition is suX cient to satisfy the positivity of the tracer.

(a) The test is false: update the tracer

� Update the tracer withWuxes of the old time step:

[hc]i;k +1 =[ hc]i � 1;k �
1

K i

m iX

j =1

[F tr (Ui ; Uj ; n ij )]+ ;i � 1;kci � 1;k
i + F tr (Ui ; Uj ; n ij )] � ;i � 1;kci � 1;k

j

+
1

K i

�
sce+ ;i � 1;k

i csce + sce� ;i � 1;k
i ci � 1;k

i

�
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� [F tr (Ui ; Uj ; n ij )] i;k +1 = � t i [F h(Ui ; Uj ; n ij )] i ;

� Scei;k +1
i = � t i Scei;k

i

� Sethi +1 ;k+1 = hi , ci +1 ;k+1 = ci ;

� k = k + 1 , i = i + 1 ;

� Go to hydrodynamic computation;

(b) The test is true: continue the hydrodynamic computation

� Set(hc) i +1 ;k = ( hc) i;k , hi +1 ;k = hi;k , ci +1 ;k = ci;k ;

� i = i + 1 ;

� Go to hydrodynamic computation;

We point out that in case of subcriticalWows we will havei >> k . Indeed, forF r << 1 the ratio

betweenu + jaj andjuj is high. On the other hand, for supercriticalWows (F r > 1), we will have

i ' k, sincejaj is less important.

The drawback of the algorithm is that the hydrodynamic variables and the tracer are not updated

at the same time during the intermediate time steps.

4.4 Coping with dry zones

Wetting and drying phenomena are diX cult to solve: during these transient periods the scheme

must preserve the positivity of the water depth and must respect the maximum principle for the

tracer concentration.

To deal with these situations,Vrst of all, we deVne a parameter for the detection of a dry node.

The threshold value for the water depth isVxed to� h = 10 � 6. Before computing the interface

numericalWuxes, the water depthshi andhj (or hij andhji if reconstructed) are compared to the

threshold value. Three situations are possible:

� Both values of water depth are smaller than the threshold value. In this case the velocities,

which are computed as the fractionhu
h , are directly set to zero. In addition, the numerical

Wuxes for the three scalar components are not computed and they are directly set to zero.

� One of two water depths is smaller than the threshold value. Only one vector state will have

velocities set to zero. However, this condition is suX cient to create aWux between the two

cells, so the three scalarWuxes are computed.

� Both values of water depth are greater than the threshold value. This is the typical wet case,

which does not present any problem.

Thus in general we have:

u =

8
<

:

hu
h

if h � � h

0 if h < � h

(4.63)
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Note that the choice of� h is critical because itVnally states which value of water depth can orig-

inate a water massWux. Numerical simulations often lead to values which are inWuenced by ma-

chine precision and by truncation errors, this could be critical in some situations like the detection

of dry nodes. Moreover, even if velocities do not need to respect the maximum principle as a tracer,

division by zero must be avoided and unphysical values can be obtained according to the chosen

threshold values. The latter also inWuences the space advancement of the velocity front: increasing

the value of� h , the front moves back respect to the exact solution, while it moves forward and it

overcomes the exact solution if� h is too small.

After several tests, a good compromise seems to be� h = 10 � 6 : the solution with this threshold

shows a good agreement with the analytical solution and velocity does not have unphysical values.

However, we recognize that this choice is not an optimal solution, but it allows to cope with this

problem without spoiling the mass conservation of the scheme (the water depth itself is not in-

volved in the procedure).

In a similar way, a threshold value� tr is used with respect to the variable concentration. For con-

centration this condition can be more harmful, as we will see.

As for velocities, we compute the value of(hc)n+1 and then obtaincn+1 in this way:

cn+1 =

8
<

:

(hc)n+1

hn+1 if h � � tr

0 if h < � tr

(4.64)

TheVrst natural idea is to choose� tr = � h = 10 � 6.

We immediately remark that in this case the cut-oU value inWuences the concentration and thus

the mass balance of the scheme.

We present now two situations to show that the choice� tr = � h = 10 � 6 could create a problem.

TheVrst case represents a cell which has a wet left neighbour and a dry right neighbour (seeVgure

4.10). The second case is a dry cell with a left wet neighbour and a dry right neighbour (seeVgure

4.11). To simplify the problem we analyze the coupled one step algorithm for the 1D case and then

we generalize to the larger time-step algorithm and the 2D case. In both cases initial velocity is

Figure 4.10: Drying of a wet cell.

set to zero and a constant solute concentration is present in wet cells. For dry cells we initially

consider thath = 0 exactly. We look to the update of celli .
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Figure 4.11: Wetting of a dry cell.

The upwind scheme for tracer is:

(hc)n+1
i = ( hc)n

i �
� t
� x

�
F +

i +1 =2ci + F �
i +1 =2ci +1 � F +

i � 1=2ci � 1 � F �
i � 1=2ci

�
(4.65)

In the Vrst case,Wuxes are null at the left interface while at the right interface they are non null.

Thus the scheme reduces to:

(hc)n+1
i = ( hc)n

i �
� t
� x

�
F +

i +1 =2ci

�
(4.66)

Recalling the continuity equationhn+1
i = hn

i � � t
� x

�
Fi +1 =2 � Fi � 1=2

�
, the last equation can be

rewritten as:

cn+1
i =

hn
i

hn+1
i

cn
i +

hn+1
i � hn

i

hn+1
i

cn
i (4.67)

We call hn
i

hn +1
i

= r and we recast the equation as:

cn+1
i = r cn

i + (1 � r )cn
i = cn

i (4.68)

Theoretically, the emptying of a wet cell does not represent a problem: maximum principle is

respected and no oscillations are created.

However if the scheme generateshn+1
i < � tr then we will havecn+1

i = 0 . First of all this is not

correct sincecn+1
i should becn

i as shown by Equation (4.68). Second, the correction done on tracer

will spoil the mass conservation. This problem can be circumvented if the mass balance at the

following step will take into consideration the value(hc)n+1 (before division byhn+1 ) and not the

non conservative variablecn+1
i obtained with Equations (4.64) multiplied byhn+1 . However, this

trick entails then the violation of the maximum principle, as shown for the next case.

Analysing the second situation (Figure 4.11), Equation (4.65) in this case becomes:

(hc)n+1
i = ( hc)n

i +
� t
� x

�
F +

i � 1=2ci � 1

�
(4.69)

that is also:

cn+1
i =

hn
i

hn+1
i

cn
i +

hn+1
i � hn

i

hn+1
i

cn
i � 1 (4.70)
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or also (remember thathi and alsoci are null at timen):

cn+1
i = rcn

i + (1 � r )cn
i � 1 = cn

i � 1 (4.71)

So, even this case is theoretically well handled by a simple upwind scheme.

We suppose again that at timen+1 the water depth ini is smaller than� tr , while in i � 1 the water

depth is bigger than� tr . So,cn+1
i is set to zero, like velocities. Then, at time stepn + 2 , the values

of hi will increase, but we suppose that it will continue to behn+2
i < � tr . Again concentrations

and velocities will be then set to zero, even if the scheme reads as:

(hc)n+2
i = hn+1

i cn+1
i + ( hn+2

i � hn+1
i )cn+1

i � 1 (4.72)

hence(hc)n+2
i 6= 0 and errors can thus cumulate over several time steps.

As stated before, to have a correct mass balance, the scheme could take into consideration the latter

value of the conservative variablehc, used to update the solution. Otherwise, computing the mass

at the end of the time step with the non conservative variablecn+1 andhn+1 will spoil the mass

balance.

On the other hand, choosing to update the solution using the conservative variable will create

unbounded concentration values, indeed at timen + 2 the scheme will produce:

cn+2
i =

(hc)n+1
i

hn+2
i

+ (1 � r )cn+1
i � 1 (4.73)

with r = hn+1
i =hn+2

i . The coeX cient of ci � 1 is bounded between[0; 1], but (hc)n+1
i is not

bounded, so we cannot ensure that the sum of the two coeX cients will respect the maximum prin-

ciple. It is easy to generalize this problem when we use the larger time step algorithm. Oscillations

could be even greater due to the fact that several hydrodynamic iterations are done and the fraction
hn

i

hn +1
i

can be bigger than the one obtained with the one step algorithm.

In order to deal with the maximum principle and the mass conservation problems, a very simple

solution for the wet/dry interface with tracer is proposed.

The basic idea is that everyWux able to create a non-null water depth, includedh < 10� 6, will also

transport a quantity of solute, according to the upwind scheme (4.65). For this reason we choose

to diminish the threshold value and toVx � tr < � h and in particular we take� tr = 10 � 14 which

corresponds also to the machine precision. Taking� tr < � h allows to be numerically consistent

with the continuity equation and theWux computation, that is avoided ifhi < � h or hj < � h .

Considering again the second situation (wetting of a dry cell) we will exactly respect equations

(4.69) and (4.70) to eventuallyVnd cn+1
i = ci � 1, at every wet/dry interface. This proves that the

maximum principle will be respected, depending on the threshold and so on the machine precision.

Then, we also choose to setcn+1 = cn if h < � tr . The latter has a consequence in case of drying

of a wet zone: the algorithm will continue to detect tracer values in the space wherehn+1 < � h
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(which is thus theoretically dry). This choice allows to not spoil the conservation of the mass.

It will be later shown in the numerical tests (Chapter 6) that the problem linked to the maximum

principle is no longer observed with the new choice of� tr .

To sum up, the new condition is:

cn+1
i =

8
><

>:

(hc)n+1
i

hn+1
i

if h � � tr

cn
i if h < � tr

(4.74)

with � tr = 10 � 14.

4.5 Summary

This chapter presents the FV model used in this thesis. The theoretical property of positivity for

the water depth and concentration has been shown under a classical CFL condition. Concerning

the scalar transport, the main idea is the decoupling of the transport equation when employing

an HLLC approximate Riemann solver. The decoupling is possible thanks to the properties of the

HLLC solver. The decoupled algorithm is described and it considers also boundary terms and

sources, with respect to the one presented by [13]. These additional terms are included in the

monotonicity condition.

The second order extension is achieved using a MUSCL approach, for hydrodynamics and for

tracers. In this case the theoretical stability is not strictly preserved; however as we will show

later the solution remains stable. Even in this case the decoupled algorithm is used to reduce the

numerical diUusion.

For dry zones problems, an analysis clearly shows which solutions must be avoided and which

ones must be preferred with respect to a cut-oUparameter.
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Chapter 5

New residual distribution

predictor-corrector schemes for time

dependent problems

L'objectif de ce chapitre est de présenter la formulation des schémas aux résidus dis-

tribués pour la solution de l'équation découplée du traceur.

La méthode utilisée pour la solution de l'équation de continuité duWuide est détaillée

puisqu'elle représente une étape préalable à la discrétisation de l'équation du traceur.

Les schémas de type résidus distribués pour la solution de l'équation stationnaire du

traceur sont ensuite présentés à partir d'une formulation variationnelle du problème.

Ainsi, les propriétés numériques des schémas telles que la conservation, la précision et

la monotonie sont énoncées et établies.

A partir de cette formulation, les schémas aux résidus distribués appropriés pour les

cas non stationnaires et les propriétés numériques correspondantes sont aussi décrites

de manière systématique. En particulier, trois types diUérents de schémas sont con-

struits : un schéma semi-implicite, un schéma prédicteur-correcteur d'ordre un et un

autre d'ordre deux. Les diUérences et les ressemblances entre ces schémas et les sché-

mas classiques RD, seront mises en évidence.

LaVn du chapitre est dédiée aux problèmes des bancs découvrants qui sont gérés avec

une formulation semi-implicite locale.
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In this chapter we present the residual distribution (RD) method applied to the scalar transport

equation in the shallow water context.

Unlike theVnite volume method presented in the previous chapter, here the RD method is only ap-

plied to discretize the tracer equation: the solution of the equation is decoupled with respect to the

shallow water system but a compatibility with the discretized continuity equation is guaranteed.

Details on this choice are given in Section 5.1, where the formulation of some explicit transport

schemes for steady problems is also included. In particular, the N scheme which isVrst order accu-

rate and the PSI scheme which is second order accurate in space are presented.

Section 5.2 focuses on the formulation of the scheme in case of unsteady problems. For these

problems three diUerent solutions are shown: a semi-implicit scheme, which will be also useful

to cope with wetting and drying problems; aVrst order predictor-corrector scheme and a second

order predictor-corrector scheme. The numerical properties of these schemes, like positivity and

monotonicity, are then analyzed in Section 5.3.

The monotonicity analysis also allows to formulate and to solve the problem through an iterative

scheme, which is introduced in Section 5.4. The latter allows improving the accuracy of the basic

scheme and it is a novelty with respect to classical RDS.

Finally, the wetting and drying problem is presented in Section 5.5. In this case, a newlocally

semi-implicit predictor-corrector scheme is introduced to cope with this problem.

5.1 Preliminaries

The formulation of the residual distribution model only concerns the scalar transport equation

which is thus solved with a decoupled approach.

This choice is related to diUerent causes. On one hand, this work has been realized in an open

source hydroinformatic system, called Telemac, where the shallow water equations can be solved

by aVnite element (FE) kernel or aVnite volume one. The solution oUered by theVnite element

method guarantees all the numerical properties stated in Chapter 2 and several tests have shown

that this method is very eX cient,Wexible and it has a computational cost which is lower than other

classical numerical methods [82]. In particular, large time steps can be used to solve the system

of equations since, in general, it is not submitted to a strict CFL condition like the explicit FV

schemes. In addition, a semi-implicit method can be employed on velocities and on water depth,

giving more accurate results. The FE formulation of the continuity equation is compatible with

the RD formulation of the tracer equation. This explains why the decoupled approach has been

preferred to the coupled approach.

On the other hand, this choice is more challenging since, as discussed in Chapter 3, the decoupled

modeling of the scalar transport implies some special numerical tricks. In particular, the continuity

equation has to be considered to enforce the mass conservation and the monotonicity.

The reader may consult the work of Hervouet [82] for details about the solution of the SW system

using a FE method.



5.1 PRELIMINARIES 79

5.1.1 Continuity equation

We present here the discretization of the continuity equation, which will be necessary in the tracer

equation. For simplicity, the source term will be neglected for the moment and considered later on.

In the Vnite element context, the continuity equation is transformed into a weak form,Vrst by

multiplying with test functions from an appropriate spaceV and then applying integration by

parts. Using the FE method, we employ aVnite dimensional spaceV h . Then we consider that the

variables of the problem are approximated with linear P1Vnite element basis functions,' i , such

that for example the water depth function is equal toh �
npoinP

i
hi ' h

i , wherenpoin is the number

of points in the domain (see for example [67, 153]).

In this work the Bubnov-Galerkin technique is employed: test functions and the basis functions be-

long to the sameVnite dimensional space. However, for the sake of clarity, test and basis functions

will always be distinguished.

For every degree of freedomi , we want to solve:

Z



 i

@h
@t

d
 +
Z



 i r � (hu )d
 = 0 0 � i � Nh (5.1)

whereNh represents the number of degrees of freedom. For mass conservation it is important to

avoid the splitting of the divergence term, thus integrating by parts we obtain:

Z



 i

@h
@t

d
 +
Z

�
 i hu � n d� �

Z



hu � r  i d
 = 0 0 � i � Nh (5.2)

This integration by parts will allow toVnd a strict proof of mass conservation at discrete level. It is

not done in the literature of RD schemes, where the conservation issue is diUerently addressed.

Using an explicit discretization in time and projecting the functions onto the basis, the equation

leads to the following matrix form:

M
� t

(H n+1 � H n ) = CV1 (5.3)

whereM is the mass matrix;H n+1 � H n is the vector of dimensionnpoin containing the unknown

hn+1 ; CV1 is the right-hand side vector of dimensionnpoin, which contains the boundaryWuxes,

the sources and the other explicit terms. In particular we have:

M ij =
Z



' j  i d
 (5.4)

CV1 = BM 1 Un + BM 2 V n + TB1 (5.5)

with:

BM 1ij =
Z



' j hn @ i

@x
d
 (5.6)
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BM 2ij =
Z



' j hn @ i

@y
d
 (5.7)

TB1 = �
Z

�
 i hnu n � n d� (5.8)

Another discrete version of the continuity equation can be obtained introducing a Crank-Nicholson

� -scheme for the treatment of the velocityVeld:

Z



 i

@h
@t

d
 +
Z



 i r �

�
h

�
� uu n +1 + (1 � � u)u n ��

d
 = 0 0 � i � Nh (5.9)

which in a discrete matrix form becomes:

M
� t

(H n+1 � H n ) � BM 1 Un+1 � BM 2 V n+1 = CV1 (5.10)

with BM 1, BM 2, CV1 the appropriate vectors, function of� u and1 � � u .

The termTB1 is given explicitly as boundary conditions on liquid boundaries and is zero on

solid boundaries (impermeability condition). Equation (5.3) (or Equation (5.10)) is then combined

with the other two discretized momentum equations and in this way a linear system of the form

AX = B is solved. Hence, aVrst approximation of[hn+1 ; un+1 ; vn+1 ] is obtained.

We note that performing a mass-lumping onh, Equation (5.10) becomes:

Si

� t
(H n+1 � H n ) � BM 1Un+1 � BM 2V n+1 = CV1 (5.11)

whereSi is obtained by the mass-lumping and it is the surface of the cell around the point of the

meshi , called volume of basisi (see Figure 5.1), equal to
P

T 3 i
ST =3 with ST the area of the triangle.

We now recast the continuity equation in a diUerent form, which will be useful for the tracer

equation. We deVne a vector of modiVed water depths, so that:

MH n+1 = D ~H n+1 (5.12)

whereD is the diagonal obtained by the mass-lumping ofM . In this way we can deal with the

following form:
Si

� t

�
~hn+1

i � ~hn
i

�
= CV1i (5.13)

even if Equation (5.3) (or (5.10)) is not solved with mass-lumping. To simplify notations,~hi are

replaced byhi from here on out.

The RHS term is:

CV1i =
Z



hu n � r  i d
 �

Z

�
 i hu n � n d� (5.14)

Computing the integrals over the singular triangular elementsT, the internal boundary integrals

eliminate each others thanks to the continuous polynomial test functions, while they have to be

computed on open boundaries. This also means that no mass is gained or lost in single internal
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Figure 5.1: Integral of basis functions for the pointi .

elements. Performing the integral over a triangular element, only theVrst term ofCV1i needs to

be computed. We deVne this term asnodalWux:

� i = �
Z

T
hu n � r  i dT (5.15)

In case of semi-implicit treatment of velocities, the nodalWux is:

� i = �
Z

T
hu conv � r  i dT (5.16)

whereu conv = � uu n+1 + (1 � � u)u n .

An important property of the nodalWuxes is:

X

i 2 T

� i = 0 (5.17)

Indeed, thanks to the properties of the test functions we have:

X

i 2 T

 i (x; y) = 1 8 T 2 Th (5.18)

from which we infer: Z

T
hu n � r

X

i 2 T

 i dT = 0 (5.19)

We also recall thatr  i jT = n i
2jST j , wheren i is the inward pointing vector normal to the edge

of T opposite toi , scaled by the length of the edge. From property (5.17) we also infer that for

every triangle we will always have three possible conVgurations: two positive nodalWuxes and

one negativeWux; two negative nodalWuxes and a positive one; a zero nodalWux and twoWuxes

of opposite sign. This characteristic will be exploited to transform the nodalWuxes� i into Wuxes

between two points in the same element,� T
ij , which will be then assembled considering the neigh-

bouring elements sharing the same edge. In this way we obtain for every segment of the domain a
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singular value ofWux, called� ij . The transformation of� i into � T
ij is explained in [114] and it is

done following the so called “nearest projection method“. Here we just recall the main formula:

� T
ij =

8
><

>:

� � j if j� i j > j� j j andj� i j > j� k j

+ � i if j� j j > j� i j andj� j j > j� k j

0 otherwise

(5.20)

where+ and� are chosen in order to store a positive value for aWux going from nodei to nodej .

Note that in formula (5.20),i; j; k are the local node numbers in the elementT.

The sameWuxes can be obtained through a diUerent method, which will be useful to relate the

scheme to the RD classical schemes. This method consists in computing from� i an intermediary

Wux, called� N
ij and then theVnal Wux � T

ij . The main formula is [82]:

� N
ij = max(min( � � i ; � j ); 0) (5.21)

Here theWuxes betweeni andj are localWuxes sincei andj are the local node numbers, so that

we have 6 localWuxes for every element. Then we use the formula:

� T
ij = + � N

ji � � N
ij (5.22)

where+ and� are chosen like in the previous case (a positive value of� T
ij means that theWux is

going from i to j). We note that formula (5.22) and (5.20)exactlygive the same values of� T
ij .

Finally � T
ij is transformed into an assembledWux, � ij , considering the contribution of the nearby

elements. Equation (5.13) can be rewritten with the newWuxes:

Si
(hn+1

i � hn
i )

� t
+

X

j

� ij + bi = 0 (5.23)

The sum overj represents the sum over all the neighboursj of point i andbi is the boundaryWux:

bi =
R

�  i hu � n d� . Note that in presence of sources we will havescei in the RHS.

Equation (5.13) and Equation (5.23) are the same but recast in a diUerent way. TheWuxes between

points of Equation (5.23) are directly used by the scheme called NERDS [81]. The NERD scheme

solves the continuity equation in a particular way which allows to get rid of the stability condi-

tion on the time step and to preserve the positivity of the water depths, as already explained in

Chapter 3. Indeed, in the hydrodynamic part, Equation (5.3) (or (5.10)) isVrst solved regardless

of the positivity of depth. Then, a posteriori, the NERD scheme is used to give a set of positive

hn+1 andWuxes� ij that exactly solve Equation (5.23). In case of wet cases, formulation (5.3) and

(5.23) are equivalent, however very small diUerences arise in the values ofhn+1 and in the mass

balance, which is exact at the machine precision when the NERD scheme is employed. Probably

the diUerences are due to the linear solvers used for the solution of Equation (5.3). Thus, for mass

conservation reasons, once the SW system is solved, only the continuity equation is played again
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using the form (5.23), before solving the tracers equations. The proof of mass conservation is ob-

tained taking Equation (5.23) and summing over all the points of the domain, obtaining at discrete

level:
npoinX

i =1

�
Si hn+1

i � Si hn
i

�
= � � t

npoinX

i =1

bi (5.24)

The equation states that the variation of mass in the domain can be generated only by the presence

of boundaryWuxes (or possibly sources). It is important to note that the interiorWuxes� ij eliminate

each other.

5.1.2 Explicit schemes for steady problems

We present in this section the discretization of the tracer equation suitable forsteadyproblems.

Two diUerent explicit schemes are formulated: the N and the PSI scheme. Their numerical proper-

ties are introduced as well.

The tracer equation is discretized following the same steps used for the continuity equation.

For every degree of freedomi we have:

Z



 i

@hc
@t

d
 +
Z



 i r � (hcu)d
 = 0 0 � i � Nh (5.25)

An integration by parts gives:

Z



 i

@(hc)
@t

d
 +
Z

�
 i hcu � n d� �

Z



hcu � r  i d
 = 0 (5.26)

In accordance to the continuity equation, for the tracer equation (5.26) we choose to have:

�
Z



hcu � r  i d
 =

X

j

� ij cn
ij (5.27)

wherecij is a quantity to be deVned, which represents the tracer carried by theWuxes� ij . Per-

forming a mass-lumping onc, the discrete tracer equation reads as:

Si
(hn+1

i cn+1
i � hn

i cn
i )

� t
+

X

j

� ij cn
ij + bi cbound = 0 (5.28)

cbound is the boundary concentration, carried by the boundaryWux.

It is worth to notice that for the tracer equation, a boundary value is necessary at the inlet for any

kind ofWows (torrential orWuvial), for the theory of characteristics. In order to have a correct mass

balance, ingoingWuxes are multiplied by the boundary value of tracer, while outgoingWuxes are

multiplied by the values on the boundaries given by the scheme:

bi cbound = min( bi ; 0)cbound + max( bi ; 0)cn
i (5.29)
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The intermediate value of concentration is deVned choosing an upwind value, that is:

cn
ij =

(
cn

i if � ij � 0

cn
j if � ij < 0

(5.30)

Hence, Equation (5.28) can be rewritten as:

Si
(hn+1

i cn+1
i � hn

i cn
i )

� t
+

X

j

�
max(� ij ; 0)cn

i + min( � ji ; 0)cn
j

�
+min( bi ; 0)cbound+max( bi ; 0)cn

i = 0

(5.31)

Before the next step, we note that this scheme is conservative since, summing over all the nodes of

the domain we have:

npoinX

i =1

�
Si hn+1

i cn+1
i � Si hn

i cn
i

�
= � � t

npoinX

i =1

bi cbound (5.32)

Then we plug the discrete continuity equation (5.23) into the tracer equation (5.31) to replacehn

with hn+1 we get:

cn+1
i = cn

i +
� t

Si hn+1
i

0

@
X

j

min(� N
ij ; 0)(cn

i � cn
j ) � min(bi ; 0)(cbound � cn

i )

1

A (5.33)

Let us suppose thathn+1 is positive for the moment. Note that toVnd Equation (5.33) we also use

the fact that� N
ij = max(� N

ij ; 0) + min(� N
ij ; 0). We add the superscriptN to theWuxes� ij (which

are computed as we have explained in the previous section) since, as we will see hereafter, this

scheme corresponds to the N scheme. Equation (5.33) can be rewritten with a residual distribution

formalism as:

cn+1
i = cn

i �
� t

Si hn+1
i

0

@
X

T 3 i

3X

j =1

� N
ij (cn

i � cn
j ) + min(bi ; 0)(cbound � cn

i )

1

A (5.34)

where
P

T 3 i
represents the sum over all the triangles which contains the nodei andj represents in

this case the local neighbours on a triangle. Alternatively, Equation (5.34) can be rewritten as:

cn+1
i = cn

i �
� t

Si hn+1
i

 
X

T 3 i

� N
i � T + min(bi ; 0)(cbound � cn

i )

!

(5.35)

where the� N
i are called distribution coeX cients of the N scheme:

� N
i =

� N
i

� T (5.36)
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� T is the residual, which represents the total massWux to distribute to the nodes within an element.

It stems from the passage between the conservative tracer equation and the non conservative form:

it corresponds to the diUerence between the divergence term integrated by parts (5.27) and the

divergence term of the continuity equation, integrated by parts and multiplied byci . Indeed it is:

� T =
Z

T
h(cn � cn

i )u r  i dT =
3X

i =1

3X

j =1

� T
ij cn

ij �
3X

i =1

3X

j =1

� T
ij cn

i

=
3X

i =1

3X

j =1

�
max(� T

ij ; 0)cn
i + min( � T

ij ; 0)cn
j

�
�

3X

i =1

3X

j =1

�
max(� T

ij ; 0) + min( � T
ij ; 0)

�
cn

i

= �
3X

i =1

3X

j =1

min( � T
ij ; 0)(cn

i � cn
j ) =

3X

i =1

3X

j =1

� N
ij (cn

i � cn
j )

(5.37)

and� N
i is the contribution received by nodei of elementT:

� N
i =

3X

j =1

� N
ij (cn

i � cn
j ) = � N

i � T (cn )

= � +
i (cn

i � cn
in )

(5.38)

where, according to the classical notations of the RD methods, we have:

� +
i = max(0 ; � i ) � �

i = min(0 ; � i ) (5.39)

and

cin =

P

j 2 T
� �

i cn
j

P

j 2 T
� �

i
(5.40)

The scheme (5.35) is conservative, however now we deal with the non conservative form and thus

the sum over all the nodes of the domain will give:

npoinX

i =1

Si hn+1
i

�
cn+1

i � cn
i

�
= � � t

0

@
X

T 2T h

� T (cn ) +
npoinX

i =1

min(bi ; 0) (cbound � cn
i )

1

A (5.41)

In order toVnd the mass balance (5.32) it is necessary to use again the discrete continuity equation

yet the Equation (5.41) is useful to directly check the mass conservation when solving a non con-

servative form of the tracer equation.

For second order accurate schemes, the distribution coeX cients must be bounded with respect to

the solution and the data of the problem, in order to guarantee that� i = O(h3) [54]. It should be

remarked that the N scheme (5.35) is onlyVrst order accurate as shown by the fact that the� N
i are

in general unbounded.
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Formula (5.21) guarantees the Local Extremum Diminishing property (see [54, 119]) for the semi-

discrete scheme:
@c
@t

= �
1

Si hn+1
i

X

T 3 i

3X

j =1

� N
ij (cn

i � cn
j ) (5.42)

Indeed, it leads to positive or null values of� N
ij . Another fundamental relation which will be often

used in this work is:

X

j

min( � N
ij ; 0)(cn

i � cn
j ) = �

X

T 3 i

3X

j =1

� N
ij (cn

i � cn
j ) = �

X

T 3 i

� N
i � T (5.43)

From Equation (5.33), the time step condition necessary to guarantee the monotonicity can be

computed. We use the theory of positive coeX cients schemes recalled also in Chapter 4: the

coeX cients ofci andcj must be in the range[0; 1]and their sum must be equal to1. This also means

to have aconvexsum of the neighbouring values. Hence, in Equation (5.33) only the coeX cient of

ci could create a problem. Imposing the positivity of this coeX cient we obtain:

� t �
hn+1

i Si

�
P

j min(� N
ij ; 0) � min(bi ; 0)

(5.44)

The valueshn+1
i (or hn

i if the criterion depends onhn ) are then substituted withhend (or hstart ) if

we are iterating within an hydrodynamic time step. Indeed, the discrete continuity equation (5.23)

is satisVed at any intermediate time level, provided that the water depths at the intermediate level

are linearly interpolated betweenhn
i andhn+1

i . If nsub is the number of sub-iterations within the

hydrodynamic time step� tcas andisub is the i-th iteration, we will have:

hend
i = hstart

i �
� tcas

nsub
1
Si

0

@
X

j

� N
ij + bi

1

A (5.45)

hend
i =

(nsub � isub) hn
i + isub hn+1

i

nsub
(5.46)

We consider now again the equation (5.35) and we observe that if we do not change the total

residual� T over an elementT, theWuxes can be modiVed without spoiling the mass conserva-

tion. Indeed the relation
P

i 2 T
� i =

P

i 2 T
� i � T = � T is always fulVlled at element level and thus

Equation (5.41) holds true for diUerent kinds of distribution coeX cients. We choose to use the PSI

distribution, for which the scheme reads as follows:

cn+1
i = cn

i �
� t

Si hn+1
i

 
X

T 3 i

� P SI
i � T + min(bi ; 0)(cbound � cn

i )

!

(5.47)

The distribution coeX cients of the PSI scheme,� P SI
i , have the fundamental property to be bounded

between 0 and 1, and of providing discretization coeX cients of the same sign as those of the N
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scheme. Indeed they are computed using [54, 121]:

� P SI
i =

max(0; � N
i )

P

j 2 T
max(0; � N

i )
=  i � N

i ; � P SI
i ;  i 2 [0; 1] (5.48)

where i is a constant. This limiter allows to increase the accuracy and to keep the positivity of the

coeX cients of the scheme, indeed it leads to a second order scheme in space (see [54]). The scheme

can also be written with the assembledWuxes:

cn+1
i = cn

i +
� t

Si hn+1
i

0

@
X

j

min(� P SI
ij ; 0)(cn

i � cn
j ) � min(bi ; 0)(cbound � cn

i )

1

A (5.49)

where the� P SI
ij come from the limitation of the� N

ij at elementary level.

The results obtained on the unsteady tracer advection benchmark presented in Chapter 4, Section

4.1.1 are shown in Figure 5.2. As we can see there is only a slight diUerence between these two

schemes which are onlyVrst order accurate in time dependent problems. Indeed, the proVles are

smeared with respect to the exact solution. However, this is a well known behaviour for these RD

schemes and we will see how to improve these poor results on the next section.

Figure 5.2: Unsteady tracer advection benchmark: results at sectiony = 0 :5 m for the N and PSI
scheme.

Sources are added in the scheme as boundary terms in the conservative formulation (5.31):

scei csce = max( scei ; 0)csce + min( scei ; 0)csce (5.50)
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Then plugging the continuity equation into the conservative formulation, the N scheme becomes:

cn+1
i = cn

i +
� t

Si hn+1
i

X

j

min(� N
ij ; 0)(cn

i � cn
j )

�
� t

Si hn+1
i

min(bi ; 0)(cbound � cn
i ) +

� t

Si hn+1
i

max(scei ; 0)(csce � cn
i )

(5.51)

To formulate the PSI scheme with source terms it is suX cient to replace� N
ij with � P SI

ij . Hence,

sources are also included in the time step condition:

� t �
hn+1

i Si

�
P

j min(� N
ij ; 0) � min(bi ; 0) + max( scei ; 0)

(5.52)

5.2 Distribution schemes for time dependent problems

Following the ideas of the RD theory, the schemes presented in the previous section are extended to

the unsteady cases. Among the various forms suitable for the time dependent problems presented

in Chapter 3, the semi-implicit formulation and then the predictor-corrector schemes are studied

in this work.

The semi-implicit formulation represents theVrst attempt to overcome the accuracy limitations of

the N and the PSI schemes. Actually, a simple semi-implicitness is not enough to have second order

scheme in time, if not associated with the upwind of the derivative in time [54]. However, such a

formulation results interesting for tackling wetting and drying problems.

A Vrst order form of the predictor-corrector scheme is introduced, before theVnal second order

form. Both schemes are based on the ideas of Ricchiuto and Abgrall [117]. Adapting these schemes

to the tracer equation in the shallow water context represents a novelty in the literature.

5.2.1 Semi-implicit formulation

We present in this section a semi-implicit formulation of the N scheme which will be useful for the

wetting and drying problems. In addition, it represents also aVrst attempt to face unsteady cases.

We start by changing the time integration scheme for the semi-discrete conservative equation

(sce= 0 for the moment):
@(hc)

@t
= �

X

j

cn
ij � ij � bi cbound (5.53)

where the valuescij have still to be deVned.

The fully discrete version is obtained introducing an intermediate value of concentration:

cn+ � = (1 � � )cn + �c n+1 � 2 [0; 1] (5.54)
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and adding� t
P

j cn+ �
i � ij and� t bi cn+ �

i on both sides:

Si hn +1
i cn +1

i � Si hn
i cn

i + � t

0

@
X

j

cn + �
i � ij + bi cn + �

i

1

A = + � t

0

@
X

j

(cn + �
i � cn

ij )� ij

1

A

+ � tbi
�
cn + �

i � cbound
�

(5.55)

Developing the termscn+ � of the LHS we obtain:

Fcn +1
i � Gcn

i = +� t

0

@
X

j

(cn + �
i � cn

ij )� ij

1

A + � tbi (cn + �
i � cbound ) (5.56)

whereF =
�

Si hn+1
i + � � t

� P
j � ij + bi

��
andG =

�
Si hn

i � (1 � � )� t
� P

j � ij + bi

��
.

Using the continuity equation:

hn
i = hn+1

i +
� t
Si

0

@
X

j

� ij + bi

1

A (5.57)

and the deVnition of hn+ �
i :

hn
i = hn+ �

i +
� � t
Si

0

@
X

j

� ij + bi

1

A (5.58)

which is also:

hn+ �
i = (1 � � )hn

i + �h n+1
i

we obtain the tracer equation in the form:

Si hn+1 � �
i cn+1

i � Si hn+1 � �
i cn

i = +� t

0

@
X

j

(cn+ �
i � cn

ij )� ij + bi (cn+ �
i � cbound)

1

A (5.59)

We do a semi-implicit upwind:cij is equal tocn+ �
i if � ij is positive andcij is equal tocn+ �

j if � ij

is negative. Then we also consider that for positive boundary terms, which are the outgoingWuxes

we will have a value ofcbound equal tocn+ � . Indeed, for outgoingWuxes there is nothing special to

do, since the information is provided in the interior by the numerical scheme. On the contrary, the

ingoingWuxes will be multiplied by the prescribed valuecbound. So weVnd:

Si hn+1 � �
i

�
cn+1

i � cn
i

�
= +� t

0

@�
X

j

�
cn+ �

j � cn+ �
i

�
min ( � ij ; 0) � min(bi ; 0)

�
cbound � cn+ �

i

�
1

A

(5.60)
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Developing again the termscn+ � we obtain:

Si hn+1 � �
i (cn+1

i � cn
i ) = � � t�

X

j

min ( � ij ; 0)
�

cn+1
j � cn+1

i

�

� � t(1 � � )
X

j

min ( � ij ; 0)
�
cn

j � cn
i

�

� � t
�
min(bi ; 0)

�
cbound �

�
�c n+1

i + (1 � � )cn
i

���

(5.61)

These operations generate a linear system. Using the notation introduced in section 5.1.2, in par-

ticular Equation (5.43), the scheme can also be recast as a so called space-time N scheme (proposed

in [6] for the scalar and the Euler equations), which reads as follows:

X

T 3 i

� N
i = 0 8i 2 Th (5.62)

where the valuescn+1
i are the solution of the system and:

� N
i =

ST

3
hn+1 � �

i
cn+1

i � cn
i

� t
+ (1 � � )� N

i (cn ) + �� N
i (cn+1 ) (5.63)

with ST the area of triangleT (we remember that
P

T 3 i
ST =3 = Si ). Note that boundary terms are

neglected here for simplicity.

We insist on the new notation:� i represents the splitting residual where the derivative in time is

included, while� i represents the splitting residual of the spatialWuxes.

The equation above, which for� = 0 :5 corresponds to the N scheme (5.35) with the trapezium

scheme in time, is theVrst step to achieve second order scheme in time for unsteady problems. The

importance of this scheme lies in the fact that it is a positivity preserving scheme (choosing the ap-

propriate time condition) and on this basis, a space-time limited scheme with bounded coeX cients

can be obtained.

As for the steady case, weVnd for every triangle a residual, which in this case will be called

space-time residual, since it includes also the derivative in time:

� T =
X

i 2 T

� N
i =

ST

3

X

i 2 T

hn+1 � �
i

cn+1
i � cn

i

� t
+ (1 � � )� T (cn ) + �� T (cn+1 ) (5.64)

Again we stress the diUerence between� T and � T , respectively the space-time residual and the

space residual.

The formulation of the N splitting residual with the assembled spatialWuxes is (boundaries are
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omitted here):

� N;ass
i =

ST

3
hn+1 � �

i
cn+1

i � cn
i

� t
+ (1 � � )

X

j

min
�
� N

ij ; 0
� �

cn
j � cn

i

�

+ �
X

j

min
�
� N

ij ; 0
� �

cn+1
j � cn+1

i

� (5.65)

Note that in the last formula we already have considered theWuxes contribution given by all trian-

gles around the pointi , except for theVrst term in the RHS. Putting the implicit terms of equation

(5.61) in the left hand side and the explicit terms in the right hand side, we obtain a linear system

of the form:

AC n+1 = BC n + D (5.66)

whereCn+1 is the vector of the unknowns at timetn+1 andCn is the vector of the known variables

at timetn . The matrices are respectively:

A ii = Si hn+1 � �
i + � � t

0

@�
X

j

min( � ij ; 0) � min(bi ; 0)

1

A (5.67a)

A ij = � � t min( � ij ; 0) (5.67b)

B ii = Si hn+1 � �
i � (1 � � )� t

0

@�
X

j

min( � ij ; 0) � min(bi ; 0)

1

A (5.67c)

B ij = � (1 � � )� t min( � ij ; 0) (5.67d)

D i = � � t min(bi ; 0)cbound (5.67e)

As we know, this form of semi-implicit N scheme isVrst order accurate in a time dependent problem

(see [119]). Indeed, even if the space-time N contributions are introduced to overcome the accuracy

limitations, they do not allow to overcome the Godunov's theorem. Therefore, in order to increase

the accuracy, a non linear scheme is necessary to combine the non-oscillatory character of the

discrete solution and higher accuracy even in time-dependent problems [122],[118].

This means that we have to use the so-called PSI limiter:

� P SI
i =

max(0; � N
i )

P

j 2 T
max(0; � N

i )
(5.68)

where� N
i are the distribution coeX cient of the semi-implicit N scheme:

� N
i =

� N
i

� T (5.69)

The uniformly bounded PSI distribution coeX cients are suX cient to guarantee the formal satisfac-

tion of aO(h2) error bound (see [54],[118],[122]) even in case of unsteady problems. This ensures
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a consistent spatial accuracy, which is combined to a second order time accuracy. We recall that

the space-time residual is:

� T =
X

i 2 T

� N
i =

X

i 2 T

�
ST

3
hn+1 � �

i
cn+1

i � cn
i

� t
+ (1 � � )� N

i (cn ) + �� N
i (cn+1 )

�
(5.70)

and the space-time PSI scheme is:

X

T 3 i

� P SI
i = 0 8i 2 Th (5.71)

where the values ofcn+1
i are the solution of the fully non linear system and:

� P SI
i = � P SI

i � T (5.72)

It is clear that for time dependent problems, the PSI limiter introduces a non-linearity in the scheme

which requests a non linear solver like the Newton Raphson method to solve Equation (5.71) . The

high computational cost, the stability and the convergence issues related to the Newton-Raphson

method make this option unsuitable. This is why we prefer to turn to an explicit two time steps

scheme.

5.2.2 First order predictor-corrector formulation

The upwinding of the derivative in time or the proliferation of mass-matrix to get consistent for-

mulation allowing to recover second order of accuracy in space and in time, has been pointed out

in the last decades from the teams working on RDS [38, 52, 117, 118]. The lack of constraints on

the construction of these matrices allows many diUerent formulations [117]; at least four of them

are listed and recalled in [117]. For all the formulations, the formation of the mass matrices for the

time derivatives implies their inversion to seek solutions at timen + 1 . To avoid this additional

cost, a class of genuinely explicit scheme based on Runge-Kutta time integration, with high order

mass lumping, has been proposed in [117].

Our Vrst attempt to construct second order accurate schemes is inspired by ideas presented in this

paper. For the sake of clarity, we recall that for a scalar advection equation:

@t c + u � r c = 0 (5.73)

the Runge-Kutta 2 (RK2) with a Globally Lumped explicit formulation is [117, 121]:

8
>>><

>>>:

jSi j
c�

i � cn
i

� t
= �

P

T ji 2 T
� i � (cn )

jSi j
cn+1

i � c�
i

� t
= �

P

T ji 2 T
� RK 2(2)

i

(5.74)
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where

� RK 2(2)
i =

X

j 2 T

mT
ij

c�
j � cn

j

� t
+

1
2

� i (� (c� ) + � (cn )) (5.75)

TheVrst step consists of a classical explicit RD scheme, which can be the N, the PSI or any other

classical RD scheme. The upwind on the derivative in time appears in the corrector step, combined

to a semi-implicit scheme (with� already set to 1/2) on the space residual� (c).

The main ingredients to end up with this formulation are [117]:

� recast the RD discretization as a stabilized Galerkin scheme;

� use a shifted time discretization in the stabilization operator;

� apply high order mass lumping on the Galerkin component of the discretization.

In our case, since the RD formulation is employed to solve the non conservative discrete equation

which makes use of the discrete continuity equation (5.35), the equations (5.74) and (5.75) have to

be modiVed. In addition, we remember that several formulations are possible for (5.75) and in our

Vrst attempt we end up with a very diUerent form of (5.75).

To recover a similar scheme for the tracer equation, we look for a predictor-corrector scheme of

this type:

8
>><

>>:

Si hn+1
i

c�
i � cn

i

� t
= �

P

T 3 i
� P SI

i � T � min(bi ; 0)(cbound � cn
i )

Si hn+1
i

cn+1
i � c�

i

� t
= �

P

T 3 i
� P SI

i � T � min(bi ; 0)(cbound � cn
i )

(5.76)

where:

� P SI
i � T = � P SI

i

 
X

i 2 T

� N
i

!

= � P SI
i

 
X

i 2 T

�
T
3

hn+1
i

c�
i � cn

i

� t
+ � P SI

i � (cn )
� !

(5.77)

Note that when summing overi 2 T, � P SI
i � (cn ) = � N

i � (cn ).

As we can see the latter is diUerent from (5.75), since in particular the predictionc� is only used to

estimate the derivative in time while in (5.75) it also necessary to estimate a semi-implicit residual.

In particular we would have:

� T =
X

i 2 T

� N
i =

X

i 2 T

T
3

hn+1
i

c�
i � cn

i

� t
+

1
2

�
� P SI

i � (cn ) + � P SI
i � (c� )

�
(5.78)

The problem is that using the space-time residual (5.78) in Equation (5.76) will spoil the mass

conservation, which is related to the termhn+1 that multiplies the mass matrix and the derivative

in time.

To prove the mass conservation of the two steps scheme (5.76), we want that the sum of both steps

summed over all points gives the right conservation (i.e. like in the explicit schemes for steady
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cases). Doing this operation with our scheme (5.76), weVnd:

npoinX

i =1

�
Si hn+1

i
cn+1

i � cn
i

� t

�
= �

X

all T

� T (cn ) �
npoinX

i =1

min(bi ; 0) (cbound � cn
i ) (5.79)

which corresponds exactly to the classical explicit PSI (or N) scheme, which are mass conservative.

The drawback of this scheme is that it is not second order in space and in time and thus a priori it

will give unsatisfactory results.

In the meantime, the limitation operated by the PSI limiter on the derivative in time has a real

eUect on the numerical diUusion in unsteady cases. For this reason we have chosen to take into

consideration this variant of the classical second order predictor-corrector scheme in case of un-

steady problems. Numerical tests (see also [111]) prove that the amplitude error is lower than the

one obtained with the classicalVrst order explicit schemes, but the form of the solution is quite

deformed due to the fact that the scheme is based on� P SI
i � T (cn ) which is not balanced with

� P SI
i � T (c� ).

Results in Chapter 7 will show the eX ciency of this scheme in spite of the low rate of convergence.

We give here aVrst example of results for the unsteady tracer advection benchmark case 4.1.1.

Figure 5.3 compares the new predictor-corrector scheme to the N and the PSI scheme. As we can

see, the numerical diUusion is largely reduced by the new scheme. This improvement proves the

eX ciency of theVrst order predictor-corrector scheme.

Figure 5.3: Unsteady tracer advection benchmark: results at sectiony = 0 :5 m for the N, the PSI
and the Predictor-CorrectorVrst order scheme.
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TheVnal scheme containing sources is:

8
>>>>>>><

>>>>>>>:

Si hn+1
i

c�
i � cn

i

� t
= �

P

T 3 i
� P SI

i � T � min(bi ; 0)(cbound � cn
i )

+ max( scei ; 0)(csce
i � cn

i )

Si hn+1
i

cn+1
i � c�

i

� t
= �

P

T 3 i
� P SI

i � T � min(bi ; 0)(cbound � cn
i )

+ max( scei ; 0)(csce
i � cn

i )

(5.80)

5.2.3 Second order predictor-corrector scheme

We show here how to apply the second order predictor-corrector scheme to the pollutant transport

equation in shallowWows. Three main steps are necessary:

1. choose the explicit second order scheme in space (5.47) as predictor to approximate the value

of c� (or possibly theVrst order scheme (5.35));

2. construct two possibleVrst order in time mass-conservative corrector schemes: one with the

upwind ofhn+1
i

c�
i � cn

i
� t , which corresponds to (5.77) and one with the upwind ofhn

i
c�

i � cn
i

� t ;

3. average the two variants in order to obtain a second order in time corrector step.

As before, choosing an explicit second order scheme in space toVnd c� means solving:

Si hn+1
i

c�
i � cn

i

� t
= �

X

T 3 i

� P SI
i � T � min(bi ; 0)(cbound � cn

i ) (5.81)

which corresponds to the PSI scheme.

For the corrector step, we construct now aVrst order scheme in time but performing the upwind of

the derivative in time on the termhn+1
i

@c
@t

and neglecting the boundary terms. The corrector thus

reads as follows:

Si hn+1
i

cn+1
i � c�

i

� t
= �

X

T 3 i

� P SI
i � T (5.82)

where the� T is the new space-time residual, constructed in order to be conservative, thus with

the factorhn+1 on the time derivative:

� T =
X

i 2 T

�
ST

3
hn+1

i
c�

i � cn
i

� t
+ � P SI

i � T (cn )
�

(5.83)

and

� N
i =

�
ST

3
hn+1

i
c�

i � cn
i

� t
+ � P SI

i � T (cn )
�

(5.84)

If we try now to construct a corrector step which includes theWuxes ofc� , considering expression

(5.41) we willVnd that the only possibility in order to guarantee the conservation of the mass is to
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change the residual in:

� T =
X

i 2 T

�
ST

3
hn

i
c�

i � cn
i

� t
+ � P SI

i � T (c� )
�

(5.85)

The average of these two possible schemes, will always give a conservative scheme which consists

in taking:

� T =
X

i 2 T

�
�

ST

3
hn

i
c�

i � cn
i

� t
+ (1 � � )

ST

3
hn+1

i
c�

i � cn
i

� t
+ �� P SI

i � T (cn ) + (1 � � )� P SI
i � T (c� )

�

(5.86)

which is equivalent to:

� T =
X

i 2 T

�
ST

3
hn+1 � �

i
c�

i � cn
i

� t
+ �� P SI

i � T (cn ) + (1 � � )� P SI
i � T (c� )

�
(5.87)

and with:

� N
i =

�
ST

3
hn+1 � �

i
c�

i � cn
i

� t
+ �� P SI

i � T (cn ) + (1 � � )� P SI
i � T (c� )

�
(5.88)

Note that expression (5.88) is exactly the same as (5.70), wherec� is known and it replacescn+1 .

The complete scheme includes also the boundary terms, so the corrector step becomes:

Si hn+1
i

cn+1
i � c�

i

� t
= �

X

T 3 i

� P SI
i � T � bi (cbound � (1 � � ) cn

i � �c �
i ) (5.89)

TheVnal scheme reads as follows:

8
>><

>>:

Si hn+1
i

c�
i � cn

i

� t
= �

P

T 3 i
� P SI

i � T (cn ) � min(bi ; 0)(cbound � cn
i )

Si hn+1
i

cn+1
i � c�

i

� t
= �

P

T 3 i
� P SI

i � T (cn ; c� ) � min(bi ; 0) (cbound � (1 � � ) cn
i � �c �

i )

(5.90)

with � T computed with Equation (5.37),� T as in Equation (5.87), and� P SI
i computed using (5.68)

and (5.36) in combination with (5.38) in the predictor step, while (5.68) and (5.69) in combina-

tion with (5.88) in the corrector step. This scheme will be called second order predictor-corrector

scheme.

The second order discretization of the space time residual, together with the limitation given by the

PSI limiter, allows to improve the convergence of the scheme with respect to theVrst order scheme

(5.76). However, for a given mesh, the diUerence between the two schemes can be negligible, as we

can see in Figure 5.4 where the RD schemes presented until now are compared. Results show that

both the predictor-corrector schemes improve the precision, thus the numerical results are closer to

the exact solution and a large diUerence exists between the N or the PSI scheme and the predictor-
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corrector schemes.

Figure 5.4: Unsteady tracer advection benchmark: results at sectiony = 0 :5 m for the N, the PSI,
the Predictor-CorrectorVrst order scheme (PC1) and the Predictor-Corrector second order scheme
(PC2).

In presence of sources terms the scheme reads as follows:

8
>>>>>>><

>>>>>>>:

Si hn+1
i

c�
i � cn

i

� t
= �

P

T 3 i
� P SI

i � T (cn ) � min(bi ; 0)(cbound � cn
i )

+ max( scei ; 0)(csce � cn
i )

Si hn+1
i

cn+1
i � c�

i

� t
= �

P

T 3 i
� P SI

i � T (cn ; c� ) � min(bi ; 0) (cbound � (1 � � ) cn
i � �c �

i )

+ max( scei ; 0)(csce � (1 � � )cn
i � �c �

i )
(5.91)

5.3 Monotonicity

In this section we present the monotonicity analysis for the three distribution schemes presented

in 5.2. We remember that it is common to use the theory of positivity coeX cients schemes [54, 134]

to guarantee a monotone solution, i.e. a solution limited between the local maximum and the

minimum values. The objective is thus to respect the maximum principle. Enforcing the positivity

implies a condition on the temporal step which is usually identiVed as the so called CFL condition.

We will see that in some cases this theory is not suX cient since the positivity of the coeX cients

cannot be strictly guaranteed whatever the time-step. We thus enforce the monotonicity in a dif-

ferent way, in order to circumvent this theorem.

5.3.1 Semi-implicit formulation

The semi-implicit formulation leads to a linear system to solve, thus we want toVrst prove that the

system (5.66) is solvable and that the monotonicity is guaranteed.
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The system is solvable because theA matrix is non singular and it is a L-matrix, i.e.A ii > 0 8i and

A ij < 0 forj 6= i . We consider thus at (5.67a) and (5.67b) and weVrst show thatA is a L-matrix.

This is easy to prove sinceA ii is the sum of positive terms whileA ij is negative thanks to the term

min( � ij ; 0).

Then to prove that the matrix is not singular we can show that A has a positive dominant diagonal.

Indeed:

jA ii j �
X

j 6= i

jA ij j > 0

since:

Si hn+1 � �
i + � � t

0

@�
X

j

min( � ij ; 0) � min(bi ; 0)

1

A �
X

j

� � t min( � ij ; 0) > 0

The monotonicity is ensured ifB is a matrix with positive elements. A CFL condition can be found

to ensure the positivity ofB ii :

� t �
1

(1 � � )
� Si hn+1 � �

iP
j min( � ij ; 0) + min( bi ; 0)

(5.92)

Then we can state that the scheme is monotone under this CFL condition. We note that this

condition is slightly better than the one found in [6, 54] for the scalar case, which is with our

notation:

� t � min
T;T 3 i

1
1 � �

ST

3
1

P

j 2 T
� N

ij
(5.93)

wherecij are the positive coeX cients which correspond to� N
ij in our case. Indeed the authors

say in [6] that this condition is certainly not optimal and computations with CFL greater than one

have shown that monotonicity is preserved. In order to show that our condition is larger than the

latter, we omit the depth and the boundaries in our formula, then weVx � = 0 :5 and we consider

a regular mesh (all the triangles have the same area). Condition (5.93) becomes:

� t1 � min
T;T 3 i

2
3

STP

j 2 T
� N

ij
(5.94)

and our condition (5.92) becomes:

� t2 � 2

P

T 3 i
ST =3

P

T 3 i

P

j 2 T
� N

ij
=

2
3

P

T 3 i
ST

P

T 3 i

P

j 2 T
� N

ij
(5.95)

In the worst situation we will have two positiveWuxes for every triangle (the celli is emptying),

thus � t2 = � t1 and in the best situation we will have only one positiveWuxes in one triangle,

thus � t2 = n� t1 wheren is the number of triangles around the pointi . Thus if we have for
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example 7 triangles around the pointi , our time step can be 7 times larger then� t1. In addition if

we consider an unstructured mesh with irregular triangles, the factormin
T;T 3 i

ST in � t1 will be very

restrictive with respect to
P

T 3 i
ST = Saverage

T > min
T;T 3 i

ST in � t2.

5.3.2 First order predictor-corrector scheme

In case of aVrst order predictor-corrector scheme, the solution is approximated by a two time step

explicit scheme and the theory of positivity coeX cients can be easily used.

A Vrst approach consists in taking advantage of the known stability condition for the predictor

step which is given by equation (5.44) and only study the stability of the corrector step. Once

established the time step condition on the corrector, the minimum time-step between the predictor

and the corrector will be chosen asVnal condition.

We rewrite the corrector step as:

Si hn+1
i

cn+1
i � c�

i

� t
= �

X

T 3 i

� P SI
i

� N
i

� N
i � T � min(bi ; 0)(cbound � cn

i ) (5.96)

= �
X

T 3 i

 i

�
T
3

hn+1
j

c�
j � cn

j

� t
+ � P SI

i � (cn )
�

� min(bi ; 0)(cbound � cn
i )

(5.97)

= �
X

T 3 i

 i

0

@T
3

hn+1
j

c�
j � cn

j

� t
+

X

j

� P SI
ij (cn

i � cn
j )

1

A � min(bi ; 0)(cbound � cn
i )

(5.98)

We make explicit the coeX cients of every variable:

Si hn+1
i cn+1

i =
X

T 3 i

(1 �  i )
ST

3
hn+1

i c�
i + � t

X

T 3 i

 i

X

j

� P SI
ij cn

j

+

2

4
X

T 3 i

 i

0

@ST

3
hn+1

i � � t
X

j

� P SI
ij

1

A + min( bi ; 0)

3

5 cn
i � � t min(bi ; 0)cbound

And we arrive at the restrictive condition:

� t = min
T 3 i

ST =3 hn+1
iP

j
� P SI

ij � min(bi ; 0)
(5.99)

Note that the boundary term has been included in the denominator for security reasons. This con-

dition is surely too restrictive and indeed we canVnd a larger condition using a diUerent method.

The second approach takes into consideration in the analysis also the predictor step, in order to

eliminate the dependence onc� and uses the assembledWuxes� ij to replace the elementaryWuxes



100 CHAPTER 5: NEW RD PC SCHEMES FOR TIME DEPENDENT PROBLEMS

� ij . Using the notations of section 5.1.2, especially� � N
i � T =

3P

j =1
min( � N;el

ij ; 0)(ci � cj ), we write:

Si hn+1
i

�
cn+1

i � c�
i

�
= � � t

X

T 3 i

 i

0

@ST

3
hn+1

i

�
c�

i � cn
i

� t

�
+

3X

j =1

min( � N;el
ij ; 0)(cn

j � cn
i )

1

A

� � t min(bi ; 0) (cbound � cn
i )

Note that for security reasons we take� N
ij since they are larger than� P SI

ij . The demonstration

works also for� P SI
ij . Then we set:

X

T 3 i

 i

�
ST

3
hn+1

i

�
c�

i � cn
i

� t

��
= f i Si hn+1

i

�
c�

i � cn
i

� t

�
(5.100)

wheref i represents the PSI reduction on the derivative in time:f i = 1
Si

P

T 3 i
 i

ST
3 andf i 2 [0; 1].

This simpliVcation is possible since the diUerencec� � cn has the same sign on all the elements

around nodei . Then we set:

� � t
X

T 3 i

 i

0

@
3X

j =1

min( � N;el
ij ; 0)(cn

j � cn
i )

1

A = � � t
X

j

� ij (min( � N
ij ; 0)(cn

j � cn
i ) (5.101)

where� ij 2 [0; 1] takes into account the limitation i applied on the two nearby elements which

share the edgeij .

We do the same simpliVcation on the other terms and we obtain:

Si hn+1
i cn+1

i = Si hn+1
i c�

i � f i Si hn+1
i (c�

i � cn
i ) � � t

X

j

� ij
�
cn

j � cn
i

�
min( � N

ij ; 0)

� � t min(bi ; 0) (cbound � cn
i )

(5.102)

which, considering thatc
� � cn

� t is the result of the predictor step, becomes:

Si hn+1
i cn+1

i = Si hn+1
i c�

i � f i � t

2

4
X

j

min( � N
ij ; 0)(cn

i � cn
j ) � min(bi ; 0)(cbound � cn

i )

3

5

� � t
X

j

� ij
�
cn

j � cn
i

�
min( � N

ij ; 0) � � t min(bi ; 0) (cbound � cn
i )

(5.103)
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Even in this case we have used the NWuxes at the predictor step but it is just for security reasons.

We now sum the predictor and the corrector step and we obtain:

Si hn+1
i cn+1

i = Si hn+1
i cn

i + � t
X

j

(1 � f i + � ij ) min( � N
ij ; 0)(cn

i � cn
j )

+ � t(f i � 2) min(bi ; 0) (cbound � cn
i )

(5.104)

Studying the coeX cients of all values ofc, we see that they are all positive except the ones ofcn
i

which could create a problem:

Si hn+1
i + � t

X

j

(1 � f i + � ij ) min( � N
ij ; 0) + � t(2 � f i ) min( bi ; 0) > 0 (5.105)

We note that the coeX cient(1 � f i + � ij ) and2 � f i are positive and not larger than 2. We thus

arrive at the criterion:

� t <
Si hn+1

i

� 2

"
P

j
min( � N

ij ; 0) + min( bi ; 0)

# (5.106)

We note that this condition is less restrictive than (5.99), like in the case of a semi-implicit scheme.

The criterion can also be written in function ofhn , using the continuity equation:

� t <
Si hn

iP

j
max(� N

ij ; 0) � min( � N
ij ; 0) + max( bi ; 0) � min(bi ; 0)

(5.107)

Provided the time step (5.106), we canVnd that the predicted values naturally respects:

cn
i + cmin

2
� c�

i �
cn

i + cmax

2
(5.108)

wherecmin = min j (cn
j ; cn

i ) andcmax = max j (cn
j ; cn

i ). This condition will be useful later.

If sources are present, then the time step condition (5.106) becomes:

� t <
Si hn+1

i

� 2

"
P

j
min( � N

ij ; 0) + min( bi ; 0) � max(scei ; 0)

# (5.109)
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5.3.3 Second order predictor-corrector scheme

We use again the same approach to study the monotonicity of the second order scheme. We start

rewriting the corrector in the following way:

Si hn+1
i

�
cn+1

i � c�
i

�
= � � t

X

T 3 i

 i

0

@ST

3
hn+1 � �

i

�
c�

i � cn
i

� t

�
+ (1 � � )

3X

j =1

min( � N;el
ij ; 0)(cn

j � cn
i )

1

A

� � t
X

T 3 i

 i

0

@�
3X

j =1

min( � N;el
ij ; 0)(c�

j � c�
i )

1

A � � t bi (cbound � (1 � � ) cn
i � �c �

i ) (5.110)

We set: X

T 3 i

 i

�
ST

3
hn+1 � �

i

�
c�

i � cn
i

� t

��
= f i Si hn+1 � �

i

�
c�

i � cn
i

� t

�
(5.111)

wheref i represents the PSI reduction on the derivative in time:f i = 1
Si

P

T 3 i
 i

ST
3 andf i 2 [0; 1].

This simpliVcation is possible since the diUerencec� � cn has the same sign on all the elements

around nodei . Then we set:

� (1 � � )� t
X

T 3 i

 i

0

@
3X

j =1

min( � N;el
ij ; 0)(cn

j � cn
i )

1

A = � (1 � � )� t
X

j

� ij (min( � N
ij ; 0)(cn

j � cn
i )

(5.112)

where� ij 2 [0; 1] takes into account the limitation i applied on the two nearby elements which

share the edgeij .

We do the same simpliVcation on the other terms and we obtain:

Si hn+1
i cn+1

i = Si hn+1
i c�

i � f i Si hn+1 � �
i (c�

i � cn
i ) � � � t

X

j

� ij
�
c�

j � c�
i

�
min( � N

ij ; 0)

� (1 � � )� t
X

j

� ij
�
cn

j � cn
i

�
min( � N

ij ; 0)

� � t min(bi ; 0) (cbound � (1 � � ) cn
i � �c �

i )

(5.113)

Looking at coeX cients ofc in equation (5.113), we see that only coeX cients ofc�
i andcn

i may be

negative. Indeed these coeX cients are, respectively:

� Si hn+1
i � f i Si hn+1 � �

i + � � t
P

j � ij min( � N
ij ; 0) + � � t min(bi ; 0) = a�

� f i Si hn+1 � �
i + (1 � � )� t

P
j � ij min( � N

ij ; 0) + (1 � � ) � t min(bi ; 0) = an

We see that the two conditions are not compatible and nothing guarantees thatSi hn+1
i � f i Si hn+1 � �

i

is positive. So, we conclude that we cannotVnd a time step condition for the corrector step which

ensures the positivity of the two coeX cients at the same time.
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However, if we consider thatc�
i is issued by the predictor step with a time step given by (5.44), we

can say that the sum of the coeX cients ofcn
i andc�

i is certainly positive, as we have:

a� + an = Si hn+1
i + � t

0

@
X

j

� ij min( � N
ij ; 0) + min( bi ; 0)

1

A (5.114)

Taking� ij = 1 , which is the worst case, it becomes:

a� + an = Si hn+1
i + � t

0

@
X

j

min( � N
ij ; 0) + min( bi ; 0)

1

A (5.115)

We know thatc� and cn are included in the range[cmin ; cmax ], with cmin = min
j

(cj ; ci ) and

cmax = max
j

(cj ; ci ), thus we write:

c�
i = cmin + �

�
cmax � cmin �

cn
i = cmin + �

�
cmax � cmin �

with � and� in the range [0,1] and we want toVnd the solutions under which:

a� c�
i + ancn

i = ( a� + an )caverage
i (5.116)

with: caverage
i = cmin + 

�
cmax � cmin

�
, and in the range [0,1]. The idea is that the coeX cient

of caverage
i is the sum ofc�

i andcn
i coeX cients, so that we are sure that the sum of all coeX cients

giving cn+1
i remains 1. Ifcaverage

i is included in the range[cmin ; cmax ] then the monotonicity of

cn+1 can be demonstrated.

From (5.116) we get:

 =
�a � + �a n

a� + an

We must thus ensure that:

0 � �a � + �a n � a� + an

 will be positive if:�a � + �a n � 0 and it will be less than1 if: �a � + �a n � a� + an , i.e. if

(1 � � ) a� + (1 � � ) an � 0. So we have toVnd a condition onc�
i , i.e. on� depending on� and

then we shall have the same condition for(1 � � ) depending on(1 � � ). Only the positivity of

is then to be studied. We are sure that will be positive if:

�S i hn+1
i + ( � � � ) f i Si hn+1 � �

i + [ �� + � (1 � � )]

0

@� t
X

j

min(� N
ij ; 0) + � t min(bi ; 0)

1

A � 0
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We now assume that the time step is chosen with the condition:

� t �
1
2

Si hn+1
i�

�
P

j min
�

� N
ij ; 0

�
� min (bi ; 0)

�

This is the classical condition for the N scheme, divided by2, which also corresponds to (5.106).

The positivity will be thus ensured if:

�S i hn+1
i + ( � � � ) f i Si hn+1 � �

i � [�� + � (1 � � )]
Si hn+1

i

2

If � � � the worst case happens whenf i = 0 and we must have:

� �
1 � �
2 � �

�

If � � � the worst case happens whenf i = 1 and we must have:

�S i hn+1
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Si hn+1
i

2
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We can use the property:
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�

and we get a stronger condition if we replacehn+1 � �
i by hn+1

i

�
1 + �

2

�
:

� � [�� + � (1 � � )]
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+ ( � � � )
�

1 +
�
2
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which is:
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and we arrive at:

�
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�
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�
1 +

1
2�

�

The condition for � 1 will give in the same way:

(1 � � )
�

1 �
1

2 � �

�
� 1 � � � (1 � � )

�
1 +

1
2�

�

or:

1 + ( � � 1)
�

1 +
1
2�

�
� � � 1 + ( � � 1)

�
1 �

1
2 � �

�

We arrive thus at two conditions:



5.4 ITERATIVE PREDICTOR-CORRECTOR SCHEMES 105

8
<

:

�
�

1 � 1
2� �

�
� � � �

�
1 + 1

2�

�

1 + ( � � 1)
�
1 + 1

2�

�
� � � 1 + ( � � 1)

�
1 � 1

2� �

� (5.117)

We translate now conditions (5.117) into limitations onc� . To simplify the problem, we restrict to

the case� = 1=2. It gives: 8
><

>:

�
3

� � � 2�

2� � 1 � � � 1 +
(� � 1)

3

Which for symmetry reason we rather combine in the form:

8
<

:

2� � 1 � � � 2�
�
3

� � �
2
3

+
�
3

This is equivalent to: 8
<

:

2cn
i � cmax � c�

i � 2cn
i � cmin

2cmin

3
+

cn
i

3
� c�

i �
2cmax

3
+

cn
i

3

(5.118)

This limitation will be performed after the predictor step in order to ensure the monotonicity of the

Vnal valuecn+1 . To sum up we can conclude that:

Given a time step� t such that:

� t �
1
2

Si hn+1
i�

�
P

j min
�

� N
ij ; 0

�
� min (bi ; 0)

� (5.119)

and choosing� = 1=2 for the corrector step, the approximate discrete solutioncn+1
i respects the

maximum principle, under the following conditions onc�
i :

8
<

:

2cn
i � cmax � c�

i � 2cn
i � cmin

2cmin

3
+

cn
i

3
� c�

i �
2cmax

3
+

cn
i

3

(5.120)

wherecmax = max j (cn
j ; cn

i ) andcmin = min j (cn
j ; cn

i ). Again the criterion (5.119) can be adapted

to the source terms in the following way:

� t �
1
2

Si hn+1
i�

�
P

j min
�

� N
ij ; 0

�
� min (bi ; 0) + max( scei ; 0)

� (5.121)

5.4 Iterative predictor-corrector schemes

Both theVrst order and the second order predictor-corrector schemes can take advantage of a

further improvement: an iterative procedure can be applied on the corrector step.
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The idea consists in using once the basic predictor - corrector scheme and then correcting the value

of the corrector, replaying the corrector step for a certain number of time.

For theVrst order predictor-corrector scheme it is necessary to consider the condition (5.108) which

ensures the monotonicity ofcn+1 . This condition which is already naturally satisVed byc� , will be

enforced on the initial values provided by theVrst corrector step. At every iteration we can choose

as new prediction:

ck
i = min

�
max

�
ck� 1

i ;
cn

i + cmin

2

�
;
cn

i + cmax

2

�
(5.122)

wherek is thek � th iteration andck� 1
i is the value computed by the corrector step at iteration

k � 1. The equation to solve iteratively is:

Si hn+1
i

ck+1
i � ck

i

� t
= �

X

T 3 i

� P SI
i � T (cn ; ck ) � bi (cbound � cn

i ) (5.123)

As the iterationk increases,ck+1 tends tocn+1 . Up to now, the number of iterations is arbitrary

and in test cases we will show that after a low number of iterations the scheme converges.

We show in Figure 5.5 the results for the unsteady tracer advection benchmark 4.1.1 with the

Vrst order iterative predictor-corrector scheme, using 5 supplementary corrections. The iterative

procedure increases the maximum value of the tracer proVle, improving the global results, even if

we see that in some points of the solution some values are overestimated.

Figure 5.5: Unsteady tracer advection benchmark: results at sectiony = 0 :5 m for the N, the
PSI, the Predictor-CorrectorVrst order scheme (PC1), the Predictor-Corrector second order scheme
(PC2) and the Predictor-CorrectorVrst order scheme using 5 iterations (PC1-5it).

To achieve the iterative procedure for the second order scheme, it is important to use the condition
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(7.45) in order to correct the solution at every step. The new prediction is chosen as:

~c�
i = max

�
min

�
ck� 1

i ; 2cn
i � cmin

�
; 2cn

i � cmax
�

ck
i = max

�
min

�
~c�
i ;

2cmax

3
+

cn
i

3

�
;
2cmin

3
+

cn
i

3

�
(5.124)

whereck is the value at iterationk. Then we solve:

Si hn+1
i

ck+1
i � ck

i

� t
= �

X

T 3 i

� P SI
i � T (cn ; ck ) � bi

�
cbound � (1 � � ) cn

i � �c k
i

�
(5.125)

Even in this case the solution is improved after few iterations. The results for the unsteady tracer

advection benchmark 4.1.1 are shown in Figure 5.6. We see that in this case there is a better

agreement between numerical solution and theoretical solution, even if the maximum value of

tracer is smaller than the one obtained with the PC1-5it.

Figure 5.6: Unsteady tracer advection benchmark: results at sectiony = 0 :5 m for the N, the
PSI, the Predictor-CorrectorVrst order scheme (PC1), the Predictor-Corrector second order scheme
(PC2), the Predictor-CorrectorVrst order scheme using 5 iterations (PC1-5it) and the Predictor-
Corrector second order scheme using 5 iterations (PC2-5it).

Note that in the iterative procedure the source terms can be added as done in previous cases without

problems.

5.5 Coping with dry zones

To deal with dry zones a local semi-implicit formulation of the classical RDS is presented.

The problem of wet/dry interface is numerically challenging, as we have explained in Chapter 3.

The recurring problem when using schemes presented in the previous section, is that the time step
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is water depth dependent:

� t �
f h
g

(5.126)

f represents in general an area (of a cell or triangle) andg represents the sum ofWuxes which

empties a cell, including boundaries and sources. In case of dry zones, we thus obtain a zero time

step as minimum value and the scheme will not work.

A common solution used to treat this problem is to make use of a cut-oUvalue of the water depth,

below which the computation of the concentration (or velocities) is avoided and zero values are put

instead as solution. In particular this solution is also used for FV schemes presented in this work.

Here we would like to construct a scheme for dry zones which is completely water depth free, that

is a scheme with a time step computation independent on the value of the water depth. In this way

the scheme does not need a cut-oUparameter, which can create instabilities. The general idea is to

avoid situations in which a division by a zero water depth arises.

The new idea used in this work, consists in exploiting the unconditional stability of the implicit

scheme to face the wet/dry interface and to keep the accuracy of the predictor-corrector explicit

schemes in the wet zones. The method is presented in two steps:

� Formulation of alocalsemi-implicit scheme forsteadyproblems

� Formulation of alocalsemi-implicit predictor-corrector scheme forunsteadyproblems (the

upwind of the derivative in time is included in the local semi-implicit formulation)

5.5.1 Local semi-implicit N scheme

We Vrst transform the global semi-implicit scheme presented in section 5.2.1 into a local semi-

implicit scheme, where the choice of� is local, i.e. locally chosen for every point. To do this, special

attention is required on the upwind choice when deVning cij . The derivation is done starting from

the conservative Equation (5.59), explicitingcn+ � and with a local� i :

Si h
n+1 � � i
i cn+1

i � Si h
n+1 � � i
i cn

i = + � t
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��
(1 � � i )cn

i + � i cn+1 �
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�
� ij

+ � tbi
�
(1 � � i )cn

i + � i cn+1
i � cbound

�
(5.127)

Note that here we omit the superscript N on� ij but we consider that we deal with NWuxes. In order

to deVnecij we choose� i cn+1
i + (1 � � i )cn

i if � ij is positive (fromi to j ) and� j cn+1
j + (1 � � j )cn

j

if � ij is negative. Accordingly we also consider that for ingoing boundary termsbi > 0 we will

have� i cn+1
i + (1 � � i )cn

i . Thus the scheme reads as follows:

Si h
n+1 � � i
i (cn+1

i � cn
i ) = � � t

X

j

h
� j cn+1

j + (1 � � j )cn
j � � i cn+1

i � (1 � � i )cn
i

i
min( � ij ; 0)

� � t min(bi ; 0)
�
cbound � (� i cn+1

i + (1 � � i )cn
i )

�

(5.128)
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And in presence of sources becomes:

Si h
n+1 � � i
i (cn+1

i � cn
i ) = � � t

X

j

h
� j cn+1

j + (1 � � j )cn
j � � i cn+1

i � (1 � � i )cn
i

i
min( � ij ; 0)

� � t min(bi ; 0)
�
cbound � (� i cn+1

i + (1 � � i )cn
i )

�

+ � t max(scei ; 0)
�
csce � (� i cn+1

i + (1 � � i )cn
i )

�

(5.129)

Putting the implicit terms of (5.128) in the left-hand side and explicit terms in the right-hand side,

the equation can again be written in the form of a linear system:

AC n+1 = BC n + D (5.130)

where the matrices are:

A ii = Si h
n+1 � � i
i + � i � t

0

@�
X

j

min( � ij ; 0) � min(bi ; 0)

1

A (5.131a)

A ij = � j � t min( � ij ; 0) (5.131b)

B ii = Si h
n+1 � � i
i � (1 � � i )� t

0

@�
X

j

min( � ij ; 0) � min(bi ; 0)

1

A (5.131c)

B ij = � (1 � � j )� t min( � ij ; 0) (5.131d)

D i = � � t min(bi ; 0)cbound (5.131e)

5.5.1.1 Monotonicity analysis

As for the global semi-implicit scheme, the stability of the scheme is given by the positivity ofB ii .

We obtain a stability condition:

� t �
1

1 � � i

Si hn
iP

j
max(� ji ; 0) + max( bi ; 0)

(5.132)

Sources do not add theoretical problems if well taken into account, thus the time step condition

becomes:

� t �
1

1 � � i

Si hn
iP

j
max(� ji ; 0) + max( bi ; 0) � min(scei ; 0)

(5.133)
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Note that we have transformedhn+1 � � i
i into hn

i thanks to the continuity equation:

Si h
n+1 � � i
i = Si hn

i � (1 � � i )� t

0

@
X

j

� ij + bi

1

A (5.134)

5.5.1.2 Choosing the local semi-implicitation

Formula (5.132) gives rise to an interesting question: which local� i can we choose?

The minimum acceptable time step for every point is obtained when� i = 0 :

� tstab(i ) =
Si hn

iP

j
max(� ji ; 0) + max( bi ; 0)

(5.135)

and it can be increased by the implicitation.

The goal is to do the whole process inn sub-steps, withn an arbitrary parameter. Indeed it is

necessary to get the same time step for all points.

We thus would like to have:
1

1 � � i
� tstab(i ) =

� tcas

n
(5.136)

where� tcas represents the time-step chosen for hydrodynamics. Bounding the coeX cient to 0, we

Vnd:

� i = max
�

0; 1 �
n� tstab(i )

� tcas

�
(5.137)

The latter tends to give 0 ifn is large enough or if� tcas
n ' � tstab(i ), except in the wet/dry front

where� tstab(i ) = 0 , so� i = 1 . The scheme is thus stabilised on dry zones by a full implicitation.

In completely wet steady cases, forn large enough, the scheme falls into the classical N explicit

scheme.

Once the� i are computed, we can solve equation (5.128) enforcing� t = � tcas
n .

5.5.1.3 Local semi-implicit PSI scheme

We write now a variation of this scheme in order to fall into the PSI scheme in case of wet steady

state. To do this we consider Equation (5.128) and we take the term on the LHS:

� � t
X

j

h
� j cn+1

j + (1 � � j )cn
j � � i cn+1

i � (1 � � i )cn
i

i
min( � ij ; 0) (5.138)



5.5 COPING WITH DRY ZONES 111

which is rewritten it in the equivalent form:

� � t
X

j

h
� j (cn+1

j � cn
j ) � � i (cn+1

i � cn
i ) + cn

j � cn
i

i
min( � ij ; 0) (5.139)

then we split it into two parts, with� ij changed into� P SI
ij for the last term, since it does not spoil

the mass conservation:

� � t
X

j

h
� j (cn+1

j � cn
j ) � � i (cn+1

i � cn
i )

i
min( � ij ; 0)� � t

X

j

(cn
j � cn

i ) min( � P SI
ij ; 0) (5.140)

This change involves a change in the matrix B, while the other matrices will not change. In partic-

ular we will have:

B ii = Si h
n+1 � � i
i � (1 � � i )� t (� min(bi ; 0)) + � t

X

j

min( � P SI
ij ; 0) � � i � t

X

j

min( � ij ; 0)

(5.141a)

B ij = � � t min( � P SI
ij ; 0) + � j � t min( � ij ; 0) (5.141b)

Sincemin( � P SI
ij ; 0) � min( � ij ; 0) the monotonicity analysis can be done replacing� P SI

ij with � ij

in the matrixB . ThenB ii andB ij are equal toB ii andB ij of (5.131) and the same monotonicity

condition can be used. The local parameter� i is chosen again with formula (5.137) and the linear

system is solved choosing� t = � tcas
n .

We have now obtained a local semi-implicit scheme able to deal with dry zones and also able to

fall back into a classical PSI scheme in case of steady wet cases.

The new goal is to construct a scheme which is still capable to tackle dry zones but which is also

suitable for the unsteady cases. We thus would like to apply the local method to the predictor-

corrector scheme.

5.5.2 Local semi-implicit predictor-corrector scheme

To build a semi-implicit predictor-corrector scheme, we use the local semi-implicit scheme (5.128)

as predictor step, to give aVrst approximation ofcn+1
i denotedc�

i .

Then we would like to construct a local corrector step where the derivative in time is upwinded

and limited thanks to the PSI limiter.

To do this theVrst step consists in writing a semi-implicit corrector, splitting the original derivative
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in time:

Si h
n+1 � � i
i (cn+1

i � c�
i ) = � Si h

n+1 � � i
i (c�

i � cn
i )

� � t
X

j

�
(� j cn+1

j � � i cn+1
i ) + ((1 � � j )cn

j � (1 � � i )cn
i )

�
min( � ij ; 0)

� � t min(bi ; 0)
�
cbound � (� i cn+1

i + (1 � � i )cn
i )

�

(5.142)

The second steps consists in choosing the space-time residual over which applying the PSI limiter.

Since we want to avoid non-linearities, we choose to limit the derivative in time and the explicit

Wuxes. Thus we end up with this kind of corrector:

Si h
n+1 � � i
i (cn+1

i � c�
i ) = � � t

X

j

(� j cn+1
j � � i cn+1

i ) min( � ij ; 0)

� � t� P SI
i � T � � t min(bi ; 0)

�
cbound � (� i cn+1

i + (1 � � i )cn
i )

�

(5.143)

where the space-time residual is :

� T =
X

i 2 T

� N
i =

ST

3

X

i 2 T

hn+1 � � i
i

c�
i � cn

i

� t
+

3X

i =1

3X

j =1

�
(1 � � j )cn

j � (1 � � i )cn
i

�
min( � N

ij ; 0)

(5.144)

TheVnal predictor-corrector scheme reads:

8
>>>>>>><

>>>>>>>:

Si h
n+1 � � i
i

c�
i � cn

i

� t
= � � t

P

j

h
� j c�

j + (1 � � j )cn
j � � i c�

i � (1 � � i )cn
i

i
min( � ij ; 0)

� � t min(bi ; 0) (cbound � (� i c�
i + (1 � � i )cn

i ))

Si h
n+1 � � i
i

cn+1
i � c�

i

� t
= �

P

T 2 i
� P SI

i � T � � t
P

j
(� j cn+1

j � � i cn+1
i ) min( � ij ; 0)

� � t min(bi ; 0)
�
cbound � (� i cn+1

i + (1 � � i )cn
i )

�

(5.145)

The scheme presented here is similar to theVrst order predictor-corrector scheme, since the space

time residual does not correspond to a second order discretization in time of the spatialWuxes since

only the explicit part is upwinded.
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Considering additional sources theVnal scheme becomes:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Si h
n+1 � � i
i

c�
i � cn

i

� t
= � � t

P

j

h
� j c�

j + (1 � � j )cn
j � � i c�

i � (1 � � i )cn
i

i
min( � ij ; 0)

� � t min(bi ; 0) (cbound � (� i c�
i + (1 � � i )cn

i ))

+� t max(scei ; 0) (csce � (� i c�
i + (1 � � i )cn

i ))

Si h
n+1 � � i
i

cn+1
i � c�

i

� t
= �

P

T 2 i
� P SI

i � T � � t
P

j
(� j cn+1

j � � i cn+1
i ) min( � ij ; 0)

� � t min(bi ; 0)
�
cbound � (� i cn+1

i + (1 � � i )cn
i )

�

+� t max(scei ; 0)
�
csce � (� i cn+1

i + (1 � � i )cn
i )

�

(5.146)

5.5.2.1 Monotonicity analysis

We now study the monotonicity of the corrector step without sources, taking into account the

limitation (likef i and� ij ) that stems from the PSI limiter:

an+1
i cn+1

i + an+1
j cn+1

j = + d�
i c�

i � dn
j cn

j + dn
i cn

i � � t min(bi ; 0)cbound

where:

an+1
i = Si h

n+1 � � i
i � � t� i

X

j

min( � ij ; 0) � � t� i min(bi ; 0) (5.147a)

an+1
j = � t

X

j

� j min( � ij ; 0) (5.147b)

d�
i = Si h

n+1 � � i
i � f i Si h

n+1 � � i
i (5.147c)

dn
j = � � ij � t

X

j

(1 � � j ) min( � ij ; 0) (5.147d)

dn
i = f i Si h

n+1 � � i
i + (1 � � i )� t

0

@
X

j

� ij min( � ij ; 0) + min( bi ; 0)

1

A (5.147e)

The system is solvable since, like in the previous case, theA matrix, made up byai on the diagonal

and aj on the extra-diagonal terms, is non singular and it is a L-matrix i.e.A ii > 0 8i and

A ij < 0 forj 6= i , thanks to the stability condition of the predictor step.

Only the coeX cients ofcn
i could be negative, indeed the extra derivative in time with the limitation

given by the PSI limiter could be a problem. This coeX cient is:

f i Si h
n+1 � � i
i + (1 � � i )� t

0

@
X

j

� ij min( � ij ; 0) + min( bi ; 0)

1

A (5.148)
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If f i = 1 , weVnd the previous condition, (5.132), on the time step. Yet, in this casef i could also be

zero, thus in order to keep the positivity, the value ofc�
i is considered.

As for the second order predictor-corrector scheme, an average value of concentrationcaverage
i is

introduced to guarantee the monotonicity of the scheme. The demonstration follows the same steps

of the predictor-corrector schemes.

We can show that, for a time step chosen so that:

� tstab <
1
2

1
1 � � i

Si hstart
i 

P

j
max(� N

ij ; 0) + max( bi ; 0)

! (5.149)

the approximate discrete solutioncn+1
i respects the maximum principle under the following con-

dition onc�
i :

cn
i +

1
2

�
cmin

i � cn
i

�
< c �

i < c n
i +

1
2

(cmax
i � cn

i ) (5.150)

wherecmax = max j (cn
j ; cn

i ) andcmin = min j (cn
j ; cn

i ). The proof is reported in Appendix A.

This statement is true also in presence of sources, but the time step to consider is:

� tstab <
1
2

1
1 � � i

Si hstart
i 

P

j
max(� N

ij ; 0) + max( bi ; 0) � min(scei ; 0)

! (5.151)

5.5.2.2 A correct sum of coeX cients

TheVnal value ofcn+1 is monotone only if the sum of the interpolation coeX cients is equal to 1.

However, the last term on the RHS of Equation (5.144) could create problems in the global balance

of coeX cients ofc after the reduction operated by the PSI limiter. Indeed, before the PSI reduction,

the balance of(1� � j )cn
j � (1 � � i )cn

i is ensured by the term� � j cn+1
j � � i cn+1

i . This does not hold

true after the PSI reduction. To have a right balance of coeX cients, the solution consists in applying

the limiter only on the terms which can be balanced. Thus, denoting� ij = min(1 � � i ; 1 � � j ),

we replace:
3X

i =1

3X

j =1

�
(1 � � j )cn

j � (1 � � i )cn
i

�
min( � N

ij ; 0)

by:

3X

i =1

3X

j =1

� ij
�
cn

i � cn
j

�
min( � ij ; 0)+

3X

i =1

3X

j =1

�
((1 � � j ) � � ij ) cn

j � ((1 � � i ) � � ij ) cn
i

�
min( � N

ij ; 0)
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Only the term
3P

i =1

3P

j =1
� ij

�
cn

j � cn
i

�
min( � ij ; 0) is kept in the space time residual in order to be

reduced by the PSI limiter, while the rest of the term will not be reduced by the PSI limiter. In this

way we have a correct sum of coeX cients and the monotonicity is not spoiled.

5.5.2.3 Iterative local semi-implicit predictor-corrector scheme

As for the explicit predictor-corrector schemes, an iterative procedure can be employed, thanks

to the requirements onc�
i to ensure the monotonicity. In this case, at every iteration, the new

prediction is:

ck
i = min

�
max

�
~c�
i ;

cn
i + cmin

2

�
;
cn + cmax

2

�
(5.152)

where in this case~c�
i is the value computed by theVrst corrector step and the equation to solve is:

Si hn+1
i

ck+1
i � ck

i

� t
= �

X

T 3 i

� P SI
i � T (cn ; ck ) � � t

X

j

(� j ck+1
j � � i ck+1

i ) min( � ij ; 0)

� � t min(bi ; 0)
�

cbound � (� i ck+1
i + (1 � � i )cn

i )
�

(5.153)

5.5.2.4 Choosing the local semi-implicitation

The admissible time step condition for the explicit scheme is:

� tstab(i ) =
Si hstart

i 
P

j
max(� N

ij ; 0) + max( bi ; 0) � min(scei ; 0)

! (5.154)

For the semi-implicit scheme this value is locally divided by(1� � i ), and for the predictor-corrector

approach it is divided by 2. The goal is now to do the whole locally semi-implicit, predictor-

corrector process inn sub-steps, thus we prescribe:

1
1 � � i

� tstab(i )
2

=
� t
n

(5.155)

which yields to:

� i = max
�

0; 1 �
n� tstab(i )

2� t

�
(5.156)

We show in Figure 5.7 the results obtained for the unsteady advection test case, using the local

semi-implicit predictor-corrector scheme, with 5 iterations on the corrector step and choosing the

half of the number of iterations of the PC1. As we can see results are quite similar to the results

obtained with theVrst order predictor-corrector scheme.
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Figure 5.7: Unsteady tracer advection benchmark: results at sectiony = 0 :5 m for the N,
the PSI, the Predictor-CorrectorVrst order scheme (PC1), the Predictor-Corrector second order
scheme (PC2), the Predictor-CorrectorVrst order scheme using 5 iterations (PC1-5it), the Predictor-
Corrector second order scheme using 5 iterations (PC2-5it) and the Locally Implicit Predictor cor-
rector Scheme with 5 iterations (LIPS-5it).

5.5.2.5 Optimisation

At every new correction, the mass ofc� added at the previous correction is removed by the term

� Si hn+1 � �
i (c�

i � cn
i ) =� t in the RHS. A consequence is that only the monotonicity is requested

for intermediatec�
i , mass conservation is not mandatory. This allows to solve only partially the

intermediate linear system. In practice we do only one iteration of the Jacobi iterative solver. It

consists in writing a matrixA in the formA = D + E, splitting the diagonal (D ) and the extra-

diagonal terms (E). Solving the system:

AX = B (5.157)

with an initial guessX 0, theVrst iteration of the Jacobi method reads:

X 1 =
B � EX 0

D
(5.158)

given our matrices, such an iteration keeps the monotonicity.

5.6 Summary

In this chapter the RD schemes have been tailored to the depth-averaged scalar transport equation

showing the compatibility with the discretized continuity equation of theWuid. The main ingre-

dients of the RD schemes, like the concept of positive schemes and of limited non linear schemes

are used here. However, diUerences with respect to the classical RD formulation arise due to the

depth-averaged context (e.g. the conservation issue is not treated like in classical RD schemes).
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The chapter focuses then on accurate schemes for unsteady problems where the upwinding of the

derivative in time plays the most important role for accuracy. TheVrst and second order predictor-

corrector schemes are the schemes suitable for time dependent problems. The preservation of the

monotonicity has been shown for both schemes and yields diUerent time step conditions with

respect to the classical predictor-corrector RD schemes presented in [117] where the theoretical

monotonicity is not deeply discussed, even if the results shown are monotone. In addition, the

iterative version of the predictor-corrector schemes improves the accuracy and represents a new

contribution in the development of schemes for unsteady tracer transport.

A new locally semi-implicit scheme is presented to solve the wetting and drying problems. This

scheme tries to mix the good properties in terms of accuracy of the predictor-corrector schemes and

the unconditional stability of the implicit scheme. Even in this case an enhanced iterative version

is build. An optimisation is proposed to avoid the resolution of a linear system at every iteration.
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Chapter 6

VeriVcation and validation of the

numerical schemes

Ce chapitre présente la validation des nouveaux schémas proposés dans cette thèse.

Une batterie de cas tests a été choisie pour valider les diUérentes propriétés numériques

des schémas.

Dans un premier temps on estime les ordres de convergence des schémas pour des

problèmes stationnaires et non stationnaires. Ensuite, des cas plus complexes comme

la convection d'un proVl gaussien dans un champ rotationel, une rupture de barrage

sur fond mouillé ou encore un canal avec des piles de pont, sont utilisés pour vériVer

la monotonie de la solution et la conservation de la masse. Les résultats obtenus par

les nouveaux schémas sont assez satisfaisants et comparables à ceux obtenus dans

[13, 117]. Ces résultats montrent qu'eUectivement les nouveaux schémas sont plus pré-

cis et assurent au niveau discret la conservation de la masse et la monotonie.

Le traitement des zones avec des bancs découvrants est testé avec une rupture de bar-

rage sur fond sec et avec le test de Thacker. Dans les deux cas, les schémas se montrent

appropriés à ce type de problèmes.

Des comparaisons en termes de nombre d'itérations ou temps de calcul, sont aussi ef-

fectuées de manière systématique aVn de donner une idée de l'eX cacité des schémas.

L'inWuence du maillage sur la solution pour les schémas aux VF et aux RD est aussi

soulignée dans le premier cas test.

Le chapitre se termine avec un cas réel où les résultats numériques sont comparés à

des mesures. Le but de ce dernier test est la validation d'un des schémas sur un cas

industriel.
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The aim of this chapter is the veriVcation and validation of the numerical schemes presented in the

previous chapters. We recall that veriVcation is the process of determining that a model implemen-

tation accurately represents the developer's conceptual description of the model and the solution to

the model while validation is the process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of the model [108, 138].

Since in this work hydrodynamics (i.e. the SW equations) is solved with a FE method or a FV

method, some diUerences could appear on hydrodynamic results (e.g. on velocityVelds) which

could then inWuence the results of the advection schemes for tracers.

For this reason, in several tests we consider steadyWow conditions, where there are no diUerences

on the velocities between the FE and the FV results. This allows to better compare the FV schemes

and the RD schemes for tracer. Under steadyWow conditions, the tracer exact solution can be easier

computed and hence the order of accuracy of the scheme is assessed for a case of steady concen-

tration (@c=@t= 0 ) and unsteady concentration. In these tests, various kinds of mesh will be used

in order to show the diUerent behaviour of the two families of methods.

The behaviour of the schemes under more complex velocityVelds is checked with several tests: the

rotating cone, the wet and dry dam break and an open channelWow between bridge piers. The

latter, together with the Thacker test case, is useful to show the ability of the scheme to deal with

wetting and drying phenomena.

Finally, we present a real test case where the numerical solution is compared to real data.

We establish here the nomenclature used for the diUerent schemes:

� N scheme: presented in Chapter 5, Section 5.1.2;

� PSI scheme: presented in Chapter 5, Section 5.1.2;

� PC1 scheme: it is the predictor-corrector scheme presented in Chapter 5, Section 5.2.2. Note

that this scheme is called PC1-#it when the iterative version is used (# will be the number of

supplementary iterations). For example PC1-5it is theVrst order predictor-corrector scheme

with 5 supplementary iterations on the corrector step;

� PC2 scheme: it is the predictor-corrector scheme presented in Chapter 5, Section 5.2.3. Even

in this case the acronym PC2-#it is used for the iterative version;

� LIP scheme (or LIPS): it is the locally implicit predictor-corrector scheme presented in Chap-

ter 5, Section 5.5.2;

� HLLC 1 scheme: it is the decoupled scheme presented in Chapter 4, Section 4.1.3;

� HLLC 2 scheme: it is the second order version of the decoupled scheme presented in Chapter

4, Section 4.2.

If not speciVcally indicated, the CFL number for FV schemes has been set to 0.9 for all the tests

presented here.
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6.1 VeriVcation

6.1.1 Lake at rest with constant solute

This test represents the numerical validation for the preservation of constant solute proVle over

quiescent water. Taking into account an irregular bathymetry, the test also validates the property

of well-balanceness of the scheme. Indeed, in absence of velocities, the scheme must guarantee the

equilibrium between the momentumWux term and the bathymetry source terms, without creating

spurious oscillations of water depths or velocities.

The computational domain is a square basin of dimensions(0; 20)� (0; 20) m2 made up by regular

triangles with average length0:3 m. All the boundaries are considered as solid. The bathymetry is

described by a very irregular function which varies sharply, see Figure 6.1.

Figure 6.1: Lake at rest with constant solute: bathymetry.

The initial conditions are:
s0(x; y) = 41 m

u 0(x; y) = 0 m=s

c0(x; y) = 5 g=m3

(6.1)

The test is performed for 300 s. As shown in Table 6.1, all the schemes proposed in this work

are able to preserve constant tracer proVles over time and the mass of the solute (60171:42 g) is

conserved at the machine precision.

For each test presented in this chapter, a mass balance is computed at every time step. The error on

the mass is equal to:

� M = M start + M in � M end (6.2)

M start =
R


 (hc)n d
 is the mass at the beginning of the time step,M in = � t
R

� hcu � n d� is

the mass introduced (and leaved) by the boundaries during the time step (the sign is negative when

the quantity leaves the domain),M end =
R


 (hc)n+1 d
 is the mass at the end of the time step.

The relative error is also computed:

� rel =
�

max(jM start j; jM endj; jM in j)
(6.3)
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At the end of the computation, aVnal mass balance is evaluated. In this caseM start corresponds

to the mass at the beginning of the computation andM end corresponds to the mass at the end of

the computation. The termM in contains the cumulated tracer boundaryWuxes.

Table 6.1: Relative mass error for the lake at rest with constant solute.
scheme � rel

N � 0:2 � 10� 15

PSI � 0:2 � 10� 15

PC1 � 0:2 � 10� 15

PC2 � 0:2 � 10� 15

LIP � 0:4 � 10� 15

HLLC 1 � 0:2 � 10� 15

HLLC 2 � 0:2 � 10� 15

6.1.2 Steady tracer advection

This test has two goals: on the one hand it is useful to show the spatial convergence of the schemes

in steady cases, on the other hand it emphasizes the diUerent behaviour of the schemes on diUerent

meshes. We consider a steady-stateWow in a frictionless channel where the pollutant is released at

the inlet.

To perform the convergence study we choose a rectangular domain with dimensions[2 m � 1 m]

made up by irregular triangles, see Figure 6.2. The unstructured grid has been progressively reVned,

Figure 6.2: Steady tracer advection: unstructured grid used for the convergence study.

 = [2 m � 1 m] and� x = 1=10m

considering several average element sizes,� x: 1/10 m, 1/20 m, 1/40 m, 1/60 m and 1/80 m. In

general for unstructured mesh, the reference mesh size is computed with the following formula:

� x =

s
2 � 

# el

(6.4)

where
 is the area of the computational domain and# el is the number of elements.

The hydrodynamic steady conditions areh = 1 m andu = (2 ; 0) m/s; they are imposed as initial
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Table 6.2: Steady tracer advection: order of accuracy.

� x # el ON OHLLC 1 OP SI OHLLC 2

0.1 440
0.05 1749 0.95 0.53 1.84 1.43
0.025 6876 0.95 0.75 1.7 1.57
0.016 16739 1.01 0.79 1.16 1.63
0.0125 26842 -0.46 1.19 1.52 1.59

and boundary conditions. Since the truncation error analysis holds true for smooth solutions, we

choose the following boundary inlet tracer proVle:

cbound = c(x = 0 ; y) = e(� 2y) sin(�y )2 g=l

At the outlet we leave a free boundary condition for the tracer. The duration of the test is set to 2,5

s such that at theVnal time,t f , all schemes have converged to the steady solution.

The exact solution given by the method of characteristics is simply:

cex = c(x; y) = e(� 2y) sin(�y )2 g=l

To measure the accuracy of the numerical schemes, we take theL 2 norm of the error in space:

jj � jjL 2 =

s
1

npoin

X

i 2T h

(cex(t f ) � cnum (t f ))2

wherenpoin is the total number of nodes,cex is the exact solution,cnum is the numerical solution

and t f is theVnal time. The convergence rates of the diUerent schemes and the tracer proVles

obtained at the end of the simulation at the transversal sectionx = 2 m are shown in Figure 6.3.

This test is important to assess the order of the already existing schemes (N and PSI) and of the

new schemes. For the new RD schemes, which are more appropriate for time dependent problems,

we just want to verify that in steady cases they are able to revert to the PSI scheme. The curves are

exactly superimposed for the PSI, PC1, PC2 and LIP scheme. Thus they are not shown. The choice

of the number of sub-stepsn for the locally implicit scheme (see Section 5.5.2.4) is not trivial and

in general it must be related to the arbitrary time step chosen to solve the hydrodynamics.

In this case, to choose the parametern, Vrstly we consider that in wet cases we are not interested

in having� i = 1 and we prefer to have� i = 0 in steady cases, in order to recover the PSI scheme.

Then, in order to be comparable to the other RD schemes,n is chosen so as the number of iterations

is the same as the N and the PSI scheme. Hence, in this way, the results of the LIP schemes are

equal to the results of the PSI scheme.

The tracer proVles shown in Figure 6.3 agree with the convergence rates, indeed the most diUusive

schemes are the HLLC 1 and the N, while the HLLC 2 and the PSI are the most accurate.

The order of convergence for the diUerent schemes are shown in Table 6.2. The N and the HLLC
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Figure 6.3: Steady tracer advection: convergence-rate (top) and tracer proVles at sectionx = 2 m
for the case� x = 1=40 (bottom).

1 converge to the theoretical order, indeed the measured accuracy is around 0.95. However, the

N scheme shows a strange behaviour in the most reVned mesh, for which we compute a slope of

-0.46. In this case further investigations would be necessary to justify this result. For the second

order schemes, results are quite satisfactory, since the convergence rates tend to 2, the theoretical

value. However the maximum values of slopes are 1.84 for the PSI scheme and 1.63 for the HLLC

2.

The schemes are also compared in terms of number of time steps necessary to compute the solution

in the time interval[0; 2:5] s. Results are written in Table 6.3 for the mesh with� x = 1=40 m.

There is a large diUerence between the second order RD schemes and the second order FV schemes.

RD schemes, regardless of the order of accuracy, always have the same number of time steps, which

is smaller than the one used by the FV schemes. Hence the RD schemes are more eX cient and less

time consuming than FV schemes. The CPU time is1 s for the RD schemes while it is6 s for the
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Table 6.3: Steady tracer advection: number of time-steps for the advection schemes.

N HLLC 1 PSI HLLC 2
iterations 950 1183 950 3550

HLLC 2, for the mesh with� x = 1=40 m. For this case the diUerence seems not so large yet

the case is very simple. We will see that for more complex cases the diUerence in the CPU time

increases.

On the other hand, it is worth noticing the improvement brought by the decoupled algorithm HLLC

1 when considering also hydrodynamics. The tracer needs 1183 iterations, while hydrodynamics is

solved with 3350 iterations. The present HLLC 1 represents thus an improvement with respect to

the coupled version. For the second order version the positivity condition is more restrictive and

the number of time steps for hydrodynamics and the tracer transport is the same.

On the other hand, the RD schemes are even more eX cient since the hydrodynamic part is solved

with very few iterations, thanks to the absence of CFL condition and thus the possibility to take an

arbitrary time step. As example,� tcas = 0 :05s for the mesh with� x = 1=40m.

The same test has been performed over aregularmesh (see Figure 6.4), with an average element

size of1=40m. The results can be very diUerent as Figure 6.5 shows. In this case, in addition to the

smooth inlet boundary function:

cbound = c(x = 0 ; y) = e(� 2y) sin(�y )2 g=l

a discontinuous function has also been tested:

c(x = 0 ; y) =

(
1 g=l if 0; 4 m � y � 0; 6 m

0 g=l otherwise

For the smooth and the discontinuous function, the results obtained with the RD schemes are in

agreement with the exact solution, see Figure 6.5. On the contrary, the results obtained with the FV

schemes are more diUusive and the maximum values of tracer are smaller than the values obtained

in the completely unstructured mesh, shown in Figure 6.3.

The behaviours of the scheme can be explained analysing the alignment of the velocity vector to

the edge of the elements. Indeed, the velocityVeld which isu = (2 ; 0) is perfectly aligned with

the edges of the triangles. This situation is particularly favorable for the RD schemes, which are

able to reproduce the exact solution. Indeed this conVguration corresponds to the so called 1-target

case (we have one downstream node and two upstream nodes) [54], in which both the N and the

PSI scheme are linearity preserving and thus second order accurate in space. It means that the

residual� T is always given to the only downstream node and, since the velocity is aligned to the

edge, no transversal diUusion is produced by the advection scheme. This result holds for any kind

of advected function (smooth or discontinuous).
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On the contrary, this mesh is inconvenient for FV because, as we use a vertex-centred scheme,

the control volumes are distorted and an artiVcial Wux is developed along faces which cross the

diagonals of the squares.

We suppose that the use of a cell-centred method, in this particular case (with regular mesh and

constant horizontal velocities) could probably improve the results in terms of transversal diUusion.

Indeed, where the face element is aligned with velocities we will have zero-Wux faces, so the scheme

should be less diUusive. However, this kind of scheme has not been tested yet.

Finally the conservation of mass is veriVed through a mass balance. The relative error at the end

Figure 6.4: Steady tracer advection: regular mesh.
 = [2 m � 1 m] and� x = 1=40m

of the computation is about10� 15 for all the RD and FV schemes.

6.1.3 Unsteady tracer advection benchmark

This test was already presented in Chapter 4 and it is here recalled in order to measure the accu-

racy of the schemes and to give a more detailed comparison of all the schemes. The domain is a

rectangular channel of(0; 2) � (0; 1) m2 made up by irregular triangles (as the one of Figure 6.2).

The convergence test is performed on a series ofVve unstructured meshes, like in the steady case.

The mesh sizes are, from the coarsest to theVnest:1=10 m, 1=20 m, 1=40 m, 1=80 m, 1=160m.

The water depth in the channel is constant and equal to1 m, and theWow rate is 1 m3=s. The

simulation time is set to1 s. The initial tracer proVle is described by the function:

c0(x; y) =

(
cos2(2�r ) g=m3 if r � 0:25

0 g=m3 otherwise
with r =

p
(x � 0:5)2 + ( y � 0:5)2 m

In Figure 6.6 we show the rates of convergence for all schemes, the orders of accuracy are displayed

in Table 6.4 and Figure 6.7 shows the tracer proVles obtained at the end of the simulation at the

sectiony = 0 :5 for the mesh withh = 1=40m.

Figure 6.6 shows that the HLLC 1, the N and the PSI schemes are the most diUusive schemes with

a rate of convergence lower than one. This behaviour is normal since all these schemes areVrst

order in space and in time, hence they are not suitable for time dependent problems like this one.

On the contrary the new schemes introduced in this work occupy the region with lower magnitude
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Figure 6.5: Steady tracer advection: results at sectionx = 2 m for the advection of a discontinuous
function (top) and a continuous function (bottom) over a regular grid.

error and according to the scheme chosen, the slope is between 1 and 2. Analyzing the Figure 6.6

we note that the average convergence rates for the PC1 and the PC1-5it are about 1. Indeed, both

schemes are onlyVrst order accurate in time. However, we note that they are more accurate than

the N and the PSI and they give a better estimate of the maximum tracer value, as shown in Figure

6.7. The reason is related to the upwind of the derivative in time which is done in the PC schemes

while it is absent in the N and PSI schemes.

In addition, comparing the scheme without iteration (PC1) and the scheme withVve supplementary

iterations on the corrector steps (PC1-5it), we note that the maximum value of tracer increases

thanks to the supplementary iterations.

We consider now the PC2 and the PC2-5it. The convergence rate of these schemes is more regular:

the PC2 gives a slope of about 1.4, while the PC2-5it tends to 1.7. These schemes are formally

second order accurate in space and in time, however their convergence rate is less than two. In
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Figure 6.6: Unsteady tracer advection benchmark: convergence-rates.

Table 6.4: Unsteady tracer advection benchmark: order of accuracy.
� x # el ON OHLLC 1 OP SI OHLLC 2 OP C1 OP C1� 5it OP C2 OP C2� 5it OLIP

0.1 440
0.05 1749 0.19 0.15 0.2 0.73 0.69 1.21 0.63 1.00 1.17
0.025 6876 0.36 0.31 0.36 1.52 1.35 0.86 1.15 1.48 -0.16
0.0125 26842 0.52 0.5 0.52 1.15 1.07 1.04 1.43 1.64 0.92
0.00625 112480 0.67 0.67 0.67 1.15 1.09 0.86 1.48 1.67 0.91

[117] slopes of approximately 1.6 are obtained for predictor-corrector schemes similar to the one

presented in this work. We thus believe that our results are in accordance with [117].

The number of iterations enforced on the corrector step is arbitrary, however in Figure 6.8 we

show the convergence histories of theL 2 norm of the concentration, in function of the number

of supplementary iterations. As we can see, after very few iterations, the scheme converges and

the error remains stable. Indeed, for this test caseVve iterations are suX cient to obtain the most

accurate result.

We analyse here the convergence rate for the HLLC 2. This scheme is second order in space yet

Vrst order in time, since the time discretization is done with the Euler scheme. We note that two

diUerent second order in time schemes were tested in this case. In particular, the Heun's method

and the Newmark's method were considered. However, their use did not inWuence the accuracy of

the results, thus they are not retained in the other tests. The reasons of this discrepancy are not

clear at the moment and they should be investigated more in depth. The maximum slope showed

in Figure 6.6 is equal to 1.5, while it is equal to 1.15 for the most reVned meshes. In this case the
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Figure 6.7: Unsteady tracer advection benchmark: tracer proVles att f = 1 s and fory = 0 :5 m.

error in time is bigger than the error in space, thus the scheme is not able to reproduce the second

order rate. However the results are clearly better with respect to the HLLC 1.

Finally the convergence study for the LIP scheme is more complicated due to the local implicitation

coeX cient. In order to compare this scheme to the others, the parametern has beenVxed to obtain

the same number of iteration of the PSI scheme. As we can see the rate of convergence is almost 1

and this agrees with the formal accuracy of the scheme. However, as for the PC1, for a given mesh

size the error is smaller than the error produced by the N and the PSI thanks to the upwind of the

derivative in time.

Concerning the monotonicity, we observe that all schemes presented give a monotone solution.

Figure 6.9 shows the results obtained with the HLLC schemes when using the coupled and the

decoupled formulation. The mesh size isVxed at� x = 1=40 m and the proVles are obtained

at the sectiony = 0 :5 m. For both theVrst and the second order schemes, we note that the

decoupled formulation proposed in this work allows to decrease the numerical diUusion of the

coupled formulation. The decoupled formulation is also convenient from a computational point of

view, indeed for theVrst order case the decoupled scheme updates the tracer in 191 iterations while

the coupled one needs 1143 iterations (see Table 6.5).

In Table 6.6 we show the variation of the ratio between the hydrodynamic time steps and the

transport time steps according to various Froude numbers, for theVrst order HLLC. The test is

performed on the mesh� x = 1=40 m and the water depth varies in order to recover diUerent

Froude number. It is clear that the ratio between the hydrodynamic time step and the transport

time step decreases when the Froude number grows up. These results are similar to the one shown
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Figure 6.8: Unsteady tracer advection benchmark: convergence for the PC2 scheme.

Table 6.5: Unsteady tracer advection benchmark: number of time-steps for the FV schemes.

HLLC 1 HLLC 2
hydrodynamics 1143 1143

tracer 191 381

in [13]. The comparison in terms of number of iterations for all schemes is presented in Table 6.7.

Table 6.6: Unsteady tracer advection benchmark: hydrodynamic and transport iterations for diUer-
ent Froude numbers, for the HLLC 1.

Fr hydrodynamic iterations transport iterations
0.66 720 231
0.95 580 188
1.42 480 235

It is worth noticing that even if the number of time steps is the same for the PC1 (or PC2) and the

PC1-5it (or PC2-5it), the computational time is larger when more iterations are added. Examples

about the CPU time will be more clear for complex cases, indeed in this test, due to the simple

conditions and the short duration, the computational time is1s for both the PC2 and the PC2-5it.

In this test the FV and RD schemes which areVrst order accurate in space and in time, have

approximately the same time step, thus the total number of iterations are equal.

6.1.4 Rotating cone

The rotating cone case is a diX cult test because the velocity varies in space: the tracer is submitted

to a rotational velocityVeld. For this test we do not solve the Saint-Venant system, but just the

tracer equation, using a constant value of water depth. The aim is to show how much the numerical
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Figure 6.9: Unsteady tracer advection benchmark: tracer proVles for the coupled and the decoupled
HLLC scheme at sectiony = 0 :5 m.

Table 6.7: Unsteady case: number of time-steps for the advection schemes.

N HLLC 1 PSI HLLC 2 PC1 PC1-5it PC2 PC2-5it LIP
iterations 180 191 180 381 396 396 396 396 180

scheme is diUusive in a time dependent case. The maximum value of the cone after one rotation

can be considered a good indicator of the numerical diUusion. The velocityVeld is constant in time

and equal to:

u =

(
u(x; y) = � (y � 10:05) m=s

v(x; y) = ( x � 10:05) m=s

The initial condition for the tracer is a Gaussian function:

c0(x; y) = e� [( x � 15) 2+( y � 10:2) 2 ]
2 g=l

which bounds the solution between 0 and 1. The problem is solved on a square domain of dimen-

sions[20:1 � 20:1] m2 and formed by squares of side 0.3 m split into two triangles. After one

period the cone is again at the initial position but the maximum value is diminished due to the

numerical diUusion produced by the schemes.

The maximum and the minimum values are presented in Table 6.8. The better estimates of the

maximum are obtained with the LIP scheme, the PC1-5it and the PC2-5it schemes. However the

Vrst two schemes are onlyVrst order accurate in time and the good estimate of the maximum is

mostly due to the upwind of the derivative in time.

Again, the improvement brought by the new RD schemes presented in this work is clear. Con-

cerning the FV schemes, we note that the HLLC 2 computes a maximum which is about the triple
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Table 6.8: Rotating cone test: minimum and maximum values of concentration.

HLLC1 N PSI HLLC2 PC2 PC1 PC2-5it PC1-5it LIP
Min(c) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max(c) 0.1361 0.1792 0.2130 0.4695 0.5031 0.5333 0.6451 0.7630 0.7860

obtained with the HLLC 1. Hence the improvement is great. The ratio between the maximum value

obtained withVrst and second order schemes, is the same for FV and RD schemes. Maximum and

minimum values are never trespassed during the simulation.

TheVnal proVles of every scheme are reported in Figure 6.10. We observe that the PC1, the PC2 and

the PC2-5it schemes are comparable with the HLLC 2. However, the PC1-5it and the LIP schemes

are deVnitively the schemes which estimate the maximum more precisely.

6.1.5 Wet dam break with pollutant

The dam break over wet bed is,Vrst of all, an interesting test for the hydrodynamics because the

solution is characterized by three diUerent states: the rarefaction wave; a constant region deVned

by the contact wave and the shock wave where the water depth changes abruptly. In this test

the tracer (initially upstream of the dam) is transported at the speed of the intermediate constant

region, called the star region [142].

The aim is thus to check that the tracer is transported with the good velocity and that the contact

discontinuity is well captured by the schemes. Then, we also wish to verify that the numerical

dissipation on the contact discontinuity reduces with the new FV and RD schemes.

The analytical solution for this test was given by Stoker [135] for aWood wave on horizontal bed.

The computational domain is a rectangular channel with� 1000m � x � 1000m and0 m �

y � 500m, the grid is regular, made up by rectangles with� x = 20 m and� y ' 25 m, split

into triangles. The initial condition for the water depth is:

h0 =

(
hL = 1 m if x � 0 m

hR = 0 :2 m if x > 0 m

The initial velocities are zero and the initial tracer concentration is equal to:

c0 =

(
cL = 0 :7 g=l if x � 0 m

cR = 0 :5 g=l if x > 0 m

The duration of the simulation is 240 s and we use a CFL equal to 0.8 for the FV schemes.

The results obtained for the N, PC1-5it, PC2-5it, LIPS and for the HLLC1 and HLLC2 are shown in

Figure 6.11.

Among theVrst order schemes, the N scheme leads to a badly smeared solution, which is instead

more accurate if we use the HLLC 1 scheme, known to reproduce contact discontinuities. We note

that the solution obtained with the PSI scheme is not shown since it is superimposed to the solution
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Figure 6.10: Rotating cone: isolines for the tracer proVles (� = 0 :05). From top left to right bottom:
exact solution, HLLC 1, N, PSI, HLLC 2, PC2, PC1, PC2-5it, PC1-5it, LIPS.
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Figure 6.11: Wet dam break: solutions for the contact discontinuity computed with the numerical
schemes at time240s at the channel axis.

obtained with the N scheme.

Among the new schemes, the HLLC 2 and the PC1-5it are the most accurate schemes while the

PC2-5it and the LIP scheme are slightly less accurate and little diUerences between these schemes

are observed in Figure 6.11. We conclude that the new schemes are more appropriate to represent

contact discontinuities with very small numerical diUusion. In order to better appreciate the inWu-

ence of the decoupled algorithm for the FV schemes, we show in Figure 6.12, the results obtained

with the coupled and the decoupled scheme for theVrst and the second order schemes. We observe

that the numerical diUusion is decreased by the decoupled algorithm, however, the diUerences are

smaller for the second order scheme. In table 6.9 we write the number of hydrodynamic steps and

Figure 6.12: Wet dam break: solutions solution at the channel axis at time 240 s for the contact
discontinuity computed with the HLLC schemes (left) and the RD schemes (right).
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Table 6.9: Wet dam break: number of hydrodynamics time steps and transport time step for the
HLLC schemes.

HLLC 1 HLLC 2
Hydrodynamics steps 209 221

Transport steps 30 109

Table 6.10: Wet dam break: number transport time step for the RD schemes.
N PC1 PC1-5it PC2 PC2-5it LIP

iterations 70 140 140 140 140 140

transport steps. The new algorithm allows to save CPU time with respect to a fully coupled reso-

lution and it also improves the accuracy of the scheme since the largest allowable time step (which

produces the least numerical diUusion) is chosen for the transport equation.

Concerning the RD schemes, we also observe the improvement brought by the iterative version of

the schemes: Figure 6.12 shows the diUerences between the PC1 and the PC1-5it as well as between

the PC2 and the PC2-5it. The supplementary iterations induce less numerical diUusion, for both

the PC1 and the PC2.

The number of time steps for the RD schemes are written in table 6.10. For FE hydrodynamics is

solved choosing� tcas = 3 s and for the LIP scheme we choose again to have the same number of

time steps of the second order PC schemes. Comparing Table 6.9 and Table 6.10, it is noted that in

this case, the RD schemes are slightly more demanding in term of number of time steps than the

FV schemes.

6.1.6 Dry dam break with pollutant

The analytical solution for a dry dam break wasVrstly proposed by Ritter [124]. The water depth

is characterized by a single rarefaction zone, associated toSL = uL � aL (for a left wet state). In

this region the water depth proVle gradually changes into null water depth. The velocity proVle

jumps from the maximum values to zero where the water depth becomes zero.

In this problem the contact discontinuity has a speedS� L = uL + 2aL which corresponds to the

wet/dry front. The tracer, which is present in the wet domain, will thus travel with the wet/dry

front. The position of the front is very diX cult to compute and it is important to have the correct

values of concentration and the right mass balance, even ifh = 0 .

The aim of this test is to assess the ability of the schemes to conserve the mass of tracer and to

preserve the maximum principle during transient periods characterized by wet/dry interfaces.

The computational domain is a rectangular channel of dimensions(0; 16) � (0; 0:45) m2 which

is composed by irregular triangles with an average mesh size of0:05 m. The dam is located at



136 CHAPTER 6: VERIFICATION AND VALIDATION OF THE NUMERICAL SCHEMES

x = 8 m. The initial conditions for the wet part of the domain, on the left of the dam, are:

8
><

>:

hL = 0 :4 m

uL = 0 m=s

cL = 1 g=l

(6.5)

All the variables are set to zero in the dry part, on the right of the dam:

8
><

>:

hR = 0 m

uR = 0 m=s

cR = 0 g=l

(6.6)

The duration of the test is1:5 s.

In this case, we only compare the schemes able to handle dry states that are the HLLC 1 , the HLLC

2 and the LIP scheme. InVgure 6.13 the results obtained with these schemes are plotted. The FV

schemes seems more appropriate to solve this problem than the RD schemes. Indeed the water

depth proVle is better approximated, since there is a smooth transition into zero. However, the

second order HLLC exhibits a very small oscillation in the front. Even the velocity proVle is better

estimated with the FV schemes.

On the contrary, the FE schemes cannot reproduce the continuous water depth proVle and they

show instead a jump inh preceded by some oscillations. For the FE scheme we set� tcas = 0 :01s,

in order to get enough accurate results for hydrodynamics. Since in this case the tracer solution

is generated by the wet/dry front advancement, the choice of the parametern for the LIP scheme

is not so signiVcant. Indeed, at the wet/dry interface the LIP scheme is characterized by� i = 1 ,

hence takingn = 1 is enough in this case to get correct solutions. The total number of time-steps

for the hydrodynamics and the LIP scheme is thus 150.

The solutions obtained with the diUerent schemes for the tracer, can be easily justiVed consider-

ing the results obtained for hydrodynamics. The wet/dry front, thus the tracer proVle, is better

estimated with the FV schemes. The tracer proVle computed by the LIP scheme is far from the

analytical solution, however, the monotonicity of the tracer is strictly ensured. We prove with this

test that the LIP scheme is perfectly able to handle dry problems.

The HLLC 2 is less accurate in the prediction of the wet/dry front than the HLLC 1. The rea-

son is not very clear at the moment and further investigations should be done to understand this

behaviour. However we consider that both schemes are able to treat the wetting and drying inter-

faces.

The comparison of the time-steps forVrst and second order solutiono for FV is done in Table 6.11.

Even for the dry dam break is clear the advantage of a decoupled solution for the tracer transport,

when using the HLLC solver.

Regarding the FV schemes, we recall the formula for the dry interfaces introduced at Chapter 4.

We note that computingc = hc=h if h > � tr with � tr = 10 � 6, the results show small oscillation

(cmax = 1 :14) at the wet/dry front which indicate a slight loss of monotonicity. Using instead
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Figure 6.13: Dry dam break: numerical and exact solutions at the channel axis att = 1 :5 s.
Solutions are computed with FE and FV schemes. From top to bottom: water depth, velocity,
concentration.

� tr = 10 � 14 the maximum value obtained respects the monotonicity (cmax = 1 ).

The mass conservation is checked for all schemes and the relative errors are at the machine
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Table 6.11: Dry dam break: number of hydrodynamics time steps and transport time step for the
HLLC schemes.

HLLC 1 HLLC 2
Hydrodynamics steps 500 600

Transport steps 165 531

precision.

6.1.7 Thacker test case with tracer

This test assesses the ability of the scheme to handle wetting and drying phenomena. As described

in Chapter 2, the solution was published by Thacker [139]. The test shows nonlinear periodic

oscillations in a basin with a frictionless paraboloid topography. The initial solution corresponds to

the exact solution at timet = 0 , then the free surface oscillates with moving wet/dry boundaries

and goes back to the initial position after one period. The duration of the simulation is set to 1000

s and one period is about 237,77 s. The accuracy of the scheme can also be veriVed, indeed, the

decrease of the free surface with time corresponds to the amount of numerical diUusion produced

by the scheme.

The computational domain is a square of dimensions[4000� 4000]m2 and it is made up by squares

of sides25 m split into triangles. The parameters used for this test are:h0 = 20 m, r0 = 1200 m,

a = 1500 m andL = 4000 m. The addition of the tracer variable which moves with the water

surface was proposed in [103] and we consider the same set of parameter. The initial condition for

the tracer is:

c(r; 0) = c0exp
�

�
r

200r0

�
g=l

wherec0 = 100 andr = ( x � L=2)2 � (y � L=2)2.

To compare the FV results to the RD results, we choose to enforce for the LIP scheme the same

number of iterations of theVrst and the second order scheme. The diUerent number of iterations,

with the corresponding CPU time, are shown in table 6.12. For the LIP diUerent combinations of

time steps and sub-time steps can be chosen since hydrodynamic is solvable with a theoretically

arbitrary time step. In this case, a good compromise is represented by� t = 2 s for hydrodynamics.

Thus to have the same number of iterations of FV schemes, we choose oncen = 1 to be comparable

with the Vrst order scheme and thenn = 2 to be comparable with the second order scheme.

First of all, we stress again the large diUerence of iterations between hydrodynamics and transport

Table 6.12: Thacker test case: number of iterations for the advection schemes.
HLLC 1 HLLC 2 LIPn = 1 LIPn = 2

Hydrodynamic iterations 4515 4520 500 500
Transport iterations 571 1077 500 1000

CPU times 55 s 1 min 41 s 26 s 30 s

for the HLLC schemes. This justiVes the decoupled approach. Second, we note that the CPU time
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is almost the double for the second order HLLC scheme. This is related to the reconstruction of

the interface states, done for every cell, which is very time consuming. Then, we note that the

diUerence of CPU time for the LIP withn = 1 or n = 2 is negligible, while it is very large if

compared to the HLLC 2. This example highlights the eX ciency in terms of computational costs of

the LIP scheme.

In Figure 6.14 we plot the evolution of the water depth in the central point of the domain, which is

the one with the maximum value. We note that the maximum decreases with time for all schemes,

which is normal because of the numerical diUusion. The variation after 4 periods is limited to about

4 m for the HLLC 1, which is the most diUusive. For the FE scheme, the maximum variation of the

water depth is3 m, while for the HLLC 2, the most accurate scheme, we onlyVnd a diUerence of

1 m, which is a very good result.

On the contrary, the phase error seems more pronounced for FV schemes, especially for the HLLC

1 for which the phase error increases largely with time. Figure 6.15 shows the tracer and water

Figure 6.14: Thacker test case: evolution of the maximum water depth in the centre of the domain.

depth proVles obtained after 4 periods on the central axis of the domain. All schemes show a good

agreement with the theoretical solution for tracer and the values obtained also agree with the water

depth proVles. The maximum and minimum values are respected along all the simulation and the

maximum values of concentration after 4 periods are shown in Table 6.13. As expected, the second

order HLLC is more accurate then theVrst order version and indeed we observe that the exact

solution and the computed solution are almost superimposed.

For the LIP schemes, there is no diUerence among the solution obtained withn = 1 and the one

obtained withn = 2 . This behaviour is normal since, regardless ofn, at the wet/dry interfaces� i

will be equal to 1 everywhere.

The schemes are mass conservative: the relative error at the end of the computation is about10� 8.

A global comparison of the advection schemes is shown in Figure 6.16. As for the water depth, the

most diUusive scheme is the HLLC 1, while the most accurate is the HLLC 2. The LIP is between

the HLLC 1 and the HLLC 2. Results demonstrate that these schemes are suitable for problems
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Figure 6.15: Thacker test case: tracer and water depth proVles at the central axis of the domain for
the HLLC 1 (top left), HLLC 2 (top right), LIPn = 1 (bottom left), LIPn = 2 (bottom right).

Table 6.13: Thacker test case with tracer: maximum values of concentrations at after 4 periods.

HLLC 1 HLLC 2 LIPSn = 1 LIPSn = 2
Max 99.6241 99.8773 99.703 99.703

with wetting and drying phenomena.

To conclude, we show in Table 6.14 the variations of the maximum values according to the� tr

parameter for the HLLC scheme. The values are computed for theVrst order scheme. As we can

see, big oscillations can be produced if� tr � � h (we remember that� h = 10 � 6).

6.2 Validation

6.2.1 Open channelWow between bridge piers with pollutant

This test simulates theWow in a channel with two cylindrical piers. A pollutant plume is released in

the central part of the inlet. It is almost a steady case, yet the water depth varies rapidly during the

initial transient period and Von Karman eddies appear behind the piers, with detachment. Thus, it

is a good benchmark for the conservation of the tracer mass and it is slightly more complex than

the previous tests.

The channel is 28.5 m long and 20 m wide with two bridge piers positioned at aboutP1 = ( � 5; 4)
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Figure 6.16: Thacker test case: numerical and exact solutions for the tracer proVle after 4 periods at
the central axis.

Table 6.14: Thacker test case with tracer: maximum and minimum values of concentration accord-
ing to diUerent� tr after 1 period.

� tr Max(c) Min(c)
10� 3 265 0
10� 6 174 0
10� 7 100 0
10� 13 100 0

andP2 = ( � 5; � 4), and a radius of 2 m. Note thatx 2 [� 14; 14:5] andy 2 [� 10; 10]. The

channel section is trapezoidal (see the bottom in the Figure 6.17) and the minimum value of the

bottom is equal to -4 m in the main channel.

At the inlet of the channel, we impose as upstream boundary conditions aWow discharge equal to

Figure 6.17: Open channelWow between bridge piers with pollutant: topography of the channel
with the cylindrical piers sketch.

62m3=s, while at the outlet a null free surface is imposed, which is also the initial condition.
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Table 6.15: Open channelWow between bridge piers with pollutant: mass balance for the diUerent
schemes.

HLLC2 PC2 PC2-5it
M start [g] 0 0 0
M end [g] 215.7882 180.3672 180.2682
M in [g] 215.7882 180.3672 180.2682
� M [g] 0.4831E-12-0.1931E-08-0.2969E-08
� rel [/] 0.2238E-14-0.1070E-10-0.1647E-10

The tracer is released with a concentration of1 g/l at the inlet for� 2 m � y � 2 m, while at the

outlet we leave a free boundary condition. The duration of the simulation is set to 200 s.

For this test we use a completely irregular mesh composed by unstructured triangles (see Figure

6.18).

In Figure 6.19 we show the results obtained with some of the most accurate new schemes:

Figure 6.18: Open channelWow between bridge piers with pollutant: unstructured mesh.
 =
[28:5 m � 20m] and� x = 0 :5 m

HLLC 2, PC2, PC2-5it. The PC1, PC1-5it and the LIP are approximately equal to the PC2 and PC2-

5it, thus they are not shown. It is worth noticing that we try in this case to have the same velocity

Veld for the FV and FE schemes, so that the advection schemes for tracers are comparable. How-

ever, better results on velocities where the von Karman eddies appear can be obtained with the FE

solver as shown later on. In Figure 6.19 it can be shown that the HLLC 2 is more diUusive with

respect to the PC schemes, in particular the transversal diUusion is highly pronounced after the

bridge piers. Comparing the PC2 and the PC2-5it, we note again that the quality of the results is

improved by the PC2-5it: the isolines are closest and the plume is slightly diUused on the transver-

sal direction.

We show in Table 6.15 theVnal mass balance for the various schemes and we note that all schemes

are mass conservative.

The eddies behind the piers can be better represented choosing appropriate options for the ad-

vection of velocities in the FE solver. In this case the tracer is distributed in a completely diUerent

way. Figure 6.20 shows the diUerence between the PSI scheme, which isVrst order in time, and the

PC2-5it, which is second order in time.
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Figure 6.19: Open channelWow between bridge piers with pollutant: isolines for the tracer (� =
0:05). From top to bottom: HLLC2, PC2, PC2-5it.

Figure 6.20: Open channelWow between bridge piers with pollutant: isolines (� = 0 :05) for the
PSI scheme (left) and the PC2-5it scheme (right).

6.2.2 Real river with tracer injection

In this test case we evaluate the robustness, the eX ciency and the accuracy of the new LIP scheme

on a real study case.
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A tracer is released in a river with an irregular topography (Figure 6.21), where theWow often

changes its path between the minor bed and the major bed, according to the season and the meteo-

rological events. Several small islands are present along the river channel. Hence, the wetting and

drying phenomena occur often on these zones, as well as on the major bed.

The tracer is released through seven source points in the upstream part of the river and a series of

data measures is available in order to compare the numerical results.

The river is approximately 40 km long and the computational domain is discretized with an un-

structured grid, made up by 1,281,717 elements that correspond to 652,412 nodes. The mesh has an

average mesh size of4 m and decreases to1:7 m in the zones with the source points. The Strickler

coeX cients (K s) areVxed after a calibration study and six diUerent zones are identiVed with K s

in the range[22; 40]m1=3s� 1. A Wow rate is imposed at the inlet while the free surface is set on

the outlet through a stage-discharge curve, which is part of the measurements. TheWow rate used

is equal to87 m3=s while the free surface at the outlet varies in the range[60:912; 62:4939]m

according to the computedWow rate. The initial condition corresponds to the steady condition,

previously computed with the calibration study.

A constant quantity of tracer is injected along all the duration of the simulation, through seven

sources. TheWow rate of every source is0:3 m3=s and the value of tracer at the source is

csce = 1 g=l.
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A sketch of the river with the tracer sources is given in Figure 6.22. Concerning the measurements,

Figure 6.22: Real river with tracer injection: sketch of the inlet part of the river with seven tracer
source points.

the value of concentration of tracer has been assessed in six diUerent sections along the river. The

distance of the sections from the sources is marked in Table 6.16 and for each section 10 gauges

have been placed in the river but only 5 were used to measure the tracer concentrations (the other

were used for velocities). The duration of the simulation is 43 hours and 40 minutes.

Table 6.16: Real river with tracer injection: distance from the sources points.

Section Distance [km]
1 0.3
2 2
3 3.5
4 5.5
5 6.5
6 10

It can be complicated to evaluate the reliability of the tracer advection scheme in real cases since

there are a lot of uncertainties and errors related to the data used to build the model, as well as to

the data used to compare the numerical results. In addition, in order to obtain the most accurate

tracer results, the hydrodynamic model should be the most accurate as possible to give correct

prediction of velocities and water depths. Indeed, for convection dominated problems, the accurate

velocityVelds are very important. This is part of the calibration study and it is not addressed in

this work. However, it is worth noticing that the calibration was quite diX cult, since the data used

for the topography dated from several years ago, thus they were not synchronized with the data

used for calibration. This, as we will see, could have a large impact on the results in case of rivers

characterized by intense sediment transport.

Once the hydrodynamic calibration done, the model is run with� tcas = 4 s. This time step

does not inWuence the hydrodynamic which remains steady. For the LIP scheme, we choose to set

n = 8 , while the number of correction is set to 0, since this case is almost steady for the tracer. The
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parametern has been set after a sensitivity study, where the results obtained with diUerent values

of n have been compared.

The results obtained with the LIP scheme are compared to measures and to the results obtained with

the NERD scheme, which is the only FE scheme able to cope with wetting and drying problems.

Some comparisons are shown in Figures 6.23, 6.24 and 6.25. We note that the new scheme is really

more accurate than the NERD scheme. Near the sources, the LIP scheme is able to reduce the

transversal diUusion, indeed the maximum value can be distinct until theVrst river junction. Figure

Figure 6.23: Real river with tracer injection: comparison between the results obtained with the
NERD scheme (left) and the new LIP scheme (right) near the source.

6.24 shows the upstream part of the river. We observe that after theVrst island the plume occupies

almost all the section in case of the NERD scheme. On the contrary, the plume is concentrated

in the central part of the river for the LIP scheme. Finally, Figure 6.24 shows the plume after

approximately 15 kilometers, in a region where two islands and a bridge are present. Even in this

case we observe a strong diUerence between the two schemes: the LIP scheme is the least diUusive

scheme. In Figure 6.26, the numerical results obtained with the LIP scheme are compared to the

data in the six sections. We consider that the error on the measures can be equal to� 20% of the

measure itself and it is represented by the error bar in the graphic. The results obtained with the

NERD scheme are also included in the plot. RB and LB indicates respectively right bank and left

bank.

We focus the attention on the results obtained with the LIP scheme. We observe the results for the

Vrst section. It is the closest to the source and the maximum modeled value is quite small compared

to the observed value. It is possible that in this section which is only 300 m far from the source,

the 3D eUects are dominant and so the concentrations are not mixed yet. In this case, the data are

strongly inWuenced by the vertical position of the gauge. However the global trend indicates that

the plume is present above all in the central/right part of the domain and this is well captured by

the model. Finally we also note that for the probe number 7 the measure is not shown since it was
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Figure 6.24: Real river with tracer injection: comparison between the results obtained with the
NERD scheme (left) and the new LIP scheme (right) in the upstream part of the river.

Figure 6.25: Real river with tracer injection: comparison between the results obtained with the
NERD scheme (left) and the new LIP scheme (right) in the downstream part of the river.

outside of the range of physical validity.

In the second section there is still quite a large diUerence between numerical results and data. The

model indicates a strong activity in the right part of the domain, while the plume is almost absent

in the left part. Measurements reveal an opposite behaviour with a peak of tracer in the left part.

In this case, the section is placed just after an island which occupies the middle of the domain. The

mainWow obtained by the hydrodynamic results is positioned to the right of the island, with high

velocities, while to the left of the island water depths are very small. We conclude that probably

the main discharge has not been well captured by the model.

Starting from section number 3, the results agree better with the data. Indeed, the main trend of

data is well represented and also the estimates of the maximum values are closer to the maximum

measured, especially in section number 4 and 5.
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Comparing the LIP scheme to the NERD scheme, it is clear that the maximum of tracer is globally

better estimates with the LIP scheme. This case validates the scheme in case of industrial purpose.

Indeed, the main properties of the scheme, like monotonicity and mass conservation, are veriVed

even in this complex case. In order to deal with these kinds of studies, it was essential to parallelize

the scheme, which has been run on several processors. The computational times are reported in

table 6.17.

The FV schemes have not been used in this test since they have not been parallelized. Due to the

Table 6.17: Real river with tracer injection: computational time for43 h 40 m of physical time on
8 CPU.

Scheme Time

LIP,n = 1 5 h 28 m
LIP,n = 2 5 h 50 m
LIP,n = 8 8 h 18 m

large domain and the long duration of the simulation, it was not possible to use them on a single

CPU.

6.3 Summary

In this chapter the numerical schemes have been veriVed and validated. The convergence rates

have been computed for every numerical schemes, showing that the new schemes presented in this

thesis are more accurate. It has been shown that the numerical diUusion is strongly reduced by

the new schemes, which are able to preserve the maximum principle and to conserve the mass at

the same time. The diUerences between the RD schemes and FV schemes in terms of accuracy and

computational costs have been shown. The ability of the schemes to handle wetting and drying

phenomena is assessed on several tests and the results show that the new locally semi-implicit

scheme and the FV schemes are suitable for these problems.

An industrial case is performed with the locally semi-implicit scheme, which is the best candidate

to solve industrial problems at the moment.
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Figure 6.26: Real river with tracer injection: comparison between numerical results and data in 7
diUerent sections.



Chapter 7

Residual distribution schemes in three

dimensions and validation

Dans ce chapitre les schémas RD sont formulés pour des problèmes 3D. L'extension au

3D est assez simple, grâce à la compatibilité entre l'équation de continuité duWuide

et l'équation conservative du traceur. De plus, en 3D les volumes d'eau autour des

points peuvent être interprétés comme des hauteurs d'eau en 2D. Les schémas N et PSI

sont introduits d'abord, et les schémas prédicteur correcteur d'ordre un et deux sont

présentés ensuite. Les propriétés obtenues en 2D sont conservées en 3D, avec des con-

ditions de monotonie similaires.

Les schémas sont testés sur des cas simples qui visent à vériVer la monotonie de la so-

lution et la conservation de la masse. La précision des schémas est évaluée de manière

qualitative et d'autres cas tests seraient nécessaires pour avoir une validation complète

des ces nouveaux schémas.
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7.1 Three dimensional formulation

The explicit predictor-corrector schemes introduced in Chapter 5 can be directly adapted to a three

dimensional (3D) case. This is due to the fact that, in 3D free surfaceWows, the varying volumes

around points play the role of the varying depth in 2D. The Navier-Stokes equations are solved

using aVnite element method as far the 2D case and the discretization of the continuity equation

is presented, in order to deal with the tracer equation. The N and the PSI explicit schemes are later

formulated for a 3D case andVnally the predictor-corrector schemes are introduced.

The locally implicit predictor-corrector scheme could be adapted to the 3D case as well and this

step is foreseen after this thesis.

7.1.1 Preliminaries

To solve the Navier-Stokes equations, a sigma transform on the free surface is used. We recall here

some basic notions related to this transformation, which are further analyzed in [53, 82]. We limit

ourselves to the fundamental expressions useful to deal with the 3D tracer transport equation. For

this reason, the solution of the continuity equation is detailed.

As in the 2D case, the tracer equation is decoupled from theWuid equations and the Bubnov-

Galerkin technique is used again to discretize the equations. TheVnite elements are in this case

prisms made up by 6 nodes and characterized by 3 vertical quadrangular sides. The bilinear basis

functions' i can be broken down as' i = ' h
i ' v

i , where' h
i is the horizontal basis function which

depends only on coordinatesx andy, while ' v
i is the vertical basis function which depends only

on coordinatez. We note that the horizontal basis function corresponds to the one used in 2D,

presented in Chapter 5. The properties of the linear P1Vnite element basis functions are thus un-

changed for the vertical and the horizontal directions. This notion will be useful for the resolution

of the continuity equation.

A sigma transform (as well as a generalised sigma transform) is used in order to deal with the prob-

lem of the free surface evolution with time. Indeed, with the sigma transform a change of variable

is done so that the bottom elevation is zero and the free surface elevation is equal to 1. The new

variablez� is thus deVned as:

z� =
z � b
s � b

=
z � b

h
(7.1)

In case of a generalised sigma transform this is done layer by layer and we have:

z� =
z � zip

zip+1 � zip
=

z � zip

� z
(7.2)

wherezip is the bottom elevation of layerip at pointi , zip+1 is the elevation of the top of the layer

ip at point i and � z is the height of layerip, deVned by� z =
@z
@z�

. The transformed domain

is called
 � and considering an unstructured 2D mesh, the corresponding 3D mesh is made up by

prisms whose basis are the 2D triangles. The boundary of the transformed domain in� � .

The advection part of the Navier-Stokes equations (and of the tracer equation) is solved, to take
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into account the movement of the mesh due to the free surface evolution, in the transformed mesh.

As a matter of fact the relocalisation is naturally done in this mesh. Then the diUusion step and the

pressure-continuity step are solved on the real mesh, in a further fractional step.

The choice of solving the advection in the transformed mesh implies that some terms of the original

partial diUerential equations are modiVed by the new variablez� . The advection equations are thus

rewritten in order to deal with this issue.

In addition, in the new mesh the velocity vector is diUerent from the one on the real mesh. Indeed

it is deVned asU � = ( U � ; V � ; W � ) whereU � = U, V � = V andW � 6= W since
dz�

dt
6=

dz
dt

.

Note thatW � takes into account the movement of the mesh which triggers the relocalisation.

As the advection terms of the Navier-Stokes equations are treated the transformed mesh, it is

necessary to compute at every time step the vertical velocity:

W � =
dz�

dt
=

@z
@t

+ U
@z�

@x
+ V

@z�

@y
+ W

@z�

@z
(7.3)

The velocityW � appears in the continuity equationr � U = 0 written in the transformed mesh

(further details can be found in [82]):

1
� z
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@� z
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�

@(� zU)
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y;z � ;t
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@(� zV)
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+

�
@(� zW � )

@z�

�

x;y;t

#

= 0 (7.4)

Hence, multiplying the equation by a test function on the transformed domain �
i and integrating

by 
 � we obtain:
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i d
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(7.5)

Discretized as such, the equation whose unknown isW � or � zW � leads to a system that is ill-

conditioned (since there are more unknowns than equations). To overcome this problem we choose

as unknown the variable� zW � for which we give a speciVc deVnition. This particular deVnition

allows to get the compatibility with the RD schemes used for tracer advection. In this way Equation

(7.5) is recast using the divergence operator and then is integrated by parts in order to obtain� zW �

solving:

Z


 �
(� zn+1 � � zn ) �

i d
 � = � t
Z


 �
� zU � r  �

i d
 � � � t
Z

� �
� zU � �n  �

i d� � 0 � i � Nh

(7.6)

whereNh represents the number of degrees of freedom. The unknowns are the average of� zW �

along the vertical of each prism, thus the problem is well-posed. Equation (7.6) is strictly satisVed

by � zW � .

In order to be consistent with the 2D continuity equation,� z on the RHS of Equation (7.6) is

chosen at timetn . The continuity equation can also be written distinguishing the vertical and the
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horizontal gradients of the test functions:
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Now we assume that the boundary integral is known (through the imposition of boundary con-

ditions), so that the RHS of the above equation is known and the only unknown is on the LHS.

The idea is to simplify the LHS, using the fact that �
i =  h

i  v
i and thus

@ �i
@z�

=  h
i

@ vi
@z�

and to

compute at every layerip, the average of� zW � . The details about the computation of this terms

can be found in [82]. After manipulation, we arrive at a series of linear systems, one per plane,

whose form is:

npoin 2X
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i  h

j d
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)
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d
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�
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� �
liq
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(7.8)

where:
�� zw� j

ip+1 =2 =
1

z�
ip � z�

ip � 1

Z z�
ip

z�
ip � 1

[� zW � (� z� )] j dz� (7.9)

npoin2 indicates the number of points on the 2D mesh, as well as
 2D indicates the 2D domain and

� �
liq is the liquid boundary (on solid boundary theWux is zero for the impermeability condition).

We show now that Equation (7.8) can be rewritten similarly as Equation (5.23). At nodei , Equation

(7.8) can be recast as:

� v
ip+1 =2 � � v

ip � 1=2 = �
Si

� t

�
� zn+1

i � � zn
i

�
�

X

j

� h
ij � bi (7.10)

The sum overj represents the sum over all the neighboursj of point i on the 2D domain. Then:

� � v
ip � 1=2 = �� zw� i

ip � 1=2 are the assembled verticalWuxes at pointi computed for the layers

upper and below the nodei , solution of Equation (7.8);

� Si =
R


 �  �
i d
 � is the volume of the test functions around the pointi in 3D obtained by the

mass-lumping;

� � h
ij are the horizontal assembledWuxes, which stem from the assembly of the intermediary

Wuxes computed on every prism:� h;P �

ij . As in 2D we have:� h;P �

ij = � N
ji � � N

ij and
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� N
ij = max(min( ai ; � aj ); 0) with ai = �

R
P � � zU @ �i

@xdP � �
R

P � � zV @ �i
@ydP � andP �

the prism on the transformed mesh;

� bi =
R

� �
liq

� zU � � n  �
i d� � is the boundary term

Reorganising the terms we obtain:

Si

� t

�
� zn+1

i � � zn
i

�
+ � v

ip+1 =2 � � v
ip � 1=2 +

X

j

� h
ij + bi = 0 (7.11)

or in a more compact form:

Si

� t

�
� zn+1

i � � zn
i

�
+

X

j

(� h
ij + � v

ij ) + bi = 0 (7.12)

with � v
ij = � v

ip+1 =2 for j = ip + 1=2 or � v
ij = � � v

ip � 1=2 for j = ip � 1=2. Note that herej

indicates the horizontal as well as the vertical neighbours of nodei . We note that respect to the

2D case (Equation (5.23)), Equation (7.12) presents two additionalWuxes (the vertical ones) and the

variableh is replaced by� z. Once the Navier-Stokes equations are solved, the tracer equation is

solved.

7.1.2 Explicit schemes for steady problems

Firstly we deVne the two explicitVrst order schemes in time, the N and the PSI. The basis to apply

the RD schemes in 3D dealing with aVnite element formulation, were already established by Janin

[90] and Hervouet [82]. Their work deVnes how to build the N and the PSI schemes and it is just

recalled here to simplify the explanations on the application of the predictor-corrector schemes in

3D.

However, unlike the 2D case, the initial derivation for the 3D case was based on the direct dis-

cretization of the non conservative continuous transport equation. We present here a formulation

based instead on the conservative equation, where the divergence term is integrated by parts, as

done for the continuity equation. This operation allows to do exactly the same passages done for

the 2D case, whereh, the 2D water depth is replaced by� z, the height of a layer in 3D. The mass

conservation for the tracer on the transformed mesh is written as:
Z


 �
(� zn+1 Cn+1 � � znCn )d
 � + � t

Z

� �
� zCU � � n d� � = 0 (7.13)

which is equivalent to:

Z


 �
(� zn+1 Cn+1 � � znCn )d
 � + � t

Z


 �
r � � zCU � d
 � = 0 (7.14)
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For every degree of freedomi , we solve:

Z


 �
(� zn+1 Cn+1 � � znCn ) �

i d
 � + � t
Z


 �
r � � zCU � d
 �  �

i = 0 (7.15)

As for the continuity equation, we integrate by parts and we obtain:

Z


 �
(� zn+1 Cn+1 � � znCn ) �

i d
 � � � t
Z


 �
� zCU � r  �

i d
 � +
Z

� �
 �

i � zCU � � n d� � = 0

(7.16)

We perform a mass-lumping on theVrst term of the LHS and we get:

Z


 �
(� zn+1 Cn+1 � � znCn ) �

i d
 � � Si
�
� zn+1 Cn+1

i � � znCn
i

�
(7.17)

In order to employ theWuxes of the continuity equation, we choose:

�
Z


 �
� zCU � r  �

i d
 � =
X

j

(� h
ij + � v

ij )Cij (7.18)

Note thatj includes the vertical and the horizontal neighbours ofi andCij is still a general value

of C, in the range[Ci ; Cj ].

Finally the last term of Equation (7.16) becomes as in 2D:

Z

� �
 �

i � zCU � � n d� � = bi Cbound (7.19)

These boundaryWuxes are treated like in the 2D case: therefore the ingoingWuxes are multiplied by

the boundary value of tracer, while outgoingWuxes are multiplied by the values on the boundaries

given by the scheme. This is summarised as:

bi Cbound = min( bi ; 0)Cbound + max( bi ; 0)Ci (7.20)

The conservative equation now reads as:

Si
�
� zn+1 Cn+1

i � � znCn
i

�
+� t

2

4
X

j

(� h
ij + � v

ij )Cij + min( bi ; 0)Cbound + max( bi ; 0)Ci

3

5 = 0

(7.21)

We now repeat all the passages done in 2D, which means that we choose an upwind value for the

variableCij , that isCi if � ij is leaving the nodei andCj if � ij is entering ini . Then the value of

� zn in Equation (7.21) is replaced by� zn+1 by the use of the discrete continuity equation (7.12).
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Hence, we obtain:

Cn+1
i = Cn

i +
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Si � zn+1
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X

j
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ij ; 0)(Cn
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min(bi ; 0)(Cbound � Cn
i )

(7.22)

where � h;N
ij (and � v;N

ij ) correspond to the� h
ij (and � v

ij ) of the continuity equation (7.12). The

superscriptN has been added since the scheme obtained corresponds to the N scheme. Indeed this

equation is equivalent to:

Cn+1
i = Cn

i �
� t

Si � zn+1
i

 
X

P � 3 i

� N
i � P �

+ min(bi ; 0)(Cbound � Cn
i )

!

(7.23)

where� P �
is the space residual computed on the prismP � , � N

i are the distribution coeX cients

and
P

P � 3 i
represents the sum over all the prism containing the nodei . The space residual is equal

to:

� P �
=

6X

i =1

6X

j =1

� N
ij (Cn

i � Cn
j ) (7.24)

In the 3D case the computation of coeX cients� N
ij is more complicated than for the 2D case; their

expressions can be found in [82]. The derivation for prisms was presented by Janin [90], based on

the work of Bourgois et al. [29] for tetrahedral meshes. As in 2D, the main characteristic of� N
ij is

that they are positive or null. The expression for the N distribution coeX cients is:

� N
i =

� N
i

� P � (7.25)

where� N
i is the contribution received by nodei of the prismP � :

� N
i =

6X

j

� N
ij (Cn

i � Cn
j ) = � N

i � P �
(7.26)

Note that expression (7.22) and expression (7.23) are related by:
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(7.27)
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As in the 2D case, the N and the PSI scheme diUers in the distribution of the residual� P �
to the

nodes of the prism. The PSI scheme is deVned as:

Si � zn+1 Cn+1
i � Cn

i

� t
= �

X

P � 3 i

� P SI
i � P �

+ min(bi ; 0)(Cbound � Cn
i ) (7.28)

with the PSI limiter equal to:

� P SI
i =

max(0; � N
i )

P

i 2 P
max(0; � N

i )
(7.29)

The scheme can also be written directly using the� P SI
ij , which are reduced respect to the� N

ij . The

conservation is therefore guaranteed:
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ij (Cn
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j ) =

6X

i =1
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j =1

� P SI
ij (Cn

i � Cn
j ) (7.30)

Both schemes are subject to a monotonicity condition, determined by the study of the positive

coeX cients. The time step condition for the N scheme is equal to:

� t �
Si � zn+1

P

P � 3 i

6P

j =1
� N

ij � min(bi ; 0)
(7.31)

For the PSI scheme we obtain:

� t �
Si � zn+1

P

P � 3 i

6P

j =1
� P SI

ij � min(bi ; 0)
(7.32)

It is worth noticing that the time step for the PSI scheme will be larger than the one for the N

scheme and the stability of the PSI scheme can be ensured also by the� N
ij .

In this section we have shown that the work done in 2D to show that the RD schemes are conser-

vative and monotone, is equivalent in 3D if we replaceh by � z (it is mandatory taking them at

the same time).

7.1.3 Predictor-corrector schemes

The predictor-corrector schemes can be built in 3D, once the compatibility between the 2D and the

3D formulations has been shown for the explicit N and PSI schemes. Indeed, the eUorts done in 2D

to show that the predictor-corrector schemes are monotone and conservative, hold true in 3D. This

is mainly due to the fact that the advection schemes are based on the conservative tracer equations

where the divergence form is treated with an integration by parts as it is done for the continuity

equation, in 2D as well as in 3D.
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7.1.3.1 First order predictor-corrector scheme

TheVrst order predictor-corrector scheme is:

8
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>>:
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(7.33)

The PSI distribution coeX cients are retrieved with Equation (7.29), but we insist on the fact that the

space residual� P �
(Cn ) is diUerent from the space-time residual� P �

(Cn ; C � ). Indeed the space

residual is computed with Equation (7.24) and the contributions� N
i are computed with formula

(7.26). The space time residual is instead equal to:
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whereST is the surface of the triangle which is the basis of the prism. We also have:

� P �
(Cn ; C � ) =

X
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� N
i (7.35)

with:

� N
i =

ST

6
� zn+1 C �

i � Cn
i

� t
+

6X

j =1

� ij (Cn
i � Cn

j ) (7.36)

Since the monotonicity analysis is based on the study of the positive coeX cients and on the idea

that the PSI limiter operates a reduction of the type:

� P SI
i =  i � N

i � P SI
i ;  P SI

i 2 [0; 1] (7.37)

then, the results obtained for the 2D case can be straightforwardly applied to the 3D case.

The time step criterion to preserve the monotonicity is written as:
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Si � zn+1

� 2

"
P

j
min( � h;N

ij ; 0) +
P

j
min( � v;N

ij ; 0) + min( bi ; 0)

# (7.38)

The iterative version of the scheme presented in Chapter 5, Section 5.4, is also possible in 3D.
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7.1.3.2 Second order predictor-corrector scheme

The second order predictor-corrector scheme reads as:
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with:
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As before, the contributions of the N scheme are:
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Given the following time step:
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and choosing� = 1=2 in Equation (7.39), the scheme preserves the monotonicity under the follow-

ing conditions onC � : 8
<

:

2Cn
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(7.45)

whereCmax = max j (Cn
j ; Cn

i ) andCmin = min j (Cn
j ; Cn

i ). The iterative version of the second-

order scheme can be straightforwardly applied to the 3D case.
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7.2 VeriVcation and validation of the 3D RD schemes

TheVrst and second order predictor-corrector schemes are validated on simple test cases which

aim to check the mass conservation property and the monotonicity. The accuracy of the schemes

is only qualitatively assessed. The two test cases are issued from the 2D examples yet in this case

thez coordinate is added. The nomenclature presented in Chapter 6 is maintained in this Chapter.

7.2.1 Rotating cone

The test is the same as in Chapter 6 for the 2D and in this case the variable are deVned constant

along the vertical. The test allows to assess the preservation of the maximum principle and to

evaluate the numerical diUusion of the scheme.

The mesh is the same as the 2D case, with six planes added on the vertical direction. The velocity

Veld is unchanged and the initial distribution of the tracer function is:

C0(x; y) = e� [( x � 15) 2+( y � 10:2) 2 ]
2 8 ip

Results are observed after 1 period of rotation, like in 2D. The maximum and the minimum values

obtained with the 3D schemes are shown in Table 7.1. As we can see, the general trend observed

in 2D is reproduced also in 3D, showing that the predictor-corrector schemes are more accurate

than the N and the PSI scheme. In particular, iterating on the corrector step, the accuracy of the

standard predictor-corrector scheme is increased. Even if the third dimension is not signiVcant in

Table 7.1: Rotating cone test: minimum and maximum values of concentration.

N PSI PC2 PC1 PC2-5it PC1-5it
Min(C) 0.0 0.0 0.0 0.0 0.0 0.0
Max(C) 0.1792 0.2137 0.4933 0.5074 0.6512 0.7204

this case, the test is a preliminary requisite for more complex cases.

7.2.2 Open channelWow between bridge piers with pollutant

The test is issued from the 2D test case presented in Chapter 6. It is mainly used in order to assess

monotonicity and the mass conservation of the numerical schemes.

The 2D geometry is unchanged andVve horizontal layers are added in the vertical direction (see

the mesh in Figure 7.1). The topography and theWow conditions are the same as the 2D. The tracer

is released with a concentration of1 g/l at the inlet for� 2 m � y � 2 m (for every layer), while

at the outlet we leave a free boundary condition. The duration of the simulation is set to 200 s.

Figure 7.2 shows some slices on the computational domain and two of them are chosen to analyse

the results, the slice atx = � 1 m and the slice atx = 13:05 m. Figure 7.3 shows the results

obtained with the N, PSI, PC1, PC2, PC1-5it and PC2-5it for the slice atx = � 1 m. The isolines are

traced for the concentration variable and we observe that the number of isolines gradually increases
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Figure 7.1: Open channelWow between bridge piers with pollutant: 3D mesh.

Figure 7.2: Open channelWow between bridge piers with pollutant: location of the slices.

from N to PSI, as well as from PSI to PC1 or PC2, for which the maximum value of concentration

is equal to 0.6 after the bridge piers. The PC1 and PC2 show however very similar results, almost

identical. We note that the maximum value is better estimated with the PC1-5it and the PC2-5it.

Figure 7.4 shows the results obtained with the N, PSI, PC1, PC2, PC1-5it and PC2-5it for the slice at

x = 13:075m. Even in this case the numerical diUusion is strongly reduced with the new schemes,

in particular we note that the iterated version of the PC1 and the PC2 improve the results obtained

with the other schemes. The mass balance is computed as in the 2D case:M start is the mass at

the beginning of the time step,M in is the mass introduced (and leaved) by the boundaries during
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Figure 7.3: Open channelWow between bridge piers with pollutant: results obtained with the nu-
merical schemes for the slice atx = � 1 m.

Figure 7.4: Open channelWow between bridge piers with pollutant: results obtained with the nu-
merical schemes for the slice atx = 13:075m.

the time step (the sign is negative when the quantity leaves the domain),M end is the mass at the

end of the time step. Table 7.2 shows that all schemes are mass conservative. The maximum and

minimum values are never exceeded during the simulation, hence the monotonicity is preserved.

7.3 Summary

In this chapter the 2D predictor-corrector schemes are applied to 3D geometries. Firstly the discrete

continuity equation is presented in 3D. This allows linking theVnite element technique used in 2D

to the one used in 3D. Then, the explicit schemes for steady problems are presented, showing that

the extension to 3D of the schemes is straightforward, since the volumes around points in 3D
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Table 7.2: Open channelWow between bridge piers with pollutant: mass balance for the diUerent
schemes.

M start [g] M end [g] M in [g] � M [g]
N 0 198.46000198.4600 0.1413213E-08

PSI 0 186.1082 186.1082 -0.4176970E-05
PC1 0 187.8549 187.8549 0.2701256E-08

PC1-5it 0 185.3122 185.3122 0.2616304E-08
PC2 0 187.8683 187.8683 0.3092794E-08

PC2-5it 0 185.3041 185.3041 0.1630582E-08

are equivalent to the water depth in 2D. Formulations are thus very similar, even concerning the

monotonicity condition. Finally, theVrst order and the second order predictor-corrector schemes

are written in 3D, as well as their monotonicity condition. These schemes are assessed on two

simple tests: the rotating cone and the open channelWow between bridge piers. These cases allows

verifying the monotonicity of the schemes and the mass conservation. More complicated tests are

necessary to complete the validation of these schemes, which seem very promising.



Chapter 8

Conclusions and future work

Dans cette thèse des nouveaux schémas de convection pour le transport scalaire dans

un écoulement à surface libre ont été proposés.

Les diUérentes problématiques liées à la discretisation de l'équation de transport avec

des méthodes aux volumesVnis et aux résidus distribués ont été exposées. Concernant

les schémas VF, une amélioration est trouvée en utilisant un schéma découplé avec un

solveur HLLC. Cette solution permet de réduire la diUusion numérique et d'alléger les

coûts de calcul. De plus la technique MUSCL est utilisée pour augmenter l'ordre en

espace du schéma.

L'application des schémas RD au transport scalaire dans le cadre des équation de

Saint-Venant représente une nouveauté. Les techniques pour améliorer l'ordre dans

des cas non stationnaires sont appliquées avec succès. De plus des améliorations pour

augmenter la précision des schémas sont développées. Par rapport aux schémas exis-

tants, les conditions de monotonie des schémas sont diUérentes. Pour traiter des cas

réels avec des bancs découvrants, un nouvau schéma RD localement implicite est aussi

proposé.

Les diUérents schémas sont testés sur une série de cas tests et les résultats montrent qu'

ils sont eUectivement beaucoup plus précis, avec cependant des ordres de convergence

assez variés. En particulier, le schéma adapté aux bancs découvrants n'est pas d'ordre

deux et un système linéaire doit être résolu.

Les schémas RD 2D sont facilement adaptés au cas 3D. Cette extension est validée

sur des cas préliminaires simples mais leurs bonnes propriétés en font des schémas

prometteurs sur des cas plus complexes.

Des études sont en cours pour améliorer encore le caractère upwind des schémas ou

pour s'aUranchir de systèmes linéaires à résoudre.
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8.1 Concluding remarks

In this thesis, advanced numerical schemes for convection problems have been developed and

assessed. The focus is kept on two numerical methods: theVnite volumes and the residual distri-

bution.

For theVnite volume HLLC scheme, the major novelty consists in decoupling the tracer equation

from the hydrodynamic equations, obtaining better eX ciency in terms of accuracy and numerical

costs. To increase the space accuracy a MUSCL scheme has also been introduced in the decoupled

formulation.

The application of the residual distribution schemes to the depth-averaged transport equation rep-

resents a novelty for this family of schemes, even if they have been already applied to the shallow

water equations. The existing schemes are reformulated in order to be compatible with the dis-

cretized continuity equation. DiUerent strategies to reduce the numerical diUusion in time depen-

dent problems have been studied and compared in this work. A new iterative procedure has been

introduced to enhance the accuracy of the scheme. For the schemes proposed in this thesis, speciVc

monotonicity conditions have been found and proved. These conditions are diUerent from the one

proposed in the literature, due to the depth-averaged context and to a diUerent monotonicity anal-

ysis. In order to treat real cases, a new locally implicit scheme able to deal with wetting and drying

phenomena has been proposed and the number of linear systems that really need to be solved has

been reduced. The locally implicit scheme scheme has the properties that were specially looked for

in this thesis:

� free surface context;

� mass conservation;

� monotonicity;

� unconditional stability even in dry zones;

� compatibility with domain decomposition parallelism.

It can thus be considered as the best candidate for industrial application.

A number of test cases are presented to validate and compare the new convection schemes. Re-

sults show that these schemes are suitable to steady and unsteady transport problems. In addition

the schemes are all mass conservative and they preserve the maximum principle, which is very

important in convection phenomena. The dam-break with dry bed and the Thacker test case are

presented to validate the schemes in case of wetting and drying problems, in presence of tracers.

A good agreement between the numerical results and the exact solution is shown. An industrial

case of a real river characterized by wetting and drying phenomena is carried out to check the

robustness of the code under real conditions. In general, the numerical results agree with the
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experimental data, showing in particular that the scheme is able to capture with accuracy the max-

imum measured values of tracer.

An overall comparison between the FV and the RD methods shows that the RD schemes are more

eX cient than the FV schemes for the same degree of accuracy. However, in terms of precision

the schemes are comparable. The extra value of the new RD schemes is the speciVc monotonicity

condition which is not too much restrictive.

The application of the RD schemes to the 3D case is also presented in this work. As explained, the

3D extension does not present issues from a theoretical and numerical point of view. The validation

is done on preliminary test cases.

The new RD schemes presented here improve the existing N, PSI and NERD schemes. This is also

an advancement in the Telemac system and the new schemes have already been used in a real

study which could not be done before due to numerical diUusion problems.

8.2 Perspectives

The numerical schemes presented in this thesis could be improved in various ways.

For the FV schemes, other formulations (like [33]) to apply the limiter should be taken into account.

Then, second order schemes in time (other than the Newmark and the Heun method) should also

be tested in order to avoid spoiling the second order space accuracy. This point should be addressed

with particular attention to the cost of second order discretization techniques. Regarding mono-

tonicity, an appropriate condition when using the MUSCL technique could be found following the

ideas of Calgaro et al. [36]. In addition, in order to apply the scheme on real cases the paralleliza-

tion should be done.

For the RD schemes, additional work would be necessary to improve the local implicit formulation

for wetting and drying phenomena. The solution of a linear system represents at the moment a

drawback for this scheme in terms of CPU time. It would be suitable to replace the linear system

by a completely explicit scheme, still able to cope with wetting and drying problems. Besides, the

scheme is still not perfectly second order in space and in time. This is another drawback which

should be improved. Other improvements concern thus a better upwinding (so far only the explicit

part of theWuxes is upwinded), or optimisation, e.g. by avoiding to solve a linear system.

To better improve the accuracy of the second order RD schemes, third order schemes, as proposed

in [4] could be tailored to the depth-averaged transport. Yet in this case even more attention should

be focused on the monotonicity which is still a problem for these schemes.

A possible improvement of existing schemes could be obtained exploiting the good accuracy prop-

erties when the edges of the mesh are aligned with theWow. An adaptive mesh which follows the

Wow paths could thus mainly reduce the numerical diUusion.

For the 3D case, the model should be tested on several and more complex cases, where also diUusion

and turbulence are involved. In general, the behaviour of the scheme should be checked coupling

the convection to the other possible phenomena like diUusion, reaction, adsorption or other more
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complex kinetic models which should be appropriate modeled.

Finally, the extension of the locally implicit scheme for wetting and drying phenomena should also

be adapted to the 3D and tested, it was not done here for lack of time.



Appendix A

Monotonicity of the semi implicit

predictor-corrector scheme

To demonstrate the monotonicity ofcn+1
i , we introduce:

c�
i = cmin + � (cmax � cmin ) (A.1a)

cn
i = cmin + � (cmax � cmin ) (A.1b)

with � and� in the range[0; 1], sincec�
i andcn are included in the range[cmin ; cmax ]. We want

to prove that:

d� c�
i + dncn = ( d� + dn )caver

i (A.2)

with:

d� = Si h
n+1 � � i
i � f i Si h

n+1 � � i
i (A.3a)

dn = f i Si h
n+1 � � i
i + (1 � � i )� t

0

@
X

j

� ij min( � ij ; 0) + min( bi ; 0)

1

A (A.3b)

enforcing0 < d � + dn < 1 andcaver
i in the range[cmin ; cmax ].

And we denote:

 = d� + dn = Si h
n+1 � � i
i + (1 � � i )� t

0

@
X

j

� ij min( � ij ; 0) + min( bi ; 0)
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It eventually yields:

c�
i (1 � f i )Si h

n+1 � � i
i + cn

i (f i Si h
n+1 � � i
i +  � Si h

n+1 � � i
i ) = c aver

i (A.5)
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or, using deVnitions (A.1):

c aver
i =

�
 � Si h
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i
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which is:

cmin +

h
�
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We thus need to have:

0 < � + ( � � � )(1 � f i )Si h
n+1 � � i
i <  (A.8)

If � > � the positivity of� + ( � � � )(1 � f i )Si h
n+1 � � i
i is ensured. Hence to show that this

quantity is less than the worst situation happens whenf i = 0 , in which case we get:

� + ( � � � )Si h
n+1 � � i
i <  (A.9)

which is also:

�S i h
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i (A.10)

Now, we assume that the time step was chosen so that:

� tstab <
1
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which gives the property:
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1
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Si h
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Hence, the most demanding condition is:

� <
1
2

+
�
2

(A.13)

Now we analyse the case� < � , for which we just need to ensure the positivity of the term

:� + ( � � � )(1 � f i )Si h
n+1 � � i
i . The worst condition is againf i = 0 , which corresponds to:

0 < � + ( � � � )Si h
n+1 � � i
i (A.14)

The stronger condition is again obtained with the minimum :

�
2

< � (A.15)
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Hence, the general condition which must be ensured is:

�
2
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1
2

+
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(A.16)

This condition corresponds to:
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Here below, we also show that this property is already ensured byc�
i when using a semi-implicit

predictor. Indeed the predictor step is:
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The latter is equivalent to:
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Denoting� = � t (� min( � ij ; 0) � min(bi ; 0)), we can write:
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The maximum of �
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(cmin � cn
i ) is obtained with the maximum of� .

Under condition (A.11), the maximum is12+ � i
which is less than1k . Hence we get:
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which is exactly the condition (A.17), found for the corrector, but also the condition found to do

iterations on theVrst order predictor corrector scheme.
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