V. I. Alshits and V. L. Indenbom, Dislocations in Solids, 1986.

A. Acharya, A model of crystal plasticity based on the theory of continuously distributed dislocations, Journal of the Mechanics and Physics of Solids, vol.49, issue.4, pp.761-784, 2001.
DOI : 10.1016/S0022-5096(00)00060-0

A. Acharya, Driving forces and boundary conditions in continuum dislocation mechanics, Proc. R. Soc, pp.459-1343, 2003.
DOI : 10.1098/rspa.2002.1095

A. Acharya and A. Roy, Size effects and idealized dislocation microstructure at small scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I, Journal of the Mechanics and Physics of Solids, vol.54, issue.8, pp.1687-1710, 2006.
DOI : 10.1016/j.jmps.2006.01.009

R. Bale, Staggered grids for 3d pseudospectral modelling in anisotropic elastic media. Unpublished, 2002.

C. J. Bayley, W. A. Brekelans, and M. G. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity, International Journal of Solids and Structures, vol.43, issue.24, pp.7268-7286, 2006.
DOI : 10.1016/j.ijsolstr.2006.05.011

G. Boussinot, A. Finel, and Y. L. Bouar, Phase-field modeling of bimodal microstructures in nickel-based superalloys, Acta Materialia, vol.57, issue.3, pp.921-931, 2009.
DOI : 10.1016/j.actamat.2008.10.039

G. Boussinot, Y. L. Bouar, and A. , Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, Acta Materialia, vol.58, issue.12, 2010.
DOI : 10.1016/j.actamat.2010.04.008

S. Brisard and L. Dormieux, FFT-based methods for the mechanics of composites: A general variational framework, Computational Materials Science, vol.49, issue.3, pp.663-671, 2010.
DOI : 10.1016/j.commatsci.2010.06.009

URL : https://hal.archives-ouvertes.fr/hal-00722339

M. Buffat, Modélisation numérique des écoulements compressibles. link, 5, 2007.

P. P. Castañeda, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I?theory, Journal of the Mechanics and Physics of Solids, 2002.

A. H. Cottrell, Andrade creep, Philosophical Magazine Letters, vol.73, issue.1, pp.35-37, 1995.
DOI : 10.1080/095008396181082

A. H. Cottrell, Strain hardening in Andrade creep, Philosophical Magazine Letters, vol.74, issue.5, pp.375-379, 1996.
DOI : 10.1080/095008396180119

A. H. Cottrell, Logarithmic and Andrade creep, Philosophical Magazine Letters, vol.75, issue.5, pp.301-307, 1997.
DOI : 10.1080/095008397179552

A. H. Cottrell, A microscopic theory of Andrade creep, Philosophical Magazine Letters, vol.84, issue.11, pp.685-689, 2004.
DOI : 10.1088/0370-1301/66/6/303

M. Cottura, Y. L. Bouar, A. Finel, B. Appolaire, K. Ammar et al., A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys, Journal of the Mechanics and Physics of Solids, vol.60, issue.7, pp.1243-1256, 2012.
DOI : 10.1016/j.jmps.2012.04.003

URL : https://hal.archives-ouvertes.fr/hal-00701166

M. Cottura, Modélisation du champ de phase du couplage entre évolution microstucturale et propriétés mécaniques, 2013.

M. Cottura, B. Appolaire, A. Finel, and Y. L. Bouar, Phase field study of acicular growth: Role of elasticity in Widmanst??tten structure, Acta Materialia, vol.72, pp.200-210, 2014.
DOI : 10.1016/j.actamat.2014.03.045

M. Cottura, Y. Le-bouar, B. Appolaire, and A. , R??le of elastic inhomogeneity in the development of cuboidal microstructures in Ni-based superalloys, Acta Materialia, vol.94, pp.15-25, 2015.
DOI : 10.1016/j.actamat.2015.04.034

M. Cottura, B. Appolaire, A. Finel, and Y. L. Bouar, Plastic relaxation during diffusion-controlled growth of Widmanst??tten plates, Scripta Materialia, vol.108, pp.117-121, 2015.
DOI : 10.1016/j.scriptamat.2015.06.032

G. Daveau, Interaction dislocations -joints de grains en déformation plastique monotone : étude expérimentale et modélisations numériques, 2012.

B. Devincre, L. Kubin, and T. Hoc, Physical analyses of crystal plasticity by DD simulations, Scripta Materialia, vol.54, issue.5, pp.741-746, 2005.
DOI : 10.1016/j.scriptamat.2005.10.066

URL : https://hal.archives-ouvertes.fr/hal-00019068

B. Devincre, T. Hoc, and L. Kubin, Dislocation Mean Free Paths and Strain Hardening of Crystals, Science, vol.320, issue.5884, pp.1745-1748, 2008.
DOI : 10.1126/science.1156101

M. M. Dogge, R. H. Peerlings, and M. G. Geers, Extended modelling of dislocation transport-fomulation and finite element implementation, Adv. Model. and Simul. in Eng. Sci

L. P. Evers, W. A. Brekelmans, and M. G. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects, Journal of the Mechanics and Physics of Solids, vol.52, issue.10, 2004.
DOI : 10.1016/j.jmps.2004.03.007

D. J. Eyre and G. W. Milton, A fast numerical scheme for computing the response of composites using grid refinement, The European Physical Journal Applied Physics, vol.6, issue.1, pp.41-47, 1999.
DOI : 10.1051/epjap:1999150

P. Franciosi, M. Berveiller, and A. Zaoui, Latent hardening in copper and aluminium single crystals, Acta Metallurgica, vol.28, issue.3, pp.273-283, 1979.
DOI : 10.1016/0001-6160(80)90162-5

C. Fressengeas, V. Taupin, and L. Capolungo, An elasto-plastic theory of dislocation and disclination fields, International Journal of Solids and Structures, vol.48, issue.25-26, pp.48-3499, 2011.
DOI : 10.1016/j.ijsolstr.2011.09.002

URL : https://hal.archives-ouvertes.fr/hal-01501431

C. Fressengeas and V. Taupin, A field theory of distortion incompatibility for coupled fracture and plasticity, Journal of the Mechanics and Physics of Solids, vol.68, pp.68-113, 2014.
DOI : 10.1016/j.jmps.2014.03.009

URL : https://hal.archives-ouvertes.fr/hal-01503461

C. Fressengeas, A. Acharya, and A. J. Baudoin, Computational Methods for Microstructure-Property Relationship, p.277, 2010.

A. J. Foreman, The bowing of a dislocation segment, Philosophical Magazine, vol.116, issue.137, pp.1011-1021, 2012.
DOI : 10.1080/14786436408225418

S. Forest and K. Sab, Stress gradient continuum theory, Mechanics Research Communications, vol.40, issue.40, 2012.
DOI : 10.1016/j.mechrescom.2011.12.002

URL : https://hal.archives-ouvertes.fr/hal-00697585

A. Gaubert, Modélisation des effets de l'évolution microstructurale sur le comportement mécanique du superalliage monocristallin AM1, 2009.

M. G. Geers, W. A. Brekelmans, and C. J. Bayley, Second-order crystal plasticity: internal stress effects and cyclic loading, Modelling and Simulation in Materials Science and Engineering, vol.15, issue.1, 2006.
DOI : 10.1088/0965-0393/15/1/S12

URL : http://repository.tue.nl/647451

M. G. Geers, M. Cottura, B. Appolaire, E. P. Busso, S. Forest et al., Coupled glide-climb diffusion-enhanced crystal plasticity, Journal of the Mechanics and Physics of Solids, vol.70, pp.136-153, 2014.
DOI : 10.1016/j.jmps.2014.05.007

URL : https://hal.archives-ouvertes.fr/hal-01056876

L. Gélébart and F. Ouaki, Filtering material properties to improve FFT-based methods for numerical homogenization, Journal of Computational Physics, vol.294, pp.90-95, 2015.
DOI : 10.1016/j.jcp.2015.03.048

P. Geslin, B. Appolaire, and A. , Investigation of coherency loss by prismatic punching with a nonlinear elastic model, Acta Materialia, vol.71, pp.80-88, 2014.
DOI : 10.1016/j.actamat.2014.03.005

P. Geslin, Contribution à la modélisation champ de phase des dislocations. Thesis,U n i v e r s i t é Pierre et Marie Curie, 2013.

T. W. De-geus, R. H. Peerlings, and M. G. Geers, Microstructural topology effects on the onset of ductile failure in multi-phase materials ??? A systematic computational approach, International Journal of Solids and Structures, vol.67, issue.68, p.2015
DOI : 10.1016/j.ijsolstr.2015.04.035

M. V. Glazov and C. Laird, Size effects of dislocation patterning in fatigued metals, Acta Metallurgica et Materialia, vol.43, issue.7, pp.2849-2857, 1994.
DOI : 10.1016/0956-7151(94)00463-R

I. Groma, Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations, Physical Review B, vol.56, issue.10, 1997.
DOI : 10.1103/PhysRevB.56.5807

I. Groma and P. Balogh, Link between the individual and continuum approaches of the description of the collective behavior of dislocations, Materials Science and Engineering: A, vol.234, issue.236, pp.234-236, 1997.
DOI : 10.1016/S0921-5093(97)00150-0

I. Groma and P. Balogh, Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation, Acta Materialia, vol.47, issue.13, pp.3647-3654, 1999.
DOI : 10.1016/S1359-6454(99)00215-3

I. Groma and B. Bakó, Dislocation Patterning: From Micro- to Mesoscale Description, Physical Review Letters, vol.84, issue.7, 1999.
DOI : 10.1103/PhysRevLett.84.1487

I. Groma and B. Bakó, Linking different scales: discrete, self-consistent field, and stochastic dislocation dynamics, Materials Science and Engineering: A, vol.309, issue.310, pp.309-310, 2001.
DOI : 10.1016/S0921-5093(00)01631-2

I. Groma and G. Vörös, Origin of gradient terms in plasticity at different length scales, Scripta Materialia, vol.48, issue.2, pp.161-165, 2002.
DOI : 10.1016/S1359-6462(02)00339-1

I. Groma, F. F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Materialia, vol.51, issue.5, pp.51-1271, 2002.
DOI : 10.1016/S1359-6454(02)00517-7

I. Groma, G. Györgyi, and B. Kocsis, Dynamics of coarse grained dislocation densities from an effective free energy, Philosophical Magazine, vol.5, issue.8-9, pp.1185-1199, 2007.
DOI : 10.1016/j.ijsolstr.2004.10.025

URL : https://hal.archives-ouvertes.fr/hal-00513722

I. Groma, Z. Vandrus, and P. D. Ispánovity, Scale-Free Phase Field Theory of Dislocations, Physical Review Letters, vol.114, issue.1, 2014.
DOI : 10.1103/PhysRevLett.114.015503

URL : http://arxiv.org/abs/1404.6344

P. D. Ispánovity, I. Groma, G. Gyorgyi, F. F. Csikor, and D. Weygand, Submicron Plasticity: Yield Stress, Dislocation Avalanches, and Velocity Distribution, Physical Review Letters, vol.105, issue.8, p.85503, 2010.
DOI : 10.1103/PhysRevLett.105.085503

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

K. Herrmann, W. H. Müller, and S. Neumann, Linear and elastic???plastic fracture mechanics revisited by use of Fourier transforms ??? theory and application, Computational Materials Science, vol.16, issue.1-4, pp.1-4186, 1999.
DOI : 10.1016/S0927-0256(99)00061-0

T. Hochrainer, M. Zaiser, and P. Gumbsch, A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation, Philosophical Magazine, vol.87, issue.8-9, pp.1261-1282, 2007.
DOI : 10.1016/S0022-5096(01)00026-6

URL : https://hal.archives-ouvertes.fr/hal-00513758

T. Hochrainer, S. Sandfeld, M. Zaiser, and P. Gumbsch, Continuum dislocation dynamics: Towards a physical theory of crystal plasticity, Journal of the Mechanics and Physics of Solids, vol.63, pp.167-178, 2014.
DOI : 10.1016/j.jmps.2013.09.012

M. Idiart, F. Billot, Y. Pellegrini, and P. P. Castan, Infinite-contrast periodic composites with strongly nonlinear behavior: Effective-medium theory versus full-field simulations, International Journal of Solids and Structures, vol.46, issue.18-19, pp.18-193365, 2009.
DOI : 10.1016/j.ijsolstr.2009.05.009

URL : https://hal.archives-ouvertes.fr/hal-00412539

A. L. Islchak, A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys, Scripta Materialia, vol.74, pp.68-71, 2013.

P. D. Ispánovity and I. Groma, The probability distribution of internal stresses in externally loaded 2D dislocation systems, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.12, pp.1742-5468, 1088.
DOI : 10.1088/1742-5468/2008/12/P12009

A. G. Khachaturyan, Theory of Structural Transformations in Solids, 1983.

U. F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Progress in Materials Science, vol.48, issue.3, pp.171-273, 2002.
DOI : 10.1016/S0079-6425(02)00003-8

E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen, Arch. Rational Mech. Anal, vol.4, 1959.

A. M. Kosevich, Soviet Phys, Zh. Eksper. Fiz, vol.42, issue.152, pp.15-108, 1962.

L. Kubin, B. Devincre, and T. Hoc, Toward a physical model for strain hardening in ccc crystals, Materials Science and engineering, pp.483-484, 2007.

L. Kubin, B. Devincre, and T. Hoc, Modeling dislocation storage rates and mean free paths in face-centered cubic crystals, Acta Materialia, vol.56, issue.20, 2008.
DOI : 10.1016/j.actamat.2008.08.012

L. Kubin, T. Hoc, and B. Devincre, Dynamic recovery and its orientation dependence in facecentered cubic crystals, Acta Materialia, vol.57, 2009.
DOI : 10.1016/j.actamat.2009.02.013

L. Kubin, Dislocations, Mesoscale Simulations and Plastic Flow, 2013.
DOI : 10.1093/acprof:oso/9780198525011.001.0001

M. V. Glazov and C. Laird, Low energy dislocation structures produced by cyclic deformation, Materials Science and Engineering, vol.81, pp.433-450, 1986.

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 1970.

R. J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zürich, 1992.

D. L. Ma, D. K. Tafti, and R. D. Braatz, High-Resolution Simulation of Multidimensional Crystal Growth Industrial & Engineering Chemistry Research, pp.41-6217, 2002.

J. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non???linear composites with arbitrary phase contrast, International Journal for Numerical Methods in Engineering, vol.58, issue.12, pp.139-160, 2001.
DOI : 10.1002/nme.275

M. Miguel, A. Vespignani, M. Zaiser, and S. Zapperi, Dislocation Jamming and Andrade Creep, Physical Review Letters, vol.89, issue.16, 2002.
DOI : 10.1103/PhysRevLett.89.165501

URL : http://arxiv.org/abs/cond-mat/0205217

V. Monchiet and G. Bonnet, Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme, Computational Materials Science, vol.79, pp.276-283, 2013.
DOI : 10.1016/j.commatsci.2013.04.035

URL : https://hal.archives-ouvertes.fr/hal-01165818

H. Moulinec and P. Suquet, A FFT-Based Numerical Method for Computing the Mechanical Properties of Composites from Images of their Microstructures, IUTAM Symposium on Microstructure- Property Interactions in Composite Materials, pp.235-246, 1995.
DOI : 10.1007/978-94-011-0059-5_20

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.69-94, 1998.
DOI : 10.1016/S0045-7825(97)00218-1

URL : https://hal.archives-ouvertes.fr/hal-01282728

H. Moulinec and F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, International Journal for Numerical Methods in Engineering, vol.42, issue.2, pp.960-985, 2014.
DOI : 10.1002/nme.4614

URL : https://hal.archives-ouvertes.fr/hal-00787089

A. M. Kosevich, Dislocations in solids The elastic theory. F. R. N. Nabarro,C r y s t a l dislocations and the theory of the elasticity, 1979.

J. Nye, Some geometrical relations in dislocated crystals, Acta Metallurgica, vol.1, issue.2, pp.153-162, 1953.
DOI : 10.1016/0001-6160(53)90054-6

A. Roy and A. Acharya, Finite element approximation of field dislocation mechanics Journal of the Mechanics and Physics of Solids, pp.143-170, 2005.

A. Roy and A. Acharya, Size effects and idealized dislocation microstructure at small scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part II, Journal of the Mechanics and Physics of Solids, vol.54, issue.8, pp.1711-1743, 2006.
DOI : 10.1016/j.jmps.2006.01.012

E. Saenger, N. Gold, and S. A. Shapiro, Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion, vol.31, issue.1, pp.77-92, 2000.
DOI : 10.1016/S0165-2125(99)00023-2

S. Sandfeld, T. Hochrainer, M. Zaiser, and P. Gumbsch, Continuum modeling of dislocation plasticity: Theory, numerical implementation, and validation by discrete dislocation simulations, Journal of Materials Research, vol.1224, issue.05, pp.623-632, 2011.
DOI : 10.1007/BF00248490

S. Sandfeld, T. Hochrainer, P. Gumbsch, and M. Zaiser, Numerical implementation of a 3D continuum theory of dislocation dynamics and application to micro-bending, Philosophical Magazine, vol.54, issue.27-28, pp.27-28, 2010.
DOI : 10.1016/j.scriptamat.2005.10.060

M. Schneider, F. Ospald, and M. Kabel, Computational homogenization of elasticity on a staggered grid, International Journal for Numerical Methods in Engineering, vol.43, issue.8, 1002.
DOI : 10.1002/nme.5008

M. R. Staker and D. L. Holt, The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700??C, Acta Metallurgica, vol.20, issue.4, 1972.
DOI : 10.1016/0001-6160(72)90012-0

T. Takeuchi, Work Hardening of Copper Single Crystals with Multiple Glide Orientations, Transactions of the Japan Institute of Metals, vol.16, issue.10, 1975.
DOI : 10.2320/matertrans1960.16.629

V. Taupin, L. Capolungo, C. Fressengeas, A. Das, and M. Upadhyay, Grain boundary modeling using an elasto-plastic theory of dislocation and disclination fields, Journal of the Mechanics and Physics of Solids, vol.61, issue.2, pp.61-370, 2013.
DOI : 10.1016/j.jmps.2012.10.001

URL : https://hal.archives-ouvertes.fr/hal-01501431

C. Teodosiu, J. L. Raphanel, and L. Tabourot, Finite element simulation of the large elastoplastic deformation of multicrystals, MECAMAT'91, 1993.

F. T. Trouton, On the Viscous Flow in Metals, and Allied Phenomena, Royal Society, Section A -Mathematical and Physical Sciences, 1910.

R. L. Ubachs, P. J. Schreurs, and M. G. Geers, On non-local diffuse interface model for microstructure evolution of tin-lead solder, Journal of the Mechanics and Physics of Solids, pp.52-1763, 2004.

R. L. Ubachs, P. J. Schreurs, and M. G. Geers, Phase field dependent viscoplastic behaviour of solder alloys, International Journal of Solids and Structures, vol.42, issue.9-10, pp.42-2533, 2005.
DOI : 10.1016/j.ijsolstr.2004.10.008

A. Vattré, Strength of single crystal superalloys: from dislocation mechanisms to continuum micromechanics, 2009.

F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields, Comptes Rendus M??canique, vol.343, issue.3, pp.232-245, 2015.
DOI : 10.1016/j.crme.2014.12.005

URL : https://hal.archives-ouvertes.fr/hal-01096757

S. Xia and A. , Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals, Modelling and Simulation in Materials Science and Engineering, vol.23, issue.5, 2015.
DOI : 10.1088/0965-0393/23/5/055009

S. Yefimov, I. Groma, and E. Van-der-giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations, Journal of the Mechanics and Physics of Solids, vol.52, issue.2, pp.279-300, 2003.
DOI : 10.1016/S0022-5096(03)00094-2

S. Yefimov and E. Van-der-giessen, Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations, International Journal of Solids and Structures, vol.42, issue.11-12, pp.42-3375, 2004.
DOI : 10.1016/j.ijsolstr.2004.10.025

M. Zaiser, K. Bay, and P. Hähner, Fractal analysis of deformation-induced dislocation patterns, Acta Materialia, vol.47, issue.8, pp.2463-2476, 1999.
DOI : 10.1016/S1359-6454(99)00096-8

M. Zaiser and P. Hähner, The flow stress of fractal dislocation arrangements, Materials Science and Engineering: A, vol.270, issue.2, pp.299-307, 1999.
DOI : 10.1016/S0921-5093(99)00270-1

M. Zaiser, M. Miguel, and I. Groma, Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations, Physical Review B, vol.64, issue.22, 1103.
DOI : 10.1103/PhysRevB.64.224102

M. Zaiser and T. Hochrainer, Some steps towards a continuum representation of 3D dislocation systems, Scripta Materialia, vol.54, issue.5, pp.717-721, 2005.
DOI : 10.1016/j.scriptamat.2005.10.060

M. Zaiser, N. Nikitas, T. Hochrainer, and E. C. Aifantis, Modelling size effects using 3D density-based dislocation dynamics, Philosophical Magazine, vol.80, issue.8-9, pp.1283-1306, 2007.
DOI : 10.1016/S0022-5096(00)00074-0

Y. Zeng and Q. H. Liu, A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations, The Journal of the Acoustical Society of America, vol.109, issue.6, pp.2571-2580, 2001.
DOI : 10.1121/1.1369783

Z. Zhao, M. Ramesh, D. Raabe, A. M. Cuitiño, and R. Radovitzky, Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal, International Journal of Plasticity, vol.24, issue.12, pp.2278-2297, 2008.
DOI : 10.1016/j.ijplas.2008.01.002