Situation understanding and risk assessment framework for preventive driver assistance

Alexandre Armand 1, 2
2 Flowers - Flowing Epigenetic Robots and Systems
Inria Bordeaux - Sud-Ouest, U2IS - Unité d'Informatique et d'Ingénierie des Systèmes
Résumé : Les nouvelles voitures sont pourvues d’aides à la conduite qui améliorent le confort et la sécurité. Bien que ces systèmes contribuent à la réduction des accidents de la route, leur déploiement montre que leurs performances sont encore limitées par leur faible compréhension de situation. Cela est principalement lié aux limites des capteurs de perception, et à la non prise en compte du contexte. Ces limites se traduisent par des détections de risques tardives, et donc en assistances sous forme d’alertes ou de freinages automatiques. Cette thèse se concentre sur l’introduction d’informations contextuelles dans le processus de décision des systèmes d’aides à la conduite. Le but est de détecter des risques plus tôt que les systèmes conventionnels, ainsi que d’améliorer la confiance qu’on peut avoir dans les informations générées.Le comportement d’un véhicule dépend de divers éléments tels que le réseau routier, les règles de la circulation, ainsi que de la cohabitation avec d’autres usagers de la route. Ces interactions se traduisent par une interdépendance forte entre chaque élément. De plus, bien que chaque conducteur doive suivre les mêmes règles de circulation, ils peuvent réagir de façon différente à une même situation. Cela implique qu’un même comportement peut être considéré comme sûr ou risqué, selon le conducteur. Ces informations doivent être prises en compte dans le processus de prise de décision des systèmes. Cette thèse propose un cadre qui combine les informations a priori contenues dans les cartes de navigation numériques avec l’information temps réel fournie par les capteurs de perception et/ou communications sans fil, pour permettre une meilleure compréhension de situation et ainsi mieux anticiper les risques. Ce principe est comparable aux tâches qu’un copilote doit accomplir. Ces travaux se répartissent en deux principales étapes : la compréhension de situation, et l’estimation des risques.L’étape de compréhension de situation consiste à donner du sens aux différentes observations réalisées par les capteurs de perception, en exploitant des informations a priori. Le but est de comprendre comment les entités perçues interagissent, et comment ces interactions contraignent le comportement du véhicule. Cette étape établit les relations spatio-temporelles entre les entités perçues afin d’évaluer leur pertinence par rapport au véhicule, et ainsi extraire les entités les plus contraignantes. Pour cela, une ontologie contenant des informations a priori sur la façon dont différentes entités de la route interagissent est proposée. Cette première étape a été testée en temps réel, utilisant des données enregistrées sur un véhicule évoluant en environnements contraints.L’étape de détection des risques s’appuie sur la situation perçue, et sur les signes annonciateurs de risques. Le cas d’usage choisi pour cette étude se concentre sur les intersections, puisqu’une grande majorité des accidents de la route y ont lieux. La manière de réagir d’un conducteur lorsqu’il se rapproche d’une intersection est apprise par des Processus Gaussiens. Cette connaissance à priori du conducteur est ensuite exploitée, avec les informations contextuelles, par un réseau Bayésien afin d’estimer si le conducteur semble interagir comme attendu avec l’intersection. L’approche probabiliste qui a été choisie permet de prendre en compte les incertitudes dont souffrent chacune des sources d’information. Des tests ont été réalisés à partir de données enregistrées à bord d’un véhicule afin de valider l’approche. Les résultats montrent qu’en prenant en compte les individualités des conducteurs, leurs actions sur le véhicule, ainsi que l’état du véhicule, il est possible de mieux estimer si le conducteur interagit comme attendu avec l’environnement, et donc d’anticiper les risques. Finalement, il est montré qu’il est possible de générer une assistance plus préventive que les systèmes d’aide à la conduite conventionnels.
Type de document :
Thèse
Other [cs.OH]. Université Paris-Saclay, 2016. English. 〈NNT : 2016SACLY008〉
Liste complète des métadonnées

Littérature citée [168 références]  Voir  Masquer  Télécharger

https://pastel.archives-ouvertes.fr/tel-01421917
Contributeur : Abes Star <>
Soumis le : vendredi 23 décembre 2016 - 11:27:08
Dernière modification le : vendredi 1 décembre 2017 - 01:20:19
Document(s) archivé(s) le : mardi 21 mars 2017 - 06:35:01

Fichier

46390_ARMAND_2016_archivage.pd...
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01421917, version 1

Citation

Alexandre Armand. Situation understanding and risk assessment framework for preventive driver assistance. Other [cs.OH]. Université Paris-Saclay, 2016. English. 〈NNT : 2016SACLY008〉. 〈tel-01421917〉

Partager

Métriques

Consultations de la notice

2379

Téléchargements de fichiers

846