A. Buffa and R. Hiptmair, Galerkin Boundary Element Methods for Electromagnetic Scattering, Topics in computational wave propagation, pp.85-126, 2003.
DOI : 10.1007/978-3-642-55483-4_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.520.6487

M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Computer Methods in Applied Mechanics and Engineering, vol.142, issue.1-2, 2000.
DOI : 10.1016/S0045-7825(96)01107-3

M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius, Energy norm based error estimators for adaptive BEM for hypersingular integral equations, Fourth Chilean Workshop on Numerical Analysis of Partial Differential Equations, pp.15-35, 2013.
DOI : 10.1016/j.apnum.2013.12.004

I. Babuv?ka and W. C. Rheinboldt, Error Estimates for Adaptive Finite Element Computations, SIAM Journal on Numerical Analysis, vol.15, issue.4, pp.736-754, 1978.
DOI : 10.1137/0715049

I. Babu?ka and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering, vol.15, issue.10, pp.1597-1615, 1978.
DOI : 10.1002/nme.1620121010

E. Randolph, R. K. Bank, and . Smith, A posteriori error estimates based on hierarchical bases, SIAM Journal on Numerical Analysis, vol.30, issue.4, pp.921-935, 1993.

A. Bendali, Equations intégrales en électromagnétisme, Cours BEM INSA Toulouse, 2013.

A. Bespalov and N. Heuer, The hp-BEM with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: A priori error analysis, Applied Numerical Mathematics, vol.60, issue.7, pp.705-718, 2010.
DOI : 10.1016/j.apnum.2010.03.012

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2010.
DOI : 10.1007/978-0-387-70914-7

A. Buffa, M. Costabel, and D. Sheen, On traces for H(curl,??) in Lipschitz domains, Journal of Mathematical Analysis and Applications, vol.276, issue.2, pp.845-867, 2002.
DOI : 10.1016/S0022-247X(02)00455-9

A. Buffa and R. Hiptmair, Regularized Combined Field Integral Equations, Numerische Mathematik, vol.74, issue.1, pp.1-19, 2005.
DOI : 10.1007/s00211-004-0579-9

A. Buffa and P. Ciarlet-jr, On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra, Mathematical Methods in the Applied Sciences, vol.5, issue.1, pp.9-30, 2001.
DOI : 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2

A. Buffa and P. Ciarlet-jr, On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Mathematical Methods in the Applied Sciences, vol.316, issue.1, pp.31-48, 2001.
DOI : 10.1002/1099-1476(20010110)24:1<31::AID-MMA193>3.0.CO;2-X

C. Carstensen, An a posteriori error estimate for a first-kind integral equation, Mathematics of Computation, vol.66, issue.217, pp.139-155, 1997.
DOI : 10.1090/S0025-5718-97-00790-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.3516

C. Carstensen, An Adaptive Mesh-Refining Algorithm Allowing for an H 1 -Stable L 2 - Projection onto Courant Finite Element Spaces. Constructive Approximation, pp.549-564, 2003.

C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Computers & Mathematics with Applications, vol.67, issue.6, pp.1195-1253, 2014.
DOI : 10.1016/j.camwa.2013.12.003

C. Carstensen, M. Maischak, D. Praetorius, and E. P. Stephan, Residual-based a posteriori error estimate for hypersingular equation on surfaces, Numerische Mathematik, vol.97, issue.3, pp.397-425, 2004.
DOI : 10.1007/s00211-003-0506-5

C. Carstensen, M. Maischak, and E. P. Stephan, A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation, Numerische Mathematik, vol.90, issue.2, pp.197-213, 2001.
DOI : 10.1007/s002110100287

C. Carstensen and D. Praetorius, Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind, SIAM Journal on Scientific Computing, vol.27, issue.4, pp.1226-1260, 2006.
DOI : 10.1137/040609033

C. Carstensen and D. Praetorius, Boundary Element Analysis : Mathematical Aspects and Applications, chapter Averaging Techniques for a Posteriori Error Control in Finite Element and Boundary Element Analysis, pp.29-59, 2007.

S. N. Chandler-wilde and D. P. Hewett, Wavenumber-Explicit Continuity and Coercivity Estimates in Acoustic Scattering by Planar Screens. Integral Equations and Operator Theory, pp.423-449, 2015.

P. Ciarlet, Analysis of the Scott???Zhang interpolation in the fractional order Sobolev spaces, Journal of Numerical Mathematics, vol.21, issue.3, pp.173-180, 2013.
DOI : 10.1515/jnum-2013-0007

URL : https://hal.archives-ouvertes.fr/hal-00937677

P. G. Ciarlet, Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002.

S. Cochez-dhondt and S. Nicaise, Robust a posteriori error estimation for the Maxwell equations, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.25-28, pp.2583-2595, 2007.
DOI : 10.1016/j.cma.2006.11.025

L. David, R. Colton, and . Kress, Integral equation methods in scattering theory Originally published, 1983.

M. Costabel, Boundary Integral Operators on Lipschitz Domains: Elementary Results, SIAM Journal on Mathematical Analysis, vol.19, issue.3, pp.613-626, 1988.
DOI : 10.1137/0519043

M. Darbas, Préconditionneurs analytiques de type Calderon pour les formulations intégrales des problèmes de diffraction d'ondes, 2004.

A. Demlow and G. Dziuk, An Adaptive Finite Element Method for the Laplace???Beltrami Operator on Implicitly Defined Surfaces, SIAM Journal on Numerical Analysis, vol.45, issue.1, pp.421-442, 2007.
DOI : 10.1137/050642873

W. Dijkstra, Condition Numbers in the Boundary Element Method : Shape and Solvability, 2008.

C. Erath, S. Ferraz-leite, S. Funken, and D. Praetorius, Energy norm based a posteriori error estimation for boundary element methods in two dimensions, Applied Numerical Mathematics, vol.59, issue.11, pp.2713-2734, 2009.
DOI : 10.1016/j.apnum.2008.12.024

A. Ern and J. Guermond, Theory and practice of finite elements Applied mathematical sciences, 2004.

A. Ern and M. Vohralík, Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations, SIAM Journal on Numerical Analysis, vol.53, issue.2, pp.1058-1081, 2015.
DOI : 10.1137/130950100

URL : https://hal.archives-ouvertes.fr/hal-00921583

B. Faermann, Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case, IMA Journal of Numerical Analysis, vol.20, issue.2, pp.203-234, 2000.
DOI : 10.1093/imanum/20.2.203

B. Faermann, Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations, Numerische Mathematik, vol.79, issue.1, pp.43-76, 1998.
DOI : 10.1007/s002110050331

B. Faermann, Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods, Numerische Mathematik, vol.92, issue.3, pp.467-499, 2002.
DOI : 10.1007/s002110100319

M. Feischl, T. Führer, N. Heuer, M. Karkulik, and D. Praetorius, Adaptive Boundary Element Methods, Archives of Computational Methods in Engineering, vol.24, issue.2, pp.309-389, 2014.
DOI : 10.1007/s11831-014-9114-z

URL : http://arxiv.org/abs/1402.0744

M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius, Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation, Calcolo, vol.124, issue.3, pp.531-562, 2013.
DOI : 10.1007/s10092-013-0100-x

M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius, Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part II : Hyper-singular integral equation, Electron. Trans. Numer. Anal, vol.44, pp.153-176, 2015.

M. Feischl, T. Führer, and D. Praetorius, Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems, SIAM Journal on Numerical Analysis, vol.52, issue.2, pp.601-625, 2014.
DOI : 10.1137/120897225

M. Feischl, T. Führer, G. Mitscha-eibl, D. Praetorius, and E. P. Stephan, Abstract, Computational Methods in Applied Mathematics, vol.14, issue.4, pp.485-508, 2014.
DOI : 10.1515/cmam-2014-0019

M. Feischl, M. Karkulik, J. M. Melenk, and D. Praetorius, Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.1327-1348, 2013.
DOI : 10.1137/110842569

S. Ferraz-leite and D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method, Computing, vol.22, issue.4, pp.135-162, 2008.
DOI : 10.1007/s00607-008-0017-4

F. Gesztesy, I. Mitrea, D. Mitrea, and M. Mitrea, On the nature of the laplace???beltrami operator on lipschitz manifolds, Journal of Mathematical Sciences, vol.58, issue.10, pp.279-346, 2010.
DOI : 10.1007/s10958-010-0199-0

I. G. Graham, W. Hackbusch, and S. A. Sauter, Finite elements on degenerate meshes: inverse-type inequalities and applications, IMA Journal of Numerical Analysis, vol.25, issue.2, pp.379-407, 2005.
DOI : 10.1093/imanum/drh017

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.492.1122

P. Grisvard, Singularities in boundary value problems Recherches en mathématiques appliquées = Research notes in applied mathematics, 1992.

N. Hale, N. J. Higham, and L. N. Trefethen, Computing $A^\alpha, \log(A)$, and Related Matrix Functions by Contour Integrals, SIAM Journal on Numerical Analysis, vol.46, issue.5, pp.2505-2523, 2008.
DOI : 10.1137/070700607

URL : http://eprints.ma.man.ac.uk/1136/01/covered/MIMS_ep2007_103.pdf

J. H. Halton, A Very Fast Algorithm for Finding Eigenvalues and Eigenvectors, 1996.

M. Hintermueller, R. H. Hoppe, and C. Loebhard, A dual-weighted residual approach to goal-oriented adaptivity for optimal control of elliptic variational inequalities, 2012.

C. George, W. L. Hsiao, and . Wendland, Boundary integral equations, Applied Mathematical Sciences, 2008.

P. Jiránez, Z. Strakos, and M. Vohralík, A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers, SIAM Journal on Scientific Computing, vol.32, issue.3, pp.1567-1590, 2010.
DOI : 10.1137/08073706X

M. Karkulik, D. Pavlicek, and D. Praetorius, On 2D Newest Vertex Bisection : Optimality of Mesh-Closure and H 1 -Stability of L 2 -Projection. Constructive Approximation, pp.213-234, 2013.

E. Kita and N. Kamiya, Eror estimation and adaptive mesh refinement in boundary element method, an overview. Engineering Analysis with Boundary Elements, pp.479-495, 2001.

R. Kress, MINIMIZING THE CONDITION NUMBER OF BOUNDARY INTEGRAL OPERATORS IN ACOUSTIC AND ELECTROMAGNETIC SCATTERING, The Quarterly Journal of Mechanics and Applied Mathematics, vol.38, issue.2, pp.323-396, 1985.
DOI : 10.1093/qjmam/38.2.323

M. Lecouvez, Méthodes itératives de décomposition de domaine sans recouvrement avec convergence géométrique pour l'équation de Helmholtz, 2015.

W. Mclean, Strongly elliptic systems and boundary integral equations, 2000.

I. Mozolevski and S. Prudhomme, Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems, Error Estimation and Adaptivity for Nonlinear and Time-Dependent Problems, pp.127-145, 2015.
DOI : 10.1016/j.cma.2014.09.025

URL : https://hal.archives-ouvertes.fr/hal-00985971

P. Mund, E. P. Stephan, and J. Weiße, Two-level methods for the single layer potential in ???3, Computing, vol.10, issue.3, pp.243-266, 1998.
DOI : 10.1007/BF02684335

R. H. Nochetto and B. Stamm, A posteriori error estimates for the Electric Field Integral Equation on Polyhedra, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01090944

J. Nédélec, Acoustic and electromagnetic equations : integral representations for harmonic problems Applied mathematical sciences, 2001.

S. Sauter and C. Schwab, Boundary Element Methods, of Springer Series in Computational Mathematics, 2011.

F. Sayas, From Raviart-Thomas to HDG. ArXiv e-prints, 2013.

L. Steffens, N. Pares, and P. Diez, Goal-oriented h-adaptivity for the Helmholtz equation: error estimates, local indicators and refinement strategies, Computational Mechanics, vol.79, issue.4???6, pp.47681-699, 2011.
DOI : 10.1007/s00466-010-0557-2

P. Ernst and . Stephan, Multilevel methods for the h-, p-, and hp-versions of the boundary element method, VI : Ordinary Differential Equations and Integral Equations, pp.503-519, 2000.

R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, 1996.

T. Walsh and L. Demkowicz, hp Boundary element modeling of the external human auditory system??????goal-oriented adaptivity with multiple load vectors, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.1-2, pp.125-146, 2003.
DOI : 10.1016/S0045-7825(02)00536-4