C. D. Aliprantis, K. C. Borderab09, ]. S. Arora, and B. Barak, Infinite dimensional analysis Computational complexity, 2006.

M. [. Alvarez and . Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations, Memoirs of the American Mathematical Society, vol.204, issue.960, p.77, 2010.
DOI : 10.1090/S0065-9266-09-00588-2

V. [. Anantharam and . Borkar, A Variational Formula for Risk-Sensitive Reward, SIAM Journal on Control and Optimization, vol.55, issue.2, 2015.
DOI : 10.1137/151002630

URL : http://arxiv.org/abs/1501.00676

R. [. Akian, S. Bapat, and . Gaubert, Max-plus algebras, Handbook of Linear Algebra, Second Edition, Discrete Mathematics and its Applications, chapter 35, 2013.

M. Akian, J. Cochet-terrasson, S. Detournay, and S. Gaubert, Policy iteration algorithm for zero-sum multichain stochastic games with mean payoff and perfect information, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00773080

F. [. Artzner, J. Delbaen, D. Eber, and . Heath, Coherent Measures of Risk, Mathematical Finance, vol.9, issue.3, pp.203-228, 1999.
DOI : 10.1111/1467-9965.00068

[. Aubin and H. Frankowska, Set-valued analysis. Modern Birkhäuser Classics, 2009.
DOI : 10.1007/978-0-8176-4848-0

S. [. Akian and . Gaubert, Spectral theorem for convex monotone homogeneous maps, and ergodic control, Nonlinear Analysis: Theory, Methods & Applications, vol.52, issue.2, pp.637-679, 2003.
DOI : 10.1016/S0362-546X(02)00170-0

URL : https://hal.archives-ouvertes.fr/inria-00000201

S. [. Akian, A. Gaubert, and . Guterman, TROPICAL POLYHEDRA ARE EQUIVALENT TO MEAN PAYOFF GAMES, International Journal of Algebra and Computation, vol.13, issue.01, p.1250001, 2012.
DOI : 10.1016/0304-3975(95)00188-3

URL : https://hal.archives-ouvertes.fr/hal-00778078

M. Akian, S. Gaubert, and A. Hochart, Fixed point sets of payment-free Shapley operators and structural properties of mean payoff games, 21st International Symposium on Mathematical Theory of Networks and Systems, pp.1438-1441, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112278

M. Akian, S. Gaubert, and A. Hochart, Generic uniqueness of the bias vector of mean payoff zero-sum games, 53rd IEEE Conference on Decision and Control, pp.1581-1587, 2014.
DOI : 10.1109/CDC.2014.7039625

URL : https://hal.archives-ouvertes.fr/hal-01095930

M. Akian, S. Gaubert, and A. Hochart, Ergodicity conditions for zero-sum games. Discrete Contin, Dyn. Syst, vol.35, issue.9, pp.3901-3931, 2015.
DOI : 10.3934/dcds.2015.35.3901

URL : https://hal.archives-ouvertes.fr/hal-01096206

M. Akian, S. Gaubert, and A. Hochart, Hypergraph conditions for the solvability of the ergodic equation for zero-sum games, 2015 54th IEEE Conference on Decision and Control (CDC), pp.5845-5850, 2015.
DOI : 10.1109/CDC.2015.7403138

URL : https://hal.archives-ouvertes.fr/hal-01249321

S. [. Akian, A. Gaubert, M. Hochart, S. Akian, A. Gaubert et al., The Max-Plus Finite Element Method for Solving Deterministic Optimal Control Problems: Basic Properties and Convergence Analysis, SIAM Journal on Control and Optimization, vol.47, issue.2, pp.817-848, 2008.
DOI : 10.1137/060655286

URL : https://hal.archives-ouvertes.fr/inria-00071395

S. [. Akian, R. Gaubert, S. Nussbaumags16-]-x.-allamigeon, M. Gaubert, M. Skorma et al., Uniqueness of the fixed point of nonexpansive semidifferentiable maps, Transactions of the American Mathematical Society, vol.368, issue.2, pp.1271-1320195, 2009.
DOI : 10.1090/S0002-9947-2015-06413-7

URL : https://hal.archives-ouvertes.fr/hal-00783682

]. X. All14 and . Allamigeon, On the complexity of strongly connected components in directed hypergraphs, Algorithmica, vol.69, issue.2, pp.335-369, 2014.

M. [. Aumann and . Maschler, Repeated games with incomplete information, 1995.

P. [. Andersson and . Miltersen, The Complexity of Solving Stochastic Games on Graphs, Algorithms and computation, pp.112-121, 2009.
DOI : 10.1007/978-3-642-10631-6_13

]. M. Ari97 and . Arisawa, Ergodic problem for the Hamilton-Jacobi-Bellman equation. I. Existence of the ergodic attractor, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.14, issue.4, pp.415-438, 1997.

]. M. Ari98 and . Arisawa, Ergodic problem for the Hamilton-Jacobi-Bellman equation, II. Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.15, issue.1, pp.1-24, 1998.

]. E. Asp67 and . Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc, vol.73, pp.200-203, 1967.

R. [. Aliprantis and . Tourky, Cones and duality, Graduate Studies in Mathematics, vol.84, 2007.
DOI : 10.1090/gsm/084

]. M. Bar09 and . Bardi, On differential games with long-time-average cost In Advances in dynamic games and their applications, Internat. Soc. Dynam. Games, vol.10, pp.3-18, 2009.

]. J. Bat73 and . Bather, Optimal decision procedures for finite Markov chains. II. Communicating systems, Advances in Appl. Probability, vol.5, pp.521-540, 1973.

P. [. Bauschke and . Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics, 2011.
DOI : 10.1007/978-3-319-48311-5

URL : https://hal.archives-ouvertes.fr/hal-00643354

G. [. Baccelli, G. J. Cohen, J. Olsder, and . Quadrat, Synchronization and linearity, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, 1992.

]. F. Bdf66, D. G. Browder, . J. De-figueiredo-[-bgv15-], S. Bolte, G. Gaubert et al., J-monotone nonlinear operators in Banach spaces. Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag Definable zero-sum stochastic games, Math. Math. Oper. Res, vol.28, issue.401, pp.412-420171, 1966.

]. G. Bir79, R. I. Birkhoff, . S. Bj72-]-t, M. F. Blyth, and . Janowitz, Lattice theory Residuation theory, International Series of Monographs in Pure and Applied Mathematics, 1972.

E. [. Bewley and . Kohlberg, The Asymptotic Theory of Stochastic Games, Mathematics of Operations Research, vol.1, issue.3, pp.197-208, 1976.
DOI : 10.1287/moor.1.3.197

A. [. Beurling and . Livingston, A theorem on duality mappings in Banach spaces, Arkiv f??r Matematik, vol.4, issue.5, pp.405-411, 1962.
DOI : 10.1007/BF02591622

]. D. Bla65 and . Blackwell, Discounted dynamic programming, Ann. Math. Statist, vol.36, pp.226-235, 1965.

R. [. Berman and . Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.9, 1994.
DOI : 10.1137/1.9781611971262

T. [. Bourque and . Raghavan, Policy improvement for perfect information additive reward and additive transition stochastic games with discounted and average payoffs, Journal of Dynamics and Games, vol.1, issue.3, pp.347-361, 2014.
DOI : 10.3934/jdg.2014.1.347

]. H. Bré73 and . Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, 1973.

]. F. Bro65 and . Browder, Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces, Trans. Amer. Math. Soc, vol.118, pp.338-351, 1965.

]. F. Bro66 and . Browder, Problèmes nonlinéaires Les Presses de l, Browder. Nonlinear accretive operators in Banach spaces, pp.470-476, 1965.

]. F. Bro67b and . Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc, vol.73, pp.875-882, 1967.

]. F. Bro68 and . Browder, Nonlinear monotone and accretive operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A, pp.388-393, 1968.

]. F. Bro76, . E. Browderbru73-]-r, and J. Bruck, Nonlinear operators and nonlinear equations of evolution in Banach spaces Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math, pp.1-308251, 1968.

]. P. Car10 and . Cardaliaguet, Ergodicity of Hamilton-Jacobi equations with a noncoercive nonconvex Hamiltonian, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.27, issue.2 23, pp.837-856, 2010.

D. [. Cavazos-cadena and . Hernández-hernández, A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains, The Annals of Applied Probability, vol.15, issue.1A, pp.175-212, 2005.
DOI : 10.1214/105051604000000585

D. [. Cavazos-cadena and . Hernández-hernández, Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space, Systems & Control Letters, vol.58, issue.4, pp.254-258, 2009.
DOI : 10.1016/j.sysconle.2008.11.001

D. [. Cavazos-cadena and . Hernández-hernández, Poisson equations associated with a homogeneous and monotone function: Necessary and sufficient conditions for a solution in a weakly convex case, CG79] R. Cuninghame-Green. Minimax algebra of Lecture Notes in Economics and Mathematical Systems, pp.3303-3313, 1979.
DOI : 10.1016/j.na.2009.12.010

T. [. Crandall and . Liggett, Generation of Semi-Groups of Nonlinear Transformations on General Banach Spaces, American Journal of Mathematics, vol.93, issue.2, pp.265-298, 1971.
DOI : 10.2307/2373376

]. A. Con92 and . Condon, The complexity of stochastic games, Inform. and Comput, vol.96, issue.2, pp.203-224, 1992.

L. [. Chang, T. Qi, and . Zhang, A survey on the spectral theory of nonnegative tensors, Numerical Linear Algebra with Applications, vol.22, issue.4, pp.891-912, 2013.
DOI : 10.1002/nla.1902

L. [. Crandall and . Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer, pp.385-390, 1980.
DOI : 10.1090/S0002-9939-1980-0553381-X

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA070202

S. [. Cochet-terrasson and . Gaubert, A policy iteration algorithm for zero-sum stochastic games with mean payoff, Comptes Rendus Mathematique, vol.343, issue.5, pp.377-382, 2006.
DOI : 10.1016/j.crma.2006.07.011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Cochet-terrasson, S. Gaubert, and J. Gunawardena, A constructive fixed point theorem for min-max functions. Dynam. Stability Systems [Del02] F. Delbaen. Coherent risk measures on general probability spaces, Advances in finance and stochastics, pp.407-433, 1999.
DOI : 10.1080/026811199281967

B. [. Denardo and . Fox, Multichain Markov Renewal Programs, SIAM Journal on Applied Mathematics, vol.16, issue.3, pp.468-487, 1968.
DOI : 10.1137/0116038

J. Dutta, J. E. Martínez-legaz, and A. M. Rubinov, Monotonic analysis over cones. I. Optimization, pp.129-146, 2004.
DOI : 10.1080/02331930410001684654

J. Dutta, J. E. Martínez-legaz, and A. M. Rubinov, Monotonic analysis over cones. III, J. Convex Anal, vol.15, issue.3, pp.561-579, 2008.
DOI : 10.1080/02331930410001684654

J. [. Dunford and . Schwartz, Linear operators. Part I

J. Wiley, &. Sons, . W. Inc, R. G. Bade, and . Bartle, General theory, With the assistance of, 1988.

J. [. Ehrenfeucht and . Mycielski, Positional strategies for mean payoff games, International Journal of Game Theory, vol.59, issue.2, pp.109-113, 1979.
DOI : 10.1007/BF01768705

R. [. Ekeland and . Témam, Convex analysis and variational problems, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.28, 1999.
DOI : 10.1137/1.9781611971088

]. L. Eva84 and . Evans, Some min-max methods for the Hamilton-Jacobi equation, Indiana Univ. Math. J, vol.33, issue.1, pp.31-50, 1984.

H. Everett, 2. RECURSIVE GAMES, Contributions to the theory of games, pp.47-78, 1957.
DOI : 10.1515/9781400882151-004

URL : https://hal.archives-ouvertes.fr/inria-00103926

]. A. Fat08 and . Fathi, Weak KAM theorem in Lagrangian dynamics. Tenth preliminary version , available online, 2008.

S. [. Friedland, L. Gaubert, . H. Hanfhh97-]-w, D. Fleming, and . Hernández-hernández, Perron-Frobenius theorem for nonnegative multilinear forms and extensions Risk-sensitive control of finite state machines on an infinite horizon Fleming and D. Hernández-Hernández. Risk-sensitive control of finite state machines on an infinite horizon, Linear Algebra Appl. I. SIAM J. Control Optim. II. SIAM J. Control Optim, vol.438, issue.374, pp.738-7491790, 1997.

P. [. Fitzpatrick, T. Hess, and . Kato, Local boundedness of monotone-type operators, Proc. Japan Acad, pp.275-277, 1972.
DOI : 10.3792/pja/1195519662

URL : http://projecteuclid.org/download/pdf_1/euclid.pja/1195519662

A. [. Fukuda and . Prodon, Double description method revisited, Combinatorics and computer science, pp.91-111, 1995.
DOI : 10.1007/3-540-61576-8_77

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. [. Figalli and . Rifford, Aubry sets, Hamilton-Jacobi equations, and the Ma???? Conjecture, Contemp. Math, vol.599, pp.83-104, 2013.
DOI : 10.1090/conm/599/11906

A. [. Föllmer and . Schied, Convex measures of risk and trading constraints, Finance and Stochastics, vol.6, issue.4, pp.429-447, 2002.
DOI : 10.1007/s007800200072

A. [. Föllmer and . Schied, Stochastic finance, 2011.

J. Filar and K. Vrieze, Competitive Markov decision processes, 1997.
DOI : 10.1007/978-1-4612-4054-9

J. [. Gaubert and . Gunawardena, The Perron-Frobenius theorem for homogeneous , monotone functions, Transactions of the American Mathematical Society, vol.356, issue.12, pp.4931-4950, 2004.
DOI : 10.1090/S0002-9947-04-03470-1

. Ghk-+-80-]-g, K. H. Gierz, K. Hofmann, J. D. Keimel, M. W. Lawson et al., A compendium of continuous lattices On the existence of cycle times for some nonexpansive maps, 1980.

A. [. Gurvich, L. G. Karzanov, and . Khachiyan, Cyclic games and finding minimax mean cycles in digraphs, Zh. Vychisl. Mat. i Mat. Fiz, vol.28, issue.9, pp.1407-1417, 1988.

G. [. Gallo, S. Longo, S. Nguyen, and . Pallottino, Directed hypergraphs and applications, Discrete Applied Mathematics, vol.42, issue.2-3, pp.177-201, 1993.
DOI : 10.1016/0166-218X(93)90045-P

URL : http://doi.org/10.1016/0166-218x(93)90045-p

M. [. Gondran and . Minoux, Valeurs propres et vecteurs propres dans les dioïdes et leur interprétation en théorie des graphes, Bull. Direction Études Recherches Sér. C Math. Informat, issue.2, pp.25-41, 1977.
DOI : 10.1051/ita/197610r100391

URL : http://archive.numdam.org/article/ITA_1976__10_1_39_0.pdf

]. J. Gun03, . [. Gunawardena, G. Gaubert, and . Vigeral, From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems A maximin characterisation of the escape rate of nonexpansive mappings in metrically convex spaces, Theoret. Comput. Sci. Math. Proc. Cambridge Philos. Soc, vol.293, issue.1522, pp.141-167341, 2003.

S. [. Hernández-hernández, . J. Marcushk66-]-a, R. M. Hoffman, and . Karp, Risk sensitive control of Markov processes in countable state space, Systems & Control Letters, vol.29, issue.3, pp.147-155359, 1966.
DOI : 10.1016/S0167-6911(96)00051-5

J. [. Hernández-lerma, . Lasserrehll99-]-o, J. B. Hernández-lerma, and . Lasserre, Discrete-time Markov control processes Further topics on discrete-time Markov control processes, of Applications of Mathematics, 1996.

]. A. Hoc16 and . Hochart, An accretive operator approach to ergodic problems for zero-sum games, 22nd International Symposium on Mathematical Theory of Networks and Systems, pp.315-318, 2016.

]. R. How60, . G. Howardkar78-]-a, . G. Kartsatoskar81-]-a, and . Kartsatos, Dynamic programming and Markov processes The Technology Press of M.I.T On the equation T x = y in Banach spaces with weakly continuous duality maps Some mapping theorems for accretive operators in Banach spaces, Nonlinear equations in abstract spaces (Proc. Internat. Sympos, pp.105-112169, 1960.

]. T. Kat67 and . Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, vol.19, pp.508-520, 1967.

V. [. Kolokoltsov and . Maslov, Idempotent analysis and its applications, volume 401 of Mathematics and its Applications Translation of ?t Idempotent analysis and its application in optimal control (Russian), " Nauka " Moscow, 1994.

A. [. Kohlberg and . Neyman, Asymptotic behavior of nonexpansive mappings in normed linear spaces, Israel Journal of Mathematics, vol.53, issue.4, pp.269-275, 1981.
DOI : 10.1007/BF02762772

]. E. Koh74, . Kohlbergkoh80-]-e, and . Kohlberg, Repeated games with absorbing states Invariant half-lines of nonexpansive piecewise-linear transformations, Ann. Statist. Math. Oper. Res, vol.2, issue.53, pp.724-738366, 1974.

]. V. Kol92 and . Kolokoltsov, On linear, additive, and homogeneous operators in idempotent analysis, In Idempotent analysis Adv. Soviet Math, vol.13, pp.87-101

M. [. Kre?-in and . Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation, issue.26, p.128, 1950.

J. [. Kemeny and . Snell, Finite Markov chains, 1976.

R. [. Kirk and . Schöneberg, Zeros ofm-accretive operators in Banach spaces, Israel Journal of Mathematics, vol.73, issue.1-2
DOI : 10.1007/BF02760935

]. W. Kul97 and . Kulpa, The Poincaré-Miranda theorem, Amer. Math. Monthly, vol.104, issue.6, pp.545-550, 1997.

S. [. Kontorer, . Yu, and . Yakovenko, Nonlinear semigroups and infinite horizon optimization, In Idempotent analysis Adv. Soviet Math. Amer. Math. Soc, vol.13, pp.167-210, 1992.

]. H. Lan71 and . Lange, Abbildungssätze für monotone Operatoren in Hilbert-und Banach-Räumen, 1971.

]. Lim05 and . Lim, Singular values and eigenvalues of tensors: a variational approach, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp.129-132, 2005.

S. [. Liggett and . Lippman, Stochastic Games with Perfect Information and Time Average Payoff, SIAM Review, vol.11, issue.4, pp.604-607, 1969.
DOI : 10.1137/1011093

R. [. Lemmens, . H. Nussbaummar70-]-r, and J. Martin, Nonlinear Perron-Frobenius theory, volume 189 of Cambridge Tracts in Mathematics A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer, pp.307-314, 1970.

]. W. Mce06, . M. Mceneaneymce11-]-w, and . Mceneaney, Max-plus methods for nonlinear control and estimation Distributed dynamic programming for discrete-time stochastic control, and idempotent algorithms, Mertens and A. Neyman. Stochastic games. Internat. J. Game Theory, pp.443-45153, 1981.

A. [. Mceneaney and . Pandey, Development of an Idempotent Algorithm for a Network-Delay Game, 2015 Proceedings of the Conference on Control and its Applications, pp.439-446, 2015.
DOI : 10.1137/1.9781611974072.60

S. [. Maslov, Samborski? ?, editors. Idempotent analysis, volume 13 of Advances in Soviet Mathematics, Mertens, S. Sorin, and S. Zamir. Repeated games, 1992.

[. Mertens, S. Zamirney03, and ]. A. Neyman, The value of two-person zero-sum repeated games with lack of information on both sides Stochastic games and nonexpansive maps, Stochastic games and applications, pp.39-6472, 1971.

]. R. Nus88 and . Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc, issue.391, pp.75-137, 1988.

]. R. Nus89 and . Nussbaum, Iterated nonlinear maps and Hilbert's projective metric, II. Mem. Amer. Math. Soc, vol.79, issue.401, p.118, 1989.

]. O. Ore44 and . Ore, Galois connexions, Transactions of the American Mathematical Society, vol.55, pp.493-513, 1944.
DOI : 10.1090/S0002-9947-1944-0010555-7

]. S. Ovc02 and . Ovchinnikov, Max-min representation of piecewise linear functions, Beiträge Algebra Geom, vol.43, issue.1, pp.297-302, 2002.

M. [. Paulsen and . Tomforde, Vector spaces with an order unit, Indiana University Mathematics Journal, vol.58, issue.3, pp.1319-1359, 2009.
DOI : 10.1512/iumj.2009.58.3518

URL : http://arxiv.org/abs/0712.2613

M. [. Papadopoulos and . Troyanov, Weak Minkowski spaces In Handbook of Hilbert geometry, IRMA Lect. Math. Theor. Phys. Eur. Math. Soc, vol.22, pp.11-32, 2014.

M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, 1994.
DOI : 10.1002/9780470316887

]. L. Qi05 and . Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput, vol.40, issue.6, pp.1302-1324, 2005.

]. J. [-ren11 and . Renault, Uniform value in dynamic programming, J. Eur. Math. Soc. (JEMS), vol.13, issue.2, pp.309-330, 2011.

]. J. [-ren12 and . Renault, The value of repeated games with an informed controller, Math. Oper. Res, vol.37, issue.1, pp.154-179, 2012.

]. I. Rom67 and . Romanovsky, Optimization of stationary control of a discrete deterministic process, Cybernetics, vol.3, issue.2, pp.52-62, 1967.

]. D. Rs01a, S. Rosenberg, and . Sorin, An operator approach to zero-sum repeated games

]. A. Rs01b, I. Rubinov, and . Singer, Topical and sub-topical functions, downward sets and abstract convexity. Optimization, pp.5-6307, 2001.

R. [. Rockafellar and . Wets, Variational analysis, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1998.
DOI : 10.1007/978-3-642-02431-3

]. H. Sch74 and . Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, 1974.

]. L. Sha53 and . Shapley, Stochastic games On general minimax theorems, Proc. Nat. Acad. Sci. U. S. A, pp.1095-1100171, 1953.

]. S. Sor02, . Sorinsor03-]-s, and . Sorin, A first course on zero-sum repeated games Symmetric incomplete information games as stochastic games, Stochastic games and applications, pp.323-334109, 1999.

N. [. Sturmfels and . Tran, Combinatorial types of tropical eigenvectors, Bulletin of the London Mathematical Society, vol.45, issue.1, pp.27-36, 2013.
DOI : 10.1112/blms/bds058

URL : http://arxiv.org/abs/1105.5504

]. G. Vig10 and . Vigeral, Evolution equations in discrete and continuous time for nonexpansive operators in Banach spaces. ESAIM Control Optim. Calc. Var Vigeral. A zero-zum stochastic game with compact action sets and no asymptotic value, Dyn. Games Appl, vol.16, issue.32, pp.809-832172, 2010.

]. P. Whi83 and . Whittle, Optimization over time, II. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, 1983.

Q. [. Yang and . Zhao, The balance problem of min???max systems is co-NP hard, Systems & Control Letters, vol.53, issue.3-4, pp.3-4303, 2004.
DOI : 10.1016/j.sysconle.2004.05.009

M. [. Zwick and . Paterson, The complexity of mean payoff games on graphs, Theoretical Computer Science, vol.158, issue.1-2, pp.343-359, 1996.
DOI : 10.1016/0304-3975(95)00188-3