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Introduction

Dimensionality plays an interesting role in physical systems. Low-dimensional sys-
tems (D < 3), by their constrained nature, behave differently than their high-dimensional
analogues. Take for instance a D-dimensional random walk: the probability of return
to the origin is one for a number of spatial dimensions smaller than three, a mathe-
matical result due to Pólya (1921). The initial interest in 1D problems first came from
theoretical motivations: they often constitute simple toy-models, where analytical so-
lutions are easier to find (with analytical approaches often failing for D > 1). The
Ising model in 1D [77, 99] can be solved in a rather straightforward manner, while the
two-dimensional solution later found by Onsager [114] is much more involved, and is
a very specific example of an analytically solvable problem for D > 1. More general
than the Ising model, the Heisenberg model for spins is also solvable exactly in 1D.
This was done by Bethe in the 1930s, thus creating a landmark by applying an Ansatz
which now bears his name [10].

Bethe’s breakthrough is a prime example of finding exact solutions to a very specific
class of so-called integrable problems. In classical physics, the numbers of conserved
quantities in such systems is equal to their number of degrees of freedom so that they
only explore a small region of phase space: in other terms they are not ergodic. Inte-
grability may also occur in quantum systems, although the question of how to char-
acterise quantum integrable systems is still a subject of active research [122]. Classical
or quantum, many examples of integrable systems are one-dimensional: the Luttinger
liquid [103, 138] which describes bosonic or fermionic fields in the low-energy limit,
non-linear partial differential equations such as the sine-Gordon model in 1D or the
non-linear Schrödinger equation in 1D, and finally the Lieb-Liniger model [100, 101]
(modelling bosons with contact interactions in 1D) are famous examples which we will
meet later in this thesis. Alongside this wide class of exactly-solvable problems, a num-
ber of theoretical methods were developped for this reduced dimension [27].

Integrability is not just a mathematical feature: such systems are not expected to relax
towards an equilibrium state described by a Gibbs ensemble, as opposed to ergodic
systems. For systems close to integrability (as in experiments), different time scales are
expected to emerge with the possibility of "prethermalisation" [9], namely the existence
of an out-of-equilibrium stationary state. The specific behaviour of integrable or close-
to-integrable models makes them an ideal playground to study the open question of
relaxation of isolated quantum systems in general.

Despite the apparent simplicity of 1D models which allow to find analytical solutions,
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they exhibit rich physics with no equivalence in higher dimensions. As well as conse-
quences on the dynamics of such systems, their constrained nature also lead to distinct
equilibrium behaviours. If the interactions are added to the equation, the movement
of a single particle is forced onto its neighbours, creating long-wavelength collective
excitations. For quantum systems, low-energy fluctuations exist even for vanishing
temperatures, and their enhanced effect in 1D prevents the emergence of long-range
order and rules out the possibility of Bose-Einstein condensation. But the presence
of repulsive interactions leads to the existence of different phases, such as the phase-
fluctuating condensate for weak interactions or the Tonks gas for strong interactions:
in this strongly-correlated limit where the single-particle wavefunctions have no possi-
bility of overlapping the non-penetrating bosons behave as fermions. The fermionised
Tonks gas also illustrates that strong correlations are naturally present in 1D: to reach
such correlated states in 3D, additional ingredients are necessary, for instance a peri-
odic potential for the Mott insulating phase.

At first, most interest in these systems was purely theoretical, leading to numerous
models and methods of which a few are enumerated above 1. Progress in nanotech-
nology and fabrication methods later lead to the actual realisation of one-dimensional
systems in condensed matter like conducting polymers [71], carbon nanotubes [14]
(where the electrons obey the Luttinger liquid model), semi-conductor nanowires [151]
(with the demonstration of quantized conductance) or arrays of Josephson junctions
[146] (one of the first realisations of a one-dimensional bosonic phase). Topological
edge states involved in the fractional Hall effect also showed Luttinger-liquid like be-
haviour [28]. A relationship between one-dimensionality and unconventional super-
conductivity has been speculated 2. One-dimensional systems are not only present in
condensed matter. An optical fibre is naturally one-dimensional, and the propagation
of high-intensity light taking into account non-linearities obey non-linear partial dif-
ferential equations such as the sine-Gordon or non-linear Schrödinger equations, with
their non-linear characteristic acting as an analogue to interactions between massive
particles. Experiments have demonstrated for instance solitons in such fibre optics:
these studies are motivated by telecommunication applications and the generation of
highly-localised (in time) intense light pulses [89]. So far, quantum features have not
been explored with optical systems.

Of all experimental realisations of one-dimensional systems, the theorist’s favourites
are certainly ultra-cold atomic gases. In a rich community of analog quantum simula-
tors, these synthetic quantum gases offer a clean and highly controllable environment
to study all types of physical problems, including those in one dimension. Mainly
two methods are available to realise ultracold one-dimensional gases systems exper-
imentally. Their one-dimensional character requires a very strong transverse confine-
ment, achieved with two-dimensional optical lattices [47,90,117,136], or magnetic trap-
ping with micro-wires close to a surface [43, 72, 144]. Examples of models realised by
these experiments are the Bose-Hubbard and Lieb-Liniger models, both with bosonic
species. Until recently, these experiments focussed on equilibrium properties of such
gases, unveiling the theoretically-known phenomena mentioned above, such as the

1Reference [27] is a review of numerous theoretical methods available for one-dimensional Bosons
2See for instance [32, 140], among the publications of the field.
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observation of a Tonks gas [117], the study of the Mott transition in 1D [136], or the
characterisation of quasi-condensation in the weakly-interacting limit of Lieb-Liniger
gases [6,43,79]. The natural phase fluctuations present in the system also constitutes an
advantage for interferometry applications [133]. Finally, the integrability of the Lieb-
Liniger model realises an ideal testbed for the study of out-of-equilibrium dynam-
ics in isolated quantum systems, with the existence of long-lived out-of-equilibrium
states [50,92], the observation of prethermalisation [64], the propagation of correlations
following a quench [30,97] and the observation of a generalised Gibbs ensemble [96]. A
continuous dialogue between theory and experiment lead to great progress in the field
in the past twenty years.

Our experimental setup uses an atom chip to highly confine bosonic 87Rb atoms in very
elongated traps, such that the transverse degrees of freedom are frozen. Until recently,
the experiment mostly focussed on equilibrium characterisation of the phase diagram
of a one-dimensional Bose gas with repulsive interactions [5, 6, 43, 51, 79, 80]. However
our setup is also well suited for the investigation of out-of-equilibrium physics: we can
control longitudinal and transverse confinements separately which allows us to imple-
ment different excitations schemes such as transverse modulation [82] or longitudinal
quenches [50]. The study of the breathing mode [50] lead the way to these new phys-
ical problems we wish to tackle, and my PhD thesis marks a transition to a new atom
chip setup, improved towards these new studies. My manuscript is organised in the
following manner:

• In Chapter one, I wish to give a brief theoretical background on one-dimensional
Bose gases, as a starting point to the physics discussed in the rest of the manuscript.
The equilibrium properties of the system of interest are presented, as well as some
theoretical tools used for my doctoral work.

• In Chapter two, I detail the upgrades brought to the experimental setup for its
improvement. Many modifications were implemented, justified by two main im-
provements: the overall stability of the setup on the one hand and the improve-
ment of the imaging system on the other hand.

• In Chapter three, the experimental cycle to produce our ultracold samples is in-
troduced. I then explicit the methods used to probe the produced samples: high-
resolution absorption imaging. Finally, I enumerate the diagnosis tools devel-
oped over the years on the setup, in real space as well as in momentum space.

• Chapter four describes in detail the results on momentum-space correlations of
a one-dimensional Bose gas, at equilibrium: these experiments were performed
with the previous setup, in the first year of the PhD studies. I present the exper-
imental results and their agreement with analytical as well as quantum Monte-
Carlo calculations.

• The fifth Chapter is dedicated to the study of a dissipative cooling mechanism
in the 1D Bose gas, and the emergence of a non-thermal state from atom loss.
Classical field simulations in both the homogeneous and trapped systems are
presented, and compared to experimental results where the detection of such a
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state is demonstrated. Emergence of such a non-thermal state is due to the in-
tegrable character of the classical field problem at play, which we prove numer-
ically by considering a system of coupled quasi-condensates of different mass,
non-integrable unlike the single quasi-condensate. Finally, we derive the stochas-
tic Gross-Pitaevskii equation considered in [65] with an alternative method, and
recover results in agreement with their findings.

• The final Chapter presents a final upgrade to the experimental setup, not com-
pletely constructed yet: the building of a longitudinal optical lattice on top of the
magnetic confined provided by the chip. I first review existing results on physics
in dimension one with a periodic potential. The setup, almost complete, is then
presented, followed by an overview of the questions we wish to consider in a
near future.



CHAPTER 1
Theoretical overview: one-dimensional Bose gases

This Chapter aims at giving a brief overview of the properties of the repulsive weakly-
interacting Bose gas in one dimension, and its theoretical description(s). First, the cri-
terion for one-dimensionality will be raised and put in perspective with scattering in a
highly-confining transverse potential, before turning to the seminal models of the one-
dimensional Bose Gas and its complete phase diagram. There are numerous models
and methods (implemented analytically and numerically) available. Some are exact,
but we also value more accessible although approximative approaches which already
give insight into many physical features. For some physical quantities we are unable
to carry out the complete exact calculation and we thus turn to these approximations.

1.1 One-dimensionality and interactions in a tight confinement

Consider a one-dimensional Bose gas in a box of length L with periodic boundary
conditions. Motion is frozen in transverse directions, such that the three-dimensional
wavefunction can be factorised as 1

Ψ(r1, ..., rN ) = Ψ(z1, ..., zN )

N∏
n=1

φ0(xi, yi), (1.1)

where φ0 is the single particle wavefunction in the lowest transverse quantum state. In-
hibition of transverse motion is ensured by a tight transverse confining potential, such
that all energy scales in the system must be smaller than the transverse energy gap.
For a harmonic transverse confinement (corresponding to the experimental implemen-
tation of these systems), the condition translates to

kBT, µ� ~ω⊥. (1.2)

Dynamics are thus restricted to the longitudinal direction and from now on one can
consider Ψ(z1, ..., zN ), absorbing the remaining factor of the three-dimensional (3D)
wavefunction as a normalisation coefficient. It is straightforward that the gas is kine-
matically effectively one-dimensional, with each individual atom only moving along
the z axis, however the effect of the strong confinement on the interactions between

1Precautions should be taken in the vicinity of zi = zi+1 where kinks appear in the many-body wave-
function as shown below.

5
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atoms should be considered carefully.

For three-dimensional scattering, in the low-energy limit and for short-range interac-
tions (both assumptions usually verified in the case of dilute ultracold atomic gases), a
single parameter entirely contains the physics of scattering: the (3D) s-wave scattering
length aS , related to the phase shift gained by the colliding particles during the scatter-
ing event. Momentum and energy conservation laws ensure that when two particles
collide in one dimension, their momenta are simply exchanged. The interaction po-
tential can be written in terms of an effective coupling constant g1D (which we assume
positive, implying repulsive interactions):

V (r) = g1Dδ(r− r’) (1.3)

In the presence of an transverse external harmonic trapping potential of confinement
frequency ω⊥, the effective 1D coupling is expressed with aS as [113]:

g1D =
2~aSω⊥(
1− C aS

l⊥

) (1.4)

l⊥ =
√

~/mω⊥ is the transverse harmonic oscillator length, and C = ζ(1/2) ≈ 1.46...

(ζ being the Riemann ζ function). If aS � l⊥ (verified for weak enough interactions),
the above expression takes the simpler form g = 2~aSω⊥. Equation 1.4 suggests that a
large coupling constant can be achieved with the so-called confinement-induced reso-
nance, similar in nature to a Feshbach resonance: the incoming channel of two particles
is coupled to a transversally excited molecular bound state. Such a resonance was ex-
perimentally implemented with Cesium atoms by Nägerl and colleagues [69] to reach
strongly interacting regimes in 1D and 2D gases.

For 87Rb these resonances are not accessible. The ratio CaS/l⊥ is of the order of 1 for
transverse trapping frequencies in the 100 MHz range which is completely out of reach,
with typical experimental transverse frequencies being around 1 kHz. Since Feshbach
resonances are also out of reach (around 1000 G), we always lie in the limit where aS is
constant and g1D ∝ ω⊥. The s-wave scattering was measured to be aS = 5.3 nm [145]
in the ground state |F = 2,mF = 2〉. From now on, we consider such a transversally
confined gas with an effective coupling constant g1D.

1.2 Exact description and phase diagram

Just like a certain number of other one-dimensional (1D) systems, the 1D Bose gas has
the remarkable property of being integrable. The models which describe the system,
presented in this section, can be exactly solved and a certain number of quantities are
exactly known. After presenting the T = 0 and finite temperature models I will detail
the interesting variety of phases the system exhibits. From a numerical point of view
numerous exact methods also exist, the reduced dimensionality being a clear advan-
tage from a computational cost point of view, and I will briefly mention the available
methods most relevant to this doctoral work. However for a more comprehensive in-
troduction to the models and methods mentioned here I refer the reader to the vast
literature (see the cited documents throughout the Chapter).
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1.2.1 Lieb-Liniger model

The Lieb-Liniger model developed in two seminal papers [100,101] constitutes the sim-
plest non-trivial model of interacting 1D bosons in the continuum at zero temperature.
It contains two terms; kinetic energy and repulsive point-contact interactions (assump-
tion usually verified in ultracold atomic gases) and takes the following form in second
quantisation:

ĤLL = − ~2

2m

∫
dzΨ̂†(z)

∂

∂z
Ψ̂(z) +

g

2

∫
dzΨ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z). (1.5)

By setting g to +∞ in equation 1.5 one recovers the so-called Tonks-Girardeau gas.
Historically, Tonks first considered the classical problem of hard spheres in 1936 [139],
and Girardeau [61] pointed out the one-to-one correspondance between impenetra-
ble bosons in dimension one and spinless fermions in 1960, before Lieb and Liniger
considered the quantum problem for arbitrary interaction strengths in 1963. From the
parameters present in 1.5, an energy and a length scale can be built:

lg =
~2

mg
and Eg =

mg2

2~2
. (1.6)

Since particles are indistinguishable one can restrict the problem to a subspace z1 <

z2... < zN and Ψ̂ in other regions of the multi-dimensional space can be recovered by
symmetrisation. The ground state of the many-body wavefunction can be constructed
using a Bethe Ansatz [101]. A set ofN quantum numbers I1 < ... < IN (in a system with
N particles, reflecting the integrability of the problem) then completely determine the
so-called quasi-momenta ki of the system and the corresponding eigenstates: [17, 27].

ĤLLΨ̂(z1, ..., zN ) = E(k1, ..., kN )Ψ̂(z1, ..., zN ) (1.7)

with

Ψ̂(z1 < .. < zN ) =
∑
P

AP e
i(kP (1)z1+...+kP (N)zN ) and E =

~2

2m

∑
i

k2
i . (1.8)

where there are N ! possible permutations P of the set {1, 2, ..., N}. The Bethe wave-
function can be interpreted in the following manner: when the coordinates zi are dis-
tinct, the Hamiltonan is reduced to a system of free particles and the many-body eigen-
state is a linear combination of the free-particle plane waves. If two particles of mo-
menta ki+1 and ki collide, resulting in a permutation of momenta, the boundary condi-
tion zi = zi+1 translates to:

AP ′ = AP
ki+1 − ki + ig

ki − ki+1 + ig
. (1.9)

The permutation P ′ differs from P by exchange of ki and ki+1 and the coefficient AP ′
is thus modified as in 1.9: these coefficients are fully determined by two-body colli-
sions. In addition, the periodic boundary conditions determine the quasi-momenta ki
so that the Bethe wavefunction is completely determined by two-body processes. The
Bethe Ansatz solution is exact since no additional momenta are generated after scatter-
ing processes, feature owing to point-contact interactions. In the thermodynamic limit
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L→∞ at fixed density n = N/L, the ground-state properties can be computed via the
quasi-momentum distribution [101].

After rescaling all energies by Eg and lengths by lg the ground state solely depends on
a dimensionless interaction parameter γ = 1/(nlg). The form of Ψ̂(z1 < .. < zN ) for
different values of γ is illustrated figure 1.1. A certain number of ground state proper-
ties (energy per particle, chemical potential, ground-state energy...) were determined
numerically by solving an integral equation on this single relevant parameter [101] 2.

Figure 1.1: Schematical representation of the many-body wavefunction for weak interactions
(γ � 1, or equivalently E/N � Eg , left), and strong interactions (γ � 1, or E/N � Eg , right).
As interactions gain in importance the value of Ψ̂ at the nodes decreases to vanish at the infi-
nite interaction limit, where the gas exhibits Pauli principle-like features (or "fermionisation").
Adapted from [21].

After determining the ground-state, Lieb (in [100]) turned to the elementary excitations
of the system, revealing two branches nicknamed "type I" and "type II", or "particles"
and "holes" (as an analogy to excitations in a Fermi gas, particularly striking in the
strongly-interacting limit). "Type I" can be identified as Bogoliubov excitations: the
numerics (figure1.2) show that the Bogoliubov spectrum practically lies on the Lieb I
excitation curve for small γ, however a slight discrepancy appears for larger interac-
tion strengths. A certain number of papers suggest a correspondence between type II
excitations and dark solitons for weak interactions, as in [76] or more recently [84].

1.2.2 Yang-Yang thermodynamics

At finite temperature, Type I and Type II excitations are thermally generated. In the
thermodynamic limit, C.N. Yang and C.P. Yang derived two integral equations (from
the minimisation of free energy and the continuity of the wavefunction) for the quasi-
momentum distributions, from which the exact equation of state n(µ, T ) can be nu-
merically evaluated. The existence of this exact solution is of course an tremendous
advantage when it comes to measuring thermodynamic quantities experimentally (see
Chapter 3 for more on this aspect).

Besides usual thermodynamic variables like the chemical potential, the entropy per
particle or the internal energy, other quantities like the local pair correlations g(2)(0)

can be computed. It represents the probability of finding a second particle at z = 0

knowing that another has been detected at this same position and defines the various
phases of the 1D Bose gas (see below). We follow the approach adopted in [57] based on
the Hellman Feynman theorem. For a generic hamiltonian depending on a parameter

2Many people wonder who Werner Liniger was: an acclaimed numerical physicist working at IBM
research centre in New York at the time.
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Figure 1.2: Left: figure 2 of [101], representing the quasi-momenta distributions for different
interaction strengths. The most peaked distributions correspond to the smallest γ, while the
strongly-interacting samples reveal Fermi-like distributions. Right: figure 4 of [100]. The dis-
persion relations of the two excitation branches are plotted, along with the Bogoliubov disper-
sion (dashed).

λ, and one of its eigenstates |Ψλ〉 depending exclusively on λ and the eigenenergy Eλ
one has:

d

dλ
Eλ = 〈Ψλ|

d

dλ
Ĥλ |Ψλ〉 (1.10)

The free energy F is defined by F = −β−1ln
(∑

n e
−βEn

)
with summation over all

eigenstates, so that (where 〈...〉 represents an ensemble average)

dF

dλ
=

1

Tr(e−βĤλ)

∑
n

dEn
dλ

e−βEn =

〈
dĤλ

dλ

〉
(1.11)

For the Lieb-Liniger Hamiltonian and the coupling constant g:

dF

dg
= 〈1

2

∫
dzΨ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)〉 = L

n2

2
g(2)(0) (1.12)

With the knowledge of the equation of state, the quantity g(2)(0) is accessible, and can
be computed for different regimes of gas [88].

1.2.3 Absence of condensation but a variety of phases

1D Bose gases present distinct coherence properties compared to their three-dimensional
counterparts. Since the density of states ρ(ε) scales like ε−1/2, the number of particles
N −N0 in the excited states (where N0 denotes the occupation of the ground state and
N the total number of particles) never saturates, and no macroscopic occupation of the
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ground state occurs. This argument holds for the non-interacting gas, however more
general arguments reveal the absence of condensation in the interacting gas also. In the
constrained one-dimensional configuration, long-wavelength quantum fluctuations in
the system propagate longitudinally and impose a fast decay of the one-body density
matrix, preventing long-range coherence in the system: there is no Bose-Einstein con-
densation in dimension one.

Nevertheless, a rich variety of phases is revealed upon varying the interaction strength
and temperature. We previously defined a dimensionless interaction parameter γ =

1/nlg. A reduced temperature is also introduced by rescaling kBT with Eg. The full
phase diagram of the 1D Bose is then obtained by spanning the two dimensionless
parameters

γ =
mg

~2n
and t =

2~2kBT

mg2
. (1.13)

From g(2)(0), three asymptotic phases can be identified in parameter space (t, γ), sepa-
rated by smooth crossovers (rather than phase transitions since no continuous symme-
try can be broken in 1D).

For g(2)(0) ≈ 2, the gas is in the so-called ideal Bose gas regime (IBG). In this phase
found in the region of the phase diagram where tγ2 > 1, the particles bunch: a boson
has twice the probability of finding itself at a position where there is already a boson
than elsewhere. Two subregimes with such behaviour can be identified. For tγ2 � 1

the interparticle distance is much larger than the de Broglie wavelength λdB and the
gas follows Maxwell-Boltzmann statistics. As λdB increases, the Bose gas becomes de-
generate and no longer verifies the classical equation of state.

By further increasing the density, one gradually enters a regime where the repulsive
interactions prevent bosonic bunching, so that g(2)(0) ≈ 1. This occurs for tγ3/2 ≈ 1, or
equivalently at the crossover temperature kBTCO = ~n

√
gn/m 3. The gas is coherent

from the density fluctuation’s perspective (they are suppressed just as they would in
a true condensate), but phase fluctuations remain, phase coherence over the complete
length of the gas being forbidden. In this quasi-condensate (or qBEC, also sometimes
called a phase-fluctuating condensate) two subregimes can also be distinguished, by
the nature of the fluctuations in the system: when tγ � 1 thermal fluctuations domi-
nate while for denser and colder systems verifying tγ � 1 quantum fluctuations take
over 4.

Finally, in the strong interactions limit where t � 1 and γ � 1 one enters the Tonks-
Girardeau phase, where g(2)(0) � 1. Atoms are strongly correlated, and mimic the
Pauli exclusion principle of fermions.

3This crossover temperature can be derived by considering the condition for which density fluctuations
become small, see section 1.4.3

4The characterisation of the different phases of the 1D Bose gas is considered here from the quantity
g(2)(0), however for different observables this identification of phases may vary.
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ThermalQuantum

Figure 1.3: Phase diagram of the 1D Bose gas. There are three main phases: the ideal Bose
gas (IBG), where bunching persists, the Tonks gas (TG) where fermionisation occurs and the
quasi-condensate (qBEC) where bunching is suppressed. The equations of the lines separating
the phases in the weakly-interacting region (γ � 1) are tγ2 = 1 (dashed line in white region),
tγ3/2 = 1 (white to blue) and tγ = 1 (solid line in blue region).

However powerful Yang-Yang thermodynamics may be, not all potential quantities
of interest can be determined, like correlation functions. Other methods exist, and in
particular a certain number of exact numerical tools can be implemented.

1.2.4 Numerically exact methods

Although the Lieb-Liniger model is integrable, the general Hamiltonian of a trapped
1D Bose Gas in the grand-canonical ensemble is a numerically hard problem. Here I
wish to give the idea behind some available numerical methods. Mainly three so-called
exact 5 methods come to mind for 1D Bose gases: Exact Diagonalisation, Density Ma-
trix Renormalisation Group (DMRG) and Quantum Monte Carlo (QMC).

Exact diagonalisation is a powerful method to calculate low-energy eigenvalues and
eigenfunctions of a stationary Hamiltonian. It is applicable in a wide range of prob-
lems and was demonstrated for 1D Bose gases in [35] (amongst others). The matrix
elements of each term of the Hamiltonian is expressed on a single-particle basis, cho-
sen judiciously. Since the dimension of the Hilbert space is in general infinite, the basis
is restricted to a finite number of vectors. This truncation results in deviations between
the exact and numerical eigen- energies and functions, so that the accuracy of the re-
sults greatly depends on the initial choice of basis functions and their number. In this
case "exact" refers to the absence of any other approximation to solve the many-body
quantum problem [34]. However, the computation time and memory limits the sizes of
the Hilbert spaces, scaling exponentially with the number of particles, in reach. Only
small systems of a few tens of particles at most can be considered [27].

5We will see in this discussion that the exact nature of the results is not granted, but that they are in
general accurate within error bars.
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DMRG is a variational method first developped by S. White [149], and aiming at sim-
plifying the task of finding accurate solutions for large Hilbert spaces rather than brute
force exact diagonalisation. DMRG iteratively reduces the size of the Hilbert space
by selecting effective degrees of freedom most important for the target state (like the
ground state for instance). It is a renormalisation method in the sense that the system
is iteratively divided into subsystems (M and N ). The reduced density matrices ρ̂M ,
ρ̂N are then considered to express the target state |Ψ〉. This method has proven very
accurate for a number of 1D problems and can be extended to time-dependent Hamil-
tonians [27]. For the study of 1D bosons, it was implemented for instance in [36].

The term Quantum Monte Carlo in fact encompasses a large number of methods which
all aim to provide a reasonably accurate solution of quantum many-body problems.
They are in principle applicable in all dimensions, to a great variety of systems, of
both quantum statistics (although the infamous sign problem remains an obstacle for
fermionic and spin systems). These numerical methods go well beyond mean-field and
allow for instance the computation of correlation functions and offering exact solutions
- within statistical error bars - for a certain number of problems (like non-frustrated
bosons). Their common thread is the use of the Monte Carlo method to treat high-
dimensional integrals which arise in quantum many-body problems. QMC is most
powerful for non time-dependent Hamiltonians.

During my thesis we collaborated with Tommaso Roscilde of ENS de Lyon. He com-
puted the two-body correlation function in momentum space accross the quasi-condensation
crossover (quantity which we measured, see Chapter 4) using the stochastic series ex-
pansion (SSE) approach, which differs from the path-integral scheme. In the latter,
the Boltzmann operator e−βH is evaluated in imaginary-time propagation using path-
integral representation [132]. In the series expansion representation, the Boltzmann
operator is decomposed in a Taylor series expansion as:

e−βH =
+∞∑
n=0

−βn

n!
Hn (1.14)

Choosing a basis, the partition function can then be written as

Z =

+∞∑
n=0

∑
αn

〈α0|H |αn−1〉 ... 〈α2|H |α1〉 〈α1|H |α0〉 . (1.15)

The method was applied for the computation of the momentum distribution and mo-
mentum correlations, for comparison with experimental data, detailed in Chapter 4.

Summary

• The 1D Bose gas is an example of an integrable system and the equation of
state can be computed exactly.

• Although no condensation is possible in dimension one, in the presence of
repulsive interactions three main phases arise: the non-interacting ideal Bose
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gas, the so-called quasi-condensate (which owes its name to the fact it veri-
fies half of the properties of a true condensate), and the strongly interacting
Tonks gas.

• Although Yang Yang thermodynamics are very powerful to determine a cer-
tain number of quantities, exact numerical methods are available where the
analytical approach fails.

• These numerical methods are manifold, and in the course of this thesis we
turned to Quantum Monte Carlo calculations.

1.3 Tools for the weakly-interacting gas

Most of the numerical methods mentioned previously are quite challenging to imple-
ment and require substantial computational power and time. However, more simple
tools, although not exact, are straightforward enough and capture pertinent physics.
The idea is to find strategies to solve the hard problem given, in the general case of a
trapped 1D Bose gas in the grand-canonical ensemble, by:

Ĥ = − ~2

2m

∫
dzΨ̂†(z)

(
∂2

∂z2
+ (Vext(z)− µ)

)
Ψ̂(z) +

g

2

∫
dzΨ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z).

(1.16)
The case of the ideal Bose gas is treated separately since the absence of interactions
greatly simplifies the problem. Then, assuming T � TCO to place ourselves in the
quasi-condensate phase, two common approaches for the weakly-interacting gas (the
Bogoliubov approximation and the Gross-Pitaevskii equation) are introduced. Finally,
the slightly more involved classical field picture is considered: this approach can de-
scribe the quasi-condensation crossover as long the temperature is high enough. The
case of strongly-interacting gases will not be mentioned in the following.

1.3.1 Quick detour: the non-interacting gas

Consider N bosons in a box of length L (for simplicity the external potential is dis-
carded in this discussion), of chemical potential µ and temperature T . The occupation
number of a mode k is given by the Bose law:

νk =
1

eβ(Ek−µ) − 1
(1.17)

Ek is the dispersion relation of a free particle Ek = ~2k2/2m, and µ < 0. The equation
of state n(µ, T ) is obtained by integrating νk over k. In the thermodynamic limit it
reads:

n =
1

λdB
g1/2(f). (1.18)

f = eβµ is the fugacity of the gas, λdB = ~
√

2π/mkBT the thermal de Broglie wave-
length and g1/2(z) =

∑+∞
l=1 z

l/
√
l. In 1D, n diverges when µ approaches zero, which
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prevents a saturation of the population of excited states.

In the classical and degenerate limits the equation of state takes simple forms:

• When |µ| � kBT , the Bose distribution simplifies to a Maxwell-Boltzmann dis-
tribution and the signature of the quantum nature of the considered particles
disappears:

νk = e−β(Ek−µ). (1.19)

The equation of state thus becomes

n =
1

λdB
eβµ (1.20)

• In the opposite limit where |µ| � kBT , the occupation number becomes Lorentzian

νk =
1

k2 λ
2
dB
4π + β|µ|

, (1.21)

and correspondingly,

n =
1

λdB

√
π

β|µ|
. (1.22)

These results are valid as long as the interactions are not important enough to impose
an energy cost on density fluctuations.

1.3.2 Gross-Pitaevskii equation

Despite the absence of true long-range order some approaches valid for three-dimensional
condensates can be extended to the 1D case, such as the Gross-Pitaevskii equation. If a
true condensate would exist, the approach would be to decompose the quantum field
Ψ̂ into a complex field (representing the macroscopic condensate wavefunction) and a
perturbation δΨ̂ describing the depletion of the condensate.

Ψ̂ = Ψ0 + δΨ̂ (1.23)

Injecting this form of Ψ̂ into hamiltonian 1.16, the energy functional of the system is
found to be (neglecting high-order terms in δΨ̂):

E =

∫
dz

[
~2

2m
|∂2
zΨ0(z)|2 + Vext(z)|Ψ0(z)|2 +

g

2
|Ψ0|4

]
(1.24)

The ground-state of the condensate wavefunction is then given by the minimisation of
this functional for a constant total number of particles N , and introducing the chemical
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potential as a Lagrange multiplier E − µN . The result is the time-independent Gross-
Pitaevskii equation [66, 119], which is a mean-field derivation (where correlations be-
tween particles are neglected since products of δΨ̂ were discarded) of the ground state
of the system:

− ~2

2m

∂2

∂z2
Ψ0 + Vext(z)Ψ0(z) + g|Ψ0(z)|2Ψ0(z) = µΨ0(z). (1.25)

The time-dependent Gross-Pitaevskii equation is then given by

i~
∂Ψ0(z, t)

∂t
= − ~2

2m

∂2

∂z2
Ψ0 + Vext(z)Ψ0(z) + g|Ψ0(z)|2Ψ0(z). (1.26)

Exact solutions are rare and hard to compute (the most famous class of exact analytical
solution are probably solitons), and in general the equation is numerically propagated.
A characteristic length scale referred to as the healing length can be extracted from this
equation. In a homogeneous system with boundary conditions Ψ0(0) = Ψ0(L) = 0,
ξ = ~/

√
2mgn is the typical distance over which the gas gains its bulk density |Ψ0|2.

This length also appears in the Bogoliubov treatment (section 1.3.3), and the density
correlation function (section 1.4.3).

However, the initial assumption of the reasoning leading to the Gross-Pitaevskii equa-
tion is wrong: in 1D the decomposition 1.23 a priori doesn’t hold because of the ab-
sence of a macroscopically occupied state Ψ0. Following the approach of Mora and
Castin [108], the Gross-Pitaevskii can be recovered in a more rigorous treatment. If
density fluctuations are small, the field operator may be written in phase-density rep-
resentation:

Ψ̂(z) =
√
n̂(z)eiθ̂(z) (1.27)

where n̂ and θ̂ are canonical conjugate operators. Precautions should be taken when
defining these operators locally and in particular the authors of [108] discretise space.
In the following I will assume they are properly defined 6. In the quasi-condensate den-
sity fluctuations are small and a similar treatment as previously can then be applied,
with the density operator written as:

n̂ = n0 + δn̂, (1.28)

with δn̂ � n0 and ∂z θ̂ � n0. With these two small parameters, the Hamiltonian can
be expanded, which was done up to third order (necessary for the computation of the
density fluctuations [108]): Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3. The minimisation of Ĥ0 at fixed
chemical potential recovers the Gross-Pitaevskii equation, with the current notations:[

− ~2

2m
∂2
z + Vext(z)− µ+ gn0

]
√
n0 = 0. (1.29)

As a consequence the previously presented results of the Gross-Pitaevskii equation are
perfectly valid. For the choice of density profile given by the Gross-Pitaevskii approx-
imation H1 vanishes. The next order to evaluate is H2, which gives the excitations of

6Y. Castin’s lecture notes [24] pedagogically present the issues and how to circumvent them.



16 Chapter 1. Theoretical overview: one-dimensional Bose gases

the system on top of the zeroth order result given by 5.2: in the linearised approach
presented in the next section, they are the Bogoliubov excitations.

1.3.3 Bogoliubov transformation

The extension of the classic Bogoliubov theory [16] for condensates to lower dimen-
sions needs to be considered carefully because of the absence of true long-range order.
In [108] the authors derive an expansion of the hamiltonian with the appropriately
defined small parameters δn̂ � n0 and ∂zθ � n. H0 was found to return the Gross-
Pitaevskii equation. Consider the Heisenberg equations of motion applied to the ex-
panded Hamiltonian Ĥ :

i~
dΨ̂

dt
=
[
Ψ̂, Ĥ

]
. (1.30)

The results of this derivation are the so-called hydrodynamic equations:

~∂tn̂ =
~2

m
∂2
z (θ̂n̂), (1.31)

~∂tθ̂ =
~2

2m
(∂z θ̂)

2 +
~2

2m

∂2
z

√
n̂√
n̂
− gn̂. (1.32)

The previous equations can be linearised in δn̂ and ∂z θ̂ � n:

~∂tδn̂ = 2
√
n0

(
− ~2

2m∂
2
z + gn0 − µ+ Vext(z)

)
θ̂
√
n0

~∂tθ̂ = − 1
2
√
n0

(
~2

2m∂
2
z + 3gn0 − µ+ Vext(z)

)
δn̂√
n0

(1.33)

We now restrict the discussion to a homogeneous system (such that Vext = 0, for sim-
plicity). The spectrum of excitations can be derived from the two linearised hydrody-
namic equations with the following transformation (diagonalising the quadratic hamil-
tonian associated with equations 1.33:

δn̂ =
√

n0
L

∑
k f
−
k

(
b̂ke

ikz + b̂†ke
−ikz

)
θ̂ = 1

2i
√
n0L

∑
k f

+
k

(
b̂ke

ikz − b̂†ke
−ikz

) (1.34)

Where f±k verify

f+
k =

[
Ek

Ek+2µ

]1/4

f−k = 1
f+
k

.
(1.35)

Ek being the dispersion relation of a free particle. With this procedure, the Hamiltonian
Ĥ takes the diagonal form

langleĤ =
∑
k

εk b̂
†
k b̂k. (1.36)

εk = ~ωk =
√
Ek(Ek + 2µ) is the dispersion relation of the quasi-particles created or

destroyed by the operators b̂†k, b̂k. εk takes two familiar forms in the limits k � ξ−1

and k � ξ−1 (ξ being the healing length defined above). The low-energy excitations
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are phonon-like, with a linear dispersion relation ωk = ck (c =
√
µ/m) being the speed

of sound), and the high-energy excitations are particle-like with a dispersion relation
Ek + µ. The Bogoliubov approach is linear in the sense that excitations don’t interact:
they all evolve independently. In this sense, the time-dependent Gross-Pitaevskii equa-
tion goes beyond this approach since quasi-particles may exchange energy during its
propagation.

1.3.4 Classical field description

In the weakly-interacting gas, most of the features measured on the experiment are
in fact classical in the sense that they are not due to the quantum fluctuations in the
quasi-condensate. For instance, for our experimental temperatures, measured density
fluctuations are mainly due to thermal contributions, since our pixel size is not small
enough to resolve the contribution of quantum depletion [79]. Although having an
integrable model at hand to describe the full quantum system is extraordinary, it is
sometimes cumbersome to compute arbitrary quantities and simulate the equilibrium
properties or dynamics of the gas by solving the full quantum problem. The classical
field picture allows a more straightforward computation of correlation functions and is
lighter to implement numerically. Indeed, for 1D systems this classical field approach
does not suffer from ultraviolet divergences like in the two- and three-dimensional
cases. It is also interesting to compare the results predicted by classical field with those
obtained from a full resolution of the quantum problem (like in QMC), like in [80], to
better understand the role of quantum effects.

The classical field method essentially amounts to neglecting the quantum nature of the
field operator Ψ̂ and replacing it by a complex number, denoted Ψ in the following.
In other words, the discrete nature of the gas is disregarded. In the grand-canonical
ensemble, the energy functional (with chemical potential µ) results in:

E [{Ψ}] =

∫ L

0
dz

[
~2

2m

∣∣∣∣dΨ

dz

∣∣∣∣2 +
g

2
|Ψ|4 − µ |Ψ|2

]
. (1.37)

The thermal density operator for the quantum field is consequently replaced by the
probability distribution for the classical field, a Boltzmann factor and correspondingly
the partition function can be written as

Z =

∫
DΨeβE[Ψ]. (1.38)

with β = 1/kBT . From this, correlation functions can be computed, as for instance the
first order correlations G(1) given by the average of Ψ∗(z)Ψ(0):

G(1)(z) =
1

Z

∫∫
DΨe−βE[Ψ]Ψ∗(z)Ψ(0) (1.39)

Castin and coworkers applied this type of correlation function calculation in the context
of atom lasers [24, 26]. By defining dimensionless parameters for the classical field
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problem, it appears that the state of the system is captured in a single quantity η. By
rescaling Ψ, z and E with a z0, Ψ0 and β, the classical field energy functional becomes:

Ẽ
[{

Ψ̃
}]

= gΨ4
0z0β

∫ L/z0

0
dz̃

 ~2

2mgΨ2
0z

2
0

∣∣∣∣∣dΨ̃

dz

∣∣∣∣∣
2

− 1

2

∣∣∣Ψ̃∣∣∣4 − µ

gΨ2
0

∣∣∣Ψ̃∣∣∣2
 (1.40)

By setting

z0 =

(
~4β

m2g

)1/3

,Ψ0 =

(
m

~2gβ2

)1/6

, (1.41)

Equation 1.40 becomes

Ẽ
[{

Ψ̃
}]

=

∫ L/z0

0
dz̃

1

2

∣∣∣∣∣dΨ̃

dz̃

∣∣∣∣∣
2

+
1

2

∣∣∣Ψ̃∣∣∣4 − η ∣∣∣Ψ̃∣∣∣2
 . (1.42)

In the thermodynamic limit L → +∞ the classical field problem thus depends on a
single parameter

η = µ

(
~2β2

mg2

)1/3

. (1.43)

This approach can be applied on the complete quasi-condensation crossover and re-
quires no other hypothesis than highly degenerate states, typically achieved for high
temperatures. The validity of the approach however depends on the considered ob-
servable. For instance, Jacqmin et al. showed that for the momentum distribution a
classical field description without energy cutoff fails for t < 106. The calculated Full
Width Half Maximum (FWHM) of momentum distributions accross the crossover with
the classical field approach deviate from those computed with QMC for too small re-
duced temperatures [80].

During this doctoral work, the classical field approach was implemented numerically.
One can sample a thermal field and then study the dynamics of the system using the
time-dependent Gross-Pitaevskii equation (Chapter 5).

Summary

• A number of tools based on various approximations are available to study
weakly-interacting Bose gases.

• The Gross-Pitaevskii equation offers a mean-field approach where the
ground state of the system may be computed, without considering the el-
ementary excitations. The time-dependent Gross-Pitaevskii equation gives
the dynamical evolution of a given complex field in a classical picture, ne-
glecting the operator nature of the field Ψ.
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• The Bogoliubov transformation derives the form of the elementary excita-
tions of a 1D Bose gas (and coincides with one of the branches of the ex-
citations predicted by Lieb). This linearised approach is simple enough to
constitute a first theoretical calculation before turning to more involved de-
scription and often gives insight into the physics.

• The classical field formalism gives a theoretical framework in which the field
operators are treated as c-numbers (the Gross-Pitaevskii equation is therefore
included in this approach). It allows a more straightforward computation of
correlation functions than QMC and can be implemented numerically (like
in Chapter 5).

1.4 Equilibrium correlation functions over the crossover

1.4.1 Definitions

In this section, we consider a homogeneous Bose gas in a box of size L, with periodic
boundary conditions.

First-order correlation function

The first-order correlations of a field Ψ̂(z) is G(1)(z, z′) = 〈Ψ̂†(z)Ψ̂(z′)〉. One usually
considers the normalised correlation function

g(1)(z) =
〈Ψ̂†(z)Ψ̂(0)〉

n
, (1.44)

where we assumed the translational invariance of the system. This function is the
Fourier transform of the momentum distribution. Indeed, in second quantisation the
annihilation of a particle of momentum k is, by definition of the field operator Ψ̂:

âk =
1√
L

∫
dzΨ̂(z)e−ikz. (1.45)

The momentum distribution νk (or, the number of particles with momentum k) of the
gas becomes

νk = 〈â†kâk〉 =
1

L

∫∫
dzdz′〈Ψ̂†(z)Ψ̂(z′)eik(z−z′〉, (1.46)

which, assuming translational invariance, simply gives:

νk = n

∫
dzg(1)(z)eikz (1.47)

The momentum distribution is a quantity frequently measured in cold atom experi-
ments and in particular we implemented a magnetic focussing technique to directly
access this observable on our setup (see Chapter 3). The expressions of g(1)(z) in the
asymptotic limits are given in sections 1.4.2 and 1.4.3 (failing to give a general expres-
sion).
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Second-order correlation function

The second order normalised correlation function is expressed as (again, assuming
translational invariance):

g(2)(z) =
〈Ψ̂†(z)Ψ̂†(0)Ψ̂(z)Ψ̂(0)〉

n2
(1.48)

The physical interpretation of this quantity is the probability to find a particle at a po-
sition z, knowing that a particle is already present at position z = 0. It is therefore
intimately related to bunching. The local pair correlations g(2)(0) in fact identify the
various regimes of the 1D Bose gas and can be computed thermodynamically. How-
ever, in general g(2)(z) is not known.

g(2)(z) can be accessed in a indirect manner experimentally by measuring density fluc-
tuations. The average correlation between densities at position 0 and z is

〈n(z)n(0)〉 = 〈Ψ̂†(z)Ψ̂(z)Ψ̂†(0)Ψ̂(0)〉. (1.49)

With δn(z) = n(z)−〈n(z)〉, and applying the bosonic commutation relation verified by
Ψ̂, one relates the density fluctuations to the g(2) function by:

〈n(z)n(0)〉 = nδ(z) + n2(g(2)(z)− 1). (1.50)

On our experiment, the measured quantity is in fact the atom number fluctuations
〈δN2〉 per pixel, given by the previous expression integrated over the pixel size ∆ (N
being the number of atoms per pixel). We use this experimental probe as a thermome-
ter and a signature of the regime the gas lies in (see Chapter 3). Depending on the value
g(2)(0) density fluctuations will be superpoissonian (larger than the shot noise contri-
bution nδ(z), when bunching is present), or subpoissonian. Just like the first-order
correlation function, there is no general expression for the second-order correlations,
however they can be estimated in the asymptotic regimes.

1.4.2 Ideal Bose Gas

Let us first consider the non-interacting ideal Bose gas phase. The g(1) function could in
principle be determined by taking the Fourier transform of the Bose occupation num-
bers. However no analytical expression of the considered integral exists and one needs
to turn to the limits of classical and highly degenerate gases where the occupation num-
bers take simpler forms.

In the classical limit where kBT � |µ| (or equivalently n � λdB , the Bose factor sim-
plifies as a Maxwell-Boltzmann distribution. The Fourier transform g(1)(z) is then a
gaussian function given by:

g(1)(z) = e
−π z2

λdB . (1.51)
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The correlation length is thus identified as the thermal wavelength λdB . As degeneracy
is reached, the momentum distribution becomes lorentzian, and the g(1)(z) is given by

g(1)(z) = e
− 2π|z|
nλ2
dB . (1.52)

In agreement with the increasing degeneracy compared to the classical gas, the corre-
lation length becomes lφ = nλ2

dB � λdB . As one reaches the crossover temperature
TCO, one finds that the phase coherence length of the system becomes of the order of
the healing length ξ.

For the non-interacting gas the Hamiltonian is quadratic in Ψ̂(z) which makes Wick’s
theorem applicable to the computation of g(2)(z). By decomposing the mean value
of the product of four field operators in products of mean values of two operators
only [150], the following identity arises:

g(2)(z) = 1 + |g(1)(z)|2. (1.53)

This expression elegantly interprets the bosonic bunching phenomenon: the probabil-
ity of finding two atoms at distances smaller than the correlation length is twice the
probability of finding two atoms far apart, and especially g(2)(0) ≈ 2, which is a result
we already encountered from Yang-Yang thermodynamics.

These results are valid as long as |µ| � gn or equivalently, T � TCO (by injecting the
degenerate gas equation of state into the condition on the chemical potential).

1.4.3 Quasi-condensate

Now turning to the quasi-condensate phase (assuming T � TCO, condition one can
verify a posteriori), bunching is suppressed by the presence of repulsive interactions in
the system but phase fluctuations remain. These two characteristics are present in the
second and first order correlation functions respectively. The g(1)(z) and g(2)(z) were
computed by Mora and Castin [108] without neglecting density fluctuations and in-
cluding quantum fluctuations. However, most of the features of the density and phase
fluctuations relevant experimentally can be captured in an approach which neglects
quantum fluctuations 7.

Density fluctuations

Density fluctuations can be conveniently estimated in the following approach. Since we
cannot resolve the structure of the density-density correlation function, we restrict the
discussion to the fluctuations 〈δn2〉, by treating the cases of low-energy (or phonon) ex-
citations and high-energy (or particle) excitations separately. For k � ξ−1 the phase/density
representation is appropriate. Following [21] and starting from the Hamiltonian of a
1D Bose gas:

Ĥ =
~2

2m

∫
dz
(

(∂z
√
n̂)2 +

√
n̂(∂z θ̂)

2
√
n̂
)

+
g

2

∫
dzn̂(z)2, (1.54)

7The condition for which quantum fluctuations can be neglected are different for first and second order
correlations, they will be discussed when necessary.
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and expanding up to second order in small parameters δn̂ = n̂ − n0 and ∂z θ̂, one
retrieves the Bogoliubov hamiltonian:

Ĥbogo =
~2

m

∫
dz

(
1

8mn0
(∂zδn̂)2 +

n0

2
∂z θ̂)

2

)
+
g

2

∫
dzδn̂(z)2. (1.55)

By expanding on sinusoidal modes 8, where δnj,k and θj,k are conjugate variables:

δn(z) =
√

2
L

∑
k>0 (δnc,k cos(kz) + δns,k sin(kz))

θ(z) =
√

L
2

∑
k>0 (θc,k cos(kz) + θs,k sin(kz)) ,

(1.56)

and injecting into Ĥbogo 1.55, the Hamiltonian takes a quadratic form, as a sum of un-
coupled oscillators, with the dispersion relation εk =

√
Ek(Ek + 2µ):

Ĥbogo =
∑
i,k

g

2
δn2

i,k +
~2k2

8mn0
θ2
i,k. (1.57)

Assuming a high enough temperature to apply a classical field approximation and ne-
glecting the quantised nature of operators δnj,k,θj,k, and invoking the equipartition
theorem, the mean values of the fluctuations of the sinusoidal modes are:

〈δn2
j,k〉 =

kBT

g

〈θ2
j,k〉 =

kBT

~2k2/(4mn0)
.

(1.58)

The contribution to the total density fluctuations of these phonon modes formally
reads:

〈δn2〉ph =
kBT

Lg

L/ξ∑
i=1

1 : (1.59)

We finally recover TCO in the expression of the relative density fluctuations:

〈δn2〉ph
n2

=
T

TCO
. (1.60)

Since δn � n we find that this condition is equivalent to T � TCO. For momenta
k � 1/ξ, the phase-density representation is not the most appropriate. A free particle
excitation with energy Ek = ~2k2/2m corresponds to a plane wave Ψ = eikz/

√
L and

the Bogoliubov annihilation operator b̂k identifies with the free particle annihilation
operator âk. Just as we did for the low-energy excitations, we assume âk can be treated
as a c-number ak which follows a Gaussian distribution

〈|ak|2〉 = kBT/Ek. (1.61)

8This expansion can be related to the transformation used in section 1.3.3: one can retrieve the previous
transformation with ak, a†k as linear combinations of δnj,k,θj,k.
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From the Bogoliubov transformation introduced in 1.3.3 (f−k ≈ 1 for large wavevec-
tors),

δnk =

√
n0

L

(
ake

ikz + a∗ke
−ikz

)
. (1.62)

Physically, this expression can be understood as the contribution of high-momentum
atoms to density fluctuations mainly arising from interference of the atomic field akeikz/

√
L

with low-energy spatial variations of density, of order
√
n. It leads to

〈δn2
k〉 =

4mnkBT

L~2k2
(1.63)

by injecting the equipartition relation. Incidently, ξ is the typical distance over which
density fluctuations decay like 1/k2 and identifies as the density correlation length.
With our typical parameters, this length is an order of magnitude below our optical
resolution. By summing over all wavevectors verifying k � 1/ξ, the total density
fluctuations from the free particle excitations are:

〈δn2〉particle
n2

=
T

TCO
. (1.64)

g(1) function

From the phase-density representation introduced above, and neglecting density fluc-
tuations (this is appropriate in the qBEC as we just argued), the first-order correlation
function becomes g(1)(z) = 〈ei(θ(z)−θ(0))〉 and reflects the phase fluctuations of the gas.
By virtue of the applicability of Wick’s theorem for a quadratic Hamiltonian, we are
left to compute g(1)(z) = e−〈(θ(z)−θ(0))2〉/2. From the expansion on sinusoidal modes:

〈(θ(z)− θ(0))2〉 =
∑
k>0

2〈θ2
c,k〉(cos(kz)− 1)2 +

∑
k>0

2〈θ2
s,k〉sin2(kz) (1.65)

Injecting the results of the equipartition of energy in each mode:

〈(θ(z)− θ(0))2〉 =
4mkBT

Ln0~2

∑
k>0

1− cos(kz)
k2

. (1.66)

Finally (after integration on k),

g(1)(z) ∝ e−4π|z|/(nλ2
dB). (1.67)

This defines the phase correlation length in the quasi-condensate as lφ = 2nλ2
dB , twice

the coherence length in a degenerate Bose gas. This is compatible with the fact that
in the qBEC only phase fluctuations contribute to the first-order correlations whereas
in the IBG both density and phase fluctuations contribute. Although we neglected
quantum fluctuations in the approach adopted here, they are generally irrelevant in
experiments probing 1D Bose gases.
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Summary

• Correlations functions are fundamental to describe many body quantum sys-
tem. First-order and second-order correlations have physical interpretations
and can be (more or less directly) observed in experiments.

• In the degenerate IBG gas phase the first-order correlations are exponentially
decaying on typical distances which vary depending on the degenaracy of
the gas. The second-order correlations can be directly related to the first-
order correlation function by Wick’s theorem.

• In the qBEC one can also extract an analytical (also exponentially-decaying)
form for the g(1) function: the phase coherence length is twice the coherence
length of an IBG. As for density-density correlations, they decay on a typical
distance ξ and verify δn� n as long as TCO � T .



CHAPTER 2
Upgrade of the experimental apparatus

2.1 Overview of the experimental setup

The atom chip experiment in Palaiseau was first set up in 2003, and since the first con-
densate [7] several generations of students have brought technological and technical
upgrades, to gradually make the study of one-dimensional Bose gases the speciality
of the Atom Chip group. During the time of my PhD an important number of such
changes were made to the setup. Before describing in detail each component of the
experiment and the changes made, let me briefly introduce the general structure of this
cold atom machine.

The heart of the experiment is the atom chip, mounted in a vacuum chamber with
ultra-high vacuum (UHV, P < 10−10 mbar). The final ultracold cloud of 87Rb is mag-
netically trapped with current flowing in wires on this chip (see 2.3). The layout of the
chip was modified for compatibility with the new imaging system at the beginning of
my doctoral project, and is presented in detail in 2.3.

The vacuum chamber (a 7 cm cube) has optical access allowing the various necessary
laser beams (namely the MOT beams, the repumper, the optical pumping, and imag-
ing beam) to be shone on the atoms (2.2). The atoms come from dispensers on the
chip mount. The laser system, changed during this PhD work, is detailed below. The
complete vacuum system is inside a magnetic shield to avoid sensitivity of the on-chip
magnetic traps to magnetic field fluctuations in the environment.

The atoms are imaged with a high-resolution objective (NA = 0.39) recently designed
and installed on the experiment. After shining a resonant laser beam onto the atoms,
we recover the absorption profile of the cloud on a CCD camera. The new objective is
presented section 2.4 and the complete imaging setup in the next chapter.

This chapter concentrates on the various changes that were made on the experimental
apparatus. The experimental cycle and measurement techniques are delegated to a
subsequent chapter (Chapter 3). The changes presented here were motivated by two
aspects: improvement of the stability of the experiment (less free-space propagation
of laser beams, and more stable lasers which do not require frequent relocking), and
improvement of the signal over noise ratio and resolution of our images (which lead to
the conception of a new objective).

25
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2.2 The laser system

In this section I introduce the laser system used to cool, trap, pump and image the
87Rb atoms. All lasers described here are in the vicinity of 780 nm, corresponding to
the atomic transitions relevant to us. An additional laser (at 1530 nm) was added for
a periodic potential along the longitudinal axis for an optical lattice (see Chatper 6).
So-called "Master 1" remained as before but all others laser were replaced.

2.2.1 Implementation of a new setup: Master 1, Master 2, Repumper

The various frequencies required during the experimental sequence are achieved with
three lasers. Master 1 is the absolute frequency reference, locked on the D2 line of 87Rb.
The repumper is locked 6.6 GHz away, and is used during the MOT phase to pump
the atoms back to the |F = 2〉 state for cooling on the |F = 2〉 to |F ′ = 3〉 transition.
Master 2 is also locked on Master 1 and its frequency is swept electronically for the
different stages of the experimental cycle (MOT, molasses, imaging, which each require
a different detuning with respect to Master 1. These steps are detailed in Chapter 3).
The energy levels and corresponding transitions are represented figure 2.1.
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Figure 2.1: Level scheme of 87Rb and required lasers in the experimental sequence. Master 1 is
locked on the level crossing between |F ′ = 2〉 and |F ′ = 3〉. During the MOT phase, the |F = 2〉
to |F ′ = 3〉 is addressed, and the repumper locked 6 GHz from Master brings the atoms back to
the cooling transition if they fall in the dark |F = 1〉 state. Finally, many different frequencies
slightly detuned from |F ′ = 3〉 are required during the cycle. Master 2 sweeps this frequency
range of about 120 MHz.

Master 1 and repumper servoloop

Master 1 is an extended-cavity laser based on a design by the SYRTE laboratory 1 [8].
In SYRTE lasers, anti-reflection coated laser diodes 2 are placed in a cavity of about 10
cm where the light is amplified. An interference filter in the cavity allows to roughly
tune the wavelength of the emitted light. A Peltier module maintains the diode at the

1SYstèmes de Référence Temps Espace, component of the Observatoire de Paris
2Eagleyard EYP-RWE-780-02000-1300-SOT12 series
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desired temperature and a piezoelectric crystal fine tunes the length of the cavity and
thus allows a fine control of the frequency of the emitted light. The spectral bandwidth
of these lasers is around 100 kHz. The mechanical mount is home-engineered by the
mechanical workshop, and designed with Master student Aurélien Eloy and mechani-
cal engineer André Guilbaud [41]. Master 1 is locked on the D2 transition by saturation
absorption spectroscopy of 87Rb and a fraction of its light is taken to beat with the re-
pumper laser on a fast photodiode.

The repump light is provided by a distributed feedback diode (DFB) 3. This laser has
the advantage of compactness since the DFB diode itself acts as a cavity and provides
up to 100 mW of optical power at 780 nm. The TO3 mount also includes the Peltier
module for temperature control. However, the bandwidth is an order of magnitude
below that of a SYRTE mount (although this is not an issue for repump light), and
more problematically the spatial mode has important aberrations. The coupling effi-
ciency into an optical fibre was so low that we had to install an additional slave laser,
injected by the DFB diode light. This provides a comfortable 60 mW of light in a close-
to-gaussian spatial mode, sent to the auxiliary input port of the fibre cluster and mixed
with the MOT light in one of the output ports (see below).

Figure 2.2: DFB diode mounted in a cage system. An aspheric lens shapes the strongly diver-
gent beam, which proved strongly aberrant.

The beating of the two lasers (Master 1 + Repumper) is detected by a fast photodiode
which monitors the frequency of the second laser with respect to Master 1. After beat-
ing with an additional electronic reference at 6 GHz, the frequency difference is con-
verted to a voltage, which is the final signal sent to a lock box (after amplication, [78])
containing a PID controller. This allows to counteract the current of the DFB diode to
fine tune its frequency at the required 6.6 GHz from the level crossing.

Master 1 and Master 2 servoloop

The remaining power of Master 1 is injected into an optical fibre and brought onto the
main optical table for beating with Master 2. Master 2 is a laser identical to Master 1
in its mechanical mounting, but has a more powerful laser diode to inject a tapered

3Eagleyard EYP-DFB-0780-00080-1500-TOC03-0005 series
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amplifier (TA, see below). A small fraction of Master 2 is aligned onto a fast photodi-
ode with Master 1 4, which monitors (just like for the repumper loop) the frequency
difference between both lasers. After amplification 5 the signal is sent to a home-built
(by electronical engineer André Villing) lock box which counteracts the high voltage
applied on the piezoelectric of the cavity. This in turn fine tunes the frequency emitted
by the laser. The frequency difference between Master 1 and Master 2 is of the order of
300 MHz, which is a frequency range accessible electronically.

Schematic of the complete setup

The following sketch gives an overview of the complete laser system (only the most
important elements are depicted here). The TA light and the repumper (i.e the light
coming from the slave laser) are injected in the fibre port cluster, which splits the light
into four MOT beams (see below). The three lasers (Master 1, Master 2 and Repumper)
can stay locked for a whole day.

Lock on D2 PID

PID

PID

6 GHz 
beatnote

PID
300 MHz
beatnote

Repumper

Master 2

Master 1

TA

Pumping

Imaging

MOT

AOM 
for pulses

Slave

AOM for 
frequency shift

Figure 2.3: Schematic of the laser setup. The Master 1 laser is locked on the level crossing
between |F = 2, F ′ = 2〉 and |F = 2, F ′ = 2〉 by saturated absorption spectroscopy through a
Rb cell. A fraction of Master 1 is taken to lock the repumper 6.6 GHz away, another fraction
for the lock with "Master 2". Master 2’s frequency is varied during the experimental sequence
for the various frequencies required from the MOT phase to the imaging through the molasses
step and the optical pumping pulse. The optical power is provided by the tapered amplifier
(TA), injected by Master 2.

4Thorlabs SM05PD2B
5The photodiode, reverse biased through a bias tee (Mini-Circuits ZX85-12G-S7) collects the signal

which is then amplified (Mini-Circuits ZFL-500HLN+)
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2.2.2 More power and optical fibres

Tapered Amplifier

Master 2 injects a so-called tapered amplifier (TA), which provides the optical power
necessary (about 0.6 W injected in the fibre cluster) for the complete experiment. A
TA consists of a small chip with a semi-conducting medium which amplifies incom-
ing light. Our particular chip6 works at currents of the order of 1.5 A (2 A maximum)
and provides a nominal optical power of 1W; more than enough for MOT light, pump-
ing and imaging. The TA chip is mounted on a home-made mechanical setup, with
temperature control and water cooling, complete with aspherical lenses at input and
output. The "tapered" amplifier produces an astigmatic beam which requires shaping
before diffraction by an AOM and injection into the fibre cluster. Indeed, after collimat-
ing the fast axis with the aspherical lens at the output, the beam still diverges in one
of its spatial directions. We use two cylindrical lenses to collimate the slow axis at the
right diameter to produce a square-shaped beam.

Figure 2.4: The TA chip is nested in a home-made mechanical mount. It contains a Peltier
module for temperature control, to avoid too much heating, in addition to water cooling. There
are also two aspherical lenses: one at the input to focus the beam onto the gain medium, and
one at the output to collimated one of the axes of the amplified beam.

Aspherical lens Cylindrical lenses
Figure 2.5: Shaping of the output beam. The gain medium is represented in red. The beam is
astigmatic, meaning that the two axes diverge differently. The so-called fast axis is collimated
with the aspherical lens on the TA mount. The remaining axis is then collimated at the desired
size with a couple of cylindrical lenses, giving a square shape to the beam.

We achieved 85% diffraction efficiency and 50% coupling into the input fibre of the
cluster using this shaping method. The light from the TA is separated in three paths:
the injection of a fibre cluster, the light for the optical pumping and finally the beam for

6Eagleyard EYP-TPA-0780-01000-3006-CMT03-0000
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the imaging probe.

Another difficulty related to the TA is the heating of the neighbouring optics: a steady
state is reached after about 30 minutes, with water cooling.

Fibre cluster and MOT light

Previously the optical power was provided by a single slave diode, but the MOT beams
were propagating over a large distance before reaching the atoms. To improve the sta-
bility of the experiment and avoid painful alignement, we installed a Schäfter & Kirch-
hoff fibre cluster 7.

After injection into the input port, the fibre cluster splits the light in four output ports
(our MOT beams reflect off the chip surface, such that four beams are required for the
trap rather than the usual six, see below). The coupling efficiency from the input fibre
to each output fibre is of the order of 80 %, and the balance of the output power in
each port can be controlled with λ/2 plates included in the cluster. Each output fibre
is connected to 2 inch fibre outcouplers 8 installed close to the vacuum chamber, thus
minimising free propagation and sensitivity to a slight misalignement upstream. The
repump light injected in the auxilary input port is mixed into one of the output ports,
and finally on the atoms.

Figure 2.6: Output power of the TA for different injection powers from Master 2. To reach the
nominal 1 W, the amplifier needs to be injected with about 20 mW of power. We usually work
at 1.5 A current.

7Fibre Port Cluster FPC
860FC-0780-4-M125-54. These outcouplers include an optional λ/4 plate built-in to directly produce

circular polarisation.
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Summary

• The laser system was almost completely upgraded for more power and sta-
bility.

• For stability, a DFB diode (whose wavelength is very stable compared to an
extended-cavity) is used for the repumping light, and an electronic control of
the wavelength of Master 2 (rather than a double-pass acousto-optical mod-
ulator like before) was implemented. So far these upgrades have proven
useful as the lasers seldom require relocking.

• Also for stability, we decided to install optical fibres for the MOT beams
(rather than free space propagation). We now hardly realign those beams,
however the price to pay is more optical power to inject the optical fibres.

• For power, we installed a TA. The MOT seems to contain more atoms than
before (although we have no quantitative measurement of atom number).

2.3 The heart of the experiment: the atom chip

Atom chips were first developped in the late 1990s with the idea of integrating and
miniaturising matter-wave optics: they consist in a small electronic circuit printed
on a surface, containing nanofabricated wires used to engineer magnetic potentials.
The first attemps were to guide atoms along macroscopic wires to trap them in sim-
ple geometries [39], and gradually with fabrication methods the wires became micro-
wires [54] and atom chips appeared along with their versatility of magnetic poten-
tials [53]. After a first condensate on a micro-device in 2001 [70, 115], a certain num-
ber of atom chip experiments were developped and now routinely exploit ultra-cold
atomic gases for various purposes [55]. Because the atomic cloud can be brought very
close to the microwires, large trapping frequencies can be achieved which makes them
ideal for the study of one-dimensional systems [125].

2.3.1 Chip layout and trap configurations

Principle of magnetic trapping

Consider a 87Rb atom in a magnetic field ~B. A neutral atom interacts with an external
magnetic field via its magnetic moment ~µm. The magnetic moment ~µm rapidly pre-
cesses around the magnetic field axis at angle θ at the Larmor frequency ωL. The atoms
adiabatically follow changes in the magnetic potential if the field’s direction changes
slowly compared to the Larmor frequency ωL = µm| ~B|/~ (typically 1 MHz). In these
conditions ~µm stays aligned with ~B and the potential felt by the atoms is:

V = −| ~µm| · | ~B|, (2.1)

Quantum mechanically, the energy levels of an atom with angular momentum F in
an external field ~B are V (mF ) = gmFµB| ~B|, mF being the component of F along the
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quantisation axis defined by the direction θ of the field. The ratio mF /F replaces the
classical interpretation of scalar product ~µm · ~B = µmBcosθ. Depending on the sign
of gmF , the atoms will seek maximal or minimal | ~B|. However, since a maximum of
magnetic field is forbidden in free space (according to Maxwell’s equations), only states
with positive gmF can be trapped. The larger this product, the stronger the potential,
so we chose |F = 2,mF = 2〉: with g = 1/2 in F = 2 only positive mF states can be
trapped.

Magnetic traps existed before the idea of atom chips appeared; with coils quadrupolar
or Ioffe-Pritchard traps can easily be implemented (for instance to reach condensation
[42]). However, the main advantage of trapping with microwires is that important
confinement strengths can be achieved with reasonable currents, by bringing the atoms
close to trapping wires. The potential strength near its minimum is indeed given by the
gradient of ~B, naturally inversely proportional to the distance from the wire squared.

Loading traps: U, Z configurations

Several classic (U and Z) trap configurations and an original type of AC trap is imple-
mented with the current atom chip on our setup. The base ingredient of U and Z traps
is the wire guide, which consists of a wire and a transverse homogeneous magnetic
field. This produces a transverse quadrupole at a height h0 above the wire:

h0 =
µ0

2π

I0

B0
(2.2)

x
y

z
y y y

y
y

y
(a)

Figure 2.7: Principle of the wire guide. A current I0 flowing through an infinite wire creates a
rotationally invariant field, whose intensity is inversely proportional to the distance from the
wire. By adding a perpendicular bias field, the field cancels at a certain height h0 above the
wire, and around this minimum the field is quadrupolar. Figure adapted from [125].

A longitudinal component can be added to ~B by bending the wire to break the trans-
lational symmetry along z. Typical shapes are so-called "U" and "Z" configurations.
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Whether the wire is U or Z shaped determines, with the current flowing in the perpen-
dicular bars, if the trap is a quadrupole (with a zero magnetic field minimum), or an
Ioffe-Pritchard trap (with a finite | �B| at the bottom of the trap).

x

y
z

z z0 0
z = 0

(a) U wire

z z

z = 0

0 0

(b) Z wire

Figure 2.8: Adapted from [125]: magnetic field components along the trap axis. In the U con-
figuration, the z component to the field cancels at the centre of the central bar, and since the
current in the side bars flows in opposite directions a locally quadrupolar field is created. In
the Z wire, with the current flowing in the same directions in both side bars, the z component
of the magnetic field has a non-zero minimum.

The U wire is used to create the quadrupole field for the on-chip MOT, and is a 500
μm thick strip. This creates a quadrupole at a height of about 0.5 to 1 mm for a bias
field of a few Gauss and a current of about 5 A. The Z trap is an intermediate loading
step before the final modulated guide, with a wire thickness of 100μm. The atoms are
trapped about 200 to 500 μm above the chip for currents of 3 to 5 A and a bias fields
ranging from 10 to 40 G. The role of these two traps will be detailed in Chapter 3.

Final trap: modulated guide

The Ioffe-Pritchard already produces an elongated cloud (the aspect ratio is quite large
with ω⊥ ≈ 1 kHz vs ωz ≈ 5 Hz). To achieve higher trapping frequencies the cloud
needs to be brought closer to the wires, which would require to further increase the
bias field or further reduce the current flowing in the wire. However, to reach more
strongly interacting regimes, the linear density must be decreased (since γ is inversely
proportional to ρ). At these rather small chemical potentials the density profile is sen-
sitive to the roughness of the micro-fabricated wires. To overcome this issue, a new
type of trap was implemented on the experiment, initially in 2007 during J.B Trebbia’s
PhD [141,142], and in 2011 in its current form [3,78]. Another interesting feature of this
novel trap is the independence of longitudinal and transverse confinements.
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Although fabrication techniques evolved to improve the quality of the wires (using
for instance evaporation instead of electrodeposition), imperfections remain, slightly
distorting the magnetic field lines and roughening the trap bottom by adding a noisy
longitudinal component δBz to the field [45]:

V (z) = μB(B0 + δBz) (2.3)

If the current in the wire creating δBz is reversed, the potential roughness is also re-
versed [93]. By running an AC current trough the wire, the atoms see a time-averaged
potential where the roughness is suppressed:

〈V (z)〉 = μBB0. (2.4)

In practice, the modulated guide consists of three wires connected in series (see figure
2.9) along with a longitudinal bias field B0. This creates a two-dimensional quadrupole
at a certain height h0 above the wires. The three wires are equally spaced, the current
in the two outer wires is −I(t), and I(t) in the central wire, creating a tight trap at a
distance h0 = d/2 above the chip plane, where d is the distance separating the two most
distant wires (see figure 2.9). The current is modulated at 400 kHz. Strong transverse
confinements (up to 100 kHz in principle) can be reached for currents of the order of 1
A with h0 = 15 μm [79].

The longitudinal confinement comes from four additional lateral wires, creating a lo-
cally harmonic trap of a few Hz. This is the final trap in which we take data. For the
weakly interacting regime we typically use ω⊥ = 2 kHz and ωz = 6 Hz. In practice, we
use currents such that the trap is harmonic around its centre but in principle different
configurations like quartic traps are accessible 9.

xy

30 μm
15 μm

(a)

x z

(b)

Figure 2.9: Left: view of the quadrupole trap above the small wires. The field created by the
central wire cancels exactly the field created by the two outer wires where current flows in the
opposite direction. With the three wires in series this configuration in easily achieved and the
position of the modulated trap is stable. Right: view of the small wires and the additional
wires for longitudinal trapping. The latter is independent of the transverse trap and can be
engineered with the four wires available.

9The possibility of a quartic trap was interesting to decrease the effect of an external potential. However
we now plan to install a Digital Micromirror Device (DMD) which could be used to create a homogeneous
optical confinement, see the last chapter for more on this aspect.
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Choice of the modulation frequency

We recently installed a new power supply for the small wires: previously the current
was modulated at fm = 2ωm/2π = 200 kHz, we now modulate at 2ωm/2π = 400

kHz with a home-designed and produced power supply (courtesy Frédéric Moron).
The lower bound for fm is given by the stability condition of the trap: modulation
needs to be faster than the transverse motion at ω⊥, typically in the kHz range for
weakly-interacting samples [20]. The upper bound for fm is given by the adiabaticity
condition: the atomic spin should follow the instantaneous magnetic field orientation
to prevent losses via spin-flip transitions, or equivalently: 2ωm � ωL. These qualitative
arguments show that modulation frequencies in the 100 kHz range are suitable.

Now consider a weak radio-frequency field added to the modulated trap, polarised
along ~x, like during evaporation for instance. The atomic Larmor frequency ωL is now
modulated in time, or, equivalently, the RF field is frequency modulated at a given po-
sition in the trap (in the rotating wave approximation, [20]). The RF field contains a
carrier plus sidebands at multiples of 2ωm, and coupling to untrapped states are reso-
nant at positions rn which verify (b′ being the quadrupole gradient at peak current):

~ωRF = µBB0 +
µBb

′2r2
n

4B0
− 2n~ωm (2.5)

The RF field is thus resonant for different trap locations with energies every 2~ωm/kB .
The potential energy difference between two resonances for a 200 kHz modulation is
3 kBµK. For temperatures above this limit, resonances inside the cloud induce loss by
spin-flip. For this reason, precooling before loading the modulated guide is necessary,
and increasing fm to 400 kHz gives more margin for loading and cooling, by increasing
the frequency window in which evaporation without hitting a resonance is possible.

New chip layout

A new chip mask was designed for compatibility with the new imaging system (see
following section for more on the new objective). On the previous chip the final trap
was not centered on the optical axis. The new objective installed on the experiment has
a much smaller field of view, the price to pay for a larger numerical aperture. For this
reason the final trap had to be shifted to the centre of the chip, which itself coincides
with the centre of the vacuum chamber and the optical axis.

The following figure shows three zoom levels of the chip mask. Indeed, over the ex-
perimental sequence the idea is to gradually bring the atoms closer to the chip and trap
them in smaller volumes: from the MOT to the modulated guide, through the Z trap.

2.3.2 From the cleanroom to the vacuum chamber

A word on the fabrication

The current generation of chips on this particular experiment are Aluminium-Nitride
(AlN) based, chosen for its remarkable heat-conducting properties [4]. The wires are
deposited by evaporation on the AlN substrate, and then covered by an insulating layer
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(a) (b)

(c)

Figure 2.10: (a): Complete chip layout (2.5 x 3.5 cm), the conducting wires are shown in
white. There are eighteen connections in total, nine at each extremity (two extra connections
are required for the dispensers, adding up to the twenty connections in total on the electrical
feedthrough), several wires share connections. The U-wire (blue), Z-wire (green) and modu-
lated guide are highlighted. (b) Zoom on the central region: the U-wire, the Z-wire, and wires
for the final trap. (c) Close-up of the final trap: three so-called small wires form the modu-
lated guide used for the transverse confinement, and four vertical wires (orange) add a slowly-
varying longitudinal confinement. The small wires are 1.5 mm long and the final cloud extends
over less than 200 µm in the centre of the smallwire region.

(the resist we use is BCB 10). Finally, a thin layer of gold is evaporated on the surface.
This layer acts as a mirror for infrared light, and is required for the mirror MOT phase
and the imaging. Since the probe beam to image the cloud is reflected off this mirror
the surface quality of the chip and is quite crucial, meaning that the insulating layer
should have as little defects as possible.

10Benzocyclobutene, chosen for its resistance to heat and weak surface tension for spin coating, as well
as its good planarisation properties
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Au 3 μm10 μm
500 μm

Figure 2.11: Simplified sketch of the layers of the atom chip: on the heat-conducting AlN wafer
(500 μm thick), the wires are evaporated and then covered by an insulating layer of BCB and
finally a thin mirror of gold. The chip surface has depressions where the wires lie, which is
a drawback for the quality of the images, but allows us to image the wires on the chip with
incoherent white light, when installed on the experiment. This is of great help for alignement
and focussing of the imaging system.

The fabrication is carried out by Isabelle Bouchoule and Sophie Bouchoule, with the
help of undergraduate students, at LPN cleanroom 11 and Thalès cleanroom 12, the two
institutions having different types of equipment available. During this PhD project a
new chip was installed on the experiment, with similar technology as previously but
a different layout of the wires. A new fabrication process with a Silicium-carbide base
(SiC) is currently under investigation, for better heat conductivity and a better control
of roughness (since AlN is a ceramic it is formed by micron-sized grains which vary
from one batch to another). Unfortunately this new generation of chips could not be
installed yet due to technical complications.

Typically, the chip needs to be replaced every two years. One reason is that the dis-
pensers we get our 87Rb atoms from run out, but another less controlable phenomenon
is that the surface of the chip degrades over time: the atoms stick to the surface, af-
fecting the quality of the mirror and creating a slight rough potential which cannot be
suppressed by modulating the current in the wires.

Figure 2.12: Left: image of adsorbed Rb on the surface. This reduces the quality of the mirror
as can be seen on the picture shown right.

Mounting the chip on the experiment

After fabrication is complete the chip is soldered to a gold-plated copper mount which
acts as a heat sink (see figures 2.13 and 2.14 for photographs of the mounted chip).

11Laboratoire Photonique et Nanostructures, based in Marcoussis, about 20 km from Palaiseau.
12In their research centre just accross the street from us in Palaiseau.
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Since 2010 Indium is used to solder the AlN wafer to the copper for good heat dissipa-
tion from the wires to the heat sink, which is necessary since currents up to 6 A flow
in the micro-fabricated wires. The copper mount itself is connected to a CF40 flange
with an electrical feedthrough. The wires which connect the electrical feedthrough to
the wires on the chip have Brass-Berylium strips, and electrical contact is done with
a PEEK 13 grating screwed down onto the strips against the terminations of the wires
on the chip. The Rubidium dispersers (two altogether) are placed on the sides of the
copper mount. They release a vapor of 87Rb when a large enough current flows in them.

The vacuum chamber simply consists of a small cubic (7 cm) chamber, an ion getter
pump and an additional Ti sublimation pump, the complete system having a relatively
small volume ensuring efficient pumping and bake-out. The simplicity of the vacuum
setup is crucial since the chip needs to be replaced at least every two years (or more
frequently if a technical problem arises), but is also an advantage stemming from the
smaller size of atom chip experiments compared to standard cold atom experiments.

Summary

• Our experiment has the specificity of using an atom chip to trap the atoms
and create one-dimensional ultracold samples.

• The atom chip is micro-fabricated in a clean room and consists in a elec-
tronic circuit which allows to engineer magnetic potentials. Several trapping
configurations are implemented, corresponding to different stages in the ex-
perimental sequence from the MOT phase to the final gas.

• The layout of the chip was adapted for compatibility with the new imaging
objective.

13Polyether Ether Ketone, a polymer with good resistance to heat.
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Dispenser

 CF40 flange + feedthrough

Connections

Figure 2.13: Left: chip mount with electrical feedthrough, dispensers and connections. The
copper mount is covered with gold.

Electrical feedthrough

Chip mount

Figure 2.14: View of the chip mount in the vacuum chamber. The chip is facing downwards
at a 45◦. There are four windows altogether: one visible on the picture, one opposite this
window, one beneath the chamber and one on the left of the image. The electrical feedthrough
is connected to all the necessary current supplies. The bias coils and MOT coils were removed
for bake-out when the picture was taken. The flange on the left is "reentrant" for the new
imaging objective to be close enough to the atoms, as detailed in the next section.
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2.4 The imaging system

2.4.1 A new high-resolution objective

The reason for the new chip layout is the installation of a new imaging objective with
a larger numerical aperture. After a short description of its technical specifications, I’ll
describe some further changes which had to be brought to the setup to integrate this
new objective.

Technical specifications

The objective was home-designed, mounted and tested by former PhD student Bess
Fang, with the help of Yvan Sortais (assistant professor at Institut d’Optique), the opti-
cal workshop (Christian Beurthe) and the mechanical workshop (André Guilbaud). It
was inspired by the objective currently in use on our neighbouring experiment "Pince"
(supervised by Vincent Josse, also part of the Atom Optics group at Institut d’Optique),
itself inspired by the objective in use on the BEC experiment in M. Oberthaler’s group
in Heidelberg [116]. The lenses were manufactored by LensOptics. Details can be
found in B. Fang’s PhD thesis [49] but here I will give a quick overview of its char-
acteristics for consistency.

The objective consists of three lenses mounted in a custom (and home-built in the me-
chanical workshop) tube. The choice of the curvature radii came from an optimisation
procedure with optical design software OSLO. The main difficulty in this procedure
comes from the BK7 3 mm thick window between the lenses and the vacuum: the aber-
rations introduced by this glass cell need to compensated for.

The final objective was tested with performances reaching expectations (working dis-
tance is 26.5 mm): Numerical Aperture (N.A) of 0.39, point spread function radius
(PSF) 1.2 µm and a field of view of ±380 µm. Figures 2.15 and 2.16 (taken from [49])
summarise the testing of the objective with a pinhole.

Figure 2.15: Measured PSF on axis (left) and cuts along x = 0 and y = 0, adapted from [49].
The measured radius of the PSF is 1.2 µm. The remaining decentering coma was found to be
uniform throughout the field.
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Figure 2.16: Normalised peak intensities off axis (with slight decentering along x or y), and
on-axis in the vicinity of the focal point. The horizontal dashed line corresponds to the PSF
intensity reduced by 20%. The imaging is close to diffraction limited up to 350 µm off-axis, and
the longitudinal working distance is around ±200 µm.

2.4.2 Required changes to the setup

Vacuum system

To achieve a higher numerical aperture, the objective needs to be brought closer to the
atoms. For this purpose a reentrant flange with an indium seal replaced a standard CF
flange with a window. The objective mount is then installed inside the reentrant flange
and the distance between the objective and the atoms is greatly reduced. The flange is
vacuum tight by the sole pressure difference between atmospheric pressure and UHV.
Before installation on the vacuum chamber, the indium wire is pressed between the
window and the edge of the flange, and mechanically held by screws. After installing
on the vacuum chamber, bake-out can be carried out as usual and once the pressure
is low enough the mechanical mount maintaining the window and the seal can be re-
moved.

Figure 2.17: View of the reetrant flange along with the mechanical system (a tube screwed on
the flange) which initially presses the window against the indium wire. After bake-out, the
tube is removed and replaced by the objective.
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Lens

Flange CF40

Window

Lens holder

Figure 2.18: Sketch of the vacuum system, with the objective inside the reentrant flange (left).
Technical drawing of the reentrant flange (right). The lens holder is designed to be on a trans-
lation stage.

The new vacuum seal requires some caution during bake-out: since indium melts
around 140 ◦C we decided to heat the chamber only up to about 110 ◦C, so that the
chamber had to be kept hot for longer than before to achieve similar pressures (about
4.10−11 mbar). In fact during our first bake-out attempt with the new seal a small leak
appeared after some time, limiting the pressure in the chamber to 3.10−10 mbar.

Optical system

The tube containing the objective is fixed on a translation stage, for precise focussing on
the atoms. Because of the large numerical aperture of the objective, it strongly focusses
the MOT beam reflecting off the chip (see figure 2.19). To recover a reasonable beam
diameter at the position of the MOT, an achromat doublet is added on the optical path
just before the objective, inside the magnetic shielding. However, this lens should not
be used to image the atoms since the ideal imaging configuration (i.e diffraction lim-
ited) is the infinite-conjugate configuration through the objective. For this reason, we
placed the "MOT" lens on a vertical translation stage to remove the lens from the opti-
cal path during imaging. Since this lens needs to be very close to the objective, we had
no choice but to place the translation stage inside the magnetic shield. The translation
stage we purchased14 works with piezoelectric crystals: successive stick-slips translates
the device over macroscopic distances, in our case almost 10 cm, in times of the order
of a second. It was crucial that the translation stage wouldn’t work with conventional
(magnetic) motors.

The complete translation mount is fixed on the ion pump by a large cylinder tightly
maintained by two screws on the base (visible at the top of the photograph figure 2.19.
We gradually found that the repetitive movement of the translation stage makes the
large ring move downwards, affecting the alignement of the MOT, so that current me-
chanical mount is slightly different than what is presented here. In the following chap-
ter, the testing of the objective on the atom cloud will be presented along with the
experimental sequence and measurement methods available to us.

14SmarAct series, sold by Trioptics in France
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Magnetic shield

Translating MOT lens

Figure 2.19: Left: photograph of the lens on the translation stage. Usually this part of the setup
is inside the magnetic shield, which lead to important space constraints when conceiving the
optical system. Right: sketch of the side view of the MOT lens and the vacuum chamber. The
translation stage removes the additional lens for the imaging. The thick beam represents the
MOT light, coming from the left side.

Summary

• A new more performant objective was installed on the experiment. This re-
quired some adapting of the experimental setup.

• The vacuum system was modified with the use of a reentrant flange and an
Indium seal, to bring the objective closer to the atoms.

• The optics for the MOT was also adapted: for a collimated MOT beam an
additional lens is required, but only for the MOT phase. The lens is fixed
onto a vertical stage and removed from the path of probe beam during the
imaging phase.





CHAPTER 3
Producing, probing and understanding the one-dimensional

Bose gas

In this chapter I introduce in more detail the experimental sequence, the imaging of the
final atomic cloud and the measurement tools available.

3.1 Producing: the experimental cycle

To produce a highly-degenerate ultracold cloud starting from an atomic vapour at
room temperature, a certain number of steps are implemented. The synchronisation
of the events is controlled by a home-made sequencer (introduced section 3.1.1). I then
describe the stages of the experiment up to the loading of the final trap and finally
detail the characteristics of this modulated guide, the final trap used for the study of
one-dimensional (1D) Bose gas.

3.1.1 The sequencer: computer-experiment interface

Since the ultracold gas is destroyed after imaging (we employ a destructive absorption
imaging technique), the sample needs to be produced anew in identical experimental
conditions many times for statistics and pertinent measurements. The synchronisation
of all events in the experimental sequence is assured by a home-made (by electrical
engineer André Villing) "sequenceur" which receives instructions from a Matlab pro-
gramme and, in turn, sends signals to all power supplies and electronics on the exper-
iment. This home-made interface contains a certain number of TTL and analog (ramp)
cards, as well as a Direct Digital Synthesizer (DDS) for the additional RF field employed
during the evaporation phases. The sequencer and the related code were developed in
the very first stages of the Atom Chip experiment, and details on the architecture can be
found in [44]. The structure nowadays is essentially identical, except many upgrades
have been brought to accompany the increasing complexity of the setup.

The upgrades brought during my doctoral project are essentially of two types. Firstly,
the number of output channels per digital card was increased from 8 to 16, and sim-
ilarly the number of output channels on the analog cards was upgraded from 4 to 8.
Secondly, the maximal number of points (or bytes) to program the cards was increased
from 32 to 256, allowing to program more complicated ramps throughout the sequence.
These hardware changes implied some changes in the programme also.

45
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Figure 3.1: Configuration of the MOT beams. The vacuum chamber (a cube) contains four
optical accesses: one beneath the cube, two facing each other perpendicular to the page plane
and finally the objective (on the left on this sketch). The 45 ◦ angle of the chip allows to have
the beams parallel or perpendicular to the optical table rather than at a more awkward angle.

3.1.2 Towards loading the final trap

External and on chip MOT

At the very beginning of the sequence, a vapour of 87Rb is released from the dispensers.
From this room-temperature vapour atoms are captured by an external magneto-optical
trap (MOT). In this initial trap, the magnetic fields are produced by external coils as op-
posed to fields created by on-chip wires. The 9 A current in the anti-Helmholtz coils
produces a 30 G/cm field gradient, creating a trap when combined with circularly po-
larised laser beams detuned 15 MHz below the

∣∣5S1/2, F = 2
〉

to
∣∣5P3/2, F

′ = 3
〉

transi-
tion. The specificity of this MOT is that the beams reflect off the chip surface, such that
only four of them are necessary to trap the atoms (figure 3.1). The few 108 atoms in
the cloud are cooled down to a temperature of about 200 μK, a few mm away from the
chip. This initial step of the experiment proved crucial for all the following steps in the
sequence. Indeed, with the 2" fibre outcouplers the MOT beams are significantly larger
than before, greatly increasing the capture volume of the trap. We also have more opti-
cal power available. Although we have no quantitative measurement of the number of
atoms in the MOT, its size increased after the upgrades brought to the experiment, and
this lead to an apparent increase of the number of atoms in the next steps too.

The atoms are then transferred to a second MOT where the quadrupolar field is now
created by the U wire on the chip with an additional bias field as explained in Chapter
2. The atoms are captured from the external MOT with a large current (5 A) in the
U wire, and by compressing the trap (lowering the current in the wire down to 2 A
and increasing the bias field) the atoms are brought 500 μm from the trap surface. The
number of atoms in this second MOT phase is of the order of several 107.

Optical Molasses and pumping

The temperature achieved with the MOT is not low enough to directly load a magnetic
trap. An additional molasses phase where sub-Doppler cooling occurs cools the atoms
down to temperatures low enough for subsequent magnetic trapping. By ramping the
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Figure 3.2: Screenshot of the compressed Z trap. The pixels are scaled such that the cloud is
more elongated than it appears. The colour bar gives the optical density and reveals the high
density of the gas. This image was taken with a pixel size of the order of 8 µm, much larger
than the ultimate pixel size used to image the final samples, because the cloud extends over
several mm.

detuning of the light down to far red-detuned values (about −80 MHz) the cloud is
cooled down to several tens of µK. After this phase the atoms are to be transferred
into a purely magnetic trap. However, they are equally distributed in the five Zeeman
sublevels of the F = 2 hyperfine state. Since we chose to trap the mF = 2 sublevel,
we optically pump the atoms into this Zeeman substate. A circularly polarised beam
(along the quantisation axis) addresses the F = 2→ F ′ = 2 transition in a few hundred
µs long pulse, during which the number of atoms captured in the trap increases by a
factor of about 3 1.

Z trap and ACDC trap

After the molasses phase light is no longer used to trap the atoms. They are transferred
into a magnetic trap produced by the Z-shaped wire on the surface on the chip (along
with a homogeneous bias field). The ≈ 107 atoms of the molasses are almost entirely
transferred to a first Z trap configuration, 500 µm from the chip. This first deep Z trap
(600 µK deep) is created with a maximal current of 6 A and a relatively low bias field
of 13 G. With a decrease of the current flowing in the Z wire and and increase of the
bias field, the trap is transversely compressed and the height of the trap is decreased to
150 µK, with a corresponding current of 3 A and a bias field of 40 G. The compressed
Z trap is very elongated in shape, the transverse frequency being of the order of 3 kHz
compared to a longitudinal frequency of a few Hz.

A first RF-induced evaporation stage cools the cloud in the compressed Z trap down to
a few µK with a remaining 3.105 atoms. The AC trap is then switched on and superim-
posed with the Z trap (to create the so-called ACDC trap2). By matching the positions
of the Z trap and AC trap, and then lowering the DC potential, about 105 atoms are

1In principle since there are five sublevels we should gain a factor five but in practice the configuration
which optimises atom number later corresponds to a factor 3 of increase.

2The atoms are on the highway to degeneracy
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Figure 3.3: Illustration of "catching". The initial and final trap is the loose confinement repre-
sented in black. When the cloud’s centre of mass oscillations brings the atoms to the far right,
the potential is quickly changed to the tighter and displaced red one. The cloud continues to
oscillate in this second potential and when it reaches the oscillation maximum on the far left,
we switch the potential back to the initial black configuration and the cloud falls, at rest, into
the final trap.

finally loaded into the pure AC trap, also referred to as the modulated guide. The pre-
liminary evaporation stage is necessary: because of the modulation of the magnetic
field the evaporation window available is very small (see Chapter 2 for more on this).

3.1.3 The final trap

Loading method

A total of 105 atoms are finally loaded into the modulated guide. This final loading
stage is quite delicate since any stray homogeneous fields will displace the centre of
the trap, creating a strong force on the atoms and heating the cloud [78]. Especially in
the last steps of the ramp decreasing the current in the Z wire and the bias fields, the
slightest remaining homogeneous components tend to excite oscillations of the cloud.
To prevent this, we implement a "catching" scheme, illustrated figure 3.3. After iden-
tifying the center and frequency of the centre of mass oscillations appearing when the
DC trap is switched off, the longitudinal trap is quickly turned tighter and displaced,
such that the new maximum of oscillation (where the cloud is at rest) coincides with
the previous centre of the looser trap. When the cloud reaches this position the longi-
tudinal trap is quickly switched back to its original configuration, and the atoms fall, at
rest, in the centre. This is possible thanks to the decoupled longitudinal and transverse
confinements of the AC trap: the scheme can easily be implemented by controlling the
current in the lateral wires which produce the longitudinal confinement.

After the catching scheme, a second evaporation stage cools the atoms to a final tem-
perature in the 100 nK range, with an atom number ranging from 103 to 104 depending
on the desired experimental configuration. For transverse trapping frequencies around
a few kHz corresponding to weak effective coupling constants (see below), we can ac-
cess the ideal Bose gas regime, as well as deeply quasi-condensed gases, and explore
the broad crossover between these two asymptotic phases.

The experiment has proven to be quite stable so far: the number of atoms loaded in
the AC trap varies from one shot to another by 10 %. However, optimisation and read-
justements of loading parameters are required because of long-term drifts.
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Characteristics: trapping frequencies

After loading the final trap, we can turn to its characterisation and in particular the
measurement of the longitudinal and transverse trapping frequencies.

The longitudinal confinement is provided by the lateral wires (baptised "d", "d’" and
"D", "D’" wires), which are perpendicular to the modulated guide on the chip. We have
four wires available, so that in principle one can engineer traps that take the form of
any arbitrary fourth-order polynomial. Except for measurements in momentum space
where the trap is required to be as harmonic as possible, we only use two wires to
create a locally harmonic confinement. Indeed, the final cloud extends over maximum
200 μm, whereas the lateral wires are separated by a distance of 3 mm, leaving some
margin for the range over which the trap can be considered harmonic. A typical slowly-
varying trap is achieved with a current of 0.4 A in the D, D’ wires and a longitudinal
B̃ = 1 G. By measuring center of mass oscillations (triggered by a kick in the longitu-
dinal potential), we get 8.6 Hz.

Figure 3.4: Left: reminder of the position of the wires providing the longitudinal confinement.
Right: center of mass oscillations in the trap. A fit gives a longitudinal trapping frequency
ωz/2π = 8.6 Hz.

The transverse confinement is provided by the modulated guide: three parallel wires
with alternating current at 400 kHz flowing through them. To access the transverse fre-
quency experimentally, several methods are available. One can do parametric heating,
where the idea is to modulate the transverse trapping frequency. For modulation fre-
quencies verifying fmod = 2f⊥,AC/n with n integer, parametric resonances will result
in a sharp dip in atom number. Experimentally, we observe such a dip at a frequency
f⊥ = 8.7 kHz (figure 3.5).

The measured trapping frequencies are important in the characteristion of the ultra-
cold samples: they will be used later for thermometry. The longitudinal frequency is
required to fit the longitudinal density profile with an equation of state in the local den-
sity approximation while the transverse frequency directly gives the effective coupling
constant g1D = 2aS�ω⊥ (with aS the s-wave scattering length).
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Figure 3.5: Parametric heating of the cloud to measure the transverse confinement: a clear dip
in a atom number appears around 4.35 kHz.

Summary

• The first steps of trapping and cooling are the now classic MOT and molasses
phase. The atoms are gradually cooled and brought closer to the chip surface
to then be confined in on-chip magnetic traps.

• However at this stage they are not yet cold enough to be loaded in the final
modulated guide. For this reason we first compress (to bring the atoms yet
closer to the surface) and cool the atoms by RF-induced evaporation in the
so-called Z trap.

• Finally, when the atoms are at a temperature of a few μK and about 10 μm
from the chip surface, they are loaded in the AC trap (or modulated guide).

• In this trap, after a second cooling phase the 1D Bose gas reaches quantum
degeneracy. The high transverse trapping frequency (about 4 kHz) ensures
the sample is 1D.

3.2 Probing: absorption imaging

Now that we presented the protocol to produce the ultracold 1D Bose gas, in this sec-
tion I will present the method used to image the produced cloud: absorption imaging.
This technique is very common in the cold atom community [86] and presents better
signal over noise when the resolution of the imaging system is improved, which I will
discuss after presenting the general method. I will then present the very first images
of the cloud made with the new objective, to discuss calibration of atom number and
optical resolution.
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3.2.1 Principle

After conducting the desired experiment (produce a cloud at equilibrium, or excite the
cloud in any manner and then letting the system evolve), the integrated two-dimensional
density distribution is recorded by shining a resonant laser beam onto the atomic cloud,
and measuring the absorption profile on a CCD camera after being reflected off the
chip surface (figure 3.6). In other words, the less photons collected locally, the more
important the local optical density.The decrease of intensity along the line of sight is,
according to the Beer-Lambert law:

dI

dz
= −ρ(x, y, z)σ(I)dz. (3.1)

σ(I) is the absorption cross-section, in general dependent on the probe intensity I , and
ρ the three-dimensional density. If the interparticle distance becomes of the order of the
probe wavelength, this expression no longer holds as non-trivial reabsorption events
effectively reduce the absorption signal.

The absorption cross-section σ(I) not only depends on the probe beam intensity, but
also on the atomic level structure, and a possible Zeeman effect which shifts the levels
and the polarisation of the probe beam. For a two-level atom (in our case |F = 2,mF = 2〉
and |F ′ = 3,mF ′ = 3〉, addressed with σ+ light), the absorption cross-section takes the
form

σ(I) =
σ0

1 + I/Isat
, (3.2)

where

σ0 =
3λ2

2π
(3.3)

is the low-intensity cross-section and the saturation intensity reads

Isat = Γ
~ω
2σ0

. (3.4)

Γ = 2π × 5.7 MHz is the natural linewidth of the considered transition. In general, the
cross-section is not straightforward to determine and in principle one must solve the
optical Bloch equations describing the light-matter interactions [78]. In an approximate
model [126] corrections including effects of a more complex level structure, an external
magnetic field and arbitrary polarisation of light, deviations from above expressions
are included in a dimensionless parameter α:

σeff =
ασ0

1 + I/Isat
. (3.5)

In addition, on our setup the cloud in so close to the chip that it sees both direct and re-
flected light with different polarisations. We determine this parameter experimentally.
To account for deviations from the Beer-Lambert law in the case of dense clouds, we
also implement a scheme which will be detailed in the relevant sections below (3.2.3
and 3.3.1).
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Figure 3.6: Example of an image. Its reflection in the chip surface (which acts as a mirror for
the imaging probe) is also visible. The colour bar shows optical density.

x 10CCD 

Figure 3.7: After the light crosses the atomic cloud the photons are collected on a Charged Cou-
pled Device (CCD) camera. The image is formed at a distance f ′ from the achromat doublet.
The camera and doublet are mounted on translation which in principle allow for different imag-
ing configurations. For instance, a smaller magnification (corresponding to a smaller f ′

doublet)
is useful to image the optical molasses, in which case we adjust the position of the camera.

The complete imaging system consists of the previously described imaging objective
(Chapter 2), and a doublet, which sends the image of the cloud on a CCD. For in situ
imaging, the cloud is at the focal point of the objective and we image in infinite con-
jugation. However, we also take images after a time-of-flight where the cloud is no
longer at the focal point of the objective. This imaging configuration is less performant,
this is considered section 3.3.2. The working distance of the objective being 20.5 mm,
with f ′

doublet = 250 mm the pixel size in the imaging plane is Δz = 1.8 μm.

Since the imaging probe reflects off the chip surface a good surface quality is crucial for
clean imaging. The probe beam is in fact an imaging sheet to match the very elongated
shape of the imaged cloud and ensure a relatively homogeneous intensity over the
sample.

3.2.2 Improving the SNR

The motivation for replacing the imaging objective was the improvement of the signal
over noise ratio (SNR) of our absorption imaging. The resolution of the optical system
is max(δ,Δz), δ being the radius of the point spread function (PSF, the response of the
optical system when imaging a point).
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Consider the absorption signal of a single atom detected on a CCD. The photon count
on a single pixel for an intensity I , and pulse time τp is: Nph = IτpΔ

2
zλ/hc and the

corresponding absorption signal (if the complete signal is collected on the considered
single pixel) is σ/Δ2

zNph.

The technical noise of the camera3 is negligeable so that the only remaining source
of noise is the photonic shot noise directly given by

√
Nph. The SNR is then simply

expressed by [49]:

SNR =

√
3λ2Γ

4π

√
τp

Δz

√
I/Isat

1 + I/Isat
(3.6)

It appears that better SNRs are achieved for long pulse times and small pixel sizes.
However there is a lower bound for the pixel size for a given pulse length, since the
atoms diffuse during the imaging pulse. Their movement can be modelled as a random
walk in momentum space and the resulting displacement is [80]:

〈
δz2

〉
=

h2Γ

6m2λ2

I/Isat
1 + I/Isat

τ3p . (3.7)

The condition for the resolution not to be degraded by the diffusion of atoms during the
imaging pulse is thus

√〈δz2〉 < Δz (condition shown in red on the following figure).
In practice we may use I < Isat and longer imaging pulses.
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Figure 3.8: Colour map of the dependance of SNR on pixel size Δz and length of imaging pulse
τp, taken from [49]. The best SNR is for smaller pulse lengths and pixel sizes, however a lower
bound of pixel size is imposed by the diffusion of atoms during the imaging pulse.

3.2.3 Testing the objective with the atoms

Here I present the very first images of the atomic cloud made with the new imaging
system. I discuss two calibration measurements: an independent determination of the
effective optical resolution and the calibration of atom number.

3Pixis-1024BR
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Determining the resolution from pixel correlations

As explained above, for a small enough pixel size and short enough imaging pulse, the
optical resolution is directly given by the point spread function of the imaging objec-
tive. This quantity can be accessed by measuring correlations between pixels. Indeed, if
the pixels are small enough compared to the RMS width δ of the imaging response func-
tion, but larger than the density-density correlation length ξ (typically ξ � ∆z . δ),
the degree of correlation between adjacent pixels depends only on δ. By assuming a
Gaussian Point Spread Function (PSF), the calculation of these correlations can be con-
ducted analytically, as we do for first-neighbour pixels and second-neighbours [78].
The expression of the PSF is:

A(α, p) =
e−z

2/(2δ2)

δ
√

2π
(3.8)

We measure correlations between pixels and compare the measurements to the ex-
pected correlations from the analytical expression, as a function of δ. The experimental
correlations (left panel of figure 3.9) are plotted as a function of density, in atoms per
pixel. They rapidly saturate to their maximal value, the correlations for low densities
being limited by the signal from the most dilute regions of the cloud. We extract the
degree of first- and second-neighbour correlation from this measurement and compare
to the plot of the right panel of figure 3.9: the measured correlation values correspond
to a certain resolution δeff . From the right panel of figure 3.9, we thus find the δeff

which best reproduces the measured correlations. In the case where the imaging pulse
slightly blurs the image and reduces the resolution, the method is also applicable and
the measured resolution δeff is then slightly larger than the ideal resolution δ. In the fig-
ure below, measured correlations with the new imaging objective are represented. The
extracted resolution of δeff ≈ 1.5 µm is better than what we achieved with our previous
objective (around 3 µm), but can in principle still be improved, since the expected per-
formance is around δ = 1 µm: the imaging pulse possibly introduced some blurring
and could be shortened.
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Figure 3.9: Left: experimental correlations between pixels for the atomic cloud shown figure
3.6. The degree of correlations between pixels can be translated to the effective optical resolu-
tion with the figure shown in the right panel. The measured correlations for nearest neighbours
matches the analytical correlations for δeff ≈ 1.4 µm, while the second-neighbour correlations
yield a slightly larger value of 1.6 µm.
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Atom number calibration

As mentioned before, there are two difficulties in determining the atom number in an
absolute manner. Firstly, the absorption cross-section can be complicated to estimate,
and secondly for high atomic densities (when non-trivial reabsorption events happen)
the validity of the Beer-Lambert law breaks down, leading to an underestimate of atom
number. The solution to the first problem is to use high intensity probes; at large in-
tensities, the cross-section does not require the knowledge of the sublevel structure nor
the Zeeman shift or polarisation of light and absolute atom number can be calibrated
this way [153]. Indeed, if enough photons reach the atoms they will each scatter Γ/2

photons per second no matter the probe and measurement condition [80].

The solution to the problem of high optical densities is to perform a time of flight before
imaging. Transverse expansion makes the cloud more dilute and prevents reabsorption
events. In addition, after these 13 ms of TOF the cloud is far enough from the chip
to be crossed by the probe beam once which excludes double-counting. An external
magnetic field aligns the magnetic moment of the atoms along the quantisation axis
and the σ+ addresses the closed |F = 2,mF = 2〉 to |F ′ = 3,mF = 3〉 transition. For
the experimental situation presented above (figure 3.6), the number of atoms directly
extracted from this in situ image is about 2.103. Atom number calibration gives a much
larger number around 9.103.

Summary

• The method used to probe the cloud is absorption imaging, with a high-
resolution optical system.

• We recently replaced this optical system to increase the SNR and resolve
smaller structures.

• The resolution of the optical system can be determined independently by
imaging an ultracold cloud and measuring correlations between pixels, and
we find a PSF of RMS width δeff = 1.5µm.

• Atom-number calibration requires some caution and is performed with high-
intensity resonant light after 13 ms time of flight.

3.3 Understanding: analysis methods

On the experimental setup we can take images of the cloud in real as well as in momen-
tum space. For data in situ, we take several types of images for different diagnoses,
from which we extract thermodynamic quantities (temperature, chemical potential)
thanks to the exact equation of state available.
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3.3.1 Real space diagnoses

Modified equation of states in the 1D-3D crossover

Although the transverse confining potential is very tight to ensure a large transverse
ground state energy ~ω⊥/2, in typical experimental situations a small fraction of trans-
verse excited states should be taken into account on top of the 1D Yang-Yang (YY) equa-
tion of state (EoS) ρY Y (µ, T ) as the gas may lie on the 1D-3D crossover with kBT ≈ µ.
The few percent of atoms in these excited states are treated as a correction to the YY EoS
as an ideal gas, with a shifted chemical potential µ(j) = µ − j~ω⊥ for the jth excited
state [144]. The corresponding equation of state for the excited fraction is

ρTE (µ(j), T ) =
1

λdB
g1/2

(
eµ(j)/kBT

)
. (3.9)

Finally the total linear density becomes

ρ(µ, T ) = ρ(µ, T )Y Y +

+∞∑
j=1

(j + 1)ρTE (µ(j), T ) . (3.10)

In practice, we truncate the sum at about j = 35. This constitutes the Modified Yang-
Yang (MYY) equation of state.

MYY allows to correct the EoS for samples with relatively large temperatures. For
samples with a chemical potential of the order of ~ω⊥, the Thomas-Fermi EoS µ = gn

is modified in the 1D-3D crossover, to take the form

µ3D = ~ω⊥(
√

1 + 4ρaS − 1) (3.11)

This accounts for the integration of a three-dimensional density profile and the result-
ing swelling of the wavefunction [58].

Local Density Approximation

The presence of a slowly-varying longitudinal trap may also be accounted for as a shift
in the chemical potential. The quantisation of the longitudinal energy levels may usu-
ally be neglected since µ is orders of magnitude larger than ~ωz . In the local density
approximation (LDA), the total system is divided in small slices δz. In each of these
slices, density can be considered homogeneous, and the subsystem is at thermal equib-
rium with its neighbours. δz should verify ξ � δz � L where ξ is the typical density
correlation length. The system size being roughly given by ωz , the LDA is applicable
for small trapping frequencies. The chemical potential at position z is then expressed
as

µ(z) = µcentre −
1

2
mωzz

2. (3.12)

Consequently, a single realisation of a gas spans a whole range of chemical potentials
and explores different regions of the EoS.



Chapter 3. Producing, probing and understanding the one-dimensional Bose gas 57

Figure 3.10: Two examples of in situ profiles (figure adapted from [80]): the left profile is in the
quasi-condensate regime, while the profile represented right is in the ideal Bose gas phase. The
solid lines represent fits of the Yang-Yang equation of state, which allows to extract tempera-
ture. For these sets of data, we found 111 nK and 76 nK for the profiles shown left and right
respectively. The contribution of transverse excited states is also shown (dotted lines).

Longitudinal density profile

By integrating a two-dimensional absorption image along the vertical direction, we ex-
tract the longitudinal density profileN(z), in units of atom number per pixel. To image
the density profile, one is interested in the shape of the atomic cloud. Saturation of
the signal in the centre of the cloud where atomic density is the largest should thus
be avoided: when the Beer-Lambert law is no longer verified the absorption signal is
reduced and the measured optical density underestimated. To prevent this, after the
sample is produced the cloud is released and slightly expands in a short 1 ms time
of flight. The probe beam is slightly detuned to reduce the absorption cross-section.
The profile measurements are then renormalised by the total atom number determined
from a careful calibration as described in 3.2.3. The intensity of the probe beam is low
(I/Isat ≈ 0.05) to avoid saturation of the transition.

With the knowledge of the external trapping potential (ωz , ω⊥), the temperature and
chemical potential of the sample is extracted by applying the modified Yang-Yang
equation of state in the local density approximation, since the density profile is com-
pletely determined by these quantities. A complete set of data in all parameter regimes
was provided by K. Kheruntsyan and a numerical interpolation routine allows to ex-
tract all desired thermodynamic quantities. The method works best for samples whose
temperatures are not too low. Indeed, the information on the temperature is found
in the wings of the profile and as temperature decreases the density distribution ap-
proaches the Thomas-Fermi inversed parabola,

ρTF (z) = ρ0

(
1−

(
z

RTF

)2
)
,

RTF =
√

2ρ0g
mω2

z

(3.13)

and correspondingly the EoS becomes independent of temperature: µ = gn. It is also
important that the chemical potential shouldn’t exceed ~ω⊥, otherwise the density pro-
file requires the correction to µ mentioned in 3.3.1.
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Atom number fluctuations

The quasi-condensation crossover can be identified by observing the saturation of atom
number fluctuations at high densities. This measurement was performed on our exper-
iment [6, 79], and implemented as an independent thermometry of the gas performant
in regimes where profile fits become less reliable. We now routinely use this quantity
as a calibration of the produced samples. In addition, since they are related to the com-
pressibility of the gas, we envision tu use atom number fluctuation measurements in
the context of the Mott transition (see Chapter 6).

The atom number fluctuations
〈
δN2

〉
=
〈
δN2

〉
−〈δN〉2 (where N designates a number

of atoms per pixel) are related to the temperature by a fluctuation-dissipation relation:

〈
δN2

〉
= kBT∆z

∂n

∂µ
(3.14)

This relation is valid in the thermodynamic limit which requires the pixel size to be
much larger than the density-density correlation length ξ: ∆z � ξ.

The signal in neighbouring pixels is slightly correlated because the effective optical
resolution δeff (effective resolution which takes into account a possible blurring during
the imaging pulse) spreads over several pixels: ∆z . δeff. The image of a single atom
is spread over several pixel which results in a reduction of the fluctuation signal by a
factor κ compared to the physical fluctuations:〈

δN2
〉
mes

= κ
〈
δN2

〉
. (3.15)

For a pixel size well below the optical resolution and weak optical densities, κ is simply
expressed by κ ≈ ∆z/2

√
πδeff [43]. In practice, δeff and κ are found measuring correla-

tions between pixels as in 3.2.3: the determined δeff gives the corresponding reduction
factor κ.

The compressibility of the gas ∂n/∂µ|T is known from the MYY EoS and an interpola-
tion routine with the available numerical MYY data fits the best (µ, T ) to the measured
fluctuations. The protocol to measure and extract atom number fluctuations from in
situ images is as follows:

• To measure fluctuations a large number of images (200 − 300) is required. In a
complete data set, we alternate the different types of images we wish to acquire.
Typically, we take six fluctuation images for one atom number calibration and
one profile calibration. The different types of images are "interlaced" to account
for slow technical drifts.

• The imaging pulse is short (30 µs) and intense (0.15Isat) to minimise motion of the
atoms and blurring and to maximise signal. Time of flight is reduced to 50 µs, and
the atoms are very close to the chip surface and see both incident and reflected
probes. The probe is resonant and the cross-section follows the effective relation
3.5, where the correction α was found to be 0.8 experimentally (see Supplemen-
tal Material of [5]). To account for effects beyond the Beer-Lambert law at high
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Figure 3.11: Experimental atom number fluctuations for the same data sets as in figure 3.10. On
the left panel, the density fluctuations saturate, indicating that the gas indeed lies in the quasi-
condensate regime, where density fluctuations are suppressed compared to the ideal Bose gas
phase (as can be observed in the right panel). The solid lines are Yang-Yang fits, with deter-
mined temperatures of 72 and 84 nK respectively. Dash-dotted curves give the shot-noise limit.

atomic densities, a second-degree polynomial Fp(N) is determined by compari-
son with the renormalised profile measurement to correct the measured density
profile extracted from the fluctuation images [5].

• Photon shot noise 〈δN2
ph〉 contributes to the measured fluctuation signal and is

subtracted. It reads [78]:

〈
δN2

ph

〉
=

(
∆z

σeff

)2

F ′p(N)
∑
x

(
1

N1(x, z)
+

1

N2(x, z)

)
. (3.16)

The number of recorded photons in a given empty pixel in image i = (1, 2) Ni(x, z) is
integrated over a column of the two-dimensional image. As an alternative to the MYY
EoS, one can also fit the data in the dense centre of the cloud with the modified qBEC
equation of state on µ3D.

We thus have two independent thermometry methods in real space: a first method
which relies on fits of in situ linear density profiles, and a second method where atom
number fluctuations are fitted with the Yang-Yang equation of state. Some disagree-
ment between the temperatures given by both methods are often found for samples
deeply one-dimensional, and this point will be extensively discussed in Chapter 5.

3.3.2 Momentum space measurements

The velocity distribution of the atomic cloud is equivalent to the first-order correla-
tion function (they are related by Fourier transformation, see Chapter 1): by measuring
this quantity experimentally one directly accesses the coherence length of the cloud.
A measurement of the momentum distribution by Bragg Spectroscopy of an atomic
cloud gave the first experimental evidence of phase coherence over the system size in
a BEC [135]. Signatures of phase transitions present in the g(1) function were brought
to light experimentally, like for the Mott transition for instance [62]. For these reasons
diagnostics in momentum space are ubiquious in the ultracold gas community. In 1D,
two methods can be implemented: Bragg Spectroscopy [46, 59, 127], or long times of
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flight where the far-field regime is reached, so that the measured spatial density dis-
tribution maps the initial velocity distribution of the cloud provided the interactions
are switched off upon releasing the atoms. The advantage of the second technique
compared to the first is to access the momentum distribution in a single experimen-
tal shot. However, its implementation is complicated by weak longitudinal confine-
ments. Indeed, the times required to reach the far-field regime become too long and
the cloud would extend over distances which would require unrealistic fields of view.
The so-called focussing method surpasses this experimental issue by accelerating the
focussing of the cloud to the Fourier plane.

Magnetic focussing - principle

This method was first implemented to probe the coherence length of an elongated Bose
gas, initially in a shock-cooling context [134], and more recenly on an atom chip exper-
iment in Amsterdam [37] for the study of 1D gases much like our own setup. In can
also be implemented in 2D [143]. The best way to understand the method is by analogy
with optics. An object at an infinite distance can indeed be brought to the Fourier plane
at the focal point of a converging lens. In the case of atomic clouds, the converging lens
is mimicked by a parabolic kick given to the trapped cloud. This harmonic kick gives a
velocity to the atoms, proportional to the distance from the centre of the trap. After the
impulsion, the confining potential is switched off and after a time τf of free fall (equiva-
lent to the focal distance in optics), the atoms focus and their spatial distribution reflect
the initial velocity distribution.

z

kick TOF focus time

Figure 3.12: Illustration of the focussing technique. After applying a longitudinal kick to the
cloud in the initial trap, the confinement is switched off and the atoms are released. After a
time τf of flight, the spatial distribution of the atoms reflect the initial velocity distribution of
the cloud.

• The short kick (τkick ≈ 0.7 ms) gives a momentum shift to the atoms given by δp =

−mω2
fτkickz. Typically, ωf = 2π× 40 Hz (whereas ωz ≈ 2π× 7 Hz). Movement of

the atoms can be neglected during the kick if ωfτkick � 1. The gas is interacting,
and it can be shown using the scaling approach that the effect of the interactions
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Figure 3.13: Focussing sequence of the longitudinal and transverse trappings, taken from [78].

can be neglected if ωzτkick � 1 [25, 80]. To give an impulsion to the atoms we
necessarily have ωf > ωz and the condition ωfτkick � 1 is sufficient for the second
condition ωzτkick � 1 to also be verified.

• The focussing potential should be as harmonic as possible for the imprinted ve-
locity to be proportional to z (in other words, to avoid aberrations). Four wires
are used to create this focussing potential (rather than two only for the slowly-
varying longitudinal trap), to create a potential harmonic up to fifth order.

• After the kick, an additional decompression of the transverse trap reduces (repre-
sented figure 3.13) transverse spreading of the cloud which would in turn reduce
the signal.

• The focussing time τf ≈ 1/(ω2
fτkick) is about 25 ms for the considered ωf and τkick.

The resolution of the measurement is given by the pixel size in momentum space
∆p/~ = ∆zm/(τf~) ≈ 0.15 µm−1, for the older imaging configuration where the
pixel size was larger at ∆z = 2.7 µm.

Momentum distribution measurements

When the focussing scheme was first realised on the experimental setup in 2012, T.
Jacqmin and co-workers measured the evolution of the momentum distribution accross
the quasi-condensation crossover, and compared the experimental results to Quantum
Monte-Carlo simulations [79]. This method is now routinely used in the group, and
here I present an example of such a measurement. The results presented here were
obtained with the previous experimental setup, since (unfortunately) the focussing
method has not been implemented yet in the new setup. We take about 30 images
in the same experimental conditions, to measure the mean momentum distribution.
Using this method we revealed novel features like self-reflection of the breathing mode
[50], unobserved in previous (similar) measurements [67] because they performed sim-
ple time-of-flight, not quite reaching the far-field regime. A direct application of this
focussing method will be developed in Chapter 4.
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(a) (b)

Figure 3.14: Measured momentum distributions, reproduction fo figure 5 of [80] (the repre-
sented data sets are the same as those shown figures 3.10 and 3.11). The normalised momen-
tum distributions are represented in linear (1) and log (2) scales, for data sets in two different
regimes: far in the qBEC (a) and in the ideal Bose gas (b). The measurement points are fitted
with QMC (solid line) and the Lorentzian predicted in the qBEC (dashed lines). The dotted
lines represent the contribution of transverse excited states and dash-dotted lines indicate the
1/p2 behaviour. Fitting the experimental data with QMC, the temperatures of the samples can
be extracted and agree with the temperatures fitted to the atom number fluctuations.

Imaging in non-infinite conjugation

An imaging objective reaches its optimal performance when the object is in the focal
plane of the optical system, and with its larger numerical aperture, the new objective
has a reduced depth of field compared to the previous one. After 25 ms of free fall the
atoms are displaced by 3 mm, which brings them out of focus. To image in optimal
conditions, both the objective and the achromat doublet would have to be displaced
to compensate for this fall, which is not possible in the current experimental configu-
ration: the achromat doublet is fixed on the vertical translation stage whose position
along the optical axis is fixed. Master student Aghilas Aoudia considered this problem
and studied the decrease in performance of the objective when the atoms are several
millimetres away from the focal point.

The aberrations introduced when imaging in this non-optimal conditions arise from
the extremal rays. The trick to minimise these aberrations is then to reduce the diame-
ter of the objective by placing a diaphram on the optical path. For a given defocussing
distance d and a given diaphram diameter D, one can find the optimal working dis-
tance, i.e the position which minimises the diameter of the point spread function. The
optimisation procedure was conducted using software CODE V and the result of the
study is shown figure 3.15.

This study is quite pessimistic, in the sense that we would have to greatly reduce
the numerical aperture (the optimisation procedure suggests a diaphragm diameter as
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Figure 3.15: Evolution of the position of optimum performance for different diaphragm diam-
eters D at defocussing d = 4mm, for different positions x along the optical axis. The optimal
performance corresponds to the minima of the plotted curves, the y-axis representing the size
of the point-spread function. The best performance (or smallest spot size W ) is achieved with
the smallest diaphragm diameter of 4 mm.

small as 4 mm) to achieve a reasonable performance of the imaging system for atoms
several mm away from the focal point. This was not tested experimentally yet.

Summary

• A certain number of experimental tools were developed to characterise the
produced 1D Bose gases at- and out-of-equilibrium.

• In real space, density profile measurements give direct access to thermody-
namic quantities.

• Also in real space, atom number fluctuations not only consist in a measure-
ment of the compressibility of the gas, they also allow an independent tem-
perature measurement. With the better resolution now available, we could
even attempt measurements of (integrated) correlations in real space, al-
though the density correlation length (the healing length ξ) remains below
our resolution.

• Finally, a focussing technique allows us to probe the momentum distribu-
tion (or equivalently the g(1) function), potentially unveiling novel features
previously unobserved because the far-field regime was not reached.



64 Chapter 3. Producing, probing and understanding the one-dimensional Bose gas

• The first experimental project conducted during my doctoral work directly
implemented the method to probe momentum-space correlations.



CHAPTER 4
Momentum-space correlations of a one-dimensional Bose Gas

Correlation functions are an essential tool to describe the physics of isolated many-
body quantum systems like ultracold atomic gases. They contain valuable information
on the quantum statistics [83, 131] and thermodynamics, allowing for instance to char-
acterise different phases and states of matter [1, 2, 56]. Measuring correlation functions
is especially relevant for one-dimensional (1D) Bose gases where the role of fluctua-
tions is enhanced by the constrained nature of the system. The different phases of the
1D Bose gas are indeed defined by the local two body correlations, or equivalently, the
behaviour of density fluctuations [79, 91], and the natural presence of phase fluctua-
tions can be exploited as a temperature probe [75,104]. Correlations not only inform on
equilibrium states, they also contain information on the excitations of the system [29,82]
and propagate after driving a system out of equilibrium [30, 97]. Moreover, at a phase
transition the scaling of correlations identifies its universality class and can be used to
characterise classical or quantum phase transitions [111]. Finally, high-order correla-
tion functions recently revealed non-thermal features [96], compatible with the gener-
alised Gibbs ensemble formalism. Such correlations can be measured in standard cold
atom experiments thanks to high precision imaging. They unveil information about
these complex correlated systems beyond the possibilities of numerical simulations.

Most previous studies focussed on either equilibrium real-space correlations or out-or-
equilibrium correlations in momentum space. Here, we report on the measurement of
the equilibrium two-body correlations in momentum space, of a 1D Bose gas, through-
out the quasi-condensation crossover. We define the correlations as

G(k, k′) = 〈δn̂kδn̂k′〉 = 〈n̂kn̂k′〉 − 〈n̂k〉〈n̂k′〉, (4.1)

where δn̂k = n̂k−〈n̂k〉 and nk is the population of mode k. This type of measurement is
possible on our experimental setup because we can measure the complete momentum
distribution in a single shot, contrary to Bragg spectroscopy like for instance in [135].
Also, although previous experiments have reported momentum distribution measure-
ments in 1D [67], reaching the far-field regime1, for such weak longitudinal traps re-
quires some caution, and the focussing method ensures we truely measure the velocity
distribution of our samples. Another strength of our experimental setup is the realisa-
tion of a single condensate at a time, rather than an ensemble of gases like in 2D lattice

1Far-field, in analogy with Fraunhofer diffraction in optics, in when the spatial distribution of atoms is
homothetic to their initial velocity distribution.
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experiments [67]: their imaging automatically averages over an ensemble of clouds.
For these reasons we were in a good position for such measurements which had never
been performed before, and establish a benchmark for future dynamical studies on our
setup, after an interaction quench for instance.

This study was conducted at the beginning of my doctoral studies, before modifications
were made to the experimental setup. For instance the optical resolution is lower than
for the imaging system previously presented and the atom numbers typically smaller.

4.1 Predictions

In this work we focus on the weakly-interacting Bose gas, and more precisely the
crossover between the ideal Bose gas (IBG) and the quasi-condensate (qBEC). In the
homogeneous system, a certain number of analytical calculations can be carried out
deep in both asymptotic regimes, as published by Isabelle Bouchoule and co-workers
in [18]. For comparison with the experiment we then apply the local density approx-
imation (LDA, see below) and consider the effect of a finite optical resolution on the
correlation map.

4.1.1 Predictions for the homogeneous gas

General form of G(k, k′)

Consider a uniform gas of 1D bosons, interacting via repulsive short-range interactions
in a box of length L. As a reminder, in the grand-canonical ensemble the hamiltonian
of the system reads:

Ĥ = − ~2

2m
Ψ̂†

∂2

∂z2
Ψ̂ +

g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂− µΨ̂†Ψ̂, (4.2)

Ψ̂†, Ψ̂ being field operators satisfying the bosonic commutation relations, and g the
effective coupling constant. The density of the system is fixed by temperature T and
chemical potential µ.

In real space, the (non-normalised) first and second order correlation functions of the
(bosonic) field ψ̂ are defined by:

G1(z1, z2) = 〈Ψ̂†(z1)Ψ̂(z2)〉 (4.3)

G2(z1, z2, z3, z4) = 〈Ψ̂†(z1)Ψ̂(z2)Ψ̂†(z3)Ψ̂(z4)〉 (4.4)

Since the momentum distribution 〈n(k)〉 is the Fourier transform of G1(z1, z2), G(k, k′)

according to definition 4.1 becomes:

G(k, k′) =
1

L2

∫∫∫∫ L

0
d4ze−ik(z1−z2)e−ik

′(z3−z4)[G2(z1, z2, z3, z4)−G1(z1, z2)G1(z3, z4)].

(4.5)
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Quasi-condensate regime: Luttinger liquid approach

In the qBEC phase, where the correlation length lφ of G1 is much smaller than the
system size L, G(k, k′) can be decomposed into a singular term and a regular term [18]:

G(k, k′) =
(
〈n̂k〉+ 〈n̂k〉2

)
δk,k′ + G̃(k, k′). (4.6)

The regular term G̃(k, k′) arises from momentum exchanges in the interacting gas and
therefore vanishes in the IBG. 〈n̂k〉 is the shot noise contribution and 〈n̂k〉2 the bosonic
bunching term, both diagonal. This shows that contrary to real space, bosonic bunching
remains in momentum space in the qBEC. An analytical expression can be found for the
regular term in the limit where low-energy excitations dominate (which is the case in
a qBEC). The Hamiltonian then reduces to the so-called Luttinger liquid Hamiltonian
[27]:

HL =
g

2
(δρ̂)2 +

~2ρ

2m

(
∂zφ̂
)2
, (4.7)

δρ̂ and φ̂ being canonically conjugate and representating the density operator and the
phase operator respectively. The density fluctuations being small (in real space) in the
qBEC regime, they can be neglected for the calculation of G1 and G2 as long as the
considered relative distances are larger then ξ, the density correlation length. As a
reminder (more details can be found in Chapter 1) the correlation function G1 takes the
exponentially decaying form

G1(z1, z2) = ρe−|z1−z2|/2lφ . (4.8)

lφ = ~2ρ/(mkBT ) is the phase correlation length, and the corresponding (via Fourier
transformation) momentum mode occupation numbers are Lorentzian:

〈n̂k〉 =
4ρlφ

1 + (2lφk)2
(4.9)

In addition, the two-body correlations G2 can be expressed in terms of first-order cor-
relations only according to:

G2(z1, z2, z3, z4) =
G1(z1 − z2)G1(z3 − z4)G1(z2 − z3)G1(z1 − z4)

G1(z1 − z3)G1(z2 − z4)
(4.10)

The substitution of the above forms of G1 and G2 into 4.5, leads, by identification of the
regular term, to:

G̃(k, k′) =
lφ
L

(ρlφ)2F(2lφk, 2lφk
′), (4.11)

F being a dimensionless function expressed by

F(q, q′) =
256[(q2 + 3qq′ + q′2)qq′ − 2(q2 − qq′ + q′2)− 7]

(q2 + 1)2(q′2 + 1)2[(q + q′)2 + 16]
. (4.12)

The regular part of the correlations is mainly negative (see figure 4.1), and can be
thought of as a reduction of the total correlations to compensate the positive bunching
which remains in momentum space although greatly reduced in real space. F decays
to zero on a typical distance of the order of the inverse phase coherence length klφ ∼ 1.
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The validity of this expression relies on the negligeable nature of the density fluctua-
tions in the system, or in other terms, that the temperature T is much lower than the
crossover temperature TCO.
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Figure 4.1: Left: regular part of the two-body correlations in momentum space, deep in the
qBEC regime. It is defined negative, thus partly compensating the positive contribution of
bosonic bunching still present in momentum space and is spread over an area of typical size
1/l2φ, which is the typical length scale of the G1 function. Right: cuts along the diagonal and
antidiagonal. Adapted from [18].

True condensate vs quasi-condensate behaviour

The general form of the expected momentum correlations is very different if one has
phase coherence over the whole length of the system. However, some reminiscent fea-
tures of true long range are present in the computed regular function.

For a one-dimension Bose gas at T = 0, the first-order correlations G1 decay alge-
braically rather than exponentially, as:

G1 ≈ (ξ/|z1 − z2|)
√
γ/2π, (4.13)

with a corresponding exponentially large correlation length lφ,0 ≈ ξe2π/
√
γ . This al-

gebraic decay remains as long as |z| is smaller than the thermal phonon wavelength,
which we assume here to retain true long-range order and use Bogoliubov theory to
predict the form of the momentum correlations in the system, as was done in [106].
Here I just give the main results, for details of derivation please refer to the original
publication.

In a true BEC, the correlation function G(k, k′) is non-zero for k = k′ and k = −k′ only.
On the diagonal, the correlations are the bunching term for an IBG:

G(k, k′) =
(
〈nk〉+ 〈nk〉2

)
δk,k′ (4.14)

with the occupation numbers 〈nk〉 given by:

〈nk〉 = (1 + 2nk,bogo)
Ek + gρ

2εk,bogo
− 1

2
. (4.15)
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εk,bogo is the Bogoliubov dispersion relation, nk,bogo the occupation numbers of the Bo-
goliubov modes, and Ek the free particle dispersion relation. For opposite momenta,
G(k,−k) reads

G(k,−k) = (1 + 2nk,bogo)

(
gρ

2εk,bogo

)
(4.16)

At zero temperature, correlation between opposite momenta is maximal, due to the
creation of pairs of excitations in the Bogoliubov vacuum (the quantum depletion of
the condensate). For high-energy particle modes, opposite momenta are less correlated
with increasing temperature due to thermal depletion of the condensate.

In the qBEC, lφ � L and the previous statements no longer hold. However remnants
of opposite momenta correlations are present in the structure of G̃. By dividing the
system of length L into small slices where the phase is homogeneous, one can apply the
Bogoliubov approach to each independent domain. Consider the normalised regular
part of the two-body correlation function:

g̃(2)(k, k′) =
G̃(k, k′)

〈n̂k〉〈n̂k′〉
(4.17)

Which can also be written in terms of the previously defined regular part of the corre-
lation function:

g̃(2)(k, k′) =
lφ
L

(1 + (2lφk)2)(1 + (2lφk
′)2)
F((2lφk), (2lφk

′))

16
. (4.18)

One recovers positive correlations around the anti-diagonal, scaling with lφ/L and thus
gaining in importance as phase coherence appears over distances of the order of the
system size L.

q

q

Figure 4.2: Normalised regular part of the correlation function, g̃(2)(k, k′). A positive anti-
diagonal is revealed by the normalisation of the correlation function, feature which arises from
local phase coherence is the system like what is expected for a system with true long range
order (although in the latter the amplitude of these anti-correlations is much larger relative to
the positive term).
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Figure 4.3: Example of a QMC simulation of a gas on the quasi-condensation crossover, in a trap
(using the local density approximation). The two contributions to the momentum correlations
are clearly visible: a bunching term on the diagonal (the width of the diagonal is finite because
the trap imposes a system size L), and a negative regular contribution.

Quantum Monte Carlo on the crossover

In general, there is no analytical formula available for momentum correlations of a re-
pulsive 1D Bose gas. Over the crossover, when neither of the asymptotic predictions
are expected to hold, we turned to Quantum Monte Carlo simulations performed by
our colleague Tommaso Roscilde from ENS de Lyon. Starting from a certain configura-
tion computed with the stochastic series expansion, a so-called directed-loop algorithm
is implemented. More precisely, to compute the g(1) function (and equivalently the mo-
mentum distribution), a so-called "worm" is introduced in the following manner.

After generating a certain configuration with a stochastic series expansion (SSE), a par-
ticle is created on site i with the operator a†i (also referred to as the tail of the worm),
later destroyed with ai (the head of the worm). The directed-loop algorithm moves the
head (or the tail) away from the tail (respectively the head). Some SSE configurations
where both a†i and aj (where j = i) are present are generated, thus contributing to
g(1) = 〈a†iaj〉. In other terms, the head and the tail of the worm move away from each
other spatially, with g(1) the probability distribution of the distance between head and
tail.

Now, to compute G(k, k′) on needs to evaluate the double Fourier transform of 〈a†iaja†l am〉.
To sample this four-point quantity a double worm, with two heads (a†i and a†l ) and two
tails (aj and am) is required. This was programmed by our colleague Tommaso. An
example of a computed momentum correlation map is shown above (figure 4.3).

These simulations are performed in the local density approximation to take into ac-
count the trapping potential. However, for the analytical considerations above the gas
was assumed homogeneous. To compare these previous calculations to experimental
results the external (slowly-varying) trapping potential needs to be taken into account.
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This is done in the local density approximation. The finite resolution of our measure-
ments also affect the form of the measured correlations. These two effects are accounted
for and detailed in the following section.

4.1.2 Effects of an external trapping potential and finite resolution

Trapped gas in the local density approximation

As shown above, the momentum correlations can be written as the sum of three con-
tributions (in terms of momentum p = ~k as probed in the experiment):

〈δnpδnp′〉 = S(p, p′) +B(p, p′) + 〈δnpδnp′〉reg (4.19)

S(p, p′) labels the shot noise contributions and B(p, p′) the bunching term. In a trap,
for a given p contributions from different regions of the confinement (and therefore
different densities) to np need to be taken into account. The local density approxi-
mation relies on a small phase correlation length lφ compared to the system size L. If
ν

(h)
ρ(z)((p+p′)/2) is the momentum distribution of a homogeneous gas of density ρ(z), the

complete bunching term in the LDA is expressed as an integral over the local bunching
term 〈ν(h)

ρ(z)(p)〉
2δ(p−p′) and yields (see Appendix A for more details on the derivation):

B(p, p′) =

∣∣∣∣1~
∫

dz〈ν(h)
ρ(z)((p+ p′)/2)〉ei(p−p′)z/~

∣∣∣∣2 (4.20)

The width of B(p, p′) is of the order of ~/L. For a condensate length of about 100 µm
and a resolution in momentum space (see next section) of ∆p/~ ≈ 0.15µm−1, we cannot
resolve the structure inside the diagonal and we write the bunching term as a singular
function

B(p, p′) ≈ δ(p− p′)B(p), (4.21)

B being 2π~
∫

dz〈ν(h)
ρ(z)(p)〉

2. Generally the shot-noise term can be neglected since we
consider highly-degenerate gases, so the only remaining term to evaluate in the local
density approximation is the regular function. Again, the result is an integration over
the local contribution of a homogeneous gas of density ρ(z), in this case expressed
by the dimensionless function F . Along with dimensional analysis to determine the
prefactor, on finds:

〈δnpδnp′〉reg =

∫
dz

l3φρ
2

(2π~)2

F
(

2lφp
~ ,

2lφp
′

~ ; t, γ
)

8
. (4.22)

Here lφ is z-dependent via ρ(z). details of derivation can be found in Appendix A.

For comparison with the experiment, one finally needs to take into account the finite
imaging resolution on our experiment, together with the pixelisation due to the camera.
These both affect the form of the measured correlations G(p, p′)
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Convolution with the imaging response function

In the experiment, the accessible quantity is a number of atoms in a given pixel (in-
dexed by integer α) 2 Nα =

∫
dpn(p)A(α, p). A(α, p) =

∫
∆α

dqe−(p−q)2/(2δ2)/(δ
√

2π) is
the contribution of an atom in p to the signal in pixel alpha, function of width δ inte-
grated over a pixel ∆α. Pixel ∆α has a size ∆p in momentum space, which depends on
the focussing time τ and the pixel size in real space ∆z , via: ∆ = m∆z/~τ . For the data
presented here, τ = 25 ms, and ∆p/~ = 0.15 µm−1.

The discretised correlation map 〈δNαδNβ〉 is then:

〈δNαδNβ〉 =

∫
dpdp′A(α, p)A(β, p′)〈δnpδnp′〉. (4.23)

Typically in the following δ ≈ ∆p/~. Unlike in Chapter 3, δ is a width in momentum
space, related to the width to the width of the response function in real space by δ/~ =

δzm/(τf~). With these two experimental artefacts (trap and finite resolution) taken
into account, we can now turn to the experimental results and their comparison with
the expected correlations.

Summary

• The two-body correlation function G(k, k′) can be analytically calculated in
the asymptotic regimes (IBG and qBEC).

• It contains a singular positive bunching term (the only non-vanishing con-
tribution in the IBG), and a regular negative contribution stemming from
momenta exchanges in the interacting phase.

• In general G(k, k′) needs to be numerically evaluated and numerics reveal
both bunching and regular contributions.

• In order to compare the theoretical predictions to experimental data, the ef-
fect of the external trapping potential and the finite resolution are taken into
account.

4.2 Experimental results

We measured correlations in momentum space over the quasi-condensation crossover,
and present three data sets: one in the IBG phase, one deeply qBEC and finally an inter-
mediate set of data on the crossover to illustrate that the measured features vary con-
tinuously over the smooth change from a non-interacting gas to the interacting qBEC.

4.2.1 Experimental protocol and data analysis

Each of the presented data sets consists of about 50 shots in momentum space, along
with calibration data taken in real space to determine the thermodynamic quantities

2All pixels are identical, the index α is necessary later when the correlations 〈δNαδNβ〉 are considered.
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and the position in the phase diagram of the samples, as explained in Chapter 3. For
these experiments the longitudinal frequency was ωz/(2π) = 7 Hz, and the transverse
frequency ω⊥ = 1.9 kHz. Over the course of a measurement sequence, shot-to-shot
atom number fluctuations range from 4% for the highest densities to about 40% for the
lower densities. With a pixel size in the imaging plane of ∆ = 2.7 µm3 and a time of
flight τ of 25 ms, the pixel size in momentum space is ∆p/~ = 0.15 µm−1. The 50 shots
in momentum space are measured using the focussing method which assures that we
truely measure the velocity distribution of our sample. Averaging over the data set,
the mean momentum distribution 〈Nα〉 is deduced and for each shot we compute the
quantity δNα = Nα − 〈Nα〉.
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Figure 4.4: A single shot of momentum distribution: on the very left the absorption imaging
signal, and the corresponding integrated distribution (middle), of lorentzian shape as expected.
On the right, δNα is shown in black, as the difference between the single shot profile (blue) and
the mean profile (red).

The mean correlation matrix 〈δNαδNβ〉 is then deduced for data sets in different regions
of the phase diagram.

4.2.2 Presentation of the three data sets

We label the three data sets A, B and C, and their position in the phase diagram is
shown below (figure 4.5).

Data A is in the IBG regime, with a measured temperature of 144 nK (with an accuracy
of about 20 %), and a peak density of 50 atoms per pixel (1.8 107 m−1). The density
fluctuations are in agreement with the temperature extracted from fitting the profile
with the Modified Yang Yang equation of state (figure 4.6).

Data C lies deep in the qBEC regime, with a measured temperature of about 75 nK
(according to density fluctuations) and a peak density of 250 atoms per pixel (or 1 108

m−1. Profile thermometry yields a higher temperature of 100 nK, however with the

3These measurements were made with the older imaging system.
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t

Quasi-condensate

Ideal Bose Gas

A
BC

Figure 4.5: The three data sets presented in this chapter. Data A is in the so-called degenerate
IBG regime, where atoms don’t interact and strongly bunch. Data C is far is the qBEC regime,
while data B is on the smooth crossover between A and C. This figure is a zoom of the complete
phase diagram which was introduced in Chapter 1.
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Figure 4.6: Calibration measurements of data A. The density fluctuations do not saturate at
high densities which is a signature that the sample lies in the IBG regime. The shot noise level
shown in dash-dotted line is well below the level of density fluctuations indicating that the
sample is indeed highly degenerate.

rather small wings of the Yang Yang profile the fluctuation temperature is more reli-
able and perfectly fits with the qBEC equation of state μ = gρ 4.

For data B, with the same methods as previously, we measure a temperature around
144 nK, and a peak density of 5.107 m−1.

4.2.3 Measured correlation maps for each set of data

Correlations for data A - IBG

In this regime, the measured momentum correlations 〈δNαδNβ〉 are essentially positive
and diagonal, in very good agreement with the expected theoretical correlations. The
non-zero correlations in the rest of the plane are much smaller than the signal on the
diagonal. The results are consistent with what is expected for the trapped IBG in the
grand-canonical ensemble: since the single-particle states have well-defined momenta,
correlations of the diagonal are vanishing. The grand-canonical description holds since
each pixel can be considered independently (in other terms �/L � Δp � �/lφ) and for
each pixel the rest of the cloud acts as a reservoir. The question of correlations in the

4We also suspect that the sample is not as thermal equilibrium since the system is close to integrable,
and relate this discrepancy to a dissipative evaporation mechanism detailed in Chapter 5.
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Figure 4.7: Calibration measurements of data C. Density fluctuations saturate at high densities
and follow the prediction from the Thomas-Fermi equation of state, which gives us a temper-
ature measurement with good precision. On the other hand, the profile fitting with the Yang-
Yang equation of state is expected to be less reliable since the wings can barely be distinguished
from the zero-temperature Thomas-Fermi profile (solid line).
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Figure 4.8: Calibration of data B. The onset of saturation in the density fluctuations indicate
that data B lies on the crossover between an IBG and a qBEC.

canonical ensemble where atom number is fixed is considered in section 4.3.1.
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Figure 4.9: Correlations maps in the IBG: measured (left) compared to the IBG theory (right).

For more quantitative comparison, we plot the diagonal cuts of the correlation maps
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(figure 4.10). Agreement is fairly good despite the relatively low signal for the low
densities of this experimental condition.
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Figure 4.10: Cut along the diagonal of the measured data (circles) and the theory (dashed line).
The shot noise level is represented as the blue dash-dotted curve which lies well below the
measured signal.

Quasi-condensate: Data C

In the qBEC regime, we observe the expected regular negative contribution (figure
4.11). The experimental data qualitatively fits the expected correlation map computed
from theoretical predictions: positive correlations remain on the diagonal while a neg-
ative regular part appears off the diagonal. The pixelisation of the data alters the qual-
itative form of the correlations: in this regime lφ is so large that the momentum distri-
bution is only spread over several pixels, making the shape of the correlations barely
recognisable compared to section 4.1.1. Again, for a more qualitative comparison than
colourmaps, cuts along the diagonal and anti-diagonal are represented (figure 4.12).
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Figure 4.11: Experimental correlation map (left) and theoretical correlation map. Qualitatively
the agreement is good.

Atom-number fluctuations are strongly reduced in the qBEC regime because of re-
pulsive interactions, as can be seen on the calibration figure (where density fluctu-
ations saturate at high densities). However in momentum space bunching remains:
the curves lie well above the shot-noise limit (figure 4.12). The negative contribution
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Figure 4.12: Cuts along the diagonal and anti-diagonal directions for experimental data (circles)
and theory. The agreement is again very satisfying, given the resolution of the measurement.
The blue dashed-dotted curve give the shot noise limit.

F , spread over a region ~/lφ, reduces the total fluctuation signal and is thus a con-
sequence of the repulsive interactions which drive the quasi-condensation crossover.
The situation is very different from the case of a system with true long range order.
This measurement is the first experimental proof that bunching remains in momentum
space. The very good agreement with the theoretical regular contribution is ensured
by the fact that 〈δnpδnp′〉 is dominated by contributions from the central region of the
cloud where lφ is the largest, as extensively discussed in section 4.3.1. It is well de-
scribed in the grand-canonical ensemble since the rest of the cloud acts as a reservoir,
and the measured correlations are much smaller than those expected from the renor-
malisation by total atom number.

On the crossover: Data B

The difference between the IBG data and qBEC data is striking: first of all in the IBG
correlations are only on the diagonal and positive, whereas negative regions appear in
the qBEC off the diagonal, and secondly the correlations spread over a much smaller
region in the qBEC because the momentum distribution is much thinner. The crossover
from an IBG to a qBEC is smooth and in the third set of data, the slow change from the
IBG to qBEC is visible. Negative regions start to appear around the anti-diagonal, sig-
nature of the appearance of repulsive interactions in the system. The positive diagonal
remains, and the area of the correlation region is intermediate, larger than data C in
the qBEC but thinner than data A. This is because lφ slowly increases as one enters the
qBEC regime. The experimental data is compared to QMC in the figure below (figure
4.13).

The agreement between data and QMC is more visible on the cuts of the diagonal and
anti-diagonal as shown below. This excellent matching between data and numerics
was not granted a priori because as mentioned above, the computation of this fourth-
order quantity is challenging. Moreover, the numerical error performed needs to be
very low in order to recover a reasonable uncertainty after binning and blurring the
numerical data to match the experimental resolution: the washed-out physical struc-
tures are indeed much smaller than what can be probed experimentally.
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Figure 4.13: Comparison between the experimental (left) correlations with QMC simulations
(right) for data B. Apart from an asymmetry on the experimental data, the agreement is excel-
lent.
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Figure 4.14: Diagonal and anti-diagonal of the above correlation maps, revealing very good
agreement.

We measured the momentum correlations for three data sets over the crossover, and
observed the onset of negative correlations off the diagonal as one reaches the qBEC
regime. We also observed that the positive diagonal, namely the bunching contribu-
tion, remains in the qBEC in momentum space when it disappears in real space. We
now attempt to describes these features of the crossover in a single quantity called C.

A single intensive quantity to summarise the data

Because of the resolution of the measurements, the main structure of the correlations
are washed out and the bunching contribution can no longer be distinguished from the
regular (negative) contribution. For this reason we cannot measure the evolution of F
over the crossover for its characterisation. We thus considered the following experi-
mental quantity:

C =
∑
α

〈δNαδN−α〉/〈N0〉 (4.24)
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C is an intensive quantity, and one can show that in the limits δ,Δp 	 �/lφ and δ 	 Δp,
only depends on t and γ0 (γ in the centre of the cloud). Proof of this is delegated to
Appendix A, to focus on the main results. We found the following expressions in the
asymptotic regimes of the phase diagram:

• In the degenerate IBG, the equation of state is ρ ≈ kBT
√
m/(�

√
2 |μ|), and ν

(h)
ρ,T (0) ≈

�ρ/(mkBT ), and one finds:

C ≈ 0.54
�
2ρ2

mkBT
=

1.08

tγ20
(4.25)

• In the qBEC, μ = gρ and ν
(h)
ρ,T (0) ≈ 2�ρ/(mkBT ) so that:

C ≈ −1.14
�
2ρ2

mkBT
=

−2.28

tγ20
(4.26)

We computed this newly defined intensive quantity for each of our data sets and plot-
ted (figure 4.15) its values along with the asymptotic predictions.

The agreement is not so good. First of all, this is because the initial hypothesis (lφ �
�/δ � �/Δp) is not quite valid for this experiment. Moreover, C depends on the two in-
tensive quantities δlφ/� and δ/Δp. Since the resolution remains the same from one data
set to another they correspond to different δlφ/� so a quantitative comparison should
be done cautiously.
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Figure 4.15: C-value plotted for the three data sets. Their position in the phase diagram is
reminded in the inset. The calculated asymptotic values as well as the prediction for a classical
Bose gas are plotted alongside. The agreement is not perfect, because the assumptions made to
compute the asymptotic values of C are not reached, and moreover each data set has a different
δlφ/� which makes a direct comparison rather tricky.
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Summary

• We measured momentum correlations of three data sets realising the com-
plete crossover from an IBG to a qBEC.

• For each data set agreement with analytical calculations or numerical simu-
lations was quantitatively good.

• However the attempt at defining a single quantity to characterise the
crossover (since a lot of information is lost in the experimental sampling)
was not so conclusive.

4.3 Discussions

The presented correlation measurements are quite challenging from an experimental
point of view because a number of precautions should be taken to rule out all possible
artefacts on the measured signal. In particular, extra correlations could be introduced
in the data analysis procedure. We found that for instance a small centre jitter could
slightly change the results (although fortunately the centre is stable in our experiment,
with a jitter of maximum two pixels). Our measurements were robust against changes
in the data analysis method (like recentring the profiles, or normalising/ordering the
atom number, etc.) which gave us confidence that the measured correlations were
physical.

However the fact that the negative regions we observe are mainly related to the ab-
sence of true long-range in the system should be discussed to reinforce our statement.
Firstly, we rule out the effect of normalising atom number in the data analysis, which
introduces negative correlations but not enough to reproduce the experimental signal.
Secondly, we return to the long-range order prediction and show that the Bogoliubov
prediction in the canonical ensemble (and therefore with negative correlations present)
do not match the measured correlations, to contrast with the results of [106].

4.3.1 Effect of normalising atom number

From an experimental shot to another, the total number of atom varies relatively from
4 to 40 % and these fluctuations are related to the preparation procedure. In the data
analysis, we remove shot-to-shot atom number fluctuations to place ourselves in a fixed
atom number ensemble, by renormalising each momentum profile to the mean atom
number. This would be without effect on the momentum distribution if there were a
scaling of the form n(p;N1)/N1 = n(p;N2)/N2. This is not the case since the width of
the momentum distribution scales with 1/ρ. The normalisation therefore introduces ex-
tra fluctuations, typically of the order of the variance of the atom number fluctuations
in the given set of data. Normalising the profile is also expected to introduce nega-
tive correlations for large p − p′ since the normalisation procedure especially affects
the wings of the distributions. More importantly, by fixing the atom number and plac-
ing ourselves in the canonical ensemble, the total sum of the correlations

∑
α,β〈NαNβ〉
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vanishes. With a positive signal on the diagonal, negative correlations appear to com-
pensate the positive ones, as soon as atom number is kept constant. In the following
we estimate this last effect on our data.

Homogeneous gas

We first consider a homogeneous gas confined in a box potential, of length L, and
suppose that the momentum correlations are solely due to bosonic bunching. The effect
of optical resolution is disregarded and we take δ = 0, however keeping pixelised
data (with a pixel size ∆p). The number of momentum states in a given pixel is M =

∆pL/(2π~) such that (with ∆p � ~/L) the total atom number fluctuations fulfill

〈δN2
α〉 = (〈Nα〉+ 〈N2

α〉)/M � 〈N2
α〉. (4.27)

Normalising the momentum distribution to N changes 〈Nα〉 to

〈Ñα〉 = 〈N2
α〉+ 〈δN2

α〉 −
〈N2

α〉
N

∑
β

〈N2
β〉, (4.28)

and the resulting momentum correlations are:

〈 ˜δNα
˜δNβ〉 = 〈δN2

α〉δα,β −
〈Nα〉
N
〈δN2

α〉 −
〈Nα〉〈Nβ〉

N

∑
γ

〈δN2
γ 〉. (4.29)

Just as to compute the F function previously, as one replaces 〈Ñα〉 by a Lorentzian of
FWHM 2~/lφ, the resulting correlations can be written as a function of Fn:

〈 ˜δNα
˜δNβ〉 = 〈δN2

α〉δα,β + (∆pL/(2π~))2Fn(2lφp/~, 2lφp′/~)
(
ρl3φ/N

)
, (4.30)

where

Fn(q, q′) =
−64(1 + q2)− 64(1 + q′2) + 16(1 + q′2)(1 + q2)

(1 + q2)2(1 + q′2)2
. (4.31)

Fn is plotted figure 4.16, along with F which are the expected negative correlations for
a homogeneous qBEC in the grand-canonical ensemble. Although the two functions
differ slightly in shape, it would be very difficult to distinguish between experimen-
tally. They have the same integral and their central value q = q′ = 0 is identical.
In our experiment, the gas is trapped, which (fortunately) completely changes the pic-
ture.

Inhomogeneous cloud

Here we show, despite the pessimistic estimations of the previous paragraph, that the
measured negative correlations are not due to renormalisation effects. Indeed, in a trap
the negative correlations are dominated by those introduced by the central region of the
cloud where lφ is the largest, as shown by equation 4.22. Data C (in the qBEC regime)
was newly analysed without the renormalisation procedure, and the result is shown
in the left panel of figure 4.17. The result differs only slightly with the correlations
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Figure 4.16: Function Fn describing the effect of normalising all momentum distributions of
a data set to an atom number N , for a homogeneous gas with bosonic bunching only. Fn is
different from F (plotted right) since it is even in both q, q′, however both functions are very
similar and given the resolution of the experimental data they would be difficult to distinguish
in practice.

presented above. Finally, we bin and blur data A (in the IBG regime, and spread over
a much larger number of pixels than data C), to reach the same ∆plφ/~ as data C for
quantitative comparison. Since this data lies in the IBG regime without normalisation
only bunching on the diagonal would be present. We then analyse binned data A with
atom-number normalisation and show the result in the right panel of figure 4.17.

We therefore conclude that the negative correlations measured in the qBEC do not arise
from the normalisation procedure.

4.3.2 Contrast with true long-range order

At the beginning of this chapter we discussed the difference between expected correla-
tions for true-long-order and a qBEC. As well as a positive diagonal and anti-diagonal,
Mathey et al. predict negative correlations along k = 0 and k′ = 0. However these
correlations are of different nature from those measured in our experiment. They arise
from the conservation of particle number in their calculation and the presence of a
positive diagonal (bosonic bunching) and anti-diagonal (pairs depleted from the con-
densate): in order for the total sum of correlations to vanish these negative correlations
appear. To confirm the different nature of these correlations compared to our results
and show that our observed negative correlations are truely a signature of the absence
of long-range order, we took the situation of data C (the qBEC data), and computed the
expected correlation map with the prediction of equation (62) from reference [106]. The
resulting correlation map is shown figure 4.18.

For our experimental situations the temperature is high enough for lφ to be much
smaller than the system size and prevent the absence of even quasi long-range order
(when the temperature is low enough lφ may reach the system size). This is compatible
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Figure 4.17: Left: data C analysed without renormalisation. The negative correlations are about
as large in amplitude as the positive contribution. Right: data A binned to compare A and
C on equal footing (with similar ∆plφ/~). The normalisation procedure introduces negative
correlations on the α = 0 and β = 0 axis, however they remain much smaller in amplitude than
the bunching contribution, contrary to the negative correlations on the left.
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Figure 4.18: Correlation map expected from the results of [106]. Negative correlations come
from the conservation of atom number. The result is qualitatively different from the shape
of the measured correlations of data C, with positive correlations along the anti-diagonal and
negative contributions along k, k′ = 0.

with the fact that the results of Mathey and colleagues does not predict the correlations
we measure.
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Summary

• The fact that the measured negative correlations are solely a consequence
of absence of long-range order in the experimental system should be taken
with caution so we performed several checks to prove the robustness of our
experimental observation.

• Firstly the effect of normalising atom number in the data analysis and forcing
additional negative correlations in was ruled out.

• Secondly the prediction of true-long range order in the canonical ensemble
(reference [106]) also predict negative correlations: they do not match the
experimental correlations however.



CHAPTER 5
Non thermal states resulting from atom losses

In this chapter, a cooling mechanism via uniform atom loss in a one-dimensional Bose
gas is considered. This scheme was proposed and demonstrated experimentally by
colleagues in Vienna [65, 124]. Using classical field simulations, we show that such
a mechanism indeed induces a reduction of energy in the excitations of the gas, but
to a non-thermal state: modes of different energy are not "cooled" at the same rate.
This is in agreement with some experimental observations of our setup. We relate the
resulting cooling of the modes in the gas to its integrable nature: adding a perturbation
which breaks the integrability destroys the non-thermal state resulting from atom loss.
Finally, by taking into account the quantised nature of the field, the temperature decay
is limited by long-wavelength fluctuations excited by the removal of atoms. We extend
the classical field picture by modelling the system with a stochastic Gross-Pitaevskii
equation, to modelise the discrete nature of the atomic field. All the work presented in
this Chapter is ongoing: some conclusions or results are not complete and we are still
investigating many aspects.

5.1 Context: cooling via uniform atom loss

5.1.1 The cooling paradox of 1D gases

Evaporative cooling in atomic clouds allows to reach temperatures well below the limit
of quantum degeneracy [87]. It relies on the removal, via a radio-frequency driving
field or the lowering of an optical potential, of the most energetic atoms in the sys-
tem, leaving the remaining particles to thermalise to a lower temperature by atomic
collisions [102, 137]. Such a scheme reduces the temperature from the µK range to the
nK range in a few seconds. In the one-dimensional magnetic traps engineered with
atom chips, RF-induced evaporation lead to temperatures as low as ~ω⊥/10 [79] on our
experimental setup. However, the cooling mechanism in the one-dimensional regime
remained unclear at the time of the publication of those results. Standard evapora-
tive cooling indeed relies on energy selection, which is ruled out if all atoms lie in the
ground state of the transverse trap. Moreover, since the one-dimensional gas is not
ergodic, collisions between particles are not sufficient to redistribute the energy after
removal of atoms and thermalise the system. As a side remark, an alternative cooling
scheme leading to very low temperatures is reported in [112], but their system is not
one-dimensional.

85
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5.1.2 Origins of the dissipative cooling mechanism

Observations

The cooling process implemented in [124] relies on continuous outcoupling of atoms
to an untrapped state by a radio-frequency transition. The atoms, in |F = 2,mF = 2〉,
are weakly driven into an untrapped Zeeman state, by setting the RF on resonance, at
a low amplitude. Starting from a quasi-condensate (7000-10000 atoms, 30-100 nK, very
similar to the experimental situations realised on our own setup), they slowly drive the
atoms to remove them in an unselected manner, and probe the resulting temperature of
the cloud. Performing experiments in different conditions, they showed that the data
collapses, revealing a linear scaling between temperature and atom number:

T

T0
=

N

N0
(5.1)

Figure 5.1: Scaling of temperature with atom number (taken from [124]). The proposed evapo-
ration scheme leads to a linear scaling of temperature with the remaining number of atoms in
the trap. The different curves correspond to different experimental situations: the blue circles
are data with a colder initial temperature than the green triangles, and the red diamonds were
acquired through a procedure where the atoms are outcoupled to a different untrapped state.

This type of scaling is not expected in conventional evaporation and the cooling proved
very efficient, the reported temperatures being as low as kBT/µ ≈ 0.25 1.

Model

To attempt to explain how the cloud’s temperature can be reduced by simple atom loss,
one can consider the Luttinger liquid picture, where the elementary excitation modes
are non-interacting phonons. Each of these modes contributes to the fluctuations of the
gas through a phase and density quadrature, and the free evolution of each mode k is
the rotation in phase space of the corresponding Wigner function at ωk. Essentially, by
removing atoms from the gas, the energy in the density quadrature of each mode is
reduced. Consequently, after many-body dephasing and redistribution of the energy
with the phase quadrature, the energy of each phonon mode is reduced, leading to a

1This however is incompatible with the following statement in the theoretical publication [65]: if the
discrete nature of the field is taken into account, the limiting temperature is kBT = µ, see below.
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colder system. A similar linearised approach is introduced as the starting point of our
study in 5.2.1.
The dissipation of atoms is represented by the addition of a loss term in the Gross-
Pitaevskii equation:

i~
∂Ψ̂

∂t
= − ~2

2m

∂2

∂z2
Ψ̂− gΨ̂†Ψ̂Ψ̂− µΨ̂− i~Γ

2
Ψ̂ (5.2)

Grišins and colleagues modelled this dissipative outcoupling of atoms, taking into ac-
count a quantum noise term ζ̂ on top of the quasi-condensate wave-function evolution.
This noise represents the quantisation of the atomic field, beyond the classical-field ap-
proach given by a Gross-Pitaevskii equation, thereby limiting the temperature to which
the system can be cooled. In the absence of this term the scaling between tempera-
ture and atom number leads to an asymptotically vanishing temperature in the limit of
very small atom numbers, while the limiting temperature in the presence of this term is
kBTmin = µ. As an individual atom is removed from the cloud, low-energy excitations
are induced, limiting the energy extraction of the dissipative mechanism.
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Figure 5.2: Temperature to chemical potential ratio for different initial temperatures (from [65]).
The dashed lines represent the classical mean-field result, compared with the solid line predic-
tion taking into account the quantised nature of the field. The asymptotic temperature is limited
by low-energy excitations generated as atoms are outcoupled.

The authors of [65] emphasized results for low-energy excitations, since the associated
experiment essentially probes those: they measure density fluctuations which develop
from the initial phase fluctuations in their gas, after time of flight. This method is
sensitive to long-wavelength modes.

Summary

• Until recently, the mechanism by which one-dimensional Bose gases could be
cooled down to temperatures as low as ~ω⊥/10 was unclear. Conventional
evaporative cooling based on energy selection is indeed inhibited in 1D.

• The dissipation mechanism proposed in [65, 124] convincingly leads to sub-
stantial cooling in such systems.
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• This cooling mechanism, as we discuss later in this Chapter, is believed to
occur on our own setup: we indeed reached comparable temperatures in
very similar experimental conditions.

5.2 Emergence of non-thermal states: a classical field study

5.2.1 Toy model: linearised approach in homogeneous systems

The authors of the study presented in the section above speak of cooling in the "uni-
versal phonon limit", arguing that the Luttinger liquid picture accurately describes the
observations of the experimental study in the sense that only low-energy excitations
are relevant. However, this dissipative mechanism leads to an out-of-equilibrium state,
since Bogoliubov modes of different energies are expected to suffer energy decay at dif-
ferent rates. In other words, the resulting temperature in the phononic limit should be
different than the temperature of higher-energy excitations 2. This can be shown using
the following model, in the linearised Bogoliubov approach.

The uniform and constant dissipation is expressed as Ψ̂(t) = Ψ̂(0)e−Γt/2, where Ψ̂ des-
ignates the field operator of the one-dimensional quasi-condensate, and the density ac-
cordingly decreases like n(t) = n(0)e−Γt. We start from a phase-density representation
of the field Ψ̂ =

√
n̂eiθ̂. In the quasi-condensate, density fluctuations δn̂ = n̂ − n0 are

small and phase fluctuations are of long wavelength, and the equations of motion can
be linearised, as was presented in Chapter 1. Expanding n̂(z) and θ̂(z) on sinusoidal
modes:

θ̂(z) =
∑
k>0

√
2
(
θ̂c,kcos(kz) + θ̂s,ksin(kz)

)
, (5.3)

and similarly

δn̂(z) =
∑
k>0

√
2 (n̂c,kcos(kz) + n̂s,ksin(kz)) . (5.4)

θ̂j,k and n̂j,k are conjugate variables verifying the canonical commutation relation[
θ̂j,k ,̂ nj,k

]
=

i

L
δj,j′δk,k′ (5.5)

and j an index designating the cosine or sine contributions to the sum. Each mode k
then evolves independently according to the Bogoliubov Hamiltonian

Hj,k = L

[(
g

2
+

~2k2

8mn0

)
n̂2
j,k +

~2k2

2m
n0θ̂

2
j,k

]
≡ En + Eθ, (5.6)

2In the following, for practical reasons, we will use the word "temperature" although the existence of a
unique temperature to describe the gas is ruled out to start with.
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at a frequency (we recover the previously encountered Bogoliubov dispersion relation):

ωk =

√
~2k2

2m

(
~2k2

2m
+ 2gn0

)
(5.7)

In this linearised form, the effect of atom loss can be investigated for each mode sep-
arately. Consider a given mode of wavevector k and let us assume its temperature is
large enough so that it can be treated classically. The distributions of θj,k and nj,k are
thus Gaussian, and verify the equipartition relations

kBT

2
=

(
g

2
+

~2k2

8mn0

)〈
n2
j,k

〉
=

~2k2

2m
n0

〈
θ2
j,k

〉
. (5.8)

The uniform dissipation affects each density quadrature nj,k equally, at the same rate Γ,
as well as the quasi-condensate density n0: they decay as e−Γt. The decrease in energy
of a given mode j, k after a infinitesimal time δt writes

δE = −Γδt

[(
~2k2

8mn0
+ g

)〈
n2
j,k

〉
+ n0

~2k2

2m

〈
θ2
j,k

〉]
. (5.9)

If the loss is slow enough compared to the frequency ωk of the considered mode, the
equipartition of energy between the two conjugate variables is always verified. There-
fore δE = kBδT and the cooling of each mode can be expressed explicitely. Replacing
θj,k and nj,k by their expression according to equation 5.8,

kBδT = −ΓδtkBT
3 + ~2k2/2n0mg

2 + ~2k2/2n0mg
. (5.10)

From this expression it is clear that the temperature of each mode decreases, however
the rate explicitely depends on k. In the phonon limit where k � 1/ξ (ξ = ~/

√
2mgn

being the healing length),

dT

dt
= −3Γ

2
T, (5.11)

while in the opposite (particle) limit, one finds

dT

dt
= −ΓT. (5.12)

All modes suffer energy decay, at a certain rate which depends explicitely on k. In a har-
monic trap, the density profile is (as a first approximation) the Thomas-Fermi inverted
parabola and total atom number scales with density asN ∝ n3/2, leading to a loss at the
same rate as the temperature decrease dN/N = −3 Γ/2dt in the phonon limit. In other
terms we recover the linear scaling observed by [124] experimentally. Despite limi-
tations discussed below, this rather simple approach nonetheless suggests the emer-
gence of a non-thermal state in a quasi-condensate with atoms lost at a constant rate Γ,
meaning that the system cannot be described by a Gibbs ensemble. This could not be
observed in the experimental study described above since their thermometry probes
low-energy excitations: after time-of-flight the phase fluctuations of the trapped quasi-
condensate develop into density fluctuations. Their thermometry scheme is based on
a fit of the resulting interference pattern [75].
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A more general description than this linearised approach is advisable. Firstly, in this
model each mode evolves independently. In the following section we will show that
despite coupling between modes the non-thermal state is robust. This is not obvious a
priori and in a further section we will discuss that the integrability of the model is re-
sponsible for this out-of-equilibrium cooling. Secondly, the classical field picture com-
pletely neglects the quantised nature of the field. In reality, atoms are lost in a discrete
manner and the introduction of poissonian noise will be considered in a final section,
where we recover the results by Grišins and coauthors [65].

5.2.2 Non-linear Schrödinger equation with losses

The first step beyond the linearised classical field approach presented above is to con-
sider a time evolution of the quasi-condensate field Ψ̂ according to a Gross-Pitaevskii
(or non-linear Schrödinger) equation. In this non-linear picture Bogoliubov modes are
coupled. The presented approach thus goes beyond the Luttinger liquid for two rea-
sons: the coupling between excitations and the inclusion of the complete spectrum of
excitations (and not only the low-energy phonon limit). For a quasi-condensate in a
box of length L, the non-linear Schrödinger equation (NLSE) with an additional loss
term is given by equation 5.2, as a reminder:

i~
∂Ψ̂

∂z
= − 1

2m

∂2

∂z2
Ψ̂− gΨ̂†Ψ̂Ψ̂− µΨ̂− i~Γ

2
Ψ̂. (5.13)

In the classical field framework, the field operator Ψ̂ is considered as a complex num-
ber. To prepare the initial state at temperature T and chemical potential µ, the Bo-
goliubov modes are populated according to the equipartition relation, each quadratic
degree of freedom contribution for kBT/2:

En = Eθ =
kBT

2
(5.14)

This leads to the following relations in terms of variables nj,k and θj,k:

〈
n2
j,k

〉
=

kBT

g + ~2k2/4mn0
(5.15)

〈
θ2
j,k

〉
=

kBT

~2k2n0/m
(5.16)

Numerically, the nj,k and θj,ks are generated randomly, with Gaussian distributions of
variances given by 5.15 and 5.16. The initial wavefunction

Ψ0 =
√
n(z)eiθ(z) (5.17)

of a single realisation is developped on the sinusoidal modes, with the generated co-
efficients nj,k and θj,k. Ψ0 is then propagated in the NLSE, using a generic time-split
method 3, with the additional loss term Ψe−Γt/2. A complete simulation typically con-
tains a few tens of realisations 4. Typical parameters of the numerical simulation are
the following:

3This method is very common to propagate the Gross-Pitaevskii equation. It is explicited in B.
4The numerics were performed on GMPCS in Orsay - Groupement Massivement Parallèle de Calcul

Scientifique.
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• The initial temperature is T = 0.05TCO. This represents a sample deeply quasi-
condensate, where dissipative cooling is expected to take over the usual energy-
selective evaporation (TCO is the crossover temperature introduced in Chapter
1). In the classical field approximation, a single parameter completely determines
the many-body state: in Chapter 1 (section 1.3.4) we introduced the parameter η
which emerges when introducing dimensionless variables for the classical-field
energy functional. However, as discussed in [19, 26], one can equivalently con-
sider the dimensionless parameter T/TCO.

• The atom loss rate is Γ = 2 × 10−3ng/~. This corresponds to a slow outcoupling
rate, adiabatic with respect to the evolution of each Bogoliubov mode.

Over time t, the energy in each Bogoliubov mode is newly computed, by projecting the
wavefunction Ψ(t) on the Fourier components of the decomposition 5.3, 5.4. In the fol-
lowing, the evolution of the energy in three Bogoliubov modes in different regimes of
the dispersion relation are plotted: a first simulation highlights the exponential decay
of the energy in each mode, but at different rates, while in the second dissipation was
interrupted and the system was let to evolve. Each mode retains its energy from the
end of the dissipation: the produced non-thermal state is robust.

These simulations show, despite possible coupling between modes in the NLSE, that
the generated non-thermal state is maintained after dissipation stops: the phonon
modes have lower energies than the particle-like excitations. This system can be de-
scribed in a generalised Gibbs ensemble, with a k−dependent temperature. In the next
section, we relate this result to past experimental observations. As a consistency check,
the numerics were also performed at higher temperatures, and the same behaviour
arised: the fact this non-thermal state is stationary is related to the integrability of the
one-dimensional NLSE (see 5.3.2 for more on this), despite the fact that the considered
Bogoliubov modes are not the conserved quantities of the problem (see Chapter 1, sec-
tion 1.2.1). In fact, it was recently shown in numerical simulations that phonons have
a short lifetime in finite temperature Gross-Pitaevskii simulations, and the excitations
are rapidly scrambled in the thermal bath represented by the quasi-condensate [95]. To
conclude, the emergence of such a stationary non-thermal state is non-trivial.

5.2.3 Trapped systems

Since the non-thermal signature of the out-of-equilibrium state is in the energy of the
different excitation modes, its experimental detection is difficult. Incidentally, the ex-
periment reported in [124] does not provide such non-thermal features, since, as we
already discussed, they can only access low-energy excitations . However, in a trap,
there exists a spatial separation of modes of different energies: the low-energy excita-
tions occupy the centre of the trap, where the trapping potential is the lowest. Higher-
energy modes are present in the edges, where the potential energy is the largest.

Experimental observation

Chapter 3 presented the thermometry methods available to us in detail. They are both
implemented in the trapped gas, from in situ images, unlike the thermometry used in
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Figure 5.3: Panel (a): evolution of total density in the first simulation: dissipation is stopped
towards the end of the simulation after 70 % of atoms are lost. Panel (b): Bogoliubov dispersion
relation, and markers indicating the position of the modes considered below (with matching
colours). Panel (c): short-time evolution, with dissipation, of the three considered Bogoliubov
modes. The dashed lines indicate the equipartition prediction: e−3Γt/2 for low-energy modes
and e−Γt for high-energy modes. Panel (d): longer time evolution than the simulation shown
in (c): each Bogoliubov mode retains its energy, meaning that the resulting non-thermal state is
robust.
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Vienna [75]. The first method relies on a fit of the in situ density profile, in the local
density approximation (LDA), using the exact Yang-Yang equation of state. This ther-
mometry is more sensitive to the edges of the density profile: the information on the
temperature indeed lies in the thermal wings, where the finite-temperature profile de-
viates from the zero-temperature Thomas-Fermi parabola. The second method probes
density fluctuations, related to the temperature by the compressibility. This also re-
quires the knowledge of the equation of state, which depending on the experimental
conditions can be taken as the general Yang-Yang description, or the quasi-condensate
equation of state valid for dense and cold samples. In the quasi-condensate, the density
fluctuations saturate at high densities, so that the temperature is essentially given by
the asymptotic level of fluctuations in the high density region. An illustration of the
thermometry methods is shown below.
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Figure 5.4: Illustration of the two thermometry methods accessible: profile fit with the Yang-
Yang equation of state (left), and fit of the atom number fluctuations (right). On the figure left,
the green profile is the best fitted profile to the data, giving a temperature Tprof = 140 nK. On
the figure right, the temperature is determined from the fit done using the quasi-condensate
equation of state μ = �ω⊥(

√
1 + 4na − 1) (straight red line). This yields a second temperature

Tfluc = 80 nK. On the left panel, the green line represents the profile corresponding to Tfluc,
while on the right panel, the red line shows the expected fluctuations for Tprof . The nicely
follow the measured fluctuations in the low density region, in other terms the wings of the
profile.

In this set of data, the two thermometries clearly give different results, well beyond the
uncertainty on the temperature which is believed to be of the order of 10 to 20 %. The
fluctuation temperature, which probes the centre of the trapped cloud, is Tfluc = 80

nK, compared to the temperature determined from a fit of the profile Tprof = 140 nK,
probing the edge of the cloud. In fact, profile fits are poor for certain sets of data, cer-
tainly because of their out-of-equilibrium nature. In [80], thermometry in momentum
space is also considered: we can perform Quantum Monte Carlo fits of the momentum
distributions and for the sets of data presented in that publication, the temperatures
measured in momentum agree with the temperature extracted from atom number fluc-
tuations. This is in accordance with the fact that low-energy excitations are probed in
momentum space: the high energy excitations are far in the wings of the profile and the
QMC fit is more sensitive to the width of the momentum distribution 1/lφ, the inverse
of the phase coherence length. In the qBEC regime lφ 	 ξ.
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Figure 5.5: Time evolution of the temperatures extracted from the profile (blue circles) and
density fluctuations respectively. Both temperatures do not evolve significantly. The error on
these temperatures range from 10 to 20% depending on the considered data set, which is much
smaller than the difference in the result between fluctuation and profile thermometries.

This "two-temperature" state is not only frequently observed on our experimental setup,
it is also robust in time. We performed a simple experiment, where the cloud is held
in the trap for different times up to one second, and measure the temperature after
holding. The protocol is the following: after the usual evaporation ramp where the
frequency is reduced exponentially, the radio-frequency is slightly increased by 30 kHz
as a shield to eliminate the most energetic atoms, like those involved in three-body re-
combinations. With this shield on, the cloud is then held for the desired time in the
trap before measuring. The result is shown figure 5.5: both temperatures are constant
over time.

This experiment was not performed in the scope of implementing dissipative cooling:
it was rather an attempt to understand the emergence and dynamics of this observed
out-of-equilibrium state without having a physical explanation at hand. It appears that
the observations are compatible with the non-thermal state predicted in the context
of uniform atom loss from the system: the low-energy excitations (probed by density
fluctuations) appear colder than the high-energy modes (accounting for the profile tem-
perature), and moreover this state is robust after evaporation is complete.

Simulation

To relate the experimental observations with the dissipative cooling mechanism, we
performed, with Stuart Szigeti of the University of Queensland, classical field simula-
tions in a trap. The principle of the simulation is identical to those in the homogeneous
system: a quasi-condensate is prepared at a certain temperature, and the initial state is
then propagated with a NLSE containing the additional term accounting for atom loss.

The approach used to generate the initial state is the Stochastic Projection Gross-Pitaevskii
Equation (SPGPE), briefly introduced in Appendix C, and also used in [19]. The state
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is then propagated using the Projected Gross-Pitaevskii Equation (PGPE), see e.g Ap-
pendix C and [11, 12]. For the purpose of this study, the PGPE contains an additional
loss term i~Γ/2Ψ̂, just as in the simulation for homogeneous systems. Here I present
the very first results of the simulation, performed in the following conditions:

• The loose trapping frequency is ωz = 20 Hz (slightly tighter than the experimental
value of 6 Hz).

• The tight trapping frequency is ω⊥ = 2 kHz (which is a typical experimental
value).

• The initial temperature of the cloud is kBT = 200~ωz , corresponding to a typically
low temperature on the experiment.

• The chemical potential µ = 0.8kBT also corresponds to a typical experimental
configuration.

• Finally the outcoupling rate was taken identical to the simulation in the homoge-
neous case, as Γ = 0.002ng/~.

The initial state is shown below, with the computed mean density profile (and corre-
sponding Yang-Yang fit) and fluctuations.
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Figure 5.6: Initial conditions of the simulation. Observables of interest are Tprof = 210 nK,
compatible with Tfluc = 212 nK.

After a large fraction of atoms are lost, we perform the same analysis as for experi-
mental data: the profile and density fluctuations are fitted using a Yang-Yang equation
of state, and the results are shown in the following figure. To compute atom number
fluctuations, the data is binned to pixels whose size is an order of magnitude above the
healing length, just like the experimental pixels. The results of this analysis are repre-
sented figure 5.7.

Although the fits are not perfectly accurate the results convey observations compati-
ble with the experiment: temperature provided by atom number fluctuations is lower
than the best fitted temperature from the profile. Unfortunately we do not yet have an
experimental knob which deliberately controls the emergence of such a non-thermal
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Figure 5.7: Best fits for the density profile (left, in green) and density fluctuations (right, in
green). It appears that the profile is not accurate, revealing the out-of-equilibrium character of
the system after loss. This feature was also reported in our experiment. The fluctuations asso-
ciated with the best profile fit are shown in red on the right panel. The profile corresponding to
the best fluctuation fit is also represented in red, on the left panel. The fitted temperatures are
Tprof = 80 nK and Tfluc = 30 nK respectively. This is qualitatively in agreement with experi-
ment results. Density fluctuations saturate after decreasing from a local maximum, which dif-
fers from the experimental behaviour. This is because the simulation is purely one-dimensional
while the experimental data lies on the 1D-3D crossover where the chemical potential behaves
as
√

1 + 4na.

state: up to now we can only rely on their natural (and uncontrolled) appearance. We
fitted the classical field results with the exact Yang-Yang equation of state for conve-
nience (and immediate availability of Yang-Yang data), however for self-consistency
we plan to fit with the classical field equation of state, which we yet have to compute
numerically.
As a final remark on the relation with what we observe on the experiment, the pre-
dicted lower bound for the temperature does not match experimental results: observed
temperatures are as low as µ/4 [79, 124], well below the computed bound of µ. To
briefly conclude, the role played by this dissipation during the cooling of our gas is not
clear: to reach lower temperatures there would have to be some type of energy selec-
tion. We currently believe that this dissipation does occur on our experiment, but this
mechanism doesn’t seem to give the complete picture.

Summary

• As a first approach, our linearised toy model showed that the energy of Bo-
goliubov modes in different regions of the dispersion relation are not equally
affected by atom loss: their energies all decay exponentially but at different
rates, creating a state which is clearly out-of-equilibrium.

• We then performed non-linear Schödinger equation simulations with an ad-
ditional term modelising constant atom loss, in the homogeneous case. This
revealed that the behaviour predicted by the linearised approach was ro-
bust against the non-linearity introduced by the considered partial differ-
ential equation: the phononic energy decays faster than the energy of the
particle modes, leading to a stationary non-thermal state.
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• Finally, this result is compatible with past experimental observations, which
we show by performing identical simulations, but in a trapped system. The
temperatures extracted by our two methods (in situ atom number fluctuation
measurements and in situ profile fits) are indeed different in the numerical
data after dissipation, which is in agreement with the reported experimental
observation.

5.3 Relation with integrability

Up to now we have shown that in the one-dimensional Bose gas, uniform and constant
atom loss alone significantly cools the gas, at the cost of driving the system in a station-
ary out-of-equilibrium state. The stationary non-thermal property is clearly related to
the integrable nature of the considered system. We first derive some simple thermody-
namic arguments, to show that in an ergodic system cooling is far from granted if atoms
are removed from the system, and we then simulate atom loss in a non-integrable prob-
lem to highlight the different dynamics compared to the single NLSE.

5.3.1 Thermodynamic arguments

Consider a generic thermodynamic system, submitted to atom loss in a non-selective
manner. We assume one can apply usual thermodynamic reasoning to the system of
interest, namely that it is ergodic and that it rapidly relaxes to an equilibrium state after
removal of atoms. If the number of atoms decreases by δN < 0, the energy variation is
the mean energy per particles times the number of atoms lost:

δE =
E

N
δN (5.18)

Using E = −pL + TS + µN leading to dE = TdS − pdL + µdN , one has δS =

[(−µ+ E/N)/T ] δN since dL = 0. Introducing the intensive variable s = S/N 5, the
variation of entropy per particle is:

δs = − p

Tn

δN

N
. (5.19)

These relations show that during the loss process the entropy per atom is increased.
We are more interested in the sign of δT : by writing that

δT =

[
∂T

∂E

∣∣∣∣
N,L

E

N
+

∂T

∂N

∣∣∣∣
E,L

]
δN, (5.20)

δT is expressed as:

δT =
1

CV

(
E

N
− ∂E

∂N

∣∣∣∣
T,L

)
δN (5.21)

5For an intensive variable a, ∂(Na)
∂N

∣∣∣
N,L

= a+ n ∂a
∂n
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CV is the heat capacity at constant volume, positive for stable materials and ∂E/∂N

is the chemical potential. The sign of δT therefore relies on the behaviour of the inter-
nal energy of the system with particle number. For non-degenerate gases for instance,
∂E/∂N |T,L = E/N , so that δT = 0.

More relevant for this study, let us consider degenerate gases. For an ideal Bose gas, the
chemical potential is negative so that δT has the same sign as δN . This translates into
cooling when atoms are removed from the system. However, if (repulsive) interactions
are considered, the energy (in 1D) of the quasi-condensate is approximately given by
E = gN2/(2L). The expected temperature change becomes:

δT = −δN
CV

gn

2
, (5.22)

which is positive: losses appear to induce heating in the system. These arguments
somehow illustrate how counter-intuitive and peculiar the presented cooling mecha-
nism is, but should be taken with precaution since they are not expected to hold in our
integrable system of interest.

5.3.2 Breaking the integrability: coupled NLSE

Integrable systems exhibit particular dynamics, in the sense that they do not, in gen-
eral, relax to a Gibbs ensemble. To check that the non-thermal state observed and de-
scribed above is indeed related to the integrable nature of the considered system, we
performed numerical simulations in a one-dimensional Bose gas with a non-integrable
perturbation. There are many ways to break the integrability, however a non-integrable
perturbation may not be sufficient to completely alter the dynamics on numerically ac-
cessible time scales. In classical mechanics, the Kolmogorov-Arnold-Moser theorem
states that under some perturbations, the closed orbits of an integrable system may
survive. Discussions on a quantum analog of the KAM theorem are ongoing, such as
for instance in this paper which considers the 1D Bose gas as a test model [22]. In the
current classical field study, a reliable manner to break the integrability in our system of
interest is to introduce a two-component gas, with an interspecies interaction, and two
different masses [73,74]. The case of a two-component system with interspecies interac-
tion but identical masses was shown to be Bethe-Ansatz solvable, which is equivalent
to stating that the problem is integrable [152].

We therefore consider two masses m1, m2 = 2m1 each interacting via a repulsive delta-
potential. We assume that the single-species interactions are equal: g11 = g22 = g.
The two species interact with each other through a coupling constant g12. This inter-
species interaction is considered as a perturbation of the uncoupled Hamiltonian, in
other terms we fix g12 � g. The complete Hamiltonian of the system contains three
terms:

Ĥcoupled = Ĥ1 + Ĥ2 + Ĥ12 (5.23)
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with:

Ĥi = − ~2

2mi

∫
dzΨ̂i

†
(z)

∂

∂z
Ψ̂i(z) +

g

2

∫
dzΨ̂i

†
(z)Ψ̂i

†
(z)Ψ̂i(z)Ψ̂i(z). (5.24)

and

Ĥ12 = g12

∫
dzΨ̂1

†
(z)Ψ̂2

†
(z)Ψ̂1(z)Ψ̂2(z) (5.25)

The dynamics of the coupled system obeys the coupled time-dependent Gross-Pitaevskii
equations (in the homogeneous system) given by: i~∂Ψ1

∂t =
(
− ~2

2m1

∂2

∂z2 + g|Ψ1|2 + g12Ψ†1Ψ2

)
Ψ1

i~∂Ψ2
∂t =

(
− ~2

2m2

∂2

∂z2 + g|Ψ2|2 + g12Ψ†2Ψ1

)
Ψ2

(5.26)

As a first (preliminary) test, by taking g12 sufficiently small, it is not necessary to diago-
nalise the resulting Hamiltonian of the coupled system using a generalised Bogoliubov
approach. We considered each species separately, populating the initial state as was
done above for the single-component simulations. In this case the problem reduces to
two indepedent quadratic Hamiltonians, each quadratic term contributing to the total
energy of the system by kBT/2. The initial state is then propagated using the split-time
algorithm, including the coupling term (which is possible since the two-species con-
tribution is of the same form as the intra-species interaction). After letting the system
evolve with loss, dissipation is stopped and the system is left to propagate without
atoms being removed, but with the slight coupling. After a relatively long propaga-
tion time (since g12 is small the effects of non-integrability take a while to kick in), the
observations are as depicted in figure ??. During evolution, the energies in the Bogoli-
ubov modes (of the uncoupled two-component system, to avoid solving the complete
coupling problem) are newly computed. We compare the results with an identical sim-
ulation, but without the integrability-breaking coupling.

Unfortunately the simulation could not be run for longer times, with drifts appearing
in the non-coupled simulation: for instance the dashed-red (phonon) curve in the left
panel starts to slowly increase in time, when it should remain stable. The above graphs
nevertheless show that the dynamics are different in presence of the coupling term:
the system appears to evolve towards a state where the energy of phonons increases.
Whether the system relaxes to a Gibbs ensemble (with equipartition between modes)
or if it continues to heat is not clear. We hope to solve this question by diagonalising the
coupled Hamiltonian to a quadratic form as was done for instance in [98]. Observation
of heating would relate to the thermodynamic arguments presented above.

Summary

• The one-dimensional non-linear Schödinger equation has the particular
property of being integrable (or non-ergodic), which explains the stationary
non-thermal states emerging after atom loss.
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Figure 5.8: Energies of a particle-like Bogoliubov mode (green) and phonon-like mode (red) in
each of the components of the gas (referred to as 1 and 2). The solid line represents the evolution
with coupling g12 and the dashed line the evolution without the coupling for comparison. With
coupling, the system appears to evolve towards an equipartition of energy.

• Although thermodynamic arguments are in principle not applicable in non-
ergodic problems, simple arguments show that a quasi-condensate should
heat up when atoms are removed. Such a result underlines the non-intuitive
nature of the cooling mechanism at play.

• When an integrability-breaking perturbation is added (in this case two-body
coupling between components of distinct masses), the dynamics of the sys-
tem after atom loss is strongly affected: a long term heating of the lower
energy modes appears. However the outcome of the simulation is not clear
and the added perturbation should be made stronger to conclude. This was
not yet implemented to date, but will be after submission of the current
manuscript.

5.4 Beyond classical field: effect of atom quantisation

In the above treatment, loss is considered as a continuous process and the quantised
nature of the field (in the form of atoms) is ignored. Taking into account the discretised
nature of the outcoupling process amounts to adding shot noise associated with the
loss of atoms, which heats the system and imposes a lower bound to the accessible
temperature with the dissipative evaporation mechanism.

5.4.1 Modelling the quantised losses

Stochastic Gross-Pitaevskii equation

For convenience and since the study is partly numerical, we first discretise the problem.
One-dimensional space is discretised on a grid of spacing δz. The annihilation operator
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Ψ̂ satisfies the bosonic commutation relation in cell j:
[
Ψ̂(j)†, Ψ̂(j)

]
= 1. g̃ denotes the

rescaled coupling constant g/δz.
By writing the Lindblad equation for the dissipative problem, and then using a Wigner
representation, we recover (this proof is delegated to Appendix D, to ensure the con-
tinuity of the discussion) the stochastic Gross-Pitaevskii equation considered in [65].

i~dΨ =

(
− ~2

2m
∂2
jΨ + g̃|Ψ|2Ψ− i~Γ

2
Ψ

)
dt+ dξ, (5.27)

This equation is essentially classical, and the quantised nature of the field appears as
an additional noise term. We recover a classical-field like approach after applying the
truncated Wigner approximation (see Appendix D). This stochastic partial differential
equation is the starting point of the model taking into account the discretised nature of
the field: however this numerical hack to introduce noise gives physical results after
averaging over many realisations.

Evolution of the Bogoliubov modes

We now consider a linearised model, like in 5.2.1, where each excitation evolves inde-
pendently. The field operator is expressed, like above, in the field-density representa-
tion, namely Ψ =

√
neiθ(z). Separating the real and imaginary parts of the stochastic

Gross-Pitaevskii equation, and linearising in density fluctuations and phase gradient,
we get the following system for the evolution of the phase and density fields:{

dδn = −~2n
m ∂2

zθdt− Γdtδn+
√
ndη

dθ = −(g̃ + ~2

4mn∂
2
z )δndt+ 1

2
√
n
dν

(5.28)

where dν et dη are random gaussian variables of mean value equal to 0 and variances

〈dη2〉 = 〈dν2〉 = δz,z′Γdt. (5.29)

Expanding over sinusoidal modes (as in 5.2.1, in other terms we take the Fourier trans-
form), we obtain an evolution equation for each mode:{

dnj,k = ~2k2n
m θj,kdt− Γdtnj,k +

√
ndηj,k

dθj,k = −(g̃ + ~2k2

4mn )nj,kdt+ 1
2
√
n
dνj,k

(5.30)

For a vanishing loss rate, this system of equations derive from the harmonic oscillator
Hamiltonian, which we already encountered in our toy model:

Hj,k = L

[(
g̃

2
+

~2k2

8mn0

)
n2
j,k +

~2k2

2m
n0θ

2
j,k

]
(5.31)

A single stochastic trajectory does not contain a physical meaning: one needs to aver-
age over many realisations to recover the physical behaviour of our conjugate variables
in the process. Since an initially Gaussian distribution retains its Gaussian form under
the stochastic process above, the distribution of each mode is completely determined by
its average and variance. In accordance with the Wigner function approach explained
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Appendix D, quantum expectation values are simply obtained by averaging the corre-
sponding classical quantities over the Wigner distribution. Averaging over stochastic
trajectories, from Eq. 5.30 we obtain:

d
dt〈n

2
j,k〉 = 2~2k2n

m 〈θj,knj,k〉 − 2Γ〈n2
j,k〉+ nΓ

d
dt〈θ

2
j,k〉 = −2(g̃ − ~2k2

4mn )〈θj,knj,k〉+ Γ
4n

d
dt〈nj,kθj,k〉 = ~2k2n

m 〈θ2
j,k〉 −

(
g̃ − ~2k2

4mn

)
〈θ2
j,k〉

(5.32)

As in the treatment in 5.2.1, if one assumes loss is adiabatic with respect to the free evo-
lution of each mode, then equipartition of energy between the two conjugate variables
θj,k and nj,k is ensured. The Wigner function is then solely determined by the energy
E in the mode, and from 5.32 we find:

d

dt
Ẽ = Γ

(
−Ẽ +B

)
(5.33)

where B = (1/2 + gn/k2)/
√

1 + 4gn/k2 and Ẽ = E/ω. The solution to this first-order
differential equation is

Ẽ = Ẽ(0)e−Γt +

∫ t

0
ΓdτB(τ)e−(t−τ)Γ. (5.34)

For phonons, one has B ' √gn/(2k), such that the previous equation predicts an
asymptotic value of gn E = ω(t)Ẽ. Since gn is much larger than the ground state
energy ~ω/2, this corresponds to a thermal equilibrium at a temperature

Tphonon '
t→∞

ng. (5.35)

For modes with k � √ng on the other hand, using an expansion of B in powers of
gn0/k

2, one finds

ε̃ '
(gn0

k2

)2
e−Γt(1− e−Γt) + ε̃0e

−Γt (5.36)

where ε̃ = Ẽ − 1/2 is the excess of energy above the quantum ground state energy of
the mode. At large times, ε̃ becomes much smaller than one. This corresponds to a
temperature T ' (k2/2) ln(ε̃), much smaller than ωk. At large times, we find

Tpart '
t→∞

k2

2

1

Γt
. (5.37)

The temperature of those modes explicitely depends on k 6 and takes much larger val-
ues than Tphonon. Eq. 5.36 shows that modes with small enough initial temperatures
suffer an increase in energy at short times.

5.4.2 Simulation

In order to test the quantitative predictions of the linearised approach, we numerically
simulated the evolution given by the stochastic GPE. The initial state (here the starting

6Again, for clarity we use the word "temperature" but of course there is no true thermodynamic tem-
perature in the particle limit because of this explicit dependence in k.
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temperature is T = 3ng and g = 10−5) is prepared by applying equipartition of energy

Eth = ~ωk
(

1

2
+ (e~ωk/kBT − 1)−1

)
(5.38)

between quadratures δnj,k and θj,k: they each contribute for Eth/2. The atomic field Ψ

is then evolved and for different evolution times we compute the energy in each Bo-
goliubov mode and by averaging over many realisations we associate the mean energy
in a given mode 〈Ek〉 to a "temperature" Tk, given by:

kBTk =
~ωk

ln((2Ek + ωk)/(2Ek − ωk)
. (5.39)

In the left panel of the figure below, the evolution of the energy of a mode deep in the
phonon regime is represented, and compared to the classical prediction (smooth solid
line) e−3Γt/2. The temperature converges to the expected n(t)g at long times. The right
panel represents the evolution of the "temperature" Tk vs k for different times. The
apparent heating of the high-energy modes is probably a numerical artefact.

Figure 5.9: Left: temperature decaying to n(t)g in the phonon limit. Right: convergence the
energies of modes in the phononic regimes towards the asymptotic limit ρg, where different
colours correspond to modes of different initial energies.

Summary

• In this section, we complete our previous classical field description by
adding a stochastic term in the Gross-Pitaevskii equation: this accounts for
the quantised nature of the field.

• A linearised approach recovers the following result of [65]: the addition of
this noise term limits the asymptotic temperature in the low-energy limit of
excitations to gn.

• In the high-energy limit of the dispersion relation, the energy of the modes
explicitely depends on k, which compromises the definition of a tempera-
ture.
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• Numerical simulations, beyond the linearised approach, show that the en-
ergy of phonon modes indeed decay to the expected gn, and that the atom
loss generates a non-thermal state, with an explicit dependance of Tk for
modes which are not in the phonon limit.



CHAPTER 6
Perspective: a one-dimensional lattice for a magnetically

trapped one-dimensional Bose gas

6.1 Physical background: Mott transition and specificities of
1D

The Mott transition is a prime example of how the cold atom community exchanges
with condensed matter physics. In the latter, it designates a metal-nonmetal transi-
tion. This transition occurs in a variety of condensed matter systems and is related
to the electron-electron interactions and the opening of a gap due to many-body ef-
fects [109]. A number of phenomena can drive the transition like doping, ferromag-
netism or the presence of disorder [110]. Mott-type transitions with bosonic particles
were first studied theoretically in the context of experiments with liquid helium [52].
For cold atoms, attention was brought to this quantum phase transition with its experi-
mental realisation with bosons in 2002 [63] following a theoretical proposal [81]: in this
case the material goes from being superfluid to "insulating". The transition is said to be
of Mott-Hubbard type [155], with no long range interactions involved. The experimen-
tal realisation of correlated states of matter like the Mott insulator is of interest in the
quantum simulation context: the mere presence of such correlations defies numerical
simulations with classical computers.

In this chapter I introduce the physical context of prospective projects on our experi-
ment. We started installing a longitudinal optical lattice to create a periodic potential
along the z axis in addition to the magnetic confinement provided by the chip. I first
give some theoretical background on lattice physics in 1D, and after introducing the
experimental setup I will describe the questions we wish to consider along with the
specificities of our experiment.

6.1.1 Generalities on the Mott transition

Consider bosons with repulsive interactions hopping through a three-dimensional lat-
tice potential. Two energy scales in the system compete: the on-site interaction U and
the tunneling between the lattice sites J . If particles may hop easily from a site to an-
other the system is in a superfluid state where the wavefunction is delocalised over
all lattice sites. If on-site interaction prevails, when hopping is suppressed by a deep
enough lattice depth, the atoms localise in the lattice sites where density takes integer
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Figure 6.1: Three-dimensional zero-temperature phase diagram of the Bose-Hubbard model.
The MI phase is incompressible: the number of atoms per site (or density) is fixed. One may
cross from one phase to another by increasing the chemical potential or the hopping, at fixed
on-site interaction. Figure taken from [52].

values, creating an insulating phase. In this state with a fixed number of atoms per
site the phase strongly fluctuates and coherence is lost: the system becomes a so-called
Mott insulator (MI). This phase transition is quantum, characterised by the opening of
an energy gap in the excitation spectrum and occuring at zero temperature, since quan-
tum fluctuations drive the phase change.

The physics of the transition is captured by the three-dimensional Bose-Hubbard hamil-
tonian [60], containing two competing terms: the on-site (interaction) energy and the
hopping (kinetic) term.

ĤBH = −J
∑
<i,j>

ˆ
b†i b̂j +

1

2
V
∑
i

n̂i(n̂i − 1) (6.1)

Here b†i,j , bi,j are the bosonic creation and annihilation operators (on sites i and j re-
spectively), and ni the number operator. This model is valid for a deep enough lattice
where particles occupy the lowest band. The zero-temperature phase diagram was first
discussed in [52]. The critical point is reasonably well described in the mean-field ap-
proximation, with a critical ratio (U/zJ)c = 5.827, z being the number of nearest neigh-
bours in the considered lattice geometry [52]. The first experimental observation of the
transition confirms the accuracy of the mean-field prediction [63]. The phase diagram
takes the form of insulating lobes with commensurate densities, with the superfluid
phase in the high J region of parameter space.
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Figure 6.2: Illustration of the two transitions from a superfluid to an insulator in 1D, taken
from [68]. On the left, in the Bose-Hubbard model where the lattice is deep the many-body
wavefunction is delocalised up to a critical potential depth. On the right, in the sine-Gordon
model, the homogeneous gas itself is strongly correlated and a commensurate perturbation
suffices to localise the many-body wavefunction.

6.1.2 Mott physics in dimension one

Two models: sine-Gordon vs Bose-Hubbard

The one-dimensional Bose-Hubbard (BH) model also predicts a Mott transition, ana-
loguous to the three-dimensional phenomenon [94]. The critical point was numerically
determined to be (U/J)c = 3.85 with DMRG. However, in 1D for strong enough in-
teractions the homogeneous system is strongly correlated, so that an arbitrarily low
periodic potential is enough to crystallise the gas: this transition specific to 1D is called
the Pinning transition, captured by a Hamiltonian of sine-Gordon (sG) form:

HsG =
~vs
2π

∫
dz[(∂zθ)

2 + (∂zφ)2 + V (
√

4Kcosθ)] (6.2)

K is a dimensionless parameter which can be mapped onto the interaction parameter
γ. vs the sound velocity and V the potential depth. The first term represents the in-
teraction energy dependent on the density field ∂zθ while the second accounts for the
kinetic energy proportional to phase fluctuations in this hydrodynamic description of
the 1D liquid. Such a model is valid for strongly interacting gases, in contrast with the
Bose Hubbard model valid in the weakly-interacting system [23].

For the Bose-Hubbard model, the gas goes from being superfluid to insulating when
the depth of the (deep) periodic potential V is increased 1, at commensurate densities.
For the sine-Gordon model, a sinusoidal perturbation, commensurate to the density
(n ∼ 1/a = 2/λ where a is the lattice spacing and λ the wavelength of the lattice laser),
on top of the strongly-interacting gas is enough to localise the system [23] if the interac-
tion parameter γ exceeds γc = 3.5. The pinning transition was observed experimentally
, as well as the change of regime to the conventional Bose-Hubbard transition in [68],
and further investigated experimentally alongside numerical results in [15].

1It was however recently shown with QMC calculations that the Bose-Hubbard model holds to rela-
tively low potential depths [15]
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To simplify the discussion, let us discriminate between two types of transitions: the
generic Mott transition with a phase diagram qualitatively similar to its three-dimensional
counterpart (with parameters µ and J), and the commensurate-incommensurate tran-
sition. Both phase diagrams meet at the multi-critical Pinning transition point [52].

Bose-Hubbard model and generic Mott transition

Consider the Bose-Hubbard limit of a deep potential V of fixed value. In analogy to the
3D phase diagram presented above (figure 6.1), one can construct the phase diagram
of the BH model with parameters µ and J , as shown below for the first lobe (one atom
per site). DMRG calculations [94] revealed a reetrant behaviour of the superfluid phase
and a critical point at (U/J)c = 3.85:

J

Figure 6.3: Phase diagram for one atom per site, at fixed potential depth. Adapted from [94]
and computed with DMRG. Along the dashed line the density is exactly one atom per site.

The transition by crossing the tip of the MI lobe has a different universality class than
the transition varying µ (introduced below): this transition is of Berezinskii-Kosterlitz-
Thouless (BKT for short) type, when the rest of parameter space has a generic first-
order critical behaviour. The Mott transition can therefore be characterised (numeri-
cally or experimentally) by a diverging density correlation length, or a diverging com-
pressibility.

Commensurate/incommensurate and Pinning transitions

Büchler et al considered the Mott transition from the complementary point of view of
parameters U , γ (interaction strength) and Q (commensuration, Q = 2π(n − 2/λ)), re-
formulating in the cold atom context results from the condensed matter community.
Let us first assume a fixed commensurate density n = 1/a, or equivalently Q = 0. For
strong enough interactions in the homogeneous system, the addition of an arbitrarily
low lattice potential suffices to localise the gas. This is depicted in panel b of the figure
below (6.4). The point γ = 3.5 and V = 0 is the Pinning transition. Now if one changes
the commensurability of the gas in the weak periodic potential, the crystalline order
is locked in a certain range of chemical potentials (the phase is incompressible), until
broken at a critical incommensurability Qc, as shown in the three-dimensional phase
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diagram panel a. This commensurate-incommensurate transition has similar physical
features to the transition of the same name of adsorbates on periodic structure, once
again illustrating analogies with condensed matter physics [120].
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Figure 6.4: Commensurate/incommensurate (a) and one atom per site (b) phase diagrams,
adapted from [23]. In b, the gas is insulating above critical values of V . The stronger the inter-
actions (the smaller 1/γ), the smaller the critical value Vc to localise the gas, until the Pinning
transition at 1/γc, which joins the V = 0 line (V is an altenative notation for the U use until
now). sG stands for sine-Gordon (dashed line), model applicable at weak lattice depths V , and
BH stands for Bose-Hubbard (dash-dotted), applicable in the opposite limit where the potential
is deep enough for the atoms to be in the lowest band. Er stands for recoil energy, referring
to optical lattices used to produce the periodic potential in ultracold atom experiments (see
below).

The transition represented by a solid line at fixed commensurate density Q = 0 is part
of the BKT universality class [23, 94] and the tip of the insulating lobe figure 6.3 lies on
the solid line in panel b of figure 6.4.

The presented results were computed at zero temperature, without external trapping
potential. Both a finite temperature and harmonic confinement should be considered
to draw a parallel with experiments. The Bose-Hubbard transition from a superfluid to
a Mott insulator was first observed in a one-dimensional gas by [136], followed by the
Pinning transition in [68].

6.1.3 Effects of finite temperature and trapping potential

Trapped systems

In trapped gases, the density spans different values, leading to a possible coexistence
of the superfluid and insulating phases. For harmonic confining potentials, one can
define a rescaled density:

ñ = Na

√
Vz
J

(6.3)

Rigol and colleagues computed, using QMC, the state diagrams of confined one-dimensional
bosons in optical lattices [129], and the related observables in real and momentum
space, accessible experimentally. The rescaled density allows to compute a state di-
agram in (ñ, U/t) parameter state, independent of total atom number and curvature of
the potential [128]. The critical point is shifted to larger potential depths with (U/J)c =

5.5. For the deepest lattice, at a given chemical potential, the superfluid phase is only
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found at the edges of the sample, with a related non-vanishing compressibility (figure
6.5). As the potential depth is reduced, a superfluid fraction appears in the central
region, gaining in importance as the potential U is lowered.
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Figure 6.5: Figure taken from [129]. The right column represents the linear density, with flat
regions translating the locally homogeneous gas in the Mott insulating phase. The left column
shows the compressibility κ of the gas. It decays to zero in the regions where the density n is
flat, showing the incompressibility of the Mott phase. U/J = 16 corresponds to a typically very
deep lattice, requiring high laser power experimentally. This supposes that our experimental
configuration will be closer to the situations represented panels (a) and (b).

The simulations were performed for non-zero, although very low, temperatures. For
U/t = 14, the superfluid barely appears for the lowest temperatures T = J/6kB and
T = J/10kB . Thermally induced hopping enforces the superfluid in the centre as tem-
perature is increased to T = J/2kB . However, the considered temperatures are well
below typical experimental values.

Finite temperature

More realistic temperatures are considered in [123], illustrating that the zero-temperature
phase transition becomes a smooth crossover as temperature is increased, smearing the
sharp behaviour of density and compressibility at the Mott transition. In their Monte-
Carlo numerics, they investigated a quasi-1D system (Vz = 15Er, V⊥ = 40.5Er) at
temperatures ranging from 3J/kB to 24J/kB . They show that the thermally-induced
excitations is translated by the presence of atomic pairs with neighbouring empty sites,
for otherwise uniformally distributed site occupations of unity. The resulting density
distribution and compressibility are plotted below:
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Figure 6.6: Density distribution (solid line) and compressibility (dotted line) of the finite-
temperature state for the quasi-1D gas. Temperature is increased from (a) to (d) following:
kBT/J =3 (a), 5 (b), 12 (c) and 24 (d). As temperature is increased, the signal is clearly smeared:
the thermally-promoted atoms to the superfluid phase in the centre gain in importance, until
the density plateau of the Mott insulator is barely perceptible. Correspondingly, the compress-
ibility takes larger values in the central region.

Summary

• In 1D there exists a Mott transition, mapped by the Bose-Hubbard model,
just as in three dimensions.

• Unlike the 2D or 3D model, the transition at commensurability is of BKT
type.

• For high enough interactions, an arbitrarily low periodic potential suffices to
enter the insulating phase: this is referred to as the Pinning transition. The
generic Mott and Pinning transitions have been observed experimentally.

• On the theoretical side, efforts to understand the effects of an external trap-
ping potential and temperature showed the possibility of coexistence of the
superfluid and insulator phases. The characteristics of the Mott insulating
phase (flat density distribution and vanishing compressibility) are accord-
ingly smeared out.

• At this early stage of the experiment, it is not obvious to determine exactly
in which parameter regime (T , U , etc.) we will lie, the presented results in a
trap and at finite T just give a qualitative indication on their effect.
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6.2 Experimental setting up of the lattice

The setup of the lattice is not complete to this day, but all the equipment is ready and
the first stages of installation and alignment were performed. Unfortunately we could
not finalise the alignement on the atoms yet, but this should be achieved in the next
months.

6.2.1 Lattice setup

The optics for the lattice are on two separate optical tables. On the first, a 1530 nm laser
diode 2 injects an Erbium Doped Fibre Amplifier (EDFA) 3, providing a nominal 1W of
optical power. After passing through an acousto-optical modulator, the infrared light
is injected into an optical fibre, to the main optical table. On this second table, contain-
ing the science chamber, the laser is first shaped to the desired size and then reflected
off a dichroic plate into the vacuum, on the same path as the horizontal MOT beams.
After crossing the chamber, a cat’s eye configuration retro-reflects the beam back onto
its incident path, creating a standing wave of periodicity a = λ/2 = 765 cm. The cat’s
eye (a mirror placed at the focal point of a lens) is more stable than a simple reflec-
tion on a mirror. With a retro-reflecting configuration, any frequency fluctuation will
result in lattice shaking [118]. However, it has the advantage of requiring less optical
power than a counter-propagating disposition where the initial power would be split
and injected into two optical separate fibres, placed in front of each other to create the
standing wave. The complete optical setup is presented figure 6.7. The grazing lattice
beam is reflected off the chip at a small angle θ (inset b).

For the alignement of the lattice, the Stark effect induced by the electrical field of the
laser shifts the atomic transition, an effect visible on the imaging: the imaging reso-
nance is sensibly shifted and peak in atom number is expected to be displaced by about
10 MHz. Our experimental setup would then allow us to image the optically trapped
cloud in situ or in momentum space, permitting different diagnoses of the superfluid
and Mott insulating phases (see below for more details on the planned measurements).

6.2.2 Digital micromirror device

With the help of research engineer Florence Nogrette, we plan to install a Digital Mi-
cromirror Device (DMD) 4 on the experiment. Each micromirror in the 1024 times 768
array can be individually switched between an "on" and "off" state by tilting the axis of
the mirror, to reflect the light in the desired direction ("on"), or out of the optical path
("off").

The problem with the harmonic trapping potential is that the Mott insulating and su-
perfluid phases can coexist in the trap. After time-of-flight such as during focussing,
the signal we are searching for will be smeared from the presence of the competing
phase. With such a device, one can post-select atoms in the desired state by pumping
the atoms into a dark state (|F = 1〉) in a certain spatial region. For instance if we wish

2Fitel, 50mW max optical power, 10 MHz linewidth.
3Keopsys KPS-CUS-OEM-C-30-SLM-PM-111-FA-FA
4DLP 7000 of Texas Instruments
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Figure 6.7: Optical setup: first optical table with the laser (top), second optical table with the
science chamber (bottom), and reflection of the infrared beam off the chip at a small angle
(inset). The chamber is seen from above, and the MOT beams represented in red.

Figure 6.8: Figure traken from Texas Instruments, illustration of the tilting micro-mirrors.

to image the Mott insulator in the central region of the trap, after identifying its spatial
extent we can programme the DMD to be "on" only on the edges of the trap and send
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light to pump the atoms in the superfluid state into |F = 1〉 . Another possible applica-
tion of the DMD is the engineering of a trapping box, using a repulsive blue-detuned
laser, not unlike [31], where the DMD is replaced by an intensity mask.

Summary

• A 1530 nm laser is used to created a longitudinal periodic optical potential,
on top of the magnetic confinements provided by the chip.

• The setup is almost complete, and we hope to align the lattice on the atoms
in the upcoming months.

• We also expect to complete our setup with a DMD in the process, which
would finalise the upgrading of our experiment to tackle new physics.

6.3 Experimental constraints

Although the setting up of the lattice is not complete, in this section I present the ques-
tions raised to motivate the choices for the previously presented setup.

6.3.1 Optical power to reach the Mott transition

For small enough interactions (γ < γc,pinning) and at commensurability, the Mott insu-
lating phase is reached for a minimal optical potential depth. Since the depth of the
lattice is directly related to the optical power of the beam used to trapped the atoms, a
minimal optical power is required to cross the transition. Here we consider the transi-
tion for a deep lattice, in the Bose-Hubbard limit. The optical potential created by two
counter-propagating beams is [13, 107]:

Vlat(0, 0, z) = V0cos2(kz) (6.4)

with

V0 = α

(
4Pbeam

2ε0cπw2
0

)
(6.5)

ε0 is the vacuum permittivity, w0 the waist of the laser beam and c the speed of light.
In the tight-binding approximation, the hopping term J is expressed as

J =
4√
π

V

Er
Erexp

−2(V/Er)1/2
. (6.6)

And the strength of the on-site interaction U reads [81]:

U =
√

2π
g1D

λ

(
V

Er

)1/4

(6.7)
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Figure 6.9: Power to reach the critical point, for different transverse confinements. Since the
amplifier provides a maximal 1W, the effective power reached on the atomic cloud cannot rea-
sonably exceed 500 mW, which indicates that the waist should not be larger than about 200
μm.

The condition (U/J)c = 3.85 to cross the Mott transition can be translated to a condition
on V0, itself only dependent on the power Pbeam and the waist w0. Finally, V0,c is the
solution to the implicit equation [23]

4
V0,c

Er
= ln2

[
1

γ
2
√
2π

(
U

J

)
c

(
V0,c

Er

)]
, (6.8)

γ being the Lieb-Liniger interaction parameter

γ =
mg1D
�2n

, (6.9)

and, as a reminder, g1D = 2�aSω⊥. The required power depends on the transverse
confinement ω⊥ via the interaction parameter, and waist w0. Figure 6.9 depicts the
minimal optical power in mW, vs waist, for three typical transverse trappings. Essen-
tially, stronger trappings would lead to lower linear densities (and higher γ), and lower
power to cross the critical point. Since the first lobes of the phase diagram correspond
to 1, 2 or 3 atoms per site, the corresponding linear densities verifying λn/2p ∼ 1,
where p = {1, 2, 3}. With λ = 1530 nm the linear densities should be between 2.106

and 1.107 m−1. Typically, the aimed transverse confinements will be higher than the
previous studies in more weakly-interacting regimes. A landmark for comparison is
the first realisation of a strongly-interacting gas on the experiment in 2011 [79], where
the largest published transverse confinement of 18.8 kHz lead to a peak linear density
of about 106 m−1. In the figure below, the considered trapping frequencies are 5 kHz,
10 kHz and 20 kHz.
The laser amplifier provides a maximal optical power of 1 W. With the various sources
of power loss (diffraction by an AOM, injection of a fibre, and so on), one can hope
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for several hundreds of mW on the atoms, which should be sufficient, given our other
experimental parameters (read below). However, a number of other experimental con-
straints should be taken into account to verify the feasibility of the experiment.

6.3.2 Geometrical constraints on the beam

Since the modulated guide is a few microns above the chip surface, rather than having
a horizontal standing wave parallel to the trap axis which would cause the laser light
to diffract off the edges of the chip, the beams will reflect off its surface at a small angle
θ. With this configuration, we listed four geometrical constraints on our optical setup.

The first constraint comes from this reflection of the lattice beam: the grazing incident
angle could induce loss if the beam is truncated by the edge of the chip. The intensity
of the gaussian beam decreases as

I(R, z)

Imax
=

(
w0

w(z)

)2

exp

(−2R2

w2(z)

)
. (6.10)

w0 designates the minimum waist, and w(z) its spatial dependence, R and z are the
radial and longitudinal coordinates respectively.

L

D

R

D

L

Figure 6.10: The maximum (central) intensity is represented in red, and decays as R increases.
A region of size D is illuminated by the incident light, giving the spatial extent of the one-
dimensional lattice. L is the total width of the chip. In the chamber, the chip is facing down-
wards at a 45◦ angle.

Noticing that R = (L/2)sin(θ) and assuming I(R, z) ≈ I(R, 0) for simplicity, sin(θ) is
related to the beam properties by

sin(θ) =

√√√√−
(

4

L2

)
w2(z)

2
ln

(
I(R, z)

Imax

(
w(z)

w0

)2
)
. (6.11)

L is much smaller than the Rayleigh length of the lattice beam so that we can addi-
tionally consider w(z) ≈ w0. Even a slight intensity loss by diffraction on the edge
reduces the accessible (θ, w0) parameter space. Figure 6.11 summarises all the geomet-
rical constraints, and the plotted excluded region (denoted A) is for a beam being at the
position where the intensity is 1% of the central intensity. Naturally, this excludes too
large waists.

The smaller the angle θ, the larger the illumanited region D = w0/sin(θ) of the chip,
at fixed waist w0. The length of our one-dimensional gas rarely exceeds 200 μm. On
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Figure 6.11: Summary of the geometrical constraints, represented in parameter space θ, w0.

this length scale, the optical power of the gaussian beam shouldn’t vary too much, so
that all the atoms roughly see the same lattice depth. In the parameter space diagram
6.11 (region B), the constraint chosen is that the optical power change over the cloud
size shouldn’t exceed 10%, which leads to an exclusion of the smallest waists. As an
example, with w0 = 200 μm and sin(θ) ≈ 0.06, D = 3.3 mm and the atoms see very
little intensity variation.

As the beam crosses the vacuum chamber, it also crosses a long tube (not represented to
scale on figure 6.7) which limits the angle θ at which the beam may arrive. The distance
between the centre of the chip and the end of the tube is roughly 25 cm, and the open-
ing is a CF40 flange. The maximum angle is sin(θ) ≈ 0.06, by considering a window
diameter of 3 cm (excluding region D of parameter space).

Since the lattice beam arrives at an angle θ, a transverse lattice is created in addition to
the desired longitudinal lattice, of periodicity d⊥ = λ/(2sin(θ)). Atoms are 4 μm above
the chip surface, distance at which the transverse spatial power modulation should be
around its maximum. Ideally, d⊥ should be 8 μm, and sin(θ) = 0.047. But with the
experimental tolerance, if we allow for 1 μm margin, the angle corresponding to d⊥ =

10 μm is sin(θ) = 0.0325. For smaller d⊥, the values become larger than the already
determine upper bound sin(θ) = 0.06 (D). Naturally, if the atoms are not exactly at
the maximum of the transverse lattice, the required total optical power to cross the
transition will be consequently increased.
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It appears that any waist between 50 µm and 200 µm is suitable. On the practical side,
larger waists correspond to smaller numerical apertures, ensuring more homogeneous
optical power in the vicinity of the atoms (this effect was neglected in the previous
calculations since we crudely assumed w(z) = w0). With a larger waist we would also
be less sensitive to the alignement. A possible set of parameters is w0 = 150 µm, with
an angle sin(θ) = 0.05 (or d⊥ ≈ 8 µm). The power to cross the Mott transition would
then range, depending on the transverse confinement ω⊥, from 200 to 400 mW.

Summary

• The optical power required to cross the Mott transition is of the order of
several hundreds of mW, but is strongly dependent on the transverse con-
finement ω⊥ and the waist of the lattice beam w0.

• Several constraints on our setup reduce the accessible range of parameters,
and we are left with some margin for the final choice of our laser waist.

6.4 Prospective studies

6.4.1 Context

A certain number of experimental setups by colleagues have explored lattice physics
with bosons in dimension one, all of which use a deep two-dimensional optical lat-
tice to create independent parallel tubes of one-dimensional gases, with an additional
weaker longitudinal periodic potential.
The first observations of the Mott and Pinning transitions in 1D made use of this ex-
perimental technique [68, 136]. A deep two-dimensional lattice along with a weaker
longitudinal lattice was also used to produce a strongly-interacting Tonks-Girardeau
gas: the periodic potential was used to initially pin down the atoms. The presence
of the periodic potential increases the effective mass of the atoms, which results in an
increase of the interaction parameter γ ∝ m [117]. A similar experimental setup in
Florence used Bragg spectroscopy to probe excitations in the superfluid and Mott insu-
lating phases [33, 48].

Despite the remarkable results obtained, this type of setup suffers from one main draw-
back: in a single experimental shot a statistical ensemble of gases is produced, so that
probing a single gas at a time and measuring statistical fluctuations by isolating sin-
gle realisations of the gas is greatly complicated (but not impossible, [147]). By using
an atom chip to produce a single one-dimensional cloud, and with our measurement
methods in real and momentum space, we expect to bring new insight on the corre-
lated phases in 1D. The planned measurements are of two types: equilibrium physics
in the lattice, and out-of-equilibrium dynamics using the lattice as a tool.

6.4.2 Equilibrium physics

A phase transition is characterised by the evolution of correlations accross the phase
change, and the behaviour of a one-dimensional Bose in a periodic potential is rich,
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Figure 6.12: Two- and three-dimensional optical lattices. If the transverse lattice is much tighter
than the longitudinal confinement, the tubes are decoupled and one can explore Mott physics
in dimension one. Figure adapted from [13].

allowing to the occurence of phase transitions of different universality classes. Gener-
ally speaking, our experimental setup will allow us to probe and characterise strongly-
correlated phases, including the Tonks-Girardeau gas.

With our focussing method, we can access the first-order correlation function. For the
Mott transition at commensurability, of BKT type, first-order correlations go from an
exponential to algebraic behaviour accross the transition. This feature has never been
observed experimentally in the case of the Pinning transition. Alongside the momen-
tum distributions, we can access the compressibility of the gas by probing density fluc-
tuations. This will allow us to identify the Mott insulating phase. Similarly, the critical
commensurate/incommensurate transition may be identified by the abrupt increase of
the density correlation length: with the help of our new high-resolution objective this
phenomenon may be accessible. The critical regime is very narrow, happening over a
small range of chemical potentials: the slowly-varying potentials created with the atom
chip are therefore adapted for this measurement.

Similar studies can be performed at strong interactions in homogeneous systems. So
far, we could reach interaction parameters of the order of γ = 1 [79]. However heat-
ing due to three-body losses induced by the strong confinements used (up to 50 kHz)
limited the strength of interactions which could be reached. We envision to use the
longitudinal optical lattice to attempt to reach more strongly interacting samples. The
better signal over noise ratio achieved with the new imaging system should assist us in
this task, since the desired linear densities are smaller than what we currently explore
on the experiment. The lattice will also be a tool to reach more strongly-interacting
regimes of the homogeneous Lieb-Liniger model, namely the Tonks gas.
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6.4.3 Out-of-equilibrium dynamics

The Lieb-Liniger model of repulsive bosons on a continuum is an example of an in-
tegrable system, which we routinely realise on our experimental setup (the presence
of slow external longitudinal potential only slightly breaks the integrability and fea-
tures due to this property survive). The model is an ideal playground for the study
of out-of-equilibrium dynamics in isolated quantum systems: integrable models are
not expected to relax to a thermal distribution as was discussed in Chapter 5. So far,
as well as extensive studies of the Lieb-Liniger model at equilibrium [5, 6, 79, 80], we
began investigating physics out-of-equilibrium with the case study of the breathing
mode [50]. Installing an optical lattice opens up new perspectives with the possibility
of breaking the integrability by adding a periodic potential on top of the Lieb-Liniger
gas. Indeed, the mechanisms leading to the equilibration of a closed quantum sys-
tem are still an open question. The Eigenstate Thermalisation Hypothesis (ETH) is a
strong candidate [40] as a relaxation mechanism, demonstrated numerically [130] and,
very recently, experimentally [85]. This scheme is expected to fail in integrable systems.

The integrability notably translates to the existence of long-lived excitations, as was
illustrated by the experiment described in [92], coined as a "quantum Newton’s cra-
dle". Oscillations of two separate clouds prepared with different velocities, in a trap,
were shown to be undamped over experimental time scales. In our breathing mode
study [50], we also reported that the collective excitations were long-lived. Adding a
lattice to break the integrability would allow to observe whether such long-lived exci-
tations survive or alternatively how their lifetime evolves in the non-integrable system..

One of the first experiments we wish to perform with the lattice relates to the Kibble-
Zurek mechanism. When crossing a phase transition by rapidly varying the control
parameters, topological defects are created [154]. In the case of the Mott transition, the
defects are sine-Gordon solitons and antisolitons, and they have been studied theoret-
ically in [38, 121]. The Kibble-Zurek mechanism relates the speed at which the phase
transition is crossed to the number of defects, as long as the crossing is non-adiabatic.
Our setup would allow us to study the emergence of those topological defects accross
the transition of interest.

Summary

• With the lattice, the spectrum of physical phenomena accessible on our ex-
periment is greatly broadened.

• A quantitative characterisation of the different phase transitions (Pinning,
commensurate/incommensurate) still lacks, and our experiment is well
suited for this type of measurement with a direct measurement of the first-
order correlation function in a single shot, and high-resolution compressibil-
ity measurements.
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• Many questions regarding the equilibration of closed quantum systems re-
main open, and having a knob (the lattice) to turn the integrability on or off
could help shed light on the underlying relaxation dynamics.





Conclusions

The doctoral work presented in this document can be divided in three distinct projects,
which in chronological order, consisted in:

• the study of momentum-space correlations of the one-dimensional Bose gas,

• significant changes brought to the experimental setup,

• and the study of the dissipative evaporation mechanism and its generation of
non-thermal states.

In the very first months of my PhD, the previous version of the experimental setup
routinely produced one-dimensional Bose gases and we took data for the study of
momentum-space correlations. These measurements were the first of the sort: they
could be performed thanks to the acquisition of the complete momentum distribution
of a single 1D Bose gas in a single shot. This contrasts with experiments performing
Bragg spectroscopy (where the excitations are probed one by one), or producing their
1D samples in two-dimensional lattices (where the presence of tubes with different
thermomdynamic quantities destroy the information on correlations in an individual
tube). We demonstrated that bosonic bunching is still present in momentum space,
while negative off-diagonal correlations emerge in the quasi-condensate phase. These
measurements were in very good agreement with analytical calculations (in the asymp-
totic limits of the ideal Bose gas and the quasi-condensate) and ab initio QMC simu-
lations (valid over the complete quasi-condensation crossover). Such measurements
open the way to characterisition of many-body systems in and out-of-equilibrium. We
envision to perform such measurements to study the dynamics of our 1D samples af-
ter a quench (or ramp) of the coupling parameter g ∝ ω⊥. This experimental protocol
can be performed on our setup thanks to the independent control of the transverse
and longitudinal confinements. We already took preliminary data in this direction: the
momentum correlations proved to be strongly influenced by such a quench, with the
emergence of off-diagonal features non-existing at equilibrium. However since we un-
dertook important changes on the setup we did not take more data in this direction
and the study remains at a very preliminary stage yet.

In late spring of my first year, we decided to proceed to changes on the experimen-
tal setup, having to break the vacuum to replace the 87Rb dispensers which had run
out (this was expected, given the life span of about two years of those dispensers).
These changes were of various nature, motivated by two main improvements: a better
stability of the experiment, and a larger numerical aperture for the imaging system.
The improvement of the stability mostly implied changes in the laser setup and optics:
we replaced the repumper and changed the laser configuration, with a new so-called
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"Master 2" beating with "Master 1", spanning the different frequencies required during
the experimental cycle. Regarding the optics, we also fibred the MOT beams, so that
more optical power was required. For this purpose a Tapered Amplifier was added to
provide the necessary light. Changing the imaging objective (designed and tested by
former PhD student Bess Fang and colleagues) also implied a number of upgrades. It
lead to the replacement of the chip, with the design of a new electronic circuit (or mask),
which I drew in the first months of my PhD. At first, we wished to install a chip with
a different substrate (SiC rather than AlN), but difficulties in the fabrication process
made us turn back to the previous well-understood technology. Since the imaging ob-
jective had to be brought closer to the atoms, we also modified the vacuum setup, with
the introduction of an indium seal. Another number of small changes also happened,
like the installation of new-generation cards for the home-made sequencer or the re-
placement of the control computer. At the time when these lines are being written, we
now have a functioning experiment which can produce dense and cold samples. We
are now looking forward to implementing the focussing technique for the measure-
ment of momentum distributions, before installing the optical lattice and DMD.

After having made significant progress on the setup, I dedicated the final months of
my PhD to a more theoretical project, but not unrelated to experimental observations.
Indeed, a "two-temperature" state has been regularly observed on the experiment. In
short, the density fluctuations measurements are fitted with a first temperature for low
densities, and a second (lower) temperature for high densities. We related this ob-
servation to a dissipative cooling mechanism, recently proposed and implemented by
our colleagues in Vienna. The study was not only dedicated to the explanation of the
two-temperature observation; our theoretical study goes beyond the model proposed
in Vienna by taking into account the complete spectrum of excitations and coupling
between modes. This showed the emergence of a stationary, non-thermal state: in the
trapped system this leads to a state compatible with our experimental observation. We
also studied the role of integrability in the process: by introducing two coupled masses
the system seems to evolve towards an equipartition of energy, which underlines the
role of integrability in the emergence of the non-thermal state. However, we need to
perform more calculations to see a possible heating of the non-integrable gas, by com-
pletely solving the coupled Bogoliubov Hamiltonian. A paradox indeed remains: ther-
modynamic arguments predicts a heating of the quasi-condensate, while the classical
field approach shows a reduction of energy in each mode. This inconsistency may be
partly resolved by including poissonian noise, materialising the quantised nature of
the field. Numerical simulations showed that high-energy modes indeed heat when
atoms are lost. Finally, the evaporation mechanism in the one-dimensional Bose gas
is not completely elucidated: it appears that the observed temperatures may be lower
than the theoretical limit kBT = µ with a regular observation of temperatures around
kBT = µ/2 on our experiment and on the setup of our colleagues in Vienna.



APPENDIX A
More detailed calculations for the momentum correlations

A.1 Correlations in the local density approximation

In this section we derive the expressions used for the bunching and regular contribu-
tions to the momentum correlations, in a trap. The general form of the second-order
correlation function in momentum space is as follows:

G(p, p′) =
1

(2π~)2

∫
d4ze−ip(z1−z2)/~e−ip

′(z3−z4)/~
(
〈Ψ†1Ψ2Ψ†3Ψ4〉 − 〈Ψ†1Ψ2〉〈Ψ†3Ψ4〉

)
,

(A.1)
where d4 ≡ dz1dz2dz3dz4, and Ψi is a short-hand notation for Ψ(zi). Assuming that
the gas gas a finite correlation length lc, the authors of [18] decomposed the four-point
correlation function as:

〈Ψ†1Ψ2Ψ†3Ψ4〉〈Ψ†1Ψ2〉〈Ψ†3Ψ4〉 = 〈Ψ†1Ψ4〉δ(z2− z3) + 〈Ψ†1Ψ4〉〈Ψ†3Ψ2〉+ G̃2(1, 2, 3, 4). (A.2)

We already encountered this form in the main text of Chapter 4. As a reminder, the
first term is the shot noise, the second term the bunching contribution and the final
contribution is a regular function which describes the binary elastic processes in the
interacting gas. The bunching term in the local density approximation (which we cal-
culate by injecting the bunching expression of A.2 into the integral above) becomes:

B(p, p′) =

∣∣∣∣ 1

2π~

∫
d2ze−i(pz1−p

′z4)〈Ψ†1Ψ4〉
∣∣∣∣2 . (A.3)

By introducing the variables zc = (z1 + z4)/2 and u = z1 − z4, as well as (p + p′)/2

(p− p′)/2, the expression to evaluate can be reformulated as:

B(p, p′) =

∣∣∣∣ 1

2π~

∫
dzcdu〈Ψ†1Ψ4〉e−i

p+p′
2
ue−i

p−p′
z c

∣∣∣∣2 . (A.4)

Bearing in mind that lφ (typical length scale of 〈Ψ†1Ψ4〉) is much smaller than the system
size, one can integrate only u, assuming the integrand does not depend on zc (at this
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point we apply the local density approximation), which then gives the final expression:

B(p, p′) =

∣∣∣∣1~
∫

dzν
(h)
n(z)((p+ p′)/2)ei(p−p

′)z/~
∣∣∣∣2 , (A.5)

by identification of the momentum distribution (occupation number, without dimen-
sion) with the Fourier transform of the first-order correlation function. Let us now turn
to the computation of the regular term in the LDA:

〈δnpδnp′〉reg =
1

(2π~2

∫
d4ze−ip(z1−z2)/~e−ip

′(z3−z4)/~G̃2(1, 2, 3, 4). (A.6)

G̃2(1, 2, 3, 4) is non-zero if the zi are close (� L). By considering the centre of mass
coordinate zCM such that z1 + z2 + z3 + z4 = 0, we reformulate the integral as:

〈δnpδnp′〉reg =
1

(2π~)2

∫
dzCM

∫
dz3e−ip(z1−z2)/~e−ip

′(z3−z4)/~G̃2(1, 2, 3, 4). (A.7)

The second integrand is a known result of [18] since one can assume the system as lo-
cally homogeneous, with z1, z2, z3 � L. The result of integration over d3z is l3cn(zCM )Fpartial
where Fpartial = Fhom/8, Fhom being the expression of the regular function found
in [18]. Finally:

〈δnpδnp′〉reg =

∫
dz

l3φn
2

(2π~)2
Fpartial

(
2lφp

~
,
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′

~
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)
. (A.8)

A.2 The intensive quantity C and its relevant limits

We previously defined the following quantity to study the behaviour of the correlations
over the crossover:

C =
∑
α

〈δNαδN−α〉/〈N0〉 (A.9)

Let us assume that ~/L is much smaller than the experimentally accessible momentum
scales. The momentum correlations then read:

〈δnpδnp′〉 = δ(p− p′) (〈np〉+ B(p)) + 〈δnpδnp′〉reg. (A.10)

Separating the bunching and regular contributions, we define C as C〈N0〉 = Ui + Ur
where

Ui =

∫
dpR(p, p) (〈np〉+ B(p)) , (A.11)

Ur =

∫ ∫
dpdp′〈δnpδnp′〉reg, (A.12)

and

R(p, p′) =
∑
α

A(α, p)A(−α, p′). (A.13)
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Note thatR(p, p′) is periodic in p such thatR(p+ ∆, p′ −∆) = R(p, p′). In the relevant
limit δ,∆z � ~/φ:

Ur ≈ ∆

∫
dp〈δnpδn−p〉reg, (A.14)

Ui ≈ ∆ (〈n0〉+ B(0))

∫
dp
R(p, p)

∆
(A.15)

The integral I =
∫

dpR(p, p)/∆ present in equation A.15 takes the asymptotic value
I ≈ 1/2 in the second relevant limit δ � ∆, such that finally:

C =
1 + B(0)/〈n0〉

2
+

∫
dp〈δnpδn−p〉reg/〈n0〉. (A.16)

With the local density approximation and a transformation to integrate over the chem-
ical potential µ instead of z, C appears as an intensive quantity which depends exclu-
sively on γ0 (γ in the centre of the trap/cloud) and t.





APPENDIX B
Split-time method

The split-time method is a typical numerical method used to propagate any generic
Hamiltonian which can be written in the form

Ĥ = V̂ + K̂. (B.1)

V̂ is the potential term, diagonal in real space, and K̂ the kinetic term, diagonal in
Fourier space. Therefore the method relies on choosing the most convenient represen-
tation for each of these terms: space representation for the first and momentum repre-
sentation for the second. The Hamiltonian associated with the non-linear Schrödinger
equations falls in this category of problems. The evolution operator, by definition, acts
on the wavefunction Ψ as:

U(∆t) = e−
i
~ Ĥ∆t = e−

i
~ (V̂+K̂)∆t (B.2)

The idea of the splitting method is to appropriately write the exponentiated sum of
operators eA+B to perform the smallest numerical error. A first possibility is to simply
consider eA+B = eAeB , in other terms write:

U(∆t) ≈ e−
i
~ V̂∆te−

i
~ K̂∆t (B.3)

This is of course not accurate in general, according to the Baker-Haussdorf formula:

eε(A+B) = eεAeεBe−ε
2/2[A,B]eO(ε3) (B.4)

Using this relation, it appears that the error made when writing B.3 is:

e−
i
~ V̂∆te−

i
~ K̂∆t − U(∆t)

U(∆t)
= O(∆t2). (B.5)

A smarter way of decomposing the product of exponentials is the split the effect of the
term V̂ in the following manner:

U(∆t) ≈ e−
i
~ V̂∆t/2e−

i
~ K̂∆te−

i
~ V̂∆t/2 (B.6)

The error performed using this so-called split-time algorithm has a more advantageous
scaling in time step ∆t:

Usplitting(∆t) = e−
i
~ Ĥ∆teO(∆t3)e−

1
2(∆t

~ )
2
[V

2
,K]eO(∆t3)e−

1
2(∆t

~ )
2
[K,V

2
] (B.7)
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So that

Usplitting(∆t)− U(∆t)

U(∆t)
= O(∆t3). (B.8)

Using this decomposition of the evolution operator, the algorithm to propagate the
wavefunction over a time step ∆t is as follows:

• Compute Ψ1 = Ψ(z)e−V̂ (z)∆t/2, V (z) being diagonal in space representation.

• Take the Fourier transform Ψ̃

• Compute Ψ̃2 = Ψ̃1e
−K̂(k)∆t, K̂(k) being diagonal in momentum representation.

• Transform back to Ψ2

• Compute Ψ3 = Ψ2e
−V̂ (z)∆t/2

• Repeat.

The split-time method can also be used to propagate the coupled non-linear Schrödinger
equation since the coupling term is of the same form as the same-species interaction
term.



APPENDIX C
Numerical methods for the trapped gas

The following section is based on references [11,12,19], and briefly introduces the meth-
ods used the prepare the initial state for the classical field simulation in the trap, and
its propagation: the so-called stochastic projected GPE and projected GPE.

The initial state is prepared with a stochastic projected Gross-Pitaevskii equation (SPGPE).
The classical field approach by definition considers the field operators as c-numbers
ΨC , approximation valid as long as the occupation numbers ni = kBT/εi (εi being
the energy of mode i) are large. In the trapped system, the highly-occupated modes
are treated in this manner, while the more sparsely populated, non-classical modes
are considered separately as a static finite temperature reservoir. The simple-growth
SPGPE is given by:

dΨC(z, t) = PC
{[
− i
~
LC + κth(µ− LC)

]
ΨC(z, t)dt+

√
κthkBTdW (z, t)

}
. (C.1)

PC is the projector onto the subspace of classical (highly-populated) modes, and the
operator LC describes the usual Gross-Pitaevskii dynamics:

LCΨC =

(
− ~2

2m

∂2

∂z2
+

1

2
ω2
zz

2 + g |ΨC |2
)

ΨC . (C.2)

dW (z, t) verifies 〈
W ∗(z, t)W (z′, t+ dt)

〉
= δC(z − z′)dt, (C.3)

δC being the kernel of the projection operator PC , which essentially represents a Dirac
distribution. The growth rate κth represents the strength of the thermal and diffusive
damping experienced by the classical modes in the presence of the non-classical bath.
κth is chosen for computational convenience rather than physical arguments, since its
value has no consequence on equilibrium configurations.

The dynamics of the system under atom loss (or any other perturbation of the system,
like a longitudinal quench for instance in the case of [19]) is then given by the Projected
Gross-Pitaevskii equation (PGPE), which can be deduced from the SPGPE by setting
κth = 0.
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All numerical calculations are performed in the Hermite-Gauss basis, which is the
single-particle eigenstates for the trapped Bose gas. The basis cutoff is in direct pro-
portion to the energy cutoff that defines the classical region: it should be chosen such
that the average occupation number of those modes are larger than unity. The Hermite-
Gauss basis is the most cost-efficient choice: it approximates the more sparsely occu-
pated modes well, thereby allowing a smooth transition between the classical and non-
classical regions.



APPENDIX D
Recovering the stochastic GPE in the truncated Wigner

approach

For dissipative quantum systems a common approach is to invoke the master equation,
which gives the evolution of the density matrix of the dissipative system. It is a statis-
tical approach, in the sense that the method describes the behaviour of the system after
many realisations. In this appendix, we derive the stochastic Gross-Pitaevskii equation
used in the last section of Chapter 5 from the master equation. In the Wigner repre-
sentation a Fokker-Planck equation is recovered. After applying the truncated Wigner
approximation the stochastic classical field equation is derived.

Consider the density operator of the system S ρ. The evolution of the complete system
(S and bath) can be written in terms of the density matrix: this is the quantum Liouville
equation, replacing the Schödinger equation for the wavefunction Ψ:

i~
∂ρ

∂t
= [Htot, ρ] , (D.1)

Where Htot is the Hamiltonian of the complete system. Htot contains two terms: the
Lieb-Liniger Hamiltonian and the Hamiltonian describing the coupling of the system
with the bath. We assume this coupling is weak so that it can be treated perturbatively,
and that the spectrum of the bath is a very broad continuum so that the dynamics of the
system is irreversible. The dynamics of our subsystem of interest (the quasi-condensate
in our case) is given by the following equation on the density matrix, a master equation
referred to as the Lindblad equation:

dρ

dt
=

1

i~
[H, ρ] + L[ρ] (D.2)

L is the term which takes into account the dissipation while the commutator represents
the usual Hamiltonian evolution of a closed quantum system. The former depends on
the density matrix ρ, and the master equation takes the following form1, expliciting the

1Having realised that the appendix is already quite lengthy, I decided to directly write down the final
form of this operator. An excellent introduction which entirely derives the Lindblad equation can be
found in [105], sorry.
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second term [105, 148]:

d

dt
ρ(t) =

1

i~
[H, ρ] +

Γ

2

∑
j

(
2Ψ(j)ρΨ(j)−Ψ(j)†Ψ(j)ρ− ρΨ†(j)Ψ(j)

)
(D.3)

Here the system has been discretised on a grid of spacing δz. The annihilation operator
Ψ satisfies the bosonic commutation relation in cell j:

[
Ψ(j)†,Ψ(j)

]
= 1. g̃ denotes the

rescaled coupling constant g/δx. This equation describes the non-hermitian evolution
of the open quantum system S, with dissipation into a large reservoir. H is the Lieb-
Liniger Hamiltonian, which takes the following form with the discretised variables:

H =
∑
j

(
−Ψ(j)†

~2

2m
∂2
jΨ(j) +

g̃

Ψ

†
(j)Ψ†(j)Ψ(j)Ψ(j)

)
(D.4)

∂2
j denotes the second-order finite difference. A convenienent way to describe the sys-

tem is to use the Wigner representation of the density matrix ρ, which writes:

W (Ψ(j)) =

∫ ∏
j

d2λ(j)
e−(λ(j)Ψ∗(j)+λ∗(j)Ψ(j))

π2
χ(λ(j)), (D.5)

where

χ(λ) = Tr
(
ρe

∑
j(λΨ+−λ∗Ψ)

)
. (D.6)

The idea is now to write the Lindblad equation in this phase-space formalism. Let us
first ignore the free evolution of ρ due to the Hamiltonian H and focus on the effect of
atom loss captured in the second term of the Lindblad equation. The action of the cre-
ation and annihilation operators Ψ(j), Ψ†(j) on the density matrix ρ take the following
form in terms of the Wigner representation [148]:

Ψ(j)ρ→
(

Ψ(j) + 1
2

∂
∂Ψ(j)Ψ(j)

)
W [Ψ]

Ψ†(j)ρ→
(

Ψ(j)− 1
2

∂
∂Ψ(j)Ψ(j)

)
W [Ψ]

ρΨ(j)→
(

Ψ(j)− 1
2

∂
∂Ψ(j)Ψ(j)

)
W [Ψ]

ρΨ†(j)→
(

Ψ(j) + 1
2

∂
∂Ψ(j)Ψ(j)

)
W [Ψ]

(D.7)

From these correspondance relations giving the Wigner representation of the action of
Ψ(j), Ψ†(j) on ρ, we find:

∂W

∂t
=

Γ

2

∑
j

(
− ∂

∂Ψ(j)
(Ψ(j)) +

∂

∂Ψ∗(j)
(Ψ∗(j)) +

∂

∂Ψ(j)

∂

∂Ψ∗(j)

)
W (Ψ,Ψ∗). (D.8)

This equation, of Fokker-Planck type, is itself sampled by a stochastic process

dΨ = −Γ

2
Ψdt+ dξ, (D.9)
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dξ being a gaussian random variable, of vanishing mean value and of variance

〈dξ∗(x)dξ(x′)〉 =
Γ

2
dtδx,x′ . (D.10)

The evolution of the Wigner function under the Lieb-Liniger Hamiltonian is non triv-
ial, since H is non-quadratic in the field operators: the evolution contains higher-order
derivative terms in Ψ such that the time evolution of the Wigner function does not re-
duce to a Fokker-Planck equation and cannot be represented by a stochastic process.
However, for weakly interacting highly degenerate gases, the truncated Wigner ap-
proximation, which amounts to neglecting the higher order derivative terms, is a good
description. Under this assumption, the Hamiltonian evolution of the Wigner func-
tion is a drift process corresponding to the dynamical equation for the classical field Ψ,
whose discretised version is

i~
∂Ψ

∂t
= − ~2

2m
∂2
jΨ + g̃|Ψ|2Ψ. (D.11)

Combining this with D.9, we get:

idΨ =

(
− ~2

2m
∂2
jΨ + g̃|Ψ|2Ψ− iΓ

2
Ψ

)
dt+ dξ. (D.12)

We recover the stochastic Gross-Pitaevskii equation considered as the starting point of
the study presented in the last section of Chapter 5.





APPENDIX E
Résumé en français

Ce manuscrit présente mes travaux de thèse, effectués dans l’équipe Puce Atomique.
Nous utilisons une micro-structure, qui comporte des micro-fils à sa surface, perme-
ttant de créer des pièges magnétiques. Avec cette puce, nous confinons des atomes
bosoniques (87Rb) dans une géométrie uni-dimensionnelle. Cela signifie qu’en pra-
tique, les atomes se trouvent dans l’état fondamental de l’oscillateur harmonique trans-
verse. C’est une réalisation expérimentale d’un modèle intégrable: le modèle dit de
Lieb-Liniger [100, 101]. La physique des bosons est particulière en dimension une, en
particulier il n’existe pas de condensation à proprement parler. Cependant, les interac-
tions répulsives présentes induisent un "crossover" (par opposition à une transition de
phase), avec la présence d’une phase dite de "quasi-condensat", qui ne comporte pas
d’ordre à longue portée. Le travail effectué lors de cette thèse peut être divisé en trois
parties bien distinctes.

Dans un premier temps, nous avons mesuré les corrélations dans l’espace des vitesses
de nos échantillons uni-dimensionnels, à travers le crossover de quasi-condensation.
Sur notre expérience, grâce à une technique présentée dans [80], nous pouvons mesurer
la distribution complète en vitesse de notre système en un coup. En acquierant un
ensemble de telles images, nous pouvons en déduire les corrélations définies par

G(k, k′) = 〈δn̂kδn̂k′〉 = 〈n̂kn̂k′〉 − 〈n̂k〉 〈n̂k′〉 , (E.1)

où k représente le vecteur d’onde et nk la population du mode k. Nos mesures ont
été systématiquement comparées à des calculs analytiques (dans les régimes asymp-
totiques où le gaz est profondément quasi-condensat ou idéal) ou à des simulations
numériques exactes. Nous avons mis en évidence la présence de corrélations négatives
hors de la diagonale. Ces anti-corrélations sont une signature de l’absence de l’ordre à
longue portée dans notre système et cette mesure constitue leur première mise en évi-
dence.

Ces mesures ont été effectuées sur le montage expérimental, avant d’entreprendre
de nombreuses modifications. Ces changements ont été motivés par deux aspects:
l’amélioration de la stabilité de l’expérience et l’installation d’un système d’imagerie
avec une plus grande ouverture numérique. Pour cette première motivation, les change-
ments concernaient principalement le système laser. Presque tous les lasers ont été
remplacés, nous avons changé le système d’asservissement et nous avons installé un
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amplificateur pour sensiblement augmenter la puissance optique disponible. En effet,
l’amélioration de la stabilité est aussi passée par l’installation de fibres optiques pour
diminuer la propagation de nos faisceaux en espace libre. Ces fibres nécessitent une
plus grande puissance en raison des pertes à l’injection. Pour le changement de sys-
tème optique, nous avons dû modifier le schéma électronique de la puce pour déplacer
le piège uni-dimensionnel, et enfin cela a aussi nécessité un changement de bride pour
notre chambre à vide: pour amener notre objectif au plus près des atomes il a fallu
installer une bride rentrante avec un joint en Indium. Ces changements sont désor-
mais effectués, et l’expérience produit de façon régulière des quasi-condensats froids et
denses. Après la calibration des mesures de distributions en impulsion, nous pourrons
passer à l’étude de "quench" en interaction: l’idée est d’étudier la réponse du système
intégrable à une variation brutale d’un paramètre du Hamiltonien, ici le couplage entre
atomes.

Après avoir travaillé sur le montage expérimental pour apporter ces modifications, la
fin de ma thèse était axé sur un projet plus théorique: l’étude d’un nouveau mécha-
nisme de refroidissement des gaz uni-dimensionnels. Habituellement, pour refroidir
des atomes à des températures bien en-deçà de la limite de dégénerescence, les atoms
sont soumis à une évaporation. L’idée est d’enlever les atomes les plus énergiques,
pour que les atomes restantes thermalisent à une température plus faible. Cepen-
dant, comme en 1D tous les atoms occupent le même état transverse, il n’est pas at-
tendu que ce méchanisme fonctionne. Pourtant, des températures aussi faibles que
E0,⊥/10 = ~ω⊥/10 ont été observées sur notre expérience et par d’autres [79]. L’idée
du nouveau méchanisme (proposée dans [65] et testée expérimentalement dans [124])
est d’éliminer les atomes du gaz sans sélection aucune, de façon continue, uniforme et
constante. Ainsi, cela diminue l’énergie dans les modes d’excitation du système et par
conséquent la température. Nous avons effectué des simulations numériques en champ
classique pour montrer que cela mène à un état hors d’équilibre où chaque mode subit
une décroissance à un taux différent, menant à un état final, robuste dans le temps, où
chaque mode à une température différente. En particulier, les modes de basse énergie
ont une "température" plus faible que les modes de haute énergie. Nous avons relié ces
résultats à des observations expérimentales faites par le passé.

En fonction de la méthode utilisée pour mesurer la température, les valeurs de T trou-
vées peuvent être très différentes, bien au-delà de l’incertitude sur la mesure. La
première méthode utilise le profil de densité linéaire in situ: avec la connaissance
l’équation d’état (dite de Yang-Yang), nous pouvons déduire une température, con-
naissant la distribution de densité et de potential chimique. Cette méthode donne
une première température Tprof et sonde les bords du piège, où les excitations sont
de plus grande énergie. La seconde méthode relie les fluctuations de nombre d’atoms
au sein d’un pixel ∆ à la température: les deux sont proportionnels par la compressibil-
ité du système. Cette compressibilité est connue avec la connaissance d’une équation
d’état, et de même, nous pouvons extraire une température. Cette méthode, qui donne
Tfluc < Tprof , sonde plutôt les modes de faible énergie comme ∆� ξ. Nous avons véri-
fié la compatibilité avec les résultats théoriques en effectuant de nouvelles simulations,
dans un piège cette fois. Ces simulations ont donné lieu à des observations similaires.
En plus de ces simulations, nous avons aussi considéré un système non-intégrable en
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introduisant un couplage entre deux masses différentes, et ce système s’équilibre au
contraire du système intégrable. Enfin, le champ classique prédit des températures
qui décroissent vers zéro dans la limite des faibles densités, ce qui n’est pas physique.
Pour palier à cette incohérence, il faut considérer une équation d’évolution stochas-
tique, dont le terme de bruit modélise la nature discrète du champ. Ce terme limite la
température asymptotique à une valeur non-nulle.
Par la suite, un réseau optique longitudinalsera installé sur l’expérience pour ajouter
un potentiel périodique en plus du confinement magnétique. Cela permettra de nom-
breuses études nouvelles avec cet ingrédient physique qui enrichit le système expéri-
mental.
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