I. Timrov, T. Kampfrath, J. Faure, N. Vast, C. R. Ast et al., calculations, Physical Review B, vol.85, issue.15, p.155139, 2012.
DOI : 10.1103/PhysRevB.85.155139

URL : https://hal.archives-ouvertes.fr/hal-00739056

E. Papalazarou, J. Faure, J. Mauchain, M. Marsi, A. Taleb-ibrahimi et al., Coherent Phonon Coupling to Individual Bloch States in Photoexcited Bismuth, Coherent phonon coupling to individual Bloch states in photoexcited bismuth, p.256808, 2012.
DOI : 10.1103/PhysRevLett.108.256808

URL : https://hal.archives-ouvertes.fr/hal-01164042

J. Faure, J. Mauchain, E. Papalazarou, M. Marsi, D. Boschetto et al., Direct observation of electron thermalization and electron-phonon coupling in photoexcited bismuth, Physical Review B, vol.88, issue.7, p.75120, 2013.
DOI : 10.1103/PhysRevB.88.075120

URL : https://hal.archives-ouvertes.fr/hal-01159038

I. Timrov, Ab initio study of plasmons and electron-phonon coupling in bismuth: From free-carrier absorption towards a new method for electron energy-loss spectroscopy, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00823758

G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, variational approach for evaluating lattice thermal conductivity, Physical Review B, vol.88, issue.4, p.45430, 2013.
DOI : 10.1103/PhysRevB.88.045430

URL : https://hal.archives-ouvertes.fr/hal-00998461

L. Paulatto, F. Mauri, and M. Lazzeri, approach: Theory and applications to graphite and graphene, Physical Review B, vol.87, issue.21, p.214303, 2013.
DOI : 10.1103/PhysRevB.87.214303

URL : https://hal.archives-ouvertes.fr/hal-01049681

M. Markov, J. Sjakste, G. Fugallo, L. Paulatto, M. Lazzeri et al., Nanoscale mechanisms for the reduction of heat transport in bismuth, Physical Review B, vol.93, issue.6, p.64301, 2016.
DOI : 10.1103/PhysRevB.93.064301

URL : https://hal.archives-ouvertes.fr/hal-01284828

C. F. Gallo, B. S. Chandrasekhar, and P. H. Sutter, Transport Properties of Bismuth Single Crystals, Journal of Applied Physics, vol.34, issue.1, p.144, 1963.
DOI : 10.1063/1.1729056

C. J. Lasance, The Seebeck coefficient. Electronics Cooling, 2006.

C. Uher and H. J. Goldsmid, The Magneto-Seebeck Coefficient of Bismuth Single Crystals, physica status solidi (b), vol.11, issue.1, p.163, 1974.
DOI : 10.1002/pssb.2220630115

L. C. Brodie, D. N. Sinha, C. E. Sanford, and J. S. Semura, Bismuth magnetoresistive thermometry for transient temperature measurements in liquid helium, Review of Scientific Instruments, vol.52, issue.11, p.1697, 1981.
DOI : 10.1063/1.1136499

A. Georges, Thermoélectricité : concepts, matériaux et enjeux énergétiques Note de cours Collège de France, 2013.

W. Hansch, Temperature dependence of the diffusion thermopower in metals, Physical Review B, vol.31, issue.6, p.3504, 1985.
DOI : 10.1103/PhysRevB.31.3504

J. Issi, Low Temperature Transport Properties of the Group V Semimetals, Australian Journal of Physics, vol.32, issue.6, p.585, 1979.
DOI : 10.1071/PH790585

A. L. Moore, M. T. Pettes, F. Zhou, and L. Shi, Thermal conductivity suppression in bismuth nanowires, Journal of Applied Physics, vol.106, issue.3, p.34310, 2009.
DOI : 10.1063/1.3191657

C. Uher and H. J. Goldsmid, Separation of the Electronic and Lattice Thermal Conductivities in Bismuth Crystals, physica status solidi (b), vol.8, issue.2, p.765, 1974.
DOI : 10.1002/pssb.2220650237

L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B, vol.47, issue.24, p.16631, 1993.
DOI : 10.1103/PhysRevB.47.16631

L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.47, issue.19, p.12727, 1993.
DOI : 10.1103/PhysRevB.47.12727

F. Völklein and E. Kessler, A Method for the Measurement of Thermal Conductivity, Thermal Diffusivity, and Other Transport Coefficients of Thin Films, Physica Status Solidi (a), vol.91, issue.2, p.585, 1984.
DOI : 10.1002/pssa.2210810222

G. Abrosimov, The dimensional effect of the transfer coefficients in oriented films of bismuth grown on polymer substrates, Teplofizika Vysokikh Temperatur, vol.12, pp.530-536, 1974.

D. W. Song, W. Shen, B. Dunn, C. D. Moore, M. S. Goorsky et al., Thermal conductivity of nanoporous bismuth thin films, Applied Physics Letters, vol.84, issue.11, p.1883, 2004.
DOI : 10.1063/1.1682679

J. P. Heremans, Low-Dimensional Thermoelectricity, Acta Physica Polonica A, vol.108, issue.4, p.609, 2005.
DOI : 10.12693/APhysPolA.108.609

J. W. Roh, K. Hippalgaonkar, J. H. Hal, R. Chen, M. Z. Li et al., Observation of Anisotropy in Thermal Conductivity of Individual Single-Crystalline Bismuth Nanowires, ACS Nano, vol.5, issue.5, p.3954, 2011.
DOI : 10.1021/nn200474d

Y. Hasegawa, M. Murata, F. Tsunemi, Y. Saito, K. Shirota et al., Thermal Conductivity of an Individual Bismuth Nanowire Covered with a Quartz Template Using a 3-Omega Technique, Journal of Electronic Materials, vol.103, issue.7, p.2048, 2013.
DOI : 10.1007/s11664-013-2520-4

S. Lee, G. Kim, M. Lee, H. Lim, W. Kim et al., Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-?? technique at low temperatures, Nanotechnology, vol.24, issue.18, p.185401, 2013.
DOI : 10.1088/0957-4484/24/18/185401

J. Kim, S. Lee, Y. M. Brovman, . Ph, W. Kim et al., Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires, Nanoscale, vol.12, issue.11, p.5053, 2015.
DOI : 10.1039/C4NR06412G

J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, 1960.

D. M. Rowe, Thermoelectrics handbook: macro to nano, 2006.
DOI : 10.1201/9781420038903

H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, vol.2, issue.2, p.190, 2012.
DOI : 10.1016/j.nanoen.2012.10.005

S. B. Riffat and X. Ma, Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering, vol.23, issue.8, p.913, 2003.
DOI : 10.1016/S1359-4311(03)00012-7

T. M. Tritt and M. A. Subramanian, Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, MRS Bulletin, vol.LVI, issue.71, p.188, 2006.
DOI : 10.1073/pnas.93.15.7436

D. M. Rowe, Thermoelectrics, an environmentally-friendly source of electrical power. Renewable energy, p.1251, 1999.

A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials, Mat. Sci. Eng. R, vol.97, issue.1, 2015.

H. Imai, Y. Shimakawa, and Y. Kubo, crystal with nearly stoichiometric composition, Physical Review B, vol.64, issue.24, p.241104, 2001.
DOI : 10.1103/PhysRevB.64.241104

URL : http://arxiv.org/abs/cond-mat/0111063

M. Chester, Second Sound in Solids, Physical Review, vol.131, issue.5, p.131, 1963.
DOI : 10.1103/PhysRev.131.2013

P. Vernotte, Les paradoxes de la théorie continue de l'équation de la chaleur, Comptes Rendus Acad. Sci. Paris, vol.246, p.3154, 1958.

C. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, Comptes Rendus Acad. Sci. Paris, vol.247, p.431, 1958.

C. Ulbrich, Exact Electric Analogy to the Vernotte Hypothesis, Physical Review, vol.123, issue.6, 1961.
DOI : 10.1103/PhysRev.123.2001

R. J. Hardy, Phonon Boltzmann Equation and Second Sound in Solids, Physical Review B, vol.2, issue.4, p.1193, 1969.
DOI : 10.1103/PhysRevB.2.1193

B. Hamid, Modelling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform, Applied Mathematical Modelling, vol.23, issue.12, p.899, 1999.
DOI : 10.1016/S0307-904X(99)00017-7

D. W. Pohl and V. Irniger, Observation of Second Sound in NaF by Means of Light Scattering, Physical Review Letters, vol.36, issue.9, p.480, 1976.
DOI : 10.1103/PhysRevLett.36.480

V. Narayanamurti and R. C. Dynes, Observation of Second Sound in Bismuth, Physical Review Letters, vol.28, issue.22, p.1461, 1972.
DOI : 10.1103/PhysRevLett.28.1461

C. C. Ackerman, B. Bertman, H. A. Fairbank, and R. A. Guyer, Second Sound in Solid Helium, Physical Review Letters, vol.16, issue.18, p.789, 1966.
DOI : 10.1103/PhysRevLett.16.789

A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri et al., Phonon hydrodynamics in two-dimensional materials, Nature Communications, vol.85, p.6400, 2015.
DOI : 10.1038/ncomms7400

URL : http://doi.org/10.1038/ncomms7400

S. Lee, D. Broido, K. Esfarjani, and G. Chen, Hydrodynamic phonon transport in suspended graphene, Nature Communications, vol.328, p.6290, 2015.
DOI : 10.1038/ncomms7290

URL : http://doi.org/10.1038/ncomms7290

R. Peierls, On the Kinetic Theory of Thermal Conduction in Crystals, Ann. Phys, vol.395, p.1055, 1929.
DOI : 10.1142/9789812795779_0004

V. L. Gurevich, Transport in phonon systems, 1986.

A. A. Maradudin and A. E. Fein, Scattering of Neutrons by an Anharmonic Crystal, Physical Review, vol.128, issue.6, p.2589, 1962.
DOI : 10.1103/PhysRev.128.2589

R. A. Cowley, Anharmonic crystals, Reports on Progress in Physics, vol.31, issue.1, p.123, 1968.
DOI : 10.1088/0034-4885/31/1/303

M. Calandra, M. Lazzeri, and F. Mauri, Anharmonic and non-adiabatic effects in MgB2: Implications for the isotope effect and interpretation of Raman spectra, Physica C: Superconductivity, vol.456, issue.1-2, pp.38-44, 2007.
DOI : 10.1016/j.physc.2007.01.021

URL : https://hal.archives-ouvertes.fr/hal-00651254

G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari et al., Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths, Nano Letters, vol.14, issue.11, p.6109, 2014.
DOI : 10.1021/nl502059f

M. Omini and A. Sparavigna, Heat transport in dielectric solids with diamond structure, Il Nuovo Cimento D, vol.19, p.1537, 1997.

M. Omini and A. Sparavigna, Effect of phonon scattering by isotope impurities on the thermal conductivity of dielectric solids, Physica B: Condensed Matter, vol.233, issue.2-3, p.230, 1997.
DOI : 10.1016/S0921-4526(97)00296-2

S. Lee, K. Esfarjani, J. Mendoza, M. S. Dresselhaus, and G. Chen, Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles, Physical Review B, vol.89, issue.8, p.85206, 2014.
DOI : 10.1103/PhysRevB.89.085206

L. Lindsay, D. A. Broido, and T. L. Reinecke, Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study, Physical Review B, vol.88, issue.14, p.144306, 2013.
DOI : 10.1103/PhysRevB.88.144306

T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P. K. Kuo et al., diamond, Thermal diffusivity of isotopically enriched 12 C diamond, p.1104, 1990.
DOI : 10.1103/PhysRevB.42.1104

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang et al., Thermal conductivity of isotopically modified??graphene, Nature Materials, vol.131, issue.3, p.203, 2012.
DOI : 10.1038/nmat3207

L. Lindsay, D. A. Broido, and T. L. Reinecke, Thermal Conductivity and Large Isotope Effect in GaN from First Principles, Physical Review Letters, vol.109, issue.9, p.95901, 2013.
DOI : 10.1103/PhysRevLett.109.095901

L. Lindsay, D. A. Broido, and T. L. Reinecke, First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?, Physical Review Letters, vol.111, issue.2, p.25901, 2013.
DOI : 10.1103/PhysRevLett.111.025901

T. Feng and X. Ruan, Prediction of Spectral Phonon Mean Free Path Thermal Conductivity with Applications to Thermoelectrics and Thermal Mamagement: A Review, Journal of Nanomaterials, 2014.

R. A. Hamilton and J. E. Parrott, Variational Calculation of the Thermal Conductivity of Germanium, Physical Review, vol.178, issue.3, p.1284, 1969.
DOI : 10.1103/PhysRev.178.1284

A. Berke, A. P. Mayer, and R. K. Wehner, Spontaneous decay of long-wavelength acoustic phonons, Journal of Physics C: Solid State Physics, vol.21, issue.12, pp.2305-2323, 1988.
DOI : 10.1088/0022-3719/21/12/014

R. Legrand, Acoustique -étude et utilisation de nouvelles sources et transducteurs aux longueurs d'onde nanométriques, p.2014

W. Li, J. Carrete, N. A. Katcho, and N. Mingo, ShengBTE: A solver of the Boltzmann transport equation for phonons, Computer Physics Communications, vol.185, issue.6, pp.1747-1758, 2014.
DOI : 10.1016/j.cpc.2014.02.015

K. Esfarjani and H. T. Stokes, Method to extract anharmonic force constants from first principles calculations, Physical Review B, vol.77, issue.14, p.144112, 2008.
DOI : 10.1103/PhysRevB.77.144112

W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, and N. Mingo, alloys from first principles, Thermal conductivity of bulk and nanowire Mg 2 Si x Sn 1?x alloys from first principles, p.174307, 2012.
DOI : 10.1103/PhysRevB.86.174307

S. Baroni, S. De-gironcoli, A. Dal-corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Reviews of Modern Physics, vol.73, issue.2, p.515, 2001.
DOI : 10.1103/RevModPhys.73.515

T. J. Seebeck, Magnetic polarization of metals and minerals, Abhandlungender Deutschen Akademie der Wissenschafren zu Berlin, pp.1822-1823

Y. Poh-liong, Pacific 'A' Level Physics, EPB Pan Pacific, vol.2, 1994.

H. J. Goldsmid and R. W. Douglas, The use of semiconductors in thermoelectric refrigeration, British Journal of Applied Physics, vol.5, issue.11, pp.386-390, 1954.
DOI : 10.1088/0508-3443/5/11/303

H. J. Goldsmid, XXVII. Thermoelectric Applications of Semiconductors, Journal of Electronics and Control, vol.8, issue.2, p.218, 1955.
DOI : 10.1088/0508-3443/5/11/303

H. J. Goldsmid, Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation, Materials, vol.7, issue.4, pp.2577-2592, 2014.
DOI : 10.3390/ma7042577

URL : http://doi.org/10.3390/ma7042577

F. D. Rosi, B. Abeles, and R. V. Jensen, Materials for thermoelectric refrigeration, Journal of Physics and Chemistry of Solids, vol.10, issue.2-3, p.191, 1959.
DOI : 10.1016/0022-3697(59)90074-5

N. B. Brandt, E. A. Svistova, and M. V. Semenov, Electron transitions in antimonyrich bismuth-antimony alloys in strong magnetic fields, Sov. Phys. JETP, vol.32, p.238, 1971.
DOI : 10.1007/bf00628099

B. Lenoir, A. Dauscher, M. Cassart, Y. I. Ravich, and H. Scherrer, Effect of antimony content on the thermoelectric figure of merit of Bi 1?x Sb x alloys, J. Opt. Soc. Am, vol.55, p.1072, 1998.

H. J. Goldsmid, Bismuth???antimony alloys, Physica Status Solidi (a), vol.34, issue.1, 1970.
DOI : 10.1002/pssa.19700010102

V. D. Kagan and N. A. Redko, Phonon thermal conductivity of bismuth alloys, Zh. Eksp. Teor. Fiz, vol.100, p.1205, 1991.

T. Yazaki, Thermal Conductivity of Bismuth-Antimony Alloy Single Crystals, Journal of the Physical Society of Japan, vol.25, issue.4, p.1054, 1968.
DOI : 10.1143/JPSJ.25.1054

G. E. Smith and R. Wolfe, Thermoelectric Properties of Bismuth???Antimony Alloys, Journal of Applied Physics, vol.33, issue.3, p.841, 1962.
DOI : 10.1063/1.1777178

H. J. Goldsmid, Introduction to Thermoelectricity, Series in Material Science, 2010.

A. Nikolaeva, T. E. Huber, D. Gitsu, and L. Konopko, Diameter-dependent thermopower of bismuth nanowires, Physical Review B, vol.77, issue.3, p.35422, 2008.
DOI : 10.1103/PhysRevB.77.035422

R. Clasen, P. Grosse, A. Krosti, F. Lévy, S. F. Marenkin et al., Semiconductors: Non-Tetrahedrally Bounded Elements and Binary Compounds I, Landolt-Börnstein, volume III/41C, 1998.

I. Ya, M. E. Korenblit, S. S. Kuznetsov, and . Shalyt, Thermal EMF and thermomagnetic properties of bismuth at low temperatures, Sov. Physics JETP, vol.29, issue.4, 1969.

J. Boxus and J. Issi, Giant negative phonon drag thermopower in pure bismuth, Journal of Physics C: Solid State Physics, vol.10, issue.15, p.397, 1977.
DOI : 10.1088/0022-3719/10/15/001

V. D. Kagan, N. A. Red-'ko, N. A. Rodionov, V. I. Pol-'shin, and O. V. Zotova, Phonon drag thermopower in doped bismuth, Physics of the Solid State, vol.46, issue.8, pp.1410-1419, 2004.
DOI : 10.1134/1.1788771

A. Collaudin, Tenseur de mobilité et magnétothermoélectricité anisotrope du bismuth, p.2014

I. Ya, M. E. Korenblit, V. M. Kuznetsov, S. S. Muzhdaba, and . Shalyt, Electron heat conductivity and the Wiedemann-Franz low for Bi, Sov. Physics JETP, vol.30, p.1009, 1970.

J. R. Drabble and H. J. Goldsmid, Thermal conduction in semiconductors, 1961.

C. F. Gallo, R. C. Miller, P. H. Sutter, and R. W. Ure-jr, Bipolar Electronic Thermal Conductivity in Semimetals, Journal of Applied Physics, vol.33, issue.10, p.3144, 1962.
DOI : 10.1063/1.1728587

H. Jin, O. D. Restrepo, N. Antolin, S. R. Boona, W. Windl et al., Phonon-induced diamagnetic force and its effect on the lattice thermal conductivity, Nature Materials, vol.8, issue.6, pp.10-1038, 2015.
DOI : 10.1016/0022-3697(62)90127-0

B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani et al., Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High Carrier Concentrations: A First-Principles Study, Physical Review Letters, vol.114, issue.11, p.115901, 2015.
DOI : 10.1103/PhysRevLett.114.115901

J. P. Heremans, C. M. Thrush, D. T. Morelli, and M. C. Wu, Thermoelectric Power of Bismuth Nanocomposites, Physical Review Letters, vol.88, issue.21, p.216801, 2002.
DOI : 10.1103/PhysRevLett.88.216801

E. Shapira, A. Holtzman, D. Marchak, and Y. Selzer, Very High Thermopower of Bi Nanowires with Embedded Quantum Point Contacts, Nano Letters, vol.12, issue.2, pp.808-812, 2012.
DOI : 10.1021/nl2038425

Q. Hao, G. Zhu, G. Joshi, X. Wang, A. Minnich et al., Theoretical studies on the thermoelectric figure of merit of nanograined bulk silicon, Applied Physics Letters, vol.97, issue.6, p.63109, 2010.
DOI : 10.1063/1.3478459

C. Hua and A. J. Minnich, Importance of frequency-dependent grain boundary scattering in nanocrystalline silicon and silicon???germanium thermoelectrics, Semiconductor Science and Technology, vol.29, issue.12, p.124004, 2014.
DOI : 10.1088/0268-1242/29/12/124004

J. Carrete, L. J. Gallego, L. M. Varela, and N. Mingo, Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit, Physical Review B, vol.84, issue.7, p.75403, 2011.
DOI : 10.1103/PhysRevB.84.075403

Y. He and G. Galli, Microscopic Origin of the Reduced Thermal Conductivity of Silicon Nanowires, Physical Review Letters, vol.108, issue.21, p.215901, 2012.
DOI : 10.1103/PhysRevLett.108.215901

J. Mendoza, K. Esfarjani, and G. Chen, study of multiple phonon scattering resonances in silicon germanium alloys, Journal of Applied Physics, vol.117, issue.17, p.174301, 2015.
DOI : 10.1063/1.4919661

J. Callaway, Model for Lattice Thermal Conductivity at Low Temperatures, Physical Review, vol.113, issue.4, p.1046, 1959.
DOI : 10.1103/PhysRev.113.1046

P. G. Klemens, The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical), Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.208, issue.1092, pp.108-133, 1951.
DOI : 10.1098/rspa.1951.0147

P. Klemens, Solid State Physics, Thermal Conductivity and Lattice Vibrational Modes, 1958.

C. Herring, Theory of the Thermoelectric Power of Semiconductors, Physical Review, vol.96, issue.5, p.1163, 1954.
DOI : 10.1103/PhysRev.96.1163

K. Kunc and R. M. Martin, Force Constants of GaAs: A New Approach to Calculation of Phonons and Dielectric Properties, Physical Review Letters, vol.48, issue.6, p.406, 1982.
DOI : 10.1103/PhysRevLett.48.406

M. T. Yin and M. L. Cohen, Theory of lattice-dynamical properties of solids: Application to Si and Ge, Physical Review B, vol.26, issue.6, p.3259, 1982.
DOI : 10.1103/PhysRevB.26.3259

L. E. Diaz-sanchez, A. H. Romero, and X. Gonze, Phonon band structure and interatomic force constants for bismuth: Crucial role of spin-orbit interaction, Physical Review B, vol.76, issue.10, p.104302, 2007.
DOI : 10.1103/PhysRevB.76.104302

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, Phonon Dispersion Curves in Bismuth, IBM Journal of Research and Development, vol.8, issue.3, p.234, 1964.
DOI : 10.1147/rd.83.0234

. Ph and . Hofmann, The surfaces of bismuth: Structural and electronic properties, Progr. Surf. Sci, vol.81, p.191, 2006.

E. D. Murray, S. Fahy, D. Prendergast, T. Ogitsu, D. M. Fritz et al., Phonon dispersion relations and softening in photoexcited bismuth from first principles, Physical Review B, vol.75, issue.18, p.184301, 2007.
DOI : 10.1103/PhysRevB.75.184301

Y. Eckstein, A. W. Lawson, and D. H. Reneker, Elastic Constants of Bismuth, Journal of Applied Physics, vol.31, issue.9, p.1534, 1960.
DOI : 10.1063/1.1735888

R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, ElaStic: A tool for calculating second-order elastic constants from first principles, Computer Physics Communications, vol.184, issue.8, p.1861, 2013.
DOI : 10.1016/j.cpc.2013.03.010

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, vol.21, issue.39, p.395502, 2009.
DOI : 10.1088/0953-8984/21/39/395502

URL : https://hal.archives-ouvertes.fr/hal-00717147

P. W. Bridgman, Certain Physical Properties of Single Crystals of Tungsten, Proc. Am. Acad. Sci, p.305, 1925.

Z. Zhu, A. Collaudin, B. Fauqué, W. Kang, and K. Benhia, Field-induced polarization of Dirac valleys in bismuth, Nature Physics, vol.8, issue.1, p.89, 2012.
DOI : 10.1126/science.1197358

R. Küchler, L. Steinke, R. Daou, M. Brando, K. Behnia et al., Thermodynamic evidence for valley-dependent density of states in bulk bismuth, Nature Materials, vol.51, issue.5, p.461, 2014.
DOI : 10.1103/PhysRevB.79.245124

A. Collaudin, B. Fauqué, Y. Fuseya, W. Kang, and K. Behnia, Angle Dependence of the Orbital Magnetoresistance in Bismuth, Physical Review X, vol.5, issue.2, p.21022, 2015.
DOI : 10.1103/PhysRevX.5.021022

URL : https://hal.archives-ouvertes.fr/hal-01275208

G. P. Mikitik and Y. V. Sharlai, Spontaneous symmetry breaking of magnetostriction in metals with multivalley band structure, Physical Review B, vol.91, issue.7, p.75111, 2015.
DOI : 10.1103/PhysRevB.91.075111

P. B. Littlewood, B. Mihaila, and R. C. Albers, Electron-phonon coupling in semimetals in a high magnetic field, Physical Review B, vol.81, issue.14, p.144421, 2010.
DOI : 10.1103/PhysRevB.81.144421

P. Pavone, K. Karch, O. Schütt, W. Windl, D. Strauch et al., lattice dynamics of diamond, Physical Review B, vol.48, issue.5, p.3156, 1993.
DOI : 10.1103/PhysRevB.48.3156

J. Höhne, H. Wenning, S. Schulz, and . Hüfner, Temperature dependence of thek=0 optical phonons of Bi and Sb, Zeitschrift f???r Physik B: Condensed Matter and Quanta, vol.28, issue.4, p.297, 1977.
DOI : 10.1007/BF01320519

T. C. Harman and J. M. Honig, Thermoelectric and thermomagnetic effects and applications, 1967.

D. G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3?? method, Review of Scientific Instruments, vol.61, issue.2, p.802, 2001.
DOI : 10.1063/1.1141498

S. E. Gustafsson and E. Karawacki, Transient hot???strip probe for measuring thermal properties of insulating solids and liquids, Review of Scientific Instruments, vol.54, issue.6, p.744, 1983.
DOI : 10.1063/1.1137466

A. Sparavigna, Influence of isotope scattering on the thermal conductivity of diamond, Physical Review B, vol.65, issue.6, p.64305, 2002.
DOI : 10.1103/PhysRevB.65.064305

D. A. Broido, L. Lindsay, and A. Ward, Thermal conductivity of diamond under extreme pressure: A first-principles study, Physical Review B, vol.86, issue.11, p.115203, 2012.
DOI : 10.1103/PhysRevB.86.115203

J. George, M. P. Hajdu, P. B. Hertlein, M. Hillyard, M. Horn-von-hoegen et al., Ultrafast bond softening in bismuth: Mapping a solid's interatomic potential with X-rays, Science, vol.315, p.633, 2007.

O. Delaire, J. Ma, K. Marty, A. F. May, M. A. Mcguire et al., Giant anharmonic phonon scattering in PbTe, Nature Materials, vol.330, issue.8, p.614, 2011.
DOI : 10.1038/nmat3035

R. Blinc, Advanced Ferroelectricity. International Series of Monographs on Physics, 2011.
DOI : 10.1093/acprof:oso/9780199570942.001.0001

H. J. Goldsmid and A. W. Penn, Boundary scattering of phonons in solid solutions, Physics Letters A, vol.27, issue.8, p.523, 1968.
DOI : 10.1016/0375-9601(68)90898-0

N. Savvides and H. J. Goldsmid, Boundary scattering of phonons in fine-grained hot-pressed Ge-Si alloys. I. The dependence of lattice thermal conductivity on grain size and porosity, Journal of Physics C: Solid State Physics, vol.13, issue.25, p.4657, 1980.
DOI : 10.1088/0022-3719/13/25/009

J. W. Sharp, S. J. Poon, and H. J. Goldsmid, Boundary Scattering and the Thermoelectric Figure of Merit, physica status solidi (a), vol.2, issue.2, pp.507-516, 2001.
DOI : 10.1002/1521-396X(200110)187:2<507::AID-PSSA507>3.0.CO;2-M

P. G. Klemens, The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical), Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.208, issue.1092, p.1345, 1994.
DOI : 10.1098/rspa.1951.0147

N. A. Katcho, N. Mingo, and D. A. Broido, alloys with embedded nanoparticles, Physical Review B, vol.85, issue.11, p.115208, 2012.
DOI : 10.1103/PhysRevB.85.115208

A. Kundu, N. Mingo, D. A. Broido, and D. A. Stewart, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys, Physical Review B, vol.84, issue.12, p.125426, 2011.
DOI : 10.1103/PhysRevB.84.125426

C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features, Advanced Materials, vol.96, issue.220, pp.3970-3980, 2010.
DOI : 10.1002/adma.201000839

D. L. Medlin and G. J. Snyder, Interfaces in bulk thermoelectric materials, Current Opinion in Colloid & Interface Science, vol.14, issue.4, pp.226-235, 2009.
DOI : 10.1016/j.cocis.2009.05.001

Y. Lin, X. Sun, and M. S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires, Physical Review B, vol.62, issue.7, p.4610, 2000.
DOI : 10.1103/PhysRevB.62.4610

C. Dames and G. Chen, Handbook of Thermoelectrics: Macro to Nano, 2006.

A. S. Henry and G. Chen, Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics, Journal of Computational and Theoretical Nanoscience, vol.5, issue.2, p.141, 2008.
DOI : 10.1166/jctn.2008.2454

H. B. Casimir, Note on the conduction of heat in crystals, Physica, vol.5, issue.6, p.495, 1938.
DOI : 10.1016/S0031-8914(38)80162-2

M. Rudolph and J. J. Heremans, Electronic and quantum phase coherence properties of bismuth thin films, Applied Physics Letters, vol.100, issue.24, p.241601, 2012.
DOI : 10.1063/1.4729035

D. L. Partin, J. Heremans, D. T. Morelli, C. M. Thrush, C. H. Olk et al., Growth and characterization of epitaxial bismuth films, Physical Review B, vol.38, issue.6, p.3818, 1988.
DOI : 10.1103/PhysRevB.38.3818

F. Völklein and E. Kessler, Analysis of the lattice thermal conductivity of thin films by means of a modified Mayadas-Shatzkes model: The case of bismuth films, Thin Solid Films, vol.142, issue.2, p.169, 1986.
DOI : 10.1016/0040-6090(86)90002-7

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, vol.3, issue.7175, p.163, 2008.
DOI : 10.1038/nature06381

E. B. Ramayya, L. N. Maurer, A. H. Davoody, and I. Knezevic, Thermoelectric properties of ultrathin silicon nanowires, Physical Review B, vol.86, issue.11, p.115328, 2012.
DOI : 10.1103/PhysRevB.86.115328

C. Wehenkel and B. Gauthé, Electron energy loss spectra and optical constants of Bismuth, Solid State Communications, vol.15, issue.3, p.555, 1974.
DOI : 10.1016/0038-1098(74)91141-7

A. J. Mcgaughey, E. S. Landry, D. P. Sellan, and C. H. Amon, Size-dependent model for thin film and nanowire thermal conductivity, Applied Physics Letters, vol.99, issue.13, p.131904, 2011.
DOI : 10.1063/1.3644163

Z. Wang and N. Mingo, Absence of Casimir regime in two-dimensional nanoribbon phonon conduction, Applied Physics Letters, vol.99, issue.10, p.101903, 2011.
DOI : 10.1063/1.3635394

S. Xiao, D. Wei, and X. Jin, Bi(111) Thin Film with Insulating Interior but Metallic Surfaces, Physical Review Letters, vol.109, issue.16, p.166805, 2012.
DOI : 10.1103/PhysRevLett.109.166805

D. B. Hondongwa, B. C. Daly, T. B. Norris, B. Yan, J. Yang et al., Ultrasonic attenuation in amorphous silicon at 50 and 100 GHz, Physical Review B, vol.83, issue.12, p.121303, 2011.
DOI : 10.1103/PhysRevB.83.121303

J. Cuffe, O. Ristow, E. Chávez, A. Shchepetov, P. Chapuis et al., Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes, Physical Review Letters, vol.110, issue.9, p.95503, 2013.
DOI : 10.1103/PhysRevLett.110.095503

URL : https://hal.archives-ouvertes.fr/hal-00732483

A. J. Kent, N. M. Stanton, L. J. Challis, and M. Henini, Generation and propagation of monochromatic acoustic phonons in gallium arsenide, Applied Physics Letters, vol.81, issue.18, p.3497, 2002.
DOI : 10.1063/1.1515118

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara et al., Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice, Applied Physics Letters, vol.102, issue.4, p.41901, 2013.
DOI : 10.1063/1.4789520

T. Liu, S. Sun, C. Chang, C. Pan, G. Chen et al., Anharmonic decay of subterahertz coherent acoustic phonons in GaN, Applied Physics Letters, vol.90, issue.4, p.41902, 2007.
DOI : 10.1063/1.2433755

B. C. Daly, K. Kang, Y. Wang, and D. G. Cahill, Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in silicon, Physical Review B, vol.80, issue.17, p.174112, 2009.
DOI : 10.1103/PhysRevB.80.174112

G. Rozas, M. Winter, B. Jusserand, A. Fainstein, B. Perrin et al., Lifetime of THz Acoustic Nanocavity Modes, Physical Review Letters, vol.102, issue.1, p.15502, 2009.
DOI : 10.1103/PhysRevLett.102.015502

URL : https://hal.archives-ouvertes.fr/hal-00418667

J. M. Larkin and A. J. Mcgaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon, Physical Review B, vol.89, issue.14, p.144303, 2014.
DOI : 10.1103/PhysRevB.89.144303

URL : http://repository.cmu.edu/cgi/viewcontent.cgi?article=1103&context=meche

A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon lifetimes in Brillouin zones, Physical Review B, vol.91, issue.9, p.94306, 2015.
DOI : 10.1103/PhysRevB.91.094306

K. Ishioka, M. Kitajima, and O. V. Misochko, Temperature dependence of coherent A1g and Eg phonons of bismuth, Journal of Applied Physics, vol.100, issue.9, p.93501, 2006.
DOI : 10.1063/1.2363746

E. S. Zijlstra, L. L. Tatarinova, and M. E. Garcia, Laser-induced phonon-phonon interactions in bismuth, Physical Review B, vol.74, issue.22, p.220301, 2006.
DOI : 10.1103/PhysRevB.74.220301

M. Hase, M. Kitajima, S. Nakashima, and K. Mizoguchi, Dynamics of Coherent Anharmonic Phonons in Bismuth Using High Density Photoexcitation, Physical Review Letters, vol.88, issue.6, p.67401, 2002.
DOI : 10.1103/PhysRevLett.88.067401

K. Sokolowski-tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich et al., Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit, Nature, vol.422, issue.6929, p.287, 2003.
DOI : 10.1038/nature01490

S. L. Johnson, P. Beaud, C. J. Milne, F. S. Krasniqi, E. S. Zijlstra et al., Nanoscale Depth-Resolved Coherent Femtosecond Motion in Laser-Excited Bismuth, Physical Review Letters, vol.100, issue.15, p.155501, 2008.
DOI : 10.1103/PhysRevLett.100.155501

URL : http://infoscience.epfl.ch/record/161016

O. V. Misochko, Optical control of coherent and squeezed phonons: major differences and similarities. arXiv preprint, 2013.

E. Haro-poniatowski, M. Jouanne, J. F. Morhange, M. Kanehisa, R. Serna et al., Size effects investigated by Raman spectroscopy in Bi nanocrystals, Physical Review B, vol.60, issue.14, p.10080, 1999.
DOI : 10.1103/PhysRevB.60.10080

URL : http://hdl.handle.net/10261/53987

H. Olijnyk, S. Nakano, and K. Takemura, First- and second order Raman scattering in Sb and Bi at high pressure, physica status solidi (b), vol.110, issue.10, p.3572, 2007.
DOI : 10.1002/pssb.200642467

S. Simons, On the Mutual Interaction of Parallel Phonons, Proc. Phys. Soc, p.401, 1963.
DOI : 10.1088/0370-1328/82/3/310

S. Tamura, A. Sangu, and H. J. Maris, crystals, Physical Review B, vol.68, issue.1, p.14302, 2003.
DOI : 10.1103/PhysRevB.68.014302

URL : https://hal.archives-ouvertes.fr/jpa-00221126

C. Herring, Role of Low-Energy Phonons in Thermal Conduction, Physical Review, vol.95, issue.4, p.954, 1954.
DOI : 10.1103/PhysRev.95.954

J. Y. Duquesne and B. Perrin, Ultrasonic attenuation in a quasicrystal studied by picosecond acoustics as a function of temperature and frequency, Physical Review B, vol.68, issue.13, p.134205, 2003.
DOI : 10.1103/PhysRevB.68.134205

URL : https://hal.archives-ouvertes.fr/hal-00016482

J. C. Lannin, J. M. Calleja, and M. Cardona, semimetals: Bi, Sb, and As, Physical Review B, vol.12, issue.2, p.585, 1975.
DOI : 10.1103/PhysRevB.12.585

T. Feng, B. Qiu, and X. Ruan, Coupling between phonon-phonon and phonon-impurity scattering: A critical revisit of the spectral Matthiessen's rule, Physical Review B, vol.92, issue.23, p.235206, 2015.
DOI : 10.1103/PhysRevB.92.235206

A. I. Chervanyov, Effects of boundary scattering and optic phonon drag on thermal conductivity of a slab of rectangular cross-section, Physical Review B, vol.66, issue.21, p.214302, 2002.
DOI : 10.1103/PhysRevB.66.214302

D. Schiferl and C. S. Barrett, The crystal structure of arsenic at 4.2, 78 and 299??K, Journal of Applied Crystallography, vol.2, issue.1, p.30, 1969.
DOI : 10.1107/S0021889869006443

R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, 2004.
DOI : 10.1017/CBO9780511805769

A. B. Shick, J. B. Ketterson, D. L. Novikov, and A. J. Freeman, Electronic structure, phase stability, and semimetal-semiconductor transitions in Bi, Physical Review B, vol.60, issue.23, p.15484, 1999.
DOI : 10.1103/PhysRevB.60.15484

I. Aguilera, C. Friedrich, and S. Blugel, calculations, Physical Review B, vol.91, issue.12, p.125129, 2015.
DOI : 10.1103/PhysRevB.91.125129

URL : https://hal.archives-ouvertes.fr/hal-01447592

X. Gonze, J. Michenaud, and J. Vigneron, First-principles study of As, Sb, and Bi electronic properties, Physical Review B, vol.41, issue.17, p.11827, 1990.
DOI : 10.1103/PhysRevB.41.11827

J. H. Xu, E. G. Wang, C. S. Ting, and W. P. Su, Tight-binding theory of the electronic structures for rhombohedral semimetals, Physical Review B, vol.48, issue.23, p.17271, 1993.
DOI : 10.1103/PhysRevB.48.17271

R. T. Isaacson and G. A. Williams, Alfv??n-Wave Propagation in Solid-Stae Plasmas. III. Quantum Oscillations of the Fermi Surface of Bismuth, Physical Review, vol.185, issue.2, p.682, 1969.
DOI : 10.1103/PhysRev.185.682

Y. Liu and R. E. Allen, Electronic structure of the semimetals Bi and Sb, Physical Review B, vol.52, issue.3, p.1566, 1995.
DOI : 10.1103/PhysRevB.52.1566

G. E. Smith, G. A. Baraff, and J. M. Rowell, Factor of Electrons and Holes in Bismuth, Physical Review, vol.135, issue.4A, p.1118, 1964.
DOI : 10.1103/PhysRev.135.A1118