]. E. Bibliographie1, N. Y. Bain, J. D. Dunkirk, L. Vos, E. Delaey et al., Theoretical Analysis and Physical Transformation Model for a Self-Accommodating Group of 9 R Martensitic Variants [3] J. Van Humbeeck Aspects microstructuraux: relations entre la transformation martensitique et les propriétés thermomécaniques Hermes-Paris The crystallography of martensite transformations I Transformations perlitique et martensitique sous contrainte de traction dans les aciers Etude cinétique de la transformation martensitique sous contrainte de traction, Thèse, INPL, 1985. [7] W. Mitter, Umwandlungsplastizität und ihre Berücksichtigung bei der Berechnung von Eigenspannungen: mit 3 Tabellen. Borntraeger Martensitic transformation under stress in ferrous alloys. Mechanical behaviour and resulting morphologies Thèse INPL, pp.25-47, 1924.

J. Videau, G. Cailletaud, and A. Pineau, Experimental Study of the Transformation-Induced Plasticity in a Cr-Ni-Mo-Al-Ti Steel, Le Journal de Physique IV, vol.06, issue.C1, pp.1-465, 1996.
DOI : 10.1051/jp4:1996145

URL : https://hal.archives-ouvertes.fr/jpa-00254177

A. Tahimi, L. Taleb, and F. Barbe, Plasticité induite par transformation de phase martensitique dans l'acier 35NCD16, 19ème Congrès Français de Mécanique, 2009.

S. Meftah, Modélisation de la plasticité due à une transformation martensitique dans les aciers, Thèse, Insa Rouen, 2007.

C. L. Magee, Phase transformations, ASM, Met. Park. OH, vol.115, 1970.

G. W. Greenwood and R. H. Johnson, The Deformation of Metals Under Small Stresses During Phase Transformations, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.283, issue.1394, pp.403-422, 1965.
DOI : 10.1098/rspa.1965.0029

Y. Kim, T. Ahn, D. Suh, and H. N. Han, Variant selection during mechanically induced martensitic transformation of metastable austenite by nanoindentation, Scripta Materialia, vol.104, pp.13-16, 2015.
DOI : 10.1016/j.scriptamat.2015.03.014

M. , D. Jong, and G. W. Rathenau, Mechanical properties of an iron-carbon alloy during allotropic transformation, Acta Metall, vol.9, issue.8, pp.714-720, 1961.

W. J. Dan, S. H. Li, W. G. Zhang, and Z. Q. Lin, The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel, Materials & Design, vol.29, issue.3, pp.604-612, 2008.
DOI : 10.1016/j.matdes.2007.02.019

S. Nanga-nyongha, Comportement et transformations martensitiques de deux aciers inoxydables austénitiques: effets de la température, de la vitesse et du chargement, Thèse, Mines ParisTech, 2008.

Y. Tomita and T. Iwamoto, Constitutive modeling of trip steel and its application to the improvement of mechanical properties, International Journal of Mechanical Sciences, vol.37, issue.12, pp.1295-1305, 1995.
DOI : 10.1016/0020-7403(95)00039-Z

H. Kim, J. Lee, F. Barlat, D. Kim, and M. Lee, Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel, Acta Materialia, vol.97, 2015.
DOI : 10.1016/j.actamat.2015.06.023

H. Wang, Y. Jeong, B. Clausen, Y. Liu, R. J. Mccabe et al., Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension, Materials Science and Engineering: A, vol.649, pp.174-183, 2016.
DOI : 10.1016/j.msea.2015.09.108

R. Kubler, Comportement thermomécanique des aciers à effet TRIP: Approches micromécaniques et phénoménologiques?applications à la mise en forme, Thèse, Arts Métiers ParisTech, 2004.
DOI : 10.1051/mattech:2004012

A. A. Lebedev and V. V. Kosarchuk, Influence of phase transformations on the mechanical properties of austenitic stainless steels, International Journal of Plasticity, vol.16, issue.7-8, pp.7-8, 2000.
DOI : 10.1016/S0749-6419(99)00085-6

E. S. Perdahc?o?lu and H. J. Geijselaers, A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels, Acta Materialia, vol.60, issue.11, pp.4409-4419, 2012.
DOI : 10.1016/j.actamat.2012.04.042

J. Van-beeck, V. G. Kouznetsova, and M. P. Van-maris, The mechanical behaviour of metastable austenitic steels in pure bending, Materials Science and Engineering: A, vol.528, issue.24, pp.7207-7213, 2011.
DOI : 10.1016/j.msea.2011.05.086

E. Ishimaru, H. Hamasaki, and F. Yoshida, Deformation-induced martensitic transformation behavior of type 304 stainless steel sheet in draw-bending process, Journal of Materials Processing Technology, vol.223, pp.34-38, 2015.
DOI : 10.1016/j.jmatprotec.2015.03.048

A. M. Beese and D. Mohr, Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation, Acta Materialia, vol.59, issue.7, pp.2589-2600, 2011.
DOI : 10.1016/j.actamat.2010.12.040

URL : https://hal.archives-ouvertes.fr/hal-00620571

A. A. Lebedev and V. V. Kosarchuk, Influence of phase transformations on the mechanical properties of austenitic stainless steels, International Journal of Plasticity, vol.16, issue.7-8, pp.7-8, 2000.
DOI : 10.1016/S0749-6419(99)00085-6

Q. Furnemont, The micromechanics of TRIP-assisted multiphase steels, 2003.

S. S. Hecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior, Metallurgical Transactions A, vol.9, issue.4, pp.619-626, 1982.
DOI : 10.1007/BF02644427

F. Peng, X. Dong, K. Liu, and H. Xie, Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304, Journal of Iron and Steel Research, International, vol.22, issue.10, pp.931-936, 2015.
DOI : 10.1016/S1006-706X(15)30092-3

Q. Hao, S. Qin, Y. Liu, X. Zuo, N. Chen et al., Effect of retained austenite on the dynamic tensile behavior of a novel quenchingpartitioning-tempering martensitic steel, Mater. Sci. Eng. A, 2016.

X. C. Wei, L. Li, R. Y. Fu, B. De-cooman, P. Wollants et al., Influence of the strain rate on the strain-induced transformation of retained austenite to martensite in high strength low alloy TRIP steels, Proceedings of the International Conference on TRIP-aided high strength ferrous alloys, GRIPS, pp.373-377, 2002.

M. R. Berrahmoune, Transformation martensitique et rupture différée dans l'acier austénitique instable 301LN, Thèse, Arts Métiers ParisTech, 2006.

D. P. Koistinen and R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, vol.7, issue.1, pp.59-60, 1959.
DOI : 10.1016/0001-6160(59)90170-1

B. Skrotzki, The Course of the Volume Fraction of Martensite vs. Temperature Function M sub X(T), J. Phys. IV(France), vol.1, issue.4, pp.367-372, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00250608

V. C. Prantil, M. L. Callabresi, J. F. Lathrop, G. S. Ramaswamy, and M. T. Lusk, Simulating Distortion and Residual Stresses in Carburized Thin Strips, Journal of Engineering Materials and Technology, vol.125, issue.2
DOI : 10.1115/1.1543973

T. Inoue, D. Y. Ju, and K. Arimoto, Advances in Engineering Plasticity and its Applications, 1993.

M. Hong, K. Wang, Y. Chen, and F. Liu, A thermo-kinetic model for martensitic transformation kinetics in low-alloy steels, Journal of Alloys and Compounds, vol.647, pp.763-767, 2015.
DOI : 10.1016/j.jallcom.2015.05.266

T. Inoue, D. Ju, and K. Arimoto, Metallo-Thermo-Mechanical Simulation of Quenching Process--Theory and Implementation of Computer Code' Hearts Quenching Distortion Control, pp.205-212, 1992.

T. Angel, Formation of martensite in austenitic stainless steels-effects of deformation, temperature, and composition, J. iron steel Inst, vol.177, issue.1, p.165, 1954.

F. Abrassart, Influence des transformations martensitiques sur les propriétés mécaniques des alliages Fe-Ni-Cr-C, Thèse, Univ. Nancy 1, 1972.

J. R. Guimaraes, The deformation-induced martensitic reaction in polycrystalline Fe - 30.7 Ni - 0.06C, Scripta Metallurgica, vol.6, issue.9, pp.795-798, 1972.
DOI : 10.1016/0036-9748(72)90049-X

O. Matsumura, Y. Sakuma, and H. Takechi, Trip and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel, Scripta Metallurgica, vol.21, issue.10, pp.1301-1306, 1987.
DOI : 10.1016/0036-9748(87)90103-7

A. H. Hansel, P. Hora, and J. Reissner, Description of strain-induced martensitic phase transformation in metastable austenitic steels for the simulation of deep drawing processes at non isothermal conditions, Proc. IDDRG 98, pp.387-398, 1998.

K. Tanaka and Y. Sato, Eine mechanische Theorie ???ber die umwandlungsinduzierte Plastizit???t, Ingenieur-Archiv, vol.32, issue.2, pp.147-155, 1985.
DOI : 10.1007/BF00536831

G. B. Olson and M. Cohen, Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions A, vol.55, issue.4, pp.791-795, 1975.
DOI : 10.1007/BF02672301

R. G. Stringfellow, D. M. Parks, and G. B. Olson, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metallurgica et Materialia, vol.40, issue.7, pp.1703-1716, 1992.
DOI : 10.1016/0956-7151(92)90114-T

T. Iwamoto, T. Tsuta, and Y. Tomita, Investigation on deformation mode dependence of strain-induced martensitic transformation in trip steels and modelling of transformation kinetics, International Journal of Mechanical Sciences, vol.40, issue.2-3, pp.173-182, 1998.
DOI : 10.1016/S0020-7403(97)00047-7

T. Iwamoto and T. Tsuta, Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels, International Journal of Plasticity, vol.16, issue.7-8, pp.791-804, 2000.
DOI : 10.1016/S0749-6419(99)00079-0

P. Santacreu, J. Glez, G. Chinouilh, and T. Froehlich, Behaviour Model of Austenitic Stainless Steels for Automotive Structural Parts, steel research international, vol.3, issue.12, pp.9-10, 2006.
DOI : 10.1002/srin.200606448

. Fd and . Fischer, Modelling and simulation of transformation induced plasticity in elasto-plastic materials, 1997.

M. Cherkaoui, M. Berveiller, and H. Sabar, Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International Journal of Plasticity, vol.14, issue.7, pp.597-626, 1998.
DOI : 10.1016/S0749-6419(99)80000-X

V. I. Levitas, Thermomechanical theory of martensitic phase transformations in inelastic materials, International Journal of Solids and Structures, vol.35, issue.9-10, pp.889-940, 1998.
DOI : 10.1016/S0020-7683(97)00089-9

V. I. Levitas, Phase-field theory for martensitic phase transformations at large strains, International Journal of Plasticity, vol.49, pp.85-118, 2013.
DOI : 10.1016/j.ijplas.2013.03.002

S. Denis, Modélisation des interactions contrainte-transformation de phase et calcul par éléments finis de la genèse des contraintes internes au cours de la trempe des aciers, Thèse, INPL, 1987.

S. Franitza, Zur Berechnung der Wärme-und Umwandlungsspannungen in langen Kreiszylindern, 1972.

J. Giusti, Contraintes et déformations résiduelles d'origine thermique : Application au soudage et à la trempe des aciers, Thèse, 1981.

J. B. Leblond, J. Devaux, and J. C. Devaux, Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases, International Journal of Plasticity, vol.5, issue.6, pp.551-572, 1989.
DOI : 10.1016/0749-6419(89)90001-6

J. B. Leblond, Mathematical modelling of transformation plasticity in steels II: Coupling with strain hardening phenomena, International Journal of Plasticity, vol.5, issue.6, pp.573-591, 1989.
DOI : 10.1016/0749-6419(89)90002-8

J. Videau, G. Cailletaud, and A. Pineau, Mod??lisation des effets m??caniques des transformations de phases pour le calcul de structures, Le Journal de Physique IV, vol.04, issue.C3, pp.3-227, 1994.
DOI : 10.1051/jp4:1994331

J. M. Diani, H. Sabar, and M. Berveiller, Micromechanical modelling of the transformation induced plasticity (TRIP) phenomenon in steels, International Journal of Engineering Science, vol.33, issue.13, pp.1921-1934, 1995.
DOI : 10.1016/0020-7225(95)00045-Y

F. Azzouz, G. Cailletaud, T. Antretter, F. D. Fischer, and K. Tanaka, Transformation Induced Plasticity TRIP in Steels Subjected to Nonmonotonic Loading Paths?Experiments and Theory, Proceedings of the Conference on Plasticity, Whistler, pp.175-177, 2000.

S. Gallée, P. Y. Manach, and S. Thuillier, Mechanical behavior of a metastable austenitic stainless steel under simple and complex loading paths, Materials Science and Engineering: A, vol.466, issue.1-2
DOI : 10.1016/j.msea.2007.02.054

S. Gallée and P. Pilvin, Deep drawing simulation of a metastable austenitic stainless steel using a two-phase model, Journal of Materials Processing Technology, vol.210, issue.6-7, pp.6-7, 2010.
DOI : 10.1016/j.jmatprotec.2010.01.008

R. F. Kubler, M. Berveiller, and P. Buessler, Semi phenomenological modelling of the behavior of TRIP steels, International Journal of Plasticity, vol.27, issue.3, pp.299-327, 2011.
DOI : 10.1016/j.ijplas.2010.05.002

M. Fischlschweiger, G. Cailletaud, and T. Antretter, A mean-field model for transformation induced plasticity including backstress effects for non-proportional loadings, International Journal of Plasticity, vol.37, pp.53-71, 2012.
DOI : 10.1016/j.ijplas.2012.04.001

URL : https://hal.archives-ouvertes.fr/hal-00725957

M. Cherkaoui, M. Berveiller, and X. Lemoine, Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels, International Journal of Plasticity, vol.16, issue.10-11, pp.1215-1241, 2000.
DOI : 10.1016/S0749-6419(00)00008-5

H. Hallberg, P. Hakansson, and M. Ristinmaa, A constitutive model for the formation of martensite in austenitic steels under large strain plasticity, International Journal of Plasticity, vol.23, issue.7, pp.1213-1239, 2007.
DOI : 10.1016/j.ijplas.2006.11.002

M. Wolff, M. Böhm, M. Dalgic, and I. Hüßler, Evaluation of models for TRIP and stress-dependent transformation behaviour for the martensitic transformation of the steel 100Cr6, Computational Materials Science, vol.43, issue.1, pp.108-114, 2008.
DOI : 10.1016/j.commatsci.2007.07.040

M. Wolff, M. Böhm, R. Mahnken, and B. Suhr, Implementation of an algorithm for general material behavior of steel taking interaction between plasticity and transformation-induced plasticity into account, International Journal for Numerical Methods in Engineering, vol.40, issue.5-6, pp.1183-1206, 2011.
DOI : 10.1002/nme.3154

R. Mahnken, A. Schneidt, and T. Antretter, Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel, International Journal of Plasticity, vol.25, issue.2, pp.183-204, 2009.
DOI : 10.1016/j.ijplas.2008.03.005

H. Wohlfahrt, The influence of peening conditions on the resulting distribution of residual stress, Proceedings of the Second International Conference on Shot Peening, pp.316-331, 1984.

H. Hertz, Uber die Berührung fester elasticher Körper, Jf reine u. angew, p.1881

J. Barralis, L. Castex, and G. Maeder, Précontraintes et traitements superficiels, 1999.

V. Llaneza and F. J. Belzunce, Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work hardening, Applied Surface Science, vol.356, pp.475-485, 2015.
DOI : 10.1016/j.apsusc.2015.08.110

D. N. Braski and D. M. Royster, X-Ray Measurement of Residual Stresses in Titanium Alloy Sheet, Annu. Conf. Appl. X-RAY Anal. Denver, 1966.
DOI : 10.1007/978-1-4684-7835-8_25

R. F. Brodrick, Protective shot peening of propellers, " Part I, Residual Peen, Stress. WADC Rep, vol.55, p.56, 1955.

A. Niku-lari, Méthode de la Flèche méthode de la Source des Contraintes Residuelles, Proceedings of ICSP 1, 1981.

R. Fathallah, G. Inglebert, and L. Castex, Modelling of shot peening residual stresses and plastic deformation induced in metallic parts, Proceedings of the Sixth International Conference on Shot Peening, ICSP6, pp.464-473, 1996.

S. A. Meguid, G. Shagal, J. C. Stranart, and J. Daly, Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses, Finite Elements in Analysis and Design, vol.31, issue.3, pp.179-191, 1999.
DOI : 10.1016/S0168-874X(98)00057-2

J. O. Almen and P. H. Black, Residual Stresses and Fatigue in Metals, Journal of Applied Mechanics, vol.31, issue.2, 1963.
DOI : 10.1115/1.3629645

S. Baragetti, Three-dimensional finite-element procedures for shot peeening residual stress filed prediction, International Journal of Computer Applications in Technology, vol.14, issue.1/2/3, pp.1-3, 2001.
DOI : 10.1504/IJCAT.2001.000260

C. Mahmoud, Analyse des contraintes résiduelles générées lors du grenaillage : approches analytique, numérique et expérimentale des impacts de billes, Thèse, UTT, 2007.

M. Klemenz, M. Zimmermann, V. Schulze, and D. Löhe, Numerical Prediction of the Residual Stress State after Shot Peening, High Performance Computing in Science and Engineering'06, pp.437-448, 2007.
DOI : 10.1007/978-3-540-36183-1_32

A. S. Franchim, V. S. De-campos, D. N. Travessa, C. De, and M. Neto, Analytical modelling for residual stresses produced by shot peening, Materials & Design, vol.30, issue.5, pp.1556-1560, 2009.
DOI : 10.1016/j.matdes.2008.07.040

M. T. Khabou, Modélisation du comportement et des contraintes résiduelles introduites dans un matériau soumis à un grenaillage, Thèse, Arts Métiers ParisTech, 1989.

I. Lillamand, Evolutions d'une couche grenaillée sous sollicitations thermiques et mécaniques cas de la fatigue oligocyclique, Thèse, Arts Métiers ParisTech, 1998.

H. Guechichi, Prévision des contraintes résiduelles dues au grenaillage de précontrainte, Thèse, Arts Métiers ParisTech, 1986.

J. Zarka, J. J. Engel, and G. Inglebert, On a simplified inelastic analysis of structures, Nuclear Engineering and Design, vol.57, issue.2, pp.333-368, 1980.
DOI : 10.1016/0029-5493(80)90111-9

K. Mori, K. Osakada, and N. Matsuoka, Finite element analysis of peening process with plasticity deforming shot, Journal of Materials Processing Technology, vol.45, issue.1-4, pp.1-4, 1994.
DOI : 10.1016/0924-0136(94)90406-5

K. Schiffner, C. Droste-gen, and . Helling, Simulation of residual stresses by shot peening, Computers & Structures, vol.72, issue.1-3, pp.1-3, 1999.
DOI : 10.1016/S0045-7949(99)00012-7

D. Deslaef, Modélisation numérique du grenaillage de précontrainte, Thèse, UTT, 2000.

E. Rouhaud, A. Ouakka, C. Ould, J. L. Chaboche, and M. Francois, Finite elements model of shot peening, effects of constitutive laws of the material, Proc. ICSP-9, 2005.

T. Kim, H. Lee, H. C. Hyun, and S. Jung, A simple but effective FE model with plastic shot for evaluation of peening residual stress and its experimental validation, Materials Science and Engineering: A, vol.528, issue.18, pp.5945-5954, 2011.
DOI : 10.1016/j.msea.2011.04.012

S. Rouquette, E. Rouhaud, M. François, A. Roos, and J. Chaboche, Coupled thermo-mechanical simulations of shot impacts: Effects of the temperature on the residual stress field due to shot-peening, Journal of Materials Processing Technology, vol.209, issue.8, pp.3879-3886, 2009.
DOI : 10.1016/j.jmatprotec.2008.09.006

S. A. Meguid, G. Shagal, and J. C. Stranart, 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model, International Journal of Impact Engineering, vol.27, issue.2, pp.119-134, 2002.
DOI : 10.1016/S0734-743X(01)00043-4

G. H. Majzoobi, R. Azizi, and A. Nia, A three-dimensional simulation of shot peening process using multiple shot impacts, Journal of Materials Processing Technology, vol.164, issue.165, pp.164-165, 2005.
DOI : 10.1016/j.jmatprotec.2005.02.139

S. T. Al-hassani, K. Kormi, and D. C. Webb, Numerical simulation of multiple shot impact, Proc. ICSP-7, pp.217-227, 1999.

J. Edberg, L. Lindgren, and K. Mori, Shot peening simulated by two different finite element formulations, Simul. Mater. Process. theory, methods Appl, pp.425-430, 1995.

J. Schwarzer, V. Schulze, and O. Vöhringer, Evaluation of the Influence of Shot Peening Parameters on Residual Stress Profiles Using Finite Element Simulation, Materials Science Forum, vol.426, issue.432, pp.3951-3956, 2003.
DOI : 10.4028/www.scientific.net/MSF.426-432.3951

T. Hong, J. Y. Ooi, and B. A. Shaw, A numerical study of the residual stress pattern from single shot impacting on a metallic component, Advances in Engineering Software, vol.39, issue.9, pp.743-756, 2008.
DOI : 10.1016/j.advengsoft.2007.10.002

M. Guagliano, Relating Almen intensity to residual stresses induced by shot peening: a numerical approach, Journal of Materials Processing Technology, vol.110, issue.3, pp.277-286, 2001.
DOI : 10.1016/S0924-0136(00)00893-1

M. Frija, T. Hassine, R. Fathallah, C. Bouraoui, and A. Dogui, Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity, Materials Science and Engineering: A, vol.426, issue.1-2, pp.173-180, 2006.
DOI : 10.1016/j.msea.2006.03.097

T. Hong, J. Y. Ooi, and B. Shaw, A numerical simulation to relate the shot peening parameters to the induced residual stresses, Engineering Failure Analysis, vol.15, issue.8, pp.1097-1110, 2008.
DOI : 10.1016/j.engfailanal.2007.11.017

V. B. Nguyen, H. J. Poh, and Y. Zhang, Predicting shot peening coverage using multiphase computational fluid dynamics simulations, Powder Technology, vol.256, pp.100-112, 2014.
DOI : 10.1016/j.powtec.2014.01.097

N. Tsuji, S. Tanaka, and T. Takasugi, Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti???6Al???4V alloy, Surface and Coatings Technology, vol.203, issue.10-11, pp.10-11, 2009.
DOI : 10.1016/j.surfcoat.2008.11.013

H. Y. Miao, D. Demers, S. Larose, C. Perron, and M. Lévesque, Experimental study of shot peening and stress peen forming, Journal of Materials Processing Technology, vol.210, issue.15, pp.2089-2102, 2010.
DOI : 10.1016/j.jmatprotec.2010.07.016

H. Y. Miao, S. Larose, C. Perron, and M. Lévesque, On the potential applications of a 3D random finite element model for the simulation of shot peening Adv

T. Chaise, J. Li, D. Nélias, R. Kubler, S. Taheri et al., Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP), Journal of Materials Processing Technology, vol.212, issue.10, pp.2080-2090, 2012.
DOI : 10.1016/j.jmatprotec.2012.05.005

URL : https://hal.archives-ouvertes.fr/hal-00760355

M. Halilovi?, S. Issa, M. Wallin, H. Hallberg, and M. Ristinmaa, Prediction of the residual state in 304 austenitic steel after laser shock peening ??? Effects of plastic deformation and martensitic phase transformation, International Journal of Mechanical Sciences, vol.111, issue.112, pp.111-112, 2016.
DOI : 10.1016/j.ijmecsci.2016.03.022

P. Renaud, Modélisation numérique du grenaillage des pièces initialement cémentées ou carbonitrurées, Thèse, Arts Métiers ParisTech, 2011.

H. Xiao, Q. Chen, E. Shao, D. Wu, Z. Chen et al., The effect of shot peening on rolling contact fatigue behaviour and its crack initiation and propagation in carburized steel, Wear, vol.151, issue.1, pp.77-86, 1991.
DOI : 10.1016/0043-1648(91)90347-W

D. Kirk, Residual Stresses and Retained Austenite in Shot-Peened Steels, Proceedings of First International Conference on Shot Peening, pp.271-278, 1981.

G. Fargas, J. J. Roa, and A. Mateo, Effect of shot peening on metastable austenitic stainless steels, Materials Science and Engineering: A, vol.641, pp.290-296, 2015.
DOI : 10.1016/j.msea.2015.05.079

P. Renaud, Numerical simulations of the shot peening process of materials initially treated by carburizing or carbonitriding, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00606275

S. L. Clitheroe, The physical and microstructural properties of peened austenitic stainless steel, 2011.

M. Takemoto, S. Ueno, M. Nakamura, and G. Ueno, Necessary condition for delayed fracture of metastable 304 stainless steel with strain-induced martensite, J. Acoust. Emiss, vol.29, pp.197-210, 2011.

I. Nikitin and I. Altenberger, Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25???600??C, Materials Science and Engineering: A, vol.465, issue.1-2, pp.176-182, 2007.
DOI : 10.1016/j.msea.2007.02.004

S. Bagherifard, R. Ghelichi, and M. Guagliano, Numerical and experimental analysis of surface roughness generated by shot peening, Applied Surface Science, vol.258, issue.18, pp.6831-6840, 2012.
DOI : 10.1016/j.apsusc.2012.03.111

Y. Lv, L. Lei, and L. Sun, Effect of shot peening on the fatigue resistance of laser surface melted 20CrMnTi steel gear, Materials Science and Engineering: A, vol.629, pp.8-15, 2015.
DOI : 10.1016/j.msea.2015.01.074

X. Kléber and S. P. Barroso, Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise, Materials Science and Engineering: A, vol.527, issue.21-22, pp.21-22, 2010.
DOI : 10.1016/j.msea.2010.06.008

K. Zhan, C. H. Jiang, and V. Ji, Uniformity of residual stress distribution on the surface of S30432 austenitic stainless steel by different shot peening processes, Materials Letters, vol.99, pp.61-64, 2013.
DOI : 10.1016/j.matlet.2012.08.147

P. Fu, K. Zhan, and C. Jiang, Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening, Materials & Design, vol.51, pp.309-314, 2013.
DOI : 10.1016/j.matdes.2013.04.011

P. Fu and C. Jiang, Residual stress relaxation and micro-structural development of the surface layer of 18CrNiMo7-6 steel after shot peening during isothermal annealing, Materials & Design (1980-2015), vol.56, pp.1034-1038, 2014.
DOI : 10.1016/j.matdes.2013.12.011

P. Fu, C. Jiang, X. Wu, and Z. Zhang, Surface Modification of 304 Steel Using Triple-Step Shot Peening, Materials and Manufacturing Processes, vol.30, issue.6, pp.693-698, 2015.
DOI : 10.1016/j.msea.2011.03.041

S. Aloui, R. Othman, A. Poitou, P. Guégan, and S. El-borgi, Non-parametric identification of the non-homogeneous stress in high strain-rate uni-axial experiments, Mechanics Research Communications, vol.35, issue.6, pp.392-397, 2008.
DOI : 10.1016/j.mechrescom.2008.04.005

URL : https://hal.archives-ouvertes.fr/hal-01007109

R. Othman, P. Guégan, G. Challita, F. Pasco, and D. Lebreton, A modified servo-hydraulic machine for testing at intermediate strain rates, International Journal of Impact Engineering, vol.36, issue.3, pp.460-467, 2009.
DOI : 10.1016/j.ijimpeng.2008.06.003

URL : https://hal.archives-ouvertes.fr/hal-01004862

S. Aloui, R. Othman, E. Verron, and P. Guégan, Semi-analytic inverse method for rubber testing at high strain rates, Mechanics Research Communications, vol.47, pp.97-101, 2013.
DOI : 10.1016/j.mechrescom.2012.10.002

URL : https://hal.archives-ouvertes.fr/hal-01007277

P. Guégan, R. Othman, D. Lebreton, F. Pasco, P. Villedieu et al., Experimental investigation of the kinematics of post-impact ice fragments, International Journal of Impact Engineering, vol.38, issue.10, pp.786-795, 2011.
DOI : 10.1016/j.ijimpeng.2011.05.003

J. Petiteau, R. Othman, P. Guégan, H. L. Sourne, and E. Verron, Dynamic uniaxial extension of elastomers at constant true strain rate, Polymer Testing, vol.32, issue.2, pp.394-401, 2013.
DOI : 10.1016/j.polymertesting.2012.10.007

URL : https://hal.archives-ouvertes.fr/hal-01006761

T. Chaise, Modélisation mécanique par méthode semi analytique : du contact roulant élastoplastique aux impacts multiples, Thèse de doctorat, 2011.

E. J. Mittemeijer and P. Scardi, Diffraction analysis of the microstructure of materials, 2013.
DOI : 10.1007/978-3-662-06723-9

A. D. Krawitz, Introduction to diffraction in materials science and engineering, Introd. to Diffr. Mater. Sci. Eng. by Aaron D. Krawitz, pp.424-424, 2001.

V. Hauk, Structural and residual stress analysis by nondestructive methods: Evaluation-Application-Assessment, 1997.

C. Lahanier, P. Parière, and G. Maeder, Caractérisation de solides cristallisés par diffraction des rayons X, p.10, 1983.

D. L. Sikarskie, A series form of correction to stresses measured using X-Ray diffraction, AIME Met Soc Trans, vol.239, issue.4, pp.577-580, 1967.

K. L. Johnson, Contact Mechanics, 1985.

M. Kobayashi, T. Matsui, and Y. Murakami, Mechanism of creation of compressive residual stress by shot peening, International Journal of Fatigue, vol.20, issue.5, pp.351-357, 1998.
DOI : 10.1016/S0142-1123(98)00002-4

J. Zhang, Influence de la contrainte sur la transformation martensitique d'alliages Fe Ni Cr, Thèse, INPL, 1993.

P. E. Reyes-morel and I. Chen, Transformation Plasticity of CeO2-Stabilized Tetragonal Zirconia Polycrystals: I, Stress Assistance and Autocatalysis, Journal of the American Ceramic Society, vol.65, issue.5, pp.343-353, 1988.
DOI : 10.1111/j.1151-2916.1988.tb05052.x

Q. P. Sun, K. C. Hwang, and S. W. Yu, A micromechanics constitutive model of transformation plasticity with shear and dilatation effect, Journal of the Mechanics and Physics of Solids, vol.39, issue.4, pp.507-524, 1991.
DOI : 10.1016/0022-5096(91)90038-P

E. Voce, A practical strain-hardening function, pp.219-226, 1955.

P. J. Armstrong and C. O. Frederick, A mathematical representation of the multiaxial Bauschinger effect, 1966.

E. Patoor and M. Berveiller, Micromechanical modelling of the thermomechanical behavior of shape memory alloys, Mechanics of Solids with Phase Changes, pp.121-188, 1997.

M. Su, Étude de l'influence et de l'optimisation du degré d'expansion à froid dans les mécanismes de réamorçage d'une fissure : étude numérique et expérimentale, Thèse, Univ. Lille 1, 2005.

M. Chaussumier, Un modèle statistique de calcul en fatigue multiaxiale pour les pièces mécaniques en acier nitruré, Thèse, Arts Métiers ParisTech, 2000.