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Abstract

Maximum likelihood estimation is a widespread method for identifying
a parametrized model of a time series from a sample of observations. Un-
der the framework of well-speci�ed models, it is of prime interest to obtain
consistency of the estimator, that is, its convergence to the true parameter
as the sample size of the observations goes to in�nity. For many time series
models, for instance hidden Markov models (HMMs), such a �strong� con-
sistency property can however be di�cult to establish. Alternatively, one
can show that the maximum likelihood estimator (MLE) is consistent in a
weakened sense, that is, as the sample size goes to in�nity, the MLE even-
tually converges to a set of parameters, all of which associate to the same
probability distribution of the observations as for the true one. The consis-
tency in this sense, which remains a preferred property in many time series
applications, is referred to asequivalence-class consistency. The task of de-
riving such a property generally involves two important steps: 1) show that
the MLE converges to the maximizing set of the asymptotic normalized log-
likelihood; and 2) show that any parameter in this maximizing set yields the
same distribution of the observation process as for the true parameter.

In this thesis, our primary attention is to establish the equivalence-class
consistency for time series models that belong to the class of partially ob-
served Markov models (PMMs) such as HMMs and observation-driven mod-
els (ODMs). We �rst establish the result of Step 2) , that is identifying
the maximizing set of the asymptotic normalized log-likelihood, under very
mild assumptions and under a general framework of PMMs. The novel con-
tribution of our approach is that, in contrast with previous approaches, the
identi�ability result is addressed by relying on the uniqueness of the invariant
distribution of the Markov chain associated to the complete data, regardless
of its rate of convergence to the equilibrium. This result then applies, for
example, to HMMs and ODMs in which speci�c models, namely, the polyno-
mially ergodic Markov chain, the negative binomial integer-valued GARCH
(NBIN-GARCH) and the normal mixture GARCH (NM-GARCH) models
are illustrated.
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Then, we establish the convergence of the MLE inStep 1) for two sep-
arate classes of models, namely, the class of fully dominated PMMs and
the class of ODMs by generalizing the existing results. For fully dominated
PMMs, formulating this convergence property is carried out through the
approach which consists in establishing a key property�the exponential for-
getting of the �ltering distribution by using coupling method. For ODMs,
this is performed by proving that the process is stationary and ergodic, and
by approximating the conditional likelihood by an appropriately de�ned sta-
tionary version of it, which is shown to converge using classical ergodic theory
arguments. The stationary and ergodic solutions for the family of ODMs are
obtained via the theory of Markov chains without irreducibility assumption.
All of these results are addressed under assumptions that are quite direct
and easy to check in concrete examples. As illustration, we examine three
examples, namely the NBIN-GARCH(1; 1), the NM-GARCH(1; 1) and the
threshold IN-GARCH(1; 1) models.

Finally, extension of ODMs to general-order versions is also considered.
By incorporating relevant lagged variables into the model, a general-order
ODM can be embedded in the classical �rst-order version of it. In this
extended class, the stationarity and ergodicity of the process are studied.
The consistency of the MLE is considered. The asymptotic normality of the
MLE is also treated in this general framework. All the results are reported
under su�cient and easy-to-check conditions. We apply these results to the
GARCH(p; q), the log-linear Poisson autoregression of order(p; q) and the
NBIN-GARCH (p; q) models. An empirical study completes this part.

Keywords: consistency, ergodicity, hidden Markov models, maximum like-
lihood, observation-driven models, partially observed Markov models, time
series of counts
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Résumé

L'estimation du maximum de vraisemblance est une méthode répandue
pour l'identi�cation d'un modèle paramétré de série temporelle à partir d'un
échantillon d'observations. Dans le cadre de modèles bien spéci�és, il est pri-
mordial d'obtenir la consistance de l'estimateur, à savoir sa convergence vers
le vrai paramètre lorsque la taille de l'échantillon d'observations tend vers
l'in�ni. Pour beaucoup de modèles de séries temporelles, par exemple les mo-
dèles de Markov cachés ou � hidden Markov models � (HMM), la propriété
de consistance � forte � peut cependant être di�cile à établir. On peut alors
s'intéresser à la consistance de l'estimateur du maximum de vraisemblance
(EMV) dans un sens faible, c'est-à-dire que lorsque la taille de l'échantillon
tend vers l'in�ni, l'EMV converge vers un ensemble de paramètres qui s'as-
socient tous à la même distribution de probabilité des observations que celle
du vrai paramètre. La consistance dans ce sens, qui reste une propriété pri-
vilégiée dans beaucoup d'applications de séries temporelles, est dénommée
consistance de classe d'équivalence. L'obtention de la consistance de classe
d'équivalence exige en général deux étapes importantes : 1) montrer que
l'EMV converge vers l'ensemble qui maximise la log-vraisemblance norma-
lisée asymptotique ; et 2) montrer que chaque paramètre dans cet ensemble
produit la même distribution du processus d'observation que celle du vrai
paramètre.

Cette thèse a pour objet principal d'établir la consistance de classe d'équi-
valence pour des modèles de séries temporelles qui appartiennent à la classe
des modèles de Markov partiellement observés, ou � partially observed Mar-
kov models � (PMM), comme les HMM et les modèles � observation-driven �
(ODM). Nous établissons le résultat de l'étape 2), qui identi�e l'ensemble
qui maximise la log-vraisemblance normalisée asymptotique, sous des hy-
pothèses assez faibles et dans un cadre général de PMM. La nouveauté de
notre approche est que, contrairement aux approches précédentes, le résultat
d'identi�abilité est traité en se basant sur l'unicité de la distribution sta-
tionnaire de la chaîne de Markov associée aux données entières, sans tenir
compte de son taux de convergence vers l'équilibre. Nous appliquons ensuite
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ce résultat, par exemple, aux HMM et ODM, dans lesquels des modèles spé-
ci�ques, à savoir la chaîne de Markov ergodique polynomialement, le modèle
� negative binomial integer-valued GARCH � (NBIN-GARCH) et le modèle
GARCH gaussien mélangé ou � normal mixture GARCH � (NM-GARCH),
sont détaillés.

Nous établissons ensuite la convergence de l'EMV dans l'étape 1) pour
deux classes de modèles distinctes, d'une part la classe des PMMs entière-
ment dominés et d'autre part la classe des ODM, en généralisant les résultats
obtenus. Pour les PMMs entièrement dominés, l'établissement de cette pro-
priété de convergence est faite selon l'approche qui consiste à établir une
propriété clé : l'oubli exponentiel de la distribution de �ltrage en utilisant la
méthode de couplage. Pour la classe des ODM, ceci est fait en montrant que le
processus est stationnaire et ergodique, et en donnant une approximation de
la vraisemblance conditionnelle par sa version stationnaire convenablement
dé�nie, dont nous montrons qu'elle converge selon des arguments classiques
relevant de la théorie ergodique. Les solutions stationnaires et ergodiques
pour la famille des ODM sont obtenues via la théorie des chaînes de Markov
sans condition d'irréductibilité. Tous ces résultats sont traités sous des hypo-
thèses relativement directes et faciles à véri�er dans des exemples concrets.
Pour illustration, nous examinons trois exemples, qui sont les modèles NBIN-
GARCH(1; 1), NM-GARCH(1; 1) et IN-GARCH à seuil de l'ordre(1; 1).

L'extension des ODM à des versions d'ordre général est aussi considé-
rée. En intégrant des variables décalées pertinentes dans le modèle, un ODM
d'ordre général peut avoir une représentation classique d'ODM de premier
ordre. Dans cette classe élargie, la stationnarité et l'ergodicité du processus
sont étudiées. La consistance de l'EMV est considérée. La normalité asympto-
tique de l'EMV est également traitée dans ce cadre général. Tous les résultats
sont obtenus sous des conditions su�santes facilement véri�ables. Nous ap-
pliquons ces résultats au modèle GARCH(p; q), à l'autorégression log-linéaire
de Poisson d'ordre(p; q), et au modèle NBIN-GARCH(p; q). Une étude em-
pirique complète cette partie.

Mots-clés : consistance, ergodicité, maximum de vraisemblance, modèles
de Markov cachés, modèles de Markov partiellement observés, observation-
driven, séries temporelles de comptage
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Chapter 1

Introduction

1.1 Background

A partially observed Markov model (PMM) is a bivariate Markov process
such that only one part of the complete process is observed�hence �par-
tially observed� and the other component, the state variable, is �hidden� or
�unobserved��and any statistical inference has to be carried out by means of
using a sample of realizations of the observation process. Notably, the class
of PMMs contains two prominent classes of statistical models commonly used
in examining serial-dependence sequences and time series data, namely, the
class of hidden Markov models (HMMs) and the class of observation-driven
models (ODMs). A common yet important feature of these two particular
subclasses lies on the fact that the hidden processes of the state variables
are Markov chains in their own right. This feature permits establishing some
important statistical properties such as stationarity and ergodicity for the
complete chains or models by relying on those inherited statistical properties
of the unobserved chains.

HMMs are applied widely in various areas ranging from biology (Churchill
[1992], Krogh et al. [1994]), econometrics (Hull and White [1987], Mamon and
Elliott [2007]), �nance (Zhang [2004]), neurophysiology (Fredkin and Rice
[1987]), signal processing (Crouse et al. [1998], Krishnamurthy and Chung
[2007]), speech recognition (Rabiner [1989], Huang et al. [1990], Juang and
Rabiner [1991]) to time series analysis (MacDonald and Zucchini [1997]).
Theory and inference for this class of models were developed by Baum and
coworkers in a series of contributions Baum and Petrie [1966], Baum and
Eagon [1967], Baum and Sell [1968], Petrie [1969], Baum et al. [1970], Baum
[1972] (see also Ephraim and Merhav [2002] for a brief historical note on
HMMs). These studies have later been further considered and developed
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in a series of works by Finesso [1991], Leroux [1992], Mevel [1997], Bickel
et al. [1998], Jensen and Petersen [1999], Le Gland and Mevel [2000], Douc
and Matias [2001], Bickel et al. [2002], Mevel and Finesso [2004], Genon-
Catalot and Laredo [2006], Douc et al. [2009, 2011], Douc and Moulines [2012]
(see also Cappé et al. [2005] and the references therein for a comprehensive
discussion). Although there have been substantial studies for this important
class, so far some theoretical results have not become standard yet and thus
still need to be improved.

ODMs were introduced by Cox [1981] to describe statistical models with
a key feature that the hidden state variable can be represented explicitly
as a deterministic function of the past observation variables. This property
is of practical interest, since the associated (conditional) likelihood function
and its derivatives are easy to derive, the parameter estimation is hence rela-
tively simple, and the prediction, which is of prime importance in many time
series applications, is straightforward. The celebrated generalized autore-
gressive conditional heteroskedasticity of order(1; 1) model (well known as
GARCH(1; 1) model) introduced by Bollerslev [1986], as well as most of the
models derived from this one are typical examples of ODMs (see Bollerslev
[2008] for a list of some of them). In addition, these models are partic-
ularly useful for dealing with time series data with discrete nature, while
the classical autoregressive models are no longer appropriate (see [Kedem
and Fokianos, 2002, Chapter 4] for a comprehensive account and Tjøstheim
[2012] for a recent survey). The applications of ODMs can be found in a wide
variety of disciplines such as economics (Pindyck and Rubinfeld [1998]), en-
vironmental study (Bhaskaran et al. [2013]), epidemiology and public health
study (Zeger [1988], Davis et al. [1999], Ferland et al. [2006]), �nance (Liesen-
feld and Richard [2003], Rydberg and Shephard [2003], Fokianos and Tjøs-
theim [2011], Francq and Zakoian [2011]) and population dynamics (Ives
et al. [2003]). Theory and inference for this class of models when the obser-
vations are integer-valued have been developed in a series of contributions
including Streett [2000], Davis et al. [2003], Heinen [2003], Ferland et al.
[2006], Fokianos et al. [2009], Franke [2010], Woodard et al. [2010], Fokianos
and Tjøstheim [2011], Henderson et al. [2011], Neumann [2011], Davis and
Liu [2012], Doukhan et al. [2012], Douc et al. [2013], Fokianos et al. [2013],
Christou and Fokianos [2014, 2015] and Douc et al. [2015]. As in the case of
HMMs, some of existing theoretical results for these models have not become
standard yet and thus still need to be ameliorated.

Besides HMMs and ODMs, the class of PMMs include many other in-
teresting models that have potential applications in time series and other
�elds such as Markov switching models (see Hamilton [1988, 1989]), many
of Markov chains in random environment introduced by Cogburn [1980] and
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Bourgin and Cogburn [1981], pairwise Markov random �elds (see Pieczyn-
ski and Tebbache [2000]) and other instances considered e.g. by Pieczynski
[2003] and Ephraim and Mark [2012]. However, the theory and inference for
this general setting still remains meagre in the literature.

1.2 Motivation and Problem Statements

This thesis aims at developing theory and inference for parametric models
concerning in particular time series of counts under general frameworks of
PMMs and other variants. It is mainly driven by the following issues encoun-
tered in HMMs and ODMs in particular (and hence in PMMs in general).

1.2.1 Consistency

Maximum likelihood estimation is a natural and widespread method for
identifying a parametric model of a time series from a sample of realizations of
the observation process. Under a well-speci�ed model setting, that is when
the law of the observations is fully described by a parametrized member
of the class of PMMs, it is of prime interest to obtain the consistency of
the estimator, namely, its convergence to the true parameter, say� ?, as the
sample size goes to in�nity. The proof generally involves two important steps:

1. the maximum likelihood estimator (MLE) converges to the maximizing
set � ? of the asymptotic normalized log-likelihood, and

2. this set � ? indeed reduces to the singleton of the true parameter� ?.

The second step is usually referred to as solving theidenti�ability problem,
but it can actually be split in two sub-problems:

2.1 show that any parameter in the maximizing set� ? yields the same
distribution for the observations as for the true parameter� ?, and

2.2 show that for a su�ciently large sample size, the set of such parameters
reduces to the singleton of� ?.

However, at least in the case of HMMs, Problem 2.2 above appears to be dif-
�cult to solve; see Allman et al. [2009], Gassiat et al. [2016] and the references
therein for recent advances in the case of HMMs. Indeed, Problem 2.1 can
be solved independently, and with Step 1 above, this directly yields that the
MLE is consistent in a weakened sense, namely, that the estimated parameter
converges to the set of all the parameters associated to the same distribution
as the one of the observed sample. The consistency in this sense is referred
to as equivalence-class consistency, as introduced by Leroux [1992].
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Consistency issue in HMMs

For HMMs, the consistency of the MLE is of primary importance; it arises
either as a subject of study (see Baum and Petrie [1966], Petrie [1969], Leroux
[1992], Le Gland and Mevel [2000], Le Gland and Mevel [2000], Douc and Ma-
tias [2001], Douc et al. [2004], Genon-Catalot and Laredo [2006], Douc et al.
[2011]) or as a basic assumption (see Bickel et al. [1998], Jensen and Petersen
[1999]). Among these contributions, the consistency result obtained later in
Douc et al. [2011] appears to be quite general and can be applied to many
versions of HMMs with some general state and observation spaces. In this
contribution, identifying the maximizing set � ? of the asymptotic normal-
ized log-likelihood is carried out by using the so-calledexponential separation
of measurescondition, which is apparently easy to apply when the underly-
ing model is geometrically ergodic. However, for non-geometrically ergodic
models such as the polynomially ergodic Markov chain (see Tuominen and
Tweedie [1994] and Jarner and Roberts [2002] for the existence and some
studies of such an example), checking this condition can be laborious and
involved. Hence the characterization of the maximizing set� ? of the asymp-
totic normalized log-likelihood (and hence the equivalence-class consistency
of the MLE) remains a delicate question for HMMs.

Consistency issue in ODMs

In ODMs, the (conditional) likelihood function and its derivatives are
easy to compute, making the estimation at least numerically feasible. The
consistency of the MLE can however be cumbersome and is often derived
using computations speci�c to the studied model. Especially, when the ob-
served variable is discrete, general consistency results have been obtained
only recently in Davis and Liu [2012] or Douc et al. [2013] (see also in Hen-
derson et al. [2011] for the existence of stationary and ergodic solutions to
some ODMs). Nevertheless, in these contributions, the way of proving that
the maximizing set � ? reduces to the singleton of the true parameter� ?

requires checking speci�c conditions in each given example and seems dif-
�cult to assert the result in a more general context, for instance when the
distribution of the observations given the hidden variable also depends on
an unknown parameter. The examples of such models include the nega-
tive binomial integer-valued GARCH (NBIN-GARCH) model introduced in
Zhu [2011] and the normal mixture GARCH (NM-GARCH) model proposed
by Haas et al. [2004] and Alexander and Lazar [2006]. To our best knowl-
edge, (complete) consistency of the MLE has not been treated for the NBIN-
GARCH model (see Davis and Liu [2012] for some partial treatement); and
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the usual consistency proof of the MLE for the GARCH model cannot be
directly adapted to the NM-GARCH model.

It is thus of great interest if this consistency issue can be tackled under
the general spirit of PMMs, and if the present approach is able to account
for the intractable versions of HMMs and ODMs mentioned hereinabove.

1.2.2 General-order Observation-driven Models

In many time series, solving Problem 1 and Problem 2.1 in Section 1.2.1,
that is, establishing the consistency of the MLE, usually requires assuming or
proving that the observation process is stationary and ergodic. Under HMM
framework, stationary and ergodic solutions for the model are inherited from
the stationarity and ergodicity of the underlying hidden process and are usu-
ally studied by using ' -irreducibility assumption. However, it may not be
at all the same fortune when the studied model is under ODM setting. In
this latter case, it turns out that a more subtle approach is required, at least
in the circumstance where the observed process assumes integer values. The
di�culty in this case, though in its own right it is a Markov chain, may arise
from the degeneracy of the hidden state process from its state equation. Up
to this point, several methods toward the solution of this problem has been
proposed. These include the perturbation technique (see Fokianos and Tjøs-
theim [2011]), the contractivity approach (see Neumann [2011]), the weak
dependence approach (see Doukhan et al. [2012]) and the approach based on
the theory of Markov chains without irreducibility assumption introduced in
Douc et al. [2013]. Among these, the result obtained recently in Douc et al.
[2013] appears to be able to cope with many models of interest lying in the
class of�rst-order ODMs, regardless of whether the observation process is
discrete or continuous. However, whether this same result applies to a more
general and �exible context ofgeneral-orderODMs or general-order GARCH
type models has not been known so far. The same question is for the asymp-
totic properties of the MLE for the class of general-order ODMs as posed by
Douc et al. [2013] and recently addressed in Tjøstheim [2015].

1.3 Approaches and Main Results

Throughout this thesis, the statistical inference is performed, unless oth-
erwise speci�ed, under the framework of the well-speci�ed models. The ap-
proaches and main results are outlined as follows.
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1.3.1 Identi�cation of the Maximizing Set � ?

One of our primary objectives is to provide a general method toward solv-
ing Problem 2.1 as described in Section 1.2.1, that is, showing that any pa-
rameter in the maximizing set� ? of the asymptotic normalized log-likelihood
yields the same distribution for the observations as for the true parameter� ?,
under the general framework ofpartially dominated and partially observed
Markov models in which many interesting models such as HMMs and ODMs
are included. Here, by �partially dominated�, we refer to a situation where
the distribution of the observed variable is dominated by some �xed� -�nite
measure de�ned on the observation space. The proof of the main result is of
probabilistic-analytic nature. The novel contribution of our present approach
is that the characterization of the maximizing set� ? is addressed by relying
mainly on the existence and the uniqueness of the invariant distribution of
the Markov chain associated to the complete data, regardless of its rate of
convergence to the equilibrium. This is indeed in deep contrast with existing
results in these models where the identi�cation of� ? is established under the
assumption of exponential separation of measures (see Douc et al. [2011]) or
geometric ergodicity (see Douc et al. [2004]). The ways of how this general
result applies in the classes of HMMs and ODMs are also demonstrated.
As it will be later shown, our general result can be readily applied to solve
Problem 2.1 for some otherwise intractable versions of HMMs and ODMs
mentioned earlier in Section 1.2.1. All of these are reported in the journal
paper by Douc et al. [2014], which is going to appear soon inThe Annals of
Applied Probability.

1.3.2 Consistency of the MLE for Fully Dominated and
Partially Observed Markov Models

In addition to solving Problem 2.1, our next objective is to investigate
Problem 1 within the general context of PMMs. In this thesis, however, this
task is performed separately in two directions; namely, we discuss this is-
sue independently for the class offully dominated PMMs and for the class of
ODMs. A fully dominated PMM is a partially observed Markov model whose
conditional marginal laws of the observation and hidden state processes both
admit probability densities with respect to some� -�nite measures. Many
HMMs, Markov switching models and Markov chains in random environ-
ment, for example, are members of this class. Solving Problem 1 for fully
dominated PMM, that is, formulating the convergence of the MLE, is car-
ried out by using the approach employed by Douc and Moulines [2012] as
to derive the convergence of the MLE to the minimizing set of the relative
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entropy rate in misspeci�ed HMMs. This approach consists in establishing
a key property�the exponential forgetting of the �ltering distribution by
using coupling method originated by Kleptsyna and Veretennikov [2008] and
further re�ned by Douc et al. [2009]. When the forgetting of the �ltering dis-
tribution is achieved, together with the assumption that the observation pro-
cess is strict-sense stationary and ergodic, then the normalized log-likelihood
can be approximated by an appropriately de�ned stationary version of it.
Then applying the results in classical ergodic theory, the latter is shown to
converge to a limit of functional of the parameter, saỳ(� ), where � is the
parameter. It then implies by using standard argument (see for instance
Pfanzagl [1969]) that the MLE of the normalized log-likelihood converges
almost surely to a subset� ? of the parameter set at which this limit `(� ) is
maximized. Using this same technique, meanwhile, we obtain an intermedi-
ary result showing that the block-type MLE converges to a maximizing set in
a similar sense as the classical MLE, regardless of whether or not the models
are well-speci�ed. These results are shown under similar conditions derived
in Douc and Moulines [2012]. Moreover, with these same assumptions, Prob-
lem 2.1 is also solved, yielding the equivalence-class consistency of the MLE
for the class fully dominated PMMs.

1.3.3 Consistency of the MLE for Observation-driven
Models

In this thesis, we consider among others a typically studied class of ODMs
de�ned in the following context. Let (X; dX) be a locally compact, complete
and separable metric space endowed with the associated Borel� -�eld X ,
(Y; Y) be a Borel space and(� ; �) , the set of parameters, be a compact
metric space. The observationsf Yk : k � 0g is said to be distributed
according to an observation-driven model if there exists a bivariate stochastic
processf (X k ; Yk) : k � 0g de�ned on X � Y such that for all � 2 � and
integersk � 0,

X k+1 =  �
Yk

(X k);

Yk+1 jX 0:k+1 ; Y0:k � G� (X k+1 ; �);
(1.1)

where(x; y) 7!  �
y(x) is a measurable function de�ned fromX � Y to X and

G� is a probability kernel onX � Y.
Examination of the consistency of the MLE for this family is carried out

by relying on the approach recently developed by Douc et al. [2013], who con-
sidered Model (1.1) in the case where the probability kernelG� does not de-
pend on the parameter� . A basic assumption to this approach is the unique-
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ness of invariant distribution for the complete chainf (X k ; Yk) : k � 0g.
This assumption is obtained by using the theory of Markov chains without
irreducibility assumption. The uniqueness of the invariant distribution of
the Markov chain f (X k ; Yk) : k � 0g allows us to extend this stationary
process over the integer indices and is later shown to yield the stationarity
and ergodicity for the observation processf Yk : k � 0g. With some addi-
tional assumptions, by similar argument as in the case of fully dominated
PMMs, the conditional likelihood can be approximated by an appropriately
de�ned stationary version of it, which is then shown to converge to a limit
of functional of the parameter by classical ergodic theory arguments. It then
implies by Pfanzagl [1969] that the MLE of the normalized log-likelihood
converges almost surely to a subset� ? of parameters at which this limiting
functional is maximized. In addition, Problem 2.1 is investigated and with
the earlier convergence result, the equivalence-class consistency of the MLE
for this class is then established. All of these results are addressed under
assumptions that are quite direct and easy to check in concrete examples.
As illustration, we examine three examples, namely, the NBIN-GARCH(1; 1),
the NM-GARCH(1; 1) and the threshold IN-GARCH(1; 1). A numerical sim-
ulation demontrating the convergence of the MLE for NBIN-GARCH(1; 1)
is also given. All of these results are also reported in the published paper by
Douc et al. [2015].

1.3.4 Generalizations of Observation-driven Models

Another focus of this thesis is on developing theory and inference for the
class of GARCH(p; q) analogue ODMs. In this consideration, we extend (1.1)
by allowing the function  � to depend also on the past lagged variables; that
is, we replace the function �

y(x) de�ned from X � Y to X by a function
 �

y1 ;:::;yq
(x1; : : : ; xp) de�ned from Xp � Yq to X, for some positive integersp

and q. This yields the following setting: for all � 2 � and integersk � 0,

X k+1 =  �
Yk � q+1 ;:::;Yk

(X k� p+1 ; : : : ; X k);

Yk+1 jX � p+1: k+1 ; Y� q+1: k � G� (X k+1 ; �):
(1.2)

We say that the observationsf Yk : k � � q + 1g taking values in (Y; Y) is
distributed according to an observation-driven model of order(p; q), in short
ODM(p; q), if there exists a stochastic processf X k : k � � p+ 1g de�ned on
(X; X ) such that the recursive relation (1.2) holds. Despite that this is just a
generalization, however, it is not always obvious that the results obtained in
the classical �rst-order ODM can be directly or easily applied to the general-
order setting. One reason may be due to the fact that the general-order ODM
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lacks of a direct and useful �rst-order ODM representation. Nevertheless,
this is not a serious problem since generally any general-order ODM can be
embedded in a �rst-order one. To see how, a subtle way is to incorporate the
trivial identity of lagged variables,

(X k� p+2 ; : : : ; X k ; Yk� q+2 ; : : : ; Yk) = ( X k� p+2 ; : : : ; X k ; Yk� q+2 ; : : : ; Yk);

into the recursive relation (1.2) and set

Zk := ( X k� p+1 ; : : : ; X k ; Yk� q+1 ; : : : ; Yk� 1);

	 �
Yk

(Zk) := ( X k� p+2 ; : : : ; X k ;  �
Yk � q+1 ;:::;Yk

(X k� p+1 ; : : : ; X k)
| {z }

p

; Yk� q+2 ; : : : ; Yk| {z }
q� 1

)

and
H � (Zk ; �) := G� (X k ; �):

Then (1.2) can be transformed into the following equivalent one: for all� 2 �
and integersk � 0,

Zk+1 = 	 �
Yk

(Zk);

Yk+1 jZ0:k+1 ; Y0:k � H � (Zk+1 ; �):
(1.3)

The form (1.3) is indeed a �rst-order ODM, but on the space(Xp � Yq� 1) � Y.
With this �rst-order representation, the results obtained in (1.1) may be ap-
plied. By simple adaptations, the equivalence-class consistency of the MLE
for the general-order ODM or for (1.3) directly follows. However, it turns out
that more general assumptions may be required to establish the stationary
and ergodic solutions for (1.3), compared to the usual �rst-order ODMs de-
�ned by (1.1). Additionally, the strong consistency and the asymptotic nor-
mality of the MLE are also investigated in this general context. We treat the
asymptotic normality in a special but an important case where the function
	 � is linear with respect to the hidden state variableZk . For establishing the
asymptotic normality result, we follow the classical approach by �rst approx-
imating the score function by the stationary version of it and then developing
Taylor expansion of the stationary score function around the true parameter
� ?. By appropriate assumptions, the central limit theorem for Martingale
di�erence applies and the stationary score function can then be shown to
be asymptotically Gaussian. Then by invertibility of the asymptotic Fisher
information matrix, the asymptotic normality immediately follows. All the
results are reported under su�cient and easy-to-check conditions. We apply
these results to the GARCH(p; q), the log-linear Poisson autoregression of
order (p; q) and the NBIN-GARCH(p; q) models. We provide an empirical
study showing that in some circumstance higher-order model may �t the data
better than the �rst-order one if the class of ODMs is used.
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1.4 Organization of the Thesis

This thesis is organized as follows. We devote Chapter 2 to identifying
the maximizing set of the asymptotic normalized log-likelihood under the
general framework of PMMs mentioned in Section 1.3.1. In Chapter 3, we
present approaches to obtain the convergence and the consistency of the
MLE under fully dominated versions of PMMs. Chapter 4 is dedicated to
studying ergodicity and consistency of MLE for the class of �rst-order ODMs.
Chapter 5 extends the results of Chapter 4 to the class of general-order
ODMs. Conclusions and future perspectives of the thesis are presented in
Chapter 6.
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Chapter 2

Partially Observed Markov
Chains: Identi�cation of the
Maximizing Set of the
Asymptotic Normalized
Log-likelihood

Summary This chapter, mostly inspired by Douc et al. [2014], consid-
ers a parametrized family of partially observed bivariate Markov chains. We
establish that, under very mild assumptions, the limit of the normalized log-
likelihood function is maximized when the parameters belong to the equiva-
lence class of the true parameter, which is a key feature for obtaining the con-
sistency of the maximum likelihood estimator (MLE) in well-speci�ed mod-
els. This result is obtained in the general framework of partially dominated
models. We examine two speci�c cases of interest, namely, hidden Markov
models (HMMs) and observation-driven models. In contrast with previous
approaches, the identi�ability is addressed by relying on the uniqueness of
the invariant distribution of the Markov chain associated to the complete
data, regardless of its rate of convergence to the equilibrium.

2.1 Introduction

Maximum likelihood estimation is a widespread method for identifying a
parametric model of a time series from a sample of observations. Under a
well-speci�ed model assumption, it is of prime interest to show the consis-
tency of the estimator, that is, its convergence to the true parameter, say
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� ?, as the sample size goes to in�nity. The proof generally involves two im-
portant steps: 1) the maximum likelihood estimator (MLE) converges to the
maximizing set � ? of the asymptotic normalized log-likelihood, and 2) the
maximizing set indeed reduces to the true parameter. The second step is
usually referred to as solving theidenti�ability problem but it can actually
be split in two sub-problems: 2.1) show that any parameter in� ? yields the
same distribution for the observations as for the true parameter, and 2.2)
show that for a su�ciently large sample size, the set of such parameters re-
duces to� ?. Problem 2.2 can be di�cult to solve; see Allman et al. [2009],
Gassiat et al. [2016] and the references therein for recent advances in the case
of hidden Markov models (HMMs). Nevertheless, Problem 2.1 can be solved
independently, and with Step 1 above, this directly yields that the MLE is
consistent in a weakened sense, namely, that the estimated parameter con-
verges to the set of all the parameters associated to the same distribution
as the one of the observed sample. This consistency result is referred to as
equivalence-class consistency, as introduced by Leroux [1992]. In this contri-
bution, our goal is to provide a general approach to solve Problem 2.1 in the
general framework of partially observed Markov models. These include many
classes of models of interest; see, for instance, Pieczynski [2003] or Ephraim
and Mark [2012]. The novel aspect of this work is that the result mainly
relies on the uniqueness of the invariant distribution of the Markov chain
associated to the complete data, regardless of its rate of convergence to the
equilibrium. We then detail how this approach applies in the context of two
important subclasses of partially observed Markov models, namely, the class
of HMMs and the class of observation-driven time series models.

In the context of HMMs, the consistency of the MLE is of primary im-
portance, either as a subject of study (see Leroux [1992], Douc et al. [2004,
2011]) or as a basic assumption (see Bickel et al. [1998], Jensen and Petersen
[1999]). The characterization of the maximizing set� ? of the asymptotic
log-likelihood (and thus the equivalence-class consistency of the MLE) re-
mains a delicate question for HMMs. As an illustration, we consider the
following example. In this example and throughout this thesis, we always
denote by R = ( �1 ; 1 ) the set of real numbers and byZ the set of inte-
gers. In addition, we denote byR+ = [0; 1 ), R� = ( �1 ; 0], R�

+ = (0 ; 1 )
and R�

� = ( �1 ; 0), the sets of nonnegative, nonpositive, (strictly) positive
and (strictly) negative real numbers, respectively. Likewise, we use the no-
tation Z+ , Z � , Z �

+ and Z �
� for the corresponding subsets of integers. For

a real number or a real functiona, we denote bya+ = max( a;0) and by
a� = max( � a;0) the nonnegative part and nonpositive part ofa, respec-
tively. Finally, for any set X, the collectionB(X) denotes the Borel� -�eld on
X.

12



2. Partially Observed Markov Models

Example 2.1.1. Set X = R+ , X = B(R+ ), Y = R and Y = B(R) and de�ne
an HMM on X � Y by the following recursions:

X k = ( X k� 1 + Uk � m)+ ;

Yk = aX k + Vk ;
(2.1)

where(m; a) 2 R�
+ � R, and the sequencef (Uk ; Vk) : k 2 Z+ g is independent

and identically distributed (i.i.d.) and is independent fromX 0. This Markov
model f X k : k 2 Z+ g was proposed by Tuominen and Tweedie [1994] and
further considered by Jarner and Roberts [2002] as an example of polynomi-
ally ergodic Markov chain, under speci�c assumptions made onUk 's. Namely,
if Uk 's are centered andE[e�U +

k ] = 1 for any � > 0, it can be shown that
the chain f X k : k 2 Z+ g is not geometrically ergodic (see Lemma 2.3.9 be-
low). In such a situation, the exponential separation of measures condition
introduced in Douc et al. [2011] seems di�cult to check. We will show, nev-
ertheless, in Proposition 2.3.10, that under some mild conditions the chain
f X k : k 2 Z+ g is ergodic and the equivalence-class consistency holds.

Observation-driven time series models were introduced by Cox [1981]
and later considered, among others, by Streett [2000], Davis et al. [2003],
Fokianos et al. [2009], Neumann [2011], Doukhan et al. [2012] and Douc et al.
[2013]. The celebrated generalized autoregressive conditional heteroskedas-
ticity (GARCH) model of order (1; 1) introduced by Bollerslev [1986] is an
observation-driven model as well as most of the models derived from this
one; see Bollerslev [2008] for a list of some of them. This class of models has
the nice feature that the (conditional) likelihood function and its derivatives
are easy to compute. The consistency of the MLE can however be cumber-
some and is often derived using computations speci�c to the studied model.
When the observed variable is discrete, general consistency results have been
obtained only recently in Davis and Liu [2012] or Douc et al. [2013] (see
also in Henderson et al. [2011] for the existence of stationary and ergodic
solutions to some observation-driven time series models). However, in these
contributions, the way of proving that the maximizing set� ? reduces tof � ?g
requires checking speci�c conditions in each given example and seems di�-
cult to assert in a more general context, for instance when the distribution
of the observations given the hidden variable also depends on an unknown
parameter. Let us describe two such examples. The �rst one (Example 2.1.2)
was introduced in Zhu [2011]. To our knowledge, the consistency of the MLE
has not been treated for this model.

Example 2.1.2. The negative binomial integer-valued GARCH (NBIN-

13



2. Partially Observed Markov Models

GARCH) (NBIN-GARCH (1; 1)) model is de�ned by

X k+1 = ! + aX k + bYk ;

Yk+1 jX 0:k+1 ; Y0:k � N B
�

r;
X k+1

1 + X k+1

�
;

(2.2)

whereX k takes values inX = R+ , Yk takes values inZ+ and � = ( !; a; b; r ) 2
(R�

+ )4 is an unknown parameter. In (2.2),N B(r; p) denotes the negative
binomial distribution with parameters r > 0 and p 2 (0; 1), whose probability
function is �( k+ r )

k!�( r ) pr (1 � p)k for all k 2 Z+ , where � stands for the Gamma
function.

The second example, Example 2.1.3, proposed by Haas et al. [2004] and
Alexander and Lazar [2006], is a natural extension of GARCH processes,
where the usual Gaussian conditional distribution of the observations given
the hidden volatility variable is replaced by a mixture of Gaussian distribu-
tions given a hidden vector volatility variable. Up to our knowledge, the usual
consistency proof of the MLE for the GARCH cannot be directly adapted to
this model.

Example 2.1.3. The normal mixture GARCH (NM (d)-GARCH(1; 1))
model is de�ned by:

X k+1 = ! + AX k + Y 2
k b;

Yk+1 jX 0:k+1 ; Y0:k � G� (X k+1 ; �);

G� (x; dy) =

 
dX

`=1

 `
e� y2=2x `

(2�x ` )1=2

!

dy; x = ( x i )1� i � d 2 (R�
+ )d; y 2 R;

(2.3)

where d is a positive integer;X k = [ X 1;k : : : X d;k ]T takes values inX = Rd
+ ;

 = [  1 : : :  d]T is a d-dimensional vector of mixture coe�cients belonging
to the d-dimensional simplexPd = f  2 Rd

+ :
P d

`=1  ` = 1g; ! , b are
d-dimensional vector parameters with positive and nonnegative entries, re-
spectively; A is a d � d matrix parameter with nonnegative entries; and
� = (  ; ! ; A ; b).

This chapter is organized as follows. Section 2.2 is dedicated to the main
result (Theorem 2.2.7) which shows that the argmax of the limiting criterion
reduces to the equivalence class of the true parameter, as de�ned in Leroux
[1992]. The general setting is introduced in Section 2.2.1. The theorem is
stated and proved in Section 2.2.2. In Section 2.2.3, we focus on the kernel
involved in the assumptions, and explain how it can be obtained explicitly.
Our general assumptions are then shown to hold for two important classes
of partially observed Markov models:

14



2. Partially Observed Markov Models

� First, the HMMs described in Section 2.3, for which the equivalence-
class consistency of the MLE is derived under simpli�ed assumptions.
The polynomially ergodic HMM of Example 2.1.1 is treated as an ap-
plication of this result.

� Second, the observation-driven time series models described in Sec-
tion 2.4. The obtained results apply to the models of Example 2.1.2
and Example 2.1.3, where the generating process of the observations
may also depend on the parameter.

The technical proofs are gathered in Section 2.5.

2.2 A General Approach to Identi�ability

2.2.1 General Setting and Notation: Partially Domi-
nated and Partially Observed Markov Chains

Let (X; X ) and (Y; Y) be two Borel spaces, that is, measurable spaces
that are isomorphic to a Borel subset of[0; 1] and let � be a set of param-
eters. Consider a statistical model determined by a class of Markov kernels
f K � : � 2 � g on (X � Y) � (X 
 Y ). Throughout the chapter and in the fol-
lowing ones, unless it is otherwise speci�ed, we will always denote byP�

� the
probability (and by E�

� the corresponding expectation) induced on(X � Y)Z+

by a Markov chain f (X k ; Yk) : k 2 Z+ g with transition kernel K � and initial
distribution � on X� Y. In the case where� is a Dirac mass at(x; y), we will
simply write P�

(x;y ) .
For partially observed Markov chains, that is, when only a sampleY1:n :=

(Y1; : : : ; Yn ) 2 Yn of the second component is observed, it is convenient to
write K � as

K � ((x; y); dx0dy0) = Q� ((x; y); dx0)G� ((x; y; x0); dy0); (2.4)

whereQ� and G� are probability kernels on(X� Y)�X and on(X� Y� X)�Y ,
respectively.

We now consider the following general setting.

De�nition 2.2.1. We say that the Markov model f K � : � 2 � g of the
form (2.4) is partially dominated if there exists a� -�nite measure � on Y
such that for all (x; y); (x0; y0) 2 X � Y,

G� ((x; y; x0); dy0) = g� ((x; y; x0); y0)� (dy0); (2.5)

where the conditional density functiong� moreover satis�es

g� ((x; y; x0); y0) > 0; for all (x; y); (x0; y0) 2 X � Y: (2.6)

15



2. Partially Observed Markov Models

It follows from (2.5) that, for all (x; y) 2 X � Y, A 2 X and B 2 Y ,

K � ((x; y); A � B) =
Z

B
� � hy; y0i (x; A)� (dy0);

where, for all y; y0 2 Y, � � hy; y0i is a kernel de�ned on(X; X ) by

� � hy; y0i (x; dx0) := Q� ((x; y); dx0) g� ((x; y; x0); y0) : (2.7)

The dynamic of the partially observed bivariate Markov process can be de-
picted as in Figure 2.1.

X k X k+1

Yk+1Yk

X k+2

Yk+2

Q�

g� g�

Q�

g�

Figure 2.1 � Graphical representation of the partially observed bivariate
Markov model.

Remark 2.2.2. Note that, in general, the kernel� � hy; y0i is unnormalized
since � � hy; y0i (x; X) may be di�erent from one. Moreover, we have for all
(x; y; y0) 2 X � Y � Y,

� � hy; y0i (x; X) =
Z

X
Q� ((x; y); dx0) g� ((x; y; x0); y0) > 0; (2.8)

where the positiveness follows from the fact thatQ� ((x; y); �) is a probability
on (X; X ) and Condition (2.6).

In well-speci�ed models, it is assumed that the observationsY1:n are gen-
erated from a processf (X k ; Yk) : k 2 Z+ g, which follows the distribution P� ?

� ?

associated to an unknown parameter� ? 2 � and an unknown initial distri-
bution � ? (usually, � ? is such that, underP� ?

� ?
, f Yk : k 2 Z+ g is a stationary

sequence). To form a consistent estimate of� ? on the basis of the observa-
tions Y1:n only, that is, without access to the hidden processf X k : k 2 Z+ g,
we de�ne the maximum likelihood estimator (MLE) �̂ �;n by

�̂ �;n 2 argmax
� 2 �

L �;n (� );
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2. Partially Observed Markov Models

whereL �;n (� ) is the (conditional) log-likelihood function of the observations
under parameter� with some arbitrary initial distribution � on X � Y, that
is,

L �;n (� ) := ln
Z nY

k=1

Q� ((xk� 1; yk� 1); dxk) g� ((xk� 1; yk� 1; xk); yk) � (dx0dy0)

= ln
Z

� � hy0; y1i � � hy1; y2i � � � � � hyn� 1; yn i (x0; X)� (dx0dy0):

This corresponds to the log of the conditional density ofY1:n given (X 0; Y0)
with the latter integrated according to � . In practice � is often taken as a
Dirac mass at(x; y) with x arbitrarily chosen andy equal to the observation
Y0 when it is available. In this context, a classical way (see, e.g., Leroux
[1992]) to prove the consistency of a maximum-likelihood-type estimator̂� �;n

may be decomposed in the following steps. The �rst step is to show that�̂ �;n

is, with probability tending to one, in a neighborhood of the set

� ? := argmax
� 2 �

~E� ?
�
ln p�;� ? (Y1jY�1 :0)

�
: (2.9)

This formula involves two quantities that have not yet been de�ned since
they may require additional assumptions: �rst, the expectation~E� , which
corresponds to the distribution~P� of a sequencef Yk : k 2 Zg in accordance
with the kernel K � , and second, the densityp�;� ? (�j� ), which shows up when
taking the limit, under ~P� ? , of the ~P� -conditional density of Y1 given its m-
order past, asm goes to in�nity. In many cases, such quantities appear
naturally because the model is ergodic and the normalized log-likelihood
n� 1L �;n (� ) can be approximated by

1
n

nX

k=1

ln p�;� ? (Yk jY�1 :k� 1):

We will provide below some general assumptions, Assumptions (K-1) and (K-
2), that yield precise de�nitions of ~P� and p�;� 0

(�j� ).
The second step consists in proving that the set� ? in (2.9) is related

to the true parameter � ? in an exploitable way. Ideally, one could have
� ? = f � ?g, which would yield the consistency of̂� �;n for estimating � ?. In
this work, our �rst objective is to provide a set of general assumptions which
ensures that� ? is exactly the set of parameters� such that ~P� = ~P� ? . Then
this result guarantees that the estimator converges to the set of parameters
compatible with the true stationary distribution of the observations. If more-
over the modelf ~P� : � 2 � g is identi�able, then this set reduces tof � ?g and
consistency of�̂ �;n directly follows.
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2. Partially Observed Markov Models

To conclude with our general setting, we state the main assumption on
the model and some subsequent notation and de�nitions used throughout
this chapter.

(K-1) For all� 2 � , the transition kernelK � admits a unique invariant probability
� � .

We now introduce some important notation used throughout this chapter.

De�nition 2.2.3. Under Assumption (K-1), we denote by� �
1 and � �

2 the
marginal distributions of � � on X and Y, respectively, and byP� and ~P� the
probability distributions de�ned respectively as follows:

a) P� denotes the extension ofP�
� � on the whole line(X � Y)Z.

b) ~P� is the corresponding projection on the componentYZ.

We also use the symbolsE� and ~E� to denote the expectations corresponding
to P� and ~P� , respectively. Moreover, for all�; � 0 2 � , we write � � � 0 if and
only if ~P� = ~P� 0

. This de�nes an equivalence relation on the parameter set
� and the corresponding equivalence class of� is denoted by[� ] := f � 0 2 � :
� � � 0g.

The equivalence relationship� was introduced by Leroux [1992] as an
alternative to the classical identi�ability condition.

2.2.2 Main Result

Assumption (K-1) is supposed to hold all along this section andP� , ~P�

and � are given in De�nition 2.2.3. Our main result is stated under the
following general assumption.

(K-2) For all � 6= � 0 in � , there exists a probability kernel� �;� 0
on YZ� � X such

that for all A 2 X ,
Z

X
� �;� 0

(Y�1 :0; dx0)� � hY0; Y1i (x0; A)
Z

X
� �;� 0

(Y�1 :0; dx0)� � hY0; Y1i (x0; X)
= � �;� 0

(Y�1 :1; A); ~P� 0
-a.s.

Remark 2.2.4. Note that from Remark 2.2.2, the denominator in the left-
hand side of the last displayed equation is strictly positive, which ensures
that the ratio is well-de�ned.

Remark 2.2.5. Let us give some insight about the formula appearing in
(K-2) and explain why it is important to consider the cases� = � 0 and
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2. Partially Observed Markov Models

� 6= � 0 separately. SinceX is a Borel space, [Kallenberg, 2002, Theorem 6.3]
applies and the conditional distribution ofX 0 given Y�1 :0 under P� de�nes
a probability kernel denoted by� � . We prove in Section 2.5.1 of Section 2.5
that this kernel satis�es, for all A 2 X ,

Z

X
� � (Y�1 :0; dx0)� � hY0; Y1i (x0; A)

Z

X
� � (Y�1 :0; dx0)� � hY0; Y1i (x0; X)

= � � (Y�1 :1; A); ~P� -a.s. (2.10)

Assumption (K-2) asserts that the kernel� �;� 0
satis�es a similar identity

~P� 0
-a.s. for � 0 6= � . It is not necessary at this stage to precise how� �;� 0

shows
up. This is done in Section 2.2.3.

Remark 2.2.6. The denominator in the ratio displayed in (K-2) can be
written as p�;� 0

(Y1jY�1 :0), where, for all y 2 Y and y�1 :0 2 YZ� ,

p�;� 0
(yjy�1 :0) :=

Z

X
� �;� 0

(y�1 :0; dx0)� � hy0; yi (x0; X) (2.11)

is a conditional density with respect to the measure� , since for all (x; y) 2
X � Y,

R
� � hy; y0i (x; X)� (dy0) = 1 .

SinceY is a Borel space, [Kallenberg, 2002, Theorem 6.3] applies and the
conditional distribution of Y1:n givenY�1 :0 de�nes a probability kernel. Since
~P� (Y1:n 2 � ) is dominated by � 
 n , this in turns de�nes a conditional density
with respect to � 
 n , which we denote byp�

n (�j� ), so that for all B 2 Y 
 n ,

~P� (Y1:n 2 B j Y�1 :0) =
Z

B
p�

n (y1:n jY�1 :0)� (dy1) � � � � (dyn ); ~P� -a.s. (2.12)

Let us now state the main result.

Theorem 2.2.7. Assume that (K-1) holds and de�neP� , ~P� and [� ] as in
De�nition 2.2.3. Suppose that Assumption (K-2) holds. For all �; � 0 2 � ,
de�ne p�;� 0

(Y1jY�1 :0) by (2.11) if � 6= � 0 and byp�;� (Y1jY�1 :0) = p�
1(Y1jY�1 :0)

as in (2.12) otherwise. Then for all� ? 2 � , we have

argmax
� 2 �

~E� ?
�
ln p�;� ? (Y1jY�1 :0)

�
= [ � ?]: (2.13)

Before proving Theorem 2.2.7, we �rst extend the de�nition of the con-
ditional density on Y in (2.11) to a conditional density onYn .
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2. Partially Observed Markov Models

De�nition 2.2.8. For every positive integern and � 6= � 0 2 � , de�ne the
function p�;� 0

n (�j� ) on Yn � YZ� by

p�;� 0

n (y1:n jy�1 :0) :=
Z

Xn
� �;� 0

(y�1 :0; dx0)
n� 1Y

k=0

� � hyk ; yk+1 i (xk ; dxk+1 ): (2.14)

Again, it is easy to check that eachp�;� 0

n ( � jy�1 :0) is indeed a density on
Yn . Assumption (K-2) ensures that these density functions moreover satisfy
the successive conditional formula, as for conditional densities, provided that
we restrict ourselves to sequences in a set of~P� 0

-probability one, as stated in
the following lemma.

Lemma 2.2.9. Suppose that Assumption (K-2) holds and letp�;� 0

n (�j� ) be as
de�ned in De�nition 2.2.8. Then for all �; � 0 2 � and n � 2, we have

p�;� 0

n (Y1:n jY�1 :0) = p�;� 0

1 (Yn jY�1 :n� 1)p�;� 0

n� 1(Y1:n� 1jY�1 :0); ~P� 0
-a.s. (2.15)

The proof of this lemma is postponed to Section 2.5.2 in Section 2.5. We
now have all the tools for proving the main result.

Proof of Theorem 2.2.7. Within this proof section, we will drop the sub-
script n and respectively write p�;� 0

(y1:n jy�1 :0) and p� (y1:n jy�1 :0) instead
of p�;� 0

n (y1:n jy�1 :0) and p�
n (y1:n jy�1 :0) when no ambiguity occurs.

For all � 2 � , we have by conditioning onY�1 :0 and by using (2.12),

~E� ?
�
ln p� ? (Y1jY�1 :0)

�
� ~E� ?

�
ln p�;� ? (Y1jY�1 :0)

�

= ~E� ?

�
~E� ?

�
ln

p� ? (Y1jY�1 :0)
p�;� ? (Y1jY�1 :0)

�
�
�
� Y�1 :0

��

= ~E� ?

h
KL

�
p� ?

1 ( � jY�1 :0)


 p�;� ?

1 ( � jY�1 :0)
�i

; (2.16)

whereKL( pkq) denotes the Kullback�Leibler divergence between the densi-
ties p and q. The nonnegativity of the Kullback�Leibler divergence shows
that � ? belongs to the maximizing set on the left-hand side of (2.13). This
implies

argmax
� 2 �

~E� ?
�
ln p�;� ? (Y1jY�1 :0)

�
� [� ?]; (2.17)

where we have used the following lemma.

Lemma 2.2.10. Assume that (K-1) holds and de�ne ~E� and [� ] as in Def-
inition 2.2.3. Suppose that for all� 2 � , G(� ) is a � (Y�1 :1 )-measurable
random variable such that, for all� ? 2 � ,

sup
� 2 �

~E� ? [G(� )] = ~E� ? [G(� ?)] :
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2. Partially Observed Markov Models

Then for all � ? 2 � and � 0 2 [� ?], we have
~E� ? [G(� 0)] = sup

� 2 �

~E� ? [G(� )] :

Proof. Take � ? 2 � and � 0 2 [� ?]. Then we have, for all� 2 � , ~E� ? [G(� )] =
~E� 0

[G(� )], and it follows that
~E� ? [G(� 0)] = ~E� 0

[G(� 0)] = sup
� 2 �

~E� 0
[G(� )] = sup

� 2 �

~E� ? [G(� )] ;

which completes the proof.

The proof of the reverse inclusion of (2.17) is more tricky. Let us take
� 2 � ? such that � 6= � ? and show that it implies � � � ?. By (2.16), we have

~E� ?

h
KL

�
p� ?

1 ( � jY�1 :0)


 p�;� ?

1 ( � jY�1 :0)
�i

= 0:

Consequently,

p� ? (Y1jY�1 :0) = p�;� ? (Y1jY�1 :0); ~P� ? -a.s.

Applying Lemma 2.2.9 and using that~P� ? is shift-invariant, this relation
propagates to alln � 2, so that

p� ? (Y1:n jY�1 :0) = p�;� ? (Y1:n jY�1 :0) ; ~P� ? -a.s. (2.18)

For any measurable functionH : Yn ! R+ , we get

~E� ? [H (Y1:n )] = ~E� ?

�
~E� ?

�
H (Y1:n )

p�;� ? (Y1:n jY�1 :0)
p� ? (Y1:n jY�1 :0)

�
�
�
�Y�1 :0

��

= ~E� ?

� Z
H (y1:n )p�;� ? (y1:n jY�1 :0)� 
 n (dy1:n )

�
;

where the last equality follows from (2.12). Using De�nition 2.2.8 and
Tonelli's theorem, we obtain

~E� ? [H (Y1:n )] = ~E� ?

Z
H (y1:n )

Z
� �;� ? (Y�1 :0; dx0)� � hY0; y1i (x0; dx1)�

n� 1Y

k=1

� � hyk ; yk+1 i (xk ; dxk+1 )� 
 n (dy1:n );

= ~E� ?

Z
� �;� ? (Y�1 :0; dx0)

Z
H (y1:n )� � hY0; y1i (x0; dx1)�

n� 1Y

k=1

� � hyk ; yk+1 i (xk ; dxk+1 )� 
 n (dy1:n );

= ~E� ?

Z
� �;� ? (Y�1 :0; dx0)E�

(x0 ;Y0 ) [H (Y1:n )] ;

= E�
� �;� ? [H (Y1:n )] ;
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where� �;� ? is a probability on X � Y de�ned by

� �;� ? (A � B) := ~E� ?
�
� �;� ? (Y�1 :0; A)1B (Y0)

�
;

for all (A; B ) 2 X � Y . Consequently, for allB 2 Y 
 Z�
+ ,

~P� ? (YZ� � B ) = P�
� �;� ? (XZ+ � (Y � B )) : (2.19)

If we had � � = � �;� ? , then we could conclude that the two shift-invariant
distributions ~P� ? and ~P� are the same and thus� � � ?. Therefore, to complete
the proof, it only remains to show that� � = � �;� ? , which by (K-1) is equivalent
to showing that � �;� ? is an invariant distribution for K � .

Let us now prove this latter fact. Using that ~P� ? is shift-invariant and
then conditioning on Y�1 :0, we have, for any(A; B ) 2 X � Y ,

� �;� ? (A � B) = ~E� ?
�
� �;� ? (Y�1 :1; A)1B (Y1)

�
;

= ~E� ?

Z
� �;� ? (Y�1 :0; y1; A)1B (y1)p� ? (y1jY�1 :0)� (dy1);

= ~E� ?

Z
� �;� ? (Y�1 :0; y1; A)1B (y1)p�;� ? (y1jY�1 :0)� (dy1);

where in the last equality we have used (2.18). Using (K-2) we then get

� �;� ? (A � B)

= ~E� ?

Z
� �;� ? (Y�1 :0; dx0)� � hY0; y1i (x0; dx1)1A (x1)1B (y1)� (dy1);

= ~E� ?

Z
� �;� ? (Y�1 :0; dx0)K � ((x0; Y0); A � B);

= � �;� ? K � (A � B):

Thus, � �;� ? is an invariant distribution for K � , which completes the proof.

2.2.3 Construction of the Kernel � �;� 0
as a Backward

Limit

Again, all along this section, Assumption (K-1) is supposed to hold and
the symbolsP� and ~P� refer to the probabilities introduced in De�nition 2.2.3.
In addition to Assumption (K-1), Theorem 2.2.7 fundamentally relies on
Assumption (K-2). These assumptions ensure the existence of the probability
kernel � �;� 0

that yields the de�nition of p�;� 0

1 (�j� ). We now explain how the
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kernel � �;� 0
may arise as a limit underP� 0

of explicit kernels derived fromK � .
It will generally apply to observation-driven models, treated in Section 2.4,
but also in the more classical case of HMMs, as explained in Section 2.3. A
natural approach is to de�ne the kernel� �;� 0

as the weak limit of the following
ones.

De�nition 2.2.11. Let n be a positive integer. For all� 2 � and x 2 X,
we de�ne the probability kernel � �

x;n on Yn+1 � X by, for all y0:n 2 Yn+1 and
A 2 X ,

� �
x;n (y0:n ; A) :=

Z

Xn � 1 � A

n� 1Y

k=0

� � hyk ; yk+1 i (xk ; dxk+1 )

Z

Xn

n� 1Y

k=0

� � hyk ; yk+1 i (xk ; dxk+1 )

with x0 = x.

We will drop the subscript n when no ambiguity occurs.

It is worth noting that � �
x;n (Y0:n ; �) is the conditional distribution of X n

given Y1:n under P�
(x;Y0 ) . To derive the desired� �;� 0

we take, for a well-chosen
x, the limit of � �

x;n (y0:n ; �) as n ! 1 for a sequencey0:n corresponding to
a path under ~P� 0

. The precise statement is provided in Assumption (K-3)
below, which requires the following de�nition. For all � 2 � and for all
nonnegative measurable functionsf de�ned on X, we set

F �
f :=

�
x 7! � � hy; y0i (x; f ) : (y; y0) 2 Y2

	
:

We can now state the assumption as follows.

(K-3) For all � 6= � 0 2 � , there existx 2 X, a probability kernel� �;� 0
on YZ� �X

and a countable classF of X ! R+ measurable functions such that for all
f 2 F ,

~P� 0
�

8f 0 2 F �
f [ f f g; lim

m!1
� �

x;m (Y� m:0; f 0) = � �;� 0
(Y�1 :0; f 0) < 1

�
= 1:

The next lemma shows that, provided thatF is rich enough, Assump-
tion (K-3) can be directly used to obtain Assumption (K-2). In what follows,
we say that a class ofX ! R functions is separating if, for any two proba-
bility measures� 1 and � 2 on (X; X ), the equality of � 1(f ) and � 2(f ) over f
in the class implies the equality of the two measures.

Lemma 2.2.12. Suppose that Assumption (K-3) holds and thatF is a sep-
arating class of functions containing1X. Then, the kernel� �;� 0

satis�es As-
sumption (K-2).
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2. Partially Observed Markov Models

Proof. Let x 2 X be given in Assumption (K-3). From De�nition 2.2.11, we
may write, for all f 2 F , setting x � m = x,

� �
x;m (Y� m:0; f ) =

Z
f (x0)

� 1Y

k= � m

� � hYk ; Yk+1 i (xk ; dxk+1 )

Z � 1Y

k= � m

� � hYk ; Yk+1 i (xk ; dxk+1 )

and, similarly,

� �
x;m +1 (Y� m:1; f ) =

Z
f (x1)

0Y

k= � m

� � hYk ; Yk+1 i (xk ; dxk+1 )

Z 0Y

k= � m

� � hYk ; Yk+1 i (xk ; dxk+1 )

: (2.20)

Dividing both numerator and denominator of (2.20) by

Z � 1Y

k= � m

� � hYk ; Yk+1 i (xk ; dxk+1 );

which is strictly positive by Remark 2.2.2, then (2.20) can be rewritten as

� �
x;m +1 (Y� m:1; f ) =

� �
x;m

�
Y� m:0; � � hY0; Y1i (�; f )

�

� �
x;m (Y� m:0; � � hY0; Y1i (�; 1X))

: (2.21)

Letting m ! 1 and applying Assumption (K-3), then ~P� 0
-a.s.,

� �;� 0
(Y�1 :1; f ) =

� �;� 0 �
Y�1 :0; � � hY0; Y1i (�; f )

�

� �;� 0 (Y�1 :0; � � hY0; Y1i (�; 1X))
;

=

Z
� �;� 0

(Y�1 :0; dx0) � � hY0; Y1i (x0; f )
Z

� �;� 0
(Y�1 :0; dx0) � � hY0; Y1i (x0; 1X)

:

SinceF is a separating class, the proof is complete.
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2. Partially Observed Markov Models

2.3 Application to Hidden Markov Models

2.3.1 De�nitions and Assumptions

Hidden Markov models belong to a subclass of partially observed Markov
models de�ned as follows.

De�nition 2.3.1. Consider a partially observed and partially dominated
Markov model given in De�nition 2.2.1 with Markov kernelsf K � : � 2 � g.
We will say that this model is a hidden Markov model if the kernelK �

satis�es
K � ((x; y); dx0dy0) = Q� (x; dx0)G� (x0; dy0): (2.22)

Moreover, in this context, we always assume that(X; dX) is a complete sep-
arable metric space andX denotes the associated Borel� -�eld.

In (2.22), Q� and G� are transition kernels onX � X and X � Y , respec-
tively. Since the model is partially dominated, we denote byg� the corre-
sponding Radon�Nikodym derivative of G� (x; �) with respect to the domi-
nating measure� : for all (x; y) 2 X � Y,

dG� (x; �)
d�

(y) = g� (x; y):

One can directly observe that the unnormalized kernel� � hy; y0i de�ned in
(2.7) does no longer depend ony, and in this case, one can write

� � hy; y0i (x; dx0) = � � hy0i (x; dx0) = Q� (x; dx0)g� (x0; y0): (2.23)

The dynamic of hidden Markov process can be depicted as in Figure 2.2.

X k X k+1

Yk+1Yk

X k+2

Yk+2

Q�

g� g�

Q�

g�

Figure 2.2 � Graphical representation of the hidden Markov Model by di-
rected arrows.

For any integer n � 1, � 2 � and sequencey0:n� 1 2 Yn , consider the
unnormalized kernelL � hy0:n� 1i on X � X de�ned by, for all x0 2 X and
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2. Partially Observed Markov Models

A 2 X ,

L � hy0:n� 1i (x0; A) =
Z

� � �
Z "

n� 1Y

k=0

g� (xk ; yk)Q� (xk ; dxk+1 )

#

1A (xn ); (2.24)

so that the MLE �̂ �;n , associated to the observationsY0:n� 1 with an arbitrary
initial distribution � on X is de�ned by

�̂ �;n 2 argmax
� 2 �

� L � hY0:n� 1i 1X:

We now follow the approach taken by Douc and Moulines [2012] in mis-
speci�ed models and show that in the context of well-speci�ed models, the
maximizing set of the asymptotic normalized log-likelihood can be identi�ed
by relying neither on the exponential separation of measures, nor on the rates
of convergence to the equilibrium, but only on the uniqueness of the invariant
probability. We note the following fact which can be used to check (K-1).

Remark 2.3.2. In the HMM context, � � is an invariant distribution of
K � if and only if � �

1 is an invariant distribution of Q� and � � (dxdy) =
� �

1(dx)G� (x; dy).

We illustrate the application of the main result (Theorem 2.2.7) in the
context of HMMs by considering the assumptions of Douc and Moulines
[2012] in the particular case of blocks of size 1 (r = 1). Of course, general
assumptions with arbitrary sizes of blocks could also be used but this com-
plicates signi�cantly the expressions and may con�ne the attention of the
reader to unnecessary technicalities. To keep the discussion simple, we only
consider blocks of size 1, which already covers many cases of interest.

Before listing the main assumptions, we recall the de�nition of a so-called
local Doeblin set(in the particular case wherer = 1) as introduced in [Douc
and Moulines, 2012, De�nition 1].

De�nition 2.3.3. A set C is local Doeblin with respect to the family of
kernelsf Q� : � 2 � g if there exist positive constants� �

C ; � +
C and a family of

probability measuresf � �
C : � 2 � g such that, for any � 2 � , � �

C (C) = 1 ,
and, for any A 2 X and x 2 C,

� �
C � �

C (A) � Q� (x; A \ C) � � +
C � �

C (A):

Consider now the following set of assumptions.

(D-1) There exists a� -�nite measure� on (X; X ) that dominatesQ� (x; �) for all
(x; � ) 2 X � � . Moreover, denotingq� (x; x0) := dQ � (x;�)

d� (x0), we have

q� (x; x0) > 0; for all (x; x0; � ) 2 X � X � � :
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2. Partially Observed Markov Models

(D-2) For all y 2 Y, we havesup
� 2 �

sup
x2 X

g� (x; y) < 1 .

(D-3) (a) For all � ? 2 � , there exists a setK 2 Y with ~P� ? (Y0 2 K ) > 2=3
such that for all� > 0, there exists a local Doeblin setC 2 X with
respect tof Q� : � 2 � g satisfying, for all� 2 � and ally 2 K ,

sup
x2 Cc

g� (x; y) � � sup
x2 X

g� (x; y) < 1 : (2.25)

(b) For all � ? 2 � , there exists a setD 2 X satisfying

inf
� 2 �

inf
x2 D

Q� (x; D) > 0 and ~E� ?

�
ln� inf

� 2 �
inf
x2 D

g� (x; Y0)
�

< 1 :

(D-4) For all � ? 2 � , ~E� ?

�
ln+ sup

� 2 �
sup
x2 X

g� (x; Y0)
�

< 1 .

(D-5) There existsp 2 Z+ such that for anyx 2 X and n � p, the function
� 7! L � hY0:n i (x; X) is ~P� ? -a.s. continuous on� .

Remark 2.3.4. Under (D-1), for all � 2 � , the Markov kernel Q� is � -
irreducible, so that, using Remark 2.3.2, (K-1) reduces to the existence of a
stationary distribution for Q� .

Remark 2.3.5. Assumptions (D-3), (D-4) and (D-5) and (2.6) in De�ni-
tion 2.2.1 correspond to (A1), (A2) and (A3) in Douc and Moulines [2012],
where the blocks are of sizer = 1.

Remark 2.3.6. Assumption (D-4) implies (D-2) up to a modi�cation of
g� (x; y) on � -negligible set ofy 2 Y for all x 2 X. Indeed, (D-4) implies
that sup� supx g� (x; Y0) < 1 , ~P� ? -a.s., and it can be shown that under (D-1),
� � ?

2 = � � ? (X � � ) is equivalent to � for all � 2 � .

In these models, the kernel� �
x;n introduced in De�nition 2.2.11 writes

� �
x;n (y0:n ; A) =

Z

Xn � 1 � A

n� 1Y

k=0

Q� (xk ; dxk+1 )g� (xk+1 ; yk+1 )

Z

Xn

n� 1Y

k=0

Q� (xk ; dxk+1 )g� (xk+1 ; yk+1 )

with x0 = x:

The distribution � �
x;n (Y0:n ; �) is usually referred to as the�lter distribution .

Proposition 2.3.7 (below) can be derived from [Douc and Moulines, 2012,
Proposition 1]. For blocks of size1, the initial distributions in Douc and
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Moulines [2012] are constrained to belong to the setM � ? (D) of all probability
distributions � de�ned on (X; X ) such that

~E� ?

�
ln� inf

� 2 �

Z
� (dx)g� (x; Y0)Q� (x; D)

�
< 1 ; (2.26)

whereD 2 X is the set appearing in (D-3). It turns out that under ( D-3)-(b),
all probability distributions � on (X; X ) satisfy (2.26), so the constraint on
the initial distribution vanishes in our case.

Proposition 2.3.7. Assume (D-3) and (D-4). Then the following assertions
hold:

(i) For any �; � ? 2 � , there exists a probability kernel� �;� ? on YZ� � X
such that for anyx 2 X,

~P� ?

�
for all boundedf ; lim

m!1
� �

x;m (Y� m:0; f ) = � �;� ? (Y�1 :0; f )
�

= 1:

(ii) For any �; � ? 2 � and probability measure� on (X; X ),

lim
n!1

n� 1 ln � L � hY0:n� 1i 1X = `(�; � ?); ~P� ? -a.s.;

where

`(�; � ?) := ~E� ?

�
ln

Z
� �;� ? (Y�1 :0; dx0)� � hY1i (x0; X)

�
: (2.27)

2.3.2 Equivalence-class Consistency

We can now state the main result on the consistency of the MLE for
HMMs.

Theorem 2.3.8. Assume that (K-1) holds and de�neP� , ~P� and the equiv-
alence class[� ] as in De�nition 2.2.3. Moreover, suppose that(� ; �) is a
compact metric space and that Assumptions (D-1)�( D-5) hold. Then, for any
probability measure� on (X; X ),

lim
n!1

�( �̂ �;n ; [� ?]) = 0 ; ~P� ? -a.s.

Proof. According to [Douc and Moulines, 2012, Theorem 2],� 7! `(�; � ?)
de�ned by (2.27) is upper semi-continuous (so that� ? := argmax� 2 � `(�; � ?)
is non-empty) and moreover

lim
n!1

�( �̂ �;n ; � ?) = 0 ; ~P� ? -a.s.
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2. Partially Observed Markov Models

The proof then follows from Theorem 2.2.7, provided that̀ (�; � ?) can be
expressed as in the statement of Theorem 2.2.7 and that (K-2) is satis�ed.
First note that, for � 6= � ?, the integral appearing within the logarithm in
(2.27) corresponds top�;� ? (Y1jY�1 :0) with p�;� ? as de�ned in (2.11).

Let F be a countable separating class of nonnegative bounded functions
containing 1X, see [Parthasarathy, 2005, Theorem 6.6, Chapter 6] for the
existence of such a class. By Lemma 2.2.12, we check (K-2) by showing that
(K-3) is satis�ed. Condition (D-2) and (2.23) imply that for all bounded
functions f , F �

f is a class of bounded functions, and this in turn implies (K-
3) by applying Proposition 2.3.7-(i) to all x. Thus, (K-2) is satis�ed, and for
� 6= � ?, `(�; � ?) can be expressed as in the statement of Theorem 2.2.7. To
complete the proof, it only remains to consider the case where� = � ? and to
show that `(� ?; � ?) can be written as

`(� ?; � ?) = ~E� ?
�
ln p� ?

1 (Y1jY�1 :0)
�

; (2.28)

wherep� ?
1 (�j� ) is the conditional density given in (2.12). According to [Barron,

1985, Theorem 1], we have

~E� ?
�
ln p� ?

1 (Y1jY�1 :0)
�

= lim
n!1

n� 1 ln � � ?
1 L � ? hY0:n� 1i 1X; ~P� ? -a.s. (2.29)

On the other hand, it follows from Proposition 2.3.7-(ii) that for any� 2 �
and any initial probability distribution � on (X; X ),

lim
n!1

n� 1 ln � L � hY0:n� 1i 1X = `(�; � ?); ~P� ? -a.s.;

where `(�; � ?) is deterministic and is de�ned by (2.27). In particular, for
� = � � ?

1 and for � = � ?, it holds that

lim
n!1

n� 1 ln � � ?
1 L � ? hY0:n� 1i 1X = `(� ?; � ?); ~P� ? -a.s. (2.30)

From (2.29) and (2.30) and by the uniqueness of the limit, (2.28) follows and
the proof is complete.

2.3.3 A Polynomially Ergodic Example

As an application of Theorem 2.3.8, we consider the HMM model de-
scribed in Example 2.1.1. In addition to the assumptions introduced in Ex-
ample 2.1.1, we assume thatU0 and V0 are independent and centered and
they both admit densities with respect to the Lebesgue measure� over R,
denoted byr and h, respectively, and

(E-1) the densityr satis�es:
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2. Partially Observed Markov Models

(a) r is continuous and positive overR,

(b) there exists� > 2 such thatr (u)juj � +1 is bounded away from1 as
juj ! 1 and from 0 asu ! 1 ,

(E-2) the densityh satis�es:

(a) h is continuous and positive overR, and lim jvj!1 h(v) = 0 ,

(b) there exist� 2 [1; � � 1) (where� is given in (E-1)) andb; c > 0
such thatE(jV0j � ) < 1 andh(v) � be� cjvj � for all v 2 R.

For example, a symmetric Pareto distribution with a parameter strictly larger
than 2 satis�es (E-1) and provided that � > 3, (E-2) holds with a centered
Gaussian distribution. The model is parameterized by� = ( m; a) 2 � :=
[m; m] � [a; a] where 0 < m < m and a < a. In this model, the Markov
transition Q� of f X k : k 2 Z+ g has a transition densityq� with respect to
the dominating measure� (dx) = � (dx) + � 0(dx), which can be written as
follows: for all (x; x0) 2 R2

+ ,

q� (x; x0) = r (x0 � x + m)1f x0 > 0g +
� Z m� x

�1
r (u)du

�
1f x0 = 0g: (2.31)

Moreover, (2.1) implies

g� (x; y) = h(y � ax): (2.32)

Following Jarner and Roberts [2002], we have the following lemma.

Lemma 2.3.9. Assume (E-1) and (E-2). For all � 2 � , the Markov ker-
nel Q� is not geometrically ergodic. Moreover,Q� is polynomially ergodic
and its (unique) stationary distribution � �

1, de�ned on X = R+ , satis�esR
� �

1(dx)x � < 1 , for all � 2 [1; � � 1).

Proof. The proof of this lemma is postponed to Section 2.5.3 in Section 2.5.

Proposition 2.3.10. Consider the HMM of Example 2.1.1 under Assump-
tions (E-1) and (E-2). Then (K-1) holds and we de�neP� , ~P� and the equiv-
alence class[� ] as in De�nition 2.2.3. Moreover, for any probability measure
� , the MLE �̂ �;n is equivalence-class consistent, that is, for any� ? 2 � ,

lim
n!1

�( �̂ �;n ; [� ?]) = 0 ; ~P� ? -a.s.

Proof. To apply Theorem 2.3.8, we need to check (K-1) and (D-1)�( D-5).
First observe that Assumption (K-1) immediately follows from Remark 2.3.2
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and Lemma 2.3.9, and Assumptions (D-1) and (D-2) directly follow from the
positiveness of the densityr and the boundedness of the densityh, respec-
tively. Now, using (E-1)-(a), it can be easily shown that all compact sets
are local Doeblin sets and this in turn implies, vialim jx j!1 h(x) = 0 , that
Assumption (D-3)-(a) is satis�ed. We now check (D-3)-(b). By (E-1)-(a), we
have for all compact setsD, inf f r (x0 � x + m) : (x; x0; m) 2 D 2 � [m; m]g >
0, which by (2.31) implies

inf
� 2 �

inf
x2 D

Q� (x; D) > 0:

To obtain (D-3)-(b), it thus remains to show

~E� ?

�
ln� inf

� 2 �
inf
x2 D

g� (x; Y0)
�

< 1 :

By (E-2)-(b), there exist positive constantsb and c such that h(v) � be� cjvj � .
Plugging this into (2.32) yields

~E� ?

�
ln� inf

� 2 �
inf
x2 D

g� (x; Y0)
�

� ~E� ?

"

j ln bj + c
�

jY0j + asup
x2 D

jxj
� �

#

= E� ?

"

j ln bj + c
�

jaX0 + V0j + asup
x2 D

jxj
� �

#

< 1 ;

where the �niteness follows from (E-2)-(b) and Lemma 2.3.9. Finally, (D-3)
is satis�ed. (D-4) is checked by writing

~E� ?

�
ln+ sup

� 2 �
sup
x2 X

g� (x; Y0)
�

� ln+ sup
x2 R

h(x) < 1 :

To obtain (D-5), we show by induction onn that for all n � 1, y0:n� 1 2 Rn

and x0 2 R+ , the function � 7! L � hy0:n� 1i (x0; X) is continuous on� . The
case wheren = 1 is obvious sinceL � hy0i (x0; X) = g� (x0; y0) = h(y0 � ax0).
We next assume the induction hypothesis onn and note that

L � hy0:n i (x0; X) = g� (x0; y0)
Z

� (dx1)q� (x0; x1)L � hy1:n i (x1; X):

The continuity of � 7! g� (x0; y0) follows from (2.32) and the continuity of
h. Similarly, the continuity of � 7! q� (x0; x1) follows from (2.31) and the
continuity of r . Moreover,� 7! L � hy1:n i (x1; X) is continuous by the induction
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assumption. The continuity of � 7!
R

� (dx1)q� (x0; x1)L � hy1:n i (x1; X) then
follows from the Lebesgue convergence theorem provided that

Z
� (dx1) sup

� 2 �
q� (x0; x1)L � hy1:n i (x1; X) < 1 (2.33)

holds. Note further that by the expression ofq� (x0; x1) given in (2.31) and
the tail assumption (E-1)-(b), we obtain for all x0 2 X,

Z
� (dx1) sup

� 2 �
q� (x0; x1) < 1 :

Combining with that L � hy1:n i (x1; X) � (supx2 R h(x))n yields (2.33). Finally,
we have (D-5), and thus Theorem 2.3.8 holds under (E-1) and (E-2).

2.4 Application to Observation-driven Models

Observation-driven models are a subclass of partially dominated and par-
tially observed Markov models.

We split our study of the observation-driven model into several parts.
Speci�c de�nitions and notation are introduced in Section 2.4.1. Then we
provide su�cient conditions that allow to apply our general result Theo-
rem 2.2.7, that is,� ? = [ � ?]. This is done in Section 2.4.2.

2.4.1 De�nitions and Notation

Observation-driven models are formally de�ned as follows.

De�nition 2.4.1. Consider a partially observed and partially dominated
Markov model given in De�nition 2.2.1 with Markov kernels f K � : � 2
� g. We say that this model is an observation-driven model if the kernelK �

satis�es
K � ((x; y); dx0dy0) = �  �

y (x)(dx0)G� (x0; dy0); (2.34)

where � a denotes the Dirac mass at pointa, G� is a probability kernel on
X�Y and f (x; y) 7!  �

y(x) : � 2 � g is a family of measurable functions from
(X � Y; X 
 Y ) to (X; X ). Moreover, in this context, we always assume that
(X; dX) is a complete separable metric space andX denotes the associated
Borel � -�eld.

Note that a Markov chain f (X k ; Yk) : k 2 Z+ g with probability kernel
given by (2.34) can be equivalently de�ned by the following recursions:

X k+1 =  �
Yk

(X k);

Yk+1 jX 0:k+1 ; Y0:k � G� (X k+1 ; �)
(2.35)
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and can be graphically represented as in Figure 2.3.

X k X k+1

Yk+1Yk

X k+2

Yk+2

 �

G�

Figure 2.3 � Graphical representation of the observation-driven model.

The most celebrated example is the GARCH(1; 1) process, whereG� (x; �)
is a centered (say Gaussian) distribution with variancex and  �

y(x) is an
a�ne function of x and y2.

As a special case of De�nition 2.2.1, for allx 2 X, G� (x; �) is domi-
nated by some� -�nite measure � on (Y; Y) and we denote byg� (x; �) its
Radon�Nikodym derivative, g� (x; y) = dG� (x;�)

d� (y). A dominated parametric
observation-driven model is thus de�ned by the collectionf (g� ;  � ) : � 2 � g.
Moreover, (2.6) may be rewritten in this case: for all(x; y) 2 X � Y and for
all � 2 � ,

g� (x; y) > 0:

Under (K-1), we assume that the model is well-speci�ed, that is, the obser-
vation sample(Y1; : : : ; Yn ) is distributed according to ~P� ? for some unknown
parameter � ?. The inference of� ? is based on the conditional likelihood of
(Y1; : : : ; Yn ) given X 1 = x for an arbitrary x 2 X. The corresponding density
function with respect to � 
 n is, under parameter� ,

y1:n 7!
nY

k=1

g�
�
 � hy1:k� 1i (x); yk

�
; (2.36)

where, for any vectory1:p = ( y1; : : : ; yp) 2 Yp,  � hy1:pi is the X ! X function
de�ned as the successive composition of �

y1
,  �

y2
, ..., and  �

yp
,

 � hy1:pi =  �
yp

�  �
yp� 1

� � � � �  �
y1

; (2.37)

with the convention  � hys:t i (x) = x for s > t . Then the corresponding
(conditional) MLE �̂ x;n of the parameter� is de�ned by

�̂ x;n 2 argmax
� 2 �

L�
x;n hY1:n i ; (2.38)
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where

L�
x;n hy1:n i := n� 1 ln

 
nY

k=1

g�
�
 � hy1:k� 1i (x); yk

�
!

: (2.39)

We will provide simple conditions for the consistency of̂� x;n in the sense
that, with probability tending to one, for a well-chosenx, �̂ x;n belongs to a
neighborhood of the equivalence class[� ?] of � ?, as given by De�nition 2.2.3.

2.4.2 Identi�ability

Let us consider the following assumptions.

(C-1) For all � 6= � ? 2 � , there existx 2 X and a measurable function �;� ? h�i
de�ned onYZ� such that

lim
m!1

 � hY� m:0i (x) =  �;� ? hY�1 :0i ; ~P� ? -a.s. (2.40)

(C-2) For all� 2 � andy 2 Y, the functionx 7! g� (x; y) is continuous onX.

(C-3) For all� 2 � andy 2 Y, the functionx 7!  �
y(x) is continuous onX.

In observation-driven models, the kernel� � de�ned in (2.7) reads

� � hy; y0i (x; dx0) = g� (x0; y0)�  �
y (x)(dx0)

= g�
�
 �

y(x); y0
�

�  �
y (x)(dx0); (2.41)

and the probability kernel � �
x;n in De�nition 2.2.11 reads, for all x 2 X and

y0:n 2 Yn+1 ,
� �

x;n (y0:n ; �) = �  � hy0:n � 1 i (x) (2.42)

(the Dirac point mass at  � hy0:n� 1i (x)). Using these expressions, we get the
following result which is a special case of Theorem 2.2.7.

Theorem 2.4.2. Assume that (K-1) holds in the observation-driven model
setting and de�ne P� , ~P� and [� ] as in De�nition 2.2.3. Suppose that As-
sumptions (C-1), (C-2) and (C-3) hold and de�ne p�;� ? (�j� ) by setting, for
~P� ? -a.e. y�1 :0 2 YZ� ,

p�;� ? (y1 j y�1 :0) =

(
g�

�
 �;� ? hy�1 :0i ; y1

�
if � 6= � ?,

p�
1(y1 j y�1 :0) as de�ned by (2.12) otherwise.

(2.43)

Then, for all � ? 2 � , we have

argmax
� 2 �

~E� ?
�
ln p�;� ? (Y1jY�1 :0)

�
= [ � ?]: (2.44)
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Proof. We apply Theorem 2.2.7. It is thus su�cient to show that (C-1), (C-2)
and (C-3) implies (K-2) with

� �;� ? (y�1 :0; �) = �  �;� ? hy�1 :� 1 i ; for all y�1 :0 2 YZ� ; (2.45)

and that for � 6= � ?, the conditional density p�;� ? de�ned by (2.11) satis�es

p�;� ? (yjY�1 :0) = g�
�
 �;� ? hY�1 :0i ; y

�
; ~P� ? -a.s. (2.46)

By Lemma 2.2.12, it is su�cient to prove that Assumption (K-3) holds for
the kernel� �;� ? de�ned above. Denote byC(X) the set of continuous functions
on X, and by Cb(X) the set of bounded functions inC(X). By [Parthasarathy,
2005, Theorem 6.6, Chapter 6], there is a countable and separating subclass
F of nonnegative functions inCb(X) such that 1X 2 F . Now, let us take
�; � ? 2 � and f 2 F . Then, by (C-2), (C-3) and (2.41), we have

F �
f =

�
x 7! � � hy; y0i (x; f ) : (y; y0) 2 Y2

	
� C (X):

By (2.42), (C-1) and (2.45), we obtain (K-3) with x chosen as in (C-1).
To complete, we need to show (2.46). Note that (2.45) together

with (2.41) and the usual de�nition (2.11) of p�;� ? yields

p�;� ? (yjy�1 :0) = g�
�
 �

y0

�
 �;� ? hy�1 :� 1i

�
; y

�
:

By Assumption (C-3) and the de�nition of  �;� ? h�i in (C-1), we get (2.46).

2.4.3 Examples

In the context of observation-driven time series, easy-to-check conditions
are derived in Douc et al. [2015] in order to establish the convergence of the
MLE �̂ x;n de�ned by (2.38) to the maximizing set of the asymptotic normal-
ized log-likelihood. It turns out that the conditions of [Douc et al., 2015,
Theorem 1] also imply the conditions of Theorem 2.4.2. More precisely, the
assumptions (B-2) and (B-3) of [Douc et al., 2015, Theorem 1] are stronger
than (C-2) and (C-3) used in Theorem 2.4.2 above, and it is shown that the
assumptions of [Douc et al., 2015, Theorem 1] imply (C-1) (see the proof
of Lemma 2 in Section 6.3 of Douc et al. [2015]). Moreover, the conditions
of Theorem 1 are shown to be satis�ed in the context of Examples 2.1.2
and 2.1.3 (see [Douc et al., 2015, Theorem 3 and Theorem 4]), provided that
� in (2.38) is a compact metric space such that:

1. in the case of Example 2.1.2, all� = ( !; a; b; r ) 2 � satisfy rb + a < 1;

2. in the case of Example 2.1.3, all� = (  ; ! ; A ; b) 2 � are such that the
spectral radius ofA + b T is strictly less than 1.
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Under these assumptions, we conclude that the MLE is equivalence-class
consistent for both examples, which up to our best knowledge had not been
proven so far.

2.5 Postponed Proofs

2.5.1 Proof of Eq. (2.10)

Let � 2 � . Recall that in Remark 2.2.5,� � is de�ned as the probability
kernel of the conditional distribution of X 0 given Y�1 :0 under P� , that is, for
all A 2 X ,

� � (Y�1 :0; A) = P� (X 0 2 A j Y�1 :0) ; ~P� -a.s.

Conditioning on X 0; Y0 and using the de�nition of � � in (2.7), we get that,
for all A 2 X ; B 2 Y and C 2 Y 
 Z� ,

P� (X 1 2 A; Y1 2 B; Y�1 :0 2 C)

= E�

� Z

B
� � hY0; y1i (X 0; A)1C (Y�1 :0)� (dy1)

�

= ~E�

� Z

X� B
� � (Y�1 :0; dx0)� � hY0; y1i (x0; A)1C (Y�1 :0)� (dy1)

�
: (2.47)

Let us denote

�̂ � (Y�1 :0; y1; A) =

R
� � (Y�1 :0; dx0)� � hY0; y1i (x0; A)

R
� � (Y�1 :0; dx0)� � hY0; y1i (x0; X)

;

which is always de�ned since the denominator does not vanish by Re-
mark 2.2.2. With this notation, we deduce from (2.47) that

P� (X 1 2 A; Y1 2 B; Y�1 :0 2 C)

= ~E�

" Z

B
�̂ � (Y�1 :0; y1; A)

� Z
� � (Y�1 :0; dx0)� � hY0; y1i (x0; X)

�

1C (Y�1 :0)� (dy1)

#

:

This can be more compactly written as

P� (X 1 2 A; Y1 2 B; Y�1 :0 2 C) = ~E�

" Z
�̂ � (Y�1 :0; y1; A)

1B (y1)1C (Y�1 :0)� � (Y�1 :0; dx0)� � hY0; y1i (x0; X)� (dy1)

#

: (2.48)
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Observe that (2.47) withA = X provides a way to write ~E� [g(Y�1 :0; Y1)] for
g = 1C� B that can be extended to any nonnegative measurable functiong
de�ned on YZ� � Y as

~E� [g(Y�1 :0; Y1)]

= ~E�

� Z
g(Y�1 :0; y1)� � (Y�1 :0; dx0)� � hY0; y1i (x0; X)� (dy1)

�
:

Now, we observe that the right-hand side of (2.48) can be interpreted
as the right-hand side of the previous display withg(Y�1 :0; y1) =
�̂ � (Y�1 :0; y1; A)1B (y1)1C (Y�1 :0). Hence, we conclude that, for allA 2 X
and C 2 Y 
 Z� ,

P� (X 1 2 A; Y1 2 B; Y�1 :0 2 C) = E�

"

�̂ � (Y�1 :0; Y1; A)1B (Y1)1C (Y�1 :0)

#

:

Notice that �̂ � (Y�1 :0; Y1; A) precisely is the probability kernel on�
YZ� � Y

�
� X appearing on the left-hand side of (2.10). The last display

implies that this probability kernel is the conditional distribution of X 1 given
Y�1 :1 under P� , which completes the proof of (2.10).

2.5.2 Proof of Lemma 2.2.9

First observe that, by induction on n, having (2.15) for all n � 2 is
equivalent to having, for all n � 2,

p�;� ? (Y1:n jY�1 :0)

= p�;� ? (Yn jY�1 :n� 1)p�;� ? (Yn� 1jY�1 :n� 2) � � � p�;� ? (Y1jY�1 :0); ~P� ? -a.s.;

which, using that ~P� ? is shift-invariant, is in turn equivalent to having that,
for all n � 2,

p�;� ? (Y1:n jY�1 :0) = p�;� ? (Y2:n jY�1 :1)p�;� ? (Y1jY�1 :0); ~P� ? -a.s. (2.49)

Thus to conclude the proof, we only need to show that (2.49) holds for all
n � 2. By De�nition 2.2.8, we have, for all n � 2 and y�1 :n 2 YZ� ,

p�;� ? (y2:n jy�1 :1)p�;� ? (y1jy�1 :0)

=
Z

� �;� ? (y�1 :1; dx1)p�;� ? (y1jy�1 :0)
n� 1Y

k=1

� � hyk ; yk+1 i (xk ; dxk+1 ):
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Using (K-2) we now get, for alln � 2,

p�;� ? (Y2:n jY�1 :1)p�;� ? (Y1jY�1 :0)

=
Z

� �;� ? (Y�1 :0; dx0)
n� 1Y

k=0

� � hYk ; Yk+1 i (xk ; dxk+1 ); ~P� ? -a.s.

We conclude (2.49) by observing that, according to De�nition 2.2.8, the
second line of the last display isp�;� ? (Y1:n jY�1 :0).

2.5.3 Proof of Lemma 2.3.9

Let � 2 [1; � � 1). Since 1 + � < � and by (E-1)-(b), we obtain
E

�
(U+

0 )1+ �
�

< 1 . Combining this with E[U0 � m] = � m < 0, we may
apply [Jarner and Roberts, 2002, Proposition 5.1] so that the Markov kernel
Q� is polynomially ergodic and thus admits a unique stationary distribution
� �

1, which is well-de�ned onX = R+ . Moreover, [Jarner and Roberts, 2002,
Proposition 5.1] also shows that there exist a �nite intervalC = [0; x0] and
some constants%; %0 2 (0; 1 ) such that

Q� V � V � %W+ %01C ;

whereV(x) = (1+ x)1+ � and W(x) = (1+ x)� . Applying [Meyn and Tweedie,
1993, Theorem 14.0.1] yields

Z
� �

1(dx)x � � � �
1W < 1 :

It remains to show that the kernel Q� is not geometrically ergodic for all
� 2 � and this will be done by contradiction.

Now suppose on the contrary that the kernelQ� is geometrically ergodic
for some� 2 � . Since the singletonf 0g is an accessible atom (forQ� ), then
there exists some� > 1 such that

1X

k=0

� k
�
�(Q� )k (0; f 0g) � � �

1 (f 0g)
�
� < 1 :

Hence, the atom f 0g is geometrically ergodic as de�ned in [Meyn and
Tweedie, 1993, Section 15.1.3]. Applying [Meyn and Tweedie, 1993, The-
orem 15.1.5], then there exists some� > 1 such that E0[� � 0 ] < 1 , where
� 0 = inf f n � 1 : X n = 0g is the �rst return time to f 0g.
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Recall that the i.i.d. sequencef Uk : k 2 Z+ g is linked to f X k : k 2 Z+ g
through (2.1), and note that E0 [� � 0 ] = E

�
� � (0)

�
, where we have set for all

u 2 R,

� (u) := inf

(

n � 1 :
nX

k=1

(Uk � m) < u

)

:

Now, denote

~� (u) := inf

(

n � 1 :
nX

k=1

(Uk+1 � m) < u

)

:

To arrive at the contradiction, it is �nally su�cient to show that for all � > 1,
E

�
� � (0)

�
= 1 . Actually, we will show that there exists a constant > 0 such

that
lim inf

u!1
� � u E

�
� � (� u+ m)

�
> 0: (2.50)

This will indeed imply E
�
� � (0)

�
= 1 by writing

E
�
� � (0)

�
� E

�
� � (0) 1f U1 � mg

�
= E

�
� 1+~� (� U1+ m)1f U1 � mg

�

= E
� Z 1

m
� 1+~� (� u+ m)r (u)du

�
= �

Z 1

m
E

�
� � (� u+ m)

�
r (u)du; (2.51)

where the last equality follows from� d= ~� . Provided that (2.50) holds, the
right-hand side of (2.51) is in�nite sincer (u) & u� � � 1 asu ! 1 by (E-1)-(b).

We now turn to the proof of (2.50). By Markov's inequality, we have for
any  > 0,

� � u E
�
� � (� u+ m)

�
� P(� (� u + m) > u ) : (2.52)

Now, let M n =
P n

k=1 Ui , n � 1, and note that for all nonnegativeu,
��

inf
1� k� u

M k

�
� um � � u + m

�
�

�
inf

1� k� u
(M k � km) � � u + m

�

= f � (� u + m) > u g: (2.53)

Moreover, sincef Uk : k 2 Z �
+ g is i.i.d. and centered, Doob's maximal

inequality implies, for all ~ > 0,

P
�

inf
1� k� u

M k < � ~
�

� P
�

sup
1� k� u

jM k j > ~
�

�
E

�
jM bu cj

�

~
�

bu cE [jU1j]
~

: (2.54)
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Now, pick  > 0 su�ciently small so that  E [jU1j] =(1 � m ) < 1. Observe
that for this  , ~ = (1 � m )u � m is positive for u su�ciently large, so that
combining (2.54) with (2.53) and (2.52) yields

lim inf
u!1

� � u E
�
� � (� u+ m)

�
� 1 � lim sup

u!1

bu cE [jU1j]
(1 � m )u � m

= 1 �
 E [jU1j]
1 � m

> 0:

This shows (2.50) and the proof is complete.
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Chapter 3

Consistency of the MLE for the
Class of Fully Dominated Markov
Chains

Summary. In this chapter, we investigate the consistency of the max-
imum likelihood estimator (MLE) for the class of fully dominated partially
observed Markov models (PMMs). Following the approach by Douc and
Moulines [2012] as to derive the convergence of the MLE to the minimiz-
ing set of the relative entropy rate in misspeci�ed hidden Markov models
(HMMs), under mild su�cient conditions, the convergence of the MLE for
this class is established. This result is obtained, regardless of whether or
not the model is well speci�ed, as a byproduct of the convergence of the
block-type MLE of some likelihood kernel. Moreover, when the model is well
speci�ed, following Douc et al. [2014], under these same conditions the iden-
ti�ability is also obtained, establishing the equivalence-class consistency of
the MLE.

3.1 Introduction

Maximum likelihood method is widely used for identifying a parametric
model of a time series from a sample of observations. When the studied
model is well-speci�ed, it is of prime interest to obtain the consistency of the
estimator, namely, its convergence to the true parameter, say� ?, as the sam-
ple size of the observations goes to in�nity. The proof toward this property
usually involves two important steps: 1) the maximum likelihood estimator
(MLE) converges to the maximizing set, say� ?, of the asymptotic normal-
ized log-likelihood, and 2) this maximizing set� ? is indeed the singleton set
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3. Fully Dominated and Partially Observed Markov Models

of the true parameter � ?. Identifying the maximizing set � ? in the second
step is usually referred to as solving theidenti�ability problem. This task
can actually be split in two sub-problems, that is, 2.1) showing that any
parameter in � ? yields the same distribution for the observations as for the
true parameter, and 2.2) showing that for a su�ciently large sample size, the
set of such parameters reduces to� ?. Problem 2.2 can be hard to solve, for
example, for the models that belong to the class of hidden Markov models
(HMMs), see Allman et al. [2009], Gassiat et al. [2016] and the references
therein for recent advances in the case of HMMs. Nevertheless, Problem 2.1
can be handled independently, and with Step 1 above, this directly yields
that the MLE is consistent in a weakened sense that the estimator converges
to the set of all the parameters associated to the same distribution as the
one of the observed sample. The consistency of this type, according Leroux
[1992], is referred to asequivalence-class consistency.

In chapter, we investigate problem in Step 1 and Problem 2.1 together,
that is, deriving the equivalence-class consistency of the MLE under a general
framework of time series models, namely, the class of fully dominated PMMs.
Many HMMs developed by Baum and coworkers (see Cappé et al. [2005] and
the inferences therein for a list of examples and a comprehensive account
on HMMs), Markov switching models (Hamilton [1988, 1989]) and many of
Markov chains in random environment introduced by Cogburn [1980] and
Bourgin and Cogburn [1981], for example, are members of this class (see also
Pieczynski [2003] or Ephraim and Mark [2012] for other variants).

Formulating the convergence of the MLE in Step 1 is carried out by
relying on the approach employed by Douc and Moulines [2012] as to derive
the convergence of the MLE to the minimizing set of the relative entropy
rate in misspeci�ed HMMs. This approach consists in establishing a key
property, namely, the exponential forgetting of the �ltering distribution, by
using coupling method originated by Kleptsyna and Veretennikov [2008] and
further re�ned by Douc et al. [2009]. When the forgetting of the �ltering
distribution is achieved, together with the assumption that the observation
process is stationary and ergodic, then the normalized log-likelihood can
be approximated by an appropriately de�ned stationary version of it. Then
applying the results in classical ergodic theory, the latter is shown to converge
to a limit of functional of the parameter, say`(� ), where� is the parameter. It
then implies by using standard argument (see, for instance, Pfanzagl [1969])
that the MLE of the normalized log-likelihood converges almost surely to a
subset � ? of parameters at which the limit `(� ) is maximized. Using this
same technique, meanwhile, we obtain an intermediary result showing that
the block-type MLE converges to a maximizing set in a similar sense as the
classical MLE, regardless of whether or not the models are well-speci�ed.
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These results are shown under conditions similar to the conditions derived
in Douc and Moulines [2012].

To complete, we solve Problem 2.1 by applying the general result derived
in Douc et al. [2014] under the general framework of PMMs. Under these
same assumptions, the equivalence-class consistency of the MLE for the class
fully dominated PMMs is established.

The organization of this chapter is as follows. In Section 3.2, we establish
the convergence of the MLE for the block-type likelihood function. We then
apply this result in Section 3.3 to derive the consistency of the MLE for
the class of fully dominated PMMs. Finally, the postponed proofs and some
useful lemmas are gathered in Section 3.4.

3.2 Consistency of the Block-type Maximum
Likelihood Estimators

3.2.1 Notation and De�nitions

Let us �rst recall some notation pertaining to transition kernels in mea-
sure theory. LetL be a (possibly unnormalized) transition kernel de�ned on
a measurable space(S; S), that is,

� for all s 2 S, L(s; �) is a nonnegative measure on(S; S) and

� for all A 2 S, s 7! L(s; A) is a measurable function.

Let f be a (nonnegative) measurable function from(S; X ) to (R; B(R)), where
B(R) denotes the Borel� -�eld on R, and let � be a� -�nite positive measure
on (S; S). The transition kernel L acts on the functionf and the measure�
via

Lf (s) = L(s; f ) :=
Z

L(s; ds0)f (s0);

�L (A) = �L 1A :=
Z

� (dx)L(s; A):

Moreover, if L1 and L2 are two transition kernels on(S; S), then the kernel
application L1L2 also de�nes a transition kernel on(S; S) and is given by, for
any s 2 S and A 2 S,

L1L2(s; A) :=
Z

L1(s; ds0)L2(s0; A):

Now consider the following setting. Let(X; X ) and (Z; Z ) be two Borel
spaces and� denote a parameter space, which throughout this chapter is
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moreover assumed to be a compact metric space equipped with the metric
� . Let (
 ; F ; P) be a probability space, and letf Zk : k 2 Zg be a stochastic
process taking values on(Z; Z ), which is assumed to be observed. Within
this section, we assume the following assumption.

(L-1) The stochastic processf Zk : k 2 Zg is stationary and ergodic on(Z; Z ).

We denote byPZ the image probability of P induced by the stationary pro-
cessf Zk : k 2 Zg on the product space(ZZ; Z 
 Z) and denote byEZ the
associated expectation. Letf L � hzi : (�; z ) 2 � � Zg be a family of transition
kernels on(X; X ) such that for all � 2 � , probability measure � on (X; X )
and nonnegative measurable functionf on X, the function z 7! � L � hzi f is
measurable on(Z; Z ). Here we should stress that this family of transition
kernels may or may not link to the observed stochastic processf Zk : k 2 Zg.
Let us now de�ne the following.

De�nition 3.2.1 (Likelihood kernel). Let � 2 � , n 2 Z �
+ and z0:n� 1 2

Zn . The (parametric) likelihood kernel with respect to the family f L � hzi :
(�; z ) 2 � � Zg of the samplez0:n� 1, denoted byL �

nhz0:n� 1i , is de�ned as the
successive kernel application of the transition kernelsL � hz0i ; : : : ; L � hzn� 1i
from the family f L � hzi : (�; z ) 2 � � Zg. Formally, for all (x0; A) 2 X � X ,

L �
nhz0:n� 1i (x0; A) :=

Z
L � hz0i (x0; dx1) � � � L � hzn� 1i (xn� 1; dxn )1A (xn ): (3.1)

Note that by de�nition, L �
nhz0:n� 1i also de�nes a transition kernel on

(X; X ). Moreover, for all � 2 � , n; p 2 Z �
+ and z0:n+ p� 1 2 Zn+ p, the identity:

L �
n+ phz0:n+ p� 1i = L �

nhz0:n� 1i L �
phzn:n+ p� 1i

holds true. In what follows,P(X; X ) will always denote the set of probability
measures on(X; X ). For notational convenience, when there is no possibility
of confusion, the subscriptn will be dropped fromL �

n which is de�ned earlier
in (3.1).

Next, we always assume that for all� 2 � , n 2 Z �
+ , z0:n� 1 2 Zn and

probability measure� 2 P (X; X ),

0 < � L � hz0:n� 1i 1X < 1 : (3.2)

The following de�nition de�nes the conditional version of the likelihood ker-
nel.

De�nition 3.2.2. Let � 2 � . For all m; n 2 Z+ with m < n , zm:n 2 Zn� m+1 ,
� 2 P (X; X ) and measurable functionf from (X; X ) to (R; B(R)), de�ne

� L � hzp:n jzm:p� 1i f :=
� L � hzm:n i f

� L � hzm:p� 1i 1X
; m < p � n: (3.3)
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De�nition 3.2.3. Let n 2 Z �
+ , the sequenceZ0:n� 1 be observations realized

from the stochastic processf Zk : k 2 Zg and let x0 2 X. The function
� 7! L �

nhZ0:n� 1i (x0; X) is called the(conditional) L-likelihood function with
respect to the familyf L � hzi : (�; z ) 2 � � Zg of the observationsZ0:n� 1 given
X 0 = x0. We de�ne the maximum L-likelihood estimator with respect to the
family f L � hzi : (�; z ) 2 � � Zg associated to an arbitrary initial probability
distribution � 2 P (X; X ) by

�̂ L
�;n 2 argmax

� 2 �
� L �

nhZ0:n� 1i 1X: (3.4)

When � is � x , the Dirac mass at point x 2 X, the maximum L-likelihood
estimator given in (3.4) will be simply denoted bŷ� L

x;n .

So far, we have not mentioned any speci�c statistical model, except that
we have introduced the family of transition kernelsf L � hzi : (�; z ) 2 � � Zg.
To have some insights on how these kernels may arise in speci�c situations,
consider the following examples.

Example 3.2.4. Consider a family of HMMsf (X k ; Yk) : k 2 Z+ g on (X �
Y; X 
Y ), which is parametrized by� 2 � . For each� 2 � , the distribution of
the HMM is speci�ed by the transition kernel Q� of the Markov chain f X k :
k 2 Z+ g and by the conditional probability density g� of the observation
Yk given the hidden stateX k , which is also known as the likelihood of the
obveration (see De�nition 2.3.1 in Section 2.3 of Chapter 2). The dynamic
of hidden Markov process can be depicted as in Figure 3.1.

X k X k+1

Yk+1Yk

X k+2

Yk+2

Q�

g� g�

Q�

g�

Figure 3.1 � Graphical representation of the hidden Markov Model by di-
rected arrows.

For any probability measure� on (X; X ) and positive integerr , the like-
lihood of the observationsY0:r � 1 2 Yr associated to� , denoted byp�

� (Y0:r � 1),
can be expressed by

p�
� (Y0:r � 1) =

Z
� (dx0)g� (x0; Y0)Q� (x0; dx1) � � � g� (xr � 1; Yr � 1)Q� (xr � 1; dxr ):
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3. Fully Dominated and Partially Observed Markov Models

Now, if we setZ := Yr , Z := Y 
 r , Z0 := Y0:r � 1, and for all � 2 � , x0 2 X
and A 2 X ,

L � hZ0i (x0; A) :=
Z  

r � 1Y

k=0

g� (xk ; Yk)Q� (xk ; dxk+1 )

!

1A (xr );

we then have that � L � hZ0i 1X is indeed the likelihood of the observations
Y0:r � 1 associated to the initial probability measure� 2 P (X; X ). Moreover,
for all n 2 Z �

+ , if we setZ i := Yir :( i +1) r � 1, i 2 f 0; : : : ; n � 1g, the conditional
likelihood kernel de�ned in (3.1) is given by

L � hZ0:n� 1i (x0; A) =
Z  

nr � 1Y

k=0

g� (xk ; Yk)Q� (xk ; dxk+1 )

!

1A (xnr ):

This implies � L � hZ0:n� 1i 1X = p�
� (Y0:nr � 1), which is referred to as the block

likelihood function with block size equal tor in Douc and Moulines [2012]. In
this case, the maximumL-likelihood estimator �̂ L

�;n coincides with the block
MLE �̂ �;nr , a maximizer ofp�

� (Y0:nr � 1) on � . It turns out that, when r = 1,
the class of HMMs which is speci�ed byf (Q� ; g� ) : � 2 � g, can also be
speci�ed by the family f L � hzi : (�; z ) 2 � � Zg.

Example 3.2.5. Let f (X k ; Yk) : k 2 Z+ g be a parametric family of bivariate
Markov chains on(X � Y; X 
 Y ), whose parameters are� 2 � . As in HMM
case, we assume that only the processf Yk : k 2 Z+ g is observed. To
formulate the model, we moreover suppose that for each� 2 � , the process
f X k : k 2 Z+ g is a Markov chain with transition kernelQ� ; and conditionally
on the past variables up to timek � 1 with k � 1, the law of the observation
Yk has density g� ((X k� 1; Yk� 1); �) with respect to a �xed � -�nite positive
measure� on (Y; Y). The whole chain can then be fully speci�ed by the pair
(Q� ; g� ). By this de�nition, it is straightforward that for each � 2 � and for
all k � 0 and B 2 Y , we have

P� (Yk+1 2 B j Y0:k ; X 0:1 ) =
Z

B
g� ((X k ; Yk); y) � (dy): (3.5)

Following the terminology of Cogburn [1980] and Bourgin and Cogburn
[1981], (3.5) suggests that the bivariate chainf (X k ; Yk) : k 2 Z+ g is a
Markov chain in random environment with the Markov environment process
f X k : k 2 Z+ g. Markov chains in random environment have been studied ex-
tensively by Cogburn [1980], Bourgin and Cogburn [1981], Nawrotzki [1982],
Cogburn [1984, 1990, 1991], Orey [1991] in the case of countable spaces and
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3. Fully Dominated and Partially Observed Markov Models

by Van Handel [2009] in the case of general state spaces. Random walk in
random environment models introduced by Chernov [1967] are also embedded
in this class (see Comets et al. [2014a] and Comets et al. [2014b] for paramet-
ric versions of it). The dynamic of this bivariate process can be depicted as
in Figure 3.2. However, according to Nawrotzki [1982], we should be aware
that not all Markov chains in random environment are themselves Markov
chains; and thus Figure 3.2 depicts the case where the bivariate processes are
Markov only.

X k X k+1

Yk+1Yk

X k+2

Yk+2

Q�

g�

Q�

g�

Figure 3.2 � Graphical representation of the Markov chain in random envi-
ronment

For any � 2 P (X; X ) and r 2 Z �
+ , the likelihood of the observations

Y0:r 2 Yr associated to� , denoted byp�
� 
 � Y0

(Y1:r ), is de�ned by

p�
� 
 � Y0

(Y1:r ) =
Z

� (dx0)

 
r � 1Y

k=0

g� ((xk ; Yk); Yk+1 ) Q� (xk ; dxk+1 )

!

:

By setting Z := Yr +1 , Z := Y 
 (r +1) , Z0 := Y0:r , and for all � 2 � , x0 2 X
and A 2 X ,

L � hZ0i (x0; A) :=
Z  

r � 1Y

k=0

g� ((xk ; Yk); Yk+1 ) Q� (xk ; dxk+1 )

!

1A (xr );

we then see that� L � hZ0i 1X is indeed the likelihood of the observationsY0:r

associated to the probability measure� . Moreover, for any integern > 0, by
setting Z i := Yir :( i +1) r , i 2 f 0; : : : ; n � 1g, the conditional likelihood kernel
de�ned in (3.1) writes

L � hZ0:n� 1i (x0; A) =
Z  

nr � 1Y

k=0

g� ((xk ; Yk); Yk+1 ) Q� (xk ; dxk+1 )

!

1A (xnr ):

This yields that � L � hZ0:n� 1i 1X = p�
� 
 � Y0

(Y1:nr ), which, as in Example 3.2.4,
may be referred to as the block likelihood function with block size equal to
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r . In this case, the maximumL-likelihood estimator �̂ L
�;n coincides with the

block MLE �̂ �;nr 2 argmax� 2 � p�
� 
 � Y0

(Y1:nr ).

Example 3.2.6. Consider a parametrized family of Markov switching mod-
els f (X k ; Yk) : k 2 Z+ g on (X � Y; X 
 Y ) with parameters � 2 � . As in
HMM case, we assume that only the processf Yk : k 2 Z+ g is observed.
For each� 2 � , the distribution of the Markov switching model is speci�ed
by the transition kernel Q� of the Markov chain f X k : k 2 Z+ g and by
the conditional probability density g� of the observationYk given the hidden
state X k and the most recent past observationYk� 1 (g� is also known as
the likelihood of the observation). The Markov switching model can the be
speci�ed by the pair (Q� ; g� ) and can be graphically represented as in Fig-
ure 3.3. More formally, the bivariate stochastic processf (X k ; Yk) : k 2 Z+ g
is a parametric Markov switching model if for all� 2 � , k 2 Z+ , A 2 X and
B 2 Y, we have

P� ((X k+1 ; Yk+1 ) 2 A � B j Y0:k ; X 0:k)

=
Z

A� B
Q� (X k ; dx)g� ((Yk ; x); y) � (dy): (3.6)

X k X k+1

Yk+1Yk

X k+2

Yk+2

Q�

g� g�

Q�

g�

Figure 3.3 � Graphical representation of the Markov switching model.

Markov switching models have been introduced by Hamilton [1988, 1989]
and further considered by many authors including Hamilton [1996], Tim-
mermann [2000], Fong and See [2002], Yoshida et al. [2005], Hamilton
[2008], Bauwens et al. [2010], Ailliot and Monbet [2012]; see also Frühwirth-
Schnatter [2006] for a comprehensive account. Note that if the transition
kernel Q� in (3.6) is also allowed to depend onYk , that is Q� is no longer a
Markov kernel, the resulting model is callednon-homogeneous Markov switch-
ing, see Ailliot and Pene [2013] and Ailliot et al. [2015].

For any � 2 P (X; X ) and r 2 Z �
+ , the likelihood of the observations
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Y0:r 2 Yr associated to� , denoted byp�
� 
 � Y0

(Y1:r ), is de�ned by

p�
� 
 � Y0

(Y1:r ) :=
Z

� (dx0)

 
r � 1Y

k=0

Q� (xk ; dxk+1 )g� ((Yk ; xk+1 ); Yk+1 )

!

:

By setting Z := Yr +1 , Z := Y 
 r +1 , Z0 := Y0:r , and for all � 2 � , x0 2 X and
A 2 X ,

L � hZ0i (x0; A) :=
Z  

r � 1Y

k=0

Q� (xk ; dxk+1 )g� ((Yk ; xx+1 ); Yk+1 )

!

1A (xr );

we then see that� L � hZ0i 1X is indeed the likelihood of the observationsY0:r

associated to� . Moreover, for any integern > 0, if setting Z i := Yir :( i +1) r ,
i 2 f 0; : : : ; n � 1g, the conditional likelihood kernel de�ned in (3.1) writes

L � hZ0:n� 1i (x0; A) =
Z  

nr � 1Y

k=0

Q� (xk ; dxk+1 )g� ((Yk ; xk+1 ); Yk+1 )

!

1A (xnr ):

This yields that � L � hZ0:n� 1i 1X = p�
� 
 � Y0

(Y1:nr ), which, as in Example 3.2.4,
may be referred to as the block likelihood function with block size equal to
r . In this case, the maximumL-likelihood estimator �̂ L

�;n coincides with the
block MLE �̂ �;nr 2 argmax� 2 � p�

� 
 � Y0
(Y1:nr ). By these examples, the maxi-

mum L-likelihood estimator �̂ L
�;n , in certain circumstances, can be referred

to as the block MLE.

The purpose of this present section is to investigate the asymptotic
properties of the maximumL-likelihood estimator �̂ L

�;n of the L-likelihood
� L � hZ0:n� 1i 1X. More precisely, we intend to establish that under some
certain conditions there exists a non-empty subset� L

? � � such that
�( �̂ L

�;n ; � L
? ), the distance between�̂ L

�;n and � L
? , convergesPZ -a.s. to zero

asn ! 1 . As illustrated by the above examples, the maximumL-likelihood
estimator is closely related to the classical MLE and thus studying the asymp-
totic properties of the maximumL-likelihood estimator can be bene�cial for
the case of the MLE. Our proof that will proceed follows similar lines of
Douc and Moulines [2012] as to obtain the same result when the family
f L � hzi : (�; z ) 2 � � Zg corresponds to the class of HMMs (however, we
should keep in mind that this family is far more general than that). As for
the case of classical likelihood, the proof commonly involves two main steps.
The �rst step consists in establishing the limit of theL-likelihood, that is to
show that there exists a functionalL (� ) in � 2 � such that for all � 2 � ,

lim
n!1

n� 1 ln � L � hZ0:n� 1i 1X = L(� ); PZ -a.s. (3.7)
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The second step consists in proving that, when the �rst step is accomplished,
as n ! 1 , the maximizer of � 7! � L � hZ0:n� 1i 1X convergesPZ -a.s. to the
maximizing set� L

? = argmax� 2 � L(� ). Let us now brie�y describe how these
two essential steps are established herein. In formulating the �rst step, we
�rst note that from (3.3) of De�nition 3.2.2, we can write

n� 1 ln � L � hZ0:n� 1i 1X = n� 1
n� 1X

k=0

ln � L � hZk jZ0:k� 1i 1X:

Next, we need to show that there exists aPZ -integrable function � �
Z : ZZ� !

R such that
�
� � L � hZk jZ0:k� 1i 1X � � �

Z (Z �1 :k� 1)
�
� convergesPZ -a.s. to zero as

k ! 1 . This result can be obtained by establishing the exponential for-
getting of the initial distribution of the conditional L-likelihood, and to this
end, we employ the coupling technique originally introduced in Kleptsyna
and Veretennikov [2008] and enriched by Douc et al. [2009]. Then since the
processf Zk : k 2 Zg is stationary and ergodic, the Birkho� ergodic theo-
rem applies, and (3.7) follows withL(� ) = EZ

�
ln � �

Z (Z �1 :0)
�
, provided that

the latter quantity is �nite (the approach used in this stage was originated
by Baum and Petrie [1966] for �nite state-space HMMs, and later extended
by Douc et al. [2004] for general state-space HMMs, but under stringent
technical conditions). When the �rst step is achieved, we apply Pfanzagl
[1969] to obtain the second step, provided that we can show that� 7! L (� )
is semi-continuous.

The following assumptions can be used to yield the convergence of the
maximum L-likelihood estimator �̂ L

�;n of the L-likelihood � L � hZ0:n� 1i 1X. Be-
fore listing these assumptions, let us invoke the following useful de�nition.

De�nition 3.2.7 (L-Local Doeblin set). Let C 2 X be a nonempty subset
of X. The set C is called aL-local Doeblin setwith respect to the family
f L � hzi : (�; z ) 2 � � Zg if there exist positive functions � �

C : Z ! R+ ,
� +

C : Z ! R+ , a family of probability measuresf � �
Chzi : (�; z ) 2 � � Zg on

(X; X ) and a family of positive functionsf ' �
Chzi : (�; z ) 2 � � Zg from X to

R such that for any (�; z ) 2 � � Z, � �
Chzi (C) = 1 , and for any nonnegative

and measurable functionf : (X; X ) ! (R; B(R)) and x 2 C,

� �
Chzi ' �

Chzi (x)� �
Chzi (1C f ) � � xL � hzi (1C f ) � � +

Chzi ' �
Chzi (x)� �

Chzi (1C f ):
(3.8)

Remark 3.2.8. The L-Local Doeblin set in De�nition 3.2.7 is similar to
the so-calledr -local Doeblin setde�ned in [Douc and Moulines, 2012, De�ni-
tion 1], except that the former set is de�ned with respect to the general family
of kernelsf L � hzi : (�; z ) 2 � � Zg, whereas the latter set is de�ned with
respect to the speci�c family of transition kernels that specify the HMMs.
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(L-2) There exists a setK 2 Z such that the following hold.

(i) PZ (Z0 2 K) > 2=3.

(ii) For all � > 0 there exists aL-local Doeblin setC 2 X such that for
all � 2 � andz 2 K,

sup
x2 Cc

� xL � hzi 1X � � sup
x2 X

� xL � hzi 1X < 1 (3.9)

and

inf
z2 K

� �
Chzi

� +
Chzi

> 0; (3.10)

where the functions� +
C and � �

C are given in De�nition 3.2.7.

(L-3) There exists a setD 2 X such that

EZ

�
ln� inf

� 2 �
inf
x2 D

L � hZ0i (x; D)
�

< 1 : (3.11)

(L-4) We have

EZ

�
ln+ sup

� 2 �
sup
x2 X

L � hZ0i (x; X)
�

< 1 : (3.12)

(L-5) There exists a positive integerp such that for alln � p and x 2 X, the
function � 7! L � hZ0:n� 1i (x; X) is PZ -a.s. continuous on� .

De�nition 3.2.9. Let A 2 X be a measurable subset ofX. The collection
M + (A) denotes the set of all probability distributions on(X; X ) that do not
vanish onA, that is, if � 2 P (X; X ) such that � (A) > 0, then � 2 M + (A).

3.2.2 Forgetting of Initial Distribution for the Condi-
tional L-likelihood

For all integer n > 0, z0:n� 1 2 Zn , �; � 0 2 P (X; X ) and nonnegative
measurable functionsf and h on (X; X ), de�ne

� �
�;� 0hz0:n� 1i (f; h )

:= ( � L � hz0:n� 1i f )( � 0L � hz0:n� 1i h) � (� L � hz0:n� 1i h)( � 0L � hz0:n� 1i f ): (3.13)

Let �X := X � X, �X := X 
 X and denote�L kernel on( �X; �X ) such that for all
(x; x0) 2 �X, A � A0 2 �X ,

�L ((x; x0); A � A0) = L(x; A)L(x0; A0);
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where L is a kernel onX � X . For � and � 0 two probability measures on
(X; X ) and f; h real-valued measurable functions on(X; X ), de�ne for �A 2 �X
and �x = ( x; x0) 2 �X,

(� 
 � 0)( �A) :=
Z

� (dx)� 0(dx0)1 �A (x; x0) and (f 
 h)(�x) := f (x)h(x0):

With above notation we can rewrite (3.13) as:

� �
�;� 0hz0:n� 1i (f; h )

=
Z

(� 
 � 0)(d�x0)

 
n� 1Y

i =0

�L � hzi i (�x i ; d�x i +1 )

!

(f 
 h � h 
 f ) (�xn ):

For a 2 R, let bac denote the integer part ofa and for any real-valued
function f on X, let jf j1 := supfj f (x)j : x 2 Xg. Following Douc and
Moulines [2012], we have the following results.

Proposition 3.2.10. Assume that (L-1) and (L-2) hold. Let 0 �  � <  + �
1. Then for any � > 0, there exists� 2 (0; 1) such that for all positive integer
n and z0:n� 1 2 Zn satisfying

n� 1
n� 1X

i =0

1K(zi ) � max
�
1 �  � ; (1 +  + )=2

�
; (3.14)

for any � 2 ( � ;  + ), nonnegative bounded functionsf and h, probability
measures� and � 0 on (X; X ) and � 2 � ,
�
� � �

�;� 0hz0:n� 1i (f; h )
�
�

� � bn(� �  � )c[(� L � hz0:n� 1i f )( � 0L � hz0:n� 1i h) + ( � L � hz0:n� 1i h)( � 0L � hz0:n� 1i f )]

+ 2� bn( + � � )c=2

"
n� 1Y

i =0

�
�L � hzi i (�; X)

�
�2

1

#

jf j1 jhj1 : (3.15)

Proof. The proof is identical to [Douc and Moulines, 2012, Proposition 5]
and is thus omitted.

Proposition 3.2.11. Assume that (L-1)�( L-4) hold. Then there exist a con-
stant � 2 (0; 1) and a PZ -a.s. �nite integer-valued random variableT such
that for all �; � 0 2 M + (D) and bounded measurable functionf � 1 on (X; X ),
PZ -a.s.,

sup
� 2 �

sup
k� T

sup
m� 0

� � (m+ k)
�
� ln � L � hZk jZ � m:k� 1i f � ln � 0L � hZk jZ � m:k� 1i f

�
� < 1 ;

(3.16)
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sup
� 2 �

sup
k� T

sup
m� 0

� � (m+ k)
�
� ln � L � hZk jZ � m:k� 1i f � ln � L � hZk jZ � m� 1:k� 1i f

�
� < 1 ;

(3.17)
sup
� 2 �

sup
m� 0

� � m
�
� ln � L � hZ0jZ � m:� 1i f � ln � L � hZ0jZ � m� 1:� 1i f

�
� < 1 : (3.18)

Proof. See Section 3.4.1.

As a consequence of Proposition 3.2.11, we have the following result.

Corollary 3.2.12. Assume that (L-1)�( L-4) hold. Then for all � 2 � , there
exists a nonnegative measure kernel� �

Z on ZZ� �X such that for any probabil-
ity measure � 2 M + (D) and nonnegative and bounded measurable function
f on (X; X ),

lim
m!1

� L � hZ0jZ � m:� 1i f = � �
Z hZ �1 :0i f; PZ -a.s. (3.19)

Proof. Now let � 2 � . Results (3.16) and (3.18) of Proposition 3.2.11 ensure
that for each bounded measurable functionf � 1 and for all � 2 M + (D),
there exists a nonnegative measurable functionz�1 :0 7! � �

Z hz�1 :0i f on�
ZZ� ; Z 
 Z�

�
satisfying (3.19). This result propagates to any nonnegative

and bounded measurable functionh on (X; X ), by setting f = h + 1 and
noting that (3.19) also holds whenf = 1X. Observe that each limit � �

Z does
not depend on the initial probability distribution � 2 M + (D). Furthermore,
sincef � L � hZ0jZ � m:� 1i : m 2 Z+ g is a sequence of �nite measures on(X; X )
and (3.19) holds for all nonnegative and bounded measurable functionf ,
then by Vitali-Hahn-Saks theorem (see Brooks [1969]),� �

Z hZ �1 :0i de�nes a
(nonnegative) measure on(X; X ).

In what follows, for notational convenience, the measure� �
Z hZ �1 :0i will

be denoted byL � hZ0jZ �1 :� 1i , and for all integern > 0, the successive prod-
uct

Q n� 1
k=0 � �

Z hZ �1 :k i 1X will be denoted byL � hZ0:n� 1jZ �1 :� 1i 1X.

3.2.3 Convergence of the Maximum L-likelihood Esti-
mator

We now state the convergence result of the maximumL-likelihood esti-
mator as follows.

Proposition 3.2.13. Assume that (L-1)�( L-4) hold. Then

(i) For all � 2 � ,
EZ

� �� ln L � hZ0jZ �1 :� 1i 1X

�
� � < 1 : (3.20)
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(ii) For all � 2 M + (D), PZ -a.s.,

lim sup
n!1

sup
� 2 �

n� 1
�
� ln � L � hZ0:n� 1i 1X � ln L � hZ0:n� 1jZ �1 :� 1i 1X

�
� = 0:

(iii) Assume moreover that (L-5) holds. Then the function

� 7! EZ
�
ln L � hZ0jZ �1 :� 1i 1X

�

is PZ -a.s. upper semi-continuous.

Proof. For convenience, the proof is postponed to Section 3.4.2.

Theorem 3.2.14. Assume that (L-1)�( L-5) hold. Assume in addition that
for all � 2 M + (D), PZ -a.s.,

lim sup
n!1

sup
� 2 �

n� 1
�
�
� ln � �L

�
hZ0:n� 1i 1X � ln � L � hZ0:n� 1i 1X

�
�
� = 0;

where for all n 2 Z �
+ , z0:n� 1 2 Zn and � 2 � , �L

�
hz0:n� 1i is a nonnegative

kernel on X � X and such that� 7! � �L
�
hz0:n� 1i 1X is continuous. Then for

all � 2 M + (D),
lim

n!1
�

� �� L
�;n ; � L

?

�
= 0; PZ -a.s.; (3.21)

where
�� L

�;n 2 argmax
� 2 �

n� 1 ln � �L
�
hZ0:n� 1i 1X (3.22)

and
� L

? := argmax
� 2 �

EZ
�
ln L � hZ0jZ �1 :� 1i 1X

�
: (3.23)

Proof. First note that from the compactness of� and the semi-continuity on
� of the objective functions in (3.22) and (3.23), the corresponding argmax's
are well de�ned. The rest of the proof directly follows from triangular in-
equality, from Proposition 3.2.13 and from Pfanzagl [1969].

Result below is a direct implication of Theorem 3.2.14.

Corollary 3.2.15. Assume that (L-1)�( L-5) hold. Then for all � 2 M + (D),
PZ -a.s.,

lim
n!1

�( �̂ L
�;n ; � L

? ) = 0 ; PZ -a.s.;

where�̂ L
�;n is the maximumL-likelihood estimator de�ned in (3.4).
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3.3 Consistency of the MLE for Fully Domi-
nated Markov Models

In this section, we treat the consistency property of the MLE for a large
subclass of PMMs discussed in Chapter 2, namely the class of fully-dominated
PMMs, under the framework of the well-speci�ed models. This class contains
many models of interest, for instance HMMs, Markov switching models and
many Markov chain in random environment models, whose distributional
laws are dominated by some �xed� -�nite measures. The main result of
this present section is obtained as a combination of convergence result of
the maximum L-likelihood estimator derived in Section 3.2 above and the
identi�ability result obtained in Chapter 2.

For self-contained representation, we should recall some notation and set-
tings already introduced in Chapter 2. Now, let(X; X ) and (Y; Y) be two
Borel spaces, that is, measurable spaces that are isomorphic to a Borel sub-
set of [0; 1]. Let � be a set of parameter, and as in Section 3.2, this set is
assumed to be a compact metric space equipped with a metric� . Consider
a statistical model determined by a class of Markov kernelsf K � : � 2 � g on
(X� Y)� (X 
Y ). We denote byP�

� the probability (and by E�
� the correspond-

ing expectation) induced on(X� Y)Z+ by a Markov chainf (X k ; Yk) : k 2 Z+ g
with transition kernel K � and initial distribution � on X� Y. In the case where
� is a Dirac mass at(x; y) we will simply write P�

(x;y ) . For partially-observed
Markov chains, that is when only a sampleY1:n = ( Y1; : : : ; Yn ) 2 Yn of the
second component is realized, the transition kernelK � can be conveniently
written as

K � ((x; y); dx0dy0) = Q� ((x; y); dx0)G� ((x; y; x0); dy0); (3.24)

whereQ� and G� are probability kernels on(X� Y) �X and (X� Y � X) �Y ,
respectively. In this section, we investigate a particular case where bothQ�

and G� are absolutely continuous with respect to some �xed nonnegative
� -�nite measures, namely the case where the model is fully-dominated.

De�nition 3.3.1. We say that the Markov model f K � : � 2 � g of the
form (3.24) is a fully-dominated and partially observed Markov model if
there exist some nonnegative� -�nite measures� on X and � on Y such that
for all (x; y); (x0; y0) 2 X � Y,

Q� ((x; y); dx0) = q� ((x; y); x0) � (dx0) (3.25)

and
G� ((x; y; x0); dy0) = g� ((x; y; x0); y0) � (dy0); (3.26)
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3. Fully Dominated and Partially Observed Markov Models

respectively, where the conditional density functionsq� and g� in addition
satisfy

q� ((x; y); x0) > 0; (3.27)

g� ((x; y; x0); y0) > 0; (3.28)

for all (x; y); (x0; y0) 2 X � Y.

It follows from (3.25) and (3.26) that for all (x; y) 2 X � Y, A 2 X and
B 2 Y ,

K � ((x; y); A � B) =
Z

B
� � hy; y0i (x; A)� (dy0);

where, for all y; y0 2 Y, � � hy; y0i is a kernel de�ned on(X; X ) by

� � hy; y0i (x; dx0) := q� ((x; y); x0) g� ((x; y; x0); y0) � (dx0): (3.29)

Note that in the partially dominated setting we do not require (3.25)
and (3.27). The fully dominated PMM can be grahically represented as in
Figure 3.4.

X k X k+1

Yk+1Yk

X k+2

Yk+2

q�

g� g�

q�

g�

Figure 3.4 � Graphical representation of the fully dominated and partially
observed bivariate Markov chain.

In what follows, we will restrict our consideration on the case whereX is
a complete and separable metric space equipped with a metricdX and X is
the associated Borel� -�eld.

Remark 3.3.2. In this setting, for all � 2 � and positive integers � 1, the
kernel (K � )s is ' -irreducible with ' = � 
 � .

In well-speci�ed models, it is assumed that the observationsY1:n are gen-
erated from a processf (X k ; Yk) : k 2 Z+ g, which follows the distribution P� ?

� ?

associated to an unknown parameter� ? 2 � and an unknown initial distri-
bution � ? (usually, � ? is such that, underP� ?

� ?
, f Yk : k 2 Z+ g is a stationary
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3. Fully Dominated and Partially Observed Markov Models

sequence). To form a consistent estimate of� ? on the basis of the observa-
tions Y1:n only, i.e., without access to the hidden processf X k : k 2 Z+ g, we
de�ne the maximum likelihood estimator (MLE) �̂ �;n by

�̂ �;n 2 argmax
� 2 �

n� 1 ln p�
� (Y1:n ); (3.30)

wherep�
� (y1:n ) is the (conditional) likelihood function of the observationsy1:n

under parameter� 2 � with some arbitrary initial distribution � on X � Y,
that is,

p�
� (y1:n ) :=

Z n� 1Y

i =0

Q� ((x i ; yi ); dx i +1 )g� ((x i ; yi ; x i +1 ); yi +1 )� (dx0dy0)

=
Z

� � hy0; y1i � � hy1; y2i � � � � � hyn� 1; yn i (x0; X)� (dx0dy0):

(3.31)

This corresponds to the conditional density ofY1:n given (X 0; Y0) with the
latter integrated according to initial probability distribution � . In practice �
is often taken to be a Dirac mass at(x; y) with x arbitrarily chosen and y
equal to the observationY0 when it is available. Yet for sake of generality, in
our study, the initial probability � will be the one of the form� 
 � Y0 , where
� is some probability distribution on (X; X ) and � Y0 is the Dirac mass at the
observationY0. We then refer top�

� 
 � Y0
(Y1:n ) as the conditional likelihood of

the observationsY0:n associated to the probability measure� .
Condition (3.28) guarantees that for all� 2 � , n 2 Z �

+ , y0:n 2 Yn+1 and
� 2 P (X; X ), p�

� 
 � y0
(y1:n ) given in (3.31) is positive. Now, de�ne

p�
� 
 � y0

(ym:n jy1:m� 1) :=
p�

� 
 � y0
(y1:n )

p�
� 
 � y0

(y1:m� 1)
; 1 < m � n: (3.32)

The term in left-hand side of (3.32) can be interpreted as the conditional
density of the the observationsym:n givenY0:m� 1 = y0:m� 1 andX 0 � � . For all
integer s � 1, y0:s 2 Ys+1 and � 2 � , we de�ne the (possibly unnormalized)
kernel ` � hy0:si on X � X by, for all (x0; A) 2 X � X ,

` � hy0:si (x0; A) :=
Z

Xs
1A (xs)

s� 1Y

i =0

Q� ((x i ; yi ); dx i +1 ) g� ((x i ; yi ; x i +1 ); yi +1 ) :

(3.33)
Note that for all � 2 � , the kernel ` � is nonnegative and from (3.31), for all
integer s � 1, y0:s 2 Ys+1 and � 2 P (X; X ), we have

�` � hy0:si 1X = p�
� 
 � y0

(y1:s) > 0: (3.34)
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Analogously to (3.32), we moreover de�ne, for all� 2 � , n 2 Z �
+ , y0:n 2

Yn+1 , � 2 P (X; X ) and real-valued measurable functionf on (X; X ),

�` � hym:n jy0:m� 1i f :=
�` � hy0:n i f

�` � hy0:m� 1i 1X
; 1 < m � n: (3.35)

To complete our setting, the following assumption is needed and is sup-
posed to hold throughout.

(F-1) For all� 2 � , the transition kernelK � admits a unique invariant probability
distribution� � .

Remark 3.3.3. Assumption (F-1) can be equivalently stated as: for all
positive integer r and � 2 � , the transition kernel (K � )r admits a unique
invariant probability distribution. Moreover, the invariant probability distri-
butions for K � and (K � )r are the same. To see this, �rst suppose that (F-1)
holds. It then implies that for any positive integerr , � � is an invariant distri-
bution for (K � )r . By Remark 3.3.2, the skeleton(K � )r is also' -irreducible
and by [Meyn and Tweedie, 2009, Theorem 10.0.1 and Proposition 10.1.1],
the skeleton(K � )r admits a unique invariant � � . To see the converse, note
that for each r , if ~� � is the invariant probability distribution for (K � )r , then
� � = r � 1

P r � 1
s=0 ~� � (K � )s de�nes an invariant for K � . The uniqueness of� � for

K � follows from the uniqueness of~� � for (K � )r .

Finally, let us recall (from Chapter 2) the following notation and de�nition
regarding stationary distributions.

De�nition 3.3.4. Under Assumption (F-1), we denote by� �
1 and � �

2 the
marginal distributions of � � on X and Y, respectively, and byP� and ~P� the
probability distributions de�ned respectively as follows.

a) P� denotes the extension ofP�
� � on the whole line(X � Y)Z.

b) ~P� is the corresponding projection on the componentYZ.

We also use the symbolsE� and ~E� to denote the expectations corresponding
to P� and ~P� , respectively. Moreover, for all�; � 0 2 � , we write � � � 0 if and
only if ~P� = ~P� 0

. This de�nes an equivalence relation on the parameter set
� and the corresponding equivalence class of� is denoted by[� ] := f � 0 2 � :
� � � 0g.

The equivalence relationship� was introduced by Leroux [1992] as an
alternative to the classical identi�ability condition.

Assumption (F-1) directly implies that the processf Yk : k 2 Zg is sta-
tionary and ergodic; however, whether it also implies thatf Yk:k+ r : k 2 Zg,
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r 2 Z �
+ , is a stationary and ergodic process is not obvious though this may be

the case. Indeed, this result can be induced from the following construction.
Let for all integer k, Wk := ( X k ; Yk) and let W := X � Y and W :=

X 
Y . Now consider a stochastic processf �Wk : k 2 Z+ g on
�
Wr +1 ; W 
 (r +1)

�

with �Wk = Wkr :(k+1) r . Obviously, f �Wk : k 2 Z+ g is a Markov chain on�
Wr +1 ; W 
 (r +1)

�
with transition kernel denoted by �K � . The Markov kernel

�K � can be explicitly expressed as, for all�w = w0:r 2 Wr +1 and A0; � � � ; Ar 2
W,

�K � ( �w; A0 � � � � � A r ) =
Z

A 0 ����� A r

� wr (dw0
0) K � (w0

0; dw0
1) � � � K � (w0

r � 1; dw0
r )

=
Z

A 1 ����� A r

1A 0 (wr )T � (wr ; dw0
1:r )

= 1A 0 (wr )T � (wr ; A1 � � � � � A r ); (3.36)

whereT � is a kernel onW�W 
 r de�ned by, for all w0 2 W and A1; : : : ; Ar 2
W,

T � (w0; A1 � � � � � A r ) =
Z

A 1 ����� A r

K � (w0; dw1) � � � K � (wr � 1; dwr ): (3.37)

Lemma 3.3.5 stated below can be instrumental for obtaining stationary and
ergodic solutions for the sequencef Yk:k+ r : k 2 Zg. Remarkably, this result
does not rely on the' -irreducibility assumption.

Lemma 3.3.5. The kernel �K � admits a (unique) invariant distribution on�
Wr +1 ; W 
 (r +1)

�
if and only if the kernel(K � )r admits a (unique) invariant

distribution on (W; W).

Proof. The proof is postponed to Section 3.4.3 for convenience.

Let us now state the additional assumptions yielding the consistency of
the MLE de�ned by (3.30).

(F-2) Assumption (F-1) holds. Moreover, for all� ? 2 � , there exist a nonnega-
tive integerr � 1 and a setK 2 Y 
 (r +1) such that, denotingZ := Yr +1 ,
and fork 2 Z,

zi := ykr :(k+1) r 2 Z ; Zk := Ykr :(k+1) r 2 Z;

each of the following holds.

(i) ~P� ? (Z0 2 K) > 2=3.
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(ii) For all � > 0 there exists aL-local Doeblin setC 2 X with respect
to the family f ` � hzig (�;z )2 � � Z (de�ned in De�nition 3.2.7 with ` �

de�ned by(3.33)) such that for all� 2 � andz 2 K,

sup
x2 Cc

` � hzi (x; X) � � sup
x2 X

` � hzi (x; X) < 1 (3.38)

and

inf
z2 K

� �
Chzi

� +
Chzi

> 0; (3.39)

where the functions� +
C and � �

C are given in De�nition 3.2.7.
(iii) There exists a setD 2 X such that

~E� ?

�
ln� inf

� 2 �
inf
x2 D

` � hZ0i (x; D)
�

< 1 : (3.40)

(F-3) We have,

~E� ?

"

ln+ sup
� 2 �

sup
(x;x 0)2 X2

g� ((x; Y0; x0); Y1)

#

< 1 : (3.41)

(F-4) For all� ? 2 � , there exists a positive integerp such that for alln � p and
x 2 X, the function� 7! ` � hY0:n i (x; X) is ~P� ? -a.s. continuous on� .

Remark 3.3.6. Note that these assumptions can be used to derive the con-
vergence of the MLE under the misspeci�ed settings, except that in (F-2),
rather than assuming that Assumption (F-1) holds, we should instead assume,
with the same r , that the observed processf Yk:k+ r : k 2 Zg is stationary
and ergodic. This in turn extends the result of Douc and Moulines [2012]
beyond the HMMs.

Remark 3.3.7. To obtain (F-2)(iii), one may need to check that
(i) ~E� ?

�
ln� inf � 2 � inf x2 D Q� ((x; Y0); D)

�
< 1 and

(ii) ~E� ?
�
ln� inf � 2 � inf (x;x 0)2 D 2 g� ((x; Y0; x0); Y1)

�
< 1 .

Remark 3.3.8. Assumption (F-4) is usually obtained as a consequence of
the continuity of � 7! q� and � 7! g� via classical techniques to deal with
integrals involving some parameters.

For the integer r and the setD 2 X de�ned in (F-2), let M � ? (D; r ) be the
subset ofP(X; X ), the set of all probability measures on(X; X ), satisfying

M � ? (D; r ) =
�

� 2 P (X; X ) :

~E� ?

�
ln� inf

� 2 �
�` � hY0:si 1D

�
< 1 ; for all s 2 f 1; : : : ; rg

�
: (3.42)
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Now we have all the necessary tools for deriving the results pertaining to
the consistency of the MLE for fully dominated PMMs. These results are
stated as follows.

Proposition 3.3.9. Assume (F-1)�( F-3). Then

(i) For all � 2 � and � 2 M � ? (D; r ), there exists a kernel̀ �;� ? h�j�i on
YZ� �X such that for all nonnegative and bounded measurable function
f on (X; X ),

~P� ?

h
lim

m!1
�` � hY1jY� m:0i f = ` �;� ? hY1jY�1 :0i f

i
= 1: (3.43)

Moreover,
~E� ?

� �� ln ` �;� ? hY1jY�1 :0i f
�
� � < 1 :

(ii) For all � 2 � , � 2 M � ? (D; r ) and nonnegative and bounded measurable
function f on (X; X ),

lim
n!1

n� 1 ln �` � hY0:n i f = ~E� ?
�
ln ` �;� ? hY1jY�1 :0i f

�
; ~P� ? -a.s.

Proof. For convenience, the proof is postponed to Section 3.4.4.

As a consequence of Proposition 3.3.9, we have the following result.

Proposition 3.3.10. Assume (F-1)�( F-3). Then

(i) For all � 2 � and � 2 M � ? (D; r ),

~P� ?

�
lim

m!1
p�

� 
 � Y� m
(Y1jY� m+1:0 ) = ` �;� ? hY1jY�1 :0i 1X

�
= 1:

Moreover,
~E� ?

� �� ln ` �;� ? hY1jY�1 :0i 1X

�
� � < 1 :

(ii) For all � 2 � and � 2 M � ? (D; r ), ~P� ? -a.s.

lim
n!1

n� 1 ln p�
� 
 � Y0

(Y1:n ) = ~E� ?
�
ln ` �;� ? hY1jY�1 :0i 1X

�
:

Proof. The proof immediately follows by lettingf = 1X in Proposition 3.3.9.

Before stating the equivalence-class consistency of the MLE, let us recall
the kernel � �

x;n de�ned in De�nition 2.2.11 which in our case can be de�ned
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as follows. For all� 2 � , positive integern and x 2 X, de�ne the kernel � �
x;n

on Yn+1 � X by, setting x0 = x,

� �
x;n (y0:n ; A) :=

Z

Xn � 1 � A

n� 1Y

k=0

Q� ((xk ; yk); dxk+1 ) g� ((xk ; yk ; xk+1 ); yk+1 )

Z

Xn

n� 1Y

k=0

Q� ((xk ; yk) ; dxk+1 )g� ((xk ; yk ; xk+1 ); yk+1 )

:

In HMM case, the distribution � �
x;n (Y0:n ; �) is usually referred to as the�lter

distribution. The following intermediate result is useful.

Lemma 3.3.11. Assume (F-1)�( F-3). Then,

(i) For any �; � ? 2 � , there exists a probability kernel� �;� ? on YZ� � X
such that for anyx 2 X such that� x 2 M � ? (D; r ),

~P� ?

�
for all boundedf ; lim

m!1
� �

x;m (Y� m:0; f ) = � �;� ? (Y�1 :0; f )
�

= 1:

(ii) For any �; � ? 2 � we have,~P� ? -a.s.,

` �;� ? hY1jY�1 :0i 1X =
Z

� �;� ? (Y�1 :0; dx0)� � hY0; Y1i (x0; X): (3.44)

Proof. Note that for all � 2 � , y0:n 2 Yn+1 , n 2 Z �
+ , x 2 X and (nonnegative)

bounded measurable functionf , we have

� �
x;n (y0:n ; f ) =

� x ` � hy0:n i f
� x ` � hy0:n i 1X

;

and so that

� �
x;n (Y� n:0; f ) =

� x ` � hY� n:0i f
� x ` � hY� n:0i 1X

=

�
� x ` � hY� n:0i f

�
=

�
� x ` � hY� n:� 1i 1X

�

(� x ` � hY� n:0i 1X) =(� x ` � hY� n:� 1i 1X)

=
� x ` � hY0jY� n:� 1i f
� x ` � hY0jY� n:� 1i 1X

:

Moreover, if x 2 X such that � x 2 M � ? (D; r ), Proposition 3.3.9 implies that
~P� ? -a.s.,

lim
n!1

� �
x;n (Y� n:0; f ) =

` �;� ? hY0jY�1 :� 1i f
` �;� ? hY0jY�1 :� 1i 1X

:= � �;� ? (Y�1 :0; f ):
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Indeed,� �;� ? is a probability kernel onYZ� � X . This proves Lemma 3.3.11�
(i). To prove Lemma 3.3.11�(ii), observe that ~P� ? -a.s.,

` �;� ? hY1jY�1 :0i 1X = lim
n!1

� x ` � hY1jY� n:0i 1X

= lim
n!1

� x ` � hY� n:1i 1X

� x ` � hY� n:0i 1X

= lim
n!1

Z
� x ` � hY� n:0i (dx0)� � hY0; Y1i (x0; X)

� x ` � hY� n:0i 1X

= lim
n!1

Z
� �

x;n (Y� n:0; dx0)� � hY0; Y1i (x0; X)

= lim
n!1

� �
x;n (Y� n:0; � � hY0; Y1i (�; X))

= � �;� ? (Y�1 :0; � � hY0; Y1i (�; X))

=
Z

� �;� ? (Y�1 :0; dx0)� � hY0; Y1i (x0; X);

where we have used, from (F-3),
�
� � � hY0; Y1i (�; X)

�
�
1

� sup
� 2 �

sup
(x;x 0)2 X2

g� ((x; Y0; x0); Y1) < 1 ; ~P� ? -a.s.

Remark 3.3.12. From (3.44) and since
R

� � hy0; y1i (x0; X)� (dy1) = 1 for
all (x0; y0) 2 X � Y, it follows that, given y�1 :0 2 YZ� , for all �; � ?, y1 7!
` �;� ? hy1jy�1 :0i 1X de�nes a probability density with respect to the measure�
on (Y; Y).

Recall that since Y is a Borel space, [Kallenberg, 2002, Theorem 6.3]
applies and the conditional distribution ofY1:n given Y�1 :0 de�nes a prob-
ability kernel. Since ~P� (Y1:n 2 � ) is dominated by � 
 n , this in turns de�nes
a conditional density with respect to� 
 n , denoted byp�

n (�j� ), so that for all
B 2 Y 
 n ,

~P� (Y1:n 2 B j Y�1 :0) =
Z

B
p�

n (y1:n jY�1 :0)� (dy1) � � � � (dyn ); ~P� -a.s. (3.45)

Our main result on consistency of the MLE for the class of fully dominated
PMMs is now stated.

Theorem 3.3.13. Assume (F-1)�( F-4). Then for all � 2 M � ? (D; r ), denot-
ing � = � 
 � Y0 , we have

lim
n!1

�
�

�̂ �;n ; [� ?]
�

= 0; ~P� ? -a.s.; (3.46)
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where�̂ �;n is de�ned by (3.30) and [� ?] is the equivalence class of� ? as de�ned
in De�nition 3.3.4.

Proof. Denote for all �; � ? 2 � ,

`(�; � ?) := ~E� ?
�
ln ` �;� ? hY1jY�1 :0i 1X

�
(3.47)

and
� ? := argmax

� 2 �
`(�; � ?):

Next, we will show that

lim
n!1

�
�

�̂ �;n ; � ?

�
= 0; ~P� ? -a.s. (3.48)

Observe that we have

� ? = argmax
� 2 �

r ~E� ?
�
ln ` �;� ? hY1jY�1 :0i 1X

�

= argmax
� 2 �

~E� ?
�
ln L �;� ? hZ0jZ �1 :� 1i 1X

�
:

The convergence (3.48) immediately follows from (3.74) withh = 1X and
Theorem 3.2.14.

It thus remains to show that � ? = [ � ?]. To this end, we apply The-
orem 2.2.7 in Chapter 2, which corresponds to [Douc et al., 2014, Theo-
rem 3]. To comply with the statement of Theorem 2.2.7, let us de�nep�;� ?

by: for all y�1 :0 2 YZ� , p�;� ? (y1jy�1 :0) := ` �;� ? hy1jy�1 :0i 1X if � 6= � ? and
p�;� ? (y1jy�1 :0) := p�

1(y1jy�1 :0), where p�
1(�j� ) is the conditional density de-

�ned in (3.45), otherwise. If Assumption (K-2) can be shown to hold, it will
follow from Theorem 2.2.7 that

[� ?] = argmax
� 2 �

~E� ?
�
ln p�;� ? (Y1jY�1 :0)

�
:

Thus the proof will immediately follow if we can moreover show that

`(� ?; � ?) = ~E� ?
�
ln p� ?

1 (Y1jY�1 :0)
�

: (3.49)

Now, let F be a countable separating class of nonnegative bounded
functions containing 1X, see [Parthasarathy, 2005, Theorem 6.6, Chap-
ter 6] for the existence of such a class. By Lemma 2.2.12, to check As-
sumption (K-2) it is su�cient to show that Assumption ( K-3) is satis-
�ed. Assumption (F-3) and (3.29) imply that for all bounded function f ,
F �

f =
�

x 7! � � hy; y0i (x; f ) : (y; y0) 2 Y2
	

is a class of bounded functions,
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and this in turn implies (K-3) by applying Lemma 3.3.11-(i) to somex such
that � x 2 M � ? (D; r ) (the existence of such a setD is guaranteed by (F-2)-
(iii)). Thus Assumption ( K-2) holds. To complete the proof, it only remains
to show that (3.49) is satis�ed. According to [Barron, 1985, Theorem 1], we
have

~E� ?
�
ln p� ?

1 (Y1jY�1 :0)
�

= lim
n!1

n� 1 ln � � ?
1;Y1

` � ? hY1:n i 1X; ~P� ? -a.s.; (3.50)

where for all y1 2 Y and A 2 X ,

� � ?
1;y1

(A) :=
Z

� � ? (dx0dy0)` � ? hy0:1i (x0; A):

On the other hand, by applying Lemma 3.3.11-(ii) and by (3.47), it yields
that

`(� ?; � ?) = lim
n!1

n� 1 ln � � ?
Y0:1

` � ? hY1:n i 1X; ~P� ? -a.s.; (3.51)

where for all y0; y1 2 Y and A 2 X ,

� � ?
y0:1

(A) :=
Z

� (dx0)` � ? hy0:1i (x0; A):

Note that from (3.27), the measures� � ?
1;y1

and � � ?
y0:1

admit densities with
respect to the same measure� given by

d� � ?
1;y1

d�
(x1) =

Z
� � ? (dx0dy0)q� ? ((x0; y0); x1) g� ? ((x0; y0; x1); y1) (3.52)

and

d� � ?
y0:1

d�
(x1) =

Z
� (dx0)q� ? ((x0; y0); x1) g� ? ((x0; y0; x1); y1) ; (3.53)

respectively. Note also that, sinceq� and g� are positive, these densities are
positive. Moreover, for ally0:n 2 Yn+1 , we have

�` � ? hy0:n i 1X =
Z

d� � ?
y0:1

d�
(x1) �

�
� x1 ` � ? hy1:n i 1X

�
� (dx1):

The joint density of (X 1; Y1:n ) under P� ? with respect to � 
 � 
 n is given by

p� ?
1;n (x1; y1:n ) :=

d� � ?
1;y1

d�
(x1) �

�
� x1 ` � ? hy1:n i 1X

�
:
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Combining the four previous displays yields, for ally0:n 2 Yn+1 ,

�` � ? hy0:n i 1X

=
Z R

� (dx0)q� ? ((x0; y0); x1) g� ? ((x0; y0; x1); y1)
R

� � ? (dx0dy0)q� ? ((x0; y0); x1) g� ? ((x0; y0; x1); y1)
p� ?

1;n (x1; y1:n ) � (dx1):

Dividing this by the density of Y1:n with respect to � 
 n under P� ? , we get

�` � ? hY0:n i 1X

� � ?
1;Y1

` � ? hY1:n i 1X
= E� ? [R(X 1; Y0:1) j Y0:n ] ;

whereR(x1; y0:1) is the ratio between the densities (3.53) and (3.52). Since
the denominator (3.52) is the joint probability density of X 1 and Y1 with
respect to� 
 � under P� ? , we have

E� ? [R(X 1; Y0:1)] = E� ?
�
E� ? [R(X 1; Y0:1)jY0]

�
= 1;

where we have used that givenY0, the numerator (3.53) integrates to one
with respect � 
 � . By Lévy's zero-one law, it thus implies that

lim
n!1

�` � ? hY0:n i 1X

� � ?
1;Y1

` � ? hY1:n i 1X
= E� ? [R(X 1; Y0:1) j Y0:1 ] ; ~P� ? -a.s.;

and since by (3.27),R(x1; y0:1) only takes positive values, this limit is positive.
This implies that

lim
n!1

n� 1 ln
�` � ? hY0:n i 1X

� � ?
1;Y1

` � ? hY1:n i 1X
= 0; ~P� ? -a.s.

Combining with (3.50) and (3.51), we �nally get (3.49), and the proof there-
fore follows.

All of the results above require that the initial probability � on (X; X )
should belong to the classM � ? (D; r ). To ensure this the following conditions
are su�cient.

Proposition 3.3.14. Assume that there exist a sequence of setsDs 2 X ,
s 2 f 1; : : : ; rg, and some positive measurable function� on Y such that

~E� ? [ln� � (Y)] < 1

and that for all s 2 f 1; : : : ; rg, with D r = D,

inf
� 2 �

inf
x2 D s� 1

Q� ((x; Y ); Ds) � � (Y); ~P� ? -a.s. (3.54)
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and

~E� ?

�
ln� inf

� 2 �
inf

(x;x 0)2 D s� 1 � D s

g� ((xs� 1; Y0; x0); Y1)
�

< 1 : (3.55)

Then, for all probability � on (X; X ) with � (D0) > 0 belongs toM � ? (D; r ).

Proof. Let � be such that � (D0) > 0. We have for all s 2 f 1; : : : ; rg and
� 2 � ,

�` � hY0:si 1D

=
Z

� (dx0)

 
sY

i =1

Q� ((x i � 1; Yi � 1); dx i ) g� ((x i � 1; Yi � 1; x i ); Yi )

!

1D s (xs)

� � (D0)
sY

i =1

inf
� 2 �

inf
x2 D i � 1

Q� ((x; Yi � 1); D i ) inf
� 2 �

inf
(x;x 0)2 D i � 1 � D i

g� ((x; Yi � 1; x0); Yi )

�

 
sY

i =1

inf
� 2 �

inf
(x;x 0)2 D i � 1 � D i

g� ((x; Yi � 1; x0); Yi )

!

� (D0)
sY

i =1

� (Yi � 1):

The proof then follows by (3.54) and (3.55) above.

When Q� is a Markov kernel onX�X , the following lemma, quoted from
Douc and Moulines [2012], is useful.

Lemma 3.3.15. Assume thatX = Rd for some integerd � 1, X is the asso-
ciated Borel � -�eld and Q� is a Markov kernel onX � X . Suppose moreover
that for any open subsetU 2 X , the function (�; x ) 7! Q� (x; U) is lower
semi-continuous on the product setX � � . Then, for any � and compact
subsetD0 2 X , there exists a sequence of compact subsetsDs, s 2 f 1; : : : ; rg,
satisfying (3.54).

3.4 Postponed Proofs

3.4.1 Proof of Proposition 3.2.11

Before proving Proposition 3.2.11, let us �rst show the following lemma.

Lemma 3.4.1. Assume that (L-1) and (L-2) hold and let0 �  � <  + � 1.
Then for all � > 0, there exists� = � (� ) 2 (0; 1) such that for all positive
integer n, z0:n� 1 2 Zn satisfying

n� 1
n� 1X

i =0

1K(zi ) � max(1 �  � ; (1 +  + )=2); (3.56)
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for any � 2 ( � ;  + ), nonnegative bounded functionsf , probability measures
� and � 0 on (X; X ), A 2 X and � 2 � ,

�
�
�
�

� L � hz0:n� 1i f

� L � hz0:n� 1i 1X
�

� 0L � hz0:n� 1i f

� 0L � hz0:n� 1i 1X

�
�
�
�

� 2

 

� bn(� �  � )c +
� bn( + � � )c=2

� (A)� 0(A)

"
n� 1Y

i =0

(Fzi (A))2

#!

jf j1 ;

where, with the convention1=0 = 1 , for all z 2 Z,

Fz(A) :=
sup� 2 �

�
�L � hzi (�; X)

�
�
1

inf � 2 � inf x2 A L � hzi (x; A)
: (3.57)

Proof. By Proposition 3.2.10, for all nonnegative bounded functionsf ,
�; � 0 2 P (X; X ) and � 2 � ,

�
�
�
�

� L � hz0:n� 1i f

� L � hz0:n� 1i 1X
�

� 0L � hz0:n� 1i f

� 0L � hz0:n� 1i 1X

�
�
�
� =

�
� � �

�;� 0hz0:n� 1i (f; 1X)
�
�

� L � hz0:n� 1i 1X � � 0L � hz0:n� 1i 1X

� 2� bn(� �  � )cjf j1 + 2� bn( + � � )c=2

Q n� 1
i =0

�
�L � hzi i (�; X)

�
�2

1

� L � hz0:n� 1i 1X � � 0L � hz0:n� 1i 1X
jf j1 ;

where we have used

� L � hz0:n� 1i f

� L � hz0:n� 1i 1X
_

� 0L � hz0:n� 1i f

� 0L � hz0:n� 1i 1X
� j f j1 :

We conclude the proof by noting that for allA 2 X ,

Q n� 1
i =0

�
�L � hzi i (�; X)

�
�2

1

� L � hz0:n� 1i 1X � � 0L � hz0:n� 1i 1X
�

Q n� 1
i =0 (Fzi (A))2

� (A)� 0(A)
:

Proof of (3.16). From (3.3), (3.13) and using thatln(a)� ln(b) � (a� b)=b
for all a; b > 0, it follows that for all nonnegative integersm; k (m < k ) and
sequencez� m:k 2 Zm+ k+1 , for all �; � 0 2 P (X; X ) and bounded measurable
function f � 1,

ln � L � hzk jz� m:k� 1i f � ln � 0L � hzk jz� m:k� 1i f

�
� �

�;� 0hz� m:k� 1i (L � hzk i f; 1X)

� L � hz� m:k� 1i 1X � � 0L � hz� m:k� 1i
�
L � hzk i f

� : (3.58)
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Now, let 0 �  � <  + � 1. By Proposition 3.2.10, for all � > 0 and � 2
( � ;  + ), there exists%2 (0; 1) such that, for all z� m:k� 1 2 Zm+ k satisfying

(m + k)� 1
k� 1X

i = � m

1K(zi ) � max (1 �  � ; (1 +  + )=2); (3.59)

we have

� �
�;� 0hz� m:k� 1i (L � hzk i f; 1X)

� L � hz� m:k� 1i 1X � � 0L � hz� m:k� 1i
�
L � hzk i f

� (3.60)

� %am;k

"

1 +
� L � hz� m:k� 1i

�
L � hzk i f

�
� � 0L � hz� m:k� 1i 1X

� L � hz� m:k� 1i 1X � � 0L � hz� m:k� 1i
�
L � hzk i f

�

#

+ 2� bm;k Cm;k ;

wheream;k := bn(� �  � )c, bm;k := bn( + � � )c and

C �
m;k :=

Q k� 1
i =0

�
�L � hzi i (�; X)

�
�2

1

� L � hz� m:k� 1i 1X � � 0L � hz� m:k� 1i
�
L � hzk i f

�
�
�L � hzk i (�; X)

�
�
1

jf j1 :

In addition by (3.13), we have

� L � hz� m:k� 1i
�
L � hzk i f

�
� � 0L � hz� m:k� 1i 1X

� L � hz� m:k� 1i 1X � � 0L � hz� m:k� 1i
�
L � hzk i f

�

= 1 +
� �

�;� 0hz� m:k� 1i (L � hzk i f; 1X)

� L � hz� m:k� 1i 1X � � 0L � hz� m:k� 1i
�
L � hzk i f

� :

Plugging this into (3.60) and then using (3.58) yields

ln � L � hzk jz� m:k� 1i f � ln � 0L � hzk jz� m:k� 1i f

� 2 (1 � %am;k )� 1 �
%am;k + � bm;k C �

m;k

�
: (3.61)

Note that for all z� m:k� 1 2 Zm+ k , we have

� L � hz� m:k� 1i 1X � � (D)
k� 1Y

i = � m

inf
x2 D

L � hzi i (x; D);

� 0L � hz� m:k� 1i
�
L � hzk i f

�
� � 0(D)

kY

i = � m

inf
x2 D

L � hzi i (x; D);

where we have usedjf j1 � 1. Then by exchanging� and � 0 in (3.61),
we obtain the upper bound forj ln � L � hzk jz� m:k� 1i f � ln � 0L � hzk jz� m:k� 1i f j.
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That is, for all z� m:k� 1 2 Zm+ k satisfying (3.59), we have

sup
� 2 �

�
� ln � L � hzk jz� m:k� 1i f � ln � 0L � hzk jz� m:k� 1i f

�
�

� 2 (1 � %am;k )� 1

(

%am;k +
� bm;k jf j1

� (D)� 0(D)

"
k� 1Y

i = � m

(Fzi (D))2

#

Fzk (D)

)

; (3.62)

whereFz is de�ned in (3.57). Using that ln+ (a=b) � ln+ (a) + ln � (b) for all
positive real numbersa and b, we then have

ln+ (Fz(D)) � ln+

�
sup
� 2 �

�
�L � hzi (�; X)

�
�
1

�
+ ln �

�
inf
� 2 �

inf
x2 D

L � hzi (x; D)
�

:

(3.63)
By (L-3) and (L-4),

EZ
�
ln+ FZ0 (D)

�
< 1 :

Now let � be small enough so thatEZ
�
ln+ FZ0 (D)

�
� � ln � . Then,

by Lemma 3.4.3, for all �; � 0 2 M + (D) there exists aPZ -a.s. �nite ran-
dom variable M = M (f ) > 0, and a constant � 2 (0; 1) such that, for all
k � 1 and m � 0, PZ -a.s.

2
1 � %am;k

(

%am;k +
� bm;k jf j1

� (D)� 0(D)

"
k� 1Y

i = � m

(FZ i (D))2

#

FZk (D)

)

� � m+ kM;

and from (3.62), this implies

sup
� 2 �

�
� ln � L � hZk jZ � m:k� 1i f � ln � 0L � hZk jZ � m:k� 1i f

�
� � � m+ kM; PZ -a.s.;

provided that

(m + k)� 1
k� 1X

i = � m

1K(Z i ) � max (1 �  � ; (1 +  + )=2); PZ -a.s. (3.64)

To complete, we need to show that there exists aPZ -a.s. �nite random vari-
able T such that for all k � T and for all m � 0, (3.64) holds. Note that
under (L-2)(i),

1 � PZ (Z0 2 K) < 2PZ (Z0 2 K) � 1:

Now choose~ � ;  � ;  + and ~ + such that

1 � PZ (Z0 2 K) < ~ � <  � <  + < ~ + < 2PZ (Z0 2 K) � 1:
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By construction,

PZ (Z0 2 K) > max
�
1 � ~ � ; (1 + ~ + )=2

�
:

By (L-1), the Birkho� ergodic theorem ensures that there exists aPZ -a.s.
�nite random variable B such that for all k � B and m � B , PZ -a.s.,

k� 1
k� 1X

i =0

1K(Z i ) > max
�
1 � ~ � ; (1 + ~ + )=2

�
(3.65)

m� 1
� 1X

i = � m

1K(Z i ) > max
�
1 � ~ � ; (1 + ~ + )=2

�
(3.66)

Now let T+ := B(1+  + )=(~ + �  + ). If m � B and k � T+ , then from (3.65)
and (3.66) and using thatT+ � B , PZ -a.s.,
P k� 1

i = � m 1K(Z i )
m + k

>

P � 1
i = � m 1K(Z i ) +

P k� 1
i =0 1K(Z i )

m + k
= (1 + ~ + )=2 > (1 +  + )=2:

On the other hand, if 0 � m < B and k � T+ ,
P k� 1

i = � m 1K(Z i )
m + k

�
P k� 1

i =0 1K(Z i )
m + k

�
k(1 + ~ + )=2

m + k
>

T+ (1 + ~ + )
2(B + T+ )

= (1 +  + )=2:

By similar argument, letting T � := B(1 �  � )=( � � ~ � ), we get that for all
m � 0 and k � T � ,

P k� 1
i = � m 1K(Z i )

m + k
� 1 �  � ; PZ -a.s.

The proof follows by settingT = T+ _ T � .

Proof of (3.17). Observe that for all � 2 P (X; X ), bounded measur-

able function f � 1 and m 2 Z+ ; k 2 Z �
+ , we can write

� L � hZk jZ � m� 1:k� 1i f = � 0L � hZk jZ � m:k� 1i f;

where, for allA 2 X ,

� 0(A) :=
� L � hZ � m� 1i 1A

� L � hZ � m� 1i 1X
:
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Since

� 0(D) =
� L � hZ � m� 1i 1D

� L � hZ � m� 1i 1X
�

� (D)
FZ � m � 1 (D)

;

then (3.62) writes,PZ -a.s.,

sup
� 2 �

�
� ln � L � hZk jZ � m:k� 1i f � ln � L � hZk jZ � m� 1:k� 1i f

�
�

�
2

1 � %am;k

(

%am;k +
� bm;k jf j1

� (D)2
FZ � m � 1 (D)

"
k� 1Y

i = � m

(FZ i (D))2

#

FZk (D)

)

:

The rest of the proof follows the same lines as the proof of (3.16) and is thus
omitted.

Proof of (3.18). Note that when k = 0, (3.64) follows directly from

(3.66). The proof is therefore concluded by following the same lines as the
proof of (3.17).

3.4.2 Proof of Proposition 3.2.13

Proof of Proposition 3.2.13�(i) . From (3.3), we have for all integer
m > 0, z� m:0 2 Zm+1 and � 2 M + (D),

� L � hz0jz� m:� 1i 1X �
�
�L � hz0i (�; X)

�
�
1

: (3.67)

Thus, from (3.19) and (L-4), it follows that

EZ
�
ln+ L � hZ0jZ �1 :� 1i 1X

�
< 1 :

Now, for all � 2 � , � 2 M + (D) and positive integerm, de�ne a measurable
function V �

�;m from (Zm+1 ; Z 
 (m+1) ) to (R; B(R)) by for all z� m:0 2 Zm+1 ,

V �
�;m (z� m:0) := m� 1

mX

k=1

�
ln+

�
�L � hz0i (�; X)

�
�
1

� ln � L � hz0jz� k:� 1i 1X
�

:

By (3.67), V �
�;m is nonnegative for all positive integerm. Thus, Fatou's lemma

implies
lim inf

n!1
EZ

�
V �

�;m

�
� EZ

h
lim inf
m!1

V �
�;m

i
(3.68)

By de�nition,

lim inf
n!1

EZ
�
V �

�;m

�
= EZ

�
ln+

�
�L � hZ0i (�; X)

�
�
1

�

� lim sup
m!1

m� 1
mX

k=1

EZ
�
ln � L � hZ0jZ � k:� 1i 1X

�
; (3.69)
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and

EZ

h
lim inf
m!1

V �
�;m

i
= EZ

�
ln+

�
�L � hZ0i (�; X)

�
�
1

�

� EZ

"

lim sup
m!1

m� 1
mX

k=1

ln � L � hZ0jZ � k:� 1i 1X

#

: (3.70)

Since the processf Zk : k 2 Zg is stationary, this implies that for all k 2 Z �
+ ,

EZ
�
ln � L � hZ0jZ � k:� 1i 1X

�
= EZ

�
ln � L � hZk jZ0:k� 1i 1X

�
;

showing that

m� 1
mX

k=1

EZ
�
ln � L � hZ0jZ � k:� 1i 1X

�
= m� 1

mX

k=1

EZ
�
ln � L � hZk jZ0:k� 1i 1X

�
:

(3.71)
Cesàro mean convergence moreover implies,PZ -a.s.,

lim sup
m!1

m� 1
mX

k=1

ln � L � hZ0jZ � k:� 1i 1X

= lim
m!1

ln � L � hZ0jZ � m:� 1i 1X = ln L � hZ0jZ �1 :� 1i 1X (3.72)

Thus combining (3.68), (3.69), (3.70), (3.71) and (3.72), we obtain

EZ
�
ln L � hZ0jZ �1 :� 1i 1X

�
� lim sup

m!1
m� 1

mX

k=1

EZ
�
ln � L � hZk jZ0:k� 1i

�
1X

= lim sup
m!1

�
EZ

�
m� 1 ln � L � hZ0:m i 1X

�
� m� 1EZ

�
ln � L � hZ0i 1X

�	
> �1 ;

where the last bound follows from (L-3) and the minorization

ln � L � hZ0:m i 1X � ln � (D) +
mX

k=0

ln inf
x2 D

L � hZk i (x; D);

establishing that
EZ

�
ln� L � hZ0jZ �1 :� 1i 1X

�
< 1 :

Thus (3.20) follows and this completes the proof of Proposition 3.2.13�(i).

Proof of Proposition 3.2.13�(ii) . According to Proposition 3.2.11,
there exist PZ -a.s. �nite random variablesM and T such that for all k � T
and m � 0, PZ -a.s.,

sup
� 2 �

�
� ln � L � hZk jZ � m:k� 1i 1X � ln � L � hZk jZ � m� 1:k� 1i 1X

�
� � M� m+ k ;
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which implies, PZ -a.s.,

sup
� 2 �

�
� ln � L � hZk jZ0:k� 1i 1X � ln � L � hZk jZ �1 :k� 1i 1X

�
� �

M� k

1 � �
:

The proof of Proposition 3.2.13�(ii) then follows immediately by observing
that PZ -a.s.,

n� 1 ln � L � hZ0:n� 1i 1X = n� 1
n� 1X

k=1

ln � L � hZk jZ0:k� 1i 1X + n� 1 ln � L � hZ0i 1X;

n� 1 ln L � hZ0:n� 1jZ �1 :� 1i 1X = n� 1
n� 1X

k=1

ln L � hZk jZ �1 :k� 1i 1X:

Proof of Proposition 3.2.13�(iii) . Under (L-5), for any m � p and
x 2 D, PZ -a.s., the function � 7! ln � xL � hZ0jZ � m:� 1i 1X is continuous on� .
Since

lim
m!1

sup
� 2 �

�
� ln � xL � hZ0jZ � m:� 1i 1X � ln L � hZ0jZ �1 :� 1i 1X

�
� = 0; PZ -a.s.;

and since the uniform limit of continuous function is continuous, then the
function � 7! ln L � hZ0jZ �1 :� 1i 1X is PZ -a.s. continuous. Now let� 0 2 � . For
� > 0, let B(� 0; � ) be an open ball of center� 0 and radius � . Then for all
� 2 B(� 0; � ), we have

ln L � hZ0jZ �1 :� 1i 1X � sup
� 2 B(� 0 ;� )

ln L � hZ0jZ �1 :� 1i 1X

� sup
� 2 �

sup
x2 X

ln L � hZ0i (x; X); PZ -a.s.;

which by (L-4) implies

sup
� 2 B(� 0 ;� )

EZ
�
ln L � hZ0jZ �1 :� 1i 1X

�
� EZ

"

sup
� 2 B(� 0 ;� )

ln L � hZ0jZ �1 :� 1i 1X

#

� EZ

�
sup
� 2 �

sup
x2 X

ln L � hZ0i (x; X)
�

< 1 :

By monotone convergence theorem, it yields that

lim
� #0

sup
� 2 B(� 0 ;� )

EZ
�
ln L � hZ0jZ �1 :� 1i 1X

�
� lim

� #0
EZ

"

sup
� 2 B(� 0 ;� )

ln L � hZ0jZ �1 :� 1i 1X

#

= EZ

"

lim
� #0

sup
� 2 B(� 0 ;� )

ln L � hZ0jZ �1 :� 1i 1X

#

= EZ
�
ln L � 0 hZ0jZ �1 :� 1i 1X

�
;
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showing that
� 7! EZ

�
ln L � hZ0jZ �1 :� 1i 1X

�

is PZ -a.s. upper semi-continuous at� 0 2 � . The proof then follows since this
holds with arbitrary � 0 2 � .

3.4.3 Proof of Lemma 3.3.5

Let �� � is an invariant distribution for �K � , i.e. �� � �K � = �� � . We will show
that for probability measure� � de�ned by for all A 2 W , � � (A) = �� � (Wr � A),
then � � (K � )r = � � . Now from (3.36) and (3.37), we have forA 2 W ,

� � (K � )r (A) =
Z

Wr
� � (dw0)K � (w0; dw1) � � � K � (wr � 2; dwr � 1)K � (wr � 1; A)

=
Z

W

�� � (Wr � dwr )1W(wr )T � (wr ; Wr � 1 � A)

=
Z

Wr +1

�� � (d �w) �K � ( �w; Wr � A) = �� � �K � (Wr � A)

= �� � (Wr � A) = � � (A):

Conversely, suppose that� � is an invariant distribution for (K � )r , that is,
� � (K � )r = � � . De�ne a probability measure �� � on

�
Wr +1 ; W 
 (r +1)

�
by, for all

A0; : : : ; Ar 2 W ,

�� � (A0 � � � � � A r ) =
Z

A 0

� � (dw)T � (w; A1 � � � � � A r ):

Then from (3.36) and (3.37), for allA0; : : : ; Ar 2 W , we have

�� � �K � (A0 � � � � � A r ) =
Z

Wr +1

�� � (d �w) �K � ( �w; A0 � � � � � A r )

=
Z

A 0

�� � (Wr � dwr )T � (wr ; A1 � � � � � A r )

=
Z

A 0 ����� A r

� (dw0)K � (wr � 1; dw1) � � � K � (w0; dwr )

= �� � (A0 � � � � � A r );

which implies that �� � �K � = �� � .
For uniqueness, if �K � admits a unique stationary probability measure�� � ,

then �� � = �� � . Consequently, for allA 2 W ,

� � (A) = �� � (Wr � A) = �� � (Wr � A)

=
Z

W
� � (dw)T � (w; Wr � 1 � A) = � � (K � )r (A) = � � (A):
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To conclude, it is worth noting that if �� � is also an invariant probability
measure for �K � , then the probability measure� � de�ned by for all A 2 W ,

� � (A) = �� � (Wr � A)

is also an invariant probability measure for(K � )r . Then, if (K � )r admits a
unique invariant probability measure, it follows that �� � (Wr � � ) = �� � (Wr � � )
and this implies for all A0; : : : ; Ar 2 W ,

�� � (A0 � � � � � A r ) = �� � �K � (A0 � � � � � A r )

=
Z

A 0

�� � (Wr � dwr )T � (wr ; A1 � � � � � A r )

=
Z

A 0

�� � (Wr � dwr )T � (wr ; A1 � � � � � A r )

= �� � �K � (A0 � � � � � A r ) = �� � (A0 � � � � � A r );

completing the proof.

3.4.4 Proof of Proposition 3.3.9

We prove Proposition 3.3.9 by applying the results obtained in Section 3.2.
First let us set, for all (�; z ) 2 � � Z, L � hzi = ` � hzi and de�ne L �

n and L � h�j�i
as in De�nition 3.2.1 and De�nition 3.2.2, respectively. From these settings,
we have for all� 2 � and y0:nr 2 Ynr +1 with for all k 2 Z+ , zk = zkr :(k+1) r ,

L � hz0:n� 1i = ` � hy0:nr i

and for 0 < p < n ,

L � hzp:n� 1jz0:p� 1i = ` � hypr +1: nr jy0:pr i :

Obviously, (3.2) is satis�ed. Comparing the assumptions, we have (F-1)
implies (L-1); (F-2) corresponds to (L-2) and (L-3); (F-3) implies (L-4); and
(F-4) yields (L-5). This implies that all the results in Section 3.2 can also be
derived under the present Assumptions (F-1)�( F-4).

Now, let � 2 P (X; X ) such that � (D) > 0. We will show that for all non-
negative and bounded measurable functionf , the sequencef �` � hY1jY� m:0i f :
m 2 Z �

+ g converges~P� ? -a.s. For anyt 2 f 0; : : : ; r � 1g, set

� �
m;t (A) :=

�` � hY� mr � t :� mr i 1A

�` � hY� mr � t :� mr i 1X
:
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From (3.32) and (3.35), for allm 2 Z+ and t 2 f 0; : : : ; r � 1g, we have

�` � hY1jY� mr � t :0i f

=
� �

m;t L
� hZ � m:� 1i

� R
X Q� (( �; Y0); dx1)g� (( �; Y0; x1); Y1)f (x1)

�

� �
m;t L

� hZ � m:� 1i 1X
:

Let 0 �  � <  + � 1. Lemma 3.4.1 shows that for allt 2 f 0; : : : ; r � 1g and
� > 0, there exists� 2 (0; 1) such that, if

m� 1
� 1X

i = � m

1K(Z i ) � max(1 �  � ; (1 +  + )=2);

then for all � 2 ( � ;  + ) and � 2 � , with Fz := Fz(D) de�ned by (3.57),

�
� �` � hY1jY� mr � t :0i f � �` � hY1jY� mr :0i f

�
�

� cf

 

� bm(� �  � )c +
� bm( + � � )c=2

� �
m;t (D)

� 1Y

i = � m

(FZ i )
2

!

sup
� 2 �

sup
(x;x 0)2 X2

g� ((x; Y0; x0); Y1)

� cf

 

� bm(� �  � )c + � bm( + � � )c=2F 0
� m

� 1Y

i = � m

F 2
Z i

!

sup
� 2 �

sup
x;x 02 X

g� ((x; Y0; x0); Y1)

wherecf := 2jf j1 and

F 0
� m := max

t2f 0;:::;r � 1g

1
inf � 2 � � �

m;t (D)
:

Note that the sequencef F 0
� m : m 2 Z+ g is stationary. Then by the

same argument as in the proof of (3.63), with� 2 M � ? (D; r ), we have
~E� ?

�
ln+ F 0

� m

�
< 1 . By choosing  � and  + such that ~P� ? (Z0 2 K) >

max(1 �  � ; (1 +  + )=2) and by applying Lemma 3.4.3, it follows that there
exist %� 2 (0; 1) and a ~P� ? -a.s. �nite random variable C� such that for all
` > 1,

�
� �` � hY1jY� ` :0i f � �` � hY1jY� ` � 1:0i f

�
� � C� jf j1 %`

� ; ~P� ? -a.s.

Similarly, for all � 0 2 P (X; X ) such that � 0(D) > 0, there exist %�;� 0 2 (0; 1)
and a ~P� ? -a.s. �nite random variable C�;� 0 such that for all ` > 1,

�
� �` � hY1jY� ` :0i f � � 0` � hY1jY� ` :0i f

�
� � C�;� 0jf j1 %`

�;� 0; ~P� ? -a.s.

This yields that for all � 2 P (X; X ) satisfying � (D) > 0, the se-
quence f �` � hY1jY� ` :0i f : ` 2 Z �

+ g converges~P� ? -a.s. to a limit denoted
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by ` �;� ? hY1jY�1 :0i f which is measurable on
�
YZ� ; Y 
 Z�

�
and does not de-

pend on � 2 M � ? (D; r ). This establishes (3.43). On the other hand,
f �` � hY1jY� ` :0i : ` 2 Z �

+ g is a sequence of (~P� ? -a.s.) �nite measure on(X; X )
and since (3.43) holds with any nonnegative and bounded measurable func-
tion f , this yield that ` �;� ? hY1jY�1 :0i de�ne a (nonnegative) measure on
(X; X ). This shows that ` �;� ? is a nonnegative kernel onYZ� � X . More-
over, by stationarity of f Yk : k 2 Zg, we obtain that for all k 2 Z+ , � 2 � ,
� 2 M � ? (D; r ) and nonnegative and bounded measurable functionf ,

lim
m!1

�` � hYk jY� m:k� 1i f = ` �;� ? hYk jY�1 :k� 1i f; ~P� ? -a.s.;

showing the �rst part of Proposition 3.3.9�(i). To complete the proof of
Proposition 3.3.9�(i), it remains to show that for all � 2 � and nonnegative
and bounded measurable functionf ,

~E� ?
� �� ln ` �;� ? hYk jY�1 :k� 1i f

�
� � < 1 :

Note that we have,~P� ? -a.s.,

�` � hYk jY� m:k� 1i f � sup
(x;x 0)2 X2

g� ((x; Yk� 1; x0); Yk) jf j1 ;

and this implies that

` �;� ? hYk jY�1 :k� 1i f � sup
(x;x 0)2 X2

g� ((x; Yk� 1; x0); Yk) jf j1 ; ~P� ? -a.s.

Under (F-3), we get that

~E� ?
�
ln+ ` �;� ? hYk jY�1 :k� 1i f

�
< 1 :

Note also that if E(A) < 1 , then we haveE(A � B) = E(A) � E(B). Thus
we can write,

~E� ?
�
ln ` �;� ? hYk jY�1 :k� 1i f

�

= ~E� ?
�
ln+ ` �;� ? hYk jY�1 :k� 1i f

�
� ~E� ?

�
ln� ` �;� ? hYk jY�1 :k� 1i f

�
:

This will immediately imply

~E� ?
�
ln� ` �;� ? hYk jY�1 :k� 1i f

�
< 1

if we can show that

~E� ?
�
ln ` �;� ? hYk jY�1 :k� 1i f

�
> �1 :
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By stationarity of f Yk : k 2 Zg, we have

r ~E� ?
�
ln ` �;� ? hY1jY�1 :0i f

�

= r ~E� ?
�
ln+ ` �;� ? hY1jY�1 :0i f

�
� r ~E� ?

�
ln� ` �;� ? hY1jY�1 :0i f

�

= ~E� ?

"
rX

k=1

ln+ ` �;� ? hYk jY�1 :k� 1i f

#

� ~E� ?

"
rX

k=1

ln� ` �;� ? hYk jY�1 :k� 1i f

#

= ~E� ?

"
rX

k=1

ln ` �;� ? hYk jY�1 :k� 1i f

#

:

By Corollary 3.2.12, ~P� ? -a.s.,

rY

k=1

` �;� ? hYk jY�1 :k� 1i f =
rY

k=1

lim
m!1

�` � hYk jY� mr :k� 1i f

= lim
m!1

rY

k=1

�` � hYk jY� mr :k� 1i f

= lim
m!1

�` � hY1:r jY� mr :k� 1i f

= lim
m!1

� L � hZ0jZ � m:� 1i f

= L �;� ? hZ0jZ �1 :� 1i f:

Thus,

~E� ?
�
ln ` �;� ? hYk jY�1 :k� 1i f

�
= r � 1~E� ?

�
ln L �;� ? hZ0jZ �1 :� 1i f

�
> �1 ;

where we have used the result of Proposition 3.2.13�(i) such that

~E� ?
� �� ln L �;� ? hZ0jZ �1 :� 1i f

�
� � < 1 :

This completes the proof of Proposition 3.3.9�(i).
To prove Proposition 3.3.9�(ii), observe that for all s and t and bounded

measurable functionh � 1, we have

�` � hY0:s+ t i h �
�
�` � hY0:si 1X

�
 

t � 1Y

i =0

sup
� 2 �

sup
(x;x 0)2 X2

g� ((x; Ys+ i ; x0); Ys+ i +1 )

!

jhj1

�
�
�` � hY0:si h

�
 

t � 1Y

i =0

sup
� 2 �

sup
(x;x 0)2 X2

g� ((x; Ys+ i ; x0); Ys+ i +1 )

!

jhj1 :
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Thus,

n� 1 ln �` � hY0:nr + r i h �
r � 1X

i = t

n� 1 ln+ A i
n;t � n� 1jhj1 � n� 1 ln �` � hY0:nr + t i h

� n� 1 ln �` � hY0:nr i h +
t � 1X

i =0

n� 1 ln+ A i
n;t + n� 1jhj1 ; (3.73)

whereA i
n;t := sup� 2 � sup(x0;x00)2 X2 g� ((x0; Ynr + i ; x00); Ynr + i +1 ). Note that for all

i and t, f A i
n;t : n 2 Z+ g is stationary. Thus from (F-3) and Lemma 3.4.2,

lim
n!1

A i
n;t = 0; ~P� ? -a.s.

From (3.73) and by noting that for all i and t, f A i
n;t : n 2 Z+ g no longer

depend on� 2 � , for all t 2 f 0; : : : ; rg, ~P� ? -a.s.,

lim sup
n!1

sup
� 2 �

n� 1
�
� ln �` � hY0:nr � r + t i h � ln � L � hZ0:n� 1i h

�
� = 0: (3.74)

Since t is arbitrary in f 0; : : : ; rg, using Proposition 3.2.13�(ii), we �nally
obtain,

lim
n!1

n� 1 ln �` � hY0:n i h = r � 1 lim
m!1

m� 1� L � hZ0:m� 1i h

= r � 1~E� ?
�
ln L �;� ? hZ0jZ �1 :� 1i h

�

= ~E� ?
�
ln ` �;� ? hY1jY�1 :0i h

�
; ~P� ? -a.s.

This result holds with all bounded measurable functionh � 1, and thus
propagates to all bounded measurable functionf � 0, concluding the proof.

3.4.5 Some Useful Lemmas

The following lemmas are taken from Douc and Moulines [2012], and thus
stated without proofs.

Lemma 3.4.2. Let f Zk : k 2 Zg be a sequence of nonnegative random
variables on a probability space(
 ; F ; P) having the same marginal distribu-
tion, that is, for any k 2 Z and any nonnegative and measurable functionf ,
E[f (Zk)] = E[f (Z0)].

(i) Assume that E[ln+ Z0] < 0. Then, for all � 2 (0; 1), supk� 0 � kZk < 1 ,
P-a.s. Moreover, limn!1 n� 1 ln+ Zn = 0, P-a.s.

(ii) Assume that E [jln Z0j] < 0. Then, for all � 2 (0; 1), supk2 Z � jkjZk < 1
and inf k2 Z � �j kjZk > 0, P-a.s.
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Lemma 3.4.3. Let f Uk : k 2 Zg, f Vk : k 2 Zg and f Wk : k 2 Zg be
stationary sequences such that

E[ln+ U0] < 1 ; E[ln+ V0] < 1 ; E[ln+ W0] < 1 :

Assume moreover thatf Vk : k 2 Zg is ergodic. Then, for all � in (0; 1)
such thatE[ln+ V0] < � ln � and for all � in (0; 1), there exists aP-a.s. �nite
random variableM and a constant%in (0; 1) such that for allk � 1, m � 0,

� m+ k + � m+ kW� m

 
k� 1Y

i = � m

Vi

!

Uk � %m+ kM; P-a.s.
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Chapter 4

Observation-driven Models:
Handy Su�cient Conditions for
the Convergence of the MLE

Summary. This chapter, largely inspired by Douc et al. [2015],
aims at establishing asymptotic properties for a general class of �rst-
order observation-driven times series models. We generalize the class of
observation-driven models considered by Douc et al. [2013] in the sense that
we allow the conditional law of each observation to depend on the parame-
ter. The existence of ergodic solutions and the consistency of the maximum
likelihood estimator (MLE) are derived under easy-to-check conditions. The
obtained conditions appear to apply for a wide class of models. We illus-
trate our results with speci�c observation-driven times series, including the
recently introduced NBIN-GARCH and NM-GARCH models considered in
Section 2.4 of Chapter 2, demonstrating the consistency of the MLE for these
two models.

4.1 Introduction

Observation-driven models (ODMs) introduced by Cox [1981] have been
widely used in various disciplines such as in economics (Pindyck and Ru-
binfeld [1998]), environmental study (Bhaskaran et al. [2013]), epidemiol-
ogy and public health study (Zeger [1988], Davis et al. [1999], Ferland et al.
[2006], �nance (Liesenfeld and Richard [2003], Rydberg and Shephard [2003],
Fokianos and Tjøstheim [2011], Francq and Zakoian [2011]) and population
dynamics (Ives et al. [2003]). The celebrated GARCH(1; 1) model, see Boller-
slev [1986], as well as most of the models derived from this one, see Boller-
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slev [2008] for a list of some of them, are typical examples of ODMs. A
number of contributions on this class of models dealing with countable data
includes Streett [2000], Davis et al. [2003], Heinen [2003], Fokianos et al.
[2009], Neumann [2011], Doukhan et al. [2012], Davis and Liu [2012] and
Douc et al. [2013]. ODMs have the nice feature that the associated (condi-
tional) likelihood and its derivatives are easy to compute and the prediction
is straightforward. The consistency of the maximum likelihood estimator
(in short, MLE) for the class of these models can be cumbersome, except
when it can be derived using computations speci�c to the studied model
(the GARCH(1; 1) case being one of the most celebrated example). When
the observed variable is discrete, general consistency results have been ob-
tained only recently in Davis and Liu [2012] or Douc et al. [2013] (see also in
Henderson et al. [2011] for the existence of stationary and ergodic solutions
to some observation-driven time series models). However, the consistency
result of Douc et al. [2013] applies to some restricted class of models and
does not cover the case where the distribution of the observations given the
hidden variable also depends on an unknown parameter. We now introduce
three simple examples, to which the results of Douc et al. [2013] can not
be directly applied. The �rst one is the negative binomial integer-valued
GARCH (NBIN-GARCH) model, which was �rst introduced by Zhu [2011]
as a generalization of the Poisson IN-GARCH model. The NBIN-GARCH
model belongs to the class of integer-valued GARCH models that account
for overdispersion (namely, variability is larger than mean) and potential
heavy tails in the high values. In Zhu [2011], the author applied this model
to treat the data of counts of poliomyelitis cases in the USA from 1970 to
1983 reported by the Centres for Disease Control, where data overdisper-
sion was detected. The estimation result showed that NBIN-GARCH(1; 1)
outperformed among some commonly used models such as Poisson and Dou-
ble Poisson models. The NBIN-GARCH(1; 1) model is formally de�ned as
follows.

Example 4.1.1 (NBIN-GARCH (1; 1) model). Consider the following recur-
sion.

X k+1 = ! + aX k + bYk ;

Yk+1 jX 0:k+1 ; Y0:k � N B
�

r;
X k+1

1 + X k+1

�
;

(4.1)

whereX k takes values inX = R+ , Yk takes values inZ+ and � = ( !; a; b; r ) 2
(0; 1 )4 is an unknown parameter. In (4.1),N B(r; p) denotes the negative
binomial distribution with parameters r > 0 and p 2 (0; 1), that is, if Y �
N B(r; p), then P(Y = k) = �( k+ r )

k!�( r ) (1 � p)r pk for all k � 0, where� stands for
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the Gamma function. Though substantial analysis on this model has been
carried out in the literature, to the best of our knowledge, the consistency of
the MLE has not been treated; see the end of the discussions of Section 6 in
Zhu [2011].

The second example is the univariate normal mixture GARCH (NM-
GARCH) proposed by Haas et al. [2004] and later considered by Alexander
and Lazar [2006]. The NM-GARCH model is another natural extension of
GARCH processes, where the usual Gaussian conditional distribution of the
observations given the hidden volatility variable is replaced by a mixture
of Gaussian distributions given a hidden vector volatility variable. The NM-
GARCH model has the ability of capturing time variation in both conditional
skewness and kurtosis, while the classical GARCH cannot. In Alexander and
Lazar [2006], the NM-GARCH(1; 1) model was applied to examine the data
of exchange rates consisting of daily prices in US dollars of three di�erent
currencies (British pound, euro and Japanese yen) from 2 January 1989 to
31 December 2002. The empirical evidence suggested the best performance
of NM(2)-GARCH(1; 1) when compared to the classical GARCH(1; 1), stan-
dardized symmetric and skewedt-GARCH(1; 1) models applied to this same
data. The de�nition of this model is formally stated as follows.

Example 4.1.2 (NM(d)-GARCH(1; 1) model). Let d 2 Z �
+ and consider the

following recursion:

X k+1 = ! + AX k + Y 2
k b;

Yk+1 jX 0:k+1 ; Y0:k � G� (X k+1 ; �); (4.2)

dG� (x; �)
d�

(y) =
dX

`=1

 `
e� y2=2x `

(2�x ` )1=2
; x 2 (0; 1 )d; y 2 R;

where � is the Lebesgue measure onR, X k = [ X 1;k : : : X d;k ]T takes values
in X = Rd

+ ;  = [  1 : : :  d]T a d-dimensional vector of mixture coe�cients
belonging to thed-dimensional simplex

Pd =

(

 2 Rd
+ :

dX

`=1

 ` = 1

)

; (4.3)

! , b are d-dimensional vector parameters with positive and nonnegative
entries, respectively; andA is a d � d matrix parameter with nonnegative
entries. Here we have� = (  ; ! ; A ; b). Note that G� depends on� only
through the mixture coe�cients  1; : : : ;  d. If d = 1, we obtain the usual
conditionally Gaussian GARCH(1; 1) process. In such a case, since =  1 =
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1, G� no longer depends on� . To our knowledge, the usual consistency proof
of the MLE for the GARCH cannot be directly adapted to this model.

Finally, we consider the following new example, where a threshold is
added to the usual IN-GARCH model in the conditional distribution.

Example 4.1.3 (Threshold IN-GARCH model). Consider the following re-
cursion.

X k+1 = ! + aX k + bYk ;

Yk+1 jX 0:k+1 ; Y0:k � P (X k+1 ^ � ) ;
(4.4)

where X k takes values inX = (0 ; 1 ); Yk takes values inZ+ and � =
(!; a; b; � ) 2 (0; 1 )4 is an unknown parameter. Comparing with the usual
IN-GARCH model, a threshold � has been added in the conditional obser-
vation distribution. This corresponds to the practical case where the hidden
variable has an in�uence on the observation up to this threshold.

For a well-speci�ed model, a classical approach to establish the consis-
tency of the MLE generally involves two main steps: �rst the MLE converges
to the maximizing set � ? of a limit criterion, and second the maximizing set
indeed reduces to the true parameter� ?, which is usually referred to as solv-
ing the identi�ability problem. In this chapter, we are interested in solving
the problem involved in the �rst step, that is, the convergence of MLE. We
extend the convergence result of MLE obtained in Douc et al. [2013], which
is valid for a restricted class of models, to a larger class of models in which
the three examples introduced above are embedded. More precisely, we show
the convergence of MLE in observation-driven models where the probability
distributions of observations explicitly depend on the unknown parameters.
Moreover, we provide very simple conditions that are easy to check, as shown
by the three illustrating examples.

The chapter is organized as follows. Speci�c de�nitions and notation are
introduced in Section 4.2. Then, Section 4.3 contains the main result of this
chapter, that is, su�cient conditions for the existence of ergodic solutions
and for the consistency of the MLE. These results are then applied in Sec-
tion 4.4 to the three examples introduced above. Numerical experiments for
the NBIN-GARCH (1; 1) model are given in Section 4.5. Finally, Section 4.6
provides the proofs of the main results, inspired from Douc et al. [2013], and
of a technical lemma.

4.2 De�nitions and Notation

Consider a bivariate stochastic processf (X k ; Yk) : k 2 Z+ g on X � Y,
where (X; dX) is a complete and separable metric space endowed with the
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associated Borel� -�eld X and (Y; Y) is a Borel space. Let(� ; �) , the set
of parameters, be a compact metric space,f G� : � 2 � g be a family of
probability kernels on X � Y and f (x; y) 7!  �

y(x) : � 2 � g be a family of
measurable functions from(X � Y; X 
 Y ) to (X; X ). The observation-driven
time series model can be formally de�ned as follows.

De�nition 4.2.1. A time seriesf Yk : k 2 Z+ g valued in Y is said to be
distributed according to an observation-driven model, in short ODM, with
parameter� 2 � if there is a bivariate Markov chainf (X k ; Yk) : k 2 Z+ g on
X � Y whose transition kernelK � satis�es

K � ((x; y); dx0dy0) = �  �
y (x)(dx0) G� (x0; dy0); (4.5)

where � a denotes the Dirac mass at pointa. Moreover, we will say that the
observation-driven time series model is dominated by some� -�nite measure
� on (Y; Y) if for all x 2 X, the probability kernel G� (x; �) is dominated by� .
In this case we denote byg� (x; �) its Radon�Nikodym derivative, g� (x; y) =
dG� (x;�)

d� (y), and we always assume that for all(x; y) 2 X� Y and for all � 2 � ,

g� (x; y) > 0:

A dominated parametric ODM is thus characterized by the collection
f (g� ;  � ) : � 2 � g. The class of ODMs is a particular case ofpartially-
observed Markov chainssince onlyYk 's are observed, whereasX k 's arehidden
variables. Note that our notation for observation-driven models is slightly
di�erent from that of Douc et al. [2013] where their sequencef Ykg corre-
sponds to our sequencef Yk� 1g. Note also that the processf X k : k � 1g by
itself is a Markov chain with transition kernel de�ned by

R� (x; A) =
Z

1A ( �
y(x)) G� (x; dy); x 2 X; A 2 X : (4.6)

However, ODMs do not belong to the class of hidden Markov models. This
can be seen in the following recursive relation, which holds for allk � 0,

X k+1 =  �
Yk

(X k);

Yk+1 j F k � G� (X k+1 ; �);
(4.7)

where F k = � (X ` ; X `+1 ; Ỳ : ` � k; ` 2 Z+ ), and which can be represented
graphically in Figure 4.1.

The most popular example is the GARCH(1; 1) process, whereG� (x; �) is
a centered (say Gaussian) distribution with variancex and  �

y(x) is an a�ne
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X k X k+1

Yk+1Yk

X k+2

Yk+2

 �

G�

Figure 4.1 � Graphical Representation of the Observation-driven Model.

function of x and y2. One can readily check that Examples 4.1.1 and 4.1.2
are other instances of dominated observation-driven models.

The inference about model parameter is carried out by relying on the
conditional likelihood of the observations(Y1; : : : ; Yn ) given X 1 = x for an
arbitrary x 2 X. The corresponding conditional density function with respect
to � 
 n is, under parameter� , for all x 2 X,

y1:n 7!
nY

k=1

g�
�
 � hy1:k� 1i (x); yk

�
; (4.8)

where, for any vectory1:p = ( y1; : : : ; yp) 2 Yp,  � hy1:pi is the X ! X function
obtained as the successive composition of �

y1
,  �

y2
, ..., and  �

yp
,

 � hy1:pi =  �
yp

�  �
yp� 1

� � � � �  �
y1

; (4.9)

with the convention  � hys:t i (x) = x for s > t . Then, the corresponding
(conditional) Maximum Likelihood Estimator (MLE) �̂ x;n of the parameter
� , is de�ned by

�̂ x;n 2 argmax
� 2 �

L�
x;n hY1:n i ; (4.10)

where

L�
x;n hy1:n i := n� 1

nX

k=1

ln g�
�
 � hy1:k� 1i (x); yk

�
: (4.11)

In this contribution, we study the convergence of̂� x;n as n ! 1 for some
well-chosen value ofx under the assumption that the model is well speci�ed
and the observations are in a steady state. This means that we assume
that the observations f Yk : k 2 Z+ g are distributed according to ~P� ? with
� ? 2 � , where, for all � 2 � , ~P� denotes the stationary distribution of the
observation-driven time series corresponding to the parameter� . However
whether such a distribution is well de�ned is not always obvious. We will use
the following ergodicity assumption.
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(A-1) For all � 2 � , the transition kernelK � of the complete chain admits a
unique stationary distribution� � on X � Y.

With this assumption, we can now de�ne~P� . The following notation and
de�nitions will be used throughout the chapter.

De�nition 4.2.2. For any probability distribution � on X � Y, we denote
by P�

� the distribution of the Markov chain f (X k ; Yk) : k 2 Z+ g with kernel
K � and initial probability mesure � . Under Assumption (A-1), we denote by
� �

1 and � �
2 the marginal distributions of � � on X and Y, respectively and by

P� and ~P� the probability distributions de�ned respectively as follows.

a) P� denotes the extension ofP�
� � on the whole line(X � Y)Z.

b) ~P� is the corresponding projection on the componentYZ.

We also use the symbolsE� and ~E� to denote the expectations corresponding
to P� and ~P� , respectively.

4.3 Main Results

4.3.1 Preliminaries

In this section, we follow the same lines as in Douc et al. [2013] to derive
the convergence of the MLE�̂ x;n for a general class of observation-driven
models. The approach is to establish that, as the number of observations
n ! 1 , there exists a(YZ; Y 
 Z) ! (R; B(R)) measurable functionp� (�j� )
such that the normalized log-likelihoodL�

x;n hY1:n i de�ned in (4.11), for some
appropriate value ofx, can be approximated by

n� 1
nX

k=1

ln p� (Yk jY�1 :k� 1):

To de�ne p� (�j� ), we set, for ally�1 :1 2 YZ� , whenever the following limit is
well de�ned,

p� (y1 j y�1 :0) =

(
lim

m!1
g�

�
 � hy� m:0i (x); y1

�
if the limit exists,

1 otherwise.
(4.12)

By (A-1), the processY is ergodic under~P� ? and provided that

~E� ?
�
ln+ p� (Y1jY�1 :0)

�
< 1 ;
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it follows that

lim
n!1

L�
x;n hY1:n i = ~E� ?

�
ln p� (Y1jY�1 :0)

�
; ~P� ? -a.s.

In this chapter, we show that with probability tending to one, the MLE �̂ x;n

eventually lies in a neighborhood of the set

� ? = argmax
� 2 �

~E� ?
�
ln p� (Y1jY�1 :0)

�
; (4.13)

which only depends on� ?. In this contribution, we provide easy-to-check
su�cient conditions implying

lim
n!1

�( �̂ x;n ; � ?) = 0 ; ~P� ? -a.s.; (4.14)

but, for the sake of brevity, we do not precisely determine the set� ?. Many
approaches have been proposed to investigate this problem, which is often
referred to as theidenti�ability problem. In particular cases, one can prove
that � ? = f � ?g, in which case the strong consistency of the MLE follows
from (4.14). We will mention a general result which precises how the set� ?

is related to the true parameter� ? in Remark 4.3.4. For the moment, let us
mention that we have

� ? 2 � ?; (4.15)

provided that the following assumption holds:

(B-1) For all �; � ? 2 � , we have

(i) If � 6= � ?, y 7! p� (yjY�1 :0) is a density function~P� ? -a.s.

(ii) Under ~P� ? , the functiony 7! p� ? (yjY�1 :0) is the conditional density
function ofY1 givenY�1 :0.

Indeed, (4.15) follows by writing for all� 2 � ,

~E� ?
�
ln p� ? (Y1jY�1 :0) � ln p� (Y1jY�1 :0)

�
= ~E� ?

�
ln

p� ? (Y1jY�1 :0)
p� (Y1jY�1 :0)

�

= ~E� ?

�
~E� ?

�
ln

p� ? (Y1jY�1 :0)
p� (Y1jY�1 :0)

�
�
�
� Y�1 :0

��
;

which is nonnegative under (B-1) since it is the expectation of a conditional
Kullback-Leibler divergence.
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4.3.2 Convergence of the MLE

In this part, we always assume that (A-1) holds. The following is a list
of additional assumptions on which our convergence result relies.

(A-2) There exists a function�V : X ! R+ such that, for all� 2 � , � �
1( �V) < 1 .

Remark 4.3.1. Assumption (A-2) is usually obtained as a byproduct of
the proof of Assumption (A-1), see Section 4.3.3. It is here stated as an
assumption for convenience.

The following set of conditions can readily be checked ong� and  � .

(B-2) For all y 2 Y, the function(�; x ) 7! g� (x; y) is continuous on� � X.

(B-3) For all y 2 Y, the function(�; x ) 7!  �
y(x) is continuous on� � X.

The function �V appearing in (B-4)(viii) below is the same one as in Assump-
tion (A-2). Moreover, in this condition and throughout the chapter we write
f . V for a real-valued functionf and a nonnegative functionV de�ned
on the same spaceX, whenever there exists a positive constantc such that
jf (x)j � cV(x) for all x 2 X.

(B-4) There existx1 2 X, a closed setX1 � X, %2 (0; 1), C � 0 and measurable
functions � : X ! R+ , H : R+ ! R+ and �� : Y ! R+ such that the
following assertions hold.

(i) For all � 2 � and (x; y) 2 X � Y,  �
y(x) 2 X1.

(ii) sup
(�;x;y )2 � � X1 � Y

g� (x; y) < 1 .

(iii) For all � 2 � , n 2 Z+ , x 2 X, andy1:n 2 Yn ,

dX
�
 � hy1:n i (x1);  � hy1:n i (x)

�
� %n � (x): (4.16)

(iv) � is locally bounded.

(v) For all � 2 � andy 2 Y, � ( �
y(x1)) � �� (y).

(vi) For all � 2 � and (x; x0; y) 2 X1 � X1 � Y,
�
�
�
� ln

g� (x; y)
g� (x0; y)

�
�
�
� � H (dX(x; x0)) eC (dX(x1 ;x )_ dX(x1 ;x0)) �� (y): (4.17)

(vii) H (u) = O(u) asu ! 0.

(viii) If C = 0, then, for all� 2 � ,

G� ln+ �� . �V ; (4.18)

otherwise, for all� 2 � ,
G� �� . �V : (4.19)
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Let us now state our main result as follows.

Theorem 4.3.2. Assume that (A-1), (A-2), (B-2), (B-3) and (B-4) hold.
Then, letting x1 2 X as in (B-4), the function p� (�j� ) de�ned by (4.12) with
x = x1 satis�es (B-1) and the convergence (4.14) of the MLE holds with the
set � ? de�ned by (4.13).

For convenience, the proof is postponed to Section 4.6.1.

Remark 4.3.3. As noticed in Douc et al. [2013], the techniques used to prove
Theorem 4.3.2 also apply in the misspeci�ed case, whereY is not distributed
according to ~P� ? . We do not pursue in this direction in this contribution.

The consistency of the MLE then follows from Theorem 4.3.2 by the
following remark.

Remark 4.3.4. In many speci�c cases, one can show that� ? de�ned
by (4.13) is the singletonf � ?g. However this task appears to be quite di�-
cult in some cases such as Example 4.1.3. Instead one can use [Douc et al.,
2014, Section 4.2], where it is shown that the assumptions of Theorem 4.3.2
imply that � ? is exactly the set of parameters� such that ~P� = ~P� ? . Thus
we can conclude that the MLE converges to theequivalence classof the true
parameter. This type of consistency has been introduced by Leroux [1992]
in the context of hidden Markov models in order to disentangle the proof of
the consistency from the problem of identi�ability. Recall that the model is
identi�able if and only if the equivalent classesf � 2 � : ~P� = ~P� ? g reduce to
singletonsf � ?g for all � ? 2 � .

4.3.3 Ergodicity

In this section, the ODM is studied to prove the condition (A-1). Since
this is a �for all � (...)� condition, to save space and alleviate the notational
burden, we will drop the superscript� from, for example,G� , R� and  � and
respectively write, instead,G, R and  .

Ergodicity of Markov chains are usually studied using' -irreducibility.
This approach is well known to be quite e�cient when dealing with fully
dominated models, see Meyn and Tweedie [2009]. It is not at all the same
picture for ODMs, where other tools need to be invoked, see Fokianos and
Tjøstheim [2011], Douc et al. [2013]. Since the ergodicity is studied for a
given parameter� , the ergodicity results of Douc et al. [2013] directly apply,
even though ODMs are restricted to the case whereg does not depend on
the unknown parameter � in this reference. Our main contribution here
is to focus on an easy-to-check list of assumptions yielding the ergodicity
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conditions (A-1) and (A-2). We also provide a lemma (Lemma 4.3.6) which
gives the construction of the instrumental functions� and � used in the list
of assumptions.

(A-3) The measurable space(X; dX) is a locally compact, complete and separable
metric space and its associated� -�eld X is the Borel� -�eld.

(A-4) There exist(�; � ) 2 (0; 1) � R+ and a measurable functionV : X ! R+

such thatRV � �V + � and f V � M g is compact for anyM > 0.

(A-5) The Markov kernelR is weak Feller, that is, for any continuous and
bounded functionf de�ned onX, Rf is continuous and bounded onX.

(A-6) The Markov kernelR has a reachable point, that is, there existsx0 2 X
such that, for anyx 2 X and any neighborhoodN of x0, Rm (x; N ) > 0
for at least one positive integerm.

(A-7) We have sup
(x;x 0;y)2 X2 � Y

x6= x0

dX( y(x);  y(x0))
dX(x; x0)

< 1.

(A-8) There exist a measurable function� from X2 to [0; 1], a measurable func-
tion � : X2 ! X and a measurable functionW : X2 ! [1; 1 ) such that
the following assertions hold.

(i) For all (x; x0) 2 X2 andy 2 Y,

min f g(x; y); g(x0; y)g � � (x; x0)g(� (x; x0); y) : (4.20)

(ii) For all x 2 X, W(x; �) is �nitely bounded in a neighborhood ofx,
that is, there exists x > 0 such that sup

x02 B(x; x )
W(x; x0) < 1 .

(iii) For all (x; x0) 2 X2, 1 � � (x; x0) � dX(x; x0)W(x; x0).

(iv) sup
� Z

Y
W( y(x);  y(x0)) G(� (x; x0); dy) � W(x; x0)

�
< 1 ,

where the sup is taken over all(x; x0) 2 X2.

We can now state the main ergodicity result.

Theorem 4.3.5. Conditions (A-3), (A-4), (A-5), (A-6), (A-7) and (A-8)
imply that K admits a unique stationary distribution� on X � Y. Moreover,
� 1

�V < 1 for every �V : X ! R+ such that �V . V .

The proof of Theorem 4.3.5 is postponed to Section 4.6.2 for convenience.
The �rst conclusion of Theorem 4.3.5 can directly be applied for all� 2 �

to check (A-1). The second conclusion can be used to check (A-2). In doing
so, one must take care of the fact that althoughV may depend on� , �V does
not.
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Assumptions (A-4), (A-5) and (A-6) have to be checked directly on the
Markov kernel R de�ned by (4.6). To this end it can be useful to de�ne, for
any givenx 2 X, the distribution

�Px := P� x 
 G(x;�) (4.21)

on (X � Y)Z+ , where P� is de�ned for any distribution � on X � Y as in
De�nition 4.2.2. Then the �rst component processf X k : k 2 Z+ g associated
to �Px is a Markov chain with Markov kernelR and initial distribution � x .

We now provide a general framework for constructing� and � that appear
in (A-8).

Lemma 4.3.6. Suppose thatX = CS for some measurable space(S; S) and
C � R. Thus, for all x 2 X, we write x = ( xs)s2 S, where xs 2 C for all
s 2 S. Suppose moreover that for allx = ( xs)s2 S 2 X, we can express the
conditional densityg(x; �) as a mixture of densities of the formj (xs)h(xs; �)
over s 2 S. This means that for all t 2 C, y 7! j (t)h(t; y) is a density with
respect to� and there exists a probability measure� on (S; S) such that

g(x; y) =
Z

S
j (xs)h(xs; y)� (ds); y 2 Y: (4.22)

We moreover assume thath takes nonnegative values and that one of the two
following assumptions holds.

(H-1) For all y 2 Y, the functionh(�; y) : t 7! h(t; y) is nondecreasing.

(H-2) For all y 2 Y, the functionh(�; y) : t 7! h(t; y) is nonincreasing.

For all (x; x0) 2 X2, denoting x ^ x0 := (min f xs; x0
sg)s2 S and x _ x0 :=

(maxf xs; x0
sg)s2 S, we de�ne � (x; x0) and � (x; x0) as

8
>><

>>:

� (x; x0) = inf
s2 S

�
j (xs _ x0

s)
j (xs ^ x0

s)

�
and � (x; x0) = x ^ x0 under (H-1);

� (x; x0) = inf
s2 S

�
j (xs ^ x0

s)
j (xs _ x0

s)

�
and � (x; x0) = x _ x0 under (H-2):

Then � and � de�ned above satisfy (A-8)(i).

Proof. We only prove this result under Condition (H-1). The proof is similar
under (H-2).

Since for allt 2 C, y 7! j (t)h(t; y) is a density with respect to� , we have

j (t) =
� Z

h(t; y)� (dy)
� � 1

> 0:
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Thus j is nonincreasing onC. Clearly, the de�ned � takes values on[0; 1]
and � de�nes a function from X2 to X. For all (x; x0) 2 X2 and y 2 Y, we
have

g(x; y) =
Z

S
j (xs)h(xs; y)� (ds)

�
Z

S
j (xs _ x0

s)h(xs ^ x0
s; y)� (ds)

�
Z

S

j (xs _ x0
s)

j (xs ^ x0
s)

j (xs ^ x0
s)h(xs ^ x0

s; y)� (ds)

�
Z

S
inf
s2 S

�
j (xs _ x0

s)
j (xs ^ x0

s)

�
j (xs ^ x0

s)h(xs ^ x0
s; y)� (ds)

= � (x; x0)g(� (x; x0); y):

By symmetry of � and � , we get (4.20) and thus (A-8)(i) holds.

4.4 Examples

Let us now apply these results to prove the convergence of MLE of Ex-
amples 4.1.1, 4.1.2 and 4.1.3.

4.4.1 NBIN-GARCH Model

Example 4.1.1 is a speci�c case of De�nition 4.2.1 where� is the counting
measure onY = N,

 �
y(x) = ! + ax + by; (4.23)

g� (x; y) =
�( y + r )
y!�( r )

�
1

1 + x

� r �
x

1 + x

� y

; (4.24)

with � = ( !; a; b; r ) in a compact subset� of (0; 1 )4 and X = (0 ; 1 ).
In [Zhu, 2011, Theorem 1], the equation satis�ed by the mean of the

observations� k = E[Yk ] is derived and is shown to admit a constant solution
if and only if

rb + a < 1: (4.25)

This clearly implies that this condition is necessary to have a stationary
solution f Ykg with �nite mean. However it does not imply the existence of
such a solution. In fact, the following result shows that (4.25) is indeed a
necessary and su�cient condition to have a stationary solutionf Ykg with
�nite mean. It also shows that all the assumptions of Theorem 4.3.2 hold,
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which, with Remark 4.3.4, provides the consistency of the MLÊ� x1 ;n for any
x1 2 X.

Theorem 4.4.1. Suppose that all� = ( !; a; b; r ) in � satisfy Condi-
tion (4.25). Then Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold
with �V de�ned as the identity function onX and with any x1 2 X.

Proof. . For convenience, we divide the proof into two steps.
Step 1. We �rst prove Assumptions (A-1) and (A-2) by applying Theo-
rem 4.3.5. We set�V(x) = V(x) = x and thus we only need to check (A-3),
(A-4), (A-5), (A-6), (A-7) and (A-8). Condition (A-3) holds. We have for all
� 2 � ,

RV (x) = ! + ( a + br)x = ( a + br)V(x) + !;

which yields (A-4). The fact that the kernel R is weak Feller easily follows by
observing that, asp ! p0, N B(r; p) converges weakly toN B(r; p0), so (A-5)
holds.

We now prove (A-6). Let x1 = != (1� a). Let x 2 R and de�ne recursively
the sequencex0 = x; x k = ! + axk� 1 for all positive integersk. Since0 <
a < 1, this sequence converges to the �xed pointx1 . Therefore, de�ning Px

as in (4.21), for any neighborhoodN of x1 , there exists somen such that
xn 2 N and we have

Rn (x; N ) = �Px (X n 2 N ) � �Px (X k = xk for all k = 1; : : : ; n)

= �Px (Y0 = � � � = Yn� 1 = 0) > 0:

So (A-6) holds. Assumption (A-7) holds since we have for all(x; x0; y) 2 X2� Y
with x 6= x0,

j y(x) �  y(x0)j
jx � x0j

= a < 1:

To prove (A-8), we apply Lemma 4.3.6 withC = X, S = f 1g (so � boils down
to the Dirac measure onf 1g). For all (x; y) 2 X � Y, let j (x) =

�
1

1+ x

� r
and

h(x; y) = �( y+ r )
y!�( r )

�
x

1+ x

� y
. Indeed,h satis�es (H-1). Thus by Lemma 4.3.6, for

all (x; x0) 2 X2 and y 2 Y, we get that

� (x; x0) =
�

1 + x ^ x0

1 + x _ x0

� r

2 (0; 1] and � (x; x0) = x ^ x0

satisfy (A-8)(i). For any given r > 0, let a function W : X2 ! [1; 1 ) be
de�ned by, for all (x; x0) 2 X2; W(x; x0) = 1 _ r . By de�nition of W, as a
constant function, (A-8)(ii) and (A-8)(iv) clearly hold. Moreover, (A-8)(iii)
holds since for all(x; x0) 2 X2, we have that

1 � � (x; x0) � (1 _ r )jx � x0j = W(x; x0)jx � x0j:
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Therefore, (A-8) holds, which completesStep 1 .
Step 2 . We now prove (B-2), (B-3) and (B-4). By assumption on� , then
there exists(! ; �!; b ; �b; r; �r; � ; �� ) 2 (0; 1 )6 � (0; 1)2 such that

! � ! � �!; � b � �b; r � r � �r; � � a + br � ��:

Clearly, (B-2) and (B-3) hold by de�nitions of  �
y(x) and g� (x; y). It remains

to check (B-4) for a well-chosen closed subsetX1 and any x1 2 X. Let X1 =
[! ; 1 ) � X so that (B-4)(i) holds. By noting that for all (�; x; y ) 2 � � X� Y,
g� (x; y) � 1, we have (B-4)(ii). From (4.9) and (4.23), we have for alls � t,
ys:t 2 Yt � s+1 , x 2 X and � 2 � ,

 � hys:t i (x) = !
�

1 � at � s+1

1 � a

�
+ at � s+1 x + b

t � sX

j =0

aj yt � j : (4.26)

Using (4.26), we have, for all� 2 � , x 2 X and y1:n 2 Yn ,
�
�  � hy1:n i (x1) �  � hy1:n i (x)

�
� = an jx1 � xj � �� n jx1 � xj :

This gives (B-4)(iii) and ( B-4)(iv) by setting %= �� < 1 and � (x) = jx1 � xj.
Next we set �� , H and C to meet Conditions (B-4)(v) and (B-4)(vi) and (B-
4)(vii). Let us write, for all � 2 � and y 2 Y,

�
�x1 �  �

y(x1)
�
� � ! + (1 + a)x1 + by � �! + (1 + �� )x1 + �by

and, for all (x; x0) 2 X2
1 = [ ! ; 1 )2,

�
� ln g� (x; y) � ln g� (x0; y)

�
� = j(r + y) [ln(1 + x0) � ln(1 + x)] + y [ln x � ln x0]j

�
�
(r + y)(1 + ! )� 1 + y ! � 1

�
jx � x0j

�
�
r + y (1 + ! � 1)

�
jx � x0j:

Setting �� (y) = �! _ �r +(1+ �� )x1+
� �b_ (1 + ! � 1)

�
y, H (x) = x and C = 0 then

yield Conditions (B-4)(v), (B-4)(vi) and (B-4)(vii). Now ( B-4)(viii) follows
from Z

ln+ y G� (x; dy) �
Z

y G� (x; dy) = rx � r �V(x):

This concludes the proof.

4.4.2 NM-GARCH Model

The NM(d)-GARCH(1; 1) of Example 4.1.2 is a speci�c case of De�ni-
tion 4.2.1 whereX = Rd

+ and � is the Lebesgue measure onY = R,

 �
y(x) = ! + Ax + y2b; (4.27)

g� (x; y) =
dX

`=1

 `
e� y2=2x `

(2�x ` )1=2
; (x; y) 2 X � Y; (4.28)
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and � = (  ; ! ; A ; b) 2 � , a compact subset ofPd � (0; 1 )d � Rd� d
+ � Rd

+ ,
with Pd de�ned by (4.3).

In Haas et al. [2004], it is shown that the equation satis�ed by the variance
of a univariate NM(d)-GARCH(1; 1) process admits a constant solution if and
only if

j� jmax (A + b T ) < 1; (4.29)

where, for any square matrixM , j� jmax (M ) denotes the spectral radius ofM .
It follows that the existence of a weakly stationary solution implies (4.29)
but it does not say anything about the existence of stationary or weakly
stationary solution. The result below shows that (4.29) is indeed a su�cient
condition for the existence of a stationary solution with �nite variance. It
moreover provides with Theorem 4.3.2 and Remark 4.3.4 the consistency of
the MLE �̂ x 1 ;n for any x1 2 X.

Theorem 4.4.2. Suppose that all� = (  ; ! ; A ; b) in � satisfy (4.29). Then
Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold with �V de�ned as
any norm on X.

Proof. . In this proof section, we set

�V(x) = jxj =
dX

`=1

jx` j; (4.30)

for all x = ( x` ) 2 X. As in Theorem 4.4.1, we divide the proof into two steps.
Step 1. We �rst show that Assumptions (A-1) and (A-2) hold with the above
�V by applying Theorem 4.3.5. De�neV on X by setting

V(x) = ( 1 + x0)T x;

where1 is the vector ofX with all entries equal to 1 andx0 is de�ned by

1 + x0 = ( I �
�
A + b T

� T
)� 11:

We indeed note that by Condition (4.29) the above inversion is well de�ned
and moreover

(I � (A + b T )T )� 1 = I +
X

k� 1

�
A T +  bT

� k
;

and, sinceA , b,  all have non-negative entries, it follows thatx0 has non-
negative entries. Thus, for allx = ( x` ) 2 X,

�V(x) = 1T x � V(x);
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so that �V . V . Hence by Theorem 4.3.5, we thus only need to check (A-
3), (A-4), (A-5), (A-6), (A-7) and (A-8) with V de�ned as above for a given
� = (  ; ! ; A ; b) 2 � (so we drop� in the notation in the remaining of Step
1). Condition (A-3) holds for any metricdX associated to a norm on the �nite
dimensional spaceX. (The precise choice ofd is postponed to the veri�cation
of (A-7).) We have

RV (x) =
Z

V(! + Ax + y2b) G(x; dy)

= ( 1 + x0)T ! + ( 1 + x0)T
�
A + b T

�
x

= V(! ) + 1T (I �
�
A + b T

�
)� 1

�
A + b T � I + I

�
x

= V(! ) + xT
0 x

� V(! ) + �V (x);

where we set� = max ` f x0;` =(1 + x0;` )g < 1. Hence (A-4) holds. Condition
(A-5) easily follows from the continuity of the Gaussian distribution with
respect to its variance parameter. We now prove (A-6). From (4.9) and
(4.27), we have for alln � 1, y0:n� 1 2 Yn and x 2 X,

 � hy0:n� 1i (x) = A nx +
n� 1X

j =0

A j (! + y2
n� 1� j b): (4.31)

Let us use the norm

kM k = max
j

X

i

jM i;j j = sup
jx j� 1

jMx j

on d � d matrices. Note that by (4.29), there exists� 2 (0; 1) and c > 0 such
that, for any k � 1, 



�
A + b T

� k


 � c � k : (4.32)

Using that A , b,  all have nonnegative entries, we have


 A k


 �




�
A + b T

� k


 : (4.33)

Hence(I � A )� 1 = I +
P

k� 1 A k is well de�ned and we setx1 = ( I � A )� 1!
so that, with (4.27), we have

 � hy0:n� 1i (x) � x1 = A nx +
X

j � n

A j ! +
n� 1X

j =0

y2
n� 1� j A

j b:
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Then, using de�nition (4.21), we get that, �Px -a.s., for all n � 1,

jX n � x1 j = j hY0:n� 1i (x) � x1 j

� j A n (x � x1 )j +
X

j � n

�
�A j !

�
� +

�
max

0� j � n� 1
Y 2

j

� n� 1X

j =0

�
�A j b

�
� :

With (4.32) and (4.33), this implies

�Px

�
jX n � x1 j � c

�
� n

�
jx � x1 j +

j! j
1 � �

�
+

jbj
1 � �

max
0� j � n� 1

Y 2
j

��
= 1:

To obtain (A-6), it is su�cient to observe that, since g takes positive values
in (4.28), for any positive� , x 2 X and any n � 1,

�Px

�
max

0� j � n� 1
Y 2

j < �
�

> 0:

Next we prove (A-7). We have

 y(x) �  y(x0) = A (x � x0):

Since (4.32) and (4.33) imply thatj� jmax (A ) < 1, there exists a vector norm
which makesA strictly contracting. Choosing the metric dX on X as the
one derived from this norm, we get (A-7). To show (A-8), we again rely
on Lemma 4.3.6. Let us setC = (0 ; 1 ) and S = f 1; : : : ; dg and de�ne
the probability measure � on S by � (f sg) =  s, for all s 2 S. For all
(t; y) 2 C � Y, let j (t) = 1

(2�t )1=2 and h(t; y) = exp ( � y2=2t). Obviously,
Relation (4.22) holds andh satis�es (H-1). Hence, Lemma 4.3.6 implies that
� and � de�ned respectively for all x = ( x1; : : : ; xd); x0 = ( x0

1; : : : ; x0
d) 2 X

by

� (x; x0) = min
1� ` � d

( �
x` ^ x0

`

x` _ x0
`

� 1
2

)

2 (0; 1] and � (x; x0) = ( x1^ x0
1; : : : ; xd^ x0

d);

satisfy (A-8)(i). For x = ( x1; : : : ; xd); x0 = ( x0
1; : : : ; x0

d) 2 X, we have

1 � � (x; x0) = 1 � min
1� ` � d

( �
1 �

jx` � x0
` j

x` _ x0
`

� 1
2

)

� max
1� ` � d

�
jx` � x0

` j
x` _ x0

`

�

� min
1� ` � d

(x � 1
` ^ x0� 1

` ) jx � x0j

� W(x; x0) dX(x; x0);
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where dX is the metric previously de�ned andW is de�ned by W(x; x0) =
1 _

�
cdX min1� ` � d(x � 1

` ^ x0� 1
` )

�
with cdX > 0 is conveniently chosen (such a

constant exists sincedX is the metric associated to a norm andX has �nite
dimension). Then (A-8)(ii) and (A-8)(iii) hold and, since for all y 2 Y and
x 2 X,  y(x) has all its entries bounded from below by the positive entries
of ! , W( y(x);  y(x0)) is uniformly bounded over(x; x0; y) 2 X � X � Y
and (A-8)(iv) holds. This completesStep 1 .
Step 2 We now show that Assumptions (B-2), (B-3) and (B-4) hold.

Clearly, (B-2) and (B-3) hold by de�nitions of  �
y(x) and g� (x; y). It

remains to show (B-4). Since� is compact, then

! � min
1� ` � d

! ` ; j! j � !; b � j bj � �b; j� jmax (A + b T ) � ��;

 A + b T


 � L

for some(! ; !; b ; b; �� ) 2 (0; 1 )4 � (0; 1) and L > 0. By [Moulines et al.,
2005, Lemma 12], we note that this implies that, for all�� 2 (��; 1), there
exists �C > 0 such that for all k � 1 and all � 2 � ,




�
A + b T

� k


 � �C �� k : (4.34)

We setX1 = [ ! ; 1 )d � X so that (B-4)(i) holds. Moreover, for all (�; x; y) 2
� � X1 � Y, g� (x; y) � (2�! )� 1=2. Thus, Condition (B-4)(ii) holds. Now let
x1 2 X. Using (4.31), (4.34) and (4.33), we have, for allx 2 X, y1:n 2 Yn and
� 2 � ,

�
�  � hy1:n i (x1) �  � hy1:n i (x)

�
� = jA n (x1 � x)j

� �C �� n jx1 � x j :

Using that the norm de�ning dX is equivalent to the normj�j , we get (B-4)(iii)
with

� (x) = �C0 jx1 � x j ;

for some positive constant�C0. Hence (B-4)(iv) holds and since
�
�x1 �  �

y(x1)
�
� � (L + 1) jx1j + ! + y2�b;

we also get (B-4)(v) provided that

�� (y) � (L + 1) jx1j + ! + y2�b: (4.35)

It is straightforward to show that, for all � 2 � , x 2 X1, y 2 R, and
` 2 f 1; : : : ; dg,

�
�
�
�
@ln g�

@x̀
(x; y)

�
�
�
� �

1
2

�
y2

! 2
+

1
!

�
:
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Thus, by the mean value theorem, for all� 2 � , (x; x0) 2 X1 � X1 and y 2 Y,

�
� ln g� (x; y) � ln g� (x0; y)

�
� �

1
2

�
y2

! 2
+

1
!

�
jx � x0j

We thus obtain (B-4)(v), (B-4)(vi) and (B-4)(vii) by setting C = 0,

H (u) = sup
d(x ;x 0)� u

jx � x0j;

and
�� (y) = ( L + 1) jx1j + ! + 1=(2! ) + y2(�b+ ! 2):

In addition, for all � 2 � and x 2 X, we have
Z

y2G� (x; dy) =  T x:

Hence, using (4.30) with the above de�nitions, we obtain (B-4)(viii) and the
proof is concluded.

4.4.3 Threshold IN-GARCH Model

The threshold IN-GARCH(1; 1) in Example 4.1.3 is a speci�c case of
De�nition 4.2.1 where � is the counting measure onY = Z+ ,

 �
y(x) = ! + ax + by; (4.36)

g� (x; y) = e � (x^ � ) (x ^ � )y

y!
; (4.37)

with � = ( !; a; b; � ) in a compact subset� of (0; 1 )4 and X = (0 ; 1 ). In
this model, if a < 1, we then have the ergodicity and consistency results as
stated in Theorem 4.4.3 below.

Theorem 4.4.3. Suppose that all� = ( !; a; b; � ) in � satisfy a < 1. Then
Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold with �V de�ned as the
identity function on X and with any x1 2 X.

Proof. . As in the proofs of the two theorems above, for convenience, we
divide the proof into two steps.
Step 1. We �rst prove Assumptions (A-1) and (A-2) by applying Theo-
rem 4.3.5. We set�V(x) = V(x) = x and thus we only need to check (A-3),
(A-4), (A-5), (A-6), (A-7) and (A-8). Condition (A-3) holds with the usual
metric on R. We have for all � 2 � ,

RV (x) = ! + ax + b(x ^ � ) � aV(x) + ( ! + b� );
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which yields (A-4). The fact that the kernel R is weak Feller easily follows
by observing that, asx ! x0, P(x) converges weakly toP(x0) and the map
x 7! x ^ � is continuous, so (A-5) holds.

The proof of (A-6) is similar to the NBIN-GARCH case of Theorem 4.4.1
and is thus omitted. Assumption (A-7) holds since we have for all(x; x0; y) 2
X2 � Y with x 6= x0,

j y(x) �  y(x0)j
jx � x0j

= a < 1:

To prove (A-8), we apply Lemma 4.3.6 withC = X, S = f 1g (so � boils down
to the Dirac measure onf 1g). For all (x; y) 2 X � Y, let j (x) = e � (x^ � ) and
h(x; y) = (x^ � )y

y! . Then h indeed satis�es (H-1). Thus by Lemma 4.3.6, for all
(x; x0) 2 X2 and y 2 Y, we get that

� (x; x0) = e � (x_ x0)^ � +( x^ x0)^ � 2 (0; 1] and � (x; x0) = x ^ x0

satisfy (A-8)(i).
Let W(x; x0) = 1 for all (x; x0) 2 X2, which is a constant function. Thus

(A-8)(ii) and (A-8)(iv) clearly hold. Moreover, (A-8)(iii) holds since for all
(x; x0) 2 X2, we have that

1 � � (x; x0) � x _ x0 � x ^ x0 = jx � x0j = W(x; x0)jx � x0j:

Therefore, (A-8) holds, which completesStep 1 .
Step 2 . We now prove (B-2), (B-3) and (B-4). By assumption on� , then
there exists(! ; �!; b ; �b; � ; �� ; � ; �� ) 2 (0; 1 )6 � (0; 1)2 such that

! � ! � �!; � b � �b; � � � � �r; � � a � ��:

Clearly, (B-2) and (B-3) hold by de�nitions of  �
y(x) and g� (x; y). It remains

to check (B-4) for a well-chosen closed subsetX1 and any x1 2 X. Let X1 =
[! ; 1 ) � X so that (B-4)(i) holds. By noting that for all (�; x; y ) 2 � � X� Y,
g� (x; y) � 1, we have (B-4)(ii). From (4.9) and (4.36), we have for alls � t,
ys:t 2 Yt � s+1 , x 2 X and � 2 � ,

 � hys:t i (x) = !
�

1 � at � s+1

1 � a

�
+ at � s+1 x + b

t � sX

j =0

aj yt � j : (4.38)

Using (4.38), we have, for all� 2 � , x 2 X and y1:n 2 Yn ,
�
�  � hy1:n i (x1) �  � hy1:n i (x)

�
� = an jx1 � xj � �� n jx1 � xj :
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This gives (B-4)(iii) and ( B-4)(iv) by setting %= �� < 1 and � (x) = jx1 � xj.
Next we set �� , H and C to meet Conditions (B-4)(v) and (B-4)(vi) and (B-
4)(vii). Let us write, for all � 2 � and y 2 Y,

�
�x1 �  �

y(x1)
�
� � ! + (1 + a)x1 + by � �! + (1 + �� )x1 + �by

and, for all (x; x0) 2 X2
1 = [ ! ; 1 )2,

�
� ln g� (x; y) � ln g� (x0; y)

�
� = j(x0^ � � x ^ � ) + y (ln( x ^ � ) � ln(x0^ � )) j

�
�
1 + ( ! ^ � )� 1y

�
jx � x0j :

Setting �� (y) = 1+ �! +(1+ �� )x1+
� �b_ (! ^ � )� 1

�
y, H (x) = x and C = 0 then

yield Conditions (B-4)(v), (B-4)(vi) and (B-4)(vii). Now ( B-4)(viii) follows
from Z

ln+ y G� (x; dy) �
Z

y G� (x; dy) = x ^ � � �V (x) :

This concludes the proof.

4.5 Numerical Experiments

4.5.1 Numerical Procedure

In this part, we provide a numerical method for computing the (condi-
tional) MLE �̂ x;n for the parameter� = ( !; a; b; r ) in the NBIN-GARCH (1; 1)
model introduced in Example 4.1.1 and studied in Section 4.4.1. It is con-
venient to write � = ( #; r ) with # = ( !; a; b ) and then to write  #

y (x) and
gr (x; y) instead of  �

y(x) and g� (x; y) in (4.23) and (4.24), respectively. In
contrast to the approach used in Zhu [2011], we allow the componentr to be
any positive real number, rather than a discrete one and to be unknown as
well. We thus maximize jointly with respect to the parameters# and r the
log-likelihood function L�

x;n hy1:n i = L(#;r )
x;n hy1:n i . In practice, one does not rely

on a compact set� of parameters as in Theorem 4.4.1. Instead the maxi-
mization is performed over all parameters! > 0, a > 0, b > 0, r > 0 such
that the stability constraint a+ br < 1 holds (taken from (4.25)). We use the
constrained nonlinear optimization functionauglag (Augmented Lagrangian
Minimization Algorithm) from the package alabama(Augmented Lagrangian
Adaptive Barrier Minimization Algorithm) in R. For this purpose we provide
an initial parameter point and a numerical computation of the normalized
log-likelihood function L�

x;n hy1:n i and of its gradient. The initial point is ob-
tained by applying a conditional least square (CLS) estimation based on an
ARMA (1; 1) representation of the model; see [Zhu, 2011, Section 3]. The
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computation of the log-likelihood and of its derivatives are derived as fol-
lows. For all x 2 X, denoting u#

k =  #hy1:k� 1i (x) for all k � 2 and u#
1 = x,

we have

L(#;r )
x;n hy1:n i = n� 1

nX

k=1

ln gr
�
 #hy1:k� 1i (x); yk

�

= n� 1 ln gr (x; y1) + n� 1
nX

k=2

ln gr
�
u#

k ; yk
�

:

The computation of u#
k for all k � 2 is done iteratively by observing that

u#
k =  #hyk� 1i (u#

k� 1) and the computation of L(#;r )
x;n hy1:n i is deduced. The

computation of the derivatives with respect to parameter� = ( #; r ) of the
function L(#;r )

x;n hy1:n i are then obtained in two steps. First, fork � 2, the
derivative of u#

k with respect to # are obtained iteratively by @u#1=@#= 0
and

@u#k
@#

= (1 ; u#
k� 1; Yk� 1) + a

@u#k� 1

@#
:

Then the derivatives ofL(#;r )
x;n hy1:n i with respect to # and r are given by

@L(#;r )
x;n

@#
= n� 1

nX

k=1

@ln gr

@x

�
u#

k ; yk
� @u#k

@#

= n� 1
nX

k=2

�
yk

u#
k

�
yk + r
1 + u#

k

�
@u#k
@#

and

@L(#;r )
x;n

@r
= n� 1

nX

k=1

@ln gr

@r

�
u#

k ; yk
�

= n� 1
nX

k=1

�
� 2(r + yk) � ln(1 + u#

k )
�

� � 2(r );

respectively, where� 2 is the digamma function� 2(r ) = d
dr ln � �( r ), r > 0.

4.5.2 Simulation Study

We consider two NBIN-GARCH(1; 1) models with parameters:

(M.1) � ? = ( ! ?; a?; b?; r?) = (3 ; :2; :2; 2) and

(M.2) � ? = ( ! ?; a?; b?; r?) = (3 ; :35; :1; 1:5).
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We simulated m = 200 data sets for each sample sizen = 27; 28; 29 and
210. In Figure 4.2, we display the obtained boxplots of the di�erence of the
normalized log-likelihood functions evaluated respectively at MLE and at the
true value � ?. As predicted by the theory, this di�erence appears to converge
to 0 as the number of observationsn ! 1 . For the NBIN-GARCH (1; 1)
model, it can be shown that� ? = f � ?g, which implies the convergence of
the MLE to the true parameter. We can observe this behavior for each
component of the MLE for the two models in Figure 4.3 and Figure 4.4. We
also report the Monte Carlo mean along with the mean absolute deviation
error (MADE): MADE = m� 1

P m
j =1 j �̂ j

x;n � � ?
j j as an evaluation criterion for

the estimated parameter in Table 4.1.

Table 4.1 � Mean of estimates, MADEs (within parentheses) for the NBIN-
GARCH(1; 1) models

Sample sizen
Model Parameter n = 27 n = 28 n = 29 n = 210

(M.1)

!̂ 3.311(.973) 3.212(.719) 3.108(.507) 3.062(.372)
â .165(.138) .173(.113) .187(.076) .193(.055)
b̂ .194(.049) .195(.034) .197(.025) .200(.018)
r̂ 2.045(.241) 2.035(.166) 2.020(.112) 2.011(.074)

(M.2)

!̂ 3.525(1.325) 3.362(1.258) 3.326(1.041) 3.167(.761)
â .252(.227) .290(.213) .296(.170) .319(.136)
b̂ .092(.056) .097(.039) .098(.028) .100(.022)
r̂ 1.563(.175) 1.539(.129) 1.520(.093) 1.513(.066)
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Figure 4.2 � Boxplots of the di�erences of log-likelihood functions evaluated
at the estimated MLE and the true value for Models (M.1) and (M.2) with
sample sizesn = 27; 28; 29 and n = 210, respectively. The red �continuous"
line indicates the position of zero.
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Figure 4.3 � Boxplots of the estimated MLE for Model (M.1) with sample
sizesn = 27; 28; 29 and n = 210, respectively. The red �dashed� line indicates
the true value of the parameter and the blue �x� indicates the location of the
Monte Carlo mean of the MLE.
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Figure 4.4 � Same as Figure 4.3 but for Model (M.2).

4.6 Postponed Proofs

4.6.1 Convergence of the MLE

Assumptions (A-1) and (A-2) are supposed to hold throughout this sec-
tion. The proof of Theorem 4.3.2 relies on the approach introduced in Pfan-
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zagl [1969], which was already used in Douc et al. [2013] for a restricted class
of ODMs. Our main contribution here is to provide the handy conditions
listed in Assumption (B-4). We �rst show that our conditions imply (B-1)
and the following one.

(B-5) There existsx1 2 X such that, for all�; � ? 2 � , p� (Y1 j Y�1 :0) de�ned as
in (4.12) with x = x1 is �nite ~P� ? -a.s. Moreover, for all� ? 2 � , we have

lim
k!1

sup
� 2 �

�
�
�
� ln

g� ( � hY1:k� 1i (x1); Yk)
p� (Yk j Y�1 :k� 1)

�
�
�
� = 0 ~P� ? -a.s. (4.39)

Indeed we have the following lemma.

Lemma 4.6.1. Assumptions (B-2), (B-3) and (B-4) imply (B-5) and (B-1).

Proof. See Section 4.6.3.

Now the proof of Theorem 4.3.2 directly follows from the following lemma.

Lemma 4.6.2. Assume that (B-2), (B-3) and (B-4)(i)�(ii) hold and that x1

satis�es (B-5). Then, � ? de�ned by (4.13) is a non-empty closed subset of
� and (4.14) holds.

Proof. By [Douc et al., 2013, Theorem 33], to obtain (4.14), it is su�cient
to show that, for all � ? 2 � , the two following assertions hold.

(a) ~E� ?
�
sup� 2 � ln+ p� (Y1 j Y�1 :0)

�
< 1 ,

(b) the function � 7! ln p� (Y1 j Y�1 :0) is continuous on� , ~P� ? -a.s.

In (B-5), p� (Y1 j Y�1 :0) is de�ned ~P� ? -a.s. as the limit in (4.12) with x = x1.
So, ~P� ? -a.s., by (B-4)(i)�(ii), p� (Y1 j Y�1 :0) is bounded by the �nite constant
appearing in (B-4)(ii). Hence (a) holds.

Condition (b) then follows from (4.39). Since almost sure convergence
implies the convergence in probability and~P� ? is shift invariant, the random
sequence

Um := sup
� 2 �

�
�
�
� ln

g� ( � hY� m:0i (x1); Y1)
p� (Y1 j Y�1 :0)

�
�
�
� ; m 2 Z+ ;

converges to zero in~P� ? -probability. Then there exists a subsequence of
f Um : m 2 Z+ g which converges~P� ? -a.s. to zero. Hence, interpreting this
convergence as a uniform (in� ) convergence ofln g� ( � hY� m:0i (x1); Y1) to
ln p� (Y1 j Y�1 :0) to conclude that (b) holds, it is su�cient to show that � 7!
ln g� ( � hY� m:0i (x1); Y1) is continuous for allm ~P� ? -a.s. This is indeed the case
by (B-2) and (B-3) and sinceg� (x; y) is positive.
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4.6.2 Ergodicity

For proving Theorem 4.3.5, we �rst recall a more general set of conditions
derived in Douc et al. [2013], which are based on the following de�nition.

De�nition 4.6.3. Let �G be a probability kernel fromX2 to Y 
 2 
 P (f 0; 1g)
satisfying the following marginal conditions, for all(x; x0) 2 X2 and B 2 Y ,

(
�G((x; x0); B � Y � f 0; 1g) = G(x; B);
�G((x; x0); Y � B � f 0; 1g) = G(x0; B );

(4.40)

and such that the following coupling condition holds

�G((x; x0); f (y; y) : y 2 Yg � f 1g) = �G((x; x0); Y2 � f 1g): (4.41)

De�ne the following quantities successively.

� The trace measure of �G((x; x0); �) on the setf (y; y) : y 2 Yg � f 1g is
denoted by

�G((x; x0); B ) = �G((x; x0); f (y; y) : y 2 Bg � f 1g); B 2 Y : (4.42)

� The kernel �R from (X2; X 
 2) to (X2 � f 0; 1g; X 
 2 
 P (f 0; 1g)) is de-
�ned for all x; x0 2 X2 and A 2 X 
 2 by

�R((x; x0); A � f 1g) =
Z

Y
1A ( y(x);  y(x0)) �G((x; x0); dy): (4.43)

� The measurable function� from X2 to [0; 1] is de�ned by

� (x; x0) = �R((x; x0); X2 � f 1g) = �G((x; x0); Y2 � f 1g): (4.44)

� The kernel R̂ is de�ned for all (x; x0) 2 X2 and A 2 X 
 2 by

R̂((x; x0); A) =

8
<

:

�R((x; x0); A � f 1g)
� (x; x0)

if � (x; x0) > 0,

0 otherwise.
(4.45)

We can now introduce the so-calledcontracting condition which yields
ergodicity.

(A-9) There exists a kernel�G yielding� andR̂ as in De�nition 4.6.3, a measurable
functionW : X2 ! [1; 1 ) satisfying Conditions (A-8)(ii) and (A-8)(iii) and
real numbers(D; � 1; � 2; � ) 2 (R+ )3 � (0; 1) such that, for all(x; x0) 2 X2

and for alln � 1,

R̂n ((x; x0); dX) � D� ndX(x; x0); (4.46)

R̂n ((x; x0); dX � W) � D� nd� 1
X (x; x0)W � 2 (x; x0): (4.47)
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Under Conditions (A-3), (A-4), (A-5), (A-6) and (A-9) and by combining
Theorem 6, Proposition 8 and Lemma 7 in Douc et al. [2013], we immediately
obtain the following result.

Theorem 4.6.4. Assume (A-3), (A-4), (A-5), (A-6) and (A-9). Then the
Markov kernelK admits a unique invariant distribution � and � 1( �V) < 1
for any �V : X ! R+ such that �V . V .

Assumptions (A-3), (A-4), (A-5) and (A-6) are quite usual and easy to
check. The key point to obtain ergodicity is thus to construct�G satisfying (A-
9). For this, we can also rely on the following result which is quoted from
[Douc et al., 2013, Lemma 9].

Lemma 4.6.5. Assume that there exists(�; � ) 2 (0; 1) � R such that for all
(x; x0) 2 X2,

R̂
�
(x; x0);

�
(x1; x0

1) 2 X2 : dX(x1; x0
1) > � dX(x; x0)

	�
= 0; (4.48)

R̂W � W + �: (4.49)

Then, (4.46) and (4.47) hold.

Now we can prove that our set of conditions is su�cient.

Proof of Theorem 4.3.5. We only need to show that (A-7) and (A-8) im-
ply (A-9). We preface our proof by the following lemma.

Lemma 4.6.6. Assume (A-8)(i). Then one can de�ne a kernel �G as in Def-
inition 4.6.3 with the same� given in (4.44). Moreover, the kernelR̂ de�ned
by (4.45) satis�es, for all (x; x0) 2 X2 such that� (x; x0) > 0 and all measur-
able functionsf : X2 ! R+ ,

R̂((x; x0); f ) = G(� (x; x0); ~f ) with ~f (y) = f ( y(x);  y(x0)) : (4.50)

Let us conclude the proof of Theorem 4.3.5 before proving this lemma.
By Lemma 4.6.6 and Lemma 4.6.5, it remains to check that (4.48) and (4.49)
hold for all (x; x0) 2 X2. Observe that by de�nition of R̂, Condition (A-8)(iv)
is equivalent to

sup
(x;x 0)2 X2

�
R̂W (x; x0) � W(x; x0)

�
< 1 :

so we can �nd � 2 R such that (4.49) holds for all(x; x0) 2 X2.
Now, let (x; x0) 2 X2 and let (X; X 0) be distributed according to

R̂((x; x0); �) which is de�ned in (4.50). Whenx = x0, then dX(X; X 0) = 0 ,
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implying that Condition (4.48) holds with any nonnegative� . For x 6= x0,
let � be de�ned by

� = sup
(x;x 0;y)2 X2 � Y

x6= x0

dX( y(x);  y(x0))
dX(x; x0)

; (4.51)

which is in (0; 1) by (A-7). Then

dX(X; X 0)
dX(x; x0)

=
dX( Y (x);  Y (x0))

dX(x; x0)
� �:

Therefore, Condition (4.48) holds for all(x; x0) 2 X2 with � as in (4.51).

We conclude this section with the postponed

Proof of Lemma 4.6.6. Let (x; x0) 2 X2. We de�ne �G((x; x0); �) as the dis-
tribution of (Y; Y0; U) drawn as follows. We �rst draw a random variable
�Y taking values in Y with density g(� (x; x0); �) with respect to � . Then we
de�ne (Y; Y0; U) by separating the two cases,� (x; x0) = 1 and � (x; x0) < 1.

� Suppose that� (x; x0) = 1 . Then from (A-8)(i), we have

G(x; �) = G(x0; �) = G(� (x; x0); �):

In this case, we set(Y; Y0; U) = ( �Y ; �Y ;1).

� Suppose now that� (x; x0) < 1. Then, using (4.20), the functions

(1 � � (x; x0)) � 1 [g(x; �) � � (x; x0)g(� (x; x0); �)]

and
(1 � � (x; x0)) � 1 [g(x0; �) � � (x; x0)g(� (x; x0); �)] ;

are probability density functions with respect to� and we let � and � 0

be two independent random variables taking values inY drawn with
these two density functions, respectively. In this case, we drawU in-
dependently according to a Bernoulli variable with mean� (x; x0) and
set

(Y; Y0) =

(
( �Y ; �Y) if U = 1;

(� ; � 0) if U = 0:

One can easily check that the so de�ned kernel�G satis�es (4.40) and (4.41).
Moreover, for all (x; x0) 2 X2,

�G((x; x0); Y2 � f 1g) = P(U = 1) = � (x; x0);
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which is compatible with (4.44). The kernel R̂ is de�ned by setting
R̂((x; x0); �) as the conditional distribution of(X; X 0) = (  Y (x);  Y (x0)) given
that U = 1. To complete the proof of Lemma 4.6.6, observe that for any
measurablef : X2 ! R+ , we have, for all(x; x0) 2 X2 such that � (x; x0) > 0,

R̂((x; x0); f ) = E [f ( Y (x);  Y (x0)) j U = 1]

= E [f ( �Y (x);  �Y (x0))]

= G(� (x; x0); ~f );

where ~f (y) = f ( y(x);  y(x0)) for all y 2 Y.

4.6.3 Proof of Lemma 4.6.1.

Under (A-2), Assumptions (B-4)(viii) implies that for all � 2 � ,

� �
2

�
ln+ ( �� )

�
< 1 ; (4.52)

and if moreoverC > 0,
� �

2

� ��
�

< 1 : (4.53)

For proving Lemma 4.6.1, we will also make use of [Douc et al., 2013,
Lemma 34] which we quote here for convenience.

Lemma 4.6.7. Let f Uk : k 2 Z+ g be a stationary sequence of real-valued
random variables on(
 ; F ; P). Assume thatE(ln+ jU0j) < 1 . Then, for all
� 2 (0; 1),

lim
k!1

� kUk = 0; P-a.s.

Proof of Lemma 4.6.1. We �rst show that p� (yjY�1 :0) in (4.12) is �nite for
x = x1

~P� ? -a.s. By (B-2), this follows by writing

p� (y1 j y�1 :0) = g�
�
 � hy�1 :0i ; y1

�
; (4.54)

if, for all �; � ? 2 � , the limit

 � hY�1 :0i = lim
m!1

 � hY� m:0i (x1) is well de�ned ~P� ? -a.s. (4.55)

For all � 2 � , m � 0, x 2 X and y� m:0 2 Ym+1 , using (B-4)(iii), we have

dX( � hy� m:0i (x1);  � hy� m:0i (x)) � %m+1 � (x): (4.56)

Taking x =  �
y� m � 1

(x1) and using (B-4)(v), we obtain, for all y� m� 1:0 2 Ym+2 ,

dX( � hy� m:0i (x1);  � hy� m� 1:0i (x1)) � %m+1 �� (y� m� 1) :
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Using (4.52) and Lemma 4.6.7, we have that

8� 2 (0; 1);
X

k2 Z

� jkj �� (Yk) < 1 ; ~P� ? -a.s.; (4.57)

and thus f  � hY� m:0i (x1) : m 2 Z+ g is a Cauchy sequence~P� ? -a.s. Its limit
exists ~P� ? -a.s., since(X; dX) is assumed to be complete, which de�nes theX-
valued random variable � hY�1 :0i for all �; � ? 2 � when Y has distribution
~P� ? -a.s. Thus (4.55) holds and we further obtain that

sup
� 2 �

dX( � hY� k:0i (x1); x1) � sup
� 2 �

kX

m=0

dX( � hY� m:0i (x1);  � hY� m+1:0 i (x1))

�
X

m� 0

%m �� (Y� m ) < 1 ; ~P� ? -a.s. (4.58)

so that, letting k ! 1 ,

sup
� 2 �

dX( � hY�1 :0i ; x1) �
X

m� 0

%m �� (Y� m ) < 1 ; ~P� ? -a.s. (4.59)

Let us now prove (B-1). Relation (4.54) directly yields (B-1)(i). Let us
prove (B-1)(ii), hence consider the case� = � ?. Using (4.56), we have

dX( � ? hY� m:0i (x1);  � ? hY� m:0i (X � m )) � %m+1 � (X � m ); P� ? -a.s.

Sincef � (X � m ) : m 2 Z+ g is stationary under P� ? , it is bounded in proba-
bility, and since % <1, for all � > 0, we have

lim
m!1

P� ?
�
dX

�
 � ? hY� m:0i (X � m );  � ? hY� m:0i (x)

�
> �

�
= 0: (4.60)

Note that for all m � 1,  � ? hY� m:0i (X � m ) = X 1, P� ? -a.s., hence we get that

 � ? hY�1 :0i = X 1; P� ? -a.s. (4.61)

To complete the proof of (B-1)(ii), we need to show that, under~P� ? , y 7!
g� ? ( � ? hY�1 :0i ; y) = g� ? (X 1; y) is the conditional density ofY1 given Y�1 :0,
that is, for any B 2 Y ,

Z
1B (y)g� ? (X 1; y) � (dy) = P� ? (Y1 2 B j Y�1 :0) :

Now, note that, by de�ntion of P� ? ,
Z

1B (y)g� ? (X 1; y) � (dy) = P� ? (Y1 2 B j X 1) = P� ? (Y1 2 B j X 1; Y�1 :0) :
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But since (4.61) implies thatX 1 is � (Y�1 :0)-measurable,X 1 can be removed
in the last conditioning, which concludes the proof (B-1)(ii).

Finally, it remains to show the uniform convergence (4.39) in (B-5).
By (B-3) and (4.55), we have, for all�; � ? 2 � , k 2 Z+ ,

 � hY�1 :k� 1i =  � hY1:k� 1i
�
 � hY�1 :0i

�
; ~P� ? -a.s. (4.62)

From (B-4)(iii) and (4.62), we get

dX( � hY1:k� 1i (x1);  � hY�1 :k� 1i ) � %k� 1 � 
�
 � hY�1 :0i

�
; ~P� ? -a.s.

On the other hand (B-4)(iv) and (4.59) imply

sup
� 2 �

� 
�
 � hY�1 :0i

�
< 1 ; ~P� ? -a.s.; (4.63)

which, with the previous display, yields,

sup
� 2 �

dX( � hY1:k� 1i (x1);  � hY�1 :k� 1i ) = Ok!1
�
%k

�
; ~P� ? -a.s. (4.64)

Since X1 is closed and satis�es Condition (B-4)(i), we have that,
 � hY1:k� 1i (x1) and  � hY�1 :k� 1i are in X1 for all k � 2. Thus Condition (B-
4)(vi) gives that

sup
� 2 �

�
�
�
� ln

g� ( � hY1:k� 1i (x1); Yk)
g� ( � hY�1 :k� 1i ; Yk)

�
�
�
� � Ak(1) � Ak(2) � Ak(3) � Ak(4); ~P� ? -a.s.;

where

Ak(1) = sup
� 2 �

H
�
dX( � hY1:k� 1i (x1);  � hY�1 :k� 1i )

�

Ak(2) = sup
� 2 �

eC dX(x1 ; � hY�1 :k � 1 i )

Ak(3) = sup
� 2 �

eC dX(x1 ; � hY1:k � 1 i (x1 ))

Ak(4) = �� (Yk):

By (4.64) and (B-4)(vii), we have

Ak(1) = Ok!1
�
%k

�
; ~P� ? -a.s.

With (4.57), this yields (4.39) in the case whereC = 0. For C > 0, we further
observe that, by (4.59) and (4.53), we have, for all� ? 2 � and k 2 Z+ ,

~E� ?
�
ln+ Ak(2)

�
� ~E� ?

"

C
1X

m� 0

%m �� (Y� m+ k� 1)

#

=
C� � ?

2

� ��
�

1 � %
< 1 :
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Chapter 5

General-order Observation-driven
Models: Ergodicity, Consistency
and Asymptotic Normality of the
MLE

Summary. In this chapter, we allow the state equation of the hidden
process of the observation-driven model discussed in Chapter 4 to depend
also on other lagged variables of the hidden and the observation processes,
resulting in a GARCH(p; q)-type observation-driven model. In this gener-
alized class, stationary and ergodic solutions as well as consistency of the
maximum likelihood estimator (MLE) are derived under su�cient and easy-
to-check conditions. The asymptotic normality of the MLE is also treated.
We illustrate these results with speci�c observation-driven times series, in-
cluding the GARCH(p; q), the log-linear Poisson GARCH of order(p; q), and
the NBIN-GARCH (p; q) models. An empirical study is also provided.

5.1 Introduction

Since the introduction by Cox [1981], observation-driven models (ODMs)
have been receiving renewed interest in recent years. These models are widely
applied in various �elds ranging from economics (see Pindyck and Rubin-
feld [1998]), environmental study (see Bhaskaran et al. [2013]), epidemiology
and public health study (see Zeger [1988], Davis et al. [1999], Ferland et al.
[2006]), �nance (see Liesenfeld and Richard [2003], Rydberg and Shephard
[2003], Fokianos and Tjøstheim [2011], Francq and Zakoian [2011]) and pop-
ulation dynamics (see Ives et al. [2003]). The celebrated GARCH(1; 1) model
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5. General-order Observation-driven Models

introduced in Bollerslev [1986] as well as most of the models derived from
this one are typical examples of ODMs; see Bollerslev [2008] for a list of
some of them. A list of contributions on this class of models speci�cally
dealing with discrete data includes Streett [2000], Davis et al. [2003], Heinen
[2003], Ferland et al. [2006], Fokianos et al. [2009], Franke [2010], Woodard
et al. [2010], Fokianos and Tjøstheim [2011], Henderson et al. [2011], Neu-
mann [2011], Davis and Liu [2012], Doukhan et al. [2012], Douc et al. [2013],
Fokianos et al. [2013], Christou and Fokianos [2014, 2015] and Douc et al.
[2015].

ODMs have the nice feature that the computations of the associated (con-
ditional) likelihood and its derivatives are easy, the parameter estimation is
hence relatively simple, and the prediction, which is a prime objective in
many time series applications, is straightforward. However, it turns out that
the asymptotic properties of the maximum likelihood estimator (MLE) for
this class can be cumbersome to establish, except when they can be derived
using computations speci�c to the studied model (the GARCH(1; 1) case
being one of the most celebrated example). The literature concerning the
asymptotic theory of the MLE when the observed variable has Poisson dis-
tribution includes Fokianos et al. [2009], Fokianos and Tjøstheim [2011, 2012]
and Wang et al. [2014]. For a more general case where the model belongs
to the class of one-parameter exponential ODMs, such as the Bernoulli, the
exponential, the negative binomial (with known frequency parameter) and
the Poisson autoregressive models, the consistency and the asymptotic nor-
mality of the MLE have been derived in Davis and Liu [2012]. However,
the one-parameter exponential family is inadequate to deal with models such
as multi-parametric, mixture or multivariate ODMs (the negative binomial
with all unknown parameters and mixture Poisson ODMs are examples of
this case). A more general consistency result, yet not the asymptotic nor-
mality, has been obtained recently in Douc et al. [2013]. This general result
allows the observed process to admit various forms of distribution and to
take values in any Borel space, and allows the hidden process to assume val-
ues in any locally compact Polish space endowed with the associated Borel
� -�eld. This result has later been extended and re�ned in Douc et al. [2015].
However, most of the results obtained so far have been derived only under
the framework of GARCH(1; 1)-type or �rst-order ODMs, yet less is known
for the GARCH(p; q)-type discrete ODMs, as highlighted as a remaining un-
solved problem in Tjøstheim [2015].

In this contribution, we consider among others (see Streett [2000], Heinen
[2003]) a general class of ODMs that is capable to account for several lagged
variables of both hidden and observation processes. Namely, we develop
theory and inference for the class of general-order ODMs parallel to the
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GARCH(p; q) family, under the assumption of well-speci�ed models. For
the development on the GARCH(p; q) model, see for example Francq et al.
[2004], Francq and Zakoian [2011] and for multivariate case, see Comte and
Lieberman [2003]. We extend the approaches introduced in Douc et al. [2013]
and later used in Douc et al. [2015] to establish the consistency of the MLE
and the ergodicity for the models in this general context. These results can
in principle be obtained by embedding the studied model into the corre-
sponding �rst-order one and then applying the results obtained therein to
the embedded model. By appropriate adjustments, the consistency of the
MLE for the general-order ODM can be derived. Yet for ergodicity, the gen-
eralized result seems not trivial; it turns out that more general assumptions
are required, compared to the usual �rst-order ODMs. In either Douc et al.
[2013] or Douc et al. [2015], the ergodicity of the usual �rst-order ODMs is
obtained by showing the uniqueness of invariant probability measure for the
hidden process, which is by its own right a Markov chain. In these papers,
showing the existence of the invariant probability measure for the hidden
process relies on the Foster-Lyapunov-type assumption; however, for general
ODMs or embedded ones, this assumption may be replaced by theiterative
Foster-Lyapunov-type assumption instead (see Assumption (AG-4) of Sec-
tion 5.3.4). The asymptotic normality of the MLE is also investigated in this
general setting. In this study, we restrict our consideration to the spacial
yet an important case where the current hidden state variable is expressed
as a linear function with respect to its own past variables. This class is rich
enough to cover most of the familiar ODMs, such as the GARCH(p; q), the
log-linear Poisson autoregression of order(p; q) and the NBIN-GARCH(p; q)
models, and other instances such as multi-parametric, mixture or multivari-
ate ODMs. To establish the asymptotic normality, we follow the classical
approach by �rst approximating the score function by the stationary version
of it and then developing Taylor expansion of the stationary score function
around the true parameter. By appropriate assumptions, the central limit
theorem for Martingale di�erence applies and the stationary score function
can then be shown to be asymptotically Gaussian. Then assuming invertibil-
ity of the asymptotic Fisher information matrix, the asymptotic normality
follows. All the results are presented under su�cient and easy-to-check con-
ditions. As demonstration, they are then applied to the GARCH(p; q), the
log-linear Poisson autoregression of order(p; q) and the NBIN-GARCH(p; q)
models. Finally, we provide an empirical study suggesting that in some cir-
cumstance higher-order model may �t the data better than the �rst-order
one if the class of ODMs is used.

This chapter is structured as follows. Speci�c de�nitions and notation
are introduced in Section 5.2. In Section 5.3 presents the main results of
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consistency and asymptotic normality of the MLE as well as ergodic solution
for the model. We apply these results to some speci�c models in Section 5.4.
Numerical experiments is given in Section 5.5. Finally, Section 5.6 contains
the postponed proofs.

5.2 De�nitions and Notation

Let (X; dX) be a complete and separable metric space endowed with the
associated Borel� -�eld X and (Y; Y) be a Borel space. Let(� ; �) , the
set of parameters, be a compact metric space equipped with the metric� ,
f G� : � 2 � g be a family of probability kernels onX � Y and p; q be two
positive integers. The observation-driven time series model can be formally
de�ned as follows.

De�nition 5.2.1. A time seriesf Yk : k � � q + 1g valued in Y is said to
be distributed according to anobservation-driven model of order(p; q) (here-
after, ODM(p; q)) with parameter � 2 � if there exist a family of measurable
functions f (x1:p; y1:q) 7!  �

y1:q
(x1:p) : � 2 � g from (Xp � Yq; X 
 p 
 Y 
 q) to

(X; X ) and a processf X k : k � � p + 1g on (X; X ) such that for all k 2 Z+ ,

X k+1 =  �
Yk � q+1: k

(X k� p+1: k);

Yk+1 j F k � G� (X k+1 ; �);
(5.1)

whereF k = � (X � p+1: k+1 ; Y� q+1: k) and u` :m := ( u` ; : : : ; up) for ` � m. More-
over, we say that the model is dominated by some� -�nite measure � on (Y; Y)
if for all x 2 X, the probability kernel G� (x; �) is dominated by� . In this case
we denote byg� (x; �) its Radon�Nikodym derivative, g� (x; y) = dG� (x;�)

d� (y),
and we always assume that for all(x; y) 2 X � Y and for all � 2 � ,

g� (x; y) > 0 :

One of the most popular examples of this class is the general GARCH(p; q)
model introduced by Bollerslev [1986], whereX = (0 ; 1 ), Y = R, G� (x; �) is
the centered Gaussian distribution of variancex, the deterministic function
 �

y1:q
(x1:p) = ! +

P p
i =1 ai x i +

P q
i =1 bi y2

i and � = ( !; a 1:p; b1:q) with ! > 0
and a1:p; b1:q � 0. This model was then extensively studied by, for example,
Bougerol and Picard [1992], Francq et al. [2004], Francq and Zakoïan [2009],
Lindner [2009], Francq and Zakoian [2011] and the references therein. For
other GARCH examples of this class, see Bollerslev [2008].

Remark 5.2.2. When p = q = 1, then the ODM(p; q) de�ned by (5.1)
collapses to the �rst-order ODM considered in Douc et al. [2013] and Douc
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et al. [2015]. Note also that settingr := max( p; q) and de�ning ' � : Xr � Yr !
X by, for all (x � r +1:0 ; y� r +1:0 ) 2 Xr � Yr ,

' �
y� r +1:0

(x � r +1:0 ) :=  �
y� q+1:0

(x � p+1:0 );

then the ODM(p; q) can be generally embedded in an ODM(r; r ). Thus
without loss of generality, we can always assume thatp = q.

The inference about the model parameter is performed by rely-
ing on the conditional likelihood of the observations(Y1; : : : ; Yn ) given
(X � p+1:0 ; Y� q+1:0 ) = ( x � p+1:0 ; y� q+1:0 ) := z for an arbitrary z 2 Xp � Yq.
The corresponding conditional density function with respect to� 
 n is, under
parameter � 2 � , for all z = ( x � p+1:0 ; y� q+1:0 ) 2 Xp � Yq,

y1:n 7!
n� 1Y

k=0

g�
�
 � hy� q+1: k i (x � p+1:0 ); yk+1

�
; (5.2)

where, for any vectory0:k , the function  � hy0:k i : Xp � Yq ! X is successively
de�ned by, for all k 2 Z+ ,

 � hy� q+1: k i (x � p+1:0 )

:=  �
y� q+1: k

�
 � hy� q+1: k� pi (x � p+1:0 ); : : : ;  � hy� q+1: k� 1i (x � p+1:0 )

�
(5.3)

with the convention, for 1 � j � p,

 � hy� q+1: � j i (x � p+1:0 ) := x � j +1 :

Then, the corresponding (conditional) maximum likelihood estimator (MLE)
�̂ z;n of the parameter� , with z = ( x � p+1:0 ; y� q+1:0 ), is de�ned by

�̂ z;n 2 argmax
� 2 �

L�
z;n ; (5.4)

where

L�
z;n := n� 1

n� 1X

k=0

ln g�
�
 � hy� q+1:0 ; Y1:k i (x � p+1:0 ); Yk+1

�
: (5.5)

In this contribution, we investigate the convergence of̂� z;n as n ! 1 for
some (well-chosen) value ofz under the assumption that the model is well
speci�ed and the observations are in a steady state. That is, we assume that
the observationsf Yk : k 2 Z+ g are distributed according to~P� ? with some
� ? 2 � , where, for all � 2 � , ~P� denotes the stationary distribution of the
observation-driven time series corresponding to the parameter� . However,
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whether such a distribution is well de�ned is not always obvious. Let us now
detail how this probability distribution can be obtained.

For simplicity, we assume thatp = q and that p � 2 and let Z = Xp � Yp� 1

and Z = X 
 p 
 Y 
 (p� 1). Let 	 � : Z � Y ! Z be de�ned by, for all
z = ( z1:2p� 1) 2 Z and y 2 Y,

	 �
y(z) :=

�
z2; : : : ; zp;  �

zp+1:2 p� 1 ;y(z1:p); zp+2 ; : : : ; z2p� 1; y
�

(5.6)

The function 	 � is indeed measurable on(Z � Y; Z 
 Y ). Moreover, for
any vector y1:k 2 Yk , we de�ne 	 � hy1:k i as aZ ! Z function obtained by the
successive composition of	 �

y1
, 	 �

y2
, ..., and 	 �

yk
,

	 � hy1:k i = 	 �
yk

� 	 �
yk � 1

� � � � � 	 �
y1

: (5.7)

with the convention 	 � hy1:0i (z) = z. By letting Zk = ( X k� p+1: k ; Yk� p+1: k� 1)
and observing thatF k = � (Z0:k+1 ; Y0:k), Model (5.1) can be replaced by: for
all k 2 Z+ ,

Zk+1 = 	 �
Yk

(Zk);

Yk+1 j F Z;Y
k � H � (Zk+1 ; �);

(5.8)

where, for all z = ( z1:2p� 1) 2 Z,

H � (z; �) := G� (� p (z) ; �) (5.9)

and, for all j 2 f 1; : : : ; 2p � 1g, � j (z) = zj . By this representation, the
ODM(p; p) is thus imbedded in an ODM(1; 1). This in principle allows us to
apply the same results obtained for the class of ODMs(1; 1) to the broader
class of ODMs(p; p). As an ODM(1; 1), the bivariate processf (Zk ; Yk) : k 2
Z+ g is a Markov chain on the space(Z � Y; Z 
 Y ) with transition kernel
K � satisfying, for all (z; y) 2 Z � Y, A 2 Z and B 2 Y ,

K � ((z; y); A � B) =
ZZ

1A� B (z0; y0)� 	 �
y (z)(dz0)G� (� p(z); dy0): (5.10)

Note also that, by itself, the processf Zk : k 2 Z+ g is a Markov chain on
(Z; Z ) with transition kernel R� satisfying, for all z 2 Z and A 2 Z ,

R� (z; A) =
Z

1A (	 �
y(z))H � (z; dy) =

Z
1A (	 �

y(z))G� (� p (z) ; dy): (5.11)
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Nevertheless, to apply known results to this embedded ODM(1; 1), some
generalizations are needed. First we assume that(Y; dY) is a locally compact,
complete and separable space equipped with the metricdY . Then, since
(X; dX) is a locally compact, complete and separable space, this implies that
the space(Z; dZ) is also locally compact, complete and separable with the
metric dZ appropriately de�ned as a function ofdX and dY so that Z is the
associated Borel� -�eld. Throughout this chapter, let us assume the following
ergodicity assumption.

(AG-1) For all � 2 � , the transition kernelK � of the complete chain admits a
unique stationary distribution� � on Z � Y.

With this assumption, we can now de�ne~P� . The following notation and
de�nitions will be used throughout the chapter.

De�nition 5.2.3. Under Assumption (AG-1), we denote by� �
1 and � �

2 the
marginal distributions of � � on Z and Y, respectively, and byP� and ~P� the
probability distributions de�ned respectively as follows.

a) P� denotes the extension ofP�
� � on the whole line(Z � Y)Z.

b) ~P� is the corresponding projection on the componentYZ.

We also use the symbolsE� and ~E� to denote the expectations corresponding
to P� and ~P� , respectively. Moreover, for all�; � 0 2 � , we write � � � 0 if and
only if ~P� = ~P� 0

. This de�nes an equivalence relation on the parameter set
� and the corresponding equivalence class of� is denoted by[� ] := f � 0 2 � :
� � � 0g.

The equivalence relationship� was introduced by Leroux [1992] as an
alternative to the classical identi�ability condition.

For any probability distribution � on Z � Y, we denote byP�
� the distri-

bution of the Markov chain f (Zk ; Yk) : k 2 Z+ g with kernel K � and initial
probability mesure � .

5.3 Main Results

5.3.1 Preliminaries

In well-speci�ed setting, a general result on the consistency of the MLE
for a class of �rst-order ODMs has been obtained in Douc et al. [2013].
This result has been later extended in Douc et al. [2015] to a wider class
of �rst-order ODMs, but the latter has been derived under a handy set of
assumptions which appear to be quite direct and easy when checking. The
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approach used to establish the convergence of the MLÊ� z;n in these references
and in our contribution is brie�y described as follows.

First, we establish that, as the number of observationsn ! 1 , the
normalized log-likelihoodL�

z;n de�ned in (5.5), for some well-chosenz 2 Z,
can be approximated by

n� 1
nX

k=1

ln p� (Yk jY�1 :k� 1);

where p� (�j� ) is a ~P� ? -a.s. �nite real-valued measurable function de�ned on
(YZ; Y 
 Z). To de�ne p� (�j� ), we usually set, for ally�1 :1 2 YZ� , whenever
the following limit is well de�ned,

p� (y1 j y�1 :0) =

(
lim

m!1
g�

�
� p

�
	 � hy� m:0i (z)

�
; y1

�
if the limit exists,

1 otherwise.
(5.12)

By (AG-1), the observed processf Yk : k 2 Zg is ergodic under~P� ? and
provided that

~E� ?
�
ln+ p� (Y1jY�1 :0)

�
< 1 ;

it then follows that

lim
n!1

L�
z;n = ~E� ?

�
ln p� (Y1jY�1 :0)

�
; ~P� ? -a.s.

Finally, we show that with probability tending to one, the MLE �̂ z;n eventu-
ally lies in a neighborhood of the set

� ? = argmax
� 2 �

~E� ?
�
ln p� (Y1jY�1 :0)

�
; (5.13)

which only depends on� ?, establishing that

lim
n!1

�( �̂ z;n ; � ?) = 0 ; ~P� ? -a.s.; (5.14)

where� is the metric endowing the parameter space� .
In Douc et al. [2015], their easy-to-check conditions also induce that for all

�; � ? 2 � , there exists a~P� ? -a.s. �nite measurable function	 � h�i : ZZ� ! Z
such that for some appropriate valuez 2 Z,

lim
m!1

	 � hY� m:0i (z) = 	 � hY�1 :0i ; ~P� ? -a.s. (5.15)

Z1 = 	 � ? hY�1 :0i ; P� ? -a.s. (5.16)

and that

p� (Y1jY�1 :0) = g�
�
� p

�
	 � hY�1 :0i

�
; Y1

�
; ~P� ? -a.s. (5.17)

In addition, it is shown that for all �; � ? 2 � ,
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(i) If � 6= � ?, y 7! p� (yjY�1 :0) is a density function ~P� ? -a.s.

(ii) Under ~P� ? , the function y 7! p� ? (yjY�1 :0) is the conditional density
function of Y1 given Y�1 :0.

Under these same conditions, Douc et al. [2014] further showed that the
maximizing set � ? de�ned in (5.13) indeed reduces to the equivalence class
of � ? through the equivalence relation de�ned in De�nition 5.2.3. Then, the
convergence in (5.14) yields a so-calledequivalence-class consistency:

lim
n!1

�( �̂ z1 ;n ; [� ?]) = 0 ; ~P� ? -a.s.; (5.18)

for some well-chosenz1 2 Z. From (5.18) the (strong) consistency of the MLE
�̂ z;n will immediately follow if one can show that[� ?] reduces to the singleton
f � ?g, which is often referred to as solvingidenti�ability problem. In this
contribution, this issue is also investigated. We will show that if moreover
the probability density kernel G� and the measurable function	 � hY�1 :0i
de�ned in (5.15) and (5.16) satisfy some certain conditions (similar to the
conditions in [Douc et al., 2013, Proposition 21]), then the strong consistency
holds.

5.3.2 Convergence of the MLE

We always assume in this part that Assumption (AG-1) holds throughout.
Note that every ODM of any orderp � 1 can be embedded in a �rst-order
ODM. Therefore, the approach used to derive the convergence of the MLE
in the class of �rst-order models can be applied to the class of higher-order
ones up to some necessary adaptations. The following is a list of additional
assumptions su�cient for obtaining the convergence of the MLE for a class
of higher-order ODMs.

(AG-2) There exists a function�V : Z ! R+ such that, for all� 2 � , � �
1( �V) < 1 .

Remark 5.3.1. Assumption (AG-2) is usually obtained as a byproduct of
the proof of Assumption (AG-1); see Section 5.3.4. It is here stated as an
assumption for convenience.

The following set of conditions can readily be checked ong� ,  � and 	 � .

(BG-1) For ally 2 Y, the function(�; x ) 7! g� (x; y) is continuous on� � X.

(BG-2) For all y1:p 2 Y, the function (�; x 1:p) 7!  �
y1:p

(x1:p) is continuous on
� � Xp.

The function �V appearing in (BG-3)(viii) below is the same one as in As-
sumption (AG-2). Moreover, in this condition and in what follows, we write
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f . V for a real-valued functionf and a nonnegative functionV de�ned
on the same spaceZ, whenever there exists a positive constantc such that
jf (z)j � cV(z) for all z 2 Z.

(BG-3) There existz1 2 Z, a setZ1 � Z such that� p (Z1) is closed,%2 (0; 1),
C � 0 and measurable functions�	 : Z ! R+ , H : R+ ! R+ and
�� : Y ! R+ such that the following assertions hold.

(i) For all � 2 � and (z; y) 2 Z � Y, � p
�
	 �

y(z)
�

2 Z1.

(ii) sup
(�;z;y )2 � � Z1 � Y

g� (� p (z) ; y) < 1 .

(iii) For all � 2 � , n 2 Z+ , z 2 Z, andy1:n 2 Yn ,

dZ
�
	 � hy1:n i (z1); 	 � hy1:n i (z)

�
� %n �	( z); (5.19)

(iv) �	 is locally bounded.

(v) For all � 2 � andy 2 Y, �	(	 �
y(z1)) � �� (y).

(vi) For all � 2 � and (z; z0; y) 2 Z1 � Z1 � Y,
�
�
�
� ln

g� (� p (z) ; y)
g� (� p (z0) ; y)

�
�
�
� � H (dZ(z; z0)) eC (dZ(z1 ;z)_ dZ(z1 ;z0)) �� (y); (5.20)

(vii) H (u) = O(u) asu ! 0.

(viii) If C = 0, then, for all� 2 � ,

G� ln+ �� . �V ; (5.21)

otherwise, for all� 2 � ,
G� �� . �V : (5.22)

Let us now state the equivalence-class consistency of the MLE for the higher-
order ODMs. The proof can be adapted and easily follows from [Douc et al.,
2015, Theorem 1] and is thus omitted here.

Theorem 5.3.2. Assume that (AG-1), (AG-2), (BG-1), (BG-2) and (BG-3)
hold. Then, letting z1 2 Z as in (BG-3), the convergence(5.18) of the MLE
holds.

The strong consistency of the MLE follows from the following theorem.

Theorem 5.3.3. Assume that (AG-1), (AG-2), (BG-1), (BG-2) and (BG-3)
hold. Suppose in addition that

(a) for all � = ( #; r ); � 0 = ( #0; r 0) 2 � and x; x0 2 X,

G� (x; �) = G� 0
(x0; �) implies r = r 0 and x = x0;
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(b) for all � = ( #; r ), � ? = ( #?; r?) 2 � , ~P� ? -a.s.,

� p
�
	 (#;r )hY�1 :0i

�
= � p

�
	 (#? ;r )hY�1 :0i

�
implies # = #?;

where 	 � hY�1 :0i is de�ned by (5.15) and (5.16). Then, letting z1 2 Z as
in (BG-3),

lim
n!1

�( �̂ z1 ;n ; � ?) = 0 ; ~P� ? -a.s. (5.23)

Proof. From Theorem 5.3.2, we have� ? = [ � ?], where� ? is given in (5.13).
Now let � = ( #; r ) 2 [� ?] and write � ? = ( #?; r?). The Kulback-Leibler
divergence implies,~P� ? -a.s.,

G(#;r )
�
� p

�
	 (#;r )hY�1 :0i

�
; �

�
= G(#? ;r ? )

�
� p

�
	 (#? ;r ? )hY�1 :0i

�
; �

�
:

Then from (a), we obtain
r = r?

and
� p

�
	 (#;r )hY�1 :0i

�
= � p

�
	 (#? ;r ? )hY�1 :0i

�
; ~P� ? -a.s.

From (b), we also have# = #?. Thus the proof follows.

5.3.3 Asymptotic Normality of the MLE

In this section, we treat a special but an important case of ODMs where
the spaceZ is a subset of a �nite-dimensional vector space;� is a compact
subset ofRd, for some positive integerd; and the function 	 �

y(z) de�ned in
(5.6) admits the following form: for all (z; y; � ) 2 Z � Y � � ,

	 �
y(z) = a(�; y )z + b(�; y ); (5.24)

wherea(�; y ) and b(�; y ) are two matrices with appropriate dimensions, and
for all � 2 � , y 7! a(�; y ) and y 7! b(�; y ) are measurable maps on(Y; Y).
The underlying model is assumed to be well-speci�ed and� ? 2 � denotes the
true parameter. As in Section 5.3.2, Assumption (AG-1) is supposed to hold
throughout this section. Assumption (CG-1) below guarantees the existence
of 	 � h�i satisfying (5.15) and (5.16), and its di�erentiability on � . In what
follows, we denote byj � j a vector norm onRd and by k � k a matrix norm.

(CG-1) We have the following.

(i) For all y 2 Y, � 7! a(�; y ) and � 7! b(�; y ) are twice continuously
di�erentiable on� .

127



5. General-order Observation-driven Models

(ii) There exist constantsC > 0 and � 2 (0; 1) such that for all� 2 �
andy1:n 2 Y, 






nY

`=1

a(�; y ` )







� C� n :

(iii) ~E� ? [sup� 2 � kb(�; Y1)k] < 1 .

(iv) For all i 2 f 1; : : : ; dg,

~E� ?

�
sup
� 2 �






@a(�; Y1)
@�i






�
+ ~E� ?

�
sup
� 2 �






@b(�; Y1)
@�i






�
< 1 :

(v) For all i; j 2 f 1; : : : ; dg,

~E� ?

�
sup
� 2 �






@2a(�; Y1)
@�i @�j






�
+ ~E� ?

�
sup
� 2 �






@2b(�; Y1)
@�i @�j






�
< 1 :

Lemma 5.3.4. Assume (AG-1) and (CG-1). Then for all � 2 � , there
exists a~P� ? -a.s. �nite measurable function	 � h�i : ZZ� ! Z satisfying (5.15)
and (5.16) for all z 2 Z. The function � 7! 	 � hY�1 :0i is ~P� ? -a.s. twice
continuously di�erentiable on � and uniformly on � , we have~P� ? -a.s.,

@	 � hY�1 :0i
@�

= lim
m!1

@	 � hY� m:0i (z)
@�

(5.25)

@2	 � hY�1 :0i
@�T @�

= lim
m!1

@2	 � hY� m:0i (z)
@�T @�

: (5.26)

Moreover,

~E� ?

�
sup
� 2 �


 	 � hY�1 :0i



�

< 1 ; (5.27)

~E� ?

�
sup
� 2 �






@	 � hY�1 :0i
@�






�
< 1 ; (5.28)

~E� ?

�
sup
� 2 �






@2	 � hY�1 :0i
@�T @�






�
< 1 : (5.29)

Proof. The proof is postponed to Section 5.6.1 for convenience.

(CG-2) For ally 2 Y, the function(�; x ) 7! g� (x; y) twice continuously di�eren-
tiable on� � X.

For stating further assumptions, the following notation may be needed.
For all k 2 Z �

+ , � 2 � and z 2 Z, let

` �
z;k := ln g�

�
� p

�
	 � hY1:k� 1i (z)

�
; Yk

�
:
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Then for all n 2 Z �
+ , it follows that L�

z;n de�ned by (5.5) can be rewritten as

L�
z;n = n� 1

nX

k=1

` �
z;k (5.30)

For all k 2 Z �
+ , � 2 � and z 2 Z, let

` �
k := ln g�

�
� p

�
	 � hY�1 :k� 1i

�
; Yk

�
;

which is ~P� ? -a.s. well de�ned by Lemma 5.3.4. Note that from (5.17), we
have for all k 2 Z �

+ , � 2 � , ` �
k = ln p� (Yk jY�1 :k� 1). Now for all n 2 Z �

+ and
� 2 � , de�ne

L�
n := n� 1

nX

k=1

` �
k : (5.31)

Remark 5.3.5. Note that by Lemma 5.3.4, (AG-1), (CG-1) and (CG-2) imply
that the functions � 7! ` �

z;k and � 7! ` �
k are twice continuously di�erentiable

on some neighborhoodV(� ?) of � ?, ~P� ? -a.s.

Assumptions (AG-1), (CG-1) and (CG-2) together with the following set of
assumptions, (CG-3)�( CG-7), are su�cient to yield the asymptotic normality
of �̂ z;n for arbitrary z 2 Z.

(CG-3) The true parameter� ? lies within the interior of� .

(CG-4) The strong consistency holds, that is,limn!1 �̂ z;n = � ?; ~P� ? -a.s.

(CG-5) There exist a constant� > 1=2 and a~P� ? -a.s. �nite random variableC > 0
such that for allk � 1,

sup
� 2V (� ? )

�
�
�
�
�
@�̀

z;k

@�
�

@�̀
k

@�

�
�
�
�
�

� Ck� � ; ~P� ? -a.s.;

whereV(� ?) is a neighborhood of� ?.

(CG-6) The exists a neighborhoodV(� ?) of � ? such that

(i) ~E� ?

�
sup� 2V (� ? )

�
�
� @ �̀

1
@�

�
�
�
2
�

< 1 .

(ii) ~E� ?

h
sup� 2V (� ? )



 @2 ` �

1
@�T @�




i

< 1 .

(iii) ~E� ?
�
sup� 2V (� ? )

�
� @

@�g
�

�
� p

�
	 � hY�1 :0i

�
; Y1

� �
� � < 1 .

(iv) ~E� ?

h
sup� 2V (� ? )



 @2

@�T @�g
�

�
� p

�
	 � hY�1 :0i

�
; Y1

� 


i

< 1 .

(CG-7) The matrix� ? = � ~E� ?

h
@2 ` � ?

1
@�T @�

i
is invertible.
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Note that if Assumptions (AG-1), (CG-1) and (CG-2) hold, then by Re-
mark 5.3.5,� 7! L�

z;n and � 7! L�
n respectively given by (5.30) and (5.31) are

twice continuously di�erentiable on some neighborhoodV(� ?) of � ?, ~P� ? -a.s.
If in addition Assumption (CG-5) holds, the following fact is obtained.

Lemma 5.3.6. Assume (AG-1), (CG-1), (CG-2) and (CG-5), then

lim
n!1

sup
� 2V (� ? )

n1=2

�
�
�
�
�
@L�

z;n

@�
�

@L�
n

@�

�
�
�
�
�

= 0; ~P� ? -a.s.;

Proof. We have from (CG-5), ~P� ? -a.s.,

sup
� 2V (� ? )

n1=2

�
�
�
�
�
@L�

z;n

@�
�

@L�
n

@�

�
�
�
�
�

�
1

n1=2

nX

k=1

sup
� 2V (� ? )

�
�
�
�
�
@�̀

z;k

@�
�

@�̀
k

@�

�
�
�
�
�

�
C

n1=2

nX

k=1

1
k�

:

To complete, observe that the rightmost term of the above inequalities con-
verges to0 as n ! 1 whenever� > 1=2.

Theorem 5.3.7. Assume that (AG-1) and (CG-1)�( CG-7) hold. Then, for
any z 2 Z, p

n(�̂ z;n � � ?)  � ? N (0; � � 1
? ); (5.32)

where the symbol � ? means weak convergence under~P� ? , and N (0; � � 1
? )

stands for the centered Gaussian distribution with covariance matrix� � 1
? .

Proof of Theorem 5.3.7. From Lemma 5.3.6, we have

lim
n!1

n1=2 sup
� 2V (� ? )

�
�
�
�
�
@L�

z;n

@�
�

@L�
n

@�

�
�
�
�
�

= 0; ~P� ? -a.s.

Since for su�ciently large n, �̂ z;n 2 V(� ?) and @L
�̂ z;n
z;n

@� = 0, then

n1=2 @L�̂ z;n
n

@�
= n1=2 @L�̂ z;n

z;n

@�
+ oP (1) = oP (1):

Note that we also have,

n1=2 @L�̂ z;n
n

@�
= n1=2 @L� ?

n

@�
+

�
@2L� ?

n

@�T @�
+ "n

�
n1=2(�̂ z;n � � ?);

where

"n =
Z 1

0

 
@2L� ? + t( �̂ z;n � � ? )

n

@�T @�
�

@2L� ?
n

@�T @�

!

dt: (5.33)
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Thus,

n1=2 @L� ?
n

@�
= �

�
@2L� ?

n

@�T @�
+ "n

�
n1=2(�̂ z;n � � ?) + oP (1):

Note that from (CG-6)(ii) and by ergodicity, Birkho� ergodic theorem applies
and we have

lim
n!1

@2L� ?
n

@�T @�
= lim

n!1
n� 1

nX

k=1

@2` � ?
k

@�T @�
= � � ?; ~P� ? -a.s.

Thus to complete the proof, we only need to show that

(a) n1=2 @L� ?
n

@�  � ? N (0; � ?) and

(b) "n = oP (1).

Let us now we show (a). Note that we can write

n1=2 @L� ?
n

@�
= n� 1=2

nX

k=1

@`� ?
k

@�
:

Let � k = @`� ?
k

@� , k 2 Z+ . From (CG-6)(iii), it readily follows that

~E� ? [ � k j Y�1 :k� 1] =
Z

Y

@g� ?
�
� p

�
	 � ? hY�1 :k� 1i

�
; y

�

@�
� (dy)

=
@
@�

Z

Y
g�

�
� p

�
	 � hY�1 :k� 1i

�
; y

�
� (dy)

�
�
�
�
� = � ?

=
@
@�

1

�
�
�
�
� = � ?

= 0;

so that the sequencef � k : k 2 Z+ g is a stationary and ergodic Martingale
di�erence with respect toF �1 :k = � (Y�1 :k) in L2(~P� ? ). By (CG-6) and (CG-
7), its covariance matrix is equal to� ?. To see this, observe that~P� ? -a.s.,

~E� ?
�
� k � T

k

�
� F �1 :k� 1

�

=
Z

Y

1

g� ?
�
 � ?

k ; y
�

 
@g� ?

�
 � ?

k ; y
�

@�

!  
@g� ?

�
 � ?

k ; y
�

@�

! T

� (dy)

=
Z

Y

 
@2g� ?

�
 � ?

k ; y
�

@�T @�
�

@2 ln g� ?
�
 � ?

k ; y
�

@�T @�
g� ?

�
 � ?

k ; y
�
!

� (dy);
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with  � ?
k := � p

�
	 � ? hY�1 :k� 1i

�
. By (CG-6)(iv), we have

Z

Y

@2g� ?
�
 � ?

k ; y
�

@�T @�
= 0; ~P� ? -a.s.

Since~P� ? -a.s.,

~E� ?

�
@2` � ?

k

@�T @�

�
�
�
� F �1 :k� 1

�
=

Z

Y

@2 ln g� ?
�
 � ?

k ; y
�

@�T @�
g� ?

�
 � ?

k ; y
�

� (dy);

it then follows that

~E� ?
�
� k � T

k

�
� F �1 :k� 1

�
= � ~E� ?

�
@2` � ?

k

@�T @�

�
�
�
� F �1 :k� 1

�
; ~P� ? -a.s.

Taking the expectation on both sides, then using tower property and us-
ing (CG-7), the claim thus follows. By ergodicity and from (CG-6)(i), we
have

lim
n!1

n� 1
nX

k=1

~E� ?
�
� k � T

k

�
� F �1 :k� 1

�
= � ?; ~P� ? -a.s.

Moreover, for � > 0,

lim
n!1

n� 1







nX

k=1

~E� ?
�
� k � T

k 1(j� k j > �
p

n)
�
� F �1 :k� 1

�






� lim
n!1

n� 1
nX

k=1

~E� ?
�
j� k j2 1(j� k j > �

p
n)

�
� F �1 :k� 1

�

� lim
n!1

n� 1
nX

k=1

~E� ?
�
j� k j2 1(j� k j > M )

�
� F �1 :k� 1

�

= ~E� ?
�
j� 1j2 1(j� 1j > M )

�
; ~P� ? -a.s.;

whereM > 0. SinceM is arbitrary, letting M ! 1 , we have

lim
n!1

n� 1
nX

k=1

~E� ?
�
� k � T

k 1(j� k j > �
p

n)
�
� F �1 :k� 1

�
= 0; ~P� ? -a.s.

Thus by martingale central limit theorem, see, for instance, Hall and Heyde
[1980],

n1=2 @L� ?
n

@�
= n� 1=2

nX

k=1

� k  � ? N (0; � ?):
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Now it remains to show (b). Let � > 0 such that B(� ?; � ) � V (� ?). Since
~P� ? -a.s., �̂ z;n ! � ? as n ! 1 , then there exists a~P� ? -a.s. �nite integer N0

such that for all n � N0, ~P� ? -a.s., � ? + t(�̂ z;n � � ?) 2 B(� ?; � ). Then from
(5.33), ~P� ? -a.s., for all n � N0,

k"nk �
Z 1

0







@2L� ? + t( �̂ z;n � � ? )
n

@�T @�
�

@2L� ?
n

@�T @�







dt

� sup
� 2 B(� ? ;� )






@2L�
n

@�T @�
�

@2L� ?
n

@�T @�






� n� 1
nX

k=1

sup
� 2 B(� ? ;� )






@2` �
k

@�T @�
�

@2` � ?
k

@�T @�




 :

By (CG-6)(ii), B(� ?; � ) � V (� ?) and Birkho� ergodic theorem, we get that

lim sup
n!1

k"nk � ~E� ?

"

sup
� 2 B(� ? ;� )






@2` �
1

@�T @�
�

@2` � ?
1

@�T @�






#

; ~P� ? -a.s.

Here � is an arbitrary positive number, provided that B(� ?; � ) � V (� ?). By
dominated convergence and Remark 5.3.5, the right-hand side of the previous
display can be made arbitrarily close to zero by letting� tend to zero. Hence
we get (b), and the proof is complete.

Remark 5.3.8. From the proof of Theorem 5.3.7, it is also shown that

� ? = ~E� ?

" �
@`� ?

1

@�

� �
@`� ?

1

@�

� T
#

:

Thus, to obtain (CG-7), that is showing that � ? is invertible, it is su�cient
to show that for all a 2 Rd,

aT @`� ?
1

@�
= 0; ~P� ? -a.s.; =) a = 0: (5.34)

5.3.4 Ergodicity

In this section, we provide conditions that yield stationarity and ergodic-
ity of the Markov chain f (Zk ; Yk) : k 2 Z+ g. We will set � to be an arbitrary
value in � and since this is a �for all� (...)� condition, to save space and alle-
viate the notational burden, we will drop the superscript� from, for example,
G� , R� and  � and respectively writeG, R and  , instead.
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Ergodicity of Markov chains are usually studied using' -irreducibility.
This approach is well known to be quite e�cient when dealing with fully
dominated models; see Meyn and Tweedie [2009]. It is not at all the same
picture for integer-valued observation-driven models, where other tools need
to be invoked; see Fokianos and Tjøstheim [2011], Douc et al. [2013, 2015].
Our result here is obtained in the same fashion as in Douc et al. [2015], which
is inspired by the approach in Douc et al. [2013]. The following is the list
of assumptions to obtain our main result on ergodicity. We should mention
that some of our assumptions (for instance, Assumption (AG-4)) are more
general than those derived in Douc et al. [2013] and Douc et al. [2015].

(AG-3) The measurable space(Z; dZ) is a locally compact, complete and separable
metric space and its associated� -�eld Z is the Borel� -�eld.

(AG-4) There exists a positive integerq such that the Markov kernelRq is weak
Feller, that is, for any continuous and bounded functionf de�ned onX,
Rqf is continuous and bounded onX. Moreover, there exist(�; � ) 2
(0; 1) � R+ and a measurable functionV : Z ! R+ such thatRqV �
�V + � and f V � M g is a compact set for anyM > 0.

(AG-5) The Markov kernelR admits a reachable point, that is, there existsz0 2 Z
such that, for anyz 2 Z and any neighborhoodN of z0, Rm (z; N ) > 0
for at least one positive integerm.

(AG-6) There exists a positive integer` such that

sup
(z;z0;y1: ` )2 Z2 � Y`

z6= z0

dZ(	 hy1:` i (z); 	 hy1:` i (z0))
dZ(z; z0)

< 1; (5.35)

and

sup
(z;z0;y)2 Z2 � Y

z6= z0

dZ(	 y(z); 	 y(z0))
dZ(z; z0)

< 1 : (5.36)

(AG-7) There exist a measurable function� from Z2 to [0; 1], a measurable func-
tion � : Z2 ! X = � p (Z) and a measurable functionW : Z2 ! [1; 1 )
such that the following assertions hold.

(i) For all (z; z0) 2 Z2 andy 2 Y,

min f g(� p (z) ; y); g(� p (z0) ; y)g � � (z; z0)g(� (z; z0); y) : (5.37)

(ii) For all z 2 Z, W(z; �) is �nitely bounded in a neighborhood ofz, that
is, there exists z > 0 such that sup

z02 B(z; z )
W(z; z0) < 1 .
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(iii) For all (z; z0) 2 Z2, 1 � � (z; z0) � dZ(z; z0)W(z; z0).

(iv) There exist an integerm > 0 and a real numberD > 0 such that

sup
(z;z0)2 Z2

(Jm ((z; z0); W) � W(z; z0)) < 1

and
sup

(z;z0)2 Z2
(J1((z; z0); W) � DW (z; z0)) < 1 ;

where for any positive integern, (z; z0) 2 Z2 and measurable function
f : Z2 ! R,

Jn ((z; z0); f ) :=
Z

f (	 hy1:n i (z); 	 hy1:n i (z0)) �

nY

k=1

G (� (	 hy1:k� 1i (z); 	 hy1:k� 1i (z0)); dyk) :

Remark 5.3.9. Assumption (AG-3) holds if the measurable metric spaces
(X; dX) and (Y; dY) are locally compact, complete and separable and their
associated� -�eld X and Y are the Borel� -�elds. In this case, the metricdZ

can be appropriately de�ned as a function ofdX and dY .

Remark 5.3.10. Note that if the Markov kernel R is weak Feller, then the
Markov kernel Rq is also weak Feller.

Lemma 5.3.11. Assume (AG-3) and (AG-4). Then R admits an invariant
probability distribution ~� ; moreover, ~�V < 1 .

Proof. From Assumptions (AG-3) and (AG-4) and by Remark 5.3.10, the
transition kernel Rq admits an invariant probability distribution denoted by
� q. Let ~� be de�ned by, for all A 2 Z ,

~� (A) =
1
q

qX

k=1

� qRk(A):

Obviously, we have~�R = ~� , which shows thatR admits an invariant proba-
bility distribution ~� . Now let M > 0. Then we have for alln 2 Z+ ,

~� (V ^ M ) = ~�R nq(V ^ M )

� ~�R nq(V) ^ M

� � n ~� (V) ^ M +
�

1 � �
^ M:
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Letting n ! 1 , we then obtain

~� (V ^ M ) �
�

1 � �
^ M:

Finally, since M is arbitrary, by letting M ! 1 and by monotone conver-
gence theorem, we get~�V < 1 as desired.

We can now state the main ergodicity result.

Theorem 5.3.12. Conditions (AG-3), (AG-4), (AG-5), (AG-6) and (AG-7)
imply that K admits a unique stationary distribution� on Z � Y. Moreover,
� 1

�V < 1 for every �V : X ! R+ such that �V . V .

For convenience, we postponed the proof of Theorem 5.3.12 to Sec-
tion 5.6.2. The �rst conclusion of Theorem 5.3.12 can directly be applied
for all � 2 � to check (AG-1).

Assumptions (AG-4) and (AG-5) have to be checked directly on the
Markov kernel R de�ned by (5.11). To this end, it can be useful to de�ne,
for any givenz 2 Z, the distribution

�Pz := P� z 
 G(� p (z); �) (5.38)

on (Z � Y)Z+ , where P� is de�ned for any distribution � on Z � Y as in
De�nition 5.2.3. Then the �rst component processf Zk : k 2 Z+ g associated
to �Pz is a Markov chain with Markov kernelR and initial distribution � z.

The following lemma provides a general way for constructing the instru-
mental functions � and � that appear in (AG-7). The proof can be easily
adapted from [Douc et al., 2015, Lemma 1] and is thus omitted.

Lemma 5.3.13. Suppose that� p (Z) = X = CS for some measurable space
(S; S) and C � R. Thus for all x 2 X, we write x = ( xs)s2 S, wherexs 2 C for
all s 2 S. Suppose moreover that for allx = ( xs)s2 S 2 X, we can express the
conditional densityg(x; �) as a mixture of densities of the formj (xs)h(xs; �)
over s 2 S. This means that for all t 2 C, y 7! j (t)h(t; y) is a density with
respect to� and there exists a probability measure� on (S; S) such that

g(x; y) =
Z

S
j (xs)h(xs; y)� (ds); y 2 Y : (5.39)

We moreover assume thath takes nonnegative values and that one of the two
following assumptions holds.

(H'-1) For all y 2 Y, the functionh(�; y) : t 7! h(t; y) is nondecreasing.

(H'-2) For all y 2 Y, the functionh(�; y) : t 7! h(t; y) is nonincreasing.
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For all (x; x0) 2 X2, we denotex ^ x0 := (min f xs; x0
sg)s2 S and x _ x0 :=

(maxf xs; x0
sg)s2 S and we de�ne � (z; z0) and � (z; z0) by: for all (z; z0) 2 Z2,

letting x = � p (z) and x0 = � p (z0),
8
>><

>>:

� (z; z0) = inf
s2 S

�
j (xs _ x0

s)
j (xs ^ x0

s)

�
and � (z; z0) = x ^ x0 under (H'-1);

� (z; z0) = inf
s2 S

�
j (xs ^ x0

s)
j (xs _ x0

s)

�
and � (z; z0) = x _ x0 under (H'-2):

Then � and � de�ned above satisfy (AG-7)(i).

5.4 Examples

In this section, we apply our main results derived above to three mod-
els of interest, namely, the classical GARCH(p; p), the log-linear Poisson
GARCH(p; p) and the NBIN-GARCH(p; p) models. For the celebrated
GARCH(p; p) model, however, we illustrate only the ergodicity result and
for the asymptotic result of the MLE for this model, we refer to Francq et al.
[2004]. To the best of our knowledge, the stationarity and ergodicity as well
as the asymptotic properties of the MLE for the general log-linear Poisson
GARCH(p; p) and NBIN-GARCH(p; p) models have not been derived so far.
In the sequel,A , b and ! always denote, respectively, the matrix

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 1 0 0 � � � 0 0 0 � � � 0 0
0 0 1 0 � � � 0 0 0 � � � 0 0
0 0 0 1 � � � 0 0 0 � � � 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 � � � 1 0 0 � � � 0 0
ap ap� 1 ap� 2 ap� 3 � � � a1 bp bp� 1 � � � b3 b2

0 0 0 0 � � � 0 0 1 � � � 0 0
0 0 0 0 � � � 0 0 0 � � � 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 � � � 0 0 0 � � � 0 1
0 0 0 0 � � � 0 0 0 � � � 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

the vector b1� p + � 2p� 1, with for all j 2 f 1; : : : ; 2p� 1g, � j = ( � ij ) i 2f 1;:::;2p� 1g,
� ij being the Kronecker delta, and the vector! � p. We also denote by
A ?, b? and ! ? the corresponding values ofA , b and ! at (!; a 1:p; b1:p) =
(! ?; a?

1:p; b?
1:p), respectively. For any matrix M , we denote its transpose by

M T . For any real numbersa and b, we denote their maximum value bya_ b
or maxf a; bg and their minimum value by a ^ b or minf a; bg.
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5.4.1 GARCH (p; p) Model

Example 5.4.1 (De�nition of GARCH (p; p)). Consider GARCH(p; p), p 2
Z �

+ , de�ned as follows: for allk 2 Z+ ,

X k+1 = ! +
pX

i =1

ai X k� i +1 +
pX

i =1

bi Y 2
k� i +1 ;

Yk+1 j F k = X 1=2
k+1 " k+1 ;

(5.40)

where

� the parameter space

� � f � = ( !; a 1:p; b1:p) 2 R � Rp � Rp : ! > 0; a1:p � 0; b1:p � 0g;

� F k = � (X � p+1: k+1 ; Y� p+1: k),

� The processf " k : k 2 Z+ g are i.i.d. random sequence with zero mean
and unit variance onR and are independent ofF k . For eachk 2 Z+ ,
the distribution of " k admits a density  with respect to the Lebesgue
measure onR. The density is assumed to be positive, to be continuous
over R and to satisfy that  (u) +  (� u) is monotone onu 2 R+ . We
further assume that� > 0, P("2

0 < � ) > 0.

� X = (0 ; 1 ), X = B(X), Y = R, Y = B(Y) and the metrics onX and Y
are any metrics onR.

Note that, by setting for all k, Uk = Y 2
k (then U = R+ , U = B(U) and dU

is any metric onR), Model (5.40) can be embedded in Model (5.41) below:

X k+1 =  �
Uk � p+1: k

(X k� p+1: k);

Uk+1 j F k = X k+1 "2
k+1 ;

(5.41)

where for all (x1:p; u1:p) 2 Xp � Up,

 �
uk � p+1: k

(xk� p+1: k) := ! +
pX

i =1

ai xp� i +1 +
pX

i =1

bi up� i +1 : (5.42)

The density g� and the probability law G� of Uk conditional on X k = x are
respectively given by, for allu 2 U and A 2 U,

g(x; u) =
1

2
p

xu

h


� p
x � 1u

�
+ 

�
�

p
x � 1u

�i
> 0; (5.43)

and
G� (x; A) =

Z

U
1A (u)g� (x; u)du; (5.44)
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with g� (x; 0) = 1 for all x 2 X. In view of De�nition 5.2.1, Model (5.41)
is an ODM(p; p) and is dominated by the Lebesgue measure onR. Now let
Z = Xp � Up� 1 and Z = X 
 p 
U 
 (p� 1) and de�ne the measurable function	 �

similarly as in (5.6). The function	 � then has the form: for all(z; u) 2 Z� U,

	 �
u(z) = ! + A z + ub: (5.45)

Moreover, denotingZk = ( X k� p+1: k ; Uk� p+1: k� 1) for all k, the processf Zk :
k 2 Z+ g is a Markov chain on(Z; Z ) whose transition kernelR� is given by
(5.11) with G� and 	 � de�ned in (5.44) and (5.45), respectively.

Let I n be the identity matrix of order n and denote the characteristic
polynomial of the matrix A + b� T

p by P(� ) = det
�
� I 2p� 1 � (A + b� T

p )
�
.

For any square matrix M , denote the spectral radius ofM by j� jmax (M ).
Straightforward computation shows that

P(� ) = � p� 1

 

� p �
pX

k=1

(ak + bk)� p� k

!

: (5.46)

The following lemma is immediate.

Lemma 5.4.2. Let a1:p � 0, b1:p � 0. Then
P p

i =1 (ai + bi ) < 1 if and only if

j� jmax (A + b� T
p ) < 1:

Proof. The proof is postponed to Section 5.6.3.

Remark 5.4.3. It is well known that for any nonnegative matricesM =
(mij ) and N = ( nij ) such that M � N , that is for all i; j , mij � nij , we
havej� jmax (M ) � j � jmax (N ). Thus for our matricesA and A + b� T

p , we have
j� jmax (A ) � j � jmax (A + b� T

p ).

Proposition 5.4.4. Suppose that� 2 � satis�es j� jmax (A + b� T
p ) < 1. Then

the conclusion of Theorem 5.3.12 holds with�V(z) = 1T z for all z 2 Z.

Remark 5.4.5. If ai � 0, bi � 0, for all i 2 f 1; : : : ; pg and
P p

i =1 (ai + bi ) < 1,
then from Lemma 5.4.2, Proposition 5.4.4 holds with�V(z) = 1T z for all
z 2 Z.

Proof. Now set �V(z) = V(z) = 1T z, z 2 Z. From Theorem 5.3.12, we need to
show that (AG-3), (AG-4), (AG-5), (AG-6) and (AG-7) hold. For convenience,
we drop the superscript� from for exampleR� , 	 � , etc. Assumption (AG-
3) holds with any metric dZ associated to a norm on the �nite dimensional
spaceZ. (The precise choice of this metric is postponed to the veri�cation
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of (AG-6).) The fact that R is weak Feller follows from the continuity of the
density  and � p (�). Moreover, we have, for allz 2 Z,

RV (z) =
Z

V(! + A z + ub) G(� p (z) ; du)

= 1T ! + 1T
�
A + b� T

p

�
z:

By iteration, we obtain, for all k 2 Z �
+ ,

RkV(z) = 1T ! + � � � + 1T
�
A + b� T

p

� k� 1
! + 1T

�
A + b� T

p

� k
z:

Sincej� jmax (A + b� T
p ) < 1, then there exist (q; � ) 2 Z �

+ � (0; 1) such that

RqV(z) � 1T ! + � � � + 1T
�
A + b� T

p

� q� 1
! + � q1T z:

Hence (AG-4) holds with � = 1T ! + � � � + 1T
�
A + b� T

p

� q� 1
! � 0 and

� = � q < 1. We now prove (AG-5). We have for alln � 1, t0:n� 1 2 Un and
z 2 Z,

	 � hu0:n� 1i (z) = A nz +
n� 1X

j =0

A j (! + un� 1� j b): (5.47)

Let us use the norm

kM k =
2p� 1_

j =1

2p� 1X

i =1

jM i;j j = sup
jzj� 1

jM zj

on (2p � 1) � (2p � 1) matrices, wherejzj =
P 2p� 1

i =1 jzi j is a norm of z =
z1:2p� 1 2 Z. Note that since j� jmax (A + b� T

p ) < 1, there exists� 2 (0; 1) and
c > 0 such that, for any k � 1,




�
A + b� T

p

� k


 � c � k : (5.48)

Using that A , b, � p all have nonnegative entries, we have


 A k


 �




�
A + b� T

p

� k


 : (5.49)

Hence(I 2p� 1 � A )� 1 = I 2p� 1 +
P

k� 1 A k is well de�ned and we setz1 =
(I 2p� 1 � A )� 1! so that, with (5.65), we have

	 � hu0:n� 1i (z) � z1 = A nz +
X

j � n

A j ! +
n� 1X

j =0

un� 1� j A j b :
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Then, using de�nition (5.38), we get that, �Pz-a.s., for all n � 1,

jZn � z1 j = j	 hU0:n� 1i (z) � z1 j

� j A n (z � z1 )j +
X

j � n

�
�A j !

�
� +

�
max

0� j � n� 1
Uj

� n� 1X

j =0

�
�A j b

�
� :

With (5.48) and (5.49), this implies

�Pz

�
jZn � z1 j � c

�
� n

�
jz � z1 j +

j! j
1 � �

�
+

jbj
1 � �

max
0� j � n� 1

Uj

��
= 1:

To obtain (AG-5), it is su�cient to observe that, since g takes positive values
in (5.43), for any positive� , z 2 Z and any n � 1,

�Pz

�
max

0� j � n� 1
Uj < �

�
> 0:

Next we prove (AG-6). We have

	 u(z) � 	 u(z0) = A (z � z0):

Since (5.48) and (5.49) imply thatj� jmax (A ) < 1, there exists a vector norm
which makesA strictly contracting. Choosing the metricdZ on Z (embedded
in R2p� 1) as the one derived from this norm, we get (AG-6). To show (AG-7),
we rely on Lemma 5.3.13. Let us setC = (0 ; 1 ) = X and S = f 1g, then the
probability measure� boils down the Dirac mass onS. For all (x; u) 2 X� U,
we de�ne:

(a) if  (u) +  (� u) is nonincreasing inu 2 R+ ,

j (x) =
p

x � 1 and h(x; u) = 1
2
p

u

h


� p
x � 1u

�
+ 

�
�

p
x � 1u

�i
; and

(b) if  (u) +  (� u) is nondecreasing inu 2 R+ ,

j (x) =
p

x and h(x; u) = 1
2x

p
u

h


� p
x � 1u

�
+ 

�
�

p
x � 1u

�i
.

Clearly, (5.39) holds. In Case (a),h satis�es (H'-1) and in Case (b), h
satis�es (H'-2). Hence, by Lemma 5.3.13, we obtain� and � , which are
given, respectively, as follows. For allz; z0 2 Z, in all cases, de�ne

� (z; z0) =
�

� p (z) ^ � p (z0)
� p (z) _ � p (z0)

� 1
2

and � (z; z0) = � p (z) ^ � p (z0) in Case (a) and� (z; z0) = � p (z) _ � p (z0) in
Case (b). These so-de�ned functions� and � indeed satisfy (AG-7)(i). For
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any z; z0 2 Z, we have

1 � � (z; z0) = 1 �
�

� p (z) ^ � p (z0)
� p (z) _ � p (z0)

� 1
2

� � p (z)� 1 ^ � p (z0)� 1 j� p (z) � � p (z0)j

� W(z; z0) dZ(z; z0);

where dZ is the metric previously de�ned andW is de�ned by W(z; z0) =
1 _

�
cdZ (� p (z)� 1 ^ � p (z0)� 1)

�
with cdZ > 0 is conveniently chosen (such a

constant exists sincedZ is the metric associated to a norm andZ has �nite
dimension). Then (AG-7)(ii) and (AG-7)(iii) hold and, since for allu 2 U and
z 2 Z, � p (	 u(z)) � ! , then W(	 u(z); 	 u(z0)) is uniformly bounded over
(z; z0; u) 2 Z � Z � U and (AG-7)(iv) holds. This completes the proof.

5.4.2 Log-linear Poisson GARCH (p; p) Model

Example 5.4.6 (De�nition of the log linear Poisson GARCH(p; p)). Con-
sider the log-linear Poisson GARCH of order(p; p), p 2 Z �

+ , which is de�ned
as follows: for allk 2 Z+ ,

X k+1 = ! +
pX

i =1

ai X k� i +1 +
pX

i =1

bi ln(1 + Yk� i +1 );

Yk+1 j F k � P
�
eX k +1

�
;

(5.50)

where

� the parameter space

� = ( !; a 1:p; b1:p) 2 � � R2p+1 ;

� F k = � (X � p+1: k+1 ; Y� p+1: k),

� X = R, X = B(X), Y = Z+ , Y = B(Y) and the metrics onX and Y are
the same usual metric onR.

By setting for all k, Uk = ln(1 + Yk) (henceU = ln(1 + Z+ ), U = B(U)
and dU is the usual metric onR), then Model (5.50) can be embedded in
Model (5.51) below:

X k+1 =  �
Uk � p+1: k

(X k� p+1: k);

Uk+1 j F k � G� (X k+1 ; �);
(5.51)
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where for all (x1:p; u1:p) 2 Xp � Up,

 �
uk � p+1: k

(xk� p+1: k) := ! +
pX

i =1

ai xp� i +1 +
pX

i =1

bi up� i +1 (5.52)

and G� (x; �) is the conditional law ofUk given X k = x de�ned by

G� (x; A) =
X

u2 A

e� ex ex(eu � 1)

(eu � 1)!
; A 2 U: (5.53)

The density g� of Uk conditionally on X k = x with respect to the counting
measure onU is given by, for all u 2 U,

g� (x; u) = e � ex ex(eu � 1)

(eu � 1)!
> 0: (5.54)

By De�nition 5.2.1, Model (5.51) is an ODM(p; p) and is dominated by the
counting measure onU. Now let Z = Xp � Up� 1 and Z = X 
 p 
 U 
 (p� 1)

and de�ne the measurable function	 � similarly as in (5.6). The function 	 �

then take a simple linear form

	 �
u(z) = ! + A z + ub; (z; u) 2 Z � U: (5.55)

As in Example 5.4.1, denotingZk = ( X k� p+1: k ; Uk� p+1: k� 1) for all k, the
processf Zk : k 2 Z+ g is a Markov chain on(Z; Z ) whose transition kernel
R� is given by (5.11) withG� and 	 � de�ned in (5.53) and (5.55), respectively.

In this section, we will use the vector and the matrix norms de�ned
respectively onR2p� 1 and the space of(2p� 1) � (2p� 1) matrices as follows:

jzj1 =
2p� 1_

i =1

j� T
i zj =

2p� 1_

i =1

jzi j;

kM k1 =
2p� 1_

i =1

2p� 1X

j =1

jM i;j j = sup
jzj1 � 1

jM zj1 :

For notational convenience, we will also denoteA 1 = A and A 2 = A + b� T
p .

Proposition 5.4.7. Suppose that� 2 � satis�es

_

(i 1 ;:::;i p )2f 1;2gp







pY

`=1

A i `







1

< 1: (5.56)

Then we have the following.
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(i) Theorem 5.3.12 holds with the function�V : Z ! R+ de�ned by, for all
z 2 Z,

�V(z) = e � jzj1 ; � > 0: (5.57)

(ii) Theorem 5.3.2 holds with anyz1 2 Z. If the true parameter � ? =
(! ?; a?

1:p; b?
1:p) moreover satis�es, for all k 2 Z �

+ ,

(A k � A k
?)b? = 0 implies A = A ?; (5.58)

then Theorem 5.3.3 also holds.

(iii) If the true parameter � ? lies in the interior of � and satis�es (5.58),
then Theorem 5.3.7 holds.

Remark 5.4.8. When p = 1, then A 1 = A and A 2 = A + b� T
p correspond

to a1 and a1 + b1, respectively. Condition (5.56) then reduces to

ja1j _ j a1 + b1j < 1:

This condition is weaker than the one derived in Douc et al. [2013] where
jb1j < 1 is also imposed.

Remark 5.4.9. To check (5.58), it su�ces to check that there existsk 2 Z+

such that the determinant

det
�
A k

?b?; A k+1
? b?; : : : ;A k+2 p� 2

? b?
�

6= 0:

Remark 5.4.10. When p = 1, (5.58) holds if and only ifb? 6= 0.

Before proving Proposition 5.4.7, let us show the following fact.

Lemma 5.4.11. If Y � P (� ) with � > 0, then for any # 2 R, there exist
constantsc1 = c1(#); c2 = c2(#) > 0 such that

E[(1 + Y)# ] � c1 + c2� #1f # > 0g: (5.59)

Proof. The proof is postponed to Section 5.6.4.

Proof. Proof of Proposition 5.4.7�(i) . Now set V(z) = �V(z) = e � jzj1 ,
z 2 Z. From Theorem 5.3.12, we need to show that (AG-3), (AG-4), (AG-5),
(AG-6) and (AG-7) hold. Assumption (AG-3) holds with the metric dZ de�ned
by, for all (z; z0) 2 Z2,

dZ(z; z0) =
2p� 1_

i =1

jzi � z0
i j = jz � z0j1 : (5.60)
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The fact that R is weak Feller follows from the continuity of the densityg
with respect to the x component in (5.54) and the continuity of� p (�). We
will show that, with V de�ned in (5.57), then we haveRpV � �V + � for
some(�; � ) 2 (0; 1)� R+ . Note that Lemma 5.4.11 implies that, for all# 2 R
and � > 0,

Z
e#u G (� ; du) � c1 + c2e#� 1f # > 0g; (5.61)

wherec1 and c2 are some positive constants. Note further that for allz 2 Z
and � > 0, we have

V(z) = e � jzj1 �
X

� 2f� 1;1g

2p� 1X

k=1

e�� z k � 2(2p � 1)e� jzj1 (5.62)

Without loss of generality, let us assume for the moment that� = 1. Now,
using (5.61) and (5.62) and noting that, for allz 2 Z, zk = � T

k z, � p (z) = � T
p z

and 1
�

� � T
k b > 0

	
� 1, we have

RV (z) �
X

� 2f� 1;1g

2p� 1X

k=1

Z
e� � T

k (! + A z+ ub)G
�
� T

p z; du
�

�
X

� 2f� 1;1g

2p� 1X

k=1

e� � T
k (! + A z)

Z
e� � T

k buG
�
� T

p z; du
�

�
X

� 2f� 1;1g

2p� 1X

k=1

e� � T
k (! + A z)

�
 1 +  2e� � T

k b � T
p z

�
;

where  1 and  2 are some positive constants. This further yields that, with
A 1 = A and A 2 = A + b� T

p ,

RV (z) �
X

� 2f� 1;1g

2p� 1X

k=1

�
� 1e� � T

k A z + � 2e� � T
k (A + b � T

p )z
�

�
X

� 2f� 1;1g

2p� 1X

k=1

�
� 1e� � T

k A 1z + � 2e� � T
k A 2z

�
;

where � 1 and � 2 are some positive constants. By iteration,Rm+1 V =
R(RmV), we obtain that, for all m 2 Z �

+ ,
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RmV(z) �
X

� 2f� 1;1g

2p� 1X

k=1

X

(i 1 ;:::;i p )2f 1;2gm

� i 1 ;:::;i m e� � T
k (

Q m
` =1 A i ` )z (5.63)

�
X

(i 1 ;:::;i m )2f 1;2gm

� i 1 ;:::;i m

X

� 2f� 1;1g

2p� 1X

k=1

e� � T
k (

Q m
` =1 A i ` )z

�
X

(i 1 ;:::;i m )2f 1;2gm

� i 1 ;:::;i m

X

� 2f� 1;1g

2p� 1X

k=1

ek
Q p

` =1 A i ` k1
jzj1

� 2(2p � 1)
X

(i 1 ;:::;i m )2f 1;2gm

� i 1 ;:::;i m ek
Q m

` =1 A i ` k1
jzj1

�

0

@2(2p � 1)
X

(i 1 ;:::;i m )2f 1;2gm

� i 1 ;:::;i m

1

A e
W

( i 1 ;:::;i m ) 2f 1;2gm k
Q m

` =1 A i ` k1
jzj1 ;

where, for all (i 1; : : : ; im ) 2 f 1; 2gm , � i 1 ;:::;i m are positive constants. Thus, for
all z 2 Z, with m = p, we get

RpV(z) �  pe� p jzj1 ;

where
 p := 2(2p � 1)

X

(i 1 ;:::;i p )2f 1;2gp

� i 1 ;:::;i p > 0

and

� p :=
_

(i 1 ;:::;i p )2f 1;2gp







pY

`=1

A i `







1

< 1:

Since

lim
jzj1 !1

e� p jzj1

V(z)
= 0

and for all M > 0,
sup

jzj1 � M
RpV(z) < 1 ;

then there exists a pair(�; � ) 2 (0; 1) � R+ such that RpV � �V + � ,
and hence (AG-4) holds. Note that whenm = p � 1 and � = 1, we have
ej � p (z)j �  p� 1Rp� 1V(z) for some p� 1 > 0. We now turn to prove (AG-5).
Note that from (5.56), there exist � 2 (0; 1) and c > 0 such that, for any
k � 1, 

 A k



1
� c � k : (5.64)
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Hence, (I 2p� 1 � A )� 1 = I 2p� 1 +
P

k� 1 A k is well de�ned. Now, setz1 =
(I 2p� 1 � A )� 1! . Let N1 be an open neighborhood ofz1 and let z 2 Z.
De�ne recursively the sequencef zk : k 2 Z+ g with z0 = z and for all k � 1,
zk = ! + A zk� 1. From (5.64), this so-de�ned sequence admits a unique
limiting point limn!1 zn = z1 . Thus, there exists somen 2 Z �

+ such that
for all k � n, zk 2 N 1 . For suchn, we have

Rn (z; N1 ) = �Pz(Zn 2 N 1 ) � �Pz(Zk = zk for all k = 1; : : : ; n)

= �Pz(U0 = � � � = Un� 1 = 0) > 0:

Next we prove (AG-6). We have for alln � 1, u0:n� 1 2 Un and z 2 Z,

	 hu0:n� 1i (z) = A nz +
n� 1X

j =0

A j (! + un� 1� j b): (5.65)

Then for all (z; z0) 2 Z2, u0:p� 1 2 Up,

dZ(	 u0 (z); 	 u0 (z0)) = jA (z � z0)j1
� k A k1 jz � z0j1
� DdZ(z; z0);

and

dZ(	 hu0:p� 1i (z); 	 hu0:p� 1i (z0)) = jA p(z � z0)j1
� k A pk1 jz � z0j1
� � dZ(z; z0);

where D = kA k1 > 0 and � = kA pk1 < 1 from (5.56), showing (AG-6).
To show (AG-7), we rely on Lemma 5.3.13. Let us setC = R = X and
S = f 1g, then the probability measure� boils down the Dirac mass onS.
For all (x; u) 2 X � U, let j (x) = e � ex

and h(x; u) = ex (eu � 1)

(eu � 1)! . Indeed, h
satis�es (H'-1). Hence, from Lemma 5.3.13, the instrumental functions�
and � are obtained by setting: for allz; z0 2 Z,

� (z; z0) =
e� e� p ( z ) _ � p ( z0)

e� e� p ( z ) ^ � p ( z0)
= e �

�
�
�e� p ( z ) � e� p ( z0)

�
�
�

and � (z; z0) = � p (z) ^ � p (z0). These so-de�ned functions� and � indeed
satisfy (AG-7)(i). For (z; z0) 2 Z2, we have

1 � � (z; z0) = 1 � e�
�
�
�e� p ( z ) � e� p ( z0)

�
�
� �

�
�
�e� p (z) � e� p (z0)

�
�
�

� ej � p (z)j_j � p (z0)j j� p (z) � � p (z0)j

� W(z; z0) dZ(z; z0);
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whereW is de�ned by, for all z; z0 2 Z,

W(z; z0) :=  p� 1
�
Rp� 1V1(z) + Rp� 1V1(z0)

�

and V1(z) = e jzj1 . Obviously, this so-de�ned functionW satis�es (AG-7)(ii)
and (AG-7)(iii). To complete the proof of Proposition 5.4.7�(i), it remains to
show (AG-7)(iv). Note that ( AG-4) holds with V(z) = e � jzj1 for any � > 0,
thus it also holds with V1. For all z; z0 2 Z,

J1((z; z0); W) =
Z

W(	 u(z); 	 u(z0))G (� (z; z0); du)

=  p� 1

Z
Rp� 1V1(	 u(z))G (� (z; z0); du) +  p� 1

Z
V1(	 u(z0))G (� (z; z0); du) :

From (5.63), with m = p � 1, we have
Z

Rp� 1V1(	 u(z))G (� (z; z0); du)

�
X

� 2f� 1;1g

2p� 1X

k=1

X

(i 1 ;:::;i p� 1 )2f 1;2gp� 1

� i 1 ;:::;i p� 1 �

Z
e� � T

k (
Q p� 1

` =1 A i ` )(! + A z+ ub)G (� (z; z0); du) : (5.66)

Note that by (5.61), there exist constantsc0
1 and c0

2 such that
Z

e� � T
k (

Q p� 1
` =1 A i ` )buG (� (z; z0); du)

� c0
1 + c0

2e� � T
k (

Q p� 1
` =1 A i ` )b(� T

p z^ � T
p z0)1

(

� � T
k

 
p� 1Y

`=1

A i `

!

b > 0

)

� c0
1 + c0

2e� � T
k (

Q p� 1
` =1 A i ` )b � T

p z;

where we have used� T
p z ^ � T

p z0 � � T
p z and 1

�
� � T

k

� Q p� 1
`=1 A i `

�
b > 0

	
� 1.

Plugging this inequality into (5.66) and noting that A 1 = A and A 2 =
A + b� T

p , then there exist positive constants i 1 ;:::;i p , (i 1; : : : ; ip) 2 f 1; 2gp,
such thatZ

Rp� 1V1(	 u(z))G (� (z; z0); du)

�
X

� 2f� 1;1g

2p� 1X

k=1

X

(i 1 ;:::;i p )2f 1;2gp

 i 1 ;:::;i p e� � T
k (

Q p
` =1 A i ` )z

�

0

@2(2p � 1)
X

(i 1 ;:::;i p )2f 1;2gp

 i 1 ;:::;i p

1

A e� p jzj1 ;
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where� p =
W

(i 1 ;:::;i p )2f 1;2gp k
Q p

`=1 A i ` k1 < 1. Similarly, we have

Z
Rp� 1V1(	 u(z0))G (� (z; z0); du) �

0

@2(2p � 1)
X

(i 1 ;:::;i p )2f 1;2gp

 0
i 1 ;:::;i p

1

A e� p jz0j1

for some positive constants 0
i 1 ;:::;i p

, (i 1; : : : ; ip) 2 f 1; 2gp. Thus, there exists
M > 0 such that for all z; z0 2 Z,

J1((z; z0); W) = M
�

e� p jzj1 + e � p jz0j1
�

:

Assumption (AG-7)(iv) follows by observing that

lim
jzj1 _j z0j1 !1

J1((z; z0); W)
W(z; z0)

= 0:

This completes the proof of Proposition 5.4.7� (i).

Proof of Proposition 5.4.7�(ii) . As a consequence, we have (AG-
1). Assumption (AG-2) directly follows. Thus, to show the �rst part of
Proposition 5.4.7�(ii), we only need to show that Assumptions (BG-1), (BG-
2) and (BG-3) are satis�ed. The second part then follows if we can moreover
show that (a) and (b) in Theorem 5.3.3 hold.

Clearly, (BG-1) and (BG-2) hold by the de�nitions of  � and g� given
by (5.52) and (5.54), respectively. It remains to show (BG-3). Since� is
compact, then

j! j � !; jai j � �a; jbi j � �b;
_

i 1 ;:::;i p 2f 1;2gp







pY

`=1

A i `







1

� ��; kA k1 � L; (5.67)

for some(!; �a;b; �� ) 2 (0; 1 )3 � (0; 1) and L > 0. We set Z1 = Z. And so
(BG-3)(i) holds. Moreover, for all (�; z; u ) 2 � � Z1 � U, g� (� p (z) ; y) � 1.
Thus, Condition (BG-3)(ii) holds. Now let z1 2 Z. Using (5.64), (5.65) and
(5.67), we get that there exist constants�c > 0 and �� 2 (0; 1) such that for
all z 2 Z, u1:n 2 Un and � 2 � ,

�
� 	 � hu1:n i (z1) � 	 � hu1:n i (z)

�
�
1

= jA n (z1 � z)j1
� �c �� n jz1 � zj1 :

Thus by (5.60), we get (BG-3)(iii) with

�	( z) = c jz1 � zj1 :
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Hence (BG-3)(iv) holds and since
�
�z1 � 	 �

u(z1)
�
� � (L + 1) jz1j1 + ! + (1 _ �b)u;

we also get (BG-3)(v) provided that

�� (u) � (L + 1) jz1j1 + ! + (1 _ �b)u: (5.68)

It is straightforward to show that for all � 2 � , (x; x0) 2 � p (Z1) � � p (Z1)
and u 2 U,

�
� ln g� (x; u) � ln g� (x0; u)

�
� � j x � x0jejx j_j x0jeu

� j x � x0jejx � � p (z1 )j_j x0� � p (z1 )jeu+ j� p (z1 )j :

Thus for all � 2 � , (z; z0) 2 Z1 � Z1 and u 2 U,
�
� ln g� (x; u) � ln g� (x0; u)

�
� � j z � z0j1 ejz� z1 j1 _j z0� z1 j1 eu+ j� p (z1 )j :

We thus obtain (BG-3)(v), (BG-3)(vi) and (BG-3)(vii) by setting C = 1,

H (s) = s; s 2 R+ ;

and
�� (u) = ( L + 1) jz1j1 + ! + (1 _ �b)u + eu+ j� p (z1 )j :

In addition, for all � 2 � , x 2 X and � > 0, we have
Z

e�u G� (x; du) � 1 + 2� e� x :

Hence, by letting �V = V and using that for all � 2 � , � �
1V < 1 , with the

above de�nitions, we obtain (BG-3)(viii). This establishes the equivalence-
class consistency of the MLE for the log-linear Poisson GARCH(p; p).

To conclude the strong consistency of the MLE, it remains to check (a)
and (b) in Theorem 5.3.3. Condition (a) clearly holds by the identi�ability
of the Poisson distribution. Note that as a consequence of the earlier proof,
we have, for all� 2 � , ~P� ? -a.s.,

	 � hU�1 :0i =
1X

k=0

A k(! + U� kb):

By stationarity, for all � 2 � and t 2 Z, we have,~P� ? -a.s.,

	 � hU�1 :t i =
1X

k=0

A k(! + U� k+ tb):
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Moreover, if

	 � hU�1 :0i = 	 � ? hU�1 :0i ; ~P� ? -a.s.;

then by stationarity, for all t 2 Z,

	 � hU�1 :t i = 	 � ? hU�1 :t i ; ~P� ? -a.s.;

and thus

1X

k=0

A k(! + U� k+ tb) =
1X

k=0

A k
?(! ? + U� k+ tb?); ~P� ? -a.s. (5.69)

This implies

(b � b?)Ut =
1X

k=1

A k
?(! ? + U� k+ tb?) �

1X

k=1

A k(! + U� k+ tb); ~P� ? -a.s. (5.70)

Conditionally on � (U�1 :t � 1),
�
eUt � 1

�
is a Poisson variable with positive

intensity. Thus the left-hand side of (5.70) is~P� ? -a.s. constant only ifb = b?,
implying b?

1 = b1. Then, (5.69) reduces to

1X

k=1

A k(! + U� k+ tb) =
1X

k=1

A k
?(! ? + U� k+ tb?); ~P� ? -a.s. (5.71)

Thus by repeating the same argument as to obtainb = b?, (5.71) and so on
yield that, for all integer k � 1,

(A k � A k
?)b? = 0:

And by (5.58), we haveA = A ?, yielding that (a1:p; b2:p) =
�
a?

1:p; b?
2:p

�
. It is

immediate from (5.69) that ! = ! ?, and this is equivalent to having that
! = ! ?. The strong consistency therefore follows.

Proof of Proposition 5.4.7�(iii) . By Theorem 5.3.7, it su�ces to show
that ( CG-1)�( CG-7) hold. From the de�nition of 	 �

u(z), we havea(�; u ) =
A and b(�; u ) = ! + ub, both admitting linear forms in � . Thus from
compactness of� and (5.56) and by noting that for all � > 0,

~E� ?
�
e�U 1

�
< 1 ; (5.72)
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it follows that ( CG-1) holds. Assumptions (CG-2) and (CG-3) clearly hold.
Assumption (CG-4) is immediate as the conclusion of Proposition 5.4.7-(ii)
above. We have

` �
z;k = ln g�

�
� p

�
	 � hU1:k� 1i (z)

�
; Uk

�

= (eUk � 1)� T
p 	 � hU1:k� 1i (z) � e� T

p 	 � hU1:k � 1 i (z) � ln(eUk � 1)!;

` �
k = ln g�

�
� p

�
	 � hU�1 :k� 1i (z)

�
; Uk

�

= (eUk � 1)� T
p 	 � hU�1 :k� 1i � e� T

p 	 � hU�1 :k � 1 i � ln(eUk � 1)!:

Then from Lemma 5.3.4, for alli , ~P� ? -a.s.,

@�̀
z;k

@�i
=

�
eUk � 1 � e� T

p 	 � hU1:k � 1 i (z)
�

� T
p

@
@�i

	 � hU1:k� 1i (z)

@�̀
k

@�i
=

�
eUk � 1 � e� T

p 	 � hU�1 :k � 1 i
�

� T
p

@
@�i

	 � hU�1 :k� 1i

Thus for all i , ~P� ? -a.s.,

�
�
�
�
�
@�̀

z;k

@�i
�

@�̀
k

@�i

�
�
�
�
�

�

�
�
�
� �

T
p

@
@�i

	 � hU�1 :k� 1i � � T
p

@
@�i

	 � hU1:k� 1i (z)

�
�
�
� (eUk � 1)

+
�
�
�e� T

p 	 � hU�1 :k � 1 i � e� T
p 	 � hU1:k � 1 i (z)

�
�
�

�
�
�
� �

T
p

@
@�i

	 � hU�1 :k� 1i

�
�
�
�

+ ej � T
p 	 � hU1:k � 1 i (z)j

�
�
�
� �

T
p

@
@�i

	 � hU�1 :k� 1i � � T
p

@
@�i

	 � hU1:k� 1i (z)

�
�
�
�

Note that for all z 2 Z and k � 1, we have,~P� ? -a.s.,

	 � hU�1 :k� 1i � 	 � hU1:k� 1i (z) = A k� 1
�
	 � hU�1 :0i � z

�
;

and for all i ,

@
@�i

	 � hU�1 :k� 1i �
@

@�i
	 � hU1:k� 1i (z)

=
@(A k� 1)

@�i

�
	 � hU�1 :0i � z

�
+ A k� 1 @

@�i
	 � hU�1 :0i :
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By similar arguments as in the proof of Lemma 5.3.4 (see Section 5.6.1)
and noting that sup� 2 �

�
� 	 � hU�1 :0i

�
�
1

and sup� 2 �

�
� @

@�	
� hU�1 :0i

�
�
1

are �nite
~P� ? -a.s., there exist a constant� 1 2 (0; 1) and a ~P� ? -a.s. �nite random variable
~M 1 = ~M 1(z) such that for all k � 1, ~P� ? -a.s.,

�
� 	 � hU�1 :k� 1i � 	 � hU1:k� 1i (z)

�
�
1

� ~M 1� k
1;

and for all i , ~P� ? -a.s.,
�
�
�
�

@
@�i

	 � hU�1 :k� 1i �
@

@�i
	 � hU1:k� 1i (z)

�
�
�
�
1

� ~M 1� k
1:

From Lemma 5.3.4, we also have that, for alli ,

~E� ?

�
sup
� 2 �

�
�
�
�

@
@�i

	 � hU�1 :0i

�
�
�
�
1

�
< 1 : (5.73)

Recall that for all t; t 0 2 R,
�
�et � et0�� � ejt j_j t0j jt � t0j. Thus, we deduce that

�
�
�
�
�
@�̀

z;k

@�i
�

@�̀
k

@�i

�
�
�
�
�

� e
~M 1 � k

1
~M 1

�
eUk � 1 + ej 	 � hU�1 :k � 1 i j

1

�
1 +

�
�
�
�

@
@�i

	 � hU�1 :k� 1i

�
�
�
�
1

��
:

On the other hand, ~P� ? -a.s., we have

ej 	 � hU�1 :0 i j
1 � esup� 2 � j 	 � hU�1 :0 i j

1 � e
P 1

k =0 sup� 2 � jA k (! + U� k b)j
1 :

From (5.64) and (5.67), there exist constantsc1; c2 > 0 and �� 2 (0; 1) such
that, ~P� ? -a.s.,

esup� 2 � j 	 � hU�1 :0 i j
1 � c1ec2

P 1
k =0

�� k U� k � c1(1 � �� )
1X

k=0

�� kec2 (1� �� ) � 1U� k ;

and from (5.72), it follows that for any positivet > 0,

~E� ?

h
et sup� 2 � j 	 � hU�1 :0 i j

1

i
< 1 : (5.74)

Thus, by stationarity and from (5.73) and (5.74), Lemma 5.6.6 assures that
there exist a constant� 2 2 (0; 1) and a ~P� ? -a.s. �nite random variable ~M 2 =
~M 2(z) such that for all i and for all k � 1, ~P� ? -a.s.,

�
�
�
�
�
@�̀

z;k

@�i
�

@�̀
k

@�i

�
�
�
�
�

� � k
2

~M 2:
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Therefore, Assumption (CG-5) holds. We now check (CG-6). We have

` �
1 = ln g�

�
� p

�
	 � hU�1 :0i

�
; U1

�

= (eU1 � 1)� T
p 	 � hU�1 :0i � e� T

p 	 � hU�1 :0 i � ln(eU1 � 1)!:

Then for all i and j , we have

@�̀
1

@�i
=

�
eU1 � 1 � e� T

p 	 � hU�1 :0 i
�

� T
p

@
@�i

	 � hU�1 :0i

and from Lemma 5.3.4,~P� ? -a.s.,

@2` �
1

@�i @�j
=

�
eU1 � 1 � e� T

p 	 � hU�1 :0 i
�

� T
p

@2

@�i @�j
	 � hU�1 :0i

+ e � T
p 	 � hU�1 :0 i

�
� T

p
@

@�i
	 � hU�1 :0i

� �
� T

p
@

@�j
	 � hU�1 :0i

�
:

Using similar arguments as the proof of Lemma 5.3.4 together with (5.72),
we can show that for alli and j , we have

~E� ?

"

sup
� 2 �

�
�
�
�

@
@�i

	 � hU�1 :0i

�
�
�
�

2

1

#

< 1

and

~E� ?

�
sup
� 2 �

�
�
�
�

@2

@�i @�j
	 � hU�1 :0i

�
�
�
�
1

�
< 1 :

By (5.74) and (5.72), we can directly show that, for alli and j ,

~E� ?

"

sup
� 2 �

�
�
�
�
@�̀

1

@�i

�
�
�
�

2
#

< 1

and

~E� ?

�
sup
� 2 �

�
�
�
�

@2` �
1

@�i @�j

�
�
�
�

�
< 1 :

Thus, (CG-6)-(i) and (CG-6)-(ii) hold. Note that for all i; j , we have,~P� ? -a.s.,

@
@�i

g�
�
� p

�
	 � hU�1 :0i

�
; U1

�
= g�

�
� p

�
	 � hU�1 :0i

�
; U1

� @�̀
1

@�i
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and

@2

@�i @�j
g�

�
� p

�
	 � hY�1 :0i

�
; U1

�

= g�
�
� p

�
	 � hU�1 :0i

�
; U1

� @2` �
1

@�i @�j
+

@
@�i

g�
�
� p

�
	 � hU�1 :0i

�
; Y1

� @�̀
1

@�j

Then, (CG-6)-(iii) follows by observing that for all i , ~P� ? -a.s.,
�
�
�
�

@
@�i

g�
�
� p

�
	 � hU�1 :0i

�
; U1

�
�
�
�
� = g�

�
� p

�
	 � hU�1 :0i

�
; U1

�
�
�
�
�
@�̀

1

@�i

�
�
�
� � sup

� 2 �

�
�
�
�
@�̀

1

@�i

�
�
�
� ;

and

~E� ?

�
sup
� 2 �

�
�
�
�
@�̀

1

@�i

�
�
�
�

�
�

 

~E� ?

"

sup
� 2 �

�
�
�
�
@�̀

1

@�i

�
�
�
�

2
#! 1=2

< 1 :

Similarly, (CG-6)-(iv) holds. To complete the proof of asymptotic normality,
it remains to check (CG-7). By Remark 5.3.8, it is su�cient to show that
(5.34) holds. We establish this fact by following the argument provided by
Francq et al. [2004]. Now let� = ( � 0; : : : ; � 2p) 2 R2p+1 and for convenience,
write � = ( � 0; : : : ; � 2p) = ( !; a 1:p:;b1:p). We have,~P� ? -a.s.,

� T @`� ?
1

@�
=

2pX

i =0

� i

�
eU1 � 1 � e� T

p 	 � ? hU�1 :0 i
�

� T
p

@	 � ? hU�1 :0i
@�i

:

Since
�
eU1 � 1

�
conditionally on � (U�1 :0) is a Poisson variable with positive

intensity, then ~P� ? -a.s., � T @`� ?
1

@� = 0 implies

2pX

i =0

� i �
T
p

@	 � ? hU�1 :0i
@�i

= 0; ~P� ? -a.s.

By stationarity, we have for all t 2 Z,

2pX

i =0

� i �
T
p

@	 � ? hU�1 :t i
@�i

= 0; ~P� ? -a.s. (5.75)

In view of (5.51) and by noting that ~P� ? -a.s.,X �
t = � T

p 	 � hU�1 :t i for all � 2 �
and t 2 Z, we have from (5.75) that for allt 2 Z,
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5. General-order Observation-driven Models

0 = � T @X� ?
t

@�
= � T

0

B
B
B
B
B
B
B
B
B
@

1
X � ?

t � 1
...

X � ?
t � p

Ut � 1
...

Ut � p

1

C
C
C
C
C
C
C
C
C
A

+
pX

i =1

ai � T @X� ?
t � i

@�
= � T

0

B
B
B
B
B
B
B
B
B
@

1
X � ?

t � 1
...

X � ?
t � p

Ut � 1
...

Ut � p

1

C
C
C
C
C
C
C
C
C
A

; ~P� ? -a.s.

Since
�
eUt � 1 � 1

�
conditionally on � (U�1 :t � 2) is a Poisson variable with pos-

itive intensity, we then have that � p+1 = 0. By the same reason, it can be
shown that � p+2: p+2+ i = 0 if � 2:2+ i = 0, for i 2 f 0; : : : ; p� 2g. Thus, if � 6= 0
entails an ODM(p � 1; p � 1) representation, which is impossible since the
model is identi�able. Hence,� = 0 and this completes the proof.

Our next example is the NBIN-GARCH(p; p), p 2 Z �
+ , which is de�ned

as follows.

5.4.3 NBIN-GARCH (p; p) Model

Example 5.4.12 (De�nition of NBIN-GARCH (p; p)). Consider a statistical
model recursively de�ned by: for allk 2 Z+ ,

X k+1 = ! +
pX

i =1

ai X k� i +1 +
pX

i =1

bi Yk� i +1 ;

Yk+1 j F k � N B
�

r;
X k+1

1 + X k+1

�
;

(5.76)

where

� the parameter space

� � f � = ( !; a 1:p; b1:p; r ) 2 R�
+ � Rp

+ � Rp
+ � R�

+ g;

� F k = � (X � p+1: k+1 ; Y� p+1: k),

� X = (0 ; 1 ), X = B(X), Y = Z+ , Y = B(Y) and the metrics onX and
Y are any metrics onR and Z, respectively.

Denoting for all (x1:p; y1:p) 2 Xp � Yp,

 �
y1:p

(x1:p) := ! +
pX

i =1

ai xp� i +1 +
pX

i =1

bi yp� i +1 ; (5.77)
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5. General-order Observation-driven Models

Model (5.76) can be expressed as the standard form of Model (5.78) below:

X k+1 =  �
Yk � p+1: k

(X k� p+1: k);

Yk+1 j F k � N B
�

r;
X k+1

1 + X k+1

�
:

(5.78)

The density g� and the probability law G� of Yk conditional on X k = x are
given by, for all y 2 Y and A 2 Y ,

g� (x; y) =
�( r + y)
y ! �( r )

�
1

1 + x

� r �
x

1 + x

� y

; (5.79)

and
G� (x; A) =

X

y2 A

1A (y)g� (x; y): (5.80)

According to De�nition 5.2.1, Model (5.76) is an ODM(p; p) and is dominated
by the counting measure onZ. Now, let Z = Xp� Yp� 1 andZ = X 
 p
Y 
 (p� 1)

and de�ne the measurable function	 � similarly as in (5.6), which is given
by, for all (z; y) 2 Z � Y,

	 �
y(z) = ! + A z + yb: (5.81)

The processf Zk : k 2 Z+ g, where Zk = ( X k� p+1: k ; Yk� p+1: k� 1), is a
Markov chain on(Z; Z ) with transition kernel R� given by (5.11) with 	 � and
G� de�ned in (5.80) and (5.81), respectively. Let us now state our ergodicity,
consistency and asymptotic normality results for the NBIN-GARCH(p; p)
model.

Proposition 5.4.13. Suppose that� 2 � satis�es

j� jmax (A + rb� T
p ) < 1: (5.82)

(i) Then the conclusion of Theorem 5.3.12 holds with�V(z) = 1T z for all
z 2 Z.

(ii) Theorem 5.3.2 holds with anyz1 2 Z. If the true parameter � ? =
(! ?; a?

1:p; b?
1:p) moreover satis�es: for all k 2 Z �

+ ,

(A k � A k
?)b? = 0 implies A = A ?; (5.83)

then Theorem 5.3.3 also holds.

Remark 5.4.14. From Lemma 5.4.2, Condition (5.82) is equivalent toP p
i =1 (ai + rbi ) < 1.
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5. General-order Observation-driven Models

Proof. Proof of Proposition 5.4.13�(i). In this part, for convenience, let
us drop the super script� from for exampleG� , R� , etc. Now setV = �V.
From Theorem 5.3.12, we need to show that (AG-3), (AG-4), (AG-5), (AG-6)
and (AG-7) hold. Assumption (AG-3) holds with any metric dZ associated to
a norm on the �nite dimensional spaceZ so that Z is the associated Borel
� -�eld (The precise choice of this metric is postponed to the veri�cation
of (AG-6)). The fact that R is weak Feller follows by observing that for �xed
r > 0, as p ! p0, N B(r; p) converges weakly toN B(r; p0). Moreover, we
have, for all z 2 Z,

RV (z) =
Z

V(! + A z + yb) G(� p (z) ; dy)

= 1T ! + 1T
�
A + rb� T

p

�
z:

By iteration, we obtain that for all k 2 Z �
+ ,

RkV(z) = 1T ! + � � � + 1T
�
A + rb� T

p

� k� 1
! + 1T

�
A + rb� T

p

� k
z:

Sincej� jmax (A + rb� T
p ) < 1, then there exists a pair(q; � ) 2 Z �

+ � (0; 1) such
that

RqV(z) � 1T ! + � � � + 1T
�
A + rb� T

p

� q� 1
! + � q1T z:

Hence (AG-4) holds with someq � 1, � = � q < 1 and � = 1T ! + � � � +
1T

�
A + rb� T

p

� q� 1
! � 0. We now show (AG-5). Let us use the norm

kM k =
2p� 1_

j =1

2p� 1X

i =1

jM i;j j = sup
jzj� 1

jM zj

on (2p � 1) � (2p � 1) matrices, wherejzj =
P 2p� 1

i =1 jzi j is a norm of z =
z1:2p� 1 2 Z. Note that from (5.82), there exists� 2 (0; 1) and c > 0 such
that, for any k � 1, 

 A k

 � c � k : (5.84)

Hence (I 2p� 1 � A )� 1 = I 2p� 1 +
P

k� 1 A k is well de�ned and we set
z1 = ( I 2p� 1 � A )� 1! . Let N1 be an open neighborhood ofz1 and
let z 2 Z. De�ne recursively the sequencez0 = z and for all k � 1,
zk = ! + A zk� 1. From (5.84), this so-de�ned sequence admits a unique
limiting point limn!1 zn = z1 . Thus, there exists somen 2 Z �

+ such that
for all k � n, zk 2 N 1 . For suchn, we have

Rn (z;N1 ) = �Pz(Zn 2 N 1 ) � �Pz(Zk = zk for all k = 1; : : : ; n)

= �Pz(Y0 = � � � = Yn� 1 = 0) > 0:
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5. General-order Observation-driven Models

Next we prove (AG-6). We have

	 y(z) � 	 y(z0) = A (z � z0) :

Since (5.82) implies thatj� jmax (A ) < 1, there exists a vector normj�j Z, which
makesA strictly contracting. Choosing the metric dZ on Z (embedded in
R2p� 1) as the one derived from this norm, we get (AG-6). To show (AG-7),
we rely on Lemma 5.3.13. Let us setC = (0 ; 1 ) = X and S = f 1g, then the
probability measure� boils down the Dirac mass onS. For all (x; y) 2 X� Y,
let j (x) = (1 + x)� r and h(x; y) = �( r + y)

y ! �( r )

�
x

1+ x

� y
. Indeed, h satis�es (H'-1).

Hence, from lemma Lemma 5.3.13 we� and � are obtained by setting: for
all z; z0 2 Z,

� (z; z0) =
�

1 + � p(z) ^ � p(z0)
1 + � p(z) _ � p(z0)

� r

and
� (z; z0) = � p(z) ^ � p(z0):

These so-de�ned functions� and � indeed satisfy (AG-7)(i). For any
given r > 0, for all (z; z0) 2 Z2, we have

1 � � (z; z0) = 1 �
�

1 + � p (z) ^ � p (z0)
1 + � p (z) _ � p (z0)

� r

� (1 _ r ) j� p (z) � � p (z0)j

� W(z; z0) dZ(z; z0) ;

where dZ is the metric previously de�ned and W is de�ned by
W(z; z0) = cdZ (1 _ r ) with cdZ > 0 is conveniently chosen (such a
constant exists sincedZ is the metric associated to a norm andZ is a subset
of �nite dimensional space). Thus, (AG-7)(ii) and (AG-7)(iii) hold and, since
for all y 2 Y and z 2 Z, � p (	 y(z)) � ! , W(	 y(z); 	 y(z0)) is uniformly
bounded over(z; z0; y) 2 Z � Z � Y and (AG-7)(iv) holds. This completes
the proof.

Proof of Proposition 5.4.13�(ii) . Note that (AG-2) immediately fol-
lows. Thus, to show the �rst part of Proposition 5.4.7�(ii), we only need to
show that Assumptions (BG-1), (BG-2) and (BG-3) are satis�ed. The second
part then follows if we can moreover show that (a) and (b) in Theorem 5.3.3
hold.

Clearly, (BG-1) and (BG-2) hold by the de�nitions of  � and g� given
by (5.77) and (5.79), respectively. It remains to show (BG-3). Since� is
compact, then

! � ! � !; 0 � ai � �a; 0 � bi � �b; j� jmax (A + rb� T
p ) � ��; r � r � r (5.85)
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for some(! ; !; �a;b; r; r; �� ) 2 (0; 1 )6 � (0; 1).
We set Z1 = Z so that (BG-3)(i) holds. Moreover, for all (�; z; y ) 2

� � Z1 � Y, g� (� p (z) ; y) � 1. Thus, Condition (BG-3)(ii) holds. Note that
we have, for alln 2 Z �

+ and z 2 Z,

	 � hy0:n� 1i (z) = A nz +
n� 1X

j =0

A j (! + yn� 1� j b): (5.86)

Now let j � j be the Taxicab norm onZ and let z1 2 Z. Using (5.84), (5.85)
and (5.86), we get that there exist constants�c > 0 and �� 2 (0; 1) such that
for all z 2 Z, y1:n 2 Yn and � 2 � ,

dZ
�
	 � hy1:n i (z1); 	 � hy1:n i (z)

�
= jA n (z1 � z)jZ
� �c �� n jz1 � zj :

Thus, we get (BG-3)(iii) with

�	( z) = �cjz1 � zj :

Hence (BG-3)(iv) holds and since
�
�z1 � 	 �

y(z1)
�
� � (L + 1) jz1j + ! + (1 + �b)y;

for someL > 0, we also get (BG-3)(v) provided that for all y 2 Y,

�� (y) � (L + 1) jz1j + ! + (1 + �b)y: (5.87)

For all � 2 � , (x; x0) 2 � p (Z1) � � p (Z1) and y 2 Y,
�
� ln g� (x; y) � ln g� (x0; y)

�
� = j(r + y) [ln(1 + x0) � ln(1 + x)] + y [ln x � ln x0]j

�
�
(r + y)(1 + ! )� 1 + y ! � 1

�
jx � x0j

�
�
r + y (1 + ! � 1)

�
jx � x0j :

We thus obtain (BG-3)(v), (BG-3)(vi) and (BG-3)(vii) by setting C = 0,
H (s) = s and �� (y) = �! _ �r + (1 + L)jz1j +

� �b+ 1 + ! � 1
�

y. Observe that for
all z 2 Z,

Z
ln+ y G� (� p (z) ; dy) �

Z
y G� (� p (z) ; dy) = r � p (z) � r �V(z):

Hence, using that for all� 2 � , � �
1V < 1 , we obtain (BG-3)(viii), establish-

ing the equivalence-class consistency of the MLE for the NBIN-GARCH(p; p)
model.
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To conclude the strong consistency of the MLE, it remains to check (a)
and (b) in Theorem 5.3.3. Condition (a) clearly holds by the identi�ability of
the negative binomial distribution. Note that as a consequence of the earlier
proof, we have, for all� 2 � , ~P� ? -a.s.,

	 � hY�1 :0i =
1X

k=0

A k(! + Y� kb):

By stationarity, for all � 2 � and t 2 Z, we have,~P� ? -a.s.,

	 � hY�1 :t i =
1X

k=0

A k(! + Y� k+ tb):

Moreover, if

	 � hY�1 :0i = 	 � ? hY�1 :0i ; ~P� ? -a.s.;

then by stationarity, for all t 2 Z,

	 � hY�1 :t i = 	 � ? hY�1 :t i ; ~P� ? -a.s.;

and thus
1X

k=0

A k(! + Y� k+ tb) =
1X

k=0

A k
?(! ? + Y� k+ tb?); ~P� ? -a.s. (5.88)

This implies

(b � b?)Yt =
1X

k=1

A k
?(! ? + Y� k+ tb?) �

1X

k=1

A k(! + Y� k+ tb); ~P� ? -a.s. (5.89)

Conditionally on � (Y�1 :t � 1), Yt is negative binomial variable with parameter
(r?; p?) 2 (0; 1 )� (0; 1). Thus, the left-hand side of (5.89) is~P� ? -a.s. constant
only if b = b?, implying b?

1 = b1. Then, (5.88) reduces to
1X

k=1

A k(! + Y� k+ tb) =
1X

k=1

A k
?(! ? + Y� k+ tb?); ~P� ? -a.s. (5.90)

Thus, by repeating the same argument as to obtainb = b?, (5.90) and so on
yield that, for all integer k � 1,

(A k � A k
?)b? = 0:

And by (5.83), we haveA = A ?, yielding that (a1:p; b2:p) =
�
a?

1:p; b?
2:p

�
. It

is immediate from (5.88) that ! = ! ?, and this is equivalent to having
that ! = ! ?. Thus, (b) is satis�ed and the strong consistency therefore
follows.
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Proposition 5.4.15. Suppose that� 2 � satis�es

j� jmax
�
A T A + r

�
A T b� T

p + � pbT A
�

+ r (r + 1) � pbT b� T
p

�
< 1: (5.91)

In addition, assume that the true parameter� ? lies in the interior of � and
satis�es (5.83), then Theorem 5.3.7 holds.

Remark 5.4.16. Condition (5.91) implies Condition (5.82). Thus the sta-
tionarity and ergodicity for the model follow. If moreover (5.83) is satis�ed,
then the strong consistency, that is,limn!1 �̂ z;n = � ?, ~P� ? -a.s., holds for any
z 2 Z.

Before proving Proposition 5.4.15, let us show the following result.

Lemma 5.4.17. Assume(5.91). Then

~E� ? [Y 2
1 ] < 1 : (5.92)

Proof. Now, assume that (5.91) holds. To obtain (5.92) it is su�cient to
show that there exists a triplet(q; �; � ) 2 Z+ � (0; 1) � R+ such that Rq ~V <
� ~V + � with ~V(z) = zT z. Note �rst that for U � N B (r; x=(1 + x)), we
have E[U] = rx and E[U2] = r (r + 1) x2 + rx . Note also that the matrix
M := A T A + r

�
A T b� T

p + � pbT A
�

+ r (r + 1) � pbT b� T
p is symmetric positive

semide�nite. Thus, there exist a diagonal matrixD � 0 and an orthogonal
matrix Q such that M = QDQ T ; and, moreover,j� jmax (M ) = j� jmax (D ).

For all z 2 Z, we have

R ~V(z) =
Z

~V(! + A z + yb) G(� p (z) ; dy)

=
Z

(! + A z + yb)T (! + A z + yb) G(� T
p z; dy)

= L1(z) + zT M z = L1(z) + zT QDQ T z

� L1(z) + j� jmax (D )zT QQ T z = L1(z) + j� jmax (M ) ~V(z);

where L1(z) = ! T ! +
�
2! T A + r2! T b� T

p + rbT b� T
p

�
z, which is a linear

function in z. Sincej� jmax (M ) < 1, and

lim
jzj!1

R ~V(z)
~V(z)

� j � jmax (M ) < 1;

then the exists(�; � ) 2 R+ � (0; 1) such that for all z 2 Z,

R ~V(z) � � ~V(z) + �;

completing the proof.
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