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Abstract

Maximum likelihood estimation is a widespread method for identifying
a parametrized model of a time series from a sample of observations. Un-
der the framework of well-speci ed models, it is of prime interest to obtain
consistency of the estimator, that is, its convergence to the true parameter
as the sample size of the observations goes to in nity. For many time series
models, for instance hidden Markov models (HMMs), such a strong con-
sistency property can however be dicult to establish. Alternatively, one
can show that the maximum likelihood estimator (MLE) is consistent in a
weakened sense, that is, as the sample size goes to in nity, the MLE even-
tually converges to a set of parameters, all of which associate to the same
probability distribution of the observations as for the true one. The consis-
tency in this sense, which remains a preferred property in many time series
applications, is referred to asquivalence-class consistencylhe task of de-
riving such a property generally involves two important steps: 1) show that
the MLE converges to the maximizing set of the asymptotic normalized log-
likelihood; and 2) show that any parameter in this maximizing set yields the
same distribution of the observation process as for the true parameter.

In this thesis, our primary attention is to establish the equivalence-class
consistency for time series models that belong to the class of partially ob-
served Markov models (PMMs) such as HMMs and observation-driven mod-
els (ODMs). We rst establish the result of Step 2), that is identifying
the maximizing set of the asymptotic normalized log-likelihood, under very
mild assumptions and under a general framework of PMMs. The novel con-
tribution of our approach is that, in contrast with previous approaches, the
identi ability result is addressed by relying on the unigueness of the invariant
distribution of the Markov chain associated to the complete data, regardless
of its rate of convergence to the equilibrium. This result then applies, for
example, to HMMs and ODMs in which speci ¢ models, namely, the polyno-
mially ergodic Markov chain, the negative binomial integer-valued GARCH
(NBIN-GARCH) and the normal mixture GARCH (NM-GARCH) models
are illustrated.



Then, we establish the convergence of the MLE iStep 1) for two sep-
arate classes of models, namely, the class of fully dominated PMMs and
the class of ODMs by generalizing the existing results. For fully dominated
PMMs, formulating this convergence property is carried out through the
approach which consists in establishing a key property the exponential for-
getting of the ltering distribution by using coupling method. For ODMSs,
this is performed by proving that the process is stationary and ergodic, and
by approximating the conditional likelihood by an appropriately de ned sta-
tionary version of it, which is shown to converge using classical ergodic theory
arguments. The stationary and ergodic solutions for the family of ODMs are
obtained via the theory of Markov chains without irreducibility assumption.
All of these results are addressed under assumptions that are quite direct
and easy to check in concrete examples. As illustration, we examine three
examples, namely the NBIN-GARCH]1,; 1), the NM-GARCH(1;1) and the
threshold IN-GARCH(1;1) models.

Finally, extension of ODMs to general-order versions is also considered.
By incorporating relevant lagged variables into the model, a general-order
ODM can be embedded in the classical rst-order version of it. In this
extended class, the stationarity and ergodicity of the process are studied.
The consistency of the MLE is considered. The asymptotic normality of the
MLE is also treated in this general framework. All the results are reported
under su cient and easy-to-check conditions. We apply these results to the
GARCH(p; g, the log-linear Poisson autoregression of ordép; g and the
NBIN-GARCH (p; 9 models. An empirical study completes this part.

Keywords: consistency, ergodicity, hidden Markov models, maximum like-
lihood, observation-driven models, partially observed Markov models, time
series of counts



Résumé

L'estimation du maximum de vraisemblance est une méthode répandue
pour l'identi cation d'un modeéle paramétré de série temporelle a partir d'un
échantillon d'observations. Dans le cadre de modeéles bien spéci és, il est pri-
mordial d'obtenir la consistance de I'estimateur, a savoir sa convergence vers
le vrai parameétre lorsque la taille de I'échantillon d'observations tend vers
I'in ni. Pour beaucoup de modeles de séries temporelles, par exemple les mo-
deles de Markov cachés ou hidden Markov models (HMM), la propriété
de consistance forte peut cependant étre di cile a établir. On peut alors
s'intéresser a la consistance de I'estimateur du maximum de vraisemblance
(EMV) dans un sens faible, c'est-a-dire que lorsque la taille de I'échantillon
tend vers ['in ni, 'EMV converge vers un ensemble de paramétres qui s'as-
socient tous a la méme distribution de probabilité des observations que celle
du vrai paramétre. La consistance dans ce sens, qui reste une propriété pri-
vilégiée dans beaucoup d'applications de séries temporelles, est dénommée
consistance de classe d'équivalendgobtention de la consistance de classe
d'équivalence exige en général deux étapes importantes : 1) montrer que
I'EMV converge vers I'ensemble qui maximise la log-vraisemblance norma-
lisée asymptotique ; et 2) montrer que chaque parametre dans cet ensemble
produit la méme distribution du processus d'observation que celle du vrai
parametre.

Cette these a pour objet principal d'établir la consistance de classe d'équi-
valence pour des modeéles de séries temporelles qui appartiennent a la classe
des modeles de Markov partiellement observés, ou partially observed Mar-
kov models (PMM), comme les HMM et les modéles observation-driven
(ODM). Nous établissons le résultat de I'étape 2), qui identi e I'ensemble
qui maximise la log-vraisemblance normalisée asymptotique, sous des hy-
potheses assez faibles et dans un cadre général de PMM. La nouveauté de
notre approche est que, contrairement aux approches précédentes, le résultat
d'identi abilité est traité en se basant sur l'unicité de la distribution sta-
tionnaire de la chaine de Markov associée aux données entiéres, sans tenir
compte de son taux de convergence vers I'équilibre. Nous appliqguons ensuite



ce résultat, par exemple, aux HMM et ODM, dans lesquels des modeéles spé-
ci ques, a savoir la chaine de Markov ergodique polynomialement, le modéle

negative binomial integer-valued GARCH (NBIN-GARCH) et le modéle
GARCH gaussien mélangé ou normal mixture GARCH (NM-GARCH),
sont détaillés.

Nous établissons ensuite la convergence de I'EMV dans [|'étape 1) pour
deux classes de modeéles distinctes, d'une part la classe des PMMs entiere-
ment dominés et d'autre part la classe des ODM, en généralisant les résultats
obtenus. Pour les PMMs entierement dominés, I'établissement de cette pro-
priété de convergence est faite selon I'approche qui consiste a établir une
propriété clé : I'oubli exponentiel de la distribution de Itrage en utilisant la
méthode de couplage. Pour la classe des ODM, ceci est fait en montrant que le
processus est stationnaire et ergodique, et en donnant une approximation de
la vraisemblance conditionnelle par sa version stationnaire convenablement
dé nie, dont nous montrons qu'elle converge selon des arguments classiques
relevant de la théorie ergodique. Les solutions stationnaires et ergodiques
pour la famille des ODM sont obtenues via la théorie des chaines de Markov
sans condition d'irréductibilité. Tous ces résultats sont traités sous des hypo-
théses relativement directes et faciles a véri er dans des exemples concrets.
Pour illustration, nous examinons trois exemples, qui sont les modéles NBIN-
GARCH(1; 1), NM-GARCH (1; 1) et IN-GARCH a seuil de l'ordre(1; 1).

L'extension des ODM a des versions d'ordre général est aussi considé-
rée. En intégrant des variables décalées pertinentes dans le modéle, un ODM
d'ordre général peut avoir une représentation classique d'ODM de premier
ordre. Dans cette classe élargie, la stationnarité et I'ergodicité du processus
sont étudiées. La consistance de 'EMV est considérée. La normalité asympto-
tique de 'EMV est également traitée dans ce cadre général. Tous les résultats
sont obtenus sous des conditions su santes facilement véri ables. Nous ap-
pliquons ces résultats au modele GARQH; g), a l'autorégression log-linéaire
de Poisson d'ordre(p; g), et au modele NBIN-GARCHp; ). Une étude em-
pirique compléte cette partie.

Mots-clés : consistance, ergodicité, maximum de vraisemblance, modéles
de Markov cachés, modéles de Markov partiellement observés, observation-
driven, séries temporelles de comptage
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Chapter 1

Introduction

1.1 Background

A partially observed Markov model (PMM) is a bivariate Markov process
such that only one part of the complete process is observed hence par-
tially observed and the other component, the state variable, is hidden or
unobserved and any statistical inference has to be carried out by means of
using a sample of realizations of the observation process. Notably, the class
of PMMs contains two prominent classes of statistical models commonly used
in examining serial-dependence sequences and time series data, namely, the
class of hidden Markov models (HMMs) and the class of observation-driven
models (ODMs). A common yet important feature of these two particular
subclasses lies on the fact that the hidden processes of the state variables
are Markov chains in their own right. This feature permits establishing some
important statistical properties such as stationarity and ergodicity for the
complete chains or models by relying on those inherited statistical properties
of the unobserved chains.

HMMs are applied widely in various areas ranging from biology (Churchill
[1992], Krogh et al. [1994]), econometrics (Hull and White [1987], Mamon and
Elliott [2007]), nance (Zhang [2004]), neurophysiology (Fredkin and Rice
[1987]), signal processing (Crouse et al. [1998], Krishnamurthy and Chung
[2007]), speech recognition (Rabiner [1989], Huang et al. [1990], Juang and
Rabiner [1991]) to time series analysis (MacDonald and Zucchini [1997]).
Theory and inference for this class of models were developed by Baum and
coworkers in a series of contributions Baum and Petrie [1966], Baum and
Eagon [1967], Baum and Sell [1968], Petrie [1969], Baum et al. [1970], Baum
[1972] (see also Ephraim and Merhav [2002] for a brief historical note on
HMMs). These studies have later been further considered and developed
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in a series of works by Finesso [1991], Leroux [1992], Mevel [1997], Bickel
et al. [1998], Jensen and Petersen [1999], Le Gland and Mevel [2000], Douc
and Matias [2001], Bickel et al. [2002], Mevel and Finesso [2004], Genon-
Catalot and Laredo [2006], Douc et al. [2009, 2011], Douc and Moulines [2012]
(see also Cappé et al. [2005] and the references therein for a comprehensive
discussion). Although there have been substantial studies for this important
class, so far some theoretical results have not become standard yet and thus
still need to be improved.

ODMs were introduced by Cox [1981] to describe statistical models with
a key feature that the hidden state variable can be represented explicitly
as a deterministic function of the past observation variables. This property
is of practical interest, since the associated (conditional) likelihood function
and its derivatives are easy to derive, the parameter estimation is hence rela-
tively simple, and the prediction, which is of prime importance in many time
series applications, is straightforward. The celebrated generalized autore-
gressive conditional heteroskedasticity of ordgil; 1) model (well known as
GARCH(1; 1) model) introduced by Bollerslev [1986], as well as most of the
models derived from this one are typical examples of ODMs (see Bollerslev
[2008] for a list of some of them). In addition, these models are partic-
ularly useful for dealing with time series data with discrete nature, while
the classical autoregressive models are no longer appropriate (see [Kedem
and Fokianos, 2002, Chapter 4] for a comprehensive account and Tjgstheim
[2012] for a recent survey). The applications of ODMs can be found in a wide
variety of disciplines such as economics (Pindyck and Rubinfeld [1998]), en-
vironmental study (Bhaskaran et al. [2013]), epidemiology and public health
study (Zeger [1988], Davis et al. [1999], Ferland et al. [2006]), nance (Liesen-
feld and Richard [2003], Rydberg and Shephard [2003], Fokianos and Tj@s-
theim [2011], Francq and Zakoian [2011]) and population dynamics (lves
et al. [2003]). Theory and inference for this class of models when the obser-
vations are integer-valued have been developed in a series of contributions
including Streett [2000], Davis et al. [2003], Heinen [2003], Ferland et al.
[2006], Fokianos et al. [2009], Franke [2010], Woodard et al. [2010], Fokianos
and Tjgstheim [2011], Henderson et al. [2011], Neumann [2011], Davis and
Liu [2012], Doukhan et al. [2012], Douc et al. [2013], Fokianos et al. [2013],
Christou and Fokianos [2014, 2015] and Douc et al. [2015]. As in the case of
HMMs, some of existing theoretical results for these models have not become
standard yet and thus still need to be ameliorated.

Besides HMMs and ODMs, the class of PMMs include many other in-
teresting models that have potential applications in time series and other
elds such as Markov switching models (see Hamilton [1988, 1989]), many
of Markov chains in random environment introduced by Cogburn [1980] and

2
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Bourgin and Cogburn [1981], pairwise Markov random elds (see Pieczyn-
ski and Tebbache [2000]) and other instances considered e.g. by Pieczynski
[2003] and Ephraim and Mark [2012]. However, the theory and inference for
this general setting still remains meagre in the literature.

1.2 Motivation and Problem Statements

This thesis aims at developing theory and inference for parametric models
concerning in particular time series of counts under general frameworks of
PMMs and other variants. It is mainly driven by the following issues encoun-
tered in HMMs and ODMs in particular (and hence in PMMs in general).

1.2.1 Consistency

Maximum likelihood estimation is a natural and widespread method for
identifying a parametric model of a time series from a sample of realizations of
the observation process. Under a well-speci ed model setting, that is when
the law of the observations is fully described by a parametrized member
of the class of PMMs, it is of prime interest to obtain the consistency of
the estimator, namely, its convergence to the true parameter, say, as the
sample size goes to in nity. The proof generally involves two important steps:

1. the maximum likelihood estimator (MLE) converges to the maximizing
set » of the asymptotic normalized log-likelihood, and

2. this set - indeed reduces to the singleton of the true parametes.

The second step is usually referred to as solving theenti ability problem,
but it can actually be split in two sub-problems:

2.1 show that any parameter in the maximizing set , yields the same
distribution for the observations as for the true parameter ,, and

2.2 show that for a su ciently large sample size, the set of such parameters
reduces to the singleton of .

However, at least in the case of HMMs, Problem 2.2 above appears to be dif-
cult to solve; see Allman et al. [2009], Gassiat et al. [2016] and the references
therein for recent advances in the case of HMMs. Indeed, Problem 2.1 can
be solved independently, and with Step 1 above, this directly yields that the
MLE is consistent in a weakened sense, hamely, that the estimated parameter
converges to the set of all the parameters associated to the same distribution
as the one of the observed sample. The consistency in this sense is referred
to as equivalence-class consistencgs introduced by Leroux [1992].
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Consistency issue in HMMs

For HMMs, the consistency of the MLE is of primary importance; it arises
either as a subject of study (see Baum and Petrie [1966], Petrie [1969], Leroux
[1992], Le Gland and Mevel [2000], Le Gland and Mevel [2000], Douc and Ma-
tias [2001], Douc et al. [2004], Genon-Catalot and Laredo [2006], Douc et al.
[2011]) or as a basic assumption (see Bickel et al. [1998], Jensen and Petersen
[1999]). Among these contributions, the consistency result obtained later in
Douc et al. [2011] appears to be quite general and can be applied to many
versions of HMMs with some general state and observation spaces. In this
contribution, identifying the maximizing set - of the asymptotic normal-
ized log-likelihood is carried out by using the so-callegikponential separation
of measurescondition, which is apparently easy to apply when the underly-
ing model is geometrically ergodic. However, for non-geometrically ergodic
models such as the polynomially ergodic Markov chain (see Tuominen and
Tweedie [1994] and Jarner and Roberts [2002] for the existence and some
studies of such an example), checking this condition can be laborious and
involved. Hence the characterization of the maximizing set, of the asymp-
totic normalized log-likelihood (and hence the equivalence-class consistency
of the MLE) remains a delicate question for HMMs.

Consistency issue in ODMs

In ODMs, the (conditional) likelihood function and its derivatives are
easy to compute, making the estimation at least numerically feasible. The
consistency of the MLE can however be cumbersome and is often derived
using computations speci ¢ to the studied model. Especially, when the ob-
served variable is discrete, general consistency results have been obtained
only recently in Davis and Liu [2012] or Douc et al. [2013] (see also in Hen-
derson et al. [2011] for the existence of stationary and ergodic solutions to
some ODMSs). Nevertheless, in these contributions, the way of proving that
the maximizing set - reduces to the singleton of the true parameter,
requires checking specic conditions in each given example and seems dif-
cult to assert the result in a more general context, for instance when the
distribution of the observations given the hidden variable also depends on
an unknown parameter. The examples of such models include the nega-
tive binomial integer-valued GARCH (NBIN-GARCH) model introduced in
Zhu [2011] and the normal mixture GARCH (NM-GARCH) model proposed
by Haas et al. [2004] and Alexander and Lazar [2006]. To our best knowl-
edge, (complete) consistency of the MLE has not been treated for the NBIN-
GARCH model (see Davis and Liu [2012] for some partial treatement); and
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the usual consistency proof of the MLE for the GARCH model cannot be
directly adapted to the NM-GARCH model.

It is thus of great interest if this consistency issue can be tackled under
the general spirit of PMMs, and if the present approach is able to account
for the intractable versions of HMMs and ODMs mentioned hereinabove.

1.2.2 General-order Observation-driven Models

In many time series, solving Problem 1 and Problem 2.1 in Section 1.2.1,
that is, establishing the consistency of the MLE, usually requires assuming or
proving that the observation process is stationary and ergodic. Under HMM
framework, stationary and ergodic solutions for the model are inherited from
the stationarity and ergodicity of the underlying hidden process and are usu-
ally studied by using' -irreducibility assumption. However, it may not be
at all the same fortune when the studied model is under ODM setting. In
this latter case, it turns out that a more subtle approach is required, at least
in the circumstance where the observed process assumes integer values. The
di culty in this case, though in its own right it is a Markov chain, may arise
from the degeneracy of the hidden state process from its state equation. Up
to this point, several methods toward the solution of this problem has been
proposed. These include the perturbation technique (see Fokianos and Tjgs-
theim [2011]), the contractivity approach (see Neumann [2011]), the weak
dependence approach (see Doukhan et al. [2012]) and the approach based on
the theory of Markov chains without irreducibility assumption introduced in
Douc et al. [2013]. Among these, the result obtained recently in Douc et al.
[2013] appears to be able to cope with many models of interest lying in the
class of rst-order ODMSs, regardless of whether the observation process is
discrete or continuous. However, whether this same result applies to a more
general and exible context ofgeneral-orderODMs or general-order GARCH
type models has not been known so far. The same question is for the asymp-
totic properties of the MLE for the class of general-order ODMs as posed by
Douc et al. [2013] and recently addressed in Tjgstheim [2015].

1.3 Approaches and Main Results

Throughout this thesis, the statistical inference is performed, unless oth-
erwise speci ed, under the framework of the well-speci ed models. The ap-
proaches and main results are outlined as follows.
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1.3.1 Identi cation of the Maximizing Set "

One of our primary objectives is to provide a general method toward solv-
ing Problem 2.1 as described in Section 1.2.1, that is, showing that any pa-
rameter in the maximizing set - of the asymptotic normalized log-likelihood
yields the same distribution for the observations as for the true parametes,
under the general framework opartially dominated and partially observed
Markov models in which many interesting models such as HMMs and ODMs
are included. Here, by partially dominated , we refer to a situation where
the distribution of the observed variable is dominated by some xed- nite
measure de ned on the observation space. The proof of the main result is of
probabilistic-analytic nature. The novel contribution of our present approach
is that the characterization of the maximizing set - is addressed by relying
mainly on the existence and the uniqueness of the invariant distribution of
the Markov chain associated to the complete data, regardless of its rate of
convergence to the equilibrium. This is indeed in deep contrast with existing
results in these models where the identi cation of - is established under the
assumption of exponential separation of measures (see Douc et al. [2011]) or
geometric ergodicity (see Douc et al. [2004]). The ways of how this general
result applies in the classes of HMMs and ODMs are also demonstrated.
As it will be later shown, our general result can be readily applied to solve
Problem 2.1 for some otherwise intractable versions of HMMs and ODMs
mentioned earlier in Section 1.2.1. All of these are reported in the journal
paper by Douc et al. [2014], which is going to appear soonTine Annals of
Applied Probability.

1.3.2 Consistency of the MLE for Fully Dominated and
Partially Observed Markov Models

In addition to solving Problem 2.1, our next objective is to investigate
Problem 1 within the general context of PMMs. In this thesis, however, this
task is performed separately in two directions; namely, we discuss this is-
sue independently for the class dtilly dominated PMMs and for the class of
ODMs. A fully dominated PMM is a partially observed Markov model whose
conditional marginal laws of the observation and hidden state processes both
admit probability densities with respect to some - nite measures. Many
HMMs, Markov switching models and Markov chains in random environ-
ment, for example, are members of this class. Solving Problem 1 for fully
dominated PMM, that is, formulating the convergence of the MLE, is car-
ried out by using the approach employed by Douc and Moulines [2012] as
to derive the convergence of the MLE to the minimizing set of the relative
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entropy rate in misspeci ed HMMs. This approach consists in establishing
a key property the exponential forgetting of the ltering distribution by
using coupling method originated by Kleptsyna and Veretennikov [2008] and
further re ned by Douc et al. [2009]. When the forgetting of the Itering dis-
tribution is achieved, together with the assumption that the observation pro-
cess is strict-sense stationary and ergodic, then the normalized log-likelihood
can be approximated by an appropriately de ned stationary version of it.
Then applying the results in classical ergodic theory, the latter is shown to
converge to a limit of functional of the parameter, say( ), where is the
parameter. It then implies by using standard argument (see for instance
Pfanzagl [1969]) that the MLE of the normalized log-likelihood converges
almost surely to a subset , of the parameter set at which this limit () is
maximized. Using this same technique, meanwhile, we obtain an intermedi-
ary result showing that the block-type MLE converges to a maximizing set in

a similar sense as the classical MLE, regardless of whether or not the models
are well-speci ed. These results are shown under similar conditions derived
in Douc and Moulines [2012]. Moreover, with these same assumptions, Prob-
lem 2.1 is also solved, yielding the equivalence-class consistency of the MLE
for the class fully dominated PMMs.

1.3.3 Consistency of the MLE for Observation-driven
Models

In this thesis, we consider among others a typically studied class of ODMs
de ned in the following context. Let (X;dyx) be a locally compact, complete
and separable metric space endowed with the associated Boreleld X,
(Y;Y) be a Borel space and ;) , the set of parameters, be a compact
metric space. The observationsY, : k Og is said to be distributed
according to an observation-driven model if there exists a bivariate stochastic
processf (Xi;Yx) : k Ogdened on X Y such that forall 2 and
integersk 0,

X1 = Yk(xk);

. (1.1)
Yk+1JXO:k+1 ; Y0:k G (X k+1 );

where(x;y) 7!, (x) is a measurable function de ned fromX Y to X and
G is a probability kernel onX Y.

Examination of the consistency of the MLE for this family is carried out
by relying on the approach recently developed by Douc et al. [2013], who con-
sidered Model (1.1) in the case where the probability kern€ does not de-
pend on the parameter . A basic assumption to this approach is the unique-

7
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ness of invariant distribution for the complete chainf (X;Yx) : k  0Og.
This assumption is obtained by using the theory of Markov chains without
irreducibility assumption. The uniqueness of the invariant distribution of
the Markov chain f (X;Yx) : k  Og allows us to extend this stationary
process over the integer indices and is later shown to yield the stationarity
and ergodicity for the observation processY, : k 0g. With some addi-
tional assumptions, by similar argument as in the case of fully dominated
PMMs, the conditional likelihood can be approximated by an appropriately
de ned stationary version of it, which is then shown to converge to a limit
of functional of the parameter by classical ergodic theory arguments. It then
implies by Pfanzagl [1969] that the MLE of the normalized log-likelihood
converges almost surely to a subset, of parameters at which this limiting
functional is maximized. In addition, Problem 2.1 is investigated and with
the earlier convergence result, the equivalence-class consistency of the MLE
for this class is then established. All of these results are addressed under
assumptions that are quite direct and easy to check in concrete examples.
As illustration, we examine three examples, namely, the NBIN-GARCH,; 1),
the NM-GARCH (1; 1) and the threshold IN-GARCH(1; 1). A numerical sim-
ulation demontrating the convergence of the MLE for NBIN-GARCHL1; 1)

is also given. All of these results are also reported in the published paper by
Douc et al. [2015].

1.3.4 Generalizations of Observation-driven Models

Another focus of this thesis is on developing theory and inference for the
class of GARCH{p; g) analogue ODMs. In this consideration, we extend (1.1)
by allowing the function  to depend also on the past lagged variables; that
is, we replace the function ,(x) de ned from X Y to X by a function

yimyq (X1 111 Xp) de ned from XP Y9to X, for some positive integerg
and g. This yields the following setting: for all 2 and integersk 0,

xk+1 = Yk g+l ;ZZZ;Yk(Xk p+l;..-;xk);

| (1.2)
YirrJX prrksns Y gk G (Xie1; ):

We say that the observationsf Yy : k g+ 1g taking values in(Y;Y) is
distributed according to an observation-driven model of ord€(p; g), in short
ODM(p; 9, if there exists a stochastic procedsXy : k p+1gdenedon
(X; X)) such that the recursive relation (1.2) holds. Despite that this is just a
generalization, however, it is not always obvious that the results obtained in
the classical rst-order ODM can be directly or easily applied to the general-
order setting. One reason may be due to the fact that the general-order ODM

8
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lacks of a direct and useful rst-order ODM representation. Nevertheless,
this is not a serious problem since generally any general-order ODM can be
embedded in a rst-order one. To see how, a subtle way is to incorporate the
trivial identity of lagged variables,

vi (Zik) == ( Xk pr2: 705 Xk, q{t;;;;;yk(xk p+1;“';xk¥;|Yk q+z{'2:::;Y¥)
p q1

and
H (Zx; )= G (X )

Then (1.2) can be transformed into the following equivalent one: for all2
and integersk 0O,

Zy+ = Yk(zk);
Yks1)Zok+1; Yok H (Zi+1; ):

The form (1.3) is indeed a rst-order ODM, but on the spacéX? Y9 1) Y.
With this rst-order representation, the results obtained in (1.1) may be ap-
plied. By simple adaptations, the equivalence-class consistency of the MLE
for the general-order ODM or for (1.3) directly follows. However, it turns out
that more general assumptions may be required to establish the stationary
and ergodic solutions for (1.3), compared to the usual rst-order ODMs de-
ned by (1.1). Additionally, the strong consistency and the asymptotic nor-
mality of the MLE are also investigated in this general context. We treat the
asymptotic normality in a special but an important case where the function
is linear with respect to the hidden state variabl&Z. For establishing the

asymptotic normality result, we follow the classical approach by rst approx-
imating the score function by the stationary version of it and then developing
Taylor expansion of the stationary score function around the true parameter
». By appropriate assumptions, the central limit theorem for Martingale
di erence applies and the stationary score function can then be shown to
be asymptotically Gaussian. Then by invertibility of the asymptotic Fisher
information matrix, the asymptotic normality immediately follows. All the
results are reported under su cient and easy-to-check conditions. We apply
these results to the GARCHp; g), the log-linear Poisson autoregression of
order (p; 9 and the NBIN-GARCH(p; g models. We provide an empirical
study showing that in some circumstance higher-order model may t the data
better than the rst-order one if the class of ODMs is used.

(1.3)

9
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1.4 Organization of the Thesis

This thesis is organized as follows. We devote Chapter 2 to identifying
the maximizing set of the asymptotic normalized log-likelihood under the
general framework of PMMs mentioned in Section 1.3.1. In Chapter 3, we
present approaches to obtain the convergence and the consistency of the
MLE under fully dominated versions of PMMs. Chapter 4 is dedicated to
studying ergodicity and consistency of MLE for the class of rst-order ODMs.
Chapter 5 extends the results of Chapter 4 to the class of general-order
ODMs. Conclusions and future perspectives of the thesis are presented in
Chapter 6.

10



Chapter 2

Partially Observed Markov
Chains: Identi cation of the
Maximizing Set of the
Asymptotic Normalized
Log-likelihood

Summary This chapter, mostly inspired by Douc et al. [2014], consid-
ers a parametrized family of partially observed bivariate Markov chains. We
establish that, under very mild assumptions, the limit of the normalized log-
likelihood function is maximized when the parameters belong to the equiva-
lence class of the true parameter, which is a key feature for obtaining the con-
sistency of the maximum likelihood estimator (MLE) in well-speci ed mod-
els. This result is obtained in the general framework of partially dominated
models. We examine two speci ¢ cases of interest, namely, hidden Markov
models (HMMs) and observation-driven models. In contrast with previous
approaches, the identi ability is addressed by relying on the uniqueness of
the invariant distribution of the Markov chain associated to the complete
data, regardless of its rate of convergence to the equilibrium.

2.1 Introduction

Maximum likelihood estimation is a widespread method for identifying a
parametric model of a time series from a sample of observations. Under a
well-speci ed model assumption, it is of prime interest to show the consis-
tency of the estimator, that is, its convergence to the true parameter, say

11
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», as the sample size goes to in nity. The proof generally involves two im-
portant steps: 1) the maximum likelihood estimator (MLE) converges to the
maximizing set - of the asymptotic normalized log-likelihood, and 2) the
maximizing set indeed reduces to the true parameter. The second step is
usually referred to as solving thadenti ability problem but it can actually
be split in two sub-problems: 2.1) show that any parameter in , yields the
same distribution for the observations as for the true parameter, and 2.2)
show that for a su ciently large sample size, the set of such parameters re-
duces to ,. Problem 2.2 can be dicult to solve; see Allman et al. [2009],
Gassiat et al. [2016] and the references therein for recent advances in the case
of hidden Markov models (HMMs). Nevertheless, Problem 2.1 can be solved
independently, and with Step 1 above, this directly yields that the MLE is
consistent in a weakened sense, namely, that the estimated parameter con-
verges to the set of all the parameters associated to the same distribution
as the one of the observed sample. This consistency result is referred to as
equivalence-class consistencgs introduced by Leroux [1992]. In this contri-
bution, our goal is to provide a general approach to solve Problem 2.1 in the
general framework of partially observed Markov models. These include many
classes of models of interest; see, for instance, Pieczynski [2003] or Ephraim
and Mark [2012]. The novel aspect of this work is that the result mainly
relies on the unigueness of the invariant distribution of the Markov chain
associated to the complete data, regardless of its rate of convergence to the
equilibrium. We then detail how this approach applies in the context of two
important subclasses of partially observed Markov models, namely, the class
of HMMs and the class of observation-driven time series models.

In the context of HMMs, the consistency of the MLE is of primary im-
portance, either as a subject of study (see Leroux [1992], Douc et al. [2004,
2011]) or as a basic assumption (see Bickel et al. [1998], Jensen and Petersen
[1999]). The characterization of the maximizing set , of the asymptotic
log-likelihood (and thus the equivalence-class consistency of the MLE) re-
mains a delicate question for HMMs. As an illustration, we consider the
following example. In this example and throughout this thesis, we always
denote byR = (1 ;1) the set of real numbers and by the set of inte-
gers. In addition, we denote byR, =[0;1),R =(1 ;0], R, =(0;1)
andR = (1 ;0), the sets of nonnegative, nonpositive, (strictly) positive
and (strictly) negative real numbers, respectively. Likewise, we use the no-
tation Z,, Z , Z, and Z for the corresponding subsets of integers. For
a real number or a real functiona, we denote bya" = max(a;0) and by
a = max( a;0) the nonnegative part and nonpositive part ofa, respec-
tively. Finally, for any set X, the collectionB(X) denotes the Borel - eld on
X.

12
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Example 2.1.1. SetX= R,, X = B(R+), Y= RandY = B(R) and de ne
an HMM on X Y by the following recursions:

Xe=(Xg 1+ U m)";

2.1)
Ye = aX + Vi

where(m;a) 2 R, R, and the sequencé(Uy; k) : k2 Z, gis independent
and identically distributed (i.i.d.) and is independent fromX,. This Markov
model f X, : k 2 Z,g was proposed by Tuominen and Tweedie [1994] and
further considered by Jarner and Roberts [2002] as an example of polynomi-
ally ergodic Markov chain, under speci ¢ assumptions made dg's. Namely,

if U¢'s are centered ancE[eV«] = 1 for any > O, it can be shown that
the chainf X : k 2 Z, g is not geometrically ergodic (see Lemma 2.3.9 be-
low). In such a situation, the exponential separation of measures condition
introduced in Douc et al. [2011] seems di cult to check. We will show, nev-
ertheless, in Proposition 2.3.10, that under some mild conditions the chain
fXx : k2 Z,.gis ergodic and the equivalence-class consistency holds.

Observation-driven time series models were introduced by Cox [1981]
and later considered, among others, by Streett [2000], Davis et al. [2003],
Fokianos et al. [2009], Neumann [2011], Doukhan et al. [2012] and Douc et al.
[2013]. The celebrated generalized autoregressive conditional heteroskedas-
ticity (GARCH) model of order (1;1) introduced by Bollerslev [1986] is an
observation-driven model as well as most of the models derived from this
one; see Bollerslev [2008] for a list of some of them. This class of models has
the nice feature that the (conditional) likelihood function and its derivatives
are easy to compute. The consistency of the MLE can however be cumber-
some and is often derived using computations speci c to the studied model.
When the observed variable is discrete, general consistency results have been
obtained only recently in Davis and Liu [2012] or Douc et al. [2013] (see
also in Henderson et al. [2011] for the existence of stationary and ergodic
solutions to some observation-driven time series models). However, in these
contributions, the way of proving that the maximizing set - reduces tof -g
requires checking speci ¢ conditions in each given example and seems di -
cult to assert in a more general context, for instance when the distribution
of the observations given the hidden variable also depends on an unknown
parameter. Let us describe two such examples. The rst one (Example 2.1.2)
was introduced in Zhu [2011]. To our knowledge, the consistency of the MLE
has not been treated for this model.

Example 2.1.2. The negative binomial integer-valued GARCH (NBIN-

13
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GARCH) (NBIN-GARCH (1;1)) model is de ned by

Xk+1 = 1 + aXg + bY;
. Xk+1 (2.2)
Yk+1)Xok+1: Yok NB 1 ——
k+1 ] A 0k+1 5 Yok 1+ Xes

whereX takes values inX = R, , Yy takes values inZ, and =(!;a;b;r) 2
(R,)* is an unknown parameter. In (2.2),NB(r;p) denotes the negative
binomial distribution with parametersr > 0Oandp 2 (0; 1), whose probability
function is {72 p (1 p)* for all k 2 Z,, where stands for the Gamma
function.

The second example, Example 2.1.3, proposed by Haas et al. [2004] and
Alexander and Lazar [2006], is a natural extension of GARCH processes,
where the usual Gaussian conditional distribution of the observations given
the hidden volatility variable is replaced by a mixture of Gaussian distribu-
tions given a hidden vector volatility variable. Up to our knowledge, the usual
consistency proof of the MLE for the GARCH cannot be directly adapted to
this model.

Example 2.1.3. The normal mixture GARCH (NM (d)-GARCH(1;1))
model is de ned by:

Xy = | +AXk+Y b;
Yk+1J)< O:k+1:YO:k G (X k+1 » ?;
xd e Vi

\ (2 x )12 dy;

(2.3)

G (x;dy) = X=(x)1id2 (RILY2R;

o1

whered is a positive integer; X = [ X1k ::: Xgx]" takes values inX = RY
=[ 1::: ¢]" is a d-dimensional vector of mlxtIE;re coe cients belonglng
to the ddlmensmnal simplexPqy = f 2 RY : -y ~=1g; !, b are
d-dimensional vector parameters with positive and nonnegative entrles, re-
spectively; A is ad d matrix parameter with nonnegative entries; and
=( ;!';ADb).

This chapter is organized as follows. Section 2.2 is dedicated to the main
result (Theorem 2.2.7) which shows that the argmax of the limiting criterion
reduces to the equivalence class of the true parameter, as de ned in Leroux
[1992]. The general setting is introduced in Section 2.2.1. The theorem is
stated and proved in Section 2.2.2. In Section 2.2.3, we focus on the kernel
involved in the assumptions, and explain how it can be obtained explicitly.
Our general assumptions are then shown to hold for two important classes
of partially observed Markov models:

14
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First, the HMMs described in Section 2.3, for which the equivalence-
class consistency of the MLE is derived under simpli ed assumptions.
The polynomially ergodic HMM of Example 2.1.1 is treated as an ap-
plication of this result.

Second, the observation-driven time series models described in Sec-
tion 2.4. The obtained results apply to the models of Example 2.1.2
and Example 2.1.3, where the generating process of the observations
may also depend on the parameter.

The technical proofs are gathered in Section 2.5.

2.2 A General Approach to Identi ability

2.2.1 General Setting and Notation: Partially Domi-
nated and Partially Observed Markov Chains

Let (X;X) and (Y;Y) be two Borel spaces, that is, measurable spaces
that are isomorphic to a Borel subset 0f0; 1] and let be a set of param-
eters. Consider a statistical model determined by a class of Markov kernels
fK : 2 gon(X Y) (X Y ). Throughout the chapter and in the fol-
lowing ones, unless it is otherwise speci ed, we will always denote By the
probability (and by E the corresponding expectation) induced oX Y)%*
by a Markov chainf (Xy; Yx) : k 2 Z, g with transition kernel K and initial
distribution onX Y. Inthe case where is a Dirac mass aft(x;y), we will
simply write P, .

For partially observed Markov chains, that is, when only a sampl¥,., :=

write K as

K ((x;y); dx%y9) = Q ((x;y); dx)G ((x;y;x9; dyd; (2.4)

whereQ andG are probability kernelson(X Y) X andon(X Y X)Y ,
respectively.
We now consider the following general setting.

De nition 2.2.1. We say that the Markov modelfK : 2 g of the
form (2.4) is partially dominated if there exists a - nite measure onY
such that for all (x;y);(x%y% 2 X Y,

G ((xy;x%:dy) = g ((cy;x);y) (dy); (2.5)
where the conditional density functiong moreover satis es
g (6y;x%y9) >0 forall (xy);(x5y)2Xx Y: (2.6)
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It follows from (2.5) that, for all (x;y)2 X Y,A2X andB 2Y,
Z

K (xy);A B)= hy; Y3 (x; A) (dy9;

B

where, for ally;y°2 Y, hy;yd is a kernel de ned on(X; X) by
by ya (G dx) == Q ((xy)idx)g ((xy;x%y): (2.7)

The dynamic of the partially observed bivariate Markov process can be de-
picted as in Figure 2.1.

N » Xk — Xt — Xk —----- >
L7 g \\A g g /// N .
S " Yo — Yier — Yiaz ------ ;

Figure 2.1 Graphical representation of the partially observed bivariate
Markov model.

Remark 2.2.2. Note that, in general, the kernel hy;yd is unnormalized
since hy;y9(x;X) may be dierent from one. Moreover, we have for all
xy;y)2X Y Y,

Z

hy; y3 (x; X) = XQ (x;y);dx9 g ((xy;x%y9 > 0 (2.8)

where the positiveness follows from the fact tha® ((x;y); ) is a probability
on (X; X) and Condition (2.6).

In well-speci ed models, it is assumed that the observationg,., are gen-
erated from a proces$(X; Y«) : k 2 Z, g, which follows the distribution P ’
associated to an unknown parameter, 2  and an unknown initial distri-
bution - (usually, - is such that, underP’, fYy : k2 Z, g is a stationary
sequence). To form a consistent estimate of on the basis of the observa-
tions Y1, only, that is, without access to the hidden processX : k2 Z. g,
we de ne the maximum likelihood estimator (MLE) A;n by

" 2 argmaxL ., ();
2
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wherelL ., ( ) is the (conditional) log-likelihood function of the observations
under parameter with some arbitrary initial distribution on X Y, that

Z yn
La():=In Q ((Xk 1Yk 1);dXk) 9 ((Xk 1: Yk 1;Xk); Yk) (dXodyo)
Z k=1
=1In ho,yii  hya; yal WYn 1; Yni(Xo; X) (dXodyo):

This corresponds to the log of the conditional density of;., given (Xg; Yo)
with the latter integrated according to . In practice is often taken as a
Dirac mass at(x;y) with x arbitrarily chosen andy equal to the observation
Yo when it is available. In this context, a classical way (see, e.g., Leroux
[1992]) to prove the consistency of a maximum-likelihood-type estimat(’)\r;n
may be decomposed in the following steps. The rst step is to show thé\\t;n

is, with probability tending to one, in a neighborhood of the set

s:=argmaxE”? Inp' ?(YyY1 o) : (2.9)
2

This formula involves two quantities that have not yet been de ned since
they may require additional assumptions: rst, the expectationE , which
corresponds to the distributionP of a sequencéYy : k 2 Zg in accordance
with the kernel K , and second, the densityp’ ?(j ), which shows up when
taking the limit, under P 7, of the P -conditional density of Y; given its m-
order past, asm goes to innity. In many cases, such quantities appear
naturally because the model is ergodic and the normalized log-likelihood
n L., () can be approximated by

1 X o
~ Inp" *(VkjY1 « 1):
k=1
We will provide below some general assumptions, Assumptiorté-1) and (K-
2), that yield precise de nitions of P and p* °(j ).
The second step consists in proving that the set, in (2.9) is related

to the true parameter , in an exploitable way. Ideally, one could have

» = f »g, which would yield the consistency of\;n for estimating ». In
this work, our rst objective is to provide a set of general assumptions which
ensures that - is exactly the set of parameters such thatP = P 2. Then
this result guarantees that the estimator converges to the set of parameters
compatible with the true stationary distribution of the observations. If more-
over the modelfP : 2 gisidenti able, then this set reduces tof -gand
consistency of’\;n directly follows.
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To conclude with our general setting, we state the main assumption on
the model and some subsequent notation and de nitions used throughout
this chapter.

(K-1) Forall 2 ,the transition kernedk admits a unique invariant probability

We now introduce some important notation used throughout this chapter.

De nition 2.2.3.  Under Assumption (K-1), we denote by , and , the
marginal distributions of on X and Y, respectively, and byP and P the
probability distributions de ned respectively as follows:

a) P denotes the extension oP on the whole line(X Y)Z%.

b) P is the corresponding projection on the component?.

We also use the symbolE and E to denote the expectations corresponding

to P and P, respectively. Moreover, for all; °2 , we write Oif and

only if P = P °. This de nes an equivalence relation on the parameter set
and the corresponding equivalence class ofs denoted by[ ]:= f ©2

Q.

The equivalence relationship was introduced by Leroux [1992] as an
alternative to the classical identi ability condition.

2.2.2 Main Result

Assumption (K-1) is supposed to hold all along this section ang , P
and are given in De nition 2.2.3. Our main result is stated under the
following general assumption.

(K-2) Forall & %in ,there exists a probability kernel “onY? X such
that for allA 2 X,
Z
(Y1 0;dxo) hYo; Yii(xo; A)
Z = %Yy 4A); P‘as.
(Y1 0;0dX0)  hYo; Yai (xo; X)

X

Remark 2.2.4. Note that from Remark 2.2.2, the denominator in the left-
hand side of the last displayed equation is strictly positive, which ensures
that the ratio is well-de ned.

Remark 2.2.5. Let us give some insight about the formula appearing in
(K-2) and explain why it is important to consider the cases = ©°and
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2. Partially Observed Markov Models

8 Oseparately. SinceX is a Borel space, [Kallenberg, 2002, Theorem 6.3]
applies and the conditional distribution of Xy given Y; .o under P de nes
a probability kernel denoted by . We prove in Section 2.5.1 of Section 2.5
that this kernel satis es, for all A 2 X,
Z
(Y1 0;dX0) hYo; Yii(Xo; A)
ZX = (Y1 1;A); P-as. (2.10)
(Y1 :0;dXo) hYo; Yii (Xo; X)

X

Assumption (K-2) asserts that the kernel ' ° satis es a similar identity
P *a.s. for °6 . Itis not necessary at this stage to precise how' ° shows
up. This is done in Section 2.2.3.

Remark 2.2.6. The denominator in the ratio displayed in K-2) can be
written as p- °(Y1jY1 0), Where, forally 2 Y andy, 2 Y% ,
Z

P (Yiy: o) = (y1 0idxo)  hyo; Yi(Xo0; X) (2.11)

X

is a conglitional density with respect to the measure, since for all(x;y) 2
XY, hyyd6X) (dy)=1.

SinceY is a Borel space, [Kallenberg, 2002, Theorem 6.3] applies and the
conditional distribution of Y;., givenY; .o de nes a probability kernel. Since
P (Y1n 2 ) is dominated by ", this in turns de nes a conditional density
with respect to ", which we denote byp,(j ), sothatforallB 2Y ",
z

P(un2BjYs 0)=  pPy(YunjY1 0) (dy1) (dyn); P-as. (2.12)
B
Let us now state the main result.

Theorem 2.2.7. Assume that K-1) holds and deneP, P and|[ ] as in
De nition 2.2.3. Suppose that Assumption K-2) holds. For all ; °2
. 0 - . . . .
denep’ (Y1jY1 o) by (2.11)if 6 C%and byp’ (YijY1 o) = pi(YajY1 )

as in (2.12) otherwise. Then for all , 2 , we have

argmaxE ? Inp' ?(Y14jY1 o) =[ 2l (2.13)
2

Before proving Theorem 2.2.7, we rst extend the de nition of the con-
ditional density on Y in (2.11) to a conditional density onY".
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2. Partially Observed Markov Models

De nition 2.2.8.  For every positive integern and 6 °2 |, de ne the
function p; °(j) onY" YZ by

Z v 1

pi ‘(Yiniy1 o) = Y1 05 dxo) MYic; Vies1 1 (Xic; OXier ): (2.14)
X k=0

Again, it is easy to check that eactp; °( jy1 o) is indeed a density on
Y". Assumption (K-2) ensures that these density functions moreover satisfy
the successive conditional formula, as for conditional densities, provided that
we restrict ourselves to sequences in a setPf-probability one, as stated in
the following lemma.

Lemma 2.2.9. Suppose that AssumptionK-2) holds and letp; °(j) be as
de ned in De nition 2.2.8. Then forall ; °2 andn 2, we have
pn 0(Yl:anl :O) = p1 O(Yanl n 1)pn o1(Y1:n 1jY1 :0); P O'a-S- (2-15)

The proof of this lemma is postponed to Section 2.5.2 in Section 2.5. We
now have all the tools for proving the main result.

Proof of Theorem 2.2.7. Within this proof section, we will drop the sub-
script n and respectively write p’ “(Yinjy1 o) and p (Yinjy1 o) instead
of p; (YunjY1 w0) @and p,(yunjy1 :0) when no ambiguity occurs.

Forall 2 , we have by conditioning onY; . and by using (2.12),

E? Inp°(YjY1 o) E”° Inp' *(YajY1 )
P?(YjY1 o)
=E?” E”? In .
h P ?2(Y1jY1 1) |
=E’ KL p’( Y1 0) p; °(jY1 o) (2.16)

Yl 0

where KL( pkg) denotes the Kullback Leibler divergence between the densi-
ties p and g The nonnegativity of the Kullback Leibler divergence shows
that - belongs to the maximizing set on the left-hand side of (2.13). This
implies
argmaxE” Inp’ *(YiY1 o) [ -] (2.17)
2

where we have used the following lemma.

Lemma 2.2.10. Assume that K-1) holds and de neE and|[ ] as in Def-
inition 2.2.3. Suppose that for all 2 , G()isa (Y; .1 )-measurable
random variable such that, for all , 2

SéJIOE 7[G()I= E7IG( )

20



2. Partially Observed Markov Models

Then forall ,2 and °2 [ ,], we have
E 7 [G( (5]=8121|0E’?[G( )]
Proof. Take 2 and °2 [ ,]. Then we have, forall 2 ,E?[G()]=
E °[G( )], and it follows that
E7[G( 9= E'[G( 9 =sup E "[G()]=sup E " [G()];
which completes the proof. ]

The proof of the reverse inclusion of (2.17) is more tricky. Let us take
2 5 such that ﬁ » and show that it implies _». By (2.16), we have
[

E? KL p’( jY1 o) P 7(jY1 o) =0:
Consequently,
P?(Y1jY1 o) = p’' *(Y4jY1 o); P’-as.

Applying Lemma 2.2.9 and using thatP ? is shift-invariant, this relation
propagates to alln 2, so that

P ? (Yl:anl ;0) = p; ? (Yl:anl ;0) . Pr-as. (218)
For any measurable functiorH : Y" ! R., we get

P ?(YinjY1 0)
E°’[H(Y1n,)]=E? E? H(Yy - -
[ ( 1-”)] d ( l.ﬂ) p?(Yl:nJYl :O) to

=E” H(yl:n)p; ?(yl:anl :0) n(dyl:n) ;

where the last equality follows from (2.12). Using De nition 2.2.8 and
Tonelli's theorem, we %btain

Z
E’[H(Yin)]=E? H(yin) " (Y1 w0;dX0) hYo;yii(Xo; dXq)
y1 _
Wk; Yik+1 1 (Xk; ka+1) n(dyl:n);
4 z
=E” " (Y1 0:0Xo)  H(Ywn) hYo; yii(Xo; dXy)
y1 _
Wk; yk+1 I (Xk; ka+1) n(dyl:n);
K=y
=E” ©?(Y1 0;dXo) E(Xo;Yo) [H(Y1n)l;

E I [H (Ylin)] ;
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2. Partially Observed Markov Models

where 7 is a probability on X Y de ned by
"7(A B)=E? (Y1 0,A)1s(Yo) ;
for all (A;B)2X Y . Consequently, forallB 2 Y %,
P*(Y* B)=P..X* (Y B)): (2.19)

If we had = - 7, then we could conclude that the two shift-invariant
distributions P > and P are the same and thus ». Therefore, to complete
the proof, it only remainsto showthat = - ?, which by (K-1) is equivalent
to showing that - 7 is an invariant distribution for K .

Let us now prove this latter fact. Using thatP ? is shift-invariant and
then conditioning onY; .5, we have, for any(A;B)2X Y

; 7(A B)= EDZ ; ?(Yl 1,A)1B(Y1) ;

=E~ (Y1 oY A) e (YOP T (Y4 Y1 o) (dya);
Z

E” (Y1 oY A)le(yD)p T(YiY1 w0) (dya);

where in the last equality we have used (2.18). Usindl{2) we then get

"(A, B)
= E?Z ©?(Y1 0,0X0)  hYo; yii (Xo; dX1)1a(X1)1e (Y1) (dya);
=E” V7(Y1 0, dX0)K ((Xo; Yo); A B);
= ?’K (A B):
Thus, 7 is an invariant distribution for K , which completes the proof.
O
2.2.3 Construction of the Kernel + ° as a Backward

Limit
Again, all along this section, Assumption K-1) is supposed to hold and
the symbolsP andP refer to the probabilities introduced in De nition 2.2.3.

In addition to Assumption (K-1), Theorem 2.2.7 fundamentally relies on
Assumption (K-2). These assumptions ensure the existence of the probability

kernel ¢ ° that yields the de nition of p; 0(j ). We now explain how the
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2. Partially Observed Markov Models

kernel * °may arise as a limit underP ° of explicit kernels derived fromK .

It will generally apply to observation-driven models, treated in Section 2.4,
but also in the more classical case of HMMs, as explained in Section 2.3. A
natural approach is to de ne the kernel ‘ °as the weak limit of the following
ones.

De nition 2.2.11. Let n be a positive integer. Forall 2 andx 2 X,
we de ne the probability kernel ., on Y™ X by, for all yo.,, 2 Y"** and
A2X,

Z n( 1
o 1 A hic; Yien T (Xi; AXe1 )
x;n (yO:n;A) = yA v li_o with Xo = X.

Hic; Vi1 T (Xic; AXier1 )
X" k=0

We will drop the subscript n when no ambiguity occurs.

It is worth noting that ., (Yo.n; ) is the conditional distribution of X,
given Yy, under P(X;Yo). To derive the desired ‘ ° we take, for a well-chosen
X, the limit of ,, (Yon; ) @asn! 1 for a sequence,, corresponding to
a path under P°. The precise statement is provided in AssumptionK-3)
below, which requires the following de nition. For all 2 and for all
nonnegative measurable functions de ned on X, we set

Foo= x70 hyy3(xf): (y;v9 2 Y2

We can now state the assumption as follows.

(K-3) Forall 6 92 | there exisik 2 X, a probability kernel © “onYZ X
and a countable clags of X! R, measurable functions such that for all
f2F,

- 0

P’ 8f°2F, [f fg; lim oy (Y moif9 = (Y1 0;f9<1 =1:

The next lemma shows that, provided thatF is rich enough, Assump-
tion (K-3) can be directly used to obtain Assumption-2). In what follows,
we say that a class oX ! R functions is separating if, for any two proba-
bility measures ; and , on (X; X), the equality of 4(f) and ,(f) overf
in the class implies the equality of the two measures.

Lemma 2.2.12. Suppose that AssumptionK-3) holds and thatF is a sep-
arating class of functions containingly. Then, the kernel  ° satis es As-
sumption (K-2).
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2. Partially Observed Markov Models

Proof. Let x 2 X be given in Assumption K-3). From De nition 2.2.11, we
may write, for all f 2 F, setting x n = X,

Z yi
f (Xo) hYy; Yieen 1 (Xi; dXge1)
k=
x;m(Y m:O;f)= yA Yl T
hYk; Yiers | (X5 X1 )
k= m
and, similarly,
z %
f(x1) hYk; Yieen 1(Xi; dXge1)
k=
x;m+1 (Y m:l;f ) = yA \O i . (220)

hYi; Yie1 1 (Xi; dXie1)

k= m
Dividing both numerator and denominator of (2.20) by

Z 1
hYic; Yieen 1 (Xk; dXi41);

k= m
which is strictly positive by Remark 2.2.2, then (2.20) can be rewritten as

Y mo; hYo;Yii(;f)

o (Y e f)= 20 : : 2.21
N S TS ATEE T M
Leting m!1  and applying Assumption K-3), then P "-a.s.,
. 0 .
. "Y1 o0, hYoYai(f
YO(Yl :1;f): ) - 0 O 1( ) :
7 (Y1 05 hYp; Yii(;1x))
(Y1 0idxo)  hYo; Yai (xo;f)
= Z .
! O(Yl 0, dXg) Yo} Yii (Xo; 1x)
SinceF is a separating class, the proof is complete.
0
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2. Partially Observed Markov Models

2.3 Application to Hidden Markov Models

2.3.1 De nitions and Assumptions

Hidden Markov models belong to a subclass of partially observed Markov
models de ned as follows.

De nition 2.3.1. Consider a partially observed and partially dominated
Markov model given in De nition 2.2.1 with Markov kernelsfK : 2 g.
We will say that this model is a hidden Markov model if the kerneK
satis es

K ((x;y);dx%dy) = Q (x;dx)G (x5 dy9): (2.22)

Moreover, in this context, we always assume thatX; dy) is a complete sep-
arable metric space anK denotes the associated Borel- eld.

In (2.22), Q and G are transition kernels onX X andX Y , respec-
tively. Since the model is partially dominated, we denote by the corre-
sponding Radon Nikodym derivative of G (x; ) with respect to the domi-
nating measure : for all (x;y) 2 X Y,

% & y) = g oy

One can directly observe that the unnormalized kernel hy;y3 de ned in
(2.7) does no longer depend oy, and in this case, one can write

hy;yiogax9 = hy3(x;dx9 = Q (x;dx%g (x%y9: (2.23)

The dynamic of hidden Markov process can be depicted as in Figure 2.2.

Q Q

fffffff ’Xk—)xk+1 —)Xk+2 ltlid
Yk Yk+1 Yk+2

Figure 2.2 Graphical representation of the hidden Markov Model by di-
rected arrows.

For any integer n 1, 2 and sequence/yn, 1 2 Y", consider the
unnormalized kernelL hyo.,, 1i on X X dened by, for all x, 2 X and
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2. Partially Observed Markov Models

A2X,
Z Z n( 1 #
L hyon 1i (X0 A) = g (X Y)Q (Xi; dXs1) La(Xn); (2.24)
k=0

so that the MLE ", , associated to the observation¥,., 1 with an arbitrary
initial distribution  on X is de ned by

A;n 2 argmax L hYO:n li 1x:
2

We now follow the approach taken by Douc and Moulines [2012] in mis-
speci ed models and show that in the context of well-speci ed models, the
maximizing set of the asymptotic normalized log-likelihood can be identi ed
by relying neither on the exponential separation of measures, nor on the rates
of convergence to the equilibrium, but only on the uniqueness of the invariant
probability. We note the following fact which can be used to check(1).

Remark 2.3.2. In the HMM context, is an invariant distribution of
K if and only if ; is an invariant distribution of Q and (dxdy) =
1(dx)G (x; dy).

We illustrate the application of the main result (Theorem 2.2.7) in the
context of HMMs by considering the assumptions of Douc and Moulines
[2012] in the particular case of blocks of size T € 1). Of course, general
assumptions with arbitrary sizes of blocks could also be used but this com-
plicates signi cantly the expressions and may con ne the attention of the
reader to unnecessary technicalities. To keep the discussion simple, we only
consider blocks of size 1, which already covers many cases of interest.

Before listing the main assumptions, we recall the de nition of a so-called
local Doeblin set(in the particular case wherer = 1) as introduced in [Douc
and Moulines, 2012, De nition 1].

De nition 2.3.3. A set C is local Doeblin with respect to the family of
kernelsfQ : 2 gif there exist positive constants .; ¢ and a family of
probability measuresf . : 2 gsuchthat, forany 2 , ~(C)=1,

and, foranyA 2 X andx 2 C,

c c(A) Q(GAVC) ¢ c(A):
Consider now the following set of assumptions.
(D-1) There exists a - nite measure on(X; X) that dominatesQ (x; ) for all
(x; )2 X . Moreover, denoting (x;x9 := 2 (x9, we have

q(x;x%>0; foral(x;x% )2X X
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2. Partially Observed Markov Models

(D-2) For ally 2 Y, we havesupsupg (x;y) < 1 .
2 x2X

(D-3) (a) Forall ,2 , there exists asék 2Y with P?(Y, 2 K) > 2=3
such that for all > 0, there exists a local Doeblin s&t2 X with
respecttof Q : 2 g satisfying, forall 2 andally 2 K,

supg (x;y)  supg (x;y) < 1: (2.25)
x2C¢ x2X
(b) Forall ,2 , there exists a sdDd 2 X satisfying

|£1f XlggQ (x;D)>0 and E”’ In |£1f )!ngg (X;Yy) <1:

(D-4) Forall 2 ,E” In*supsupg (x;Yo) <1.
2

x2X

(D-5) There existg 2 Z. such that for anyx 2 X andn  p, the function
7' L hYgni(x; X) is P ?-a.s. continuous on .

Remark 2.3.4. Under (D-1), for all 2 , the Markov kernel Q is -
irreducible, so that, using Remark 2.3.2,K-1) reduces to the existence of a
stationary distribution for Q .

Remark 2.3.5. Assumptions O-3), (D-4) and (D-5) and (2.6) in De ni-
tion 2.2.1 correspond to (Al), (A2) and (A3) in Douc and Moulines [2012],
where the blocks are of size=1.

Remark 2.3.6. Assumption (D-4) implies (D-2) up to a modi cation of
g (x;y) on -negligible set ofy 2 Y for all x 2 X. Indeed, (D-4) implies
that sup sup, g (x;Yp) < 1, P-a.s., and it can be shown that under-1),
;> = (X )isequivalentto forall 2

In these models, the kernel ,., introduced in De nition 2.2.11 writes
Z v 1
Q (Xk; dXk+1)9 (Xke1; Yis1)
) _ Xn 1 A k=0 . _ )
x:n (Yon; A) = Z w1 with Xo = x:

Q (Xk; dXk+1)9 (Xks1; Yi+1)

XM =0

The distribution ., (Yo.n; ) is usually referred to as thelter distribution .
Proposition 2.3.7 (below) can be derived from [Douc and Moulines, 2012,
Proposition 1]. For blocks of sizel, the initial distributions in Douc and
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Moulines [2012] are constrained to belong to the skt ?(D) of all probability
distributions de ned on (X; X) such that

Z
E’? In igf (dx)g (x;Y9)Q (x;D) <1, (2.26)

whereD 2 X is the set appearing in D-3). It turns out that under ( D-3)-(b),
all probability distributions  on (X; X) satisfy (2.26), so the constraint on
the initial distribution vanishes in our case.

Proposition 2.3.7. Assume (D-3) and (D-4). Then the following assertions
hold:

(i) Forany ; » 2 , there exists a probability kernel * ? on YZ X
such that for anyx 2 X,

P2 for all boundedf; ml'{n em (Y moif)= 7Yy oif) =1:

(i) Forany ; -»2 and probability measure on (X;X),

|I|{n ntintL hYO:n 1i 1y = ‘(, '7), P’-a.s,
n!

(; 2):==E”? In © (Y1 0;0Xe) hYii(Xo; X) : (2.27)

2.3.2 Equivalence-class Consistency

We can now state the main result on the consistency of the MLE for
HMMs.

Theorem 2.3.8. Assume that K-1) holds and de neP , P and the equiv-
alence clasq ] as in De nition 2.2.3. Moreover, suppose that( ;) is a
compact metric space and that Assumption$¥¢1) ( D-5) hold. Then, for any
probability measure on (X; X),

im ( “..;[-])=0; P’-as.

n!l
Proof. According to [Douc and Moulines, 2012, Theorem 2], 7! “(; »)
de ned by (2.27) is upper semi-continuous (so that , :=argmax , (; »)
IS non-empty) and moreover

im ( “..; 2)=0; P’-as.
nll
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The proof then follows from Theorem 2.2.7, provided that(; ) can be
expressed as in the statement of Theorem 2.2.7 and tha{-@) is satis ed.
First note that, for 6 -, the integral appearing within the logarithm in
(2.27) corresponds t@' ?(Y1jY1 o) with p' ? as de ned in (2.11).

Let F be a countable separating class of nhonnegative bounded functions
containing 1y, see [Parthasarathy, 2005, Theorem 6.6, Chapter 6] for the
existence of such a class. By Lemma 2.2.12, we che¢k?) by showing that
(K-3) is satis ed. Condition (D-2) and (2.23) imply that for all bounded
functions f , F; is a class of bounded functions, and this in turn implies<(-

3) by applying Proposition 2.3.7-(i) to allx. Thus, (K-2) is satis ed, and for

6 -, (; ») can be expressed as in the statement of Theorem 2.2.7. To
complete the proof, it only remains to consider the case where= , and to
show that "( »; ») can be written as

(2 2= E7 Inp/ (YY1 o) ; (2.28)

wherep,’( ] ) is the conditional density given in (2.12). According to [Barron,
1985, Theorem 1], we have

E? Inp’(YajY1 o) = rI]i!rln n tin 1L °hYon 111x; P’-as. (2.29)

On the other hand, it follows from Proposition 2.3.7-(ii) that for any 2
and any initial probability distribution  on (X; X),

im n tin L oy 1ilx = (; 2); Pr-as;
n!

where "(; ») is deterministic and is de ned by (2.27). In particular, for
=  andfor = », itholds that

nIlilm ntin ’L °hYoy, 1ilx = (2 »); P’-as. (2.30)

From (2.29) and (2.30) and by the uniqueness of the limit, (2.28) follows and
the proof is complete. ]

2.3.3 A Polynomially Ergodic Example

As an application of Theorem 2.3.8, we consider the HMM model de-
scribed in Example 2.1.1. In addition to the assumptions introduced in Ex-
ample 2.1.1, we assume thatj, and V, are independent and centered and
they both admit densities with respect to the Lebesgue measureover R,
denoted byr and h, respectively, and

(E-1) the densityr satis es:
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(a) r is continuous and positive ovief

(b) there exists > 2 such thatr (u)juj *! is bounded away frorh as
ju!l andfromOasuu!l

(E-2) the densityh satis es:
(@) h is continuous and positive over andlim;,;;  h(v) =0,

(b) there exist 2 [1; 1) (where is given in (E-1)) and;c >0
such thatE(jVoj ) < 1 andh(v) be 9V forallv2 R.

For example, a symmetric Pareto distribution with a parameter strictly larger
than 2 satis es (E-1) and provided that > 3, (E-2) holds with a centered
Gaussian distribution. The model is parameterized by = (m;a) 2 =
[m;m] [&3] where0<m < m anda < a In this model, the Markov
transition Q of f Xy : k 2 Z, g has a transition densityq with respect to
the dominating measure (dx) = (dx) + o(dx), which can be written as
follows: for all (x;x9 2 R?,

Z

q(x;x%=r(x° x+ m)1fx°> 0g+ r(uddu 1fx°=0g: (2.31)
1

Moreover, (2.1) implies

g (x;y) = h(y ax): (2.32)
Following Jarner and Roberts [2002], we have the following lemma.

Lemma 2.3.9. Assume E-1) and (E-2). For all 2 |, the Markov ker-

nel Q is not geometrically ergodic. MoreoverQ is polynomially ergodic

gnd its (unique) stationary distribution ,, dened on X = R., satises
;(dx)x <1 ,forall 2I[1; 1).

Proof. The proof of this lemma is postponed to Section 2.5.3 in Section 2.5.
O

Proposition 2.3.10. Consider the HMM of Example 2.1.1 under Assump-

tions (E-1) and (E-2). Then (K-1) holds and we de neP , P and the equiv-

alence clasg ] as in De nition 2.2.3. Moreover, for any probability measure
, the MLE A;n IS equivalence-class consistent, that is, for any 2

im ( “..;[-)=0; P’-as.

n!l

Proof. To apply Theorem 2.3.8, we need to checkkfl) and (D-1) ( D-5).
First observe that Assumption K-1) immediately follows from Remark 2.3.2
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and Lemma 2.3.9, and Assumptionsj-1) and (D-2) directly follow from the
positiveness of the density and the boundedness of the densitii, respec-
tively. Now, using (E-1)-(a), it can be easily shown that all compact sets
are local Doeblin sets and this in turn implies, vidimj;;  h(x) = 0, that
Assumption (D-3)-(a) is satis ed. We now check D-3)-(b). By (E-1)-(a), we
have for all compact set®, inffr(x® x+ m) : (x;x%m) 2 D? [m;m]g>
0, which by (2.31) implies

|£1f )!911; Q (x;D)> 0
To obtain (D-3)-(b), it thus remains to show
E’ In |£1f )!Q,‘;g (X;Yy) <1:

By (E-2)-(b), there exist positive constantsh and ¢ such thath(v) be 9V .
Plugging this into (2.32) yields
" #
E? In infinf g (X;Yo) E’? jing+ c jYo + asupjxj
2 x2D x2D
" #
= E’ jinh+ c jaXp+ Vo + asupjxj <1;
x2D

where the niteness follows from E-2)-(b) and Lemma 2.3.9. Finally, D-3)
is satis ed. (D-4) is checked by writing

E~’ In" supsupg (X;Yo)  In* suph(x) < 1 :
2 x2X x2R
To obtain (D-5), we show by induction om thatforall n 1, yo, 12 R"
and xo 2 R;, the function 7! L hygn 11 (Xo; X) is continuous on . The
case wheren = 1 is obvious sincel hyoi(Xo; X) = g (Xo;Yo) = h(yo  axo).
We next assume the induction hypothesis on and note that
Z

L hyoni(Xo; X) = g (Xo; Yo) (dx1)g (Xo; X)L hy1ni (X1; X):

The continuity of 7! g (Xo;Yo) follows from (2.32) and the continuity of
h. Similarly, the continuity of 7! q (Xo;X1) follows from (2.31) and the
continuity of r. Moreover, 7! L hy;.ni(X1; X) is continuous by the induction
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R
assumption. The continuity of 7! (dx1)q (Xo; X)L hys.ni(X1; X) then
follows from the %.ebesgue convergence theorem provided that

(dx1) supq (Xo; X2)L hypni(x; X) < 1 (2.33)

holds. Note further that by the expression ofy (xo; 1) given in (2.31) and
the tail assumption (E-lg-(b), we obtain for all xo 2 X,

(dxq) s;Jpq (Xo;X1) < 1:

Combining with that L hyy.i(x1;X)  (sup.g h(x))" yields (2.33). Finally,
we have D-5), and thus Theorem 2.3.8 holds undere1) and (E-2). O

2.4 Application to Observation-driven Models

Observation-driven models are a subclass of partially dominated and par-
tially observed Markov models.

We split our study of the observation-driven model into several parts.
Speci ¢ de nitions and notation are introduced in Section 2.4.1. Then we
provide su cient conditions that allow to apply our general result Theo-
rem 2.2.7, that is, »=[ »]. This is done in Section 2.4.2.

2.4.1 De nitions and Notation

Observation-driven models are formally de ned as follows.

De nition 2.4.1. Consider a partially observed and partially dominated
Markov model given in De nition 2.2.1 with Markov kernelsfK : 2
g. We say that this model is an observation-driven model if the kernéd

satis es
K ((xy);dxty) = o(@dx9G (x5 dy); (2.34)

where , denotes the Dirac mass at poinfa, G is a probability kernel on
XY andf(x;y) 7! ,(x) : 2 gisafamily of measurable functions from
(X Y;X Y )to (X;X). Moreover, in this context, we always assume that
(X;dx) is a complete separable metric space arXl denotes the associated
Borel - eld.

Note that a Markov chain f (Xy; Yx) : k 2 Z. g with probability kernel
given by (2.34) can be equivalently de ned by the following recursions:
Xkt =y, (Xk);

_ (2.35)
Yk+1JXO:k+1 ; YO:k G (X K+1 5 )
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2. Partially Observed Markov Models

and can be graphically represented as in Figure 2.3.

”””” » Xk = Xgat ——> Xga2 ——---=
| ya |
| 7’ |
| G .~ |
l 7 l
Yk Yk+1 Yk+2

Figure 2.3 Graphical representation of the observation-driven model.

The most celebrated example is the GARCH,; 1) process, wher& (X; )
is a centered (say Gaussian) distribution with variancex and (x) is an
a ne function of x and y2.

As a special case of De nition 2.2.1, for alk 2 X, G (x; ) is domi-
nated by some - nite measure on (Y;Y) and we denote byg (x; ) its

Radon Nikodym derivative, g (x;y) = 22.%(y). A dominated parametric
observation-driven model is thus de ned by the collectiof(g; ): 2 g
Moreover, (2.6) may be rewritten in this case: for al{x;y) 2 X Y and for
al 2

g (x;y) > O
Under (K-1), we assume that the model is well-speci ed, that is, the obser-
vation sample(Yy;:::;Y,) is distributed according toP ? for some unknown

function with respectto " is, under parameter ,

Y
Yin 7! g bk 10 (X)s Yk 5 (2.36)

k=1

where, for any vectory;p, = (y1;:::;Yp) 2 YP,  hyipi isthe X! X function

de ned as the successive composition of, , ., and

y21 * Yo'

w:]_pl = yp yp 1 Y1’ (2.37)

with the convention hys:i(x) = x for s > t. Then the corresponding
(conditional) MLE Ax;n of the parameter is de ned by

"en 2 argmaxLy, WYii; (2.38)
2
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where I
Y

LinYini = 1 tin g by 1 (X)ye - (2.39)
k=1

We will provide simple conditions for the consistency o’fx;n in the sense

that, with probability tending to one, for a well-chosenx, Ax;n belongs to a
neighborhood of the equivalence cla$s;] of -, as given by De nition 2.2.3.

2.4.2 ldenti ability

Let us consider the following assumptions.

(C-1) Forall 8 ,2 ,there existx 2 X and a measurable function’ ?hii
de ned onY# such that

im WY moi(X)=  ?HY: oi; P’-as. (2.40)

m!l

(C-2) Forall 2 andy2Y, the functionx 7! g (x;y) is continuous orX.
(C-3) Forall 2 andy 2, the functionx 7! (x) is continuous orX.
In observation-driven models, the kernel de ned in (2.7) reads

hy;y3 0 dx) = g (xGY9) | 0 (dx9)
g 00y o(dxd; (2.41)

and the probability kernel ., in De nition 2.2.11 reads, for allx 2 X and
Yon 2 Yn+11
xn(Yons )= hyon 1i(0) (2.42)

(the Dirac point mass at  hyp., 1i(X)). Using these expressions, we get the
following result which is a special case of Theorem 2.2.7.

Theorem 2.4.2. Assume that K-1) holds in the observation-driven model
setting and deneP , P and [ ] as in De nition 2.2.3. Suppose that As-
sumptions (C-1), (C-2) and (C-3) hold and de nep’ ?(j) by setting, for
Pr-ae. y; o2 Y%,
(

g hys oiiya if 6 -

. 7 (2.43)
P.(Y1jY1 0) as dened by (2.12) otherwise.

P "(Y1iY1 0) =

Then, for all ,2 , we have

argmaxE ? Inp’ ?(Y4jY1 o) =[ 2l (2.44)
2

34



2. Partially Observed Markov Models

Proof. We apply Theorem 2.2.7. Itis thus su cient to show that (C-1), (C-2)
and (C-3) implies (K-2) with

(Y1 00 )= oeny, g forallyy o2 Y% (2.45)
and that for 6 -, the conditional densityp’ ? de ned by (2.11) satis es
P 7(YiY1 0)=9 ' ThYy oijy ; P’-as. (2.46)

By Lemma 2.2.12, itis su cient to prove that Assumption (K-3) holds for
the kernel * ? de ned above. Denote byC(X) the set of continuous functions
on X, and by G,(X) the set of bounded functions inC(X). By [Parthasarathy,
2005, Theorem 6.6, Chapter 6], there is a countable and separating subclass
F of nonnegative functions inG,(X) such that 1x 2 F. Now, let us take
; »2 andf 2F. Then, by (C-2), (C-3) and (2.41), we have

Fr= x70 hyyAof): (viyd2vY2 € (X):

By (2.42), (C-1) and (2.45), we obtain K-3) with x chosen as in C-1).
To complete, we need to show (2.46). Note that (2.45) together
with (2.41) and the usual de nition (2.11) of p* ? yields

P (Yiyr 0)=9 y Chyr cdi oy
By Assumption (C-3) and the de nition of * ?hiin (C-1), we get (2.46). [

2.4.3 Examples

In the context of observation-driven time series, easy-to-check conditions
are derived in Douc et al. [2015] in order to establish the convergence of the
MLE Ax;n de ned by (2.38) to the maximizing set of the asymptotic normal-
ized log-likelihood. It turns out that the conditions of [Douc et al., 2015,
Theorem 1] also imply the conditions of Theorem 2.4.2. More precisely, the
assumptions (B-2) and (B-3) of [Douc et al., 2015, Theorem 1] are stronger
than (C-2) and (C-3) used in Theorem 2.4.2 above, and it is shown that the
assumptions of [Douc et al., 2015, Theorem 1] implyC{1) (see the proof
of Lemma 2 in Section 6.3 of Douc et al. [2015]). Moreover, the conditions
of Theorem 1 are shown to be satis ed in the context of Examples 2.1.2
and 2.1.3 (see [Douc et al., 2015, Theorem 3 and Theorem 4]), provided that

in (2.38) is a compact metric space such that:

1. in the case of Example 2.1.2, all=(!;a;b;r) 2 satisfyrb+ a< 1;

2. in the case of Example 2.1.3,all=( ;! ;A;b) 2 are such that the
spectral radius ofA + b T is strictly less than 1.
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Under these assumptions, we conclude that the MLE is equivalence-class
consistent for both examples, which up to our best knowledge had not been
proven so far.

2.5 Postponed Proofs

2.5.1 Proof of Eq. (2.10)

Let 2 . Recall thatin Remark 2.2.5, is de ned as the probability
kernel of the conditional distribution of X4 givenY; ., underP , that is, for
all A2 X,

(Yl :O;A) =P (XO 2 A J Yl :0); P -as.
Conditioning on Xo; Yo and using the de nition of  in (2.7), we get that,
foral A2X:B2Y andC2Y ¢,

P (Xl%A,le B:Y;, ;02 C)

E hYo; Y1l (Xo; A)1c (Y1 o) (dyi)
ZB
=E (Y1 w0;dXo) hYo;yii(Xo; A)1c(Y1 0) (dyr) @ (2.47)
X B
Let us denote
N Yy oyiA)= R (Y1 :oidxo) hYo;.Y1i_(X0J.A);
(Y1 0;dXo) hYo;yii(Xo; X)
which is always de ned since the denominator does not vanish by Re-
mark 2.2.2. With this notation, we deduce from (2.47) that

P (X12A|},Y12 B:Y; ;02 C)
Z Z

(Y1 05¥1;A) (Y1 0;0X0) hYo; yii(Xo; X)

N

- E
#
1c(Y1 o) (dys) :

This can be more compactly written as

P(X12AY12B;Y1 02C)=E " (Y1 0;y1;A)
#

1 (y1)lc(Y1 o) (Y1 0:dXo) hYoryii(Xo; X) (dy:i) : (2.48)
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Observe that (2.47) withA = X provides a way to writeE [g(Y1 -o; Y1)] for
g = 1lc g that can be extended to any nonnegative measurable functian
denedonY? Yas

E [9(Y1 05 Y1)]

= E a(Y1 0sy1) (Y1 .0;0Xe) hYp;yii(Xo; X) (dyy) :

Now, we observe that the right-hand side of (2.48) can be interpreted
as the right-hand side of the previous display withg(Y; o;y1) =

" (Y1 -0;¥1;A)16(y1)1c (Y1 o). Hence, we conclude that, for alA 2 X
andC2Y 4,

" #
P(X12AY12B;Y; 02C)=E " (Y1 0:Yi;A) e (Ye)1c (Y1 ) :

Notice that " (Y1 o;Y1;A) precisely is the probability kernel on
Y4 Y X appearing on the left-hand side of (2.10). The last display
implies that this probability kernel is the conditional distribution of X ; given
Y1 .1 under P, which completes the proof of (2.10).

2.5.2 Proof of Lemma 2.2.9

First observe that, by induction on n, having (2.15) for all n 2 is
equivalent to having, for alln 2,

P *(YenjY1 0)
=p "MajY1 o0 )P °(Mn Y1 i 2) p' *(Y1jY1 »); P’-a.s;

which, using that P ? is shift-invariant, is in turn equivalent to having that,
foralln 2

P (YY1 0)= P (YanjY1 )P’ *(YajY1 o); P’-as. (2.49)

Thus to conclude the proof, we only need to show that (2.49) holds for all
n 2. By De nition 2.2.8, we have, foralln 2andy; ., 2 Y% ,

P’ (YY1 )P’ *(Y1jY1 -0)
z y 1
= " (Y1 o dX)p P(YaY1 o) s Yier T (Xk; AXkan )
k=1
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Using (K-2) we now get, for alln 2,

P ?(YanjY1 )P (YY1 )
Z v 1
= (Y1 0;dXo) hYi; Yie1 1 (Xk; dXks1); P 7-a.s.
k=0

We conclude (2.49) by observing that, according to De nition 2.2.8, the
second line of the last display i’ ?(Y1njY1 o).

2.5.3 Proof of Lemma 2.3.9

Let 2 [1 1). Sincel + < and by (E-1)-(b), we obtain
E (U;)* < 1. Combining this with E[U, m] = m < 0, we may
apply [Jarner and Roberts, 2002, Proposition 5.1] so that the Markov kernel
Q is polynomially ergodic and thus admits a unique stationary distribution
1» Which is well-de ned onX = R, . Moreover, [Jarner and Roberts, 2002,
Proposition 5.1] also shows that there exist a nite intervalC = [0; X,] and
some constant®o; 9% (0;1 ) such that

QV V %W+ %Rl

whereV (x) = (1+ x)* andW(x) = (1+ x) . Applying [Meyn and Tweedie,
1993, Theorem 14.0.1] yields
Z
1 (dx)x W <1:

It remains to show that the kernelQ is not geometrically ergodic for all
2 and this will be done by contradiction.
Now suppose on the contrary that the kerne@Q is geometrically ergodic
for some 2 . Since the singletorf Og is an accessible atom (fo ), then
there exists some > 1 such that

K (Q)k(0;fog) ,(fOg) < 1:

k=0

Hence, the atomfQg is geometrically ergodic as de ned in [Meyn and
Tweedie, 1993, Section 15.1.3]. Applying [Meyn and Tweedie, 1993, The-
orem 15.1.5], then there exists some> 1 such that Eo[ °] < 1, where
o=inffn 1: X, =0gis the rstreturn time to fO0g.
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Recall that the i.i.d. sequencd Uy : k2 Z,gislinkedtofXy : k2 Z,g
through (2.1), and note that E;[ °]= E © | where we have set for all
u?2 R,

( o )
(W:=inf n 1: (U« m)<u
k=1
Now, denote
( »n )
~u):=inf n 1: (Uks1 m)<u
k=1

To arrive at the contradiction, itis nally su cient to show that forall > 1,
E © =1 . Actually, we will show that there exists a constant > 0 such
that

lim inf ug Cumo5 (2.50)

This will indeed imply E~ © =1 by writing

E ) E Z (0) 1f Ul mg = E 1+~( U+ m)lf Ul mg
1 1
= E r=Curmr(u)du = E U™ r(u)du; (2.51)

m m

where the last equality follows from 2 ~. Provided that (2.50) holds, the
right-hand side of (2.51) isin nite sincer(u) & u  tasu!1l by (E-1)-(b).
We now turn to the proof of (2.50). By Markov's inequality, we have for
any > 0,
v (urm P (u+m)>u): (2.52)

P
Now, let M,, = Ezl U, n 1, and note that for all nonnegativeu,
inf My um u+m inf (M km) u+m
1 k u 1 k u

=f ( u+m)>ug: (2.53)

Moreover, sincefUy : k 2 Z,g is i.i.d. and centered, Doob's maximal
inequality implies, for all ~> 0,

P inf Mg< ~ P sup jMyj> ~
1 k u 1k u

E ijucj bUCE[iulj].

~

(2.54)
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Now, pick > 0 suciently small so that E[jUjj]=(1 m) < 1. Observe

that for this ,~=(1 m)u mis positive foru su ciently large, so that
combining (2.54) with (2.53) and (2.52) yields
- iU
iminf YE (™ 1 fimsup Y CEIYIl _ 1T S
ull wr (I m)u m 1 m

This shows (2.50) and the proof is complete.
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Chapter 3

Consistency of the MLE for the
Class of Fully Dominated Markov
Chains

Summary. In this chapter, we investigate the consistency of the max-
imum likelihood estimator (MLE) for the class of fully dominated partially
observed Markov models (PMMs). Following the approach by Douc and
Moulines [2012] as to derive the convergence of the MLE to the minimiz-
ing set of the relative entropy rate in misspeci ed hidden Markov models
(HMMs), under mild su cient conditions, the convergence of the MLE for
this class is established. This result is obtained, regardless of whether or
not the model is well speci ed, as a byproduct of the convergence of the
block-type MLE of some likelihood kernel. Moreover, when the model is well
speci ed, following Douc et al. [2014], under these same conditions the iden-
ti ability is also obtained, establishing the equivalence-class consistency of
the MLE.

3.1 Introduction

Maximum likelihood method is widely used for identifying a parametric
model of a time series from a sample of observations. When the studied
model is well-speci ed, it is of prime interest to obtain the consistency of the
estimator, namely, its convergence to the true parameter, say, as the sam-
ple size of the observations goes to in nity. The proof toward this property
usually involves two important steps: 1) the maximum likelihood estimator
(MLE) converges to the maximizing set, say », of the asymptotic normal-
ized log-likelihood, and 2) this maximizing set - is indeed the singleton set
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3. Fully Dominated and Partially Observed Markov Models

of the true parameter ,. ldentifying the maximizing set - in the second
step is usually referred to as solving thé&enti ability problem. This task
can actually be split in two sub-problems, that is, 2.1) showing that any
parameter in - yields the same distribution for the observations as for the
true parameter, and 2.2) showing that for a su ciently large sample size, the
set of such parameters reduces te. Problem 2.2 can be hard to solve, for
example, for the models that belong to the class of hidden Markov models
(HMMs), see Allman et al. [2009], Gassiat et al. [2016] and the references
therein for recent advances in the case of HMMs. Nevertheless, Problem 2.1
can be handled independently, and with Step 1 above, this directly yields
that the MLE is consistent in a weakened sense that the estimator converges
to the set of all the parameters associated to the same distribution as the
one of the observed sample. The consistency of this type, according Leroux
[1992], is referred to agquivalence-class consistency

In chapter, we investigate problem in Step 1 and Problem 2.1 together,
that is, deriving the equivalence-class consistency of the MLE under a general
framework of time series models, namely, the class of fully dominated PMMs.
Many HMMs developed by Baum and coworkers (see Cappé et al. [2005] and
the inferences therein for a list of examples and a comprehensive account
on HMMs), Markov switching models (Hamilton [1988, 1989]) and many of
Markov chains in random environment introduced by Cogburn [1980] and
Bourgin and Cogburn [1981], for example, are members of this class (see also
Pieczynski [2003] or Ephraim and Mark [2012] for other variants).

Formulating the convergence of the MLE in Step 1 is carried out by
relying on the approach employed by Douc and Moulines [2012] as to derive
the convergence of the MLE to the minimizing set of the relative entropy
rate in misspecied HMMs. This approach consists in establishing a key
property, namely, the exponential forgetting of the Itering distribution, by
using coupling method originated by Kleptsyna and Veretennikov [2008] and
further re ned by Douc et al. [2009]. When the forgetting of the lItering
distribution is achieved, together with the assumption that the observation
process is stationary and ergodic, then the normalized log-likelihood can
be approximated by an appropriately de ned stationary version of it. Then
applying the results in classical ergodic theory, the latter is shown to converge
to a limit of functional of the parameter, say ( ), where is the parameter. It
then implies by using standard argument (see, for instance, Pfanzagl [1969])
that the MLE of the normalized log-likelihood converges almost surely to a
subset - of parameters at which the limit "( ) is maximized. Using this
same technique, meanwhile, we obtain an intermediary result showing that
the block-type MLE converges to a maximizing set in a similar sense as the
classical MLE, regardless of whether or not the models are well-speci ed.
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These results are shown under conditions similar to the conditions derived
in Douc and Moulines [2012].

To complete, we solve Problem 2.1 by applying the general result derived
in Douc et al. [2014] under the general framework of PMMs. Under these
same assumptions, the equivalence-class consistency of the MLE for the class
fully dominated PMMs is established.

The organization of this chapter is as follows. In Section 3.2, we establish
the convergence of the MLE for the block-type likelihood function. We then
apply this result in Section 3.3 to derive the consistency of the MLE for
the class of fully dominated PMMs. Finally, the postponed proofs and some
useful lemmas are gathered in Section 3.4.

3.2 Consistency of the Block-type Maximum
Likelihood Estimators

3.2.1 Notation and De nitions

Let us rst recall some notation pertaining to transition kernels in mea-
sure theory. LetL be a (possibly unnormalized) transition kernel de ned on
a measurable spac€S; S), that is,

forall s2 S, L(s;) is anonnegative measure ofS;S) and
forall A2S,s7!L(s;A)is a measurable function.

Let f be a (nonnegative) measurable function frorfs; X ) to (R; B(R)), where
B(R) denotes the Borel - eld on R, and let be a - nite positive measure
on (S;S). The transition kernel L acts on the functionf and the measure

via
Z

Lf (s)= L(s;f):=  L(s;ds)f (89;
Z
L(A)= L 1, := (dx)L(s; A):

Moreover, ifL; and L, are two transition kernels on(S; S), then the kernel
application L,L , also de nes a transition kernel on(S; S) and is given by, for
anys2 SandA 2SS,

z

Lila(s;A) :=  La(s;dsIL (s A):

Now consider the following setting. Let(X;X) and (Z;Z) be two Borel
spaces and denote a parameter space, which throughout this chapter is
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moreover assumed to be a compact metric space equipped with the metric
. Let ( ;F;P) be a probability space, and letZy : k 2 Zg be a stochastic
process taking values orfZ; Z), which is assumed to be observed. Within
this section, we assume the following assumption.
(L-1) The stochastic procesZ : k 2 Zg is stationary and ergodic qiZ;Z).
We denote byP; the image probability of P induced by the stationary pro-
cessfZ, : k 2 Zg on the product space(Z?;Z “) and denote byE; the
associated expectation. LetL hzi : (;z) 2 Zg be a family of transition
kernels on(X; X) such that for all 2 , probability measure on (X;X)
and nonnegative measurable functiof on X, the function z 7! L hzif is
measurable on(Z;Z). Here we should stress that this family of transition
kernels may or may not link to the observed stochastic proceggy : k 2 Zg.
Let us now de ne the following.

De nition 3.2.1  (Likelihood kernel). Let 2 ,n 2 Z, and zy, 1 2
Z". The (parametric) likelihood kernel with respect to the family fL hzi :
(;2)2 Zg of the samplez,., 1, denoted byL ,hzy., ii, is de ned as the

from the family fL hei : (;z) 2 Zg. Formally, for all (xg;A) 2 X X
Z
Lnh2on 1i(Xo;A) := L heoi(Xo;dX1) L hzn 1i(Xn 1;0Xn)1a(Xn): (3.1)

Note that by de nition, L,hzy, 1i also de nes a transition kernel on
(X;X). Moreover, forall 2 ,n;p2 Z, and zp.n+p 1 2 Z"*P, the identity:

I-n+phZO:n+p 1l = I—nhZO:n 1i|—phzn:n+p 1l

holds true. In what follows,P (X; X) will always denote the set of probability
measures or{X; X). For notational convenience, when there is no possibility
of confusion, the subscript will be dropped fromL,, which is de ned earlier
in (3.1).

Next, we always assume that forall 2 ,n 2 Z,, zp, 1 2 Z" and
probability measure 2 P (X; X)),

O0< L hZo;n 1i 1)( <1: (32)

The following de nition de nes the conditional version of the likelihood ker-
nel.

De nition 3.2.2. Let 2 . Forallm;n2 Z, withm<n, zyn., 2 Z" ™*,
2 P (X; X) and measurable functiorf from (X;X) to (R;B(R)), de ne

L leqmnif

L hepnjzmp 1if = m<p n: (3.3)
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De nition 3.2.3. Letn 2 Z,, the sequenc&y.,, 1 be observations realized
from the stochastic proces$sZy : k 2 Zg and let xo 2 X. The function

7! L,"Zo.n 1i(Xo; X) is called the(conditional) L-likelihood function with
respect to the familyfL hei : (;z) 2 Zg of the observationZ,., 1 given
Xo = Xo. We de ne the maximum L -likelihood estimator with respect to the
family fL hzi : (;z) 2 Zg associated to an arbitrary initial probability
distribution 2 P (X; X) by

", 2 argmax L, hZq, 4ilx: (3.4)
2

When is y, the Dirac mass at pointx 2 X, the maximum L-likelihood
estimator given in (3.4) will be simply denoted by, .

So far, we have not mentioned any speci c statistical model, except that
we have introduced the family of transition kernel$L rzi : (;z) 2 Zg.
To have some insights on how these kernels may arise in speci c situations,
consider the following examples.

Example 3.2.4. Consider a family of HMMsf (Xy; Yx) : k2 Z.gon (X
Y; XY ), whichis parametrizedby 2 . Foreach 2 ,the distribution of
the HMM is speci ed by the transition kernel Q of the Markov chainf Xy :

k 2 Z.g and by the conditional probability density g of the observation
Yk given the hidden stateXy, which is also known as the likelihood of the
obveration (see De nition 2.3.1 in Section 2.3 of Chapter 2). The dynamic
of hidden Markov process can be depicted as in Figure 3.1.

Q Q

******* » Xk — Xsr — Xk —----2

g l g l g l
Yk Yis1 Yi+2

Figure 3.1 Graphical representation of the hidden Markov Model by di-
rected arrows.

For any probability measure on (X;X) and positive integerr, the like-
lihood of the observationsyy, ; 2 Y' associated to , denoted byp (Yor 1),

can be expressed by
Z

P (Yor 1) = (dx0)g (Xo; Y0)Q (Xo;dX1) g (Xr 1;Yr 1)Q (Xr 1;dX;):
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Now, if wesetZ:=Y",Z =Y " Zo:= Yo s, andforall 2 ,x92 X
and A 2 X,

Z yY 1 I

L hZoi (Xo; A) := g (Xk; Y)Q (Xk;dxks1)  L1a(Xr);
k=0

we then have that L hZgilyx is indeed the likelihood of the observations
Yo 1 associated to the initial probability measure 2 P (X;X). Moreover,
foralln2 Z,,if we setZ; := Yj (i+1yr 1,1 210;:::;n 1g, the conditional
likelihood kernel de ned in (3.1) is given by

Z w1

L hzO:n 1i(XO;A) = g (Xk;Yk)Q (Xk;dxk+1) 1A(an):
k=0

This implies L hWZgn 111x = p (Yonr 1), Which is referred to as the block
likelihood function with block size equal tar in Douc and Moulines [2012]. In
this case, the maximumL -likelihood estimator ’\L;n coincides with the block

MLE A;m , @ maximizer ofp (Yonr 1) On . It turns out that, when r =1,
the class of HMMs which is specied byf(Q ;g) : 2 g, can also be
speci ed by the family fL hei : (;z) 2 Zg.

Example 3.2.5. Letf(Xy;Yx) : k2 Z, gbe aparametric family of bivariate
Markov chains on(X Y;X Y ), whose parameters are2 . Asin HMM
case, we assume that only the processy : k 2 Z.,g is observed. To
formulate the model, we moreover suppose that for each2 , the process
fXx : k2 Z,gis aMarkov chain with transition kernelQ ; and conditionally
on the past variables up to timek 1 with k 1, the law of the observation
Yx has densityg ((Xk 1;Yk 1); ) with respect to a xed - nite positive
measure on (Y;Y). The whole chain can then be fully speci ed by the pair
(Q ;g ). By this de nition, it is straightforward that for each 2 and for
alk OandB 2Y, we have
Z

P (Yk+1 2 B You; Xo1 ) = ] g (Xk;Yi)ry) (dy): (3.5)

Following the terminology of Cogburn [1980] and Bourgin and Cogburn
[1981], (3.5) suggests that the bivariate chaifi(Xy;Yx) : k 2 Z.gis a
Markov chain in random environment with the Markov environment process

f Xk : k2 Z,g. Markov chains in random environment have been studied ex-
tensively by Cogburn [1980], Bourgin and Cogburn [1981], Nawrotzki [1982],
Cogburn [1984, 1990, 1991], Orey [1991] in the case of countable spaces and
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3. Fully Dominated and Partially Observed Markov Models

by Van Handel [2009] in the case of general state spaces. Random walk in
random environment models introduced by Chernov [1967] are also embedded
in this class (see Comets et al. [2014a] and Comets et al. [2014b] for paramet-
ric versions of it). The dynamic of this bivariate process can be depicted as
in Figure 3.2. However, according to Nawrotzki [1982], we should be aware
that not all Markov chains in random environment are themselves Markov
chains; and thus Figure 3.2 depicts the case where the bivariate processes are
Markov only.

”””” > Xk —’Xk+1 —>Xk+2 Tt

LN e\

******* > Yk —— Yier — Ya2 -

Figure 3.2 Graphical representation of the Markov chain in random envi-
ronment

Forany 2 P(X;X) andr 2 Z,, the likelihood of the observations
Yor 2 Y'" associated to , denoted byp YO(Yl;r), is de ned by

Z rY 1 I

p o, (Yur)= (dXo) g ((Xk; Yi); Yie1) Q (X5 dXke1)
k=0

By setting Z := Y™™, Z ==Y ("D Zy:= Yy, and forall 2 , X2 X

and A 2 X,
Z |Y]_ |

L hZoi (Xo; A) = g ((Xk; Yk): Y1) Q (Xi; dXir1)  La(Xr);
k=0

we then see that L hzZyilx is indeed the likelihood of the observation¥.,
associated to the probability measure . Moreover, for any integem > 0, by
setting Z;j := Yi i+, 1 210;:::;n 19, the conditional likelihood kernel
de ned in (3.1) writes

Z
g 1
L WZon 1i(Xo; A) = 9 ((Xk; Yi)s Yie1) Q (X OX1)  1a(Xnr):
k=0

This yields that L hzZg, 1ilx = p YO(Yl;m), which, as in Example 3.2.4,
may be referred to as the block likelihood function with block size equal to
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3. Fully Dominated and Partially Observed Markov Models

r. In this case, the maximumL-likelihood estimator "L;n coincides with the
block MLE ".,, 2 argmax, p v, (Yae).

Example 3.2.6. Consider a parametrized family of Markov switching mod-
elsf(Xk;Yk) : k2 Zigon (X Y;X Y ) with parameters 2 . Asin
HMM case, we assume that only the procedsyy : k 2 Z.g is observed.
For each 2 , the distribution of the Markov switching model is speci ed
by the transition kernel Q of the Markov chainfXy : k 2 Z.g and by
the conditional probability density g of the observationYy given the hidden
state Xy and the most recent past observatior, ; (g is also known as
the likelihood of the observation). The Markov switching model can the be
speci ed by the pair (Q ;g ) and can be graphically represented as in Fig-
ure 3.3. More formally, the bivariate stochastic procesyXy;Yx) : k2 Z. g
is a parametric Markov switching model if forall 2 ,k2 Z,,A2X and
B 2Y, we have

P (Xks1:Yks1) 2A B YO:k;%(O:k)
= BQ(Xk;dX)g ((Yi;x);y) (dy): (3.6)

A

Q Q

******* » Xk — Xge1r — Xy —-----

ool

******* » Yo — Yo — Yiap ----- -

Figure 3.3 Graphical representation of the Markov switching model.

Markov switching models have been introduced by Hamilton [1988, 1989]
and further considered by many authors including Hamilton [1996], Tim-
mermann [2000], Fong and See [2002], Yoshida et al. [2005], Hamilton
[2008], Bauwens et al. [2010], Ailliot and Monbet [2012]; see also Frihwirth-
Schnatter [2006] for a comprehensive account. Note that if the transition
kernel Q in (3.6) is also allowed to depend ofYy, that is Q is no longer a
Markov kernel, the resulting model is callethon-homogeneous Markov switch-
ing, see Ailliot and Pene [2013] and Ailliot et al. [2015].

Forany 2 P(X;X) andr 2 Z,, the likelihood of the observations
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3. Fully Dominated and Partially Observed Markov Models

Yor 2 Y' associated to , denoted byp YO(Ylir)' is de ned by

Z rY 1 I

Py, (Y1) = (dXo) Q (Xi; dXk+1)g (ks Xk+1); Yie1)
k=0
By setting Z:= Y"1, Z =Y "™, Zy:= Yo,,and forall 2 ,x¢2 Xand
A2X,
Z w1 !
L hZpi(Xo;A) := Q (Xi; dXik+1)g ((Vi; Xx+1); Yis1)  La(Xr);
k=0

we then see that L i1y is indeed the likelihood of the observation¥.,

associated to . Moreover, for any integern > 0, if setting Z; := Y i+1)r,
i 2f0;:::;n 1g, the conditional likelihood kernel de ned in (3.1) writes
Z o1 !
L Won 1i(X0; A) = Q (Xi;dXk+1)g (Vs Xk+1)s Yie1)  L1a(Xnr):
k=0

This yields that L hZgp, 1i1lx = p yo(Ylinr)’ which, as in Example 3.2.4,
may be referred to as the block likelihood function with block size equal to
r. In this case, the maximumL-likelihood estimator ™%, coincides with the

block MLE A;nr 2 argmax, p YO(Yl;n,). By these examples, the maxi-
mum L -likelihood estimator ’\L;n , In certain circumstances, can be referred
to as the block MLE.

The purpose of this present section is to investigate the asymptotic

properties of the maximumL-likelihood estimator ’\L;n of the L-likelihood

L hZon 1ilx. More precisely, we intend to establish that under some
certain conditions there exists a non-empty subset such that

( AL;n ; 5), the distance between’\L;n and 5, convergesP;-a.s. to zero
asn!1l . Asillustrated by the above examples, the maximuni.-likelihood
estimator is closely related to the classical MLE and thus studying the asymp-
totic properties of the maximumL -likelihood estimator can be bene cial for
the case of the MLE. Our proof that will proceed follows similar lines of
Douc and Moulines [2012] as to obtain the same result when the family
fLhei @ (;2) 2 Zg corresponds to the class of HMMs (however, we
should keep in mind that this family is far more general than that). As for
the case of classical likelihood, the proof commonly involves two main steps.
The rst step consists in establishing the limit of theL -likelihood, that is to
show that there exists a functionalL( ) in 2 such thatforall 2

Iilm ntlin L WZen1lx=L(); Pz-as. (3.7)
n!

49



3. Fully Dominated and Partially Observed Markov Models

The second step consists in proving that, when the rst step is accomplished,
asn!1 ,the maximizer of 7! L hZq, 1ilx convergesPz-a.s. to the
maximizing set 5 =argmax , L( ). Letus now brie y describe how these
two essential steps are established herein. In formulating the rst step, we
rst note that from (3.3) of De nition 3.2.2, we can write

X 1

n l|n L hZ();n 1i 1y =n ! In L thjZo;k 1i 1x:
k=0

Next, we need to show that there exists & -integrable function , : Z% !
R such that L hZyjZox 1i1x ~-(Z1 « 1) convergesP;-a.s. to zero as
k11 . This result can be obtained by establishing the exponential for-
getting of the initial distribution of the conditional L-likelihood, and to this
end, we employ the coupling technique originally introduced in Kleptsyna
and Veretennikov [2008] and enriched by Douc et al. [2009]. Then since the
processfZy : k 2 Zg is stationary and ergodic, the Birkho ergodic theo-
rem applies, and (3.7) follows withL( )= Ez In ,(Z1 .) , provided that
the latter quantity is nite (the approach used in this stage was originated
by Baum and Petrie [1966] for nite state-space HMMs, and later extended
by Douc et al. [2004] for general state-space HMMs, but under stringent
technical conditions). When the rst step is achieved, we apply Pfanzagl
[1969] to obtain the second step, provided that we can show that7! L( )
IS semi-continuous.

The following assumptions can be used to yield the convergence of the
maximum L -likelihood estimator’\L;n of the L-likelihood L hZy, 1ilx. Be-
fore listing these assumptions, let us invoke the following useful de nition.

De nition 3.2.7 (L-Local Doeblin set) Let C 2 X be a nonempty subset
of X. The setC is called aL-local Doeblin setwith respect to the family
fL hei @ (;2) 2 Zg if there exist positive functions - : Z! Ry,
¢ :Z! R., afamily of probability measuresf .tei : (;z) 2 Zgon
(X; X)) and a family of positive functionsf' -tei : (;z) 2 Zg from X to
R such that for any ( ;z) 2 Z, hei(C)=1, and for any nonnegative
and measurable functiorf : (X;X)! (R;B(R)) andx 2 C,

it ohei(x) chei(lef) oL hei(lef)  Ehei chwi(x) ohei(lcf):
(3.8)

Remark 3.2.8. The L-Local Doeblin set in De nition 3.2.7 is similar to

the so-calledr-local Doeblin setde ned in [Douc and Moulines, 2012, De ni-

tion 1], except that the former set is de ned with respect to the general family
of kernelsfL hzi : (;z) 2 Zg, whereas the latter set is de ned with

respect to the speci c family of transition kernels that specify the HMMs.
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(L-2) There exists a sdf 2 Z such that the following hold.

(i) For all > O there exists d -local Doeblin se€C 2 X such that for
all 2 andz2K,

sup xL hzily sup 4L hzily < 1 (3.9)
x2C¢ x2 X
and -
[
inf £— > 0 3.10
Cu chei ( )

where the functions; and . are given in De nition 3.2.7.
(L-3) There exists a sdd 2 X such that

E, In infinfL hZi(x:D) <1: (3.11)
2 x2D

(L-4) We have

E; In" supsupL hZgi(x;X) < 1: (3.12)
2 x2X

(L-5) There exists a positive integprsuch that for alln p andx 2 X, the
function 7! L hzZq, 1i(X;X) is Pz-a.s. continuous on .

De nition 3.2.9. Let A 2 X be a measurable subset of. The collection
M " (A) denotes the set of all probability distributions on(X; X) that do not
vanish onA, thatis, if 2 P (X;X) such that (A)> 0,then 2M *(A).

3.2.2 Forgetting of Initial Distribution for the Condi-
tional L-likelihood

For all integern > 0, zp, 1 2 Z", ; °2 P(X;X) and nonnegative
measurable functiond and h on (X; X), de ne

: OhZO:n 1i(f;h)
::( L hZO:n llf)( q— hZO:n 1i h) ( L hZO:n 1i h)( q— hZO:n lif): (313)

Let X:= X X, X =X X anddenoteL kernel on(X;X) such that for all
(x;x92 X, A A2 X,

L((x;x); A AY= L(x;A)L(XSAY;
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wherelL is a kernel onX X . For and °two probability measures on
(X; X) and f; h real-valued measurable functions ofX; X ), de ne for A 2 X
and x = (x;x9 2 X,

z

( A) := (dx) AdxY1L,(x;x% and (f  h)(x):= f(x)h(x9:
With above notation we can rewrite (3.13) as:
: OhZO:n 1i(f;h)
Z v 1
= ( 9(dxo) L lmi(xi;dxiva) (F h h f)(xn):

i=0

For a 2 R, let bac denote the integer part ofa and for any real-valued
function f on X, let jfj; := supfif(x)] : x 2 Xg. Following Douc and
Moulines [2012], we have the following results.

Proposition 3.2.10. Assume that (-1) and (L-2) hold. LetO < *
1. Then for any > O, there exists 2 (0;1) such that for all positive integer
n and zq,., 1 2 Z" satisfying

X1
n! 1«(z) max 1 1+ T)=2 (3.14)
i=0
forany 2 ( ; ™), nonnegative bounded function§ and h, probability
measures and %on (X;X)and 2

: OhZO:n li(f;h)

n )C[( L .hZO:n 1|f)( OL hZO:n#li h)+( L hZO:n 1i h)( OL hZO:n 1|f)]
v 1
+2 (" e L hgi(;X) i ifj1jhjy : (3.15)
i=0
Proof. The proof is identical to [Douc and Moulines, 2012, Proposition 5]
and is thus omitted. O

Proposition 3.2.11. Assume that (-1) ( L-4) hold. Then there exist a con-
stant 2 (0;1) and a Pz-a.s. nite integer-valued random variableT such
thatforall ; °2M *(D) and bounded measurable functidn 1 on (X;X),
P;-a.s.,

supsupsup ™K In L WZyZ mk 1if In L WZGZ i aif <1
2 k Tm O
(3.16)
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supsupsup ™K In L WZZ mk 1if I L WZGZ m o1k 1if <1
2 k Tm O

(3.17)
supsup M In L hZgZ . 1if  In L hZgjZ o 1 4if <1: (3.18)

2 m O
Proof. See Section 3.4.1. O]

As a consequence of Proposition 3.2.11, we have the following result.

Corollary 3.2.12. Assume that (-1) ( L-4) hold. Then for all 2 , there
exists a nonnegative measure kerne} onZ# X such that for any probabil-
ity measure 2 M *(D) and nonnegative and bounded measurable function
f on (X; X),

||£n L hZOJZ m: 1|f = thl ;oif; P, -a.s. (319)
m!

Proof. Now let 2 . Results (3.16) and (3.18) of Proposition 3.2.11 ensure
that for each bounded measurable functiof 1 and forall 2 M (D),
there exists a nonnegative measurable functiom; o 7! ,hez; ,if on
Z? ;Z 4 satisfying (3.19). This result propagates to any nonnegative
and bounded measurable functiom on (X;X), by settingf = h+1 and
noting that (3.19) also holds wherf = 1x. Observe that each limit , does
not depend on the initial probability distribution 2 M * (D). Furthermore,
sincef L hZogjZ . 11 : m 2 Z,gis a sequence of nite measures (iX; X)
and (3.19) holds for all nonnegative and bounded measurable functién
then by Vitali-Hahn-Saks theorem (see Brooks [1969]),hZ; i denes a
(nonnegative) measure orfX; X). O

In what follows, for notational convenience, the measure,hZ ; .o will
be q5noted byL hZojZ, - 41, and for all integern > 0, the successive prod-
uct “ 1o shZ1 «ilx will be denoted byl hZo, 1jZ1 . 1ilx.

3.2.3 Convergence of the Maximum  L-likelihood Esti-
mator

We now state the convergence result of the maximuin-likelihood esti-
mator as follows.

Proposition 3.2.13. Assume that (-1) ( L-4) hold. Then

(i) Forall 2
E, InL hZonl . 1i1x <1: (320)
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(i) Forall 2M *(D), Pz-a.s.,

limsupsupn ' In L WZo, 1ilx InL Won 1jZ1 . 1ilx =0:
n'l 2

(i) Assume moreover that (L-5) holds. Then the function
7V Ez InL WZojZq . 1ilx
is Pz-a.s. upper semi-continuous.
Proof. For convenience, the proof is postponed to Section 3.4.2. m

Theorem 3.2.14. Assume that (-1) ( L-5) hold. Assume in addition that
forall 2M *(D), Pz-a.s.,

limsupsupn Y In L hZgn 1ilx In L WZoy, 1ilx =0;
n!l 2
where for alln 2 Z,, zgp 1 2 Z" and 2 , L hzgy 11 iS @ nonnegative

kernel onX X and such that 7! L hzg, 1ilx IS continuous. Then for
all 2M " (D),

lim ;5 =0; Pz-as, (3.21)
where
"2 argzmaxn YIn L hZgn 1ilx (3.22)
and
S:=argmaxEz InL hZozZ, . 4ily : (3.23)
2

Proof. First note that from the compactness of and the semi-continuity on
of the objective functions in (3.22) and (3.23), the corresponding argmax’s

are well de ned. The rest of the proof directly follows from triangular in-

equality, from Proposition 3.2.13 and from Pfanzagl [1969]. ]

Result below is a direct implication of Theorem 3.2.14.

Corollary 3.2.15. Assume that (-1) ( L-5) hold. Then forall 2M (D),
Pz -a.s.,

lim s 5)=0; Pras;

where AL;n is the maximumL-likelihood estimator de ned in (3.4).
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3.3 Consistency of the MLE for Fully Domi-
nated Markov Models

In this section, we treat the consistency property of the MLE for a large
subclass of PMMs discussed in Chapter 2, namely the class of fully-dominated
PMMs, under the framework of the well-speci ed models. This class contains
many models of interest, for instance HMMs, Markov switching models and
many Markov chain in random environment models, whose distributional
laws are dominated by some xed - nite measures. The main result of
this present section is obtained as a combination of convergence result of
the maximum L-likelihood estimator derived in Section 3.2 above and the
identi ability result obtained in Chapter 2.

For self-contained representation, we should recall some notation and set-
tings already introduced in Chapter 2. Now, let(X;X) and (Y;Y) be two
Borel spaces, that is, measurable spaces that are isomorphic to a Borel sub-
set of [0;1]. Let be a set of parameter, and as in Section 3.2, this set is
assumed to be a compact metric space equipped with a metric Consider
a statistical model determined by a class of Markov kernef& : 2 gon
(X Y) (XY ). Wedenote byP the probability (and by E the correspond-
ing expectation) induced on(X Y)?%* by a Markov chainf (X,;Yy) : k2 Z. g
with transition kernel K and initial distribution onX Y. Inthe case where

is a Dirac mass at(x;y) we will simply write P,.,,. For partially-observed
second component is realized, the transition kern& can be conveniently
written as

K ((x;y); dx%y9) = Q ((x;y); dx)G ((x;y;x9; dyd; (3.24)

whereQ and G are probability kernelson(X Y) X and(X Y X) VY ,

respectively. In this section, we investigate a particular case where bot

and G are absolutely continuous with respect to some xed nonnegative
- nite measures, namely the case where the model is fully-dominated.

De nition 3.3.1. We say that the Markov modelfK : 2 g of the
form (3.24) is a fully-dominated and partially observed Markov model if
there exist some nonnegative - nite measures on X and onY such that
for all (x;y);(x%y9) 2 X Y,

Q ((xy);dx) =g ((xy);x) (dx9 (3.25)

and
G ((%y;x%dy) =g (xy;x%y) (dy9; (3.26)

55



3. Fully Dominated and Partially Observed Markov Models

respectively, where the conditional density functiong] and g in addition
satisfy
q((xy)x)>0; (3.27)
g (xy:x%:y) >0 (3.28)
for all (x;y);(x%y9 2 X .

It follows from (3.25) and (3.26) that for all (x;y) 2 X Y, A 2 X and

B2Y, ~
K (CayyA B)= hy;y3 (6 A) (dy9;
where, for ally;y°2 Y, hy;y4 is a kernel de ned on(X; X) by
s y3 0 dx9 = g (6y):x)g (y:xy9) (dxO: (3.29)

Note that in the partially dominated setting we do not require (3.25)
and (3.27). The fully dominated PMM can be grahically represented as in
Figure 3.4.

Nt » X — Xsr —— X - :
\\\ //1 q q \\\ ///
g g 9 RN

feeeee- ' Yo — Yo — Yiaz ------ ;

Figure 3.4 Graphical representation of the fully dominated and partially
observed bivariate Markov chain.

In what follows, we will restrict our consideration on the case wherg is
a complete and separable metric space equipped with a metdg and X is
the associated Borel - eld.

Remark 3.3.2. In this setting, for all 2 and positive integers 1, the
kernel (K )®is"' -irreducible with ' =

In well-speci ed models, it is assumed that the observationg,., are gen-
erated from a proces$(Xy; Y«) : k 2 Z, g, which follows the distribution P ’
associated to an unknown parameter, 2 and an unknown initial distri-
bution - (usually, - is such that, underP?, Yy : k2 Z, gis a stationary
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sequence). To form a consistent estimate o on the basis of the observa-
tions Y., only, i.e., without access to the hidden procedsXy : k2 Z. g, we
de ne the maximum likelihood estimator (MLE) ", by

"o 2 argmaxn *Inp (Yin); (3.30)
2

wherep (Yi1.n) is the (conditional) likelihood function of the observationsy;.,
under parameter 2  with some arbitrary initial distribution on X Y,
that is,

Zyl

P (Yin) := Q ((Xi;i); dXiv1)g ((Xi;Yis Xi+1); Vie1) (dXodyo)
7 =0 (3.31)

= Wod/ll h)/l,y2| Wn ]_;yni (Xo,X) (dXOdyo):

This corresponds to the conditional density ofY;., given (Xg; Yp) with the
latter integrated according to initial probability distribution . In practice
is often taken to be a Dirac mass atx;y) with x arbitrarily chosen andy
equal to the observationY, when it is available. Yet for sake of generality, in
our study, the initial probability  will be the one of the form vo» Where
IS some probability distribution on (X; X) and v, is the Dirac mass at the
observationYy. We then refer top Yo (Y1.n) as the conditional likelihood of
the observationsY,.,, associated to the probability measure .
Condition (3.28) guarantees that forall 2 ,n2 Z,, yon 2 Y™ and
2P(X;X), p YO(yl:n) given in (3.31) is positive. Now, de ne

P, (Vi)

—2  1<m n: 3.32
p yo(yl:m 1) ( )

p Yo (ym:njylzm 1) =

The term in left-hand side of (3.32) can be interpreted as the conditional
density of the the observationy, ., givenYo-m 1 = Yom 1 andXy . Forall
integers 1, yos 2 YS™' and 2 , we de ne the (possibly unnormalized)
kernel ™ hyosi on X X by, for all (xo;A) 2 X X ,
Z 5( 1
" byosi(Xo; A) = Ta(Xs)  Q ((Xi;Yi)idXiea) @ ((Xi;Yis Xiva); Yivn) :
Xs .

i=0
(3.33)
Note that for all 2 , the kernel” is nonnegative and from (3.31), for all
integers 1, yos 2 YS* and 2 P (X;X), we have
Wo;si 1)( =p vo (yl:s) > 0 (334)
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Analogously to (3.32), we moreover dene, forall 2 ,n2 Z,, yon 2
Y+t 2 P(X;X) and real-valued measurable functiofi on (X;X),

h5/O:nif .
WO:m li 1X ’

To complete our setting, the following assumption is needed and is sup-
posed to hold throughout.

WmniYom 1if = 1<m n: (3.35)

(F-1) Forall 2 ,the transition kernek admits a unique invariant probability
distribution

Remark 3.3.3. Assumption (F-1) can be equivalently stated as: for all
positive integerr and 2 , the transition kernel (K )" admits a unique
invariant probability distribution. Moreover, the invariant probability distri-
butions for K and (K )" are the same. To see this, rst suppose that~1)
holds. It then implies that for any positive integerr, is an invariant distri-
bution for (K )". By Remark 3.3.2, the skeleto(K )" is also' -irreducible
and by [Meyn and Tweedie, 2009, Theorem 10.0.1 and Proposition 10.1.1],
the skeleton(K )" admits a unique invariant . To see the converse, note
that for eﬁch r, if ~ is the invariant probability dlstrlbutlon for (K )", then

=r1 ~ (K )® de nes an invariant for K . The uniqueness of for
K follows from the uniqueness of for (K )".

Finally, let us recall (from Chapter 2) the following notation and de nition
regarding stationary distributions.

De nition 3.3.4. Under Assumption (F-1), we denote by , and , the
marginal distributions of on X and Y, respectively, and byP and P the
probability distributions de ned respectively as follows.

a) P denotes the extension oP on the whole line(X Y)Z%.

b) P is the corresponding projection on the component?.

We also use the symbolE and E to denote the expectations corresponding

to P and P, respectively. Moreover, for all; °2 , we write Oif and

only if P = P °. This de nes an equivalence relation on the parameter set
and the corresponding equivalence class ofs denoted by[ ]:= f °2

b.

The equivalence relationship was introduced by Leroux [1992] as an
alternative to the classical identi ability condition.

Assumption (F-1) directly implies that the processfYy : k 2 Zg is sta-
tionary and ergodic; however, whether it also implies that Y+, : k2 Zg,
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r 2 Z,,is a stationary and ergodic process is not obvious though this may be
the case. Indeed, this result can be induced from the following construction.
Let for all integer k, Wy = (Xi;Yx) and let W := X Y and W :=

X Y . Now consider a stochastic proce$®V, : k2 Z,gon W*:w (+D)
with Wy = Wy (k+1)r. Obviously, fW, : k 2 Z,g is a Markov chain on
W+t.w (1) with transition kernel denoted by K . The Markov kernel

K can be explicitly expressed as, for al = wy, 2 W't and Ag; A 2
W,
Z
K (w; A A= Wy (de) K (Wg; de) K (W? 1;dW?)
ZA() Ay
= 1A0(WF)T (Wr;der)
A1 Ar
= Lao(We)T (Wi s Ay A); (3.36)

whereT is akernelonW W " de ned by, for all wo 2 W andAy;:::;A; 2
W,
Z
T (wo; Aq A= K (wp;dwy) K (w, 1;dw): (3.37)

A1 Ar

Lemma 3.3.5 stated below can be instrumental for obtaining stationary and
ergodic solutions for the sequendeYy+r : k 2 Zg. Remarkably, this result
does not rely on the' -irreducibility assumption.

Lemma 3.3.5. The kernelK admits a (unique) invariant distribution on
wrtt:w (D if and only if the kernel(K )" admits a (unique) invariant
distribution on (W;W).

Proof. The proof is postponed to Section 3.4.3 for convenience. ]

Let us now state the additional assumptions yielding the consistency of
the MLE de ned by (3.30).

(F-2) Assumption (F-1) holds. Moreover, for al2 , there exist a nonnega-
tive integerr 1 and asetk 2 Y (*Y such that, denoting := Y"**,
and fork 2 Z,

Zi = Yirkyr 225 Zi = Yy r 2 Z;

each of the following holds.
(i) P?(Zo 2 K) > 2=3.
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(i) For all > O there exists d -local Doeblin se€ 2 X with respect
to the familyf" tzig(,). 7 (dened in De nition 3.2.7 with"
de ned by (3.33)) such that forall 2 andz 2 K,

sup " hei(x; X) sup” hzi(x;X) < 1 (3.38)
x2C¢ x2X
and i
inf <2 > (3.39)
z2K c |

where the functions; and . are given in De nition 3.2.7.
(iif) There exists a seD 2 X such that

E? In inf inf > HZei(x;D) <1 : (3.40)
2 x2D
(F-3) We have,
" #
E? In"sup sup g ((X;Yo;x9%;Y:) < 1: (3.41)
2 (xx92x2

(F-4) For all , 2 , there exists a positive integprsuch that for alln p and
X 2 X, the function 7! ° hYp.,i(X; X) is P ?-a.s. continuous on .

Remark 3.3.6. Note that these assumptions can be used to derive the con-
vergence of the MLE under the misspeci ed settings, except that inF(2),
rather than assuming that Assumption F-1) holds, we should instead assume,
with the samer, that the observed process$ Yix+r : k 2 Zg is stationary
and ergodic. This in turn extends the result of Douc and Moulines [2012]
beyond the HMMs.
Remark 3.3.7. To obtain (F-2)(iii), one may need to check that

() E? In inf, infyop Q ((X;Yo);D) <1 and

(i) E’ In inf, infyxo2p20 (X Yo;x9); Y1) < 1.
Remark 3.3.8. Assumption (F-4) is usually obtained as a consequence of

the continuity of 7! q and 7! g via classical techniques to deal with
integrals involving some parameters.

For the integerr and the setD 2 X de nedin (F-2), letM ?(D;r) be the
subset of P (X; X), the set of all probability measures or{X; X), satisfying

M *(D;r) = 2P(X;X):

E? In igf " hYgsilp <1 ;foralls2fl;:::;rg : (3.42)
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Now we have all the necessary tools for deriving the results pertaining to
the consistency of the MLE for fully dominated PMMs. These results are
stated as follows.

Proposition 3.3.9. Assume £-1) ( F-3). Then

() Forall 2 and 2 M ?(D;r), there exists a kernel - hji on
Y% X such that for all nonnegative and bounded measurable function

f on (X; X),
h [
P Iign T hY3jY moif = 70 PhYgjYy oif =1 (3.43)
m!
Moreover,
E? In™ ?hYlel ;oif <1:
(i) Forall 2 , 2M ?(D;r) and nonnegative and bounded measurable

function f on (X; X),

lim n In " hYgnif = E? In ¢ ?hYqjY. oif ; P’-as.

nil
Proof. For convenience, the proof is postponed to Section 3.4.4. ]
As a consequence of Proposition 3.3.9, we have the following result.
Proposition 3.3.10. Assume -1) ( F-3). Then
() Forall 2 and 2M ?(D;r),
P’ m||||in P, (YUY mio) = 7 TAY3jYs oilx =1

Moreover,
E? In" ?hY]_jY]_ ;oi 1y <1:

(i) Forall 2 and 2M ?(D;r), P?-as.
limn tinp (Yin) = E? In"7 ?hY4jYq oilx :
n'l Yo

Proof. The proof immediately follows by lettingf = 1y in Proposition 3.3.9.
O

Before stating the equivalence-class consistency of the MLE, let us recall
the kernel de ned in De nition 2.2.11 which in our case can be de ned

xXin
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as follows. Forall 2 , positive integern andx 2 X, de ne the kernel .,
on Y"1 X by, setting Xo = X,

Z y 1
Q ((Xi; Yk)s dXk+1) 9 ((Xk; Yis Xk+1); Yi+1)

. _ X tA k=0
x;n (yO:n,A) T Z N 1

Q ((Xk;¥i) s dXk+1)g ((Xk: Vi Xk+1); Yie1)

X" k=0

In HMM case, the distribution .. (Yo.h; ) is usually referred to as thelter
distribution. The following intermediate result is useful.
Lemma 3.3.11. Assume {-1) ( F-3). Then,

(i) Forany ; » 2 , there exists a probability kernel © 2 on YZ? X
such that for anyx 2 X such that , 2M ?(D;r),

P2 for all boundedf; Iign wem (Y mo;f)= (Y1 o;f) =1:
m! ’
(i) Forany ; »,2 we haveP ’-a.s.,
Z
TUPhYLjY iy = ' (Y1 0:dXo) hYo; Yii(Xo; X):  (3.44)

Proof. Note thatforall 2 ,yo, 2 Y™, n2 Z,,x 2 Xand (nonnegative)
bounded measurable functiori , we have

x‘ l-B/O:nif
. mf)= —————;
xn (yO.n; ) x‘ Wo:nllx
and so that
. — x‘ hy n:Oif
«n (Y nosf) TN oLy

x Y noif = hY . 1ilx
( x‘ hY n:Oi 1X):( x\ hY n: li 1X)
x\ hYOJY n: 1|f .
x  Yo)Y n. ailx’

Moreover, ifx 2 X such that , 2 M ?(D;r), Proposition 3.3.9 implies that
P’-a.s.,

TPhY Yy . gif

TYoYa - il = (Y1 of):

nlll{n X;n (Y n:O;f ) =
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Indeed, ° 7 is a probability kernel onY? X . This proves Lemma 3.3.11
(). To prove Lemma 3.3.11 (ii), observe thatP ’-a.s.,

TUPhYjYy oilx = lim  hY4Y i dx

n!l
= lim x MY nailx
nil Zx‘ hY .0l 1x
= lim x\ hy n:Oi(dXO) hYO;Yli(XO;X)
nll 7 X\ hy n:Oi lx
= Li,rln xn (Y n:0;dXo)  hYo; Yii (Xo; X)
= r|]III‘1T'\ xn (Y n:0;, hYo,Yll( ,X))

_ Z; (Y1 0, hYo;Yii( ;X))

= " (Y1 0;dX0)  hYo; Yii(Xo; X);

where we have used, fromH3),

Yo, Y1i(;X) ,  sup sup g ((x;Yo;x);Y)<1; P’-as.
2 (xx92Xx2

[]

R
Remark 3.3.12. From (3.44) and since  hyp; y1i (Xo; X) (dy;) = 1 for
all (xo;y0) 2 X Y, it follows that, giveny; 2 Y% , forall ; -, y; 7!
" ?hy1jy1 .ol 1x de nes a probability density with respect to the measure
on (Y;Y).

Recall that sinceY is a Borel space, [Kallenberg, 2002, Theorem 6.3]
applies and the conditional distribution ofY;., givenY; ., de nes a prob-
ability kernel. SinceP (Y., 2 ) is dominated by ", this in turns de nes
a conditional density with respect to ", denoted byp,(j ), so that for all
B2Y

Z

P(Mun2BjYs 0)=  pPa(YuniY1 o) (dy:))  (dyn); P-as. (3.45)
B
Our main result on consistency of the MLE for the class of fully dominated
PMMs is now stated.
Theorem 3.3.13. Assume (1) ( F-4). Thenforall 2M ?(D;r), denot-

ing = Yo, We have

im  “.:[2] =0; Pr-as; (3.46)

n'l
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where";n is de ned by (3.30) and [ -] is the equivalence class of as de ned
in De nition 3.3.4.

Proof. Denote forall ; >,2
\(, ?) =E? In" ?hYlel ;oi 14 (347)

and
s:=argmax (; »):
2

Next, we will show that

im “,; » =0; P’-as. (3.48)

n'l

Observe that we have
>=argmaxrE’? In" ?hYyjYy .oilx
2

=zargmaxE? InL' *hZgjZ, . 1ilx :
2

The convergence (3.48) immediately follows from (3.74) with = 1x and
Theorem 3.2.14.

It thus remains to show that , = [ ,]. To this end, we apply The-
orem 2.2.7 in Chapter 2, which corresponds to [Douc et al., 2014, Theo-
rem 3]. To comply with the statement of Theorem 2.2.7, let us de n@’ ~
by: forally; 02 Y%, p'?(yiy1 o) = ' ’hyijys oilx if 6 - and
P 7 (YY1 0) = pi(Yiy1 w0), wherep,(j) is the conditional density de-
ned in (3.45), otherwise. If Assumption (K-2) can be shown to hold, it will
follow from Theorem 2.2.7 that

[2]=argmaxE~” Inp' *(Y1jY1 ) :
2

Thus the proof will immediately follow if we can moreover show that
(2 2)= E7 Inp” (YY1 w0) : (3.49)

Now, let F be a countable separating class of nonnegative bounded
functions containing 1x, see [Parthasarathy, 2005, Theorem 6.6, Chap-
ter 6] for the existence of such a class. By Lemma 2.2.12, to check As-
sumption (K-2) it is sucient to show that Assumption ( K-3) is satis-
ed. Assumption (F-3) and (3.29) imply that for all bounded functionf,

Foo = x7' hy;ya(xf): (y;¥9 2 Y2 is a class of bounded functions,
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and this in turn implies (K-3) by applying Lemma 3.3.11-(i) to some such
that x 2 M ?(D;r) (the existence of such a seD is guaranteed by F-2)-
(iii)). Thus Assumption (K-2) holds. To complete the proof, it only remains
to show that (3.49) is satis ed. According to [Barron, 1985, Theorem 1], we
have

E” Inp (Y4jY1 o) = rI]i!rln ntin %, ’hYiily; P’-as;  (3.50)

where for ally; 2 Y and A 2 X,
Z

1y, (A) = "(dxodyo)” “hyoui (Xo; A):

On the other hand, by applying Lemma 3.3.11-(ii) and by (3.47), it yields
that

(2 2)=lim YIn ¢, ?hYpnily; P-as; (3.51)
where for allyp;y; 2 Y and A 2 X,
Z
vor (A) = (dXo)" ?hyo:i(Xo; A):

Note that from (3.27), the measures ,i, and ,? admit densities with
respect to the same measure given by
, Z

d ;
dl’yl'(Xl) = 7(dXodyo)q * ((Xo; Yo); X1) 9 7 ((Xo; Yo; X1); 1) (3.52)

and
Z

d ?
dyo;1 (X1) = (dX0)d * ((Xo; Yo); X1) @ 7 ((Xo; Yo; X1); Y1) ; (3.53)

respectively. Note also that, since& and g are positive, these densities are
positive. Moreover, for allyy,, 2 Y"*!, we have

Z 4

. . d 2, . .
"hyonilx = %(Xl) xi yinilx  (dXq):

The joint density of (X1; Y1.,) under P ? with respect to " is given by

? . — d 1?)’1 N0 H .
P (X215 Yin) = q (X1) xi yinilx .
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Combining the four previous displays yields, for alfy., 2 Y"*?,

’ ?W&Pi 1x
g (@%0)q” ((Xo; Yo); X1) g * ((Xo; Yo; X1); Y1)
2(dx%y9q > (X% y9; X1) g 7 (X% Y% X1); Y1)

Dividing this by the density of Y., with respectto " under P ?, we get

pl?n (Xl; yl:n) (Xm)Z

T hYO:n [ 1X

N — = E 7 [R(X1;Yo.1) ] Yon] ;
1Y, ?hY1ni1x "

where R(X1; Yo1) IS the ratio between the densities (3.53) and (3.52). Since
the denominator (3.52) is the joint probability density of X; and Y; with
respect to under P 7, we have

E ’[R(X1; Yo1)] = E? E?[R(X1;Yo1)jYo] =1;

where we have used that giverY,, the numerator (3.53) integrates to one
with respect . By Lévy's zero-one law, it thus implies that

) T WYonil
lim On” =X

n'l 1:?Y1‘ 2hY i 1y [R(X1; Yo:1) ] You ]

and since by (3.27)R(X1; Yo:1) only takes positive values, this limit is positive.
This implies that
L © ?hYgnilx

lim n “ln —— . =0; P’-as.
n'l 1, ?hYl:n|1X

Combining with (3.50) and (3.51), we nally get (3.49), and the proof there-
fore follows. L

All of the results above require that the initial probability on (X;X)
should belong to the clas ?(D;r). To ensure this the following conditions
are su cient.

Proposition 3.3.14. Assume that there exist a sequence of ség 2 X,

E’[ln (Y)]<1
and that for alls2f 1;:::;rg, with D, = D,
inf inf Q ((x;Y);Ds) (Y); P’-as. (3.54)
2 x2Ds 1
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and

E? In inf inf g((xs uYox%Y) <1 (3.55)

2 (xx92Ds 1 Ds
Then, for all probability on (X;X) with (Do) > 0 belongs toM ?(D;r).

Proof. Let be such that (Dy) > 0. We have for alls 2 f1;:::;rg and
2

hY0:si lD I
= (dxo) Q ((xi 1,Yi 1:dxi)g ((Xi 1;Yi 1;%i);Yi) 1p,(Xs)
i=1
w
(Do)__1 inf Jnf Q (CaYi 2Dyt it g (Y 1,9 Yi)
1= |
w

. Ys
- Igf (x;x")ZIIglif 1 Dj g () 1;XC§;Yi) (Bo) i=1 (i 2):

The proof then follows by (3.54) and (3.55) above. ]

When Q is a Markov kernel onX X , the following lemma, quoted from
Douc and Moulines [2012], is useful.

Lemma 3.3.15. Assume thatX = RY for some integerd 1, X is the asso-
ciated Borel -eld and Q is a Markov kernel onX X . Suppose moreover
that for any open subset) 2 X, the function (;x) 7! Q (x;U) is lower

semi-continuous on the product sekK . Then, for any and compact

satisfying (3.54).

3.4 Postponed Proofs

3.4.1 Proof of Proposition 3.2.11

Before proving Proposition 3.2.11, let us rst show the following lemma.

Lemma 3.4.1. Assume that (-1) and (L-2) hold and letO < * 1
Then for all > 0O, there exists = () 2 (0;1) such that for all positive
integer n, zo., 1 2 Z" satisfying
X 1
n' 1«(z) max(l (1+ *)=2); (3.56)

i=0
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forany 2 ( ; *), nonnegative bounded functionk, probability measures
and %on(X;X),A2X and 2

L I“ZOZI'I li 1X q— IﬂZO:n 1i1X

" #!
bn( * Je=2 WY1

bn( Yo 2 I
2 +—(A) B (Fz (A)"  ifjs;

where, with the conventionl=0 =1 , for all z 2 Z,

sup, L hei(;X), |
inf 5 infyoa L hei(X;A)

F.(A) = (3.57)

Proof. By Proposition 3.2.10, for all nonnegative bounded function$,
, 2P (X;X)and 2

L hZo;n 1|f q_ hZo;n 1|f _ : OhZO:n li (f, 1X)

L hZO:n 1i 1x q— I‘]ZO:n 1i1X L hZO:n 1i1X q— hZO:n 1i 1X
. 2
ot L mi(GX) ]

2 bn ( )c-f- +2 bn( * )c=2 ifi :
J Jl L hZO:n 1i 1X q— hZO:n 1i:|-XJ Jl
where we have used
L hzgp, qif L hzgp, qif .
L hzon 1i1x = @ hegn 1ilx =
We conclude the proof by noting that for allA 2 X,
Q, . 2 Q,
o Lmi(GX)] o' (Fa(A).
L hZO:n 1i 1X q— hZO:n 1i 1X (A) O(A)
O

Proof of (3.16). From (3.3), (3.13) and using thatn(a) In(b) (a b)=b
for all a;b >0, it follows that for all nonnegative integersm; k (m < k) and
sequence mx 2 Z™ K forall ; 92 P(X;X) and bounded measurable
function f 1,

In L thjZ m-k 1If In q_ thjZ m:k 1|f
2 i 2i (L T 1)

: : . (3.58)
L e mk 11 1x 6L e mk 11 L thIf
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Now, let O < * 1. By Proposition 3.2.10, forall > Oand 2

( ; %), there exists%2 (0;1) such that, for all z . 1 2 Z™* ¥ satisfying

K1

(m+ k) ! 1k(z) max(1 L+ T)=2); (3.59)
i= m
we have
. o2 mx 1 (L hzif; 1
i mik 11 ( k _ x) _ (3.60)
L e m.k 11 1x oL he mk 11 L thlf "
ok 14+ L g mx 1? L heif oL hZ m:k 1i_1x +2 B G,
L e mk 11 1x oL h mk 11 L thlf '
wherean := bn( )C, bk == bn( * )c and
- UL i
mk -

L hgi(;X), jfji:
L2 me 2ilx L [ mx ai L fef A0, 1T
In addition by (3.13), we have

L e nk ol L hgif L e ik 1ilx

=1+ : o m:k 1i(|- thif; 1X)
L he m:k 1i1x L he m:k 1i L thif

Plugging this into (3.60) and then using (3.58) yields

In L thjZ m:k 1|f In @ thjZ m:k 1|f
2(1 9B ) ' 9Bk + PBmxC . 1 (3.61)
Note that for all z m« 12 Z™*%, we have

byl
L e mx 1ilx (D) inf L hgi(x;D);
= mx2D
yk
L bz mx ai L heif 4D) inf L hii (x; D);
) X
I= m

where we have usedf j; 1. Then by exchanging and ©in (3.61),
we obtain the upper bound forjIn L tejz mx 1if  In L ejz mi 1ifj.
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That is, for all z . 1 2 Z™** satisfying (3.59), we have

supIn L mjz mi 1df  In L ejz mu aif
’ ( ! # )
b jfj, Y

0/8m:k 1 ofmk - - =
2(1 9%Bmx) Bk + ©) 1)

1
(F4(D))* F, (D) ; (3.62)

whereF, is de ned in (3.57). Using thatIn®(a=h In*(a)+In (b) for all
positive real numbersa and b, we then have

In"(F,(D)) In* suplL tei(;X), +In igf igg L hzi(x;D)
2 X
(3.63)
By (L-3) and (L-4),
E- In* FZO(D) <1:
Now let be small enough so thatE; In* Fz,(D) In . Then,
by Lemma 3.4.3, for all; °2 M *(D) there exists aP;-a.s. nite ran-
dom variableM = M(f) > 0, and a constant 2 (0;1) such that, for all
k landm O, P;-a.s.
( " # )
2 b jjy W 2 mek
(Fz(D))” Fz.(D) M;
m

04m:k

1 %Bm« (D) D)

1=
and from (3.62), this implies

supIn L WZZ mx 1if  In L WZGZ mx qif m*kM; P,-a.s:
2

provided that

)'(1
(m+ k) ! 1«(Z)) max (1 (1+ *)=2); Pz-as. (3.64)

i= m

To complete, we need to show that there exists Bz -a.s. nite random vari-
able T such that for allk T and for allm 0, (3.64) holds. Note that
under (L-2)(i),

1 Py (ZO 2 K) < 2P, (Zo 2 K) 1

Now choose~ ; : * and ~" such that

1 P;(Zo2K)<~ < < "<~"<2P;(Zp2K) 1L
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By construction,
Pz(Zo2K)>max 1 ~ ;(1+~")=2:

By (L-1), the Birkho ergodic theorem ensures that there exists &;-a.s.
nite random variable B such that forallk B andm B, P;-a.s.,
K1
k1 1x@Z)>max 1 ~;(1+~")=2 (3.65)
i=0
Xl
m 1 1k(Z)>max 1 ~ ;(1+~")=2 (3.66)

i= m

NowletT* := B(1+ *)=(~* *).Ifm Bandk T*,thenfrom (3.65)
and (3.66) and using thatT* B, P;-a.s.,

i= m i= m

m + k m + k

On the other hand, if0 m<B andk T*%,

P, P Py
1k(Zi) k(Zi)* i 1k(Z) =(1+~")=2> (1+ )=

P P
< 1k(Z) Ko 1k(Z1)

m+ Kk m + Kk
k(I+~")=2 T"(1+-~") N
> = + =2:
m + k 2B+ TH) (1 )=2
By similar argument, letting T := B(1 )=( ~ ), we get that for all
m Oandk T ,
P k 1
i- m 1k(Zi)
I= m . _
—— 1 ;. Pz-as.

The proof follows by settingT = T _ T .
Proof of (3.17). Observe that for all 2 P (X;X), bounded measur-
able functionf landm2 Z,;k2 Z,, we can write
L iZjZ m 1k 1if = L hZZ mx aif;
where, for allA 2 X,

L ., qily

AA) =
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Since
L hz m 1i 1D (D)

D)= ;
©)= 1, L.

then (3.62) writes, Pz -a.s.,

sSup In L thjZ m:k 1If In L hzij m 1k 1If
2
( "

2 O/Bm;k + i ijl
1 9B (D)2

1 # )
Fz . .(D) (Fz(D))? Fz,(D)

1= m

The rest of the proof follows the same lines as the proof of (3.16) and is thus
omitted.

Proof of (3.18). Note that whenk = 0, (3.64) follows directly from

(3.66). The proof is therefore concluded by following the same lines as the
proof of (3.17).

3.4.2 Proof of Proposition 3.2.13

Proof of Proposition 3.2.13 (i) . From (3.3), we have for all integer
m>0,2 mo2Z" and 2M *(D),
L hZ()jZ m: 1i 1x L hZol( ,X) 1 . (367)

Thus, from (3.19) and (-4), it follows that
E~ In* L hZonl : 1i1x <1:

Now, forall 2 , 2M *(D) and positive integerm, de ne a measurable
function V., from (Z™*;z (M) to (R;B(R)) by for all z o 2 Z™*,
X0
V;m (Z m:O) = m ! In® L hZoI( ,X) 1 In L hZon K: 1i 1x :
k=1

By (3.67), V., is nonnegative for all positive integem. Thus, Fatou's lemma
implies h i

Ilmlnf Ez Vi E Ilrmllnf Vo, (3.68)

By de nition,
Iimlinf Ez V., =Ez In" L hZi(;X) 1
n! ’
xn

limsupm ¥ E; In L WZogjZ « 1ilx ; (3.69)
mll k=1
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and
h [
E, Ilnrnllnf V., =Ez In ) L hZpi(;X) 1 )
xn
E; limsupm ' In L hZgZ « 1ilx : (3.70)
m!l k=1

Since the proces$§Zy : k 2 Zg is stationary, this implies that forallk 2 Z, ,
Ez In L hZgjZ . 1ilx = Ez In L hyjZoy 1i1x ;

showing that

Py xn
m?* E; In LhgZ  1ilx =m?*  E; In L hZjZox 1ilx :
k=1 k=1

(3.71)
Cesaro mean convergence moreover impli€s,-a.s.,

xn
limsupm *  In L WZoZ . 1ilx
m!l k=1

= rle In L hZoJZ m: 1i1x:|n L hZon]_ . 1i 1x (372)

Thus combining (3.68), (3.69), (3.70), (3.71) and (3.72), we obtain

xn
E, InL hZonl . 1i1x ”mSUpm ! E, In L thjZO:k 1i 1x
m!l k=1
=limsup E; m 'In L WZomilx m 'E; In L WZoily > 1 ;

m!l
where the last bound follows from I(-3) and the minorization

X
N L WZonilx In (D)+  Ininf L i (x;D);
X
k=0

establishing that
E- In L hZonl . 1i1x <1:

Thus (3.20) follows and this completes the proof of Proposition 3.2.13 (i).
Proof of Proposition 3.2.13 (ii) . According to Proposition 3.2.11,

there existPz-a.s. nite random variablesM and T such that forallk T
andm O, Pz-a.s.,

sup In L hZyjZ mk 1ilx In L WZGZ o ook 1ilx M ™K
2
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which implies, Pz-a.s.,
M k
1

The proof of Proposition 3.2.13 (ii) then follows immediately by observing
that P;-a.s.,

sup In L hzijo;k 1i 1y In L hzkal ‘k 1i 1y
2

X 1
niin LWy 1ilx=n?t In L hZjZox 1ilx+ n tin L WZeily;
k=1
X 1
n 1|n|_ hZo;n 1j21 . 1ilX: n ! InL hzkal Kk 1i1x:
k=1
Proof of Proposition 3.2.13 (iii) . Under (L-5), foranym p and

x 2 D, Pz-a.s., the function 7! In L hZgjZ . 111k IS continuous on
Since

Iign sup In 4L hZgjZ m: 1ilx InL hZgjZ, . 1ilx =0; Pz-as;
m! 2

and since the uniform limit of continuous function is continuous, then the

function 7! InL hZyZ, . 1ilx isPz-a.s. continuous. Now leto2 . For
> 0, let B( o; ) be an open ball of center, and radius . Then for all
2 B( o; ), we have

InL hZ()jZ]_ : 1i1x sup InL hZOjZ]_ : 1i1x

2B( 0;)
supsupinL hzZgi(x; X); Pz-a.s;
2 x2X
which by (L-4) implies . "
sup E, InL hZonl . 1i1x E, sup InL hZojzl . 1i 1y
2B( 05 ) 2B( 0; )

Ez supsuplnL hzZgi(x;X) < 1:
2 x2X

By monotone convergence theorem, it yields, that

#
lim sup E, InL hZszl . 1i 1y lim E, sup InL hZonl . 1i 1x
#0 2B( o) # 2B( 0; )
#
= E, lim sup InL hZ()jzl . 1i 1y
"0 28( 01 )

Ez InL °hZojZ 1 . 1ilx ;
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showing that
7! Ez InL hZOjZ]_ . 1i1x

is Pz-a.s. upper semi-continuous at, 2 . The proof then follows since this
holds with arbitrary ¢ 2

3.4.3 Proof of Lemma 3.3.5

Let is an invariant distribution for K ,i.,e. K = . We will show
that for probability measure denedbyforallA2W, (A)= (W' A),
then (K )'= . Now from (3.36) and (3.37), we have foA 2 W,

Z

(K )'(A) = " (dwo)K (wp;dwi) K (w; 2;dw; 1)K (w; 1;A)
Z r
= (W' dw)Iw(W,)T (w; W™ 1 A)
ZW
= (dw)K (w;W" A)= K (W' A)
Wr+l

(W A)=  (A):

Conversely, suppose that is an invariant distribution for (K )", that is,

(K )" = . De ne a probability measure on W*t:wW () py for all
Ag it A 2 W,
Z
(Ao A= (dw)T (w; Aq Ar):
Ao

K (Ao Ar)= (dw)K  (w;Aq Ar)
Z\Nr+1
= (Wr dWr)T (Wr;Al Ar)
z"
= (dwo)K (w; 1;dwi) K (wo; dwy)
Ao Ar
= (AO Ar);

which implies that K =
For uniqueness, ilK admits a unique stationary probability measure ,
then = . Consequently, for allA 2 W,

A= W A= WA

= @W)T (w;W" 1 A)= (K )'(A)= (A):
W
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To conclude, it is worth noting that if is also an invariant probability
measure forK , then the probability measure de ned by forall A2 W,

(A)= (W A)

is also an invariant probability measure fo(K )'. Then, if (K )" admits a
unique invariant probability measure, it follows that (W" )= (W' )

(Ao A)= 7 K (Ao Ar)
= (W' dw,)T (wr; Ay Ar)
Zho
= (W' dw)T (w,; Ay Ar)
Ao
= K (Ao Ar) = (Ao Ar),

completing the proof.

3.4.4 Proof of Proposition 3.3.9

We prove Proposition 3.3.9 by applying the results obtained in Section 3.2.
First let us set, forall(;z) 2 Z,L tei="tzi anddenelL,andL hji
as in De nition 3.2.1 and De nition 3.2.2, respectively. From these settings,
we have for all 2  andyo, 2 Y™ with forall k2 Z,, z = Zir (k+1) 1 »

L eon 11 = hWyond

and forO<p<n,

L th:n 1jZo;p 10 = I‘Vpr+1: nrjyo:pri:

Obviously, (3.2) is satised. Comparing the assumptions, we have-1)
implies (L-1); (F-2) corresponds to -2) and (L-3); (F-3) implies (L-4); and
(F-4) yields (L-5). This implies that all the results in Section 3.2 can also be
derived under the present AssumptionsH-1) ( F-4).

Now, let 2 P (X;X) such that (D) > 0. We will show that for all non-
negative and bounded measurable functidn, the sequencé = hY3jY qoif
m 2 Z,g convergesP ?-a.s. Foranyt 21 0;:::;r 1g, set

hY mr t: mrilA_
hY mr t: mrilx.

mit (A) :=
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From (3.32) and (3.35), forallm 2 Z, andt2f0;:::;r 1g, we have

hYle mr t:Oif R
mil N2 m:ai 5 Q ((5Yo);dXa)g ((; Yos Xa); Y)Ff (x1)

Let O < * 1 Lemma 3.4.1showsthatforalt 2f0;:::;r 1gand
> 0, there exists 2 (0;1) such that, if
Xl
m 1 1«(Zi) max(1 @A+ T)=2);
i= m

thenforall 2 ( ; ")and 2 ,with F,:= F,(D) de ned by (3.57),

hYle mr t:Oif ’ hYle mr :Oif |
. bm( * )e=2 Y1 2'
¢ M0+ ————— (Fz)® sup sup g (X Yoix%; Y1)
m;t(D) i= m I2 (x;x 92 %2
Yl
g M€ Jeyq bmCT 20 FZ  sup sup g ((x; Yo;x%; Y1)
i= m 2 xx%2X

where¢ = 2jfj; and

1
= max - .
m t2f 0;:r 1g inf 2 m:t (D)

Note that the sequencef F®. : m 2 Z.g is stationary. Then by the
same argument as in the proof of (3.63), with 2 M ?(D;r), we have
E? In"F°, < 1. Bychoosing and * such that P°(Z, 2 K) >

max(1 ;(1+ *)=2) and by applying Lemma 3.4.3, it follows that there
exist % 2 (0;1) and a P ?-a.s. nite random variable C such that for all

> 1

hY4 Y ~oif  ° hY4Y - 16if  Cjfj1 %; P’-as.

Similarly, for all °2 P (X;X) such that YD) > 0, there exist% o2 (0;1)
and aP ?-a.s. nite random variable C. o such that for all * > 1,

hY4jY oif O hY4jY wif  C. ofj1 % o, P’-as.

This yields that for all 2 P(X;X) satisfying (D) > 0, the se-
quencef = hYyY -oif : ° 2 Z,g convergesP ?-a.s. to a limit denoted

1
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by “¢ ?hY4jY, if which is measurable onY? ;Y 4 and does not de-
pend on 2 M ?(D;r). This establishes (3.43). On the other hand,
f~ hyyY -oi : 2 Z,gis a sequence ofR ?-a.s.) nite measure on(X; X)
and since (3.43) holds with any nonnegative and bounded measurable func-
tion f, this yield that "' ?hY;jY; i de ne a (nonnegative) measure on
(X;X). This shows that "' ? is a nonnegative kernel orY X . More-
over, by stationarity of f Yy : k 2 Zg, we obtain that forallk 2 Z,, 2
2 M ?(D;r) and nonnegative and bounded measurable functidn

|I|£n ) hijY m:k 1If = ?hijY]_ 'k 1if; P7-a.s;
m!

showing the rst part of Proposition 3.3.9 (i). To complete the proof of
Proposition 3.3.9 (i), it remains to show that for all 2  and nonnegative
and bounded measurable functiof,

E? In" ?hYijY1  1if < 1:
Note that we have,P ?-a.s.,

WYY mx 1if  sup g ((%Ye ;X9 V) ifis ;

(x;x 92 X2
and this implies that

TP Yk alf sup g (%Y XY Y)ifji; Pr-as.
(x;x92X2

Under (F-3), we get that
E? In" " ?hY,jY1 « 1if < 1:

Note also that if E(A) < 1 , then we haveE(A B)= E(A) E(B). Thus
we can write,

E? In"° ?hYyjY1 « qif
=E”? In" " PhYjY1 « 1if  E? In "7 ChYjYr o qif
This will immediately imply
E’ In ' ?hYyjYr « 1if <1
if we can show that

E? In" ?hijYl xf > 1
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By stationarity of fYy : k 2 Zg, we have

rE? In™: ?hYlel ;Oif
= I’E":I In* ?hY]_le ;oif I’E#? In |\|; ?hY]_le ;oif

#
X _ X .
= E~ In+ T ?hijYl -k 1|f E~ In ?hijYl -k 1|f
n k=1 # k=1
X‘ .
=B InChYGYs « aif
k=1

By Corollary 3.2.12,P 7-a.s.,

Y o Y
TPhYjY o adf = lim * WYY e aif
k=1 k=1 mi
Y
= |im O hYjY ek 1if
m!l
k=1
= lim ° Y1 )Y mrk alf
m!l
m!l

L ?hZ()jZ]_ . 1if:

Thus,

E? In " ?hYyjYy « 1if =71 E? InL‘ *hzZejz, . 4if > 1

where we have used the result of Proposition 3.2.13 (i) such that
E~’ |n|_;?hZon;|_ ;1if <1:

This completes the proof of Proposition 3.3.9 (i).

To prove Proposition 3.3.9 (ii), observe that for alls andt and bounded
measurable functionh 1, we have

Yl
hYo:ss i D > hYpsi 1x sup sup g ((X; Yesi:X9; Yesizz) jhja
izo 2 (xx92x2 |
y 1 '
hY0:sih Sup SUp g ((X;Ys+i;xc); Ys+i+1) Jhll :

izo 2 (xx92x2
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Thus,

X1 _
n 1In ) hYO:nr+rih n 1|n+ Aln’t n thJl n lln ) hYO:nr+tih
i=t
X1 _
ntin> hyyih+ n 'In" Al +n Yjhj;; (3.73)
i=0

whereAl = SUP , SUPyox092x2 O (X% Yor+1;X%; Yar 141 ). Note that for all
iandt, fAL, : n2 Z,gis stationary. Thus from (F-3) and Lemma 3.4.2,

lim AL, =0; P’-as.
From (3.73) and by noting that for all i and t, fAin;t : n 2 Z.g no longer
dependon 2 ,forallt2f0;:::;rg, P?-a.s.,

limsupsupn ?

n!'l 2

In ) hYO:nr r+tih In L hZQ;n 1|h :O. (3.74)

obtain,
imn tn> hyhih=r Ylim m ! L hZgmy 4ih
n'l m!l
=T 1E? InL" ?hZszl . 1|h
= E”? In" ?hY3jYy oih ; P7-as.

This result holds with all bounded measurable functiorh 1, and thus
propagates to all bounded measurable functioh 0, concluding the proof.

3.45 Some Useful Lemmas

The following lemmas are taken from Douc and Moulines [2012], and thus
stated without proofs.

Lemma 3.4.2. Let fZy : k 2 Zg be a sequence of nonnegative random
variables on a probability spacé ;F;P) having the same marginal distribu-
tion, that is, for any k 2 Z and any nonnegative and measurable functidn
Elf (Zi)] = EIf (Zo)].
(i) Assume thatE[In* Zy] < 0. Then, forall 2 (0;1), sup, ¢ “Zx < 1,
P-a.s. Moreover,lim,; n 'In* Z, =0, P-a.s.
(i) Assume that E[jin Zoj] < 0. Then, forall 2 (0;1), sup,, MZy< 1
andinf,; 1XZz,> 0, P-a.s.
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Lemma 3.4.3. LetfUc : k2 Zg, Vg : k2 Zgand fWy : k 2 Zg be
stationary sequences such that

E[IN* Ug]< 1; E[n"Vo]<1; E[IN"Wp]<1:

Assume moreover thatf Vi : k 2 Zg is ergodic. Then, for all in (0O;1)
such thatE[In* \y]< In and for all in (0;1), there exists aP-a.s. nite
random variableM and a constant%in (0; 1) such that forallk 1, m O,
V1 |
mekpomrkwo Vi U A*M;  P-as.

i= m
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Chapter 4

Observation-driven Models:
Handy Su cient Conditions for
the Convergence of the MLE

Summary. This chapter, largely inspired by Douc et al. [2015],
aims at establishing asymptotic properties for a general class of rst-
order observation-driven times series models. We generalize the class of
observation-driven models considered by Douc et al. [2013] in the sense that
we allow the conditional law of each observation to depend on the parame-
ter. The existence of ergodic solutions and the consistency of the maximum
likelihood estimator (MLE) are derived under easy-to-check conditions. The
obtained conditions appear to apply for a wide class of models. We illus-
trate our results with speci c observation-driven times series, including the
recently introduced NBIN-GARCH and NM-GARCH models considered in
Section 2.4 of Chapter 2, demonstrating the consistency of the MLE for these
two models.

4.1 Introduction

Observation-driven models (ODMSs) introduced by Cox [1981] have been
widely used in various disciplines such as in economics (Pindyck and Ru-
binfeld [1998]), environmental study (Bhaskaran et al. [2013]), epidemiol-
ogy and public health study (Zeger [1988], Davis et al. [1999], Ferland et al.
[2006], nance (Liesenfeld and Richard [2003], Rydberg and Shephard [2003],
Fokianos and Tjgstheim [2011], Francq and Zakoian [2011]) and population
dynamics (lves et al. [2003]). The celebrated GARCH, 1) model, see Boller-
slev [1986], as well as most of the models derived from this one, see Boller-
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4. Observation-driven Models

slev [2008] for a list of some of them, are typical examples of ODMs. A
number of contributions on this class of models dealing with countable data
includes Streett [2000], Davis et al. [2003], Heinen [2003], Fokianos et al.
[2009], Neumann [2011], Doukhan et al. [2012], Davis and Liu [2012] and
Douc et al. [2013]. ODMs have the nice feature that the associated (condi-
tional) likelihood and its derivatives are easy to compute and the prediction
is straightforward. The consistency of the maximum likelihood estimator
(in short, MLE) for the class of these models can be cumbersome, except
when it can be derived using computations specic to the studied model
(the GARCH(1;1) case being one of the most celebrated example). When
the observed variable is discrete, general consistency results have been ob-
tained only recently in Davis and Liu [2012] or Douc et al. [2013] (see also in
Henderson et al. [2011] for the existence of stationary and ergodic solutions
to some observation-driven time series models). However, the consistency
result of Douc et al. [2013] applies to some restricted class of models and
does not cover the case where the distribution of the observations given the
hidden variable also depends on an unknown parameter. We now introduce
three simple examples, to which the results of Douc et al. [2013] can not
be directly applied. The rst one is the negative binomial integer-valued
GARCH (NBIN-GARCH) model, which was rst introduced by Zhu [2011]

as a generalization of the Poisson IN-GARCH model. The NBIN-GARCH
model belongs to the class of integer-valued GARCH models that account
for overdispersion (namely, variability is larger than mean) and potential
heavy tails in the high values. In Zhu [2011], the author applied this model
to treat the data of counts of poliomyelitis cases in the USA from 1970 to
1983 reported by the Centres for Disease Control, where data overdisper-
sion was detected. The estimation result showed that NBIN-GARCH,; 1)
outperformed among some commonly used models such as Poisson and Dou-
ble Poisson models. The NBIN-GARCIKL; 1) model is formally de ned as
follows.

Example 4.1.1 (NBIN-GARCH (1; 1) model). Consider the following recur-
sion.

Xkep =1 +aXy + bYk,

' X 4.1
Yk+1]Xok+1; Yok NB r; _ Nkl 4.1)

whereX takes values inX = R, , Yy takes values inZ, and =(!;a;b;r) 2
(0;1 )* is an unknown parameter. In (4.1),NB(r;p) denotes the negative
binomial distribution with parametersr > Oandp 2 (0; 1), that is, if Y

NB(r;p), then P(Y = k)= (f*2(1 p)'ptforallk 0, where stands for
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the Gamma function. Though substantial analysis on this model has been
carried out in the literature, to the best of our knowledge, the consistency of
the MLE has not been treated; see the end of the discussions of Section 6 in
Zhu [2011].

The second example is the univariate normal mixture GARCH (NM-
GARCH) proposed by Haas et al. [2004] and later considered by Alexander
and Lazar [2006]. The NM-GARCH model is another natural extension of
GARCH processes, where the usual Gaussian conditional distribution of the
observations given the hidden volatility variable is replaced by a mixture
of Gaussian distributions given a hidden vector volatility variable. The NM-
GARCH model has the ability of capturing time variation in both conditional
skewness and kurtosis, while the classical GARCH cannot. In Alexander and
Lazar [2006], the NM-GARCHZ1; 1) model was applied to examine the data
of exchange rates consisting of daily prices in US dollars of three di erent
currencies (British pound, euro and Japanese yen) from 2 January 1989 to
31 December 2002. The empirical evidence suggested the best performance
of NM(2)-GARCH(1;1) when compared to the classical GARCH,; 1), stan-
dardized symmetric and skewettGARCH(1; 1) models applied to this same
data. The de nition of this model is formally stated as follows.

Example 4.1.2 (NM(d)-GARCH(1; 1) model). Let d 2 Z, and consider the
following recursion:

Xy = 1+ AX  + Y.2b;

Y1) Xok+1; Yok G (Xksas ); (4.2)

dG (x; ) P d

—(y) = N 20;1)% y2R,

g (y) TR x2(0;1)%y
where is the Lebesgue measure oR, Xy = [Xyx::: Xqx]" takes values
in X=RY; =1 1::: ¢]" ad-dimensional vector of mixture coe cients
belonging to thed-dimensional simplex
( o )
Pe= 2RY : =1 (4.3)

1

I, b are d-dimensional vector parameters with positive and nonnegative
entries, respectively; andA is ad d matrix parameter with nonnegative
entries. Here we have = ( ;! ;A;Db). Note that G depends on only
through the mixture coecients 4;:::; 4. If d = 1, we obtain the usual
conditionally Gaussian GARCHZ1,; 1) process. In such a case, since= ; =

84



4. Observation-driven Models

1, G no longer depends on. To our knowledge, the usual consistency proof
of the MLE for the GARCH cannot be directly adapted to this model.

Finally, we consider the following new example, where a threshold is
added to the usual IN-GARCH model in the conditional distribution.

Example 4.1.3 (Threshold IN-GARCH model). Consider the following re-
cursion.

Xk+1 =1+ an+ bYk’

Y1 Xoks1s Yok P (Xisr N )
where X takes values inX = (0;1); Yx takes values inZ, and =
(I;a;b; ) 2 (0;1)*is an unknown parameter. Comparing with the usual
IN-GARCH model, a threshold has been added in the conditional obser-

vation distribution. This corresponds to the practical case where the hidden
variable has an in uence on the observation up to this threshold.

(4.4)

For a well-speci ed model, a classical approach to establish the consis-
tency of the MLE generally involves two main steps: rst the MLE converges
to the maximizing set - of a limit criterion, and second the maximizing set
indeed reduces to the true parameter,, which is usually referred to as solv-
ing the identi ability problem. In this chapter, we are interested in solving
the problem involved in the rst step, that is, the convergence of MLE. We
extend the convergence result of MLE obtained in Douc et al. [2013], which
is valid for a restricted class of models, to a larger class of models in which
the three examples introduced above are embedded. More precisely, we show
the convergence of MLE in observation-driven models where the probability
distributions of observations explicitly depend on the unknown parameters.
Moreover, we provide very simple conditions that are easy to check, as shown
by the three illustrating examples.

The chapter is organized as follows. Specic de nitions and notation are
introduced in Section 4.2. Then, Section 4.3 contains the main result of this
chapter, that is, su cient conditions for the existence of ergodic solutions
and for the consistency of the MLE. These results are then applied in Sec-
tion 4.4 to the three examples introduced above. Numerical experiments for
the NBIN-GARCH (1;1) model are given in Section 4.5. Finally, Section 4.6
provides the proofs of the main results, inspired from Douc et al. [2013], and
of a technical lemma.

4.2 De nitions and Notation

Consider a bivariate stochastic process(Xy;Yx) : k2 Z,gon X Y,
where (X;dx) is a complete and separable metric space endowed with the
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associated Borel -eld X and (Y;Y) is a Borel space. Lef{ ;) , the set
of parameters, be a compact metric spacéG : 2 ¢ be a family of
probability kernels onX Y and f(x;y) 7! ,(x) : 2 g be a family of
measurable functions fron{X Y;X Y )to (X;X). The observation-driven
time series model can be formally de ned as follows.

De nition 4.2.1. A time seriesfYyx : k 2 Z,g valued in Y is said to be
distributed according to an observation-driven modelin short ODM, with

parameter 2 if there is a bivariate Markov chainf (X;Yx) : k2 Z,gon
X Y whose transition kernelK satis es

K ((6y);dx8y) = (dx) G (xdy); (4.5)

where , denotes the Dirac mass at poina. Moreover, we will say that the

observation-driven time series model is dominated by some nite measure
on(Y;Y) iffor all x 2 X, the probability kernel G (x; ) is dominated by .

In this case we denote by (x; ) its Radon Nikodym derivative, g (x;y) =

46 ) (y), and we always assume that for afx;y) 2 X Y andforall 2

g (x;y) > 0

A dominated parametric ODM is thus characterized by the collection
f(g; ): 2 g The class of ODMs is a particular case gbartially-
observed Markov chainsince onlyYy's are observed, whereas's arehidden
variables. Note that our notation for observation-driven models is slightly
di erent from that of Douc et al. [2013] where their sequencéYyg corre-
sponds to our sequenckYy 0. Note also that the process Xy : k 1g by
itself is a Markov chain with transition kernel de ned by

z

R (x;A)=  1a( ,(X) G (x;dy); x2X; A2X: (4.6)

However, ODMs do not belong to the class of hidden Markov models. This
can be seen in the following recursive relation, which holds for &l 0,

Xie1 =y (Xk);

) 4.7)
Yer1 JFk G (Xke1; );

whereF, = (XX} Y- 17 k;” 2 Z,), and which can be represented
graphically in Figure 4.1.

The most popular example is the GARCHKL; 1) process, wheré& (x; ) is
a centered (say Gaussian) distribution with variancet and (x) is an a ne
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******* » Xk = Xgat ——> Xyap ——---=
| A
| 7’ |
| G .~ |
| 7 |
Y Yk+1 Yk+2

Figure 4.1 Graphical Representation of the Observation-driven Model.

function of x and y2. One can readily check that Examples 4.1.1 and 4.1.2
are other instances of dominated observation-driven models.
The inference about model parameter is carried out by relying on the

arbitrary x 2 X. The corresponding conditional density function with respect
to "is, under parameter , for all x 2 X,

N4
Yin 7! g hy1x 11 (X); Y (4.8)

k=1

where, for any vectory;p, = (y1;:::;Yp) 2 YP,  hyipi isthe X! X function
obtained as the successive composition of,, ,, ..., and ,
hy1pl = Yo Yo 1 y17 (4.9)

with the convention hygi(X) = x for s > t. Then, the corresponding
(conditional) Maximum Likelihood Estimator (MLE) Ax;n of the parameter
, Is de ned by

"n 2 argmaxLy,, WYini; (4.10)
2
where
. 1X] .
Lo Y1ni == 1 Ing  hyn i (X); vk (4.11)
k=1

In this contribution, we study the convergence of\x;n asn!1 for some
well-chosen value ok under the assumption that the model is well speci ed
and the observations are in a steady state. This means that we assume
that the observationsfYy : k 2 Z, g are distributed according toP ? with

-2 ,where, forall 2 , P denotes the stationary distribution of the
observation-driven time series corresponding to the parameter However
whether such a distribution is well de ned is not always obvious. We will use
the following ergodicity assumption.
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(A-1) For all 2 , the transition kerneK of the complete chain admits a
unique stationary distribution on X Y.

With this assumption, we can now de neP . The following notation and
de nitions will be used throughout the chapter.

De nition 4.2.2.  For any probability distribution on X Y, we denote
by P the distribution of the Markov chain f (Xy; Yx) : k 2 Z, g with kernel
K and initial probability mesure . Under Assumption (A-1), we denote by

, and , the marginal distributions of on X and Y, respectively and by
P and P the probability distributions de ned respectively as follows.

a) P denotes the extension oP  on the whole line(X Y)Z2.
b) P is the corresponding projection on the component?.

We also use the symbolE and E to denote the expectations corresponding
to P and P , respectively.

4.3 Main Results

4.3.1 Preliminaries

In this section, we follow the same lines as in Douc et al. [2013] to derive
the convergence of the MLE’\X;n for a general class of observation-driven
models. The approach is to establish that, as the number of observations
n!1l ,there exists a(Y4;Y %) ! (R;B(R)) measurable functionp (j)
such that the normalized log-likelihood., ., hY1.ni de ned in (4.11), for some
appropriate value ofx, can be approximated by

1Xn -
n Inp (YkjY1 « 1):
k=1

Todene p (j), we set, for ally; 2 Y# , whenever the following limit is
well de ned,

lim ol (X); if the limit exists,
b (ays )= w9 Y malbOy | (4.12)
1 otherwise.

By (A-1), the processY is ergodic underP ? and provided that

E’ In"p (YY1 o) <1;
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it follows that

Illlm LYt = E? Inp (YY1 ) 3 P7-as.
n! !

In this chapter, we show that with probability tending to one, the MLE Ax;n
eventually lies in a neighborhood of the set

»=argmaxE "’ Inp (YY1 ) ; (4.13)
2

which only depends on ,. In this contribution, we provide easy-to-check
su cient conditions implying

im ( n; 2)=0; P’-as; (4.14)

n!l

but, for the sake of brevity, we do not precisely determine the set,. Many
approaches have been proposed to investigate this problem, which is often
referred to as theidenti ability problem. In particular cases, one can prove
that -, = f »g, in which case the strong consistency of the MLE follows
from (4.14). We will mention a general result which precises how the seb
is related to the true parameter , in Remark 4.3.4. For the moment, let us
mention that we have

22 o (4.15)

provided that the following assumption holds:
(B-1) Forall; »2 ,we have
@M If 6 -, y7'p(yjY1 ) is adensity functio® ?-a.s.

(i) UnderP 2, the functiony 7! p?(yjY1 .o) is the conditional density
function ofY; givenY; ..

Indeed, (4.15) follows by writing for all 2

. ] P?(YY1 w0)
E” Inp”(YiY1 ©) Inp(ijY1 0) = E? In——~C-—=
P’(YijY1 o) Inp (Y4jY1 o) p (YY1 )

P (YY1 ) too

which is nonnegative under B-1) since it is the expectation of a conditional
Kullback-Leibler divergence.

=E? E? In
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4.3.2 Convergence of the MLE

In this part, we always assume that A-1) holds. The following is a list
of additional assumptions on which our convergence result relies.
(A-2) There exists a functio' : X! R, suchthat, forall 2 , (V)< 1.
Remark 4.3.1. Assumption (A-2) is usually obtained as a byproduct of

the proof of Assumption A-1), see Section 4.3.3. It is here stated as an
assumption for convenience.

The following set of conditions can readily be checked a@n and
(B-2) For ally 2 Y, the function( ;x) 7! g (x;y) is continuous on X
(B-3) For ally 2'Y, the function( ;x) 7! (x) is continuous on X

The function V appearing in B-4)(viii) below is the same one as in Assump-
tion (A-2). Moreover, in this condition and throughout the chapter we write
f . V for a real-valued functionf and a nonnegative functionV de ned
on the same spac&, whenever there exists a positive constartt such that
if(x)] cV(x) forall x 2 X.

(B-4) There exisix; 2 X, aclosedseX; X, %2 (0;1),C 0and measurable
functions : X! R;,,H:R; ! R,y and :Y! R, such that the

following assertions hold.
() Forall 2 and(x;y)2 X Y, (X)2X;.
(i) sup g(x;y)<1.
(xy)2 XY
(i) Forall 2 ,n2Z,,x2X, andy;, 2 Y,

dX Wl:ni (Xl); Wl:ni (X) 0/8 (X): (4-16)
(iv)  is locally bounded.

(v) Forall 2 andy2Y, ( ,(x1)) (y).
(vi) Forall 2 and(x;x%y)2 X; Xi Y,

g (X1y) . x(X1;X)_0x Xlixo) .
n 3 GV H (dx(x; x9) e @xxax)_dx(axD) (yy: (4.17)
(vii) H(u) = O(u) asu! O.
(viii) If C =0, then, forall 2 ,

G In" . V; (4.18)

otherwise, for all 2
G . V: (4.19)
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Let us now state our main result as follows.

Theorem 4.3.2. Assume that A-1), (A-2), (B-2), (B-3) and (B-4) hold.
Then, letting x; 2 X as in (B-4), the function p (j ) de ned by (4.12) with

X = X, satis es (B-1) and the convergence (4.14) of the MLE holds with the
set -, de ned by (4.13).

For convenience, the proof is postponed to Section 4.6.1.

Remark 4.3.3. As noticed in Douc et al. [2013], the techniques used to prove
Theorem 4.3.2 also apply in the misspeci ed case, wheYeis not distributed
according toP ?. We do not pursue in this direction in this contribution.

The consistency of the MLE then follows from Theorem 4.3.2 by the
following remark.

Remark 4.3.4. In many specic cases, one can show that , de ned

by (4.13) is the singletonf ,g. However this task appears to be quite di -
cult in some cases such as Example 4.1.3. Instead one can use [Douc et al.,
2014, Section 4.2], where it is shown that the assumptions of Theorem 4.3.2
imply that -, is exactly the set of parameters such thatP = P?. Thus

we can conclude that the MLE converges to thequivalence classf the true
parameter. This type of consistency has been introduced by Leroux [1992]
in the context of hidden Markov models in order to disentangle the proof of
the consistency from the problem of identi ability. Recall that the model is
identi able if and only if the equivalent classed§ 2 : P = P ’greduce to
singletonsf ,g for all -2

4.3.3 Ergodicity

In this section, the ODM is studied to prove the condition A-1). Since
thisis a for all (...) condition, to save space and alleviate the notational
burden, we will drop the superscript from, for example,G , R and and
respectively write, instead,G, R and

Ergodicity of Markov chains are usually studied using -irreducibility.
This approach is well known to be quite e cient when dealing with fully
dominated models, see Meyn and Tweedie [2009]. It is not at all the same
picture for ODMs, where other tools need to be invoked, see Fokianos and
Tjgstheim [2011], Douc et al. [2013]. Since the ergodicity is studied for a
given parameter , the ergodicity results of Douc et al. [2013] directly apply,
even though ODMs are restricted to the case wheig does not depend on
the unknown parameter in this reference. Our main contribution here
is to focus on an easy-to-check list of assumptions yielding the ergodicity
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conditions (A-1) and (A-2). We also provide a lemma (Lemma 4.3.6) which
gives the construction of the instrumental functions and used in the list
of assumptions.

(A-3) The measurable spa¢X; dyx) is a locally compact, complete and separable
metric space and its associatedeld X is the Borel - eld.

(A-4) There exist(; )2 (0;1) R. and a measurable function: X! R.
such thatRv V + andfV Mgis compact for any > 0.

(A-5) The Markov kerneR is weak Feller, that is, for any continuous and
bounded functiori de ned onX, Rf is continuous and bounded &h

(A-6) The Markov kerneR has a reachable point, that is, there exists2 X

such that, for anyx 2 X and any neighborhood of xo, R™(X;N) > 0
for at least one positive integer.

(A-7) We have sup dx(y(); y(x9) < 1
(xx%y)2X2 Y dx (x; x9
x6 x°

(A-8) There exist a measurable functiorfrom X2 to [0; 1], a measurable func-
tion :X?! X and a measurable functio& : X>! [1;1 ) such that
the following assertions hold.

(i) Forall (x;x% 2 X2 andy 2,
minfg(x;y);g(x%y)g  (x9g( (xx9%;y): (4.20)

(i) For all x 2 X, W(x; ) is nitely bounded in a neighborhood »f

that is, there exists, > O such that sup W(x;x% < 1 .
x92B(x; x)

(i) For aIIZ(x;x‘b 2 X2, 1 (x99 dx(x; XYW (x;x9.

(v) sup W( y(x): y(XP G (xxYidy) W(xx) < 1,
where the sup is taken over @ x9 2 X2.

We can now state the main ergodicity result.

Theorem 4.3.5. Conditions (A-3), (A-4), (A-5), (A-6), (A-7) and (A-8)
imply that K admits a unique stationary distribution on X Y. Moreover,
1V <1 foreveryV : X! R, suchthatV. V.

The proof of Theorem 4.3.5 is postponed to Section 4.6.2 for convenience.
The rst conclusion of Theorem 4.3.5 can directly be applied for all 2
to check (A-1). The second conclusion can be used to check2). In doing
so, one must take care of the fact that althouglv may depend on , V does
not.
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Assumptions (A-4), (A-5) and (A-6) have to be checked directly on the
Markov kernel R de ned by (4.6). To this end it can be useful to de ne, for
any givenx 2 X, the distribution

PX = PX G(x;) (421)

on (X Y)?, whereP is de ned for any distribution on X Y as in
De nition 4.2.2. Then the rst component processf Xy : k 2 Z, g associated
to P, is a Markov chain with Markov kernelR and initial distribution .

We now provide a general framework for constructing and that appear
in (A-8).

Lemma 4.3.6. Suppose thatX = C° for some measurable spads; S) and
C R. Thus, for all x 2 X, we write X = (Xs)s2s, Wherexs 2 C for all
s 2 S. Suppose moreover that for alk = (Xs)s2s 2 X, we can express the
conditional densityg(x; ) as a mixture of densities of the form (xs)h(Xs; )
overs 2 S. This means that for allt 2 C, y 7! j(t)h(t;y) is a density with
respect to and there exists a probability measure on (S;S) such that

Z

a(x;y) = SJ'(xs)h(xs;y) ds); y2Y: (4.22)

We moreover assume that takes nonnegative values and that one of the two
following assumptions holds.

(H-1) For ally 2 Y, the functionh( ;y) : t 7! h(t;y) is nondecreasing.
(H-2) For ally 2 Y, the functionh( ;y) : t 7! h(t;y) is nonincreasing.

For all (x;x9 2 X2, denoting x » x° := (min fxg;x%g)s2s and x _ x°% :=
(maxf xs; x30)s2s, we de ne  (x;x9% and (x;x9 as

8
H 0
2 (xx9)= inzfS igs—xiz) and (x;x% = x~x% under (H-1);
s s

iy Ay D
2 (xx9=inf (7 X5)

v %0} : = 0 oy
25 ] (Xs_ X0) and  (x;x%=x_x° under (H-2):

Then and de ned above satisfy A-8)(i).

Proof. We only prove this result under Condition {H-1). The proof is similar
under (H-2).
Since forallt 2 C, y 7! j (t)h(t;y) is a density with respect to , we have
YA 1
j(t)= h(t;y) (dy) >0
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Thus j is nonincreasing onC. Clearly, the de ned takes values on[0; 1]
and de nes a function from X? to X. For all (x;x9 2 X? andy 2 Y, we
have

Z
g(x;y) = j(Xs)h(Xs;y) (ds)
ZS
j (s _ x)h(xs ™ xgry) (ds)
S
i 0
e 067 XD~ x%y) (@)
i 0
o SRS 106N 0 ) (@9
= (x990 (xx9;y):
By symmetry of and , we get (4.20) and thus A-8)(i) holds. m
4.4 Examples

Let us now apply these results to prove the convergence of MLE of Ex-
amples 4.1.1, 4.1.2 and 4.1.3.

4.4.1 NBIN-GARCH Model

Example 4.1.1 is a speci ¢ case of De nition 4.2.1 whereis the counting
measure onY = N,

y(X) =1+ ax+ by; (4.23)
(y+r) 1 " x /7

yl(r) 1+x T+x (4.24)

g (x;y) =

with = (!;a;b;r) in a compact subset of (0;1 )* and X=(0;1).

In [Zhu, 2011, Theorem 1], the equation satis ed by the mean of the
observations = E[Yi] is derived and is shown to admit a constant solution
if and only if

rb+ a< 1 (4.25)

This clearly implies that this condition is necessary to have a stationary
solution f Y,g with nite mean. However it does not imply the existence of
such a solution. In fact, the following result shows that (4.25) is indeed a
necessary and su cient condition to have a stationary solutionf Yxg with
nite mean. It also shows that all the assumptions of Theorem 4.3.2 hold,
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which, with Remark 4.3.4, provides the consistency of the MLI%Mn for any
X1 2 X

Theorem 4.4.1. Suppose that all = (!;a;b;r) in satisfy Condi-
tion (4.25). Then Assumptions A-1), (A-2), (B-2), (B-3) and (B-4) hold
with V de ned as the identity function onX and with anyx; 2 X.

Proof. . For convenience, we divide the proof into two steps.
Step 1. We rst prove Assumptions (A-1) and (A-2) by applying Theo-
rem 4.3.5. We setV(x) = V(x) = x and thus we only need to checkA-3),
(A-4), (A-5), (A-6), (A-7) and (A-8). Condition (A-3) holds. We have for all
2
RV(x)="! +(a+ br)x=(a+ br)V(x)+ I;

which yields (A-4). The fact that the kernel R is weak Feller easily follows by
observing that, asp! p% NB(r;p) converges weakly taN B (r; p9, so (A-5)
holds.

We now prove A-6). Letx; = !=(1 a). Letx 2 R and de ne recursively
the sequencexg = X;Xx = ! + axy 1 for all positive integersk. SinceO <
a < 1, this sequence converges to the xed point; . Therefore, de ning Py
as in (4.21), for any neighborhoodN of x; , there exists somen such that
X, 2 N and we have

R"(X;N)=P,(Xpn2N) Py(Xx=x¢forallk=1;:::;n)
:PX(Y(): = n1:0)>0:

So (A-6) holds. Assumption A-7) holds since we have for a{ix; x%y) 2 X2 Y

with x 6 x° _ _
IFTCO TGS N
x  x9

To prove (A-8), we apply Lemma 4.3.6 withC= X, S= flg(so boils down
to the Dirac measure orf 1g). For all (x;y) 2 X Y, letj(x)= - " and

1+x

h(x;y) = §!y(+rr)) 2= 7. Indeed, h satis es (H-1). Thus by Lemma 4.3.6, for

all (x;x% 2 X?andy2 Y, we get that

1+x/Ax0 '

Tix o 201 and  (6x)=x"x°

(x;x9) =

satisfy (A-8)(i). For any givenr > 0, let a function W : X? ! [1;1) be
de ned by, for all (x;x9 2 X%, W(x;x% =1 _r. By de nition of W, as a
constant function, (A-8)(ii) and (A-8)(iv) clearly hold. Moreover, (A-8)(iii)

holds since for all(x;x% 2 X?, we have that

1 xx% @_njix x§=wxx9x x§:
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Therefore, (A-8) holds, which completesStep 1.

Step 2. We now prove B-2), (B-3) and (B-4). By assumption on , then
there exists(! ;!;b;b;r;r; ; )2 (0;1)% (0;1)? such that

! ! I b b;r r r,  a+br

Clearly, (B-2) and (B-3) hold by de nitions of (x) and g (x;y). It remains
to check B-4) for a well-chosen closed subset; and anyx; 2 X. Let X; =
[[;1) Xsothat (B-4)(i) holds. By noting that for all (;x;y) 2 XY,
g (x;y) 1, we have B-4)(ii). From (4.9) and (4.23), we have for alls t,
Vst 2 YU ST x2 Xand 2

1 at st X's

hys:ii (x) = ! 1 a +a x+b aj)’t i (4.26)
j=0

Using (4.26), we have, forall 2 ,x2 Xandy;n 2 Y,
hy1ni (X1) hyini(x) = a%jxi Xj "iX1 o Xj:
This gives B-4)(iii) and (B-4)(iv) by setting %= < land (X)= jX1 Xj.

Next we set , H and C to meet Conditions B-4)(v) and (B-4)(vi) and (B-
4)(vii). Let us write, forall 2 andy?2Y,

X1 y(X) P +@+ @xgtby ! +(1+ )X+ by
and, for all (x;x% 2 X2 =[1;1 )2
Ing (x;y) Ing (x%y) =j(r+y)[In@+ x) In@+x)]+y[nx InxJ
r+y)@+1) *+yl * jx xj
r+y@+t b jx x§

Setting (y)="! _r+(1+ )x;+ b_(1+! 1) y,H(X)= xandC =0 then
yield Conditions (B-4)(v), (B-4)(vi) and (B-4)(vii). Now (B-4)(viii) follows
from Z Z

In* y G (x;dy) yG (x;dy) = rx TV(X):

This concludes the proof. ]

4.4.2 NM-GARCH Model

The NM(d)-GARCH(1; 1) of Example 4.1.2 is a specic case of De ni-
tion 4.2.1 whereX = RY and is the Lebesgue measure on= R,

,(X) =1 + Ax + y°b; (4.27)
xd e y2=2x-
g (x;y) = 2x)E x;y)2 X Y; (4.28)
=1
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and =( ;!:A;b)2 , acompactsubsetoPy (0;1)! RY? RY,
with P4 de ned by (4.3).

In Haas et al. [2004], it is shown that the equation satis ed by the variance
of a univariate NM(d)-GARCH (1; 1) process admits a constant solution if and
only if

] Jmax(A + b T) <1 (4.29)

where, for any square matrixM , j jmax(M ) denotes the spectral radius df1 .

It follows that the existence of a weakly stationary solution implies (4.29)
but it does not say anything about the existence of stationary or weakly
stationary solution. The result below shows that (4.29) is indeed a su cient
condition for the existence of a stationary solution with nite variance. It
moreover provides with Theorem 4.3.2 and Remark 4.3.4 the consistency of
the MLE ", for any x; 2 X.

Theorem 4.4.2. Suppose thatall =( ;! ;A;b)in satisfy (4.29). Then
Assumptions @A-1), (A-2), (B-2), (B-3) and (B-4) hold with V de ned as
any norm on X.

Proof. . In this proof section, we set
V(x)=jxj= IX:J; (4.30)

forall x = (x:) 2 X. Asin Theorem 4.4.1, we divide the proof into two steps.
Step 1. We rst show that Assumptions (A-1) and (A-2) hold with the above
V by applying Theorem 4.3.5. De neV on X by setting

V(x) = (1+ x0)"x;
wherel is the vector of X with all entries equal to 1 andx, is de ned by
1+xo=(1 A+b T 7)1

We indeed note that by Condition (4.29) the above inversion is well de ned
and moreover

T\Ty 1= X T T k.
G (A+b N =1+ A"+ b ;
k 1

and, sinceA, b, all have non-negative entries, it follows thatxy has non-
negative entries. Thus, for allx = (x-) 2 X,

V(x)= 1Tx  V(X);
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so thatV . V. Hence by Theorem 4.3.5, we thus only need to check-(
3), (A-4), (A-5), (A-6), (A-7) and (A-8) with V de ned as above for a given
=( ;!';A;b)2 (sowe drop in the notation in the remaining of Step
1). Condition (A-3) holds for any metricdy associated to a norm on the nite
dimensional spaceX. (The precise choice ofl is postponed to the veri cation
of (A-7).) We have
Z

RV (x) V(I + Ax + y?b) G(x;dy)

(1+x0)"! +(1+x0)" A+b T x
=v(I)+1"4 A+b T)Y'A+b T I+1 x
= V(! )+ x{x

V({I)+ V(x)

where we set = max- fXxo-=(1+ Xo-)g < 1. Hence @A-4) holds. Condition
(A-5) easily follows from the continuity of the Gaussian distribution with
respect to its variance parameter. We now proveA(6). From (4.9) and
(4.27), we have foralln 1, yo, 12 Y" andx 2 X,

X1
Won 1i(x)= A"+  Al(l +y2, b): (4.31)
j=0
Let us use the norm
X
kKkMk=max jM;;j= sup jMxj
j

i ixj 1

ond d matrices. Note that by (4.29), there exists 2 (0;1) and ¢ > 0 such
that, for any k 1,

A+b TY ¢k (4.32)

Using that A, b, all have nonnegative entries, we have
Ak A+b TH (4.33)

P
Hence(I A) =1+ |, A¥iswell dened and we setx; = (1 A) 1
so that, with (4.27), we have

X X1

0:n 1i X X1 = AX + Aj! + y2 -Ajbi
n 1;j
i n j=0
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Then, using de nition (4.21), we get that, Ps-a.s., for alln 1,

Xn X1]=] WYon 11(X) X1

X _ Xt
A" (X X1)j+ All +  max Y? Alb :
i n 0j n1 | i=0

With (4.32) and (4.33), this implies

L .
"X X1+ I, b max Y? =1:

F)X an X1} c 1 1 OjnlJ

To obtain (A-6), it is su cient to observe that, since g takes positive values
in (4.28), for any positive , x 2 X and anyn 1,

P« max Y?< >0
0j n1l
Next we prove (A-7). We have

y()  y(x)= A X))

Since (4.32) and (4.33) imply that] jmax(A) < 1, there exists a vector norm
which makesA strictly contracting. Choosing the metric dx on X as the
one derived from this norm, we getA-7). To show (A-8), we again rely

the probability measure on Sby (fsg) =  forall s 2 S For all

(tty) 2 C Y, letj(t) = W and h(t;y) = exp( y?=2t). Obviously,

Relation (4.22) holds andh satis es (H-1). Hence, Lemma 4.3.6 implies that
and de ned respectively for allx = (xq;:::;Xqg); X0=(x¥%:::;x9) 2 X

by
( 1)
: x- A x9 2
(x;x9 = min S — 2 (0;1] and  (x;x9 = (x12 %9500 xg™ x9);

satisfy (A-8)(i). For x = (xy;:::;Xq); X%=(x9;:::;x9) 2 X, we have

1

jx- x9 2
x- X0

1 (x;x9=1 min 1

ixo x9
max -
1d X X
lmind(x\ Inx®Yyix x4

W (x;x9 dx(x;x9;

99



4. Observation-driven Models

where dy is the metric previously de ned andW is de ned by W(x;x9 =
1_ ¢y, ming « g(x- 2~ x%1) with ¢y, > 0 is conveniently chosen (such a
constant exists sincedy is the metric associated to a norm anX has nite
dimension). Then (A-8)(ii) and (A-8)(iii) hold and, since for ally 2 Y and
X 2 X, y(x) has all its entries bounded from below by the positive entries
of I, W( y(x); y(x9) is uniformly bounded over(x;x%y) 2 X X Y
and (A-8)(iv) holds. This completesStep 1.
Step 2 We now show that Assumptions B-2), (B-3) and (B-4) hold.

Clearly, (B-2) and (B-3) hold by de nitions of (x) and g (x;y). It
remains to show B-4). Since is compact, then

Lomint-jtj Thojbj bijjmx(A+b ) 5 A+b T L
for some(! ;fTb;b; ) 2 (0;1)* (0;1) and L > 0. By [Moulines et al.,

2005, Lemma 12], we note that this implies that, for all 2 (; 1), there
existsC > Osuch thatforallk landall 2

A+b TY cCK (4.34)

We setX; =[!;1)¢ X so that (B-4)(i) holds. Moreover, for all( ; x;y) 2

X: Y,g(x;y) (2!) 2. Thus, Condition (B-4)(ii) holds. Now let

X1 2 X. Using (4.31), (4.34) and (4.33), we have, for al 2 X, y;., 2 Y" and
2,

hy1:ni (X1) i (x) = JA" (X2 X)]

C "jx1 Xj:
Using that the norm de ning dx is equivalent to the normj j, we get B-4)(iii)
with
(x)= C%x1  Xj;
for some positive constantC®% Hence B-4)(iv) holds and since
X1 y(x1)  (L+1)jxg+ T+ y?b;

we also get B-4)(v) provided that

(y) (L+1)jxaj+ T+ y?b: (4.35)

It is straightforward to show that, forall 2 ,x 2 X;,y 2 R, and

@ng
@Xx

. 1y 1
(X;y) > '__2+E
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Thus, by the mean value theorem, forall 2, (x;x% 2 X; X;andy?2Y,

2
1
Ing (x;y) Ing (x%y) 3 Les ix

We thus obtain (B-4)(v), (B-4)(vi) and (B-4)(vii) by setting C =0,

H(u= sup jx xJ;
d(x;x9% u

and
() = (L +1) jxqj+ T+1=(21) + y*(b+ L?):

In addition, forall 2 andx 2 X, we have
Z

y°G (x;dy) = Tx:

Hence, using (4.30) with the above de nitions, we obtaing-4)(viii) and the
proof is concluded. m

4.4.3 Threshold IN-GARCH Model

The threshold IN-GARCH(1;1) in Example 4.1.3 is a specic case of
De nition 4.2.1 where is the counting measure orY = Z,,

y(X) =1 +ax+ by; (4.36)
g(xy)=e « )(XAy—!)y: (4.37)

with = (!;a;b; ) in a compact subset of (0;1 )*and X = (0;1). In
this model, if a < 1, we then have the ergodicity and consistency results as
stated in Theorem 4.4.3 below.

Theorem 4.4.3. Suppose that all =(!;a;b; )in satisfya < 1. Then
Assumptions A-1), (A-2), (B-2), (B-3) and (B-4) hold withV de ned as the
identity function on X and with anyx; 2 X.

Proof. . As in the proofs of the two theorems above, for convenience, we
divide the proof into two steps.

Step 1. We rst prove Assumptions (A-1) and (A-2) by applying Theo-
rem 4.3.5. We setV(x) = V(x) = x and thus we only need to checkA-3),
(A-4), (A-5), (A-6), (A-7) and (A-8). Condition (A-3) holds with the usual
metric on R. We have forall 2 ,

RV(x)="! +ax+ hbx™ ) av(x)+(! +b);
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which yields (A-4). The fact that the kernel R is weak Feller easily follows
by observing that, asx ! x% P(x) converges weakly tdP (x% and the map
X 7' x is continuous, so A-5) holds.

The proof of (A-6) is similar to the NBIN-GARCH case of Theorem 4.4.1
and is thus omitted. Assumption (A-7) holds since we have for allx; x%y) 2
X? Y with x 6 x°

J y(x) y(x9j

x x9
To prove (A-8), we apply Lemma 4.3.6 withC= X, S= flg(so boils down
to the Dirac measure orf 1g). For all (x;y) 2 X Y, letj(x)=e &" ) and
h(x;y) = (XAy!)y. Then h indeed satis es {H-1). Thus by Lemma 4.3.6, for all
(x;x9 2 X?andy 2 Y, we get that

= a< 1l

(x;x9)=e X+ 20:1] and  (x;x9Y = x A Xx°

satisfy (A-8)(i).

Let W(x;x% =1 for all (x;x9 2 X2, which is a constant function. Thus
(A-8)(ii) and (A-8)(iv) clearly hold. Moreover, (A-8)(iii) holds since for all
(x;x9 2 X2, we have that

1 (x99 x_x° x~Ax%=jx x§=wxx%x x§:

Therefore, (A-8) holds, which completesStep 1.
Step 2. We now prove B-2), (B-3) and (B-4). By assumption on , then
there exists(! ;!;b;b; ; ; ; )2 (0;1)% (0;1)? such that

[ I; b b; r, _a
Clearly, (B-2) and (B-3) hold by de nitions of (x) and g (x;y). It remains
to check B-4) for a well-chosen closed subset; and anyx; 2 X. Let X; =
;1) Xsothat (B-4)(i) holds. By noting that for all (;x;y) 2 XY,
g (x;y) 1, we have B-4)(ii). From (4.9) and (4.36), we have for alls t,
Vst 2 YU S x2 Xand 2

1 & s+l X s

e (X) = ! T = +a x+b Ay (4.38)

Using (4.38), we have, forall 2 ,x2 Xandy;, 2 Y",

hy1:ni(X1) hyini(x) = a"jx; X X1 Xj:
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This gives B-4)(iii)) and (B-4)(iv) by setting %= < 1and (X)= jx1 X].
Next we set , H and C to meet Conditions B-4)(v) and (B-4)(vi) and (B-
4)(vii). Let us write, forall 2 andy?2Y,

X1 ,(X1) ! +(@+ axg+by ! +(1+ )x;+ by
and, for all (x;x9 2 X2 =[1;1)?,

ng (Gy) Ing (Gy) =0 xA )+ y(n(x” ) I )]
1+ ) Yy xS

Setting (y)=1+"!+(1+ )xi;+ b_ ("~ ) ! y,H(X)= xandC =0 then
yield Conditions (B-4)(v), (B-4)(vi) and (B-4)(vii). Now (B-4)(viii) follows
from Z Z

In"y G (x;dy) y G (x;dy) = x V(x) :

This concludes the proof. ]

4.5 Numerical Experiments

45.1 Numerical Procedure

In this part, we provide a numerical method for computing the (condi-
tional) MLE Ax;n for the parameter = (!;a;b;r) in the NBIN-GARCH (1; 1)
model introduced in Example 4.1.1 and studied in Section 4.4.1. It is con-
venient to write = (#;r) with # = (!;a;b) and then to write ﬁ(x) and
g'(x;y) instead of ,(x) and g (x;y) in (4.23) and (4.24), respectively. In
contrast to the approach used in Zhu [2011], we allow the componento be
any positive real number, rather than a discrete one and to be unknown as
well. We thus maximize jointly with respect to the parameters# and r the
log-likelihood functionL,., hy;i = L(Xﬁ”ryl;ni. In practice, one does not rely
on a compact set of parameters as in Theorem 4.4.1. Instead the maxi-
mization is performed over all parameters > 0,a > 0, b >0, r > 0 such
that the stability constraint a+ br < 1 holds (taken from (4.25)). We use the
constrained nonlinear optimization functionauglag (Augmented Lagrangian
Minimization Algorithm) from the package alabama(Augmented Lagrangian
Adaptive Barrier Minimization Algorithm) in R For this purpose we provide
an initial parameter point and a numerical computation of the normalized
log-likelihood function L, hy1.ni and of its gradient. The initial point is ob-
tained by applying a conditional least square (CLS) estimation based on an
ARMA (1; 1) representation of the model; see [Zhu, 2011, Section 3]. The
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computation of the log-likelihood and of its derivatives are derived as fol-
lows. For allx 2 X, denoting uff = *hyyy 1i(x) forall k 2 and uf = x,
we have

X
L&Dy =n ' Ing” Fhyie 10 (X); yk
k=1
X
=nting(x;y)+n?t Ing uliy :
k=2

The computation of uf} for all k 2 is done iteratively by observing that
uf = *hy, 4i(uf ;) and the computation of L{i 'hy1.i is deduced. The
computation of the derivatives with respect to parameter = (#;r) of the
function LY hy1.i are then obtained in two steps. First, fork 2, the
derivative of ui with respect to # are obtained iteratively by @{i=@#= 0

and
e _ @f ;.
@Q# @#’

Then the derivatives ofL&ﬁir)ryl;ni with respect to# and r are given by

(1;uf ;Y )+ a

@—gfr%r): 1)@ @ng @f

@¢ " ax M @
:nlx1 Yo o YktT @f
- U 1ruf O#
and
%r)_n 1Xn @ng Uy
- .
@r - @r
xXn
=n!t J(r+y)  In(d+ u)) o(r);
k=1

respectively, where , is the digamma function ,(r) = dirln (r),r>0.

4.5.2 Simulation Study

We consider two NBIN-GARCH(1; 1) models with parameters:
(M.1) 2=(!%a;byrs) =(3; :2 :2, 2) and
(M.2) »=(!5a;hb;r)=(3; :35 :1; L5).
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We simulated m = 200 data sets for each sample size = 27;28;2° and
210 In Figure 4.2, we display the obtained boxplots of the di erence of the
normalized log-likelihood functions evaluated respectively at MLE and at the
true value ,. As predicted by the theory, this di erence appears to converge
to 0 as the number of observationsn ! 1 . For the NBIN-GARCH (1;1)
model, it can be shown that , = f ,g, which implies the convergence of
the MLE to the true parameter. We can observe this behavior for each
component of the MLE for the two models in Figure 4.3 and Figure 4.4. We
also report the Monte Carlo gean along with the mean absolute deviation
error (MADE): MADE = m ! J.m:lj ;(;n »'j as an evaluation criterion for
the estimated parameter in Table 4.1.

Table 4.1 Mean of estimates, MADEs (within parentheses) for the NBIN-
GARCH(1; 1) models

Sample sizen
Model Parameter n=2" n=28 n=2° n=21%0

R 3.311(973) 3.212(.719) 3.108(.507) 3.062(.372)

(M.1) a 165(.138)  .173(.113)  .187(.076) .193(.055)
' B 194(.049)  .195(.034)  .197(.025) .200(.018)
f 2.045(.241) 2.035(.166) 2.020(.112) 2.011(.074)

R 3.525(1.325) 3.362(1.258) 3.326(1.041) 3.167(.761)

M.2) a 252(.227)  .290(.213)  .296(.170) .319(.136)
' B .092(.056)  .097(.039)  .098(.028) .100(.022)
3 1.563(.175) 1.539(.129) 1.520(.093) 1.513(.066)
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Figure 4.2 Boxplots of the di erences of log-likelihood functions evaluated
at the estimated MLE and the true value for Models (M.1) and (M.2) with
sample sizesr = 27;28;2° and n = 219, respectively. The red continuous"

line indicates the position of zero.
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Figure 4.3 Boxplots of the estimated MLE for Model (M.1) with sample
sizesn = 27;28;2° and n = 219, respectively. The red dashed line indicates
the true value of the parameter and the bluex indicates the location of the

Monte Carlo mean of the MLE.
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Figure 4.4 Same as Figure 4.3 but for Model (M.2).

4.6 Postponed Proofs

4.6.1 Convergence of the MLE

Assumptions (A-1) and (A-2) are supposed to hold throughout this sec-
tion. The proof of Theorem 4.3.2 relies on the approach introduced in Pfan-
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zagl [1969], which was already used in Douc et al. [2013] for a restricted class
of ODMs. Our main contribution here is to provide the handy conditions
listed in Assumption (B-4). We rst show that our conditions imply (B-1)
and the following one.

(B-5) There existx; 2 X such that, forall; ,2 ,p(Y1jY1 ) dened as
in (4.12) withx = x; is nite P ?-a.s. Moreover, for all, 2 , we have

g ( hYyx 1i(X1); Yi)

: =0 P-’-as. 4.39
P(YejY1 & 1) ( )

lim sup In
ki1l 2 p

Indeed we have the following lemma.

Lemma 4.6.1. Assumptions B8-2), (B-3) and (B-4) imply (B-5) and (B-1).

Proof. See Section 4.6.3. O
Now the proof of Theorem 4.3.2 directly follows from the following lemma.

Lemma 4.6.2. Assume that 8-2), (B-3) and (B-4)(i) (ii) hold and that x;
satis es (B-5). Then, - dened by (4.13) is a non-empty closed subset of
and (4.14) holds.

Proof. By [Douc et al., 2013, Theorem 33], to obtain (4.14), it is su cient
to show that, for all , 2 , the two following assertions hold.

(@ E” sup, In"p(Y1jY1 o) <1,

(b) the function 7! Inp (Y1jY1 .o) IS continuous on , P?-a.s.
In (B-5), p (Y1j Y1 ) is dened P ?-a.s. as the limit in (4.12) with x = X;.
So,P7-a.s., by B-4)(i) (i), p (Y1]jY1 o) is bounded by the nite constant
appearing in (B-4)(ii). Hence (a) holds.

Condition (b) then follows from (4.39). Since almost sure convergence

implies the convergence in probability andP ° is shift invariant, the random
sequence

g ( hy m:Oi(Xl);Yl) .
p(Y1jY1 w0) ’

Un :=sup In m2Z,;
2

converges to zero inP ?-probability. Then there exists a subsequence of
fU, : m 2 Z.g which convergesP ’-a.s. to zero. Hence, interpreting this
convergence as a uniform (in) convergence oing ( hY .0i(X1); Y1) tO
Inp (Y1j Y1 .) to conclude that (b) holds, it is su cient to show that 7!
Ing ( hY n.0i(X1); Y1) is continuous for allm P ?-a.s. This is indeed the case
by (B-2) and (B-3) and sinceg (x;Yy) is positive. O
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4.6.2 Ergodicity

For proving Theorem 4.3.5, we rst recall a more general set of conditions

derived in Douc et al. [2013], which are based on the following de nition.

De nition 4.6.3.  Let G be a probability kernel fromX?to Y 2 P (f0; 1g)
satisfying the following marginal conditions, for all(x;x% 2 X? andB 2Y,

G((X;X();B Y f 0; 1g)= G(X;B); (440)
G((X;X();Y B f 0;1g) = G(XO,B);

and such that the following coupling condition holds

G((x;x)f(y;y) © y2Yg f 1g)= G((xx%);Y? f 1g): (4.41)
De ne the following quantities successively.

The trace measure ofG((x;x9; ) on the setf(y;y) : y2 Yg f 1gis
denoted by

G((x:x%;B) = G((x;xY;f(y;y) : y2Bg f 1g); B2Y: (4.42)
The kernel R from (X%, X 2) to (X2 f 0;1g;X 2 P (f0;1g)) is de-

ned for all x;x°2 X2 and A 2X 2 by
Z

R(OGXYA £ 19)= 1a( y(X); y(x9) G((x;x9;dy):  (4.43)
Y
The measurable function from X? to [0; 1] is de ned by
(x;x9 = R((x;x9; X% f 1g) = G((x;x9;Y? f 1g): (4.44)
The kernel R is de ned for all (x;x% 2 X2and A 2 X 2 by

8
< R((x;x9;A f 1g9) . .
BOGxYA) = X9 T0ax)>0 ) 4

0 otherwise.

We can now introduce the so-calledontracting condition which yields
ergodicity.

(A-9) There exists a kerné yielding andR as in De nition 4.6.3, a measurable
functionW : X?! [1;1 ) satisfying Conditions (A-8)(ii) and (A-8)(iii) and
real number¢D; 1; »; )2 (R:+)® (0;1) such that, for all(x;x% 2 X2
and for alln 1,

R ((x;x%;dx) D "dx(x;x9; (4.46)
RY((;x%;dx W) D "d(x;xOW 2(x; x9: (4.47)
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Under Conditions (A-3), (A-4), (A-5), (A-6) and (A-9) and by combining
Theorem 6, Proposition 8 and Lemma 7 in Douc et al. [2013], we immediately
obtain the following result.

Theorem 4.6.4. Assume A-3), (A-4), (A-5), (A-6) and (A-9). Then the
Markov kernelK admits a unique invariant distribution and (V) < 1
forany V : X! R, such thatV . V.

Assumptions (A-3), (A-4), (A-5) and (A-6) are quite usual and easy to
check. The key point to obtain ergodicity is thus to construct satisfying (A-
9). For this, we can also rely on the following result which is quoted from
[Douc et al., 2013, Lemma 9].

Lemma 4.6.5. Assume that there exist¢; )2 (0;1) R such that for all
(x;x9 2 X2,
R (x9; (x;x%) 2 X2 ¢ dy(xg;x%) > dx(x;xy =0; (4.48)
RW W+ : (4.49)

Then, (4.46) and (4.47) hold.

Now we can prove that our set of conditions is su cient.

Proof of Theorem 4.3.5.We only need to show that A-7) and (A-8) im-
ply (A-9). We preface our proof by the following lemma.

Lemma 4.6.6. Assume (@-8)(i). Then one can de ne a kernelG as in Def-
inition 4.6.3 with the same given in (4.44). Moreover, the kernelR de ned
by (4.45) satis es, for all (x;x% 2 X? such that (x;x% > 0 and all measur-
able functionsf : X2! R,

R(%x%:f)= G( (x;x% 1) with f{y)=f( y(x); y(x9): (4.50)

Let us conclude the proof of Theorem 4.3.5 before proving this lemma.
By Lemma 4.6.6 and Lemma 4.6.5, it remains to check that (4.48) and (4.49)
hold for all (x;x9 2 X2. Observe that by de nition of R, Condition (A-8)(iv)
is equivalent to

sup RW(x;x9 W(xx9 <1:
(x;x 92 X2

sowe can nd 2 R such that (4.49) holds for all(x;x% 2 X2.
Now, let (x;x9 2 X2 and let (X;X 9 be distributed according to
R((x;x9; ) which is de ned in (4.50). Whenx = x° then dx(X;X 9 = 0,
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implying that Condition (4.48) holds with any nonnegative . For x 6 x°
let be de ned by

C e B0 L0,

(xx%y)2x2 vy dX(X; X(D
x6 x°

(4.51)

which is in (0; 1) by (A-7). Then

dx(X; X 9 _ dx( v(x); v(x9)
dx(x;x9 — dx(x;x9

Therefore, Condition (4.48) holds for al(x; x9 2 X? with as in (4.51). O

We conclude this section with the postponed

Proof of Lemma 4.6.6.Let (x;x9 2 X?. We de ne G((x;x9; ) as the dis-
tribution of (Y;Y%U) drawn as follows. We rst draw a random variable
Y taking values inY with density g( (x;x9; ) with respect to . Then we
de ne (Y;Y%U) by separating the two cases, (x;x9 =1 and (x;x9 < 1.

Suppose that (x;x9 =1. Then from (A-8)(i), we have
G(x; )= G(x5 )= G( (x:x%; ):

In this case, we se(Y;YCU) =(Y;Y;1).
Suppose now that (x;x%9 < 1. Then, using (4.20), the functions

@ xx9) o) eax%a (x9;)]

and
@ x9Y axG) o e6x9a( (5x%0)];

are probability density functions with respectto and we let and ©°
be two independent random variables taking values i drawn with
these two density functions, respectively. In this case, we dral in-
dependently according to a Bernoulli variable with mean (x;x% and
set

Y;Y if U=1;

(vivy= ) ’
(:; 9 if U=0:

One can easily check that the so de ned kernéb satis es (4.40) and (4.41).
Moreover, for all (x;x9 2 X2,

G((xxY Y2 f 190 =PU=1)= (x;x9;
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which is compatible with (4.44). The kernelR is de ned by setting
R((x;x9; ) as the conditional distribution of (X; X 9 = ( v (x); v (x9) given
that U = 1. To complete the proof of Lemma 4.6.6, observe that for any
measurablef : X>! R, , we have, for all(x;x% 2 X2 such that (x;x9 > 0,

R((x;x9;f)= E[f ( v(X); v(x9)juU=1]
EFF( v(X); v(x9)]
G( (x;x9;1);

wheref{y) = f( (x); y(x9) forally2Y.

]
4.6.3 Proof of Lemma 4.6.1.
Under (A-2), Assumptions B-4)(viii) implies that for all 2
, In"() <1; (4.52)
and if moreoverC > 0,
» <1: (4.53)

For proving Lemma 4.6.1, we will also make use of [Douc et al., 2013,
Lemma 34] which we quote here for convenience.

Lemma 4.6.7. LetfU, : k 2 Z,g be a stationary sequence of real-valued
random variables on( ;F;P). Assume thatE(In* jUyj) < 1 . Then, for all
2 (0;1),
kI'ilrn KUk =0; P-as.

Proof of Lemma 4.6.1. We rst show that p (yjY1 ) in (4.12) is nite for
X = X1 P ?-a.s. By (B-2), this follows by writing

P (YijY1 0)=0 i oliy1 (4.54)
if, forall ; .2 ,the limit
hY, ol = qul hY noi(X1) iswelldened P’-a.s. (4.55)
m!

Forall 2 ,m 0,x2Xandy no2 Y™, using (B-4)(iii), we have
dx( hY moi(x1); hY moi(x)) A (x): (4.56)
Takingx = . (x1) and using B-4)(v), we obtain, forally m 1.2 ym+2,

dx( Y moi(X1); Y m 10i(X1)) B (Y m 1)
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Using (4.52) and Lemma 4.6.7, we have that

X
8 2 (0;1); K o(yy)<1: Pr-as; (4.57)
k2z

and thusf hY ,0i(X1) : m2 Z,gis a Cauchy sequenc® ’-a.s. Its limit
existsP ?-a.s., since(X;dy) is assumed to be complete, which de nes the-
valued random variable hY,; i forall ; ,2 whenY has distribution
P 2-a.s. Thus (4.55) holds and we further obtain that

X«
supdx(  hY koi(X1);X1) sup  dx( hY moi(X1); hY migoi(X1))
2 )g m=0
W (Ym)<1l; P’as. (4.58)
m 0
so that, letting k' 1,
X
supdy( hYy .i;X4) B (Yn)<1l,; P’as. (4.59)
2 m 0

Let us now prove B8-1). Relation (4.54) directly yields B-1)(i). Let us
prove (B-1)(ii), hence consider the case = ,. Using (4.56), we have

dx( ’hy m:Oi(Xl); ’hy m:Oi(x m)) %Hl (X m); P-as.

Sincef (X ) @ m 2 Z,gis stationary underP ?, it is bounded in proba-
bility, and since % <1, for all > 0, we have

m“,gn P? dx ?hY mol(X n); 7hY noi(X) > =0: (4.60)

Note that forall m 1, ?hY ,0i(X )= X4, P?-a.s., hence we get that
?hYl ;oi = X, P?-as. (461)

To complete the proof of B-1)(ii), we need to show that, underP ?, y 7!
g?( 7hYy; oi;y) = g?(Xy;y) is the conditional density ofY; givenY; .,
that is, forany B 2Y,

Z

1e (V)97 (Xyy) (dy)=P7(Y12BjY1 o):
Now, note that, by de ntion of P ?,
Z
1e(Y)97 (Xyy) (dy)=P7(Y12BjX1)=P7(Y12B|jX1;Y1 o):
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4. Observation-driven Models

But since (4.61) implies thatX, is (Y: .)-measurableX; can be removed
in the last conditioning, which concludes the proofg-1)(ii).

Finally, it remains to show the uniform convergence (4.39) inB-5).
By (B-3) and (4.55), we have, forall; .2 ,k2Z,,

hY; « 1i = hYye 4i hYy i ; P7-as. (4.62)
From (B-4)(iil) and (4.62), we get
dx( hYpy 1i(X1); hYy 4« 1) %1 hY; oi ; P7-as.
On the other hand B-4)(iv) and (4.59) imply
szup hY; o <1; P?-as; (4.63)

which, with the previous display, yields,

supdx(  hYix 1i(X1); hY; § 1i)= O % ; P’-as. (4.64)
2

Since X; is closed and satises Condition B-4)(i), we have that,
hYy 11(X1) and hYy . i arein X, for all k 2. Thus Condition (B-
4)(vi) gives that

g ( hYig 11(X1); Y)

0 ( Wy o vy A A@ AG) A);, Pras;

sup In
2

where
Ak(l) = Slé'p H dx( hYl:k 1i(Xl); hY]_ K 1|)
A(2) = sup S &x(xi Vo w ai)
2
Ak(3) = Ssup eC dx(xl; hY1:k 1i(X1))
2
Ak(4) = (Yk):
By (4.64) and (B-4)(vii), we have
A1) = Okn o% . P7-a.s.

With (4.57), this yields (4.39) in the case wher€ = 0. For C > 0, we further
observe that, by (4.59) and (4.53), we have, foral,b,2 andk?2 Z,,
" #
b C
E? InfA«2) E?* C W (Y mek 1) = ———<1:
1 %

m O
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Chapter 5

General-order Observation-driven
Models: Ergodicity, Consistency
and Asymptotic Normality of the
MLE

Summary. In this chapter, we allow the state equation of the hidden
process of the observation-driven model discussed in Chapter 4 to depend
also on other lagged variables of the hidden and the observation processes,
resulting in a GARCH(p; g-type observation-driven model. In this gener-
alized class, stationary and ergodic solutions as well as consistency of the
maximum likelihood estimator (MLE) are derived under su cient and easy-
to-check conditions. The asymptotic normality of the MLE is also treated.
We illustrate these results with speci c observation-driven times series, in-
cluding the GARCH(p; 9), the log-linear Poisson GARCH of orde(p; g), and
the NBIN-GARCH (p; g models. An empirical study is also provided.

5.1 Introduction

Since the introduction by Cox [1981], observation-driven models (ODMs)
have been receiving renewed interest in recent years. These models are widely
applied in various elds ranging from economics (see Pindyck and Rubin-
feld [1998]), environmental study (see Bhaskaran et al. [2013]), epidemiology
and public health study (see Zeger [1988], Davis et al. [1999], Ferland et al.
[2006]), nance (see Liesenfeld and Richard [2003], Rydberg and Shephard
[2003], Fokianos and Tjgstheim [2011], Francq and Zakoian [2011]) and pop-
ulation dynamics (see Ives et al. [2003]). The celebrated GARCH 1) model

117



5. General-order Obsenation-driven Models

introduced in Bollerslev [1986] as well as most of the models derived from
this one are typical examples of ODMs; see Bollerslev [2008] for a list of
some of them. A list of contributions on this class of models speci cally
dealing with discrete data includes Streett [2000], Davis et al. [2003], Heinen
[2003], Ferland et al. [2006], Fokianos et al. [2009], Franke [2010], Woodard
et al. [2010], Fokianos and Tjgstheim [2011], Henderson et al. [2011], Neu-
mann [2011], Davis and Liu [2012], Doukhan et al. [2012], Douc et al. [2013],
Fokianos et al. [2013], Christou and Fokianos [2014, 2015] and Douc et al.
[2015].

ODMs have the nice feature that the computations of the associated (con-
ditional) likelihood and its derivatives are easy, the parameter estimation is
hence relatively simple, and the prediction, which is a prime objective in
many time series applications, is straightforward. However, it turns out that
the asymptotic properties of the maximum likelihood estimator (MLE) for
this class can be cumbersome to establish, except when they can be derived
using computations specic to the studied model (the GARCKlL;1) case
being one of the most celebrated example). The literature concerning the
asymptotic theory of the MLE when the observed variable has Poisson dis-
tribution includes Fokianos et al. [2009], Fokianos and Tjgstheim [2011, 2012]
and Wang et al. [2014]. For a more general case where the model belongs
to the class of one-parameter exponential ODMs, such as the Bernoulli, the
exponential, the negative binomial (with known frequency parameter) and
the Poisson autoregressive models, the consistency and the asymptotic nor-
mality of the MLE have been derived in Davis and Liu [2012]. However,
the one-parameter exponential family is inadequate to deal with models such
as multi-parametric, mixture or multivariate ODMs (the negative binomial
with all unknown parameters and mixture Poisson ODMs are examples of
this case). A more general consistency result, yet not the asymptotic nor-
mality, has been obtained recently in Douc et al. [2013]. This general result
allows the observed process to admit various forms of distribution and to
take values in any Borel space, and allows the hidden process to assume val-
ues in any locally compact Polish space endowed with the associated Borel

- eld. This result has later been extended and re ned in Douc et al. [2015].
However, most of the results obtained so far have been derived only under
the framework of GARCH(1; 1)-type or rst-order ODMs, yet less is known
for the GARCH(p; g)-type discrete ODMs, as highlighted as a remaining un-
solved problem in Tjgstheim [2015].

In this contribution, we consider among others (see Streett [2000], Heinen
[2003]) a general class of ODMs that is capable to account for several lagged
variables of both hidden and observation processes. Namely, we develop
theory and inference for the class of general-order ODMs parallel to the
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5. General-order Obsenation-driven Models

GARCH(p; g family, under the assumption of well-speci ed models. For
the development on the GARCHp; g model, see for example Francq et al.
[2004], Francq and Zakoian [2011] and for multivariate case, see Comte and
Lieberman [2003]. We extend the approaches introduced in Douc et al. [2013]
and later used in Douc et al. [2015] to establish the consistency of the MLE
and the ergodicity for the models in this general context. These results can
in principle be obtained by embedding the studied model into the corre-
sponding rst-order one and then applying the results obtained therein to
the embedded model. By appropriate adjustments, the consistency of the
MLE for the general-order ODM can be derived. Yet for ergodicity, the gen-
eralized result seems not trivial; it turns out that more general assumptions
are required, compared to the usual rst-order ODMs. In either Douc et al.
[2013] or Douc et al. [2015], the ergodicity of the usual rst-order ODMs is
obtained by showing the uniqueness of invariant probability measure for the
hidden process, which is by its own right a Markov chain. In these papers,
showing the existence of the invariant probability measure for the hidden
process relies on the Foster-Lyapunov-type assumption; however, for general
ODMs or embedded ones, this assumption may be replaced by titerative
Foster-Lyapunov-type assumption instead (see Assumptiol’AG-4) of Sec-
tion 5.3.4). The asymptotic normality of the MLE is also investigated in this
general setting. In this study, we restrict our consideration to the spacial
yet an important case where the current hidden state variable is expressed
as a linear function with respect to its own past variables. This class is rich
enough to cover most of the familiar ODMs, such as the GARQH; ¢, the
log-linear Poisson autoregression of ordép; g and the NBIN-GARCH(p; g
models, and other instances such as multi-parametric, mixture or multivari-
ate ODMs. To establish the asymptotic normality, we follow the classical
approach by rst approximating the score function by the stationary version
of it and then developing Taylor expansion of the stationary score function
around the true parameter. By appropriate assumptions, the central limit
theorem for Martingale di erence applies and the stationary score function
can then be shown to be asymptotically Gaussian. Then assuming invertibil-
ity of the asymptotic Fisher information matrix, the asymptotic normality
follows. All the results are presented under su cient and easy-to-check con-
ditions. As demonstration, they are then applied to the GARCHp; g), the
log-linear Poisson autoregression of ordép; g and the NBIN-GARCH(p; 0
models. Finally, we provide an empirical study suggesting that in some cir-
cumstance higher-order model may t the data better than the rst-order
one if the class of ODMs is used.

This chapter is structured as follows. Specic de nitions and notation
are introduced in Section 5.2. In Section 5.3 presents the main results of
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5. General-order Obsenation-driven Models

consistency and asymptotic normality of the MLE as well as ergodic solution

for the model. We apply these results to some speci ¢ models in Section 5.4.
Numerical experiments is given in Section 5.5. Finally, Section 5.6 contains
the postponed proofs.

5.2 De nitions and Notation

Let (X;dx) be a complete and separable metric space endowed with the
associated Borel -eld X and (Y;Y) be a Borel space. Lef{ ;) , the
set of parameters, be a compact metric space equipped with the metrig
fG : 2 g be a family of probability kernels onX Y and p;qbe two
positive integers. The observation-driven time series model can be formally
de ned as follows.

De nition 5.2.1. A time seriesfYy : k g+ 1g valued inY is said to
be distributed according to anobservation-driven model of orde(p; ) (here-
after, ODM(p; g)) with parameter 2 if there exist a family of measurable
functions f (X1.p; Y1:9) 7! yl:q(xl;lo) 2 gfrom(XP Y94 X P Y 9to
(X; X) and a process Xy : k p+1gon(X;X) such thatforallk 2 Z.,,

Xk+1 .= Yk g+ k(xk p+l: k); (5.1)
Yier JFk G (Xksas );
whereFy = (X pirke13 Y gezk) @nd U i= (U5 iz up) for ° m. More-

over, we say that the model is dominated by some nite measure on(Y;Y)
if for all x 2 X, the probability kernel G (x; ) is dominated by . In this case
we denote byg (x; ) its Radon Nikodym derivative, g (x;y) = W(y),
and we always assume that for alfx;y) 2 X Y and for all 2

g (x;y)>0:

One of the most popular examples of this class is the general GARGHQ)
model introduced by Bollerslev [1986], wherE=(0;1 ), Y =R, G (Xx; ) Is
the centered Gaugsian distribkytion of variance, the deterministic function

yl;q(xlip) =1+ ip:1 giXj + iq:]_ by|2 and = (L@ 1pbg) with ! > 0
and a;p; b, 0. This model was then extensively studied by, for example,
Bougerol and Picard [1992], Francq et al. [2004], Francg and Zakoian [2009],
Lindner [2009], Francq and Zakoian [2011] and the references therein. For
other GARCH examples of this class, see Bollerslev [2008].

Remark 5.2.2. Whenp = q = 1, then the ODM(p;g de ned by (5.1)
collapses to the rst-order ODM considered in Douc et al. [2013] and Douc
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5. General-order Obsenation-driven Models

et al. [2015]. Note also that setting := max(p;g anddening' : X" Y'!
X by, for all (X (+1:0;Y r+10) 2 X* Y,

' Y r+10 (X r+1:0) = Y g+10 (X p+150);

then the ODM(p; g can be generally embedded in an ODM(r). Thus
without loss of generality, we can always assume that= q.

The inference about the model parameter is performed by rely-
ing on the conditional likelihood of the observations(Yy;:::;Y,) given
(X pr1:0: Y gr10) = (X pe103Y gero) = Z for an arbitrary z 2 XP Y.
The corresponding conditional density function with respect to " is, under
parameter 2 ,forall z=(X pi10;Y qr10) 2 XP Y9,

v 1
Yin 7! g W q+1:ki(x p+1:0);Yk+1 ; (5-2)
k=0

where, for any vectorygy, the function  hygki : XP Y91 X s successively
de ned by, forall k 2 Z,,

h g1kl (X pi10)
=y e Yotk pl(X prro)iiiy WY gk 2l (X prao)  (5.3)

with the convention, for1 | p,

b qre jI(X prio) == X jart

Then, the corresponding (conditional) maximum likelihood estimator (MLE)
Az;n of the parameter , with z = (X p+1:0;Y g+1:0), IS de ned by

"0 2 argmaxL,.,; (5.4)
2

where
X 1
L,:=n ' Ing  hy gao; Yo (X prao); Yerr (5.5)
k=0

In this contribution, we investigate the convergence of\z;n asn!1l for
some (well-chosen) value af under the assumption that the model is well
speci ed and the observations are in a steady state. That is, we assume that
the observationsf Yy : k 2 Z, g are distributed according toP ? with some
-2 ,where, forall 2 , P denotes the stationary distribution of the
observation-driven time series corresponding to the parameter However,
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5. General-order Obsenation-driven Models

whether such a distribution is well de ned is not always obvious. Let us now
detail how this probability distribution can be obtained.

For simplicity, we assume thatp = gandthatp 2andletZz= XP YP !
andZ = X P Y ®D |Let ' Z Y ! Z be dened by, for all
Z=(212p 1)2Zandy 2,

y(2) = 2202 g,y oy (Zap)i Zpe2 i 2y 1Y (5.6)

The function is indeed measurable o§Z Y;Z Y ). Moreover, for
any vectoryi, 2 Y€, we dene hyyi asazZ! Z function obtained by the

successive composition of , , and

ya2? **" Yk’

Y1 = Yk Yk 1 yi - (5.7)

with the convention  hyi0i(z) = z. By letting Zx = (X« ps1:k; Yk peik 1)
and observing thatFy =  (Zox+1; Yox), Model (5.1) can be replaced by: for
alk2 Z,,

L1 =, (Zx);

. (5.8)
Yier i FFY H (Zies );

where, for allz = (z1, 1) 2 Z,
H(z;)=G( p(2);) (5.9)

and, forallj 2 f1;:::;20 19, (z) = z. By this representation, the
ODM(p; p) is thus imbedded in an ODMZ1,; 1). This in principle allows us to
apply the same results obtained for the class of ODNIs 1) to the broader
class of ODMgp; p). As an ODM(1; 1), the bivariate procesd (Zx; Y«) : k 2
Z.gis a Markov chain on the spacéZ Y;Z Y ) with transition kernel
K satisfying, forall(z;y)2Z Y,A2Z andB 2Y,

zZ

K (zysA B)=  1a s(Z%Y) ,»(dDG ( 4(2):dy):  (5.10)

Note also that, by itself, the processZy : k 2 Z, g is a Markov chain on
(Z; Z) with transition kernel R satisfying, forallz2 ZandA 2 Z,

Z Z
R(z,A)=  1a( y@)H (zdy)=  1a( y(2)G ( p(2):dy): (5.11)
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Nevertheless, to apply known results to this embedded OD¥ 1), some
generalizations are needed. First we assume th@f; dy) is a locally compact,
complete and separable space equipped with the metrily. Then, since
(X; dy) is a locally compact, complete and separable space, this implies that
the space(Z;d;) is also locally compact, complete and separable with the
metric d; appropriately de ned as a function ofdyx and dy so that Z is the
associated Borel - eld. Throughout this chapter, let us assume the following
ergodicity assumption.

(AG-1) For all 2 , the transition kerneK of the complete chain admits a
unique stationary distribution onzZ Y.

With this assumption, we can now de neP . The following notation and
de nitions will be used throughout the chapter.

De nition 5.2.3.  Under Assumption (AG-1), we denote by ; and , the
marginal distributions of on Z and Y, respectively, and byP and P the
probability distributions de ned respectively as follows.

a) P denotes the extension oP on the whole line(Z Y)~%.

b) P is the corresponding projection on the component?.

We also use the symbolE and E to denote the expectations corresponding

to P and P, respectively. Moreover, for all; °2 , we write Oif and

only if P = P°. This de nes an equivalence relation on the parameter set
and the corresponding equivalence class ofs denoted by[ ] := f ©2

Q.

The equivalence relationship was introduced by Leroux [1992] as an
alternative to the classical identi ability condition.

For any probability distribution onZ Y, we denote byP the distri-
bution of the Markov chain f (Zy; Yx) : k 2 Z, g with kernel K and initial
probability mesure .

5.3 Main Results

5.3.1 Preliminaries

In well-speci ed setting, a general result on the consistency of the MLE
for a class of rst-order ODMs has been obtained in Douc et al. [2013].
This result has been later extended in Douc et al. [2015] to a wider class
of rst-order ODMs, but the latter has been derived under a handy set of
assumptions which appear to be quite direct and easy when checking. The
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approach used to establish the convergence of the MIIE;n in these references
and in our contribution is brie y described as follows.

First, we establish that, as the number of observations ! 1 , the
normalized log-likelihoodL,., de ned in (5.5), for some well-choserz 2 Z,
can be approximated by

X
nt Inp(MjY: « 1);
k=1

wherep (] ) is a P ?-a.s. nite real-valued measurable function de ned on
(Y% Y 4). Todene p(j), we usually set, for ally; .1 2 Y# , whenever
the following limit is well de ned,

limg , Wy moi(z) ;ya  if the limit exists,

P (Y1jy1 0)= ™t
HrL o 1 otherwise.

(5.12)
By (AG1), the observed proces$Yy : k 2 Zg is ergodic underP ? and
provided that

E’ In* P (Y]_JY]_ ;0) <1;

it then follows that
nI!ilm L, =E” Inp (YY1 o) ; P’-as.
Finally, we show that with probability tending to one, the MLE Az;n eventu-
ally lies in a neighborhood of the set

»=argmaxE "’ Inp (YY1 ) ; (5.13)
2
which only depends on ,, establishing that
lim “ni 2)=0; Pr’-as; (5.14)
n!

where is the metric endowing the parameter space.

In Douc et al. [2015], their easy-to-check conditions also induce that for all
. -2 , there exists aP ?-a.s. nite measurable function hi:z%z | Z
such that for some appropriate value 2 Z,

rT!llrln hY moi(z)= hYy oi; P’-as. (5.15)
Z1= ’hY; oi; P?-as. (5.16)
and that
Pp(YijY1 0)=9g o, hYy o ;Y1 ; P’-as. (5.17)
In addition, it is shown that forall ; ,2 ,

124



5. General-order Obsenation-driven Models

@ If 6 -, y7' p(yjY1 . ) is adensity functionP ?-a.s.

(i) Under P 7, the functiony 7! p?(yjY1 .) is the conditional density
function of Y; givenY; ..

Under these same conditions, Douc et al. [2014] further showed that the
maximizing set -, de ned in (5.13) indeed reduces to the equivalence class
of - through the equivalence relation de ned in De nition 5.2.3. Then, the
convergence in (5.14) yields a so-calledjuivalence-class consistency

im ("l )=0; Pr-as; (5.18)
for some well-chosen; 2 Z. From (5.18) the (strong) consistency of the MLE
Az;n will immediately follow if one can show that[ -] reduces to the singleton

f -0, which is often referred to as solvingdenti ability problem. In this
contribution, this issue is also investigated. We will show that if moreover
the probability density kernel G and the measurable function hY; i
de ned in (5.15) and (5.16) satisfy some certain conditions (similar to the
conditions in [Douc et al., 2013, Proposition 21]), then the strong consistency
holds.

5.3.2 Convergence of the MLE

We always assume in this part that AssumptionAG-1) holds throughout.
Note that every ODM of any orderp 1 can be embedded in a rst-order
ODM. Therefore, the approach used to derive the convergence of the MLE
in the class of rst-order models can be applied to the class of higher-order
ones up to some necessary adaptations. The following is a list of additional
assumptions su cient for obtaining the convergence of the MLE for a class
of higher-order ODMSs.

(AG-2) There exists a functiof : Z! R, suchthat, forall 2 , (V)<1.
Remark 5.3.1. Assumption (AG-2) is usually obtained as a byproduct of

the proof of Assumption AG-1); see Section 5.3.4. It is here stated as an
assumption for convenience.

The following set of conditions can readily be checked an, and

(BG-1) For ally 2 Y, the function( ;x) 7! g (x;y) is continuous on  X.

(BG-2) For ;lplyl:p 2 Y, the function(;x1p) 7! | (X1p) is continuous on

The function V appearing in BG-3)(viii) below is the same one as in As-
sumption (AG-2). Moreover, in this condition and in what follows, we write
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f . V for a real-valued functionf and a nonnegative functionV de ned
on the same spac&, whenever there exists a positive constarg such that
if(2)] cV(z)forallz2 Z.

(BG-3) There exisiz; 2 Z, a setZ; Z such that ,(Z;) is closed%2 (0; 1),
C 0 and measurable functions: Z! R.,, H : R, ! R; and
:Y ! R. such that the following assertions hold.

() Forall 2 and(z;y)2Z Y, , ((2) 22,
(ii) sup Y@J( p(2):y) < 1.

(izy)2 Z
(i) Forall 2 ,n22Z,,z2Z andy;, 2 Y",

dz  hywni(z); hywi(z) 9B ( 2); (5.19)

(iv)  is locally bounded.
(v) Forall 2 andy2Y, ( ,(z1)) (y).
(vi) Forall 2 and(z;2%y)22, Z, Y,

g ( p (Z) ; y) . C (dz(z1;2z)_dz(z1;29) .
In g (@) H(dz(z;29) e (y); (5.20)
(vi) H(u) = O(u) asu! O.
(viii) If C =0, then, forall 2 ,

GIn* . V; (5.21)

otherwise, for all 2
G . V: (5.22)

Let us now state the equivalence-class consistency of the MLE for the higher-
order ODMs. The proof can be adapted and easily follows from [Douc et al.,
2015, Theorem 1] and is thus omitted here.

Theorem 5.3.2. Assume that AG-1), (AG2), (BG1), (BG2) and (BG-3)
hold. Then, lettingz, 2 Z as in (BG-3), the convergencg5.18) of the MLE
holds.

The strong consistency of the MLE follows from the following theorem.

Theorem 5.3.3. Assume that AG-1), (AG-2), (BG-1), (BG2) and (BG-3)
hold. Suppose in addition that

(@) forall =(#r); °=(#%r%2 andx;x°2 X,

0

G(x;)=G°(x%) implies r=r° and x=x°®
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(b) forall =(#r), »=(#,r,)2 ,P7-as,,
#EOhyy oi = o ®Onyy i implies #= #;;

where hY; i is dened by (5.15) and (5.16). Then, letting z; 2 Z as
in (BG-3),
lim ( ",n; 2)=0; P’-as. (5.23)

Proof. From Theorem 5.3.2, we have , =[ -], where -, is given in (5.13).
Now let = (#r) 2 [ -] and write -, = (#,;r,). The Kulback-Leibler
divergence impliesP ?-a.s.,

G#r) 0 (#:r)hyl of ;= G#2ir2) 0 (#?;r?)hyl ol
Then from (a), we obtain
r=r»,
and
(#;r)hYl ;oi = (#?;r?)hYl ;oi . Pr-as.
From (b), we also have# = #,. Thus the proof follows. ]

5.3.3 Asymptotic Normality of the MLE

In this section, we treat a special but an important case of ODMs where
the spaceZ is a subset of a nite-dimensional vector space; is a compact
subset ofRY, for some positive integerd; and the function y(2) dened in
(5.6) admits the following form: for all(z;y; )2 Z Y :

y(@2)=a(;y)z+b(;y); (5.24)

wherea( ;y) and b( ;y) are two matrices with appropriate dimensions, and
forall 2 ,y7'a(;y)andy 7! b(;y) are measurable maps ofY;Y).
The underlying model is assumed to be well-specied and 2  denotes the
true parameter. As in Section 5.3.2, AssumptionAG-1) is supposed to hold
throughout this section. Assumption CG-1) below guarantees the existence
of hi satisfying (5.15) and (5.16), and its di erentiability on . In what
follows, we denote by j a vector norm onRY and by k k a matrix norm.

(CG-1) We have the following.

(i) Forally 2 Y, 7! a(;y)and 7! b(;y) are twice continuously
di erentiable on
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(i) There exist constant€ > 0 and 2 (0;1) such that for all 2

andyl:n 2 Y,
Y
a(;y:)) C™
=1
(i) E’[sup, Kb(;Ypkl< 1.
(iv) Foralli 2f1;:::;dg,
o S0 e an B0
(v) Foralli;j 2f1;:::;dg,
@a( ;Y1) @n( ;Y1)
E~ e ——— E~ e 1:
S e - % ee °

Lemma 5.3.4. Assume AG1l) and (CG1). Then for all 2 , there
exists aP ’-a.s. nite measurable function hi:z* ! Z satisfying (5.15)
and (5.16) for all z 2 Z. The function 7! hy, ol is P?-a.s. twice
continuously di erentiable on  and uniformly on , we haveP ’-a.s.,

@ hYl :Oi _ @ hy m:Oi(Z)

@ = rLler @ (5.25)
@ hYl ZOI - I|m @ hY m:Ol(Z): (526)
@@ mi1 @@
Moreover,
E? sup hy; o <1; (5.27)
2
E’ sup @ o : (5.28)
2 @
@ hY; i
E? sup —=—— < 1: 5.29
P —aTa (5.29)
Proof. The proof is postponed to Section 5.6.1 for convenience. ]

(CG-2) For ally 2 Y, the function( ;x) 7! g (x;y) twice continuously di eren-
tiable on X.

For stating further assumptions, the following notation may be needed.
Forallk2 Z,, 2 andz2Z let

Lk =Ing o Y1k 1i(2) Yk :
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Then foralln 2 Z,, it follows that L,.,, de ned by (5.5) can be rewritten as
L,=nt' ", (5.30)

Forallk2Z,, 2 andz2Z let
w=Ing o hYg oy qd YR

which is P ?-a.s. well de ned by Lemma 5.3.4. Note that from (5.17), we
have forallk 2 z,, 2 , =Inp (MjY1 « 1). Now foralln2 Z, and
2 ,dene

L,=n?t " (5.31)

Remark 5.3.5. Note that by Lemma5.3.4, AG-1), (CG1) and (CG2) imply
that the functions 7! *,, and 7! ", are twice continuously di erentiable

on some neighborhood/( ,) of -, P?-a.s.

Assumptions AG-1), (CG1) and (CG2) together with the following set of
assumptions, CG3) ( CG7), are su cient to yield the asymptotic normality
of ., for arbitrary z 2 Z.

(CG-3) The true parameter, lies within the interior of .
(CG-4) The strong consistency holds, thatlig) ’\Z;n = -, Pr?-as.

(CG-5) There exist a constant 1=2 and aP ?-a.s. nite random variabl€ > 0
such that for allk 1,

sup @i G«

Ck : P’-a.s:
() @ @

whereV( ») is a neighborhood of,.

(CG-6) The exists a neighborhod{ -) of -, such that
.2
() E? sup,y(, % <1.
h & [
(i) E? sup,y( ., o <1.
(i) E-’hsupzv(?) @d o Yy of ;Y1 < Il .
(iv) E7 Sup,y( . @f@g_ o hY1 i ;YL <1,
N I
(CG-7) The matrix ,= E?~? ng@ is invertible.

o ®
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Note that if Assumptions (AG-1), (CG1) and (CG2) hold, then by Re-
mark 5.3.5, 7!'L,,and 7! L, respectively given by (5.30) and (5.31) are

twice continuously di erentiable on some neighborhoo&( ,) of ,, P?-a.s.
If in addition Assumption (CG5) holds, the following fact is obtained.

Lemma 5.3.6. Assume AG-1), (CG1), (CG2) and (CG5), then

@'Z n @-n

lim sup n'? =0 =0; P’-as;
nil 2V(p?) @ @
Proof. We have from CG5), P ?-a.s.,
sup n*? @z @, = sup @ @ €M1
2V ( ) Q@ @ n2 iy @ @ n? _ k-

To complete, observe that the rightmost term of the above inequalities con-
vergestoOasn!1 whenever > 1=2 [

Theorem 5.3.7. Assume that AG-1) and (CG1) ( CG7) hold. Then, for
anyz?2 Z, D
— /N
n("zn 2 L N(©O L) (5.32)
where the symbol ., means weak convergence undér?, and N (0; ,1)
stands for the centered Gaussian distribution with covariance matrix, *.

Proof of Theorem 5.3.7. From Lemma 5.3.6, we have

. , Q,.
lim n¥? sup —=" @,

nil (i, @ @

=0: P’-a.s.

Since for su ciently large n, Az;n 2V( ») and @é”;n =0, then

n1=2—@@”m - n1=2_@§ + 0p(1) = op(L):

Note that we also have,

r]1:2 @-;l\z;n — r11=2 @-n? + @Ln?
@ @ @@

where ~ . !
. 1 @Ln?+t( zn ?) @l—n?

" @T@ Q@T@

n = A .
+ n nl 2( zn ?)!

dt: (5.33)
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Thus,

1:2% = @Ln?
@ @T@

Note that from (CG6)(ii) and by ergodicity, Birkho ergodic theorem applies
and we have

n + "y nl:z(l\z;n 2) + Op(1):

. L> X @
Ilm@“zllmnl @,

ntT. @T@ o1 - QT@

= 2, P’-as.

Thus to complete the proof, we only need to show that
(a) n1=2%"? , N(0; ) and
(b) "n = op(1).

Let us now we show (a). Note that we can write

? xn @‘?
r]1—2 n_ — n 1=2 k .

@ @

k=1

Let ¢ = %, k2 Z,. From (CG®6)(iii), it readily follows that

Z .
. Y, . :
E’[ Y1 x 1]= @9 » @l kal oY (dy)

Y Z

= @@ Yg p o Y1 44 jy  (dy) .
@

= =1 =0;
@ .

so that the sequencd  : k 2 Z, g is a stationary and ergodic Martingale
di erence with respecttoF; x= (Y1 «)inLy(P?). By (CG6) and (CG
7), its covariance matrix is equal to ,. To see this, observe thaP °-a.s.,

.
E” v« F1 x1

7 ! .
— 1 @g k?;y @g k?;y (dy)
vyg?r Yy @ @ |
Z H
_ @y’ iy @Ing? iy _
= y @T@ @T@ g k ’y (dy)’
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with 7 := , ?hYy 11 . By (CG6)(iv), we have
Z

@g’ iy
————— =0, P’as.
y @@
SinceP °-a.s.,
Z
@ @ing” iy
E~ Fi . = [ dy);
@@  * k1 . @@ g Y o (dy)

it then follows that

@
@T@
Taking the expectation on both sides, then using tower property and us-

ing (CG7), the claim thus follows. By ergodicity and from CG6)(i), we
have

E~ kIFlzklz E~ Fi «x1; P?-as.

- lX‘I T
nlzllm n E® «¢x F1 k1 = 2 P’-as.
k=1
Moreover, for > 0,
i 1 )<n 5 T .. p_
nlll{nn E- kkl(J kl > n)Flzkl
' k=1
li 1><1 I SR p—
ann E? j"1(0 k> n) F1 x1
' k=1
: 1Xn N
nllllmn E? j "1 ki>M) F1 « 1
' k=1

=E’ j4°1(4>M) ; Pr-as;
whereM > 0. SinceM is arbitrary, letting M !'1 | we have

xXn p_
Ii{nn1 E° «,1(G«> n)Fy 41 =0; P’-as.
n!

k=1

Thus by martingale central limit theorem, see, for instance, Hall and Heyde
[1980],

n1=2 n? =n 122)4"I N (O: .
- k ? ( ’ ?)'

@
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Now it remains to show (b). Let > OsuchthatB( ,; ) V (»). Since
P--a.s., "Z;n I ,asn!1 | then there exists aP ’-a.s. nite integer Ng
such that for alln Ng, P?-a.s., »+ t(’\z;n ») 2 B( »; ). Then from
(5.33),P-a.s., for alln Ny,

Zl @Ln?+t("z;n 2) @Ln?

K",k
., @@ ae =™
@L, @L,
P @@ @@
X'I N N
nt sup @ @,

) @@ @@

By (CG6)(ii), B( »; ) V ( ») and Birkho ergodic theorem, we get that

#
limsupk',k E? sup @, @y

: Pr?-a.s.
nli 2B( »; ) @T@ @T@

Here is an arbitrary positive number, provided thatB( »; ) V ( »). By
dominated convergence and Remark 5.3.5, the right-hand side of the previous
display can be made arbitrarily close to zero by letting tend to zero. Hence

we get (b), and the proof is complete. ]
Remark 5.3.8. From the proof of Theorem 5.3.7, it is also shown that
) N 2 T#
2= E”? @1- @—1
' @ @

Thus, to obtain (CG7), that is showing that - is invertible, it is su cient
to show that for all a 2 RY,

aT@:O; P’as; =) a=0: (5.34)

5.3.4 Ergodicity

In this section, we provide conditions that yield stationarity and ergodic-
ity of the Markov chain f (Zy; Yx) : k2 Z.g. We will set to be an arbitrary
value in and since thisis a forall (...) condition, to save space and alle-
viate the notational burden, we will drop the superscript from, for example,
G ,R and and respectively writeG, R and , instead.
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Ergodicity of Markov chains are usually studied using -irreducibility.
This approach is well known to be quite e cient when dealing with fully
dominated models; see Meyn and Tweedie [2009]. It is not at all the same
picture for integer-valued observation-driven models, where other tools need
to be invoked; see Fokianos and Tjgstheim [2011], Douc et al. [2013, 2015].
Our result here is obtained in the same fashion as in Douc et al. [2015], which
is inspired by the approach in Douc et al. [2013]. The following is the list
of assumptions to obtain our main result on ergodicity. We should mention
that some of our assumptions (for instance, AssumptiorAG-4)) are more
general than those derived in Douc et al. [2013] and Douc et al. [2015].

(AG-3) The measurable spafé d;) is a locally compact, complete and separable
metric space and its associatedeld Z is the Borel - eld.

(AG-4) There exists a positive integgisuch that the Markov kernd®9 is weak
Feller, that is, for any continuous and bounded funcfiode ned onX,
R is continuous and bounded ot Moreover, there exist; ) 2
(0;1) R: and a measurable functiovh : Z! R,: such thatR9Vv
V + andfV Mgis a compact set for anyl > O.

(AG-5) The Markov kerndR admits a reachable point, that is, there exigg® Z
such that, for anyz 2 Z and any neighborhood of z;, R™(z;N) > 0
for at least one positive integer.

(AG-6) There exists a positive integesuch that

do( hyii(2); hyai(29) _ .

su ; 5.35
(z;zo;yln)zr:)z2 Y dz(z; 29 ( )
26 20
and ; | )
sup D @) (5.36)
(z;2%)222 ¥ dz(z;29
26 20

(AG-7) There exist a measurable functiorfrom Z? to [0; 1], a measurable func-
tion :2Z?! X= ,(2) and a measurable functiov : z>! [1;1)
such that the following assertions hold.

(i) Forall(z;292 Z2 andy 2 Y,
minfg( »(2);y);9( »(2);V)9  (z:299( (z:2)y): (5.37)

(i) Forallz2 Z, W(z; ) is nitely bounded in a neighborhood afthat

is, there exists, > O such that sup W(z;Z%)< 1.
z®2B(z; 2)
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(i) Forall(z;29 2 22,1 (z;2% dz(z;9W(z; D).
(iv) There exist an integem > 0 and a real numbed > 0 such that

sup (Im((z;2)W) W(z;2)) <1
(z;29222

and

sup (J1((z;2);W) DW(z;29) < 1;
(z;29222

where for any positive integer (z; 2% 2 Z? and measurable function
f :z2! R,
Z
Jn((Z;Z%;f) = f ( I‘yl:ni(z); I‘Vl:ni(z%)

N
G( ( hyix 11(2); hyix 1i(29);dyi):

k=1

Remark 5.3.9. Assumption (AG-3) holds if the measurable metric spaces
(X;dx) and (Y;dy) are locally compact, complete and separable and their
associated -eld X andY are the Borel -elds. In this case, the metricd;
can be appropriately de ned as a function ofly and dy.

Remark 5.3.10. Note that if the Markov kernel R is weak Feller, then the
Markov kernel RY is also weak Feller.

Lemma 5.3.11. Assume AG-3) and (AG4). Then R admits an invariant
probability distribution ~; moreover, & < 1 .

Proof. From Assumptions AG-3) and (AG4) and by Remark 5.3.10, the
transition kernel R9 admits an invariant probability distribution denoted by
q- Let ~be dened by, forallA2Z,

1 X k .
~(A)= — oR°(A):
q k=1
Obviously, we haveR = ~, which shows thatR admits an invariant proba-

bility distribution ~. Now let M > 0. Then we have for alin 2 Z.,

~(VAM)=~R"M(VAM)
RM(V)A M

N M:

"~(V)A M +
(V)AM + 2
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Letting n!'1 , we then obtain

~V~ArM — N M:
(VAM) g
Finally, since M is arbitrary, by letting M !'1  and by monotone conver-
gence theorem, we getv < 1 as desired. ]

We can now state the main ergodicity result.

Theorem 5.3.12. Conditions (AG-3), (AG4), (AG5), (AG6) and (AG7)
imply that K admits a unique stationary distribution onZ Y. Moreover,
1V <1 foreveryV : X! R, suchthatV. V.

For convenience, we postponed the proof of Theorem 5.3.12 to Sec-
tion 5.6.2. The rst conclusion of Theorem 5.3.12 can directly be applied
forall 2 to check AG1).

Assumptions AG4) and (AG5) have to be checked directly on the
Markov kernel R de ned by (5.11). To this end, it can be useful to de ne,
for any givenz 2 Z, the distribution

PZ = PZ G( p(2);) (538)

on (Z Y)%, whereP is dened for any distribution onZ Y as in
De nition 5.2.3. Then the rst component processfZy : k 2 Z, g associated
to P, is a Markov chain with Markov kernelR and initial distribution .

The following lemma provides a general way for constructing the instru-
mental functions and that appear in (AG-7). The proof can be easily
adapted from [Douc et al., 2015, Lemma 1] and is thus omitted.

Lemma 5.3.13. Suppose that ,(Z) = X = C° for some measurable space
(S;S) andC R. Thus for all x 2 X, we write X = ( Xs)s2s, Wherexs 2 C for
all s2 S. Suppose moreover that for atk = ( Xs)s2s 2 X, we can express the
conditional densityg(x; ) as a mixture of densities of the form (xs)h(Xs; )
overs 2 S. This means that for allt 2 C, y 7! j(t)h(t;y) is a density with
respect to and there exists a probability measure on (S;S) such that

Z

a(x;y) = Sj(xs)h(xs;y) ds); y2Y: (5.39)

We moreover assume that takes nonnegative values and that one of the two
following assumptions holds.

(H'-1) For ally 2 Y, the functionh( ;y) : t 7! h(t;y) is nondecreasing.
(H'-2) For ally 2 Y, the functionh( ;y) : t 7! h(t;y) is nonincreasing.
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For all (x;x9 2 X2, we denotex N x° := (min fxs; x2g)s2s and x _ x°% :=
(maxf xs; x%0)s2s and we de ne (z;29 and (z;2% by: for all (z;29 2 72,
letting x = ,(z) andx°= (29,

8

. —_ J (XS — Xg) . —_ A O 1)
2 (z:9= inf j—(xs" Xg and (z;29= x~x° under (H'-1);
2 (2;29 =inf 1 (X% Xs)

. — 0 _9)\-
A and (z;29= x_x° under (H'-2):

Then and de ned above satisfy AG-7)(i).

5.4 Examples

In this section, we apply our main results derived above to three mod-
els of interest, namely, the classical GARCEp; p), the log-linear Poisson
GARCH(p;p and the NBIN-GARCH(p;p) models. For the celebrated
GARCH(p; p model, however, we illustrate only the ergodicity result and
for the asymptotic result of the MLE for this model, we refer to Francq et al.
[2004]. To the best of our knowledge, the stationarity and ergodicity as well
as the asymptotic properties of the MLE for the general log-linear Poisson
GARCH(p; p) and NBIN-GARCH (p; p) models have not been derived so far.
In the sequel,A, b and! always denote, respectively, the matrix

0 0 1 0 0 0O 0 O 0 O 1
0O O 1 0 O 0 O 0 O
0O O 0 1 O 0 O 0 O
0O O 0 0 1 0 O 0 O
A dp 1 A 2 T 3 a; by by by b &
0O O 0 0 0O 0 1 0 O
0O O 0 0 O 0 O 0 O
0O O 0 0 O 0 O 0 1
0O O 0 0 0O 0 O 0 O
the vectorby ,+ o, 1, withforall j 2f1;::::2p 19, j =( ij)izf 120 10

j being the Kronecker delta, and the vecto! ,. We also denote by
A5, b, and ! » the corresponding values oA, b and! at (!;a 1,5;b1p) =
(! %;a],: b,,), respectively. For any matrix M, we denote its transpose by
M T. For any real numbersa and b, we denote their maximum value bya_ b
or maxf a; g and their minimum value by a” b or minf a; lg.
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541 GARCH (p;p Model

Example 5.4.1 (De nition of GARCH (p;p)). Consider GARCHp; p), p 2
Z,, de ned as follows: for allk 2 Z,,

xXP xP )
Xgepg =1 + Xy i1 T hYk i+1
i=1 i=1 (5.40)

H — 1=2 n .
Yk+1 J I:k - Xk+1 k+1 s

where
the parameter space

f =(Laimbp)2R RP RP:!> Oayy, Ojby, Og;

I:k = (X p+1: k+1 ; Y p+1: k),
The processf"y : k2 Z,gare i.i.d. random sequence with zero mean
and unit variance onR and are independent ofF. For eachk 2 Z,,
the distribution of " admits a density with respect to the Lebesgue
measure orR. The density is assumed to be positive, to be continuous
over R and to satisfy that (u)+ ( u) is monotone onu 2 R,. We
further assume that > 0, P("3< ) > O.
X=(0;1), X =B(X), Y=R,Y = B(Y) and the metrics onX and Y
are any metrics onR.
Note that, by setting for all k, U, = Y,? (then U = R, U = B(U) and dy
is any metric onR), Model (5.40) can be embedded in Model (5.41) below:

Xk+1 .: Uy p+1:k(uxzk p+1:k); (5.41)
Uk+1 J Fr = X "fers
where for all (X1.p; Ugp) 2 XP UP,
xXP xXP
Uk p+1:k(xk p+1:k) =1+ aixp i+1 T hup i+1 - (542)
i=1 i=1

The density g and the probability law G of Uy conditional on X = x are
respectively given by, for allu2 U and A 2 U,

1 hop p__|
g(x;u) = pr—_u X lu + xu >0 (5.43)
and z
G (x;A)=  1a(u)g (x;u)du; (5.44)

U
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with g (x;0) = 1 for all x 2 X. In view of De nition 5.2.1, Model (5.41)
is an ODM(p; p) and is dominated by the Lebesgue measure & Now let
Z=XP UPlandZ =X P U * Y andde nethe measurable function

similarly as in (5.6). The function then has the form: for all(z;u) 2 Z U,

J(2)="1 + Az+ ub: (5.45)

Moreover, denotingZy = ( Xk p+1:k; Uc pr1:k 1) for all k, the processf Zy :
k 2 Z,gis a Markov chain on(Z;Z) whose transition kernelR is given by
(5.11) with G and  de ned in (5.44) and (5.45), respectively.

Let I, be the identity matrix of order n and denote the characteristic
polynomial of the matrix A + b g by P()=det Il,,1 (A+Db g) :
For any square matrix M, denote the spectral radius oM by | jmax(M).

Straightforward computation shows that

|
xXP

P()= P*% ° (a+h) P X (5.46)
k=1

The following lemma is immediate.

P

Lemma 5.4.2. Leta;p, O, by, 0. Then ip=1 (g + ) < 1if and only if
j imax(A+b p)< L

Proof. The proof is postponed to Section 5.6.3. ]

Remark 5.4.3. 1t is well known that for any nonnegative matricesM =
(mj) and N = (n;) such thatM N, that is for all i;j, m; nj , we
havej jmax(M) | jmax(N). Thus for our matricesA andA +b |, we have

i jmax(A) ] jmax(A + b 7).

Proposition 5.4.4. Suppose that 2 satises| jmax(A+Db g) < 1. Then
the conclusion of Theorem 5.3.12 holds witi(z) = 17z for all z 2 Z.

P
Remark 5.4.5. Ifa 0, Oforalli2f1;:::;pgand P, (a+h)< 1,
then from Lemma 5.4.2, Proposition 5.4.4 holds with/(z) = 17z for all
z2 Z.

Proof. Now setV(z) = V(z)= 17z,z 2 Z. From Theorem 5.3.12, we need to
show that (AG-3), (AG4), (AG5), (AG-6) and (AG-7) hold. For convenience,
we drop the superscript from for exampleR , , etc. Assumption AG

3) holds with any metric d; associated to a norm on the nite dimensional
spaceZ. (The precise choice of this metric is postponed to the veri cation
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of (AG-6).) The fact that R is weak Feller follows from the continuity of the
density and (). Moreover, we have, for alkz 2 Z,
Z

RV(z)= V( + Az+ub)G( ,(2);du)
=1 +1T A+b | z
By iteration, we obtain, for allk 2 Z,,
RV(Z)= 1T+ +1T A+b T ' +17T A+b ] “z
Sincej jmax(A + b ;) < 1, then there exist(q; ) 2 Z, (0;1) such that
RV(Z) 17+ +1T A+b T %%+ 917z
Hence AG4) holds with = 1Tt + + 1T A+b [ ° ty 0 and

= 9< 1. We now prove AG5). We have for alln 1, tg,, 1 2 U" and
22 Z,

X1
hJo;n 1i(Z): A"z + AJ(l + Uy 1 jb): (547)
j=0
Let us use the norm
2p 13g 1
kMk= " jMjj=supjMz]
j=1 i=1 iz 1

P
on(2p 1) (2p 1) matrices, wherejzj =  *jzj is a norm ofz =

Z12p 1 2 Z. Note that sincej jmax(A + b ;) < 1, there exists 2 (0;1) and
c > O such that, for anyk 1,

T K K.
A+b , c “ (5.48)
Using that A, b, , all have nonnegative entries, we have
k T k.
A A+b | : (5.49)

P
Hence(lp 1 A) 1= lop 1+ 1A" is well de ned and we setz; =
(Ip 1 A) ! so that, with (5.65), we have
X _ X1 _
hugn 1i(z2) z3 = A"z+ All + un 1 jA'b:

jon j=0

140



5. General-order Obsenation-driven Models

Then, using de nition (5.38), we get that, P,-a.s., for alln 1,

JZn 71 j=] HJon 1i(2) z1]

X Xt
j A"z z1)j+ All +  max U, Alb :
i n 0j n1 i=0

With (5.48) and (5.49), this implies

: LN jbj =1
jz le+1 +1 OrjnahxluJ =1:

n

P, jZn z1j ¢

To obtain (AG-5), it is su cient to observe that, since g takes positive values
in (5.43), for any positive , z2 Z and anyn 1,

P, max U; < > 0:
0j n1l

Next we prove AG-6). We have
W(2) W@ =A@E 2D

Since (5.48) and (5.49) imply that] jmax(A) < 1, there exists a vector norm
which makesA strictly contracting. Choosing the metricd; on Z (embedded
in R?* 1) as the one derived from this norm, we getAG-6). To show AG-7),

we rely on Lemma 5.3.13. Letus se€=(0;1 ) = X and S= f1g, then the

probability measure boils down the Dirac mass ors. For all (x;u) 2 X U,

we de ne:

@ if (u+ ( uis nonincreasinlq inu 2 R, i
j(x)=" x Landh(x;u) = - T P - and

(b) if (W+ ( uwis nondecrea%ng iu2 Ry,

j(x):piandh(x;u):—?h pxlu + pxlu

2xu
Clearly, (5.39) holds. In Case (a),h satises (H'-1) and in Case (b),h

satises (H'-2). Hence, by Lemma 5.3.13, we obtain and , which are
given, respectively, as follows. For alt;z°2 Z, in all cases, de ne

D(2)N (29
p(z)_ p(zcb

and (z;29= (2" p()incCase(a)and (z;29= ,(2)_ (2% in
Case (b). These so-de ned functions and indeed satisfy AG-7)(i). For

(z;2) =
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any z;2°2 Z, we have

o) (29

p(Z)_ p(Z%
0 (@) N (@D @ » (@D
W(z; 2% dz(z; 2%;

1 (z;OA=1

where d; is the metric previously de ned andW is de ned by W(z;29 =
1_ c,( p(@ '™ (29 Y with ¢, > 0is conveniently chosen (such a
constant exists sinceal; is the metric associated to a norm and has nite
dimension). Then AG-7)(ii) and (AG-7)(iii) hold and, since for allu 2 U and
227 o( uw(2) I, then W( u(2); u(29) is uniformly bounded over

(z;Z2%u)2 Z Z U and (AG7)(iv) holds. This completes the proof. [

5.4.2 Log-linear Poisson GARCH (p;p) Model

Example 5.4.6 (De nition of the log linear Poisson GARCH(p; p)). Con-
sider the log-linear Poisson GARCH of ordefp; p), p2 Z,, which is de ned
as follows: for allk 2 Z,,

xXP xXP
Xks1 =1 + Xy i+t biIn(L+ Yy is1);
i=1 i=1

Yk+1j|:k P e?(kﬂ ;

(5.50)

where
the parameter space

= (L a 1p; bryp) 2 R,

Fi= (X prrkens Y prik)s
X=R, X =B(X),Y=2,,Y = B(Y) and the metrics onX and Y are
the same usual metric orRR.

By setting for all k, Uy = In(1 + Yy) (henceU =In(1+ Z.), U= B(U)
and dy is the usual metric onR), then Model (5.50) can be embedded in
Model (5.51) below:

X1 = Uy pns i (X prai);

_ (5.51)
U1 JFk G (Xks1s )s
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where for all (X1.p; U1p) 2 XP UP,

xXP xXP
Uk p+1;k(xk priik) = !+ aXp j+1 T bup i+ (5.52)
i=1 i=1

and G (x; ) is the conditional law of Uy given X = x de ned by
o €D

X
G (X,A): UZAe m, A2U: (553)

The density g of Uy conditionally on X = x with respect to the counting
measure onU is given by, for allu 2 U,

o exe 1)
(ev 1)

By De nition 5.2.1, Model (5.51) is an ODM(p; p) and is dominated by the
counting measure onJ. Now letZ= X UPlandZz =X P U ®D
and de ne the measurable function similarly as in (5.6). The function
then take a simple linear form

g(x;u)y=e > 0 (5.54)

J2)=1 +Az+ub; (zzu2Z U: (5.55)

As in Example 5.4.1, denotingZy = (X p+1:k; Uk per:k 1) for all k, the
processfZy : k 2 Z, g is a Markov chain on(Z;Z) whose transition kernel
R isgivenby (5.11) withG and de nedin (5.53) and (5.55), respectively.

In this section, we will use the vector and the matrix norms de ned
respectively onR? ! and the space of2p 1) (2p 1) matrices as follows:

2p 1 2p 1
jzin = 7 i {d= "z
i=1 i=1
2p 1§Q 1
kMk, = ~ jMiji= sup jMzj, :
i=1 j=1 jzii 1

For notational convenience, we will also denotda; = A andA,= A+ Db g
Proposition 5.4.7. Suppose that 2  satis es

%
A, <1 (5.56)
(i1ysip)2f 1,20 =1 1

Then we have the following.
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(i) Theorem 5.3.12 holds with the functionv : Z! R, de ned by, for all
z2Z, .
V(z)=e®t; > O (5.57)

(i) Theorem 5.3.2 holds with anyz; 2 Z. If the true parameter , =
(! % af,; b)) moreover satis es, for allk 2 Z, ,

(A A¥)b,=0 implies A = A,; (5.58)

then Theorem 5.3.3 also holds.

(iii) If the true parameter - lies in the interior of and satis es (5.58),
then Theorem 5.3.7 holds.

Remark 5.4.8. Whenp=1,thenA; = A andA, = A + b | correspond
to a; and a; + by, respectively. Condition (5.56) then reduces to

jalj_jaa+ bj< L

This condition is weaker than the one derived in Douc et al. [2013] where
joij < 1is also imposed.

Remark 5.4.9. To check (5.58), it su ces to check that there existsk 2 Z,
such that the determinant

Remark 5.4.10. Whenp=1, (5.58) holds if and only ifb’ 6 0.
Before proving Proposition 5.4.7, let us show the following fact.

Lemma 5.4.11. If Y P () with > 0, then for any # 2 R, there exist
constantsc; = ¢;(#); ¢ = ¢(#) > 0 such that

E[(L+ Y)*] ci+c #1f#> 0g: (5.59)
Proof. The proof is postponed to Section 5.6.4. O
Proof. Proof of Proposition 5.4.7 (i) . Now setV(z) = V(z) = e /21,

z2 Z. From Theorem 5.3.12, we need to show thatrG-3), (AG4), (AG5),
(AG-6) and (AG-7) hold. Assumption (AG-3) holds with the metricd; de ned
by, for all (z;2% 2 72,

2p 1
dz(z;2%9= ~ jz Z4=jz 29:: (5.60)

i=1
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The fact that R is weak Feller follows from the continuity of the densityg
with respect to the x component in (5.54) and the continuity of ,(). We
will show that, with V de ned in (5.57), then we haveRPV vV + for
some(; )2 (0;1) R.:. Notethat Lemma 5.4.11 implies that, for al# 2 R
and > 0,
Z
€UG( ;du) o+ ce 1f#> 0Og; (5.61)

wherec; and ¢, are some positive constants. Note further that for alk 2 Z
and > 0, we have

X xR1

V(z) =e 2t e’ 2(2p 1eld: (5.62)
2f  1:1g k=1

Without loss of generality, let us assume for the moment that = 1. Now,
using (5.61) and (5.62) and noting that, foralz 2 Z, z. = (z, ,(2)= }z
andl [b>0 1, we have

X %Q lZ
.
RV (2) e «(TAZWDIG Tz du

2f  1;1g k=1

1 Z
X R T +Az) Tbu T,.

e « e "G ,z;du
2f  1;1g k=1
X !

e F(+AZ) L+ e ‘bz ’
2f  1;1g k=1

where ; and , are some positive constants. This further yields that, with
A=A andA,=A+b ],

X xR1?

T T T
RV(Z) e kAZ+ e kK (A+b p)z
2f  1;1g k=1
X R TA TA
18 KR+ e kf2z
2f 1;1g k=1

where ; and , are some positive constants. By iterationR™1V =
R(R™V), we obtain that, forallm2 Z, ,
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X ® 1 X 1 Qm
R™V(2) oine O RAR) (5.63)
2f  1;1g k=1 (iy;:5ip)2f 1;2gM
X X R1 Q.
i10im e (T ALz
(i15:5im)2f 1;2gM 2f 1;1g k=1
X X x1
—_ K3y Ak, izis
1yeey m
(i1;:5im)2f 1;2g™ 2f 1;1g k=1
Qm
2(2p 1) i ek 21 A kl 121
0 (i1;5im)2f 1;2gM 1
w Qnm .
@2(2p 1) i1§322§imA @ (ipmi m)2f 1;2gM k ‘o1 Al kl JZJ1 :
(i1;5im)2f 1;2gM
where, for all(iy;:::;im) 211,29, i,...i,, are positive constants. Thus, for

all z2 Z, with m = p, we get

RPV(Z) pe pizj1 :

where X
p-= 2(2p 1) i1;5ip >0
(i1;mip)2f 1;2gP
and
_ Y
(ig;ip)2f 1,20 =1 1
Since N
e rlZ1
lim =0
izin 11 V(2)

and for allM > 0,
sup RPV(z2)< 1 ;
jzih M

then there exists a pair(; ) 2 (0;1) R.: such that RPV vV +
and hence AG4) holds. Note that whenm = p 1and =1, we have
g »(2i p 1RP 1V (z) for some , ; > 0. We now turn to prove (AG5).
Note that from (5.56), there exist 2 (0;1) and ¢ > 0 such that, for any
k 1,

Ak c X (5.64)
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Hence,(Ip 1 A) 1=l 1+ P « 1A¥ is well de ned. Now, setz; =
(Ip 1 A) M. Let N; be an open neighborhood of; and letz 2 Z.
De ne recursively the sequencéz, : k2 Z,gwith zo= zand forallk 1,

zx = ! + Az, ;. From (5.64), this so-de ned sequence admits a unique
limiting point lim,, 2z, = z; . Thus, there exists somen 2 Z, such that
forall k n,z 2N, . Forsuchn, we have

R"(z;N1 )= P,(Z,2N;) P,(Zx=zforal k=1;:::;n)

= P,(Ug = =U, 1=0) >0
Next we prove AG-6). We have foralln 1, ugn 12 U"andz 2 Z,
X1
hugn 1i(z) = A"z + Al(! +u, 1 ;b): (5.65)

j=0
Then for all (z;2% 2 Z?, upp 1 2 UP,

dz( w(2); w(@) = iAz 29
k Akl jZ Z(]]_
Ddy(z;2%:

and

dz( huop 1i(2); hugp 4l (29) = jAPz I
k Apkl jZ Z(]l
dz(z; 29;
whereD = kAk; > 0Oand = kAPk; < 1 from (5.56), showing AG6).
To show (AG7), we rely on Lemma 5.3.13. Let us se€ = R = X and
S = f1g, then the probability measure boils down the Dirac mass ort.
For all (x;u) 2 X U, letj(x) =e ¢ and h(x;u) = % Indeed, h
satises (H'-1). Hence, from Lemma 5.3.13, the instrumental functions
and are obtained by setting: for allz;2°2 Z,
e p(2)_ pzf

o _ _ e p(2) o p(zf
(Z,Z(b - e e p(Z)A p(ZO) - e

and (z;29= ,(2" ,(29. These so-de ned functions and indeed
satisfy (AG-7)(i). For (z;2% 2 Z?, we have

1 (=1 @0 e P @ g @)

d r(@id p(ZO)J'j 5 (2) p(Z()j
W (z;2) dz(z; 2));
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whereW is de ned by, for all z;z°2 Z,
W(z;2) = , 1 RP 'Vyi(2) + RP "Vy(29)

and Vi(z) = e/t . Obviously, this so-de ned functionW satis es (AG-7)(ii)
and (AG-7)(iii). To complete the proof of Proposition 5.4.7 (i), it remains to
show (AG-7)(iv). Note that (AG4) holds with V(z) = e 1#* for any > 0,
thus it also holds Vé/ith V,. Forall z;2°2 Z,

Ji((z; /W)= W( u(@); u(@NG( (z:29;du)
vd vd

=1 RV y@)G( (z; D du)+ 1 Vi( u(29)G( (z;2);du):

From (5.63), withm = p 1, we have
z

RP Wi( u(z)G( (z;2);du)
X xR 1 X

Note tha% by (5.61), there exist constantsc? and ¢ such that

e [P ANG( (2:29; du)

( yi ! )
O+ e IO AP T T A p>o
=1
Cg_'_ Cge 1k' szllAi\)b ;I)—Z'
: Q

where we have usedjz~ [z° Jzandl | P AL b>0 1.
Plugging this inequality into (5.66) and noting that A; = A and A, =

A+b g then there exist positive constants ;,....;,, (i1;:::;ip) 2 f 1,20,
such ?at
RP Vi( u(2))G( (z;2);du)
X x1 X
;i p € K Q‘p=1 Ai)z
021‘ 1;1g k=1 (i1;u5ip)2f 1;2gP 1
X P
@Z(Zp 1) i1;:::;ipA eret

(i1;:5ip)2f 1;2gP
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W Qp -
where = i ... o109 K *op Aiky < 1 Similarly, we have
7 0 . 1
R WVi( u(2)G( (zi2)idu) @2(2p 1) i @217
(i15mip)2f 1;2gP
for some positive constants iol;:::;ip, (i1;::0;0p) 2 1;29°. Thus, there exists

Jl((Z,Z%,W) = M epjzjl +e ijoj]_

Assumption (AG-7)(iv) follows by observing that

im J1((z;29; W) _

0:
jzjin jz%9: 1 W(z; 29

This completes the proof of Proposition 5.4.7 (i).

Proof of Proposition 5.4.7 (ii) . As a consequence, we have\G-
1). Assumption (AG-2) directly follows. Thus, to show the rst part of
Proposition 5.4.7 (ii), we only need to show that AssumptionsBG-1), (BG-
2) and (BG-3) are satis ed. The second part then follows if we can moreover
show that (a) and (b) in Theorem 5.3.3 hold.

Clearly, (BG-1) and (BG-2) hold by the de nitions of and g given
by (5.52) and (5.54), respectively. It remains to showBG-3). Since is
compact, then

w
j'i %jaj ajbj by A , KAk, L, (5.67)
i;unip2f 1,2gp =1 1
for some(t7 a;b; ) 2 (0;1)® (0;1)andL > 0. We setZ; = Z. And so
(BG-3)(i) holds. Moreover, for all(;z;u) 2 Zi U, g( p(2y) 1L
Thus, Condition (BG-3)(ii) holds. Now let z; 2 Z. Using (5.64), (5.65) and
(5.67), we get that there exist constantx > 0 and 2 (0;1) such that for
alz2 Z,uy,2U"and 2
th:ni(Zl) hJl:ni(z) 1 = jAn(Zl Z)jl
c "jzn zZj, :

Thus by (5.60), we get BG-3)(iii) with
(z)=cjz1 2z, :
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Hence BG-3)(iv) holds and since
Z () (L+1)jzyy; +T+(1 _buy;
we also get BG-3)(v) provided that
(uy (L+1)jzsj; +T+(@ _bu: (5.68)

It is straightforward to show that for all 2 , (x;x% 2 ,(Zy) 0 (Z1)
andu 2 U,

Ing (x;u) Ing (x%u) j x xggxiixde
i x x§ex e@ix® paigti s

Thusforall 2 ,(z;2%92 2, Z;andu2 U,
Ing (x;u) Ing (x%u) |z 29, 2 2t dZ zin giti ez
We thus obtain (BG-3)(v), (BG-3)(vi) and (BG-3)(vii) by setting C =1,
H(s)=s; s2Rs;
and
(U)=(L+1)jzsjy + T+ (1 _bu+etl o

In addition, forall 2 ,x2 Xand > 0, we have
Z

e'G (x;du) 1+2e*:

Hence, by lettingV = V and using that forall 2 , ,V <1, with the
above de nitions, we obtain BG-3)(viii). This establishes the equivalence-
class consistency of the MLE for the log-linear Poisson GARGH! p).

To conclude the strong consistency of the MLE, it remains to check (a)
and (b) in Theorem 5.3.3. Condition (a) clearly holds by the identi ability
of the Poisson distribution. Note that as a consequence of the earlier proof,
we have, forall 2 ,P’-a.s,,

X
U, o=  AK(! + U \b):
k=0

By stationarity, forall 2 andt 2 Z, we have,P ?-a.s.,
b
Wi «i= AY( + U «ib):
k=0
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Moreover, if
hJp ol = *hJ, oi; P’-as;

then by stationarity, for all t 2 Z,

U, «i=  “hJg 4i; P7-as;
and thus
s
AK(I + U )= AK( 2+ U (4iby); Pr-as. (5.69)
k=0 k=0
This implies
X p3
(b bo)U = AKX 5+ U i) AX( +U b); Pr-as. (5.70)
k=1 k=1

Conditionally on (U; . 1), €% 1 is a Poisson variable with positive

intensity. Thus the left-hand side of (5.70) i? ?-a.s. constant only ifb = b,
implying b} = by. Then, (5.69) reduces to

%
AK(I + U ib)= AK( 5+ U (4iby); Pr-as. (5.71)
k=1 k=1

Thus by repeating the same argument as to obtaibh = b,, (5.71) and so on
yield that, for all integer k 1,

(A% A¥)b,=0:

And by (5.58), we haveA = A, yielding that (ayp;byp) = aj,; 05, . Itis
immediate from (5.69) that! = ! ,, and this is equivalent to having that
I =17 The strong consistency therefore follows.

Proof of Proposition 5.4.7 (iii) . By Theorem 5.3.7, it su ces to show
that (CG1) (CG7) hold. From the de nition of (z), we havea(;u) =
A and b(;u) = ! + ub, both admitting linear forms in . Thus from
compactness of and (5.56) and by noting that for all > 0,

E? eVt <1; (5.72)
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it follows that (CG1) holds. Assumptions CG2) and (CG3) clearly hold.

Assumption (CG4) is immediate as the conclusion of Proposition 5.4.7-(ii)
above. We have

k=Ing ) Uy 10(2) 5 Uk

=(e% 1) ] MU .i(z) e M@ e 1)L

w=Ing 1 x1i(2) ;U

=% 1) ] MUy g er Miowad peEY 1y
Then from Lemma 5.3.4, for alli, P ?-a.s.,
= e k 1 er hU1.« 1|(Z) T_ l’U . 1(z
@i p @i 1k 1 ( )
@Q U T h i T @
—~£= e* 1 er Mrxa S — hJ [
@; P@

Thus for all i, P ?-a.s.,

@z\'k @|; T @ . T @ .
ko Sk = e g i —  hUix 1i(2) (¥ 1
@i @i p @i 1 k 1 p @i 1k 1 ( ) ( )
+ e} 1 VERETIET eg MUk 1i(2) g@@ ), o 4
i
vell Muai@p T@ o 1@ i
p @i 1 k1 p @i 1k 1 ( )

Note that for all z2 Zandk 1, we have,P ?-a.s.,

hJ; « 4l Uy 1i(2) = Ak 1 hWJ; o z;
and for all i,

@ . @ .

— hJ; 11 — hJg 4i(z

@i 1 k 1 @i 1k 1 ( )
k 1

= @Aé ) }’Ul ;oi z +Ak 1 @ HJl ol

i
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By similar arguments as in the proof of Lemma 5.3.4 (see Section 5.6.1)
and noting that sup , hJ. ol 1 and sup , @@ hJ. ol , are nite
P ?-a.s., there exist a constant; 2 (0; 1) and aP ?-a.s. nite random variable

Nr; = NI1(z) such that forallk 1, P’-a.s.,
U1 o« Mk 4i(2) , M §

and for alli, P 7-a.s.,

@ . @ .
@ U1 « @ U1 1i(2) ) N, K
From Lemma 5.3.4, we also have that, for all,
E’ sup —@ U, ol <1: (5.73)
2 i 1

Recall that for all t;t°2 R, & ¢&° d1tt t9. Thus, we deduce that

@ O
@; @
e Ii|\7r1 ek 1+ej 1w ai], 1+ @@ Ui o al
I 1
On the other hand, P ?7-a.s., we have
ei U1 oif, eSUP 2 j omiooif, eP Losup, jAK(+U kb)jl:

From (5.64) and (5.67), there exist constantg;;c, > O and 2 (0;1) such
that, P 7-a.s.,

. . P A
eSUpz ] s ol], Clecz &:0 ku Cl(l ) kecz(l )y U k.

k=0

and from (5.72), it follows that for any positivet > 0,
h . o
E? Pz ) Mool < g (5.74)

Thus, by stationarity and from (5.73) and (5.74), Lemma 5.6.6 assures that
there exist a constant , 2 (0;1) and aP ?-a.s. nite random variable Nf, =
NT,(z) such that for alli and forallk 1, P?-a.s.,

@z‘;k @
@ @

k .
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Therefore, Assumption CG5) holds. We now check CG6). We have

=Ing  , hUgp i U
=(e%™ 1) hJy o er Miol inE% 1y
Then for all i andj, we have
@i_ eUl 1 eg U1 ol g—@ |"U1 ;oi

@

and from Lemma 5.3.4P °-a.s.,

Using similar arguments as the proof of Lemma 5.3.4 together with (5.72),
we can show that for alli and j, we have

" #
@ 2
E? sup — hJ; i <1
. p @, 10 .
and
@ .
E® sup —— hU; .l <1:
2p @ @, 10 .
By (5.74) and (5.72), we can directly show that, for all and |,
" R 2#
E® sup @ <1
2 i
and
@,
E? su <1:
" @@
Thus, (CG6)-(i) and (CG6)-(ii) hold. Note that for all i;j , we have,P ?-a.s.,
@ _ : @,
— hJ; o ;U = hJ; o ;U —
@ig p 10 1 g p 1 :0 1 @
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and
@ .
- hy; i ;U
@@  ° Lol
| @, @ . @;
= hJ; o ;U + — hJ; of ;Y1 =
9 v to ot ge T @d ¢ )

Then, (CG6)-(iii) follows by observing that for all i, P ?-a.s.,

@ . : @, @,
= hJ ol U = hJ ol U —_— —
@, p 10 1 g p 1 0 1 @, P @,

and
@‘ n @‘ 2#! 1:2
E° sup —: E° sup —= <1:
2 i 2 i

Similarly, (CG6)-(iv) holds. To complete the proof of asymptotic normality,
it remains to check CG7). By Remark 5.3.8, it is su cient to show that
(5.34) holds. We establish this fact by following the argument provided by

Francq et al. [2004]. Now let =( o;::1; 2) 2 R?®*! and for convenience,
write = ( o;::1; 2p) = (! @ 1p:b1;p). We have,P ?-a.s.,
hel p ? 1
T@l' :)@ eU1 1 eg ?hJ1 i 'FI)'@ '“J]- 30|:

@ ., @

Since e+ 1 conditionally on (U; .) is a Poisson variable with positive
intensity, then P ?-a.s., T%i? =0 implies

X @ MUy

- =0; P’-as.
I p ] 1
i=0 @
By stationarity, we have for allt 2 Z,
xp @ *hU;y i
g "0 Pras (5.75)

i=0

In view of (5.51) and by noting thatP *-a.s., X, = ; hJ, i forall 2
andt 2 Z, we have from (5.75) that for allt 2 Z,
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0 1 1 0 1 1
Xt?l xt?l
) : XP 2 :
o= T@X_ T ELT g r@X_ B X, Eipras
@ P . @ L P
U 1 i=1 U 1
U p Ut p

Since €Y' ¢+ 1 conditionally on (U; . ») is a Poisson variable with pos-
itive intensity, we then have that ., = 0. By the same reason, it can be
shown that pi.pi+ i =0 if 224 =0,fori 2f0;:::;p 29. Thus,if 60
entails an ODM(p 1;p 1) representation, which is impossible since the
model is identi able. Hence, =0 and this completes the proof. ]

Our next example is the NBIN-GARCHp;p), p 2 Z,, which is de ned
as follows.

5.4.3 NBIN-GARCH (p;p Model

Example 5.4.12 (De nition of NBIN-GARCH (p; p)). Consider a statistical
model recursively de ned by: for allk 2 Z,,

xP xXP
X1 =1 + aXg j+1 t DYk i+1;

i=1 i=1 (5.76)
Yk+1 J Fk N B I

where
the parameter space

f =(awbpr)2R, RY R R.g;

Fr= (X prik+1; Y p+1:k),
X=(0;1), X =B(X), Y=2,,Y = B(Y) and the metrics onX and
Y are any metrics onR and Z, respectively.
Denoting for all (X1:p; y1:p) 2 XP YP,
xXP xXP

ylzp(xlip) =1+ aiXp j+1 t DYp i+1; (5.77)
i=1 i=1
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Model (5.76) can be expressed as the standard form of Model (5.78) below:

Xt = vy g Xk prai);

) X+t (5.78)
Yvs1 | Fk NB e
kel ) Fk r 1+ X

The density g and the probability law G of Y, conditional on X, = x are
given by, forally2 YandA 2Y,

o (r+yy 1 T ox Y
g(x;y) = V() I+x Ty (5.79)
and X
G (x;A) = 1a(Y)g (X;y): (5.80)

y2A

According to De nition 5.2.1, Model (5.76) is an ODMp; p) and is dominated
by the counting measure oiZ. Now, letZ= XP YP andZz =X PY (9
and de ne the measurable function similarly as in (5.6), which is given
by, for all (z;y)2 Z Y,

y(2)=1 +Az+yb: (5.81)

The processfZy : k 2 Z,g, where Zy = (Xk ps1:k; Yk prik 1), IS @
Markov chain on(Z; Z) with transition kernel R given by (5.11) with  and
G denedin (5.80) and (5.81), respectively. Let us now state our ergodicity,
consistency and asymptotic normality results for the NBIN-GARCHip; p)
model.

Proposition 5.4.13. Suppose that 2  satis es

j jmax(A + b )< L (5.82)

(i) Then the conclusion of Theorem 5.3.12 holds witN/(z) = 17z for all
z2 Z

(i) Theorem 5.3.2 holds with anyz; 2 Z. If the true parameter , =
(! 7;af,,; bf,;) moreover satis es: for allk 2 Z,.,

(A A¥)b,=0 implies A = A, (5.83)
then Theorem 5.3.3 also holds.

emark 5.4.14. From Lemma 5.4.2, Condition (5.82) is equivalent to
ip:]_ (al + r.bl) < 1'
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Proof. Proof of Proposition 5.4.13 (i). In this part, for convenience, let
us drop the super script from for exampleG , R , etc. Now setV = V.
From Theorem 5.3.12, we need to show thatAG-3), (AG4), (AG-5), (AG6)
and (AG-7) hold. Assumption (AG-3) holds with any metric d; associated to
a norm on the nite dimensional spaceZ so that Z is the associated Borel

-eld (The precise choice of this metric is postponed to the veri cation
of (AG-6)). The fact that R is weak Feller follows by observing that for xed
r> 0,asp! p°% NB(r;p) converges weakly toNB(r;p%. Moreover, we
have, for allz 2 Z,

Z

RV(z)= V( +Az+yb)G( p(2);dy)
=1" +1T A+rb | z
By iteration, we obtain that for all k 2 Z, ,
RV(Z)= 170+ +1T A+rb T +1T A+rb | “2z

Sincej jmax(A +rb g) < 1, then there exists a pair(q; ) 2 Z, (0;1) such
that

RV(Z) 171+ +1T A+rb %% + 917z

Hence AG-4) holds with someq 1, = 9<land = 1T! + +
1T A+rb ] ° 'I' 0. We now show AG5). Let us use the norm
2p 1§Q 1
kMk= ~ iMijj=supjMz
j:l i=1 JZJ 1

on(2p 1) (2p 1) matrices, wherejzj = P ® Yjzj is a norm ofz =
Z12p 1 2 Z. Note that from (5.82), there exists 2 (0;1) and ¢ > 0 such
that, for any k 1,

Ak ¢ k. (5.84)
Hence (I, 1 A) L= lop 1 + Pk 1A" is well dened and we set
zr = (I 1 A) 1. Let N; be an open neighborhood of; and
let z 2 Z. De ne recursively the sequencey = z and for all k 1,
zx = ! + Az ;. From (5.84), this so-de ned sequence admits a unique
limiting point limn, 2z, = z; . Thus, there exists somen 2 Z, such that
forallk n, z. 2N, . For suchn, we have

R"(z;N1 )= P,(Z,2N1) P,(Zx=z foralk=1;:::;n)
= P(Yo = =Yy 1=0)>0
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Next we prove AG-6). We have
2 (@ =AEz H:

Since (5.82) implies thaf jmax(A) < 1, there exists a vector nornj jz, which
makesA strictly contracting. Choosing the metricd; on Z (embedded in
R? 1) as the one derived from this norm, we getAG-6). To show AG7),
we rely on Lemma 5.3.13. Letus se€=(0;1 ) = X and S= f1g, then the
probability measure boils down the Dirac mass ors. For all (x;y) 2 X Y,

let j(x) = (1+ x) "and h(x;y) = {7 2 7. Indeed, h satis es (H'-1).

yl(r) 1+x
Hence, from lemma Lemma 5.3.13 we and are obtained by setting: for

all z:2°2 z,

1+ p(2)" p(zo) r
1+ p(2)_ (29

(z;2) =

and
(z:)= @™ (@)
These so-de ned functions and indeed satisfy AG-7)(i). For any
givenr > 0, for all (z;2% 2 z2, we have

1+ ,(29" p(zc) r
1+ ,(2)_ (29

1_n)j p(2 0 (29
W(z; 29 dz(z; 29 ;

1 (z9=1

where d; is the metric previously dened and W is dened by
W(z;Z%) = cg,(1 _r) with ¢, > 0 is conveniently chosen (such a
constant exists sinceal; is the metric associated to a norm and is a subset
of nite dimensional space). Thus, AG-7)(ii) and (AG-7)(iii)) hold and, since
forally 2 Yandz 2 Z, ,( y(2) L, W( y(2); y(29) is uniformly
bounded over(z;z%y) 2 Z Z Y and (AG7)(iv) holds. This completes
the proof.

Proof of Proposition 5.4.13 (ii) . Note that (AG-2) immediately fol-
lows. Thus, to show the rst part of Proposition 5.4.7 (ii), we only need to
show that Assumptions BG-1), (BG-2) and (BG-3) are satis ed. The second
part then follows if we can moreover show that (a) and (b) in Theorem 5.3.3
hold.

Clearly, (BG-1) and (BG-2) hold by the de nitions of and g given
by (5.77) and (5.79), respectively. It remains to showBG-3). Since is
compact, then

L ! 50 & &0 h bijjjux(A+rb ) ;r. r T (5.85)
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5. General-order Obsenation-driven Models

for some(! ;17 a;b;r;1; )2 (0;1)%  (0;1).
We set Z; = Z so that (BG-3)(i) holds. Moreover, for all (;z;y) 2
Z; Y,9( p(2);y) 1 Thus, Condition (BG-3)(ii) holds. Note that
we have, foralln2 Z, andz 2 Z,

X1
Won 1i(2) = A"z + Al(" +yn 1 jb): (5.86)
j =0

Now letj j be the Taxicab norm onZ and let z; 2 Z. Using (5.84), (5.85)
and (5.86), we get that there exist constantg > 0 and 2 (0;1) such that
forallz2 Z,y;n 2 Y"and 2

dZ Wl:ni (Zl); Wl:ni (Z) = jAn(Zl Z)jz
c "jzn zj:

Thus, we get BG-3)(iii) with
(2)=cjzs 7z
Hence BG-3)(iv) holds and since
z; y(z1)  (L+1)jzj+ T +(1+ by;
for somelL > 0, we also get BG-3)(v) provided that for all y 2 Y,
(y) (L+1jzij+1T+(1+ by: (5.87)
Forall 2 ,(x;x92 ,(Zy) p(Z1) andy 2,

Ing (x;y) Ing (xX%y) = jr+y)[In@+ x9 In@@+ x)]+ y[nx Inx9
r+y)@+1 *+yt*t jx x§
r+y@+t b jx xy:

We thus obtain (BG-3)(v), (BG-3)(vi) and (BG-3)(vii) by setting C = 0,
H(s)=sand (y)=! r+(1+ L)jz;j+ b+1+ ! ! y. Observe that for
allz2 z,

Z Z

IN"yG ( p(2);dy)  yYG( p(@idy)=71 p(2) TV(2):
Hence, using that forall 2 , ;V <1, we obtain (BG-3)(viii), establish-
ing the equivalence-class consistency of the MLE for the NBIN-GARGH; p)
model.
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5. General-order Obsenation-driven Models

To conclude the strong consistency of the MLE, it remains to check (a)
and (b) in Theorem 5.3.3. Condition (a) clearly holds by the identi ability of
the negative binomial distribution. Note that as a consequence of the earlier
proof, we have, forall 2 ,P’-as.,

X
Y, oi = AKX +Y b):
k=0

By stationarity, forall 2 andt 2 Z, we have,P ’-a.s.,

X
Wi wi= AK( + Y wb):
k=0
Moreover, if
hYl ;oi = ?hYl ;oi; P’-a.s;
then by stationarity, for all t 2 Z,
hy, i = ?hy; +i; P’-as;
and thus
X
AK(U +Y b)) = AK( 5+ Y (ibo); Pr-as. (5.88)
k=0 k=0
This implies
X X
(b ba)Ye= AKX 5+ Y yiibo) AK( +Y wiib); P’-as. (5.89)
k=1 k=1

Conditionally on (Y1 . 1), Y; is negative binomial variable with parameter
(r.;p2) 2 (0;1 ) (0;1). Thus, the left-hand side of (5.89) i$ ?-a.s. constant
only if b = b, implying b} = b;. Then, (5.88) reduces to

b3
AK(L +Y b)) = AK( 5+ Y (ibo); Pr-as. (5.90)
k=1 k=1

Thus, by repeating the same argument as to obtaibh = b, (5.90) and so on
yield that, for all integer k 1,

(A% A¥)b,=0:
And by (5.83), we haveA = A,, yielding that (aip;bpp) = af,; b5, . It

is immediate from (5.88) that! = ! ,, and this is equivalent to having
that ! = !'?. Thus, (b) is satis ed and the strong consistency therefore
follows. O
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Proposition 5.4.15. Suppose that 2  satis es
j jmax ATA+T ATb T+ bTA +r(r+1) ,ob'b ] <1 (5.91)

In addition, assume that the true parameter- lies in the interior of and
satis es (5.83), then Theorem 5.3.7 holds.

Remark 5.4.16. Condition (5.91) implies Condition (5.82). Thus the sta-
tionarity and ergodicity for the model follow. If moreover (5.83) is satis ed,
then the strong consistency, that is]imy; ’\Z;n = ,, P7-a.s., holds for any
z2 Z.

Before proving Proposition 5.4.15, let us show the following result.

Lemma 5.4.17. Assume(5.91). Then
E-[Y?]<1: (5.92)

Proof. Now, assume that (5.91) holds. To obtain (5.92) it is su cient to
show that there exists a triplet(q; ; )2 Z+ (0;1) R. suchthatRW <
V + with V(z) = z"z. Note rst that for U NB (r;x=(1 + x)), we
have E[U] = rx and E[U?] = r(r + 1)x? + rx. Note also that the matrix
M:=ATA+r ATb [+ bTA +r(r+1) ,b"b | is symmetric positive
semide nite. Thus, there exist a diagonal matrixD 0 and an orthogonal
matrix Q such thatM = QDQ T; and, moreover,j jmax(M) = j jmax(D).
For all z2 Z, we have
z
V(I +Az+yb)G( ,(2);dy)
Z
(! + Az+yb)"(! + Az+yb)G( ;z;dy)

RV (2)

Li(z2)+ z2Z'Mz=Ly(2)+ 2'QDQ "z
Li(z)+ ] jmax(D)ZTQQTZz Li(2) + ] jmax(M)V(2);

whereLy(z) = ! 71 + 22TA+r20 b [ +rb"b | z which is a linear
function in z. Sincej jmax(M) < 1, and

im RV (2)
izt V(2)

then the exists(; )2 R: (0;1) such that forallz 2 Z,
RV(z) V(7)+ ;

completing the proof. m
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