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Synthèse

Planification de la production hydroélectrique au court terme :
faisabilité et modélisation

Dans le secteur électrique, et en particulier chez le fournisseur et producteur EDF, l’optimi-
sation mathématique est utilisée pour modéliser et résoudre des problèmes liés à la gestion
de la production d’électricité. Citons quelques exemples d’applications : la planification des
investissements en infrastructures, la modélisation des problèmes d’équilibre des marchés de
l’électricité, la gestion des risques d’épuisement des barrages, la programmation des arrêts de
tranches nucléaires. Plus particulièrement, l’hydroélectricté est une source d’énergie renou-
velable, peu chère, flexible mais limitée. Exploiter l’hydroélectricité constitue donc un enjeu
important pour la gestion de la production électrique.

Nous nous intéressons à des problèmes d’optimisation de Programmation Non Linéaire
en Nombres Entiers (PNLNE). Ce sont des problèmes d’optimisation dont les variables de
décision peuvent être continues ou discrètes et dont les fonctions exprimant l’objectif et les
contraintes peuvent être linéaires ou non-linéaires. Les non-linéarités et la combinatoire induite
par les variables entières rendent ces problèmes particulièrement difficiles à résoudre. En ef-
fet, les méthodes existantes n’arrivent pas toujours à résoudre les grands problèmes de PNLNE
à l’optimalité avec des temps de calcul limités. En amont des performances de résolution, la
faisabilité est une question préliminaire à aborder puisqu’il faut s’assurer que les PNLNE à
résoudre admettent des solutions. En fait, la faisabilité peut s’avérer aussi difficile à prouver que
l’optimalité. De plus, lorsque l’on rencontre des infaisabilités dans des modèles complexes, il
est très utile mais très difficile d’analyser leurs origines. Par ailleurs, la résolution de PNLNE
est rendue encore plus difficile si l’on requiert de certifier une précision exacte des résultats. En
effet, les méthodes résolutions sont en général mises en oeuvre en arithmétique flottante, ce qui
peut donner lieu à une précision approchée.

Dans cette thèse, nous abordons deux problèmes d’optimisation, un Programme Linéaire
en Nombres Entiers (PLNE) et un Programme Non Linéaire (PNL), liés à la planification de la
production hydroélectrique au court terme, Hydro Unit-Commitment (HUC) en Anglais. Etant
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données des ressources d’eau finies dans les barrages, l’objet du HUC est de prescrire des pro-
grammes de production les plus rentables qui soient compatibles avec les spécifications tech-
niques des usines hydroélectriques. Les volumes d’eau, les débits d’eau, et les puissances
électriques sont representées par des variables continues tandis que l’activation des turbines est
communément formulée avec des variables binaires. Les non-linéarités proviennent en général
des fonctions qui modélisent la puissance générée en fonction du volume et du débit d’eau. Nous
distinguons donc deux problèmes : un PLNE figurant des caractéristiques linéaires et discrètes,
et un PNL figurant des caractéristiques non-linéaires et continues.

Dans le deuxième chapitre, nous traitons de la faisabilité d’un problème réel de planification
de la production hydroélectrique formulé en PLNE. Comparé à un problème standard de plan-
ification, le modèle inclut deux spécifications supplémentaires : des points de fonctionnements
discrets sur la courbe puissance-débit ainsi que des cibles à mi-parcours et de fin de parcours
pour les niveaux d’eau des réservoirs. Les complications liées aux données réelles et au calcul
numérique, associées aux caractéristiques spécifiques du modèle, rendent le problème plus dif-
ficile à résoudre et souvent infaisable. Etant données des instances réelles, nous reformulons le
modèle pour rendre le problème faisable. Nous procédons par étapes pour identifier et traiter
les sources d’infaisabilité une par une, à savoir les erreurs numériques et les infaisabilités de
modélisation. Des résultats informatiques étayent l’efficacité de notre méthode sur un ensemble
de test de 66 instances réelles qui contenait initialement de nombreuses infaisabilités.

Le troisième chapitre porte sur l’adaptation de l’algorithme du Multiplicative Weights Up-
date (MWU) pour la PNLNE. Cette adaptation est fondée sur une reformulation paramétrée
spécifique à chaque problème que l’on dénomme pointwise. Nous définissons des propriétés
souhaitables pour obtenir de bonnes reformulations pointwise et nous fournissons des règles de
haut niveau pour adapter l’algorithme étape par étape. Contrairement à la plupart des heuris-
tiques, nous démontrons que la méthode MWU conserve une garantie d’approximation relative
pour les PNLNE. Nous comparons notre méthode à la méthode Multi-Start (MS) pour résoudre
un problème planification de la production hydroélectrique formulé en PNL. Les résultats infor-
matiques penchent en faveur de la méthode MWU.

Mots-clefs: programmation mixte en nombres entiers, programmation non-linéaire, planifica-
tion de la production hydroélectrique, infaisabilité, calculs numériques exacts, matheuristiques.



Summary

Short-term hydropower production scheduling: feasibility and
modeling

In the electricity industry, and more specifically at the French utility company EDF, mathe-
matical optimization is used to model and solve problems related to electricity production man-
agement. To name a few applications: planning for capacity investments, modeling equilibrium
problems for electricity markets, managing depletion risk of hydro-reservoirs, scheduling out-
ages and refueling for nuclear plants. More specifically, hydroelectricity is a renewable, cheap,
flexible but limited source of energy. Harnessing hydroelectricity is thus critical for electricity
production management.

We are interested in Mixed-Integer Non-Linear Programming (MINLP) optimization prob-
lems. They are optimization problems whose decision variables can be continuous or discrete
and the functions to express their objective and constraints can be linear or non-linear. The non-
linearities and the combinatorial aspect induced by the integer variables make these problems
particularly difficult to solve. Indeed existing methods cannot always solve large MINLP prob-
lems to the optimum within limited computational timeframes. Prior to solution performance,
feasibility is a preliminary challenge to tackle since we should ensure the MINLP problems to
solve admit feasible solutions. Actually, feasibility can be as difficult to prove as optimality.
In addition, when infeasibilities occur in complex models, it is useful but not trivial to analyze
their causes. Also, certifying the exactness of the results compounds the difficulty of solving
MINLP problems as solution methods are generally implemented in floating-point arithmetic,
which may lead to approximate precision.

In this thesis, we work on two optimization problems – a Mixed-Integer Linear Program
(MILP) and a Non-Linear Program (NLP) – related to Short-Term Hydropower production
Scheduling (STHS). STHS is also commonly known as Hydro Unit-Commitment (HUC). Given
finite resources of water in reservoirs, the purpose of HUC is to prescribe production schedules
with largest payoffs that are compatible with technical specifications of the hydroelectric plants.
While water volumes, water flows, and electric powers can be represented with continuous vari-
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ables, commitment statuses of turbine units usually have to be formulated with binary variables.
Non-linearities commonly originate from the Input/Output functions that model generated power
according to water volume and water flow. We decide to focus on two distinguished problems:
a MILP with linear discrete features, and an NLP with non-linear continuous features.

In the second chapter, we deal with feasibility issues of a real-world hydropower unit com-
mitment MILP problem. Compared with a standard HUC problem, the model features two ad-
ditional specifications: discrete operational points of the power-flow curve and mid-horizon and
final strict targets for reservoir levels. Issues affecting real-world data and numerical computing,
together with specific model features, make the problem harder to solve and often infeasible.
Given real-world instances, we reformulate the model to make the problem feasible. We follow
a step-by-step approach to systematically exhibit and cope with one source of infeasibility at a
time, namely numerical errors and model infeasibilities. Computational results show the effec-
tiveness of the approach on an original test set of 66 real-world instances that demonstrated a
high occurrence of infeasibilities.

The third chapter is about the adaptation of the Multiplicative Weights Update (MWU) al-
gorithm to solve MINLP. Such adaptation is based on a parametrized reformulation denoted
pointwise that is specific to each problem. We define desirable properties for deriving pointwise
reformulations and provide elaborate high-level guidelines to adapt the algorithm step-by-step.
Unlike most heuristics, we show that the MWU method still retains a relative approximation
guarantee in the NLP and MINLP settings. To deliver a proof of its applicability, we implement
the method to solve a hard NLP HUC problem and benchmark it computationally against the
Multi-Start (MS) method. We find the MWU compares favorably to the MS, which offers no
approximation guarantee.

Keywords: mixed-integer programming, non-linear programming, hydro unit commitment,
short-term hydropower production scheduling, infeasibility, exact computation, matheuristics.



Chapter 1

Introduction

Mathematical optimization is a subfield of Operations Research or Management Science and
is sometimes synonymous to Mathematical Programming. The Operations Research discipline
aims at using scientific tools to solve real-world problems such as programming and managing
operations [39]. In the electricity industry, and more specifically at the French utility company
EDF, mathematical optimization is used to model and solve problems related to electricity pro-
duction management. To name a few applications: modeling equilibrium problems for electric-
ity markets [31], managing depletion risk of hydro-reservoir depletion [4], scheduling outages
and refueling for nuclear plants [60], planning mid-term production [47]. More specifically,
hydroelectricity is a renewable, cheap, flexible but limited source of energy. Harnessing hy-
droelectricity – by resorting to mathematical optimization, when relevant – is thus critical for
electricity production management.

We are interested in Mixed-Integer Non-Linear Programming (MINLP) optimization prob-
lems. They are optimization problems whose decision variables can be continuous or discrete
and the functions to express their objective and constraints can be linear or non-linear. The
non-linearities and the combinatorial aspect induced by the integer variables make these prob-
lems particularly difficult to solve [14, 23]. Indeed existing methods cannot always solve large
MINLP problems to the optimum within limited computational timeframes. Prior to solution
performance, feasibility is preliminary challenge to tackle since we should ensure the MINLP
problems to solve admit feasible solutions [18]. Actually, feasibility can be has difficult to prove
as optimality. In addition, when infeasibilities occur in complex models, it is useful but not triv-
ial to analyze their causes. Also, certifying the exactness of the results compounds the difficulty
of solving MINLP problems as solution methods are generally implemented in floating-point
arithmetic, which may lead to approximate precision [71].

In this thesis, we work on two optimization problems – a Mixed-Integer Linear Program

13



14 CHAPTER 1. INTRODUCTION

(MILP) and a Non-Linear Program (NLP) – related to Short-Term Hydroelectricity production
Scheduling (STHS) [17]. STHS is also commonly known as Hydro Unit-Commitment (HUC).
Given finite resources of water in reservoirs, the purpose of HUC is to prescribe production
schedules with largest payoffs that are compatible with technical specifications of the hydro-
electric plants. While water volumes, water flows, and electric powers can be represented with
continuous variables, commitment statuses of turbine units usually have to be formulated with
binary variables. Non-linearities commonly originate from the Input/Output (I/O) functions that
model generated power according to water volume and water flow. We decide to focus on two
distinguished problems: a MILP with linear discrete features, and an NLP with non-linear con-
tinuous features.

In the remainder of Chapter 1, in Section 1.1, we state the two problems we later tackle (in
Chapters 2 and 3) and summarize our contributions.

In Section 1.2, we introduce notions related to hydropower, processes, and structures that
allow to harness hydropower to produce electricity, along with specificities of hydroelectricity
compared to other technologies, especially when it comes to managing production.

In Section 1.3, we give an outline electricity production management in order to introduce
one of its problems of interest: short-term hydroelectricity production scheduling.

In Section 1.4 we discuss of the use of optimization to tackle hydroelectricity management.

1.1 Problem statement and contributions

1.1.1 Case study 1: a real-world hydropower unit commitment problem

In Chapter 2, we deal with a real-world hydropower unit commitment MILP problem that arises
in EDF’s day-ahead scheduling process. More specifically, we focus on feasibility issues. First,
the consistency of the real-world data we use needs to be checked. Secondly, the solution is ob-
tained through numerical computations, that could alter the feasibility of the original problem.
Last, some requirements are translated into constraints that could lead to infeasibility. Com-
pared with a standard HUC problem, the model features two additional specifications: discrete
operational points of the power-flow curve and mid-horizon and final strict targets for reservoir
levels. Our aim is to find a feasible solution that deviates as little as possible from the given
requirements.

For the set of real-world instances we work with, we provide a detailed analysis that distin-
guishes and explains interactions between:

• infeasibilities due to rounding errors;

• infeasibilities due to data errors, that is to say noisy values;
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• infeasibilities due to data inconsistencies, that is to say irrelevant values;

• infeasibilities due to model inconsistencies.

Rounding errors are dealt with the scaling of volume-related variables and constraints, which
we assume to be the most influential. Proper scaling is derived according to the feasibility
tolerance of the floating-point-based solver.

Given an upper bound on the noise that affects data, data errors are dealt with a corrective
relaxation of all constraints.

We only deal with the most frequent model inconsistency: target volume bounds. To do so,
we propose a preliminary stage to recover feasibility while deviating as little as possible from
the original target volume bounds.

The systematic approach we have followed improves the use of a generic MILP solver to ef-
fectively solve a real-world hydropower scheduling problem. It could be partly generalized into
a methodology for practical optimization of real-world problems whose feasibility is questioned.

1.1.2 Case study 2: a heuristic for MINLP

In Chapter 3, we devise a new solution method for MINLP based on the adaptation of the Multi-
plicative Weights Update (MWU) algorithm and the derivation of a specific parametrized refor-
mulation denoted pointwise.

We define desirable properties for deriving pointwise reformulations and provide elabo-
rate high-level guidelines to adapt each step of the MWU. The method can be considered as
a matheuristic – a heuristic based on Mathematical Programming – for global optimization of
MINLP where the global phase is random-based and the local phase is performed by a generic
solver. Unlike most heuristics, we show that the MWU method still retains a relative approxi-
mation guarantee in the NLP and MINLP settings.

To deliver a proof of its applicability, we implement the method to obtain sufficiently good
solutions for a hard NLP HUC problem. Compared to another classical heuristic – the Multi-
Start (MS) method – experimental results show good computational behavior under several as-
pects, while the MS method offers no approximation guarantee.

1.2 Hydropower and hydroelectricity

1.2.1 Basics of hydropower

Hydropower denotes any form of power related to water. Though they are commonly used for
one another – it will be the case in this thesis – energy and power are two different physically
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concepts: power is the instantaneous consumption or production of energy. Energy follows the
conservation principle: it cannot be created nor lost but it is converted from one form to other
forms or it is transferred from an object to other objects. The conservation principle relies on the
abstraction of potential energy: it reflects the amount of tangible energy that can be released once
forces have effect on the objects. Energy exists under several forms; to name a few: thermal,
kinetic, electric, electromagnetic, chemical, nuclear.

In this thesis, we will focus on systems that transform kinetic energy of water naturally
in motion into electricity: hydroelectricity. Other systems like waterwheels transform kinetic
energy of water into another kind of kinetic energy. Steam engines within thermal plants also
work with water in motion that has been previously heated; this process does not fall into the
category of hydroelectricity.

The overall perpetual motion of water on earth is denoted water cycle. Its sketch is the
following: water from clouds precipitates into rain or snow; rainfalls and snowmelt run off in
streams or rivers; streams within drainage basins converge to lakes or larger water courses; water
then flows into oceans; liquid water from all water bodies (oceans, lakes, etc.) evaporates into
clouds. There is also motion of water in oceans: winds create waves, periodic gravitational
forces of the moon cause tides, differences in temperature/pressure/salinity of water produces
ebbs. Marine hydroelectricity relies on the use of such phenomena but we will not delve into the
details of this technology.

In this thesis, we will focus on dam hydroelectricity. Dam – or storage or reservoir – hy-
droelectricity relies on the possibility of retaining water in a reservoir thanks to a dam in order
to release it to convert the kinetic energy of its discharge. Pump-storage hydroelectricity is a
specific enhanced dam hydroelectric structure where the conversion is reversible: on top of the
primary capacity of discharging water to produce electricity, we can use electricity to pump wa-
ter from downstream to upstream; it is a transformation of electrical energy into gravitational
potential energy. In addition to dam and pump-storage, another kind of hydroelectricity is de-
noted run-of-the river. It relies on the conversion the kinetic energy of water running in a river
into electric energy without control of the flow. Run-of-the-river hydroelectricity is somewhat a
degenerate dam structure. A notable advantage of dam hydroelectricity is the capacity to store
water and to decide when to use it. Pump-storage structures offer the capacity to indirectly store
electricity.

To give an insight of the electrical power that can be generated, let us introduce a basic for-
mula for the conventional power characteristic – or I/O function – of a single dam hydroelectric
structure by considering the energy balance with elementary linear variations under simplifying
assumptions.

Let ∆V [m3] be the volume of an elementary water amount discharge downstream from
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the upstream reservoir; it is initially at a height h [m] from the turbine; its mass is ρ∆V

[kg], where density of water is ρ [kg.m−3].

The weigh upon it is vertical, directed downwards and its norm is ρg∆V .

The work of the weight from the upstream reservoir to turbine (or the loss in gravitational
potential energy) is ρgh∆V .

Not all the potential energy is transferred into electric energy, the power collected is damp-
ened by an efficiency factor η to account for those losses, hence the hydroelectric energy
produced is ηρgh∆V .

If it takes ∆T [s] for that volume to go downstream, the average power transfer P is
ηρgh∆V

∆T or

P = ηρghQ

where Q = ∆V
∆T can be seen as the average flow.

The power characteristic P (Q, h) depends on the water flow Q and the relative water level h,
which depends on the volume in the reservoir. Actually, the expression of the power charac-
teristic is more complex; the interested reader can refer to [5] for a case of the Itaipú plant
where variations in tailrace elevation, penstock head losses and turbine-generator efficiencies
are considered in the power characteristic.

Commonly, several structures are built in a drainage basin to benefit from the several incom-
ing streams and intermediate lakes; they are denoted multi-reservoir systems or valleys. The
most elementary form is a series of cascaded reservoirs. More generically, multi-reservoir sys-
tems have a dendritic form. Within a multi-reservoir system, the several structures are connected
by water courses or pipes; for each structure, incoming flows include the water discharge from
the upstream structures on top of precipitations and natural streams, outgoing flows feed the
reservoirs of downstream structures. A description of the generic equipment of hydroelectric
structures is given in the Appendix A.1.

1.2.2 Electricity technology comparison

When we compare energy forms, it is actually conversions that we compare: production of the
energies of interest from a given primary energy – e.g., solar thermal energy versus solar electric
energy –, consumption of the energies of interest for a given use, – e.g., electric cars versus
fuel-based cars –, storage of an energy into some forms of potential energy of interest – e.g.,
electro-chemical batteries versus power-to-gas.
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In order to highlight the specificities of hydroelectricity, let us compare it to a few other tech-
nologies that produce electricity: nuclear power plants, conventional thermal power plants (coal,
gas or biomass fired), solar (photovoltaic) power plants, wind power plants. This comparison
is not universal and must be qualified according to existing devices, practices and infrastruc-
tures that are context-dependent. Our comparison follows the enumeration of advantages and
disadvantages presented in [77].

Hydroelectricity is a dispatchable, flexible, scarce, reversible energy. Electricity production
is said to be dispatchable when it can be controlled (increased or decreased, switched on or off).
Water, nuclear fuel, coal, gas, biomass are primary energy sources that can be stored. Control
of water release for dam hydroelectricity (as described in Section 1.2) and of water steam for
thermal plants (through the heat of nuclear reaction or fuel combustion) allows control of tur-
bine spinning and electricity generation. Therefore, the productions of hydroelectric, nuclear,
conventional thermal power plants are dispatchable. Conversely, windmills, solar plants and
isolated run-of-the-river plants are not deemed controllable since their productions only depend
on natural inputs over which there is no control. Such technologies are not totally uncontrol-
lable as we can sometimes reduce their production outputs. Being able to dispatch electricity
production is essential in order to match a varying demand, as we will see in Section 1.3. Also,
operations of hydroelectric plants are quite flexible: they can be launched or shut down very
quickly as technical specifications allow relatively fast variations. This property is not fully
shared with thermal plants because of technical limitations on their operating domains for ex-
ample. This property does not apply to solar and wind power plants as their operations is not
even dispatchable. Flexibility can be regarded as a short-term dispatchability. However, water is
a scarce resource. While thermal plants can be replenished on demand since fuel procurement
is – theoretically – not limited, water levels in reservoirs depend on the inflows coming from
seasonal precipitations. Scarcity is somewhat similar to long-run dispatchability. Additionally,
pump-storage hydroelectricity allows to somewhat reverse electricity production by indirectly
storing it to dispatch it later.

Hydroelectricity is a renewable, relatively clean and relatively cheap energy. Though there
may be limited precipitations or droughts locally on the short run, there is no limited stock
of flowing water on the long run as water keeps on cycling. Provided water cycles remain,
hydroelectricity is renewable. In the future, climate change will however affect the regularity
of water cycles – amounts and seasonality of precipitations and evaporations – as well as water
needs – in case of floods, droughts or heatwaves. There is no greenhouse gas emission, waste nor
residual pertaining to hydroelectricity. For this reason, water is sometimes denoted white coal.
Water is a free fuel. Operations and maintenance costs of hydroelectric plants are somewhat
low, while construction is much more capital-intensive [1]. The life of hydroelectric plants
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spans from 50 up to more 100 years, which is comparable if not longer than the lifespan other
kinds of power plants.

A lot is at stake when deciding to build a hydroelectric plant and when deciding how to
operate it. First of all, the construction of a hydroelectric plant necessitates the flooding of
a drainage basin and causes considerable changes of the ecosystem. Indeed hydroelectricity
is locally bound to drainage basins and water courses. The location constraints are somewhat
less restrictive for other technologies. For example, thermal plants require water course prox-
imity for cooling as well as transport accessibility for fuel replenishment and waste disposal.
Secondly, building hydroelectric plants may require substantial changes in existing human ac-
tivities: population moves, preclusion of waterway navigation. Storing water and controlling its
discharge allows uses that are sometimes concurrent with generation of electricity: water sup-
ply, flood control, irrigation, recreational activities, industrial uses, etc. The case of the Aswan
dam across the Nile in Egypt and the renown ensuing relocation of the Abu Simbel archaeologi-
cal sites (see https://en.wikipedia.org/wiki/Aswan_Dam) illustrate how intricate
the stakes can be. The Three Gorges Dam over the Yangtze river in China is another exam-
ple where effects on the environment and population relocation were significant. (see https:
//en.wikipedia.org/wiki/Three_Gorges_Dam) Thirdly, reliability of the structure
is tantamount to ensure the safety of people living downstream; dam breaches are unfortunately
not uncommon catastrophes, as we have witnessed in Brazil in November 2015 (see https:
//en.wikipedia.org/wiki/Bento_Rodrigues_dam_disaster). Very simplisti-
cally, fallouts from hydroelectric structures can be more critical than the ones related to thermal,
wind and solar plants.

1.3 Electricity production management

Electricity production management aims at planning ahead which production levers to pull in
order to satisfy demand in electricity as well as other requirements (as mentioned in 1.2.2: reli-
ability, costs, scarce resources, etc.).

There is no unique framework to manage the production of electricity: levers and require-
ments vary considerably according to the setting considered. In this section, we will describe
some aspects of the electricity production management at EDF that remain relevant for other
generating companies.

1.3.1 Specificities of electricity

The electric system is basically composed of two intertwined layers: the physical exchanges
of electricity and the related financial trades. At one end, producers – also commonly referred

https://en.wikipedia.org/wiki/Aswan_Dam
https://en.wikipedia.org/wiki/Three_Gorges_Dam
https://en.wikipedia.org/wiki/Three_Gorges_Dam
https://en.wikipedia.org/wiki/Bento_Rodrigues_dam_disaster
https://en.wikipedia.org/wiki/Bento_Rodrigues_dam_disaster
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to as generating companies (GenCos) – own or lease physical generating assets – that is to say
power plants – to produce electricity, physically provide it on the grid and sell it to end users that
consume it at the other end of the grid. For a generating company, the distribution of production
assets according to their types is called the energy bundle – or energy mix. For the demand
side, the aggregation of all electric consumptions at a given time is called the load. The grid
is a network of nodes – sometimes denoted buses – connected by transmission lines. Buses
correspond to injection points for generating companies or consumption points for end users.
Safe and reliable operation of the electric system is ensured by Transmission System Operators
(TSOs) and Distribution Network Operators (DNOs). The roles of and interactions between the
major stakeholders involved in the electric system are presented in the Appendix A.2.

The electric system is demand-driven as the satisfaction of demand is essential: electricity
is a good/service that is essential for human activity. It is interesting to note that electricity is
an inevitable expense, thus its cheapness is also critical for the purchasing power of households
and the bottom line of organizations. The satisfaction of the demand in electricity has to be
instantaneous: end-users do not order it in advance nor are they willing to wait for a delayed
delivery. The satisfaction of demand cannot be partial; for example, most electrical devices have
technical specifications that forbid them to operate at half power. The satisfaction of demand is
not flexible; a few end-users can curtail their consumption on demand, but, generally-speaking,
there are less levers to control demand, compared to production.

The electric system is subject to global requirements. Not only satisfying demand is essential
for its usage, it is also necessary for the reliability of the network. Indeed, the electrical network
is somewhat fragile: a surge or a shortage of supply compared to demand can cause disturbances
and even damages to production/transmission/end-users appliances. Sometimes the last resort is
load shedding, that is temporary shutdowns for parts of the network. The equilibrium of supply
of producers and demand of consumers is the primary requirement the TSO must pursue. Safety
and reliability of the network is subject to more elaborate requirements (congestion and capacity
of lines, power losses, frequency adjustment, etc.) that we will not explain further. On the grid,
electricity a non-differentiable good, therefore the overall equilibrium is satisfied if each pro-
ducer meets the demand of its own clients. Note also that, compared to the number of end-users,
there are few power plants, mainly due to economies of scale. Those plants are owned/operated
by few prominent players on the production side; their responsibilities in guaranteeing the equi-
librium is therefore paramount. In case of mismatch in production and demand on the network,
prominent players are bound to provide all the leeway they have on demand of the TSO in order
to counter-balance the disequilibrium.

Production must be planned ahead in order to meet system requirements and satisfy a highly
variable and uncertain demand. An electricity producer cannot rely on an inventory of past ex-
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cess production because electricity is hardly storable at a large scale. Additionally, an electricity
producer cannot resort to backlogs to match the demand of its consumers since consumption can-
not be delayed. The usual stock equation, as derived in Lot-Sizing problems [76] for example,
does not hold:

∀t, productiont + stockt + backlogt+1 = demandt + stockt+1 + backlogt.

Instead, we have:

∀t, productiont = demandt.

Where:

• productiont and demandt denote respectively the electricity production and the demand in
electricity at time t,

• stockt and backlogt denote respectively the cumulative past surplus production and the
cumulative unsatisfied demand at time t.

Another related implicit distinction with the usual stock equation is that the equilibrium must
be satisfied in real-time and not over time windows. An electricity producer must coordinate
the productions of the several plants that are part of its energy bundle (productiont, ∀t). Due to
the speed and magnitude of demand variations, production cannot track demand ex post. Indeed
large real-time changes in the production of power plants are not most appropriate because of
lack of technical flexibility, because they are economically prohibitive, and/or because they are
restricted by the available resources. It is more sensible to anticipate by setting production levels
ahead to meet forecast demand while making sure minor adjustments can be controlled on-the-
go to meet real-time demand.

1.3.2 Different stages of production management

We will now focus on the production management of electricity. Though not mentioned explic-
itly previously, an electricity producer – as a company – aims at using efficiently its resources
to make a profit while staying within a given threshold of risk. Those financial requirements are
supplemented by specific requirements related to the electric system – supply-demand equilib-
rium and stability of the network more generally – and related to complexity of the production
process.

The payoff of a generating company is derived as follows: revenues come from the sales
to end users and on wholesale markets, costs come from investment, production and buying on
wholesale markets.
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A generating company must cope with several unknowns or risks: the regulatory context is
likely to change over the lifetimes of facilities; markets prices and depths are uncertain; demand
is uncertain; production is affected by uncertain factors such as technical failures, maintenance
durations, and water precipitations into reservoirs of hydroelectric plants.

Decisions relative to production management can be decomposed according to the usual
strategic/tactical/operational planning paradigm [2]. Though the demarcations are fuzzy, this
paradigm coincides with the chain of long-term/mid-term/short-term planning horizons.

Long-term planning deals with equipment investment decisions to ensure the energy bundle
is adapted to offer enough capacity and maneuvrability to satisfy future demand. The installed
production facilities are then considered frozen for the mid-term and the short-term planning
horizons.

Mid-term planning deals with the design of management policies such as deciding on main-
tenance campaigns for plants, stock policies – that are enforced either with guide-curves or
through opportunity cost indicators – and hedging policies. Such policies then bind or at least
influence the possible courses of actions for the short-term horizon.

Short-term planning deals with actual scheduling of power plants and is described in further
details in Section 1.3.3.

In the very short term, adjusting the previously computed schedules to the realization of
uncertainties is denoted rescheduling [62].

1.3.3 Short-term electricity production scheduling

Short-term scheduling deals with planning horizons ranging from one day to a couple of weeks
and discretized in time periods themselves ranging from a few minutes to a few hours.

Scheduling is carried out for plants that are dispatchable: hydroelectric and thermal plants.
When technically possible, non-dispatchable plants – windmills, solar plants and isolated run-
of-the-river plants – can be disconnected from the grid which is most frequently economically
irrelevant since their production is free. This kind of production is denoted inevitable and is
not subject to scheduling. The contribution to the overall electricity provision can be estimated
thanks to sunlight and wind forecasts.

At every time period, two kinds of decisions have be to made in a schedule of controllable
plants: its commitment status – that is whether the plant is on or off – and its power level – that
is how much power is produced. Scheduling commitment statuses of plants – or units within
plants – is denoted unit commitment (UC). Scheduling power levels once commitment statuses
are known is denoted economic dispatch (ED). Scheduling the two decisions together is more
relevant and can also be denoted UC by extension.

Regarding power, we are only interested in the quantity produced and provided on the grid,
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and we disregard other power characteristics that are essential for transmission planning such as
voltage, frequency and phase; indeed we assume such characteristics satisfy by default system
requirements and they can be adjusted by the TSO to ensure system stability.

Three settings can be distinguished for unit commitment: security-constrained [33], price-
maker bidding [24, 54] and price-taker bidding [68] scheduling. We will be interested in the
former two and a description of the three is given in the Appendix A.3. Security-constrained
unit commitment (SCUC) is centralized: all the power plants must be scheduled jointly so that
the aggregation of their production levels meets the demand, thus ensuring the security of the
system. Given market prices, a price-taker producer self-schedules – that is to say regardless of
an external security constraint – its production with a view to maximizing its payoff. The aim of
a price-taker producer in the self-scheduling setting is to maximize its payoff. Since there is no
requirement binding the different power plants, nor do schedules for one plant affect payoff of
other plants, the scheduling can be carried independently for each plant, in a decentralized fash-
ion. This kind of scheduling problem is sometimes referred to as price-based unit commitment
(PBUC).

On top of the previous distinction, short-term scheduling problems may differ according to
the following features:

• the plants considered: nuclear, conventional thermal, hydroelectric, etc.

• the kinds of costs considered: fixed/variable, setup/startup/shutdown, etc. Fixed costs are
incurred independently of the production level; setup costs are fixed costs proportional
to the duration of operation of a plant while startup/shutdown costs are fixed costs only
incurred at the time a plant is started up or shut down. Variable costs refer to costs that
vary as the production level varies.

• the representation of plants’ operations: I/O curves, technical constraints, etc. I/O curves
relate variables of interest (power, fuel stock, water flow, variable cost, etc.). For ther-
mal plants for instance, such function gives the variable cost according to the generated
power. Technical constraints include minimum up and down times, ramp rates, and other
limitations on the modulation of operations.

• the consideration of uncertainties: demand forecasts, hydraulic inflow forecasts, technical
breakdowns, electricity prices can be considered known or uncertain. When such param-
eters are considered uncertain, their representation may be vary: they may take a finite
number of values based on scenarios, they may be random variables with known distribu-
tion, they may be uncertain within a known range.
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• the consideration of other system/contextual/environmental requirements: plant availabil-
ities, cap on pollution emission, etc.

We will give more details for the case of deterministic hydroelectric short-term scheduling.

1.3.4 Short-term hydroelectricity production scheduling

Short-term hydroelectricity production scheduling is also referred to as short-term hydro schedul-
ing (STHS) or hydro unit commitment (HUC).

Water can be considered as a free fuel, but it is a limited resource – reservoirs have a finite
capacity – and it cannot be ordered – inflows come from precipitations. From a financial per-
spective, the main question is to find the optimal time to use the water stored in reservoirs. Since
water cycles are seasonal, this question is partly answered by the stock policies designed at the
mid-term planning stage. The decision variables of the mid-term planning stage become set pa-
rameters at the short-term planning stage. Short-term planning deals with designing schedules
that follow mid-term stock policies. Reservoir stock policies are twofold: there are guide curves
and water (usage) costs. Guide curves set target levels of reservoirs at regular time milestones.
Water usage costs – or water value – are dummy opportunity costs: they reflect the value of
the optimal use of water in the future instead of using it now. For example, if market prices
are lower than water costs, the best tradeoff is not to discharge water now because it will be
more profitable to use that water later, in other words remuneration of a short-sighted present
production (at market price) is lower than the anticipated remuneration of the same amount of
production in the future (water cost).

Whether for the design of stock policies or for the scheduling of daily operations, purposes
other than financial are considered: reliability of the materials, flood control for the safety of
downstream populations, water supply, recreational activities, agricultural irrigation or industrial
use.

While thermal plants somewhat operate independently from one another, hydropower plants
are part of multi-reservoir systems – or hydro systems, or valleys, that is to say a network of
interconnected reservoirs and hydroelectric plants. Water taken from an upstream reservoir is
released through a plant and, after a time lapse, feeds a downstream reservoir. For this reason,
dynamically interconnected plants require joint planning. Joint planning is more complicated
because there are more schedules to consider at once and because we must make sure those
schedules are compatible with respect to flows, inflows and reservoir capacities.

Let us describe further the payoff structure. Revenues are the remuneration of the power
supplied at the market price. Dummy costs are incurred for using water. Sometimes, extra
energy is required to launch or to stop a turbine, paying for this energy incurs startup or shutdown
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costs. The abrupt changes related to startups and shutdowns cause degradation of the materials;
therefore startup and shutdown costs can also reflect the amortization of the equipment. On a
daily basis, for a plant that is running, costs for maintaining or setting up the plant have already
been paid for and/or are paid independently of the schedule of operations: Such costs are sunk
costs and are disregarded at this time scale although they are main drivers for mid-term planning.

Scheduling is done according to plants’ operations. Plants’ operations are represented with
more or less approximations according to the required level of realism. Representations include
I/O curves – or mappings or characteristics. Input variables are the the water flow released
through a plant, the water level in the reservoir – or head; actually water flow can be separated
in two types: active water flow that really produces power, and spillage – that is water release
without production of power. There is a correspondence between head and stored water volume
that depends on the shape of reservoir. Output is usually the power produced; it can also include
operating reserve, that is to say the available increase/decrease in power that can be activated on
short notice. On top of maximum flow and power capacities, operations may be restricted by
forbidden zones in the I/O characteristic; they correspond to undesirable vibrations or damage
of the equipment. To limit wear and tear of the equipment and ensure a sustainable production,
abrupt changes in operations are also penalized or restricted. We have already mentioned penal-
ties on startups and shutdowns, there are also ramp-up and ramp-down bounds when increasing
or decreasing the water control. Besides, steady smooth operations are preferred to jagged ones.

1.4 Optimization for electricity production scheduling

Unit-commitment (UC) is a problem with explicit requirements: compute a schedule of opera-
tions that is optimal according to an economic criterion and that complies with specific require-
ments (such as demand or stock policies). In addition, notions of interest can be formalized with
quantitative variables: operations – e.g., how much power is produced? – the economic crite-
rion – e.g., what is the cost operations? – and other requirements – e.g., what is the forecasted
demand? Therefore, it is relevant to formalize UC as an optimization problem.

In the general setting, the UC problem can be cast into a large-scale non-convex mixed-
integer non-linear programming problem. More specifically, binary variables allow to model
logical patterns: ON/OFF states, startups and shutdowns [63], min-up/min-down constraints
[46] disjunctive constraints in the operations of subsets of units (e.g., exclusion of simultane-
ous use of pump and turbine as described in [34]). In addition, mathematical functions allow
to model dependencies such as remuneration/cost of production, stock depletion, I/O character-
istics. Those functions may be non-linear and non-convex; for example, I/O characteristics –
relating flow and water level to power output – for hydroelectric plants are non-linear and non-
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convex. The UC problem involves several time periods, and often several units are considered,
which increases the dimension of the problem.

It is relevant to translate UC into an optimization problem and it is also relevant to use
optimization methods when rules of thumbs or human reflection are limited with respect to the
problem’s complexity and size.

1.4.1 State of the art of unit commitment

In a broader perspective, UC has been subject to a large research activity due to its practical
importance (see surveys [69, 56, 45, 72, 73]). However, it can still not be considered as a well-
solved problem. Academic contributions to the subject are very diverse and differ in problem
types, models, solution methods, solution assessment, size of test set (if any). To be more
specific, we focus on UC in a deterministic setting, with a bias towards hydropower UC (HUC)
problems, and we decline a non-comprehensive state of the art by solution method.

Dynamic programming (DP) (see [8] for example) is one of the classical approaches for
solving UC. The major interest is to allow for non-linearity and non-convexity aspects. The ma-
jor drawback is the scalability: time and memory requirements grow rapidly with the dimension
of the problem; this phenomenon is often referred to as the curse of dimension. When dealing
with states that depend on continuous quantities, a tradeoff needs to be found between the ac-
curacy of the discretization mesh and the size of the discretized problem. To alleviate the curse
of dimension, several approximations have been considered with moderate success (see [72] for
references on the different techniques used). Although there have been attempts to solve UC
problems with a DP scheme on a large scale, such a technique is more appropriate to solve prob-
lems on a smaller scale, like subproblems in a decomposition scheme. More specifically for
HUC, a DP scheme is proposed in [5] for an optimal dispatch of turbine units of the Itaipú hy-
dropower plant; the hydropower plant considered is composed of 18 parallel turbine units below
a single reservoir fed by the Paraná river. The results emphasize the importance of considering
individually each turbine unit and its startup/shutdown.

Network flow models [3] are fitted to represent the structure and dynamics of valleys. In
addition, network flow algorithms, that are adapted for network structures by definition, are
very efficient. However, only linear or convex piecewise linear dependencies related to flows
and volumes can be modeled. Including other features, such as non-convex non-linearities,
discontinuities, or general constraints, like demand or ramping requirements, while exploiting
the network structure is non-trivial; such extensions usually necessitate approximations [27].

Mixed-Integer Linear Programming (MILP) is another well-accepted modeling and solving
technique used for UC problems and also for HUC problems (see references in surveys [72, 73]),
especially since MILP solvers have proven their efficiency. The nice features for using it are
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that constraints can be easily added and that non-linearities can be approximated as piecewise
linear functions. We refer the reader to [21, 10] for a detailed approximation of the head effect.
Furthermore, the combinatorial aspects of the problem can be modeled using discrete variables.
However, the inherent complexity of the solution technique provides no guarantee in terms of
time it takes to reach optimality; similarly to DP, though to lesser extent, MILP solution methods
are less and less performant as the size or the complexity of the model grows. Even worse,
finding a feasible solution could be just as difficult and could even be impossible. As reported
in [57], most existing MILP models fail when trying to solve directly a UC problem without
an initial feasible solution. In Chapter 2, we consider a MILP approach to solve the HUC
problem as proposed in [34]. Note that head effect is ignored and we consider a piecewise linear
approximation of the univariate I/O characteristic: power only depends on the released water
flow.

1.4.2 The unit commitment problem at EDF

At EDF, day-ahead scheduling is carried everyday for the two upcoming days and only the first
day of the schedules is enforced; this process helps avoiding being blind to the future, and is
complementary to mid-term planning policies.

EDF operates several thermal plants – nuclear and fossil-fired – and hydroelectric plants
within valleys. Day-ahead scheduling is solved out as a Security-Constrained UC problem where
net forecasted demand and other security requirements have to be met. The computed schedules
are communicated to plant operators and to the TSO. For this large-scale UC problem (see [64]
for more details), the solution method is a price decomposition based on a Lagrangian Relaxation
(LR) [34].

Lagrangian Relaxation (LR) (see [29] for example) is certainly the most commonly used
approach to solve large-scale UC problems, as stated in [72]. The major advantage of LR tech-
niques is to solve a related problem – the dual – where binding constraints are relaxed thus
allowing to solve subproblems independently and hopefully more efficiently than the whole
original problem [16]. For EDF’s UC, the main idea is to take advantage of its special struc-
ture, where all thermal plants and valleys are coupled through demand constraints. Such global
constraints are in rather limited number – a few per time period – compared to the number of
local constraints relative to the operations of plants and dynamics of valleys – at least propor-
tional to the number of plants and reservoirs. Since subproblems are solved several times, the
advantage of decomposition is maintained if they can be solved much more efficiently and if
the algorithm that updates the Lagrange multipliers of the dual function converges fast enough.
Each valley (respectively each thermal power plant) is considered as a PBUC subproblem and is
solved using mixed integer programming (respectively dynamic programming), as presented in
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[34]. Lagrangian multipliers are traditionally updated using a subgradient method [35].
A characteristic of LR techniques for solving non-convex programs is that the dual problem

is a convex approximation, thus there are guarantees of convergence for that problem. However,
the optimal solution of the dual problem may not be feasible for the primal problem when the
dualized constraints are not satisfied. Different approaches have been used to recover a feasible
solution either by appropriately modifying the objective function [25] or by a heuristic search
phase [64, 67]. Besides, the Augmented Lagrangian [19] method as an extension to the standard
LR approach is used as a second stage to recover feasibility for EDF’s UC. The principle is to
add a quadratic penalization of the relaxed constraints alongside the linear weight of standard LR
to the objective function. Since the quadratic term compromises the decomposability property,
a partial linearization is used.

1.4.3 Challenges

UC and HUC problems are difficult optimization problems. Regarding theoretical complexity,
a kind of UC problem is proved to be NP-hard in [75]. The generic challenges in developing
solution methods for optimization problems later introduced in Section B.5.4 in the Appendix B
are also encountered for HUC problems. Besides, there are modeling challenges that are specific
to the HUC application. As we will show, issues related with problem modeling and problem
solving methods are very often intertwined.

Computational performance Essentially, short-term problems like UC problems need to be
solved in the short term hence very quickly. For example, if the planning horizon is one day, a
schedule must be computed every day; the closer we are to the time initiation of the next planning
cycle, the more information we have – on plant statuses, demand forecasts, market prices, etc.
– and the closer to reality the schedule will be. From a practical viewpoint, schedulers need to
compute several schedules under different predicting hypotheses to anticipate uncertainties, or
need to rerun the solution process as updates on unforeseen events come along the day. Also,
HUC may be a subproblem of larger problems and must therefore be solved several times. For
example, the Lagrangian decomposition for a SCUC problem requires the iterative solution of
HUC subproblems. All in all, UC problems require fast solutions.

Accurate modeling By definition, a model is a simplified representation of reality, but, as
a rule of thumb, the more elaborate a model is the least tractable the corresponding problem
becomes.

Restricting the size by considering finite time horizons, or considering independently plants
that are not, or aggregating units within a plant, is a basic kind of simplification. Given the
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performance of available solution methods, such simplifications are sometimes necessary.

Even with a fixed size, optimization problems become harder to solve when the representa-
tion of the systems is very detailed because it usually implies more variables, more constraints,
more difficult characteristics (discontinuities, non-convexities, non-linearities).

We must choose which features of the real system are meaningful to model, and how to
model them given that different formulations lead to optimization problems with different prop-
erties, for which there are different classes of optimization algorithms, which have different
computational performances.

Optimality As most schedules are evaluated with respect to a financial criterion (maximiz-
ing revenues, minimizing production costs), there may be a substantial difference in profits or
savings between a good schedule and the best schedule; optimality is thus essential for every
generating company.

Actually, optimality of solutions is essential for all stakeholders in a market environment.
For example, when a company with market power overestimates its production costs in its bids
because of suboptimality, the clearing price is shifted up, at the expense of buyers.

Optimality is related to performance and modeling. Solutions methods take longer to find
the optimal solutions and to prove those solutions are actually optimal. The payoff prescribed
by the optimal solution of an optimization model may be different from to the realized payoff
ex post because of inherent model simplifications. However, solving a more refined model to
optimality may not be easy. We must consequently strike a balance between optimal solutions
of an approximate model and suboptimal solutions of a more realistic model.

Also, optimality is related to feasibility in LR decomposition schemes. Indeed, optimality
of subproblems’ solutions is necessary for the convergence to optimality of the dual problem
which is necessary for the feasibility of the dualized constraints.

Feasibility When it is hard to obtain optimal solutions in a limited timeframe, we would like to
settle at least for feasible ones. Indeed infeasible solutions may be completely irrelevant. Infea-
sible solutions could for example produce schedules where reservoirs have negative water stocks
and would not be enforced. As a matter of fact, the workshop of practitioners organized by the
authors of [37] deemed “dynamic feasibility” as a “very important” feature models should cap-
ture. However, mathematical programs for unit commitment involve multiple constraints with
intricate variables, therefore it is not always trivial to know whether a problem is feasible or
infeasible a priori. Proving or disproving the feasibility of problems can require a lot com-
putational efforts, problems can remain undetermined when solution methods fail to terminate.
Feasibility is really a performance issue: BB search strategies or the invocation of heuristics are
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quite different whether we want to prove or disprove infeasibility.

For example in [79], the authors derive a necessary and sufficient condition that allows to
check feasibility of a hydro unit commitment problem; checking this condition allows to avoid
unnecessary computations in case of infeasibility and also to build a feasible schedule in case
of feasibility. Several units, each with several operating states, fed by a single reservoir are
considered. The condition is twofold but relates only to joint feasibility of water balance and
reservoir capacity: given an intermediate commitment schedule, past feasibility is checked and
we can know if the completion of the schedule will necessarily be infeasible. This condition is
used within a branch-and-bound scheme to implicitly enumerate feasible schedules or to prove
no feasible one exists. The method cannot however be directly extended to the problem we study
in Chapter 2 as dynamic constraints such as ramping rates and multi-reservoir interacting flows
are not taken into account.

Beyond the computational burden required to obtain feasible solutions, we must sometimes
deal with problems that are declared infeasible. When a problem is infeasible, it is even less
trivial though very useful to detect the sources of infeasibilities. For a given infeasible problem,
an Irreducible Infeasible Subset of constraints (IIS) is a set of constraints of the main problem
which is infeasible, but for which any subset is feasible [32]. According to Lodi in [50], isolating
IIS for an infeasible Linear Programming (LP) is NP-hard on its own; consequently the MILP
case is at least as hard. Analyzing the sources of infeasibility of an infeasible program are useful
to repair a model when we are interested in solving a problem supposed to be feasible. Physical
phenomenon happen, therefore real-world problems, if properly modeled, should be feasible.
When infeasibility occurs, we must identify its causes in order to lift it. Causes of infeasibilities
include: computing errors, data errors and model inconsistencies.

Model inconsistencies may be due to inaccurate modeling in the sense that the behavior
of system under study is not accurately modeled or that the prescriptions on that system are
not accurately modeled. For example, ensuring smooth operations to preserve the equipment
or following mid-term policies are important requirements but are sometimes translated into
overly restrictive constraints that happen to make problems infeasible though they should not be
satisfied at the expense of feasibility. Ideally, satisfaction of such requirements can be quantified
and considered as secondary goals. In that case, a multi-objective approach could allow to
compute several schedules with different tradeoffs between short-term, mid-term and reliability
issues in order to support schedulers in their decision process [15].

Numerical issues, numerical inaccuracies Firstly, we are interested in solving numerical-
valued problems, not just theoretical ones. Secondly, mathematical optimization often does
not provide analytical solutions but solutions as outputs of several calculations performed as
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numerical computations. Thirdly, numerical computations often rely on finite-precision floating-
point arithmetic. Computational performance is about time and also about precision of results.
When compared to infinite-precision rational computations, finite-precision implementations are
much faster, require less memory, often result in near-feasible near-optimal solutions without
guarantee of correctness [26].

Correctness (of feasibility, or of optimality) is not certified as numerical solvers include
tolerances to cope with the round-off errors inherent to finite-precision computing. Indeed ap-
proximate results are often satisfactory. Also we are not necessarily interested in the exact result
when input data is itself already inaccurate. Indeed, solutions to UC problems are computed in
large decision-support systems that are subject to data corruption implying that solution methods
must be robust to input data errors [13].

Yet, the authors of [42] warn us that “even when numerical instability does not prevent the
optimizer from solving the model to optimality, it may slow down performance significantly”.
Exact results are sometimes necessary “to establish fundamental theoretical results and in sub-
routines for the construction of provably accurate cutting planes” as pointed out by the authors
of [22]. When dealing with infeasible models, imprecise data and approximate solvers, exact re-
sults enable to detect sources of infeasibilities to calibrate data precision according to tolerances
and to reformulate the model.

To illustrate the relatively recent interest in numerical issues, the library MIPLIB 2010 [44]
of MILP instances that are challenging to solve for several benchmark general-purpose solvers
contains an UNSTABLE category of instances which exhibit bad numerical properties. In ad-
dition, the developments of the exact LP solver QSOPT-EX [26] and the exact MILP solver
SCIP-EX [22] are also quite recent. The treatment of numerical issues remains a promising di-
rection of investigation as Lodi wishes for “a tool for detecting minimal sources of numerical
instability” [50] among the desirable future advances in MILP computations.
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Chapter 2

Real-world hydropower unit
commitment: data and model
pre-processing for infeasibilities

In this chapter, our objective is to effectively solve real-world instances of the Hydropower Unit-
Commitment (HUC) problem – that is to say obtain feasible instances. The problem comes from
EDF’s day-ahead production scheduling process of multi-reservoir systems. Mathematically
speaking, the problem is formulated as a Mixed-Integer Linear Programming (MILP) model.
In practice, infeasibility situations often occur when solving this HUC problem. Infeasibilities
of real-world problems indicate that consistency of model and data needs to be reviewed so
that the problem admits a solution. Our aim is thus to analyze more precisely the sources of
infeasibilities in order to propose data and model pre-processing.

Issues affecting real-world data and numerical computing, together with specific model fea-
tures, make our problem harder to solve and often infeasible. The first concerns arise when
determining whether an instance is feasible or infeasible because computations could be af-
fected by numerical errors. Indeed, the floating-point representation of large (volumes) and
small (flows) variables introduces rounding errors and the data from the real-world instances
could be inaccurate. Because reservoirs can be regarded as integrators, such errors may be
amplified and eventually alter a computed feasibility result. Compared with a standard HUC
problem, we have essentially two additional model specifications that are induced by discrete
operational constraints and by water management policies. The first specification requires that
the schedule for each plant should operate over a discrete set of operational points. The second
specification requires that each reservoir level should meet target volumes.

We propose a step-by-step approach: the idea is to systematically isolate practical difficulties

33
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– rounding errors, data errors, data inconsistency, model infeasibilities – to cope with them one
at a time. First, we present a complete model, which incorporates all operational specifications,
and illustrate through experiments a few of the aforementioned practical difficulties. Secondly,
we derive a simple model to analyze numerical errors; the simple model preserves the basic
continuous characteristics of a standard HUC problem, e.g., conservation of water and bounds
on reservoirs, but removes the discrete operational requirements. As we focus on feasibility
issues, the key idea is to design the simple model so that its feasible set contains the feasible
set of the complete model. An exact solver is used to check consistency of the results obtained
using a floating-point solver and to detect rounding errors. The effects of data errors on feasibil-
ity is mitigated by the introduction of marginal corrective slacks in the model. Once numerical
issues are dealt with, consistency of model and data is checked with respect to both additional
specifications – discrete operations and target volumes. The derivation of several relaxations
of the complete model allows us to analyze and classify infeasibilities. Finally, while data in-
consistencies are discarded, model infeasibilities due to target volumes are eliminated using a
2-stage method. In the first stage, a minimal deviation from target volumes is computed to make
the problem feasible. In the second stage, the original HUC problem is solved with a possible
deviation from the target volumes as defined in the first stage.

This chapter is organized as follows. Section 2.1 is devoted to the description of the complete
model for the considered HUC problem. In Section 2.2, first computational tests are performed
using a MILP solver as a black box on a test set of real-world instances, thus illustrating a high
occurrence of infeasibilities. The simple model is derived in Section 2.3. Numerical errors are
introduced in Section 2.4 and analyzed by resorting to an exact solver in Sections 2.5 and 2.6.
An analysis of the different sources of infeasibilities is carried out in Section 2.8 and a 2-stage
method with feasibility recovery is proposed in Section 2.9; final experimental results show its
effectiveness on the original test set considered. In Section 2.10, some concluding remarks and
future work directions are drawn.

2.1 Model description

We focus on the hydropower Unit-Commitment (HUC) problem as it appears for the scheduling
of EDF’s multi-reservoir hydropower systems in the short term. The interested reader can refer
to [78, 45, 73] for surveys on the HUC problem. As for the problem we deal with, we consider
a price-taker scheduler in a deterministic setting. Plant availabilities, power prices, water values
and external reservoirs inflows are given parameters. The planning horizon is set to two days
and it is uniformly discretized in 30-minutes time periods. The objective of this Profit-Based
UC (PBUC) problem is to maximize power revenues and value of saved water. Power output
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only depends on water flow and does not depend on reservoirs’ water levels, i.e., head effect is
ignored; power-flow curves feature discrete points and affine segments. In addition, several plant
operational constraints must be satisfied and water levels in reservoirs must lie within bounds
given by their capacities.

We now present in details the complete mathematical model starting by introducing notation.
It is denoted complete as opposed to the simple one introduced in Section 2.3.

2.1.1 Notation

In this section, we present sets and indices, parameters and variables. For proprietary reason,
we introduce units derived from International System (IS) base units. From a practical point of
view, we used decimal multiples and submultiples for the parameters and variables values to be
within an appropriate range for numerical precision (see Section 2.5 for more details).

Sets and indices

• t ∈ T = {1, . . . , t}: time period index and set. For simplicity, we assume there is an even
number of time periods t.

• r ∈ R: reservoir index and set.

• RC , RT : set of reservoirs without storage capacity, set of reservoirs managed with target
values and water usage value.{RC , RT } is a partition of R. Reservoirs in RC represent
structures that contain water but that cannot store it properly like very small basins or
canals; such reservoirs are found upstream of run-of-the-river plants where all incoming
inflow must be discharged; such structures are still referred to as reservoirs for the sake of
simplicity though it is somewhat improper with respect to actual reservoirs in RT .

• i ∈ I: plant index and set.

• IC , ID, IG, IP : set of plants with continuous operations, set of plants with discrete oper-
ations, set of generating plants, set of pumping plants.
{IC , ID} is a partition on I , and {IG, IP } is also a partition of I . Note that the generat-
ing plants release water to produce power while pumping plants consume power to pump
water. The convention chosen here is to model power with algebraic values (positive or
negative) and flow with absolute values along with a sign that depends on the direction of
the flow.
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• IR ⊂ IG × IP : set pump-storage stations. These stations represent a couple of plants,
say (i′, i′′), with a generating plant i′ and a pumping plant i′′ that are in between the same
upstream reservoir and the same downstream reservoir.

• j ∈ Jti: operational point index and set of operational points of plant i at time period t
(∀t ∈ T, ∀i ∈ I). We assume w.l.o.g. that |Jti| ≥ 1. The set of possible operational points
may vary in time as operators may plan to change the settings of the operations prior to
scheduling for the planning horizon.

• R+
i , R

−
i ∈ R: upstream reservoir and downstream reservoir of plant i (∀i ∈ I).

• I+
r , I

−
r ⊂ I: set of upstream plants and set of downstream plants of reservoir r (∀r ∈ R).

Parameters

• Π [s]: period duration.

• Ωi[expressed in number of time periods]: time lapse for water to flow through plant i ∈ IG

to downstream reservoir R−i once water is released from upstream reservoir R+
i or to be

pumped up through plant i ∈ IP from downstream reservoir R−i to upstream reservoir
R+
i (∀i ∈ I).

• Ψr,Ψr [m3]: maximum and minimum volume capacities in reservoir r (∀r ∈ RT ).

• Ar, Br, Ar, Br [m3]: mid-horizon maximum, final maximum, mid-horizon minimum and
final minimum target volumes in reservoir r (∀r ∈ RT ).

• Γtr [m3/s]: external water inflow in reservoir r during period t, that is to say available
at end of period t (∀t ∈ T, ∀r ∈ R); inflows can be positive for precipitations or runoff
water; inflows are negative for evaporation or water extraction.

• Υi,Υi [m3/s]: maximum water flow ramp-up and maximum water flow ramp-down be-
tween two consecutive time periods at plant i, respectively (∀i ∈ I).

• Φtij [m3/s]: water flow increment released at time period t, through plant i, corresponding
to operational point j (∀t ∈ T, ∀i ∈ I, ∀j ∈ Jti,Φtij > 0).

• Σti [m3/s]: maximum spillage allowed during time period t at plant i (∀t ∈ T, ∀i ∈ I). To
have a consistent notation, spillage is artificially introduced for pumps and ∀t ∈ T, ∀i ∈
IP ,Σti = 0.
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• Λtij [W]: power increment generated at time period t by plant i corresponding to opera-
tional point j (∀t ∈ T, ∀i ∈ I, ∀j ∈ Jti). Head effect is assumed negligible as water level
in reservoirs is almost invariant over the planning horizon.

• ωr [currency/m3]: water value of reservoir r (∀r ∈ RT ). Similarly, water value is as-
sumed constant with respect to volume.

• λt [currency/W per time period]: price for power at time period t (∀t ∈ T ).

• Qti =
∑

j∈Jti Φtij [m3/s]: maximum possible water flow released at time period t,
through plant i (∀t ∈ T, ∀i ∈ I).

• Q
ti

=

 Φti1 when plant must operate and release a non-zero flow

0 otherwise
[m3/s]: minimum

possible water flow released at time period t, through plant i (∀t ∈ T, ∀i ∈ I).

• P ti = maxk∈Jti
∑k

j=1 Λtij [W]: maximum possible power generated during time period
t by generating plant i (∀t ∈ T, ∀i ∈ IG).

• P ti = mink∈Jti
∑k

j=1 Λtij [W]: its absolute value correspond to maximum power con-
sumed during time period t by pumping plant i (∀t ∈ T, ∀i ∈ IP ).

2.1.2 MILP formulation of the complete model

This section is devoted to the description of the complete mathematical model. We start with
bounds on variables, continue with the constraints, and finally introduce the objective function.

By convention, sums on empty sets are equal to zero.

Variables

• vtr [m3]: water volume in reservoir r at end of time period t (∀t ∈ T, ∀r ∈ R).

• qti [m3/s]: water flow released through plant i during time period t (∀t ∈ T, ∀i ∈ I).

• sti [m3/s]: water flow spilled through plant i during time period t (∀t ∈ T, ∀i ∈ I).

• pti [W]: power generated by plant i during time period t (∀t ∈ T, ∀i ∈ I).

• xtij : binary activation status of discrete operational point j of plant i during time period t
(∀t ∈ T, ∀i ∈ I, ∀j ∈ Jti).

• ytij : continuous operational point j of continuous-operating plant i during time period t
(∀t ∈ T, ∀i ∈ IC ,∀j ∈ Jti).
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• zti: binary variable allowing spillage at plant i in time period t (∀t ∈ T, ∀i ∈ I).

To simplify notation, variables are not defined for initial values (for t = 0 or −1) but they
may be introduced when needed with specific values.

Variable bounds

Now we list the simple bounds on variables introduced in the previous section.

Ψr ≤ vtr ≤ Ψr ∀t ∈ T, ∀r ∈ R (2.1.1)

0 ≤ Q
ti
≤ qti ≤ Qti ∀t ∈ T, ∀i ∈ I (2.1.2)

0 ≤ sti ≤ Σti ∀t ∈ T, ∀i ∈ I (2.1.3)

0 ≤ pti ≤ P ti ∀t ∈ T, ∀i ∈ IG (2.1.4)

P ti ≤ pti ≤ 0 ∀t ∈ T, ∀i ∈ IP (2.1.5)

xtij ∈ {0, 1} ∀t ∈ T, ∀i ∈ I, ∀j ∈ Jti (2.1.6)

ytij ∈ [0, 1] ∀t ∈ T, ∀i ∈ IC , ∀j ∈ Jti (2.1.7)

zti ∈ {0, 1} ∀t ∈ T, ∀i ∈ I (2.1.8)

Constraints

Water conservation We start by presenting the constraints modeling the conservation of water
at time period t and reservoir r (∀t ∈ T, ∀r ∈ RT ):

vtr = v(t−1)r + ΠΓtr

+ Π
∑

i∈I+r ∩IG
(q(t−Ωi)i + s(t−Ωi)i)

+ Π
∑

i∈I−r ∩IP
(q(t−Ωi)i + s(t−Ωi)i)

−Π
∑

i∈I−r ∩IG
(qti + sti)

−Π
∑

i∈I+r ∩IP
(qti + sti). (2.1.9)

v0r and (qti, sti)t≤0 are replaced with their initial values.

The water volume in the reservoir is equal to the water volume at the previous time period
plus the external forecasted inflows, the water released from the upstream plants (first summa-
tion), and pumped from the downstream plants (second summation), minus the outflows released
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by the downstream plants (third summation) and pumped by the upstream plants (fourth sum-
mation). The constraints take into account the time lapse needed for water to reservoir r.

For each reservoirs r without storage capacity (∀r ∈ RC), the water volume conservation
constraint at each time period t (∀t ∈ T ) is slightly different:

Γtr +
∑

i∈I+r ∩IG
(q(t−Ωi)i + s(t−Ωi)i)

+
∑

i∈I−r ∩IP
(q(t−Ωi)i + s(t−Ωi)i)

−
∑

i∈I−r ∩IG
(qti + sti)

−
∑

i∈I+r ∩IP
(qti + sti) = 0. (2.1.10)

Like above without the volume variables, water is conserved: outgoing flows balance incoming
flows, except that water cannot be stored.

Target volumes On top of the reservoir capacity (2.1.1), mid-horizon and final volumes are
subject to target bounds:

Ar ≤ v t
2
r
≤ Ar ∀r ∈ RT (2.1.11)

Br ≤ vtr ≤ Br ∀r ∈ RT . (2.1.12)

Power-flow characteristics We now introduce a system of constraints to express power-flow
curves.

qti =
∑
j∈Jti

ytijΦtij ∀t ∈ T, ∀i ∈ IC (2.1.13)

pti =
∑
j∈Jti

ytijΛtij ∀t ∈ T, ∀i ∈ IC (2.1.14)

xtij ≤ ytij ∀t ∈ T, ∀i ∈ IC , ∀j ∈ Jti (2.1.15)

yti(j+1) ≤ xtij ∀t ∈ T, ∀i ∈ IC ,∀j ∈ {1, . . . , |Jti| − 1}. (2.1.16)

For plants with continuous operations, constraints (2.1.13), (2.1.14), (2.1.15) and (2.1.16) de-
scribe piecewise linear power-flow curves where the breakpoints are the operational points; the
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piecewise linear curves are expressed with the incremental formulation, see [55].

qti =
∑
j∈Jti

xtijΦtij ∀t ∈ T, ∀i ∈ ID (2.1.17)

pti =
∑
j∈Jti

xtijΛtij ∀t ∈ T, ∀i ∈ ID (2.1.18)

xti(j+1) ≤ xtij ∀t ∈ T, ∀i ∈ ID,∀j ∈ {1, . . . , |Jti| − 1} (2.1.19)

For the discrete-operating plants, flow and power can only take a set of discrete values as mod-
eled by constraints (2.1.17), (2.1.18) and (2.1.19); the formulation is a simplified restriction of
the incremental formulation in order to express variables that only take a set of discrete values.

Spillage We next introduce the set of constraints related to spillage:

sti ≤ ztiΣti ∀t ∈ T, ∀i ∈ IG (2.1.20)

zti ≤ xti(|Jti|) ∀t ∈ T, ∀i ∈ IG. (2.1.21)

Constraints (2.1.20) imply that spillage through plant i during time period t can be non-zero
only if variable zti = 1. According to constraints (2.1.21), this means that spillage is allowed
only if the last operational point is reached, i.e., xti(|Jti|) = 1.

Monotonicity, pump-turbine exclusion Next, we have monotonicity constraints alongside
with simultaneous pumping and generation exclusion constraints:

x(t−1)ij ≥ x(t−2)ij− + xtij+ − 1 ∀t ∈ T, ∀i ∈ ID,∀j ∈ Jti (2.1.22)

x(t−1)ij ≤ x(t−2)ij− + xtij+ ∀t ∈ T, ∀i ∈ ID,∀j ∈ Jti (2.1.23)

xti′1 + xti′′1 ≤ 1 ∀t ∈ T, ∀(i′, i′′) ∈ IR (2.1.24)

xti′1 + x(t−1)i′′1 ≤ 1 ∀t ∈ T, ∀(i′, i′′) ∈ IR (2.1.25)

x(t−1)i′1 + xti′′1 ≤ 1 ∀t ∈ T, ∀(i′, i′′) ∈ IR. (2.1.26)

where (j−, j, j+) ∈ J(t−2)i × J(t−1)i × Jti are the indices pointing at the same operational
point at three consecutive time periods (t− 2, t− 1, t), i.e.,

∑j−

k=1 Φ(t−2)ik =
∑j

k=1 Φ(t−1)ik =∑j+

k=1 Φtik. Also, x0ij , x(−1)ij are replaced with their initial values.

Since turbines within a plant are aggregated, constraints (2.1.22)-(2.1.23) ensure smooth
operations to maintain a sustainable level of stress and wear for the turbines within a plant.
Assuming that one operational point corresponds to one turbine, the monotonicity constraints
on operational points reduce to 2-period minimum uptime and minimum downtime for turbine;
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min-up/min-down in the general case for thermal units have been studied in [46, 63]. Con-
straints (2.1.24)-(2.1.26) impose that the pump and turbine of a reversible station cannot operate
at the same time and that consecutive operations of pump and turbine require a one-period tran-
sition.

Ramp-up, ramp-down Finally, we present the ramp-up and ramp-down constraints:

(qti + sti)− (q(t−1)i + s(t−1)i) ≤ Υi ∀t ∈ T, ∀i ∈ I (2.1.27)

(qti + sti)− (q(t−1)i + s(t−1)i) ≤ −Υi ∀t ∈ T, ∀i ∈ I (2.1.28)

where q0i, s0i are replaced with their initial values.

Objective function

Our aim is to maximize the revenues given as:

% = max
∑
t∈T

∑
i∈I

λtpti +
∑
r∈RT

ωr(vtr −Ψ0r −Π
∑
t∈T

Γtr). (2.1.29)

The first summation gives the profit/cost due to power generation/consumption during the plan-
ning horizon (recall that λ is the electricity price vector), while the second summation gives the
net value of the water volume remaining in the reservoir at the end of the planning horizon.

2.2 First computational tests

In this section, we present characteristics of the test set and first computational results with the
complete model presented in Section 2.1.2.

2.2.1 Test set and configuration

Our test set is composed of 66 real-world instances corresponding to all combinations of 6
valleys at 11 dates. For all instances, t = 96 time periods are considered. Table 2.1 summarizes
instance characteristics per valley. First column gives valley name and other entries are:

• |R|: number of reservoirs

• |I|: number of plants

• |IR|: number of pump-storage stations

• |IC |: number of continuously-operating plants
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• #bin vars: average number of binary variables per valley over the 11 dates and standard
deviation in parenthesis

• #vars: average number of variables per valley over the 11 dates and standard deviation in
parenthesis.

Valley |R| |I| |IR| |IC | #bin vars #vars

v-a 1 1 0 0 136 (75) 524 (75)

v-b 2 3 1 0 953 (149) 2017 (149)

v-c 5 6 0 1 1707 (670) 3835 (670)

v-d 5 6 1 1 3296 (806) 6006 (1732)

v-e 5 9 1 0 3974 (582) 7066 (582)

v-f 10 16 2 4 4453 (406) 10343 (453)

Table 2.1: Test set characteristics per valley

Valley topographies – order and structure of reservoirs and plants along streams – remain un-
changed across instances of each valley. From one date to another, data such as initial values,
volume bounds, water inflows, water values, electricity prices vary; the sets of operational points
also change, thus changing the number of variables as well. The variations in valley topography
and date for our test set were chosen to be representative of possible configurations. Since we
have a compact formulation where binary variables correspond directly to operational points,
the average number of binary variables is somewhat an indicator of the combinatorial difficulty
of the instances.

Tests were executed on 64-bits Intel Xeon CPU E5504 running at 2.00 GHz x8 cores with
Linux and 11.7 GB of RAM. The mathematical programming modeling language AMPL Ver-
sion 20121017 was used to run the MILP solver IBM ILOG CPLEX 12.4.0.0 [38]. For each
instance, a time limit of 1200 seconds was imposed.

2.2.2 Test results

Table 2.2 summarizes the solution by CPLEX of the 66 instances presented in Section 2.2.1 with
the complete model described in Section 2.1.2. CPLEX solution status of a MILP instance can
be integer infeasible when the instance is proved infeasible, feasible when a feasible solution is
found, or intractable when no integer solution is found within time limit, leaving feasibility of
the instance an open question. First column shows solution status while second column gives
the number of instances #inst whose solution falls into the aforementioned categories.
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Solution status #inst

Integer infeasible 28

Feasible 14

Intractable 24

Total result 66

Table 2.2: Number of instances according to solution status of the complete model

In addition to the numerous infeasible and intractable cases, several messages from the solver
indicate numerical problems: bad average condition numbers, marginally violated constraints
and rounded integer variables. Numerical problems may indicate inaccurate solutions.

2.2.3 Problem statement

When working with this real-world optimization problem, we run into specific practical difficul-
ties, namely numerical problems and infeasibilities.

First we must ensure numerically-computed results are affected neither by the errors inherent
to floating-point computations nor by noisy data from real-world instances.

Then, since we are considering a real problem that we want to model so as to be feasible, we
must update our model and adjust our data so as to recover feasibility.

2.3 LP formulation of a simple model

This section is devoted to the description of a simple version of the model presented in Sec-
tion 2.1.2 to work with a tractable model and avoid undecidable situations where no solution is
found within satisfactory time.

Indeed, several instances remain unsolved even with the state-of-the-art solver CPLEX, as
shown in Table 2.2. Actually, most standard MILP solvers – like CPLEX – are based on floating-
point arithmetic; such arithmetic allows relatively fast computations but inherently incurs round-
ing errors. The use of an exact solver based on rational arithmetic should guarantee the exact-
ness of our solution (see Section 2.5.2 below for more details). Unfortunately, exact solvers are
slower than their approximate counterparts. To get satisfactory results within time limits for our
large-scale instances with both types of solvers, we work with a simpler model.

Assuming the solution process is slow mainly because of the combinatorial difficulties in the
complete model, no binary variable is considered in the simple model. Instead of considering a
standard linear relaxation of the complete model, we prefer to remove all constraints involving
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binary variables, including the exclusion of simultaneous pumping and generation.

Following same notation as Section 2.1.1, the mathematical formulation of the simple model:

• bounds

(2.1.1)

Q
ti
≤ qti ≤ Qti + Σti ∀t ∈ T, ∀i ∈ I (2.3.1)

sti = 0 ∀t ∈ T, ∀i ∈ I (2.3.2)

(2.1.4)− (2.1.5)

• constraints

(2.1.9)− (2.1.12)

pti =

∑
j∈Jij Λtij

Qti + Σti

qti ∀t ∈ T, ∀i ∈ I (2.3.3)

(2.1.27)− (2.1.28)

• objective

(2.1.29)

In the simple model, we artificially get rid of spillage (see (2.3.2)) and aggregate it with the
water flow whose domain is extended accordingly, see (2.3.1).

For a given instance, the feasibility set of the simple model strictly includes the feasibility
set of the complete model since constraints (2.1.17)-(2.1.26) involving binary variables are re-
moved. Therefore less infeasibilities will happen with the simple model. As for the objective
function, the simple model is not strictly speaking a relaxation of the complete one because the
expression of the power-flow curve (2.1.18)-(2.1.14) is only approximated by constraint (2.3.3).
Note that the power variables pti are dependent variables which appear only in the objective
function.

All in all, the simple model enables us to get rid of intractabilities, and a few infeasibilities,
to focus on numerical errors.

2.4 Numerical errors

A numerical error is observed at the end of a computation when a numerically-computed result
is different from the exact solution.
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For an optimization problem, a major kind of error we can run into is when feasibility is
altered. Two cases may happen: either computations find a problem infeasible while exact
feasible solutions exist, or computations provide a solution said to be feasible while the exact
feasible set is empty. This kind of errors is denoted as feasibility inconsistency. In this work,
given the large occurrence of infeasibilities, as shown in Table 2.2, we will focus on identifying
and mitigating feasibility inconsistencies.

Rounding errors inherent to floating-point arithmetic may cause feasibility inconsistency.
Feasibility inconsistency must be checked with respect to the exact result. That is why we
invoke a solver based on rational arithmetic said to be exact as it is free from rounding errors.

Once feasibility consistency is dealt with: either an instance is known to be exactly infeasible
or an instance is known to be exactly feasible. In the former case, infeasibility becomes a cause
for modeling concern since we are dealing with a real-world problem that should be modeled
so as to be feasible (see subsequent Section 2.9). In the latter case, numerical errors related
to the feasibility (optimality) certificate of the computed feasible (optimal) solution must be
checked. For linear programs, they respectively correspond to satisfaction of linear constraints
and variable bounds (non-negativity of reduced costs – when minimizing). For mixed-integer
programs, errors on feasibility certificate can be observed by checking integrality of integer
variables on top of satisfaction of linear constraints; errors on optimality of the computed optimal
solution are less trivial to track because they may occur at any node of the branch-and-bound
tree. These kinds of errors are not studied in this work.

2.5 Scaling to deal with floating-point errors

As defined in the IEEE Standard for Floating-Point Arithmetic (IEEE 754), the binary double-
precision format is a floating-point system in base 2 with a 52-bit precision. It is a commonly-
used format for numerical computations. The set of possible representations in that format is
noted F. A number a ∈ R∗ is represented by fl(a) ∈ F such that:

fl(a) = (−1)s(a) ·m(a) · 2e(a)−53 (2.5.1)

where sign s(a) ∈ {0, 1} is expressed with 1 bit, significand m(a) ∈ {252, . . . , 253 − 1} is
expressed with 52 bits, exponent e(a) ∈ {−1021, . . . , 1024} is expressed with 11 bits.

Floating-point representations are not exact, F  R and it may happen that fl(a) 6= a. For
any real a such that |a| ∈ [2−1022, 21023], unit roundoff u = 2−53 ≈ 10−16 is an upper bound on
the relative error Er(fl(a)) of the approximation of a by fl(a):

Er(fl(a)) =
|a− fl(a)|
|a|

≤ 2−53 ≈ 10−16. (2.5.2)
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Also, absolute error Ea(fl(a)) on the floating-point representation is defined as and bounded
by:

Ea(fl(a)) = |a− fl(a)| . u|fl(a)|. (2.5.3)

The first rounding error happens when representing a real number in a floating-point format.
Other rounding errors occur with calculations. Indeed, F is not closed under the basic arithmetic
operations: even if the operands lie in F, the result of such operations may need to be rounded
to lie in F. Relative rounding error on the result of a single operation is also bounded by u.
The composition of several operations may propagate small rounding errors into larger errors.
The study of such errors occurring in implementations of algorithms is an important subject of
numerical analysis; [36] is a classic reference of this discipline.

2.5.1 Tolerances, scaling, and floating-point-based solvers

As stated in [44], solvers based on floating-point representations, such as CPLEX, introduce
tolerances in order to deal with the rounding errors that are inherent to such representations.

To avoid detrimental errors on the feasibility set, linear constraints are marginally relaxed
with the introduction of an absolute feasibility tolerance εf . For instance, for a variable x and a
right-hand-side (RHS) parameter b: while we model a constraint as x ≥ b, solvers see x+ εf ≥
fl(b).

Indeed provided Ea(fl(b)) ≤ εf is satisfied, when only considering rounding error on the
RHS term: Ea(fl(b)) ≤ εffl(b) ≤ b+ Ea(fl(b))

⇒ b ≥ fl(b)− εf .

Solvers ensure that the floating-point representation of the constraint is marginally less restrictive
than the exact one: it is better to slightly extend the feasible set than to arbitrarily restrict it
because of rounding errors.

When providing an instance to a floating-point-based solver, we should make sure that the
following condition holds for all constraints’ RHS:

Ea(fl(b)) . u|fl(b)| ≤ εf . (2.5.4)

If we scale down the unit of the left-hand-side (LHS) term, for example:

x := x/10 then x ≥ b becomes x ≥ b/10

and the rounding error on the RHS:

Ea(fl(b/10)) ≈ Ea(fl(b))/10.
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Usually, the solver’s feasibility tolerance is uniquely set across constraints; εf = 10−6 by
default for CPLEX. When only considering the effects of errors on RHS terms, orders of mag-
nitude should be scaled down to 1010 at most so that condition (2.5.4) holds, which could be
rewritten as:

|fl(b)| ≤ εf/u. (2.5.5)

In our problem, volumes and related bounds are the numbers with the greatest magnitude. In
addition, recursive constraints (2.1.9) show that volumes result from several intermediary oper-
ations, which often lead to error propagation. Volumes are therefore most likely to be subject to
substantial rounding errors. For this reason, we decide to study the effect of scaling of volume-
related parameters and variables.

Note that tuning directly the solver’s feasibility tolerance could be an option if all constraints’
RHS terms were of the same magnitude. As this is not the case, we rather rescale each variable
individually so that the constraints in which they are involved are not disturbed by rounding
error.

2.5.2 Computational tests

Standard floating-point solvers feature scaling routines by default, and these are kept activated
for the computational tests. Moreover, we find it useful to scale variables and constraints known
to be sensitive, thus rescaling the instance before providing it to the solver.

Computational protocol For volume-related parameters and variables, we test 5 scalings –
denoted with letters from A to E – which correspond to increasing volume units we do not ex-
press here for proprietary reasons. Given volumes’ orders of magnitude, the feasibility set, as
represented by CPLEX, is expected to be altered when using scalings A and B, because condi-
tion (2.5.5) is not satisfied.

In order to identify situations where the feasibility status computed by CPLEX is incorrect,
CPLEX’s results are compared with results of an exact solver. Namely, we use SCIP-EX, a MILP
solver based on rational arithmetic, instead of floating-point arithmetic [22]. It was run using
MPS files generated through AMPL. Since no discrete variable appears in the simple model,
SCIP-EX is used as an LP solver.

Feasibility consistency according to scaling Table 2.3 summarizes feasibility consistency
for the solution by CPLEX of the 66 instances presented in Section 2.2.1 with the simple model
described in Section 2.3 according to scaling. With regards to feasibility, the solution returned
by CPLEX for problem formulated with different volume scalings may be:
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• consistentF if solution processes with all scalings reach a feasible solution and agree with
SCIP-EX’s exact result

• consistentI if solutions with all scalings are found infeasible and agree with SCIP-EX’s
exact result

• inconsistentF if at least a solution with one scaling is found infeasible though the instance
is feasible according to SCIP-EX’s exact result

• inconsistentI if at least a solution process with one scaling reaches a feasible solution
though the instance is infeasible according to SCIP-EX’s exact result.

Note that the solution obtained using with a rational-based solver is left unchanged by scaling
as there is no feasibility tolerance. Therefore, SCIP-EX’s results do not depend on scaling.

feasibility
consistency

SCIP-EX

status
CPLEX status

#inst
scaling A scaling B scaling C scaling D scaling E

consistentF optimal optimal optimal optimal optimal optimal 12
consistentI infeasible infeasible infeasible infeasible infeasible infeasible 18
inconsistentF optimal infeasible optimal optimal optimal optimal 32

inconsistentI
infeasible optimal optimal optimal optimal optimal 1
infeasible infeasible optimal optimal optimal optimal 1
infeasible infeasible infeasible infeasible infeasible optimal 2

Total Result 66

Table 2.3: Number of instances whose solutions are (in)consistent according to scaling, for the
simple model

Because condition (2.5.5) with scaling A is not satisfied, CPLEX’s solution is wrongfully
found infeasible for the 32 inconsistentF instances.

Error on objective according to scaling Let us now consider the 44 (=12 consistentF + 32
inconsistentF) instances that are rightfully found feasible and solved to optimality by CPLEX for
scalings B to E. For each instance, the relative objective error %∆ is computed as the relative
difference between the objective value found by both solvers. Table 2.4 summarizes statistics
on relative objective error according to scaling. Maximum (max), average (avg), and standard
deviation (std) of the relative objective error %∆ are computed over the 44-instance set for each
scaling.

Even though condition (2.5.5) with scaling B is not satisfied, there is hardly no feasibility
inconsistency observed for the considered test set. However, the errors on the computed objec-
tive value for scaling B appear to be much greater than those obtained with scalings C to E.
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%∆

scaling B scaling C scaling D scaling E

max 5.7E-03 8.1E-09 1.7E-08 1.6E-08

avg 2.1E-04 1.9E-10 4.4E-10 4.1E-10

std 1.0E-03 1.2E-09 2.5E-09 2.4E-09

Table 2.4: Statistics of relative objective error according to scaling, for the simple model

This indicates that rounding errors are more likely to occur for scaling B. It is not in the im-
mediate scope of our investigation but it affects subsequent results: exact optimal solutions for
LP problems are critical to obtain bounds and valid inequalities to solve MILP problems with a
branch-and-cut scheme.

Scaling and data errors To return to the 4 (=1+1+2) inconsistentI instances of Table 2.3, the
results illustrate there is a limit for the use of scalings with CPLEX. Indeed, when a relatively
large scaling is used, significant digits of handled variables and parameters are neglected as they
become lower than the absolute feasibility tolerance. Therefore, the relaxation introduced by
the standard feasibility tolerance for rounding errors becomes too loose and exactly infeasible
instances (as seen by SCIP-EX) are seen as feasible.

Actually, in our case, as we want to formulate problems to be feasible, if a slight perturbation
of the problem helps recovering feasibility, it is a hint that there are data errors. An approximate
computation with inaccurate data might recover feasibility by chance, whereas an exact compu-
tation with inaccurate data cannot. However, the combination of large scalings and feasibility
tolerance for an approximate computation might over-relax the problem. For this reason, scaling
E, being too large, is discarded for future computations with CPLEX, while data errors are dealt
with in the subsequent section.

2.6 Corrective relaxation to deal with data errors

Beside rounding errors, data errors are another kind of numerical errors. Data errors are ob-
served when a numerically-computed result is different from the exact solution because of inac-
curate input data. As pointed above in Section 2.5.2, even an exact computation may lead to an
incorrect result if input data is inaccurate.

If input value â is read for parameter a, the absolute error on data â is:

Ea(â) = |â− a|.
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Since only â is given, upper bounds on relative data error Er are derived for all parameters:

• Ψ0,Ψ,Ψ, A,B,A,B,Γ regarding reservoirs

• Υ,Υ,Σ,Φ,Λ regarding plants.

Given upper bound on relative data error Er(â) of input value â, we have:

Ea(â) ≤ Ea(â) ≈ Er(â) · |â|.

2.6.1 Corrective relaxations

To recover feasibility, we must correct data to relax the feasible region given initially. More
specifically, within each constraint we correct parameters by adding or subtracting the upper
bound on the error in the direction that relaxes the constraint. Assuming w.l.o.g. a ≥ 0, x ≥ 0,
the exact constraint:

ax ≥ b, where a ∈ [â− Ea(â), â+ Ea(â)], b ∈ [b̂− Ea(b̂), b̂+ Ea(b̂)]

is no longer represented by the inexact constraint:

âx ≥ b̂

but is relaxed into the following corrected constraint:

(â+ Ea(â))x ≥ b̂− Ea(b̂).

This data correction is carried out for all inequality constraints; equality constraints being
considered as two opposite inequalities. The exact feasible region is extended because we are
bound to consider the worst-case errors for all parameters.

Note that our primary goal is to deal with infeasibilities, that is why we focus only on con-
straints. As the feasibility region is enlarged and the objective coefficients are not adjusted
accordingly, it is possible that a better objective value is found with data correction.

Note also that we propose to use scalings to deal with rounding errors (as described in
Section 2.5.1) and data correction to handle data errors. It seems like we could have used scaling
for both. However, using scalings would not work with an exact solver because no feasibility
tolerance is used. Moreover, feasibility tolerance can handle only cumulative error on all terms
of a constraint, while the proposed data correction handles each term individually.

2.6.2 Computational tests

Computational protocol We consider the simple model presented in Section 2.3. We choose
to keep scaling C for volumes for all reservoirs of all instances as it was shown to be a suitable
scaling.
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Feasibility consistency according to data correction We sort the instances based on the fol-
lowing case disjunction:

• case 1 if SCIP-EX and CPLEX reach a feasible solution without data correction;

• case 2 if SCIP-EX and CPLEX solutions are still found infeasible with data correction;

• case 3 if SCIP-EX and CPLEX solutions are found infeasible without data correction, but
both solvers reach a feasible solution with it;

• case 4 if SCIP-EX solution is found infeasible without data correction, but CPLEX reaches
a feasible solution without it, and both solvers reach a feasible solution with data correc-
tion.

Table 2.5 summarizes feasibility consistency of the solutions for the 66 instances presented
in Section 2.2.1 by CPLEX and SCIP-EX without data correction (noDC) and with data correc-
tion (wDC).

case#
noDC wDC

#inst
SCIP-EX CPLEX SCIP-EX CPLEX

case 1 optimal optimal optimal optimal 44

case 2 infeasible infeasible infeasible infeasible 11

case 3 infeasible infeasible optimal optimal 9

case 4 infeasible optimal optimal optimal 2

Total Result 66

Table 2.5: Number of instances whose solutions are (in)consistent according to data correction,
for the simple model with scaling C

First of all, comparing SCIP-EX results without or with data correction (second and fourth
columns) shows that 11 (= 9+2) instances were infeasible because of data errors and become
feasible with data correction. Second, SCIP-EX and CPLEX solutions disagree without data
correction for the 2 instances (case 4), whereas they now agree with it. In the end, the proposed
data correction is shown to be effective as feasibility consistency between solvers is recovered.

Error on objective according to data correction Let us compare relative objective error
between solvers for the instances that are rightfully found feasible and solved to optimality:
the 44 feasible instances without data correction, relative to case 1, and the 55 feasible (= 44
+ 9 + 2) instances with data correction, relative to cases 1, 3, and 4. Table 2.6 summarizes
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statistics on relative objective error according to data correction. The relative objective error
%∆ is computed as explained previously in Section 2.5.2. For the two sets of instances that are
solved to optimality, we restate the number of instances and we present the same statistics as in
Table 2.4. Luckily, rounding errors are mitigated with data correction as CPLEX objective value

%∆

noDC wDC

max 8.1E-09 9.7E-11

avg 1.9E-10 4.9E-12

std 1.2E-09 1.8E-11

#inst 44 55

Table 2.6: Statistics of relative objective error according to data correction, for the simple model
with scaling C

is relatively more accurate.

2.7 Extensions of results to the complete model

Ideally, we would like to check that the computational results obtained by scaling and data
correction for the simple linear model can be extended to the complete mixed-integer model.
Unfortunately, SCIP-EX solution times are too long for the complete model.

Therefore, we do not refer to SCIP-EX’s results to check feasibility consistency. We keep
on using scaling C for volumes and data correction on the complete model. Table 2.7 summa-
rizes the solution by CPLEX for the 66 instances presented in Section 2.2.1 with the complete
model described in Section 2.1.2 without and with data correction. First (Second, respectively)
column shows solution status noDC (wDC, respectively). Third column gives the number of
instances #inst for each combination of the first and second column entries. Note that results
noDC correspond to the ones presented in Section 2.2.2 (Table 2.2). Out of 66 instances, we are
now confident that 46 (=14+11+21) are exactly feasible and 13 exactly infeasible; nothing can
be said about the feasibility of the remaining 7 (=4+3) instances.

2.8 Infeasibility classification

Without numerical errors in the data and in the solution process, we expect our problem to
be modeled so as to be feasible. As infeasibilities still occur, we would like to understand
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noDC wDC #inst

feasible
feasible

14
infeasible 11
intractable 21

infeasible infeasible 13

infeasible
intractable

4
intractable 3

Total Result 66

Table 2.7: Number of instances according to CPLEX solution status, without data correction
noDC and with it wDC, for the complete model with scaling C

their sources and update the model accordingly. In this section, infeasibilities are first classified
according to the two main specifications: discrete operations and water-management policies.

2.8.1 Approach

CPLEX’s conflict refiner routine [38] offers to identify a “set of mutually contradictory con-
straints”. It is not guaranteed to be minimal, that is to say it may not be an Irreducible Infeasible
Subset (as defined in [32]). Even so we cannot systematically call the routine because it is very
time consuming given the size of our instances. In addition, this routine considers all constraints
individually while we are interested on insights by groups of constraints. Therefore, we mimic
the conflict refiner routine by manually relaxing sets of constraints corresponding to the two
specifications of the complete model – namely discrete operations and water-management poli-
cies – and by checking feasibility status. We still use it occasionally when individual refinement
is needed.

According to the combination of relaxations, we consider 4 models:

• the simple model (from Section 2.3) without target volumes s̃

• the simple model s: F(s) ⊂ F(s̃)

• the complete model (from Section 2.1.2) without target volumes c̃: F(c̃) ⊂ F(s̃)

• the complete model c: F(c) ⊂ (F(c̃) ∩ F(s))

where F(m) is the feasible set of model m.
Indeed, the specification of discrete operations was relaxed so as to obtain the simple model

s from the complete model c. We now also consider relaxations obtained by removing target



54 CHAPTER 2. REAL-WORLD HUC: INFEASIBILITIES

volume bounds which are a hard expression of water-management policies. Ideally we wish to
satisfy target volumes but we relax them to detect if they are sources of infeasibility and therefore
obtain models s̃ and c̃. Target volume bounds will be referred to as TV.

2.8.2 Computational results and interpretation

In Table 2.8, we refer to results obtained considering the full test set with the complete model,
scaling C, and data correction. Namely, first column shows CPLEX solution status, second
column shows (when applicable) infeasibility classification (as defined in details below), and
third column gives, for each combination of status/class, the number of relative instances #inst.
Note that results of the first column are the ones obtained for column wDC of Table 2.7.

solution
status

infeasibility classification #inst

feasible – 46

intractable – 7

infeasible

data inconsistent 5
unattainable TV 6
impossible discrete operations 0
unattainable TV and impossible discrete operations 0
incompatible TV and discrete operations 2

Total Result 66

Table 2.8: Number of instances according to solution status and infeasibility classification, for
the complete model with scaling C and data correction

Infeasibilities for the complete model, i.e., F(c) = ∅, can be classified according to the
feasibility status of the considered relaxations:

• data inconsistent when F(s̃) = ∅: it may happen, for example, when initial volume is out
of bounds Ψr0 > Ψr for some reservoir r. There exist several other cases we identified
thanks to CPLEX’s conflict refiner; often interpretation of an operator is required to recover
feasibility. For this reason we decide to discard this kind of infeasibilities within the scope
of this work.

• unattainable TV when F(s) = ∅ and F(c̃) 6= ∅: it happens when the target volumes
are unattainable even when discrete plant operational domains are relaxed. This kind of
infeasibilities will be dealt with in Section 2.9.
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• impossible discrete operations when F(c̃) = ∅ and F(s) 6= ∅: such infeasibilities happen
when the sets of discrete operational points together with ramp-up/down, monotonicity
and exclusion constraints forbid values of water flow required to remain within reservoir
capacities. Because such requirements are critical for the operations of plants, we must
rely on the know-how of an operator to find a tradeoff. For the same reasons as data
inconsistencies, we discard this kind of infeasibilities.

• unattainable TV and impossible discrete operations when F(s) = ∅ and F(c̃) = ∅: when
the two previous kinds of infeasibilities concomitantly happen. As we discard impossible
discrete operations, we also discard this kind of infeasibilities.

• incompatible TV and discrete operations when F(s) 6= ∅,F(c̃) 6= ∅: it happens when
the target volumes are incompatible with complete discrete plant operational domains,
though target volumes are attainable with relaxed plant operational domains, and discrete
operations are feasible without target volumes. Like the cases where target volumes are
unattainable, this kind of infeasibilities will be dealt with in Section 2.9.

Within the tested set, there was no occurrence of impossible discrete operations and un-
attainable TV and impossible discrete operations. We are left with cases relative to unattainable
TV and incompatible TV and discrete operations. We must therefore deal with too tight target
volumes, which are responsible for the infeasibilities of at least 8 (=6+2) instances of our tests.

For the 7 instances whose solutions are intractable for the complete model, solving the re-
laxed models reached feasible solutions: F(s) 6= ∅,F(c̃) 6= ∅. They can either be feasible or
feature an incompatibility between target volumes and discrete operations.

2.9 Target volume reformulation for feasibility recovery

Because mid-term planning policies cannot always be properly reflected through the valuation of
water or to satisfy punctual requirements for reservoir operations, daily water level trajectories
are controlled with the introduction of target volumes.

Introducing them as hard constraints often results in infeasibility as seen above in Section 2.8
and also as mentioned in, for example, [58].

To recover feasibility, we propose a 2-stage method that reformulates water-management
policies.

2.9.1 Minimization of target volume deviations

In the first stage we complete and marginally modify the model formulated in Section 2.1.2 to
recover feasibility. Slack variables are introduced, namely:
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• αr, βr, αr, βr [m3]: deviations to mid-horizon maximum target volume, final maximum
target volume, mid-horizon minimum target volume and final minimum target volume of
reservoir r (∀r ∈ RT ).

The bounds on these new variables are defined as follows (∀r ∈ RT ):

0 ≤ αr ≤ max(Ar −Ψr, 0)

0 ≤ βr ≤ max(Br −Ψr, 0)

0 ≤ αr ≤ max(Ψr −Ar, 0)

0 ≤ β
r
≤ max(Ψr −Br, 0)

so that volumes deviate from target bounds while satisfying reservoir capacity bounds.

Relaxing constraints (2.1.11)-(2.1.12) as follows is expected to guarantee feasibility:

Ar − αr ≤ vt/2,r ≤ Ar + αr ∀r ∈ RT (2.9.1)

Br − βr ≤ vt,r ≤ Br + βr ∀r ∈ RT . (2.9.2)

Yet we want to relax the constraints only when necessary. For instance, if target volume bounds
are attainable, no slack should be introduced. To deviate as little as possible from the initial
target volume bounds, we compute the minimal amount of slacks that is necessary and sufficient
to recover feasibility. To do this, objective function (2.1.29) is replaced by another objective,
i.e., the minimization of the sum of deviations, so as to recover feasibility:

ε = min
∑
r∈RT

(αr + βr + αr + β
r
). (2.9.3)

The first stage terminates with a value ε. ε can be considered as the 1-norm of the deviation
vector (αr − αr, βr − βr)r∈RT .

2.9.2 Optimization of the original problem within deviations

In the second stage, we still consider the slack variables and related constraints (2.9.1)-(2.9.2)
but we limit the sum of deviations as follows:∑

r∈RT

(αr + βr + αr + β
r
) ≤ ε (2.9.4)

where ε corresponds to the result of the first stage. Either the initial feasible set was empty and
it is now enlarged within the computed deviation to contain at least one feasible solution, or the
initial feasible set was already non-empty and it remains unchanged when the deviation is zero.
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We can then optimize the original objective function (2.1.29) over a feasible set now guar-
anteed to be non-empty.

Note that the proposed method could be interpreted as a lexicographic method to solve a
bi-objective MILP where the first objective is minimizing the deviation with respect to the target
volumes (2.9.3) and the second objective is the original objective function (2.1.29). For details
on lexicographic methods for multi-objective optimization problems, the reader is referred to
[65], for example.

2.9.3 Computational tests

Feasibility recovery Table 2.9 expands Table 2.8 above to present results of the feasibility
recovery stage. The first (respectively second) column shows the solution status of the original
problem orig opt (respectively the feasibility recovery stage feas opt). Column 3 provides
infeasibility classification and column 4 shows if the sum of deviation ε is equal to 0 or not.
Finally, column 5 gives the number of relative instances #inst corresponding to each combination
of the previous columns.

solution status
infeasibility classification ε #inst

orig opt feas opt
feasible feasible – 0 46

intractable feasible -
0 1
>0 6

infeasible
infeasible data inconsistent – 5
feasible unattainable TV >0 6
feasible incompatible TV and discrete operations >0 2

Total Result 66

Table 2.9: Number of instances according to solution status, infeasibility classification and fea-
sibility recovery results, for the complete model with scaling C and data correction

The 46 instances that were originally feasible remain unchanged as the computed deviation is
zero. Feasibility recovery stage converges to 0 for 1 instance originally intractable, thus proving
original feasibility. As for the other 6 originally intractable instances, no zero integer solution
was found in the recovery stage within time limit, thus not proving original feasibility, but the
lower bound at termination was still zero, thus not proving original infeasibility either; at least
the non-zero integer solution found in the first stage allows to consider a non-empty restricted
feasible set for the second stage. The 5 instances that were originally data inconsistent remain
infeasible. For the 8 (=6+2) instances that were originally infeasible because of target volumes,
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a non-zero deviation is computed to recover feasibility. All in all, feasibility is recovered for 61
instances out of 66.

Revenues optimization For those 61 instances, Table 2.10 summarizes solution statistics of
the second stage. Table entries are :

• valley: valley name

• #inst: number of feasible instances

• ‖%‖: average normalized revenues and standard deviation

• ‖ε‖: average normalized sum of deviations used for constraints (2.9.4) and standard devi-
ation

• %gap: average relative gap (between best integer solution and upper bound) and standard
deviation

• #nodes: average number of branch-and-bound nodes and standard deviation in thousands

• time: average wall-clock solution time and standard deviation in seconds.

valley #inst ‖%‖ ‖ε‖ %gap #nodes time (s)
avg std avg std avg std avg std avg std

v-a 7 22% 39% 14% 38% 0.0% 0.0% 0 0 0 0
v-b 11 43% 22% 0% 0% 0.1% 0.1% 2,359 2,953 412 512
v-c 11 33% 37% 23% 33% 490% 1,085% 2,216 1,725 771 543
v-d 10 56% 21% 10% 32% 0.1% 0.0% 565 1,334 250 501
v-e 11 44% 24% 13% 30% 1.3% 2.4% 1,054 239 1,201 0
v-f 11 54% 23% 0% 0% 0.1% 0.1% 464 470 630 558

Table 2.10: Solution statistics per valley of second stage for the complete model with scaling C
and data correction

For proprietary reasons, we do not show explicitly values of revenues and deviations. For indi-
cation, we show values normalized per valley, i.e., assuming % > %

‖%‖ =
%− %
%− %

and ‖%‖ = 0 if % = %, where % is the revenues given by the best solution found for a specific
couple (valley, date) while % and % are the maximum and minimum revenues found as best
solution value for the same valley across dates. The normalized value ‖ε‖ for deviations was
computed in similar fashion.
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2.10 Conclusion

In this chapter, we dealt with feasibility issues of a real-world hydropower unit commitment.
The problem was formulated as a mixed-integer linear programming model. Given real-world
instances, we reformulated the model to make the problem feasible. Compared with a standard
HUC problem, the model featured two additional specifications: discrete operational points of
the power-flow curve and mid-horizon and final strict targets for reservoir levels. In practice,
solving this HUC problem often incurred infeasibility situations. We used a step-by-step ap-
proach to systematically exhibit and cope with one source of infeasibility at a time, namely
numerical errors and model infeasibilities.

Numerical errors were analyzed by resorting to an exact solver; rounding errors were dealt
with proper scaling while data errors were mitigated with corrective relaxations. We derived a
preliminary processing on the model and instances used by solvers to eliminate the detrimental
effects of numerical errors. We showed that the remaining infeasibilities were originated by
conflicting model specifications between target volumes and discrete operational points.

We proposed a 2-stage method to lift such infeasibilities. In the first stage, a minimal devi-
ation from target volumes is estimated to make the problem feasible. In the second stage, the
original HUC problem is solved with a possible deviation from the target volumes as defined in
the first stage.

Computational results showed the effectiveness of the data and model pre-processing –
rescaling, correction and 2-stage method with feasibility recovery – on an original test set of
66 real-world instances that demonstrated a high occurrence of infeasibilities.

In a wider perspective, the mathematical optimization issues we have grappled with, and the
many remaining, can be considered from a system engineering viewpoint, as suggested in [66].
Indeed, the mathematical model together with the implementation of a solution method to solve
data instances is a decision-support system for short-term hydropower scheduling, Then, two
relevant systems engineering questions are product verification and product validation. Basic
definitions of these notions are given in [40] as: “Simply put, the Product Verification Process
answers the critical question – Was the end product realized right? The Product Validation
Process addresses the equally critical question – Was the right end product realized?”

The first computational tests (Section 2.2) can be regarded as a verification of the initial
product. Its results show that the initial product did not provide correct solutions within a lim-
ited amount of time. Looking further, the analysis and scaling we carried out on floating-point
errors for the feasibility tolerance of volume-related constraints could be extended and partly
automated to deal with other constraints and integer feasibility tolerance. The data corrections
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and the two-stage method for target volumes were the next steps to recover feasibility to comply
with verification. The rationale behind these treatments was to introduce necessary and suffi-
cient slacks from the initial product to recover feasibility. Several other paths could have been
followed (see [18]).

A further step should be to validate the initial product along with the amendments we crafted.
To do so, insightful directives are presented in [12], especially with a view to better collaborate
with end-users/clients. One way to validate such a system would be to integrate it in a larger
simulation test bed. For example, with a month-long data set of guide curves for reservoir, we
could run the suggested optimization model consecutively to appraise the terminal deviation, if
any. Also, our belief is that, despite the simplicity of genericity, a one-model-fits-all approach is
too narrow to represent the various valleys under various conditions of operations.

Returning to product verification, providing correct solutions within a limited amount of time
requires further investigation. Analyzing the performance of the current approach – direct MILP
solver invocation – and diagnosing its difficulties could be done following the methodology
suggested in [43]. There are ongoing works to design other solution approaches for example by
resorting to path-reformulation (see [74]). Along the same lines, we have found promising to
investigate the underlying analogy between commitment decisions and items of the well-known
knapsack problem [41] in order to exploit the structural properties of the problem.



Chapter 3

A multiplicative weights update
heuristic for mixed-integer non-linear
programming – an application to a
hydropower unit commitment problem

In this chapter, we discuss a new heuristic for Mixed-Integer Non-Linear programming based
on the adaptation of the well-known Multiplicative Weights Update (MWU) method (see [7]).
The MWU was applied in the past to derive approximation algorithms for Linear Programming
(LP) [59] and Semi-Definite Programming (SDP) [6]. Although we do not derive approximation
algorithms, we demonstrate the applicability of the MWU as a heuristic for MINLP. To adapt the
MWU to MINLP, we have devised an ad hoc reformulation – that we have denoted pointwise –
which could also be used in a framework different from the MWU. Unlike most heuristics, we
show that the MWU still retains a relative approximation guarantee in the MINLP setting. We
present a further adaptation of our general method to a non-linear continuous HUC problem.
We find that the MWU is competitive with respect to the classical Multi-Start (MS) algorithm.
Applications to another NLP problem and to a MINLP problem can be found in [53].

This chapter is organized as follows. First, we give the generic description of the methodol-
ogy:

• in Section 3.1, we remind the original MWU method and its theoretical guarantee in order
to motivate its derivation into a (meta)heuristic;

• in Section 3.2, we introduce the notion of pointwise reformulations;

61
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• in Section 3.3, we provide guidelines for the adaptation of the MWU method for pointwise
reformulated MINLP.

Then, we present the application for an NLP HUC problem:

• in Section 3.4, we introduce its mathematical model, derive an adapted pointwise refor-
mulation and describe an adapted variant of the MWU algorithm;

• in Section 3.5, we present computational results.

3.1 The MWU framework

3.1.1 Original MWU framework

The (original) Multiplicative Weights Update (MWU) algorithm (see [7]) is a stochastic algo-
rithm with a relative performance guarantee on a weighted average of the errors. We rephrase
here the didactic intrepretation described in [7]. Over T rounds, an investor has to choose which
advisor to follow among a set of q advisors. His goal is to maximize his expected cumulative
payoff. At a round t ≤ T , the investor for example chooses to follow advisor i without knowing
beforehand the payoff associated with that decision, then the market unfolds and the payoffs
associated with all the decisions are revealed. Ideally, the investor wishes to “guess” who is
the best advisor, that is to say the advisor whose decisions have yielded the largest cumulative
payoff. Unfortunately, it cannot be done without hindsight. The intuition is to use the past
performance of advisors to predict their future performance. The cumulative performance of
advisors is graded by weights ω that denote the trust granted to them, those weights are updated
at each round after payoffs associated with decisions are revealed. Instead of choosing com-
pletely at random and instead of choosing only the best advisor so far, the intuition is to choose
at random according to a distribution that depends on the weights.

Algorithm 1 gives the pseudocode of the original MWU.
Given a positive constant η ≤ 1

2 and a number of iterations T ∈ N:
Before the first round, all advisors are trusted equally ∀i ≤ q, ω1

i = 1. At each round t ≤ T ,
the MWU performs the following tasks:

• it samples which advisor to follow according to a probability distribution (pti)i≤q propor-
tional to weights (ωti)i≤q;

• it observes the scaled cost/gain ψti ∈ [−1, 1] based on the decision of each advisor i ≤ q;

• it updates weights (ωt+1
i )i≤q based on the advisors’ performance, in order the compute

the new distribution (pt+1
i )i≤q.
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Algorithm 1 Multiplicative Weights Update algorithm
1: initiate: ∀i ≤ q, ω1

i ← 1

2: for t ∈ {1, . . . , T} do
3: sample i in {1, . . . , q} according to (ptj)j≤q, where ptj =

ωt
j∑

`≤q

ωt
`
,∀j ≤ q

4: observe costs incurred (ψti)i≤q

5: update weights according to costs ∀i ≤ q, ωt+1
i ← ωti(1− ηψti)

6: end for

Here we have used costs instead of payoffs. Costs are scaled ψt ∈ [−1, 1]q; positive costs reflect
bad outcomes. The objective of the investor is to follow the advisor whose decisions incur the
minimum overall cost. Note that the realization of the costs ψ can be given by an oracle.

The idea of the algorithm – and its name – is based on Step 5 of Algorithm 1.
The MWU yields an approximation guarantee on the weighted average costs/gains relative

to the performance of the best advisor.

3.1.2 The MWU approximation guarantee

We recall here the precise statement of the MWU approximation guarantee.
Given q, η, T, ω, ψ, p as above, it can be shown that [7]:

EMWU ,
∑
t≤T

∑
i

ψti p
t
i ≤ min

i≤q

∑
t≤T

ψti + η
∑
t≤T
|ψti |

+
ln q

η
. (3.1.1)

We remark that the guarantee (3.1.1) is actually an immediate consequence of the more general
bound:

∀i ≤ q EMWU ≤
∑
t≤T

ψti + η
∑
t≤T
|ψti |+

ln q

η
.

If the decision maker picks the advisor to follow at each round according to (pt)t≤T , the ex-
pected cumulative cost EMWU is bounded by a piecewise function of the accumulated cost of
any advisor.

Also, different weight update rules yield slightly different bounds. For example, when the
exponential update rule is used in Step 5 of Algorithm 1:

ωt+1
i ← ωtie

−ηψt
i ,

the derived bound is:

∀i ≤ q EMWU ≤
∑
t≤T

ψti + η
∑
t≤T

(ψti)
2 pti +

ln q

η
,
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where (ψt)2 is the component-wise square of the vector ψt. Taking the minimum over i ≤ q on
both sides of the inequality yields the exponential MWU bound corresponding to the inequal-
ity (3.1.1).

3.1.3 The intuition of the MWU for MINLP

The original MWU algorithm (Algorithm 1) samples some values from an iteratively updated
distribution in order to optimize a given loss criterion. We adapt this framework to MINLP
by introducing auxiliary problems, which can be solved more efficiently than the original for-
mulation. Hence they can be solved repeatedly at a relatively low computational cost. The
auxiliary problems are obtained through the pointwise reformulation which refers to a family of
parametrized approximations where terms of the original formulation containing decision vari-
ables are replaced with parameters denoted θ. The adaptation of the MWU then relies on two
analogies: first, advisors predict the values of parameters θ; secondly, costs associated with those
parameters are computed with respect to the optimality of the solution of the auxiliary pointwise
problem.

The sketch of the MWU for MINLP (see Algorithm 2) is very similar to the original one
(see Algorithm 1). Given positive constants η ≤ 1

2 and a number of iterations T ∈ N, the MWU
maintains a list of weights ω = (ωi | i ≤) ∈ [0, 1]q which are used to randomly update the
values of a vector θ ∈ Θ ⊆ Rq of parameters incurring an associated vector ψ ∈ [−1, 1]q of
costs; the costs are then used to update the weights ω according to

∀i ≤ q ωi ← ωi(1− ηψi). (3.1.2)

Algorithm 2 Sketch of MWU algorithm for MINLP
1: while termination condition is not met do
2: sample θ from distribution depending on ω
3: solve pointwise auxiliary problem parametrized by θ
4: compute the cost vector ψ associated to θ
5: update ω using ψ as in (3.1.2)
6: end while

The idea is that the weights ω iteratively adapt θ to being a good solution of an optimization
problem which aims to minimize the costs ψ. As the i-th cost ψi gets smaller (and perhaps
negative, becoming a gain), the associated weight ωi increases (because of update (3.1.2)), which
should hopefully yield an even smaller cost at the next iteration.
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It takes a nontrivial amount of work to adapt the MWU to the NLP and MINLP settings.
We provide guidelines to relate θ to a given (MI)NLP in Section 3.2 and to compute ψ in Sec-
tion 3.3 for the general case. We suggest specific implementations for the HUC application in
Sections 3.4.2 and 3.4.3.

3.1.4 The MWU as a metaheuristic for MINLP

In [70], the following definition of metaheuristic is given:

A metaheuristic is a high-level problem-independent algorithmic framework
that provides a set of guidelines or strategies to develop heuristic optimization algo-
rithms.

For example, the Multi-Start (MS) metaheuristic is described in Algorithm 3.

Algorithm 3 Multi-Start metaheuristic
1: while termination condition is not met do
2: sample a starting point x′

3: perform a local descent from x′, yielding x̃
4: if x̃ improves the best optimum x∗ so far, update x∗ with x̃
5: end while

It is evident that, given any optimization problem, a nontrivial amount of work is necessary
to determine the best distribution to sample from, what kind of local descent algorithm to em-
ploy, and which termination condition is appropriate. For heuristics, the answer mainly comes
from computational results (see Section 3.5 for comparative tests). To have a fair performance
benchmark between MS and MWU without over-tuning, we arbitrarily decide on simple set-
tings to run our experiments. Specific variations of the settings allow us to draw insights on the
empirical behavior of the two heuristics for the HUC problem we deal with.

Also, we feel we should give a word of caution about the reasons which lead us to investigate
yet another metaheuristic, given their abundance. Moreover, the word “novel” associated with
“metaheuristic” has already attracted some well argued criticism [70]. Our main motivation for
singling out the MWU is that, unlike the vast majority of metaheuristics, it comes with a relative
approximation guarantee on the cumulative (over all iterations t ≤ T ) mean costs, which turn
out to be bounded above by a piecewise linear function of the cumulative lowest cost over i ≤ q.
Although, in general, such a guarantee is rather weak, it is surprising that it should exist at all,
considering that it essentially only depends on the weights update in (3.1.2). For cases when an
upper bound can be provided for the lowest cost over i ≤ q, the MWU readily turns into a proper
approximation algorithm, as shown in [7]. Although we do not derive such approximations in
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this work, we mean to study this issue in further works, and hope that this work will spark
interest in the matter.

We remark that our algorithmic approach combines a metaheuristic framework and math-
ematical programming - to derive and solve pointwise reformulations. Therefore the MWU
heuristic belongs to the category of matheuristics [51]. Several other hybrid algorithms are
presented in the survey [61].

3.2 Pointwise reformulations

A Mixed-Integer Nonlinear Programming (MINLP) problem is usually cast in the general form:

min
x∈Rn

f(x)

∀` ≤ m g`(x) ≤ 0

∀j ∈ Z xj ∈ Z,

 [P ] (3.2.1)

where Z ⊆ {1, . . . , n} is given. If Z = ∅, the problem is called a Nonlinear Programming
(NLP) problem.

3.2.1 Concept and definition

We show how to relate the parameters θ sampled in the MWU framework to a general MINLP
formulation P as in problem (3.2.1). Broadly speaking, we reformulate P by replacing r prob-
lematic terms (e.g., the non-convex terms) with simpler terms parametrized by the θ parameters.
This yields a simplified formulation R in the original decision variables x, which varies in func-
tion of θ. We shall then iteratively solve R with θ fixed to values determined by the MWU
framework; each iterative solution of R being used to observe costs ψ.

The adaptation of the algorithm – sampling θ and observing ψ – is addressed in further
details in Section 3.3. Definitions and properties related to the pointwise reformulation are
introduced in the current section.

Notationally, for a mathematical programming formulation P , we write val(P ) to denote
the objective function value of a global optimum of P , and feas(P ) to denote the feasible set of
P .

Definition 3.2.1. Given a MINLP P as in problem (3.2.1), a pointwise reformulation Rθ =

ptw
t←t’(θ)

(P ) is a family of MINLP formulations, parametrized by θ = (θs | s ≤ r), which are

obtained by replacing given occurrences t1, . . . , tr of terms appearing in P by corresponding
parametrized terms t’s(θs) (for s ≤ r).
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For every replaced term ts (for s ≤ r) in Definition 3.2.1, letDs be the range of ts(x), where
the term is interpreted as a function of the decision variables x of P ranging in the respective
domains. For every replacement term t’s (for s ≤ r), letD′s(θs) be the range of [t’s(θs)](x) when
the term is interpreted as a function of the decision variables x of P ranging in the respective
domains. For s ≤ r, let Θs be the range of the corresponding parameter θs, and let Θ =

(Θs | s ≤ r).
Given a parameter vector θ ∈ Θ and a function φ to reformulate, we denote by φθ the

function obtained by replacing the terms t by the terms t’(θ). Thus, for example, the objective
and constraints of R are denoted as fθ, gθ, respectively.

We can therefore write a pointwise reformulation Rθ of P as follows:

min
x∈Rn′

fθ(x)

∀` ≤ m gθ` (x) ≤ 0

∀j ∈ Z ′ xj ∈ Z,

 [Rθ] (3.2.2)

where Z ′ ⊆ {1, . . . , n′}.
Note that problem (3.2.2) is actually a family of formulations, parametrized by θ. Note

also that, whereas the number of variables n′ may be different from n, on account of replacing
variable terms with parameter symbols, we enforce the same number of constraints m in both
P and Rθ: replacing terms with parameters may yield trivial constraints, which we stipulate to
be formally part of problem (3.2.2) for technical reasons. In practice, when solving pointwise
reformulations, trivially satisfied constraints may be dropped, of course.

3.2.2 Properties

Definition 3.2.2. Given a MINLP P andRθ = ptw
t←t’(θ)

(P ), both defined on a vector x of decision

variables in Rn:

(a) Rθ is spanning if, for any x ∈ Rn, there are values of θ such that evaluating the functions
of P and of Rθ at x yields the same results – more precisely, ∃θ ∈ Θs such that

∀s ≤ r Ds ⊂
⋃

θs∈Θs

D′(θs) ∧ [t’s(θs)](x) = ts(x);

(b) Rθ is exact if, for each globally optimal solution x∗ of P , there is at least one vector θ′ ∈ Θ

such that x∗ is also an optimal solution of Rθ
′
;

(c) Rθ is efficient if there is a polynomial-time algorithm for approximately solving Rθ (for
θ ∈ Θ) to within a given ε > 0 approximation factor.
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Note that the exactness property of a pointwise reformulation is only meaningful for feasible
problems. We stipulate that any pointwise reformulation of a class of infeasible instances is
exact, by definition.

More informally, we say that a pointwise reformulation is good if there is an established,
practically efficient technology for solving Rθ either optimally or approximately. For example,
if Rθ turns out to be a Linear Program (LP) or convex NLP (cNLP), then Rθ is efficient; if it
turns out to be a Mixed Integer Linear Program (MILP),Rθ it is good. Obviously, every efficient
pointwise reformulation is also good.

Example 3.2.3. Consider the following formulation P :

minx2(1− y) + y (3.2.3)

x+ 2y ≥ 2 (3.2.4)

y ∈ {0, 1}. (3.2.5)

If we set y = 0, constraint (3.2.4) and the objective function direction force x = 2, whereas
if y = 1 we can let x = 0; therefore the global optimum is (x∗, y∗) = (0, 1). We replace the
term x2 in the objective function by the term consisting of the scalar parameter θ, obtaining a
pointwise reformulation Rθ:

min(1− θ)y + θ

x+ 2y ≥ 2

y ∈ {0, 1}.

It is easy to see that Rθ is spanning whenever θ ∈ R+. If we set y = 0 we obtain x ≥ 2,
whereas y = 1 yields no constraints on x. The objective function value if y = 0 is θ; y = 1

yields 1 − θ + θ = 1. So for θ < 1 the set of global optima is [2,∞) × {0}; θ > 1 yields
the global optimal set R+ × {1}, and if θ = 1 every feasible solution is optimal, with optimal
objective function value equal to 1. Hence (x, y) = (x∗, y∗) = (0, 1) yields an optimum as long
as θ ≥ 1, which means that this pointwise reformulation is exact. This pointwise reformulation
is not efficient, since it is a MILP, but it is good.

Lemma 3.2.4. Given P and a spanning reformulation Rθ = ptw
t←t’

(P ), we have:

feas(P ) ⊆
⋃
θ∈Θ

feas(Rθ). (3.2.6)

Proof. Let x′ ∈ feas(P ). Since Rθ is spanning, there is ξ ∈ Θ such that ts(x′) = [ts(ξs)](x′)
for each s ≤ r, which implies gξ` (x

∗) = g`(x
∗) for all ` ≤ m. Since x′ ∈ feas(P ), g`(x′) ≤ 0
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for all ` ≤ m, hence x′ is also feasible in Rξ. Since feas(Rξ) is a subset of the right hand side
of (3.2.6) for each possible ξ ∈ Θ, the result follows.

The following example shows that the inclusion (3.2.6) cannot be tightened to an equality.

Example 3.2.5. Consider the pure feasibility NLP formulation F :

x ≥ 1

2
(3.2.7)

x2 = x, (3.2.8)

where x is a continuous decision variable. Constraint (3.2.8) is equivalent to x ∈ {0, 1}, so
constraint (3.2.7) forces x = 1, hence feas(F ) = {1}. We rewrite x2 = xx and replace the
first occurrence of x by θ, which yields the pointwise reformulation ptw

t←t’
(F ) = Rθ:

x ≥ 1

2
(3.2.9)

θ x = x. (3.2.10)

Any value of θ 6= 1 requires x = 0 in order for constraint (3.2.10) to hold, but x = 0 is
infeasible by constraing (3.2.9), i.e., feas(Rθ 6=1) = ∅. Setting θ = 1 yields feas(R1) = [1

2 ,∞).
In particular, we have

{1} = feas(F ) (
⋃
θ∈R

feas(Rθ) = feas(R1) = [1
2 ,∞). (3.2.11)

Since F and Rθ have no objective function, every feasible solution is optimal by definition.
Verifying exactness reduces to checking that, for every feasible solution of F , there are values
of θ such that the same solution is feasible in Rθ, which is established by (3.2.11). So this
reformulation is exact. Since F is a non-convex NLP but Rθ is an LP, this reformulation is
efficient.

A relaxation of a MP formulation Q provides a guaranteed bound (in the optimization di-
rection) at every feasible point of Q. Since relaxations must be efficiently solvable, and since
one usually looks for a bound to the optimal objective function value of Q, rather than to any
objective function value achieved by a feasible point in Q, it makes sense to generalize a re-
laxation so it is about optimal rather than feasible points. A bounding reformulation of Q as a
reformulation which, when solved to optimality, provides a bound in the optimization direction
to the optimal objective function value of Q (and, moreover, its feasible set contains the feasible
set of Q). Obviously, all relaxations are bounding reformulations.

Lemma 3.2.6. For any formulation P and spanning pointwise reformulation Rθ, there exists
ξ ∈ Θ such that Rξ is a bounding reformulation of P .
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Proof. The proof of Lemma 3.2.4 implies that, if ξ ∈ Θ is such that ts(x∗) = [ts(ξs)](x∗) for
all s ≤ r, x∗ ∈ feas(Rξ). Similarly, we show f ξ(x∗) = f(x∗), and therefore:

val(Rθ
∗
) ≤ fθ∗(x∗) = f(x∗) = val(P ),

which establishes the result.

We remark that the bounding reformulation guaranteed by Lemma 3.2.6 need not be a relax-
ation in the traditional sense.

Remark 3.2.7. Often, the replacement process t ← t′(θ) raises a cardinality issue: we replace
r terms of the original formulation, and we have to use its solution to compute q costs, where r
might in general be different from q. We shall discuss this issue in Section 3.3.1 below.

Last but not least, note that pointwise reformulations can be used in more general settings
than just the MWU algorithm. Although they have been devised with the MWU in mind, what
they really achieve is a general mechanism for automatically decomposing the solution process
of a MINLP into two phases: one for deciding values of θ, and the other for solving the corre-
sponding pointwise reformulation.

3.3 MWU adaptation for pointwise reformulated MINLP

Once we have derived a pointwise reformulation, we adapt the MWU loop to iteratively: set
values for the θ parameters, solve the resulting auxiliary pointwise problem, observe associated
costs ψ, update weights ω to update the distribution used to sample values for the θ parameters.

The pseudocode of the MWU algorithm for MINLP is shown in Algorithm 4. It takes a
MINLP formulation P and a pointwise reformulation ptw

t←t’(θ)
(P ) as inputs, and produces a hope-

fully good solution as output.
Note that pt is still necessary for the expression of the weighted cumulative error EMWU (see

bound (3.1.1)) though it is not used directly in the algorithm.
Next, we shall discuss Steps 6, 8-9 and 11 of Algorithm 4 in more detail.

3.3.1 Sampling parameters

As mentioned in Remark 3.2.7, the dimension r of θ and the dimension q of ω and ψ might
be different. Although it is hided with the vector notation in Algorithm 4, the question is how
to apply Step 6, since it implicitly assumes that r = q. We deal with this issue by defining θ
using aggregations (if r > q) or disaggregations (if q > r) of the values ω̃ sampled from [0, ω].
Aggregations and disaggregations are obtained by applying any number of operators, such as
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Algorithm 4 MWU(P )

1: initiate: weights ω1 ← 1

2: initiate: parameters θ0 ← θ̃ (arbitrarily in Θ)
3: initiate: incumbent x∗ ←∞
4: for t ∈ {1, . . . , T} do
5: normalize distribution pti ←

ωt
i∑

j≤q ω
t
j
),∀i ≤ q

6: sample ω̃t ← Uniform([0, ωt])

7: assign θt ← θt−1ω̃t

8: solve ptw
t←t’(θt)

(P ), get solution xt

9: optionally refine xt (e.g., using local descent on P )
10: if xt is better than the incumbent, replace x∗ ← xt

11: compute costs ψt ∈ [−1, 1]q from xt

12: update weights ωt+1
i ← ωti(1− ηψti),∀i ≤ q

13: end for

products or sums, to ω̃. Since there are many ways to split products and sums in a prescribed
number of different parts, the precise details of this step are heuristic in nature. We note that the
MWU performance guarantee on EMWU (see bound (3.1.1)) depends on q but not on r, and so it
is not impacted by such details.

3.3.2 Solution and refinement

Solving pointwise reformulations

If P has no integer variable and ptw
t←t’

(P ) is efficient, it is likely to be an LP or a cNLP, both

of which can be either solved or accurately approximated in polynomial time. If the pointwise
reformulation is not efficient but at least good, it may be a type of non-convex NLP for which
we have a practically fast solver which scales reasonably well.

If P has some integer variables and ptw
t←t’

(P ) is good, P might be a MILP or a convex MINLP

(cMINLP). This complicates matter, since solving a MILP or a cMINLP to optimality at each
iteration is usually computationally costly, even if good solver technologies exist. Note, how-
ever, that all the MWU algorithm needs in order for its guarantee to hold is simply an error
vector ψt at each iteration t ≤ T . So in fact we can run any heuristic we like on the pointwise
reformulation.
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Refining the pointwise optimum

The refinement step is optional in theory, but computational experience shows it is necessary
in practice for the MWU to perform well. If x′ is the solution of the pointwise reformulation,
any solver which is designed to improve x′ with respect to the original formulation P (at least
locally), can be used to refine x′.

3.3.3 Computing the MWU costs

This is the most critical step of the MWU algorithm, since it influences the performance guar-
antee. It has two requirements:

(a) ψt ∈ [−1, 1]q for all t ≤ T ;

(b) for any t ≤ T , ψt measures the error of the current local solution xt of the pointwise
reformulation with respect to the objective and constraints of the original formulation.

We need (a) to prove the MWU relative approximation guarantee, and (b) in order to relate
EMWU to the solution quality of the incumbent x∗. This occurs since EMWU depends on p and
ψ, p depends on ω, which is updated using ψ, and ψ depends on the local solution x of the
pointwise reformulation, which replaces the incumbent x∗ whenever it improves it. Note also
that x depends on θ through the pointwise reformulation, and that θ is randomly chosen from
the discrete distribution p, proportional to ω.

Based on (a) and (b), we compute a scalar αt related to optimality, and a set {βt` | ` ≤ m}
of vectors related to feasibility. Since we penalize infeasibilities but we generally do not award
better feasibility, the components of βt` are usually required to be in [0, 1] rather than [−1, 1].

More specifically, let Rθ
t

= ptw
t←t’(θt)

(P ) be the pointwise reformulation at iteration t ≤ T ,

let f(x), g`(x) ≤ 0 (for ` ≤ m) be the objective function and constraints of P as per prob-
lem (3.2.1), and let fθ

t
(x), gθ

t

` (x) ≤ 0 be those of Rt (for ` ≤ m). After Steps 8-9 of Algo-
rithm 4, we can evaluate the current solution xt in the pointwise reformulation by computing
fθ

t
(xt) and gθ

t

` (xt) for each ` ≤ m. We define arrays of values, αt, βt at each iteration t ≤ T :

• let αt be proportional to fθ
t
(xt)− f(xt), so as to favor a pointwise reformulation with a

lower objective value (for a MINLP in the general minimization form (3.2.1); if consider-
ing a maximization problem, αt should be replaced by −αt);

• for all ` ≤ m, let βt` be proportional to max(gθ
t

` (xt), 0), so as to penalize a pointwise
reformulation which makes a feasible solution infeasible.

The arrays α, β can be scaled in any way which makes them satisfy requirement (a) above. We
assume this scaling is application-dependent. We can now define ψt in a very simple way as
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the concatenation of αt and βt` for all ` ≤ m, which also fixes q = 1 + m. Other application-
dependent ways of defining ψ by means of α, β are also possible.

3.4 MWU for an NLP HUC

We present here an adaptation of the MWU framework for a non-linear continuous hydropower
unit commitment problem.

The common work [53] also features applications of the MWU to two other problems: the
Distance Geometry Problem (DGP) [48], which arises in the positioning of mobile sensors and
in protein conformation for example; and a variant of Markowitz’s Mean-Variance Portfolio
Selection problem (MVPS) [52].

This section is organized as follows. We describe the model of the HUC problem we deal
with in 3.4.1. We introduce an adapted pointwise reformulation for that model and check its
properties in 3.4.2. We design an adapted variant of the MWU algorithm in 3.4.3. Computational
results showing better performance of the designed MWU method over a simple MS method are
presented in 3.5.

3.4.1 Model description

As introduced previously, HUC is a problem that arises for short-term scheduling of power
plants. Here, we consider a simplification of the the profit-based price-taker problem presented
in [11]: the instances feature it is single-reservoir system with one generating unit whose power-
flow curve is non-convex and depends on the water level in the reservoir.

Over a uniformly discretized finite time horizon (ranging from one day to a week), given an
initial water volume in the reservoir, the goal is to find the optimal schedule of released water
flow which maximizes the revenues obtained by providing the generated power to the grid, such
that the final volume of water remaining in the reservoir reaches a desired target.

Let us present parameters of the model:

• time horizon H = {1, · · · , h̄}

• time period duration τ [h]

• initial water volume V0 [m3]

• final target water volume Vh̄ [m3]

• volume bounds V and V [m3] on the volume vh, for each h ∈ H

• maximum flow bound Q [m3/s] on the released flow xh, for each h ∈ H
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• maximum ramp-down Q− and ramp-up Q+ [m3/s/h] for the flow xh, for each h ∈ H

• forecasted inflows Ih [m3/s], for each h ∈ H

• forecasted proportional power selling prices Πh [currency/MWh], for each h ∈ H

• parameters and coefficients K1, . . . ,K6, L1, . . . , L6, L and R0 of a polynomial function
which models the generated power yh, for each h ∈ H .

Let us present variables of the model:

• released water flow (xh | h ∈ H) [m3/s]

• generated power (yh | h ∈ H) [MW]

• volume of water (yh | h ∈ H) [m3].

The model can be formulated as follows:

max
x,y,v

∑
h∈H

τΠhyh (3.4.1a)

v0 = V0 (3.4.1b)

vh = Vh (3.4.1c)

vh+1 − vh = 3600τ(Ih − xh) ∀h ∈ H (3.4.1d)

xh − xh+1 ≤ τQ− ∀h ∈ H (3.4.1e)

xh+1 − xh ≤ τQ+ ∀h ∈ H (3.4.1f)

yh = ϕ(xh, vh) ∀h ∈ H (3.4.1g)

vh ∈ [V , V ] ∀h ∈ H (3.4.1h)

xh ∈ [0, Q] ∀h ∈ H, (3.4.1i)

where ϕ(x, v) = 9.81x(
6∑
l=0

Llx
l)(

6∑
k=0

Kkv
k − L−R0x

2).

The objective is to maximize the revenues from power sales in (3.4.1a). Initial and target
volumes are respectively set in constraints (3.4.1b) and (3.4.1c). Constraints (3.4.1d) express
conservation of water volume from one time period to the next according to external inflows
and plant flows; assuming external inflows and plant flows are constant over one time period,
flows are linearly intregrated into volumes with the time coefficient 3600τ . Ramping constraints
(3.4.1e) and (3.4.1f) limit large shifts in the flow between two consecutive time periods. In
constraints (3.4.1g), ϕ(x, v) is the function expressing the power generated depending on the
water flow released x and the water volume v in the reservoir. Bounds on volumes and flows are
respectively set in constraints (3.4.1h) and (3.4.1i).
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3.4.2 Pointwise reformulation

By replacing each non-linear function ϕ(xh, vh) (for h ∈ H) with an affine approximation, we
derive a pointwise linear reformulation of problem (3.4.1):

max
x,y,v

∑
h∈H

τΠhyh (3.4.2a)

v0 = V0 (3.4.2b)

vh = Vh (3.4.2c)

vh+1 − vh = 3600τ(Ih − xh) ∀h ∈ H (3.4.2d)

xh − xh+1 ≤ τQ− ∀h ∈ H (3.4.2e)

xh+1 − xh ≤ τQ+ ∀h ∈ H (3.4.2f)

yh = θ3h + θ4h(xh − θ1h) + θ5h(vh − θ2h) ∀h ∈ H (3.4.2g)

vh ∈ [V , V ] ∀h ∈ H (3.4.2h)

xh ∈ [0, Q] ∀h ∈ H, (3.4.2i)

We remark that, in the pointwise reformulation (3.4.2), the parameter vector θ is structured as
the h̄× 5 matrix (θ1h, θ2h, θ3h, θ4h, θ5h)h∈H .

Given a point (x̃, ṽ) ∈ [0, Q]× [V , V ], the idea is to have a first-order approximation when
θ is properly chosen:

ϕ(x, v) ≈ ϕ(x̃, ṽ) +
∂ϕ

∂x
(x̃, ṽ)(x− x̃) +

∂ϕ

∂v
(x̃, ṽ)(v − ṽ)

= θ3 + θ4(x− θ1) + θ5(v − θ2)

if (θ1, θ2, θ3, θ4, θ5) =

(
x̃, ṽ, ϕ(x̃, ṽ),

∂ϕ

∂x
(x̃, ṽ),

∂ϕ

∂v
(x̃, ṽ)

)
Lemma 3.4.1. The pointwise reformulation (3.4.2) is spanning.

Proof. For each h ∈ H , the following holds: if x′h ∈ [0, Q] and v′h ∈ [V , V ], the replacement
term θ3h + θ4h(xh− θ1h) + θ5h(vh− θ2h) matches the replaced term ϕ(xh, vh) for all values of
θ satisfying θ1h = x′h, θ2h = v′h and θ3h = ϕ(x′h, v

′
h).

Proposition 3.4.2. For each globally optimal solution X∗ = (x∗, v∗, y∗) of problem (3.4.1),
there is a θ∗ ∈ R5h̄ such that X∗ is a globally optimal solution of problem (3.4.2).

Proof. Let us show that X∗ is a globally optimal solution of the pointwise problem (3.4.2) for

θ∗h = (x∗h, v
∗
h, ϕ(x∗h, v

∗
h),

∂ϕ

∂xh
(x∗h, v

∗
h),

∂ϕ

∂vh
(x∗h, v

∗
h)),
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where h ∈ H . Since this definition of θ∗ satisfies the spanning property in Proposition 3.4.1,
we can invoke Lemma 3.2.4 to conclude that X∗ is feasible for (3.4.2). Since X∗ is a global
optimum of (3.4.1), in particular it is also a local optimum, and therefore it satisfies the Karush-
Kuhn-Tucker (KKT) conditions. By the choice of θ∗, the gradients of the objective function and
the constraints of (3.4.2) atX∗ are identical to gradients of objective and constraints of (3.4.1) at
X∗. Therefore, X∗ also satisfies first-order optimality conditions of (3.4.2) when parametrized
by θ∗. Since (3.4.2) is an LP, any KKT point is also a global optimum, which concludes the
proof.

Theorem 3.4.3. Formulation (3.4.2) is an exact and efficient pointwise reformulation of prob-
lem (3.4.1).

Proof. Exactness of (3.4.2) follows by Proposition 3.4.2. Efficiency follows because (3.4.2) is
an LP, which can be solved in polynomial time.

3.4.3 MWU adaptation for the HUC

We discuss here the adaptation of Algorithm 4 to the HUC application setting.

Computing the MWU costs For each time period of the scheduling horizon, an upper bound
on the contribution to the overall revenues is given by:

Π̄ϕ̄ , max
h

Πh max
x,v

ϕ(x, v).

This allows us to define MWU costs at each iteration t:

∀h ∈ H ψth ←
Π̄ϕ̄−Πhy

t
h

Π̄ϕ̄
. (3.4.3)

This definition of ψt is close to the interpretation of αt given in Section 3.3.3. For each time
period, the corresponding revenues are scaled with respect to the best contribution possible. We
remark that minimizing

∑
ψh is equivalent to maximizing the orginal objective

∑
τΠhyh since

the transformation is affine.

Sampling parameters The pointwise reformulation (3.4.2) we employ for the HUC relies on
a parameter matrix θt = (θt1, θ

t
2, θ

t
3, θ

t
4, θ

t
5). Note that θt’s dimension is h̄ × 5, and that the

first two vectors are actually points in the (x, v)-space. The cost vectors ψt, and the weights
ωt, are h̄-dimensional. We decide to set θt1 and θt2 deterministically while (θt3, θ

t
4, θ

t
5) are set

according to the sample ω̃th ∼ Uniform([0, ωth]). Starting from the solution of the previous
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iteration (xt−1, vt−1), the power function is modified by changing coefficients of the first-order
approximation around (xt−1, vt−1).

More precisely: ∀h ∈ H,

θt1h ← xt−1
h ,

θt2h ← vt−1
h ,

θt3h ← ω̃thϕ(x̃th, ṽ
t
h),

θt4h ← ω̃th
∂ϕ
∂xh

(x̃th, ṽ
t
h),

θ5h ← ω̃th
∂ϕ
∂vh

(x̃th, ṽ
t
h).

(3.4.4)

MWU guarantee Since the distance to Π̄ϕ̄ is always penalized with non-negative ψ, the per-
formance guarantee of the MWU applied to the HUC is:

min
t≤T

∑
h∈H

ψthp
t
h ≤

1

T

 ln h̄

η
+ (1 + η) min

h∈H

∑
t≤T

ψth

 . (3.4.5)

3.5 Computational results

In this section, we present comparative computational results to validate the behavior of the
MWU algorithm for (MI)NLP in practice. We always compare the MWU with a “randomized
greedy” MS heuristic, which is possibly the most similar existing algorithm to the MWU for
(MI)NLP, on a fixed number T of iterations. We chose η = 0.5 and T = 20 for most of the
experiments (unless stated otherwise).

The randomized greedy MS we implement constructs a feasible solution at each iteration
t. More precisely, in a subloop on h ∈ H , we sample at random an initial flow value xh in a
domain that satisfies locally volume bounds (3.4.1h), and ramping constraints (3.4.1e)-(3.4.1f),
updates volume vh+1 according to (3.4.1d) and anticipates on final target volume (3.4.1c).

3.5.1 Test configuration

We use the IPOPT solver [20] as the local NLP solver in both the MWU (Step 9 of Algorithm 4)
and MS (Step 3 of Algorithm 3) methods; and CPLEX [38] as the LP solver for the pointwise
reformulation of the MWU (Step 8 of Algorithm 4). External solvers are invoked without time
limits. Tests were executed on a machine configured with eight 64-bit Intel Xeon CPU E5504
running at 2.00 GHz and 11.7 GB of RAM, running the Linux operating system.

The authors of [11] provided us with three simplified instances, sharing the following com-
mon characteristics:

• h̄ = 168, τ = 1 [h]
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• V0 = Vh̄ = 21078580, V = 15000000, V̄ = 33000000 [m3]

• Q̄ = 42 [m3/s]

• Q− = Q+ = 70 [m3/s/h]

• R0 = 0.01

• L = 385

• L = (L` | ` ∈ {0, . . . , 6}) =

= (4.0986,−1.2554, 0.1605,−9.762× 10−3, 3.0943× 10−4,−4.9293× 10−6, 3.1152×
10−8)

• K = (Kk | k ∈ {0, . . . , 6}) =

= (3.074 × 102, 3.88 × 10−5,−4.37 × 10−12, 0.265 × 10−19,−8.87 × 10−27, 1.55 ×
10−34,−1.11× 10−42)

All of the the values of the inflows I (m3/s) and prices Π (currency/MWh) per time period are
reported in Table C.1 in the Appendix C.

In order to work with a larger test set, nine further instances were generated from each of
the three original instances by uniformly sampling price vectors Π = (Πh | h ∈ {1, . . . , 168})
in [min Π,max Π]. The generated instances are noted A2 to A10, B2 to B10, C2 to C10. For
example, instance C2 features the same data as C1 except for the prices, which, however, lay in
the same range.

3.5.2 Comparative results on solution quality and CPU time

Both MWU and MS are configured with T = 20 iterations. Tests are run on the (A1-C10)
30-instance set introduced in Section 3.5.1. The comparative computational results are reported
in Table 3.1 as follows:

• the first column shows the instance name

• second and third columns show objective value and CPU time (in seconds of user time)
for the MS algorithm

• the fourth and fifth columns show objective value and CPU time (in seconds of user time)
for the MWU algorithm

• the fifth column shows relative objective value improvement from MS to MWU computed
as

∆ =
val(MWU)− val(MS)

val(MWU)
(3.5.1)

• the sixth column shows relative time improvement from MS to MWU computed as

Λ =
cpu(MS)− cpu(MWU)

cpu(MWU)
. (3.5.2)
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For the last two columns, the comparison metrics are summarized in the last line with the average
(avg) and the standard deviation (std) across all 30 instances.

MS MWU MS vs. MWU
Instance objective CPU objective CPU ∆ Λ

A1 4.08E+4 3.5 4.17E+4 3.0 2.11% 15.79%
A2 5.24E+4 3.6 5.32E+4 3.0 1.41% 21.81%
A3 4.78E+4 3.6 4.97E+4 3.0 3.75% 20.40%
A4 4.87E+4 3.6 4.98E+4 3.1 2.23% 16.35%
A5 5.11E+4 3.4 5.19E+4 3.0 1.50% 13.80%
A6 5.02E+4 3.6 5.10E+4 3.1 1.62% 14.47%
A7 5.11E+4 3.5 5.20E+4 3.0 1.79% 16.28%
A8 5.18E+4 3.5 5.24E+4 3.0 1.14% 13.86%
A9 5.15E+4 4.1 5.21E+4 3.0 1.10% 35.97%
A10 5.19E+4 3.6 5.13E+4 3.1 -1.24% 14.52%
B1 1.98E+4 2.3 1.98E+4 2.5 0.00% -7.17%
B2 2.67E+4 2.9 2.67E+4 2.7 0.00% 6.27%
B3 2.53E+4 2.5 2.53E+4 2.5 0.00% -1.99%
B4 2.53E+4 2.7 2.53E+4 2.6 0.00% 5.08%
B5 2.60E+4 2.9 2.60E+4 2.8 0.00% 2.11%
B6 2.60E+4 2.7 2.60E+4 2.6 0.00% 1.15%
B7 2.62E+4 2.6 2.62E+4 2.4 0.00% 5.74%
B8 2.65E+4 2.7 2.65E+4 2.6 0.00% 4.71%
B9 2.62E+4 2.9 2.62E+4 2.7 0.00% 9.29%
B10 2.61E+4 2.7 2.61E+4 2.5 0.00% 7.20%
C1 4.94E+4 3.9 5.17E+4 2.7 4.39% 47.92%
C2 6.96E+4 3.7 6.99E+4 3.0 0.36% 25.25%
C3 6.45E+4 3.8 6.65E+4 2.9 2.97% 33.33%
C4 6.50E+4 3.5 6.70E+4 2.9 2.96% 19.24%
C5 6.75E+4 3.4 6.87E+4 2.8 1.68% 20.92%
C6 6.74E+4 3.7 6.82E+4 2.8 1.17% 32.97%
C7 6.82E+4 3.7 6.87E+4 2.8 0.78% 34.55%
C8 6.84E+4 3.6 6.86E+4 2.8 0.42% 30.43%
C9 6.80E+4 3.6 6.88E+4 2.7 1.19% 34.34%
C10 6.82E+4 3.5 6.89E+4 2.9 1.13% 20.62%
avg 4.69E+4 3.3 4.75E+4 2.8 1.08% 17.17%
std 1.73E+4 0.5 1.77E+4 0.2 1.27% 13.01%

Table 3.1: Objective and CPU time of MS and MWU, relative objective improvement ∆ and
CPU time improvement Λ from MS to MWU.

The MWU algorithm is always better than the MS algorithm objective-wise and the improve-
ment is relatively small. It must be emphasized, however, that a few percentage points in the
objective functions of energy-related optimization problems often translate in consistent savings
in absolute terms. As for the time performance, the MWU algorithm is almost 20% faster than
the MS algorithm on average: this is an extremely desirable feature in short-term scheduling
problems such as this.
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3.5.3 Sensitivity to instance size

In order to study the relative performance sensitivity of the MWU algorithm on instance size,
we artificially vary the time horizon h̄ of the instances from one day to two weeks.

The instances introduced in Section 3.5.1 are one week long with hourly time steps (h̄ =

168); we now consider instances with h̄ in {24, 48, . . . , 168, . . . , 336}, defined as follows:

• when h̄ ≤ 168, data from the 168-long instances is cropped to h ∈ [1, h̄];

• when h̄ > 168, data for h ∈ [1, 168] is identical to the 168-long instances, and data for
h ∈ [169, h̄] is duplicated from the first interval and taken from time period h − 168 ∈
[1, 168].

Both MWU and MS are configured with T = 20. For each instance subset A (A1 to A10), B
(B1 to B10) and C (C1 to C10), the comparative computational results for the 14 different sizes
are summarized by average and standard deviation in Table 3.2, as follows:

• the first column shows the instance subset

• the second column shows instance size h̄

• the third and fourth columns show average (avg) and standard deviation (std) of the rela-
tive objective improvement ∆ taken over the 10 instances in the first column having size
specified in the second

• the fifth and sixth columns show average (avg) and standard deviation (std) of the relative
CPU time improvement Λ taken over the 10 instances in the first column having size
specified in the second.

For the last four columns, the last line shows the averages of the corresponding metrics taken
over the whole 420 (= 3× 10× 14) tested instances.

The results from Table 3.2 corroborate those from Table 3.1: almost always, the MWU
algorithm outputs a slightly better objective than the MS algorithm while outperforming the MS
algorithm in CPU time as instance size grows.

We graphically compare CPU times averaged over instances in Figure 3.1. Each point cor-
responds to (size, average CPU time) over all the instances A1-C10.

Figure 3.1 shows that, for the range of tested sizes, the CPU time taken by the MS algorithm
to solve larger instances increases more compared the MWU.

3.5.4 Comparative results on primal integral

The “primal integral” ([9]) is a performance measure that is relevant to evaluate and compare
primal heuristics. Given a time limit Tlim and an upper bound (of a maximization problem), the
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Instance
subset

Instance
size h̄

∆ Λ

avg std avg std

A

24 0.71% 5.92% -7.89% 15.19%
48 1.59% 3.57% 1.83% 5.31%
72 1.22% 1.96% 0.87% 3.25%
96 0.94% 1.81% 11.52% 7.46%
120 1.93% 1.55% 12.35% 7.58%
144 0.89% 1.45% 14.91% 6.31%
168 1.52% 1.25% 19.37% 9.73%
192 2.04% 1.49% 30.93% 4.28%
216 2.41% 1.62% 34.27% 6.97%
240 1.64% 1.33% 36.43% 5.85%
264 2.27% 1.13% 50.68% 11.56%
288 2.35% 1.57% 41.72% 7.56%
312 2.31% 1.17% 42.19% 8.28%
336 2.16% 1.43% 38.00% 6.33%

B

24 0.00% 0.00% -6.29% 2.43%
48 0.00% 0.00% 0.51% 3.10%
72 0.00% 0.00% 0.78% 3.04%
96 0.00% 0.00% 2.43% 2.61%
120 0.00% 0.00% 3.56% 3.88%
144 0.00% 0.00% 3.54% 3.21%
168 0.00% 0.00% 2.79% 4.30%
192 0.00% 0.00% 6.99% 4.66%
216 0.00% 0.00% 7.55% 6.37%
240 0.00% 0.00% 10.97% 6.36%
264 0.00% 0.00% 11.07% 8.49%
288 0.00% 0.00% 7.44% 5.10%
312 0.00% 0.00% 12.93% 7.33%
336 0.00% 0.00% 18.93% 8.37%

C

24 0.00% 0.00% -10.15% 16.72%
48 0.28% 0.87% -0.75% 5.07%
72 1.95% 3.14% 7.46% 7.41%
96 2.73% 4.41% 11.02% 7.22%
120 2.73% 2.42% 12.97% 7.86%
144 2.28% 3.21% 21.41% 8.02%
168 1.71% 1.32% 26.86% 8.40%
192 1.53% 1.36% 34.41% 6.27%
216 1.41% 1.90% 29.89% 8.66%
240 1.72% 1.40% 42.63% 7.66%
264 1.81% 1.85% 50.31% 14.46%
288 1.95% 2.13% 44.40% 13.97%
312 1.92% 2.07% 50.88% 11.96%
336 1.32% 1.61% 47.13% 12.83%

overall avg 1.13% 2.01% 18.54% 19.46%

Table 3.2: Relative objective improvement ∆ and CPU time improvement Λ from MS to MWU,
according to instance subset and instance size h̄.
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Figure 3.1: Average of CPU time (sec) vs. instance size |H| = h̄

primal integral is the time integral over the solution process [0, Tlim] of the gap of the incumbent
solution with respect to the upper bound. Thus both solution quality and speed performance are
taken into account. Indeed, when, for example comparing algorithms A and B, if, at a given
time, A finds a better solution, or if A finds the same solution than B earlier in time, A’s primal
integral will be lower than B’s.

Both MWU and MS are configured with Tlim = 20s. Tests are run on the (A1-C10) 30-
instance set with size h̄ = 336 introduced in Section 3.5.3. The comparative computational
results are reported in Table 3.3 as follows:

• the first column shows the instance name

• the second column shows the primal integral Γ for the MS algorithm

• the third column shows the primal integral Γ for the MWU algorithm.

For the last two columns, the comparison metrics are summarized in the last line with the average
(avg) and the standard deviation (std) across all 30 instances.

In some sense, the results of Table 3.3 synthesize the ones obtained in Table 3.1: the MWU
on average finds better solutions faster.

3.5.5 Sensitivity to varying initializations

In this section we empirically show that the MWU method is robust to varying initial conditions.
To do so, we define the objective dispersion Ξ as the standard deviation over the average of a
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MS MWU

Instance Γ Γ

A1 158.2% 67.3%
A2 77.5% 26.3%
A3 135.2% 39.0%
A4 81.8% 28.8%
A5 74.0% 38.8%
A6 94.0% 32.8%
A7 104.9% 35.7%
A8 91.0% 31.4%
A9 80.4% 35.8%
A10 71.9% 28.0%
B1 28.0% 22.0%
B2 40.0% 24.0%
B3 35.0% 22.0%
B4 35.0% 24.0%
B5 31.0% 25.0%
B6 35.0% 24.0%
B7 33.0% 21.0%
B8 40.0% 22.0%
B9 34.0% 25.0%
B10 33.0% 22.0%
C1 189.9% 71.0%
C2 102.6% 27.4%
C3 94.3% 26.7%
C4 78.8% 28.3%
C5 93.9% 35.0%
C6 128.5% 30.6%
C7 57.6% 19.9%
C8 78.1% 25.2%
C9 113.7% 33.5%
C10 67.8% 18.0%
avg 77.3 30.3%
std 40.7% 12.0%

Table 3.3: Primal integral Γ of MS and MWU

sample of objective function values collected from a sequence of runs with randomly chosen
starting vectors θ.

The MWU search is somewhat diversified due to the random sampling of θ (Step 6 of Algo-
rithm 4) which are used to define the pointwise reformulation. Whenever the ψ costs are only
defined through feasibility (i.e., ψ is proportional to β, see Section 3.3.3), it is easy to show that
the weights ω can only decrease during MWU execution (Step 12 of Algorithm 4), which means
the sampling domain is increasingly small. In the extreme case where all weights ω are set to
zero for all iterations, the search is deterministic and only depends on the values initially set for
parameters θ. We therefore test whether MWU results are conditioned by initialization.

To this end, we look at the dispersion of 20 MWU runs (all of them configured with T = 20
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iterations), started from 20 different randomly sampled vectors θ that are obtained with the
“greedy randomized” MS. In addition, for each sampled initial point, a local descent is indepen-
dently performed to solve problem (3.4.1); the best of these descents is equivalent to the result
of a 20-iteration MS run.

Tests are run on the (A1-C10) 30-instance set introduced in Section 3.5.1 (with h̄ = 168

time periods). Computational results are reported in Table 3.4, as follows:

• the first column shows the instance name

• the second column shows the objective dispersion Ξ

• the third column shows average objective function value improvements from MS to each
of the 20 MWU runs (∆avg)

• the fourth column indicates whether the worst objective function value obtained over the
20 MWU runs is as good as the MS result.

The comparison metrics are summarized in the last line with the average across all 30 instances.
On average, the dispersion of the MWU results is low (avg(Ξ)=0.38%), which shows low

sensitivity to variability in initialization. In addition, the dispersion of the MWU results is lower
on average than the average relative improvement (avg(∆avg) = 1.02%), thus showing that the
MWU is consistently better than MS; this comparison is all the more relevant as the 20 MWU
runs and the 20 MS iterations are started with the same values. Similarly, resorting to another
variation statistic, more three out of four times (76.67%) even the worst MWU run yields a result
as good as the MS.

Therefore, the MWU method does not suffer from a mitigated diversification compared to
the MS method, and is robust to varying initial conditions.

3.5.6 Importance of the pointwise and refinement steps

In this section we show that solving the pointwise problem within the MWU method (Step 8 of
Algorithm 4) partially accounts for its good performance compared to the MS.

Both MWU and MS feature a randomly started local descent. On the one hand, the initial-
ization phase for MS is based on sampling from a uniform distribution. On the other hand, the
MWU has a specific routine to sample parameters, which are then used to solve the pointwise
problem (3.4.2), whose solution is fed as a starting point to perform a local descent (refinement
step) for the original problem (3.4.1). In the MWU loop applied to the HUC, a solution of the
pointwise problem is bound to be relatively good for the original problem, whereas MS’s initial
point may be very poor. To test if the latter characteristic is responsible for the good perfor-
mances of the MWU, we compare results against an enhanced MS with a pointwise feasibility
recovery step – denoted MSptw – as described in Algorithm 5.
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Instance Ξ ∆avg MWU ≥ MS

A1 0.57% 3.02% TRUE
A2 0.46% 0.92% TRUE
A3 0.61% 4.02% TRUE
A4 0.72% 2.07% TRUE
A5 0.72% 2.29% TRUE
A6 0.74% 1.76% TRUE
A7 0.66% 0.79% FALSE
A8 0.56% 0.51% FALSE
A9 0.58% 0.37% FALSE
A10 0.62% 0.42% FALSE
B1 0.00% 0.00% TRUE
B2 0.00% 0.00% TRUE
B3 0.00% 0.00% TRUE
B4 0.00% 0.00% TRUE
B5 0.00% 0.00% TRUE
B6 0.00% 0.00% TRUE
B7 0.00% 0.00% TRUE
B8 0.00% 0.00% TRUE
B9 0.00% 0.00% TRUE
B10 0.00% 0.00% TRUE
C1 0.42% 4.09% TRUE
C2 0.52% 0.72% TRUE
C3 0.59% 2.74% TRUE
C4 0.59% 1.82% TRUE
C5 0.46% 1.63% TRUE
C6 0.52% 1.65% TRUE
C7 0.47% 0.86% TRUE
C8 0.42% 0.51% FALSE
C9 0.47% -0.31% FALSE
C10 0.63% 0.71% FALSE
avg 0.38% 1.02% 76.67%

Table 3.4: Objective dispersion Ξ, average relative objective value improvement from MS ∆avg,
and worst-case objective value comparison to MS (last column) for the 20 MWU runs.

Algorithm 5 MSptw(P )

1: while t ≤ T do
2: sample θt uniformly at random
3: solve ptw

t←t’(θt)
(P ), get solution xt

4: refine xt (e.g., using local descent)
5: if xt is better than the incumbent, replace x∗ ← xt

6: increase t
7: end while
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Both MWU and MSptw are configured with T = 20. Tests are run on the (A1-C10) 30-
instance set introduced in Section 3.5.1, (with h̄ = 168 time periods). The comparative compu-
tational results are reported in Table 3.5 as follows:

• the first column shows instance name

• the second and third columns show objective value and CPU time (in seconds) for the
MSptw algorithm

• the fourth and fifth columns show objective value and CPU time (in seconds) for the MWU
algorithm

• the fifth column shows relative objective value improvement ∆ from MSptw to MWU

• the sixth column shows relative time improvement ratio Λ from MSptw to MWU.

For the last two columns, the comparison metrics are summarized in the last line with the average
(avg) and the standard deviation (std) across all 30 instances.

The MWU method still outperforms the enhanced MSptw method both with respect to the
objective function value althoug the improvement margin is less marked as with the plain MS
method (see Table 3.1). As for time performance, the MSptw is much slower than the MWU
and even slower than the MS. Integrating the pointwise step in the MS yields better solutions at
the cost of longer solution times. Only the joint implementation of the pointwise step and the
MWU sampling – that is to say the MWU algorithm – allows to obtain better solutions earlier in
time than the MS algorithm.

3.6 Conclusion

This chapter was about the adaptation of the Multiplicative Weights Update algorithm to the
Mixed Integer Non-Linear Programming setting. Such adaptation was based on the derivation
of a parametrized reformulation denoted pointwise. We defined desirable properties for deriving
pointwise reformulation and provided guidelines to adapt the algorithm step-by-step. Unlike
most heuristics, we showed that the MWU method still retains a relative approximation guar-
antee in the NLP and MINLP settings. To deliver a proof of its applicability, we implemented
the method to solve a hard NLP HUC problem and benchmarked it computationally against the
Multi-Start method. We found it compared favorably to the MS, which offers no approximation
guarantee.

There are several directions to consolidate this work. Empirical evidence could be extended:
testing larger data sets, testing a more sophisticated mathematical model, testing other applica-
tions. Also, the analysis of the computational performance could be further investigated. For
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Instance
MWU MSptw MWU vs. MSptw

objective CPU objective CPU ∆ Λ

A1 4.17E+04 3.05 4.06E+04 5.3 2.65% 73.77%
A2 5.32E+04 2.97 5.24E+04 5.45 1.53% 83.50%
A3 4.97E+04 3.06 4.95E+04 6.38 0.34% 108.50%
A4 4.98E+04 3.19 4.86E+04 5.45 2.41% 70.85%
A5 5.19E+04 3.05 5.15E+04 5.05 0.81% 65.57%
A6 5.10E+04 3.17 5.11E+04 5.81 -0.11% 83.28%
A7 5.20E+04 3.08 5.12E+04 5.66 1.49% 83.77%
A8 5.24E+04 3.09 5.16E+04 5.85 1.47% 89.32%
A9 5.21E+04 3.12 5.19E+04 5.97 0.29% 91.35%
A10 5.13E+04 3.16 5.13E+04 5.55 -0.07% 75.63%
B1 1.98E+04 2.54 1.98E+04 4.59 0.00% 80.71%
B2 2.67E+04 2.71 2.67E+04 4.25 0.00% 56.83%
B3 2.53E+04 2.51 2.53E+04 3.86 0.00% 53.78%
B4 2.53E+04 2.6 2.53E+04 4.11 0.00% 58.08%
B5 2.60E+04 2.84 2.60E+04 4.73 0.00% 66.55%
B6 2.60E+04 2.59 2.60E+04 4.19 0.00% 61.78%
B7 2.62E+04 2.49 2.62E+04 3.85 0.00% 54.62%
B8 2.65E+04 2.54 2.65E+04 4.28 0.00% 68.50%
B9 2.62E+04 2.72 2.62E+04 4.44 0.00% 63.24%
B10 2.61E+04 2.52 2.61E+04 4.1 0.00% 62.70%
C1 5.17E+04 2.65 4.94E+04 5.51 4.38% 107.92%
C2 6.99E+04 2.95 7.02E+04 5.51 -0.46% 86.78%
C3 6.65E+04 2.89 6.55E+04 6.01 1.44% 107.96%
C4 6.70E+04 2.95 6.58E+04 5.43 1.78% 84.07%
C5 6.87E+04 2.85 6.86E+04 5.25 0.17% 84.21%
C6 6.82E+04 2.8 6.68E+04 5.69 2.08% 103.21%
C7 6.87E+04 2.76 6.88E+04 5.84 -0.18% 111.59%
C8 6.86E+04 2.83 6.82E+04 5.39 0.65% 90.46%
C9 6.88E+04 2.69 6.85E+04 5.5 0.42% 104.46%
C10 6.89E+04 2.95 6.89E+04 5.34 0.08% 81.02%
avg 4.75E+04 2.84 4.71E+04 5.14 0.71% 80.47%
std 1.77E+04 0.22 1.75E+04 0.72 1.10% 17.49%

Table 3.5: Objective and CPU time of MWU and MS with ptw initialization, relative objective
improvement ∆ and CPU time improvement Λ from MSptw to MWU.

all metaheuristics, characterizing the method – an adaptive, random, sequential algorithm in our
case ([30]) – and “deconstructing its components” ([70]) enables to design relevant control ex-
periments to gain better insights. More specifically to the MWU, testing the pointwise property
and the tightness of the MWU guarantee could be instructive. Finally, from a more theoretical
perspective, we hope that the MWU guarantee can be better exploited with a more elaborate
definition of the pointwise reformulation and the MWU costs in order to turn this heuristic into
an approximation algorithm.
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Chapter 4

Conclusion and perspectives

In Chapter 2, we dealt with feasibility issues of a real-world hydropower unit commitment.
The problem was formulated as a mixed-integer linear programming model. Given real-world
instances, we reformulated the model to make the problem feasible. Compared with a standard
HUC problem, the model featured two additional specifications: discrete operational points of
the power-flow curve and mid-horizon and final strict targets for reservoir levels. We used a
step-by-step approach to systematically exhibit and cope with one source of infeasibility at a
time, namely numerical errors and model infeasibilities.

Chapter 3 was about the adaptation of the Multiplicative Weights Update algorithm to the
Mixed Integer Non-Linear Programming setting. Such adaptation was based on the derivation
of a parametrized reformulation denoted pointwise. We defined desirable properties for deriving
pointwise reformulation and provided generic guidelines to adapt the algorithm step-by-step.
Unlike most metaheuristics, we showed that our MWU metaheuristic still retains a relative ap-
proximation guarantee in the NLP and MINLP settings. To deliver a proof of its applicability,
we implemented the method to solve a hard NLP HUC problem and benchmarked it compu-
tationally against the Multi-Start method.. We found it compared favorably to the MS, which
offers no approximation guarantee.

On a wider perspective, we have tried to show optimization for short-term deterministic hy-
dropower scheduling is an important and rich field as many issues remain to be investigated.
With respect to its application, we restate that the solutions to these scheduling problems are
essential. Indeed, producers must devise schedules – to operate hydropower plants safely, to
provide electricity reliably on the grid and to make a profit. In addition, Producers are legally
bound to communicate enforceable schedules to the TSO and to let the Energy Regulation Com-
mittee (CRE) examine its scheduling models.
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From a practical viewpoint, posing the right problem is a challenge itself before designing
efficient solution methods. Unfortunately it is not always addressed explicitly in optimization
literature. hydropower production is a complex system that cannot be represented as is. There-
fore it is important to first elicit the driving requirements and to choose how to model them,
then to validate the model along with data and solution implementation. The data and model
pre-processing proposed in Chapter 2 was a step towards that direction. Several characteristics
have yet to be modeled: for example, the time it takes water to flow actually depends on the
flow quantity; also hydroelectric plants are themselves made of network of pipes, turbines and
other devices that can operate in various configurations. Modeling those features should be ap-
praised with regards to the potential benefit both in terms of economic profit and of usability for
operators. Whatever the new features, and however they are modeled, it is tantamount to make
sure they are not conflicting and lead to infeasibility. In that case, changing the modeling is
necessary. Sequentially considering constraint satisfaction problems according to their priority
before solving the original problem, as in Chapter 2 is a relevant option.

Methodologically speaking, hydropower scheduling problems are a challenging boon for
mathematical optimization. A model, no matter how close to reality it is, is useful only if there
are methods to solve in a timely fashion. Computational efficiency is critical as schedulers have
very little time to compute, analyze, edit and transmit the schedules. Yet, conventional mathe-
matical programming methods are not always efficient enough to solve some of these problems
or even obtain feasible solutions. The heuristic developed in Chapter 3 is an attempt to provide
good schedules very fast for a slightly different HUC problem. Looking at it differently, in Chap-
ter 3, we use a HUC problem – known to be difficult to solve – to apply and benchmark a novel
heuristic for MINLP. Also, for the problem presented in Chapter 2, several MILP-inspired meth-
ods are to be tried by focusing on specific classes of valleys. All in all, hydropower scheduling
problems are an opportunity to develop new adapted solution method and test generic solution
methods.



Appendix A

Electricity production management

A.1 Hydroelectric structures

Let us describe the generic equipment of a hydroelectric structure, as presented in [77], following
the direction of natural flows:

Upstream Incoming flows from precipitations or upstream rivers are stored in the upstream/
uphill reservoir located above the structure. Run-of-the-river structures are not below a
reservoir but directly receives water from an upstream river.

Dam The upstream reservoir is closed by a dam to impound water.

Gate/valve When it is open, the gate allows to discharge water from the upstream reservoir.

Penstock Water discharged from the upstream reservoir runs in a penstock pipe to reach the
turbine.

Turbine/pump Turbines/pumps are the devices that allow conversion between motion of run-
ning water and rotation of generators/engines.

Generator/engine Generators/engines are the devices that allow conversion between rotation
of turbines/pumps and generation/consumption of electricity.

Tailrace Water discharged after the turbine runs in a tailrace pipe to go downstream

Spillway Some structures can discharge water from upstream in a spillway pipe that bypasses
the turbine so that water flows without engaging the generator.

Downstream Outgoing discharged flows go downstream/downhill. Pump-storage structures
feature a downstream reservoir from where water is pumped. Water released from dams
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or run-of-the-river structures goes into a downstream river or a downstream reservoir if
there is another hydroelectric structure.

A.2 Stakeholders of the electric system

Let us present the roles of and interactions between the major stakeholders involved in the elec-
tric system.

Generating companies Producers – also commonly referred to as generating companies (Gen-
Cos) – own or lease physical generating assets – that is to say power plants – to produce electric-
ity and physically provide it on the grid. The energy bundle (or mix) of a generating company
is the distribution of production assets according to their types. Generating companies can sell
their output on on wholesale electricity markets and/or to its end users if they are involved in
retailing activities.

End users End users consume electricity from the grid. They may be households or organiza-
tions (schools, street lighting, stores, SMEs, industrial facilities, etc.). The load is the aggrega-
tion of all electric consumptions at a given time.

Grid operators Basically, the grid can be described as the junction of two networks: the
(high voltage) transmission network and the (medium to low voltage) distribution network. In
transmission networks, nodes are denoted buses and those buses are connected by transmission
lines. Buses can be injection points of generating companies, junction points to distribution
networks, or junction points for exchanges with other transmission networks.

Transmission system operators (TSOs) operate and maintain transmission networks where
large-scale producers input their productions.

Distribution network operators (DNOs) operate and maintain distribution networks which
deliver power from the transmission network to end users.

In their respective networks, TSOs and DNOs must ensure safe and reliable operation of the
electric system. Operations are subject to conventions and requirements related to generation-
load balancing, line capacities, regulation of magnitude and frequency.

In France, RTE operates the transmission system and ErDF operates the distribution network.

Retailers Retailers sell electricity to their end users according to terms of subscription or pay-
as-you-go contracts. The electricity they supply can be produced by their own power plants if
they are also generating companies and/or can be procured from wholesale markets.
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EDF is both a producer and a retailer.

Markets Wholesale markets gather competing generating companies, retailers, pure traders
and even a few large-scale consumers to buy and sell electricity. According the maturity and
type of traded products, there are several exchange marketplaces. There is also the possibility of
trading over the counter (OTC).

In retail markets, retailers compete to supply electricity to end users.

Authorities International, national or local authorities set the regulatory environment.

For instance, the liberalization of the electricity economy initiated in the 2000s is a directive
from the European Union. Liberalization meant the introduction of competition for electricity
production and retail. Indeed, before liberalization, electricity was considered as public service
rather than a commodity. In France, EDF was a state-controlled vertically-integrated monopoly
responsible of the production-transmission-distribution-retail chain. Now, EDF is a corporation
under private, whose shares a majorly detained by the French state; RTE and ErDF are subsidies
that operate as independent spin-offs. from a state-controlled monopoly to competitive markets
for production and retail,

The liberalization of electricity markets is partial however, states still have control over elec-
tric systems; for example states can set tariffs or impose the energy bundle as illustrated with the
ongoing nuclear power phase-out in Germany. The interaction of power plants with their local
surroundings may also be subject to agreements with local authorities.

Within the current regulatory environment in France, the Energy Regulation Commission
(CRE) enforces market rules like ensuring there is no abuse of market power or other unfair
competition.

A.3 Unit-commitment settings

Three settings can be distinguished for unit commitment: security-constrained [33], price-maker
bidding [24, 54] and price-taker bidding [68] scheduling.

Security-constrained scheduling As implied in its name, security-constrained unit commit-
ment (SCUC) is concerned with the security of the system. The fundamental requirement
is to ensure the equilibrium between the scheduled controllable production and the fore-
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casted net load. The forecasted net load is computed as follows:

forecasted net load =forecasted demand

−market position + OTC contracts)

− forecasted inevitable production

Market position and OTC contracts are previously given from mid-term planning; in the
short term, trading and scheduling are done iteratively and sequentially to ensure the equi-
librium at the cheapest cost.

The provision of ancillary services may also be required to ensure system security. Oper-
ating reserve is an example of ancillary service; it is the increased or decreased margin of
production a producer can bring on the grid, usually on demand of the TSO; scheduling
such reserve in advance ensures rescheduling and real-time balancing is possible.

Security-constrained scheduling is centralized: all the power plants must scheduled jointly
since system requirements have to be met by the aggregation of the production levels and
reserves.

Price-maker bidding scheduling In that case, scheduling consists in bidding supply curves
to an auctioneer. A supply curve is a set of point, each point indicating the minimum
price at which a producer is willing to sell for a given production level. Finding the
coordinates of each point is similar to analyzing the marginal cost of a SCUC problem.
In a market environment, a producer is considered a price-maker when it is so prominent
that its contribution to the trade is unavoidable: its supply curve is bound to influence the
clearing. The remuneration structure is however different from SCUC and depends on
the clearing price of the auction. We will not give further details about this setting. The
configuration where few price-maker producers dominate the market is an oligopoly.

Price-taker bidding scheduling The aim of a price-taker producer in the bidding scheduling
setting is to maximize its payoff knowing that all the produced power will be sold, that it
will be sold at the estimated clearing price, and assuming the clearing price is not affected
by the power provided. Since there is no requirement binding the power plants, nor do
bids for one plant affect remuneration of another plants, the scheduling can be carried
independently for each plant, in a decentralized fashion. This kind of scheduling problem
is sometimes referred to as price-based unit commitment (PBUC). When no price-maker
producer is involved in the market, we find ourselves in the case of pure and perfect
competition.
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Mathematical optimization

B.1 Brief background

Mathematical optimization is one of a subfield of Operations Research or Management Science
and is sometimes synonym to Mathematical Programming. The discipline Operations Research
aims at using scientific tools to solve real-world problems such as programming and managing
operations. In that sense, mathematical optimization is a subfield of applied mathematics.

Mathematical optimization comprises two main features: translating real-world problems
into mathematical models, and solving mathematically-formulated optimization problems.

B.2 Basic notions

Generally, an optimization problem can be cast in the following form:

Min
x∈X

f(x) (B.2.1)

It is about finding the alternative x that brings the best result f(x) among all admissible alterna-
tives X .

We will now refer to the following formulation to describe basic notions related to optimiza-
tion problems:

Min
x∈Rn

f(x) (B.2.2a)

∀i ∈ {1, . . . ,m} gi(x) ≤ 0 (B.2.2b)

∀j ∈ {1, . . . , n} xj ∈ [lj , uj ] (B.2.2c)
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B.2.1 Variables

An alternative or solution to the problem is usually encoded with an n-dimensioned vector x of
variables; as we choose between alternatives, they are called decision variables.

B.2.2 Bounds and constraints

A solution x is admissible when it lies in the admissible (or feasible) set X ⊂ Rn. X can
be described as the intersection of bounds and m ∈ N constraints. For all variables xj(j ≤
n), lj is a lower bound and uj is an upper bound, lj ∈ R ∪ {−∞}, uj ∈ R ∪ {+∞}. A
constraint expresses a relationship between variables with the help of external parameters. ∀i ∈
{1, . . . ,m}, gi : Rn → R. A problem is infeasible if there is exists no solution X = ∅.

B.2.3 Objective function

An admissible solution x ∈ X is better than another one x′ if we can compare their respective
results: f(x) ≤ f(x′). That is why the objective function f is also sometimes called the crite-
rion. The codomain of f must be an ordered set and is usually R: f : Rn → R. By convention,
for infeasible solution x 6∈ X,Min f(x) = +∞.

B.2.4 Optimal solution

An admissible solution x∗ ∈ X is optimal when: ∀x ∈ X, f(x∗) ≤ f(x).

B.3 Problem types

B.3.1 Properties

Let us present different types of optimization problems according to properties of the problem
features described in B.2. The interested reader can refer to http://neos-guide.org/

content/optimization-taxonomy for a thorough taxonomy of optimization problems.

Definition of constraints An optimization problem is unconstrained when m = 0, and ∀j ∈
{1, . . . , n}, lj = −∞, uj = +∞. An optimization problem is box-constrained when m = 0,
and ∀j ∈ {1, . . . , n}, lj ∈ R, uj ∈ R. In the general default case, an optimization problem is
constrained.

http://neos-guide.org/content/optimization-taxonomy
http://neos-guide.org/content/optimization-taxonomy
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Number of objectives An optimization problem is feasibility satisfaction problem when there
is no objective function; in that case the objective is to find a feasible solution x ∈ X or to prove
the infeasibility of the problem X = ∅. The general default case deals with a single objective
function f : Rn → R. An optimization problem is multi-objective when f = (f1, . . . , fp) :

Rn → Rp; one possibility is to use a lexicographic order on Rp to compare solutions; another
possibility is to look for Pareto-optimal points, i.e., points x∗ ∈ X such that @x′ ∈ X : ∀k ∈
{1, . . . , p}, fk(x′) < fk(x

∗).

Uncertainty of parameters In the general default case, an optimization problem is determin-
istic: parameters to obtain bounds, constraints, and objective functions are known given values.
An optimization problem is robust when some of the parameters may vary in a given domain;
in that case, we are usually interested in minimizing the worst-case – with respect to the param-
eters – objective function or satisfying the worst-case constraints. An optimization problem is
stochastic when some of the parameters follow a probability law; in that case, we are usually
interested in minimizing a probabilistic operator of the objective function – such as the expected
value or the value-at-risk – or satisfying constraints in probability.

Expression of terms In the general default case, an optimization problem is explicit as the
objective function and the constraints are expressed in closed form. An optimization problem is
implicit in the converse case; implicit functions can be solutions of a parametrized subproblem
as in bi-level programming for example; when the values of the implicit functions can only be
obtained through an oracle, the problem is black-box.

Continuity of variables In the general default case, an optimization problem is continuous
when all variables are continuous in R. An optimization problem is discrete when the nature of
the variables is mixed: continuous and discrete (integer or binary). A continuous relaxation of
a discrete problem is a problem where the discrete variables have been replaced by continuous
ones.

Linearity of constraints and objective An optimization problem is linear when the objective
function and the constraints are linear combinations of variables.

Convexity of constraints and objective An optimization problem is convex when f and X
are convex. Linearity and continuity imply convexity. Discontinuities imply non-convexity.
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B.3.2 Problems of interest

In this thesis, we will deal with on Mixed Integer Linear Programming and Non-Linear Pro-
gramming problems. We present in the section of few problems of interest in deterministic
single-objective constrained optimization.

Linear programming (LP) Linear programming deals with problems where the variables are
continuous, the objective function and the constraints are linear.

Non-linear programming (NLP) Non-linear programming deals with problems where the
variables are continuous, the objective function and/or some of the constraints are non-linear.

Mixed-integer linear programming (MILP) Integer linear programming deals with prob-
lems where the variables are integer, the objective function and the constraints are linear. Mixed-
integer linear programs also feature continuous variables.

Remark: combinatorial optimization deals with problem where admissible alternatives can
be expressed as combinations of finite sub-alternatives; X being thus finite; admissible alterna-
tives are not necessarily encoded with real-valued variables; however, most frequently, combi-
natorial optimization problems can be cast into ILP problems by representing the choices for
sub-alternatives with binary variables.

Mixed-integer non-linear programming (MINLP) Mixed-integer non-linear programming
deals with problems where the nature of the variables are is mixed, the objective function and/or
some of the constraints are non-linear.

B.3.3 Complexity

LP problems can be theoretically solved in polynomial time. In the general case, ILP, NLP and
MINLP can be said to be NP-hard or undecidable.

B.4 Algorithms and solutions

Once problems have been cast in the generic form (B.2.2), we are also interested in systematic
methods – or algorithms – to provide solutions to these problems.

Let us present a few properties regarding algorithms and solutions.
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B.4.1 Properties

Local/global Let x ∈ X a feasible solution, and N ⊂ X such that x ∈ N a neighborhood
of x. x is a local optimal solution if ∀x′ ∈ N, f(x) ≤ f(x′). By contrast, x is a global
optimal solution if ∀x′ ∈ X, f(x) ≤ f(x′). This notion is usually relevant when variables are
continuous; in that caseN is usually taken as an open ball of arbitrary size. For convex problems,
local optimal solutions are also global optimal solutions. Global optimization is the field of study
for algorithms that solve non-convex problems with potentially multiple local optimums.

Specific/generic Solution algorithms work for given type of optimization problems. Generic
algorithms work for all problem of a given type. Specific algorithms require additional properties
and exploit a particular structure.

Solution quality An algorithm is exact when the solution x∗ it provides at the end of the
procedure is guaranteed to be optimal: @x′ ∈ X : f(x′) < f(x∗). An algorithm is approximate
when the solution x̃ it provides at the end of the procedure is guaranteed to be close to the
optimal value f(x∗); the guarantee is absolute if ∃ε > 0 : f(x̃) ≤ f(x∗) + ε; the guarantee is
relative if ∃η > 0 : f(x̃) ≤ f(x∗)(1 + η). An algorithm is heuristic when there is no guarantee
on the quality of the solution.

For example, halting an exact algorithm before its termination can be heuristic. The converse
is also interesting: a heuristic can be considered as a potential approximate algorithm whose
assumptions have not been unearthed to prove its guarantee.

Computational performance On top of theoretical complexity, algorithms are also evaluated
based upon their computational performance: number of basic steps, number of iterations or
CPU time for example. An algorithm can be evaluated through the time it takes to reach a
given solution quality; an algorithm can also be evaluated by the solution quality reached after a
limited number of iterations or CPU seconds.

Algorithms that have good time performances (and/or which require few memory) are said
to be efficient.

When exact or approximate algorithms are inefficient for given problems, heuristics often
appear as practical workarounds to provide satisfying solutions.

Deterministic/stochastic An algorithm is randomized or stochastic when some of its steps
involve a random choice. An algorithm is deterministic otherwise. A randomized algorithm is
evaluated by its probability to reach a given solution quality.
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Numerical exactness The implementation of an algorithm is exact if it results in solutions
that are arithmetically exact; otherwise solutions are accurate up to a given precision. Numerical
exactness depends on the way rational numbers are represented: in floating-point precision or
exactly. Note that, when working with computational implementations, we do not consider real
numbers as encoding them with binaries is impossible/tricky as explained in [26].

Note that algorithm exactness is different from numerical exactness; the former is related
to the quality of the solution theoretically obtained at the termination of an algorithm; the latter
refers to the precision of the computational output with respect to the arithmetic calculation.

B.4.2 Algorithms related to Mixed-Integer Linear Programming

Simplex The simplex algorithm is a very efficient algorithm to solve LP. Its worst-case running
time is exponential in the number of variables. It is essential in mathematical optimization as LP
is one of most basic problem types which we can elaborate on. The feasible region of an LP is a
polyhedron and the optimal value is attained at one of the vertices of that polyhedron.

Under some conditions, the algorithm is guaranteed to converge to the optimal value or to
certify infeasibility of the problem.

Branch-and-bound Branch-and-bound (BB) is an implicit enumeration for MILP based on
the solutions of continuous relaxations. The search is carried out through a binary tree which is
constructed by branching, that is partitioning the search space.

The size of the binary tree is exponential in the number (and range) of variables; in the worst
case, the whole tree must be explored; even if solving LP is considered as a basic operation, the
worst-case complexity of the BB is exponential in the number of variables.

At termination, the BB algorithm provides a certificate of optimality or of infeasibility. If
halted before termination, the BB algorithm may provide an intermediate feasible integer solu-
tion, whose quality can be assessed with the distance – or gap – to the lower bound.

Cutting planes The convex hull of all integer feasible solution to MILP problem is a polyhe-
dron. The cutting planes (CP) method relies on the idea that solving a continuous relaxation of
a MILP restricted to that polyhedron yields the optimal integer solution.

The scheme is to iteratively solve a continuous relaxation, find a cutting plane that separates
the fractional solution obtained, solve the continuous relaxation strengthened by the cutting
plane, and so forth until the solution is integer. The algorithm is guaranteed to converge to
the optimal solution, if the separation problem can be solved exactly. When stopped before
termination, the algorithm provides a lower bound but does not provide a feasible solution.

There are generic classes of CP as well as valid inequalities dedicated to specific problems.
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Branch-and-cut The integration of CP to solve node subproblems in a BB scheme gives rise
to the Branch-and-Cut (BC) algorithm. With general-purpose cuts, BC is the core algorithm of
most MILP solvers nowadays as described in [50].

Dynamic programming Dynamic programming (DP) is a generic solution method for prob-
lems that exhibit time or stage separability property: if we know the state at a given stage, the
optimal solution for the subsequent stages does not depend on the decisions taken at the previous
stages.

Dynamic programming does not apply only to MILP and does not apply to all MILP.

Metaheuristics In [70], the following definition is given:

A metaheuristic is a high-level problem-independent algorithmic framework
that provides a set of guidelines or strategies to develop heuristic optimization al-
gorithms. The term is also used to refer to a problem-specific implementation of
a heuristic optimization algorithm according to the guidelines expressed in such a
framework.

Ant Colony Optimization, Genetic algorithms, Multi-Start methods, Simulated Annealing,
Variable Neighborhood are examples of metaheuristics. The interested reader can refer to [30].

Several algorithmic approaches combine metaheuristics and mathematical programming al-
gorithms as presented in the survey [61]; this resulting hybrid branch of algorithms is sometimes
denoted matheuristics [51].

B.5 Computations and solvers

Algorithms for mathematical optimization can be coded into programs in order to compute so-
lutions to problems. Generic optimization algorithms have been coded into software known as
solvers.

In this section, we will discuss topics related to solvers and the computations of solutions
for optimization problems; an implicit emphasis is given for MILP.

B.5.1 Use cases

Industry In the introduction of [37], the authors praise the merits of invoking solvers to solve
MILP-formulated unit commitment problems.
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Academia Solvers are also widely in academic works.

As mentioned in Section B.4.1, algorithms are evaluated by their computational performance
which requires computational tests. Some solvers include most of the recent advances in opti-
mization, represent the state-of-the-art and are used to benchmark computational performance
of newly designed algorithms. Solvers which implement exact algorithms can also be used to
obtain optimal solutions and assess the solution quality of newly designed algorithms.

Often, elaborate problems are solved with algorithms that invoke other optimization pro-
cedures to solve subproblems; as we have shown for the conventional algorithms presented in
Section B.4.2. For computational tests, we can therefore use solvers for those subproblems
instead of implementing algorithms that are already known and coded.

In addition, there are even solution methods that explicitly rely on the nested invocations
of solvers. For example, several solution methods fall under the MIPping approach (see survey
[28]), whose principle is to solve auxiliary MIP during the solution process of a master MIP.
Note that Mixed Integer Linear Programming (MILP) is sometimes denoted MIP as linearity is
implicit by default.

B.5.2 Advantages

Maturity and performance Depending on the control we want and the solver allows, it is
sometimes better to use mature software that rely on state-of-the-art academic advances and
efficient implementations instead of re-inventing the wheel.

The computational performance of solvers has consistently improved in the past thanks to
progress in hardware and algorithms (see the first two figures of [44] for MILP solvers for
instance).

Ease of use Solvers are easy to use as most are general-purpose: for a given problem type,
we simply need to provide the model of the problem to solve in a generic form such as (B.2.2)
together with data to instanciate parameters involved in the expression of bounds, constraints
and objective function.

Solvers are also convenient as there are modelers, Application Programming Interfaces and
callbacks that allow to manipulate the problem at hand, to control the algorithmic behavior of
the solver and to retrieve all kind of information from the solution process.

For MILP, there are standard file formats compatible with most solvers that facilitate bench-
marks between solvers for example.

Several solvers with decent performances are free and/or open-source; even commercial
solvers are sometimes free for students and academics.
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B.5.3 Solvers of interests

(MI)LP solvers The interested reader can refer to the survey [49].

CPLEX CPLEX (originally named for a C-implemented simPLEX) is a commercial MILP
solver based on branch-and-cut. It features presolving techniques, search strategies and embed-
ded heuristic techniques.

SCIP SCIP (Solving Constraint Integer Programs) is a non-commercial MILP solver that
integrates constraint programming and satisfiability techniques in the usual MILP toolkit.

QSopt-Ex QSOPT-EX is an LP solver which provides exact rational solutions.

SCIP-Ex Most standard solvers work with finite precision binary floating-point arithmetic,
which inherently introduces rounding errors. SCIP-EX is beta-version extension of SCIP which
can solve MILP instances exactly over the rational numbers. SCIP-EX is used when exactness
is needed for the solution or to check exactness of other solvers’ solutions.

Convex NLP solvers

IPOPT IPOPT (Interior Point OPTimizer) is an open-source solver for convex large-scale
non-linear optimization. It implements a primal-dual interior point algorithm, which uses a filter
line search method to ensure global convergence.

Convex MINLP solvers

BONMIN BONMIN (Basic Open-source Nonlinear Mixed INteger programming) is an
open-source solver for Convex Mixed-Integer Non-Linear Programs. It has been developed
“within the framework of CBC by essentially replacing everything which was peculiar for the
linear case with a non-linear counterpart (IPOPT) but keeping the structure as unchanged as
possible” according to [50].

Global MINLP solvers

Couenne COUENNE (Convex Over and Under ENvelopes for Non-linear Estimation) is
an open-source solver for non-convex MINLP that aims at finding global optima.
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B.5.4 Challenges

For MILP, we make extensive reference to the article [44] that describes the library MIPLIB
2010 of instances that are challenging to solve for several benchmark general-purpose solvers;
we will give details about what can be challenging when solving MILP in this section. Note that
challenges might be concomitant, independent or correlated.

Performance Until theoretical boundaries are reached, computational performance is an ever-
improving direction: we always want to faster compute better solutions to larger problems. Note
that, on top of size, structure matters too. Indeed there are hard decently-sized problems, like the
Traveling Salesman Problem (TSP) for which solvers have yet to prove their efficiencies; some
problem instances require very long solution times, or even remain unsolved.

Solution time can be too long when LP solution time at each node of the BB tree is long and
when the branches of the BB tree to explore are numerous.

Automatic reformulation When comparing the performance of two algorithms to solve a
given problem, the most efficient one is likely to feature a procedure that is adapted to exploit
a structural property of the problem. A given problem can be expressed in different equivalent
formulations, each exhibiting different structural properties. The idea of automatic reformulation
would be to translate a given formulation of a given problem to a formulation whose structural
properties are inherently exploited by a given algorithm.

Performance variability Performance variability is another challenge described in [44]. It
denotes “changes in performance measures for the same problem that are caused by seemingly
performance-neutral changes in the environment or the input format”. When conclusions do
not depend on complexity theoretical argumentation but on empirical results, it become critical
to take variability into consideration, at least by running experiments with test sets as large as
possible along with showing variability statistics like standard deviation. In addition, “variabil-
ity should be taken into account not only when studying performance, but also when studying
the correctness of computation” as drastically different results from seemingly similar solution
processes usually indicate numerical issues.
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Data

C.1 Parameter values for the NLP HUC

instance A1 instance B1 instance C1 instance A1 instance B1 instance C1

h Ih Πh Ih Πh Ih Πh h Ih Πh Ih Πh Ih Πh

1 2.66 50.17 0.53 42.37 1.53 48.06 85 2.19 57.99 0.66 84.77 3.06 71.69
2 2.66 40.17 0.53 29.75 1.53 48.06 86 2.19 61.75 0.66 92.72 3.06 57.64
3 2.66 35.17 0.53 30.09 1.53 47.56 87 2.19 61.69 0.66 99.75 3.06 55.62
4 2.66 35.17 0.53 30.12 1.53 47.00 88 2.19 56.24 0.66 103.72 3.06 55.62
5 2.66 35.15 0.53 30.20 1.53 47.55 89 2.19 56.24 0.66 99.75 3.06 71.62
6 2.66 40.05 0.53 30.29 1.53 47.73 90 2.19 51.70 0.66 93.68 3.06 96.89
7 2.66 57.17 0.53 52.40 1.53 54.20 91 2.19 55.63 0.66 76.65 3.06 96.92
8 2.66 75.17 0.53 60.24 1.53 75.00 92 2.19 64.64 0.66 63.71 3.06 97.00
9 2.66 90.00 0.53 93.60 1.53 105.00 93 2.19 70.00 0.66 68.75 3.06 96.97
10 2.66 147.00 0.53 140.11 1.53 110.61 94 2.19 61.00 0.66 76.75 3.06 74.92
11 2.66 146.94 0.53 148.11 1.53 110.63 95 2.34 57.12 0.67 68.62 2.84 67.67
12 2.66 139.95 0.53 141.11 1.53 100.61 96 2.48 56.02 0.67 55.67 2.62 50.62
13 2.66 95.00 0.53 82.61 1.53 78.61 97 2.63 40.50 0.68 60.61 2.39 48.62
14 2.66 90.19 0.53 77.61 1.53 77.71 98 2.78 40.50 0.68 50.61 2.17 47.63
15 2.66 95.00 0.53 90.61 1.53 94.91 99 2.93 35.30 0.69 45.61 1.95 47.54
16 2.66 95.36 0.53 103.61 1.53 95.63 100 2.93 35.31 0.69 30.61 1.95 47.00
17 2.66 90.61 0.53 107.60 1.53 188.11 101 2.93 30.25 0.69 30.61 1.95 47.00
18 2.66 75.49 0.53 97.60 1.53 199.13 102 2.93 30.26 0.69 30.61 1.95 47.43
19 2.66 60.39 0.53 73.61 1.53 199.13 103 2.93 40.25 0.69 41.61 1.95 49.62
20 2.66 80.50 0.53 62.61 1.53 110.63 104 2.93 48.25 0.69 56.34 1.95 75.82
21 2.66 95.62 0.53 61.61 1.53 79.63 105 2.93 48.25 0.69 76.61 1.95 92.85
22 2.66 65.25 0.53 75.45 1.53 61.62 106 2.93 60.56 0.69 92.50 1.95 109.51
23 2.51 60.25 0.52 61.25 1.53 58.49 107 2.93 60.71 0.69 92.41 1.95 109.02
24 2.36 55.05 0.51 59.15 1.52 52.85 108 2.93 60.86 0.69 79.41 1.95 93.93
25 2.21 50.24 0.50 41.75 1.52 48.60 109 2.93 60.50 0.69 61.49 1.95 76.00
26 2.06 40.16 0.49 30.24 1.52 48.49 110 2.93 47.45 0.69 58.17 1.95 75.92
27 1.91 35.15 0.48 30.14 1.52 48.49 111 2.93 47.40 0.69 58.00 1.95 76.45
28 1.91 35.07 0.48 30.12 1.52 48.38 112 2.93 47.45 0.69 58.75 1.95 99.92
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instance A1 instance B1 instance C1 instance A1 instance B1 instance C1

h Ih Πh Ih Πh Ih Πh h Ih Πh Ih Πh Ih Πh

29 1.91 35.09 0.48 29.75 1.52 48.38 113 2.93 51.45 0.69 59.75 1.95 184.03
30 1.91 40.16 0.48 29.75 1.52 48.62 114 2.93 60.40 0.69 59.75 1.95 199.14
31 1.91 57.06 0.48 52.40 1.52 54.62 115 2.93 60.40 0.69 59.75 1.95 199.14
32 1.91 65.23 0.48 60.13 1.52 75.62 116 2.93 60.45 0.69 59.75 1.95 120.44
33 1.91 100.61 0.48 93.00 1.52 105.63 117 2.93 79.71 0.69 70.11 1.95 80.47
34 1.91 147.61 0.48 132.00 1.52 110.63 118 2.93 69.89 0.69 70.11 1.95 72.43
35 1.91 147.62 0.48 140.00 1.52 105.63 119 2.63 60.45 0.71 56.75 1.92 59.64
36 1.91 130.61 0.48 133.00 1.52 100.62 120 2.34 57.45 0.73 50.00 1.88 49.70
37 1.91 95.61 0.48 81.93 1.52 75.63 121 2.05 40.25 0.75 55.75 1.85 47.70
38 1.91 80.59 0.48 77.14 1.52 75.63 122 1.76 40.11 0.77 30.48 1.82 47.55
39 1.91 95.61 0.48 90.22 1.52 95.62 123 1.47 35.22 0.80 30.50 1.79 47.00
40 1.91 95.60 0.48 110.00 1.52 95.63 124 1.47 30.25 0.80 30.49 1.79 47.00
41 1.91 90.60 0.48 110.00 1.52 185.15 125 1.47 30.25 0.80 30.50 1.79 47.00
42 1.91 85.60 0.48 96.77 1.52 199.27 126 1.47 35.29 0.80 30.60 1.79 47.58
43 1.91 70.60 0.48 72.75 1.52 199.27 127 1.47 40.25 0.80 30.50 1.79 53.69
44 1.91 70.61 0.48 61.75 1.52 110.64 128 1.47 47.45 0.80 30.50 1.79 75.25
45 1.91 95.61 0.48 74.75 1.52 75.65 129 1.47 48.26 0.80 50.61 1.79 118.00
46 1.91 80.59 0.48 60.93 1.52 75.63 130 1.47 60.08 0.80 60.60 1.79 138.10
47 1.82 60.48 0.48 60.88 1.74 70.62 131 1.47 60.62 0.80 60.50 1.79 118.50
48 1.73 55.29 0.48 58.69 1.96 53.63 132 1.47 60.78 0.80 60.50 1.79 100.29
49 1.64 55.73 0.48 50.75 2.18 48.63 133 1.47 60.61 0.80 60.49 1.79 78.25
50 1.56 44.75 0.48 30.60 2.40 48.61 134 1.47 47.87 0.80 50.61 1.79 78.07
51 1.47 39.75 0.48 30.33 2.63 48.61 135 1.47 47.45 0.80 50.40 1.79 95.50
52 1.47 34.75 0.48 30.25 2.63 48.61 136 1.47 48.05 0.80 50.23 1.79 95.63
53 1.47 39.68 0.48 37.25 2.63 48.60 137 1.47 51.62 0.80 50.20 1.79 184.94
54 1.47 50.59 0.48 40.25 2.63 47.79 138 1.47 60.08 0.80 50.20 1.79 199.13
55 1.47 52.73 0.48 52.04 2.63 59.55 139 1.47 60.40 0.80 50.25 1.79 198.50
56 1.47 62.00 0.48 61.10 2.63 75.68 140 1.47 60.66 0.80 50.40 1.79 100.63
57 1.47 96.00 0.48 88.63 2.63 95.91 141 1.47 79.86 0.80 60.25 1.79 79.35
58 1.47 145.50 0.48 101.64 2.63 105.97 142 1.47 70.00 0.80 70.21 1.79 74.89
59 1.47 145.49 0.48 140.60 2.63 105.90 143 1.58 60.89 0.74 60.00 1.67 69.63
60 1.47 145.00 0.48 121.64 2.63 95.87 144 1.70 61.00 0.68 59.84 1.56 52.75
61 1.47 94.49 0.48 84.40 2.63 71.82 145 1.81 40.40 0.62 53.00 1.44 48.00
62 1.47 85.29 0.48 89.40 2.63 59.60 146 1.93 40.07 0.57 30.25 1.33 47.68
63 1.47 89.34 0.48 90.61 2.63 59.57 147 2.04 35.07 0.51 30.25 1.22 47.50
64 1.47 85.49 0.48 104.63 2.63 64.50 148 2.04 29.63 0.51 29.75 1.22 45.51
65 1.47 88.89 0.48 100.64 2.63 74.78 149 2.04 29.68 0.51 29.40 1.22 46.87
66 1.47 79.70 0.48 94.62 2.63 95.80 150 2.04 40.07 0.51 29.4 1.22 48.02
67 1.47 61.61 0.48 76.40 2.63 99.89 151 2.04 56.75 0.51 30.24 1.22 54.61
68 1.47 83.75 0.48 68.40 2.63 95.80 152 2.04 70.16 0.51 59.40 1.22 75.49
69 1.47 92.75 0.48 64.60 2.63 77.00 153 2.04 90.47 0.51 94.75 1.22 118.62
70 1.47 80.07 0.48 76.40 2.63 69.64 154 2.04 147.43 0.51 110.00 1.22 118.62
71 1.61 63.95 0.52 68.40 2.71 59.67 155 2.04 147.28 0.51 110.06 1.22 118.62
72 1.76 61.24 0.55 56.61 2.80 48.61 156 2.04 140.21 0.51 100.45 1.22 100.62
73 1.90 62.60 0.59 50.62 2.89 52.62 157 2.04 75.20 0.51 87.77 1.22 78.02
74 2.05 52.65 0.62 29.61 2.97 50.53 158 2.04 80.00 0.51 87.88 1.22 78.62
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instance A1 instance B1 instance C1 instance A1 instance B1 instance C1

h Ih Πh Ih Πh Ih Πh h Ih Πh Ih Πh Ih Πh

75 2.19 36.65 0.66 29.62 3.06 47.64 159 2.04 90.28 0.51 92.00 1.22 95.62
76 2.19 33.63 0.66 29.62 3.06 47.62 160 2.04 95.27 0.51 92.11 1.22 95.62
77 2.19 30.64 0.66 36.51 3.06 47.56 161 2.04 90.25 0.51 92.18 1.22 185.12
78 2.19 32.61 0.66 39.62 3.06 47.56 162 2.04 75.10 0.51 82.00 1.22 199.12
79 2.19 52.68 0.66 51.65 3.06 47.67 163 2.04 74.79 0.51 81.75 1.22 199.12
80 2.19 57.75 0.66 64.61 3.06 50.09 164 2.04 84.89 0.51 60.75 1.22 100.62
81 2.19 59.39 0.66 87.68 3.06 49.44 165 2.04 109.89 0.51 74.77 1.22 79.62
82 2.19 69.99 0.66 100.81 3.06 71.66 166 2.04 70.04 0.51 65.45 1.22 75.62
83 2.19 70.00 0.66 139.82 3.06 74.00 167 2.04 55.19 0.51 55.07 1.22 70.00
84 2.19 65.00 0.66 109.88 3.06 72.59 168 2.04 54.67 0.51 51.00 1.22 53.07

Table C.1: Inflows Ih (m3/s) and prices Πh (currency/MWh) for time periods h ∈ {1, . . . , h̄ =

164} for the 3 provided instances.
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[70] Kenneth Sörensen. Metaheuristics—the metaphor exposed. International Transactions in
Operational Research, 22(1):3–18, 2015. (Cited on pages 65, 87, and 101.)

[71] Daniel E. Steffy. Topics in exact precision mathematical programming. PhD thesis, Geor-
gia Institute of Technology, 2011. (Cited on page 13.)

[72] Milad Tahanan, Wim van Ackooij, Antonio Frangioni, and Fabrizio Lacalandra. Large-
scale unit commitment under uncertainty. 4OR, 13(2):115–171, 2015. (Cited on pages 26
and 27.)

[73] Raouia Taktak and Claudia D’Ambrosio. An overview on mathematical programming ap-
proaches for the deterministic unit commitment problem in hydro valleys. Energy Systems,
pages 1–23, 2016. (Cited on pages 26 and 34.)

[74] Raouia Taktak, Claudia D’Ambrosio, and Sonia Toubaline. Problème de gestion de produc-
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Titre : Planification de la production hydroélectrique au court terme : faisabilité et modélisation
Mots clés : programmation mixte en nombres entiers, programmation non-linéaire, planification de la production 
hydroélectrique, infaisabilité, calculs numériques exacts, matheuristiques.

Résumé : Dans  le  secteur électrique,  et  en  particulier
chez  le  fournisseur  et  producteur  EDF,  l'optimisation
mathématique est utilisée pour modéliser et résoudre des
problèmes liés à la gestion de la production d'électricité.
 Nous nous intéressons à des problèmes d'optimisation
de  Programmation  Non  Linéaire  en  Nombres  Entiers
(PNLNE)  liés  à  la  planification  de  la  production
hydroélectrique au court terme, Short-Term Hydropower
production  Scheduling  (STHS)  en  Anglais. En  effet,
exploiter l'hydroélectricité constitue un enjeu important
pour la gestion de la production électrique car c'est une
source d'énergie renouvelable, peu chère, flexible mais
limitée. Etant données des ressources d'eau finies dans
les  barrages,  l'objet  du  STHS  est  de  prescrire  des
programmes de production les plus rentables qui soient
compatibles  avec  les  spécifications  techniques  des
usines hydroélectriques.

Les  problèmes  de  PNLNE  sont  particulièrement
difficiles  à  résoudre.  En  amont  des  performances  de
résolution, la faisabilité est une question préliminaire à
aborder  puisqu'il  faut  s'assurer  que  les  PNLNE  à
résoudre admettent des solutions. De plus, la résolution
de  PNLNE  est  rendue  encore  plus  difficile  si  l'on
requiert  une  précision  exacte  des  résultats  car  il  faut
alors se prémunir d'erreurs numériques.

Dans un premier temps, nous traitons de la faisabilité
d'un  problème  réel  de  STHS  formulé  en  PLNE. Les
complications  liées  aux  données  réelles  et  au  calcul
numérique, associées aux caractéristiques spécifiques du
modèle, rendent le problème plus difficile à résoudre et
souvent  infaisable. Nous  procédons  par  étapes  pour
identifier et traiter les sources d'infaisabilité une par une,
à  savoir  les  erreurs  numériques  et  les  infaisabilités  de
modélisation. Des  résultats  informatiques  étayent
l'efficacité de notre méthode sur un ensemble de test de
66  instances  réelles  qui  contenait  initialement  de
nombreuses infaisabilités.
Dans un deuxième temps, nous adaptons l'algorithme du
Multiplicative Weights Update (MWU) pour la PNLNE.
Cette  adaptation  est  fondée  sur  une  reformulation
paramétrée  que  l'on  dénomme  pointwise. Nous
définissons  des  propriétés  souhaitables  pour  obtenir  de
bonnes reformulations pointwise et nous fournissons des
règles de haut niveau pour adapter l'algorithme étape par
étape. Contrairement à la plupart des heuristiques, nous
démontrons que la méthode MWU conserve une garantie
d'approximation relative pour les PNLNE. Nous mettons
en oeuvre le MWU pour résoudre un STHS formulé en
PNL en tant que preuve de concept.

Title : Short-term hydropower production scheduling: feasibility and modeling
Keywords : mixed-integer programming, non-linear programming, hydro unit commitment, short-term hydropower 
production scheduling, infeasibility, exact computation, matheuristics.

Abstract  : In  the  electricity  industry,  and  more
specifically  at  the  French  utility  company  EDF,
mathematical optimization is used to model and solve
problems related to electricity production management.
We  are  interested  in  Mixed-Integer  Non-Linear
Programming  (MINLP)  optimization  problems  related
to  Short-Term  Hydropower  production  Scheduling
(STHS). Indeed,  harnessing hydropower  is  critical  for
electricity production management as it is a renewable,
cheap, flexible but limited source of energy. Given finite
resources of water in reservoirs, the purpose of STHS is
to prescribe production schedules  with largest  payoffs
that are compatible with technical specifications of the
hydroelectric plants.

MINLP problems are particularly difficult to solve.
Prior  to  solution  performance,  feasibility  is  a
preliminary challenge to tackle since we should ensure
the MINLP problems to solve admit feasible solutions.
Also, certifying the exactness of the results compounds
the difficulty of solving MINLP problems as numerical
errors may occur.

Firstly, we deal with feasibility issues of a real-world
STHS  MILP problem. Issues  affecting  real-world  data
and numerical  computing, together  with specific  model
features,  make  the  problem  harder  to  solve  and  often
infeasible. We  follow  a  step-by-step  approach  to
systematically  exhibit  and  repair  one  source  of
infeasibility at a time, namely numerical errors and model
infeasibilities.  Computational  results  show  the
effectiveness  of  the  approach  on  a  test  set  of  66
real-world instances that demonstrated a high occurrence
of infeasibilities.

Secondly,  we  adapt  the  Multiplicative  Weights
Update  (MWU)  algorithm  to  solve  MINLP. Such
adaptation  is  based  on  a  parametrized  reformulation
denoted  pointwise. We  define  desirable  properties  for
deriving pointwise reformulations and provide elaborate
high-level guidelines to adapt the algorithm step-by-step.
Unlike most heuristics, we show that the MWU method
still retains a relative approximation guarantee. To deliver
a proof of its applicability, we implement the method to
solve a hard NLP STHS problem.
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